
UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

ECONOMIC DISPATCH PROBLEM SOLUTION VIA
HOLOMORPHIC EMBEDDING METHOD

ANA CATARINA SALLES RAMOS

ORIENTADOR: FRANCISCO DAMASCENO FREITAS

DISSERTAÇÃO DE MESTRADO EM

ENGENHARIA ELÉTRICA

BRASÍLIA/DF: 03 DE OUTUBRO - 2019



ii



FICHA CATALOGRÁFICA
SALLES RAMOS, ANA CATARINA

ECONOMIC DISPATCH PROBLEM
SOLUTION VIA HOLOMORPHIC
EMBEDDING METHOD
[Distrito Federal] 2019.

xiii, 89 páginas, 297 mm (ENE/FT/UnB, Mestre, Engenheiria Elétrica,
2019). Dissertação de Mestrado - Universidade de Brasília.
Faculdade de Tecnologia. Departamento de Engenharia Elétrica.

1. Despacho Econômico 2. Métodos Numéricos
3. Métodos Não-Iterativos 4. Método Holomorphic Embedding
I. ENE/FT/UnB II. Título

REFERÊNCIA BIBLIOGRÁFICA
Salles Ramos, A. C. (2019). ECONOMIC DISPATCH PROBLEM SOLUTION VIA
HOLOMORPHIC EMBEDDING METHOD. Dissertação de Mestrado, Publicação
726/19 ENE/2019, Departamento de Engenharia Elétrica, Faculdade de Tecnologia,
Universidade de Brasília, Brasília, DF, 89 páginas.

CESSÃO DE DIREITOS

AUTOR: Ana Catarina Salles Ramos

TÍTULO: ECONOMIC DISPATCH PROBLEM SOLUTION VIA HOLOMORPHIC
EMBEDDING METHOD

GRAU / ANO: Mestre em Engenharia Elétrica / 2019

É concedida à Universidade de Brasília permissão para reproduzir cópias desta
dissertação de mestrado e para emprestar tais cópias somente para propósitos
acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte
desta dissertação de mestrado pode ser reproduzida sem a autorização por escrito do
autor.

Ana Catarina Salles Ramos
Brasília – DF

iii



AGRADECIMENTOS

Agradeço aos meus pais por todo o apoio dado ao longo do meu mestrado.

Agradeço aos meus irmãos pelas distrações e confidências tão bem vindas.

Agradeço aos meus amigos sempre presentes e dispostos a ajudar.

Agradeço aos professores que contribuíram para minha formação de mestre, durante
o mestrado em Engenharia Elétrica. Agradeço, em especial, ao Professor Francisco
Damasceno pelo seu o apoio e suas orientações.

Agradeço à UnB e o Departamento de Engenharia Elétrica pela oportunidade de
desenvolver este trabalho.

Agradeço aos colegas e professores no LabRei pela acolhida.

Agradeço ao Prof. Dr. Felipe e à Profa. Dra. Kátia por aceitarem aparticipar da
minha banca.

Ana C. S. Ramos

iv



RESUMO

Este trabalho propõe uma técnica de solução alternativa para o Problema do Despacho
Econômico (PDE) de máquinas térmicas em sistemas elétricos de potência com
perdas de transmissão. A técnica empregada é chamada de Holomorphic Embedding
(Adaptação Holomórfica). Uma vez levantadas as equações do PDE, o problema é
adaptado de forma holomórfica. Este processo é feito mediante o cálculo de um termo
obtido a partir do resíduo inicial do sistema de equações não-lineares e de inclusão de
um fator de escala. O fator de escala é tal que quando ajustado para o valor unitário,
permite a obtenção da solução do sistema. O resíduo inicial é calculado a partir de
uma estimativa para obtenção da solução do PDE. Na abordagem holomórfica, esta
estimativa inicial é denominada ”solução semente”. Sua estimativa, por sua vez, foi
realizada determinando-se a solução do PDE formulado sem as perdas de transmissão.
O método utilizado emprega uma fórmulação que preconiza a obtenção de uma série de
Taylor com número reduzido de coeficientes. A série é então tratada e aproximada por
uma fração racional, denominada aproximação de Padé. Este é um fator positivo, pois
polinômios com elevado grau tendem a apresentar coeficientes com valores absolutos
muitíssimo reduzidos (elevados). Neste caso, a busca por uma solução dos sistemas
de equações não-lineares pode estagnar em um valor distante da solução de interesse.
Por isso, caso a solução com polinômio de baixa ordem se apresente com precisão
insuficiente, é feito um processo de reinicialização dos cálculos dos coeficientes. Porém,
agora, usando como solução semente computada a partir da aproximação de Padé
mais atualizada, considerando-se o fator de escala em seu valor unitário. O processo de
otimização dos custos para geração de potência leva em conta os limites operacionais
destas variáveis. Resolve-se o mesmo PDE pelo método clássico de Newton-Raphson.
A finalidade é ter uma referência computacional para se avaliar o desempenho da
técnica proposta. Simulações computacionais em três sistemas testes, considerando
algumas topologias diferentes para cada um deles, servem como meios para se avaliar
o desempenho da solução do PDE mediante a técnica de adaptação holomórfica. Os
resultados obtidos demonstram que o método proposto apresenta resultados similares
aos encontrados pela solução com o tradicional método de Newton-Raphson. A
vantagem da técnica proposta reside no fato que uma abordagem recursiva é usada
para determinar os coeficientes da série de Taylor e na sua robustez para determinação
da solução do problema, conforme aferido mediante monitoramento dos resíduos da
solução.

Palavras-chave: Despacho econômico, adaptação holomórfica, reinicialização, método
de Newton-Raphson, perdas de transmissão, série de Taylor, aproximação de Padé.
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ABSTRACT

This work proposes an alternative solution technique for the Economic Dispatch
Problem (EDP) for thermal generation units in lossy transmission system for electrical
power systems. The Holomorphic Embedding Method (HEM) is employed to solve
the nonlinear equations that arise on the EDP formulation. Once the EDP equations
with transmission losses are raised, the problem is holomorphically embedded. This
process is done by calculating a term obtained from the initial residual of the system
of nonlinear equations and including a scale factor. The scale factor is such that when
adjusted to the unit value, it allows to obtain the solution of the nonlinear equation
system. The initial residue is calculated from an estimate to obtain the solution of the
nonlinear equation system. In formulating the holomorphic embedding approach, this
initial estimate is called ”seed solution”. Its estimation in turn, in this dissertation, is
determined by calculating the solution of the EDP without transmission losses. The
holomorphic embedding method used in this dissertation employs a formulation that
advocates obtaining a Taylor series with a reduced number of coefficients. The series is
then treated and approximated by a rational fraction, called Padé approximant. This is
a positive factor, since high degree polynomials tend to have coefficients with very low
(high) absolute values. In this case, the search for a solution of the nonlinear equation
systems may stagnate at a value far from the solution of interest. Therefore, in case the
low-order polynomial solution is insufficiently accurate, a restart process is performed
to compute the series coefficients again. However, now, using as seed solution the most
updated Padé approximation. The cost optimization process for power generation
in the generating units takes into account the operational limits of these variables.
The same EDP is solved by the classic Newton-Raphson method. The purpose is to
have a computational reference to evaluate the performance of the proposed technique.
Computational simulations in three test systems, considering some different loading
for each of them, are used as means to evaluate the performance of the PDE solution
through the holomorphic embedding technique. The results show that the proposed
method presents results similar to those found by the solution with the traditional
Newton-Raphson method. The advantage of the proposed technique lies in the fact
that a recursive approach is used to determine the Taylor series coefficients and its
robustness for determining the solution of the problem as demonstrated by monitoring
the solution residues.

Keywords: Economic dispatch, holomorphic embedding, restart, Newton-Raphson
method, transmission losses, Taylor series, Padé approximant.
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Chapter 1 INTRODUCTION

1.1 Overview

The Economic Dispatch Problem (EDP) in power systems is still up to today
an extensively studied topic. The importance of the EDP originates due to the
constant need for an optimal energy management. Every power system operator has
to manage information which is useful for optimizing resources used in the system. An
important aspect taken into account is the power dispatch involving the several power
generation units available in the system. In this sense, it is important to determine
the power output for every machine that can be under control. The economic dispatch
of generation units is useful to plan the daily power output or a more timely output
such as hourly. This time dependent solution is what differs the Dynamic Economic
Dispatch Problem (DEDP) from the conventional EDP. The more accurate the hourly-
interval, the less computational demanding, and with more manners to individualize
for its users application the better.

Several different methods are investigated in the search for a more efficient or
faster solution, especially for the DEDP. Nowadays, it is possible to find many methods
for solving a number of different configurations of the EDP and DEDP like the ones
proposed in [1–3]. When transmission losses are included in the problem formulation,
a nonlinear system needs to be solved to satisfy these constrains. The challenge is to
employ an adequate method to determine the optimal solution for the problem. Among
the approaches, there are the ones based on the Newton method, genetic algorithm,
interior points method and several hybrid techniques that combine different approaches
in the attempt to minimize the originals downsides [4–8]. However, each technique and
configuration presents its owns pros and cons. In the line of innovative thinking the
Holomorphic Embedding Method (HEM) is a design that must be explored concerning
its prospects for improved solution accuracy.

The HEM was originaly proposed to solve nonlinear systems as those ones arising
in the power flow problem in power systems [9, 10]. By this technique, a system of
nonlinear equations are embedded as a function of a scaling factor in such way that

1



Chapter 1

the result of interest occurs when the scaling factor is adjusted to the unitary value.
The solution of the problem is determined in two main steps: firstly, it is computed a
finite Taylor’s power series for each variable of the nonlinear system as a function of the
scaling factor. In the sequence, the power series is converted to into a rational fraction
called Padé approximant. There are many ways to embed the problem and obtain the
solution of the nonlinear system by applying the HEM. In [9], it is calculated a power
series, in general with an elevated number of coefficients. The elevated polynomial
orders generate very high (or very low) coefficient values, which required improvement
in terms of accuracy (above double-precision accuracy) for handling such coefficients.
In [11], the problem of elevated order for the power series was circumvented, by using
a strategy that takes into account an initial guess and a restart process.

1.2 Motivation of Study

Inspired on the use of the HEM applied to solve the nonlinear problem of the
load flow in power systems, the idea is to investigate the EDP considering the HEM
to find the solution associated to the nonlinear problem. Some aspects are commented
about the HEM recent application.

The Holomorphic Embedding method (HEM) is a method based on the technique
of complex analysis. The technique was first proposed in power systems recently by
Trias [9]. And later on modified by others for a better response [12], or smaller order
coefficients [11].

The HEM exploits the technique of complex embedding to convert the problem’s
modeling functions to be holomorphic functions. The power dispatch for each unit and
the marginal prices solution is represented by the Padé approximants, which is a set of
rational equations obtained from the MacLaurin series expansion of the holomorphic
functions.

This method requires no initial value estimate, though it does require a germ
solution which can be found by a linear system solution. The HEM eliminates
the uncertainty of solution existence faced by all iterative solution methods. It is
guaranteed to converge if it has a solution, and unequivocally signals when no solution
exists. Furthermore, it can guarantee convergence, even though with precision issues
[9], [12].

2
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The HEM is a good candidate for solving EDP because of its high reliability. To
this point, the literature contains no reports that the algorithm has been tested for
solving economic dispatch problems, only for power flow problems.

1.3 Objectives

The objectives for this dissertation are two: adapt and test the Holomoprhic
Method proposed by [11] as a solution algorithm for the Economic Dispatch with
transmission losses, and investigate its robustness, reliability and accuracy when
compared with the traditional Newton-Raphson method for solving nonlinear equation
systems.

1.4 Main Contributions

This dissertation investigates the application of the Holomorphic Embedding
Method for Solving the Economic Dispatch for Thermal units under a lossy trans-
mission system. It can highlight as contributions the following aspects:

• The similar accuracy of the method when compared with the traditional Newton-
Raphson method;

• The smaller dependency on the initial guess or germ solution as the iterative
methods available;

• The restarted approach that reduced the order of the Taylor series and Padé
rational equations.

1.5 Related Publications

There are some interesting works related to the Economic Dispatch Problem and
the Holomorphic Embedding method that were used as research on this dissertation.
Regarding the Holomorphic Embedding method the succeeding references can be
mentioned:

3
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• The paper [9] by Antonio Trias is the initial study on the new method and laid
the foundation for developing the method employed in this dissertation;

• The method developed in [11] was the chosen one as the base for this work. It
uses a restarted approach with a very reduced number of coefficients;

• Shukla in [13] applies the Holomorphic method to the Unit Commitment problem
in order to calculate the load flow within;

• Again in [7] the Unit Commitment problem uses the holomoprhic method as part
of the solution associated with the Gravitational Search algorithm;

• Finally in [14] it is presented a new type of problem, the Voltage Stability, is also
solved via Holomorphic Embedding method.

As far as the important works related to the Economic Dispatch is important
to mention the ones addressing the differences in the problem modeling, the several
algorithms available for solution as well as the most recent developments. These can
be found bellow.

• Recently new aspects of the Economic dispatch modeling are at evidence, [15] for
instance investigate what are the impacts of implementing penalty factors;

• Fadil in [16] investigated differences in modeling of the EDP by including among
the restrictions prohibited operating zones for the thermal machines;

• Sydulu in [3] used a different model for the fuel cost, applying a cubic function
to cater for the dependency of the output to the constitutive parameters of a
thermal machine;

• It is also interesting to highlight the work of Han in [17] since it is studied
a variation of EDP where the problem takes into account the loading change
throughout time;

• Lastly paper [18] set the foundation for the dynamic lossy EDP with early studies
on the matter.

4
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1.6 Organization of the Work

This dissertation is organized in the following manner:

• Chapter 2 discuss the Economic Dispatch Problem, its characteristics and some
traditional solution methods;

• Chapter 3 explains the Holomorphic Embedding method and present generic
equations for the problem;

• Chapter 4 examines the economic dispatch using the holomorphic embedding
method presenting the main technique used in this dissertation;

• Chapter 5 exposes the numerical results, for the economic dispatch solved via
holomorphic embedding, for the selected cases and scenarios;

• Chapter 6 is the conclusion of this dissertation, where the final aspects are
presented and future works suggested.
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Chapter 2 ECONOMIC DISPATCH PROBLEM

2.1 Introduction

This chapter presents the basic model for the general economic dispatch problem
and some adopted solution methodologies. Firstly, it is presented the problem aspects,
modeling and related variables. Subsequently, the traditional techniques used for the
problem solution is mentioned. Then, these conventional methods are compared and
it is introduced the motivation to use the the non iterative model for solving the EDP,
called Holomorphic Embedding Method applied to EDP.

2.2 Economic Dispatch Studies

Economic dispatch studies are undertaken for various reasons, some of which are
the following [17] [19]:

• Reduction of costs for energy generation;

• Reduction of technical losses;

• Increase in the power plants efficiency;

• Increase of the power plants operators return;

• Improvement in power plant operation due to the increase of renewable energy
sources;

• Improvement of system’s assets operation.
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2.3 The Basic Economic Dispatch Aspects

The EDP is traditionally formulated as the minimization of an objective function
based on the costs associated with the generation from hydro and/or thermal power
plants [20]. However, this is a more open denomination for a set of problems that
are very distinct from one another. Within this denomination there are the Static
Economic Dispatch (SED) and the Dynamic Economic Dispatch (DED), both of them
can either have a lossless or lossy transmission lines [18].

When the transmission losses are considered the EDP becomes a nonlinear
problem. Even though there are several ways to model the losses such as via B-
Matrix [20], via quadratic loss curve associated with the generation [21] and via linear
load flow [16], only the later is the one being used in this dissertation.

There are several differences between SED and DED, a very important one is how
the load is treated. For example, in the SED the load is considered fixed throughout
the stipulated time interval whereas for the DED the load varies along the same period
of time. The variation of load in the DED can be within minutes, hours, days, etc.
This frequency is defined by what are the problem’s needs. The same reason is valid
for stipulation of the complete time interval of the DED and SED as well.

Other characteristics that can be used for distinction among the different EDPs
are for instance the use of penalty factors like the ones used in [15] or the use of
ramping rate as in [22], [17]. There is also the use of environmental cost as one of the
problem’s constraints like in [7] as well as the use of maintenance costs also applied in
[7]. Although, the latter is more commonly found in Unit Commitment (UC) problems,
which is a similar problem to the Economic Dispatch.

These are some examples on how the EDP formulation can be diverse. Nonethe-
less, this dissertation is focused only in SED without penalty factors, environmental
and maintenance costs or ramping rates, in a lossy transmission system.
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2.3.1 Problem Formulation

This dissertation’s proposed SED problem is formulated around the following
guidelines:

• Only thermal generators are used in the system;

• The transmission line losses are modelled by a quadratic function which is a
function of only the voltage phase angle; therefore, voltage magnitude at each
bus is assumed equal to 1.0 pu;

• Each thermal unit has its own heat curve and fuel price;

• Each thermal unit has its own operational limits;

• No constraints regarding the transmission lines capacity;

• No maintenance or environmental costs are considered;

• Every bus can be at the same time generating and consuming power.

The first one ensures a homogeneous system. The following was chosen
based on the suitableness of its mathematical function for holomorphic embedding
transformation. The third and fourth allow a more real representation of the power
system singularity. No maintenance or environmental costs were considered since down
times or natural impact were not within of the objectives of this work. At last longing
for a more flexible and close to reality like system configuration, all buses can be either
for generation, consumption or both.

With these rules the problem is modelled in the following order:

• Cost functions definition;

• Constraint functions determination;

• Objective function formulation;

• Lagrangian function construction;

• Optimality conditions estimation.

