
DISSERTAÇÃO DE MESTRADO

Employment of Parameter Adaptive Techniques
to Bio-Inspired Meta-Heuristics for Mapping Real-Time Applications

onto NoC based MPSoCs

Jessé Barreto de Barros

Brasília, Agosto de 2019

UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASÍLIA
Faculdade de Tecnologia

DISSERTAÇÃO DE MESTRADO

Employment of Parameter Adaptive Techniques
to Bio-Inspired Meta-Heuristics for Mapping Real-Time Applications

onto NoC based MPSoCs

Jessé Barreto de Barros

Dissertação submetida ao Departamento de Engenharia Mecânica

da Faculdade de Tecnologia da Universidade de Brasília como requisito parcial

para obtenção do grau de Mestre Engenheiro em Sistemas Mecatrônicos.

Banca Examinadora

Prof. Dr.Carlos H. Llanos Q., ENM/FT/UnB
Orientador

Prof. Dr. Mauricio Ayala Rincón, CIC/UnB
Examinador externo

Prof. Dr. Jones Yudi Mori Alves da Silva, ENM/UnB
Examinador interno

FICHA CATALOGRÁFICA

BARROS, JESSÉ BARRETO DE
Employment of Parameter Adaptive Techniques to Bio-Inspired Meta-Heuristics for Mapping
Real-Time Applications onto NoC based MPSoCs

[Distrito Federal] 2019.

xii, 203 p., 210 x 297 mm (ENM/FT/UnB, Mestre, Sistemas Mecatrônicos, 2019).
Dissertação de Mestrado - Universidade de Brasília. Faculdade de Tecnologia.
Departamento de Engenharia Mecânica.

1. Meta-heuristics 2. Optimization
3. Real-time Systems 4. Network-on-a-chip
I. ENM/FT/UnB II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA
BARROS, J.B. (2019). Employment of Parameter Adaptive Techniques to Bio-Inspired
Meta-Heuristics for Mapping Real-Time Applications onto NoC based MPSoCs, Dissertação de
Mestrado em Sistemas Mecatrônicos, Publicação ENM.DM-71A/14, Departamento de
Engenharia Mecânica, Faculdade de Tecnologia, Universidade de Brasília, Brasília, DF, 203 p.

CESSÃO DE DIREITOS
AUTOR: Jessé Barreto de Barros
TÍTULO: Employment of Parameter Adaptive Techniques to Bio-Inspired Meta-Heuristics for
Mapping Real-Time Applications onto NoC based MPSoCs.
GRAU: Mestre ANO: 2019

É concedida à Universidade de Brasília permissão para reproduzir cópias desta dissertação e
para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. O autor
reserva outros direitos de publicação e nenhuma parte desse trabalho de conclusão de curso pode
ser reproduzida sem autorização por escrito do autor.

Jessé Barreto de Barros
Depto. de Engenharia Mecânica (ENM) - FT
Universidade de Brasília (UnB)
Campus Darcy Ribeiro
CEP 70919-970 - Brasília - DF - Brasil

Acknowledgements

I would like to express my thanks to my advisor Prof. Carlos H. Llanos, who was
always very supportive and always provided me with excellent advice and great insights.
I also would like to express my gratitude towards my lab mate Carlos Eduardo for our
constructive conversations about the topics shared by our research. Agradezco a Oscar
por no haberme ayudado en nada.
Eu gostaria de agradecer à minha familia especialmente à minha mãe, irmã, e avó pela
força. Eu também gostaria de agradecer aos meus amigos que adquiri ao longo dos anos
na UnB em especial Marquemilho, Carioca (Francisco), Pedro, Andrezinho, e o Teixeira.
Moreover, I would like to thank my best friend and girlfriend Chanhui, who helped me a
lot during this work giving me much needed support. At last, I would like to make Ozzy
Osbourne quote as my words: “Out of everything I’ve lost, I miss my mind the most!”

Jessé Barreto de Barros

RESUMO

O problema de mapear tarefas de uma aplicação em tempo-real (RTA) em uma plataforma
com múltiplos processadores no mesmo chip do tipo (MPSoC) que utiliza uma rede intra-chip
(NoC) como arquitetura de comunicação pode ser abordado como um problema de otimização que
possui o intuito de melhorar características do design do sistema utilizando uma análise estática.
Exemplos de característica que se deseja que sejam melhoradas são a conformidade do sistema com
as suas restrições temporais e o use dos seus recursos. Uma meta-heurística bio-inspirada, como o
Algoritmo Genético (GA) pode obter mapeamento de tarefas no qual todas as tarefas da aplicação
são agendadas. Além disso, no contexto de meta-heurísticas, algoritmos que incorporam técnicas
adaptativas para os seus parâmetros e operadores são capazes de mudar os seus mecanismos de
busca baseando-se no problema que está sendo otimizado com o intuito de simultaneamente buscar
por soluções ótimas para o problema utilizado e por parâmetros melhores. Essas características
permitem que meta-heurísticas que empregam esses mecanismos de mitigar a necessidade de um
estágio para configurar os seus parâmetros e melhorar os seus desempenhos.

Em luz dessas informações, esse trabalho visa efetuar um estudo para explorar múltiplos técni-
cas de adaptação para meta-heurísticas bio-inspiradas e empregá-las no desenvolvimento de novas
versões adaptativas de meta-heurísticas como o GA, o algoritmo de otimização por enxame de
partículas (PSO), e o algoritmo de evolução diferencial (DE). Essas novas meta-heurísticas são
subsequentemente aplicadas em múltiplas instâncias do problema de mapeamento de tarefas de
uma RTA em uma plataforma do tipo MPSoC que usa NoC utilizando funções com um único ou
múltiplos objetivos.

Em adição à aplicação dessas meta-heurísticas, esse trabalho também apresenta uma compa-
ração estatística para verificar os seus desempenhos. O experimento onde esse estudo estatístico é
aplicado foi conduzido para utilizar as meta-heurísticas desenvolvidas nesse trabalho e também as
suas versões originais em múltiplas configurações do problema de mapeamento utilizando plata-
formas MPSoC com diferentes tamanhos e uma RTA utilizada como benchmark com RTA geradas
de forma sintética. Os resultados obtidos indicam que, para o conjunto de problemas avaliados,
meta-heurísticas com técnicas adaptativas são capazes de alcançar melhores resultados, na média,
do que as suas versões sem esquemas de adaptação.

Outra contribuição desse trabalho é o desenvolvimento de um plataforma de software orientado
a objetos em C++ cuja aplicação não se restringe ao problema de mapeamento de tarefas e
pode ser utilizado em outros problemas de otimização como a lista de funções de otimização de
benchmark.

Palavras Chaves: Meta-heurísticas, Otimização, Sistemas em Tempo-Real, Redes Intra-chip

ABSTRACT

The task mapping of a Real-Time Application (RTA) onto a Many-/Multi-Processor System-
on-a-Chip (MPSoC) with a Network-on-a-Chip (NoC) as on-chip communication architecture can
be tackled as an optimization problem to improve desired design features in a static analysis
setting. Examples of such features are the system compliance to its time requirements and its
resource usage. A search-based bio-inspired meta-heuristic such as the Genetic Algorithm (GA)
is capable of achieving task placement solutions in which all tasks are schedulable. Also, in the
context of meta-heuristics, algorithms that incorporate adaptive techniques for their parameter
values and operators are capable of changing their internal search mechanisms based on the pro-
blem at hand to simultaneously search for optimal solutions for the problem at hand and more
suitable parameters for the meta-heuristic. These characteristics allow meta-heuristics that em-
ploy these mechanisms to mitigate their necessity for a parameter tuning stage and an increase in
performance.

In light of this information, this work intends to perform a study to explore adaptive te-
chniques for bio-inspired meta-heuristics and employ them in the development of new adaptive
versions of bio-inspired meta-heuristics such as GA, Particle Swarm Optimization (PSO), and
Differential Evolution (DE). These novel meta-heuristics are then applied on different instances of
task mapping of RTA onto MPSoC platforms with NoC using single-/multi-objective functions.

Additional to the application of these new meta-heuristics, this work also presents a statistical
comparison study to assess their performance. The experiments in which this statistical study
was conducted uses meta-heuristics developed in this work together with their original counter-
parts in multiple settings of the task mapping problem using platforms with different sizes and
a benchmark RTA jointly with synthetic generated ones. The results obtained indicate that, for
the set of problems used, meta-heuristics with adaptive techniques are capable of achieving better
performance, on average, than their original counterparts.

Another contribution of this work is the development of an object-oriented software framework
in C++ with use not limited to the task mapping problem and can be used to other optimization
problems such as the list of benchmark optimization functions.

Keywords: Meta-heuristics, Optimization, Real-Time Systems, Network-on-a-Chip.

CONTENTS

1 Introduction . 1
1.1 Contextualization ... 1
1.2 Commercial Applications of MPSoC and NoCs............................. 3
1.3 Objectives.. 4
1.3.1 Primary Objective ... 4
1.3.2 Secondary Objectives .. 4
1.4 Methodology.. 5
1.5 Contributions ... 5
1.6 Manuscript Organization.. 6

2 Optimization Problems . 7
2.1 Introduction .. 7
2.2 Problem Modeling and Codification... 7
2.2.1 Single-Objective Optimization Problem 8
2.2.2 Multi-Objective Optimization.. 9
2.3 Examples of Optimization Problems ... 12
2.3.1 Combinatorial/Discrete Problems ... 12
2.3.2 Continuous Problems ... 14
2.4 Conclusions of the Chapter.. 19

3 Real-Time Network-on-a-Chip based MPSoC . 22
3.1 System-on-a-Chip (SoC) .. 22
3.1.1 Multi-/Many- Processors System-on-a-Chip (MPSoC) 23
3.2 Communication Architectures ... 23
3.2.1 Buses ... 23
3.2.2 Network-on-a-Chip .. 24
3.3 Network-on-a-Chip (NoC)... 24
3.3.1 Components .. 24
3.3.2 Connection Topology .. 26
3.3.3 Routing Algorithm.. 27
3.3.4 Switching Strategies ... 28
3.3.5 Arbitration Policies .. 31
3.3.6 Virtual Channels .. 32

iii

3.4 Real-Time Network-on-a-Chip ... 33
3.5 Real-Time Systems... 33
3.6 Multiprocessor Real-Time System Modeling and Scheduling Al-

gorithms .. 35
3.6.1 Real-Time Application Modeling ... 35
3.6.2 Scheduling Problems and Algorithms... 37
3.6.3 Priority Assignment .. 39
3.6.4 Task Assignment.. 40
3.7 Modeling and Scheduling Algorithms for RTNoC-based MPSoCs ... 44
3.7.1 Platform Model.. 45
3.7.2 Real-Time Application Model.. 46
3.7.3 Processors and Links Utilization Factors Test............................ 48
3.7.4 Multi-point Progressive Blocking Worst-Case Latency Analysis ... 49
3.7.5 End-to-End Schedulability Test .. 52
3.7.6 Required Local Memory for Processor Cores Test...................... 53
3.7.7 Normalized Energy Dissipation Model .. 54
3.8 Task Mapping onto a RTNoC-based MPSoC as an Optimization

Problem ... 55
3.8.1 Task Mapping Encoding .. 55
3.8.2 Utilization Test as an Objective Function.................................. 55
3.8.3 End-to-End Schedulability Test as an Objective Function............ 56
3.8.4 Normalized Energy Dissipation as an Objective Function 56
3.8.5 Maximum Required Local Memory as an Objective Function.......... 57
3.8.6 Breakdown Frequency as an Objective Function 57
3.8.7 End-to-End Scheduling Test with Slack Awareness as an Objec-

tive Function: a new Proposed Approach 59
3.8.8 Multi-Objective Task Mapping Optimization 60
3.9 Conclusions of the Chapter.. 60

4 Search-based Optimization Bio-inspired Meta-Heuristics . 62
4.1 Bio-inspired Meta-Heuristics ... 62
4.2 Adaptive Techniques for Bio-Inspired Meta-Heuristics 64
4.2.1 Parameter Setting Strategies... 65
4.2.2 Adaptive Operator Selection.. 67
4.3 Single-Objective Optimization Bio-Inspired Meta-Heuristics from

Literature ... 70
4.3.1 Genetic Algorithm (GA) .. 70
4.3.2 Differential Evolution (DE) .. 72
4.3.3 Particle Swarm Optimization (PSO) ... 74
4.3.4 Salps Swarm Algorithm (SSA) ... 76
4.3.5 Gray Wolf Optimization (GWO) .. 77
4.3.6 Elephant Herd Optimization (EHO).. 79

4.3.7 Dragonfly Algorithm (DA)... 81
4.3.8 Moth-Flame Optimization (MFO) ... 84
4.3.9 Whale Optimization Algorithm (WOA) 86
4.3.10 Bat Algorithm (BA) .. 87
4.3.11 Adaptive Differential Evolution (JADE) 89
4.3.12 Crossover Strategy Adaptive Self-Adaptive DE (CSASADE) 92
4.3.13 Discrete Particle Swarm Optimization (DPSO) 98
4.3.14 Self-Adaptive Particle Swarm Optimization (SAPSO) 100
4.3.15 Hybrid Discrete Particle Swarm Optimization Makespan-based (HDPSO-

M)... 102
4.4 Single-Objective Optimization Bio-Inpired Meta-Heuristics Deve-

loped in this Work .. 105
4.4.1 Single-Objective Adaptive with Modified Selection Differential

Evolution (SOAMSDE)... 105
4.4.2 Adaptive Genetic Algorithm v1 (AGAv1) 109
4.4.3 Adaptive Genetic Algorithm v2 (AGAv2) 111
4.4.4 Adaptive Genetic Algorithm v3 (AGAv3) 114
4.4.5 Adaptive Genetic Algorithm v4 (AGAv4) 120
4.4.6 Adaptive Particle Swarm Optimization (APSO)............................ 122
4.4.7 Adaptive Particle Swarm Optimization v2 (APSOv2)..................... 124
4.4.8 Hybrid Discrete Particle Swarm Optimization Utilization-based

(HDPSO-U)... 126
4.4.9 Adaptive Hybrid Discrete Particle Swarm Optimization Utilization-

based (AHDPSO-U) .. 128
4.4.10 Adaptive Gray Wolf Optimization (AGWO) 130
4.5 Multi-Objective Optimization Bio-Inpired Meta-Heuristics from Li-

terature .. 132
4.5.1 Non-dominated Sorting Genetic Algorithm II (NSGA-II) 132
4.5.2 Adaptive Parameter with Mutation Tournament Multi-Objective

DE (APMTMODE) ... 137
4.6 Multi-Objective Optimization Bio-Inspired Meta-Heuristics Deve-

loped in this Work .. 140
4.6.1 Non-dominant Sorting Adaptive Genetic Algorithm (NSAGA) 140
4.6.2 Multi-Objective Non-dominant Sorting Adaptive DE (MONSADE) . 143
4.7 Conclusions of the Chapter.. 145

5 Related Works . 146
5.1 Introduction .. 146
5.2 Search-Based Meta-Heuristics Algorithms 146
5.2.1 Adaptive Techniques .. 147
5.3 Task Mapping Problem for RTNoC-based MPSoC......................... 148
5.4 Conclusions of the Chapter.. 150

6 Search-Based Optimization Meta-Heuristic Framework . 151
6.1 Introduction .. 151
6.2 Developed Software Architecture and Design 151
6.3 End-user Tutorial ... 153
6.3.1 Perform Single-Objective Meta-Heuristic Experiment using Ben-

chmark Functions.. 155
6.3.2 Perform Multi-Objective Meta-Heuristic Experiment using Ben-

chmark Functions.. 156
6.3.3 Generate Synthetic Real-Time Application 157
6.3.4 Perform Single-Objective Task Mapping onto RTNoC-based MP-

SoC Experiment .. 158
6.3.5 Perform Multi-Objective Task Mapping onto RTNoC-based MP-

SoC Experiment .. 160
6.4 Conclusions of the Chapter.. 160

7 Experimental Setup and Results . 161
7.1 Introduction .. 161
7.2 Statistical Framework... 162
7.2.1 Friedman Test with post-hoc procedures 162
7.3 Shared Experimental Setup Characteristics 164
7.4 Experimental Setup - Single-Objective Benchmark Functions 165
7.5 Experimental Setup - Multi-Objective Benchmark Functions......... 167
7.6 Experimental Setup - Real-Time Application Mapping onto RTNoC-

based MPSoC .. 168
7.6.1 Synthetic Real-time Application Generation............................... 169
7.6.2 End-to-End Response Time Scheduling.. 173
7.6.3 Breakdown Frequency Optimization... 177
7.6.4 End-to-End Response Time Scheduling with Slack Awareness 181
7.6.5 Multi-Objective Scheduling with Slack, Energy Dissipation, and

Memory Requirement Awareness .. 184
7.7 Conclusions .. 186

8 Conclusions . 187
8.1 Future Works... 188

BIBLIOGRAPHIC REFERENCES . 190

Appendices . 198

I Breakdown Frequency Scaling Values . 199

II Real-Time Application Task Set. 202

LIST OF FIGURES

1.1 Illustration of the arbitration of a NoC in the OSI computer network protocol
extracted from [1]. .. 2

1.2 Illustration of a RTA mapping onto a NoC-based MPSoC (adapted from [2]).......... 3

2.1 Representation of the process to define a modelM for a real-world problem Rw and
then encoding this model as an optimization problem P(M) with a search space S
composed of possible solutions x ∈ S. ... 8

2.2 Illustration of a SOOP with an objective function mapping the search space to the
objective space... 9

2.3 Illustration of a MOOP with a vector of objective functions mapping the search
space to the objective space. ... 10

2.4 Illustration of a Pareto Front in the objective space of a MOOP as well as repre-
sentation other non-dominated and dominated solutions that composes other fronts. 12

2.5 Illustration of queen chess pieces interaction on a 8× 8 board. 13
2.6 2D plots of likelihood values given robot positions in the map with fixed heading

angles. In this example setting, the optimal point is found at heading angle θ =
−0.0245.. 16

2.7 Plot of the used single-objective benchmark functions in a 2-dimensional search space. 18
2.8 Plot of the used multi-objective benchmark functions pareto frontiers. 20

3.1 Illustration of an AMBA communication architecture extracted from [3], where
AHB stands for Advanced High-performance Bus for fast components, and APB
stands for Advanced Peripheral Bus for peripheral and low-power components. 24

3.2 Representation of a mesh-grid 2× 2 NoC. ... 25
3.3 Illustration of an example of a router architecture for a packet switching NoC with

virtual channels. (Image extracted from [4]). ... 26
3.4 Illustration of multiple NoC topological organizations, where gray squares represent

routers and white squares represent PEs. These images where adapted from [1]. 27
3.5 Illustration of a message transmission using two types of routing algorithm. 28
3.6 Illustration of the typical packetization of a data message inside of a NoC (adapted

from [1]). .. 29
3.7 Illustration of a message transmission between routers buffers with different packet

switching strategies... 31
3.8 Illustration of messages with scenarios with and without VCs (adapted from [5])..... 32

vii

3.9 Illustration of the the degradation of a task result usefulness with time after its
deadline has passed... 34

3.10 Representation of a processing queue in a processing core that enable preemption.
Source [6]. .. 37

3.11 Illustration of a timeline for instances of three tasks in a processing core. 37
3.12 Illustration of timelines for instances of three tasks (τ1, τ2 and τ3) in a processing

core. Upward arrows represents the arrival time and the interval between them
presents the period Tj for τj , and downward arrows represents the deadline time
since the last arrival ... 40

3.13 Illustration of timelines for instances of two tasks (τ1 and τ2) in a processing core.
Upward arrows represents the arrival time and the interval between them presents
the period Tj for τj , and downward arrows represents the deadline time since the
last arrival .. 42

3.14 Illustration of timeline for the example of WCRT (Ri) calculation. 44
3.15 3x3 Mesh-grid RTNoC platform. Blue circles represent the processors and their

network interfaces (NI), and gray squares represent routers. 46
3.16 Examples of two cases where a message φj suffers direct and indirect interference. .. 50
3.17 Examples of two cases where a message φj suffers upstream and downstream indi-

rect interference. .. 51
3.18 Illustration of timeline for the example of EERT calculation using both WCRT and

WCLT. .. 53
3.19 Visual representation of a task mapping where each jth element is an integer value

representing the index of a processor where τj is mapped onto. 55

4.1 Classification structure of bio-inspired meta-heuristics for SOOP.......................... 64
4.2 Classification structure of bio-inspired meta-heuristics for MOOP......................... 65
4.3 Classification of bio-inspired algorithms parameter setting strategies..................... 66
4.4 Number of parameters and parameter setting strategies for each meta-heuristic in

this work. ... 69
4.5 Graphical representation of a one-point crossover operator.................................. 71
4.6 Graphical representation of a two-point crossover operator. 116
4.7 Graphical representation of a uniform crossover operator. 117
4.8 Graphical example of the inertia weight evolution during execution of APSO (red)

and PSO (blue) with both having I = 100, winitial = 0.85 and wfinal = 0.05. 124
4.9 Graphical example of the crowding distance for a solution xi. 134

5.1 Illustration of the timeline history for meta-heuristics developed in the past years
(extracted from [7]). ... 147

6.1 Illustration of meta-heuristics object-oriented architecture. 152
6.2 Illustration of objective optimization problem object-oriented architecture. 153
6.3 Illustration of the RTNoC system framework in object-oriented architecture........... 154

7.1 Frequency histograms for utilization factors of AVA tasks as well as their messages
sizes in flits. .. 170

7.2 Distributions of utilization factors and messages payload sizes for applications used
on experiments. ... 171

7.3 (3x3) Box-plot for funsch(x,Ω1,Ψ1) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions................................ 176

7.4 (3x4) Box-plot for funsch(x,Ω1,Ψ2) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions................................ 177

7.5 (4x4) Box-plot for funsch(x,Ω1,Ψ3) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions................................ 177

7.6 (3x3) Box-plot for fbdf (x,Ω1,Ψ1) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions................................ 180

7.7 (3x4) Box-plot for fbdf (x,Ω1,Ψ2) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions................................ 180

7.8 (4x4) Box-plot for fbdf (x,Ω1,Ψ3) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions................................ 181

7.9 (3x3) Box-plot for fumsr(x,Ω1,Ψ1) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions................................ 183

7.10 (3x4) Box-plot for fumsr(x,Ω1,Ψ2) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions................................ 184

7.11 (4x4) Box-plot for fumsr(x,Ω1,Ψ3) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions................................ 184

LIST OF TABLES

2.1 Benchmark functions used. Features: U - Unimodal, M - Multimodal, S - Separa-
ble, N - Non-Separable, and F - Flat ... 17

2.2 MOOP Benchmark functions used. Search Space Features (SS):U - Unimodal,M -
Multimodal, S - Separable, N - Non-Separable, and F - Flat. Objective Space Fea-
tures (OS): L - Linear, Ce - Concave, Cx - Convex, Mx - Mixed Concave/Convex,
and D - Disconnected. .. 21

3.1 Characteristics of three tasks in an example case. Where C is the task WCET, D
is the deadline, T is the period, and P is the priority-level. 44

3.2 Example of iterations to calculate the WCRT (Ri) mapped to a processor. 44

5.1 Quantity of adaptation schemes in these related works. 149

7.1 External parameters for the continuous single-objective meta-heuristics. 165
7.2 Average Rankings for the continuous single-objective meta-heuristics. 165
7.3 Adjusted p-values for pair-wise comparison against WOA 166
7.4 Average Rankings for the continuous multi-objective meta-heuristics..................... 167
7.5 Adjusted p-values for pair-wise comparison against MONSADE........................... 167
7.6 Characteristics of MPSoCs with wormhole-based RTNoCs used as platforms for the

experiments. ... 168
7.7 Applications used for the experiments where Z̄payload is the average size in flits of

messages payloads, |Γ| is the task set size, |Φ| is the number of messages, and Utotal
is the application total utilization. ... 169

7.8 List of single-objective meta-heuristics used for the experiments and their parame-
ters regarding single-objective functions funsch, fbdf , and fumsr. 173

7.9 List of multi-objective meta-heuristics used for the experiments and their parame-
ters regarding the multi-objective function Fnoc. ... 173

7.10 Average Rankings for single-objective meta-heuristics optimizing different instances
of funsch. .. 174

7.11 Adjusted p-values for pair-wise comparison against AGAV4 175
7.12 Average Rankings for single-objective meta-heuristics optimizing different instances

of fbdf 178
7.13 Adjusted p-values for pair-wise comparison against AGAV4 179

x

7.14 Average Rankings for single-objective meta-heuristics optimizing different instances
of fumsr.. 182

7.15 Adjusted p-values for pair-wise comparison against AGAV4 182
7.16 Average Rankings for the multi-objective meta-heuristics optimizing different ins-

tances of Fnoc. ... 185
7.17 Adjusted p-values for pair-wise comparison against NSAGA................................ 185

I.1 List with the 255 frequency scaling values used. ... 199

II.1 Autonomous Vehicle Application (AVA) Benchmark. ... 202

LIST OF SYMBOLS

Basic Symbols

a, b, c, ... Scalar number are represented by lower case letters
a, b, c, ... Vectors are represented by bold lower case letters
A,B,C, ... Sets are represented by bold upper case letters
|A| Set A cardinality
R Real numbers set
Z Integer numbers set
N Natural numbers set (including 0)
B Binary numbers set
C Complex numbers set
Rn Real vector with n components
Rn×m Real matrix with n rows and m columns
1 Vector of ones
0 Vector of zeros

Special Greek Symbols

Γ Set of tasks of a real-time application
Φ Set of messages transmitted by tasks in Γ
Ψ Model of a MPSoC that uses a RTNoC communication architecture
Ω Model of a RTA
Π Set of processing elements connected to NIs
Ξ Set of Routing Elements
Λ Set of Unidirectional Links
πm Processing Element connect to a Network Interface
ξm Routing Element in a NoC
λπm,ξm Unidirectional Link that connects elements πm and ξm
τn Task of a RTA
φn Message transmitted by a task τn

xii

Special Latin Symbols

Ci WCET of the task τi
Di Relative Deadline time of the task τi
Ji Release jitter time of a task τi
Ki Release jitter for a message φi transmission
li Lateness for an unschedulable task τi
Li Latency of transmission of a the task φi without network contention
Mi Memory code in bytes allocated in memory for a task τi
Pi Priority-level of the task τi
Ri WCRT of the task τi
si Slack time for a schedulable task τi
Si WCLT of a message φi
Ti Inter-arrival period of the task τi
Uτi Utilization factor of a task τi
Uπ Utilization factor of a processor π
Uλ Utilization factor of a link λ
UΓ Utilization factor of all tasks in a RTA
Zi Size in bytes of the message φi sent by task τi

Acronyms

AGA Adaptive Genetic Algorithm
AOS Adaptive Operator Selection
APCS Adaptive Parameter Control Strategy
APSO Adaptive Particle Swarm Optimization
APV Adjusted p-Value
AVA Autonomous Vehicle Application
BA Bat Algorithm
BDF BreakDown Frequency
COP Combinatorial Optimization Problem
DA Dragonfly Algorithm
DE Differential Evolution
DPCS Deterministic Parameter Control Strategy
DPSO Discrete Particle Swarm Optimization
EERT End-to-End Response Time
EHO Elephant Herd Optimization
FPGA Field-Programmable Gate Array
FWER Family-Wise Error Rate
GA Genetic Algorithm
GWO Gray Wolf Optimization
IC Integrated Circuit
I/O Input/Output
MFO Moth-Flame Optimization
MOOP Multi-Objective Optimization Problem
MPSoC Many-/Multi- Processors System-on-a-Chip
NSGA Non-dominant Sorting Genetic Algorithm
NFL No Free Lunch
NI Network Interface
NoC Network-on-a-Chip
PE Processing Element
PF Pareto Front
PO Pareto Optimal
PSO Particle Swarm Optimization
RM Rate Monotonic
RTA Real-Time Application
RTNoC Real-Time Network-on-a-Chip
RTS Real-Time System
SLAM Simultaneous Localization And Mapping
SLHD Symmetric Latin Hypercube Design
SoC System-on-a-Chip
SOOP Single-Objective Optimization Problem
SSA Salp Swarm Algorithm
VC Virtual Channel
WCET Worst Case Execution Time
WCLT Worst Case Latency Time
WCRT Worst Case Response Time
WOA Whale Optimization Algorithm

1 INTRODUCTION

1.1 Contextualization

System-on-a-Chip (SoC) [8] is the paradigm to integrate a whole computing system with
multiple specialized modules, processor cores, FPGAs, memory caches, memory controllers, inside
of the same chip die. It results in a complex Integrated Circuit (IC) with hundreds of millions
of transistors that, thanks to the development in IC manufacturing techniques, is heavily relied
upon on modern commercial products. For example, a current modern smartphone such as the
Samsung’s flagship phone Galaxy S10 uses a Qualcomm SoC chip [9] that has components such
as processors, graphical processing units, and telephony related modules.

In the information age, SoC products, and their development and production represent the
economic source of hundreds of billions of dollars annually. For example, Apple the third most
valuable company (as of 2019), has a large part of their market value due to products using SoCs
such as smartphones and tablets.

It is common for current commercial SoC to contain multiple processors core inside of the
chip. Systems with this attribute are characterized as a Multi-/Many-Processors System-on-a-
Chip (MPSoC). In SoCs, and specifically in MPSoCs, as the number of components inside of the
chip increases, so does the on-chip communication architecture, the subsystem responsible for data
transmission inside of the chip, importance for the system correct functionality and complexity
to properly handle the large data transmitted. This growth in complexity is so accentuated
in modern SoCs that the on-chip communication architecture has become one of the primary
sources of bottlenecks in terms of timing performance due to communication delays, and power
and area [10].

In light of these problems, there has been a push from the research community towards a
paradigm of an on-communication architecture inspired by computer networks. This new paradigm
should be capable of coping with the scalability necessary for the crescent number of elements
inside of current and future SoCs design. This on-chip communication paradigm is the Network-
on-a-Chip (NoC) [8] [11].

An NoC is an on-chip communication architecture that can be defined by the following cha-
racteristics, as stated by [8]:

• The on-chip communication architecture can be separated in multiple abstraction layers
similar to computer networks. For example, characteristics of the implementation, such
as wiring can be attached to the physical layer design, while abstracted during the data
layer design to deal with data transmission protocols. Figure 1.1 represents the mapping
on the standard Open System Interconnection (OSI) network protocol stack model of an
implementation of an NoC.

1

• The communication control is distributed inside of the network designated to specialized
components called routers.

• High customization capability with the possibility to use, for example, different topological
connection for its routers, and multiple types of specialized components connected.

• NoC is scalable since the number of communication channels, and routers increases as the
number of components grow.

• Better power efficiency due to reduced wiring length (depending on the topology chosen)
between routers and communication control for large systems with less complexity.

• Independency between modules since each router connects its system module. It offers a
high re-usability between modules since their implementation is independent of the on-chip
communication architecture.

Application

Presentation

Session

Transport

Network

Data Link

Physical Wiring

Architecture

Application
(OS software)

Contention issues
reliability issues

Switching strategies
routing algorithms

Implemented in cores,
data packetization

1

2

3

4

5

6

7

Figura 1.1 – Illustration of the arbitration of a NoC in the OSI computer network protocol ex-
tracted from [1].

In the context of embedded devices, the field advances with an ever-growing number of possi-
ble critical applications from the expected growth in the development of Internet-of-Things (IoT)
devices, the maturation of 5G telecommunication infrastructure, and the deployment of autono-
mous vehicles. Current and future embedded devices have a large number of processing elements,
power usage, and time constraints that are likely to be met by using NoC-based MPSoC designs.
Since some of the systems are employed in time-sensitive applications, they are categorized as
Real-Time Systems (RTS), and their performance is heavily dependent on the system complying
with the Real-Time Application (RTA) time constraints.

Due to the broad range of design possibilities in an NoC-based system allied with the time
constraints inherent from RTS, it is imperative for the design of an MPSoC deployed for such
systems to consider the time characteristics of its RTA since the early stages of the project. RTAs
can be subdivided into tasks that are a chunk of the application software that represents one of

2

the system tasks. Mapping RTAs onto MPSoCs is the process to define tasks placement onto
specific processor cores in the system [12]. This process for an NoC-based system is illustrated in
Figure 1.2.

Network-on-Chip

Application

Mapping

Switch
Fabric

Routing&
Control Logic

…

Input ports

Virtual

Channels

Network interface

Processor

Network-on-Chip

Application

Mapping

Switch
Fabric

Routing&
Control Logic

…

Input ports

Virtual

Channels

Network interface

NoC Tile

Switch
Fabric

Routing&
Control Logic

…

Input ports

Virtual

Channels

Network interface

task 3

task 2

task 7 task 8

task 1

task 6
task 5

task 4

Processor
Core

Local
Memory

Real-Time Application

Figura 1.2 – Illustration of a RTA mapping onto a NoC-based MPSoC (adapted from [2]).

When performed during the design time, the RTA mapping onto MPSoCs can be faced by
defining an analytic method to evaluate each task mapping solution as an optimization problem
quickly. The search for an optimal task placement using a specific quality metric for the system
is an NP-hard problem akin to the bin packaging problem [13]. Bio-inspired meta-heuristics such
as the Genetic Algorithm (GA) has been successfully used in previous related works to search for
task mappings that result in RTAs to comply with their time constraints ([14]).

This work proposes alternative bio-inspired meta-heuristics that employ adaptive techniques
that could be used in the task mapping of RTAs onto NoC-based MPSoCs both for single-objective
optimization as well as multi-objective ones. These meta-heuristics are composed of recent algo-
rithms from literature as well as brand new ones developed during this work.

Additionally, this work also presents a comparative study to analyze which meta-heuristic is
more suitable, on average, for the task mapping optimization problem using different objectives
on multiple scenarios with synthetic RTA and MPSoCs. Including one objective developed during
this work that evaluates at the same time the number of tasks that do not comply with their
timing requirements, and, if all of them respect their time constraints, the minimum slack ratio
starts to be optimized.

1.2 Commercial Applications of MPSoC and NoCs

The leading manufacturers of desktop processors, Intel and AMD, use MPSoCs in their new
high-end line of products. It highlights the importance of the themes studied in this work and
their application in current and future commercial products.

3

In AMD case, their most recent processors that use their microarchitecture Zen [15] that is
aimed to be used in a broad range of products from low-end notebooks with Ryzen processors up to
high-performance server computers branded as EPYC. Their high-end EPYC Zen-based products
have completely integrated MPSoCs containing memory-controllers, caches and a proprietary on-
chip communication architecture called Infinity Fabric that connect both components inside of
the same die as well as external modules such as graphical processors.

Intel high-end recent products aimed to servers is part of the Xeon family of processors [16].
These processors are MPSoC since they have up to 56 processor cores in the same die as well
as components such as caches, memory controllers, and I/O modules. To connect these internal
components, the new Xeon processors use a 2-dimensional mesh-grid NoC to connect them to
cope with the increased data traffic in the die.

1.3 Objectives

These work objectives are subdivided into two types: (a) primary: the main objectives for this
work; (b) secondary: objectives met during the process to achieve the main objectives;

1.3.1 Primary Objective

The general objective of this work is to apply bio-inspired meta-heuristics with adaptive me-
chanisms to search for optimal task mapping solutions of real-time applications onto NoC-based
MPSoC using current state-of-the-art analytical methods to evaluate the timing characteristics
for the systems.

1.3.2 Secondary Objectives

The specific objectives of this work are the following:
(a) Development of a high-performance framework containing the implementation of multiple bio-
inspired meta-heuristics and modules to analyze NoC models as optimization problems;
(b) Use of bio-inspired meta-heuristics from literature;
(c) Development and implementation of bio-inspired meta-heuristics that contain adaptive tech-
niques;
(d) Implementation of single-/multi-objective benchmark optimization problems to quickly evalu-
ate the developed meta-heuristics performances;
(e) Development and implementation of objective functions related to task placement of RTAs
onto MPSoCs;
(e) Perform a comparative study to assess which meta-heuristics are more suitable for the task
mapping problem of RTAs onto MPSoCs.

4

1.4 Methodology

This work objective uses the following methodological proceedings to meet its objectives:

• Research and study about the fundamentals of the themes: (a) MPSoC, (b) NoCs, and (c)
Bio-inspired meta-heuristics.

• Implementation of a framework to analyze multiple characteristics of an MPSoC with NoC
based on the mapping of a modeled application onto a modeled system. These characteristics
are: (a) real-time schedulability analysis, (b) resource use, and (c) dissipated energy on
communication architecture.

• Implementation and development of objective functions that use modeled NoC based system
characteristics as metrics.

• Development and implementation of bio-inspired meta-heuristics that uses adaptation tech-
niques.

• Validation of explored methods though the use of experiments using the meta-heuristics in
a range of optimization problems, including benchmarks and problems related to NoCs.

• Analysis of experimental results using non-parametric statistical tests that includes hy-
pothesis tests to assess the significance of the improvement obtained by the different meta-
heuristics used.

1.5 Contributions

This work has the following contributions:
(a) Development of a C++ framework for bio-inspired optimization meta-heuristics with modules
to analytically analyze NoC-based MPSoCs timing characteristics;
(b) Development of a pair of new bio-inspired meta-heuristics based on Differential Evolution
(DE) that contain adaptation of parameter values as well as adaptation of operations named
Single-Objective Adaptive with Modified Selection Differential Evolution (SOAMSDE) and Multi-
Objective Non-dominated Sorting Adaptive Differential Evolution (MONSADE);
(c) Development of four adaptive versions of the GA named AGAv1, AGAv2, AGAv3, and AGAv4;
(d) Development of two adaptive versions of the Particle Swarm Optimization (PSO) name APSO,
and APSOv2;
(e) Development of a modified version of a hybrid discrete version of PSO that contains a local-
search method specialize for the task mapping problem of RTAs onto MPSoCs named Hybrid
Discrete PSO-Utilization-based (HDPSO-U);
(f) Development of a version of HDPSO-U that contains adaptive mechanisms for parameter con-
trol named Adaptive HDPSO-U (AHDPO-U);
This meta-heuristic was presented in the article “An Adaptive Discrete Particle Swarm Optimi-
zation for Mapping Real-Time Applications onto Network-On-Chip based MPSoCs” [17];

5

(g) Development of a single-objective metric to evaluate task mapping that contains both in-
formation of the number of tasks that do not comply with their timing constraints and slack
awareness.

1.6 Manuscript Organization

This work has seven other chapters divided as follows:

• Chapter 2 introduces the mathematical framework for problem optimization, including the
reasoning for the modeling of a problem as a single- or multi-objective optimization problem.

• Chapter 3 introduces concepts related to SoCs, NoCs, and RTS, including the modeling for
NoC-based MPSoCs and the definition of task mapping as an optimization problem.

• Chapter 4 introduces bio-inspired meta-heuristics, including concepts and taxonomy of bio-
inspired meta-heuristics that contain adaptive techniques to modify their characteristics
mid-execution.

• Chapter 5 presents a brief survey of related works in the area of search-based bio-inspired
meta-heuristics and task mapping of RTAs onto MPSoCs.

• Chapter 6 presents the C++ software developed in this work, including the design choices
for classes hierarchy, and tutorials for users.

• Chapter 7 presents the experimental setup and the results for the multiple optimization
problems present in this work with emphasis for the task mapping optimization of RTAs
onto MPSoC with NoCs using bio-inspired meta-heuristics.

• Chapter 8 concludes this work by presenting possible future works that one can continue
from this work.

6

2 OPTIMIZATION PROBLEMS

This chapter briefly introduces the concepts used
in problem optimization. It also presents a
mathematical framework to assist the intelligibi-
lity of other parts of this work. The chapter is
divided as follows: First, in Section 2.1, it bri-
efly introduces optimization problems, then, in
Section 2.2, it describes, in a high-level abstrac-
tion, the process to model and encodes a real-
world problem as an optimization problem with
single or multi-objectives. In Section 2.3, it des-
cribes examples of optimization problems used in
this work, including combinatorial/discrete and
continuous problems. Lastly, in Section2.4, con-
cludes the chapter and contextualizes it with other
parts of this work.

2.1 Introduction

Optimization problems is a multi-disciplinary field that is a standard part of all areas of sciences
and engineering and, for this reason, it is a complex and vast field with a myriad of approaches
to tackle it. This work intends to only briefly describe some mathematical framework of the field
to assist intelligibility of the work as a whole. In general, optimization problem is a process to
minimize or maximize an objective function by searching for an input solution for said function
inside a domain of possible solutions that results in its optimal result. In this work, the focus of
the optimization problems will be minimization ones. Notice that even maximization problem can
be treated as a minimization one, it can be done simply by multiplying its numeric metric values
by −1.

2.2 Problem Modeling and Codification

As present in [18], a real-world problem Rw that needs to have some of its characteristics
optimized with optimal or near-optimal parameters, given one or multiple specific goals, can be
described by a computational modelM. The modelM can have its numerical parameters encoded
as a problem P(M) that defines the parameters being manipulated as an n-dimensional vector x,
namely its decision variable, that ranges inside of a set of possible parameters S called the search
space.

Vector x ∈ S is not limited to a single number type and its components can be real, integer,
binary, complex numbers, or even a combination of these sets {R× Z× B× C}. The selection of
an approach to encode the model P(·) defines S and its size, and, therefore, this selection impacts

7

the complexity of the problem at hand and the capacity or performance of a possible optimization
method to solve the problem Rw. Figure 2.1 illustrates the abstraction of modeling and encoding
of a real-world problem Rw into an optimization problem.

Rw M(Rw) P(M)

S

M

P

M

Search Space

x

Figura 2.1 – Representation of the process to define a modelM for a real-world problem Rw and
then encoding this model as an optimization problem P(M) with a search space S composed of
possible solutions x ∈ S.

The optimization of P(M) is done with respect to one or multiple objectives by defining an
objective function f(·) or a vector of objective functions F (·). This objective function is then
used as a numeric metric to define the quality of a possible solution and be used for a comparison
between these solutions. In the same fashion that a real-world problem can be modeled in different
ways, it possible to select multiple objective functions for a single problem depending on the desired
metric. Similar to the decision variables, an objective function is not restricted to a single number
type. However, in this work, for simplicity, the used objective functions have their images always
defined as real or integer numbers.

2.2.1 Single-Objective Optimization Problem

A Single-Objective Optimization Problem (SOOP) uses in its encoded model P(M) a single
evaluation metric for its solutions defined as a single-objective function f defined as following:

f(x) : S→ O, (2.1)

where O is the objective space that for this work purposes is a subset of R, i.e., O ∈ R.

Some problem models also have regions in its search space S that contains unfeasible solutions.
It means that this type of problems have constraints equations that represent whether a possible

8

solution is feasible. These constraint equations can be divided into m equality constraints hi
(i ∈ [1,m]) and p inequality constraints gj (j ∈ [1, p]).

With the previous concepts in mind, it is possible to provide a general definition of an opti-
mization problem, a minimization, for a given model M as in Eq. 2.2. In this equation, x∗ is a
solution that satisfy all restrictions and holds the optimal result for f(·).

x∗ = argmin
x

f(x)

x ∈ S

Subject to

gi(x) ≤ 0, i ∈ {1, ...,m}

hi(x) = 0, i ∈ {1, ..., n}

. (2.2)

Figure 2.2 illustrates an example SOOP with a single-objective function f that maps the search
space S ∈ R2 to the objective space O ∈ R.

x1

x2 f
S ∈ R2 O ∈ R

f

Figura 2.2 – Illustration of a SOOP with an objective function mapping the search space to the
objective space.

2.2.2 Multi-Objective Optimization

A Multi-Objective Optimization Problem (MOOP) [19] uses in its encoded model P(M) mul-
tiple numeric metrics as objectives. Generally, these metrics can not be combined as terms of
a single-objective function f due to: (a) conflicting objectives, when one objective improves the
others deteriorate; (b) different order of magnitude, when an objective scale is small while others
are large.

9

Multi-objective Optimization Problems is defined as following:

x∗ = argmin
x

F (x)

x ∈ S

Subject to

gi(x) ≤ 0, i ∈ {1, ...,m}

hi(x) = 0, i ∈ {1, ..., n}

, (2.3)

where F (x) = (f1(x), ..., fo(x)) is a vector composed of o objective functions and x∗ = (x1, ..., xn)
satisfy all restriction while resulting the optimal solutions for all component fi of F . F maps the
decision variable from their search space S to the objective space O defined as F : S→ O. Figure
2.3 illustrates an example of MOOP with a multi-objective function F that maps the search space
S ∈ R2 to the objective space O ∈ R2.

x1

x2

f1

f2
S ∈ R2 O ∈ R2

F

Figura 2.3 – Illustration of a MOOP with a vector of objective functions mapping the search space
to the objective space.

The definition of an optimal solution for MOOP is different from that of SOOP that consist of
picking the solution with the minimum(maximum) objective value on an ordered objective space,
see Fig. 2.2. Meanwhile, MOOP solutions have to meet different objectives that, as previously
mentioned, are generally contradictory. With that in mind, MOOP needs a different definition of
comparison between solutions that treat all objective functions as equally important. The concept
of Pareto optimality and the Pareto dominance criterion covers this necessity, and for this reason,
it is used in this work as a ranking method between solutions in MOOP.

2.2.2.1 Pareto Dominance

A vector u dominates a second vector v, denoted as u � v, if and only if u is at least partially
smaller than v. In other words, ∀j ∈ {1, .., n}, uj ≤ vj ∧ ∃j ∈ {1, .., n} : uj < vj .

If a vector u does not dominate v, u is considered as non-dominant, meaning that both vectors
are equal in the Pareto dominance criterion denoted as u 6� v.

10

In light of the concept of Pareto dominance, given a pair of solutions x1 and x2 for a multi-
objective function F . x1 dominates x2 if F (x1) � F (x2). It means that F (x1) obtain less or
equal results in all objectives when compared with F (x2) and with at least one of its objectives
smaller than F (x2). If none of these cases are true then x1 6≺ x2.

A concept that originates from the Pareto dominance criterion is the idea of non-dominant
fronts in the objective space. A set of solutions X forms a front in the search space when its
components are non-dominant solutions between themselves. In other words, X forms a front
when X = {{xi,xj} ∈X : xi 6= xj ∧ F (xi) 6� F (xj) ∧ F (xj) 6� F (xi)}.

A set of solutions X∗ is considered as Pareto Optimal (PO) when it is a set of non-dominant
solutions.

2.2.2.2 Pareto Optimality

A set of solutions X∗ ∈ S for a multi-objective function F is defined as PO by following the
condition:

X∗ = {x ∈ S :6 ∃x′,F (x′) � F (x)}. (2.4)

The set of non-dominant solutions in the objective space is called the Pareto Front (PF) PF ∗

and follows:
PF ∗ = {u = F (x) : x ∈X∗}. (2.5)

PF dominate all other fronts in the objective space.

Figure 2.4 illustrates a representation of the objective space with two objective functions
F = (f1, f2), i.e., O ∈ R2. The worst solutions have their images in the objective space represented
in red. All other solutions colored in blue and magenta dominate the worst solutions.

The intermediate solutions have images represented in blue, and they are dominated by the
magenta solutions and dominates the red ones. The best solutions are PO, and they have their
images colored in magenta, forming the PF. PO solutions dominated all other solutions represent
in blue and red and by drawing a curve intercepting the images for the PO non-dominant solutions
a representation of the PF. Note that not only the PF can be drawn in this manner. The sets of
worst and intermediate solutions can also have curves connecting the images of solutions that are
not-dominant between themselves. It creates two other fronts, colored in red and blue, respectively,
for the worst and intermediate solutions.

These fronts can be ranked denoting a metric of quality between solutions in a multi-objective
context. For this example, PF has the smallest possible rank equal to one. The front in blue has a
rank greater than one, in this case, two. Lastly, the front formed by the worst solutions has a rank
greater than the rank of the blue front, in this case, three. By applying this ranking convention,
a MOOP can be tackled by searching for the solutions that form fronts with smaller ranks that
are in turn is a part or is as close as possible of PF.

11

Front rank = 3

Front rank = 2
Front rank = 1 f1

f2

Figura 2.4 – Illustration of a Pareto Front in the objective space of a MOOP as well as represen-
tation other non-dominated and dominated solutions that composes other fronts.

2.3 Examples of Optimization Problems

This section presents examples of optimization problems that are later in this work used as
benchmark functions.

2.3.1 Combinatorial/Discrete Problems

Combinatorial Optimization Problems (COPs) is a class of optimization problems in which
its search space is composed of a finite number of possible solutions, and each of these soluti-
ons is associated with single or multiple objectives. In this work, COPs are also called discrete
optimization problems.

There are classical algorithms to solve this class of problem optimally, for example, Branch
& Bound [20] and Dynamic Programming [21]. Both techniques are greedy divide-and-conquer
methods that divide the problem into smaller sub-problems and optimize them and then combine
these sub-problems solutions back to form the solution for the problem in hand. Even though these
algorithms are exact, in other words, always resulting in the optimal solution for the optimization
problem in hand. They can not be applied for all COP problems since there are problems in
which their solution components can not be subdivided and evaluated separately. These types of
exact algorithm can not tackle problems with objective functions that can not evaluate individual
components of the solution.

Another reason in which these algorithms can not be applied is that some problems can not
be approached in a reasonable computer time due to their complexity. For example, a problem
with so many components that the processing time for an optimal algorithm is prohibitive. In
these cases, heuristic techniques present themselves as a possibility to tackle these problems while

12

being capable of obtaining near-optimal results.

2.3.1.1 N-Queens Placement Problem

The n-queens placement problem [22] is an expansion of the 8-queens placement problem that
aims to place n queen chess pieces in a n×n chessboard in a configuration in which no two queens
can attack each other. In other words, the search of a configuration where no placed n points
in an n × n grid has the same row, column, and diagonals. It is a well-known problem that is
commonly used as a benchmark problem in different machine learning-based methods, for example,
constructive backtracking algorithms [23] and evolutionary algorithm based meta-heuristics such
as GA [24] and PSO [25].

The search process for a solution for the n-queen placement can be represented as an optimi-
zation problem

x∗ = argmin
x

fattack(x), (2.6)

where each candidate placement solution is encoded as a n-dimensional integer vector x and the
goal is to minimize a function fattack(x) : S→ Z+ that maps the subset S of nn possibilities, i.e. a
subset of the total (n2)!

n!(n(n−1))! possible placements, and returns a positive integer with the number
of attacking movements for all n queen pieces. If there is no attacking movement, fattack(x) returns
0 and x is a placement solutions that satisfies the n-queens placement problem.

Each of the jth component of a solution x represents the placement of a queen piece onto the
jth row of the chessboard, and the positive integer held by this component xj ∈ [1, n] depicts
the column of this placement. In this manner, each queen is placed at the position (j, xj) of the
chessboard. Figure 2.5a illustrates the placement of a queen at (4, 4) position on a 8 × 8 board
and Fig. 2.5b shows a queen placement with no queen attacking each other.

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

q

(a) Example of movement of a queen chess piece.

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

q

q

q

q

q

q

q

q

(b) Example of a placement x where fattack(x) = 0

Figura 2.5 – Illustration of queen chess pieces interaction on a 8× 8 board.

The function fattack calculates the number of attack movements between queen pieces using an
algorithm expressed in pseudo-code form in Algorithm 1. It uses two sets dgp and dgs to identify

13

attacks on the principal and secondary diagonals, respectively. By using a sorting algorithm, such
as the QuickSort [26] on both sets, and then comparing these sets adjacent elements, it is possible
to identify queen pieces in the same diagonal. The same principle can be used directly onto a
placement vector x to count the number of pieces sharing the same rows.

Algorithm 1 N-Queens Attack Counter (fattack)

INPUT: Pieces Placement (x)
OUTPUT: Number of Attacks (attacks)
1: procedure NQueensAttacks(x)
2: attacks = 0
3: dgp← ∅
4: dgs← ∅
5: for j = 1 to |x| do
6: dgp← xj − j
7: dgs← (|x|+1)− xj − j
8: end for
9: QuickSort(dgp)

10: QuickSort(dgs)
11: QuickSort(x)

12: for j = 2 to |x| do
13: if dgpj = dgpj−1 then
14: attacks = attacks+ 1
15: end if
16: if dgsj = dgsj−1 then
17: attacks = attacks+ 1
18: end if
19: if xj = xj−1 then
20: attacks = attacks+ 1
21: end if
22: end for
23: return attacks

24: end procedure

2.3.2 Continuous Problems

Continuous Problems are part of a subset of optimization problems with search-space formed
by infinitely many solutions composed of only real numbers. For example, an optimization problem
with solutions composed of d-dimensional real vectors x ∈ Rd.

In science and engineering, the majority of optimization problems is part of this class. Similarly
to COP, there are classical methods that can be applied for this type of problems. For example, if
the objective function is known analytically, differentiable, and unimodal, the best approach is to
use a gradient descent based method. However, if that is not the case, the gradient descent may
be rendered unusable or with poor performance. Therefore, search-based heuristic methods can
be useful to solve this class of problems as well.

The majority of benchmark functions for heuristics used in numerical optimization competi-
tions (SOOP CEC2017 [27] and MOOP CEC2017 [28]) fall into this category. The benchmark
functions used in this work will be present in the next subsections for both single- and multi-
objective benchmark optimization functions.

2.3.2.1 Mobile Robot Probabilistic Scan Matching in SLAM Applications

In the context of autonomous mobile robots, Simultaneous Localization and Mapping (SLAM)
is a well-known problem defined as a process to concurrently construct an environmental map

14

(mapping) and estimate the robot position inside this map (localization), as described by [29].
SLAM problems have a high dependency on methods to correctly associate new observations with
previous known sensor readings. This process of matching old and new data from scan sensors is
known as scan matching and it is a front-end algorithm used by both the localization and mapping
processes in SLAM.

The main focus of scan matching algorithms is to estimate the pose displacement of a robot
between two consecutive sensor readings.

Probabilistic scan match algorithms can be viewed as an optimization problem to maximize
the posterior distribution p(xt|xt−1,u,m, z) given a robot pose in space xt at time t. Each one of
these poses are expressed as a 3-dimensional vector (xt, yt, θt) where (xt, yt) represents the robot’s
position in a 2D map and θt represents its heading angle. u represents a prior knowledge that can
be an odometer reading or a control input,m is the environmental knowledge as a map, and z is a
set of the latest sensor measurements. This optimization problem is represented in Eq. (2.7). By
applying Bayes’ rule, this distribution can be divided into two terms: (a) the observation model
p(z|xt,m) representing the likelihood of the robot to make a measurement z, if its pose and map
is known; and (b) the motion model p(xt,xt−1,u) that is the likelihood for the robot to be in a
specific pose given its previous pose xt−1 and prior knowledge u;

x∗t = argmax
xt

p(xt|xt−1,u,m, z) ∝ argmax
xt

p(z|xt,m) · p(xt|xt−1,u) (2.7)

Assuming that a set of point readings z obtained from a laser scan sensor forms z, and each
of these points is uncorrelated to each other, the observation model can be reduced into the form
present in Eq. (2.8).

p(z|xt,M) =
∏
z∈z

p(z|xt,m) (2.8)

Given that the prior probability p(xt|xt−1,u,m, z) is known and a constant value, from now
on represented as p(x), and, since maximizing the posterior is the same as minimizing the negative
of the log-posterior, the optimization can be rewritten as shown in Eq. (2.9).

x∗t = argmin
xt

− log
(
p(x)

∏
z∈z

p(z|xt,m)
)

(2.9)

Figure 2.6 shows a representation of the search-space and likelihood values for the robot to be
in a range of possible poses in the map relative to its current position. It is possible to visualize
the presence of multiple local optima when varying θ. This characteristic that makes this problem
difficult to tackle with simple gradient descent method. Not mentioning that, as previously stated,
since the SLAM process is executed continuously, the optimization method is processed every new
sensor reading. In cases with a large number of possible solutions, a brute-force method may take
too much computation time or resources.