8
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2.3.1.1 Cost Functions

The costs function, Fi(Pi), is the mathematical function used to emulate the
costs for a specific generating unit i for a certain amount of power output Pi. This
function is obtained by multiplying the fuel price ci U$ by the generating unit heat
curve Hi(Pi) in BTU. The generator’s heat curve is a function that depends on its
mechanical, electrical and external characteristics.

This curve can be formulated in several different ways such as quadratic functions
[6], cubic functions [3] or like in [21] as a polynomial function. The most commonly
found is the first one, that will also be the formulation adopted in this dissertation.

Hi = h1iP
2
i + h2iPi + h3i (2.1)

Fi(Pi) = ciHi(Pi) (2.2)

Fi(Pi) = f1iP
2
i + f2iPi + f3i (2.3)

The parameters h1i, h2i and h3i are different for each curve and are the ones
determined by the machines characteristics. However, they are constant. The
parameter ci is the fuel price and depends only on the type of fuel being used on the
machine and market conditions. Although the fuel price may varies for each scenario
it will be a fixed value that will not change throughout the simulation. Thus f1i, f2i

and f3i will remain as constant values for each simulation.

2.3.1.2 System’s Constraints formulation

The constraints can be divided into two categories, equality constraints and
inequality constraints. The first one accounts for the system’s power balance and also
spinning reserve, if the problem considers these to be part of its model. The second
one caters for all the rest of the problem’s considerations, such as:

• Machine’s operating limits;

• Maintenance costs;

• Environmental costs;
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• Transmission lines capacity;

• Prohibited operating zones.

The equality constraints need no special manipulation in order to be inserted in
the Lagrangian function whereas the inequality ones need. The inequality constraints
must first be separated into two equations whenever there are an upper and lower limits.
Then one of these "new" inequalities constraints is used for each type of violation, upper
or lower.

Considering NG thermal units connected at a bus and a transmission system,
the equality constraint is of the type:

NG∑
i=1

Pi = PLoad + PLosses (2.4)

or as
NG∑
i=1

Pi − PLoad − PLosses = 0 (2.5)

where Pi is the power generation of unit i, NG is the number of generating units, PLoad
is the load and PLosses represents the lloss term.

The inequalities are attributed only to the power generation units. They are of
the form:

P i ≤ Pi ≤ P i (2.6)

also separated as two single-limit inequalities

P i − Pi ≤ 0, Pi − P i ≤ 0 (2.7)

where P i and P i are respectively the upper and lower machine’s operating limits units.

On equation (2.4) it is shown the equality constraint for the system’s power
balance. In (2.6) it is portrayed the generating units operating limits, which is the
only inequality constraint considered for this dissertation. Expressions in (2.7) shows
the process for dissociation into two inequalities constraints.
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2.3.2 The Classical Lossless EDP

The classical lossless EDP is presented in [20] when the term PLosses is neglected
in (2.4). For this formulation the power generation and load are aggregated at the own
bus. The diagram in Figure 2.1 illustrates this situation.

Figure 2.1: Generation and load aggregated at a bus - a lossless case

2.3.3 The Lossy Transmission Line EDP

The transmission line loss term PLosses in (2.4) is referred to as the total losses
in all interconnection i− j of the network. The loss at a given interconnection circuit
i−j is calculated considering the power flowing from the bus i to j. This is a nonlinear
term. The reference [20] presents an example for two buses, where one bus has a power
generation and another bus has only a load PL (see Figure 2.2 for details).

Figure 2.2: System formed by a power generation connected to a transmission line to supply
a load PL

In general, simplifications are assumed for the lossy EDP. In [20] for the 2-bus
system, the losses in the interconnection transmission line are calculated as a quadratic
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function of the output power supplied by the units connected to the bus 1. In [1], a
multibus system is studied. In this work, the transmission network loss is a function
of the output real power of thermal generation units and is given by (2.8):

PLosses =
NG∑
i=1

NG∑
j=1

PiBijPj (2.8)

where Bij are known as the loss coefficients or B-coefficients.

As in the 2-bus case, the losses in the multi-bus case also depend only of the unit
output power and the B-coefficients. The computation of these coefficients assumes that
the system is operating on a given point (see [23] for details). However, the economic
dispatch is just a procedure to determine the power dispatch in order to achieve the
lowest cost. Therefore, on adopting the B-coefficients method the computation of the
coefficients is verified for an operation point. Then, for a different operation point this
result can present significantly different characteristics.

Another method considers the active power flow from a bus i to j, PDij. By this
technique, the loss between two interconnected buses is calculated as P ij

loss = PDij+PDji.
The active power flow is approximated by [24]:

PDij = −bijθij +
1

2
gijθ

2
ij (2.9)

where θij = θi − θj and yij = gij + jbij is the connecting (series) admittance between
the two buses i and j.

Therefore, the loss in the interconnection i− j is gijθ2
ij.

The total power flow in the network is

PFL =

Nint∑
ij∈Ω

[−bil(θi − θj) +
1

2
gij(θi − θj)2] (2.10)

where Ω represents the set of interconnections in the system and Nint is the total
number of interconnection ij for the system.

Since each bus i may be connected through multiple lines to several buses j the
total load flow PFL are the sum of the load flows in all the lines connecting two buses
in the system.
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Differently from the method based on the B-coefficients for computation of loss,
expression (2.10) depends on the parameters of the interconnection and the phase angles
at the two terminals of the circuit. In view of these details, this modelling presents
a physical aspect more appropriated to model the loss. Then, the loss representation
(2.9) will be the option used to model the loss in a transmission line in this work.

2.3.3.1 Objective Function Formulation

The Objective Function (OF) is the function that specifies what will be maximized
or minimized by the Lagrangian function. In the case of EDP the primal interest is
to minimize the costs for generating power. However other goals might be of concern
such as minimization of losses, minimization of lines loading, etc. As mentioned before,
this work is interested only in the primal objective. Thus the OF will portray only the
reduction of generation costs. Then, the OF is defined as

Min
NG∑
i=1

Fi(Pi) (2.11)

for all NG generation unit in the network

Case there is more than one objective for the EDP, for instance the minimization
of costs and losses simultaneously. This double objective will be reflected in the OF. In
this case the OF will have more than one equation. For the example described above
the OF will be minimum of the costs sum and the minimum of the losses sum. This can
be extended for any number of objectives. Each new objective added to the problem
will result in a new function added to the OF.

2.3.3.2 System’s Lagrangian Function

The Lagrangian Function (LF) is the mathematical model that ties together all
elements of the EDP, the constraints and the objective function. When formulating
the LF it is also added the marginal cost variable or Lagrangian multipliers, λi, and
the lagrange multiplier for machines that are operating above or below its limits, πi.
The LF is constructed following this steps:
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• Initialize by the objective function;

• Multiply each equality constraint by a marginal cost variable λi;

• Subtract each of the above products from the objective function;

• Multiply each inequality constraint by a lagrange multiplier πi;

• Add each of the above products to the objective function with the equality
constraints;

• The objective function minus the equalities constraints product added to the
inequalities constraints product is the LF.

2.3.4 Lagrangian for a lossless transmission system

Suppose a Nb-bus system supplied by thermal units. The units are connected to
Ng buses and each bus i has Ngi units. Each bus ` = 1, . . . , Nb, including generation
buses, has an aggregated load PL`. For this problem, the lossless EDP can be stated
as

LF (P, λ, π) =

Ng∑
i=1, i∈Ωg

Ngi∑
j=1

Fij(Pij)−
Nb∑
`=1

λ`

 Ng`∑
j=1, `∈Ωg

P`j

− PL`
+

+

Nbg∑
i=1, i∈Ωg

Ngi∑
j=1

πij(P ij − Pij) +

Nbg∑
i=1, i∈Ωg

Ngi∑
j=1

πij(Pij − P ij) (2.12)

where Nbg is the number of generation buses in the system; Nb is the the total number
of system bus; Ngi is the number of generation buses connected to the bus i; Ωg is
the set of bus generation; Fij(Pij) is the cost function associated to the unit j which
is connected to the generation bus i; Pij is the power output of the unit j connected
to the bus i; λ` is the Lagrange multiplier associated to the system bus `; PL` is the
aggregated load connected to the bus `; πij and πij are the lagrange multipliers for the
lower and upper limits related to violation on Pij, respectively; P ij and P ij are the
lower and upper limits established for Pij, respectively.

In the next subsection, the Lagrangian for a lossy transmission system is
introduced.
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2.3.5 Lagrangian for a lossy transmission system

The Lagrangian function for a lossy transmission system is given by

LF (P, λ, π) =

Ng∑
i=1, i∈Ωg

Ngi∑
j=1

Fij(Pij)−
Nb∑
`=1

λ`

 Ng`∑
j=1, `∈Ωg

P`j − PL` −
∑
j∈Ω`

PD`j

+

+

Ng∑
i=1, i∈Ωg

Ngi∑
j=1

πij(P ij − Pij) +

Ng∑
i=1, i∈Ωg

Ngi∑
j=1

πij(Pij − P ij) (2.13)

where here PD`j is the active power flow flowing from the bus ` to j Ω` is a set of buses
that has connection with the bus `.

Analyzing the variables in the LF formulation, two sets of them have an
economical meaning and distinct understanding: λi and πi. The variable λ` is the
marginal cost associated with the system bus `. This means that a positive value
translates into the more power is generated in the bus the cheaper will be the total
cost, and a negative value is the opposite the more load or losses associated with the
bus the more expensive will be energy cost. Thus a negative value for any of the λi is
not desirable.

The analysis for the other economic parameter πij, the lagrange multiplier, is
a bit different. A positive value for πij indicates that constraint associated with the
violating unit is valid and therefore must be kept. This entails in a different marginal
cost for the violating unit. This unit marginal cost will no longer be the λi associated
to its bus, it now will be the lagrange multiplier plus the bus λi value. In the case of
a negative πi value, the constraint must be removed from the LF. Because, it is not
economically valid any more since it incurs in an elevation of cost. Whenever there is
a negative lagrange multiplier, this variable must be removed from the system and the
values must be recalculated.

The variables in the LF may vary according to the OF and constraints considered
for the EDP. However, they will be always characterized by three very distinct set of
equations. The first set are the equations that constitutes the OF, this set has no
additional variable associated with it.The second set is formed by the equations that
constitutes the equalities constraints, they are characterized by their association to a
marginal price variable (λi). Finally the third set are the equations arisen from the
inequalities constraints, they will have a lagrange multiplier (πi) associated with it.
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2.3.5.1 Optimality Conditions

The optimality conditions are all derived from the LF, they are the so called
Karush-Kuhn-Tucker (KKT) conditions. These conditions will form the equations
system that need to be solved in order to calculate the EDP solution for a given
system in a specific period of time.

The KKT conditions are the first partial derivative of the LF in respect to the
generators power (Pij), in respect to the incremental costs (λ`), in respect to the
voltage phases θm, and in respect to the lagrange multipliers (πij, πij). This set of
equations form a nonlinear system that must be solved in order to calculate the power
generation, incremental costs for each unit and in case of operating limit violation the
lagrangian multiplier associated with the violating power generation. This system can
be represented by the following equation set:

∂LF

∂Pij
=
∂Fij
∂Pij

− λi + πij − πij = 0, i = 1, . . . , Nbg, j = 1, . . . , Ngi (2.14)

∂LF

∂λ`
= −

 Ng`∑
j=1, `∈Ωg

P`j − PL` −
∑
j∈Ω`

PD`j

 = 0, ` = 1, . . . , Nb (2.15)

∂LF

∂θ`
=
∂
{∑Nb

`=1 λ`

[∑
j∈Ω`

PD`j

]}
∂θ`

, ` = 2, . . . , Nb (2.16)

∂LF

∂πij
= (Pij − P ij) = 0, i = 1, . . . , Nbg, j = 1, . . . , Ngi (2.17)

∂LF

∂πij
= (−Pij + P ij) = 0, i = 1, . . . , Nbg, j = 1, . . . , Ngi (2.18)

The optimality conditions are the equations that are responsible for finding the
minimum/maximum local and global points for the systems functions. Their solution
guaranties that the optimal result for all the equations was found.

16



Chapter 2

2.4 Traditional Optimal Solution Methods

Currently, there are many methods for solving the EDP, each one exploiting a
specific approach. There are the already established ones like the Reduced gradient
Method (RGM) [6, 16], the Newton-Based Methods (NBM) [20], the Interior Points
Method (IPM) [5]. There are also the new heuristic based ones like Artificial Neural
Network (ANN) [8], Particle Swarm Optimization (PSO) [4] and Gravitational Search
Algorithm (GSA) [7] and the ones in between such as the hybrid methods like Multi
Gradient PSO [1] and the established but not that widely applied like Dynamic
Programming (DP) [18] and Quadratic Programming (QP) [2]. In the following
subsection some of these methods are highlighted and compared one another.

2.4.1 The Interior Points Method

The Interior Points Method (IPM) is a widely applied solution method for ED [5,
26]. It consists on a solution method that obtains the optimum solution by moving the
evaluation plane and narrowing the feasible space that is surrounded by the evaluation
plane and the constraints planes.

When modelling the inequality constraints the IPM in order to contour the
problem of non-convergence of the solutions due to harsh restrictions, it is introduced
a new parameter (µi) that loosens the complementary constraints allowing this way a
more smooth convergence for the equations.

The LF for the IPM is the same as any other method, and from it are derived
the optimality conditions. The difference comes in the optimality conditions originated
from the inequalities constraints. On these equations the parameter (µi) is introduced
in the equation in order to wide the convergence plane for the equation, since the
original one is very narrow and depending on the initial guess might not converge.
Thus the system of optimality conditions equations is represented by (2.19), (2.20),
(2.21) and (2.22)

∂LF

∂Pij
=
∂Fij
∂Pij

− λi ± πij = 0, i = 1, . . . , Ng, j = 1, . . . , Ngi (2.19)
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∂LF

∂λi
=
∑
ij∈Ω

P ij
Losses + PLi −

Ng∑
i=1

Ngi∑
j=1

Pij = 0 (2.20)

∂LF

∂πij
= (Pij − P ij)πij = µij (2.21)

∂LF

∂πij
= (−Pij + P ij)πij = µ

ij
(2.22)

In order to return to the original problem the variable introduced for the
constraints relaxation (µij) must be reduced to zero. This is done by updating the
variable’s value and using the previous solution to the problem in order to calculate
another one for the new µi value in an iterative way, until the value of µij is within an
accepted margin of zero.

The nonlinear system composed by set of modified optimality conditions is solved
by Newton-Raphson, this being the reason why this solution method might encounter
some convergence issues even with the introduction of the relaxation parameter.

2.4.2 The Reduced Gradient Method

The Reduced Gradient Method (RGM) also known as the Reduced-Gradient
Method or as Reduced-Hessian Method takes advantage of the existing relation between
the system’s variables due to the equality constraints. This means that there will be
dependent variables and independent variables for the generators power output. The
dependent variables originated from the equality constraints, one for each constraint,
will cause a reduction in the size of the jacobian matrix, thus originating a more fast
and less computational burdening solution.

The first step is to chose which generator will be the dependent one (Pk), one for
each equality constraint, them its power equation must be rewritten accordingly, as a
function of the rest of the generators (Pi) power’s equations as depicted in (2.23):

Pk = PLoad −
N∑
i 6=k

Pi (2.23)
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With the dependable variables selected and its equations defined, the initial values
for the control variables (Pi) must be defined. They must be within the system’s
operational limits so the πi variables are all equal to zero. From the Pi it is calculated
the Pk values using (2.23). In order to calculate the λi values for the initial guess
values, the partial derivative from the control variables must be calculated.

Then the reduced gradient is calculated only with the control variables. From the
reduced gradient it is possible to determine weather the initial guess must be lowered
or increased depending if the greater value is positive or negative.

From the values of the reduced gradient the cost must be calculated from the
problem’s formulating equations. The cost variation is obtained trough (2.24). This
process must be repeated until the variation between the calculated costs are within
the accepted limits.

∆F (P) = ∇F (P)t ·∆P (2.24)

2.4.3 The Newton-Based Method

The Newton-Based Methods (NBM) are already a tradional approach solving
the EDP. They consist in simply solving the nonlinear equation system formed by
the first derivative of LF, the optimality conditions, via Newton-Raphson approach.
No adaptation for the equations is used like in the SBM and no other variables are
introduced like in the IPM.

The primary step for this method is an initial guess (P 0
ij and λ0

i ) for the variables
Pij and λi, this guess will be such that no power limits are violated therefore, all πij are
equal zero and the system is composed only of the equations (2.14) and (2.15). Since
the NBM are highly dependent on the initial guess, a good one for the lossy system is
the solution for the lossless system. Once the initial guess was defined the solution is
executed by the following algorithm:

1. Make k = 0;

2. Calculate the mismatch vector Rk;
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3. Calculate the Jacobian Matrix Jk;

4. Calculate the incremental value for the variables as shown in (2.25);

[∆P
(k+1)T
ij ∆λ

(k+1)T

i ]T = −JkRk (2.25)

5. Calculate the new values for the variables by (2.26);

P k+1
ij = P k

ij + ∆P k+1
ij , λk+1

i = λki + ∆λk+1
i (2.26)

6. Make k = k + 1;

7. Calculate the error (ξ) for the new values of the variables;

8. If the error ξ is not within the accepted convergence ratio resume to step 2,
otherwise P k+1

ij and λk+1
i are the EDP results.

If no variable exceeds the operating limits this will be the problem solution, in
case any of the variables exceeds its limits you must set the exceeding variable to its
limit, and add the constraint equation related to the exceeded limit to the nonlinear
system. Once this equation has been added you will follow once more the algorithm
for the new system solution. This must be done for every machine that is operating
outside its limits.

2.4.4 The Quadratic Programming Method

The Quadratic Programming (QP) is a method used for solving problems with
quadratic objective function and linear constraints. Therefore, it is good fit for the
lossless EDP. When is used for solving a lossy EDP the problem’s constraints must be
adapted to a linear form in order to apply for this method.

This method consists in finding a vector x that minimizes the quadratic function
(2.27) subject to a linear inequality (2.28), (2.29) and bound constraint (2.30).

minx(
1

2
xTHx + f ′x) (2.27)

Ax ≤ b (2.28)

Aeqx ≤ beq (2.29)
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lb ≤ x ≤ ub (2.30)

This is also an iterative process, hence the vector x must be calculated and
updated multiple times until a tolerance value is reached. Unlike most processes this
method does not require the construction of a Lagrangean Function then no values
for incremental cost λi are calculated and no derivatives and optimality conditions are
necessary. Since no derivatives are used this method will find a global minimum for
the problem.

2.4.5 Comparison of Traditional Models: IPM, RGM, NBM and QP

Methods

Some of the comparisons that can be made among the traditional solution
methods are:

• QP is the only method capable of finding a global minimum value for the problem,
while IPM, NBM and RGM are only capable of finding local minimum solutions.
This is due to the fact the QP trnasforms the problem in a convex problem while
the rest does not.

• QP is also the only technique that does not employ the actual system, since a
linearization of constraints is due for the algorithm execution, whereas none of
the other methods must approximate the conditions;

• IPM and RGM employ the Newton-Raphson for solving the equation system,
however, they both developed mechanisms(relaxation parameter, and smaller
gradient matrix) for improving the solution, by making it faster more accurate
and less computationally burdening;

• IPM also has another advantage when compared to NBM, the relaxation
parameter since it prevents the solution from zigzagging enables a better chance
of convergence for heavily loaded systems. As the µi is introduced the feasible
solutions curve becomes more smooth and employs better initial guesses;

• RGM for presenting a reduced gradient when compared to NBM has an advantage
of requiring the computation of a smaller number of parameters via iterative
manner, causing thus to be less computationally burdening.

21



Chapter 2

All the presented methods have one thing in common though, an iterative
component for its solution. Be it the succession of calculations for the x vector in
the QP or the calculation of non-linear constraints systems in the IPM, or repetitively
update of the gradient in the RGM or finally by the traditional calculation of the
Jacobian matrix and mismatch vector for the NBM.

2.4.6 Motivation for Non-Iterative Methods Development

The traditional solving methods for the EDP work well for a system with few
generators, as the number of power units rise their efficiency reduces. This is due to
several reasons such as: complexity of the Jacobian matrix for the NBM and RGM;
the complexity of the restrictions is a set back for the QP; and the high amount
of new variables that are introduced for each generating unit is a red light for the
IPM. Furthermore, these iterative methods need an appropriate guess of the initial
values. Taking into account these limitations for the traditional methods, non-iterative
solutions have been proposed and are yet to be more thoroughly tested [25].

2.5 Non-Iterative Methods

The traditional iterative solution methods are proven to come short when there
is a bad initial guess or when there are way to many variables resulting in a singular
Jacobian matrix that cannot be inverted, so new non-iterative methods have been
studied. Among the non-iterative ways to solve the EDP the Holomorphic Embedding
proposed by [9] and latter on improved by [11, 12] was successful in solving the Load
Flow problem and will be tested in this dissertation as a way to solve the EDP as well.

2.5.1 Motivation for The Holomorphic Embedding Load Flow Method

Development

The Holomorphic Embedding method (HEM) is the most recently developed
method based on the technique of complex analysis. The algorithm was first proposed
by Trias [9]. And later on modified by others for a better response [12], or smaller
order coefficients [11].
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The HEM exploits the technique of complex embedding to convert the problem’s
modelling functions to be holomorphic functions. The power disptach for each unit and
the marginal prices solution is represented by the Padé approximants, which is a set of
rational equations obtained from the MacLaurin series expansion of the holomorphic
functions.

This method requires no initial value estimate, though it does require a germ
solution which can be found by a linear system solution. The HEM eliminates
the uncertainty of solution existence faced by all iterative solution methods. It is
guaranteed to converge if it has a solution, and unequivocally signals when no solution
exists. Furthermore, it can guarantee convergence, even though with precision issues
[9], [12].

The HEM is a promising candidate for solving the EDP because of its high
reliability, though it requires a longer execution time when compared to other EDP
algorithms. To this point as far as the knowledge of the author goes, the literature
contains no reports that the algorithm has been tested for solving economic dispatch
problems, only for power flow problems.

Details of this method will be better explained in Chapter 3.

2.6 Conclusion of this Chapter

In this chapter was introduced four conventional methods (the QP, the NBM,
the RGM and the IPM) and discussed about a non-iterative methods (HEM). The
conventional methods have a good and reliable performance when dealing with smaller
systems and well placed initial guesses, thus this dependency upon the initial values
for convergence reduces their applicability. Non-iterative methods are claimed to have
improvements regarding the convergence issues and other advantages. As they are
much less researched than the conventional methods, they beg adequate study and are
open to further developments.
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Chapter 3 THE HOLOMORPHIC EMBEDDING METHOD

3.1 Introduction

In this chapter, the Holomorphic Embedding Method is detailed. This method-
ology is based on the complex analysis and aims to find a solution in a recursive way
rather than the iterative.

The method has already been applied [9] to the nonlinear power flow problem with
the proper models for load buses (PQ), Generator buses (PV) and slack bus, and later
on [11], where a restarted approach was developed. Guaranteeing thus its efficiency, as
long as the equations describing the power flow are holomorphic embedded, which is
done with the inclusion of a complex scaling factor α.

The analytical properties of the holomorphic functions are used to approximate
the variables in the function as a power series with the scaling factor α. Following,
a reference solution defined as germ solution, is calculated for α = 0. This way the
calculation of the coefficients of the power series in a recursive manner is enabled.
Finally, the Padé approximation is used in order to extend the series convergence
radius, reaching thus its maximum domain.

3.2 Holomorphic Functions

A holomorphic function is a complex-valued analytic function of one or more
complex variables that is, at every point of its domain, infinitely complex differentiable
in a neighborhood of the point. The existence of this complex derivative in its
neighborhood is a very strong condition since it implies that, any holomorphic function
is infinitely diferentiable and, more importantly, locally equal to its own Taylor series
[12]. This is the main property exploited in this new method for solving nonlinear
complex systems.
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Since the holomorphic functions are infinitely complex differentiable and complex
differentiation is linear, thus obeys the product, quotient and chain rules. The sums,
products and compositions of holomorphic functions are also holomorphic, and the
quotient of two holomorphic functions is also holomorphic as long as the denominator
is not zero.

The use of holomorphic functions as the systems variables is what enables this
recursive approach for solving nonlinear systems. Since holomorphic functions have
the property of being expanded into a power series such as the Maclaurin series the
opportunity of calculating the series coefficients degree by degree allows a recursive
manner to solve the system.

3.3 Power Series Expansion of Holomorphic Functions

The Maclaurin series of a generic function f(α) is generated when a Taylor series
is expanded about zero:

f(α) =
∞∑
i=0

c[i]αi =
∞∑
i=0

f (i)(α)

i!
, for |α| ≤ r (3.1)

where α is the holomorphic embedding parameter, f (i)(α) is the i-th derivative of f(α)

and r is a convergence radius.

Assuming that any electrical variable of a problem can be modeled as a holomorpic
function with the right choice of parameters, as for instance the power output generated
by one of the systems generators, Pij, can be expanded and approximated for n terms
as a power series [9]

Pij(α) =
n∑
k=0

Pij[k]αk, for|α| < r (3.2)

Once the desired system variable becomes a holomorphic function that can be
expanded into its Maclaurin’s series, the next step is to embed the function with the
complex parameter, α. This process will enable the calculation of germ solution via a
linear system and subsequently, the recursive calculation of the rest of the power series
parameters.
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3.4 Holomorphic Embedding of Nonlinear Equations

The first step towards using the HEM is to transform the nonlinear system with all
kinds of variables into a nonlinear system with variables that are holomorphic embedded
functions. The function embedding can be done in several ways, since there is no fixed
strategy for it. The general rule for the holomorphic embed is presented in the following
steps, where x(α) posses as the system variable that will become the holomorphic
embedded function. Note that at this point all the variables are considered already
holomorphic functions. To perform the embedding, the following steps are used as
example:

• Separate all the nonlinear terms of the equation to the left-hand side of the
equation, leaving the rest of the linear and fixed terms on the right-hand side
(3.3);

− rx2 = sx+ t, x(α) =
n∑
i=0

x[i]αi, for|α| < r (3.3)

• Insert on the left-hand side of the equation the embedding parameter α (3.4);

(−rx2)α = sx+ t (3.4)

• Check if the function was successfully embedded by making α = 0 (3.5) and
getting a linear equation and by making α = 1 and getting the original equation
(3.6);

α = 0, 0 = sx+ t (3.5)

α = 1,−rx2 = sx+ t (3.6)

In case the system presents a combination of both linear equations and nonlinear
equations there are two ways of guaranteeing the correct embedding;

• First way is to only embed the nonlinear equations resulting in this type of system
(3.7);

(−rx2)α = sx+ t

0 = ux+ v
(3.7)
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• Second way is to embed all the equations whether they are linear or nonlinear
like shown in (3.8).

(−rx2)α = sx+ t

−v(1− α) = ux
(3.8)

Note that this manner of holomorphic embedding, where the linear function is
multiplied by the term (1− α) can also be used for nonlinear equations if all the
nonlinear terms are not moved to the left-hand side of the equation.

The difference in the two ways of embedding meshed systems will only appear in
the B matrix (AX = B) when calculating the power series terms for the germ solution
and first degree, the rest of the degrees will be the same for either way of embedding
the system. The resulting linear systems for calculating recursively the Maclaurin’s
coefficients can be seen in the equations (3.9) to (3.12) that evidence the subsequent
equations systems for n = 0, 1, 2, 3. Although it was only represented the systems
for all equations embedded with the scaling factor, the presence of not embedded
equations does not imply that there are variables that are not holomorphic functions
in the system, all of the systems variables will be holomorphic whether or not the linear
equations are multiplied by the scaling factor α.

s1x1 = −t1
n = 0 s2x2 = −t2

s3x3 = −t3

(3.9)

s1x1 = −r1x
2
1[0]

n = 1 s2x2 = −r2x
2
2[0]

s3x3 = t3

(3.10)

s1x1 = −r1(2x1[0]x1[1])

n = 2 s2x2 = −r2(2x2[0]x2[1])

s3x3 = 0

(3.11)

s1x1 = −r1(2x1[2]x1[0] + x2
1[1])

n = 3 s2x2 = −r2(2x2[2]x2[0] + x2
2[1])

s3x3 = 0

(3.12)
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Completed the recursive determination of the power series terms you may
calculate the problem result by setting the embedded parameter α to unity. However
this is not advised since the power series has a very limited radius of convergence
thus an extension of the convergence radius is in order, this is achieved by analytic
continuation, more specifically by a Padé approximant.

3.5 Analytic Continuation and Padé Approximants

Analytic continuation is a technique to extend the convergence radius of a given
power series. The maximal analytic continuation of a power series can be achieved by
calculating its diagonal or near-diagonal Padé approximant. The difference between
the two are: whether or not the continued fraction is truncated at an even number
of terms. The approximant can be written as a rational function of two polynomials
which are computed from the finite power series with n terms, in order to obtain an
analytical identity as follows [12], [40]:

Pi(α) = [L/M ]α =
a[0] + a[1]α + ...+ a[L]αL

1 + b[1]α + ...+ b[M ]αM
=
∞∑
n=0

Pi[n]αn (3.13)

where L andM are the degree related to the numerator and denominator of the rational
function, respectively, and n is the degree of the power series.

A near-diagonal Padé approximant is a rational approximant in which the module
of the difference between the polynomial degree of the numerator and denominator
is equal to 1, i.e. (|L−M | = 1), whereas in the diagonal Padé approximant the
polynomial degree of the numerator and denominator are equal, i.e. L = M . Both
diagonal or near-diagonal sequence of Padé approximants have been proved to converge
to the desired solution [9], [29], but in this work for simplicity we have used only the
near-diagonal Padé approximant.

The Padé approximant coefficients, numerator ai and denominator bi, can be
calculated as linear systems whose equations originate from a discrete convolution.
The denominator function convoluted with the Taylor’s expansion of Pi(α) is equal to
the numerator’s function (3.14). From this relation it is possible to separate each of
the powers series degrees into one equation of the linear system (3.15).
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a[0] + a[1]α + ...+ a[L]αL = (1 + b[1]α + ...+ b[M ]αM) ∗ (
∞∑
n=0

Pi[n]αn) (3.14)

a[0] = Pi[0]

a[1] = b[1]Pi[0] + Pi[1]

a[2] = b[2]Pi[0] + b[1]Pi[1] + Pi[2]

a[3] = b[3]Pi[0] + b[2]Pi[1] + b[1]Pi[2] + Pi[3]
...

...
...

(3.15)

Rearranging the system presented in (3.15) for a near-diagonal Padé approximant
in a matrix form yields in (3.16)



1 0 0 0

0 1 −Pi[0] 0
...

...
...

...
0 0 −Pi[1] −Pi[0]

0 0 −Pi[2] −Pi[1]
...

...
...

...





a[0]

a[1]
...
b[1]

b[2]
...


=



Pi[0]

Pi[1]
...

Pi[2]

Pi[3]
...


(3.16)

Therefore the basic problem consists in firstily transforme all the variables into
holomorphic embedded functions and compute the coefficients Pi[n] of the power series.
Secondly, from the power series it is needed to determine the coefficients a[i], i =

0, 1, 2, . . . , L and b[j], j = 1, 2, . . . ,M of the polynomial rational fraction. Finally, the
desired value Pi(1) is computed, i.e., when α = 1 the result for the variable of interest
will be determined [9].

3.6 Matrix Representation of the Taylor Series Coefficients for a General

System

A basic system with three equations (two nonlinear and one linear) can be adapted
in two different ways. The first manner all equations are embedded with the complex
parameter α, the other only the nonlinear equations are embedded. Bellow the two
systems are represented in the matrix model (AX = B).
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Using the first method, the representation of the matrices are:

n = 0


s1 0 0

0 s2 0

0 0 s3



x1[0]

x2[0]

x3[0]

 =


−t1
−t2
−t3

 (3.17)

n = 1


s1 0 0

0 s2 0

0 0 s3



x1[1]

x2[1]

x3[1]

 =


−r1x

2
1[0]

−r2x
2
2[0]

t3

 (3.18)

n = 2


s1 0 0

0 s2 0

0 0 s3



x1[2]

x2[2]

x3[2]

 =


−r1(2x1[0]x1[1])

−r2(2x2[0]x2[1])

0

 (3.19)

n = 3


s1 0 0

0 s2 0

0 0 s3



x1[3]

x2[3]

x3[3]

 =


−r1(2x1[2]x1[0] + x2

1[1])

−r2(2x2[2]x2[0] + x2
2[1])

0

 (3.20)

It is possible to notice that the A matrix does not change as the coefficients for
each degree are calculated only matrix B must be updated. Is also possible to notice
that terms that were previously nonlinear, matrix B, are now calculated via a Newton
binomial formula using the coefficients of the Taylor series.

Using the second method the representation of the matrices are:

n = 0


s1 0 0

0 s2 0

0 0 s3



x1[0]

x2[0]

x3[0]

 =


−t1
−t2
−t3

 (3.21)

n = 1


s1 0 0

0 s2 0

0 0 s3



x1[1]

x2[1]

x3[1]

 =


−r1x

2
1[0]

−r2x
2
2[0]

0

 (3.22)
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n = 2


s1 0 0

0 s2 0

0 0 s3



x1[2]

x2[2]

x3[2]

 =


−r1(2x1[0]x1[1])

−r2(2x2[0]x2[1])

0

 (3.23)

n = 3


s1 0 0

0 s2 0

0 0 s3



x1[3]

x2[3]

x3[3]

 =


−r1(2x1[2]x1[0] + x2

1[1])

−r2(2x2[2]x2[0] + x2
2[1])

0

 (3.24)

The only difference between the two forms of holomorphic adaptation are in the
matrix B for n=0,1 in the lines equivalent to the linear equations.

3.7 Overview of The Holomorphic Embedding Load Flow Method

A flowchart about the Holomorphic Embedding Method is shown in the Fig. 3.1

3.8 State of the Art about Some Existing Holomorphic Embedding

Method Approaches

As of the moment there are only a few works that apply the holomorphic
embedding method, some of the most significant are:

• The Holomorphic Embedding Load Flow method [9]: The pioneer work applying
HEM in an electrical problem. This paper applies this technique of holomorphic
embedding into the load flow problem.

• Efficient Holomorphic Based Approach for Unit Commitment Problem [13]:
Uses HEM as a tool for solving the the power flow problem within the Unit
Commitment (UC) problem. The later is solved by Particle Search Space (PSS)
algorithm.

• Multi-Stage Holomorphic Embedding Method for Calculating the Power-Voltage
Curve [48]: Uses a multi-stage HEM approach in order to reduce the error and
increase the convergence speed close to the nose point of the PV curve.
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Figure 3.1: Traditional HEM Flowchart

• A Holomorphic Embedding Method to Solve Unstable Equilibrium Points of
Power Systems [47]: Uses the Holomorphic method to solve an equivalent Power
Flow problem considering generators speeds to find the unstable equilibrium point
of the system.