15

-3

0.1

-2.5

-2

0.05 0.1

-1.5

10
4

-1

0.050

-0.5

0
-0.05

-0.05

-0.1 -0.1

-3

-2.5

-2

-1.5

-1

-0.5

10
4

-3

0.1

-2.5

-2

0.05 0.1

-1.5

10
4

-1

0.050

-0.5

0
-0.05

-0.05

-0.1 -0.1

-3

-2.5

-2

-1.5

-1

-0.5

10
4

-3

0.1

-2.5

-2

0.05 0.1

-1.5

10
4

-1

0.050

-0.5

0
-0.05

-0.05

-0.1 -0.1

-3

-2.5

-2

-1.5

-1

-0.5

10
4

-3

0.1

-2.5

-2

0.05 0.1

-1.5

10
4

-1

0.050

-0.5

0
-0.05

-0.05

-0.1 -0.1

-3

-2.5

-2

-1.5

-1

-0.5

10
4

Figura 2.6 – 2D plots of likelihood values given robot positions in the map with fixed heading
angles. In this example setting, the optimal point is found at heading angle θ = −0.0245.

2.3.2.2 Single-Objective Benchmark Functions

The single-objective benchmark fitness functions used are listed in Table 2.1 and they include
n-dimensional problems with different characteristics such as unimodal, flat, and multimodal,
separable, and non-separable. A common characteristic of SOOP benchmark functions used in
this work is that their variable components are homogeneous, i.e., each component boundaries are
the same.

A function is considered to be unimodal when it has a single optimum point with no single
local optimum point in its search-space while multimodal functions have countable or uncountable
many local optima points with only a single optimum point. Figure 2.7 illustrates these characte-
ristics by plotting each SOOP benchmark functions in a 2-dimensional search space. An example
of a unimodal function is the Sphere, and an example of a multimodal function is the Rastrigin or
StepInt. The use of multimodal function tests the search-based optimization algorithms capabili-
ties to avoid convergence in local optima points while exploring the search space. Flat functions,
such as Stepint, has another characteristic that makes them difficult to solve: their flat regions
does not present any gradient information for the algorithms to aim their search towards better
regions.

16

A separable function f : Rd → R can be expressed as the sum of d one variable functions.
Meanwhile, non-separable can not be expressed similarly, since its input vector components have an
interdependence relationship between them. Optimization of non-separable problems is generally
more complicated than separable ones.

Another important note is the multidimensional characteristics of these benchmarks. As the
number of dimensions of a problem increases, so does the volume of solutions inside of the search
space turning the search process for the optimal point more complex. This problem is called the
“curse of dimensionality”. In this context, an optimization algorithm that obtains excellent
results in a few dimensions setting may deteriorate its optimization performance as the number
of dimensions increase.

Tabela 2.1 – Benchmark functions used. Features: U - Unimodal, M - Multimodal, S - Separable,
N - Non-Separable, and F - Flat

Name Range Features Equation
StepInt [−5.12, 5.12] U-F-S f(x) = 25 +

∑d
j=1dxje

Step [−100, 100] U-F-S f(x) =
∑d
j=1(bxj + 0.5c)2

Sphere [−100, 100] U-S f(x) =
∑d
j=1 x

2
j

SumSquares [−10, 10] U-S f(x) =
∑d
j=1 jx

2
j

RotatedEllipsoid [−64, 64] U-S f(x) =
∑d
j1=1

∑j1
j=1 x

2
j

Zakharov [−5, 10] U-N f(x) =
∑d
j=1 x

2
j + (

∑d
j=1 0.5jx2

j)2 + (
∑d
j=1 0.5jx2

j)4

Trid [−n2, n2] U-N f(x) =
∑d
j=1(xj − 1)2 −

∑d
j=2 xjxj−1

Rosenbrock [−30, 30] U-N f(x) =
∑d−1
j=1

(
100(xj+1 − x2

j)2 + (xj − 1)2)
Rastrigin [−5.12, 5.12] M-S f(x) =

∑d
j=1

(
x2
j − 10 cos(2πxj) + 10

)
Schwefel [−500, 500] M-S f(x) = 418.9829d−

∑d
j=1−xj sin(

√
|xj |))

Michalewicz [0, π] M-F-S f(x) = −
∑d
j=1 sin(xj)(sin(j x

2
j

π))20)
Griewank [−600, 600] M-N f(x) = 1

4000
∑d
j=1 x

2
j −

∏d
j=1 cos(xj√

j
) + 1

Ackley [−32, 32] M-N f(x) = −20e
(−0.2

√
1
d

∑d

j=1
x2
j
)
− e(1

d

∑d

j=1
cos(2πxj)) + 20 + e

17

(a) StepInt (b) Step (c) Step zoomed-in [−5, 5]

(d) Sphere (e) SumSquares (f) Rotated Ellipsoid

(g) Zakharov (h) Trid (i) Rosenbrok

(j) Rastrigin (k) Schwefel (l) Michalewicz

(m) Griewank
(n) Griewank zoomed-in
[−10, 10]

(o) Ackley

Figura 2.7 – Plot of the used single-objective benchmark functions in a 2-dimensional search space.

18

2.3.2.3 Multi-Objective Benchmark Functions

The multi-objective functions used are listed in Table 2.2 and they include problems with
d-dimensional search spaces with homogeneous similarly to SOOP benchmark problems. Other
shared characteristics between these two types of benchmark problems concern their search space.
The multi-objective benchmark functions used are also unimodal, multimodal, separable, and
non-separable.

Apart from their search space characteristics, these MOOP also have characteristics related to
their PF formed by their PO solutions. In this work, these characteristics will be presented based
on the geometry formed by PF. All MOOP benchmark functions will be presented with two or
three objectives to facilitate the visualization of the geometry. However, some of these problems
can be used with an objective space with m-dimensions.

The used MOOP benchmark problems have the following geometric characteristics in their
PF: (a) linear: the PF forms a hyper-plane in the objective space; (b) concave: the PF forms a
concave curve in the objective space; (c) convex: the PF forms a convex curve in the objective
space; (d) mixed concave and convex: the PF forms a mixture of concave and convex regions; (e)
disconnected: the PF is composed of disconnected regions.

At last, MOOP benchmark functions also suffer from the curse of dimensionality in many
cases, even more than SOOP benchmark functions. Since solutions in large dimensions are mapped
onto multidemensional images.

Figure 2.8 illustrates the geometry for the PF of the benchmark MOOP.

2.4 Conclusions of the Chapter

This chapter briefly introduces the mathematical framework used in optimization problems,
as well as the process to model and encode a real-world problem as an optimization problem. The
terminology presented in this chapter is essential to understand other aspects of this work, for
example, the modeling of an RTNoC task mapping process as an optimization problem in Chapter
3 and the use of search-based meta-heuristics to solve optimization problems in Chapter 4.

This chapter also contextualizes the optimization problems in science and engineering ap-
plication, including presenting examples and benchmark problems to evaluate meta-heuristics
algorithms that will be revisited and used in the experiments in Chapter 7.

19

0

0

0.1

0.2

0.2

f
1
(x)

f 3
(x

)

0.3

0.50.4

0.4

0.4

f
2
(x)

0.3
0.2

0.5

0.10.6
0

(a) DTLZ1

0

0

0.2

0.4

f
1
(x)

f 3
(x

)

0.5

0.6

1

0.8

0.8

f
2
(x)

0.6
0.4

1

0.21
0

(b) DTLZ2

-1

0

0

1

f
1
(x)

f 3
(x

)

0.5

1

2

0.8

f
2
(x)

0.6
0.4

3

0.21
0

(c) DTLZ7

-20 -19 -18 -17 -16 -15 -14

f
1
(x)

-12

-10

-8

-6

-4

-2

0

2

f 2
(x

)

(d) Kursawe

0 0.2 0.4 0.6 0.8 1

f
1
(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f 2
(x

)

(e) ZDT1

0 0.2 0.4 0.6 0.8 1

f
1
(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f 2
(x

)

(f) ZDT2

0 0.2 0.4 0.6 0.8 1

f
1
(x)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

f 2
(x

)

(g) ZDT3

Figura 2.8 – Plot of the used multi-objective benchmark functions pareto frontiers.

20

Tabela 2.2 – MOOP Benchmark functions used. Search Space Features (SS): U - Unimodal, M -
Multimodal, S - Separable, N - Non-Separable, and F - Flat. Objective Space Features (OS): L
- Linear, Ce - Concave, Cx - Convex, Mx - Mixed Concave/Convex, and D - Disconnected.

Name Range SS OS m Equation

DTLZ1 [0, 1] M-N L 3

g(x) = 100((d− 2) +
∑d
i=m(xi − 0.5)2 − cos(20π ∗ (xi − 0.5)))

f1(x) = 0.5x1x2(1 + g(x))
f2(x) = 0.5x1(1− x2)(1 + g(x))
f3(x) = 0.5(1− x1)(1 + g(x))
F (x) = {f1(x), f2(x), f3(x)}

DTLZ2 [0, 1] M-N Ce 3

g(x) =
∑d
i=m(xi − 0.5)2

f1(x) = cos(π2x1) cos(π2x2)(1 + g(x))
f2(x) = cos(π2x1) sin(π2x2)(1 + g(x))

f3(x) = sin(π2x1)(1 + g(x))
F (x) = {f1(x), f2(x), f3(x)}

DTLZ7 [0, 1] M-N Cx 3

g(x) = 1 + 9
22
∑d
i=m xi

h(x) = 3−
∑2
i=1

(
xi

(1+g(x)) (1 + sin(3πxi))
)

f1(x) = x1

f2(x) = x2

f3(x) = (1 + g(x))h(x)
F (x) = {f1(x), f2(x), f3(x)}

Kursawe [−5, 5] U-S Mx-D 2
f1(x) = −10 exp(0.2)

∑d−1
i=1

√
(x2
i + x2

(i+1))

f2(x) =
∑n
i=1 |xi|

0.8 + 5 sin(x3
i)

F (x) = {f1(x), f2(x)}

ZDT1 [−5, 5] U-N Cx 2

g(x) = 1 + 9
d−1

∑d
i=m xi

f1(x) = x1

f2(x) = g(x)(1−
√

x1
g(x))

F (x) = {f1(x), f2(x)}

ZDT2 [−5, 5] U-N Ce 2

g(x) = 1 + 9
d−1

∑d
i=m xi

f1(x) = x1

f2(x) = g(x)
(

1−
(

x1
g(x)

)2
)

F (x) = {f1(x), f2(x)}

ZDT3 [0, 1] M-N Cx-D 2

g(x) = 1 + 9
d−1

∑d
i=m xi

f1(x) = x1

f2(x) = g(x)
F (x) = {f1(x), f2(x)}

21

3 REAL-TIME NETWORK-ON-A-CHIP BASED
MPSOC

This chapter introduces SoCs, NoCs, and RTSs.
Information present here contextualizes the task
mapping of an RTA onto an MPSoC as an op-
timization problem. Section 3.1 presents SoCs.
Section 3.2 presents communication architectures
used in SoCs. Section 3.3 introduces NoCs and
their components and possible design choices to
then, Section 3.4 to define RTNoC as a special set
of NoCs used in this work. Section 3.7 presents
RTSs. Section 3.6 presents the framework used
to model multiprocessor RTS, including concepts
about scheduling algorithms. Section 3.7 models
an RTNoC as a particular case of multiprocessor
RTS and presents analytical methods to evaluate
such a system. Section 3.8 presents the task map-
ping as an optimization problem. Finally, Sec-
tion 3.9 concludes the chapter and contextualize
it with other parts of the work.

3.1 System-on-a-Chip (SoC)

The following classes can categorize SoCs, depending on their application:

• General-purpose on-chip multiprocessors: they are high-performance chips designed to sup-
port general-purpose software applications. Example, modern CPUs with multiple proces-
sors inside of the same silicon die generally fall into this category.

• Application-specific SoCs: they are dedicated chips for a single very specific application with
specialized architectures and components. They generally are programmable, but all details
of their software applications are known a priori.

• SoC platforms: they are application-specific chips for a family of applications in a parti-
cular domain. Their design is versatile to attend multiple applications and could be used in
different families of embedded devices and end up in a large volume of products.

This work is intended to be used in the latter class of SoCs, more specifically, in Multi-/Many-
Processors SoC platforms.

22

3.1.1 Multi-/Many- Processors System-on-a-Chip (MPSoC)

Multi-/Many-Processors System-on-a-Chip (MPSoC) [30] [31] is a type of SoC that is composed
of tens or even hundreds of processor cores inside of a single chip. Systems of this type are ideal for
high-processor computing applications, being capable of tackling considerable complex scientific
and engineering problems using massive parallelism approaches. However, in the past decade,
MPSoC has been introduced into embedded applications by companies due to the increase of
transistor count in ICs and the rise of processing demanding applications for embedded platforms
such as, for example, image and video processing in security devices, addressed to automotive
and aviation critical applications, robotics, etc. This trending of high demanding applications
in embedded devices seems to be in the market to stay and keep increasing the importance of
MPSoCs. An example of application in which MPSoCs are essential for the near future is in the
field of autonomous vehicles and driver assistance systems [32].

3.2 Communication Architectures

The on-chip communication architecture is the subsystem responsible for connecting all com-
ponents inside of the chip [10] [33]. As the number of on-chip Processing Element (PE) increases,
the importance of communication architecture grows along. Because in an SoC platform with do-
zens of components, such as MPSoCs, the complexity of the on-chip communication architecture
causes the increase of delays and power consumption.

Modern SoCs has in its disposal two main paradigms to deal with the design of their commu-
nication architectures: (a) buses and (b) network-on-a-chip.

3.2.1 Buses

A bus is an on-chip communication that consists of a shared channel in which components
inside of the SoC exchange their data. There are two main types for Buses:

• Single Shared Bus: it is the most straightforward approach, where a single bus channel
connects all components. Only one component (a master) may transmit data in a given
time, while all the other receives its data (slaves).

• Hierarchical Bus: it has multiple shared buses connected hierarchically through bridges. This
approach permits the increase of bandwidth of the connection between high-performance
components that constantly transmit data between them and use smaller buses to connect
peripheral components.

The advantages of bus-based on SoCs are: (a) their simplicity, (b) substantial standardization
inside of the industry, and (c) the intrinsic broadcast nature for the data messages transmission.

While the main disadvantage is that since all components share the same “communication
channel”, the global arbitration system grows more complex and requiring more power with longer

23

on-chip wires as the number of components increases inside of the SoC. It makes its communication
bandwidth not scale together with the number of components of the system because there is a
single channel where only one component may transmit data in a given time. Figure 3.1 illustrates
a system that uses the ARM Advanced Microcontroller Bus Architecture (AMBA). AMBA is an
example of hierarchical bus communication architecture widely used in the industry.

Timer

High-bandwidth
on-chip RAM

B
R
I
D
G
E

High-performance
ARM processor

High-bandwidth
Memory Interface

AHB APB

PIO

UART

Keypad

AHB to APB Bridge

DMA bus
master

Figura 3.1 – Illustration of an AMBA communication architecture extracted from [3], where AHB
stands for Advanced High-performance Bus for fast components, and APB stands for Advanced
Peripheral Bus for peripheral and low-power components.

3.2.2 Network-on-a-Chip

Network-on-a-Chip (NoC) [8] [11] is an on-chip communication paradigm inspired by compu-
ting networks where the internal SoC components connect each other using routers, which are in
turn connected in a myriad of topological approaches. Since routers connect all components, the
arbitration decisions are distributed inside of the NoC, allowing for parallelism between the com-
munication components and increasing the scalability of the system as the number of components
increase [34]. Section 3.3 will further provide concepts and information related to NoCs.

3.3 Network-on-a-Chip (NoC)

3.3.1 Components

An NoC communication architecture is structured as a series of interconnected tiles with each
tile containing a group of the following components: (a) links, (b) PEs, (c) Network Interfaces
(NIs), and (d) routers.

Figure 3.2 illustrates an example of a simple NoC with tiles in green containing unidirectional
links as black arrows, routers as blue rectangles, PEs as yellow squares, and NIs attached to PEs
connecting routers as red rectangles.

24

ROUTER ROUTER

PE
NI

PE
NI

ROUTER ROUTER

PE
NI

PE
NI

Figura 3.2 – Representation of a mesh-grid 2× 2 NoC.

3.3.1.1 Links

Links are the physical wire connection between routers. It is possible to classify links properties
under two lenses: (a) low-level abstraction parameters such as the type of repeaters used to
amplify the signal, as well as (b) high-level abstraction such as the width of bits for the links when
transmitting data.

3.3.1.2 Processing Elements (PE)

Processing Elements (PEs) are the intellectual property components that are modules of the
system. Depending on the system, these elements can be processor cores, digital signal processors,
graphical processor units, and application-specific modules. For the NoC, PEs are components
that produce and consume messages regardless of the NoC design. Since an SoC based on an NoC
is modularized, a PE implementation is independent of the communication architecture increasing
the re-usability of PEs designs inside of different NoCs.

In MPSoC, PEs connected to the network is in its majority processor cores. In this work, a PE
is a processor core connected to a local memory that sends and receives data from other processor
cores that has the same properties. In other words, different PEs hold the same processing
capabilities and local memory sizes.

3.3.1.3 Network-Interface (NI)

Network Interfaces (NIs) are the components responsible for wrapping the data transmitted
independently of the type of PE used in a format suitable for NoC design choices, in terms of
communication protocols. One of the main attributions of a NI is to provide a layer of hardware
abstraction that separates the communication and processing aspects of the system. The goal for
NI use is that for a PE inside of an SoC, the NoC as a communication architecture is invisible.
NIs are responsible, for example, to packetize and un-packetize data, depending on the switching
policy used and implement end-to-end error correction of the messages.

25

3.3.1.4 Routers

Routers are the components responsible for controlling the flux of data transiting inside of the
NoC. Routers implement communication protocols, such as the arbitration policy when messages
compete for shared resources (links), routing strategies to decide the path in which a message
should transverse through the network, and switching strategy.

Figure 3.3 shows a representation of a router architecture for an NoC that have: (a) a packet
switching strategy such as the wormhole switching, (b) virtual channels in the buffers of input
links, and (c) credit-based flow control.

Figura 3.3 – Illustration of an example of a router architecture for a packet switching NoC with
virtual channels. (Image extracted from [4]).

3.3.2 Connection Topology

Its the topological organization in which the tiles are connected and organized inside of the
NoC. There are two classes of NoC topologies: (a) direct and (b) indirect networks. In direct
networks, each router is connected to a PE and then connected directly to other neighboring
routers. The advantage of this type topology is that, when implemented in a regular fashion,
such as a mesh-grid or a torus, it is capable of scalability of the system bandwidth because as the
number of PE grows the number of communication architecture components grows as well. Indirect
networks have routers that do not have a single PE connected to it. Instead, it may connect a
set of PEs. Compared to direct networks, this type of topology sacrifices their scalability and
performance so as reducing the area used by on-chip communication components.

Figure 3.4 displays examples of NoC with components organized in different topologies where
routers are gray squares, and white squares represent PEs. Figure 3.4a shows a direct network
mesh-grid topology, Fig. 3.4c displays a direct network using a torus topology, Fig. 3.4b shows
a direct network with ring topology, and, last, Fig. 3.4d shows an indirect network with fat-tree
topology.

26

(a) Mesh-grid topology
(b) Ring topology

(c) Torus topology

(d) Fat-tree topology

Figura 3.4 – Illustration of multiple NoC topological organizations, where gray squares represent
routers and white squares represent PEs. These images where adapted from [1].

This work focus on NoCs with 2D mesh-grid topology [35], as shown in Fig. 3.4a, due to the
following characteristics present in this type of topology: (a) it is a direct and regular network that
scales with the number of PEs connected in the NoC; (b) It has short links with the same length
that provide similar communication latencies for any link in the network resulting in predictability
for the system.

3.3.3 Routing Algorithm

The routing algorithm decides the route composed by links and routers in which a message
travels inside of the network from a source PE to a destination one. Routers are the NoC compo-
nents responsible for the implementation of the routing algorithm. There are two types of routing
algorithms: (a) deterministic and (b) adaptive.

3.3.3.1 Deterministic Routing

In deterministic routing algorithms, any message with the same source and destination PEs
always uses the same route for their transmission. The advantages of deterministic algorithms
are their predictability, that makes it ideal for real-time systems, and simplicity, that reduces the
logic necessary and the router size, and, finally, the guarantee of ordering of delivery for data in
a message.

27

3.3.3.2 Adaptive Routing

In adaptive routing algorithms, the router uses information about the network conditions to
adapt the path in which messages use to traffic inside of the NoC in a way that any two messages
sharing the same source and destination PE may have different routes. Adaptive algorithms are
capable of distributing the use of NoC components better. However, the problems with this
approach for routing is their greater complexity causing large routers and lesser predictability
than its deterministic counterpart.

Figure 3.5 presents the transmission of a message being transmitted between PEs A and B in a
mesh-grid topology under two routing algorithms. Fig. 3.5a shows a deterministic XY-routing in
which a message is first transmitted horizontally and then vertically. Meanwhile, Fig. 3.5b shows
an example of an adaptive routing algorithm in which a message can be re-routed due to possible
problems, for example, faulty components in a route or overuse of some links in the network.

(a) Deterministic XY-algorithm (b) Adaptive routing algorithm

Figura 3.5 – Illustration of a message transmission using two types of routing algorithm.

3.3.4 Switching Strategies

The switching strategy [1] defines how data is transmitted inside of the network by determining
the granularity of data transmission and resource sharing. Switching strategies can be sub-divided
into two types: (a) circuit and (b) packet switching.

In circuit switching, a route composed of links and routers have all of these components allo-
cated to transmit a single message per time. Once that message has finished being transmitted,
that route, and their links and routers, is de-allocated, and then another message can allocate that
path or a link or router that before formed the de-allocated path. The advantage of this type of
switching strategy is that it guarantees low latency communication by preventing other messages
to use the same resources. Nonetheless, circuit switching strategies do not scale with the number
of PE because there is a significant addition of time necessary to allocate a route as the number

28

of messages contention inside of the system grows.

In packet switching strategies, messages are packetized by a NI and divided into smaller trans-
mission elements called flits, named as flow control units. These flits are then transmitted through
the NoC, and, once the message has all its data arrived into its destination, it is de-packetized by
the destination’s NI. Another characteristic of this type of switching strategy is that a message
is transmitted through the reservation of individual links to transmit a single flit as the message
advances.

For this reason, multiple messages can be transmitted at the same time, even when they have
routes that share links. Contention resolution is only necessary when two or more messages try to
reserve the same link. In this case, a message waits for links contention to be resolved when other
messages that are blocking it finish their transmissions. During this waiting period, this message
is held in buffers present in the routers in the path defined by the routing algorithm. The size of a
flit is typically the width in bits for the links, i.e., the number of bits transmitted per clock cycle.
Figure 3.6 illustrates the division of a data message into packets then flits. For simplicity, in
this work, a message is considered to be formed by a single packet.

Message

Packet

Header Body Body Tail
Flit Flit Flit Flit

Figura 3.6 – Illustration of the typical packetization of a data message inside of a NoC (adapted
from [1]).

There are three main types of packet switching strategies: (a) store-and-forward, (b) virtual
cut through, and (c) wormhole.

3.3.4.1 Store-and-Forward Switching

In Store-and-Forward switching strategy, a message has its flits transmitted from a router to
another only if the receiving router has enough buffer space to store the entire message. Beyond
that, a router only forwards a message when it has received all of its flits. For this reason, buffer
sizes inside of routers in NoCs that implement store-and-forward switching has to be at least of
the size of a message packet. Therefore, this packet switching strategy needs routers with large
buffer sizes.

3.3.4.2 Virtual-Cut-Through Switching

Routers that implement virtual-cut-through switching strategies have less latency when trans-
ferring data than routers with store-and-forward. It is possible since a router can transmit flits

29

from a message as soon as it has received it. However, virtual-cut-through switching strategy also
requires that receiver routers have to have enough space to store the whole message. Otherwise,
no flit is transmitted. This characteristic causes large buffer requirements.

3.3.4.3 Wormhole Switching

Wormhole switching strategy reduces the buffer requirement since a router can transmit a flit
as soon as it has received the flit even though the receiver router can only store a single flit for
that message. For this reason, a message can have its flits buffered by multiple routers since they
are transmitted in a pipeline fashion.

Wormhole switching causes higher congestion than store-and-forward and virtual-cut-through
strategies that results in blocking of links such as deadlocks and livelocks. A deadlock happens
when a message is interrupted and never reaches its destination due to a cyclic dependency, which
causes the message to be blocked for an indefinite amount of time waiting for an event that may
never happen. Similarly, livelock happens when a message may never reach its destination but
not for being blocked but instead for being transmitted around the same group of routers. This
type of blockage scenarios can be avoided using routing algorithms that do not allow cycles such
as, for example, the XY-algorithm.

Figure 3.7 shows examples representing buffers being used across different routers when trans-
mitting a message formed by a set of flits. In these representations, each buffer router is composed
of four flit slots, and each message is formed of four flits represented as purple squares. Each line
represents a stage of the message being transmitted. In the first line, the message is stored in
the first router highlighted in red. Black arrows represent a flit transmission between two router
buffers.

Figure 3.7a shows the transmission under store-and-forward switching, and in this case, a
message is only transmitted when the next buffer has enough space for the message and the
current router has the whole message stored. Figure 3.7b shows the transmission of a message
using virtual-cut-through switching, and in this case, the message is only transmitted when the
next buffer has enough space for the whole message. It is possible to see that the message cannot
be sent to the last router because its buffer does not have space for the whole message. Lastly,
Fig 3.7c shows the transmission of a message using a wormhole switching strategy where the
transmission of flits is done regardless if the next buffer has enough space for the whole message.

30

(a) Store-and-Forward Switching (b) Virtual-Cut-Through Switching

(c) Wormhole Switching

Figura 3.7 – Illustration of a message transmission between routers buffers with different packet
switching strategies.

3.3.5 Arbitration Policies

A router implements an arbitration policy to solve contention when multiple messages try to
use the same link at the same time, by deciding which message is sent and which has to wait to
be transmitted. In a router architecture such as the one present in Fig.3.3, an arbitration logic
decides which input link is connected to an output link by the central crossover. Two examples
of arbitration policies are the round-robin and priority-based arbitration policy.

3.3.5.1 Round-Robin Arbitration

The round-robin arbitration, in a contentious scenario, selects in a rotation fashion which
message buffered in different input links should be transmitted. This arbitration gives equal op-
portunities for different messages mitigating starvation problems. However, it has no predictability
of which message should be sent.

3.3.5.2 Priority-based Arbitration

In a router that uses a priority-based arbitration, messages have information about their
level of importance (priority) and, in a case of contention, the input link storing a message with
higher priority is selected over a link that is storing a lower priority message. Priority preemptive
arbitration is suitable for NoC-based SoCs used in real-time applications due to its predictability
when solving contentious scenarios.

31

3.3.6 Virtual Channels

In this work, the chosen flow control is the use of Virtual Channels (VCs) [5] [8]. Each input
link buffer is sub-divided in different communication channels, and for this reason, it is capable of
storing flits from multiple messages. By using VCs, when there is a contention, blocked messages
are capable of keeping being transmitted.

The analogy used by Dally [5] is to compare each link buffer as a road and VCs are the
equivalents of using lanes. A link without a VC is the equivalent of a single lane road, and, in
this case, if a message is blocked, all following messages are blocked. The same link with VCs is
analogous to multiple lanes in the road. If a message is blocked, other messages that are using
other "lanes"are capable of keeping moving.

The advantages of using VCs are: (a) it increases the throughput of data in the network by
mitigating link idle time; (b) it reduces deadlock scenarios; (c) it allows message preemption by
blocking its transmission and holding it in its virtual channel;

Figure 3.8 illustrates example cases of blockages due to contention between two messages using
input links without and with VCs, respectively. In these examples, NoCs have priority-based
arbitration policy, with message A having a higher priority-level than message B. In Fig. 3.8a,
message A is blocked down its route in router 4. Since message B uses links busy with message
A, message B will only continue its transmission when message A finishes its transmission. In
Fig. 3.8b, the same message A is blocked. However, since the input links have VCs, message B is
capable of keep being transmitted during the interval in which message A is blocked.

(a) Transmission of messages A and B in scenario
without VCs.

(b) Transmission of messages A and B in scenario with
VCs.

Figura 3.8 – Illustration of messages with scenarios with and without VCs (adapted from [5]).

32

3.4 Real-Time Network-on-a-Chip

Real-Time Networks-on-a-Chip (RTNoC) [4] are NoC-based SoC designs that offer architec-
tural support to guarantee Quality-of-Service (QoS) for message transmissions. QoS is essential
for messages to comply with time constraints imposed by real-time embedded devices application.
In other words, an RTNoC is an SoC-based real-time system that has an NoC as its on-chip
communication architecture.

This work focus is over the use of an RTNoC-based MPSoC platform in a real-time setting. The
goal is for this platform to be capable of meeting all of the time constraints imposed by possible
real-time application considering both their tasks processing as well as the messages transmitted
by these tasks.

An RTNoC considered in this work has the following characteristics, unless stated otherwise:
(a) it uses wormhole switching strategy; (b) it uses a 2D mesh-grid topology; (c) it uses an XY-
routing algorithm that is deterministic and predictable; (c) it uses priority-based arbitration; (d)
it uses virtual channels [5] that together with priority-based arbitration allows preemption of a
message transmission. An example of an NoC architecture design that fits these characteristics in
its design is present in [36].

3.5 Real-Time Systems

A Real-Time System (RTS) [6] [37] [38] is a computing system in which its correctness depends
upon both its operations returning logically correct results as well as them fulfilling their time
restrictions. These time restrictions, namely deadlines, are generally inherited from the dynamic
of the desired application of an RTS. For example, in automotive applications, possible PEs have
short time restrictions to process periodic routines related to engine management and the time
constraints of these routines are directly dependent on the mechanical system. In this example,
if a routine result is logically wrong, it may have catastrophic results permanently damaging the
vehicle mechanically or even threatening the life of its occupants. The same outcome may happen
if a routine result does not comply with its timing restrictions.

RTS can be classified based on the consequences when tasks missing deadlines and their results
usability after the deadline miss. These three groups are the following:

• Hard RTS: It is composed of RTSs where a task missing its deadline produces catastrophic
failure. For this reason, no task finishing to execute after its deadline is allowed. An example
is the critical system detection in industrial applications. For instance, if a pressure sensor
malfunction in a boiler in a factory, the lives of people working in this factory may be in
danger.

• Firm RTS: It is composed of RTSs where a task missing its deadline renders its result
useless, but it is not damaging for the system as a whole. For this reason, few tasks rarely
missing their deadlines are allowed. An example is the industrial automatic quality control

33

of production line on a conveyor belt. If there is a deadline miss, a possible failed product has
passed to the next production stage, and the processing results are useless. The consequence
of a deadline miss is a failure of the quality control system. However, the system can keep
running.

• Soft RTS: It is composed of RTSs where a task missing its deadline deteriorates the system
performance, but its result is still useful for the system. For this reason, frequent tasks
missing their deadlines are allowed. An example is a system-user interaction applications
such as graphical user interfaces. If there is a deadline miss, the user perceives the quality
degradation but waits for the process to finish.

Figure 3.9 has an illustration of the degradation of the usefulness of the results of an operation
in different types of systems as the lateness of the results increases. In this figure, the time unit
used is the task deadline (D). The concepts of tasks and deadlines are further explored in Section
3.6.1

0 D 2 D 3 D 4 D 5 D

Result Lateness (Deadlines)

0

10

20

30

40

50

60

70

80

90

100

R
e

s
u

lt
 U

s
e

fu
ln

e
s
s
 (

%
)

General Purpose System

Soft RTS

Hard/Firm RTS

Figura 3.9 – Illustration of the the degradation of a task result usefulness with time after its
deadline has passed.

Due to their critical applications, an RTS needs to support the following features:

• Timeliness: An RTS results have to be correct in value as well as in delivery time.

• Efficiency: An RTS is normally part of an embedded system, and, for this reason, there
are other constraints in terms of power consumption, memory, and computational resources.
In these systems, the efficient usage of the available resources is essential for its correct
application.

• Robustness: An RTS needs to be functional even under overloaded conditions. In this
manner, its design predicts and cover even the worst usage scenario to ensure maximum
robustness.

• Fault Tolerance: An RTS should be tolerant of possible software or hardware failures and
should handle these possibilities in a way to prevent the system from being in a complete

34

halt.

• Maintainability: An RTS must be quick to repair and maintain to ensure that it is always
online and working. Generally, RTSs achieves this feature by having a modular architec-
ture in which a possible repair or substitution of a component of the system can be done
independently of other components.

• Predictability: An RTS needs to be predictable in order to verify whether it is capable
of meeting its timing constraints under any scenario. If not, the RTS has to be capable to
notify its failure to be then handled by other modules/parts of the system.

3.6 Multiprocessor Real-Time System Modeling and Scheduling
Algorithms

In this section, the author presents a brief introduction of the process to model a real-time
application as a set of tasks for a general multiprocessors real-time system. It also includes
concepts, definitions, and examples of scheduling algorithms. These topics are essential to aid the
reader to understand the modeling process of an RTNoC-based MPSoC as an RTS as well as the
theory involved for the analytic scheduling algorithm present in Section 3.7.

3.6.1 Real-Time Application Modeling

A Real-Time Application (RTA) can be defined as a set of n concurrent system tasks repre-
sented as Γ = {τ1, ..., τn}. In [6], a task is defined as follows: “Task is a computation in which
the operations are executed by the processor one at a time. A task may consist of a sequence of
identical jobs, also called instances. The word process is often used as a synonym”.

In this work, a given task τ from an RTA follows the same definition by being considered as
an abstraction of a set of programming instructions that can be dispatched to be executed by a
processor core. Another important definition is that of a job. A job is a single instance of a task,
i.e., a task emits a job to be executed by a processor.

In RTS, a task model can be divided into two types: (a) aperiodic tasks that emit jobs only
once or in irregular intervals; and (b) periodic tasks that emit jobs on regular well-defined intervals.
In this work, all tasks are periodic, and the following timing characteristics can define each ith
task τi of an RTA Γ:

• Cost: Represents the Worst-Case Execution Time (WCET) of a task, The maximum time
for a processor core to execute a job emitted from task τi. It is represented as Ci.

• Period: Represents the inter-arrival period between emitted jobs of a task τi. It is repre-
sented as Ti.

• Deadline: Represents the relative deadline or the bound of the time interval in which a job
has to finish to process given its arrival time. It is represented as Di.

35

• Jitter: Represents the possible difference between the expected arrival time and the real
starting time of a task.

• Priority: Represents the priority level of the task that corresponds to its criticality. It is
represented as Pi. In this work, the convention used is the smaller the value of Pi,
the greater the priority level of a task.

• Arrival Time: Represents the activation time in which a task arrives into the processing
queue to be executed. It is represented as ai.

• Finishing Time: Represents the time in which a job emitted by the task τi is completed
to be executed by a processor core. It is represented as ei.

• Response Time: Represents the total time interval between the arrival of a task into
the processor queue until its completion, including the WCET and possible interruptions
suffered by tasks with larger priorities. It is represented as Ri = ei − ai. During the worst-
case scenario, Ri represents the Worst-Case Response Time (WCRT).

• Lateness: Represents the time interval of the difference between the deadline and the
finishing time of the task. It describes how late a task has finished executing. It is represented
as li = Ri −Di.

• Slack Time: Also known as laxation, it represents the time interval of the difference between
the finishing time of the task and its deadline. It describes the remaining time that a task
has to finish to process and still respect its deadline. It is represented as si = Di −Ri.

Notice that in this work, the worst-case scenario represents the critical instant in time in
which all tasks emit jobs that concurrently compete for the RTS resources. From a designer
point-of-view, this moment represents the case in which the system suffers the most degradation
of their quality, and if it is capable of performing well under the worst-case scenario, it is capable
of achieving even better results under other scenarios.

Depending on the platform on use, processing cores may allow interruption of an executing task
returning them to the queue of processing tasks. This process is called preemption. Preemption
is an essential feature for RTS since it allows critical tasks to be processed before less important
ones.

Figure 3.10 illustrates the execution process of multiple tasks in a processor core with available
mechanisms for preemption including the steps for (a) activation of a task, (b) scheduling repre-
senting decision of the order of tasks to be processed, (c) dispatching a task to be processed, (d)
preemption of a task from execution back to the queue, and (e) termination of a task execution.

Figure 3.11 displays an example of the processing timeline for three tasks processed by a single
processor. In this example, an upward arrow represents the arrival time of a task, and a downward
arrow represents a task deadline. The time interval that a task is executed is colored in gray. The
time interval that a task suffers preemption due to higher priority tasks interruption is represented

36

Figura 3.10 – Representation of a processing queue in a processing core that enable preemption.
Source [6].

0 2 4 6 8 10 12 14 16

τ1

τ2

τ3

Figura 3.11 – Illustration of a timeline for instances of three tasks in a processing core.

as a cross-hatching pattern. Lastly, if a task does not comply with its deadline, the lateness is
colored in red.

In this example, three tasks τ1, τ2, and τ3 are activated an arrives into the processor scheduling
queue. These tasks indices dictate their priority levels, in this way, P1 < P2 < P3, so τ1 is the
most critical task, and τ3 is the least critical one. Since τ1 has greater priority, τ1 preempts task
τ2 and τ3 interrupting them during its execution. As soon as τ1 finishes to be executed, τ2 starts
its execution. Finally, when τ2 ends its execution, task τ3 starts to be processed, and, due to its
interruption by τ1 and τ2, its execution finishes after its deadline (represented as an downward
arrow). The period in which τ3 is processing while late is represented in red.

3.6.2 Scheduling Problems and Algorithms

As present in the surveys [37] and [39], real-time scheduling problems can be divided into two
main types: (a) Allocation: The definition for each processor in the system of a subset of tasks
in the RTA that it should execute; (b) Priority Assignment: The process to assign priority
levels for the tasks of an RTA.

A scheduling algorithm is a method to solve scheduling problems, and they can be subdivided
into the following classes:

• Preemptive: For systems that allow tasks to be interrupted during their execution.

• Non-Preemptive: For systems that once a task starts, it has to execute until the end.

37

• Static: For systems where the scheduling decisions are made with static parameters that
do not change during its use.

• Dynamic: For systems where the scheduling decisions are made with information that
changes during its use.

• Offline: For systems where the scheduling decisions are made and saved before the system
go online.

• Online: For systems where the scheduling decisions are made during the system run-time.

• No-Migration: For systems where tasks are only executed by the processor assigned to
them. Also known as partitioned scheduling algorithms.

• Migration: For a system that allows a task to have their jobs to be executed by different
processors than the one assigned for it. Another possibility is job migration, for systems
that allow a job to start its execution in a processor and then migrate to another one. Both
Migration classes are also known as global.

• Fixed-Priority: For systems that do not allow for jobs to have a different priority than
their tasks.

• Dynamic-Priority: For systems that allow for jobs to have a different priority than their
source tasks.

Other important definitions related to scheduling algorithms are whether they or their results
are: (a) feasible, (b) schedulable, (c) sufficient, (d) necessary, and (e) optimal.

An RTA is deemed feasible for an RTS if there is a scheduling algorithm that can schedule
all possible sequences of jobs emitted by its tasks are processed without violating their deadlines.
Namely, all tasks response times are bounded by their deadlines. Other possible restrictions that
increase the difficulty of the existence of feasible solutions are: (a) tasks with a specific order of
precedence; and (b) resource constraints such as the use of memory and I/O components;

An RTA is deemed schedulable given a scheduling algorithm result if all of its composing
tasks respect their deadlines under their WCRTs. A schedulability analysis test is used to check
if an RTA is schedulable. This test is defined as the process to check whether a solution for a
scheduling has all its tasks attending their respective deadlines with a simple true/false answer. A
schedulability test is deemed sufficient for a schedulability algorithm being applied on an RTS,
if all RTAs are deemed schedulable using a sufficient test, they are de-facto schedulable. In the
same fashion, a test is deemed necessary, if all RTA that is deemed unschedulable are indeed
unschedulable. A schedulability test that is both sufficient and necessary is exact.

Lastly, a schedulability algorithm is deemed optimal, if it can schedule all RTA for a particular
model of tasks that are feasible on RTS.

In this work, the focus is over preemptive, static, offline, partitioned with fixed-priority
scheduling algorithms. The advantages and disadvantages of such methods are:

38

1. Static and Offline

• Advantage: It allows the use of complex and computing intensive approaches to solve
the scheduling problem.

• Disadvantage: It lacks flexibility for possible changes in the system after the schedu-
ling decisions are made.

2. Preemptive

• Advantage: As previously mentioned, It allows the use of an essential feature for RTS.

• Disadvantage: It increases system complexity.

3. Partitioned

• Advantage: It allows the use of real-time scheduling algorithms for single-processor
systems after an allocation process has been done. It also permits the use of local
processing queue per processor instead of a large global one for the whole system that
needs a more complex logic to control and manage all RTA tasks.

• Disadvantage: Task allocation problem for partitioned approaches is similar to the
bin packing problem that is a well-known NP-hard problem [13].

3.6.3 Priority Assignment

As previously mentioned, the priority assignment problem is the process to define priority
levels for the tasks of an RTA. Since in this work, the tasks used are periodic, and the scheduling
algorithms used have fixed-priority, it is crucial to present the well-established priority assignment
algorithm called Rate Monotonic Scheduling.

3.6.3.1 Rate Monotonic Priority Assignment Policy

Rate Monotonic (RM) priority policy algorithm assign priority levels for the tasks in an RTA
given their inter-arrival periods. Tasks with higher activation rates, i.e., shorter periods, are
treated as more critical than those with lower activation rates. For example, three tasks τ1, τ2,
and τ3 with their respective periods following T1 < T2 < T3. Under RM scheduling their assigned
priorities would be P1 < P2 < P3. It is worth to highlight that, in this work, the lower the
priority-level numeric value, the more critical is the task. So a task j with Pj = 1 is the most
critical task in the application.

The seminal work of Liu and Layland [40] proofs that RM scheduling is the optimal priority
assignment policy in the context of a single processor running an RTA, with periodic tasks with
periods smaller or equal than their deadlines. This proof is revisited in [41]. Note that since this
work focus on partitioned scheduling algorithm, it is possible to use RM priority assignment to
define the priority levels for the tasks, because after the allocation of tasks into processor cores
for individual tasks the system can be reduced as a single processor.

39

Figure 3.12 presents a simple example illustrating a processor timeline for three tasks τ1, τ2,
and τ3 during the worst-case scenario. In this example all three tasks have their deadlines and
periods with equal value, i.e., Di = Ti, with i = 1, ..., 3. For this reason, the arrows that represent
the arrival and deadline times merge, forming upward and downward arrows. In the first case (Fig.
3.12a), an RM policy is used to define the tasks priorities, and all three tasks are schedulable.
In the second case (Fig. 3.12b), an arbitrary policy was used to set tasks priorities and, as a
consequence, it causes τ1 first instance to miss its deadline and then compete with its second
instance, therefore, becoming an unschedulable task under the worst-case scenario.

0 2 4 6 8 10

τ1

τ2

τ3

(a) Illustration of timelines for instances of tasks with their priorities assigned with RM where P1 < P2 < P3.

0 2 4 6 8 10

τ3

τ1

τ2

(b) Illustration of timelines for instances of tasks with their priorities assigned where P3 < P1 < P2.

Figura 3.12 – Illustration of timelines for instances of three tasks (τ1, τ2 and τ3) in a processing
core. Upward arrows represents the arrival time and the interval between them presents the period
Tj for τj , and downward arrows represents the deadline time since the last arrival

3.6.4 Task Assignment

As previously mentioned, the task assignment problem is the allocation of subsets of an RTA
to be executed exclusively in different processor cores of a multiprocessor system. In this work,
the schedulability tests used are defined based on the task assignment problem in a way to assess
whether a scheduling algorithm result is schedulable or not.

The author believes that it is vital for the reader to understand two essential schedulability
analysis for multiprocessor systems that are extended for the problem of schedulability analysis
for RTNoC-based MPSoC. These two analyses are (a) processor utilization factor test, and (b)

40

response-time analysis.

3.6.4.1 Schedulability Analysis - Processor Utilization Factor

The schedulability analysis, based on processor utilization factor, as established by [40], uses
the utilization factor of each task to define whether the processor cores are being used under its
maximum capacity. The utilization factor of a processor core is the fraction of total processing
time spent executing tasks. So for example, if a processor core has a utilization factor Uπ = 0.8, it
means that this processor spends 80% of its time executing tasks and 20% idle. The same goes if a
processor core has a utilization factor Uπ = 1.5, it means that this processor is over its maximum
capacity of 100% of time executing tasks.

The utilization factor for a processor core is the sum of the utilization factors for the tasks
mapped into that processor. For example, given a set map(π)−1 of tasks mapped into a processor
π, the utilization factor for this processor Uπ to be under its maximum capability has to follow:

Uπ =
∑

τj∈map(π)−1

Cj
Tj
≤ 1, (3.1)

where map−1(π) represents the set of tasks mapped to a processor π, Cj and Tj are, respectively,
the WCET and period for task τj .

This schedulability analysis is simple to perform. However, this test is necessary, but not
sufficient. In other words, if a set of tasks into a processor has the sum of their utilization factor
greater than 1, it means that the processor core is over its maximum capacity and some tasks do
not respect their deadlines. However, if this sum of utilization factors is less than 1, it does not
guarantee that all tasks respect their deadlines.

Figure 3.13 illustrate examples of two tasks mapped into the same processor core. In the first
case (Fig. 3.13a), task τ1 has WCET C1 = 12, and equal periods and deadlines Ti = Di = 16,
and task τ2 has C2 = 6 and period and deadline Ti = Di = 16. In this case, the sum of utilization
factors Uπ = 12

16 + 6
16 = 1.125 is over 1 resulting in one of them being unschedulable. In the second

case (Fig. 3.13b), task τ1 has WCET C1 = 6, and equal periods and deadlines Ti = Di = 16,
and task τ2 has C2 = 3 and period and deadline Ti = Di = 8. In this case, the sum of utilization
factors Uπ = 6

16 + 3
8 = 0.75, and even though the sum of utilization factor is below 1, due to the

priority policy, task τ2 is unschedulable.

41

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

(a) Illustration of a timeline for a set of tasks in a processor with utilization factor Uπ = 12
16 + 6

16 = 1.125 > 1.

0 2 4 6 8 10 12 14 16

τ1

τ2

(b) Illustration of timeline for a set of tasks in a processor with utilization factor Uπ = 6
16 + 3

8 = 0.75 < 1.

Figura 3.13 – Illustration of timelines for instances of two tasks (τ1 and τ2) in a processing core.
Upward arrows represents the arrival time and the interval between them presents the period Tj
for τj , and downward arrows represents the deadline time since the last arrival

This schedulability test can be extended for all tasks in the RTA [42], to asses at least how
many m processor cores are necessary. Given that the sum of utilization factor of tasks in an RTA
Γ is UΓ, the number of processor cores in the used RTS has to be at least greater than UΓ as
expressed in:

UΓ =
∑
τi∈Γ

Ci
Ti
≤ m, (3.2)

where Γ is the set of tasks in an RTA, UΓ are the utilization factor for the application representing
the number of required processors, m is the number of processor cores, Ci is the WCET of the ith
task in RTA, and Ti is the period of task τi.

The utilization factor (Γ) schedulability test for an RTA executing in a multiple processor sys-
tem is the test whether all processors are running under their maximum capacity. The complexity
of this method is polynomial with big-O notation O(nm), where n is the number of tasks that
composes the RTA used, and m is the number of processor cores in the multiple processors RTS.

3.6.4.2 Schedulability Analysis - Response Time Analysis

The schedulability analysis, based on response time, under the worst-case scenario, as esta-
blished by [43], uses the WCRT of each task Ri to check whether it respects these tasks time

42

constraints Di.
Ri = Ci + Ii, (3.3)

where Ii is the interference term due to higher priority tasks.

If a task τj is mapped into the same processor π that a task τi and has greater priority level, i.e.
Pj < Pi, this task τj interferes τi inside of its response time interval [0, Ri] and this interference
time Ii,j is expressed as:

Ii,j =
⌈
Ri
Tj

⌉
Cj , (3.4)

where Ri is the WCRT for task i, Tj is the period for task j, and Cj is the WCET for task τj .

The interference time Ii suffered by a task τi due to all higher priority tasks running in the
same processor preempting this task is calculated using equation:

Ii =
∑

τj∈cont(τi)

⌈
Ri
Tj

⌉
Cj , (3.5)

where cont(τi) represents the set of contentious tasks with higher priority than task τi that shares
the same processor core, in other words cont(τi) = {τj ∈ Γ : Pj < Pi}.

Combining Equations 3.3 and 3.5, it is possible to express the Equation 3.6 to the response
time under worst-case as follows:

R
(t+1)
i = Ci +

∑
τj∈cont(τi)

⌈
R

(t)
i

Tj

⌉
Cj . (3.6)

No simple solution exists for Equation 3.6 since Ri appears on both sides. The solution for
the WCRT of a task τi can be obtained through an iterative process illustrated by Algorithm 2.
Once the WCRT of a task has been calculated, if its value is greater than its deadline, it means
that that task is unschedulable.

Algorithm 2 Response Time for a Task (WCRTf)

INPUT: task (τi)
OUTPUT: WCRT Ri for the task τi
1: procedure WCRTf(τi)
2: R

(0)
i = Ci

3: R
(1)
i = 0

4: do
5: R

(t+1)
i = Ci +

∑
τj∈const(τi)d

R
(t)
i
Tj
eCj

6: while R(t+1)
i 6= R

(t)
i

7: return R
(t+1)
i

8: end procedure

An example case is present here to aid the reader and illustrate the process to calculate
the WCRT values for three tasks (τ1, τ2, and τ3) allocated to a processor. Table 3.1 presents
information for these three tasks while Tab. 3.2 presents the calculation through the iterative
method to obtain the WCRT for these three tasks. Finally, Fig. 3.14 displays the timeline for
these three tasks during the worst-case scenario.

43

Tabela 3.1 – Characteristics of three tasks in an example case. Where C is the task WCET, D is
the deadline, T is the period, and P is the priority-level.

Task C D T P
τ1 1 3 3 1
τ2 2 8 8 2
τ3 2 10 10 3

Tabela 3.2 – Example of iterations to calculate the WCRT (Ri) mapped to a processor.

Task 1 Task 2 Task 3
Iteration 0: R

(0)
1 = 1 R

(0)
2 = 2 R

(0)
3 = 2

Iteration 1: R
(1)
1 = 1 R

(1)
2 = 2 + d2

3e1 = 3 R
(1)
3 = 2 + d2

3e1 + d2
8e2 = 5

Iteration 2: Return R
(1)
1 = R

(0)
1 = 1 R

(2)
2 = 2 + d3

3e1 = 3 R
(2)
3 = 2 + d5

3e1 + d5
8e2 = 6

Iteration 3: - Return R
(2)
2 = R

(1)
2 = 3 R

(3)
3 = 2 + d6

3e1 + d6
8e2 = 6

Iteration 4: - - Return R
(3)
3 = R

(2)
3 = 6

0 2 4 6 8 10

τ1

τ2

τ3

Figura 3.14 – Illustration of timeline for the example of WCRT (Ri) calculation.

The response time schedulability test for an RTA is the use of Alg. 2 to identify if all tasks in an
application comply with their deadlines, i.e., Ri ≤ Di. The complexity of this method is pseudo-
polynomial with big-O notation O(nN) [6], where n is the number of tasks in the application, and
N represents an unknown factor of relation between the periods of the tasks.

3.7 Modeling and Scheduling Algorithms for RTNoC-based MP-
SoCs

An MPSoC applied in a real-time environment that uses an RTNoC as its communication
needs a more sophisticated approach for possible schedulability tests. Such approaches need to
take into consideration both its multiple processor cores, as well as its communication architecture,
since, the communication latencies strongly influences the system and may cause its tasks to miss
deadlines. For this reason, End-to-End Schedulability Analysis (EESA) take into consideration

44

the required time necessary for a task processing from its arrival until the message (flow of flits)
arrive at its destination, hence, the end-to-end in the name.

The schedulability analysis used in this work including the system and task models is based on
those present in the works of Indrusiak [44] [45] that are based on the works of Shi and Burns [46]
and Xiong [47] [48]. The system modeling also contains the memory model C presented by
Still [49]. In this work, the schedulability algorithm is preemptive, static, offline, partitioned with
fixed-priority that are intended to be used in a setting where the task mapping is performed offline,
i.e., before the system deployment.

The following assumptions are made for the analysis and task and platform models:

• RTNoC used has a wormhole switching strategy with 2D mesh-grid topology and virtual
channels as previously stated on Section 3.4.

• Each NoC tile has a processor core with its local memory connected to a NI.

• All processing cores are equal, i.e., the system is composed of homogeneous processor cores.

• All processor cores have a processing queue ordered by tasks priority with mechanisms that
permit preemption, such as Fig. 3.10.

• Tasks deadlines are equal to their periods Di = Ti (Implicity Deadlines).

• Tasks transmit a single flow of flits (namely, messages) at the end of their executions. Since
the schedulability of such systems also depends on communication characteristics of the
platform using an NoC.

• Each message (flow of flits) transmitted by a task has the same priority level as its source
task, i.e., messages inherit priority from their source tasks.

• The analysis is done on the worst-case scenario. Therefore all tasks arrive at the processing
queue of their processor cores at the same time, ai = 0 with Ji = 0.

These assumptions limit the scope of MPSoC based on NoC platforms in which these analytical
model can be applied. However, this analytical framework can be easily expanded to treat cases
where the previous assumptions are not valid. For example, to cover cases where processor cores
are not homogeneous, one may alter the WCRT (Section 3.6.4.2) calculation using a scaling value
for processor cores with higher frequencies.

3.7.1 Platform Model

The platform model Ψ is formed by a set of homogeneous processor cores connected
to their respective NIs and private local memory Π = {π1, π2, ..., πn}. Each processor core is
connected to a router in a set Ξ = {ξ1, ξ2, ..., ξn}. Both routers and processor cores are then
connected by a set of unidirectional links Λ = {λπ1,ξ1 , λξ1,π1 , λξ1,ξ2 , ..., λξn−1,ξn}. Each link connects

45

a pair of components with a specific direction, for example, λπ1,ξ1 only sends data from π1 to ξ1

and λξ1,π1 is another link that connects the same pair but with the opposite direction.

Figure 3.15 presents an example of a platform model of an MPSSoC with an NoC that has
3× 3 processors connected in a mesh-grid topology.