• Voltage Stability Analysis of Power Systems With Induction Motors Based on
the Holomorphic Embedding [14]: Applies a set of methods based on HEM to
solve steady state and dynamic state of a power system with induction motors.

• Nonlinear network reduction for distribution networks using the holomorphic
embedding method [10]: Uses the HEM to solve the power flow problem within
the network reduction. The PF acts as a base line for the system reduction.
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3.9 Conclusion of this Chapter

In this chapter was introduced the concept of holomorphic functions and its
properties, the process to embed with a complex parameter holomorphic functions.
It was also presented the analytic continuation, the Padé approximant, the general
formula for the HEM and its characteristics equations.

There were also some brief descriptions of the most relevant works done with the
holomorphic embedding approach for solving different types of problems, such as the
power flow problem [9], the unit commitment problem [7, 13], the network reduction
problem [10], equilibrium points solution [47], the power voltage curve calculation [48]
and the voltage stability [14] problem all which are nonlinear.
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Chapter 4 THE HOLOMORPHIC EMBEDDING METHOD

USED FOR SOLVING THE ECONOMIC DISPATCH

PROBLEM

4.1 Introduction

In this chapter, the Holomorphic Embedding Method is applied to the Economic
Dispatch Problem. The problem formulation is detailed for a generic case. It is
presented the problem model, the holomorphic embedding strategy, the equations and
associated matrices, the methodology and the schematic for implementation.

To the full knowledge of the authors, the method has never been used before
for solving this type of problem. A recent work was proposed for solving the Unit
Commitment Problem (UCP) [13]. However, on that case the method was used not
for the nonlinear system solution but for the load-flow solution as part of the UCP
algorithm.

In this dissertation, the equations of the nonlinear system are all transformed
into holomorphic functions and then solved in a recursive manner using a Taylor series
followed by a Padé approximation. This process enables a more accurate solution and
less dependent on the initial guess.

4.2 Problem Formulation

The Economic Dispatch Problem consists in supplying a given electrical power
at the minimum cost possible abiding to the problem’s nature restrictions such as the
Kirchhoff’s Laws and the machine’s operational limits.

There are many possible restrictions due to the electrical nature of the problem
that are possible to be investigated. In this dissertation, there are considered the
following ones:
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• Power balance at each bus;

• Machine’s upper and lower operational limits.

The first restriction is a equality constraint which is present at any moment,
regardless of the power output of a given generating unit. The power balance equation
at a bus i, where is connected a lumped load, Li and a power generation with Ngi

thermal units generating Pij, is :

Ngi∑
i=1

Pij = Li +
∑
m∈Ωi

PDim (4.1)

where Ωi is a set of buses which has connection with the bus i; PDim is the active power
flowing from the bus i to bus m.

The power flowing from i to m is approximated by the quadratic function:

PDim = −bimθim +
gimθ

2
im

2
, i = 1, . . . , Nb,m 6= i (4.2)

where θim = θi − θm and yim = gim + jbim is the longitudinal admittance connecting
the buses i−m.

Therefore, from (4.2) the load flow at the interconnection i − m are P im
FL =

PDim + PDmi = gimθ
2
im.

The second restriction creates inequalities constraints that are only active in the
case of a limit violation. These inequalities constraints are of the type P i ≤ Pi ≤ P i,
where P i and P i are lower and upper limit, respectively. They are transformed into
single equalities constraints (4.3) or (4.4) and then, case needed, it is incorporated to
the system’s modeling equations.

P i − Pi < 0 Pi − P i < 0 (4.3)

Pi − P i = 0 P i − Pi = 0 (4.4)

Therefore using these restrictions the Lagrangian function used for modeling a
generic problem is
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LF (P, λ, θ, π) =

Ng∑
i=1

Ngi∑
j=1

Fij −
Nb∑
k=1

λk

Ngk∑
j=1

Pkj −
∑
m∈Ωk

(−bkmθkm +
gkmθ

2
km

2
)− Lk

+

+

Ng∑
i=1

Ngi∑
j=1

πij(−Pij + P ij) +

Ng∑
i=1

Ngi∑
j=1

πij(Pij − P ij) (4.5)

where Fij is the cost function for the generating unit j conected at the bus i; Ωk is a
set of buses that has connection with the bus k; P is a vector whose entries are power
output of a generation unit, Pij; λ is the vector of the Lagrange multiplier associated
to each bus, whose entries are λk; θ is the vector with the voltage phases, θm, except
the θ1 = 0, which is the reference; π is the vector associated to the violation of limits,
whose entries are π or π.

Note that (4.5) includes only operational constrains of the unit output power.

The nonlinear system characteristic of a EDP is derived from the Lagrangian
function (4.5). This system can be presented as forming four blocks of equations. The
first block is composed of equations obtained by the partial derivatives in relation to
the unit generations power output, (Pij). They form equations for i = 1, . . . , Ng and
j = 1, . . . , Ngi. These equations are all linear with the following type (4.6). However
in the event of a limit violation the equation for the violating unit will be (4.7):

∂LF (P, λ, θ, π)

∂Pij
= 2cijh1ijPij + cijh2ij − λi = 0 (4.6)

∂LF (P, λ, θ, π)

∂Pij
= 2cijh1ijPij + cijh2ij − λi + πij − πij = 0 (4.7)

where h2ij and h1ij are parameters of the machine’s heat curve, Hij = h1ijP
2
ij+h2ijPij+

h3ij, and cij is the fuel cost for machine i, all associated to the unit j connected at the
bus i.

The second group is formed by the equations obtained by partially deriving the
Lagrangian around the marginal costs λk. This yields on nonlinear equations as the
one represented in (4.8):

∂LF (P, λ, θ, π)

∂λk
= −

Ngk∑
j=1

Pkj+
∑
m∈Ωk

[(−bkmθkm+
gkmθ

2
km

2
)+Lk] = 0, k = 1, . . . , Nb (4.8)
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The third group comprises the equations formed when the Lagrangian function
is derived with respect to θm. The equations in this group can be represented by the
subsequent equation (4.9).

∂LF (P, λ, θ, π)

∂θk
= λk

∑
m∈Ωk

(−bkm+gkmθkm)+
∑
k∈Ωm

λm(bmk−gmkθmk) = 0, k = 2, . . . , Nb

(4.9)

The final group is composed of the equations formed by differentiating the
Lagrangian function around πij or πij. This set of equations only exists when there
is a limit violation. Nonetheless, they can be in one of two of the following forms,
depending on whether it was an upper limit violation (4.10) or a lower limit violation
(4.11):

∂LF (P, λ, θ, π)

∂πij
= Pij − P ij+ = 0 (4.10)

∂LF (P, λ, θ, π)

∂πij
= −Pij + P ij = 0 (4.11)

In the next section the embedding problem is formulated considering the set of
equations (4.6)-(4.11).

4.3 The Holomorphic Embedding Method Strategy

The holomorphic embedding method can be applied in many different forms.
For instance, it can be employed only as a tool for solving a load flow and therefore
calculating the losses. Or it can be used as in the case of this work for solving the
nonlinear characteristic system applied to the EDP. There are inexhaustible manners
for the holomorphic embedding of the equations. In this work, we proposed a technique
based on the residues of nonlinear equations. To better illustrate the embedding
problem, it is presented a tutorial example for a quadratic model in the sequel.

The problem is described as follows. Given a generic nonlinear equation F (x) =

0, x ∈ Rn, F (x) ∈ Rn and a guess x0 of the roots. The first objective is to determine
a power series that approximate F (x) to find its root x. In the sense of holomorphic
embedding function, the main step consists in approximating the function F (x) and
the solution x by a Taylor’s series as a function of the scaling factor α.
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F (x(α)) = F [0] + F [1]α + F [2]α2 + . . .+ F [m]αm (4.12)

x(α) = x[0] + x[1]α + x[2]α2 + . . .+ x[m]αm (4.13)

Suppose that the residue (mismatch) of F (x) for the guess x0 = x[0] is R =

F (x0) = F [0]. Therefore, if we embed the equation F (x) = 0 by

F (x) = (1− α)R (4.14)

the seed solution (degree zero of the power series) leads to F (x0) = F [0] = R.
However, the final solution is found numerically when α = 1. In fact, when α = 1 in
(4.14), F (x(α)) = 0, indicates that x(1) is the solution of the equation.

Since x[0] = x0, the other coefficients of x(α), for m = 1, 2, · · · are computed
substituting the expression (4.13) for x(α) in F (x(α)) = F (x[0]+x[1]α+x[2]α2 + · · · ).
Then, in the next step, is needed to identify the coefficients in α for both sides of the
equation (4.14), assuming F (x) is expanded as in (4.12). Note that a coefficient F [k]

must be explicitly found as a function of the yet to be determined, x[k], and the historic
terms x[0], x[1], · · · , x[k − 1].

Initiating by the degree m = 1 (polynomial with degree 1) in (4.13), the term x[1]

can be computed. It is substituted the values for x(α) as F (x[0] + x[1]α). Then, the
coefficients of the power α1 from both sides of the expanded power series are identified.
This is a linear system in the variable x[1] and right hand side equal to −R.

For m = 2 (polynomial with degree 2), the focus is to calculate x[2]. Again, as in
the case for m = 1, we use x(α) to obtain F (x[0] + x[1]α) + x[2]α2). Now, we need to
match coefficients for the term α2 at both sides of the equation in (4.14), F (x) must be
in the form of a power series. For m ≥ 2, the terms at right side of the equation vanish,
because the maximum degree on this side is 1. While, at left-hand side, we have the
terms as a function of x[0], x[1] and x[2], forming a linear system around the variable
x[2]. The other coefficients of the power series, x[k], k = 3, 4, · · · can be calculated
similarly until a finite order of interest. This latter order is defined according to the
objective imposed by the user, such as a given precision for the mismatch F (x(α) or
even a given order mmax.
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The nonlinear EDP equations treated in this dissertation are of the quadratic
type. Thus, to illustrate the embedding model previously described, consider the single
variable equation 5x2−6x+1 = 0. This equation has the exact roots x = 1 and x = 0.2.
Suppose that the search by a root starts with the seed solution (estimate) x0 = 2. Then,
this guess generates the mismatch R = F (x0) = 9. Considering

x(α) = x[0] + x[1]α + x[2]α2 + · · · ,

the embedding model is

5
[
x[0] + x[1]α + x[2]α2 + · · ·

]2−6
[
x[0] + x[1]α + x[2]α2 + · · ·

]
+1 = (1−α)·9 (4.15)

Clearly the value x[0] = x0 = 2 satisfies the degree zero in (4.15), since 5x[0]2 −
6x[0] + 1 = 9. Identifying the coefficients of α1 for both sides in (4.15), following
equation for the unknown x[1] is obtained: 10x[0]x[1]−6x[1] = −9. The solution for it is
x[1] = −9/14. Now, for computing x[2], the quadratic term equation (4.15) is expanded
until degree 2 and then set it to zero, since the maximum degree in α at the right hand
side of the equation (4.15) is 1. This result yields in 10x[0]x[2] + 5x[1]x[1]− 6x[2] = 0.
Therefore, 10x[0]x[2] − 6x[2] = −5x[1]x[1], whose solution is x[2] = −405/2744. For
degree 3, the following equation is obtained: 10x[0]x[3] + 10x[1]x[2] − 6x[3] = 0, or
10x[0]x[3] − 6x[3] = −10x[1]x[2], yielding in x[3] = −36450/537824. Computing the
term x[4], the value x[4] = −0.0342 is found. The approximated value for x(α) by
considering α = 1 and the the sum of the coefficients of the power series up to the 4th
degree is equal to 1.1075.

In order to circumvent the small convergence radius originated by approximating
x through the sum of the power series terms for α = 1, the polynomial is approximated
by a rational fraction called the Padé approximant. This approximation is made for
the example in question, considering the 4th degree power series.

Assume that the rational fraction which need to be identified from the power
series is of the type:

x(α) =
a0 + a1α + a2α

2

1 + b1α + b2α2
= x[0] + x[1]α + x[2]α2 + x[3]α3 + x[4]α4.
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The identification of the rational fraction is then carried out to satisfy the identity:

a0 + a1α + a2α
2 = [1 + b1α + b2α

2][x[0] + x[1]α + x[2]α2 + x[3]α3 + x[4]α4]

This means that a0 = x[0], a1 = b1x[0] + x[1], a2 = b2x[0] + b1x[1] + x[2]. Also,
0 = b2x[1] + b1x[2] + x[3] and 0 = b2x[2] + b1x[3] + x[4]. From these two last equations,
the coefficients b1 and b2 are computed, yielding b1 = −0.5510 and b2 = 0.0211. This
implies that a0 = x[0] = 2, a1 = −1.7449 and a2 = 0.2448. Then the approximation
for the Padé approximant model assuming α = 1 yields x = 1.072.

Both the results computed by the Padé approximation and the one calculated
based on the Taylor’s series coefficient sum indicate possible convergence to the root
x = 1. The convergence result reached by the Padé approach is better than the
convergence for the sum of the series coefficients. However, the best result x = 1.072

gives a mismatch equal to 0.3139. Obviously, this result is far away from a desired
result, which assure a high accuracy for the solution. To control the precision of the
solution, and the mismatch accuracy was defined as 10−8. The result concerning the
value x could be improved by augmenting the number of coefficients of the power series.
However, it might require a very high degree for the power series. Also, the process of
dealing with elevated order power series generates coefficients with very low (or high)
values. This fact leads to a numerical truncation problem and causes the approximated
numerical value of x to stagnate far from the effective solution, even with the increase
on the order of the power series.

Then, to improve the quality of the solution and considering a very low order for
the power series, we adopt the technique proposed in [11]. By the technique proposed in
that work, a low order degree power series is calculated and so the Padé approximant.
The key aspect considered is the adoption of a restart process, in which the procedure of
calculating the coefficients of the series is recalculated. That is, the calculation process
is re-initiated, but now with a new, more solution-oriented seed (guess), based on the
last solution obtained by Padé approximation for α = 1. Then, giving procedure to the
previous example, it is proposed to restart the process there. Hence, the power series
coefficients computation is restarted with the estimate x0 = 1.072 (seed x[0] = 1.072).

Considering the restart with the new value for x0, a mismatch F (x0) = 0.3139

is initially found. Next, the residue R is assigned as R = F (x0) = 0.3139. Following
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the same procedure applied for the calculus performed previously, new power series
coefficients are computed, as well as new Padé approximant. The coefficients found for
the power series are: x[0] = 1.072, x[1] = −0.0665, x[2] = −0.00468, x[3] = −6.6×10−4

and x[4] = −1.023 × 10−4. The coefficients for the polynomials of the Padé rational
fraction are: b1 = −0.1691, b2 = 0.0020, a0 = 1.0720, a1 = −0.2477 and a2 = 0.0087.
The approximated values for x when α = 1, computing via Padé approximant and
sum of power series coefficients are 1.000024 and 1.000043, respectively. The mismatch
computed for the Padé approximant solution yields 9.6 × 10−5. Since this result does
not satisfy a mismatch tolerance 10−8, a second restart is need. Therefore, restarting
the process by starting with x0 = 1.000024, the solution x = 1.0 is found with mismatch
zero for both the Padé approximant and sum of the power series coefficients values.

To compare the performance of the holomorphic embedded method, the same
example was solved by using the classical Newton-Raphson method. The same initial
estimate x0 = 2 has been adopted. The NR method took six iterations to find the
solution x = 1 and reach a mismatch smaller than 10−8.

An interesting result verified for the computations of the coefficients for m ≥ 1

is that the term 10x[0]x[m] − 6x[m] appears in all computations, where the unknown
is x[m]. This is exactly the result for the first derivative of the function F (x) at an
iteration x = xk, k = 0, 1, 2, · · · when the NR is used. This result is also verified for
multivariate systems. In this situation the first derivative is the Jacobian matrix of
the Newton-Raphson method. Another remark is that for computing the power series
coefficients, the right hand side of the resulting linear system is formed from historic
values x[1], x[2], · · · , x[m − 1]. Hence, along the computation of the coefficients the
Jacobian matrix stays constant.

In the next section, the holomorphic embedding model discussed beforehand will
be extended to EDP. The idea is to keep the same embedding model based on the
residues of the nonlinear equations.

4.4 The Holomorphic Embedding Model for the EDP

In this section, the HEM is applied to EDP. The technique based on the residue
embedding technique is imposed to the problem. The objective is to solve the set of
equations (4.6)-(4.10). With this aim, consider that this set of equations can be put
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as F (x) = 0, where F (x) ∈ Rn and x ∈ Rn is the vector xT = [P T λT θT πT ], with
n = 3NgNgi + (2Nb− 1). For this value of n, 2NgNgi of the variables are regarding the
slack-variables π. On this work, they are activated just when an operational limit of a
generation unit is violated and always, only one side of the limit is violated. Therefore,
we should have in mind that only a very limited number of variables are violated,
leading to a very reduced number of nonzero slack-variables. In case of no violation, n
can be treated as n = NgNgi + (2Nb − 1).

As discussed in the Section 4.3, the first step to holomorphically embed the
equations consists in defining a seed solution or estimate x0. After this procedure, the
seed solution is set to x[0] = x0 and the residue R = F (x0) is computed.

An obvious challenge is to establish the seed solution. This is a task that must
be achieved by a much easier strategy than the calculation of the final solution of the
nonlinear problem. In the load flow problem originally presented by Trias [9], and
presented for a multibus system in [12], the seed solution was proposed as the slack-
bus voltage replicated for all system buses. This consideration is quite satisfactory
from a physical point of view, since the voltages on the physical buses are close to the
nominal voltage. Similarly, for the case of the EDP, we propose to set the solution of
the lossless EDP as the seed solution. This fact is justified, because the losses in the
system are due to ohmic losses at the transmission lines and they have very reduced
values, when compared to the bulk of transmitted power. In this sense, it is expected
the seed solution this way assigned be an adequate estimate for the HEM applied to
EDP, considering restart.