π0 π1 π2

ξ0 ξ1 ξ2

π3 π4 π5

ξ3 ξ4 ξ5

π6 π7 π8

ξ6 ξ7 ξ8

λπ0,ξ0
λξ0,π0

λπ1,ξ1
λξ1,π1

λπ2,ξ2
λξ2,π2

λξ0,ξ1
λξ1,ξ0

λξ1,ξ2
λξ2,ξ1

λ
ξ

0
,ξ

3

λ
ξ

3
,ξ

0

λ
ξ

1
,ξ

4

λ
ξ

4
,ξ

1

λ
ξ

2
,ξ

5

λ
ξ

5
,ξ

2

λπ3,ξ3
λξ3,π3

λπ4,ξ4
λξ4,π4

λπ5,ξ5
λξ5,π5

λξ3,ξ4
λξ4,ξ3

λξ4,ξ5
λξ5,ξ4

λ
ξ

0
,ξ

3

λ
ξ

3
,ξ

0

λ
ξ

1
,ξ

4

λ
ξ

4
,ξ

1

λ
ξ

2
,ξ

5

λ
ξ

5
,ξ

2

λπ6,ξ6
λξ6,π6

λπ7,ξ7
λξ7,π7

λπ8,ξ8
λξ8,π8

λξ6,ξ7
λξ7,ξ6

λξ7,ξ8
λξ8,ξ7

Figura 3.15 – 3x3 Mesh-grid RTNoC platform. Blue circles represent the processors and their
network interfaces (NI), and gray squares represent routers.

3.7.2 Real-Time Application Model

The real-time application Ω is represented as a set of tasks Γ = {τ1, ..., τn} and a set of
messages Φ = {φ1, ...,φm}. These tasks are modeled as tuples τ = 〈C, T,D, P,R,M,φ〉 composed
by the following characteristics, respectively: (a) C is the WCET, (b) T is the inter-arrival period,
(c) D is the relative deadline time, (d) P is the task priority-level, (e) R is the task WCRT, (f)
M is the task required code memory in bytes, and (g) φ is a message sent to another task.

The messages are also represented as tuples φ = 〈τd, L, Z,K, S〉 with τd is the destination
task, L is the basic latency time (latency without network contention), Z is the message size in
bytes, K is the maximum release jitter time, and S is the Worst-Case Latency Time (WCLT).

The tuple of a message is smaller because it inherits characteristics from its source task, namely,
its priority, inter-arrival period, and deadline. The jitter suffered by a flow φi is due to how long
it takes for its source to emit it, and, since a task only emits its message when it has finished
processing. For this reason, the jitter time suffered by a message is equal to its source task WCRT
Ki = Ri.

The following functions are defined to aid notation for real-time analysis and system models:

• index : Π→ N returns the index of a processor core π. For example, index(π1) = 1.

46

• map : Γ → Π returns the processor core π that a task τ is mapped onto. For example, if
task τ1 was mapped onto the processor core π0, then map(τi) = π0.

• map−1 : Π → Γ returns a set of tasks mapped to a processor π, i.e. map−1(π) = {τ ∈ Γ :
map(τ) = π}. For example, if only τ1, τ2, and τ3 were mapped onto π0, then map−1(π0) =
{τ1, τ2, τ3}.

• route : Φ → Λ returns a set of ordered links that forms a path used by a flow φ moving
from its source task to its destination ordered. For example, if a message φ transverse links
λπa,ξa , λξa,ξb , and λξb,πb then route(φ) = {λπa,ξa , λξa,ξb , λξb,πb}.

• route : {Π,Π} → Λ returns a set of ordered links that forms a path between two proces-
sing cores. Given a message φi transferred between tasks τi and τj , then it is equivalent
route(φi) = route(map(τi),map(τj)). For example, route(πa, πb) = {λπa,ξa , ..., λξb,πb} and
route(πb, πa) = {λπb,ξb , ..., λξa,πa}, this order is defined by the routing algorithm.

• map−1 : Λ → Φ returns a set of messages that passes through a link λ in other words
map−1(φ) = {φ ∈ Φ : λ ∈ route(φ)}. For example, if only φ1 and φ2 uses a link λ, then
map−1(λ) = {φ1,φ2}.

• cd : {Φ,Φ} → Λ returns a set of ordered contented links shared by two messages φi
and φj in other words cd(φi,φj) = route(φi) ∩ route(φi). For example, if a message φ1

transverse the links route(φ1) = {λπa,ξa , λξa,ξb , λξb,πb} and a message φ2 transverse the links
route(φ2) = {λπc,ξc , λξc,ξa , λξa,ξb , λξb,πb}, then cd(φ1,φ2) = {λξa,ξb , λξb,πb}.

• vc : Ξ → N returns the number of VCs supported by a router ξ. For example, if a system
has routers with three VCs in each input buffer of a router ξ1, then vc(ξ1).

• buffer : Ξ → N returns the buffer size of each virtual channel in number of flits. For
example, if a system has routers with buffers with 3 VCs with each supporting 3 flits, then
buffer(ξ) = 3.

• mreq : Π → N returns the private local memory required by a processor core π to store
code and data in bytes. For example, if a processor π should have ≈ 32KB of memory to
execute an application correctly, then mreq(π) = 32768 bytes.

• mcap : Ψ→ N returns the amount of private local memory available in each processor core
of a platform Ψ in bytes.

• order : {Λ,Λ} → N returns the position of a link λ given a path between two processor
cores πa and πb. For example, if a message φ1 is transferred between tasks mapped onto
processors πa and πb that passes through links route(φ1) = {λπa,ξa , λξa,ξb , λξb,πb}, then
order(λξa,ξb , route(πa, πb)) = 2.

• firstl : Λ → Λ returns the link with the smallest order given a route. For example, if
in a route route(πa, πb) where order(λπa,ξa , route(πa, πb)) = 1, then firstl(route(πa, πb)) =
λπa,ξa .

47

• lastl : Λ→ Λ returns the link with the greatest order given a route. For example, if in a route
route(πa, πb) where order(λξb,πb , route(πa, πb)) = |route(πa, πb)|, then lastl(route(πa, πb)) =
λξb,πb .

• cont : Γ → Γ returns a set of contentious tasks with higher priority levels than a given
task τ that are mapped into the same processor map(τ), in other words cont(τi) = {τj ∈
Γ : map(τj) = map(τi) ∧ Pj < Pi}. For example, if tasks τ1, τ2, and τ3 are mapped onto
processor core π and P1 < P2 < P3, then cont(τ3) = {τ1, τ2}.

• contd : Φ→ Φ returns a set of contentious flows with higher priority that directly interfere
a given flow φ sharing at least one link in their path φi ∈ Φ : route(φ) ∩ route(φi) 6= ∅.
The definition and examples of contd will be presented further on Section 3.7.4.1.

• conti : Φ→ Φ returns a set of all flows that indirectly interfere a given flow φ that does not
share any link in their routes (φi ∈ Φ : route(φ) ∩ route(φi) = ∅) by direct interfering with
a third message that in turn directly interfere φ. The definition and examples of conti will
be presented further on Section 3.7.4.1.

• contui : Φ → Φ returns a set of all flows that indirectly interfere a given flow φ upstream.
The definition and examples of contd will be presented further on Section 3.7.4.1.

• contdi : Φ→ Φ returns a set of all flows that indirectly interfere a given flow φ downstream.
The definition and examples of contd will be presented further on Section 3.7.4.1.

After the RTA has all its tasks allocated onto the platform processor cores, it is possible to
calculate each task τi WCRT Ri as well as its message φi basic latency time Li and WCLT Si.

Li value depends on specific system parameters. In this work, Li is calculated using the
following equation:

Li = |route(φi)|·(Lλ + (|route(φi)|−1) · Lξ +
⌈ 8Zi
λwidth

⌉
Lλ, (3.7)

where Lλ is the maximum time necessary for a flit to be transmitted through a link, Lξ is the
maximum time necessary for a header flit to be routed by a router, λwidth is the width of the links
in bits, route(φi) is the set of links in the route that message φi use to transit, and Zi is the data
size of message φi in bytes.

The values for the tasks WCRTs are calculated as described in Section 3.6.4.2, where, once
again, a task response time during the worst-case scenario depends upon the tasks with higher
priority mapped into the same processor.

The values for the messages WCLT are calculated as explained in Section 3.7.4.

3.7.3 Processors and Links Utilization Factors Test

Similar to the schedulability analysis that uses processor utilization factors, as present in
Section 3.6.4.1, Indrusiak [45] presents a utilization factor test that can be applied to each of the

48

platforms links to check whether none of them are over their maximum capacity for the messages
that passes through them. A link λ ∈ Λ is not over used if the following is valid:

Uλ =
∑

φi∈map−1(λ)
= Li
Ti
≤ 1, (3.8)

where Uλ is the utilization factor for a link λ, map−1(λ) is the set of messages that are transmitted
over the link λ, Li is the basic latency for message φi, and Ti is the period for task τi that transmits
message φi.

Similar to the processor cores utilization test in Section (3.6.4.1), the utilization test for links
is necessary but not sufficient because a link being capable of sending all messages that use it in
their paths without starvation does not mean that these messages will meet their deadlines.

It is possible to combine both processor and link utilization factors tests into the same sche-
dulability test that evaluates the whole system after the task mapping by counting the number
of processor cores and links over their maximum capacity, if it is equal zero then the system is
schedulable considering both their tasks and messages. This test is expressed as follows:

|{λ ∈ Λ : Uλ > 1}|+|{π ∈ Π : Uπ > 1}|= 0, (3.9)

where Uλ is the utilization factor for a link λ in the set of links Λ in the platform, and Uπ is the
utilization factor for a processor core π in the set of processor cores Π in the platform.

This simple utilization test is useful, given its simplicity and can be combined as a condition
for a more complex schedulability test. The complexity of this method used to evaluate whether
a task assignment is schedulable in big-O notation is O(max(|Γ||Π|, |Φ||Λ|)) depending on the
number of tasks and messages in the RTA as well as the number of processor cores and links in
the platform.

3.7.4 Multi-point Progressive Blocking Worst-Case Latency Analysis

The Worst-Case Latency Time (WCLT) of a message φ is the time necessary for the header
flit leave the NI until the moment that the last flit of the message arrives into its destination. As
present in this work, the analysis process to calculate the Worst-Case Latency Time (WCLT) of a
message transiting inside of a wormhole-based RTNoC is based on the work of Indrusiak et al. [44]
that in turn improves the works of Shi and Burns [46] and Xiong [47] [48].

3.7.4.1 Message Interference Types in Wormhole-based NoCs

Before the presentation of the method, it is essential to explain the concept of direct and
indirect interferences. In [50], these are the two types of interference that a message suffers
through a wormhole-based NoC.

A message suffers direct interference when sharing at least one link in its route with messages
that have higher priorities, equivalently as the contention suffered by tasks when sharing a pro-
cessor with higher priority tasks. For example, given a pair of messages φi and φj with Pj < Pi

49

and both of them sharing links in their route, as shown in Fig. 3.16a, it is possible to see that
message φj preempts the message φi increasing the WCLT Si due to interference terms. The set
of messages that directly interfere a message φi is expressed as follows:

contd(φi) = {φj ∈ Φ : Pj < Pi ∧ cd(φi,φj) 6= ∅}. (3.10)

A message experiences indirect interference when one of the messages that preempts it also
suffers interference from a third message that in turn, does not share any link with its route. For
example, given three messages φi, φj , and φm with Pm < Pj < Pi with φm and φj sharing links
as well as φj and φi. In this situation, a message φi suffers indirect interference from message
φm. This scenario is expressed in Fig. 3.16b. The set of messages that indirectly interfere with a
message φi is expressed as follows:

conti(φi) = {φk ∈ Φ : φk ∈ contd(φj) ∧ φj ∈ contd(φi) ∧ φk /∈ contd(φi)}. (3.11)

π0 π1 π2 π3

ρ0 ρ1 ρ2 ρ3

φi
• • •

φj
•

(a) Illustration of an example of a direct interference.

π0 π1 π2 π3

ρ0 ρ1 ρ2 ρ3

φj
• • •

φm•

φi
•

(b) Illustration of an example of an indirect interference.

Figura 3.16 – Examples of two cases where a message φj suffers direct and indirect interference.

As present in [48], the concept of indirect interference is subdivided into two types: (a) ups-
tream, and (b) downstream. These differentiation is due to the position of interference between
φk and φj in the contention domain set cd(φi,φj).

50

π0 π1 π2 π3

ρ0 ρ1 ρ2 ρ3

φj
• • •

φm•

φi
•

(a) Illustration of an example of an upstream indirect interference.

π0 π1 π2 π3

ρ0 ρ1 ρ2 ρ3

φj
• • •

φm•

φi
• •

(b) Illustration of an example of a downstream indirect interference.

Figura 3.17 – Examples of two cases where a message φj suffers upstream and downstream indirect
interference.

A message φi suffers upstream indirect interference when a higher priority message φm ∈
conti(φk) preempts a message φj before it can direct interfere φi. Hence the order of the links
of the shared route between these three messages is important. An example case is present in
Fig. 3.17a, where a message φm interfere with φj in links before it can interfere φi. The set of
messages that upstream indirectly interfere with a message φi is expressed as follows:

contui (φj ,φi) = {φk ∈ conti(φi) ∩ contd(φj) :order(lastl(cd(φj ,φk), route(φj))) <

order(firstl(cd(φi,φj), route(φj)))}
(3.12)

A message φi suffers downstream indirect interference when first it suffers direct interference
from a higher priority message φj and then “down” the route φj is interrupted by a third message
φm that does not share any link with route(φi). It causes φi to be allowed to keep transmitting
during the interval that φj is being blocked. However, as soon φm finishes to interfere with φj
and φj restarts to block φi, φi in turn restart to be blocked in multiple points of the route, as
a “domino” effect, in the buffers of the links of routers in the path of φi. This effect shortly
presented here is further explained in the works [47] [51]. An example scenario is illustrated in
Fig. 3.17a, where a message φm interfere with φj in links after it can interfere φi. The set of
messages that downstream indirectly interfere with a message φi is expresses as follows:

contdi (φj ,φi) = {φk ∈ conti(φi) ∩ contd(φj) :order(firstl(cd(φj ,φk), route(φj))) <

order(lastl(cd(φi,φj), route(φj)))}
(3.13)

In light of the multiple types of interference that a message φi can suffer, the value of WCLT

51

Si for a message φi is formulated as follows:

S
(t)
i = Li +

∑
φj∈contd(φi)

S
(t−1)
i +Kj +KI

j

Tj

 (Lj + Idownj,i), (3.14)

where contd(φi) is the set of messages that interfere φi directly, Li is the basic latency time for
message φi transmission, Kj is the release jitter suffered by a message φj that in turn interferes
directly with the message φi, and KI

j is the indirect interference jitter suffered by φj due to
messages preempting it and indirect interfering with message φi and its value is defined as KI

j =
Sj − Lj .

The term Idownj,i is due to downstream indirect interference that the message φi suffers due to
other messages interfering with φi and it is calculated using the following equation:

Idownj,i =
∑

τk∈contdi (φj ,φi)

⌈
Sj +Kk

Tk

⌉
min(bi(φi,φj), Lk + Idownj,k), (3.15)

where contdi (φj ,φi) is the set of tasks that indirectly interfere task τi and directly interfere task
τj , Sj is the WCLT of message τj , Kk is the jitter time for message φk, Tk is the period for task k,
Lk is the basic latency time for task τk, and bi(φi,φj) is a function that represents the maximum
buffered interference time that φj may affect φj in their shared links cd(φi,φj). bi(φi,φj) is
formulated as:

bi(φj ,φi) = buffer(ξ)Lξ |cd(φi,φj)|, (3.16)

where buffer(ξ) is the size of buffers in bytes for routers in the NoC, Lξ is the maximum time
necessary for a router to route and transmit a flit, and cd(φi,φj) is the set of links in which both
messages φi and φj shares when being transmitted.

Similar to the WCRT schedulability, as present in 3.6.4.2, the WCLT calculation of all WCLT
values of messages in an RTA permits the evaluation of whether all these messages φ ∈ Φ arrives
in their destinations complying with their respective deadlines, i.e., Si ≤ Di. This schedulability
test based on WCLT is both necessary and sufficient.

3.7.5 End-to-End Schedulability Test

End-to-End Schedulability Analysis (EEST) test, as present in [45], take into consideration
for the tasks in a RTA being mapped onto a MPSoC based on NoC, whether, each task, in the
worst-case scenario, has its WCRT plus the WCLT of its message, if there any, bounded by the
task deadline. This summed value is named End-to-End Response Time (EERT), and it covers
the time of the task from its arrival time until its message arrives in its destination. Hence, the
“end-to-end” in the name.

EERT for a task τi is expressed as EERi = Ri+Si. This test is necessary and sufficient to show
whether a task is schedulable. A task is schedulable when it follows the condition EERi ≤ Di. A
RTA Ω = {Γ,Φ} is deemed schedulable, if all tasks with its messages follows the schedulability
condition τi ∈ Γ, EERi ≤ Di.

52

Figure 3.18 displays a simple example timeline where a task execution time is colored gray,
and message transmission time is colored yellow similar to the convention used in timelines in
Section 3.6.1. In this example, there are two tasks τa and τb with Pb < Pa and with both tasks
mapped into the same processor map(τa) = map(τb) = π0 emitting, respectively, messages φa
and φb. Both these messages are send to the same destination and share the path route(φa) =
route(τb) = cd(φa,φb).

While a third task τc executes in a different processor map(τc) 6= π0 has higher priority than
τa and τb with Pc < Pb < Pa and emits a message φc that has contentious links with messages
φa and φb with route(φa) ∩ route(τb) ∩ route(τc) 6= ∅ and for this reason interrupt directly both
messages. As visualized, all three tasks are schedulable, since they do not miss their deadlines
with Rc = 4, Sc = 1, EERc = 5, Rb = 2, Sb = 4, EERb = 6, Ra = 3, Sa = 5, and EERa = 8.

0 2 4 6 8 10 12

τc + φc
τc φc

τb + φb
τb φb φb

τa + φa
τa φa

Figura 3.18 – Illustration of timeline for the example of EERT calculation using both WCRT and
WCLT.

3.7.6 Required Local Memory for Processor Cores Test

In this work, it is used the required local memory model C present in [49]. The assumption
is that each task τi ∈ Γ mapped onto a processor core πa needs for its execution the following
requirements:

• πa local memory should be capable of storing the task code memory.

• πa local memory should be capable of storing data from messages in which τi is the desti-
nation task. It is considered that τi needs to access this data in local memory for its correct
execution.

• πa local memory should be capable of storing data that τi sends to other tasks.

Given these three requirements, the required local memory for a processor core πa is the sum
of all code memory of tasks mapped to πa, the sum of data emitted by all messages sent by tasks
mapped to πa, and the sum of data received by tasks mapped onto πa. The value of required local
memory mreq(πa) for processor πa is calculated as follows:

mreq(πa) =
∑

τk∈map−1(πa)
Mk +

∑
φs∈send(πa)

Zs +
∑

φr∈received(πa)
Zr, (3.17)

53

where map−1(πa) is the set of tasks mapped to processor core πa, send(πa) is the set of messages
φs sent by tasks mapped onto processor πa = map(τa), received(πa) is the set of messages that
has the processor core πa as their destination, Mk is the memory code in bytes for task τk, Zs is
the payload size transmitted by message φs, and Zr is the payload size transmitted by message
φr.

The set send(πa) is expressed as follows:

send(πa) = {φs ∈ Φ : τs ∈ map−1(πa)}. (3.18)

The set received(πa) has all messages φr received by tasks mapped onto processor πa =
map(τa) and it is expressed as follows:

received(πa) = {φr ∈ Φ : τdr ∈ map−1(πa)}, (3.19)

where τd is the destination task for a message φr received by the processor πa.

In order to check whether a processor in MPSoC Ψ is capable to correctly execute an RTA Ω
given a task allocation, all processor cores must have at least the required memory size. This test
is expressed as follows:

max ({π ∈ Π : mreq(π)) ≤ cap(Ψ). (3.20)

3.7.7 Normalized Energy Dissipation Model

In this work, the energy dissipation used is based on the one present in [52]. Power charac-
teristics of RTNoCs depend upon multiple factors, such as, for example, chosen data encoding
process for the messages packetization and wire length for the links.

In other words, many of these factors are beyond the scope of this work. The idea is to
use a simple yet expressive model that assumes that the energy dissipated by the communication
architecture is closely related to the energy dissipated by the sum of energy of the wormhole-based
NoC components when routing and transmitting a message.

The resulting model considering the scenario in which the platform is spending the maximum
power to transmit a message with one flit of size, namely φ1flit, then a NI connect to a processor
π ∈ Π dissipates eπ joules when encoding and packetizing φ1flit, a router ξ ∈ Ξ dissipates eξ
joules when routing the header flit and buffering and sending the subsequent flit of φ1flit, and a
link λ ∈ Λ dissipates eλ joules when transmitting φ1flit.

Assuming that the dissipate energy for each component scale linear with the increase of the
size of messages in flits and normalizing for the dissipate energy of a link transmitting φ1flit, then
the following formulation is obtained to calculate the normalized energy dissipated during the
transmission of a message φi:

eφi =
⌈ 8Zi
λwidth

⌉(
2eπ
eλ

+ (|route(φi)|−1) eξ
eλ

+ |route(φi)|
)
, (3.21)

where λwidth is the flit size of the platform in bits, Zi is the size of message φi in bytes, and
route(φi) is the set of links in which φi is transmitted.

54

3.8 Task Mapping onto a RTNoC-based MPSoC as an Optimi-
zation Problem

In light of the model of the system present in Section 3.7, it is possible to encode the task
mapping of a RTA onto the NoC-based MPSoC as an optimization problem and check during the
early stages of the design process of a RTNoC whether different characteristics attend restrictions
and specifications of a possible application in a real-time embedded system application.

Since multiple characteristics of the system were presented in a fashion that depends upon the
task mapping, this section will present each one of them as a different objective function with the
same decision variable encoding.

3.8.1 Task Mapping Encoding

The problem of mapping an RTA Ω with a task set Γ into an MPSoC platform with a set
of processing cores Π is an NP-hard COP similar to the Quadratic Assignment Problem [53]. A
mapping solution x pairs each task τj ∈ Γ to a processor core πn ∈ Π and it is encoded as an
|Γ|-dimensional vector of positive integers, where each jth component of x represents the index of
the processor responsible for processing the task τj , namely index(map(τj)), and, for this reason,
each xj ranges inside of [0, |Π|−1].

Figure 3.19 illustrates visually the representation of a task mapping encoded as a vector of
integers, illustrating the decision variables into the search space.

By using this problem encoding, the search-space of possible task mapping solution is composed
of mn possible mappings, where m is the number of processor cores in the MPSoC platform |Pi|
and n is the number of tasks in the task set of the mapped RTA |Γ|.

index(map(τ0)) index(map(τ1)) ... index(map(τ|Γ|−1))

τ0 τ|Γ|−1

Figura 3.19 – Visual representation of a task mapping where each jth element is an integer value
representing the index of a processor where τj is mapped onto.

3.8.2 Utilization Test as an Objective Function

As present in Section 3.7.3, the utilization schedulability test for both processors and links
depending on the task assignment of an RTA onto the MPSoC platform. Therefore, it is possible
to use this test as an optimization function to find an optimal task placement where the tasks and
their messages are schedulable under this test. For this reason, we define the objective function
futil as follows:

futil : {N|Γ|,Ω,Ψ} → N, (3.22)

55

where futil returns the number of processor cores and links in the platform Ψ are above their
capacity given a task mapping x for a RTA Ω. The formulation for futil is equal to equation 3.9
as follows:

futil(x,Ω,Ψ) = |{λ ∈ Λ : Uλ > 1}|+|{π ∈ Π : Uπ > 1}|. (3.23)

The optimization problem formulation for the utilization test is:

x∗ = argmin
x

futil(x,Ω,Ψ), (3.24)

where the goal is to find the optimal solution x∗ representing a schedulable task mapping solution
with none processors and links over their maximum capacity. In other words, futil(x∗) = 0.
However, depending on both the platform Ψ and the application Ω a schedulable solution may
not exist, in this case, x∗ represents the task mapping solution where fewer processors and links
are over their maximum capacity. A shortcoming of this method is that it uses a necessary but not
sufficient method, so an optimal solution where futil(x) = 0 is not guaranteed to be schedulable.

3.8.3 End-to-End Schedulability Test as an Objective Function

In the same fashion as the utilization test, it is possible to express the search for a schedulable
mapping solution using the EEST (Section 3.7.5) as an optimization process. To this end, an
objective function funsc : {N|Γ|,Ω,Ψ} → N is defined as:

funsc(x,Ω,Ψ) = |{τi ∈ Γ : EERi > Di}|. (3.25)

This function returns the number of tasks that are unschedulable under the task mapping x.

At last, the formulation of the search for a task mapping where all tasks are schedulable using
the end-to-end schedulability test as an optimization problem is:

x∗ = argmin
x

funsc(x,Ω,Ψ). (3.26)

In Eq. 3.26, the goal is to find an optimal mapping solution x∗ in which all tasks are schedulable
funsc(x∗) = 0. Since such solution may not exist, at least, the optimization of funsch results in a
solution with fewer unschedulable tasks and, depending on the type of RTS at hand, for example,
soft RTS, this solution can still be useful. Another advantage is that the method used is necessary
and sufficient guarantying that a solution where funsc(x∗) = 0 is schedulable.

3.8.4 Normalized Energy Dissipation as an Objective Function

Since lower power consumed is an essential requirement of many embedded devices including
RTS, it is crucial to define as well the search of task mapping that reduces as much as possible the
energy dissipated by the system. For this reason, the function fener : {N|Γ|,Ω,Ψ} → R is defined
to evaluate the energy dissipated of the platform Ψ given a task mapping x for an application Ω.
The formulation for this objective function is as follows: Using Eq. 3.21, it is possible to obtain

56

the energy dissipated for a NoC transmitting data from a RTA mapped onto the system with the
following equation:

fener(x,Ω,Ψ) =
∑
φ∈Φ

eφ. (3.27)

The formulation of the process to reduce the energy dissipated by the system’s communication
component as an optimization problem is:

x∗ = argmin
x

fener(x,Ω,Ψ), (3.28)

where x∗ represents a task mapping solution with the minimum of energy dissipated by the
transmission of messages inside of the platform.

3.8.5 Maximum Required Local Memory as an Objective Function

In his work [49], present a model for private local memory as well a secondary objective function
in a MOOP that is based on the system maximum required the amount of private local memory
for all processors in a platform Ψ. This function fmreq : {N|Γ|,Ω,Ψ} → N receives a task mapping
for a RTA to be mapped onto the platform and returns the maximum amount of required memory
in bytes. The formulation for this function is as follows:

fmreq(x,Ω,Ψ) = max ({mreq(π) : π ∈ Π}) (3.29)

The formulation of fbdf as an objective function to be optimized is:

x∗ = argmin
x

fmreq(x,Ω,Ψ), (3.30)

where x∗ represents a task mapping solution with the minimum required amount of local memory
for the processor cores.

3.8.6 Breakdown Frequency as an Objective Function

In [54], Sayuti presents a possible objective function for an MPSoC-based RTS that is based
on the concept of breakdown frequency to scale up or down the processor cores frequency clock
up to the point where all tasks are schedulable given a task mapping. BreakDown Frequency
(BDF) is the minimal operational frequency of a system where all tasks and messages respect
their deadlines.

The BDF scaling method uses the EEST to evaluate whether the use of specific scaling fre-
quencies values, in a range of possible ones, that is capable of turning all tasks running in the
system schedulable. The algorithm to search for the minimum closest suitable scaling value uses
a binary search, and every iteration checks whether the current scaling value is schedulable or
not. If the current scaling value in an iteration results in a schedulable system, the binary search
reduces the frequency scaling factor. Otherwise, it increases the scaling value.

57

Since it uses a binary search, each iteration also reduces by half the number of scaling frequency
values to be searched. The search for the minimum BDF value is displayed in Algorithm 3, where
fbdf : {N|Γ|,Ω,Ψ} → R is a function that given a task mapping returns the closest minimum BDF
scaling in a list of frequency scaling values (attached as appendix I in this document).

Algorithm 3 BreakDown Frequency Search (fbdf)

INPUT: Task Placement (x)
Platform (Ψ)
Application (Ω)

OUTPUT: Frequency Scaling Value (fscur)
1: procedure BDFSearch(x)
2: Lf ← List of Frequency Scalings
3: fscur = fsnext = 1
4: while fsnext ∈ Lf do
5: fscur = fsnext

6: Scale Ψ frequency by fscur
7: if funsc(x,Ψ,Ω) = 0 then
8: Reduce Frequency fsnext
9: else

10: Increase Frequency fsnext
11: end if
12: end while
13: return fscur

14: end procedure

The formulation of fbdf as an objective function to be optimized is:

x∗ = argmin
x

fbdf (x,Ω,Ψ), (3.31)

where x∗ represents a task mapping solution with the minimum breakdown frequency scaling
value for an application Ω mapped onto a platform Ψ. Since the energy dissipated by the system
is linearly proportional with its frequency [55], a reduction on the frequency also reduces the
power consumed by the platform. Another advantage of fbdf is that once its optimization process
reaches a task mapping solution x with a scaling values fbdf (x) ≤ 1, it means that that solution
is equivalent to a solution with funsch(x) = 0, therefore, a complete schedulable task mapping
solution.

Beyond that, the optimization fbdf is even capable to improve further schedulable solution by
finding differences in schedulable task mappings something that the optimization of the function
funsch is not capable to achieve. For example, given two schedulable task mapping solutions x1

and x2 with funsch(x1) = funsch(x2) = 0, using the breakdown frequency scaling optimization x1

would be chosen instead of x2, because fbdf (x1) < fbdf (x2).

However, there are two main drawbacks with the optimization of fbdf . The first is that the
objective function fbdf calculation takes multiple evaluations of funsch. Since funsch by itself
already takes a considerable execution time due to its complex analysis, fbdf execution time in
some cases are prohibitive a characteristic pointed out by the author in [54].

The second point is that for task mapping solutions with resulting scaling values above 1,
the fbdf relationship with funsc is not one-to-one in the sense of a decrement in the number of
unschedulable tasks may actually have an increment in the breakdown scaling frequency. For
example, given two mappings xa and xb, for the mapping of a single application in the same
platform, where funsch(xa) = 3 and funsch(xb) = 6, now imagine that the lateness of the 6

58

unschedulable tasks in xb is very small when compared with the lateness of the 3 unschedulable
tasks in xa, it would cause the evaluation of these solutions using the BDF method to be fbdf (xa) >
fbdf (xb) even though funsch(xa) < funsch(xb).

3.8.7 End-to-End Scheduling Test with Slack Awareness as an Objective Func-
tion: a new Proposed Approach

Inspired by breakdown frequency method [54], the author formulated an objective function that
could at the same time keep the information of the number of unschedulable tasks in a specific
task mapping being capable of differentiating and further improving solutions where all tasks
are already schedulable. This two features using evaluating only once funsch that is a complex
objective function with a large computation time when evaluating the mapping of RTAs with large
task sets. This objective function called here fumsr where umsr stands for unschedulable tasks
and Minimum Slack Ratio, uses both the information of funsch together with tasks slack values to
achieve just that.

fumsr : {N|Γ|,Ω,Ψ} → R receives a possible task mapping x for a RTA Ω onto a platform Ψ
and assess whether all tasks are schedulable, if they are not, it returns the number of unschedulable
tasks exactly as funsch(x).

However, if funsch(x) = 0 (that is all task are schedulable), it then calculates the slack time
of all tasks, calculates the ratio between slack time and the deadline for all tasks and then selects
the task with the minimum slack time and returns the negative value for the minimum slack time
and deadline ratio. Reminding the reader that the slack time used is for the EERT of the tasks,
i.e., for a given schedulable task τi its slack is si = Di − EERi.

The formulation for this objective function is as follows:

fumsr(x,Ω,Ψ) =

funsch(x,Ω,Ψ), if funsch(x,Ω,Ψ) > 0

−min({ siDi : τi ∈ Γ}), otherwise
, (3.32)

where funsch is the EEST as an objective function as presented in Section 3.8.3, si and Di are the
slack time and deadline for a schedulable task τi. The reason in which the negative of the minimum
slack ratio is used (−min()) is to focus the evaluation on the task with the minimum slack. In this
manner as fumsr is optimized the task with the minimum slack ratio has this metric increasing
through the optimization process since the minimization of a function returning a negative value
is equivalent to the maximization for that function absolute value.

The optimization process for fumsr as an objective function is:

x∗ = argmin
x

fumsr(x,Ω,Ψ), (3.33)

where x∗ represents the task mapping solution with either the minimum number of unschedulable
tasks or the minimum slack time and deadline ratio.

The advantage of this approach are three: (a) it only uses a single call of funsch; (b) it gives
information about both number of unschedulable tasks and slack and deadline ratio with a single

59

real number; (c) advantage is that all tasks slack ratios are increased during the optimization
process, and it is possible to use this dimensionless value to calculate a reduction of frequency
scale for the system processors. Since even the task with the worst slack ratio will also attend its
time requirements;

For example, given a task mapping solution xs that when used to assign tasks from a RTA
Ω to a platform Ψ results in a schedulable applications funsch(xs) = 0 and it also results in
fumsr(xs) = −0.05. It is the same to say that all tasks have at least 5% of their time as slack
time, so, if all tasks have their EER time increased by 1

(1−0.05) they would still meet their deadlines.
It means that one can use the value (1 + fumsr(xs)) as the scaling value to reduce the processor
cores frequency and all tasks would still be schedulable.

3.8.8 Multi-Objective Task Mapping Optimization

In light of the previously defined objective functions, one could unify them in a multi-objectives
function to optimize multiple characteristics concurrently of an analyzed RTS.

The Fnoc : {N|Γ|,Ω,Ψ} → {R,N,R,N} has the following formulation for its objectives:

Fnoc(x,Ω,Ψ) = {fumsr(x,Ω,Ψ), fmreq(x,Ω,Ψ), fener(x,Ω,Ψ), futil(x,Ω,Ψ)}. (3.34)

This function is formed by the following objectives: (a) number of unschedulable tasks or nega-
tive minimum slack and deadline, (b) maximum required memory in bytes, (c) total normalized
dissipated energy, and (d) number of processors and links over utilized in the system.

The process of optimize function Fnoc in a Pareto sense is represented as:

X∗ = argmin
x

Fnoc(x,Ω,Ψ), (3.35)

where X∗ is the Pareto Optimal solutions with the set Fnoc(X∗), that is the PF for this function.

3.9 Conclusions of the Chapter

This chapter introduces the concepts behind system-on-a-chip, network-on-a-chip, and real-
time systems. Information that is used to explain the context, modeling, and reasoning used
to define the task mapping of a real-time application onto an MPSoC based on an NoC as an
optimization problem. Since the search of a task mapping solution where all tasks are schedulable
is an NP-hard problem, the optimization problem defined here is tackled using bio-inspired meta-
heuristics for single and multi-objective problems as present in Chapter 4.

Between the multiple possible objectives functions defined for the optimization for task map-
ping of RTAs onto RTNoC-based MPSoC, two of them were developed in this work: (a) fumsr
that mix the number of unschedulable tasks under the EERT analysis and the negative minimum
slack deadline times ratio; (b) Fnoc that is multi-objective and contains four objectives, including
fumsr, and information about required maximum local memory, dissipated energy by the system,
and resource utilization in the form of utilization of processors and links tests.

60

The task mapping problem is used as the main real-life optimization scenario in this work. It
is revisited in Chapter 7 when defining an experimental setup to evaluate different meta-heuristics
when optimizing multiple aspects of the design of RTNoC-based MPSoC.

61

4 SEARCH-BASED OPTIMIZATION
BIO-INSPIRED META-HEURISTICS

This chapter introduces bio-inspired meta-
heuristics to solve single-/multi-objective
optimization problems with emphasis on adaptive
techniques to control these algorithms parame-
ters during execution. The chapter is divided
as follows: Section 4.1 presents and contextu-
alizes bio-inspired meta-heuristics including a
taxonomy for the ones used in this work; Section
4.2 defines adaptive techniques for bio-inspired
meta-heuristics including their classification;
Section 4.3 presents the single-objective meta-
heuristics from other works in the literature;
Section 4.4 presents the single-objective meta-
heuristics developed in this work; Section 4.5
the multi-objective meta-heuristics from other
works in the literature; Section 4.6 presents the
multi-objective meta-heuristics developed in this
work; Section 4.7 concludes the chapter and
contextualizes it with other parts of this work.

4.1 Bio-inspired Meta-Heuristics

The algorithms responsible for solving optimization problems can be categorized into two main
groups [56]: (a) exact, and (b) approximated.

Exact methods guarantee that the output solution is the optimal one. However, exact methods
have their usability prohibitive in terms of necessary computing time in many problem stances.
Meanwhile, approximated methods, also called soft-computing, do not hold the guarantee of op-
timality for their results. Instead, these methods output are near-optimal solutions delivered in a
maximum amount of time.

Approximated methods can be further subdivided into two groups: (a) heuristics and (b)
meta-heuristics [56] [18] . Heuristic algorithms are search-based optimization methods that try
to obtain good solutions using experienced-based techniques to search intelligently, in promising
regions of the search space instead of a brute-force approach that enumerates and exhaustively
search for solutions. On the other hand, meta-heuristics approaches are composed of multiple
heuristics as sub-procedures that are used to search for near-optimal solutions interactively.

In this context, Bio-inspired meta-heuristic algorithms are a subset of soft-computing methods
that use biological phenomena present in natural systems as metaphors to their heuristic strategies
to search for solutions of optimization problems [56]. The efficiency of these algorithms is linked

62

to their capabilities to explore a broad range of possible solutions by different search agents and
exploit the information gathered by them to avoid possible local optima.

Bio-inspired meta-heuristics display the following shared framework: (a) initialize search agents
with randomly generated possible solutions inside of the search space; (b) repeat iteratively search
operations that are used to explore and exploit solutions in the search space while converging in
a (near-)optimal mapping until a stop criterion is met;

The interest of the scientific community in meta-heuristic methods, including the intense ge-
neration of new methods in the past decade, uses as theoretical base the No Free Lunch (NFL)
Theorem. The NFL theorem [57] [58] shows that all meta-heuristics algorithms have the same
performance on average when applied to all possible problems. In other words, if a meta-heuristic
Algorithm1 achieves better results than another Algorithm2 when applied to a set of problems,
Algorithm1 performs worse when applied on another set of problems, where Algorithm2 performs
better. For this reason, to decide what is the best bio-inspired meta-heuristic to optimize a com-
plicated family of optimization problems, it is essential to use and compare a significant number
of meta-heuristics on a range of combinations of problems.

In this work, bio-inspired meta-heuristics are categorized into two groups based on their me-
taphors: (a) evolutionary and (b) swarm intelligence algorithms.

Evolutionary algorithms are inspired by Darwinian evolution theory that describes the
method in which a species population changes their individuals genetic material through generati-
ons as an adaptation to the environment. Algorithms in this category encode the possible solution
as the genetic material of an individual of the population and use the evaluation of the objective
function as the environmental pressure, forcing the population to adapt and consequently have
better individuals that correspond to possible improved solutions to an optimization problem.

Swarm intelligence algorithms use as inspiration for their metaphors the social behavior
displayed by some species of animals. Animals of these species have their members operate in a
dispersed fashion but, as a group, they are capable of accomplishing a common goal, for example,
search for food, mate or escape predators. Algorithms, in this category, generally encode a possible
solution as the position of an individual in the group and use the evaluation of the objective
function to force the movement of individuals towards improved solutions.

Figure 4.1 presents the taxonomy for bio-inspired algorithms for SOOP used in this work. They
are organized in a tree-like structure that points out the categories and relationships between the
different algorithms. The meta-heuristics displayed in Fig. 4.1 are identified by their acronyms
present as following: (a) Genetic Algorithm (GA) (Section 4.3.1), (b) Differential Evolution (DE)
(Section 4.3.2), (c) Particle Swarm Optimization (PSO) (Section 4.3.3), (d) Salp Swarm Algorithm
(SSA) (Section 4.3.4), (e) Gray Wolf Optimization (GWO) (Section 4.3.5), (f) Elephant Herd Op-
timization (EHO) (Section 4.3.6), (g) Dragonfly Algorithm (DA) (Section 4.3.7), (h) Moth-Flame
Optimization (MFO) (Section 4.3.8), (i) Whale Optimization Algorithm (WOA) (Section 4.3.9),
(j) Bat Algorithm (BA) (Section 4.3.10), (k) Adaptive DE (JADE) (Section 4.3.11), (l) Crossover
Strategy Adaptive - (Self)-Adaptive DE (CSASADE) (Section 4.3.12), (m) Discrete PSO (DPSO)
(Section 4.3.13), (n) Self-Adaptive PSO (SAPSO) (Section 4.3.14), (o) Hybrid Discrete PSO

63

Makespan-based (HDPSO-M) (Section 4.3.15), (p) Single-Objective Adaptive DE (SOAMSDE)
(Section 4.4.1), (q) Adaptive GA (AGAv1) (Section 4.4.2), (r) Adaptive GA (AGAv2) (Section
4.4.3), (s) Adaptive GA (AGAv3) (Section 4.4.4), (t) Adaptive GA (AGAv4) (Section 4.4.5), (u)
Adaptive PSO (APSO) (Section 4.4.6), (v) Adaptive PSO (APSOv2) (Section 4.4.7), (w) Hy-
brid Discrete PSO Utilization-based (HDPSO-U) (Section 4.4.8), (x) Hybrid Discrete Adaptive
PSO Utilization-based (AHDPSO-U) (Section 4.4.9), and (y) Adaptive Gray Wolf Optimization
(AGWO) (Section 4.3.5).

Figure 4.2 presents a similar taxonomy but for bio-inspired meta-heuristics for MOOP used
in this work. The list of used meta-heuristic for multi-objective is shorter and are composed of
the following algorithms: (a) Non-dominant Sorting GA (NSGA-II) (Section 4.5.1), (b) Adaptive
Parameter with Mutation Tournament Multi-Objective DE (APMTMODE) (Section 4.5.2), (c)
Non-dominant Sorting Adaptive GA (NSAGA) (Section 4.6.1), and (d) Multi-Objective Non-
dominant Sorting Adaptive DE (MONSADE) (Section 4.6.2).

Bio-inspired
Algorithms

Evolutionary
Algorithms

GA

AGAv1

AGAv2

AGAv3

AGAv4

DE

JADE

CSASADE

SOAMSDE

Swarm Intelligence
Algorithms

PSO

DPSO

APSO

APSOv2

SAPSO

HDPSO-M

HDPSO-U

AHDPSO-U

SSA GWO

AGWO

EHO DA MFO WOA BA

Figura 4.1 – Classification structure of bio-inspired meta-heuristics for SOOP.

4.2 Adaptive Techniques for Bio-Inspired Meta-Heuristics

Adaptive techniques for search-based optimization meta-heuristics can be categorized for their
goal: (a) parameter control strategies a subset of parameter setting strategies (Section
4.2.1) are responsible to adjust parameters during a meta-heuristic execution; and (b) adaptive
operation selection changes heuristic operators used by a meta-heuristic during their execution
(Section 4.2.2).

64

Bio-inspired
Algorithms

Evolutionary
Algorithms

GA

NSGA-II

NSAGA

DE

APTMODE

MONSADE

Figura 4.2 – Classification structure of bio-inspired meta-heuristics for MOOP.

4.2.1 Parameter Setting Strategies

Bio-inspired meta-heuristics relies upon parameters values to determine their behavior and ge-
nerally defines whether their search operators that are responsible for exploration and exploitation
act aggressively in a local search or focus on a global search. The selection of these parameters va-
lues decides whether the algorithm is capable to correctly converge to an optimal value effectively
or stop in a local minimum with premature convergence.

• A taxonomy of the parameters: These parameters are either internal or external ones.
Internal parameters are integrated into the meta-heuristic procedures with values decided
by the algorithm designer and not being capable of alteration by a user. Meanwhile, ex-
ternal parameters are capable of being changed and tuned by a user. Both these types of
parameters values have to be configured somehow by the algorithm designer or the algorithm
user using a parameter setting strategy. The difference is that since the user does not
see internal parameters, it is entirely up to the algorithm designer to correctly set them.

• A taxonomy of the parameter setting: Parameters values that are immutable during the
execution of a meta-heuristic are deemed as static. In many cases, even static parameters
that have their values correctly set in a meta-heuristic are only suitable for a specific problem,
or family of problems, and does not achieve suitable results when applied to other groups
of optimization problems. For some pairs of meta-heuristic static parameters and specific
problems, this overspecialization of parameter values goes so far as being only satisfactory
for a stage of the problem optimization. This only further illustrates the importance of
parameter setting strategies in meta-heuristic algorithms.

As stated in [59] and then revisited in [60], there are two possible modes for parameters
values setting strategies in meta-heuristics: (a) parameter tuning, and (b) parameter
control. The search for (near-)optimal parameter values in a meta-heuristic by these para-
meter setting strategies by themselves are optimization problems that need to be optimized
on top of the search-based optimization performed by the bio-inspired meta-heuristic in
hand. For some optimization problems, the search space size of possible parameter values is

65

even larger than the search space of the problem being optimized depending on how many
static parameters the meta-heuristic has.

– Parameter tuning: it is a strategy to search for (near-)optimal values for static para-
meters for all iterations of the heuristic algorithm. This search is generally an empirical
trial-and-error method where the whole optimization process is repeated multiple times
to find parameters that bear good results when compared with others. If the objective
function evaluation is slow, the parameter tuning then becomes time-consuming or even
intractable. An example of parameter tuning in action is presented by [14], where there
was an intensive search to identify the best parameter values for a genetic algorithm
applied to a family of task mapping problems.

– Parameter control: it is an alternative that adds techniques that are capable of
dynamically changing parameters values during a meta-heuristic execution while, con-
sequently, mitigating its dependence on a proper time-consuming initial parameter
tuning while improving the algorithm performance. Parameter control mechanisms
are subdivided into three groups:

∗ Deterministic strategies: The parameter values are changed using rules that do
not take into consideration the algorithm performance. An example of this type
of strategy is present in iteration varying parameters such as the inertia weight
present on PSO-based algorithms [61].
∗ Adaptive strategies: Adaptation mechanisms that receive feedback from the algo-
rithm performance and alter the values of the parameters based on this information.
These modifications can also adjust the direction and speed in which the values of
the parameters change.
∗ Self-Adaptive strategies: Adaptation mechanisms that encode the parameter va-
lues into the algorithm decision variables and uses its optimization mechanisms to
search for the best set of parameters while optimizing the fitness function.

Figure 4.3 illustrates the taxonomy of parameter setting strategies for bio-inspired meta-
heuristics.

Parameter Setting
Strategy

Parameter Tunning
Strategy

Parameter Control
Strategy

Deterministic
Strategy

Adaptive
Strategy

Self-Adaptive
Strategy

Setting
before execution

Setting
during execution

Figura 4.3 – Classification of bio-inspired algorithms parameter setting strategies.

66

4.2.2 Adaptive Operator Selection

Adaptive Operator Selection mechanisms are part of another category of adaptive tech-
niques for bio-inspired meta-heuristics that, instead of changing parameter values, they change
heuristic operators. Generally, Adaptive Operator Selection chooses a search operator in a
pool of possible operators depending on the performance displayed by a meta-heuristic, a specific
operator or a search agent, and then combine or substitute them with other heuristic operators
already implemented in the meta-heuristic operator.

In this work, adaptive techniques (parameter control strategies and adaptive opera-
tor selection) are also categorized depending on the following aspects of their functionality as
mentioned in [60]:

• How changes are made: Defines the type of mechanism used, these mechanisms may be,
for example, static (with no change), deterministic, adaptive, and self-adaptive.

• Parameter changed: Since a meta-heuristic can adopt multiple different parameter setting
strategies for their various parameters, it is important to define which parameter values are
changed by which parameter setting strategy.

• Scope of change: Defines the range of influence of an adaptive mechanism that could affect
the population or just an individual search agent.

• Evidence for changes: Defines the metric used to identify the need for change, for example,
an adaptation mechanism may rely upon the objective function as a metric, or diversity of
solutions in the population of search agents.

Regarding common parameters in bio-inspired algorithms, the number of search agents in a
meta-heuristic is a static external parameter shared by all bio-inspired algorithms. The size of the
population of search agents influences whether an algorithm starts with enough information for
the problem components to exploit upon and consequently reducing the convergence time [62] and
if the algorithm does not have enough search agents to escape a local minima region [63] and [64].
Since it is a static parameter, the correct approach is to use parameter tuning strategies to define
which population or swarm size should be used by a bio-inspired meta-heuristic when solving a
problem. However, in this work, the number of search agents is a parameter that was not focused
upon and not treated by parameter control strategies.

There are in the literature meta-heuristics that contains parameter control strategies to deal
with the size of the population, such as, for example, LSHADE [65]. Other common types of
parameters shared by multiple meta-heuristics in this work are those parameter values that con-
trol adaptive techniques, including parameter control and adaptive operation selection strategies.
These parameters are commonly treated as intern static ones with values controlled only by the
algorithm designer. However, these parameters can also be adjusted by other parameter control
strategies affecting meta-heuristic behavior when searching for optimal parameters.

67

By grouping the meta-heuristics based on the adaptive technique present in its methods, this
work has the following groups:

• No adaptive methods: The following meta-heuristics does not contain any adaptive
methods: (a) GA, (b) DE, (c) EHO, (d) BA, (e) DPSO, (f) HDPO-M, (g) HDPSO-U,
and (h) NSGA-II.

• Deterministic Parameter Control Strategies: The following meta-heuristics contains
this type of adaptation methods: (a) PSO, (b) SSA, (c) GWO, (d) DA, (e) MFO, (f) WOA,
(g) CSASADE, (h) SAPSO, (i) SOAMSDE, (j) AGAv2, (k) AGAv3, (l) AGAv4, (m) APSO,
(n) APMTMODE, (o) NSAGA, and (p) MONSADE.

• Adaptive Parameter Control Strategies: The following meta-heuristics contains adap-
tation methods of this type: (a) JADE, (b) CSASADE, (c) SOAMSDE, (d) AGAv1, (e)
AGAv2, (f) AGAv3, (g) AGAv4, (h) APSO, (i) APSOv2, (j) AHDPSO-U, (k) AGWO, (l)
APMTMODE, (m) NSAGA, and (n) MONSADE.

• Self-Adaptive Parameter Control Strategies: There are only one meta-heuristic that
uses this strategy: SAPSO.

• Adaptive Operation Selection Techniques: The following meta-heuristics contains this
type of adaptation schemes: (a) CSASADE, (b) SOAMSDE, (c) AGAv3, (d) AGAv4, (e)
APMTMODE, (f) NSAGA, and (g) MONSADE.

Figure 4.4 holds images that show an enumeration for the parameters, parameters strategies
settings and adaptive operation selection mechanisms to control them, for the meta-heuristics used
in this work. In this figure, the following acronyms are used (AOS) Adaptive Operator Selection,
(DPCS) Deterministic Parameter Control Strategy, (APCS) Adaptive Parameter Control Stra-
tegy, (SAPCS) Self-Adaptive Parameter Control Strategy, (ISP) Internal Static Parameter, and
(ESP) External Static Parameter.

68

(a) SOOP from literature, where the y-axis represents the number of parameters or adaptive techniques.

(b) SOOP developed in this work, where the y-axis represents the number of parameters or adaptive
techniques.

(c) MOOP.

Figura 4.4 – Number of parameters and parameter setting strategies for each meta-heuristic in
this work.

69

4.3 Single-Objective Optimization Bio-Inspired Meta-Heuristics
from Literature

4.3.1 Genetic Algorithm (GA)

4.3.1.1 Meta-Heuristic Description

Genetic Algorithm (GA) is an evolutionary meta-heuristic in which the solutions held by search
agents are interpreted to be genetic material in individuals in a population P of size n. Each ith
individual holds a possible solution xi that is an integer vector formed by d components and each
component is called a chromosome. The GA implemented in this work is based on the ones present
in [14] and [45]. Algorithm 4 describes the implemented GA pseudo-code.

Algorithm 4 Genetic Algorithm (GA)

INPUT: Objective Function (f(·))
Iterations (I)
Number of individuals (n)
Number of chromosomes (d)
Lower-bound vector (lb)
Upper-bound vector (ub)
Mutation rate (pm)
Crossover rate (pc)

OUTPUT: Best solution (xbest)
1: procedure GA(f, I, n, d, lb,ub, pm, pc)
2: Initialize xi(i = 1, ..., n)
3: Evaluate f(xi)
4: Obtain best Individual xbest
5: for k = 1 to I − 1 do

6: Pnew = ∅
7: for i = 1 to bn2 c do
8: Binary Tournament Selection
9: One-Point Crossover

10: Uniform Mutation
11: Evaluate generated offsprings
12: Pnew ← xnew1

13: Pnew ← xnew2

14: end for
15: P = Sort P ∪ Pnew
16: Remove individuals in P until |P |= n

17: Update xbest
18: end for
19: return xbest
20: end procedure

Solutions in the population are generated during an initialization step (lines 2 to 4 in Algorithm
4) using a uniform distribution that generates chromosomes randomly inside of the search space
given the integer vectors ub and lb that are composed by the upper and lower bounds values for
the search space components.

Since the chromosomes are integer values, GA is expected to be used in single-objective COP
optimization problems with an objective function f where the search space is a subset of Nd. After
the population generation, the solutions in P evolves through I iterations using three genetic
operators: (a) selection, (b) crossover, and (c) mutation.

The selection operator chooses the fittest individuals of the population to transmit their chro-
mosomes to the next generation as parents to their offspring [66]. The selection strategy used is
a binary tournament selection where to every new offspring two pairs of different individuals

70

are randomly selected from the population P and the fittest individual of each select pairs is in
turn selected as one of the parents.

After selection, GA applies a crossover operator on a pair of parents simulating a reproduction
scheme by exchanging chromosomes between both parents. In this work, the crossover operator
used in GA is the single-point crossover operator where, if a pair of parents pass a random
check using a crossover rate pc, a random index rd ∈ [1, d] called crossover point is used
to separate and swap chromosomes from both parents to generate two offsprings that are new
individuals with new solutions formed with chromosomes from both parents. Figure 4.5 illustrates
a graphical representation of a single-point crossover operation functionality being applied on two
parents solutions (xp1, xp2) to generate two offsprings (xo1, xo2) given a crossover point rd. If
the pair of parents does not pass the random check, their solutions are copied on to the next
generation as two new offsprings.

1 0 2 2

1 1 2 0

1 0 2 0

1 1 2 2

rd

xp1:

xp2:

xo1:

xo1:

Figura 4.5 – Graphical representation of a one-point crossover operator.

At last, after the crossover operation, GA applies a random gene flip mutation operator
that modifies the chromosomes of the offspring individuals stimulating the addition of diversity in
the solutions present in the population and helping the algorithm to avoid local minima. For every
jth chromosome in an offspring solution, the mutation operation performs a random check with
the mutation rate pm to substitute this chromosome’s original value with a randomly uniform
generated value inside of the range [lbj , ubj].

After the application of genetic operators, GA unifies both the initial population P and the
new population of offsprings Pnew then sort their evaluation results in ascending order. The new
unified population has its size reduced by removing their last individuals since it was ordered these
represent the worst solutions until only the best n individuals are left. This new solution is then
used as a parent population for the next GA iteration. This elitist process of leaving only the best
solution allows the algorithm to converge with the best solution for the single-objective function
f at hand.

71

4.3.1.2 Parameters Description for GA

GA has two external static parameters pm and pc that controls, respectively, the rate in which
the solutions exchange components and the rate in which new solution components are added, or
re-added, to the population P . For a better GA performance, these parameters values should be
configured using a parameter tuning strategy depending on the problem being optimized.

4.3.2 Differential Evolution (DE)

4.3.2.1 Meta-Heuristic Description

Differential Evolution (DE) [67] is an evolutionary bio-inspired meta-heuristic algorithm that
uses two strategies to explore and exploit the solutions in a search space: (a)mutation strategy:
Add population diversity by creating new solution components; (b) crossover strategy: Transfer
information between new and old solutions to exploit known solution components. Even though
these strategies are similar to the genetic operators in GA, the approach in which DE generate
and keep new solutions is different from GA.

DE has a population Pc of n individuals and each ith individual is composed of a d-dimensional
real vector that, during the kth iteration of the algorithm, is represented as xki . Vector xki is a
possible solution for a continuous SOOP with an objective function f with a search space being a
subset of Rd.

Since solutions x(k)
i are continuous, to use DE to optimize a COP problem with a search

space in Nd, in this work, continuous solutions are rounded in an element-by-element basis before
evaluating the objective function. This same approach is repeated to any bio-inspired algorithm
that holds continuous solutions in their search agents.

During DE initialization, Pc has its individuals randomly generated inside of the continuous
search-space using uniform distributions for each component of each individual given the real
vectors ub and lb that is composed by the upper and lower bounds values for the search space.

After the initialization, the population evolves through multiple iterations using mutation and
crossover strategies on each individual until a final iteration I is reached. In this work, DE uses a
rand/1 mutant strategy where an ith individual x(k)

i generates a mutant vector vi according
to the following equation:

vi = x(k)
r1 + F (x(k)

r2 − x
(k)
r3), (4.1)

where r1, r2, r3 ∈ [1, n] are different random indices, and F is an external static parameter
called scaling factor.

Following the mutation, DE uses a binary crossover strategy that uses the mutant vector
vi to diversify the components of x(k)

i by combining both vector as a trial vector ui using Eq. 4.2
for every j element of the solution. Note that this process truncates the mutant vector components
back to the search space boundaries.

72

ui,j =

min(ubj ,max(lbj , vi,j)) if r ≤ CR or j = rj

x
(k)
i,j otherwise

, (4.2)

where r is a random real number in [0, 1), rj is a random index in [1, d] kept for all j, and CR is a
external static parameter in [0, 1) called crossover rate. The parameter CR controls the rate
in which new solution components are added to the population Pc. A DE-based algorithm that
uses both the previously described mutation and crossover strategies is called DE/rand/1/bin.

The trial vector ui is evaluated using the objective function f , and its result is then compared
with the evaluation previously obtained by the individual x(k)

i . If f(ui) < f(x(k)
i), then x(k)

i is
replaced by ui. This replacement process in DE-based algorithms is called selection strategy,
and it is represented by the following equation:

x
(k+1)
i =

ui if f(ui) < f(x(k)
i)

x
(k)
i otherwise

. (4.3)

The pseudo-code for DE/rand/1/bin algorithm is present in Algorithm 5.

4.3.2.2 Parameters Description for DE

DE has two external static parameters F and CR, and their values control the exploration
and exploitative behavior of the meta-heuristic. These parameters control, respectively: (a) F
influences the importance of the difference between individuals when generating mutant vectors
affecting the algorithm exploration; (b) CR influences the rate in which components of generated
mutant vectors are added in possible new solutions; For these reasons, the use of a parameter
tuning strategy to adjust F and CR may improve DE performance.

Algorithm 5 Differential Evolution (DE/rand/1/bin)

INPUT: Objective Function (f(·))
Iterations (I)
Number of individuals (n)
Number of dimensions (d)
Lower-bound vector (lb)
Upper-bound vector (ub)
Scaling factor (F)
Crossover rate (CR)

OUTPUT: Best solution (xbest)
1: procedure DE(f, I, n, d, lb,ub, F, CR)
2: Initialize x(0)

i (i = 1, ..., n)
3: Evaluate f(x(0)

i)

4: Obtain best Individual xbest
5: for k = 1 to I − 1 do
6: for i = 1 to n do
7: (rand/1) Mutation . Eq. 4.1
8: Binary Crossover . Eq. 4.2
9: Selection . Eq. 4.3

10: end for
11: Update xbest
12: end for
13: return xbest
14: end procedure

73

4.3.3 Particle Swarm Optimization (PSO)

4.3.3.1 Meta-Heuristic Description

Particle Swarm Optimization (PSO) [61] [68] is a swarm intelligence meta-heuristic inspired
by the social behavior of fish schools and flocks of birds. Search agents in PSO are called particles.
To simulate the swarm search for food, every particle in PSO has a memory about the best food
source it has found so far and also exchanges information with other particles to know where the
swarm has found the best food source. This pattern of information exchange exploits the swarm
knowledge to increase the algorithm convergence by finding better food sources when exploring.
The pseudo-code for PSO is present in Algorithm 6.

Algorithm 6 Particle Swarm Optimization (PSO)

INPUT: Objective Function (f(·))
Iterations (I)
Number of particles (n)
Number of dimensions (d)
Lower-bound vector (lb)
Upper-bound vector (ub)
Initial weight (winitial)
Final weight (wfinal)
Maximum particle speed (vmax)
Social factor (c1)
Cognitive factor (c2)

OUTPUT: Best solution (xbest)
1: procedure PSO
2: Initialize x(0)

i (i = 1, ..., n)
3: Initialize v(0)

i (i = 1, ..., n)
4: Evaluate f(x(0)

i)

5: w(0) = winitial

6: xi,pbest = x
(0)
i

7: Obtain best solution xbest
8: for k = 1 to I − 1 do
9: w = wfinal + k(wfinal−winitial)

I

10: for i = 1 to n do
11: Calculate v(k)

i . Eq. 4.4
12: Calculate x(k)

i . Eq. 4.5
13: Evaluate f(x(0)

i)
14: Update xpbest
15: end for
16: Update xbest
17: end for
18: return xbest
19: end procedure

PSO has a swarm of Pc particles and each ith particle has a d-dimensional real vector x(k)
i

that represents its position during iteration k as well as being a solution for a single-objective
function f . Besides its position, an ith particle also holds a copy for the position of its personal
best evaluation xpbesti, a reference to the global best position found by the swarm xbest, and, to
model the swarm movement, a speed vector v(k)

i .

During the initialization, particles positions are initialized using a random uniform distribution
in the interval [lbj , ubj] for each jth component for each particle with ub and lb being vectors
that are composed by the upper and lower bounds values for the search-space. Speed vectors
also have their components initialized in a similar fashion as the positions, however, the random
uniform distribution used is inside [−vmax, vmax] where vmax is an external static parameter
called maximum speed. In other words, each jth component of the speed vector for the ith

74

particle is constrained vi,j ∈ [−vmax, vmax].

Equation 4.4 calculates the speed components for each ith particle moving inside of the search
space.

v
(k+1)
i,j = min(vmax,max(−vmax, w v(k)

i,j + c1r1(xbestj − x
(k)
i,j) + c2r2(xpbestj − x

(k)
i,j))), (4.4)

where r1 and r2 are random real values generated using uniform distribution in [0, 1], and w is an
internal parameter called inertial weight. External static parameters c1 and c2 are called,
respectively, social and cognitive factors.

After calculating the speed for the particles, their position inside of the search space are
updated using the following equation:

x
(k+1)
i,j = min(ubj ,max(lbj , x(k)

i,j + v
(k+1)
i,j)). (4.5)

For every iteration, the inertial weight w(k) is adjusted using a deterministic parameter
control strategy that decreases linearly the values for weights throughout iterations between
two external static parameters winitial and wfinal called initial inertial weight and final
inertial weight.

4.3.3.2 Parameters Description for PSO

PSO has five external static parameters winitial, wfinal, vmax, c1 and c2. All of these para-
meter influence the performance of PSO as following: (a) winitial influences particles movement
during the first iterations affecting PSO exploration. It is suggested that winitial ∈ (0, 1) to im-
prove convergence; (b) wfinal influences particles movement during last iterations affecting PSO
exploitation of information gathered during execution. PSO expects wfinal < winitial with sug-
gested value wfinal ∈ (0, 1) to improve convergence; (c) c1 and c2 influences the PSO behaviour
towards global or local search, respectively, by affecting the tendency of particles movement in
direction of the global optimal or their local optimal. When c2 < c1, the PSO keeps an aggressive
approach prone to fast convergence but susceptible to be a premature one. In the other case, when
c2 > c1, the algorithm acquire a more conservative instance with the particles focusing more on
their local than the global optima resulting in converge that takes more iterations. As analyzed
in [69], for PSO convergence c1 + c2 ∈ [0, 4]; (d) vmax influences PSO exploration by controlling
the maximum absolute value that a particle is allowed to move in a single dimension in the search
space. If particles are allowed to move in long steps, they may escape local minima but are prone
to “jump over” possible good solutions. A suggested value for vmax ∈ [0, 1]||ub− lb||.

PSO has an internal parameter adjusted by a deterministic parameter control strategy:
the inertial weight w. The parameter w influences PSO to alternate between a more exploratory
stage with particles moving by large steps in the search space to a more exploitative stage with the
particles moving with small steps. This change in behavior is advantageous because, during the
last iterations, the algorithm is expected to be closer to the global optima, and only a refinement
of the solution is necessary.

75

4.3.4 Salps Swarm Algorithm (SSA)

4.3.4.1 Meta-Heuristic Description

Salps Swarm Algorithm (SSA) [70] is a swarm intelligence bio-inspired meta-heuristic inspired
by the social behavior of small animals called salps. Salps are marine animals similar to jellyfish
that live in deep-sea waters and feed on plankton and moves through their environment as a
chain of group members following a leader and collaborate foraging for food. The pseudo-code in
Algorithm 7 represents SSA.

Algorithm 7 Salp Swarm Algorithm (SSA)

INPUT: Objective Function (f(·))
Iterations (I)
Number of salps (n)
Number of dimensions (d)
Lower-bound vector (lb)
Upper-bound vector (ub)

OUTPUT: Best solution (xbest)
1: procedure SSA(f, I, n, d, lb,ub)
2: Initialize salps x(0)

i (i = 1, ..., n)
3: Evaluate f(x(0)

i)
4: Sort Pc
5: Obtain xfood
6: for k = 1 to I − 1 do

7: Update c1 . Eq. 4.7
8: for i = 1 to n do
9: if i = 1 then

10: Update leader x(k)
1 . Eq. 4.6

11: else
12: Update follower x(k)

i . Eq. 4.8
13: end if
14: Evaluate f(x(k)

i)
15: end for
16: Update xfood
17: end for
18: return xbest
19: end procedure

SSA model the salps as a swarm Pc of n salps and each ith salp has its position defined as a
d-dimensional real vector x(k)

i that is also a possible solution for a objective function f .

The swarm members can assume two types: (a) leader or (b) follower. The definition for
a type of a salp takes place during the initialization stage. In this stage, the salps have their
positions randomly generated inside of the search space. These positions are then evaluated using
a single-objective function f . After the evaluation of every position, SSA sorts the population
in ascending order of objective evaluation and using this ordered swarm SSA gives to each salp
its rank based on its index in the sorted swarm. The first salp with index i = 1 is the leader.
Meanwhile, all other salps are followers.

The leader is the salp that moves around the food position, namely, the best solution, and
leads the other salps to do the same. The leader salp has its position updated using the following
equation:

x
(k+1)
1,j =

xfood,j + c1
(
r1
(
ubj − lbj

)
+ lbj

)
, if r2 ≥ 0.5

xfood,j − c1
(
r1
(
ubj − lbj

)
+ lbj

)
, if r2 < 0.5

, (4.6)

where x(k)
1,j is the leader position at dimension j and kth iteration, x(k)

food is the food position

76

representing the best solution found so far. Vectors ub and lb holds the upper and lower bounds
values for the search space. Random real numbers r1 and r2 are in [0, 1) and defines which direction
the leader should move away or towards the food. An internal parameterc1 has its value adjusted
every iteration by a deterministic parameter control strategy.

Equation 4.7 represents the deterministic control parameter strategy calculation of c1

during iterations.

c1 = 2e
−
(

4k
I

)
, (4.7)

where k is the current iteration and I is SSA maximum number of iterations.

The followers salps update their positions using the following equation:

x
(k+1)
i,j = 0.5

(
x

(k)
i,j + x

(k)
i−1,j

)
, (4.8)

where x(k)
i,j with i > 1 is jth component for the ith salp position. This update method forces the

salps to follow the salp with one rank above it. It has as a consequence that the swarm moves in a
chain-like pattern that sweeps across the search space seeking for the food position (best solution).

4.3.4.2 Parameters Description for SSA

SSA has no external static parameters and its single internal parameter c1 is adjusted by a
deterministic control parameter strategy. The parameter c1 influences SSA by alternating
its behavior between exploration and exploitation by defining whether the leader salp moves by
large or small steps inside of the search space.

4.3.5 Gray Wolf Optimization (GWO)

4.3.5.1 Meta-Heuristic Description

Gray Wolf Optimization (GWO) [71] is a swarm intelligence meta-heuristic that uses as a
metaphor for their heuristic search operators the social behavior observed in wild packs of wolves
when hunting. Their behavior presents a hierarchical assignment of different tasks between pack
members. Both in the wild as in GWO, wolf packs are divided into four hierarchical groups: a)
alpha (α): They are the leading wolves, and the others follow them when hunting; b) beta (β):
The second in command and give support to the alpha when hunting. Alpha wolves come from
this group when an alpha becomes old or dies; c) delta (δ): The third in command. In the wild,
this group has old alphas and betas, sentinels, scouts and caretakers of the pack pups; d) omega
(ω): All other wolves in the pack are part of this group, and they submit to wolves in the former
groups. In GWO, the omega wolves are responsible for exploring the hunting grounds following
the wolves from the upper hierarchical groups α, β and δ. Pseudo-code for GWO is present in
Algorithm 8.

The wolf pack Pc is formed by n omega wolves with each ith wolf position at iteration k

expressed as x(k)
i in an d-dimensional hunting ground while following the alpha, beta and delta

wolves positions expressed as xα, xβ and xδ, respectively, and representing the three best solutions.

77

Algorithm 8 Gray Wolf Optimization (GWO)

INPUT: Objective Function (f(·))
Iterations (I)
Number of wolves (n)
Number of dimensions (d)
Lower-bound vector (lb)
Upper-bound vector (ub)

OUTPUT: Best solution (xbest)
1: procedure GWO(f, I, n, d, lb,ub)
2: Initialize wolves x(0)

i (i = 1, ..., n)
3: Evaluate f(x(0)

i)
4: Update xα Best Solution
5: Update xβ 2nd best Solution
6: Update xδ 3rd best solution

7: for k = 1 to I − 1 do
8: a = 2− 2 k

I

9: for i = 1 to n do
10: Update wolf x(k)

i . Eq. 4.13
11: Evaluate f(x(k)

i)
12: Update xα Best Solution
13: Update xβ 2nd best Solution
14: Update xδ 3rd best solution
15: end for
16: end for
17: xbest = xα

18: return xbest

19: end procedure

In GWO initialization, ω wolves positions are generated randomly inside of the search space
using a uniform distribution in [lbj , ubj] for each jth dimension for each ith omega wolf. Then
these positions are evaluated using the single-objective f , and the three best solutions are defined
as positions for the wolf leaders, respectively, alpha, beta, and delta.

During every iteration, omega wolves follows each of their superiors using Eq. 4.9, Eq. 4.10
and Eq. 4.13, respectively, for α, β and δ wolves.∆xα,j = |c1 · xα,j − x(k)

i,j |

xfα,j = xα,j −A1 ·∆xα,j
. (4.9)

∆xβ,j = |c2 · xβ,j − x
(k)
i,j |

xfβ ,j = xβ,j −A2 ·∆xβ,j
. (4.10)

∆xδ,j = |c3 · xδ,j − x
(k)
i,j |

xfδ,j = xδ,j −A3 ·∆xδ,j
, (4.11)

in these equations, ∆xα,j , ∆xβ,j , and ∆xδ,j are the differences between positions of the leader
wolves and the omega wolf x(k)

i in a component j. Vectors x(fα, j), xfβ ,j and xfδ,j are the
positions for the ith omega wolf in dimension j, if it would only follow a single leader α, β or δ,
respectively. Parameters c1, c2, and c3 are randomly generated real values in [0, 2] and A1, A2,
and A3 are internal parameters calculated using Eq. 4.12.

Am = 2arm − a (4.12)

where m ∈ {1, 2, 3} and rm are different randomly generated real values inside [0, 1]. An internal
parameter a adjusted by a deterministic parameter control strategy that decreases a linearly
throughout the iterations between 2 and 0.

78

At last, the position of omega wolves for each jth dimension is updated as the arithmetic
average between xfα , xfβ and xfδ . It is expressed in the following equation:

x
(k+1)
i,j =

xfα,j + xfβ ,j + xfδ,j

3 .. (4.13)

4.3.5.2 Parameters Description for GWO

GWO does not have any external static parameters. However, its exploratory and exploi-
tative behaviors relies on its internal parameters: (a) a, (b) A1, (c) A2, and (d) A3. The value
for a is controlled every iteration by a deterministic parameter control strategy decreasing
linearly between 2 and 0. Parameter a controls the algorithm by affecting the parameters A1, A2,
A3. Since a decreases with iterations, the algorithm tends to an exploratory behavior during the
first iterations and an exploitative one during the last iterations.

The variables Am with m ∈ {1, 2, 3} varies every iteration randomly in the interval [−a, a] and
they influence whether the wolf should depart from a leader |Am|> 1 or move towards a leader
|Am|< 1 for each jth dimension.

4.3.6 Elephant Herd Optimization (EHO)

4.3.6.1 Meta-Heuristic Description

EHO algorithm [72] is a swarm intelligence based meta-heuristic that uses as inspiration the
behavior of elephant herds in nature. Elephants are social animals, and a group of them is
composed of multiple clans that live together following a matriarch leader. In these clans, males
when reaching reproductive age, they separate from these clans to live alone. EHO algorithm is
present in pseudo-code form in Algorithm 9.

EHO has a population Pc of n elephants with positions x(k)
i that are d-dimensional real vectors

as well as solutions for a single-objective function f . Pc is subdivided into Nclans clans Pn with
n = {1, ..., Nclans} with same size

⌊
n

Nclans

⌋
. Nclans is a external static parameter in EHO.

In the initilialization, EHO generates randomly n solutions x(0)
i for f given that each compo-

nent is bounded by the elements in vectors lb lower-bounds and ub upper-boundaries, and use
this solutions as positions for each elephant. Then, EHO subdivides these solutions randomly
in its Nclans and evaluate each elephant position. For each generated clan, EHO partitions the
elephants into two types depending on their initial evaluation: (a) matriarch that represents the
best solution, and (b) followers elephants that represent other solutions.

Elephants positions are updated during the iterations by a representation of the social aspect of
the elephants in Pc that is expressed by applying two operations over each clan: (a) clan updating
and (b) separating operators.

The clan updating operator updates elephants in each clan. Each follower elephant in a clan

79

Algorithm 9 Elephant Herd Optimization (EHO)

INPUT: Objective Function (f(·))
Iterations (I)
Number of elephants (n)
Number of dimensions (d)
Lower-bound vector (lb)
Upper-bound vector (ub)
Number of clans (Nclans)
Number of kept elephants (Nkept)
Scaling factor (α)
Center scaling factor (β)

OUTPUT: Best solution (xbest)
1: procedure EHO
2: Initialize elephants x(0)

i (i = 1, ..., n)
3: Separate elephants in Nclans clans

4: Evaluate f(x(0)
i)

5: Define matriarchs for each clan xc,mat
6: Define worst for each clan xc,worst
7: for k = 1 to I − 1 do
8: Save Nkept best elephants in each clan
9: Update followers in clans . Eq. 4.14

10: Update matriarchs in clans . Eq. 4.15
11: Separate operators in clans . Eq. 4.17
12: Evaluate f(x(k)

i)
13: Define matriarchs for each clan xc,mat
14: Define worst for each clan xc,worst
15: Replace Nkept worst in clans
16: Update xbest
17: end for
18: return xbest

19: end procedure

has its position updated using the following equation:

x
(k+1)
c,l = x

(k)
c,l + r α

(
xc,mat − xc,l

)
, (4.14)

where x(k)
c,l is a position for the lth elephant that is part of the cth clan at iteration k, and xc,mat

is the position for the matriarch in cth clan. The real number r is randomly generated in [0, 1],
and α is an external static parameter.

The matriarch elephant position of clan c is updated using the following equation:

xc,best = β xc,center, (4.15)

where β is an external static parameter and xc,center is the center position of the cth clan and
it is calculated using the following equation for each jth component of xc,center:

xc,center,j = 1
|Pn|

|Pn|∑
j=1

xc,l,j , (4.16)

where xc,l,j is the jth component of the lth elephant in clan c.

The separating operator updates the worst elephant in each clan by creating a completely new
random solution using the following equation:

xc,worst,j = r(ubj − lbj) + lbj , (4.17)

where ris a random real number in [0, 1], xc,worst,j is the jth element for the position of the elephant
with the worst evaluation in clan c, ubj is the search space upper-boundary for jth dimension,
and lbj is lower-boundary for search space jth dimension.

80

After the application of clan update and separating operators, the elephants are evaluated,
and then, an elitist process keeps the Nkept best solutions in each clan from previous iterations to
replace the elephants with the worst evaluations in the current solution after the evaluation. The
integer Nkept is an external static parameter.

4.3.6.2 Parameters Description for EHO

EHO has three external static parameters: (a) α, (b) β, (c) Nclans, and (d) Nkept. These
parameters need to be configured before the algorithm execution through a parameter tuning
process for better performance for the algorithm.

The value for α ∈ [0, 1) influences the exploration of EHO by working as a scaling factor for
the difference between a matriarch position and a follower elephant in each clan. If α is large,
then the chances for elephants to quickly move towards their matriarch increases and EHO clans
suffers premature convergence. Otherwise, if α is too small, the elephants move slower towards
their matriarch and EHO has lower convergence speed.

The parameter β ∈ [0, 1) influences the exploration by controlling the movement of the matri-
arch in each clan towards the center of their clan. For this reason, β controls the speed in which
all solutions drift towards the center of each clan. The parameter Nclans controls how many clans
in the population of elephants, and it influences EHO exploration by defining Nclans local optimal
in which elephants in each clan will move towards during the initial iterations. The parameter
Nkept adjust the (re-)entrance of past good solutions in the clan, and it helps the exploitation of
the algorithm.

4.3.7 Dragonfly Algorithm (DA)

4.3.7.1 Meta-Heuristic Description

DA [73] is a swarm intelligence meta-heuristic that uses as a metaphor for its procedures the
collective behavior of adult dragonflies in nature. Dragonflies are predator insects and have a
range of smaller animals in their diet. When flying in a swarm, dragonflies behaves in three
types of movements: (a) static movement: when hunting, dragonflies in small groups fly back
and forth searching for prey; (b) migration: when hunting, the whole swarm flies in the same
direction to migrate from one hunting ground to another; (c) escape: dragonflies are also predated
upon by birds and other animals. To survive, the swarm combines an escape movement from
predators flying away from identified threats while converging to the prey position. DA is shown
in pseudo-code form in Algorithm 10.

DA optimization has a swarm Pc of n dragonflies. Each ith dragonfly holds a position x(k)
i in

a d-dimensional continuous search space and a possible solution for the objective function f . The
ith dragonfly also contain their speed information represented as v(k)

i at iteration k.

During the initialization, DA generates n random solutions for single-objective function f

inside of the search space defined by the upper and lower boundaries present as elements in the

81

Algorithm 10 Dragonfly Algorithm (DA)

INPUT: Objective Function (f(·))
Iterations (I)
Number of dragonflies (n)
Number of dimensions (d)
Lower-bound vector (lb)
Upper-bound vector (ub)

OUTPUT: Best solution (xbest)
1: procedure DA(f, I, n, d, lb,ub)
2: Initialize wolves x(0)

i (i = 1, ..., n)
3: Initialize v(0)

i (i = 1, ..., N)
4: for k = 1 to I do
5: Evaluate f(x(k)

i)
6: Update xbest
7: Update xworst
8: Update w,wsep, wali, wcoh, watt, wrep
9: Update nr . Eq. 4.19

10: for i = 1 to n do
11: Obtain Xi,nbrs

12: if Xi,nbrs 6= ∅ then
13: Calculate xi,sep . Eq. 4.18
14: Calculate xi,ali . Eq. 4.20
15: Calculate xi,coh . Eq. 4.21
16: Calculate xi,att . Eq. 4.22
17: Calculate xi,rep . Eq. 4.23
18: Update v(k+1)

i . Eq. 4.24
19: x

(k+1)
i = x

(k)
i + v(k+1)

i

20: else
21: Update x(k+1)

i . Eq. 4.28
22: end if
23: end for
24: end for
25: return xbest

26: end procedure

d-dimensional vectors lb and ub.

The position of a dragonfly is updated analogous to particles in PSO (Section 4.3.3) using Eq.
4.5. DA emulates the different movements displayed by a dragonfly in nature by constructing a
speed with terms that depend on the following types of movements: (a) Separation (static), (b)
Alignment (migration), (c) Cohesion, (d) Food attraction, and (e) Enemy repulsion.

The separation term vi,sep for a dragonfly i is calculated using the following equation:

vi,sep =
∑

xl,nbrs∈Xi,nbrs

(xl,nbrs − x
(k)
i), (4.18)

where x(k)
i is the ith dragonfly position at iteration k, and xl,nbrs is the lth neighbor dragonfly in

the set Xi,nbrs of neighbors for the ith dragonfly.

The neighborhood for the ith dragonfly Xi,nbrs is formed for the dragonflies with positions
inside of a hypersphere in the search space with the center in x(k)

i and a radius of nr. Parameter
nr is the neighborhood radius, and it is an internal parameter that has its value increased th-
roughout the algorithm execution by a deterministic parameter control strategy as described
by equations:

nr = ||ub− lb||
(

0.1 + k

I

)
, (4.19)

where ub and lb are the vectors holding the upper and lower boundaries values for the search-space.

82

The alignment term vi,ali for the speed of ith dragonfly is calculated by the following equation:

vi,ali = 1
|Xi,nbrs|

∑
vl,nbrs∈Xi,nbrs

vl,nbrs, (4.20)

where vi,nbrs is the speed for the lth dragonfly with position neighboring that of the ith dragonfly
by being part of Xi,nbrs.

The cohesion term vi,coh for the ith dragonfly uses the following equation:

vi,coh = 1
|Xi,nbrs|

∑
xl,nbrs∈Xi,nbrs

xl,nbrs − x
(k)
i , (4.21)

where xl,nbrs is the lth neighbor dragonfly in the set Xi,nbrs in the set of neighbors Xi,nbrs.

The attraction towards food term vi,att for a dragonfly i is calculated using the following
equation:

vi,att = xbest − x
(k)
i , (4.22)

where xbest is the food source position and it is represented by the best solution found so far.

The repulsion enemy term vi,rep for a dragonfly i is calculated using equation:

vi,rep = xworst + x(k)
i , (4.23)

where xworst is the predator position and it is represented by the worst solution found so far by
DA.

At last, the speed of the ith dragonfly v(k)
i in the swarm is updated using equation:

v
(k+1)
i =wsepvi,sep + walivi,ali + wcohvi,coh + wattvi,att + wrepvi,rep + wv

(k)
i , (4.24)

where w, wsep, wali, wcoh, watt and wrep are internal parameters. The values for wsep, wali,
wcoh, and watt are updated using Eq. 4.25. Meanwhile, wrep is adjusted every iteration using a
deterministic parameter control strategy defined by Eq. 4.26 and w is also controlled by
another deterministic parameter control strategy represented in Eq. 4.27.

wtype = rtypewrep, (4.25)

where type = {sep, ali, coh, att}, and rtype is a random real number in [0, 1].

wrep = 0.1
(

1.0− (k − 1)
I

)
, (4.26)

w = winitial − (winitial − wfinal)
(k − 1)
I

. (4.27)

In Equations 4.26 and 4.27, k is the current DA iteration, and I is the maximum number of
iterations. The real numbers winitial and wfinal are internal static parameters.

Whenever a dragonfly i has no neighbors around its position, i.e., Xi,nbrs = ∅, DA enters in
an exploitation phase for the ith dragonfly by using a random Lévy fly method to modify its
position instead of using its speed vector v(k)

i This update process follows Eq. 4.28, and the Lévy

83

fly method uses Eq. 4.29 with β = 1.5, σ = 0.6966, where r1 and r2 being random real numbers
in [0, 1).

x
(k+1)
i,j = x

(k)
i,j + rLevy. (4.28)

rLevy = 0.01 r1σ

r

(
1
β

)
2

. (4.29)

4.3.7.2 Parameters Description for DA

DA is a meta-heuristic that does not hold any static external parameter to be adjusted using
a parameter tuning strategy. However, DA exploration and exploitation depends upon seven
internal parameters: (a) nr is the neighborhood radius for dragonflies in the swarm, (b) wsep is
the importance factor for the separation term, (c) wali is the importance factor for the alignment
term, (d) wcoh is the importance factor for the cohesion term, (e) watt is the importance factor
for the attraction term, (f) wrep is the importance factor for the repulsion term, (g) winitial initial
inertia weight, (h) wfinal final inertia weight, and (i) w is the inertia weight.

Parameter nr is adjusted by a deterministic parameter control that increases its value
over iterations. As nr increases, DA alternates between a local search stage with multiple small
neighborhoods of dragonflies influencing each other to global search stage with a single large
neighborhood with a radius as big as the search space.

Parameters wsep, wali, wcoh, and watt depends on wrep and has its values changing randomly.
While, wrep is adjusted by a deterministic parameter control that decreases its value over
iterations. Parameter wsep influences the speed in which dragonflies are repelled from the worst
solution found so far, and by doing so, it affects DA convergence. Also, wsep influences other
internal parameters.

The values of winitial and wfinal are static internal parameters, and, similar to its counter-
parts in PSO (Section 4.3.3), they control how large is the steps of dragonflies movement during
the initial and final iterations. The values used are winitial = 0.9 and wfinal = 0.4. A determi-
nistic parameter control adjusts parameter w, and it affects the change between exploratory
to exploitative behavior for DA.

4.3.8 Moth-Flame Optimization (MFO)

4.3.8.1 Meta-Heuristic Description

MFO [74] is a swarm intelligence meta-heuristic inspired by the localization method used by
moths in nature that brings them towards light sources during night time making spiral move-
ments. Often these erratic pattern movement makes the moths converge to the position of the
light source, and MFO optimizes an objective function by simulating this convergence aspect of
moths movement. MFO is presented in pseudo-code in algorithm 11.

84

Algorithm 11 Moth-Flame Optimization (MFO)

INPUT: Objective Function (f(·))
Iterations (I)
Number of moths (n)
Number of dimensions (d)
Lower-bound vector (lb)
Upper-bound vector (ub)
Parameter (b)

OUTPUT: Best solution (xbest)
1: procedure MFO(f, I, n, d, lb,ub, b)
2: Initialize moths x(0)

i (i = 1, ..., n)
3: for k = 1 to I do
4: Evaluate f(x(k)

i)

5: Sort Pc
6: Calculate Nflames . Eq. 4.31
7: Create flames based on best Nflames

moths
8: for i = 1 to n do
9: Map moth i to closest j flame

10: Update x(k+1)
i . Eq. 4.30

11: end for
12: Update xbest
13: end for
14: return xbest

15: end procedure

MFO has a swarm Pc with n moths with positions represented as d-dimensional real vectors xi
with i = {1, ..., n}. Apart from the moths positions, MFO also has Nflame flames (light sources)
with positions xf l with l = {1, ..., Nflames} that represent the best found solutions for the objective
function f . The integer number Nflame is a internal parameter controlled by a deterministic
parameter control.

In MFO initialization, for each moth position is assigned a randomly generated solution x(k)
i

inside of the search space with boundaries ub and lb, where ub has in its elements the upper
boundaries, and lb is composed of the lower ones. Also, during the initialization, flames positions
are assigned as the best solutions for each moth position.

During MFO iterations,each ith moth in the swarm has its position attracted by its visible
flame emulated in the following equation:

x
(k+1)
i,j = |xf l,j − x

(k)
i,j |e

brcos(2πt) + xf l,j , (4.30)

Vector xi,j is the position of the ith moth at jth dimension, xf j is the position of the lth flame
visible by moth i, b is an external static parameter, and r is a random value in [−1, 1].

The number of flames Nflames linearly over iterations, and as it happens, the mapping of
moths to flames stops to be one-to-one and starts to be many-to-one. The process to pair the ith
moth to the lth flame is to choose the flame position closest to moth i position. The adaptive
control parameter strategy that updates Nflams is represented as follows:

Nflames =
⌊
n− kn− 1

I
+ 0.5

⌋
, (4.31)

where k is the current iteration and I is the maximum number of iterations. During every iteration,
the flames are updated with the best Nflames found so far by MFO.

85

4.3.8.2 Parameters Description for MFO

MFO has one external static parameter: b that controls the shape and size of the spiral
movements of moths in the search space. For an improved MFO performance, it is necessary to
tune b before MFO execution.

MFO also contains an internal parameters: Nflames that controls the number of flames and it
is adjusted by a deterministic parameter control that reduces it linearly during the iterations.
A consequence of the reduction of flames is that MFO alternates between a local search for multiple
local minima to global search behavior.

4.3.9 Whale Optimization Algorithm (WOA)

4.3.9.1 Meta-Heuristic Description

WOA [73] is a swarm intelligence meta-heuristic that uses as a metaphor for its search heuristics
the hunting behavior of humpback whales. Members of this species of whales are intelligent and
social animals that live in groups or alone. This algorithm takes into consideration the bubble
net hunting strategy observed in humpback whales in nature preying on krill or small fish. When
using this hunting strategy, whales dive down and start to create bubbles with spiral movements
around the school of fishes. As a whale encircles the prey, this whale then starts to swim up
towards the surface while shrinking the circle of bubbles. Once the prey has been herd towards a
favorable position, the same whale, or another whale in the same hunting group, swims up and eat
the school of fish in a single gulp. The pseudo-code at Algorithm 12 describes the WOA algorithm.

Algorithm 12 Whale Optimization Algorithm (WOA)

INPUT: Objective Function (f)
Iterations (I)
Number of whales (n)
Number of dimensions (d)
Lower-bound vector (lb)
Upper-bound vector (ub)

OUTPUT: Best solution (xbest)
1: procedure WOA(f, I, n, d, lb,ub)
2: Initialize moths x(0)

i (i = 1, ..., n)
3: Evaluate f(x(0)

i)
4: Update xbest
5: for k = 1 to I − 1 do
6: Update a

7: for i = 1 to n do
8: Generate p
9: if p ≤ 0.5 then

10: Update x(k)
i . Eq. 4.32

11: else
12: Update x(k)

i . Eq. 4.33
13: end if
14: Evaluate f(x(k)

i)
15: end for
16: Update xbest
17: end for
18: return xbest

19: end procedure

WOA simulates the bubble net hunting strategy by having a group Pc of n whales with their
positions x(k)

i during kth iteration represented as d-dimensional vectors that are also solutions for

86

an objective function f .

During WOA initialization, positions x(0)
i are generated randomly inside of the search space.

During iterations, WOA simulates the movement of whales during hunting by dividing the process
into two stages: (a) prey search (exploring), and (b) prey attack (exploiting).

During the prey search stage, each ith whale position has its jth dimensions x(k)
i,j updated as

following:

x
(k+1)
i,j =

x
(k)
r1,j
− a(2r − 1) |2r x(k)

r1,j
− x(k)

i,j | if |a(2r − 1)|≥ 1

xbest,j − a(2r − 1) |2r xbest,j − x
(k)
i,j | otherwise

, (4.32)

where r1 is a random index for whales ranging from [1, n] with r1 6= i, x(k)
r1 is the position for a

random rth whale in the swarm, and r is a random real value in [0, 1]. Parameter a is a internal
parameter that decreases linearly between 2 and 0 over the iterations using a deterministic
parameter control

During the prey attack phase, each ith whale moves using a spiral shape around the best
position described as follows:.

x
(k+1)
i,j = |xbest,j − x

(k)
i,j |e

0.5rcos(2πr) + xbest,j , (4.33)

where xbest is the best solution found so far by WOA and r is a random real number in [0, 1].

Since both hunting stages are done simultaneously in nature, a random test decides whether
a whale uses prey search or attack movement types. This test has 50/50 chances to use these
movement types.

4.3.9.2 Parameters Description for WOA

WOA does not have any external static parameter. However, it contains an internal parame-
ters a that has its values decreased linearly by a deterministic control parameter. Parameter
a controls whether WOA updates its values using a difference for another random whale or to the
best whale with the chances of using the best whale position increasing with the meta-heuristic
iterations. By changing this behavior, a influences whether a focus in an exploratory behavior to
an exploitative one during the last iterations.

4.3.10 Bat Algorithm (BA)

4.3.10.1 Meta-Heuristic Description

BA [75] is a swarm intelligence meta-heuristic that uses as inspiration the approach in which
microbats use their echolocation ability to search for food in nature while flying. These bats
diet is composed of small fruits as well as insects, and they heavily depend on their ability to
fly around the environment only using their hearing due to their incredibly poor eyesight. BA
simulates this localization process by mimicking the bats’ pulse loudness and pulses emission rates
variation pattern during flying. As the bats fly towards the food, their pulse loudness decrease

87

while the rate in which they emit ultrasound sounds increases. Pseudo-code Algorithm 13 displays
BA optimization meta-heuristic.

Algorithm 13 Bat Algorithm (BA)

INPUT: Objective Function (f(·))
Iterations (I)
Number of bats (n)
Number of dimensions (d)
Lower-bound vector (lb)
Upper-bound vector (ub)
Pulse loudness (A)
Pulse emission rate (pr)

OUTPUT: Best solution (xbest)
1: procedure BA(f, I, n, d, lb,ub, pr, A)
2: Initialize bats x(0)

i (i = 1, ..., n)
3: Initialize speeds v(0)

i (i = 1, ..., n)
4: Evaluate f(x(0)

i ,Ω,Ψ)
5: Update xbest

6: for k = 2 to I do]
7: for i = 1 to N do
8: Generate Fi in [Fmin,Fmax]
9: Update v(k)

i . Eq. 4.34
10: Update x(k)

i = v
(k)
i + x(k−1)

i

11: if r < pr then
12: Update xi . Eq. 4.35
13: end if
14: Evaluate f(x(k)

i)
15: end for
16: Update xbest
17: end for
18: return xbest

19: end procedure

BA has a swarm of n bats in a group Pc that is used as search agents and each ith bat holds a
d-dimensional real vector x(k)

i at iteration k that represents a solution to the objective function f .
Beyond that, bats in BA also contains a d-dimensional real vector that represents the bats speeds
v

(k)
i at iteration k.

During the initialization, BA generates random solutions for f inside of the search space defined
by the vectors ub and lb that represents, respectively, a vector containing the upper and lower
boundaries for the search space. In this process, n solutions are assigned as positions x(0)

i for bats
in the swarm and another n solutions are assigned to the bats speeds v(0)

i .

During the iterations, BA updates the position for each ith bat with component j ∈ [1, d]
analogous as PSO (Section 4.3.10) updating their particles positions. BA updates the bats speed
using equation:

v
(k+1)
i,j = v

(k)
i,j + F (xbest,j − x

(k)
i,j), (4.34)

where vi,j is the jth dimension of the ith bat speed, xi,j is the ith bat position at component
j, xbest,j is the jth dimension of the best solution found so far, and F is a randomly generated
real number inside of the interval [Fmin, Fmax] with Fmax and Fmin being two internal static
parameters.

BA also performs a random test to check whether it should another method to update a single
bat position based on a external static parameter pr called emitted pulse rate. If a bat pass
a random check where a random generated real number r is r < pr, then this bat position is
updated using the following equation:

x
(k+1)
i,j = x

(k)
i,j + rA, (4.35)

88

where r is a random real number in [−1, 1], and A is an external static parameter called pulses
loudness.

4.3.10.2 Parameters Description for BA

BA contains two external static parameters: (a) pr emitted pulse rate, and (b) A pulses
loudness. The parameter pr influences BA by altering its chances to change the motion of bats
from a more exploratory and global search based behavior of moving towards the best solution
to a more exploitative and local search behavior of moving around its current position. While A
influences BA by defining how possible large can the movement steps during the exploitative type
of movements.

4.3.11 Adaptive Differential Evolution (JADE)

4.3.11.1 Meta-Heuristic Description

JADE [76] is a DE-based evolutionary meta-heuristic that adds adaptive parameter control
strategies for DE external static parameters, namely, the scaling factor and the crossover
rate. JADE also uses a different mutation strategy called current−to−pbest/1 one, and an archive
of previous individuals in the population that can be used to improve the algorithm performance
by adding more diversity of solutions in the population. The pseudo-code for JADE is present in
Algorithm 14.

JADE has a population Pc containing n individuals holding d-dimensional real vectors x(k)
i at

iteration k. Each ith individual also contains information about their individual scaling factor Fi
and crossover rate CRi with these parameters being treated by JADE as internal ones.

During initialization stage (see lines 2 to 7 of Algorithm 14), JADE generates n solutions for
an objective function f randomly inside of the search space given that each component is bounded
by the elements in vectors lb lower-bounds and ub upper-boundaries. The parameters for each
ith individual are also initially tuned as Fi = µ0

F = µF initial and CRi = µ0
CR = µCRinitial where

µkF and µkCR are two internal parameters adjusted by an adaptive control strategy in JADE.
The real numbers µF initial and µCRinitial are internal static parameters.

During every iteration, JADE updates generate the mutant vectors vi for each ith individual
using the mutation strategy current− to− pbest/1 defines as follows:

vi = x
(k)
i + Fi

(
xpbest − x

(k)
i + x(k)

r1 − x
(k)
r2

)
, (4.36)

where xpbest is a randomly chosen individual that is part of the best 100p% of individuals in the
population where p is an external static parameter called mutation greediness, and Fi is the
adapted scaling factor for the ith individual at the kth iteration. The real numbers r1 and r2

are different random indices (r1 6= r2) with r1 ∈ [1, n] and r2 ∈ [1, |Pc ∪A|] where A is an archive
set that contains previous solutions of individuals in the population. Whenever r2 > n, it becomes
an index for an individual present in the archive A instead of an individual in the population.

89

Algorithm 14 Adaptive Differential Evolution (JADE)

INPUT: Objective Function (f(·))
Iterations (I)
Number of individuals (n)
Number of dimensions (d)
Lower-bound vector (lb)
Upper-bound vector (ub)
Parameter Adaptation Rate (c)
Mutation Greediness Value (p)

OUTPUT: Best solution (xbest)
1: procedure JADE(f, I, n, d, lb,ub, c, p)
2: Initialize x(0)

i (i = 1, ..., n)
3: Evaluate f(x(0)

i)
4: Obtain best Individual xbest
5: µ0

F = µF initial

6: µ0
CR = µCRinitial

7: A = ∅
8: for k = 1 to I − 1 do
9: SF = ∅

10: SCR = ∅

11: for i = 1 to n do
12: Generate CRi . Eq. 4.39
13: Generate Fi . Eq. 4.41
14: Randomly choose xpbest from 100p%

best solutions
15: (current-to-pbest/1) Mutation .

Eq. 4.36
16: Binary Crossover . Eq. 4.38
17: Selection . Eq. 4.3
18: Update SF . Eq. 4.43
19: Update SCR . Eq. 4.44
20: Update A . Eq. 4.37
21: end for
22: Remove solutions in A until |A| ≤ n
23: Update µ(k+1)

F . Eq. 4.42
24: Update µ(k+1)

CR . Eq. 4.40
25: Update xbest
26: end for
27: return xbest
28: end procedure

The archive set A starts empty and is then populated throughout the algorithm iterations
during the selection process. Whenever an individual has a worse evaluation than its trial vector,
JADE then saves this individual solution x(k)

i in the archive set. Whenever the archive size |A|
surpasses the population size Pc, a randomly chosen archived solution is removed from A until
|A|≤ n. The process to populate the archive set is expressed by the following equation:

A←

x
(k)
i if f(ui) < f(x(k)

i)

∅ otherwise
(4.37)

JADE uses a binary crossover strategy analogous to the one employed by DE Section
4.3.2 in Eq. 4.2 to generate trial vectors. However, similar to the mutation strategy, each ith
individual contains its crossover rate represented as CRi. This updated binary crossover strategy
is as following:

ui,j =

min(ubj ,max(lbj , vi,j)) if r ≤ CRi or j = rj

x
(k)
i,j otherwise

, (4.38)

where r is a random real number in [0, 1), rj is a random index in [1, d] kept for all j for the
generation of a trial-vector ui, and CRi is the crossover rate used by individual i.

The adaptive parameter control strategy to adjust the crossover rates for each individual

90

work in an individual-scope using the following equation:

CRi = min(1,max(0,N (µ(k)
CR, 0.1))), (4.39)

where CRi is new randomly generated crossover rate for the ith individual truncated in [0, 1],
and N (µ(k)

CR, 0.1) is a normal distribution centered at µ(k)
CR and standard deviation 0.1. Also, µ(k)

CR

is an internal static parameter that is controlled by another adaptive control strategy that
vary as follows at every iteration k:

µ
(k+1)
CR =

(1− c) · µ(k)
CR + c ·

∑
CR∈SCR

(SCR)
|SCR| , if |SCR|6= 0

µ
(k)
CR , otherwise

, (4.40)

where c is an external static parameter called adaptation rate, and SCR is a set of successful
crossover rates from the previous iteration.

In a equivalent manner, there is an adaptive parameter control strategy that update for
every ith individual in the population the scaling factor Fi as follows:

ν = C(µ(k)
F , 0.1)

Fi =

C(µ
(k)
F , 0.1) , if ν ∈ (0, 1)

1 , otherwise

, (4.41)

where Fi is randomly generated scaling factor for individual i, C(µ(k)
F , 0.1) is a Cauchy distribution

with mean µ
(k)
F and standard deviation 0.1. Also, µ(k)

F is an internal parameter at iteration k

controlled by an adaptive parameter control strategy using the following equation:

µ
(k+1)
F =

(1− c) · µ(k)

F + c ·
∑

F∈SF
F 2∑

F∈SF
F

if |SF |6= 0

µ
(k)
F otherwise

, (4.42)

where c is the same adaptation rate, and SF is a set of successful scaling factors from the
previous iteration.

Both the successful sets SCR and SF start at every iteration empty and then they are populated
whenever a trial vector ui evaluation is better than its original individual x(k)

i during the selection
operation as described in Eq. 4.43 and Eq. 4.44.

SF ←

F
(k)
i , if f(ui) < f(x(k)

i)

∅ , otherwise
. (4.43)

SCR ←

CR
(k)
i if f(ui) < f(x(k)

i)

∅ otherwise
. (4.44)

4.3.11.2 Parameters Description for JADE

JADE contains two external static parameters: (a) p called mutation greediness, and (b)
c called adaptation rate. Parameter p ∈ (0, 1] controls the size of the set of 100p% best solutions

91

are randomly selected. The value for p influences the exploratory behavior of the algorithm since a
small value for p forces JADE individuals to move towards a small set of best individuals focusing
in few local minima solutions. Meanwhile, a large value for p allows JADE to move towards a
broad set of local optimum, increasing its exploratory behavior. The parameter c ∈ (0, 1]) with
suggested value of 0.15 controls the rate in which the adaptation mechanisms for µ(k)

F and µ
(k)
CR

convert towards the averages of successful parameter values in the kth iteration.

JADE contains six internal parameters: (a) Fi, (b) µ(k)
F , (c) CRi, (d) µ(k)

CR, (e) µF initial,
and (f) µCRinitial. Four of them are parameters that configure parameter control strategies.
It illustrates that even though JADE is capable of adjusting its parameters during execution,
the algorithm designer still has to decide values for some internal parameters that influence the
adaptive meta-heuristic performance. JADE has four parameter control strategies with all of
them fitting in the adaptive category present in Section 4.2.1.

The parameter Fi is the scaling factor for an individual i and it is controlled in an individual-
scope by randomly re-sampling its values at every iteration using another internal parameter
µ

(k)
F . Meanwhile, µ(k)

F is adjusted in a population-scope using as evidence for its changes the
improvement in objective function f evaluation that is indicated by a set of successful values for
SF . The adaptation mechanism for µ(k+1)

F guides its value in the next iteration towards another
region of the space of possible scaling factors by combining its current value µ(k)

F and the averages
of the best scaling factors in iteration k. The parameter CRi is configured by an adaptive
parameter control that works in a similar manner as the one for Fi to update the values of
crossover rates in an individual scope together with the adaptive parameter control strategy
for µ(k)

CR.

While µF initial = 0.5 and µCRinitial = 0.5 are internal static parameters that defines the
initial setting points for the scaling factors, and crossover rates respectively.

4.3.12 Crossover Strategy Adaptive Self-Adaptive DE (CSASADE)

4.3.12.1 Meta-Heuristic Description

CSASADE, as proposed by [77], is an adaptive version of the DE algorithm. CSASADE
adds to DE adaptive parameter control strategies similar to those of JADE (Section 4.3.11) as
well as adaptive operator selection mechanisms. The name CSASADE has the term “Self-
Adaptive”. However, CSASADE does not use any self-adaptive parameter control mechanisms,
since no parameter evolves encoded together with the decision variable. Instead, its parameter
control strategies fit on the adaptive strategy category. Algorithm 15 presents CSASADE heuristic
in pseudo-code form.

Each ith individual in the population Pc holds a possible solution xi for the objective function
f as well as their own parameters Fi and CRi and a pair of indices muti and croi that denotes,
respectively, which mutation and crossover strategy the individual is using to generate its mutant
vectors vi and trial vectors ui. CSASADE uses two set of internal parameters N (k)

mut and N
(k)
cro

that holds, respectively, the number of individuals during a iteration k using a mutation strategy

92

Algorithm 15 Adaptive Differential Evolution (CSASADE)

INPUT: Objective Function (f(·))
Iterations (I)
Number of individuals (n)
Number of dimensions (d)
Lower-bound vector (lb)
Upper-bound vector (ub)

OUTPUT: Best solution (xbest)
1: procedure CSASADE(f, I, n, d, lb,ub)
2: Initialize x(0)

i (i = 1, ..., n)
3: Evaluate f(x(0)

i (i = 1, ..., n)
4: Update xbest
5: Update xworst
6: N

(0)
mut =

⌈
n
5
⌉

7: N
(0)
cro =

⌈
n
2
⌉

8: µw
(0)
F = µwF initial

9: µw
(0)
CR = µwCRinitial

10: Istart = 0.2I
11: for k = 1 to I − 1 do
12: Update σ . Eq. 4.61
13: for i = 1 to n do
14: Generate CRi . Eq. 4.64
15: Generate Fi . Eq. 4.60
16: if k < Istart then

17: (rand/1) Mutation . Eq. 4.45
18: Binary Crossover . Eq. 4.2
19: else
20: mutith Mutation
21: croith Crossover
22: end if
23: Selection . Eq. 4.3
24: Calculate weight wi . Eq. 4.66
25: end for
26: Update µw(k)

F . Eq. 4.62
27: Update µwCR(k) . Eq. 4.65
28: if k ≥ Istart then
29: Adapt Mutation Numbers . Eq. 4.52
30: Adapt Crossover Numbers . Eq.

4.56
31: for i = 1 to n do
32: Reassign mut(k)

i

33: Reassign cro(k)
i

34: end for
35: end if
36: Update xbest
37: Update xworst
38: end for
39: return xbest
40: end procedure

or crossover strategy in the pool of possible ones.

The symbolic value mut = { rand/1, rand/2, current-to-best/1, current-to-best/2, best/2 }
represents one of the possible mutation strategies used by CSASADE and for each ith individual
muti correspond to an index in the pool of mutation strategies that ranges in [1, 5]. These
mutation strategies and their indices is represented as follows: (a) rand/1 mutation (Eq. 4.45)
with index muti = 1 for individual i and Nrand/1 is the number of individuals that uses this
operator; (b) rand/2 mutation (Eq. 4.46) with index muti = 2 for individual i and Nrand/2 is
the number of individuals that uses this operator; (c) current-to-best/1 mutation (Eq. 4.47) with
index muti = 3 for individual i and Ncurrent-to-best/1 is the number of individuals that uses this
operator; (d) current-to-best/2 mutation (Eq. 4.48) with index muti = 4 for individual i and
Ncurrent-to-best/2 is the number of individuals that uses this operator; (e) best/2 mutation (Eq.
4.49) with index muti = 5 for individual i and Nbest/2 is the number of individuals that uses
this operator. In Equations 4.45 to 4.49, r1, r2, r3, r4, and r5 are different random integers that
represent indices in [1, n]. Vector xbest is the best solution found so far, vi is the mutant vector

93

generated by the ith individual, and Fi is the scaling factor used by individual i.

vi = x(k)
r1 + Fi(x(k)

r2 − x
(k)
r3). (4.45)

vi = x(k)
r1 + Fi(x(k)

r2 − x
(k)
r3 + x(k)

r4 − x
(k)
r5). (4.46)

vi = x
(k)
i + Fi(xbest − x

(k)
i + x(k)

r1 − x
(k)
r2). (4.47)

vi = x
(k)
i + Fi(xbest − x

(k)
i + x(k)

r1 − x
(k)
r2 + x(k)

r3 − x
(k)
r4). (4.48)

vi = x
(k)
best + Fi(x(k)

r1 − x
(k)
r2 + x(k)

r3 − x
(k)
r4). (4.49)

Similar to mutation strategies, CSASADE also has a smaller pool of crossover strategies where
cro = {bin, exp}. The integer value croi for the ith individual contains the index for one of
these two crossover strategies where: (a) bin binary crossover (Eq. 4.38) with index croi = 1 for
individual i and Nbin is the number of individuals that uses this operator; (b) exp exponential
crossover (Algorithm 16) with index croi = 2 for individual i and Nexp is the number of individuals
that uses this operator;

Algorithm 16 DE Exponential Crossover

INPUT: Decision variable (x(k)
i)

Mutant vector (vi)
OUTPUT: Trial vector (ui)

1: procedure DEExpCrossover(x(k)
i ,vi)

2: d = |x(k)
i |

3: ui = x
(k)
i

4: Randomly select integer j in [1, N)
5: L = 1

6: do
7: ui,j = vi,j

8: j = mod (j + 1, d)∗

9: L = L+ 1
10: r is a random real number in [0, 1)
11: while r < CR and L ≤ N
12: return ui

13: end procedure

* mod(·) is a modulo operator that returns the remainder of a integer division..

During the initialization process, CSASADE assigns for each ith individual in population
Pc a randomly generated solution for f in the search space defined by the upper and lower
boundary vectors ub and lb. The parameters for each ith individual is initialized as in JADE
with Fi = µw

0
F = µwF initial and CRi = µw

0
CR = µwCRinitial where µkF and µkCR are two internal

parameters adjusted by an adaptive control strategy. Both µF initial and µCRinitial are internal
static parameters. The number of individuals using each operator for mutation and crossover
strategies are initialized as present in Eq, 4.50 and Eq. 4.51.