The lossless EDP solution can be determined through the solution of the equation
set (4.6)-(4.10), by setting gkm = 0 for all interconnection k−m. Proceeding this way,
a linear system must be solved for the variable x as defined previously. This result is
used as the seed solution x[0] or estimate x0 for the Restarted Holomorphic Embedding
Method discussed in the Section 4.3.

The seed solution is then used for the calculation of the residues (mismatches),
R`, ` = 1, · · · , (3Ng · Ngi + 2Nb − 1), for the the set of equations (4.6)-(4.10). The
residue R will be also used as an element to evaluate the accuracy of convergence in
the computation of the process solution.

In the sequence, the Taylor’s series for each variable is determined. Afterwards,
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a Padé approximant is calculated. The process is restarted using the latter solution
obtained from the Padé approximant [11], instead of the lossless EDP solution. Since
it is adopted a restarted approach, the final result will be obtained from the last Padé
approximant, when a tolerance for the mismatch is reached. The flowchart in Fig. 4.1
illustrates a simplified procedure on the main steps of the computational process.

Figure 4.1: Restarted HEM Flowchart

The EDP is conceived using all generation connected to a bus i = 1, 2, · · · , Nb

and an equivalent load Li bulked at the same bus i. A bus can have only generation,
or only load or both components. This configuration yields a single value of λ for all
buses k, λk. All initial estimate for θm are obtained from the θm calculated from the
lossless EDP. Also, the bus 1 is assumed as the angular reference with θ1 = 0. All
estimates for the initial power, Pij, are also defined from the lossless problem solution.

4.4.1 Embedding Equations Based on the Residue

Once the residue R = F (x0) ∈ Rn is computed, the equations are embedded as
follows. The first block of equations yields:
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2cijh1ijPij + cijh2ij − λi = R`[1−α], ` = 1, . . . , Ng ·Ngi, i = 1, · · · , Ng, j = 1, · · · , Ngi

(4.16)

For equation (4.16), in the case of a violation of any limit, the violated power
Pij must be fixed in the value P ij or P ij. Together with the rest of the equation the
respective slack-variable (−πij or +πij) is needed to be added to the left-hand side of
the equation, according to (4.8).

The second block of equations are related to the derivatives with relation to λk.
The expressions are embedded as

Ngk∑
j=1

Pkj −
∑
m∈Ωk

(−bkmθkm +
gkmθ

2
km

2
)− Lk = Rk[1− α], k = 1, . . . , Nb (4.17)

The third block of equations is associated with the derivatives with respect to
θm. The nonlinear equations are embedded of the following form:

λk
∑
m∈Ωk

(−bkm + gkmθkm) +
∑
k∈Ωm

λm(bmk − gmkθmk) = Rk[1−α], k = 2, . . . , Nb (4.18)

The fourth block of equations is associated to the slack-variables π. No action is
need to impose to this type of variable with relation to the embedding process, because
it is inserted in (4.16) exactly as a slack-variable and the violated power is fixed at its
respective limit value. i.e., the power is no more unknown.

The system variables comprising (4.16)-(4.18) are now a function of the scaling
factor α, i.e., Pij(α), λk(α) and θm(α). When Pij has its limit violated, the variable
assumes a known value that is equal to its violated limit. This process gives place to
a respective slack-variable, which is kept constant, i.e. independent of α, when the
solution is searched.

The embedded variables are approximated by truncated Taylor series as (4.19)-
(4.21). The initial coefficients for the variables (Pij[0], λk[0], θm[0]) are the same as the
ones obtained from the lossless problem solution. Here the generic notation x[·] stands
for a Taylor’s scalar coefficient.
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The further coefficients are calculated in a recursive manner, as a function of
historic values. It is important to notice at this point that the Taylor series coefficients
must be calculated up to an even degree defined by the user. At the end, a proper
fraction Padé approximant must be computed.

Pij(α) = Pij[0] + Pij[1]α + Pij[2]α2 + Pij[3]α3 + ... (4.19)

λk(α) = λk[0] + λk[1]α + λk[2]α2 + λk[3]α3 + ... (4.20)

θm = θm[0] + θm[1]α + θm[2]α2 + θm[3]α3 + ... (4.21)

Each coefficient is calculated by a linear equation system formed according to the
degree n. The coefficients for the case n = 0 are known as the germ or seed solution,
which we are assumed to be obtained from the lossless EDP solution. Therefore, the
coefficients are calculated for the remaining values of n.

For n = 1, we need to match terms with degree 1 for α in both sides of (4.16)-
(4.18), assuming that all residues Ri were calculated. Then, the following equations of
a linear system are determined:

2cijH1ijPij[1]− λi[1] = −R`, ` = 1, . . . , NgNgi, i = 1, · · · , Ng, j = 1, · · · , Ngi (4.22)

Ngk∑
j=1

Pkj[1]−
∑
m∈Ωk

(−bkmθkm[1] + gkmθkm[1]θkm[0]) = −Rk,

k = 1, . . . , Nb (4.23)

λk[1]
∑
m∈Ωk

(−bkm + gkmθkm[0]) + λk[0]
∑
m∈Ωk

(gkmθkm[1])+

+
∑
k∈Ωm

λm[1](bmk − gmkθmk[0])−
∑
k∈Ωm

λm[0]gmkθmk[1] =

= −Rk, k = 2, . . . , Nb (4.24)
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For the linear equations (4.22)-(4.24) the unknows are Pij[1], λk[1] and θm[1].
note that θkm = θk − θm, must be separated in θk and θm in order to solve the linear
system.

For n = 2, the nonzero term corresponding to the residue for germ solution
vanishes, since the coefficients of terms whose degrees are greater than 1 in the right-
hand side of (4.16)-(4.18) are all zero. The equations for n = 2 are:

2cijh1ijPij[2]− λi[2] = 0, i = 1, · · · , Ng, j = 1, · · · , Ngi (4.25)

Ngk∑
j=1

Pkj[2]−
∑
m∈Ωk

(−bkmθkm[2] + gkmθkm[2]θkm[0]) + γk = 0,

k = 1, . . . , Nb (4.26)

λk[2]
∑
m∈Ωk

(−bkm + gkmθkm[0]) + λk[0]
∑
m∈Ωk

(gkmθkm[2])+

+
∑
k∈Ωm

λm[2](bmk − gmkθmk[0])−
∑
k∈Ωm

λm[0]gmkθmk[2]+

+ ρk = 0, k = 2, . . . , Nb (4.27)

where
γk = −

∑
m∈Ωk

gkm
2
θkm[1]2

ρk = λk[1]
∑
m∈Ωk

gkmθkm[1]−
∑
k∈Ωm

λm[1]gmkθmk[1]

Therefore, the extension of the computation of the coefficients for n > 2 consists
basically in computing γ and ρk. Besides, the linear system involved in the coefficient
calculation process requires only the LU factorization for computing the coefficients for
n = 1.

The coefficients calculated for the Taylor series are them used for obtaining the
Padé expansion. This second approximation is used for expanding the convergence
radius of the solution [9]. In this work, a diagonal Padé is used, which means that

46



Chapter 4

the numerator and denominator have the same polynomial degree (see (4.28)-(4.30)).
Once calculated the Padé rational fraction, the solution is obtained by set the scaling
factor α to unit.

Pij = Pij[0] + Pij[1]α + Pij[2]α2 + ... =

=
aPij[0] + aPij[1]α + aPij[2]α2 + ...

1 + bPij[1]α + bPij[2]α2 + ...
(4.28)

λk = λk[0] + λk[1]α + λk[2]α2 + ... =

=
aλi[0] + aλi[1]α + aλi[2]α2 + ...

1 + bλi[1]α + bλi[2]α2 + ...
(4.29)

θm = θm[0] + θi[1]α + θm[2]α2 + ... =

=
aθm[0] + aθm[1]α + aθm[2]α2 + ...

1 + bθm[1]α + bθm[2]α2 + ...
(4.30)

In (4.28)-(4.30), the parameters aPij, bPij, aλk, bλk, aθm and bθm must be
determined accordingly to the Padé identification technique [9].

For a better accuracy and a smaller order for the Taylor series and Padé
aproximant, a restarted approach is adopted [11]. Therefore, once the first solution
is obtained the results are used as the new guess for HEM. Thus, the residues Ri are
updated followed by the calculation of new coefficients and a new rational fraction.
Once the accuracy is within the desired value, the final Padé approximant is the EDP
partial solution.

Finally, we need to verify whether all operational limits were met. In case of fail,
the HEM EDP is solved again considering the violated limits and associated slack-
variable. Also, in case of negative value for a slack-variable, this means that the
respective limit associated to the slack-variable must be relaxed. The process must go
on until all variables meet the operational limits.
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4.5 Conclusion of this Chapter

In this chapter, the fundamentals for the constrained holomorphic embedding
EDP was presented. Firstly, the general constrained EDP was formulated considering
a lossy multibus system. The losses are due to the ohmic effect in transmission losses
in the system. They are approximated by a quadratic function, which depends on the
conductance of the line and the voltage phase difference between the two line terminals.

The multibus EDP was formulated as an optimization problem, where the
objective function is based on the cost of power generation of thermal units, subject
to operational limits.

A detailed example was presented with the purpose of illustrating the HEM
approach applied to the EDP. Also, a detailed explanation was presented in order
to show the strategy to embed the equations of the EDP and solve them, including the
handling of operational limits.

In the next chapter, we perform experiments in some test system in order to
demonstrate the performance of the technique described in this chapter.
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Chapter 5 METHODOLOGY AND RESULTS

5.1 Introduction

In this chapter experiments are carried out with the purpose to demonstrate
the efficacy of the holomorphic embedding method applied to the multibus economic
dispatch problem. The experiments are assessed in three test systems. The test systems
consist of 3-, 9- and 14-bus power system models. The 3-bus model is used to illustrate
primal understanding of the proposed method, while the 9- and 14-bus model are
IEEE benchmark test systems which were adapted in this work in order to perform
simulations characterized by multi-generator connected at a bus. From this three
study cases different loading and operating limits scenarios are studied. All systems
and scenarios have their results compared to the traditional Newton-Raphson solution
method. The error for each method is also evaluated.

All computations were performed in MATLAB.

The results are them compared with each other and analysis regarding the method
trustworthiness and significant contributions are made. It is also presented some
interpretations of the results and comparative analysis among scenarios.

5.2 Test System Models

In this dissertation, different systems and network topologies are considered. The
characterization of each one of the three power system networks is discussed in the
sequel.

• System 1: composed of three buses and five generating units as illustrated by the
shematic in Fig.5.1;

• System 2: composed of nine buses and eight generating units (see Fig.5.2);
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Figure 5.1: 3-bus test system schematic

Figure 5.2: 9-bus test system schematic
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• System 3: composed of fourteen buses and thirteen generating units (see Fig.5.3);

Figure 5.3: 14-bus test system schematic

Each system topology was tested for three different scenarios with respect to the
loading: a conservative, a moderate and a radical. The conservative scenario presents
an average loading and not rigorous operational limits. The moderate scenario presents
a loading 20% higher than the conservative one but the operational limits are higher
as well. Finally the radical scenario presents the same loading as the moderate, but
the operational limits from the conservative scenario. The machine’s cost functions are
not changed in any form from one scenario to the other.

5.3 General Aspects of the Numerical Techniques

In this section the description of each system is carried out. The experiments
and their numerical results for all the study cases and scenarios are presented. Finally,
result discussions about the simulations is assessed, highlighting the points of interest
for each system.

The holomorphic embedding method was applied to solve the constrained EDP
in the three systems and scenarios. The Newton-Raphson method was used as the base
method to validate the results concerning the HEM-EDP.

51



Chapter 5

The simulations were performed starting by the computation of the germ (seed)
solution for the HEM-EDP approach. This result was obtained by solving the lossless
EDP. The information was also used as guess for the NR method. Following, the
residue (mismatch) for the germ solution is calculated and used in the holomorphic
embedding process, as detailed in the Chapter 4.

The solution for the lossless EDP was checked before starting the main compu-
tations based on HEM-EDP or NR approach. This procedure is to verify whether the
operational limits of the generation units are met. In case of fail, the violated limits
are activated, suggesting the insertion of respective slack-variables. Once detected an
activation of limit, the respective unit generation output power is set at the violated
limit and it is kept constant along the HEM-EDP or NR solution calculation. When
these approaches reach the convergence, the respective slack-variables associated to
violated limits are computed. After this, the algorithm needs to check again whether
or not if all limits are met and all slack-variables are positive. In case of fail on this
condition, new computations using HEM-EDP or NR approach must be performed.
Before, it must be verified possible new limits violations and whether any slack-variable
is negative.

In case of negative value of a slack-variable, the violated limit must be relaxed
and the power output comes back to be unknown and must be re-calculated by
applying again the HEM-EDP or NR approach. The process of using the HEM-EDP
or NR approaches continues until convergence is verified and all variables meet their
operational limits.

On the simulations concerning the HEM-EDP, the degree of the Taylor’s power
series was (truncated) limited to n = 9. Contributions above this value give very low
impact on the results. However, the result for the variables with the approximation
of the series up to this degree can stagnate at an unacceptable solution. Certainly,
such result justifies to employ the restarted strategy for the HEM, as detailed in the
Chapter 4.

The truncation until the 9th degree of the power series allows generation of Padé
fractions at most with degree 4 in the numerator and 5 in the denominator (i.e., when
the degree of the numerator is different of the denominator, this latter has 1 degree
higher). The restarted HEM is adopted in this work. Then the constrain is also applied
for all restarts, when this strategy is necessary.
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The convergence control was verified by the value of the mismatch of the
holomorphic embedding expression presented in the Chapter 4. A tolerance of 10−8

was required. The main objective is to demonstrate the performance of the HEM-EDP
approach. This performance is observed computing the results of the system variables
and monitoring the absolute deviation of the HEM-EDP and NR method.

5.4 Experiments and Results

In this section the data of the system models are presented and verified the results
of simulations in different system operational conditions. The power base adopted for
all system is 100 MVA.

5.4.1 System 1

The 3-bus system was modeled according to the following parameters for fuel cost
and thermal unit heat curve presented respectively at Table 5.1 and Table 5.2.

Table 5.1: Fuel price in $/MBTU for the system 1
Unit Number Bus 1 Bus 2

1 1.03 0.97
2 0.97 1.01
3 - 1.00

The impedance of the transmission line connecting buses 1, 2 and 3 are in pu
on the 100 MVA base. The following information was used: z13 = 0.10 + j0.7 pu and
z23 = 0.1 + j0.6 pu.

5.4.1.1 Conservative Scenario

For the Conservative Scenario (CS) the operational limits for the generation units
are presented in Table 5.3. The loading in MW for each bus is L1 = 50, L2 = 80 and
L3 = 40.
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Table 5.2: Heat curve parameters for thermal units in MBTU/h of the system 1
Parameter Unit Number Bus 1 Bus 2

1 0.00142 0.00122
h1 2 0.00142 0.00142

3 - 0.00132

1 0.0142 0.0152
h2 2 0.0142 0.0142

3 - 0.0142

1 0.12 0.13
h3 2 0.12 0.12

3 - 0.13

Table 5.3: Operational Limits CS, in pu
Unit Number Bus 1 Bus 2 Bus 1 Bus 2

Lower Limit(pu) Upper Limit(pu)

1 0.03 0.03 0.5 0.5
2 0.03 0.03 0.55 0.5
3 - 0.03 - 0.5
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Applying these conditions and using the data for the system 1, the results for the
HEM-EDP and NR methods are depicted in Table 5.4. The notation for the values of
Pi (vector whose entries are elements of the table column) in the table is related to the
power output of the thermal units, according to the number of units connected to a
generation bus. In this sense, for the two power generation connected at buses 1 and
2, P1j = Pi(1 : j), j = 1 : 2 and P2j = Pi(3 : 5), j = 1 : 3. The values of λi are
related to the Lagrangean multiplier for each bus. The values for θi refers to the phase
angles θ2 and θ3, when θ1 = 0. The slack-variable values are associated to the violated
limits. The two generation units at bus 1 had their upper operational limits violated.
Therefore, the values exhibited in the table are interpreted as π11 = 0.1724× 10−3 and
π12 = 0.4990× 10−3.

Table 5.4: Economic Dispatch Results System 1 CS

HEM No Limits(pu) HEM Limits(pu) NR No Limits(pu) NR Limits(pu)

0.4622 0.5000 0.4622 0.5000

0.6261 0.5500 0.6261 0.5500

Pi 0.2978 0.3124 0.2978 0.3124
0.3859 0.3980 0.3859 0.3980
0.4730 0.4862 0.4730 0.4862

0.0160 0.0163 0.0160 0.0163
λi 0.0154 0.0155 0.0154 0.0155

0.0173 0.0174 0.0173 0.0174

0.0620 0.1116 0.0620 0.1116
θi -0.2720 -0.2457 -0.2720 -0.2457

- 0.1724 10−3 - 0.1724 10−3

πi - 0.4990 10−3 - 0.4990 10−3

From the results presented at Table 5.4, it is interesting to notice that even though
machine number 1 had not initially violated its operational limit, the final result for
the system restricted its power output to the maximum value. This is due to the fact
that at each limit violation, the unit is set to the violated limit and its lagrangian
multiplier (πi) is calculated. By setting unit 2 to its limit and calculating the system
new solution, machine 1 has also extrapolated its limit. Thus for a final solution, both
units were set to their maximum operating limits.