N
(0)
rand/1 = N

(0)
rand/2 = N

(0)
current−to−best/1 =

N
(0)
current−to−best/2 = N

(0)
rand−to−best/1 =

⌊
n

5

⌋. (4.50)

N
(0)
bin = N (0)

exp =
⌊
n

2

⌋
. (4.51)

94

Then, the mutation operator indices for the population are re-assigned by an adaptive ope-
rator selector that works in a process that divides the population Pc in five sets and for the
first set of individuals in the population with indices l1 ∈ [1, N (0)

rand/1] receives mutl1 = 1, then the
second set with indices l2 ∈ [N (0)

rand/1 + 1, N (0)
rand/1 + N

(0)
rand/2] receives mutl1 = 1, and so on, until

the last set with indices l5 ∈ N
(0)
current−to−best/2 + 1, N (0)

current−to−best/2 + N
(0)
best/2] receives indices

mutl5 = 5. Other adaptive operator selector that works in the same fashion re-assigns for
each individual their crossover operators in the pool cro = {bin, exp}.

Through the iterations, CSASADE generates for each ith individual their mutant vector ui
using the mutation strategy with index muti and trial vectors vi using their crossover strategy
with index muti.

The internal parameters that contain the number of individuals a mutation strategy N (k)
mut

at iteration k is adjusted using an adaptive control parameter strategy that behaves as
following:

N
(k+1)
mut =

N

(k)
mut + 1, if ∆Nmut > 0

N
(k)
mut − 1, if ∆Nmut < 0

N
(k)
mut, otherwise

, (4.52)

where mut = { rand/1, rand/2, current-to-best/1, current-to-best/2, best/2 }, and ∆Nmut is an
expected variation for N (k)

mut and it is calculated using the following equation:

∆Nmut =
⌊
N

smut
sall_mut

+ 0.5
⌋
−N (k)

mut, (4.53)

where smut is the sum of differences between evaluations of f for the solutions of individuals that
uses a mutation strategy mut and the worst solution evaluation f(xworst), and sall_mut is the
sum of differences for all individuals against the worst evaluation f(xworst) is calculated using Eq.
4.55. The value smut is calculated as follows:

smut =
∑

∀x(k)
i ∈{xi∈Pc :muti=mut}

|f(x(k)
i)− f(x(k)

worst)|. (4.54)

s
(k)
all_mut = s

(k)
rand/1 + s

(k)
rand/2 + s

(k)
current−to−best/1 + s

(k)
current−to−best/2 + s

(k)
rand−to−best/1. (4.55)

In a similar fashion as the one used by mutation strategy, the set of internal parameters that
controls the number of individuals using each crossover strategy is updated as following by an
adaptive parameter control strategy:

N (k+1)
cro =

N

(k)
cro + 1, if ∆Ncro > 0

N
(k)
cro − 1, if ∆Ncro < 0

N
(k)
cro , otherwise

, (4.56)

where cro = {bin, exp}, and ∆Ncro is an expected variation for N (k)
mut and it is calculated as follows:

∆Ncro =
⌊
N

scro
sall_cro

+ 0.5
⌋
−N (k)

cro , (4.57)

95

where smut is the sum of differences between evaluations of f for the solutions of individuals that
uses a mutation strategy mut and the worst solution evaluation f(xworst), and sall_mut is the
sum of differences for all individuals against the worst evaluation f(xworst) is calculated using Eq.
4.59. The value of scro is obtained as follows:

scro =
∑

∀x(k)
i ∈{xi∈Pc : croi=cro}

|f(x(k)
i)− f(x(k)

worst)|. (4.58)

s
(k)
all_mut = s

(k)
rand/1 + s

(k)
rand/2 + s

(k)
current−to−best/1 + s

(k)
current−to−best/2 + s

(k)
rand−to−best/1. (4.59)

CSASADE uses an adaptive parameter control strategy to configure the scaling factors
for each ith individual by re-sampling the value Fi as follows:

ν = N (µw(k)
F , σ)

F
(k)
i =

ν if ν ∈ (0, 1)

1 otherwise

, (4.60)

where Fi is randomly generated scaling factor for individual i, N (µw(k)
F , σ) is a Normal distribution

with average µw(k)
F and standard deviation σ. Both µw(k)

F and σ are internal parameters updated
using parameter control strategies.

The standard deviation σ is adjusted using a deterministic parameter control strategy
in which its values decreases between σmax and σmin throughout the iterations using equation:

σ = σmax − (σmax − σmin)
(

1−
(

k

I − 1

)2)
, (4.61)

where σmax and σmin are two internal static parameters.

Every iteration, µwF is also adjusted using an adaptive parameter control strategy as
follows:

µw
(k)
F =

n∑
i=1

w
(k)
i Fi, (4.62)

where Fi is the scaling factor for the ith individual, and wi is a weighting factor calculated for
individual i as follows:

w
(k)
i = |f(x(k)

i)− f(x(k)
worst)|∑n

j=1|f(x(k)
j)− f(x(k)

worst)|
, (4.63)

where xi is the solution for individual i, and x(k)
worst is the worst solution found in the current

iteration k.

In CSASADE, crossover rate CRi for each ith individual in the population is adjusted using
a adaptive parameter control as follows:

CRi = min
(
1,max

(
0,N

(
µw

(k)
CR, σ

)))
(4.64)

where σ is the same deviation used in Eq. 4.61, and µw(k)
CR is a internal parameter that holds the

weighted average crossover rates in the population.

96

The average µw(k)
CR is adjusted every iteration by an adaptive parameter control strategy that

works as follows:
µw

(k)
CR =

n∑
i=1

wi · CRi, (4.65)

where wi is the weighting factors defined by Eq. 4.66, and CRi is the crossover rate used by the
ith individual in the population.

w
(k)
i = |f(x(k)

i)− f(x(k)
worst)|∑n

j=1|f(x(k)
j)− f(xworst)|

(4.66)

In [77], CSASADE also contains an internal static Istart parameter that control in which
iteration the adaptive operation selection mechanisms start to take place. So, during the first
Istart iterations, CSASADE uses only rand/1 mutation and bin crossover strategies as of the DE
(Section 4.3.2).

During the first Istart iterations, CSASADE uses only the strategies presented inDE/rand/1/bin
and only starts to apply different crossover and mutation strategies after these initial iterations.

4.3.12.2 Parameters Description for CSASADE

CSASADE has no external static parameters that need to set by the user. However, CSA-
SADE has fourteen internal parameters. This large number of parameters that are “invisible”,
at least in the user point of view, indicates the complexity of CSASADE. CSASADE also has
two adaptive operation selection mechanisms (Section 4.2.2) and seven parameter control
strategies with six of them fitting in the adaptive category and one of them fitting the determi-
nistic category in Section 4.2.1. The list of internal parameters are: (a) Fi, (b) µwF , (c) CRi, (d)
µwCR, (e) (f) σ, µwF initial, (f) µwCRinitial, (h) σmax, (i) σmin, (j) Nmut, (k) Ncro, (l) muti, (m)
croi, and (n) Istart.

Parameters Fi and CRi are respectively the scaling factors and crossover rates for each
ith individual in the population. Their values are controlled by adaptive parameter controls
strategies that adjust them in an individual-scope using other internal parameters, namely,
µwF , µwCR and σ. Both µwF and µwCR are two weighted averages controlled by their adaptive
parameter control strategies in a population-scope using as evidence for change the objective
function results. The weighted averages µwF and µwCR are influenced more by individuals that
obtain evaluations with large differences for the worst evaluation found in an iteration, and less
influenced by evaluations close to the worst evaluation.

The value for σ is reduced through the iterations by a deterministic parameter control
strategy, and it influences the exploratory behavior of CSASADE searching for possible suitable
values of Fi and CRi. The reduction of σ forces CSASADE to have a broad spread of parameter
values during the initial iterations and a small spread during the last iterations.

The internal static parameters µwF initial, µwCRinitial controls the initial value for internal
scaling factors and crossover rates therefore defining the behaviour for CSASADE during

97

the first iteration. Their values are µwF initial = 0.5 and µwCRinitial = 0.5. Both parameters
σmax = 0.8 and σmin = 0.35 controls respectively the rate in which the spreading of scaling factors
and crossover rates are reduced during CSASADE execution.

The internal parameters Nmut and Ncro are adjusted by adaptive parameter control
strategies in a population-scope, and their evidence for change is similar to those used by µwF
and µwF mechanisms using the differences between solution evaluations and the worst evaluation.
Mutation strategies that regularly obtain solutions with evaluations closer to the worst evaluation,
i.e., deemed bad solutions, ends up with Nmut = 0 and no individuals using them. The same
applies to crossover strategies. In this way, the first iterations, after Istart, CSASADE explores
which strategies work and which do not, and during the last iterations, CSASADE uses only the
best strategies.

A pair of adaptive operation selection schemes directly use Nmut and Ncro to adjust the
mutation and crossover operations used by individuals. These adaptive operation selection
changes the operators by changing indices muti and croi for each ith individual.

At last, the internal static parameter controls how many iterations CSASADE should work
only using rand/1 mutation and bin crossover before start to use adaptive operator selection.
It affects how spread are the solutions in the search space when the process to explore and select
strategies start. The proposed value for Istart is 20% of I (the maximum number of iterations).

4.3.13 Discrete Particle Swarm Optimization (DPSO)

4.3.13.1 Meta-Heuristic Description

DPSO [78] is a modified PSO-based meta-heuristic that uses a discrete representation for the
positions of particles to exclusively solve COP. DPSO has a swarm P of n particles and each ith
particle has a position x(k)

i at iteration k in a d-dimensional discrete search space, and, analogous
to PSO (Section 4.3.3), a copy of the best individual position xpbesti and reference for the best
position xbest found so far by the DPSO. Algorithm 17 illustrates DPSO in pseudo-code form.

During the initialization, n random solutions where each solution for the COP with objective
function f is generated inside of the search space given the integer vectors ub and lb that compose
the upper and lower bounds values for the search space components. The internal parameter w,
called inertia weight, is initialized during this stage using the value held by an external static
parameter winitial.

In the iterative stage, DPSO updates the position for each ith individual in the jth dimension
using the following equation:

x
(k+1)
i,j = g(xbest, g(xpbesti,j , vi,j)), (4.67)

where g : {Z,Z} → Z is a function that given two integer numbers returns a third integer number
randomly generated between them as expressed in Eq. 4.68, and vi,j is a d-dimensional vector
that represents the particle i speed.

98

Algorithm 17 Discrete Particle Swarm Optimization (DPSO)

INPUT: Objective Function (f(·))
Iterations (I)
Number of individuals (n)
Number of components (d)
Lower-bound vector (lb)
Upper-bound vector (ub)
Initial inertial coefficient (winitial)

OUTPUT: Best solution (xbest)
1: procedure DPSO(f, I, n, d, lb,ub, winitial)
2: Initialize x(0)

i (i = 1, ..., N)
3: Evaluate f(x(0)

i)
4: w = winitial

5: Update xpbesti
6: Update xbest
7: for k = 1 to I − 1 do
8: for i = 1 to n do
9: Calculate x(k)

i . Eq. 4.67
10: Evaluate f(x(k)

i)
11: Update xpbesti
12: end for
13: Update xbest
14: w = wβ

15: end for
16: return xbest

17: end procedure

g(a, b) =

b+ br1(a− b) + 0.5c if blea

a+ br1(b− a) + 0.5c otherwise

a, b ∈ Z,

(4.68)

where r1 are randomly generated using a uniform distribution in the interval [0, 1]. Different than
in the canonical PSO, the speed vector vi for a particle i does not contain information about its
motion in the search space. Instead, vi is a combination of a randomly generated vector with the
position of the ith particle. The value for vi,j is a calculated using the following equation:

vi,j =

rej if r2 < w(k)

x
(k)
i,j otherwise

, (4.69)

where r2 is a random real number i n [0, 1], rej is a random generated integer inside of the
range [lbj , ubj], and w(k) is the inertia weight that has its value configured by a deterministic
parameter control strategy using the following equation:

w(k) = β w(k−1), (4.70)

where β is an external static parameter in the range (0, 1).

4.3.13.2 Parameters Description for DPSO

DPSO has two external static parameters: (a) winitial, and (b) β. The value for winitial
influences DPSO by defining the initial value for w that in turn is used generating speed vectors
for the particles, Parameter β controls the rate in which the internal parameter w changes

99

through the course of the iterations. The suggested value for these parameters are β = 0.9 and
winitial = 0.8.

DPSO has only one internal parameter: w that is called inertia weight and it controls the
probability in which random solutions components are added into particle speed vectors. For this
reason, a large value of w results in DPSO preferring a more exploratory behavior. Similar to
the inertia weight in PSO, w decreases through the iterations using a deterministic parameter
controls strategy.

4.3.14 Self-Adaptive Particle Swarm Optimization (SAPSO)

4.3.14.1 Meta-Heuristic Description

SAPSO [79] is a swarm intelligence PSO-based meta-heuristic that adds self-adaptive para-
meter control mechanisms to PSO intending to improve its performance. Algorithm 18 displays
SAPSO using pseudo-code.

Algorithm 18 Self-Adaptive Particle Swarm Optimization (SAPSO)

INPUT: Objective Function (f(·))
Iterations (I)
Number of individuals (n)
Number of components (d)
Lower-bound vector (lb)
Upper-bound vector (ub)

OUTPUT: Best solution (xbest)
1: procedure SAPSO(f, I, n, d, lb,ub)
2: Initialize solutions xi (i = 1, ..., n)
3: Initialize parameters c1i (i = 1, ..., n)
4: Initialize parameters c2i (i = 1, ..., n)
5: Initialize parameters vnmaxi (i = 1, ..., n)
6: zi = (xi, c1i, c2i, vnmaxi) (i = 1, ..., n)
7: Cl = ∅
8: Evaluate f(x(0)

i)
9: Update zpbesti

10: Update zbesti
11: Update collision list Cl
12: Update successful particles set Sp
13: for k = 1 to I − 1 do

14: Sp = ∅
15: Update w(k) . Eq. 4.74
16: for i = 1 to n do
17: Calculate v(k)

i . Eq. 4.72
18: Calculate z(k)

i . Eq. 4.73
19: end for
20: for i = 1 to n do
21: Evaluate f(x(k)

i)
22: Update zpbesti
23: Update zbesti
24: Update Sp
25: Update Cl
26: if z(k)

i,jx
/∈ Sp ∧ z(k)

i,jx
∈ Cl then

27: Regenerate z(k)
i,jx

28: Remove i from Cl

29: end if
30: end for
31: end for
32: return xbest

33: end procedure

SAPSO has a swarm of Pc with n particles and each ith particle keeps a position z(k)
i repre-

sented by a d+ 3 dimensions real vector, a speed vector v(k)
i with the same number of dimensions,

a copy of the individual best position zpbesti, and a reference for the best position vector zbest

100

found so far. Each ith particle position has its first d dimensions forming a solution xi for an
single-objective function f , similar to the position vector of the canonical PSO, and the last three
components are PSO parameters for that particle, respectively, c1

(k)
i , c2

(k)
i and vnmax

(k)
i that repre-

sents the social and cognitive factors, and its normalized maximum speed per dimension. In other
words, z(k)

i = (x(k)
i , c1

(k)
i , c2

(k)
i , vnmax

(k)
i). Since z(k)

i is composed of multiple parts, the search
space for z(k)

i is composed of the search-space for the problem at hand as well as the search-space
for the parameters. The search space boundaries used by SAPSO are represented by two vectors
ubz = (ub, 4, 4, 1) and lbz = (lb, 4, 4, 1) that are, respectively, the upper boundaries and lower
boundaries.

SAPSO initialization process randomly generates its particles zi using a random uniform distri-
bution for each jth component in the interval [lbzj , ubzj] with j = {1, ..., d+3}. In the initialization
stage, the particles speeds are also generated for the first iteration using fixed values, where the
first d elements are set as v(0)

i,j = ||ub−lb||
2 with j = {1, ..., d}. The other components are initialized

as follows: v(0)
i,d+1 = v

(0)
i,d+2 = 2 and v(0)

i,d+3 = 0.5.

During the iterative process, SAPSO update the speed for each jth component of each ith
particle using the following equation for a placeholder variable with j = {1, ..., d}:

νi,j = w(k)v
(k)
i,j + r1z

(k)
i,jd+1

(z(k)
gbest − z

(k)
i,j) + r2z

(k)
i,jd+2

(z(k)
i_pbest,j − z

(k)
i,j), (4.71)

where w(k) is an internal parameter called the inertia weight during iteration k. Parameter
w(k) is adjusted by a deterministic parameter control strategy, and νi,j is a placeholder
variable.

Since each multiple components of a particle speed have different boundaries, the use of ν to
update differently each part for a particle speed as described by the following equation:

vi,j =

min(z(k)

i,d+3
||ub−lb||

2 ,max(−z(k)
i,d+3

||ub−lb||
2 , νi,j)) if j ∈ [1, d]

min(4z(k)
i,d+3,max(−4z(k)

i,d+3, νi,j)) if j ∈ [d+ 1, d+ 2]

min(z(k)
i,d+3,max(−z(k)

i,d+3, νi,j)) otherwise

, (4.72)

After the calculation of speed of a particle i its position for each jth component is updated as
follows:

zi,j = max
(
ubzj ,min

(
ubzj , z

(k)
i,j + v

(k+1)
i

))
, (4.73)

where j = {1, ..., d}.

SAPSO update its inertial weight w(k) by a deterministic parameter control using the
following equation:

w(k) = 0.5 + 1
2(ln(k) + 1) . (4.74)

Since PSO is prone to have multiple particles to converge to a local minimum with a lower
diversity of solutions, SAPSO implements a strategy of regeneration-on-collision in which particles
that "collide"with the global best solution are reinitialized randomly to improve diversity. This
process uses a pair of sets Sp and Cl, respectively, successful particles indices and collision list

101

indices. SAPSO populates the Sp set whenever a particle i obtains a fitness evaluation that is
equal or better than the one obtained by the global best solution zgbest as present in Eq. 4.75. The
same process is applied to populate the collision list Cl in Eq.4.76. The main difference between
these two sets is that the successful set Si life-time is for only an iteration, because Sp is reset
at the beginning of every iteration, while Cl is kept for SAPSO execution and a particle index is
present in Cl until it is removed by the regeneration process.

Sp ←

i if f(xi) ≤ f(xbest)

∅ otherwise
. (4.75)

Cl ←

i if f(xi) ≤ f(xbest) ∧ i /∈ Cl
∅ otherwise

. (4.76)

Whenever a particle index is present at the collision list set but not in the successful particles
set, it indicates that this particle has collided with the best solution, but it is not one of the best
particles anymore. In this case, SAPSO then regenerates this particle by reinitializing its solution
with random components in the same fashion as the initialization process.

4.3.14.2 Parameters Description for SAPSO

SAPSO is a meta-heuristic that has no external static parameters. It means that SAPSO
does not needs to be tuned before its execution. SAPSO contains a single internal parameter:
the inertia weight w(k) that controls change between exploratory and exploitative behaviour for
SAPSO when searching for solutions and parameters.

SAPSO contains four parameter control strategies. It includes three self-adaptive pa-
rameter control strategies that encode in the meta-heuristic decision variables the parameters
for social and cognitive factors c1 and c2 as well as the maximum speed for each particle vmax.
It results in the use of the operations in which PSO search for optimal solutions concurrently
being applied to search for optimal parameters as well. SAPSO also includes a deterministic
parameter control strategy that configure the values for inertial weight during the algorithm
execution.

4.3.15 Hybrid Discrete Particle Swarm Optimization Makespan-based (HDPSO-
M)

4.3.15.1 Meta-Heuristic Description

HDPSO-M is a hybrid between a discrete PSO and a GA meta-heuristic that is adapted
to specifically solve the makespan problem when mapping jobs to be executed [80] in parallel
machines. It is difficult to disassociate HDPSO-M with the problem that it was designed to solve
since HDPSO-M search operations are intertwined with the problem. For this reason, in this
work, the goal is to use HDPSO-M only in problems that involve the task mapping of real-time

102

application onto multiple processor systems as present in Chapter 3 more precisely in Section
3.8. Consequently, HDPSO-M is expected to be used with a objective function f(M ,Ω,Ψ) that
evaluates a mapping of a real-time application Ω on a MPSoC platform Ψ using the task placement
M .

Algorithm 19 Hybrid Discrete Particle Swarm Optimization - Makespan based (HDPSO-M)

INPUT: Objective Function (f(·))
Application (Ω)
Platform (Ψ)
Iterations (I)
Number of individuals (n)
Number of components (d)
Lower-bound vector (lb)
Upper-bound vector (ub)
Bernoulli Probability (p)

OUTPUT: Best solution (xbest)
1: procedure HDPSO-M
2: Initialize xi (i = 1, ..., n)
3: Evaluate f(xi − 1)
4: Update xpbesti

5: Update xbest
6: for k = 1 to I − 1 do
7: for i = 1 to n do
8: Calculate vki . Eq. 4.77
9: Calculate xki . Eq. 4.78

10: Evaluate f(Mi,Ω,Ψ)
11: Update xpbesti
12: end for
13: Update xbest
14: Mbest = xbbest − 1̄
15: end for
16: return Mbest

17: end procedure

HDPSO-M has a swarm P with n particles and the ith particle at every algorithm iteration
has its position x(k)

i , speed v(k)
i , best individual and global positions xpbesti and xbest that are

d-dimensional vectors with integer elements varying between [0, d]. The particles positions are not
directly a solution for the mapping problem, namely, Mi, instead, it is represented as a possible
mapping summed up element-by-element by one, i. e. xi = Mi + 1̄ with 1̄ a d-dimension vector
of ones.

The process to update a particle speed and position uses Eq. 4.77 and Eq. 4.78, respectively.

v
(k+1)
i = v

(k)
i

cross
+

(
LPTM(vi,pbest)

cross
+ LPTM(vgbest)

)
(4.77)

x
(k+1)
i = x

(k)
i

cross
+ v

(k+1)
i , (4.78)

where
cross
+ ,

o
× and

o
− are special operators of addition, multiplication, and subtraction, to make

the interpretation of movement analogous to that of the original PSO. LPTM(·) is a greedy
algorithm that uses the tasks makespan values to find mapping solution components and will be
explained with more details further. vpbesti and vgbest are terms that holds the influence caused
by the individual best position found by the ith particle and the global best solution and they are
calculated by Eq. 4.79 and 4.80.

vpbest = R1
o
× (xi,pbest

o
− x(k)

i). (4.79)

vgbest = R2
o
× (xgbest

o
− x(k)

i), (4.80)

103

where R1 and R2 are d-dimensional random integer vectors that contains elements with 0 or 1.
Both these random vectors have their components generated using a Bernoulli distribution with
a probability of receiving a 1 equals to p. p is an external static parameter.

The subtraction operator (
o
−) is a function that takes two integer vectors A and B, as left and

right operands, and returns another vector of integers C. This operator compares element-wise
the vectors A and B calculating vector C formed by elements Cj as expressed by Eq. 4.81.

Cj =

0 if Aj = Bj

Aj otherwise
. (4.81)

This operator, as used in the algorithm, compares components of a particle’s position and the best
individual or global positions and keeps the values for the best positions when they are different
or varies them if they are the same.

The multiplication operator (
o
×) works as the Hadamard product (◦) by multiplying element-

by-element the components of two vectors A and B with fixed sizes d and generating a vector
with the same size C as expressed by equation 4.82.

Cj = AjBj with j = 1, ..., d. (4.82)

This operator adds diversity to the heuristic by multiplying the results of the subtraction operators
with random vectors.

The addition operator (
cross
+) is a two-point crossover genetic operator from GA-based al-

gorithms. This crossover genetic operator uses a pair of integer vectors representing solution
components and then exchange information between them as illustrated in Fig. 4.6. Since the
crossover operation results in two vectors, one of them are chosen randomly to be used as a result
for the addition operator, meanwhile the other one is dismissed.

Due to the encoding used by HDPSO-M, the terms vpbesti and vgbest are possible task mappings
offset by one in which some of their components are equal to 0 and correspond to tasks not mapped
yet. HDPSO-M applies over these terms vpbest and vgbest a local search method LPTM that uses
the LPT algorithm [81] to map tasks not mapped while keeping the other tasks already mapped.
The LPT (Largest Processing Time first) algorithm sorts the tasks in descend order of execution
cost and assign them successively to the minimally loaded processor, i. e. the processor with the
minimal sum of execution costs of the tasks mapped into it. The pseudo-code present in Algorithm
20 illustrates the functionality of the method LPTM.

4.3.15.2 Parameters Description for HDPSO-M

HDPSO-M contains an external static parameter p that represents the probability used in
a Bernouli distribution. The suggested value for p is 0.3. p influences the rate in which new
solution components are added to the components generated by LPTM . For better algorithm
performance, p value should be configured using a parameter tuning strategy before the algorithm
execution.

104

Algorithm 20 Largest Processing Time First based Mapping (LPTM)

INPUT: Application (Ω)
Platform (Ψ)
Offset Mapping (x)

OUTPUT: Possible Offset Mapping (xout)
1: procedure LPTM(x,Ω,Ψ)
2: Tunmapped_tasks = {{τj , xj} ∈ {Γ,N} : xj ∈
x ∧ xj = 0}

3: Sort Tunmapped_tasks cost executions in des-
cend order

4: Tmapped_tasks = {{τk, xk} ∈ {Γ,N} : xk ∈
x ∧ xk 6= 0}

5: for i = 1 to |Tmapped_tasks| do
6: {τk, xk} = Tmapped_tasksi
7: Map task τk to core with index xk−1
8: end for
9: for i = 1 to |Tunmapped_tasks| do

10: smin = MAX*
11: πmin = ∅
12: for n = 1 to |Π| do

13: sn =
∑
τm∈map(πn)Cm

14: if sn < smin then
15: smin = sn

16: πmin = πn

17: end if
18: end for
19: {τj , xj} = Tunmapped_tasksi
20: Map task τj to core πmin
21: xj = index(πmin) + 1
22: end for
23: T = Tmapped_tasks ∪ Tunmapped_tasks

24: Sort T based on tasks indices.
25: xout ← ∅
26: for i = 1 to |T | do
27: {τ , x} = Ti

28: xout ← x

29: end for
30: return xout

31: end procedure

* MAX represents an arbitrary very large value.

4.4 Single-Objective Optimization Bio-Inpired Meta-Heuristics
Developed in this Work

4.4.1 Single-Objective Adaptive with Modified Selection Differential Evolution
(SOAMSDE)

4.4.1.1 Meta-Heuristic Description

SOAMSDE is a DE-based adaptive meta-heuristic that apart from the common framework
that uses crossover and mutation strategies of a DE algorithm, SOAMSDE also contains
adaptive parameter control strategies that throughout the algorithm execution changes its
parameter values. It also has adaptive operator selection mechanisms to control the operators
used by the algorithm. Additionally, SOAMSDE has a modified selection that is different from
the one used by DE (Section 4.3.2). Instead, it uses an elitist process to select and keep the best
solutions similar to that present in GA (Section 4.3.1). SOAMSDE is a single-objective version of
the MONSADE (Section 4.6.2). Algorithm 21 presents the pseudo-code for SOAMSDE.

105

Algorithm 21 Single-Objective Adaptive with Modified Selection DE (SOAMSDE)

INPUT: Objective Function (f(·))
Iterations (I)
Number of individuals (n)
Number of components (d)
Lower-bound vector (lb)
Upper-bound vector (ub)

OUTPUT: Best solution (xbest)
1: procedure SOAMSDE(f, I, n, d, lb,ub)
2: Initialize ti = 〈xi, Fi, CRi,muti, croi〉
3: (i = 1, ..., n)
4: Evaluate f(x(0)

i)
5: Update xbest
6: Update xworst
7: N

(0)
mut =

⌈
n
5
⌉

8: N
(0)
cro =

⌈
n
2
⌉

9: µw
(0)
F = µwF initial

10: µw
(0)
CR = µwCRinitial

11: Assign muti(i = 1, ..., n)
12: Assign croi(i = 1, ..., n)
13: for k = 1 to I − 1 do
14: Calculate σ . Eq. 4.61
15: Calculate µwF . Eq. 4.60
16: Calculate µwCR . Eq. 4.64

17: Pcnew = ∅
18: for i = 1 to n do
19: Generate CRi . Eq. 4.64
20: Generate Fi . Eq. 4.60
21: mut

(k)
i th Mutation

22: cro
(k)
i th Crossover

23: Generate new individual tnew =
〈ui, F (k)

i , CR
(k)
i ,mut

(k)
i , cro

(k)
i 〉

24: Pcnew ← tnew

25: end for
26: P = Sort P ∪ Pnew
27: Remove last individuals in P until
|P |= n

28: Adapt Mutation Numbers . Eq. 4.52
29: Adapt Crossover Numbers . Eq. 4.56
30: for i = 1 to n do
31: Reassign mut(k)

i

32: Reassign cro(k)
i

33: end for
34: Update xbest
35: Update xworst
36: end for
37: return xbest
38: end procedure

SOAMSDE has a population Pc containing n individuals an each ith is a tuple
ti = 〈xi, Fi, CRi,muti, croi〉 composed of a d-dimensional vector xi that is a possible solution for
a single-objective function f , scaling factor Fi, crossover rate CRi, index mut(k)

i for one of the
possible mutation strategies, and index cro(k)

i for one of the possible crossover strategies.

SOAMSDE adaptive operator selection mechanisms adjust the mutation and crossover
strategies used by each individual in the same manner as CSASADE in Section 4.3.12 using
the indices muti and croi as well as a pair of sets of parameter indices Nmut and Ncro inter-
nal parameters. However, the pool of mutation strategies are larger for SOAMSDE. mut =
{rand/1, rand/2, current-to-best/1, current-to-best/2, best/1, best/2, tournment-based/1} represents
one of the mutation strategies used and each ith individual holds an index muti ∈ [1, 7] for one
of these strategies: (a) rand/1 mutation (Eq. 4.45) with index muti = 1 for the ith individual
and Nrand/1 is the number of individuals that uses this operator; (b) rand/2 mutation (Eq. 4.46)
with index muti = 2 for the ith individual and Nrand/2 is the number of individuals that uses this
operator; (c) current-to-best/1 mutation (Eq. 4.47) with index muti = 3 for the ith individual

106

and Ncurrent-to-best/1 is the number of individuals that uses this operator; (d) current-to-best/2
mutation (Eq. 4.48) with index muti = 4 for the ith individual and Ncurrent-to-best/2 is the number
of individuals that uses this operator; (e) best/1 mutation (Eq. 4.83) with index muti = 5 for the
ith individual and Nbest/1 is the number of individuals that uses this operator; (f) best/2 mutation
(Eq. 4.49) with index muti = 6 for the ith individual and Nbest/2 is the number of individuals
that uses this operator; (g) tournment-based/1 mutation (Eq. 4.84) with index muti = 7 for
the ith individual and Ntournment-based/1 is the number of individuals that uses this operator; In
Equations 4.45, 4.46, 4.47, 4.48, 4.83, and 4.49, r1, r2, r3, r4, and r5 are different random integers
in [1, n], xbest is the best solution found so far, and vi is the mutant vector generated by one
of these strategies generated for the ith individual. Fi and CRi are, respectively, the scaling
factor and crossover rate for each individual. The adaptive operator selection scheme used
in SOAMSDE is analogous to the one present in CSASADE (Section 4.3.12).

vi = x
(k)
best + Fi(x(k)

r1 − x
(k)
r2 + x(k)

r3 − x
(k)
r4). (4.83)

The last mutation strategy used in SOAMSDE is present in 4.5.2 works in a similar man-
ner as the bynary tournament selection present in GA (Section 4.3.1). In this tournament
process, a pair of different individuals are selected randomly from the population, and the indi-
vidual in this pair with the best objective evaluation has its solution selected as xtwinner. Then
tournment-based/1 mutation strategy uses the following equation:

vi = x(k)
r1 + Fi

(
xtwinner − x(k)

i

)
, (4.84)

where r1 ∈ [1, n] is a random index for an individual in the population, and Fi is the scaling factor
for the ith individual.

During its initialization, SOAMSDE generates randomly uniform solutions inside of the search
space. In the first iteration, the parameters N (k)

mut and N
(k)
cro represents the number of individuals

using each possible mutation and crossover strategies, these values are initialized as
⌈
n
7
⌉
and⌈

n
2
⌉
. For each ith individual their scaling factors and crossover rates are initially assigned Fi =

µw
0
F = µwF initial and CRi = µw

0
CR = µwCRinitial where µkF and µkCR are two internal parameters

adjusted by adaptive control strategies similar to the ones present in CSASADE.

During the iterative stage, the adaptive operation selector responsible to assign the muta-
tion and crossover strategies to the individuals in the population in a circular manner similarly to
how a dealer distributes a deck of cards to multiple players, instead of “chopping” the population
in multiple sets and giving strategies to these sets, as used in CSASADE and APMTMODE. By
assigning strategies in this manner, SOAMSDE prevents that specific operators are only assigned
to the best or worst individuals since the selection of individuals to be kept in the population
uses a sort method. An example of this assignment on work is present in the example where
given a population of 8 individuals and in an iteration that N (k)

bin = 3 and N (k)
exp = 7, the assign-

ment of crossover strategies for each individuals as follows: cro
(k)
1 = cro

(k)
3 = cro

(k)
5 = 1 and

cro
(k)
2 = cro

(k)
4 = cro

(k)
6 = cro

(k)
7 = cro

(k)
8 = 2.

SOAMSDE at every iteration and for each individual in the population generates a trial-vector

107

ui using a mutation and a crossover strategy with indices held by the ith individual, respectively,
muti and croi. Instead of using the selection process as in Eq. 4.3, SOAMSDE uses the same
selection process of GA (Section 4.3.1) by actually using trial-vectors as new solutions for new
individuals that are then added to a population of new individuals Pcnew. Then at the end of an
iteration, SOAMSDE joins both populations Pc and Pcnew sort their individuals based on their
evaluation values in ascending order and then iteratively removes the last individuals until this
new population has size n and substitute Pc for the next iteration. Each generated individual
have their parameter values copied from their original i-th individual, it includes Fnew = Fi,
CRnew = CRi, mutnew = muti, and cronew = croi.

For each ith individual in the population its scaling factors Fi is calculated as follows:

F
(k)
i = min(1,max(0,N (µw(k)

F , σ))), (4.85)

where µw(k)
F is an internal parameter that represents the weighted averages for scaling factors and

its value is adjusted using an adaptive parameter control strategy shown in Eq. 4.62 in Section
4.3.12, and σ is an internal parameter for the standard deviation controlled by a deterministic
parameter control strategy similar to the one that controls another σ in CSASADE (4.3.12).

In a similar approach, SOAMSDE updates the crossover rates CRi using the following equation:

ν = C(µw(k)
CR, σ)

CR
(k)
i =

ν if ν ∈ (0, 1)

1 otherwise

, (4.86)

where µw(k)
CR is another internal parameter representing weighted averages for crossover rates,

and it is adjusted by an adaptive parameter control strategy shown in Eq. 4.65 in Section
4.3.12.

The number of individuals using each mutation and crossover strategies, respectively, N (k)
mut

and N (k)
cro , changes in the same manner as CSASADE using Eq. 4.52 and Eq. 4.56.

4.4.1.2 Parameters Description for SOAMSDE

SOAMSDE is a complex DE-based adaptive meta-heuristic with seven parameter control
strategies used inspired by the CSASADE (Section 4.3.12). However, SOAMSDE has the fol-
lowing novelties when compared to CSASADE: (a) a larger pool of mutation strategies including
a tournament mutation strategy based on [82]; (b) SOAMSDE leaves the selection strategy to an
elitist process similar to the one present in GA that in turn alters the type of pressure imposed by
the algorithm to select good solutions influencing the speed of convergence; (c) Adaptive opera-
tion selection schemes present in SOAMSDE circularly assign mutation and crossover strategies
to the population in a way that resembles distributing cards to different players in a card game.

SOAMSDE contains no external parameters and does not need to be fined tuned by a user.
However, SOAMSDE contains thirteen internal parameters analogous to CSASADE, listed as

108

follows: (a) Fi, (b) µwF , (c) CRi, (d) µwCR, (e) σ, (f) µwF initial, (g) µwCRinitial, (h) σmax, (i)
σmin, (j) Nmut, (k) Ncro, (l) muti, and (m) croi.

Similar to CSASADE, two adaptive parameter control strategies work in an individual-
scope to update the values for scaling factors Fi and crossover rates CRi for each ith individual
in the population based on the internal parameters representing weighted averages µwF and
µwCR that are in turn controlled by other two adaptive parameter control strategies. σ has
its value controlled by a deterministic parameter control that independently of the algorithm
performance reduces the variation of generated scaling factors and crossover rates.

Internal parameters Nmut and Ncro update the number of individuals using specific mutation
and crossover strategies in a population-scope. The values assumed by these parameters are
controlled by a pair of adaptive parameter control strategies that use the difference in
evaluation values of individuals using specific operators. These differences are then used to increase
the number of individuals using operators that shows to have improvements while reducing the
number of individuals using operators with poor performance. Nmut and Ncro are used by two
adaptive operator selection that alters the values for indices muti and croi in a individual-
scope. These adaptive mechanisms use the own selection process to reduce the number of strategies
that obtain “bad” solutions and increase or maintain the number of strategies the obtain “good”
solutions.

Apart from the internal parameters influenced by adaptive schemes, SOAMSDE uses static
internal parameters that controls some characteristics of the adaptive techniques. These static
parameters are: (a) the initial weighted averages µwCRinitial and µwCRinitial that sets the initial
points for the parameter search with both of them set 0.5; (b) σmax and σmin represents the
maximum values of σ assumes during the first iterations and then over the last iteration.

4.4.2 Adaptive Genetic Algorithm v1 (AGAv1)

4.4.2.1 Meta-Heuristic Description

AGAv1 is a GA-based meta-heuristic that have adaptive parameter control strategies
inspired by the ones present in JADE. Algorithm 26 shows AGAv1 in pseudo-code form.

AGAv1 has a population P formed by n individuals. Each ith individual is represented as a
tuple ti = 〈xi, pci, pmi〉 composed of a d-dimensional integer vector xi as well as the crossover
and mutation rates pci and pmi that were used by the genetic operators to generate the vector
xi.

AGAv1 initialization process randomly generates solutions for a COP with objective function
f , analogous to GA. However, since AGAv1 contain adaptive techniques, it also initialize its
internal parameters related to the adaptive mechanisms, namely, pci = µ

(0)
pc = µpc initial and

pmi = µ
(0)
pm = µpc initial for each ith individual.

During every iteration, AGAv1 generates a population of offsprings Pnew, and before the selec-
tion operator application, the algorithm creates for the new offspring individuals their mutation

109

Adaptive Genetic Algorithm v1 (AGAv1)

INPUT: Objective Function (f(·))
Iterations (I)
Number of individuals (n)
Number of components (d)
Lower-bound vector (lb)
Upper-bound vector (ub)

OUTPUT: Best solution (xbest)
1: procedure AGAv1(f, I, n, d, lb,ub)
2: Initialize ti = 〈xi, pmi, pci〉
3: Evaluate f(xi)
4: Update xbest
5: for k = 1 to I − 1 do
6: Pnew = ∅
7: for i = 1 to bn2 c do
8: Generate pmnew . Eq. 4.87
9: Generate pcnew . Eq. 4.89

10: Binary Tournament Selection
Operator

11: One-Point Crossover Operator using
pcnew

12: Mutation Operator using pmnew
13: Evaluate offsprings xnew1 and xnew2

14: tnew1 = 〈xnew1, pmnew, pcnew〉
15: tnew2 = 〈xnew2, pmnew, pcnew〉
16: Pnew ← tnew1

17: Pnew ← tnew2

18: end for
19: Sort P ∪ Pnew
20: P is replaced by Best n in sorted P ∪

Pnew

21: Update µ(k)
pm . Eq. 4.88

22: Update µ(k)
pc . Eq. 4.90

23: Update xbest
24: end for
25: return xbest
26: end procedure

and crossover rates, respectively, pmnew and pcnew.

pmnew is generated using the following equation that defines an adaptive parameter control
strategy:

pmnew = min
(
pmmax,max

(
pmmin,N (µ(k)

pm , σpm)
))
, (4.87)

where pmmax and pmmin are internal static parameters that defines the upper and lower bounda-
ries for the mutation and crossover probabilities. σpm is another internal static parameter that
controls the spread of values for mutation probabilities. µ(k)

pm is an internal parameter configured
by an adaptive parameter control as following:

µ(k+1)
pm = min

(
pmmax,max

(
pmmin, (1− c)µ(k)

pm + c

(∑n
i=1 pmi
n

)))
, (4.88)

where c is an internal static parameter that, analogous to JADE, controls the adaptation speed.

pcnew is generated by a very similar adaptive parameter control as the one that generates
pcnew, as expressed in Eq. 4.89 that uses a second internal parameter µ(k)

pc controlled by another
adaptive mechanism as well as using other internal static parameters, namely, pcmax, pcmin that
work similarly to their counterparts for mutation, and the adaptation speed parameter c as shown
in Eq. 4.88.

pcnew = min
(
pcmax,max

(
pcmin,N (µ(k)

pc , σpc)
))
, (4.89)

110

µ(k+1)
pc = min

(
pcmax,max

(
pcmin, (1− c)µ(k)

pc + c

(∑n
i=1 pci
n

)))
, (4.90)

After the generation of pmnew and pcnew, these parameter are used to generate the new chro-
mosomes xnew1 and xnew2. These two chromosomes are then joined with pmnew and pcnew into
two new offsprings tnew1 = 〈xnew1, pmnew, pcnew〉 and tnew2 = 〈xnew2, pmnew, pcnew〉 that are then
added to the new population Pnew. The same elitist process present in GA is used to keep the
population with the best solutions found so far.

4.4.2.2 Parameters Description for AGAv1

AGAv1 contains four adaptive parameter control strategies. Two of them work in an
individual-scope controlling the parameter values for pm and pc for each ith individual of the
population P . The other two work in a population-scope controlling parameters µ(k)

pm and µ
(k)
pc

that in turn controls the adaptive mechanisms that generates by pm and pc values. All of these
adaptive parameter control strategies use as evidence for change the improvement in the
performance of the algorithm through the acquisition of better solution with smaller evaluation
values for the objective function f since the elitist process keeps better solutions and consequently
altering the average of parameter values.

AGAv1 contains thirteen internal parameters that influence the exploratory and exploitation
behavior for the search of possible parameters and in turn, these parameter controls the meta-
heuristic as a whole. These internal parameters are: (a) crossover probability pci for each indivi-
dual, (b) mutation probability pmi for each individual, (c) average crossover rate µ(k)

pc at iteration
k, (d) average crossover rate µ(k)

pc at iteration k, (e) initial average crossover rate µpc initial = 0.7,
(f) crossover rate standard deviation σpc = 0.25, (g) minimum crossover rate pcmin = 0.1, (h)
maximum crossover rate pcmax = 0.95, (i) average mutation rate µ(k)

pm at iteration k, (j) mutation
rate standard deviation σpm = 0.025, (k) minimum mutation rate pmmin = 0.01, (l) maximum
mutation rate pmmax = 0.1, and (m) adaptation rate c = 0.15. The parameters that are set
represent static ones.

4.4.3 Adaptive Genetic Algorithm v2 (AGAv2)

4.4.3.1 Meta-Heuristic Description

AGAv2 is the second GA-based adaptive meta-heuristic to optimize SOOP developed in this
work. AGAv2 contains some similarities with AGAv1. However, when compared with AGAv1,
the adaptive parameter control strategies developed for AGAv2 permit faster changes in
the averages of mutation and crossover rates during the algorithm execution. Therefore, faster
exploration for the mutation and crossover probabilities used by the mutation and crossover
genetic operators.

Another additional feature in AGAv2 is an adaptive parameter control strategy that uses
as evidence for change a success metric to configure standard deviation values for the generation of

111

mutation and crossover rates. These adaptation schemes have a population-scope since these
standard deviations are used to generate parameter for every individual. Algorithm 22 shows
AGAv2 is pseudo-code form.

Algorithm 22 Adaptive GA v2 (AGAv2)

INPUT: Objective Function (f(·))
Iterations (I)
Number of individuals (n)
Number of components (d)
Lower-bound vector (lb)
Upper-bound vector (ub)

OUTPUT: Best solution (xbest)
1: procedure AGAv2(f, I, n, d, lb,ub)
2: Initialize ti = 〈xi, pmi, pci〉
3: Evaluate f(x(0)

i)
4: Update xbest
5: for k = 1 to I − 1 do
6: Af = evaluations of P
7: Pnew = ∅
8: for i = 1 to bn2 c do
9: Generate pmnew . Eq. 4.91

10: Generate pcnew . Eq. 4.92
11: Binary Tournament Selection Opera-

tor
12: One-Point Crossover Operator using

pcnew

13: Mutation Operator using pmnew
14: Evaluate offsprings Mnew1 and

Mnew2

15: tnew1 = 〈xnew1, pmnew, pcnew〉
16: tnew2 = 〈xnew2, pmnew, pcnew〉
17: Pnew ← tnew1

18: Pnew ← tnew2

19: end for
20: Sort P ∪ Pnew
21: P is replaced by Best n in sorted

P ∪ Pnew
22: Afnew = evaluations of P
23: Count success s comparing Afnew

and Af

24: Update σ(k+1)
pm . Eq. 4.94

25: Update σ(k+1)
pc . Eq. 4.93

26: Update µ(k+1)
pm . Eq. 4.95

27: Update µ(k+1)
pc . Eq. 4.96

28: Update xbest
29: end for
30: return xbest
31: end procedure

AGAv2 is composed of a population P with of n tuples and each ith tuple is represented as
ti = 〈xi, pci, pmi〉. These tuples represent the individuals in AGAv2.

The parameters pmnew and pmnew are generated for the new offspring individuals using Eq.
4.91 and Eq. 4.92. Note that even though the process is analogous to that present in AGAv1,
the internal parameters that represent the standard deviations σpm and σpc are controlled by
a pair of deterministic parameter control strategies.

pmnew = min
(
pmmax,max

(
pmmin,N (µ(k)

pm , σ
(k)
pm)

))
. (4.91)

pcnew = min
(
pcmax,max

(
pcmin,N (µ(k)

pc , σ
(k)
pc)

))
. (4.92)

During every iteration, the processes to update the standard deviation values σ(k)
pc and σ(k)

pm use

112

sets containing copies of the objective evaluation results from the parent population at the begin-
ning of the iteration Af and the population after the elitist process has been applied by AGAv2
Afnew. Set Af is populated and sorted from the best to worst evaluations at the beginning of an
iteration k. After the genetic operators are applied, including the elitist process, the evaluation
results for the new population composed of old and new individuals are copied and sorted as a set
Afnew. Anew is then compared against Af in an element-by-element basis generating a success
value s that is computed as the number of times in which there was an improvement in evaluation
obtained from an iteration to another between two individuals ranked in the same ith position in
the population.

AGAv2 then uses s to indicate the improvement of the population solutions as a whole between
two iterations. This metric is used to decide whether the algorithm should explore more the search
space of parameters or exploit more the parameter values found so far. This change between
exploration and exploitation is done by increasing or decreasing the standard deviations values
σ

(k)
pc and σkpm using Eq. 4.93 and Eq. 4.94.

νc =

aσ
(k)
pc if s > n

4

a−1σ
(k)
pc otherwise

σ(k+1)
pc = min

(
σpcmax,max

(
σpcmin, νc

)). (4.93)

νm =

aσ
(k)
pm if s > n

4

a−1σ
(k)
pm otherwise

σ(k+1)
pm = min(σpmmax,max(σpcmin, νm))

. (4.94)

The internal parameters µ(k)
pm and µ(k)

pc are updated directly as the arithmetic averages for the
mutation and crossover rates in each individual that were kept by the elitist process, as if c = 1
in AGAv1, as present in Eq. 4.95 and Eq. 4.96.

µ(k+1)
pm = min

(
pmmax,max

(
pmmin,

∑n
j=1 pmj
n

))
. (4.95)

µ(k+1)
pc = min

(
pcmax,max

(
pcmin,

∑n
j=1 pcj
n

))
. (4.96)

4.4.3.2 Parameters Description for AGAv2

AGAv2 contains six parameter control strategies. The first four are adaptive parameter
control strategies that work in a similar fashion as the ones present in AGAv1 for the parameters
pmi, pci, µ

(k)
pm , and µ

(k)
pc . However, AGAv2 also contains two deterministic parameter control

strategies that adjust the values of the internal parameters σpm and σpc based on the rate of
success, i.e., improvement of individuals, during consecutive iterations.

113

AGAv2 contains nineteen internal parameters listed as follows: (a) crossover probability pci
for each individual, (b) mutation probability pmi for each individual, (c) average crossover rate µ(k)

pc

at iteration k, (d) initial average crossover rate µpc initial = 0.8, (e) average mutation rate µ(k)
pm , (f)

initial average mutation rate µpm initial = 0.01, (g) crossover rate standard deviation σ(k)
pc , (h) initial

crossover rate standard deviation σpc initial = 0.1, (i) mutation rate standard deviation σ(k)
pm , (j) ini-

tial mutation rate standard deviation σpm initial = 0.005, (k) minimum crossover rate pcmin = 0.1,
(l) maximum crossover rate pcmax = 0.95, (m) minimum mutation rate pmmin = 0.01, (n) maxi-
mum mutation rate pmmax = 0.1, (o) minimum crossover rate standard deviation σpcmin = 0.01,
(p) maximum crossover rate standard deviation σpcmax = 1, (q) minimum mutation rate standard
deviation σpmmin = 0.001, (r) maximum mutation rate standard deviation σpmmax = 0.5, and (s)
standard deviation adaptation rate a = 1.2. Since from these parameters, all thirteen of them are
static ones, the parameter tuning for AGAv2 internal parameters is its major disadvantage.

4.4.4 Adaptive Genetic Algorithm v3 (AGAv3)

4.4.4.1 Meta-Heuristic Description

AGAv3 is the third GA-based adaptive meta-heuristic developed in this work. It combines
adaptive mechanisms featured in AGAv2 and AGAv3 with schemes present in CSASADE (Section
4.3.12). For this reason, AGAv3 has parameter control strategies and adaptive operator
selection techniques. Algorithm 23 illustrates AGAv3 in pseudo-code.

114

Algorithm 23 Adaptive GA v3 (AGAv3)

INPUT: Objective Function (f(·))
Iterations (I)
Number of individuals (n)
Number of components (d)
Lower-bound vector (lb)
Upper-bound vector (ub)

OUTPUT: Best solution (xbest)
1: procedure AGAv3(f, I, n, d, lb,ub)
2: Initialize ti = 〈xi, pmi, pci, croi,muti〉
3: Evaluate f(x(0)

i)
4: Update xbest
5: Update xworst
6: for k = 1 to I − 1 do
7: Calculate σpm . Eq. 4.109
8: Calculate σpx . Eq. 4.110
9: Calculate µwpm . Eq. 4.106

10: Calculate µwpc . Eq. 4.106
11: Calculate pmi . Eq. 4.104
12: Calculate pci . Eq. 4.105
13: Pnew = ∅
14: for i = 1 to bn2 c do
15: Binary Tournament Selection

Operator
16: if f(xp1) < f(xp2) then
17: pc = pcp1

18: pm = pmp1

19: cro = crop1

20: mut = mutp1

21: else

22: pc = pcp2

23: pm = pmp2

24: cro = crop2

25: mut = mutp2

26: end if
27: cro th Crossover Operator using

pc

28: mut th Mutation Operator using
pm

29: Evaluate offsprings xnew1 and xnew2

30: tnew1 = 〈xnew1, pm, pc, cro,mut〉
31: tnew2 = 〈xnew2, pm, pc, cro,mut〉
32: Pnew ← tnew1

33: Pnew ← tnew2

34: end for
35: Sort P ∪ Pnew
36: P is replaced by Best n in sorted

P ∪ Pnew
37: Adapt Mutation Numbers . Eq. 4.52
38: Adapt Crossover Numbers . Eq. 4.56
39: for i = 1 to n do
40: Reassign mut(k)

i

41: Reassign cro(k)
i

42: end for
43: Update xbest
44: Update xworst
45: end for
46: return xbest
47: end procedure

AGAv3 has a population P composed of n individuals that are represented as tuples. Each ith
individual is a tuple ti = 〈xi, pci, pmi, croi,muti〉, where xi is d-dimensional integer vector that is
a solution for a COP with objective f , pci is the mutation rate used to generate this individual
solution, pmi is the crossover rate is used to generate xi, croi is the index for one of the operators
present in the pool of genetic crossover operators, and muti is the index for one of the genetic
mutation operators.

AGAv3 has a pool of possible crossover operators represented as
cro = {one-point, sbx, two-point, uniform} and a set of internal parameters N (k)

cro that represents
the number of individuals using one of the crossovers. For each ith individual croi can assume

115

integer values in the range [1, 4] representing the following list of crossover strategies: (a) one-point
crossover with index croi = 1 for individual i and None-point is the number of individuals that uses
this operator; (b) sbx (simulated binary) crossover with index croi = 2 for individual i and Nsbx

is the number of individuals that uses this operator; (c) two-point crossover with index croi = 3
for individual i and Ntwo-point is the number of individuals that uses this operator; (d) uniform
crossover with index croi = 4 for individual i and Nuniform is the number of individuals that uses
this operator;

The one-point crossover genetic operator functionality is explained in the GA meta-heuristic
present in Section 4.3.1. The two-point crossover is similar to the one-point, however, it uses two
random crossover points, respectively, rd1 and rd2, in the parent solutions xp1 and xp2 and then
exchange genetic material between these crossover points as illustrated in Fig. 4.6. Meanwhile,
the uniform crossover operator does a random test for each chromosome and, if this test is passed,
that chromosome is swapped between both parents generating two offsprings xo1 and xo2. Figure
4.7 illustrates an application of a uniform crossover where rj is a random value to be used by the
jth solution component.

A simulated binary crossover, as present in [83], uses Eq. 4.97, Eq. 4.98 and Eq. 4.99
to transfer genetic material between two parent solutions xp1 and xp2 generating two offspring
solutions xo1 and xo2, where r1 and r2 are random real numbers in [0, 1].

β =

(2r1)(
1
d+1) if r1 > 0.5

(2(1− r1))(
1
d+1) otherwise

. (4.97)

xo1j =

(
max

(
lbj ,min

(
ubj ,

⌊
0.5 + 0.5

(
(1 + β)xp1j + (1− β)xp2j

⌋))))
if r2 < pc

xp1j otherwise
. (4.98)

xo2j =

(
max

(
lbj ,min

(
ubj ,

⌊
0.5 + 0.5

(
(1 + β)xp2j + (1− β)xp1j

⌋))))
if r2 < pc

xp2j otherwise
. (4.99)

0 1 3

3 3 0

0 1 3

3 3 0

rd1 rd2

xp1:

xp2:

xo1:

xo2:

Figura 4.6 – Graphical representation of a two-point crossover operator.

116

0 1 3

3 3 0

0 3 0

3 1 3

rj > 0.5 rj > 0.5 rj > 0.5

xp1:

xp2:

xo1:

xo2:

Figura 4.7 – Graphical representation of a uniform crossover operator.

Similar to crossover operators, AGAv3 has a pool for mutation genetic operators mut =
{bnormalr, cauchyr, normalr, poly, unifr} and a set of internal parameters N (k)

mut that repre-
sents the number of individuals using one of the mutation operators. Indices muti can assume
integer values [1, 5] representing of the possible following mutation strategies: (a) bnormalr repre-
sents a biased random gene flip mutation that uses a normal distribution. The ith individual has
index muti = 1, and Nbnormalr is the number of individuals that uses this operator; (b) cauchyr
represents a random gene flip mutation that uses a Cauchy distribution. The ith individual has
index muti = 2, and Ncauchyr is the number of individuals that uses this operator; (c) normalr
is a random gene flip mutation that uses a normal distribution. The ith individual has index
muti = 3, and Nnormalr is the number of individuals that uses this operator; (d) poly is a poly-
nomial mutation. The ith individual has index muti = 4, and Npoly is the number of individuals
that uses this operator; (e) unifr is a random gene flip mutation the same used by GA in Section
4.3.1. The ith individual has index muti = 5, and Nunifr is the number of individuals that uses
this operator;

The biased gene flip mutation operator generates new chromosomes values that use its old
value as the mean in a normal distribution with a standard deviation of 10% of the mean between
the boundaries of the search space whenever a random test passes with pm for every component.
In other words, given a solution x, it generates a new value for the jth chromosome xnewj as
follows:

xnewj =
⌊
min

(
ubj ,max

(
lbj ,N (xj ,

ubj − lbj
10)

))⌋
. (4.100)

AGAv3 uses two new types of random gene flip mutation: (a) cauchyr generates new chromo-
somes xnewj using a Cauchy distribution as follows:

xnewj =
⌊
min

(
ubj ,max

(
lbj , C

(
lbj + ubj − lbj

2 ,
ubj − lbj

10

)))
+ 0.5

⌋
. (4.101)

(b) cauchyr generates new chromosomes xnewj using a Cauchy distribution as follows:

xnewj =
⌊
min

(
ubj ,max

(
lbj ,N

(
lbj + ubj − lbj

2 ,
ubj − lbj

10

)))
+ 0.5

⌋
. (4.102)

117

In mutations operators bnormalr, normalr, and cauchyr, the generated values need to be trun-
cated back to the search space, since both distribution may generate values outside of the search
space, and the results also need to be rounded to the closest integer number because solutions in
AGAv3 are d-dimensional integer vectors.

The polynomial mutation (poly) generates a new chromosome xjnew given the previous chro-
mosome xj . This process uses the following equation:

xjnew =

max
(
lbj ,min

(
ubj ,

⌊
xj + (2r)(

1
d+1) − 0.5

⌋))
if r < 0.5

max
(
lbj ,min

(
ubj ,

⌊
xj + (2(1− r))(

1
d+1) − 0.5

⌋))
otherwise

, (4.103)

where r is a random real number r ∈ [0, 1].

The adaptive operator selection scheme in AGAv4 assigns each individual its mutation
and crossover operator in the same fashion as SOAMSDE (Section 4.4.1), in other words, in a
circular, depending on the values of N (k)

cro and N (k)
mut.

During AGAv3 initialization, random solutions for f are generated inside of the search space
and assigned as chromosomes to each of the individuals in AGAv3. The parameters for each
individual are initialized as in CSASADE and SOAMSDE, but instead of scaling factors and
crossover rates, the parameters are related to crossover probabilities and mutation probabilities.
This process assigns to each individual i pmi = µw

0
pm = µwpm initial and pci = µw

0
pc = µwpc initial

where µkp and µkpc are two internal parameters adjusted by adaptive control strategies.

Another stage of the initialization is to assign to each genetic operator equal number of in-
dividuals in such a way that None-point = Nsbx = Ntwo-point = Nuniform =

⌊
n
4
⌋
and Nbnormalr =

Ncauchyr = Nnormalr = Npoly = Nunifr =
⌊
n
5
⌋
.

During I iterations, two adaptive parameter control strategies dynamically change the
values for crossover and mutation probabilities of the population in an individual-scope by gene-
rating new mutation and crossover rates using Eq. 4.104 and Eq. 4.105.

pmi = min
(
pmmax,max

(
pmmin,N

(
µw

(k)
pm , σpm

)))
. (4.104)

pci = min
(
pcmax,max

(
pcmin,N

(
µw

(k)
pc , σpc

)))
. (4.105)

These adaptive parameter control schemes use weighted averages to generate new parameter va-
lues, namely µwpm and µwpc . Both averages are adjusted by others adaptive parameter control
strategies calculated using Eq. 4.106 and Eq. 4.107 with the normalized weight for each ith in-
dividual calculated using Eq. 4.108.

µw
(k)
pm =

n∑
i=1

wipmi. (4.106)

µw
(k)
pc =

n∑
i=1

wipmi. (4.107)

wi = |f(xi)− f(xworst)|∑n
j=1|f(xj)− f(xworst)|

. (4.108)

118

The values for standard deviations for both mutation and crossover probabilities are expressed
as internal parameters σpm and σpc . Both of them are updated using their own deterministic
parameter control strategies that uses Eq. 4.109 and Eq. 4.110.

σpm = σpmmin +
(
σpmmax − σpmmin

)(
1−

(
k

I

)2)
. (4.109)

σpc = σpcmin +
(
σpcmax − σpcmin

)(
1−

(
k

I

)2)
. (4.110)

During AGAv3 reproductive stage, when generating offspring individuals, the parent individu-
als are selected using a binary tournament selection as GA (Section 4.3.1). In this manner,
given two parents selected from the population with indices p1 and p2, the crossover and muta-
tion genetic operators and parameter values used to generate offsprings between these parents are
obtained from the parent with the best evaluation of the objective function f . Both new offspring
solutions inherit their parameters from the parent with the best evaluation results.

4.4.4.2 Parameters Description for AGAv3

AGAv3 has no external static parameters. However, it contains nineeen internal parame-
ters listed as follows: (a) mutation probability for the ith individual pmi, (b) crossover probability
for the ith individual pci, (c) average crossover probability µ(k)

pc at iteration k, (d) initial average
crossover probability µpc initial = 0.7, (e) average mutation probability µ(k)

pm , (f) initial average mu-
tation probability µpm initial = 0.05, (g) minimum crossover probability pcmin = 0.1, (h) maximum
crossover probability pcmax = 0.95, (i) minimum mutation probability pmmin = 0.01, (j) maxi-
mum mutation probability pmmax = 0.1, (l) minimum crossover probability standard deviation
σpcmin = 0.1, (m) maximum crossover probability standard deviation σpcmax = 0.4, (n) minimum
mutation probability standard deviation σpmmin = 0.01, (o) maximum mutation probability stan-
dard deviation σpmmax = 0.05. (p) number of individuals using a specific mutation operator Nmut,
(q) number of individuals using a specific crossover operator Ncro, (r) index for the mutation ope-
rator used by individual i muti, and (s) index for the mutation operator used by individual i croi.
All parameters in this list that are set are static ones. There are ten one of them in AGAv3.

Similar to SOAMSDE, AGAv3 has two adaptive operation selection mechanisms that
controls the use of operators by the individuals based on the values of the internal parameters
Nmut and Ncro in a similar fashion as SOAMSDE.

AGAv3 contains eight parameter control strategies. Six of them are adaptive parameter
control strategies to control the internal parameters pmi, pci, µ

(k)
pm , µ

(k)
pc , Nmut and Ncro. Finally,

two of these adaptive mechanisms are deterministic parameter control strategies that adjust
the values of the internal parameters σpm and σpc .

119

4.4.5 Adaptive Genetic Algorithm v4 (AGAv4)

4.4.5.1 Meta-Heuristic Description

AGAv4 is an adaptive meta-heuristic that is an expansion of AGAv3 that adds an adaptive
parameter control strategy to configure the size of the tournament selection in a population-
scope as present in [84]. Algorithm 24 shows AGAv4 in pseudo-code.

Algorithm 24 Adaptive GA v4 (AGAv4)

INPUT: Objective Function (f(·))
Iterations (I)
Number of individuals (n)
Number of components (d)
Lower-bound vector (lb)
Upper-bound vector (ub)

OUTPUT: Best solution (xbest)
1: procedure AGAv4(f, I, n, d, lb,ub)
2: Initialize ti = 〈xi, pmi, pcicroi,muti, pti〉
3: Evaluate f(x(0)

i)
4: Update xbest
5: Update xworst
6: for k = 1 to I − 1 do
7: Calculate σpm . Eq. 4.109
8: Calculate σpx . Eq. 4.110
9: Calculate µwpm . Eq. 4.106

10: Calculate µwpc . Eq. 4.106
11: Calculate pmi . Eq. 4.104
12: Calculate pci . Eq. 4.105
13: Calculate Tsize . Eq. 4.111
14: Pnew = ∅
15: for i = 1 to bn2 c do
16: Tsize Tournament Selection Ope-

rator
17: if f(xp1) < f(xp2) then
18: pc = pcp1

19: pm = pmp1

20: cro = crop1

21: mut = mutp1

22: pt = ptp1

23: else
24: pc = pcp2

25: pm = pmp2

26: cro = crop2

27: mut = mutp2

28: pt = ptp2

29: end if
30: cro th Crossover Operator using

pc

31: mut th Mutation Operator using
pm

32: Evaluate offsprings xnew1 and xnew2

33: Calculate ptnew1 and ptnew2 . Eq.
4.114

34: tnew1 = 〈xnew1, pm, pc, cro,mut, ptnew1〉
35: tnew2 = 〈xnew2, pm, pc, cro,mut, ptnew2〉
36: Pnew ← tnew1

37: Pnew ← tnew2

38: end for
39: Sort P ∪ Pnew
40: P is replaced by Best n in sorted P ∪

Pnew

41: Adapt Mutation Numbers . Eq. 4.52
42: Adapt Crossover Numbers . Eq. 4.56
43: for i = 1 to n do
44: Reassign mut(k)

i

45: Reassign cro(k)
i

46: end for
47: Update xbest
48: Update xworst
49: end for
50: return xbest
51: end procedure

AGAv4 has a population P with n individuals and each ith individual is a tuple ti =

120

〈xi, pci, pmi, croi,muti, pti〉 that is similar to the tuple of AGAv3 with the addition of pti that
represents the pressure for this individual when deciding the size of the tournament selection
Tsize. During the initialization, as the population are generated, each individual receives a ran-
dom pressure value inside of the range [ptmin, ptmax].

The pressure value for each individual contributes to the size for the tournament selection Tsize
using the following equation:

Tsize = min
(
Tmax,max

(
Tmin,

⌊
n∑
i=1

pw
(k)pci

⌋))
, (4.111)

where Tmin and Tmax are internal static parameters that represent the minimum and maximum
tournament size, respectively. pw

(k) is a weighting factor that is configured by a deterministic
parameter control that uses Eq. 4.112 and forces the tournament to be smaller during the last
iterations of the algorithm.

pw
(k) = 0.25− 0.15 max

(
0, 2

(
k

I
− 0.5

))
(4.112)

A tournament selection of size Tsize selects Tsize random individuals from the population and,
from these individuals, it returns the individual with the best objective function evaluation f to
be the first parent. Then it obtains another Tsize individuals from the population without the
first parent and selects the best individual to be the second parent. Notice that the size of the
tournament selection decides the convergence speed of AGAv4. A big tournament size forces a
fast convergence but reduces the diversity of solutions in the population and a small tournament
size maintain population diversity but has slower convergence.

During the reproductive process, after the generation of a pair of offspring solutions xnew1 and
xnew2, a new pressure values are calculated to the offsprings using Eq. 4.113 and Eq. 4.114 where
given that pt is the pressure tournament from the parent with the best objective evaluation f(xp)
and r is random real number generated using a normal distribution with r = N (0, 1).

δpt = 1
1 +

(
1−pt
pt

)
exp (−γr)

. (4.113)

ptnew =

min (ptmax,max (ptmin, pt + δpt)) if f(xnew) < f(xp)

min (ptmax,max (ptmin, pt − δpt)) otherwise
. (4.114)

4.4.5.2 Parameters Description for AGAv4

Since AGAv4 is an extension of AGAv3 it has all of its internal parameters with the addition of
the following parameters: (a) pressure for individual i pt, (b) tournament size Tsize, (c) minimum
possible tournament size Tmin = 2, (d) maximum possible tournament size Tmax =

⌊
n
3
⌋
, (e)

minimum pressure value for individuals ptmin = 0.08, (f) maximum pressure value for individuals

121

ptmax = 1.0, and (g) learning rate for the pressure adaptation γ = 0.3. AGAv4 has a total of
twenty-six internal parameters.

AGAv4 contains ten parameter control strategies. Eight of them are the same used by
AGAv3. The added parameter control strategies related to the adaptation of tournament
size are: (a) an adaptive parameter control strategy configures the pressures for tournament
in each iteration i, and (b) a deterministic parameter control strategy that configures the
tournament size for the algorithm in a specific iteration.

4.4.6 Adaptive Particle Swarm Optimization (APSO)

4.4.6.1 Meta-Heuristic Description

APSO is an adaptive PSO-based meta-heuristic developed in this work that has the following
additions to the PSO (Section 4.3.12): a) adaptive parameter control strategies that adjust
cognitive and social factors, and b) alteration in the deterministic parameter control stra-
tegy for the inertia weight. The pseudo-code for APSO meta-heuristic can be seen in Algorithm
25.

Algorithm 25 Adaptive Particle Swarm Optimization (APSO)

INPUT: Objective Function (f(·))
Iterations (I)
Number of individuals (n)
Number of components (d)
Lower-bound vector (lb)
Upper-bound vector (ub)
Initial weight (winitial)
Final weight (wfinal)

OUTPUT: Best solution (xbest)
1: procedure APSO
2: Initialize x(0)

i (i = 1, ..., n)
3: Evaluate f(x(0)

i)
4: Calculate vmax . Eq. 4.118
5: Update particles xpbesti
6: Update xbest
7: µ1

c1 = 2
8: for k = 1 to I − 1 do

9: Sc1 ← ∅
10: Calculate w(k) . Eq. 4.117
11: for i = 1 to n do
12: Calculate c1i and c2i . Eq. 4.115
13: Calculate vki . Eq. 4.4
14: Calculate xki . Eq. 4.5
15: Evaluate f(x(k)

i)
16: if f(xki) < f(xk−1

i) then
17: Sc1 ← c1i

18: end if
19: Update xpbesti
20: end for
21: Update xbest
22: Update µc1 . Eq. 4.116
23: end for
24: return xbest

25: end procedure

The proposed modification adds a pair of adaptive parameter control strategies to change
both social and cognitive factors influenced by the adaptive mechanism from JADE. This modi-
fication gives each ith particle their own unique social and cognitive factors, respectively, c1i and
c2i, with values that can dynamically vary as the algorithm progress based on the swarm ex-

122

ploration of the search space. This mechanism works in an individual-scope by re-sampling the
parameters using an average value for the cognitive factor µc1 that in turn uses as evidence for
change parameter that improves the algorithm performance. Both c1i and c2i are tied together
restricted to c1i, c2i ∈ (0, 4) and c1i + c2i = 4, so whenever a factor increases the other decreases.

At every k iteration, the cognitive and social factors are generated for every particle using a
normal distribution as presented in Eq. 4.115. The choice to use a normal in favor of the Cauchy
distribution is because Cauchy distribution has long flat tails is more likely to generate a value
further from its mean than the normal distribution.

c1
k
i = N (µkc1 , 0.1)

c2
k
i = 4− c1

k
i

, (4.115)

where µkc1 is the average of social factors and its value is calculated as follows:

µkc1 =

0.8 · µk−1
c1 + 0.2 ·

∑
c1l∈Sc1

c1l
|Sc1 |

if |Sc1 |6= 0

µk−1
c1 c.c.

, (4.116)

where Sc1 is a set of successful values of cognitive factors c1i obtained from the previous iterations.
This successful set is populated in the same manner as the successful sets for mutation and
crossover rates present in JADE.

The inertial weight modification alters the importance given by APSO to explore or refine
its information about the search space. In PSO [61], the inertial weight w changes linearly
through the iterations. It softly changes PSO behavior between an exploratory to an exploitative
one. This change in values of w is done using a deterministic parameter control strategy. The
proposed change modifies this linear behavior to a non-linear sigmoid function, as shown in Fig.
4.8 with the reasoning to allow APSO to spend more iterations on the exploratory stage using
high weight values and, at the end of its execution, use more iterations in exploitative stages. The
deterministic parameter control strategy used for w is expressed by the following equation:

wk = winitial + wfinal − winitial

1 + e

(
−12
(
k

I
−c
)) , (4.117)

where I is the number of iterations allowed by the algorithm to run, k is the current iteration and
c is the real static internal parameter inside (0, 1) that adjusts in which percentage 100c% of
iterations the algorithm changes its behavior from exploratory to exploitative, a suggested value
to c is 0.45. Lastly, the initial weight winitial ∈ (0, 1) with a suggested value of 0.85 and the final
weight wfinal ∈ (0, 1) with a recommended value of 0.05. Reminding that winitial > wfinal.

Even though not added as an adaptive parameter, the maximum speed vmax it is fixed as
an internal static parameter that depends on the search space size. Equation 4.118 is used to
obtain the vmax.

vmax = ||ub− lb||2 (4.118)

123

0 20 40 60 80 100

Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

In
e

rt
ia

 W
e

ig
h

t
(w

)

PSO

APSO

Figura 4.8 – Graphical example of the inertia weight evolution during execution of APSO (red)
and PSO (blue) with both having I = 100, winitial = 0.85 and wfinal = 0.05.

4.4.6.2 Parameters Description for APSO

APSO has the following six internal parameters: (a) social factor for particle i c1i, (b)
cognitive factor for particle i c2i, (c) initial average of social factors µc1 initial = 2, (d) ratio of
iterations in which the weight changes from exploratory to exploitative c = 0.45, (e) maximum
velocity vmax, and (f) initial velocity vinitial = 0.25vmax.

APSO has an adaptive parameter control strategy that controls simultaneously the social
and individual factors for each particle in a way that when one increases the other decreases. It
forces each individual to assume an exploratory or exploitative behavior. Similar to PSO, APSO
has a deterministic parameter control strategy for the inertia weight parameter.

APSO also contain two external static parameters: (a) initial weight value winitial and (b)
final weight value wfinal.

4.4.7 Adaptive Particle Swarm Optimization v2 (APSOv2)

4.4.7.1 Meta-Heuristic Description

APSOv2 is the second implementation of an adaptive PSO-based that have similar features
from APSO. The additions of APSOv2 compared with APSO is the change of the parameter
control the inertial weight for the algorithm from a deterministic approach that that work in
a population scope to an adaptive one that works in an individual-scope. Algorithm 26 presents
APSOv2 in pseudo-code format.

APSOv2 has a swarm Pc of n particles and each of them contains a particle position as d-
dimensional vector xi, speed vi, copy of the best individual position xpbesti, the particle inertia
weight wi and individual social and cognitive factors c1i and c2i.

During the initialization, APSOv2 generates random solutions in the search space for function

124

Algorithm 26 Adaptive Particle Swarm Optimization v2 (APSOv2)

INPUT: Objective Function (f(·))
Iterations (I)
Number of individuals (n)
Number of components (d)
Lower-bound vector (lb)
Upper-bound vector (ub)

OUTPUT: Best solution (xbest)
1: procedure APSOv2(f, I, n, d, lb,ub)
2: Initialize x(0)

i (i = 1, ..., n)
3: Evaluate f(x(0)

i)
4: Calculate vmax . Eq. 4.118
5: Update particles xpbesti
6: Update xbest
7: µ1

c1 = 2
8: for k = 1 to I − 1 do
9: Update x(k)

best and x
(k)
worst

10: Update w(k)
i (i = 1, ..., n) . Eq. 4.119

11: Sc1 ← ∅
12: for i = 1 to n do
13: Calculate c1i and c2i . Eq. 4.115
14: Calculate vki . Eq. 4.4
15: Calculate xki . Eq. 4.5
16: Evaluate f(x(k)

i)
17: if f(xki) < f(xk−1

i) then
18: Sc1 ← c1i

19: end if
20: Update xpbesti
21: end for
22: Update xbest
23: Update µc1 . Eq. 4.116
24: end for
25: return xbest

26: end procedure

f to set as positions for the particles. APSOv2 similar to APSO initialize the particles speeds,
and social and cognitive factors c1i and c2i.

During the iterative process, for every ith particle, the social and cognitive parameters are
updated using the same scheme as APSO using Eq. 4.115.

APSOv2 calculates each particle weight using wi the following equation:

wi = wmin + (wmax − wmin)

1 + exp

(
−14 f(xi)−f(x(k)

best
)

f(x(k)
worst)−f(x(k)

best
)

) , (4.119)

where wmin and wmax are internal static parameter that are, respectively, the minimum and
maximum inertial weight values allowed for the particles. x

(k)
best and x(k)

worst are the best and
worst solutions found in iteration k, instead of the best and worst solution found for the whole
APSOv2 execution. This adaptive parameter control strategy results in individuals close to
the best solution having small weight values that consequently produce exploitative behavior and
individuals far to the best solution to behave in an exploratory manner. Since each particle has
its weight wi, APSOv2 has during every iteration particles concurrently in an exploitative stage
while others are in an explorative one. Different than PSO and APSO, in which all particles in
the swarm behave in an exploratory or exploitative manner.

125

4.4.7.2 Parameters Description for APSOv2

APSOv2 does not contain external static parameters. APSOv2 has eight internal parame-
ters. These parameters are listed as follows: (a) social factor for particle i c1i, (b) cognitive factor
for particle i c2i, (c) initial average of social factors µc1 initial = 2, (d) initial average of cognitive
factors µ(0)

c2 = 2, (e) maximum velocity vmax, (f) initial velocity vinitial = 0.25vmax, (g) maximum
weight value wmax = 0.9, and (h) minimum weight value wfinal = 0.05.

APSOv2 has two adaptive parameter control strategies that adjust the social and cog-
nitive factors for a particle i c1i and c2i, respectively, and the inertia weight for each particle i
wi.

4.4.8 Hybrid Discrete Particle Swarm Optimization Utilization-based (HDPSO-
U)

4.4.8.1 Meta-Heuristic Description

HDPSO-U is a GA and PSO hybrid meta-heuristic specialized to optimize the task mapping
problem of RTA into RTNoC-based SoC platforms. The problem present in Chapter 3.8. HDPSO-
U is a version of HDPSO-M with a local search algorithm different than the LPT algorithm.
Instead, it uses a method that uses the utilization factors of both the not mapped tasks and
the processors in a platform Π in an approach to map tasks similar to the MappingToContainer

phase on the constructive task mapping algorithm present on [85]. Algorithm 27 shows HDPSO-U
in pseudo-code form.

Algorithm 27 Hybrid Discrete Particle Swarm Optimization - Utilization based (HDPSO-U)

INPUT: Objective Function (f(·))
Application (Ω)
Platform (Ψ)
Iterations (I)
Number of individuals (n)
Number of components (d)
Lower-bound vector (lb)
Upper-bound vector (ub)
Bernoulli Probability (p)

OUTPUT: Best solution (xbest)
1: procedure HDPSO-U
2: Initialize xi (i = 1, ..., n)
3: Evaluate f(xi − 1)

4: Update xpbesti
5: Update xbest
6: for k = 1 to I − 1 do
7: for i = 1 to n do
8: Calculate vki . Eq. 4.120
9: Calculate xki . Eq. 4.78

10: Evaluate f(xi − 1)
11: Update xpbesti
12: end for
13: Update xbest
14: end for
15: return xbest − 1
16: end procedure

Similar to HDPSO-M, the algorithm has a swarm of n particles and each of one them at
iteration k has a position x(k)

i , a speed v(k)
i , and copies for individual and global best xpbesti and

126

xbest. The process to update positions and speed use the same operators for addition, subtraction
and multiplication, respectively,

cross
+ ,

o
− and

o
×, used by HDPSO-M as well as the Eq. 4.78 to

update particles positions.

HDPSO-U updates its particles speeds using the following equation:

v
(k+1)
i = v

(k)
i

cross
+

(
LUM(vi,pbest)

cross
+ LUM(vgbest)

)
, (4.120)

where LUM(·) is a deterministic algorithm that has as input and output variables equal to those
of LPTM in HDPSO-M (see Algorithm 20). In other words, it receives a vector x containing
components xj = 0 representing tasks not mapped yet and elements xk 6= 0 symbolizing mapped
tasks to processors with indices xk − 1. LUM takes this vector x and then sorts the unmapped
tasks in descending order of utilization factors to then sequentially allocate them to the least
used processors in Π, i.e., the processors with the least utilization factor. LUM algorithm is
represented in pseudo-code form in Algorithm 28.

Algorithm 28 Largest Utilization first based Mapping (LUM)

INPUT: Application (Ω)
Platform (Ψ)
Offset Mapping (x)

OUTPUT: Possible Offset Mapping (xout)
1: procedure LUM(Ω,Ψ,x)
2: Tunmapped_tasks = {{τj , xj} ∈ {Γ,N} : xj ∈
x ∧ xj = 0}

3: Sort Tunmapped_tasks utilization factors in
descend order

4: Tmapped_tasks = {{τk, xk} ∈ {Γ,N} : xk ∈
x ∧ xk 6= 0}

5: for i = 1 to |Tmapped_tasks| do
6: {τk, xk} = Tmapped_tasksi
7: Map task τk to core with index xk−1
8: end for
9: for i = 1 to |Tunmapped_tasks| do

10: smin = MAX*
11: πmin = ∅
12: for n = 1 to |Π| do

13: sn =
∑
τm∈map(πn)

Cm
Tm

14: if thensn < smin

15: smin = sn

16: πmin = πn

17: end if
18: end for
19: {τj , xj} = Tunmapped_tasksi
20: Map task τj to core πmin
21: xj = index(πmin) + 1
22: end for
23: T = Tmapped_tasks ∪ Tunmapped_tasks

24: Sort T based on tasks indices.
25: xout ← ∅
26: for i = 1 to |T | do
27: {τ , x} = Ti

28: xout ← x

29: end for
30: return xout

31: end procedure

* MAX represents an arbitrary very large value.

Analogous to HDPSO-M, HDPSO-U has a single external static parameter that controls its
diversity of possible solutions.

127

4.4.8.2 Parameters Description for HDPSO-U

HDPSO-U do not have any parameter control strategy neither any internal parameters.
HDPSO-U only relies on a single external static parameter p that represents the rate of addition
of random components into the task mapping obtained by LUM .

4.4.9 Adaptive Hybrid Discrete Particle Swarm Optimization Utilization-based
(AHDPSO-U)

4.4.9.1 Meta-Heuristic Description

AHDPSO-U is an adaptive version of HDPSO-U inspired by the adaptive parameter con-
trol strategies present in AGAv2. The added adaptive mechanism dynamically change the
Bernoulli probability used to generate the random vectors R1 and R2 that are used to decide
which task should be mapped by LUM in Algorithm 28. AHDPSO-U is displayed in pseudo-code
form in Algorithm 29.

Algorithm 29 Adaptive Hybrid Discrete Particle Swarm Optimization - Utilization based
(AHDPSO-U)

INPUT: Objective Function (f(·))
Application (Ω)
Platform (Ψ)
Iterations (I)
Number of individuals (n)
Number of components (d)
Lower-bound vector (lb)
Upper-bound vector (ub)

OUTPUT: Best solution (xbest)
1: procedure AHDPSO-U
2: Initialize xi (i = 1, ..., n)
3: Initialize pi = 0.5 (i = 1, ..., n)
4: Evaluate f(xi − 1)
5: Update xpbesti
6: Update xbest
7: for k = 1 to I − 1 do

8: Sp = ∅
9: for i = 1 to n do

10: Generate pi (i = 1, ..., n) . Eq.
4.121

11: Calculate vki . Eq. 4.120
12: Calculate xki . Eq. 4.78
13: Evaluate f(xi − 1)
14: Update Sp . Eq. 4.124
15: Update xpbesti
16: end for
17: Update µ(k+1)

p . Eq. 4.122
18: Update σ(k+1)

p . Eq. 4.123
19: Update xbest
20: end for
21: return xbest − 1
22: end procedure

Similar to HDPSO-U and HDPSO-M, AHDPSO-U has a swarm of n particles and each ith
particle position is a d-dimensional integer vector x(k)

i that represents an offset task mapping.
These particles also have individual probabilities values pi that is updated during every k iteration
using Eq. 4.121. The adaptive parameter control strategy configures pi in an individual scope
using as evidence for change objective function f evaluation by creating a set of successful values of

128

parameters and then re-sampling them based on the average of these successful parameter values.
AHDPSO initializes pi probabilities with values equal to 0.5.

pi = min(pmax,max(pmin,N (µ(k)
p , σ(k)

p))), (4.121)

where pmax and pmin are the maximum and minimum probabilities allowed by the algorithm and
their suggested values are 0.95 and 0.05. µ

(k)
p and σ

(k)
p are the mean value and the standard

deviation value for the Bernoulli probabilities generation during the kth iteration. Equation 4.122
and Eq. 4.123 adjust µ(k)

p and σ(k)
p values using information gathered during AHDPSO-U current

iteration k.

µ(k+1)
p =

∑

p∈Sp
(p)

|Sp| if Sp 6= ∅

µ
(k)
p otherwise

. (4.122)

ν =

aσ

(k)
p if |Sp|> dN5 e

a−1σ
(k)
p if |Sp|< dN5 e

σ
(k)
p otherwise

σ(k+1)
p = min(0.5,max(0.05, ν))

, (4.123)

where a is an adaptation rate for the standard deviation value, and its suggested value is 1.2. Also,
Sp is a set that contains successful values of probabilities, and it is populated whenever there is
an improvement in the evaluation of a particle position between two iterations according to Eq.
4.124.

Sp ←

pi if |unsch(x(k+1)
i − 1̄,Ω,Ψ)|< |unsch(x(k)

i − 1̄,Ω,Ψ)|

∅ otherwise
(4.124)

4.4.9.2 Parameters Description

AHDPSO-U has an adaptive parameter control strategy to dynamically configure the
Bernoulli probabilities used by each particle pi.

AHDPSO-U relies on the following seven internal static parameters: (a) Bernoulli probability
for the ith particle pi, (b) maximum Bernoulli probability allowed pmax = 0.95, (c) minimum
Bernoulli probability allowed pmin = 0.05, (d) standard deviation adaptation rate a = 1.2, (e)
initial average for Bernoulli probabilities = µ

(0)
p = 0.5, (f) maximum standard deviation σ = 0.5,

and (g) minimum standard deviation σ = 0.05.

129

4.4.10 Adaptive Gray Wolf Optimization (AGWO)

4.4.10.1 Meta-Heuristic Description

AGWO is an adaptive version for GWO that adds an adaptive parameter control strategy,
similar to the one present in JADE (Section 4.3.11), to modify the scheme in which wolves update
their positions. AGWO is illustrated in pseudo-code form in Algorithm 30.

Algorithm 30 Adaptive Gray Wolf Optimization (AGWO)

INPUT: Objective Function (f(·))
Iterations (I)
Number of individuals (n)
Number of components (d)
Lower-bound vector (lb)
Upper-bound vector (ub)
Scaling factor (F)
Crossover rate (CR)

OUTPUT: Best solution (xbest)
1: procedure AGWO(f, I, n, d, lb,ub)
2: Initialize wolves x(0)

i (i = 1, ..., n)
3: Initialize coefficients a, A and C
4: Evaluate f(x(0)

i)
5: Update xα Best Solution
6: Update xβ Second best Solution
7: Update xδ Third best solution
8: for k = 1 to I − 1 do
9: Sα = ∅

10: Sβ = ∅

11: Sδ = ∅
12: for i = 1 to N do
13: Update wolf x(k)

i . Eq. 4.125
14: Evaluate f(x(k)

i)
15: Update xα Best Solution
16: Update xβ Second best Solution
17: Update xδ Third best solution
18: Update Sα . Eq. 4.129
19: Update Sβ . Eq. 4.130
20: Update Sδ . Eq. 4.131
21: end for
22: Update coefficients a, A and C
23: Update w(k+1)

α . Eq. 4.126
24: Update w(k+1)

β . Eq. 4.127
25: Update w(k+1)

β . Eq. 4.127
26: end for
27: return xα

28: end procedure

Similar as the canonical GWO, AGWO has a pack of omega wolves Pc of size N with their
positions represented as vectors x(k)

i for every ith wolf at iteration k of the algorithm. AGWO
also has three vectors holding the positions for the leaders xα, xβ and xδ that are used to update
the omega wolves positions.

Each ith wolf updates its position following the three leader wolves α, β and δ giving the same
level of importance to them. This behavior does not reflect the description of wolf hierarchical
social behavior in nature accurately since the α wolf should be selected to be followed over β and
δ. Even in particular occasions in which this hierarchy does not entirely apply, for example, when
a β or δ wolf is closer in the hunting ground than an α, a ω wolf does not follow the three classes
of leaders equally. AGWO takes this difference into consideration to apply a different update
mechanism for the ω wolves positions using weight parameter values for each leader, respectively,
w

(k)
α , w(k)

β and w(k)
α as shown in Equation 4.125.

130

x
(k+1)
i,j =

w
(k)
α xfα,j + w

(k)
β xfβ ,j + w

(k)
δ xfδ,j

w
(k)
α + w

(k)
β + w

(k)
δ

, (4.125)

where xfα , xfβ and xfδ are the positions that the ith wolf would be if it would follow only one of
the wolf leaders as calculated by Eq. 4.10.

All omega wolves in the pack share the leaders weighting factors parameters. For this reason,
the parameter control mechanism for these parameters works in a population-scope. The adaptive
parameters w(k+1)

α , w(k+1)
β , and w(k+1)

δ are updated at every iteration using Eq. 4.126, Eq. 4.127
and Eq. 4.128.

w(k+1)
α =

(1− c)w(k)
α + c

∑
wα∈Sα

(wα)
|Sα| if Sα 6= ∅

w
(k)
α otherwise

. (4.126)

w
(k+1)
β =

(1− c)w(k)
β + c

∑
wβ∈Sβ

(wβ)

|Sβ | if Sβ 6= ∅

w
(k)
β otherwise

. (4.127)

w
(k+1)
δ =

(1− c)w(k)
δ + c

∑
wδ∈Sδ

(wδ)
|Sδ| if Sδ 6= ∅

w
(k)
δ otherwise

, (4.128)

where c is a internal static parameter that controls the adaptation speed, suggested value used
is c = 0.15, and Sα, Sβ and Sδ are sets that hold successful values of weights that are updated
whenever a omega wolf improves one of the leaders evaluation result.

The sets Sα, Sβ and Sδ are updated process follows equations 4.129, 4.130, and 4.131, respec-
tively.

Sα ←

w
(k)
α if f(xi) < f(xα)

∅ otherwise
. (4.129)

Sβ ←

w
(k)
β if f(xi) < f(xβ) ∧ f(xi) > f(xα)

∅ otherwise
. (4.130)

Sδ ←

w
(k)
δ if f(xi) < f(xδ) ∧ f(xi) > f(xβ)

∅ otherwise
. (4.131)

4.4.10.2 Parameters Description for AGWO

AGWO contains three adaptive parameter control mechanisms to configure the values
for weights used by each wolf leader (xα, xβ and xδ). These schemes work in a population-
scope and use as evidence for changing the improvement of objective function f evaluation using
successful sets of weight values as intermediate metrics. AGWO also contains internal both
static and dynamic. These parameters are listed as follows: (a) weighting factor for alpha wolf
wα, (b) weighting factor for beta wolf wβ, (c) weighting factor for delta wolf wδ, (d) adaptation
rate c = 0.15, (e) initial weight for alpha wolf w(0)

α = 1
3 , (f) initial weight for beta wolf w(0)

β = 1
3 ,

and (g) initial weight for delta wolf w(0)
δ = 1

3 .

131

4.5 Multi-Objective Optimization Bio-Inpired Meta-Heuristics from
Literature

4.5.1 Non-dominated Sorting Genetic Algorithm II (NSGA-II)

4.5.1.1 Meta-Heuristic Description

Non-dominated Sorting Genetic Algorithm (NSGA-II) [86] is a multi-objective GA-based bio-
inspired meta-heuristic that is used to solve COP by searching for Pareto Optimal (PO) solutions
inside of the search space that forms a Pareto Frontier (PF). NSGA-II is shown in pseudo-code
form in Algorithm 31.

Algorithm 31 Non-dominant Sorting Genetic Algorithm (NSGA-II)

INPUT: Objective Function (F (·))
Iterations (I)
Number of individuals (n)
Number of chromosomes (d)
Lower-bound vector (lb)
Upper-bound vector (ub)
Mutation rate (pm)
Crossover rate (pc)

OUTPUT: Pareto Front (PF)
1: procedure NSGAII(F , I, n, d, lb,ub, pm, pc)
2: Initialize ti = 〈xi, dri, dci〉
3: Evaluate F (xi)
4: Obtain Dominance Ranks dri . Alg. 32
5: Obtain Crowding Distances dci . Alg. 33
6: Sort P using non-dominatant sorting
7: PF = SF 1

8: for k = 1 to I − 1 do
9: Pnew = ∅

10: for i = 1 to bn2 c do
11: Binary Tournament Selection
12: One-Point Crossover
13: Uniform Gene-Flip Mutation
14: Evaluate generated offsprings
15: Pnew ← tnew = 〈xnew1, 0, 0〉
16: Pnew ← tnew = 〈xnew1, 0, 0〉
17: end for
18: P = P ∪ Pnew
19: Obtain Dominance Ranks dri . Alg. 32
20: Obtain Crowding Distances dci . Alg.

33
21: Sort P using non-dominatant sor-

ting
22: Remove last individuals in P until |P |=

n

23: PF = SF 1

24: end for
25: return PF
26: end procedure

NSGA-II has a population P with n individuals and each ith individual is represented by
a tuple ti = 〈xi, dri, dci〉, where xi is a d-dimensional integer vector that is a possible solution
for the multi-objective function F with o objectives. The value dri is the dominance rank for the
solution held by individual i and dci is the crowding distance between this solution and its farthest
neighbor that shares the same dominance rank dri.

A dominance rank dri for a solution xi represents the rank for a front in the objective space
generated by all solutions in the population that does not dominate xi including xi. In other
words, {xj : tj ∈ P ∧ F (xi) 6≺ F (xj) ∧ F (xj) 6≺ F (xi)}. If the front generated by xi dominates

132

all other fronts, then xi is PO in the population and its front is the Pareto front with dri = 1.

NSGA-II uses ndFronts defined in Algorithm 32 to obtain the list of non-dominated front
solutions LF that is composed of sets that in turn contains solutions for fronts with different
ranks. In other words, LF = {SF 1,SF 2, ...,SFm} where SF 1 is composed of solutions with
evaluations that form the Pareto Front (PF) or front with rank 1 and SFm is formed by solutions
that forms the front with dominance rank m. ndFronts(·) uses a set X that is composed of
solutions xi for all individuals ti ∈ P .

Algorithm ndFronts first identifies for each solution xi ∈ X the set of solutions that are
dominated by it Sdi and the number of solutions that dominates it ndi. Meanwhile, filing the set
of solutions that results in the PF SF 1. Knowing ndi and Sdi, ndFronts then iteratively populates
the other fronts dominated by PF until a last empty front is found and the iterative process ends.

Algorithm 32 Non-dominant Fronts Calculator (ndFronts)

INPUT: Objective Function (F (·))
Set of solutions (X)
Number of individuals (n)
Number of components (d)

OUTPUT: List of Fronts (LF)
1: procedure ndFronts(F ,X, n, d)
2: LF = ∅
3: SF 1 = ∅
4: for xi ∈X do
5: Sdi = ∅
6: ndi = 0
7: for xj ∈ {x ∈X : x 6= xi} do
8: if F (xi) ≺ F (xj) then
9: Sdi ← xj

10: else
11: if F (xj) ≺ F (xi) then
12: ndi = ndi + 1
13: end if
14: end if
15: end for
16: if ndi = 0 then

17: SF 1 ← xi

18: end if
19: end for
20: LF ← SF 1

21: k = 1
22: while SF k 6= ∅ do
23: A = ∅
24: for xi ∈ SF k do
25: for xj ∈ Sdi do
26: ndj = ndj − 1
27: if ndj = 0 then
28: A← xj

29: end if
30: end for
31: end for
32: k = k + 1
33: SF k = A

34: LF ← SF k

35: end while
36: return LF

37: end procedure

After acquiring LF by using ndFronts, the process to assign dominance rank for each ti is to
designate the rank for the front in which the solution xi is situated. In the case that xi ∈ SFm
then dri = m.

NSGA-II uses crwdDist defined in Algorithm 33 to calculate the crowding distance for each
solution xi in a front SFm. Algorithm crwdDist first initialize all crowding distances as 0. Then

133

for each k objective of the possible o objectives in F , crwdDist sots the solutions in an ascending
order based on their evaluations of fk and assigns for first and last solutions in SFm, namely x1

and xl, the crowding distance with an infinity large value, i.e. η1 = ηl = ∞. The reasoning for
this is that solutions with results in the boundaries of their fronts have their farthest neighbor
infinity far (since there are none). Figure 4.9 illustrates the crowding distance for solutions xi
with an evaluation F (xi) that is part of a front SFm.

Algorithm 33 Crowding Distance Calculator (crwdDist)

INPUT: Objective Function (F (·))
Number of Objectives in F (o)
Solutions in Front m (SFm)

OUTPUT: Vector of Crowding Distances (η)
1: procedure crwdDist
2: l = |SFm|
3: Generate vector η with size l
4: for xi ∈ SFm do
5: ηi = 0
6: end for

7: for k = 1 to o do
8: Sort SFm based on fk
9: η1 = ηl =∞

10: for j = 2 to (l − 1) do
11: ηj = ηj+(fk(x(j+1))−fk(x(j−1)))
12: end for
13: end for
14: return η

15: end procedure

f

f

1

2

Figura 4.9 – Graphical example of the crowding distance for a solution xi.

As in other bio-inspired meta-heuristics, during the initialization stage, NSGA-II generates
random solutions inside of the search space with upper and lower boundaries defined by the
vectors ub and lb. After this solution generation step, the population has their domination ranks
and crowding distances calculated. Then, NSGA-II sorts the population in an ascending order
using a comparison operator called crowded comparison operator by Deb [86]. The sorting
process executed by NSGA-II is called non-dominant sorting

The crowded comparison operator compares an in individual based on two criterions: a)
the rank for a front generated by its solution, and b) the crowding distance for this individual.

134

This operator is defined as >c follows the following equation for two individuals ti and tj :

ti>c tj if dri < drj ∨ (dri = drj ∧ dci > dcj) (4.132)

Crowded comparison operator (>c) considers that solutions in fronts with lower dominance
ranks are considered better than those in fronts with higher ranks. If one or more solutions have
the same dominance rank, i.e., make part of the same front, then these solutions are compared
based on their crowding distance.

After the initialization stage, NSGA-II generates offspring individuals by using a binary tour-
nament selection, a one-point crossover, and a random flip mutation genetic operators in the same
manner in which GA (Section 4.3.1). However, the selection operation instead of only comparing
a single objective, it compares individuals in the same way as the non-dominant sorting by
using the crowded comparison operator >c.

The population of offspring individuals Pnew are then unified with their parent population P
as in P = P ∪Pnew. The combined population has its individuals reassigned with new dominance
ranks and crowding distances by using Algorithm 32 and Algorithm 33.

Since |P |> n, P is sorted using the non-dominate sorting approach and has their individuals
with higher dominance ranks and smaller crowding distances removed from the population until
|P |= n. This elitist process leaves solution that results in real vectors close to those of the PF for
the multi-objective function at hand at the same time spread across in their resulting fronts.

As stated, NSGA-II uses the same genetic operators used by GA. For this reason, NSGA-II
has the same two external static parameters as GA, namely, the crossover and the mutation rates
pc and pm.

4.5.1.2 Parameters Description for NSGA-II

NSGA-II relies on two external static parameters pm and pc similar to GA.

4.5.1.3 Continuous NSGA-II

NSGA-II can be modified to be applied to continuous problems as well. This adjusted ver-
sion, called CNSGA-II has the following differences: a) the solutions held by individuals are
d-dimensional real vectors instead of integers in a population Pc. b) the crossover over operations
are changed to attend continuous solutions. NSGA-II is shown in pseudo-code form in Algorithm
34.

CNSGA-II uses a simulated binary crossover as presented in AGAv3 (Section 4.4.4) and it uses
the following equations to generate its offsprings:

β =

(2r1)(
1
d+1) if r1 > 0.5

(2(1− r1))(
1
d+1) otherwise

, (4.133)

135

Algorithm 34 Continuous Non-dominant Sorting Genetic Algorithm (CNSGA-II)

INPUT: Objective Function (F (·))
Iterations (I)
Number of individuals (n)
Number of chromosomes (d)
Lower-bound vector (lb)
Upper-bound vector (ub)
Mutation rate (pm)
Crossover rate (pc)

OUTPUT: Pareto Front (PF)
1: procedure CNSGAII(F , I, n, d, lb,ub, pm, pc)
2: Initialize ti = 〈xi, dri, dci〉
3: Evaluate F (xi)
4: Obtain Dominance Ranks dri . Alg. 32
5: Obtain Crowding Distances dci . Alg. 33
6: Sort P using non-dominatant sorting
7: PF = SF 1

8: for k = 1 to I − 1 do
9: Pcnew = ∅

10: for i = 1 to bn2 c do
11: Binary Tournament Selection
12: Simulated Binary Crossover
13: Polynomial Mutation
14: Evaluate generated offsprings
15: Pcnew ← tnew = 〈xnew1, 0, 0〉
16: Pcnew ← tnew = 〈xnew1, 0, 0〉
17: end for
18: Pc = Pc ∪ Pcnew
19: Obtain Dominance Ranks dri . Alg. 32
20: Obtain Crowding Distances dci . Alg.

33
21: Sort Pc using non-dominatant sor-

ting
22: Remove last individuals in Pc until |Pc|=

n

23: PF = SF 1

24: end for
25: return PF
26: end procedure

xo1j =

(
max

(
lbj ,min

(
ubj , 0.5

(
(1 + β)xp1j + (1− β)xp2j

))))
if r2 < pc

xp1j otherwise
, (4.134)

xo2j =

(
max

(
lbj ,min

(
ubj , 0.5

(
(1 + β)xp2j + (1− β)xp1j

))))
if r2 < pc

xp2j otherwise
. (4.135)

In the same manner, CNSGA-II uses a mutation operator suitable for continuous decision
variables. CNSGA-II uses the polynomial mutation as present in AGAv3 (Section 4.4.4). This
mutation operates in each component of an offspring solution using the following equation:

xjnew =

max
(
lbj ,min

(
ubj , xj + (2r)(

1
d+1) − 0.5

))
if r < 0.5

max
(
lbj ,min

(
ubj , xj + (2(1− r))(

1
d+1) − 0.5

))
otherwise

(4.136)

CNSGA-II has the same two external static parameters as NSGA-II, namely, the crossover
and the mutation rates pc and pm.

136

4.5.2 Adaptive Parameter with Mutation Tournament Multi-Objective DE
(APMTMODE)

4.5.2.1 Meta-Heuristic Description

APMTMODE, as defined by Santos [82] (in Portuguese), is a multi-objective DE-based algo-
rithm that has adaptive parameter control strategies for the scaling factors and crossover
rates. It also has adaptive operator selection mechanisms for dynamically select mutation
and crossover operators, and in the pool of mutation operators, it contains a tournament-based
mutation. APMTMODE is shown in pseudo-code form in Algorithm 35.

Algorithm 35 Adaptive Parameter Mutation Tournament Multi-Objective DE (APMTMODE)

INPUT: Objective Function (F (·))
Iterations (I)
Number of individuals (n)
Number of chromosomes (d)
Lower-bound vector (lb)
Upper-bound vector (ub)

OUTPUT: Pareto Front (PF)
1: procedure APMTMODE(F , I, n, d, lb,ub)
2: Initialize ti = 〈xi, dri, dci, Fi,
3: CRi,muti, croi〉 (i = 1, ..., n)
4: Evaluate F (xi)
5: Obtain Dominance Ranks dri . Alg. 32
6: Obtain Crowding Distances dci . Alg. 33
7: N

(0)
mut =

⌈
n
5
⌉

8: N
(0)
cro =

⌈
n
2
⌉

9: µw
(0)
F = µwF initial

10: µw
(0)
CR = µwCRinitial

11: Assign muti(i = 1, ..., n)
12: Assign croi(i = 1, ..., n)
13: Sort P using non-dominatant sorting
14: SPF = SF 1

15: for k = 1 to I − 1 do
16: if mod(k, If) = 0 then
17: Randomly generate m
18: end if
19: Update xworst the worst solution for

fm

20: Pcnew = ∅

21: Calculate σ . Eq. 4.61
22: Calculate µwF . Eq. 4.141
23: Calculate µwCR . Eq. 4.142
24: for i = 1 to bn2 c do
25: Generate CRi
26: Generate Fi
27: mutith Mutation
28: croith Crossover
29: tnew = 〈ui, 0, 0, Fi, CRi,muti, croi〉
30: Pcnew ← tnew

31: end for
32: Pc = Pc ∪ Pcnew
33: Obtain Dominance Ranks dri . Alg. 32
34: Obtain Crowding Distances dci . Alg.

33
35: Sort Pc using non-dominatant sor-

ting
36: Remove last individuals in Pc until |Pc|=

n

37: SPF = SF 1

38: Obtain Dominance Ranks dri for SPF .

Alg. 32
39: Obtain Crowding Distances dci for SPF

. Alg. 33
40: Sort SPF using non-dominatant sor-

ting
41: Remove last individuals in SPF until
|SPF |= n

42: end for
43: return SPF
44: end procedure

137

APMTMODE has a population of Pc of n individuals and each individual i is represented
as a tuple ti = 〈xi, dri, dci, Fi, CRi,muti, croi〉 where xi is a d-dimensional real vector that is a
solution for a multi-objective function F , dri is the dominance rank for the front formed by this
solution image in the objective space, dci is the crowding distance for this solution image in the
objective space, Fi is the scaling factor used by this individual, CRi is this individual crossover
rate, mut(k)

i and cro(k)
i are, respectively, the indices for a mutation and crossover strategies in the

pool of mutation and crossover strategies used by APMTMODE.

APMTMODE design was inspired by CSASADE (Section 4.3.12) and, for this reason, APMT-
MODE adaptive mechanisms for mutation and crossover strategy selection and adaptive parameter
control are identical for those present in CSASADE. However, it has modifications in its selection
strategy to deal with multi-objective functions.

The pool of mutation strategies used in APMTMODE is defined as
mut = {rand/1, rand/2, current-to-best/2, tournment-based/1} with indices muti varying in the
range [1, 4]. These different mutation strategies are listed in the following order: (a) rand/1
mutation (4.137) with index muti = 1 for individual i and Nrand/1 is the number of individuals
using this operator; (b) rand/2 mutation (4.138) with index muti = 2 for individual i and Nrand/2

is the number of individuals using this operator; (c) current-to-best/2 mutation (4.139) with index
muti = 3 for individual i and Ncurrent-to-best/2 is the number of individuals using this operator; (d)
tournment-based/1 mutation (4.140) with index muti = 4 for individual i and Ntournment-based/1 is
the number of individuals using this operator;

vi = x(k)
r1 + F

(k)
i (x(k)

r2 − x
(k)
r3). (4.137)

vi = x(k)
r1 + F

(k)
i (x(k)

r2 − x
(k)
r3 + x(k)

r4 − x
(k)
r5). (4.138)

vi = x(k)
r1 + F

(k)
i

(
x

(k)
best − x

(k)
r2 + x(k)

r3 − x
(k)
r4

)
. (4.139)

vi = x(k)
r1 + F

(k)
i

(
xtwinner − x(k)

i

)
. (4.140)

Similar to CSASADE and SOAMSDE (Section 4.4.1), APMTMODE pool of crossover strate-
gies are cro = {bin, exp} and.the integers cro(k)

i can assume the value [1, 2] representing, respecti-
vely, the use of a binary crossover strategy as in Eq. 4.2 when the value is 1 and exponential
crossover strategy as in Algorithm 16 when the value is 2.

In the initialization, APMTMODE generates, using random uniform distribution, n solutions
xi with components defined by the boundary vectors ub and lb and assign them to their respective
individual. Afterwards, APMTMODE evaluates these initial solutions using the objective function
F for then assign their dominance ranks dri and crowding distance dci using ndFronts (defined
in Algorithm 32) and crwdDist (defined Algorithm 33) in the same fashion as NSGA-II (Section
4.5.1).

Still during the initialization, APMTMODE assign for each individual a crossover strategy
index in a way that the first

⌊
n
2
⌋
individuals use binary crossover strategy with croi = 1, and the

last
⌈
n
2
⌉
use exponential crossover strategy with croi = 2. The same approach is used to assign

138

the mutation indices where the first set of
⌊
n
4
⌋
individuals using rand/1 mutation with muti = 1

until the fourth, and last, set of
⌈
n
4
⌉
individuals using tournament-based/1mutation withmuti = 4.

At the end of the initialization stage, each ith individual is ti = 〈x(0), dri, dci, 0.5, 0.5,muti, croi〉.

The adaptative operation selection for mutation strategies in APMTMODE reassign du-
ring each iteration the indices mut(k)

i by updating the number of individuals using each strategy
in the same fashion as CSASADE by using Eq. 4.52. Another analogous adaptative operation
selection in APMTMODE is used for crossover strategies selection in APMTMODE and it used
in Eq. 4.56.

During the iterations, APMTMODE uses for each individual the mutation and crossover stra-
tegies assigned to them using the indices muti and croi. However, similar to SOAMSDE, instead
of using the DE selection strategy to substitute an individual solution xi with its trial-vector ui,
APMTMODE creates a new individual represented by the tuple ti = 〈ui, dri, dci, Fi, CRi,muti, croi〉
and add this tuple to the population of offsprings Pcnew. After generate an offspring to each indivi-
dual, APMTMODE merge both populations Pc = Pc∪Pcnew, and calculate for the new population
their dominance ranks dr and crowded distances dc. To at last, sort this new population using
the crowded comparison operator (>c). After the non-dominant sorting, APMTMODE
removes the last individual of Pc iteratively until |Pc|= n.

APMTMODE also contains a set SPF that holds the values for Pareto optimal solutions found
by the algorithm. At the end of every iteration, APMTMODE adds the solutions with rank 1
from the population to SPF calculates the non-dominant rank and crowded distances for solutions
in SPF . Then APMTMODE sorts SPF and remove the last individuals until SPF = n.

APMTMODE adaptive parameter control strategies to adjust the individuals parameters
Fi and CRi works in a similar fashion as CSASAMODE using Eq. 4.60 and Eq. 4.64 that in
turn is controlled by internal parameters µwF and µwCR. However, since the goal is to optimize
a multi-objective F composed of o objectives F = (f1, ..., fo), APMTMODE uses one of the
objectives m ∈ [1, o] chosen randomly, where the index m changes at every If iterations that is
an internal static parameter.

The adaptive parameter control strategy to adjust µwF uses the following equation:

µw
(k)
F =

n∑
i=1

Fi

 |fm(x(k)
i)− fm(x(k)

worst)|∑n
j=1|fm(x(k)

j)− fm(x(k)
worst)|

 , (4.141)

where Fi is the scaling factor for the ith individual, fm(xi) is the evaluation of objective fm ∈ F
for the individual i and fm(xworst) is the evaluation for the same function but for the worst
evaluation for function m. A similar approach is used for µwCR represented as follows:

µw
(k)
CR =

n∑
i=1

CRi

 |fm(x(k)
i)− fm(x(k)

worst)|∑n
j=1|fm(x(k)

j)− fm(x(k)
worst)|

 . (4.142)

139

4.5.2.2 Parameters Description for APMTMODE

APMTMODE has no external static parameters. APMTMODE contains the following four-
teen internal parameters: (a) mutation rate for each ith individual Fi, (b) average weighting
mutation rate µwF , (c) initial average weighting mutation rate µwF initial, (d) crossover rate for
each ith individual CRi, (e) average weighting crossover rate µwCR, (f) initial average weighting
crossover rate µwCRinitial, (g) standard deviation σ, (h) maximum standard deviation σmax = 0.5,
(i) minimum standard deviation σmin = 0.1, (j) number of individuals using a crossover strategy
Ncro, (k) number of individuals using a mutation strategy Nmut, (l) index for the ith individual
crossover strategy croi, (m) index for the ith individual mutation strategy muti, and (n) number
of iterations until the If = 5. APMTMODE has seven adaptive parameter control strategies
that works analogous to those present in CSASADE.