The accuracy of the methods was also verified. The results are presented in Fig.
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5.4. However, the term iteration is attributed to the NR method only. When the
HEM-EDP is analyzed, the interpretation for the term ’iteration’ in the plot must be
understood as ’restart’. It is possible to notice that at every reinitialization of the
method, the HEM-EDP has its accuracy improved. The NR method also presents
improvements on the reduction of the mismatch. Even so, the HEM approach presents
a better result than the NR method. This superiority in precision is evidenced by the
fact that the HEM-EDP only needed one restart to achieve the desired accuracy of
10−15, while the NR method needed two iterations to meet the tolerance 10−8.

Figure 5.4: Comparative Solution Error System 1 CS

5.4.1.2 Moderate Scenario

For the Moderate Scenario (MS), the loading and operational limits presented in
Table 5.5 and Table 5.6, respectively, were adopted.

Applying these conditions for the system 1, the results for the HEM-EDP and
NR method were the following depicted in Table 5.7:

Analizing the results presented at Table 5.7, it can be noticed that even though
machine number 2 had initially violated its operating limit, its configuration to its
maximum power output did not drove any other unit to its limit like in the conservative
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Table 5.5: Operational Limits MS
Unit Number Bus 1 Bus 2 Bus 1 Bus 2

Lower Limit(pu) Upper Limit(pu)

1 0.03 0.03 0.6 0.6
2 0.03 0.03 0.65 0.6
3 - 0.03 - 0.6

Table 5.6: System Loading MS
Bus Number P Q

1 60.0 0.0
2 96.0 0.0
3 48.0 36.0

Table 5.7: Economic Dispatch Results System 1 MS

HEM No Limits(pu) HEM Limits(pu) NR No Limits(pu) NR Limits(pu)

0.5483 0.5948 0.5483 0.5948
0.7148 0.6500 0.7148 0.6500

Pi 0.3651 0.3721 0.3651 0.3721
0.4414 0.4472 0.4414 0.4472
0.5333 0.5396 0.5333 0.5396

0.0162 0.0164 0.0162 0.0164
λi 0.0156 0.0156 0.0156 0.0156

0.0178 0.0179 0.0178 0.0179

0.0707 0.0942 0.0707 0.0942
θi -0.3233 -0.3108 -0.3233 -0.3108

πi - 0.3198 10−3 - 0.3198 10−3
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scenario. This is due to the fact that when the loading was elevated from one scenario
to the other, so were the limits. Yielding in a final solution with only one unit operating
at its limit.

The accuracy of the methods was once again observed. The results are presented
in Fig. 5.5. Once more, it ican be noticed that at every reinitialization of the method,
both NR and HEM have their accuracy improved with the HEM presenting always a
better result than the NR method.

Figure 5.5: Comparative Solution Error System 1 MS

5.4.1.3 Radical Scenario

For the Radical Scenario (RS), the loading and operational limits presented in
Table 5.8 and Table 5.9 respectively, were adopted.

Applying these conditions for the system 1, the results for the HEM and NR
methods were the following depicted in Table 5.10:

From the data at Table 5.4, it is observed that the overall system behavior is very
similar to the conservative scenario, with machine number 1 not initially violating its
operating limit and the final result for the system restricting its power output to the
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Table 5.8: Operating Limits RS
Unit Number Bus 1 Bus 2 Bus 1 Bus 2

Lower Limit(pu) Upper Limit(pu)

1 0.03 0.03 0.6 0.6
2 0.03 0.03 0.6 0.6
3 - 0.03 - 0.6

Table 5.9: System Loading RS
Bus Number P Q

1 60.0 0.0
2 96.0 0.0
3 48.0 36.0

Table 5.10: Economic Dispatch Results System 1 RS

HEM No Limits(pu) HEM Limits(pu) NR No Limits(pu) NR Limits(pu)

0.5483 0.6000 0.5483 0.6000

0.7148 0.6000 0.7148 0.6000

Pi 0.3651 0.3895 0.3651 0.3895
0.4414 0.4615 0.4414 0.4615
0.5333 0.5552 0.5333 0.5552

0.0162 0.0167 0.0162 0.0167
λi 0.0156 0.0157 0.0156 0.0157

0.0178 0.0181 0.0178 0.0181

0.0707 0.1521 0.0707 0.1521
θi -0.3233 -0.2801 -0.3233 -0.2801

- 0.3244 10−3 - 0.3244 10−3

πi - 0.8015 10−3 - 0.8015 10−3
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maximum value. This was due to the fact that at each limit violation, the unit is set
to the violated limit and its lagrangean multiplier (πi) is calculated. By setting unit
2 to its limit and calculating the system new solution, machine 1 also extrapolated its
limit. Thus, for a final solution both units were set to their maximum operating limits.

Once more the methods accuracy was verified. The results are presented in Fig.
5.6. Once more, the HEM at every reinitialization of the method, had a better result
than the NR for the same inital guess.

Figure 5.6: Comparative Solution Error System 1 RS

Comparing the three scenarios, it is evident that the change in loading and
operational limits did not affected the overall economical balance. The unit 2 being,
regardless of loading, the most demanded unit followed by unit 1, and with unit 3 being
the last demanded unit in all scenarios. It is visible also an homogeneity in the system.
Even though unit 3 is always less demanded than the rest, its power output does not
fall bellow the operating limits.

5.4.2 System 2

The nine bus system studied was modelled according to the following parameters
for fuel cost and thermal units heat curve presented respectably at Table 5.11 and
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Table 5.12.

Table 5.11: Fuel Cost System 2
Unit Number Bus 1 Bus 2 Bus 3

1 1.03 0.97 1.02
2 1.00 1.01 1.03
3 - 1.00 1.00

Table 5.12: Heat Curve Parameters System 2
Parameter Unit Number Bus 1 Bus 2 Bus 3

1 0.00142 0.00122 0.00152
H1 2 0.00142 0.00142 0.00112

3 - 0.00132 0.00150

1 0.0142 0.0152 0.0122
H2 2 0.0142 0.0142 0.0132

3 - 0.0142 0.0130

1 0.12 0.13 0.11
H3 2 0.12 0.12 0.10

3 - 0.13 0.10

The impedances for the transmission lines and its connections were the ones found
in the IEEE 9-bus system. No modification was made in terms of connections and its
values.

5.4.2.1 Conservative Scenario

For the Conservative Scenario (CS) the operational limits presented in Table 5.13,
were adopted. The loading in MW for each bus is L5 = 90, L7 = 100 and L9 = 125.

Applying these conditions on the system 2 the results for the HEM and NR
methods, obtained in the MATLAB, were the following depicted in Table 5.14. Note
that the same method as before was used for exposing the results, i.e.for the two power
generation connected to buses 1, 2 and 3, P1j = Pi(1 : j), j = 1 : 2, P2j = Pi(3 : 5),
j = 1 : 3 and P3j = Pi(6 : 8), j = 1 : 3.
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Table 5.13: Operating Limits CS
Unit Bus 1 Bus 2 Bus 3 Bus 1 Bus 2 Bus 3

Lower Limit Upper Limit

1 0.05 0.05 0.3 0.3 0.2 0.9
2 0.05 0.1 0.3 0.35 0.4 0.6
3 - 0.1 0.3 - 0.4 0.8

Table 5.14: Economic Dispatch Results System 2 CS
HEM No Limits HEM Limits NR No Limits NR Limits

0.3671 0.3000 0.3671 0.3000

0.5281 0.3500 0.5281 0.3500

0.2088 0.3407 0.2088 0.3407
Pi 0.3124 0.2641 0.3124 0.2641

0.3932 0.3407 0.3932 0.3407
0.8346 0.7368 0.8346 0.7368
0.9548 0.4910 0.9548 0.4910
-0.4064 0.5763 -0.4064 0.5763

0.0157 0.0157 0.0157 0.0157
0.0152 0.0151 0.0152 0.0151
0.0150 0.0147 0.0150 0.0147
0.0157 0.0157 0.0157 0.0157

λi 0.0158 0.0157 0.0158 0.0155
0.0150 0.0147 0.0150 0.0147
0.0153 0.0151 0.0153 0.0151
0.0152 0.0151 0.0152 0.0151
0.0159 0.0158 0.0159 0.0158

0.0515 0.0701 0.0515 0.0701
0.1256 0.2170 0.1256 0.2170
-0.0516 -0.0374 -0.0516 -0.0374

θi -0.0747 -0.0427 -0.0747 -0.3167
0.0446 0.1113 0.0446 0.1113
-0.0274 0.0169 -0.0274 0.0169
-0.0056 0.0229 -0.0056 0.0229
-0.1075 -0.0886 -0.1075 -0.0886

- 0.1779 10−3 - 0.1779 10−3

πi - 0.4875 10−3 - 0.4875 10−3
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The data from Table 5.14, presents machine number 8 initially with a negative
power output. This indicates that without any consideration for the electrical point
of view of the system this machine is too expensive. Therefore, from an purely
mathematical point of view, the negative output indicates that instead of generating
costs the machine is generating revenue.

Other relevant aspect to take into consideration is the high number of violating
units in the original solution, units 1, 2, 3 and 7 are above the upper limits. This is
mostly caused by the negative output for machine number 8. Once all limits are set
and theirs lagrangian multipliers (πi) calculated a verification is done. Case there are
any πi values bellow zero this limits are removed. The final solution presented units 1
and 2 at the minimum output and unit 6 presenting the higher power output for the
system. A very different result from the limitless system.

The methods accuracy continued to be simulated in MATLAB. The results are
presented in Fig. 5.7. Again, the better accuracy for the HEM over the NR is verified,
with the later needing only one restart and the other two iterations for achieving the
especified tolerance.

Figure 5.7: Comparative Solution Error System 2 CS
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5.4.2.2 Moderate Scenario

For the Moderate Scenario (MS) the loading and operational limits presented in
Table 5.15 and Table 5.16 respectively, were adopted.

Table 5.15: Operating Limits MS
Unit Bus 1 Bus 2 Bus 3 Bus 1 Bus 2 Bus 3

Lower Limit Upper Limit

1 0.05 0.05 0.3 0.35 0.25 1.1
2 0.05 0.1 0.3 0.4 0.5 0.75
3 - 0.1 0.3 - 0.5 0.95

Table 5.16: System Loading MS
Bus Number P Q

1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
5 108.0 36.0
6 0.0 0.0
7 120.0 42.0
8 0.0 0.0
9 150.0 60.0

Applying these conditions on the system 2 the results for the HEM and NR
methods, obtained in the MATLAB, were the following depicted in Table 5.17:

Analyzing Table 5.17, is possible to notice that machine number 8, once more,
initially presented a negative power output. This indicates that even though the loading
in the system was altered, from the mathematical point of view of the system this
machine continues to be too expensive. Therefore the negative output indicates that
instead of generating costs the machine is generating revenue, creating thus an overall
less expensive solution.

Other important aspect to take into consideration is the shift of violating units
from the original solution to the final solution yielding in units 1, 2, 3 and 7 above the
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Table 5.17: Economic Dispatch Results System 2 MS
HEM No Limits HEM Limits NR No Limits NR Limits

0.4690 0.3500 0.4690 0.3500

0.6331 0.4000 0.6331 0.4000

0.2942 0.2500 0.2942 0.2500

Pi 0.3829 0.3555 0.3829 0.3555
0.4698 0.4400 0.4698 0.4400
0.8964 0.8152 0.8964 0.8192
1.0421 0.5963 1.0421 0.5963
-0.3479 0.6572 -0.3479 0.6572

0.0160 0.0161 0.0160 0.0161
0.0154 0.0154 0.0154 0.0154
0.0152 0.0150 0.0152 0.0150
0.0160 0.0161 0.0160 0.0161

λi 0.0162 0.0162 0.0162 0.0162
0.0152 0.0150 0.0152 0.0150
0.0155 0.0154 0.0155 0.0154
0.0154 0.0154 0.0154 0.0154
0.0162 0.0163 0.0162 0.0163

0.0638 0.1064 0.0638 0.1064
0.1378 0.2530 0.1378 0.2530
-0.0635 -0.0432 -0.0635 -0.0432

θi -0.0939 -0.0509 -0.0939 -0.0509
0.0445 0.1318 0.0445 0.1318
-0.0373 0.0275 -0.0373 0.0275
-0.0078 0.0411 -0.0078 0.0411
-0.1306 -0.1007 -0.1306 -0.1007

- 0.4801 10−3 - 0.4801 10−3

πi - 0.7939 10−3 - 0.7939 10−3

- 0.0259 10−3 - 0.0259 10−3
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upper limit. This is mostly caused by the negative output for machine number 8. The
final solution presented only units 1, 2 and 3 at their maximum output with unit 6
presenting the higher power output for the system. A different result from the limitless
system.

For the solution accuracy the results in Fig. 5.8 show once more the same overall
behavior for the HEM and NR, the later with a superior accuracy for the same initial
guess and needing less restars for achieving the especified tolerance.

Figure 5.8: Comparative Solution Error System 2 MS

5.4.2.3 Radical Scenario

For the Radical Scenario (RS) the loading and operational limits presented in
Table 5.18 and Table 5.19 respectively, were adopted.

Applying these conditions on the system 2 the results for the HEM and NR
methods, obtained in the MATLAB, were the following depicted in Table 5.20:

On Table 5.20, can be verified that machine number 8, continues, for the limitless
solution, to presente a negative power output. This demonstrates that eventhough the
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Table 5.18: Operating Limits RS
Unit Bus 1 Bus 2 Bus 3 Bus 1 Bus 2 Bus 3

Lower Limit Upper Limit

1 0.05 0.05 0.3 0.3 0.2 0.9
2 0.05 0.1 0.3 0.35 0.4 0.6
3 - 0.1 0.3 - 0.4 0.8

Table 5.19: System Loading RS
Bus Number P Q

1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
5 108.0 36.0
6 0.0 0.0
7 120.0 42.0
8 0.0 0.0
9 150.0 60.0
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Table 5.20: Economic Dispatch Results System 2 RS
HEM No Limits HEM Limits NR No Limits NR Limits

0.4690 0.3000 0.4690 0.3000

0.6331 0.3500 0.6331 0.3500

0.2942 0.2000 0.2942 0.2000

Pi 0.3829 0.4000 0.3829 0.4000

0.4698 0.4000 0.4698 0.4000

0.8964 0.8895 0.8964 0.8895
1.0421 0.6000 1.0421 0.6000

-0.3479 0.7341 -0.3479 0.7341

0.0160 0.0165 0.0160 0.0165
0.0154 0.0157 0.0154 0.0157
0.0152 0.0152 0.0152 0.0152
0.0160 0.0165 0.0160 0.0165

λi 0.0162 0.0165 0.0162 0.0165
0.0152 0.0152 0.0152 0.0152
0.0155 0.0157 0.0155 0.0157
0.0154 0.0157 0.0154 0.0157
0.0162 0.0167 0.0162 0.0167

0.0638 0.1165 0.0638 0.1265
0.1378 0.2882 0.1378 0.2882
-0.0635 -0.0374 -0.0635 -0.0374

θi -0.0939 -0.0383 -0.0939 -0.0383
0.0445 0.1579 0.0445 0.1579
-0.0373 0.0459 -0.0373 0.0459
-0.0078 0.0540 -0.0078 0.0540
-0.1306 -0.0925 -0.1306 -0.0925

- 0.0010 10−3 - 0.0010 10−3

- 0.0013 10−3 - 0.0013 10−3

πi - 0.0004 10−3 - 0.0004 10−3

- 0.0002 10−3 - 0.0002 10−3

- 0.0004 10−3 - 0.0004 10−3

- 0.0002 10−3 - 0.0002 10−3
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limits and loading being altered the everall system balance is kept, and unit 8 is still
too expensive.

Other important aspect to take into consideration is the how the violating units
from the original solution to the final solution did not changed. Units 1, 2, 3, 4 , 5 and
7 were above the upper limit in the limitless scenario. This was mostly caused by the
negative output for machine number 8. The final solution presented the same units
1, 2 , 3, 4, 5 and 7 at their maximum output and unit 6 presenting the higher power
output for the system.

The accuracy of the methods as presented in Fig. 5.9 does not sofer any significant
changes. The HEM continues to have a superior performance whem compared to NR.

Figure 5.9: Comparative Solution Error System 2 RS

Comparing the three scenarios is evident that the change in loading and
operational limits did not affected the overall system balance, with unit 6 being
regardless of loading the most demanded unit and with units 1 and 2 always at their
upper limits in all scenarios. It is also evident the great impact that a more expensive
unit cause in the system, throwing several units to their limits for compensating the
expensive machine, eventhoug this might generate more losses.
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5.4.3 System 3

The fourteen bus system studied was modelled according to the following
parameters for fuel cost and thermal units heat curve presented respectably at Table
5.21 and Table 5.22.

Table 5.21: Fuel Cost System 3
Unit Number Bus 1 Bus 2 Bus 3 Bus 6 Bus 8

1 1.03 0.97 1.03 0.97 1.02
2 1.00 1.01 1.00 1.01 0.98
3 0.98 1.00 - - 1.01

Table 5.22: Heat Curve Parameters System 3
Parameter Unit Number Bus 1 Bus 2 Bus 3 Bus 6 Bus 8

1 0.00142 0.00122 0.00142 0.00152 0.00122
H1 2 0.00142 0.00142 0.00142 0.00142 0.00132

3 0.00152 0.00132 - - 0.00162

1 0.0142 0.0152 0.0142 0.0152 0.0122
H2 2 0.0142 0.0142 0.0142 0.0142 0.0132

3 0.0142 0.0142 - - 0.0162

1 0.12 0.13 0.12 0.13 0.11
H3 2 0.12 0.12 0.12 0.12 0.10

3 0.11 0.13 - - 0.12

The impedances for the transmission lines and its connections were the ones found
in the IEEE 14-bus system. No modification was made in terms of connections and its
values.