4.6 Multi-Objective Optimization Bio-Inspired Meta-Heuristics
Developed in this Work

4.6.1 Non-dominant Sorting Adaptive Genetic Algorithm (NSAGA)

4.6.1.1 Meta-Heuristic Description

NSAGA is a multi-objective adaptive GA meta-heuristic that combine features present in
AGAv4 (Section 4.4.5) with components present in NSGA-II (Section 4.5.1). The contributions
for NSAGA, when compared with NSGA-II, is that it does not need any form of parameter tuning
from a user since it contains parameter control strategies. NSAGA also contains adaptive
operation selection schemes to change the use of genetic operators during its execution dyna-
mically. NSAGA contains the two adaptive operator selection from AGAv4 as well as all of its
ten parameter control strategies present in AGAv4. The pseudo-code for NSAGA is present
in Algorithm 36.

140

Algorithm 36 Non-dominant Sorting Adaptive GA(NSAGA)

INPUT: Objective Function (f(·))
Iterations (I)
Number of individuals (n)
Number of components (d)
Lower-bound vector (lb)
Upper-bound vector (ub)

OUTPUT: Best solution (xbest)
1: procedure NSAGA(f, I, n, d, lb,ub)
2: Initialize ti = 〈xi, dri, dci, pmi,
pcicroi,muti, pti〉

3: Evaluate f(x(0)
i)

4: Update xbest
5: Update xworst
6: for k = 1 to I − 1 do
7: Calculate σpm . Eq. 4.109
8: Calculate σpx . Eq. 4.110
9: Calculate µwpm . Eq. 4.106

10: Calculate µwpc . Eq. 4.106
11: Calculate pmi . Eq. 4.104
12: Calculate pci . Eq. 4.105
13: Calculate Tsize . Eq. 4.111
14: Pnew = ∅
15: for i = 1 to bn2 c do
16: Tsize Tournament Selection Ope-

rator
17: if f(xp1) < f(xp2) then
18: pc = pcp1

19: pm = pmp1

20: cro = crop1

21: mut = mutp1

22: pt = ptp1

23: else
24: pc = pcp2

25: pm = pmp2

26: cro = crop2

27: mut = mutp2

28: pt = ptp2

29: end if
30: cro th Crossover Operator using

pc

31: mut th Mutation Operator using
pm

32: Evaluate offsprings xnew1 and xnew2

33: Calculate ptnew1 and ptnew2 . Eq.
4.114

34: tnew1 = 〈xnew1, pm, pc, cro,mut, ptnew1〉
35: tnew2 = 〈xnew2, pm, pc, cro,mut, ptnew2〉
36: Pnew ← tnew1

37: Pnew ← tnew2

38: end for
39: Sort P ∪ Pnew
40: P is replaced by Best n in sorted P ∪

Pnew

41: Adapt Mutation Numbers . Eq. 4.52
42: Adapt Crossover Numbers . Eq. 4.56
43: for i = 1 to n do
44: Reassign mut(k)

i

45: Reassign cro(k)
i

46: end for
47: Update xbest
48: Update xworst
49: end for
50: return xbest
51: end procedure

NSAGA has a population P that contains n individuals and each ith individual is represented
as a tuple ti = 〈xi, dri, dci, pci, pmi, croi,muti, pti〉, where xi is a d-dimensional integer vector that
represents a solution for a COP multi-objective function F , dri is the dominance rank for the front
formed by this solution image in the objective space, dci is the crowding distance for this solution
image in the objective space, pci is the crossover rate used in this individual chromosome, pmi is
the mutation rate used in this individual chromosome, croi is the index for one of the operators
present in the pool of genetic crossover operators, muti is the index for one of the genetic mutation

141

operators, and pti is the tournament pressure for this individual.

During the initialization stage, NSAGA generates n random solutions inside of F search space
and assign them as chromosomes xi for each ith individual ti. For each ti populates its compo-
nents intially as ti = 〈xi, 0, 0, µpc initial, µpm initial, croi,muti, pti〉, where pti is randomly generated
during the initialization inside of the range [ptmin, ptmax]. The integer values croi, and muti are
assigned as the indices of one of the crossover and mutation genetic operators present in NSAGA.
NSAGA assignment for indices croi and muti work in the same fashion as AGAv4 and so is
the method to initialize the parameters Nmut and Ncro for the pool of genetic operators cro =
{one-point, sbx, two-point, uniform} and mut = {bnormalr, cauchyr, normalr, poly, unifr}.

During the iterations, NSAGA updates the internal parameters that represent the mutation
and crossover standard deviation for the generation of pm and pc, respectively, σpm and σpc using
deterministic parameter control strategies as expressed in Eq. 4.109 and Eq. 4.109.

The process to update both pm and pc is expressed by Eq. 4.104 and Eq. 4.105 that uses
respectively the internal parameters µwpm and µwpc . The adaptive parameter strategies that
calculate the values for µwpm and µwpc every iteration and for the usage of all population is
expressed in Eq. 4.106 Eq. 4.107 that calculates a weighting factor wi for each individual in
the population. The first difference in the adaptive mechanisms of NSAGA and AGAv4 is in the
process to calculate wi that is calculated by NSAGAv4 as follows:

wi = ||F (xi)− (f1(xworst_1), ..., fo(xworst_1))||∑n
l=1||F (xl)− (f1(xworst_1), ..., fo(xworst_1))|| , (4.143)

where F (xi) is the vector of objective evaluations F for xi, and f1(xworst_1) to fo(xworst_o)
represents the worst evaluations for solutions of each one of the o objectives that forms F . The
weighting factors take into consideration the values for all objectives to estimate the improvement
in the performance of different mutation and crossover probabilities.

Every iteration during the adjustment of Nmut and Ncro, NSAGA uses Eq. 4.52 and Eq.
4.56. The expected variation ∆Nmut and ∆Ncro in both this equations use smut and scro that are
both sums of the distances in the objective space of individuals that uses a class of operator and
the worst point possible composed by the worst evaluation for each one of the o objectives used.
Both ∆Nmut and ∆Ncro use, respectively, smut_all and scro_all that represents the total sum of all
distances.

The values for smut is calculated as follows:

smut =
∑

∀x(k)
i ∈{xi∈P :muti=mut}

||F (xi)− (f1(xworst_1), ..., fo(xworst_1))||. (4.144)

Similarly, scro is calculated using the following equation:

scro =
∑

∀x(k)
i ∈{xi∈P : croi=cro}

||F (xi)− (f1(xworst_1), ..., fo(xworst_1))||. (4.145)

After the calculation of each smut and scro, it is possible to obtain the values for sall_mut and
sall_cro in the following equations:

sall_mut = sbnormalr + scauchyr + snormalr + spoly + sunifr. (4.146)

142

sall_cro = sone-point + stwo-point + ssbx + suniform + sunifr. (4.147)

During the reproductive process, NSAGA uses a tournament with size of Tsize to select a pair
of parents tp1 and tp2. Then the parent that with a solution that dominates the other has its
parameters used to generate the offsprings. In other words, if F (xp1) � F (xp2), then the genetic
operators and probabilities held by the parent tp1 is used. Otherwise, parent tp2 is the one selected.

4.6.1.2 Parameters Description for NSAGA

NSAGA has no external static parameters. However, it contains twenty-six internal parame-
ters listed as follows: (a) mutation probability for the ith individual pmi, (b) crossover probability
for the ith individual pci, (c) average crossover probability µ(k)

pc at iteration k, (d) initial average
crossover probability µpc initial = 0.7, (e) average mutation probability µ(k)

pm , (f) initial average mu-
tation probability µpm initial = 0.05, (g) minimum crossover probability pcmin = 0.1, (h) maximum
crossover probability pcmax = 0.95, (i) minimum mutation probability pmmin = 0.01, (j) maxi-
mum mutation probability pmmax = 0.1, (l) minimum crossover probability standard deviation
σpcmin = 0.1, (m) maximum crossover probability standard deviation σpcmax = 0.4, (n) mini-
mum mutation probability standard deviation σpmmin = 0.01, (o) maximum mutation probability
standard deviation σpmmax = 0.05. (p) number of individuals using a specific mutation operator
Nmut, (q) number of individuals using a specific crossover operator Ncro, (r) index for the muta-
tion operator used by individual i muti, (s) index for the mutation operator used by individual i
croi. (t) pressure for individual i pt, (u) tournament size Tsize, (v) minimum possible tournament
size Tmin = 2, (w) maximum possible tournament size Tmax =

⌊
n
3
⌋
, (x) minimum pressure value

for individuals ptmin = 0.08, (y) maximum pressure value for individuals ptmax = 1.0, and (z)
learning rate for the pressure adaptation γ = 0.3. From this list of internal parameters fifteen of
them are static.

NSAGA has two adaptive operation selectionmechanisms that controls the use of operators
by the individuals based on the values of the internal parameters Nmut and Ncro. NSAGA uses
ten parameter control strategies. In the same fashion as AGAv4, NSAGA has seven adaptive
parameter control strategies to configure the values for the internal parameters pmi, pci, µ

(k)
pm ,

µ
(k)
pc , Nmut, Ncro, and pti. NSGA also has three deterministic parameter control strategies to

adjust the following parameters σpm , σpc and Tsize.

4.6.2 Multi-Objective Non-dominant Sorting Adaptive DE (MONSADE)

4.6.2.1 Meta-Heuristic Description

MONSADE is a multi-objective version of SOAMSDE (Section 4.4.1) that contains modifica-
tions to be able to optimize a multi-objective function F that contains o objectives. MONSADE
contains the same adaptive mechanisms present in SOAMSDE including six parameter control
strategies to adjust the crossover rate and scaling factor for each individual, and two adaptive
operator selection schemes to modify the crossover and mutation strategies used independen-

143

tly by each individual. The difference between MONSADE and SOAMSDE is the presence of a
non-dominant sorting process instead of the typical sorting using a single-objective function
evaluation as well as the adaptive mechanisms that alter the values for µwF and µwCR.

Algorithm 37 Multi-Objective Non-dominant Sorting DE (MONSADE)

INPUT: Objective Function (F (·))
Iterations (I)
Number of individuals (n)
Number of chromosomes (d)
Lower-bound vector (lb)
Upper-bound vector (ub)

OUTPUT: Pareto Front (PF)
1: procedure MONSADE(F , I, n, d, lb,ub)
2: Initialize ti = 〈xi, dri, dci, Fi, CRi,
3: muti, croi〉 (i = 1, ..., n)
4: Evaluate F (xi)
5: Obtain Dominance Ranks dri . Alg. 32
6: Obtain Crowding Distances dci . Alg. 33
7: N

(0)
mut =

⌈
n
7
⌉

8: N
(0)
cro =

⌈
n
2
⌉

9: µw
(0)
F = µwF initial

10: µw
(0)
CR = µwCRinitial

11: Assign muti(i = 1, ..., n)
12: Assign croi(i = 1, ..., n)
13: Sort P using non-dominatant sorting
14: PF = SF 1

15: for k = 1 to I − 1 do
16: Update xworst_m the worst solution

for fm
17: m = (1, ..., o)
18: Pcnew = ∅
19: Calculate σ . Eq. 4.61
20: Calculate µwF . Eq. 4.62
21: Calculate µwCR . Eq. 4.65
22: for i = 1 to bn2 c do
23: Generate CRi
24: Generate Fi
25: mutith Mutation
26: croith Crossover
27: tnew = 〈ui, 0, 0, Fi, CRi,muti, croi〉
28: Pcnew ← tnew

29: end for
30: Pc = Pc ∪ Pcnew
31: Obtain Dominance Ranks dri . Alg. 32
32: Obtain Crowding Distances dci . Alg.

33
33: Sort Pc using non-dominatant sor-

ting
34: Remove individuals in Pc until |Pc|= n

35: PF = SF 1

36: end for
37: return PF
38: end procedure

Similar to APMTMODE (Section 4.5.2), MONSADE has its individuals represented as tuples
and each ith tuple is expressed as ti = 〈xi, dri, dci, Fi, CRi,muti, croi〉 where xi is a d-dimensional
real vector that is a solution for a multi-objective function F , dri is the dominance rank for
the front formed by this solution image in the objective space, dci is the crowding distance for
this solution image in the objective space, Fi is the scaling factor used by this individual, CRi
is this individual crossover rate, mut(k)

i and cro
(k)
i are, respectively, the indices for a mutation

and crossover strategies in the pool of mutation and crossover strategies used by MONSADE and
SOAMSDE.

The adaptive parameter control strategies to modify µwF µwCR as expressed in Eq. 4.60
and Eq. 4.64 uses a weighting factor wi for each ith individual ti calculated using the following

144

equation:
wi = ||F (xi)− (f1(xworst_1), ..., fo(xworst_1))||∑n

l=1||F (xl)− (f1(xworst_1), ..., fo(xworst_1))|| , (4.148)

where F (xi) is the vector of objective evaluations F for xi, and f1(xworst_1) to fo(xworst_o)
represents the worst evaluations for solutions for all o objectives that composes F . So instead
of using only an objective, MONSADE considers all objectives being optimized to calculate the
weighting factors to update the crossover rates and scaling factors.

4.6.2.2 Parameters Description for MONSADE

Since MONSADE is just the multi-objective version of SOAMSDE, it contains the same thir-
teen internal parameters, five parameter control strategies and two adaptive operator
selection schemes. MONSADE parameters are listed as follows: (a) Fi, (b) µwF , (c) CRi, (d)
µwCR, (e) σ, (f) µwF initial, (g) µwCRinitial, (h) σmax, (i) σmin, (j) Nmut, (k) Ncro, (l) muti, and
(m) croi.

4.7 Conclusions of the Chapter

This chapter presents the reasoning for the use of bio-inspired meta-heuristics, including a
taxonomy about these methods. Beyond that, this work also presents the theory and nomenclature
used to define adaptive techniques used to control the exploratory and exploitative behavior of
different classes of meta-heuristics.

At last, as an essential part of this chapter, there is an intensive presentation for all bio-inspired
meta-heuristics used in this work, including the ones developed by the author.

In the list of meta-heuristics present in this chapter the following ones were implemented
directly from their descriptions present in related literature works: (a) GA (Section 4.3.1), (b) DE
(Section 4.3.2), (c) PSO (Section 4.3.3), (d) SSA (Section 4.3.4), (e) GWO (Section 4.3.5), (f) EHO
(Section 4.3.6), (g) DA (Section 4.3.7), (h) MFO (Section 4.3.8), (i) WOA (Section 4.3.9), (j) BA
(Section 4.3.10), (k) JADE (Section 4.3.11), (l) CSASADE (Section 4.3.12), (m) DPSO (Section
4.3.13), (n) SAPSO (Section 4.3.14), (o) HDPSO-M (Section 4.3.15), (p) NSGA-II (Section 4.5.1),
and (q) APMTMODE (Section 4.5.2).

The following meta-heuristics were developed and create in this work: (a) SOAMSDE (Section
4.4.1), (b) AGAv1 (Section 4.4.2), (c) AGAv2 (Section 4.4.3), (d) AGAv3 (Section 4.4.4), (e)
AGAv4 (Section 4.4.5), (f) APSO (Section 4.4.6), (g) APSOv2 (Section 4.4.7), (h) HDPSO-U
(Section 4.4.8), (i) AHDPSO-U (Section 4.4.9), (j) AGWO (Section 4.3.5), (k) NSAGA (Section
4.6.1), and (l) MONSADE (Section 4.6.2).

The meta-heuristics algorithms present in this chapter are used in Chapter 7 that includes the
experimental setup for the application of these multiple meta-heuristics and compare their per-
formance when optimizing benchmark problems present in Chapter 2 as well as the task mapping
of real-applications onto MPSoC platforms based on NoCs as present in Chapter 3.

145

5 RELATED WORKS

This chapter introduces some of the related works
for this dissertation from the rich literature of
both NoC and bio-inspired meta-heuristics with
emphasis with the ones that uses meta-heuristics
algorithms to solve the task mapping problem
of real-time applications onto MPSoC baed on
NoCs. The chapter is divided as follows: Sec-
tion 5.1 introduces the chapter, Section 5.2 pre-
sents related works in the field of meta-heuristics
highlighting some of the similar adaptive techni-
ques present in literature, Section 5.3 presents
related works for the task mapping problem of
RTA onto MPSoC platforms, Section 5.4 conclu-
des this chapter.

5.1 Introduction

Both fields of bio-inspired meta-heuristic algorithms and network-on-a-chip (NoC) are very
active with a regular stream of works that adds new methodologies for their advancement. This
chapter intends to present the reader with an overview of both fields without being an extensive
survey. It exhibits to the reader related works while pointing to an interested reader other sources
that could be used along with this work. Themes focus upon in related works are similar meta-
heuristics as the ones developed in this work, as well as similar alternative approaches for task
mapping problem in the context of RTNoC.

5.2 Search-Based Meta-Heuristics Algorithms

The field of search-based meta-heuristic is current a popular one, and researches are continually
presenting new meta-heuristics or modified versions of others that already exist. The primary
theoretical basis for this intense interest by the research community is the NFL theorem [58],
since it states that algorithms there is no universal optimal performance meta-heuristic. Instead,
their good performance is limited to a family of problems. So new methods always have at least
its own niche of problems that it responds better than other algorithms.

Search-space optimization meta-heuristics are not limited to metaphors based on biological
phenomena. The survey [18] briefly presents meta-heuristic based on natural non-linear pheno-
mena such as vortex in fluids or fractal formation. This survey also singles out different classes of
heuristic operators shared by many of these non-linear phenomena based meta-heuristics.

The survey in [7] has an intensive study to classify both the current trends as well as the possible
future ones for the field of bio-inspired meta-heuristics. In the list of topics emphasized as open

146

areas in the meta-heuristics field, the use of adaptive techniques such as the one extensively studied
in this work is one of them. This survey also presents a call for standardization of benchmark
problems and methodologies used for comparison between new and old meta-heuristics. For this
reason, the survey also presents the necessity of statistical tests to overcome the random-nature of
these meta-heuristics. Figure 5.1 was extracted from the survey in [7], and it shows the timeline
history for the development of meta-heuristic in the past decade.

Figura 5.1 – Illustration of the timeline history for meta-heuristics developed in the past years
(extracted from [7]).

5.2.1 Adaptive Techniques

The concepts of adaptive techniques for parameter control in meta-heuristics started with a
focus on Evolution Strategies (ES), and in a way always existed in the field of bio-inspired meta-
heuristics since the critical role that parameters values play in these algorithms performance. The
concepts of adaptive techniques start to take shape and be classified as presented in Section 4.2 in
the work [59], and more recently revisited in the [60]. In both these works, there is a classification
for adaptive techniques. It also presents the possible advantages that meta-heuristics that contain
adaptive mechanisms have that their counterparts do not include, for example, the fact these
meta-heuristics does not need parameter tuning and their improvement convergence in many
cases.

The following works contain bio-inspired meta-heuristics that incorporate adaptive techniques

147

to control their parameter values and heuristic operations other than the ones present in Chapter
4.

• The work in [87] presents a comparative experiment of different variations of DE against
multiple variants of a “self-adaptive” DE meta-heuristic called SADE that contains adaptive
parameter control strategies. The results obtained in this work show that SADE variants
are capable of obtaining better results than those present by DE with lower convergence
speeds, due to the exploration of possible parameters by SADE variants.

• The work in [65] presents a version for the Success-History Adaptive DE (SHADE) that
apart for its adaptive parameter control mechanisms also contain a deterministic parameter
control strategy to reduce the size of the population as the algorithm executes.

• The work in [88] presents an adaptive version of DE called SLADE that controls both
parameter values and mutation strategies in a similar fashion as CSASADE [77] (Section
4.3.12). However, this algorithm also contains a different technique to randomly initialize
the population of search agents in the search space.

• The work in [89] presents an adaptive version of PSO that contains an adaptive parameter
control mechanism only for the inertial weight and works similarly as the one present in
APSOv2 (Section 4.4.7). Another addition in this version of APSO is an adaptive operation
selection to decide the neighborhood topology used by PSO. For example, in this work, PSO
only uses the All topology in which all particles have access to all other particles information
for the best solution through the use of xbest solution.

• The work in [90] presents an adaptive version of PSO that uses a fuzzy logic as adaptive pa-
rameter control for the cognitive and social factors in PSO. The decision for these parameter
values uses as evidence for change the difference of evaluation between different iterations.

Table 5.1 presents information about the quantity of external static parameters (ESP) and
adaptive techniques for the single-objective adaptive bio-inspired meta-heuristics present in these
related works compared to the meta-heuristics developed in this work. The acronyms for adaptive
techniques are: (AOS) Adaptive Operator Selection, (DPCS) Deterministic Parameter Control
Strategy, (APCS) Adaptive Parameter Control Strategy, and (SAPCS) Self-Adaptive Parameter
Control Strategy.

5.3 Task Mapping Problem for RTNoC-based MPSoC

The survey in [4] presents a definition for RTNoC as well as a classification for the different
design choices that such a system may contain. It also presents a section discussing techniques
of evaluation of RTNoC design, pointing out the differences and advantages obtained in static
analytical such as the ones used in this work when compared with simulation-based ones. Since
these types of analyses allow quick evaluation of multiple designs in the same period in which a
simulation-based evaluation would only perform one.

148

Tabela 5.1 – Quantity of adaptation schemes in these related works.

Reference Meta-Heuristic ESP DPCS APCS SAPCS AOS
[87] SADE 0 0 2 0 0
[65] LSHADE 0 0 5 0 0
[88] SLADE 0 0 5 0 1
[89] NTAPSO 3 0 1 0 1
[90] AFPSO 3 1 2 0 0

Section 4.4.1 SOAMSDE 0 1 6 0 2
Section 4.4.2 AGAv1 0 0 4 0 0
Section 4.4.3 AGAv2 0 2 4 0 0
Section 4.4.4 AGAv3 0 2 6 0 2
Section 4.4.5 AGAv3 0 2 8 0 2
Section 4.4.6 APSO 2 1 2 0 0
Section 4.4.7 APSOv2 0 0 3 0 0
Section 4.4.8 HDPSO-U 1 0 0 0 0
Section 4.4.9 AHDPSO-U 0 0 2 0 0
Section 4.4.10 AGWO 0 0 3 0 0

The work in [12] presents a survey for the problem of placing tasks from an application onto
their respective PEs inside of an MPSoC platform. In this survey, the authors categorized different
approaches for efficient task mapping emphasizing the multiple goals expected to be met by these
task placement solutions including, for example, resources usage, timing performance, and power
consumption. The categories are two: (a) design-time approaches in which the task mapping is
performed during the system’s design, and (b) run-time approaches in which the task placement
is performed during the system’s usage. Another interesting point drawn in this work is that this
classification targets both homogeneous and heterogeneous systems.

The work in [91] presents another survey for the task mapping problem in NoC-based MPSoCs.
However, the type of task mapping problems is closer to the problem of defining PEs placement
onto NoC tiles than the placement of tasks onto processors. The authors also present their
classification for possible approaches for this problem, including static and dynamic ones. However,
this work also highlights in static task mapping problems the possibility of using meta-heuristics
algorithms as an approach to tackle the task mapping, including GA, PSO, and Ant Colony
Optimization (ACO). This work also contains a comparison for the results of the different task
mapping approaches using a set of benchmark applications being mapped onto MPSoC systems.

The work in [92] present an approach that uses a multi-objective GA meta-heuristic to search
for solutions mapping of applications onto NoC-based MPSoCs. These solutions improve both
the system performance as well as the consumed power. The evaluation of different mappings is
performed using a simulation-based approach.

The work in [93] presents an approach that uses an NSGA-II meta-heuristic allied with a
simulation-based evaluation of task mapping of a real-time application into an RTNoC-based
MPSoC. The goal is to find non-dominant solutions that are capable of optimizing both the

149

timing restrictions, dissipated energy by system’s modules, and router buffer sizes.

The work in [85] presents a heuristic to map real-time application onto MPSoCs based on NoC
that has operators that exploit knowledge about the problem to quickly find solutions as good as
the ones obtained by the GA. This heuristic first maps tasks into bins and then map these bins
to processor cores.

The work in [52] presents an NSGA-II based multi-objective bio-inspired meta-heuristic to
search for non-dominant solutions for task mappings that at the same time optimize the time
requirements for the system in the form of the schedulability of tasks as well the communication
architecture power dissipation.

5.4 Conclusions of the Chapter

This chapter briefly presents a list of related works that include at least one of the main two
topics in this work: (a) Bio-inspired meta-heuristic, and (b) Mapping of applications on RTNoCs.

In the works related to bio-inspired meta-heuristic, the focus is upon the ones that contain
information about adaptive techniques and meta-heuristics that use them.

In the context of mapping application on RTNoCs, the list of works present either alternative
for the evaluation of the system or present different approaches to tackle the problem such as the
use of specialized heuristics or search-based meta-heuristics as done in this work.

150

6 SEARCH-BASED OPTIMIZATION
META-HEURISTIC FRAMEWORK

This chapter briefly introduced the software im-
plemented in this work. This chapter is divi-
ded as follows: Section 6.1 introduces this chap-
ter including a contextualization of other similar
works; Section 6.2 presents the designed object-
oriented for the framework; Section 6.3 presents
a short end-user tutorial for some of the modu-
les in the framework; Section 6.4 concludes this
chapter contextualizing it to other parts of this
work.

6.1 Introduction

At the beginning of this work development, as the author studied meta-heuristics and possible
experimental setup for their usage, the author noticed the necessity for a software framework for
algorithms of these type. A framework capable of reliably and quickly execute meta-heuristics
and perform static analysis for multiple RTNoCs task mappings. A characteristic that MATLAB
options at the time were not capable of having. For this reason, during this work development,
the author has implemented a software framework in C++11 that contains implementations for
the recent bio-inspired meta-heuristics as well as modules necessary to process RTNoC analysis.

It was also important to consider other alternatives to software frameworks in the literature
that works similarly. These other alternatives are:
(a) JMetal [94]: it is a meta-heuristic object-oriented framework in Java that contains the imple-
mentation of single-/multi-objective meta-heuristics including for example NSGA-II, GA, PSO,
and DE. However, it lacks many of the new swarm intelligence based meta-heuristics, and since the
goal is to use these meta-heuristics high-performance experimentation setting, a C++ framework
is more desired;
(b) Shark Machine Learning [95]: it is a machine-learning framework in C++ that contains im-
plementations of evolutionary strategy (ES) that is a type of bio-inspired evolutionary meta-
heuristics;
(c) GA Lib [96]: it is a framework in C++ that contains implementation for GA.

6.2 Developed Software Architecture and Design

This work focuses on employing bio-inspired meta-heuristics in identifying a task mapping
placement for real-time applications onto RTNoC-based MPSoC. This project software was imple-
mented in C++11 only using the Standard Template Library (STL) to easily employ the software

151

in platforms based on Linux and Windows.

The software platform design uses an object-oriented architecture to facilitate the development
and addition of new meta-heuristics as well as new objective functions.

Figure 6.1 and Figure 6.2 displays a simplistic overview in UML diagrams depicting, res-
pectively, the architecture for the meta-heuristics and objective functions. Class Algorithm is
responsible to solve an objective function CostCalculator. Both of these classes are abstract ones
and contain the structure in which possible meta-heuristics and objective function have to have
in the software framework architecture.

Class Algorithm has a virtual function to execute the meta-heuristic optimizing the objec-
tive function defined by function setCostCalculator. In order to be called, execute needs for its
Algorithm to be configured via function configuration, and, once “everything” is ready for the
execution, function isReady returns true. Once execute has been called and the optimization has
been done, execute returns a Boolean value, and if true, Algorithm can save the results in a file via
function saveResultsInFile. These saved results are related to the best solution found by the meta-
heuristic and its convergence history of optimization. In other words, it saves the best solution,
and evaluation found during each iteration.

Figura 6.1 – Illustration of meta-heuristics object-oriented architecture.

Class Algorithm is inherited by two other abstract classes, namely, MonoObjectiveAlgorithm
and MultiObjectiveAlgorithm. These two classes specialize in the optimization of single- and multi-
objective problems, respectively. All of the classes representing meta-heuristics implements and
inherit from either one of these two classes, MonoObjectiveAlgorithm andMultiObjectiveAlgorithm,
depending on if the meta-heuristic is single- or multi-objective focused. To facilitate and introduce
flexibility for the framework and developers, most of classes implementation uses templates to
alternate between the types used for decision variables and objectives, respectively, DecisionType
and ObjectiveType.

Class CostCalculator is responsible to implement a single-/multi-objective function to evaluate
a solution that is implemented as a vector of components of the type DecisionType returning a
vector of objective functions results with the type ObjectiveType. If the optimization problem is

152

Figura 6.2 – Illustration of objective optimization problem object-oriented architecture.

single-objective, the vector of objective results has only one result.

Since benchmark functions have the unique property to have its best evaluation or PF known,
they are implemented in its specialized class BenchmarkFunction. Most of the implemented ben-
chmark functions also can alter their dimensions and objective functions, for example, ZDT1. For
this reason, BenchmarkCostCalculator has setDimensions and setNumberOfObjectives to modify
the number of dimensions and objectives.

The utilization of the framework for the objective function enables the use of the meta-
heuristics to optimize specific problems by wrapping them using a class that implements the
abstract class CostCalculator. An example of that is present in the objective functions Functio-
nUNSCH and FunctionBDF. These functions contain a class SystemRTNoC that is responsible
for performing a static analysis of an MPSoC platform given a task placement for an RTA model.
This class is represented in Figure 6.3, together with its component classes in a simplistic UML
diagram.

6.3 End-user Tutorial

For an end-user, it is crucial to demonstrate how to compile the framework in a Linux-based
platform, the examples demonstrate here, a computer running Ubuntu 18.04. First, it is required
that system to run a C++ compiler that supports the use of C++11. An example of C++ compiler
that provides this feature is the GCC C++ compiler [97] widely used in Linux-based platforms for
being an open-source and free software. In a platform running Ubuntu 18.04 that has apt package
manager, the user needs to install GCC using the following command in terminal:

\$ sudo apt install gcc libstdc ++

The other requirement is the use of CMake 3.0 [98] that is a cross-platform software to aid the

153

Figura 6.3 – Illustration of the RTNoC system framework in object-oriented architecture.

generation of a Makefile specific for the target platform. In the example platform running Ubuntu
18.04, CMake can either be installed from its source code or directly from the package manager
repository using the following command:

\$ sudo apt install cmake

To generate the Makefile using cmake, the user needs to go to the folder in which the fra-
mework is present and run the following command:

\$ cmake .

If there are no errors, CMake must have generated a Makefile that can be used to compile the
source code using the following command:

\$ make

If the compilation has been completed without any errors, the folder should now contain the
following binary files holding the multiple experiment modules for the software developed:
(a) benchmarkexperiment,
(b) mobenchmarkexperiment,
(c) appgenerator,
(d) nocexperiment,
(e) monocexperiment.
These binary files are responsible for the experiment modules in the software.

154

6.3.1 Perform Single-Objective Meta-Heuristic Experiment using Benchmark
Functions

To run experiments using single-objective benchmark functions, the user needs to run the
binary benchmarkexperiment. If executed without any parameters, it displays the following help
message:

\$./ benchmarkexperiment
Parameters :
--
-r R - Number of repetitions for the algorithm .
If not given R=32 is used.
-p P - Number of agents used in the algorithm .
-i I - Number of iterations used in the algorithm .
-d D - Number of dimensions used in the cost functions .
If not given D=3 is used.
-c <costname > - Name of the cost function used.
<ACKLEY > Ackley Function - Mulimodal and Non - separable
<GRIEWANK > Griewank Function - Multimodal and Non - separable
<MICHALEWICZ > Michalewicz Function - Steep Ridges /Drops , Multimodal and Separable
<RASTRIGIN > Rastrigin Function - Multimodal and Separable
<ROSENBROCK > Rosenbrock Function - Valley -Shaped , Non - Separable and Unimodal
<ROTATEDHYPERELLIPSOID > Rotated Hyper Ellipsoid Function - Convex and Unimodal
<SCHWEFEL > Schwefel Function - Multimodal and Separable
<SPHERE > Sphere Function - Separable , Convex and Unimodal
<STEP > Step Function - Separable and Unimodal
<STEPINT > StepInt Function - Separable and Unimodal
<SUMSQUARES > SumSquares Function - Separable and Unimodal
<TRID > Trid Function - Non - Separable and Unimodal
<ZAKHAROV > Zakharov Function - Plate -Shaped , Unimodal and Non - separable
-a <algname > - Name of the algorithm used.
<AGWO > Adaptive Gray Wolf Optimization
<APSO > Adaptive Particle Swarm Optimization
<APSOV2 > Adaptive Particle Swarm Optimization v2
<CSASADE > Crossover Strategy Adaptive - Self - Adaptive Differential Evolution
<JADE > Adaptive Differential Evolution
<SAPSO > Self - Adaptive Particle Swarm Optimization
<SIMPLEBA > Bat Algorithm
<SIMPLEDA > Dragonfly Algorithm
<SIMPLEDE > Differential Evolution (DE/rand /1/ bin)
<SIMPLEEHO > Elephant Herd Optimization
<SIMPLEGWO > Gray Wolf Optimization
<SIMPLEMFO > Moth -Flame Optimization
<SIMPLEPSO > Particle Swarm Optimization
<SIMPLESSA > Salp Swarm Optimization
<SIMPLEWOA > Whale Optimization Algorithm
<SOADE > Single - Objective Adaptive Differential Evolution
-h - Prints this help message .

155

For example, imagine an experiment using this module that would execute for 64 repetitions
the meta-heuristic GWO optimizing the benchmark function Ackley with 25 dimensions, and in
each repetition, GWO runs for 100 iterations and has 40 wolves. For this specific case, benchmar-
kexperiment should be executed with the following parameters:

\$./ benchmarkexperiment -r 64 -p 40 -i 100 -d 25 -c ACKLEY -a SIMPLEGWO

During the execution, benchmarkexperiment prints in the terminal console a progress bar based
on the percentage of repetitions executed so far as shown below:

Progress : |XXXXXXXXXX --------------------| 33.33% Completed

At the end of its execution, benchmarkexperiment saves in a folder data/results in the same
folder of the binary the results for the experiment in a text file containing the parameters for
the algorithm and experiment, for example, the internal static parameter for a meta-heuristic
that contain any, and number of executions, iterations, and search agents. This report text file
additionally includes the best evaluation and solution for each one of the repeated executions. It
also saves the history for the best evaluation during each of executions iterations.

6.3.2 Perform Multi-Objective Meta-Heuristic Experiment using Benchmark
Functions

Experiments using multi-objective benchmark optimization functions are performed using the
binary execution file mobenchmarkexperiment. If executed without any parameters, the following
message is displayed:

\$./ mobenchmarkexperiment
Parameters :
--
-r R - Number of repetitions for the algorithm .
If not given R=32 is used.
-p P - Number of agents used in the algorithm .
-i I - Number of iterations used in the algorithm .
-d D - Number of dimensions used in the cost functions .
If not given D=8 is used.
Note that this parameter is not applied in some problems .
-m M - Number of objectives used in the cost functions .
If not given M=3 is used.
Note that this parameter is not applied in some problems .
-c <costname > - Name of the cost function used.
<DTLZ1 > DTLZ1 - Multi - Objective Benchmark
<DTLZ2 > DTLZ2 - Multi - Objective Benchmark
<DTLZ7 > DTLZ7 - Multi - Objective Benchmark
<KURSAWE > KURSAWE - Multi - Objective Benchmark
<ZDT1 > ZDT1 - Multi - Objective Benchmark
<ZDT2 > ZDT2 - Multi - Objective Benchmark
<ZDT3 > ZDT3 - Multi - Objective Benchmark
-a <algname > - Name of the algorithm used.

156

<APMTMODE > Adaptive Parameter Mutation Tournment MODE
<MONSADE > Multi - Objective Non - dominant Sorting Adaptive DE
<NSGAII > Non - dominant Sorting Genetic Algorithm II
-h - Prints this help message .

In the same fashion as the single-objective counterpart, mobenchmarkexperiment during its
execution displays a progress bar in terminal. Also, when it finishes, it saves the results in a file
in the folder data/results containing the non-dominant solutions and their evaluations for each
experiment as well as the solutions and evaluations obtained by each search agents throughout
the iterations.

An example case would be to experiment with NSGA-II optimizing DTLZ1 for 55 repetitions
and each repetition containing a population with size 250 and 300 iterations. This experiment is
performed using the following parameters:

\$./ mobenchmarkexperiment -r 55 -i 250 -p 300 -c DTLZ1 -a NSGAII

6.3.3 Generate Synthetic Real-Time Application

The software framework also contains a module to generate possible synthetic real-time ap-
plications to be used by the RTNoC-based task mapping experiments. First, it is necessary to
highlight that applications are represented as CSV files that could either be visualized or edited
by any text editor software. In these files, the first row adds the table headers, and the subse-
quent ones represent each task in the application. The possible values for the header and what
these columns represented are the following (note: case-sensitive): (a) NAME : Task’s name, (b)
COST : Task’s WCET in seconds, (c) DEADLINE : Task’s deadline time in seconds, (d) PERIOD:
Task’s period time in seconds, (e) DEST_NAME : Task’s message destination task name (blank
if there are none), (f) PAYLOAD: Task’s communication load in bits (blank if there are none),
(g) PRIORITY : Task’s priority value, and (h) MEMORY : Task’s required code in local memory
in bytes.

To generate a new synthetic real-time application, execute appgenerator, and if executed
without any parameters, the following help message is displayed:

\$./ appgenerator
Parameters :
--
-a <appName > - Generated application testbench name.
-t N - Number of tasks
If not given the application , total utilization factor will be used.
-u U - Application total utilization factor .
If not given the number of tasks will be used.
-p <priority > - Priority assignment scheme .
* RATEMONOTONIC - Rate Monotonic Priority Assignment .
* DEADLINEMONOTONIC - Deadline Monotonic Priority Assignment .
If not given the Rate Monotonic priority assigner will be used.
-d <uniform > - Distribution for tasks ’ utilization .

157

* UNIFORM - [Default] Uniform Distribution .
* EXPONENTIAL - Exponential Distribution .
* NORMAL - Normal Distribution .
* CAUCHY - Cauchy Distribution .
* CHISQUARED - Chi - Squared Distribution .
-m <uniform > - Distribution for payloads ’ sizes.
* UNIFORM - [Default] Uniform Distribution .
* EXPONENTIAL - Exponential Distribution .
* NORMAL - Normal Distribution .
* CAUCHY - Cauchy Distribution .
* CHISQUARED - Chi - Squared Distribution .
-r <MIN -MAX > - Application tasks min -max required memory in bytes.
* If not given MIN -MAX =2048 -16384 required memory values .
Note: If both utilization and number of tasks are given ,
it will use the number of tasks.
-h - Prints this help message .

This module comes with a default testbench application in the file AppIndrusiak2014.csv repre-
senting an Autonomous Vehicle Application (AVA). More information about this specific testbench
application is presented in Section 7.6.1.

For example, to generate a synthetic application in the file ExampleApp.csv that has a total
utilization factor of 15, appgenerator should be executed with the following parameters:

\$./ appgenerator -a ExampleApp .csv -u 15

6.3.4 Perform Single-Objective Task Mapping onto RTNoC-based MPSoC Ex-
periment

The software framework contains a module specialized in using meta-heuristics to optimize
single-objective functions related to task mapping of RTA onto RTNoC-based MPSoC platforms.
This module works similarly as the one for single-objective benchmark functions as present in
Section 6.3.1. If executed without any parameters, it displays the following message:

\$./ nocexperiment
Parameters :
--
-s NxM - Platform number of rows <N> and number of columns <M>
If not given NxM =4x4 is used.
-r R - Number of repetitions for the algorithm .
If not given R=32 is used.
-p P - Number of agents used in the algorithm .
-i I - Number of iterations used in the algorithm .
-t <filename > - Application testbench file name (a .csv file) inside
of the folder data/ testbench / .
If none given <filename >= AppIndrusiak2014 .csv
-c <costname > - Name of the cost function used.
<BDF > Breakdown Frequency Analysis

158

<EERT > End -to -End Response Time Analysis
<ENED > Estimated Normalized Total Energy Dissipation by Messages
<MRMC > Local Memory Requirement Model C Analysis
<EERTNEGATIVEMINSLACKRATIO > EERT + Negative Minimum Slack Ratio
<UTILIZATION > Processors and Links Utilization Analysis
-a <algname > - Name of the algorithm used.
<AHDPSOU > Adaptive HDPSO -U
<AGAV1 > Adaptive Genetic Algorithm v1
<AGAV2 > Adaptive Genetic Algorithm v2
<AGAV3 > Adaptive Genetic Algorithm v3
<AGAV4 > Adaptive Genetic Algorithm v4
<AGWO > Adaptive Gray Wolf Optimization
<APSO > Adaptive Particle Swarm Optimization
<APSOV2 > Adaptive Particle Swarm Optimization v2
<CSASADE > Crossover Strategy Adaptive - Self - Adaptive Differential Evolution
<DPSO > Discrete Particle Swarm Optimization (Kang2008)
<HDPSOM > Hybrid Discrete Particle Swarm Optimization Makespan -based
<HDPSOU > Hybrid Discrete Particle Swarm Optimization Utilization -based
<JADE > Adaptive Differential Evolution
<SAPSO > Self - Adaptive Particle Swarm Optimization
<SIMPLEBA > Bat Algorithm
<SIMPLEDA > Dragonfly Algorithm
<SIMPLEDE > Differential Evolution (DE/rand /1/ bin)
<SIMPLEEHO > Elephant Herd Optimization
<SIMPLEGA > Genetic Algorithm
<SIMPLEGWO > Gray Wolf Optimization
<SIMPLEMFO > Moth -Flame Optimization
<SIMPLEPSO > Particle Swarm Optimization
<SIMPLESCA > Sine Cosine Algorithm
<SIMPLESSA > Salp Swarm Optimization
<SIMPLEWOA > Whale Optimization Algorithm
<SOADE > Single - Objective Adaptive Differential Evolution
-h - Prints this help message .

An example of experiment with this module would be to perform for 33 times the optimization
of funsch (Section 3.8.3) mapping an application represented in a CSV file exampleApp.csv onto
a 2x3 mesh-grid platform using AGWO (Section 4.3.5) with 50 wolves running for 120 iteration
each time. This experiment case would be performed using the following command:

\$./ nocexperiment -s 2x3 -t exampleApp .csv -c EERT -a AGWO -r 33 -p 50 -i 120

After the experiment execution, its results are saved in a file containing information for the
meta-heuristic parameters along with the solutions and evaluations for each one of the optimization
repetitions.

159

6.3.5 Perform Multi-Objective Task Mapping onto RTNoC-based MPSoC Ex-
periment

At last, the last module monocexperiment was developed to perform experiments using multi-
objective meta-heuristics to optimize multiple characteristics for the design of an MPSoC based
on RTNoC related to the task placement of its real-time application. Similar to previous modules,
this one was implemented with a help display if it is executed without any parameters as follows:

\$./ monocexperiment
Parameters :
--
-s NxM - Platform number of rows <N> and number of columns <M>
If not given NxM =4x4 is used.
-r R - Number of repetitions for the algorithm .
If not given R=32 is used.
-p P - Number of agents used in the algorithm .
-i I - Number of iterations used in the algorithm .
-t <filename > - Application testbench file name (a .csv file) inside
of the folder data/ testbench / .
If none given <filename >= AppIndrusiak2014 .csv
-c <costname > - Name of the cost function used.
<EERTMULTI > EERT with Slack , Memory , Energy and Utiization Awareness
-a <algname > - Name of the algorithm used.
<APMTMODE > Adaptive Parameter Mutation Tournment MODE
<NSAGA > Non dominant Sorting Adaptive GA
<MONSADE > Multi - Objective Non - dominant Sorting Adaptive DE
<NSGAII > Non - dominant Sorting Genetic Algorithm II
-h - Prints this help message .

This module after its execution saves a file containing the non-dominant solutions and their
evaluations for each one of the repeated executions for a multi-objective meta-heuristic optimizing
the multiple design metrics of Fnoc (Section 3.8.8).

6.4 Conclusions of the Chapter

This chapter briefly introduces the software framework developed in this work, including its
designed object-oriented architecture, similar software present in the literature, and an end-user
tutorial with a few example cases for the modules implemented.

The modules implemented by this software framework is based on the meta-heuristics present
in Chapter 4, single-/multi-objective benchmark functions present in Chapter 2. The modules are
responsible for performing static analysis of RTNoC-based MPSoC platforms as part of objective
functions, as present in Section 3. The experimental setup and the results obtained in Chapter 7
uses the modules present in this chapter.

160

7 EXPERIMENTAL SETUP AND RESULTS

This chapter introduces the experimental setup
used to evaluate the bio-inspired meta-heuristics
implemented used in a variety of optimization
problems, including their employment in the opti-
mization of design metrics of RTNoC-based MP-
SoCs. It also presents the results obtained to-
gether with their statistical analysis to indicate
the most competitive meta-heuristics for the pro-
blems at hand. The chapter is divided as follows:
Section 7.1 introduces this chapter by explaining
its goals; Section 7.2 presents the statistical fra-
mework used to analyze the gathered data; Sec-
tion 7.3 presents characteristics shared by all ex-
periments; Section 7.4 presents the experimental
setup and results obtained when applying conti-
nuous single-objective meta-heuristics in a set of
benchmark problems; Section 7.5 presents the ex-
perimental setup and results obtained when ap-
plying continuous multi-objective meta-heuristics
in a set of benchmark problems; Section 7.6 pre-
sents the experimental setup and results obtai-
ned when applying single-/multi-objective meta-
heuristics in a range of task mapping problems for
the optimization of RTNoC-based systems; Sec-
tion 7.7, concludes the chapter and contextualizes
it with other parts of this work.

7.1 Introduction

The different experimental setup proposed here has the goal to make a fair comparison between
multiple bio-inspired meta-heuristic to optimize a range of optimization problems including single-
/multi-objectives benchmark problems, and the task mapping of real-time applications onto NoC-
based MPSoC platforms. The last one is the emphasized problem, and, for this reason, it is
focused upon in this work by including multiple objective functions related to different aspects
of the design of NoCs that can be optimized, by a search-based meta-heuristic, given its task
mapping assignment.

161

7.2 Statistical Framework

Since bio-inspired meta-heuristics are stochastic, each algorithm optimizing a problem may
produce different results in distinct executions. For this reason, it is common practice to use sta-
tistical non-parametric procedures [99] as tools to compare meta-heuristics performances because
they do not need to comply with any assumptions about the data collected except that is enough
statistical information about the meta-heuristics results. These procedures can infer whether a
meta-heuristic is statically better than others and what is the significance of this assertion. In this
work, the statistical framework used to compare the results between the multiple meta-heuristics
used is the Friedman test with posthoc procedures.

7.2.1 Friedman Test with post-hoc procedures

The Friedman test [99] [100] is intended to be used in situations where multiple meta-heuristics
are being compared for a family of problems, and their results are used as samples. For this reason,
this work uses the Friedman test allied with posthoc tests. These tests verify whether in a set of
used meta-heuristics there are statistical inequalities between them, and, if there are significant
differences, compare the algorithm that acquired the best results in regard with the others to
estimate how different they are pairwise. The procedure to use the Friedman test with posthoc
tests is shown in pseudo-code form in Algorithm 38.

Algorithm 38 Non-parametric analysis using Friedman test

INPUT: Data for algorithm/problem pairs.
OUTPUT: Test results
1: for all problem results do
2: Rank algorithms from best to worst.
3: end for
4: for all algorithms do
5: Calculate average ranks. . Equation 7.1
6: end for
7: Calculate Friedman Statistic. . Equation

7.2

8: if Friedman statistic H0 is rejected. then
9: Use post-hoc procedures.

10: return Ranked list of algorithms
11: return Inferences between best algo-

rithm and others.
12: else
13: return All algorithms are statistically

equal.
14: end if

The Friedman test null hypothesis H0 is that all used meta-heuristics have the same median
of performance metrics, i.e., they are equivalent, and the alternative hypothesis H1 negates the
H0 with an inference level of α. Friedman test operates by calculating ranks for each meta-
heuristic Algorithmi, where (i = 1, ..., n) and n is the number of used meta-heuristics based on
the median of their performance metrics (obtained results) when optimizing a problem Problemj

where (j = 1, ...,m) with m is the number of problems used. For a given problem, the meta-
heuristic with the best result receives rank 1, while the second-best one receives rank 2, and so on,
until the meta-heuristic with the worst results receives rank n. If there are ties between two or

162

more meta-heuristics, they receive an average for their ranks. For example, if two meta-heuristics
would receive rank 2, they both receive 2.5 as rank and the next algorithm worse than them
receives rank 3. Given that ri,j is the rank of the ith meta-heuristic when optimizing the problem
j, the average rank for this algorithm is ranki and it is calculated using the following equation:

ranki = 1
n

m∑
j=1

ri,j , (7.1)

where n is the number of meta-heuristics being compared, and m is the number of optimization
problems used by these meta-heuristics.

After calculate the average ranks, the Friedman statistic χ2
f is calculated using Equation 7.2

to inquire whether the null hypothesis of all meta-heuristics being statistically identical with the
same average rank is accepted or not. χ2

f follows a χ2 distribution with n− 1 degrees of freedom.

χ2
f = 12m

n(n+ 1)

[n∑
i=1

rank2
i −

n(n+ 1)2

4

]
. (7.2)

If the Friedman test null hypothesis H0 is rejected, then it is possible to use posthoc tests to
indicate how distinct is the best meta-heuristic when compared in a pairwise-fashion against the
other algorithms with smaller average ranks. The posthoc methods perform these comparisons
as multiple hypothesis tests. In each one of these hypothesis tests, each null hypothesis H0

indicates whether both algorithms are statistically equal by having the same rank distribution.
Meanwhile, the alternative hypotheses indicate that the algorithms are different and consequently
the algorithm with the best average rank is better than the one with smaller average rank. In
other words, the p-values obtained by these hypothesis tests can be used as a metric to indicate the
difference between pairs of algorithms. The statistic z using a normal distribution for comparing
the best algorithm with average rank rankbest against another ith meta-heuristic with smaller
average rank ranki is presented as follows:

z = rankbest − ranki√
n(n+1)

6m

. (7.3)

Even though p-values obtained during each comparison could be used as a metric. They are not
suitable because as they are, because they do not take into consideration the Family-Wise Error
Rate (FWER) that comes from other algorithms comparisons and may influence the tests by
varying their chosen significance level α and degrading the test.

Methods that adjust the p-values solve this problem compensating the effects due to FWER and
obtaining Adjusted p-values (APV) that can be directly used to compare with the significance level
desired [99]. In this work we use two p-value adjustment methods: (a) Finner’s procedure [101],
and (b) Li’s procedure [102].

Finner’s procedure adjusts its α value in a step-down manner by analyzing all hypothesis
from the largest p-value p1 to the smallest one pn−1 sequentially, and rejecting those alternative
hypotheses where pi > 1 − (1− α)

n−1
i . Each algorithm i has its APV equal to the minimum

between 1 and ν with ν = max(1, 1− (1− pj)(n−1)/j) with j = 1, ..., i.

163

Meanwhile, Li’s procedure is a two-step rejection method for multiple comparisons. In the
first step, it identifies if all null hypotheses are rejected by comparing if pn−1 is bellow the cho-
sen significance level α. Otherwise, it applies the second step, by comparing and rejecting null
hypothesis with pi ≤ (1−pn−1)/(α(1−α)). The APV for each ith algorithm is pi/(pi+ 1−pn−1).

The rule of thumb to obtain significant results with the Friedman test allied with posthoc
methods is to perform experiments where the number of problems m is at least twice as big as
the number of meta-heuristics n. In other words, m > 2n.

7.3 Shared Experimental Setup Characteristics

For each experiment in this work, each one of the meta-heuristics was executed for 50 times per
optimization problem. This large amount of execution has as a goal the obtaining of a significant
number of samples about the meta-heuristics performance, and, consequently, having enough data
for each meta-heuristic in each problem for the statistical analysis to draw trustworthy conclusions
about the results obtained.

In each experimental setup, the meta-heuristics were only allowed to evaluate the objective
function for 10000 times each execution. Since two types of bio-inspired meta-heuristics are being
used, the author exploits their characteristics to improve their performance by dividing differently
how these evaluations are performed by changing their number of iterations and their amount
of search space agents. Evolutionary algorithms were configured to run with populations of 100
individuals running with 100 iterations. Meanwhile, swarm intelligence algorithms were configured
to run with 25 search agents and 400 iterations.

Another experimental characteristic that is shared by multiple experiments is the metric used
to evaluate performance. Single-objective bio-inspired meta-heuristics return a single solution that
in turn can have its evaluation result used as a numerical criterion of performance. This work
deals with minimization problems, the smaller the evaluation result, the better the algorithm
performance that is, in turn, closer to the optimal solution. So the criterion for performance
is how small is the median of results for an algorithm optimizing a problem. However, multi-
objective meta-heuristics returns a set of solutions that possibly forms the Pareto front for the
problem. A single numeric metric of performance for the results should take into consideration all
the non-dominated solutions resulting from a meta-heuristic execution and evaluate how closer to
the Pareto optimal they are. In this work, the numeric metric chosen to evaluate the quality of
the results of multi-objective meta-heuristics is the Inverted Generational Distance (IGD).

IGD [103] measures the distance of the non-dominated solutions in the objective space to the
known Pareto front for a problem. IGD metric can be calculated by the following equation:

IGD = 1
n

n∑
i=1

dist2i , (7.4)

where n is the number of non-dominant solution found by a meta-heuristic, and disti is the
euclidean distance between the ith non-dominant solution in the objective space and its closest

164

solution in the known Pareto Front for the problem. In this manner, the closer the (near-)Pareto
optimal solutions resulted from a meta-heuristic to the true Pareto optimal ones, the smaller the
IGD metric. For this reason, the IGD is used as a performance metric for multi-objective meta-
heuristics, and in the same manner, as the evaluation results for single-objective algorithms, the
median for performance metrics for the different runs of a meta-heuristic optimizing a problem is
used to calculate the ranks in a Friedman non-parametric statistical test.

7.4 Experimental Setup - Single-Objective Benchmark Functions

In this experiment, the goal is to compare the results for the single-objective meta-heuristics in
a group of continuous benchmark optimization problems. Table 7.1 displays the single-objective
meta-heuristics used that contains external parameters, and how these parameters were tuned,
where N is the number of search agents, and I is the number of iterations. Note that the values
for N and I matches the shared configuration since meta-heuristics with N = 100 and I = 100
are evolutionary.

Tabela 7.1 – External parameters for the continuous single-objective meta-heuristics.