5.4.3.1 Conservative Scenario

For the Conservative Scenario (CS) the loperational limits presented in Table 5.23,
were adopted. The loading in MW for each bus is L2 = 21.7, L3 = 94.2, L4 = 47.8,
L5 = 7.6, L6 = 11.2, L9 = 29.5, L10 = 9, L11 = 3.5, L12 = 6.1, L13 = 13.5 and
L14 = 14.9.
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Table 5.23: Operating Limits CS

Unit Bus 1 Bus 2 Bus 3 Bus 6 Bus 8 Bus 1 Bus 2 Bus 3 Bus 6 Bus 8

Lower Limit Upper Limit

1 0.05 0.05 0.05 0.03 0.3 0.4 0.3 0.3 0.3 0.9
2 0.1 0.05 0.05 0.1 0.3 0.4 0.5 0.5 0.3 0.9
3 0.1 0.05 - - 0.1 0.6 0.5 - - 0.4

Applying these conditions on the system 3 the results for the HEM and NR
methods, obtained in the MATLAB, were the following depicted in Table 5.24. Note
that the same scheme was used for exposing the results, i.e.for the two power generation
connected to buses 1, 2, 3, 6 and 8, P1j = Pi(1 : j), j = 1 : 3, P2j = Pi(4 : 6), j = 1 : 3,
P3j = Pi(7 : 8), j = 1 : 2, P6j = Pi(9 : 10), j = 1 : 2 and P8j = Pi(11 : 13), j = 1 : 3.

Analyzing Table 5.24, is verified that machines numbers 1 and 13 initially
presented a negative power output. Once more this result indicates that, from a
mathematical point of view of the system, these machines are too expensive, therefore
operating in a motor manner they would not generate cost but revenue. This is not
true in reality thus the need for operational limits.

Other important aspect to take into consideration is how the violating units from
the original solution to the final solution increased. Unit 4 was the only bellow the
lower limit in the original solution. The final solution presented units 1, 2, 4, 9 and 13
at the minimum output and unit 12 presenting the higher power output for the system.

The accuracy verification presented encore the HEM with a better performance
than the NR method for the same initial conditions, achieving the imposed precision
with less restarts than the number of needed iterations.

5.4.3.2 Moderate Scenario

For the Conservative Scenario (CS) the loading and operational limits presented
in Table 5.25 and Table 5.26 respectively, were adopted.

Applying these conditions on the system 3 the results for the HEM and NR
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Table 5.24: Economic Dispatch Results System 3 CS
HEM No Limits HEM Limits NR No Limits NR Limits

-0.0132 0.0500 -0.0132 0.0500

0.1364 0.1000 0.1364 0.1000

0.2254 0.1591 0.2254 0.1591
0.0017 0.0500 0.0017 0.0500

0.1416 0.0778 0.1416 0.0778
0.2076 0.1383 0.2076 0.1383

Pi 0.1956 0.1530 0.1956 0.1530
0.3515 0.3076 0.3515 0.3076
0.0800 0.0300 0.0800 0.0300

0.2061 0.1240 0.2061 0.1240
0.7429 0.6414 0.7429 0.6414
0.8253 0.6819 0.8253 0.6819
-0.4933 0.1000 -0.4933 0.1000

0.0146 0.0144 0.0146 0.0144
0.0147 0.0146 0.0147 0.0146
0.0152 0.0151 0.0152 0.0151
0.0149 0.0147 0.0149 0.0147
0.0147 0.0144 0.0147 0.0144
0.0149 0.0146 0.0149 0.0146
0.0149 0.0146 0.0149 0.0146

λi 0.0149 0.0146 0.0149 0.0146
0.0148 0.0146 0.0148 0.0146
0.0149 0.0147 0.0149 0.0147
0.0150 0.0147 0.0150 0.0147
0.0152 0.0149 0.0152 0.0149
0.0153 0.0150 0.0153 0.0150
0.0154 0.0151 0.0154 0.0151

-0.0173 -0.0148 -0.0173 -0.0148
-0.0706 -0.0781 -0.0706 -0.0781
-0.0424 -0.0386 -0.0424 -0.0386
-0.0197 -0.0064 -0.0197 -0.0064
-0.1907 -0.1804 -0.1907 -0.1804
-0.1304 -0.1250 -0.1304 -0.1250

θi -0.1304 -0.1250 -0.1304 -0.1250
-0.1683 -0.1621 -0.1683 -0.1621
-0.1808 -0.1739 -0.1808 -0.1739
-0.1897 -0.1811 -0.1897 -0.181172
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HEM No Limits HEM Limits NR No Limits NR Limits

-0.2113 -0.2013 -0.2113 -0.2013
θi -0.2132 -0.2036 -0.2132 -0.2036

-0.2159 -0.2082 -0.2159 -0.2082

- 0.4000 10−3 - 0.4000 10−3

- 0.1000 10−3 - 0.1000 10−3

πi - 0.3000 10−3 - 0.3000 10−3

- 0.1000 10−3 - 0.0100 10−3

- 2.3000 10−3 - 2.3000 10−3

Figure 5.10: Comparative Solution Error System 3 CS

Table 5.25: Operating Limits MS

Unit Bus 1 Bus 2 Bus 3 Bus 6 Bus 8 Bus 1 Bus 2 Bus 3 Bus 6 Bus 8

Lower Limit Upper Limit

1 0.1 0.1 0.1 0.05 0.35 0.5 0.35 0.35 0.35 1.1
2 0.15 0.1 0.1 0.15 0.35 0.5 0.6 0.6 0.35 1.1
3 0.15 0.1 - - 0.15 0.75 0.6 - - 0.5
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Table 5.26: System Loading MS
Bus Number P Q

1 0.0 0.0
2 26.0 15.2
3 113 22.8
4 57.4 -4.7
5 9.2 1.9
6 13.4 9.0
7 0.0 0.0
8 0.0 0.0
9 35.4 20
10 10.8 7.0
11 4.2 2.2
12 7.3 1.9
13 16.2 7.0
14 17.9 6.0

methods, obtained in the MATLAB, were the following depicted in Table 5.27:

Evaluating Table 5.27, it can be noticed that the increase on the system loading
made only machine number 13 to initially present a negative power output. Instead of
the conservative system were machines 1 and 13 presented negatives outputs.

Another aspect to take into consideration is how the violating units from the
limitless run to the final solution increased. Units 1 and 4 were the only ones bellow
the lower treshold in the free limits solution. However in the final solution units 1, 2,
4, 9 and 13 presented themselves at their minimum output and unit 12 presented the
higher power output of the system. This was the same machine arrangement as the on
in the conservative scenario.

The precision verification presented still the HEM with a better performance than
the NR method for the same initial conditions, achieving the imposed precision with
less restarts than the number of needed iterations.
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Table 5.27: Economic Dispatch Results System 3 MS
HEM No Limits HEM Limits NR No Limits NR Limits

0.0090 0.1000 0.0090 0.1000

0.1593 0.1500 0.1593 0.1500

0.2472 0.1686 0.2472 0.1686
0.0391 0.1000 0.0391 0.1000

0.1724 0.1016 0.1724 0.1016
0.2411 0.1641 0.2411 0.1641

Pi 0.2554 0.2101 0.2554 0.2101
0.4131 0.3664 0.4131 0.3664
0.1373 0.0500 0.1373 0.0500

0.2534 0.1707 0.2534 0.1707
0.7816 0.6763 0.7816 0.6763
0.8799 0.7312 0.8799 0.7312
-0.4567 0.1500 -0.4567 0.1500

0.0147 0.0144 0.0147 0.0144
0.0148 0.0146 0.0148 0.0146
0.0154 0.0152 0.0154 0.0152
0.0151 0.0148 0.0151 0.0148
0.0149 0.0145 0.0149 0.0145
0.0150 0.0147 0.0150 0.0147
0.0150 0.0147 0.0150 0.0147

λi 0.0150 0.0147 0.0150 0.0147
0.0149 0.0147 0.0149 0.0147
0.0151 0.0148 0.0152 0.0148
0.0151 0.0148 0.0152 0.0148
0.0154 0.0151 0.0154 0.0151
0.0155 0.0152 0.0155 0.0152
0.0157 0.0154 0.0157 0.0154

-0.0199 -0.0229 -0.0199 -0.0229
-0.0830 -0.0941 -0.0830 -0.0941
-0.0508 -0.0512 -0.0508 -0.0512
-0.0261 -0.0160 -0.0261 -0.0160
-0.2307 -0.2239 -0.2307 -0.2239
-0.1570 -0.1557 -0.1570 -0.1557

θi -0.1570 -0.1557 -0.1570 -0.1557
-0.2028 -0.2005 -0.2028 -0.2005
-0.2180 -0.2149 -0.2180 -0.2149
-0.2291 -0.2242 -0.2291 -0.224275
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HEM No Limits HEM Limits NR No Limits NR Limits

-0.2555 -0.2489 -0.2555 -0.2489
θi -0.2577 -0.2516 -0.2577 -0.2516

-0.2605 -0.2566 -0.2605 -0.2566

- 0.5000 10−3 - 0.5000 10−3

- 0.2000 10−3 - 0.2000 10−3

πi - 0.3000 10−3 - 0.3000 10−3

- 0.0900 10−3 - 0.0900 10−3

- 2.3000 10−3 - 2.3000 10−3

Figure 5.11: Comparative Solution Error System 3 MS
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5.4.3.3 Radical Scenario

For the Conservative Scenario (CS) the loading and operational limits presented
in Table 5.28 and Table 5.29 respectively, were adopted.

Table 5.28: Operating Limits RS

Unit Bus 1 Bus 2 Bus 3 Bus 6 Bus 8 Bus 1 Bus 2 Bus 3 Bus 6 Bus 8

Lower Limit Upper Limit

1 0.05 0.05 0.05 0.03 0.3 0.4 0.3 0.3 0.3 0.9
2 0.1 0.05 0.05 0.1 0.3 0.4 0.5 0.5 0.3 0.9
3 0.1 0.05 - - 0.1 0.6 0.5 - - 0.4

Table 5.29: System Loading RS
Bus Number P Q

1 0.0 0.0
2 26.0 15.2
3 113 22.8
4 57.4 -4.7
5 9.2 1.9
6 13.4 9.0
7 0.0 0.0
8 0.0 0.0
9 35.4 20
10 10.8 7.0
11 4.2 2.2
12 7.3 1.9
13 16.2 7.0
14 17.9 6.0

Applying these conditions on the system 3 the results for the HEM and NR
methods, obtained in the MATLAB, were the following depicted in Table 5.30:

From the results presented at Table 5.30, is of note that the same machine as in
the moderate scenario initially presented a negative power output. This is due to the
fact that both scenarios have the same loading profile.
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Table 5.30: Economic Dispatch Results System 3 RS
HEM No Limits HEM Limits NR No Limits NR Limits

0.0090 0.0500 0.0090 0.0500

0.1593 0.1101 0.1593 0.1101
0.2472 0.2003 0.2472 0.2003
0.0391 0.0500 0.0391 0.0500

0.1724 0.1264 0.1724 0.1264
0.2411 0.1911 0.2411 0.1911

Pi 0.2554 0.2237 0.2554 0.2237
0.4131 0.3804 0.4131 0.3804
0.1373 0.0596 0.1373 0.0596
0.2534 0.1893 0.2534 0.1893
0.7816 0.6964 0.7816 0.6964
0.8799 0.7595 0.8799 0.7595
-0.4567 0.1000 -0.4567 0.1000

0.0147 0.0145 0.0147 0.0145
0.0148 0.0147 0.0148 0.0147
0.0154 0.0153 0.0154 0.0153
0.0151 0.0149 0.0151 0.0149
0.0149 0.0146 0.0149 0.0146
0.0150 0.0148 0.0150 0.0148
0.0150 0.0148 0.0150 0.0148

λi 0.0150 0.0148 0.0150 0.0148
0.0149 0.0147 0.0149 0.0147
0.0151 0.0149 0.0151 0.0149
0.0151 0.0149 0.0151 0.0149
0.0154 0.0151 0.0154 0.0151
0.0155 0.0152 0.0155 0.0152
0.0157 0.0154 0.0157 0.0154

-0.0199 -0.0202 -0.0199 -0.0202
-0.0830 -0.0874 -0.0830 -0.0874
-0.0508 -0.0462 -0.0508 -0.0462
-0.0261 -0.0120 -0.0261 -0.0120
-0.2307 -0.2196 -0.2307 -0.2196
-0.1570 -0.1508 -0.1570 -0.1508

θi -0.1570 -0.1508 -0.1570 -0.1508
-0.2028 -0.1957 -0.2028 -0.1957
-0.2180 -0.2102 -0.2180 -0.2102
-0.2291 -0.2197 -0.2291 -0.219778
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HEM No Limits HEM Limits NR No Limits NR Limits

-0.2555 -0.2446 -0.2555 -0.2446
θi -0.2577 -0.2472 -0.2577 -0.2472

-0.2605 -0.2519 -0.2605 -0.2519

- 0.3000 10−3 - 0.3000 10−3

πi - 0.2000 10−3 - 0.2000 10−3

- 2.1000 10−3 - 2.1000 10−3

Other important aspect to take into consideration is the how the violating units
from the free limits solution to the final solution did not changed. Units 1 and 4
were the only ones bellow the lower limit in the original solution. The final solution
presented units 1, 4 and 13 at the minimum output and unit 12 presenting the higher
power output for the system.

The accuracy of the methods was also simulated in MATLAB. The results are
presented in Fig. 5.12. Again it is possible to notice that at every reinitialization of the
method both NR and HEM have their accuracy improved with the HEM presenting
always a better result the the NR method. This superiority in precision is evidenced
by the fact that the HEM only needed one restart to achieve the desired accuracy of
e−15 while the NR method needed two restarts.

Figure 5.12: Comparative Solution Error System 3 RS
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Comparing the three scenarios is evident that the change in loading and
operational limits did not affected the overall economical balance, with unit 12 being
regardless of loading the most demanded unit and with units 1, 4 and 13 always at
theirs lower operational limits in all scenarios. It is present also an homogeneity in the
system. This in proven by the fact that changes in the operational limits and loading
profiles did not altered the machines typical output distribution.

5.5 Conclusion of this Chapter

In this chapter was presented the results for the HEM applied for Economic
Dispatch Problem. It was used three different networks (a generic 3-bus, IEEE 9-bus
and IEEE 14-bus) and for each system three different scenarios were considered. All
the results were them compared with a solution via Newton-Raphson method. The
errors for the two solutions methods were also presented and compared. Finally an
overview of the different scenarios was made.

80



Chapter 6 CONCLUSION

6.1 Conclusion

This work proposed an alternative method for solving the multibus economic
dispatch problem for thermal units under a lossy transmission system in power systems.
The methodology is based on the holomorphic embedding method. This technique was
employed recently for solving the power flow problem. The approach was adapted in
this dissertation to solve the lossy EDP. To achieve this goal, a strategy which uses
the residue (mismatch) of a nonlinear system to compose the embedding model was
adopted. The lossless EDP solution was employed as ’germ solution’ to start the HEM
problem applied to EDP. This same solution was also employed as estimate for solving
the nonlinear problem by the Newton-Raphson method, which is used as reference to
evaluate the performance of the proposed method.

A detailed bibliographic survey on the problem of economic dispatch of thermal
generating units was performed. Emphasis was given to the search that focused on the
static economic dispatch, that is, the one proposed for a given moment, and which is
kept constant during the day. For this was the focus of the present dissertation. Also,
we sought to highlight the main works that address contributions about HEM.

The formulation of the EDP was discussed in Chapter 2, where its fundamentals
were treated. The fundamentals of HEM were presented in Chapter 3. However, it
has been in Chapter 4 that the application of HEM to EDP was detailed. For this
purpose, a simple example was presented highlighting the use of the technique used
in the dissertation. A simple generic example shows how the formulation of the HEM
problem occurs and how it was solved step by step. In this sense, a restarted HEM
was explained and illustrated its difference comparing with the HEM itself. Besides
the nonlinear equations that describe the EDP, it was demonstrated how the equations
are embedded and how the Taylor’s power series were calculated. Based on these
coefficients, a Padé approximant was calculated. The polynomial of the Taylor’s series
was limited to a maximum degree, in general no more than degree 9. In case of
inadequate convergence until this order, the process is restarted. The restarted process
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consists in performing another series computations, however, using the germ solution
as the latter Padé approximant result computed for a unitary scaling factor.

The HEM-EDP approach was studied through experiments in 3-, 9- and 14-
bus test systems. Each studied system was submitted under three different scenarios.
Namely, a conservative, that presented average loading and relaxed limits; a moderate,
with 20% higher loading in relation to the moderate scenario, and relaxed limits; and
a radical scenario, also with 20% higher loading in relation to the moderate scenario,
however with more strict limits.

The experiment results from the alternative approach were then compared with
the results obtained from the traditional iterative technique, Newton-Raphson. For
all studied cases and scenarios, the HEM-EDP approach presented a better accuracy
than the NR method. In fact, at every partial solution, the HEM-EDP also presented
a better overall accuracy. Another important point to be featured is the robustness
of the method. In view of its restarted characteristics, it enables smaller order Taylor
series, and smaller coefficients values. Then providing faster and less computational
burden.

6.2 Future Works

Future works in this topic can be exploited. We suggest for instance, incor-
poration of new constrains by considering other operational limits, such as power
flow at interconnection circuits, voltage phases etc. Another constrain would be the
introduction of maximum limit for the power injected into a specified bus. Also, other
aspects might be incorporated into the objective function, expanding the optimization
options in this function. One example would be to include transmission losses, which
in this dissertation were treated only as part of the equality constraints in the power
balance equation.

As there are many possibility to holomorphically embed the nonlinear equations,
this theme still deserves more investigations, as well as a new alternative methods to
compute the Taylor’s power series associated to the problem of interest.

82



Bibliography

[1] Loau Tawfak Al Bahrani, Jagdish C. Patra and Ryszard Kowalczyk, "Multi-
Gradient PSO Algorithm for Economic Dispatch of Thermal Generating Units in
Smart Grid,” 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia),
Melbourne, VIC, 2016, pp. 258-263.

[2] F. Benhamida, I. Ziane, S. Souag, A. Graa and B. Dehiba, "Solving Dynamic
Economic Load Dispatch With Ramp Rate Limit Using Quadratic Programming,”
2013 North American Power Symposium (NAPS), Manhattan, KS, 2013, pp. 1-5.

[3] Y. Adhinarayanan and M. Sydulu, "Fast and Effective Algorithm for Economic
Dispatch of Cubic Fuel Cost Based Thermal Units,” First International Conference
on Industrial and Information Systems, Peradeniya, 2006, pp. 156-160.

[4] Ahmed Yousuf Saber, "Economic Dispatch Using Particle Swarm Optimization
With Bacterial Foraging Effect,” in Electrical Power And Energy Systems,
International Journal of Electrical Power & Energy Systems, vol. 34, pp. 38-46,
2012.

[5] James A. Momoh, Roger F. Austin, Rambabu Adapa and E. C. Ogbuobiri,
"Application of Interior Point Method to Economic Dispatch,” [Proceedings] 1992
IEEE International Conference on Systems, Man, and Cybernetics, Chicago, IL,
USA, 1992, pp. 1096-1101 vol.2.

[6] C. Wu and C. Cao and J. Xie and D. Yue and S. Xu and J. Wang, "Economic
dispatch of virtual power plant based on distributed primal-dual sub-gradient
method," 2017 36th Chinese Control Conference (CCC), pp.10517-10521, July
2017.

[7] Anup Shukla, James A. Momoh and S. N. Singh, "Unit Commitment using
Gravitational Search Algorithm with Holomorphic Embedded Approach,” 2017
19th International Conference on Intelligent System Application to Power Systems
(ISAP), San Antonio, TX, 2017, pp. 1-6.

83



Referncias Bibliogrficas

[8] T. Yalcinoz and H. Altun, "Power Economic Dispatch Using a Hybrid Genetic
Algorithm,” in IEEE Power Engineering Review, vol. 21, no. 3, pp. 59-60, March
2001.

[9] A. Trias, "The Holomorphic Embedding Load-Flow Method,” Power and Energy
Society General Meeting, pp. 1-8, July 2012.

[10] Shuruti Rao and Daniel Tylavsky, "Nonlinear Network Reduction for Distribution
Networks using the Holomorphic Embedding Method,” 2016 North American
Power Symposium (NAPS), Denver, CO, 2016, pp. 1-6.

[11] F. D. Freitas, A.C. Santos and L. F. J. Fernandes, "Restarted Holomorphic
Embedding Load-Flow Model Based on Low-Order Padé Approximant and
Estimated Bus Power Injection," International Journal of Electrical Power and
Energy Systems, v. 112, pp. 326-338, Nov. 2019.

[12] S. Rao, Y. Feng, D. J. Tylavsky and M. K. Subramanian, "The Holomorphic
Embedding Method Applied to the Power-Flow Problem,” in IEEE Transactions
on Power Systems, vol. 31, no. 5, pp. 3816-3828, Sept. 2016.

[13] Anup Shukla, Saurabh Kesherwani and S. N. Singh, "Efficient Holomorphic
Based Approach for Unit Commitment Problem,” 2016 National Power Systems
Conference (NPSC), Bhubaneswar, 2016, pp. 1-6.

[14] Rui Yao, Kai Sun, Di Shi and Xiauhu Zhang, "Voltage Stability Analysis of Power
Systems With Induction Motors Based on Holomorphic Embedding,” in IEEE
Transactions on Power Systems, vol. 34, no. 2, pp. 1278-1288, March 2019.

[15] Senthil Krishnamurthy and Raynitchka Tzoneva, "Investigation on the Impact
of the Penalty Factors over Solution of the Dispatch Optimization Problem,”
2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town,
2013, pp. 851-860.

[16] Salih Fadil and Burak Urazel, "Application of Modified Subgradient Algorithm
Based in Feasible Values to Security Constrained Economic Dispatch Problem with
Prohibited Operation Zones,” 2013 8th International Conference on Electrical and
Electronics Engineering (ELECO), Bursa, 2013, pp. 549-553.

[17] X. S. Han, H. B. Gooi and Daniel S. Kirschen, "Dynamic Economic Dispatch:
Feasible Optimal Solutions,” IEEE Transactions on Power Systems 2001, vol. 16,
no. 1.

84



Referncias Bibliogrficas

[18] Z. Liang and J. D. Glover "A zoom feature for adynamic programming solution
to economic dispatch including transmission losses," IEEE Transactions on Power
Systems, vol. 7, no.2, p. 544-550, May 1992.

[19] S. P. Agrawal, K. B. Porate and G. H. Raisoni "Economic Dispatch of Thermal
Units with the Impact of Wind Power plant,” 3 International Conference on
Emerging Trends in Engineering and Technology, Goa, 2010, pp. 48-53.

[20] B. F. Wollenberg, A. J. Wood and G. B. Sheble, "Power Generation Operation
and Control,” Chapter 4, Third Edition, 2013.

[21] Tohei Shiokawa and Teruhisa Kumano, "A new fuel cost model of thermal unit
considering output ramp rate and its application to Economic Load Dispatch,”
2009 IEEE Electrical Power and Energy Conference (EPEC), Montreal, QC, 2009,
pp. 1-6.

[22] T. Kumano, "A Function Optimization Based Dynamic Economic Load Dispatch
Considering Ramping Rate of Thermal Units Output,” 2011 IEEE/PES Power
Systems Conference and Exposition, Phoenix, AZ, 2011, pp. 1-8.

[23] , J. J. Grainger and W. D. Stevenson, "Power System Analysis", McGraw-Hill,
1994.

[24] B. J. Parker, A. Watanabe and M. T. Schiling, "Precisão do Modelo Linearizado
de Fluxo de Potência para Simulação do Sistema Elétrico Brasileiro,” NT DEST
18/80.

[25] Y. Li, "Effect of Various Holomorphic Embeddings on Convergence Rate and
Condition Number as Applied to the Power Flow Problem.” Master Thesis,
Arizona State University, Nov. 2015.

[26] E. D. Castronuovo, "Aplicação de métodos de pontos interiores no fluxo de
potência óptimo não-linear com utilização de processamento de alto desempenho,”
2001, UFSC, Tese Doutorado.

[27] Khalid Mohamed-Nor, Abdul Halim and Abdul Rashid, “Efficient economic
dispatch algorithm for thermal unit commitment,”in IEE Proceedings C -
Generation, Transmission and Distribution, vol. 138, no. 3, pp. 213-217, May
1991.

[28] A. Trias, “Fundamentals of the Holomorphic Embedding Load-Flow Method,”
ArXiv e-prints, no. 1509.02421, Sep. 2015.

85



Referncias Bibliogrficas

[29] M. K. Subramanian, Y. Feng and D. Tylavsky, “PV Bus Modeling in a
holomorphically Embedded Power-Flow Formulation,” North American Power
Symposium (NAPS), Manhattan, KS, 2013.

[30] A. Trias and J. L. Marín, “The Holomorphic Embedding Loadflow Method for DC
Power Systems and Nonlinear DC Circuits,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 63, no. 2, pp. 322-333, Feb. 2016.

[31] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MATPOWER:
Steady-State Operations, Planning and Analysis Tools for Power Systems
Research and Education,” IEEE Trans. Power Syst., vol.26, no. 1, pp. 12-19, Feb.
2011.

[32] P. Murty, “Power Systems Analysis.” Hyderabad, India: BSP, 2007.

[33] J. Arrillaga and C. P. Arnold, “Computer Analysis of Power Systems.”
Christchurch, New Zealand: John Wiley & Sons, 1990.

[34] Expósito, A.G.; Gomez, E.A.; Conejo, A.J.; Canizares, C. “Electric Energy
Systems: Analysis and Operation.” CRC Press: Boca Raton, FL, USA, 2009.

[35] G. W. Stagg A. El-Abiad “Computer Methods in Power System Analysis.” in New
York: McGraw-Hill 1968.

[36] L. L. Grigsby “Power Systems.” in New York: CRC Press 2006.

[37] H. Saadat, “Power System Analysis.” McGraw-Hill, 2010.

[38] J. D. Glover, M. S. Sarma and T. J. Overbye, “Power System Analysis and Design
5th Edition,” Cengage Learning, Stamford, 2011.

[39] A. Göran “Power System Analysis.” EEH - Power Systems Laboratory, ETH
Zürich, Sep. 2012.

[40] S.P. Suetin, “Padé Approximants and the Effective Analytic Continuation of a
Power Series,” Russian Math. Surveys, 57:1 (2002), 43-141.

[41] I.J.Nagrath D.P.Kothari “Modern Power System Analysis.” Tata Mcgraw-Hill
Newdelhi India 2003.

[42] Ahlfors L.V., “Complex Analysis: an Introduction to the Theory of Analytic
Functions of One Complex Variable,” McGraw-Hill, 1979.

86



Referncias Bibliogrficas

[43] Golub, G.H. and Von Loan, C.F., “Matrix computations,” The Johns Hopkins
University Press, Third Edition, London, UK, 1996.

[44] Salih Fadil, Ahmet Yazici and Burak Urazel, “Solution to Security Constrained
Lossy Economic Power Dispatch Problem for a Power System Are Including
Energy Supply Thermal Units Using Modified Subgradient Algorithm Based on
Feasible Values,” 2011 7th International Conference on Electrical and Electronics
Engineering (ELECO), Bursa, 2011, pp. 33-37.

[45] Jarurote Tippayachai, Weerakorn Ongsakul and Issarachai Ngamroo, “Parallel
Micro Genetic Algorithm for Constrained Economic Dispatch,” in IEEE
Transactions on Power Systems, vol. 17, no. 3, pp. 790-797, Aug. 2002.

[46] Maheswarapu Sydulu, “A very fast and effective non-iterative "λ-Logic based"
algorithm for economic dispatch of thermal units,”Proceedings of IEEE. IEEE
Region 10 Conference. TENCON 99. ’Multimedia Technology for Asia-Pacific
Information Infrastructure’ (Cat. No.99CH37030), Cheju Island, South Korea,
1999, pp. 1434-1437 vol.2.

[47] Xiu Xu, Chengxi Liu and Kai Sun, “A Holomorphic Embedding Method to
Solve Unstable Equilibrium Points of Power Systems,” 2018 IEEE Conference
on Decision and Control (CDC), Miami Beach, FL, 2018, pp. 1580-1585.

[48] Rin Wang, Chengxi Liu and Kai Sun, “Multi-Stage Holomorphic Embedding
Method for Calculating the Power Voltage Curve,” in IEEE Transactions on Power
Systems, vol. 33, no. 1, pp. 1127-1129, Jan. 2018.

[49] Masahico Tanimoto, Yoshio Izui, Koichi Hirose and Shizuka Nakamura, “Advanced
Economic Dispatching Control Algorithm Using Dynamic Unit Model and Interior
Point Method,” 1997 Fourth International Conference on Advances in Power
System Control, Operation and Management, APSCOM-97. (Conf. Publ. No.
450), Hong Kong, 1997, pp. 796-801 vol.2.

[50] Xihui Yan and Victor H. Quintana, “An Efficient Predictor-Corrector Interior
Point Algorithm for Security Constrained Economic Dispatch ,”in IEEE
Transactions on Power Systems, vol. 12, no. 2, pp. 803-810, May 1997.

[51] G. Irisarri, L. M. Kimball, K. A. Clements, A. Bagchi and P. W. Davis, “Economic
Dispatch With Network and Ramping Constraints via Interior Points Method,”in
IEEE Transactions on Power Systems, vol. 13, no. 1, pp. 236-242, Feb. 1998.

87



Referncias Bibliogrficas

[52] Kyoung-Shin Kim, Leen-Hark Jung, Seung-Chul Lee and Un-Chul Moon, “Security
Constrained Economic Dispatch Using Interior Point Method,”2006 International
Conference on Power System Technology, Chongqing, 2006, pp. 1-6.

[53] F. Z. Gherbi and F. Lakdja, “Environmentally Constrained Economic Dispatch
via Quadratic Programming,”2011 International Conference on Communications,
Computing and Control Applications (CCCA), Hammamet, 2011, pp. 1-5.

[54] Nagarjuna Duvvuru and K. S. Swarup, “A Hybrid Interior Point Assisted
Differential Evolution Algorithm for Economic Dispatch,”in IEEE Transactions
on Power Systems, vol. 26, no. 2, pp. 541-549, May 2011.

[55] Dhivya S. and Vigneswaran T., “Primal Dual Interior Point Algorithm for Con-
strained Economic Load Dispatch and Optimal Power Flow,” 2013 International
Conference on Power, Energy and Control (ICPEC), Sri Rangalatchum Dindigul,
2013, pp. 360-365.

[56] Z. L. Wu, Q. H. Wu, X. X. Zhou and M. S. Li, “Hybrid Quadratic
Programming and Compact Formulation Method for Economic Dispatch with
Prohibited Operating Zones and Network Losses,”2015 IEEE Innovative Smart
Grid Technologies - Asia (ISGT ASIA), Bangkok, 2015, pp. 1-6.

[57] M. S. P. Subathra, S. Easter Selvan, T. Aruldoss Albert Victoire, A. Hepzibah
Christinal and Umberto Amato, “A Hybrid with Cross-Entropy Method and
Sequential Quadratic Programming to Solve Economic Load Dispatch Problem
,”in IEEE Systems Journal, vol. 9, no. 3, pp. 1031-1044, Sept. 2015.

[58] Ismail Ziane, Farid Benhamida, Yacine Salhi and Amel Graa, "A Fast Solver
for Dynamic Economic Load Dispatch with Minimum Emission Using Quadratic
Programming,”2015 4th International Conference on Systems and Control (ICSC),
Sousse, 2015, pp. 290-294.

[59] Rony Seto Wibowo, Kemas Robby Firmansyah, Ni Keut Aryani and Adi
Seoprijanto, "Dynamic Economic Dispatch of Hybrid Microgrid with Energy
Storage Using Quadratic Programming,”2016 IEEE Region 10 Conference
(TENCON), Singapore, 2016, pp. 667-670.

[60] Nnamdi Nwulu, "Emission Constrained Bid based Dynamic Economic Dispatch
using Quadratic Programming,” 2017 International Conference on Energy,
Communication, Data Analytics and Soft Computing (ICECDS), Chennai, 2017,
pp. 213-216.

88



[61] M. R. B. D. Santos, A. R. Balbo, E. Gonçalves, E. M. Soler, R. B. N.
M. Pinheiro, L. Napomuceno and E. C. Baptista, "A Proposed Methodology
Involving Progressive Bounded Constraints and Interior-Exterior Methods in
Smoothed Economic/Environmental Dispatch Problems,” in IEEE Latin America
Transactions, vol. 15, no. 8, pp. 1422-1431, 2017.

[62] J. Lin and F. H. Magnago, "Electricity Markets: Theories and Applications,”
Chapter 5, First Edition, 2017.

[63] R. N. Dhar and P. K. Mukherjee, "Reduced-Gradient Method for Economic
Dispatch,” in Proceedings od the Institute of Electrical Engineers, Volume 120,
pg. 608-610, May 1973.

89


	Contents
	INTRODUCTION
	Overview
	Motivation of Study
	Objectives
	Main Contributions
	Related Publications
	Organization of the Work

	ECONOMIC DISPATCH PROBLEM
	Introduction
	Economic Dispatch Studies
	The Basic Economic Dispatch Aspects
	Problem Formulation
	The Classical Lossless EDP
	The Lossy Transmission Line EDP
	Lagrangian for a lossless transmission system
	Lagrangian for a lossy transmission system

	Traditional Optimal Solution Methods
	The Interior Points Method
	The Reduced Gradient Method
	The Newton-Based Method
	The Quadratic Programming Method
	Comparison of Traditional Models: IPM, RGM, NBM and QP Methods
	Motivation for Non-Iterative Methods Development

	Non-Iterative Methods
	Motivation for The Holomorphic Embedding Load Flow Method Development

	Conclusion of this Chapter

	THE HOLOMORPHIC EMBEDDING METHOD
	Introduction
	Holomorphic Functions
	Power Series Expansion of Holomorphic Functions
	Holomorphic Embedding of Nonlinear Equations
	Analytic Continuation and Padé Approximants
	Matrix Representation of the Taylor Series Coefficients for a General System
	Overview of The Holomorphic Embedding Load Flow Method
	State of the Art about Some Existing Holomorphic Embedding Method Approaches
	Conclusion of this Chapter

	THE HOLOMORPHIC EMBEDDING METHOD USED FOR SOLVING THE ECONOMIC DISPATCH PROBLEM
	Introduction
	Problem Formulation
	The Holomorphic Embedding Method Strategy
	The Holomorphic Embedding Model for the EDP
	Embedding Equations Based on the Residue

	Conclusion of this Chapter

	METHODOLOGY AND RESULTS
	Introduction
	Test System Models
	General Aspects of the Numerical Techniques
	Experiments and Results
	System 1
	System 2
	System 3

	Conclusion of this Chapter

	CONCLUSION
	Conclusion
	Future Works

	BIBLIOGRAPHY
	APPENDIX A
	APPENDIX B