Algorithm N I Parameters
DE 100 100 F = 0.5 CR = 0.9
PSO 25 400 w0 = 0.85 wf = 0.05 vmax = ||ub− lb||/2 c1 = 2.1 c2 = 1.9
EHO 25 400 Nclans = 5 Nkept = 5 α = 0.5 β = 0.1
BA 25 400 A = 0.5 pr = 0.5

JADE 100 100 c = 0.15 p = 0.2

The set of problems in this experiment are single-objective benchmark problems present in
Section 2.3.2.2 with one of the multiple dimensions [5, 10, 25, 50, 75, 100]. In this manner, each the
meta-heuristics were executed with 78 problems since it was used thirteen continuous benchmark
functions times their six configurations of dimensions.

The list of calculated average ranks for each meta-heuristic is presented in Table 7.2. The
meta-heuristics with smaller ranks are considered to be better than the ones with bigger ranks.

Tabela 7.2 – Average Rankings for the continuous single-objective meta-heuristics.

Meta-Heuristic Ranking Meta-Heuristic Ranking
WOA 4.3654 APSOV2 7.8077

SOAMSDE 5.2372 DE 9.8141
EHO 5.3269 BA 9.9295
JADE 5.5064 APSO 10.0449
SSA 5.9167 SAPSO 10.3526

AGWO 6.1795 PSO 13.3141
GWO 6.25 DA 13.6346

CSASADE 6.3205 MFO 16

165

The calculated Friedman statistic χ2
f is 634.898 resulting in a p-value of ≈ 0 and consequently

rejecting the null hypothesis using a significance level α of 0.05. Notice that a small obtained
p-value when compared with the significance level implies more considerable evidence against the
null hypothesis.

Since the null hypothesis was rejected, it means that indeed the meta-heuristics are statistically
different, and for this set of problems, WOA (Section 4.3.9) in average is better than the others,
followed by SOAMSDE (Section 4.4.1) and EHO (Section 4.3.6).

The notion of how different the performance of WOA is against the other meta-heuristics
is estimated using posthoc procedures. Posthoc procedures compare WOA pairwise against the
other algorithms with smaller average ranks. The null hypothesis for each pairwise comparison is
that WOA has the same performance as the other meta-heuristics used in this experiment. The
calculated values for p-values for these multiple comparison in the posthoc methods used is present
in Table 7.3, where unadjusted p represents the p-value before the family-wise error correction,
pFinner is the p-value adjusted using Finner’s method, and pLi is the p-value adjusted using
Li’s post-hoc method. To aid the reader to quickly identify which meta-heuristic is statistically
equivalent to EHO and which are not using a significance level of 5%, cells in Table 7.3 according
to its possible hypothesis analysis. Meta-heuristics colored green are statistically worse than EHO
with p-values below 0.05, the ones colored yellow are not significantly different at least in one of
the p-values above 0.05, and the ones colored red are statistically equivalent to EHO with p-values
above 0.05.

Tabela 7.3 – Adjusted p-values for pair-wise comparison against WOA

Index Meta-Heuristic Unadjusted p pFinner pLi

1 MFO 0 0 0
2 DA 0 0 0
3 PSO 0 0 0
4 SAPSO 0 0 0
5 APSO 0 0 0
6 BA 0 0 0
7 DE 0 0 0
8 APSOV2 0.000006 0.000012 0.000008
9 CSASADE 0.010331 0.017158 0.013637
10 GWO 0.013433 0.020082 0.017661
11 AGWO 0.017332 0.02356 0.022671
12 SSA 0.041867 0.052058 0.05306
13 JADE 0.134472 0.15349 0.152522
14 EHO 0.207215 0.220255 0.217115
15 SOAMSDE 0.252813 0.252813 0.252813

.

The p-values obtained by the posthoc methods indicates, with a significance level α of 5%, that
WOA is not significantly different than four meta-heuristics: (a) SOAMSDE, (b)EHO, (c)JADE,
and (d) SSA. Note that SSA only under the Li’s adjusted p-value is higher than 0.5. However, in
this work, we treat it as a sign that indeed, WOA is not statistically different than SSA.

166

A vital point drawn from this analysis is that even though WOA obtained better results during
the experiments than these four meta-heuristics, they are not significantly worse than WOA and
their results are competitive. Using the p-values to indicate as a level of similarity, it is possible
to see that SOAMSDE and WOA are different only under a significance level α of 26%.

7.5 Experimental Setup - Multi-Objective Benchmark Functions

In this experiment the goal is to compare the quality of the PO solutions obtained by the
continuous multi-objective meta-heuristics when optimizing continuous benchmark problems pre-
sent in Section 2.3.2.3 with multiple dimensions, respectively, [10, 50, 100]. The list of benchmark
MOOP are: (a) DTLZ1, (b) DTLZ2, (c) DTLZ3, (d) Kursawe, (e) DTLZ1, (f) DTLZ1,(g) ZDT1,
(h) ZDT2, and (i) ZDT3. In this manner, the experiments were performed with 21 problems since
each one of these seven benchmark function times three configurations of dimensions.

The meta-heuristics used in this experiment are the following: (a) CNSGA-II, (b) APMT-
MODE, and (c) MONSADE. All three meta-heuristics fall onto the evolutionary classification,
and for this reason, they were executed with population N = 100 and number of iterations
I = 100. Note that only CNSGA-II contains external parameters that need to be configured by
the user. The tuned parameters for CNSGA-II were, respectively, pm = 0.1 and pc = 0.8.

Since the meta-heuristics are multi-objective, the metric of performance used for the Friedman
test is the median of IGD values between the generated non-dominated solutions and the known
PF of the problems for the fifty executions calculated for each meta-heuristic using each one of
the problems The list of average ranks calculated using the median of IGD for each meta-heuristic
is presented in Table 7.4.

The Friedman statistic calculated for this experiment was χ2
f is 14.095 resulting in a p-value

of 0.0009 and consequently rejecting the null hypothesis using a significance level α of 0.05. It
indicates that these three meta-heuristics are statically different. In this experiment MONSADE
(Section 4.6.2) obtained the best average performance for the 21 problems, and since the Friedman
null hypothesis was rejected, it is possible to perform posthoc statistical tests to compare pairwise
the differences between MONSADE against APMTMODE and CNSGA-II.

Tabela 7.4 – Average Rankings for the continuous multi-objective meta-heuristics.

Meta-Heuristic Ranking
MONSADE 1.3333

APMTMODE 2.2857
CNSGAII 2.381

Tabela 7.5 – Adjusted p-values for pair-wise comparison against MONSADE

Index Meta-Heuristic Unadjusted p pFinner pLi

1 CNSGAII 0.000687 0.001374 0.000688
2 APMTMODE 0.002028 0.002028 0.002028

.

167

The p-values obtained by the posthoc methods indicates with a significance level of α = 5%
that SOAMSDE is significantly better than APMTMODE and CNSGA-II optimizing the problems
in this experiment.

7.6 Experimental Setup - Real-Time Application Mapping onto
RTNoC-based MPSoC

In these experiments, the goal is to assess in different scenarios which meta-heuristic is capable
of obtaining competitive results when optimizing different aspects of RTNoC-based MPSoC based
on the task placement of the real-time application mapped onto it.

To maintain generality as well as to obtain statistically significant results, the experiments for
task mapping problems use a large number of platforms and applications.

In the experiments, the characteristics of the NoC-based MPSoCs platforms fit the characteris-
tics described in Section 3.7. The central aspect that varies for these platforms is their mesh-grid
sizes that correspond to the number of homogeneous processor elements inside of the system. The
characteristics for these platforms are present on Table 7.6 and their sizes are respectively: (a)
3x3; (b) 3x4; (c) 4x4; (d) 4x5, and (e) 5x5;

Tabela 7.6 – Characteristics of MPSoCs with wormhole-based RTNoCs used as platforms for the
experiments.

Platform Ψ1 Ψ2 Ψ3 Ψ4 Ψ5

Type Homogeneous PEs
Global Clock Speed 50 MHz
Mesh-Grid Sizes 3x3 3x4 4x4 4x5 5x5
Number of Cores 9 12 16 20 25
Number of Links 42 58 80 102 130

Link Width 32 bits
Link Latency 1 cycle

Routing Algorithm XY-Algorithm
Arbitration Policy Priority-Preemptive
Routers Buffers Have Virtual-Channels

Buffer Depth per VC 2 flits
Router Latency 10 cycles

Normalized Energy Dissipated
1

Transmitting 1 flit Router per Link
Normalized Energy Dissipated

1
Transmitting 1 flit NI per Link

For the applications, these experiments use the Autonomous Vehicle Application (AVA) ben-
chmark present on [45], that is based on a real-time application for autonomous vehicle control

168

as well as synthetic randomly generated applications. The set of real-time applications and their
characteristics are present in Table 7.7.

Tabela 7.7 – Applications used for the experiments where Z̄payload is the average size in flits
of messages payloads, |Γ| is the task set size, |Φ| is the number of messages, and Utotal is the
application total utilization.

Application Name |Γ| |Φ| Z̄payload Utotal (%)
Ω1 AVA 39 39 6294.97 891.05
Ω2 Uniform1 53 53 7953.62 1800.84
Ω3 Uniform2 46 46 6694.09 1703.10
Ω4 Normal1 37 37 8309.95 1306.02
Ω5 Normal2 40 40 5589.93 1248.55
Ω6 Cauchy1 39 39 8139.41 1398.53
Ω7 Cauchy2 47 47 6143.17 1479.47
Ω8 Chi-Squared1 55 55 8103.24 1111.23
Ω9 Chi-Squared2 38 38 5821.24 1010.48
Ω10 Exponential1 46 46 9420.89 900.71
Ω11 Exponential2 40 40 6148.28 754.77

7.6.1 Synthetic Real-time Application Generation

The benchmark application AVA, as explained by [104], was designed for a vehicle that recog-
nizes obstacles using multiple stereo cameras and estimates these obstacles distance, and guide
the vehicle during the navigation process. The benchmark contains tasks that manage the car
sensing system, for example, cameras frame buffers and tire pressure sensors, as well as tasks
that perform navigation and control computations, for example, visual odometry and stability
control. This RTA is relevant due to its application context. It also has features that make it an
ideal candidate to be mapped into an MPSoC with RTNoC platform. For example, it has a large
volume of data in its messages, and its distributed subsystems (represented as tasks) has high
computing execution times, and, finally, due to its embedded characteristics, it needs to have low
power usage.

This work uses the AVA benchmark presented on [45] that has slight changes from the one
presented on [104] (attach as appendix II to this document). AVA contains the following characte-
ristics present in its tasks and messages: (a) AVA has 39 tasks that in total emits 39 messages. (b)
tasks execution costs have an average and standard deviation of C̄ = 19.62 ms and σC = 31.39 ms
ranging from 0.5 to 150 ms (milliseconds); (c) tasks periods ranges from 40 to 1000 ms; (d) tasks
utilization factors ranges from 0.05 to 70% with an average and standard deviation of Ū = 22.85%
and σU = 19.13% respectively; (e) messages payload sizes varies from 1 to 76 KB (kilobytes) with
an average of Z̄ = 24.59 KB and standard deviation of σZ = 31.89 KB. Figure 7.1 presents the

169

frequency histograms for AVA tasks utilization factors and messages payload sizes to visualize the
application characteristics better.

(a) Frequency histogram of tasks utilization factors.
(b) Frequency histogram of messages payload sizes
in flits.

Figura 7.1 – Frequency histograms for utilization factors of AVA tasks as well as their messages
sizes in flits.

The synthetic application generation takes into consideration the range of values assumed by
the tasks on AVA and generates different tasks sets using multiple random distributions for both
tasks and messages. The process to generate synthetic RTA create each task with a utilization
factor U generated between 0.1 and 0.75 using a given distribution function, and if the value is
outside this boundaries, it is substituted with the violated boundary. These synthetic tasks are
generated until the sum of their utilization factor is greater than a target total utilization factor
Utarget_total. After a task utilization factor is generated, their inter-arrival period T is assigned using
a uniform distribution ranging in [0.04, 1.0] seconds. Then, both T and U are used to calculate
the synthetic task cost execution C. Since each task also contains the amount of memory code
required for its execution, M is randomly generated using a uniform distribution in the range
[2, 16] KB.

The process to create synthetic applications performs the Rate Monotonic algorithm (Section
3.6.3) to attach priorities to each one of the randomly generated tasks, and then, the messages for
each of these tasks are generated. Tasks messages are created to be transmitted from a task with
higher priority to a randomly selected synthetic task with lower priority, and their payload sizes
are generated using a distribution function in the same fashion as the utilization factors generation
for tasks. Since in the model used each task can only receive messages from one other task if a
task can not find a lower priority task that other tasks are not sending messages to, a "sink"task
is generated to receive that task message. A "sink"task represents a placeholder that denotes a
message being sent to a processor core and not generating any processing execution cost. It would
be the equivalent to a direct memory access process of a task to a processing core local memory,
as described in [45].

The random application generation method is explained in pseudo-code form in algorithm 39.

170

The distribution functions to generate each one of the synthetic applications used during this
work experiments is specified based on their names. Synthetic applications that have the same
name prefix share the same distribution to generate their tasks utilization factors. Meanwhile, the
ones with suffix 1 and 2 use different distributions to generate their messages sizes, respectively, a
uniform distribution U(0.125, 64) and a scaled chi-squared distribution 64

10χ
2(3) with 3 degrees of

freedom and a scaling factor to generate random numbers closer to the interval of allowed message
sizes that is between [0.125, 64] KB.

Applications Uniform1 and Uniform2 use a uniform distribution function U(0.1, 0.75) to ge-
nerate their tasks utilization factors and their target total utilization factors are, respectively,
Utarget_total = 18 and Utarget_total = 17. Normal1 and Normal2 use a Normal distribution func-
tion N (0.75

2 , 0.75
4) with target total utilization factors are Utarget_total = 13 and Utarget_total = 12,

Cauchy1 and Cauchy2 use a Cauchy distribution function C(0.75
2 , 0.75

4) with Utarget_total = 13 and
Utarget_total = 14, ChiSquared1 and ChiSquared2 use a scaled chi-squared distribution, similar to
that used to generate message payload sizes, with 3 degrees of freedom 0.1χ2(3) with target to-
tal utilization factors Utarget_total = 11 and Utarget_total = 10, and Exponential1 and Exponential2
use a scaled Exponential distribution function with parameter λ = 1 0.2fexp(1) with target total
utilization factors Utarget_total = 9 and Utarget_total = 7.

The synthetic generated utilization factors and message payloads are presented, together with
the AVA application, in box plot format in figure 7.2 showing how these characteristics are distri-
buted.

Applications

U
ti
liz

a
ti
o

n
 (

%
)

(a) Distribution of utilization factors for every appli-
cation used on experiments.

Applications

M
e

s
s
a

g
e

 S
iz

e
 (

K
B

)

(b) Distribution of messages payload sizes for every
application used on experiments.

Figura 7.2 – Distributions of utilization factors and messages payload sizes for applications used
on experiments.

Table 7.8 and Table 7.9 presents the parameters used for each meta-heuristic in the experiments
regarding task mapping of RTA onto MPSoCs. In these tables, N is the number of search agents
used, I is the maximum number of iterations, and − is used for algorithms external without
parameters All the meta-heuristics that have external static parameter had their parameters set
as suggested by their original articles, except for the GA algorithm that had their parameters set

171

Algorithm 39 Synthetic Application Generation

INPUT: Desired total utilization
(Utarget_total)
Distribution for utilization factor
(Distutil)
Distribution for messages sizes
(Distmsg)

OUTPUT: Synthetic application (Ψ)
1: procedure GenerateApp
2: Γ← ∅ . Generate tasks
3: Utotal = 0
4: while Utotal < Utarget total do
5: Generate Ti using U(40, 1000) ms.
6: Di = Ti

7: Generate Ui using Distutil in [1, 75] %
8: Generate Mi in [2, 16] KB
9: Calculate Ci = UiTi

10: if Ci < 0.5 ms then
11: Ci = 0.5 ms
12: Ui = Ci/Ti

13: end if
14: τi = 〈Ci, Ti, Di,∼,∼,Mi,∼〉 *
15: Γ← τi

16: Utotal = Utotal + Ui

17: end while
18: Sort Γ based on their periods.
19: Assign priorities using Rate Monotonic.
20: Φ← ∅ . Generate messages.
21: for i = 1 to |Γ| do
22: τd ← Random task between τi+1, and

τmin(i+6,|Γ|)

23: if τd = ∅ then
24: τd = 〈−,−,−,−,−, ∅〉 .

"sink"task.
25: end if
26: Generate Zi using Distmsg in

[0.125, 64] KB
27: Zi = bZi + 0.5c . Messages have

integer sizes in bits.
28: φi = 〈τd,∼, Zi,∼,∼〉 *
29: τi = 〈Ci, Ti, Di, Pi,∼,Mi,φi〉 *
30: Φ← φi

31: end for
32: Ψ = {Γ,Φ}
33: return Ψ
34: end procedure

* ∼ denotes a temporary placeholder for components not present yet.

172

following [14].

Tabela 7.8 – List of single-objective meta-heuristics used for the experiments and their parameters
regarding single-objective functions funsch, fbdf , and fumsr.

Algorithm N I Parameters
GA 100 100 pc = 0.8 pm = 0.01
DE 100 100 F = 0.5 CR = 0.9

PSO 25 400 winitial = 0.95 wfinal = 0.05 vmax = |Π− 1|/4 c1 = 2.05 c2 = 1.95
EHO 25 400 Nclans = 5 Nkept = 5 α = 0.5 β = 0.1
BA 25 400 A = 0.5 pr = 0.5

JADE 100 100 c = 0.15 p = 0.2
DPSO 25 400 winitial = 0.8

HDPSO-M 25 400 p = 0.3
HDPSO-U 25 400 p = 0.3

Tabela 7.9 – List of multi-objective meta-heuristics used for the experiments and their parameters
regarding the multi-objective function Fnoc.

Algorithm N I Parameters
NSGA-II 100 100 pm = 0.05 pc = 0.9

APMTMODE 100 100 -
NSAGA 100 100 -

MONSADE 100 100 -

7.6.2 End-to-End Response Time Scheduling

When a bio-inspired meta-heuristic is used for task mapping problems that use the objective-
function funsch (Section 3.8.3), its goal is to work as a schedulability algorithm that searches for
task mappings solutions. In this case, the best solution found by the meta-heuristic is only deemed
schedulable when its evaluation using funsch is equal to 0, i.e., there are 0 unschedulable tasks. In
light of this information, this experiment aims to compare the results obtained by single-objective
meta-heuristics optimizing multiple instances of the objective function funsch that was defined in
Section 3.8.3 when mapping the RTA in Table 7.7 into the platforms present in Table 7.6. The
analysis of this experiment point, which meta-heuristics are more suitable for the problem funsch.

In total, this experiment performs each meta-heuristic 50 times for each combination of appli-
cations and platforms. Since there are eleven applications, and five SoC platforms, the analysis
in this experiment covers 55 task mapping problems.

The list of average ranks calculated for the meta-heuristics is present in Table 7.10.

The calculated Friedman statistic for the ranks in Table 7.10 is χ2
f = 813.557 resulting in a

p-value of ≈ 0, and consequently, rejecting with a significance level α = 5% the Friedman null
hypothesis that all meta-heuristics are in average statistically equal. It also means that indeed,

173

Tabela 7.10 – Average Rankings for single-objective meta-heuristics optimizing different instances
of funsch.

Meta-Heuristic Ranking Meta-Heuristic Ranking
AGAV4 4.9636 SSA 12.9545
AGAV3 5.0091 BA 13.2545

SOAMSDE 6.2545 HDPSO-U 15.0727
AGAV1 6.8909 AGWO 16.6818
AGAV2 6.9364 GWO 16.6909
GA 7.1 DE 17.0455

CSASADE 7.9 WOA 17.0545
APSOV2 10.0545 DA 19.0909

ADPSOUTIL 10.2364 SAPSO 21.0727
APSO 10.5091 MFO 21.7909
PSO 10.5364 EHO 22.0636
JADE 10.5455 DPSO 24.3

HDPSO-U 10.9909

AGAv4 (Section 4.4.5) is, on average, the best algorithm for the analyzed problems. However,
its difference compared in a pairwise manner against the other meta-heuristics is obtained using
posthoc methods that compare with a null hypothesis whether AGAv4 is in average equal to the
other algorithm being analyzed. This analysis generates the p-values present in Table 7.11. These
p-values indicate with a significance level of 5% that AGAV4 is not significantly different than
six: (a) AGAV3, (b) SOAMSDE, (c) AGAV1, (d) AGAV2, (e) GA, and (f) CSASADE. Therefore
these six algorithms are competitive results between them. Note that only under Li’s posthoc
method that CSASADE is different than AGAv4.

A point that is possible to draw from these results is that evolutionary algorithms are especially
suitable for problems that use funsch, specially GA-based ones. These results agree with results
obtained by related works such as [45] and [14].

By using the values of the adjusted p-values to indicate how different these six meta-heuristics
are from AGAv4, it is possible to confirm that since AGAv4 is an expansion of AGAv3, both
algorithms, in this experiment, have close to no differences. Another point that is possible to be
noticed is that the adaptive meta-heuristics obtained better results than its counterparts including
the multiple adaptive GA-based meta-heuristics developed in this work, adaptive DE-based ones,
adaptivePSO-based ones, and AHDPSO-U against HDPSO-U. The only exception is SAPSO that
obtained worse results than PSO. However, even this exception can be seen as an effect of the
NFL theorem, since SAPSO when optimizing the continuous benchmark problems obtained better
results than PSO.

For a convergence comparison for each meta-heuristic using funsch, we present a visual repre-
sentation using box-plot for the algorithms in three instances of funsch mapping the application
AVA into platforms with size 3x3, 3x4, and 4x4. The reasoning for the selection of AVA as the
main RTA in these convergence comparisons is due to its use in related works in the area. So it
becomes a shared benchmark for comparison for the results obtained in this work and the ones

174

Tabela 7.11 – Adjusted p-values for pair-wise comparison against AGAV4

Index Meta-Heuristic Unadjusted p pFinner pLi

1 DPSO 0 0 0
2 EHO 0 0 0
3 MFO 0 0 0
4 SAPSO 0 0 0
5 DA 0 0 0
6 WOA 0 0 0
7 DE 0 0 0
8 GWO 0 0 0
9 AGWO 0 0 0
10 HDPSO-M 0 0 0
11 BA 0 0 0
12 SSA 0 0 0
13 HDPSO-U 0.000018 0.000032 0.000677
14 JADE 0.00007 0.00012 0.002692
15 PSO 0.000072 0.00012 0.002766
16 APSO 0.000078 0.00012 0.003
17 AHDPSO-U 0.000172 0.000243 0.006613
18 APSOV2 0.000286 0.000382 0.010959
19 CSASADE 0.036418 0.045779 0.584979
20 GA 0.127956 0.151511 0.832001
21 AGAV2 0.159838 0.180483 0.860848
22 AGAV1 0.169681 0.183598 0.867853
23 SOAMSDE 0.357674 0.369919 0.93263
24 AGAV3 0.974163 0.974163 0.974163

175

present in similar works. Meanwhile, the argument for the selection of these three platforms is the
fact that they contain a similar processor element count to the the Utotal for AVA (not considering
communication architecture resources). Since AVA has a Utotal of 891.05%, it means that AVA ne-
eds at least 8.9 processor cores to only its tasks to pass the utilization factor test (Section 3.6.4.1).
So in these cases, the search for a task mapping of AVA into a 3x3 platform is improbable to find
a schedulable solution. The search for a mapping of AVA into a 3x4 platform has more chances to
find schedulable solutions. At last, the search in a 4x4 is very likely to find a complete schedulable
solution. In light of this information, the spread of evaluation results of a meta-heuristic during its
50 executions in these mapping problems exhibits its performance. Figures 7.3, 7.4, 7.5 illustrates,
in box-plots, the spread of convergence for each meta-heuristics mapping AVA into platforms with
sizes 3x3, 3x4, and 4x4, respectively. In these box-plots, the medians are represented as black
dots, and the outliers are represented as red crosses.

By analyzing the box-plots, it is possible to visualize that it is more difficult to differentiate
the meta-heuristics for the cases where multiple of them find schedulable solutions, as shown in
Figure 7.4 and Figure 7.5. This small sample of the experiment problems confirms the results
obtained by the statistical analysis. Another interesting observation is the behavior for meta-
heuristics AHDPSO-U and HDPSO-U that has improved performance in cases where there is
enough processing capability in the platform to support the application execution. This improve-
ment in performance for these specific cases is due to their local-search method that permits these
meta-heuristics to randomize solutions that are generated by distributing tasks to the processors
with lower utilization. However, this same local-search method is also the reason for the lower
performance in cases where there are not enough processors for the application, because it limits
the exploratory behavior for these meta-heuristics and they end up converging prematurely.

2

4

6

8

10

12

14

16

18

20

U
n

s
c
h

e
d

u
la

b
le

 T
a

s
k
s

A
H

D
P

S
O

-U

A
G

A
v
1

A
G

A
v
2

A
G

A
v
3

A
G

A
v
4

A
G

W
O

A
P

S
O

A
P

S
O

V
2

C
S

A
S

A
D

E

D
P

S
O

H
D

P
S

O
-M

H
D

P
S

O
-U

J
A

D
E

S
A

P
S

O

B
A

D
A

D
E

E
H

O

G
A

G
W

O

M
F

O

P
S

O

S
S

A

W
O

A

S
O

A
M

S
D

E
Outlier

Median

Figura 7.3 – (3x3) Box-plot for funsch(x,Ω1,Ψ1) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions.

176

0

2

4

6

8

10

12

14

16

U
n

s
c
h

e
d

u
la

b
le

 T
a

s
k
s

A
H

D
P

S
O

-U

A
G

A
v
1

A
G

A
v
2

A
G

A
v
3

A
G

A
v
4

A
G

W
O

A
P

S
O

A
P

S
O

V
2

C
S

A
S

A
D

E

D
P

S
O

H
D

P
S

O
-M

H
D

P
S

O
-U

J
A

D
E

S
A

P
S

O

B
A

D
A

D
E

E
H

O

G
A

G
W

O

M
F

O

P
S

O

S
S

A

W
O

A

S
O

A
M

S
D

E

Outlier

Median

Figura 7.4 – (3x4) Box-plot for funsch(x,Ω1,Ψ2) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions.

0

2

4

6

8

10

U
n

s
c
h

e
d

u
la

b
le

 T
a

s
k
s

A
H

D
P

S
O

-U

A
G

A
v
1

A
G

A
v
2

A
G

A
v
3

A
G

A
v
4

A
G

W
O

A
P

S
O

A
P

S
O

V
2

C
S

A
S

A
D

E

D
P

S
O

H
D

P
S

O
-M

H
D

P
S

O
-U

J
A

D
E

S
A

P
S

O

B
A

D
A

D
E

E
H

O

G
A

G
W

O

M
F

O

P
S

O

S
S

A

W
O

A

S
O

A
M

S
D

E

Outlier

Median

Figura 7.5 – (4x4) Box-plot for funsch(x,Ω1,Ψ3) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions.

7.6.3 Breakdown Frequency Optimization

In this experiment the goal is to compare the multiple single-objective meta-heuristics used in
this work when optimizing task mapping problems using fbdf (Section 3.8.6) as objective using the
applications in Table 7.7 being mapped onto the platforms present in Table 7.6. A bio-inspired
meta-heuristic searching for optimal results for fbdf is obtaining a (near-)optimal task placement

177

that is reducing the frequency for the system.

In total, this experiment uses 55 task mapping problems. The average ranks calculated for
each meta-heuristic using the median for their results is present in Table 7.12.

Tabela 7.12 – Average Rankings for single-objective meta-heuristics optimizing different instances
of fbdf .

Meta-Heuristic Ranking Meta-Heuristic Ranking
AGAV4 5.2727 JADE 12.0273
AGAV3 5.3818 BA 14.7727
AGAV2 6.7727 AGWO 14.9
AGAV1 7.0455 GWO 15.1364

SOAMSDE 7.5909 SSA 16.5909
AHDPSO-U 7.7818 DE 16.8727
HDPSO-U 8.4 DA 19.1818

GA 9.3182 WOA 19.3182
HDPSO-M 9.4182 MFO 20.2
APSOV2 9.6455 SAPSO 20.7909
CSASADE 10.3 EHO 23.1364

PSO 10.3545 DPSO 24.0727
APSO 10.7182

The calculate Friedman static for the ranks in Table 7.12 is χ2
f = 794.988 resulting in a p-

value of ≈ 0. It means that the null hypothesis that all meta-heuristics are statically different in
this test is rejected with a significance of 5%. It also has a consequence that since these meta-
heuristics are different, AGAv4 is on average better than the other meta-heuristics. By using
posthoc methods to assess how different, and, consequently, better is AGAv4 when compared to
each other meta-heuristics, posthoc methods are used, and the calculated p-values for each null
hypothesis that AGAv4 is different than another meta-heuristics are present in Table 7.13. The
adjusted p-values generated indicates that AGAV4 is not significantly better than the following
seven meta-heuristics with a significance level α = 5%: (a) AGAv3, (b) AGAv2, (c) AGAv1, (d)
SOAMSDE, (e) AHDPSO-U, (f) HDPSO-U, and (g) GA. Notice that AHDPSO-U and GA are
not statistically worse than AGAv4 on average only when using the adjusted p-value obtained by
Li’s method.

Another point that is possible to be drawn is that the gap between AGAv4 and GA results in
average has increased if compared with problems that use funsch. Also, the difference in p-values
of the null hypothesis that both algorithms are statistically the same decreased. The reason for
this effect is because AGA (v1, v2, v3, and v4) and GA find schedulable task placements in
many problems of the set of task mapping problems used. Also, in these cases, funsch is unable
to differentiate between schedulable solutions and both GA and AGA can not further optimize
solutions, and further differentiate their behavior, hence a more significant similarity between their
results in average.

However, by using fbdf the meta-heuristics are capable to further optimize the design by finding
a task mapping not only schedulable but also with even lower frequencies. In this scenario, AGAv4

178

can further optimize the designs when compared with GA and obtain average better results.
The results for this experiment demonstrates that the developed adaptive GA-based algorithms,
SOAMSDE, and AHDPSO-U, are all algorithms that obtain competitive results compared with
GA.

Tabela 7.13 – Adjusted p-values for pair-wise comparison against AGAV4

Index Meta-Heuristic Unadjusted p pFinner pLi

1 DPSO 0 0 0
2 EHO 0 0 0
3 SAPSO 0 0 0
4 MFO 0 0 0
5 WOA 0 0 0
6 DA 0 0 0
7 DE 0 0 0
8 SSA 0 0 0
9 GWO 0 0 0
10 AGWO 0 0 0
11 BA 0 0 0
12 JADE 0.000001 0.000003 0.000024
13 APSO 0.000104 0.000193 0.001683
14 PSO 0.000294 0.000503 0.004716
15 CSASADE 0.000341 0.000545 0.005472
16 APSOV2 0.001835 0.002752 0.028769
17 HDPSO-M 0.003139 0.004429 0.048228
18 GA 0.003945 0.005257 0.059868
19 HDPSO-U 0.025863 0.032557 0.2945
20 AHDPSO-U 0.07381 0.087905 0.54365
21 SOAMSDE 0.098583 0.111849 0.61407
22 AGAV1 0.206549 0.223063 0.769252
23 AGAV2 0.285165 0.295523 0.821512
24 AGAV3 0.938043 0.938043 0.938043

Similarly to experiments using feert, the dispersion of results provided by each meta-heuristic
optimizing fbdf when mapping AVA into platforms with sizes 3x3, 3x4, and 4x4, this work uses
box-plots as displayed in Figure 7.6, Figure 7.7, and Figure 7.8, respectively.

By observing these box-plots, it confirms the results observed in the statistic analysis that
shows the small difference observed between AGAv1, AGAv2, AGAv3, AGAv4. Another interes-
ting observation that can be made is, once again, related to AHDPSO-U and HDPSO-U. These
two meta-heuristics are capable of obtaining, in the problems shown by these box-plots, very com-
petitive results due to their local-search capabilities that reduce the use of overloaded processor
elements and ends up overall reducing the breakdown frequency necessary to schedule all tasks.
However, this same local-search method also causes these meta-heuristics to obtain worse results
than AGAv4, for example, due to their limited exploration capability.

By analyzing the box-plots, it is possible to visualize that the meta-heuristics are more difficult

179

to differentiate between themselves for the cases where multiple of them find schedulable solutions,
as shown in Figure 7.4 and Figure 7.5. Another interesting observation is the behavior for meta-
heuristics AHDPSO-U and HDPSO-U that has improved performance in cases where there is
enough processing capability in the platform to support the application execution.

1

1.1

1.2

1.3

1.4

1.5

F
re

q
u

e
n

c
y
 S

c
a

lin
g

 F
a

c
to

r

A
H

D
P

S
O

-U

A
G

A
v
1

A
G

A
v
2

A
G

A
v
3

A
G

A
v
4

A
G

W
O

A
P

S
O

A
P

S
O

V
2

C
S

A
S

A
D

E

D
P

S
O

H
D

P
S

O
-M

H
D

P
S

O
-U

J
A

D
E

S
A

P
S

O

B
A

D
A

D
E

E
H

O

G
A

G
W

O

M
F

O

P
S

O

S
S

A

W
O

A

S
O

A
M

S
D

E

Outlier

Median

Figura 7.6 – (3x3) Box-plot for fbdf (x,Ω1,Ψ1) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions.

0.8

0.9

1

1.1

1.2

1.3

F
re

q
u

e
n

c
y
 S

c
a

lin
g

 F
a

c
to

r

A
H

D
P

S
O

-U

A
G

A
v
1

A
G

A
v
2

A
G

A
v
3

A
G

A
v
4

A
G

W
O

A
P

S
O

A
P

S
O

V
2

C
S

A
S

A
D

E

D
P

S
O

H
D

P
S

O
-M

H
D

P
S

O
-U

J
A

D
E

S
A

P
S

O

B
A

D
A

D
E

E
H

O

G
A

G
W

O

M
F

O

P
S

O

S
S

A

W
O

A

S
O

A
M

S
D

E

Outlier

Median

Figura 7.7 – (3x4) Box-plot for fbdf (x,Ω1,Ψ2) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions.

180

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

F
re

q
u

e
n

c
y
 S

c
a

lin
g

 F
a

c
to

r

A
H

D
P

S
O

-U

A
G

A
v
1

A
G

A
v
2

A
G

A
v
3

A
G

A
v
4

A
G

W
O

A
P

S
O

A
P

S
O

V
2

C
S

A
S

A
D

E

D
P

S
O

H
D

P
S

O
-M

H
D

P
S

O
-U

J
A

D
E

S
A

P
S

O

B
A

D
A

D
E

E
H

O

G
A

G
W

O

M
F

O

P
S

O

S
S

A

W
O

A

S
O

A
M

S
D

E

Outlier

Median

Figura 7.8 – (4x4) Box-plot for fbdf (x,Ω1,Ψ3) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions.

7.6.4 End-to-End Response Time Scheduling with Slack Awareness

This experiment aims to assess which single-objective meta-heuristic obtains best results when
optimizing a set of task mapping problems using fumsr (Section 3.8.7) as the objective function.
The set of RTA and platforms used in this experiment is present in Table 7.7 and Table 7.6
resulting in a total of 55 task mapping problems. A bio-inspired meta-heuristic optimizing fumsr
is capable of either obtain an unschedulable task placement solution with the fewest number of
unschedulable tasks or, if the task placement is schedulable, the minimum slack and deadline
ratio for all tasks. Similarly to fbdf , fumsr is capable of differentiating schedulable task mapping
solutions and further optimizing them. In the case of fumsr, this criterion is the minimum slack
deadline ratio.

The average ranks calculated for the medians of the results obtained by each meta-heuristic is
shown in Table 7.14. These average ranks result in a calculated Friedman statistic of χ2

f = 1186.05
resulting in a p-value of ≈ 0 annulling the null hypothesis with a significance level of 5%.

Since the null hypothesis was rejected, it means that all meta-heuristics are significantly dif-
ferent and AGAv4 is considered to be the best algorithm, on average, for this experiment. It also
allows the use of posthoc methods to determine how different is each algorithm when compared
to AGAv4.

Table 7.15 presents the p-values and adjusted p-values for the comparison for the medians
of the results of each meta-heuristic against AGAv4. By using a significance level α = 5%, it is
possible to observe that AGAv4 is not statistically different than the following five meta-heuristics:
(a) AGAv3, (b) GA, (c) AGAv1, (d) SOAMSDE, and (e) AGAv2. Note that for these problems,
AGAv4 performance was even better than those using fbdf , and GA, AGAv1, SOAMSDE, and

181

Tabela 7.14 – Average Rankings for single-objective meta-heuristics optimizing different instances
of fumsr.

Meta-Heuristic Ranking Meta-Heuristic Ranking
AGAV4 1.6455 SSA 13.9182
AGAV3 1.8909 BA 14.6
GA 4.7091 HDPSO-M 15.0091

AGAV1 4.8636 AGWO 17.0545
SOAMSDE 5.0364 GWO 17.5364
AGAV2 5.2909 WOA 18.5818

CSASADE 7.5818 DE 18.7182
AHDPSO-U 9.3909 DA 20.3455
HDPSO-U 10.7364 SAPSO 22.2909
APSOV2 10.7909 MFO 22.9273
JADE 10.9909 EHO 23.3364
PSO 11.3182 DPSO 24.9364
APSO 11.5

Tabela 7.15 – Adjusted p-values for pair-wise comparison against AGAV4

Index Meta-Heuristic Unadjusted p pFinner pLi

1 DPSO 0 0 0
2 EHO 0 0 0
3 MFO 0 0 0
4 SAPSO 0 0 0
5 DA 0 0 0
6 DE 0 0 0
7 WOA 0 0 0
8 GWO 0 0 0
9 AGWO 0 0 0
10 HDPSO-M 0 0 0
11 BA 0 0 0
12 SSA 0 0 0
13 APSO 0 0 0
14 PSO 0 0 0
15 JADE 0 0 0
16 APSOV2 0 0 0
17 HDPSO-U 0 0 0
18 AHDPSO-U 0 0 0
19 CSASADE 0.000023 0.00003 0.000168
20 AGAV2 0.009391 0.011259 0.063356
21 SOAMSDE 0.015687 0.017908 0.101521
22 AGAV1 0.021846 0.023808 0.135958
23 GA 0.029042 0.030285 0.172994
24 AGAV3 0.861164 0.861164 0.861164

182

AGAv2 are only not significantly different under Li’s adjusted p-value.

A possible observation is that the gap between GA and AGAv4 in performance is similar to
the one observed when using fbdf . The reasoning is the same as fbdf , i.e., AGAv4 is capable of
optimizing even further schedulable task mappings when compared to GA.

A point that is possible to observe in this experiment is that GA performance was better than
its adaptive versions that do not contain adaptive operation selection mechanisms, namely,
AGAv1, and AGAv2. The reasoning behind it may be a premature convergence in the part of
these adaptive versions due to its adaptive mechanisms getting stuck in a parameter search region
that behaves worse than the initially set parameters from GA (pm = 0.8, and pc = 0.01). Another
similarity with the experiment using fbdf is that APSO obtained worse results on average than
PSO, while APSOv2 in both cases obtained better results on average. Since the only difference
between both APSO and APSOv2 is the substitution of a deterministic parameter control to an
adaptive one to control the particles inertial weight parameters. This improvement in performance
is attributed to this change.

Similarly to experiments using feert and fbdf , Figure 7.9, Figure 7.10, and Figure 7.11, res-
pectively, shows as box-plots the dispersion of results form each meta-heuristic optimizing fumsr
when mapping AVA into platforms with sizes 3x3, 3x4, and 4x4. These box-plots agrees with
the statistic analysis by showing, in these smaller set of problems, that AGAv3 and AGAv4 have
almost the same performance.

5

10

15

20

25

U
n

s
c
h

e
d

u
la

b
le

 T
a

s
k
s
//

N
e

g
a

ti
v
e

 M
in

 S
la

c
k
 R

a
ti
o

A
H

D
P

S
O

-U

A
G

A
v
1

A
G

A
v
2

A
G

A
v
3

A
G

A
v
4

A
G

W
O

A
P

S
O

A
P

S
O

V
2

C
S

A
S

A
D

E

D
P

S
O

H
D

P
S

O
-M

H
D

P
S

O
-U

J
A

D
E

S
A

P
S

O

B
A

D
A

D
E

G
A

E
H

O

G
W

O

M
F

O

P
S

O

S
S

A

W
O

A

Outlier

Median

Figura 7.9 – (3x3) Box-plot for fumsr(x,Ω1,Ψ1) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions.

183

0

5

10

15

20

25

U
n

s
c
h

e
d

u
la

b
le

 T
a

s
k
s
//

N
e

g
a

ti
v
e

 M
in

 S
la

c
k
 R

a
ti
o

A
H

D
P

S
O

-U

A
G

A
v
1

A
G

A
v
2

A
G

A
v
3

A
G

A
v
4

A
G

W
O

A
P

S
O

A
P

S
O

V
2

C
S

A
S

A
D

E

D
P

S
O

H
D

P
S

O
-M

H
D

P
S

O
-U

J
A

D
E

S
A

P
S

O

B
A

D
A

D
E

G
A

E
H

O

G
W

O

M
F

O

P
S

O

S
S

A

W
O

A

Outlier

Median

Figura 7.10 – (3x4) Box-plot for fumsr(x,Ω1,Ψ2) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions.

0

5

10

15

20

U
n

s
c
h

e
d

u
la

b
le

 T
a

s
k
s
//

N
e

g
a

ti
v
e

 M
in

 S
la

c
k
 R

a
ti
o

A
H

D
P

S
O

-U

A
G

A
v
1

A
G

A
v
2

A
G

A
v
3

A
G

A
v
4

A
G

W
O

A
P

S
O

A
P

S
O

V
2

C
S

A
S

A
D

E

D
P

S
O

H
D

P
S

O
-M

H
D

P
S

O
-U

J
A

D
E

S
A

P
S

O

B
A

D
A

D
E

G
A

E
H

O

G
W

O

M
F

O

P
S

O

S
S

A

W
O

A

Outlier

Median

Figura 7.11 – (4x4) Box-plot for fumsr(x,Ω1,Ψ3) where x ∈ B, and B are the set of best results
generated by each meta-heuristic during their 50 executions.

7.6.5 Multi-Objective Scheduling with Slack, Energy Dissipation, and Memory
Requirement Awareness

This experiment aims to assess which multi-objective meta-heuristic performs on average better
than the other when optimizing the multi-objective function Fnoc (Section 3.8.8). A multi-objective
meta-heuristic optimizing Fnoc searches for non-dominant task mapping solutions. These solutions

184

are capable of optimizing at the same time (a) the number of unschedulable tasks/minimum slack
deadline ratio, (b) memory requirement, (c) communication architecture dissipated energy and
(d) the number of processor cores and links overburdened.

Similarly to other NoC related experiments, this experiment used 55 task mapping problems
using the RTAs and Platforms present at Table 7.7 and Table 7.6, respectively. Since this pro-
blem is COP, it is possible to use NSAGA (Section 4.6.1) along with NSGA-II, MONSADE, and
APMTMODE.

Similar to the multi-objective experiment that used benchmark functions, this experiment uses
the median of the IGD metric to evaluate the quality of the PO solutions resulted from each meta-
heuristic to use the Friedman test then. However, these problems Pareto front is not known, and
it limits the use of IGD. In this work, the solution for the lack of PF to use the IGD metric is to
generate a “fake” PF using all evaluations performed by each one of the meta-heuristics in use to
generate a non-dominated set of solutions to be used as PF. In total, this “fake” PF is generated
using the 500, 000 × 4 evaluations of Fnoc, since this experiment uses four meta-heuristics: (a)
NSGA-II, (b) NSAGA, (c) APMTMODE, and (d) MONSADE. The metric of performance is the
median IGD of each non-dominant solution generated by each meta-heuristic using this “fake”
PF.

The list of average ranks calculated using the IGD medians is present in Table 7.16. The
Friedman statistic calculated for this experiment was χ2

f is 31.647 resulting in a p-value of 1×10−6

and consequently rejecting the null hypothesis using a significance level α of 0.05. Since the
Friedman null hypothesis was rejected, it shows that these four meta-heuristics are statistically
different. Afterward, it is possible to use posthoc methods to assess how different are the other
meta-heuristics performance compared to NSAGA. Table 7.17 shows the calculated p-values for
the hypothesis test for each pair of meta-heuristic vs. NSAGA where the null hypothesis is that
both are equal, and the alternative hypothesis is that they are different.

Tabela 7.16 – Average Rankings for the multi-objective meta-heuristics optimizing different ins-
tances of Fnoc.

Meta-Heuristic Ranking
NSAGA 1.8182

MONSADE-L 2.2909
APMTMODE 2.7818

NSGAII 3.1091

Tabela 7.17 – Adjusted p-values for pair-wise comparison against NSAGA

Index Meta-Heuristic Unadjusted p pFinner pLi

1 NSGAII 0 0 0
2 APMTMODE 0.000091 0.000136 0.000096
3 MONSADE 0.054829 0.054829 0.054829

The p-values obtained by the posthoc methods indicates with a significance level of α of 5%

185

that NSAGA is significantly better than APMTMODE and NSGA-II optimizing the problems in
this experiment. But not significantly different when compared with MONSADE.

7.7 Conclusions

This chapter presents the experiments and their respective results for the multiple meta-
heuristics implemented in this work optimizing a variety of single-/multi-objective problems, such
as, for example, the continuous single-/multi-objective benchmark functions present in Chapter
2, and RTNoC related optimization functions defined in Chapter 3. This chapter emphasis is on
the latter set of problems.

For statistical analysis for the results obtained by each meta-heuristic, the Friedman non-
parametric test allied with post-hoc methods are used to determine the significance of differences
between the multiple algorithms. Also, the results of obtained in the experiment show statistical
evidence that, in average adaptive meta-heuristics results in better performance than their coun-
terparts with static parameters for a myriad of optimization problems. However, it is essential to
remind the reader that due to the NFL theorem, the use of an adaptive meta-heuristic instead of
one with static parameters is no guarantee of obtaining the best results. The selection of meta-
heuristics, in general, requires an analysis to identify which meta-heuristic responds on average
better than the others to a family of problems.

186

8 CONCLUSIONS

The problem of searching for task placements of a real-time application onto a Many-/Multi-
Processor System-on-a-Chip (MPSoC) components complies with its application time require-
ments is NP-hard. For this reason, this problem has no exact algorithm that can find task
placements with guaranteed schedulability. In this context, the use of bio-inspired meta-heuristic
is capable of achieving solutions that are both schedulable as well as optimized in other features
of the system design, by using multi-objective functions, by using metaphors based on biological
systems. These meta-heuristics search for promising task mapping solutions via the total possi-
ble solutions exploration while maintaining and exploiting the known ones. Between the set of
bio-inspired meta-heuristics are those that are capable of searching for task mapping solutions
and at the same time optimize its internal parameters to specialize its heuristic operators to the
problem at hand. This type of meta-heuristics uses adaptive techniques on both its parameters
and internal heuristic mechanisms.

This work goal was the study, implementation, and development of bio-inspired meta-heuristics
that use these adaptive techniques applied to the problem of task placement of real-time applica-
tions onto MPSoC that uses RTNoC as their communication architecture. To fulfill this goal, the
author has also made the following contributions:
(a) the development of a software framework to quickly and reliably experiment on different meta-
heuristics at the same time being capable of being easily expanded due to its object-oriented nature
and also allows use in a range of systems due to its use only on standard libraries of C++11. The
framework source code is openly available in the repository:
https://gitlab.com/jesseh.barreto/brasbomf;
(b) the development of meta-heuristics that use adaptive techniques based on multiple bio-inspired
existing in the literature;
(c) the conception of single-multi-objective functions that through the use of static analysis of the
system is capable of evaluating timing characteristics such as the slack for schedulable tasks allied
with other design features such as resource utilization and energy dissipated.
(d) the experimental comparison for all implemented meta-heuristics, including developed in this
work and the ones from the literature, applied to benchmark functions and the problem of task
placement for MPSoCs using NoC.

The experiment results show evidence that, for the set of problems used, adaptive bio-inspired
meta-heuristics are in average statistically more prone to obtain equal or better results without
the necessity of a parameter tuning when compared with the ones that do no contain adaptive
mechanisms. These results are promising to the application of meta-heuristics to find suitable
solutions for the task mapping problem used. They also open possible future additions for this
work, as shown in the following Section 8.1.

The statical analysis in the problems used shows that, on average, the use of AGAv4 (Section
4.4.5) obtain competitive results when optimizing the following single-objective functions: (a)

187

https://gitlab.com/jesseh.barreto/brasbomf

funsch that considers the number of unschedulable tasks (Section 3.8.3); (b) fbdf that considers
the breakdown frequency scaling factor (Section 3.8.6); (c) fumsr that considers the number of
schedulable tasks with slack awareness (Section 3.8.7). The experiments also display that on
average meta-heuristics that fall onto the evolutionary algorithm category are more capable of
obtaining better performance than its swarm intelligence counterparts.

For the multi-objective case, the analysis of the experimental results suggests the use of NSAGA
(Section 4.6.1) when optimizing multiple aspects of the NoC design at the same time. However,
both NSAGA and MONSADE (Section 4.6.2) obtained statistically comparable results on average,
i.e., there was no evidence whether both of them are different.

8.1 Future Works

This work has the following possible future works:

• Extension of the experimental setup for larger task mapping problems: Addition
of an experimental setup in which analyze the meta-heuristics performance in a setting
with applications containing hundreds of tasks being mapped to MPSoC platforms that
have hundreds of processor cores. This additional experimental setup would be capable of
showing whether the results obtained in our experiments are scalable with the problem.

• Modification (possibly a reduction) of the static analysis of the system to be
used in a dynamic task mapping setting: Modification of the static analysis used to
use the adaptive bio-inspired meta-heuristic based approaches on a dynamic scheduler for
MPSoCs based on NoC where tasks are added or removed continuously and need to be
mapped on the system while it is executing these tasks.

• Extension of the experimental setup using more benchmark real-time applica-
tion: Apart from the real-time application synthetically generated, future works may add
for the experiments using task mapping problems the use of benchmark RTA used in specific
real-world problems such as, for example, a real-time encoding of MP4 videos, fast Fourier/-
cosine transformations or matrix related operations. These example problems are commonly
used in image processing related applications.

• Extension of the static analysis used to cover heterogeneous systems: Addition of
features for the model to consider cases in which processor cores run with different frequen-
cies or specialized for types of tasks, for example, processor elements specialized in video
coding/encoding having more affinity to tasks of this nature.

• Exploration of hyper-heuristic based approaches: Besides the exploration of adaptive
techniques, future works may explore the combination of adaptive parameter control and
adaptive selection of operations not limited to a single meta-heuristic, but instead, incorpo-
rating multiple completely different bio-inspired meta-heuristics in a class of approximate

188

algorithm called hyper-heuristic [105]. For example, a hyper-heuristic that combines ope-
rators of both WOA (Section 4.3.9) with SOAMSDE (4.4.1) would possibly cover problem
cases in which WOA have better performance and cases where SOAMDE works better.

• Addition of more multi-objective meta-heuristics: This work contains only two multi-
objective meta-heuristics from literature, namely, NSGA-II (Section 4.5.1) and APMT-
MODE (Section 4.5.2). It would be interesting to compare whether other meta-heuristics
such as SPEA2 [106] and MOPSO [107] are capable of achieving results even better than
those obtained by the developed meta-heuristic NSAGA (Section 4.6.1).

• Parameter convergence study for adaptive techniques: Conclusions drawn in this
work coming from the experimental results are mainly based on a non-parametric static
study for the meta-heuristics used. It would also be useful to study the behavior of the se-
arch process of parameters obtained by the adaptive techniques using, for example, Markov
processes. This approach would have a two-fold advantage with a possible better understan-
ding of the search mechanisms as well as the possible development of meta-heuristics with
more effective adaptation mechanisms.

• Inclusion of a simulation analysis: As previously mentioned in Chapter 3, the advantages
of static analysis is the speed of evaluation for the system that enables search-based meta-
heuristics to cover a broad set of possible task mapping solutions in a short amount of
time. However, as a natural continuation for this work, it would be interesting to develop a
simulation platform using an RTNoC with the characteristics required in the models used to
confirm the task mapping solutions obtained. This simulation platform would be capable of
evaluating characteristics not evaluated in our model and also integrating the optimization
process from the static analysis to the generation of hardware description of the systems
used.

189

BIBLIOGRAPHIC REFERENCES

[1] PASRICHA, S.; DUTT, N. On-chip communication architectures: system on chip interconnect.
[S.l.]: Morgan Kaufmann, 2010.

[2] MARCULESCU, R. et al. Outstanding Research Problems in NoC Design: System, Mi-
croarchitecture, and Circuit Perspectives. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, v. 28, n. 1, p. 3–21, jan 2009. ISSN 0278-0070. Availa-
ble from Internet: <http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4723644
http://ieeexplore.ieee.org/document/4723644/>.

[3] ARM. AMBA 2 Overview. ARM Developer - AMBA 2 Specification, https://developer.
arm.com/architectures/system-architectures/amba/amba-2. Retrieved July 18, 2019.

[4] HESHAM, S. et al. Survey on Real-Time Networks-on-Chip. IEEE Transactions on Parallel
and Distributed Systems, v. 28, n. 5, p. 1500–1517, may 2017. ISSN 1045-9219.

[5] DALLY, W. J. Virtual-Channel Flow Control. IEEE Transactions on Parallel and Distributed
Systems, v. 3, n. 2, p. 194–205, 1992. ISSN 10459219.

[6] BUTTAZZO, G. C. Hard real-time computing systems: predictable scheduling algorithms and
applications. [S.l.]: Springer Science & Business Media, 2011. v. 24.

[7] Del Ser, J. et al. Bio-inspired computation: Where we stand and what’s next. Swarm and
Evolutionary Computation, v. 48, p. 220–250, aug 2019. ISSN 22106502. Available from Internet:
<https://linkinghub.elsevier.com/retrieve/pii/S2210650218310277>.

[8] BENINI, L.; De Micheli, G. Networks on Chips. [S.l.]: Elsevier, 2006. 408 p. ISBN
9780123705211.

[9] QUALCOMM. Qualcomm Snapdragon 855 Mobile Processor. Qualcomm Products, https://
www.qualcomm.com/products/snapdragon-855-mobile-platform. Retrieved July 18, 2019.

[10] PASRICHA, S.; DUTT, N. On-Chip Communication Architectures : System On Chip Inter-
connect. [S.l.]: Morgan Kaufmann, 2008. 544 p. ISBN 9780123738929.

[11] De Micheli, G.; BENINI, L. Networks on Chips: 15 Years Later. Computer, v. 50, n. 5, p.
10–11, may 2017. ISSN 0018-9162.

[12] SINGH, A. K. et al. Mapping on multi many core systems: Survey of current and emerging
trends. Design Automation Conference (DAC), 2013 50th ACM / EDAC / IEEE, p. 1–10, 2013.
ISSN 0738-100X.

[13] GAREY, M. R.; JOHNSON, D. S. Computers and intractability. [S.l.]: wh freeman New York,
2002. v. 29. 236–241 p.

[14] RACU, A.; INDRUSIAK, L. S. Using genetic algorithms to map hard real-time on NoC-
based systems. In: 7th International Workshop on Reconfigurable and Communication-Centric

190

https://developer.arm.com/architectures/system-architectures/amba/amba-2
https://developer.arm.com/architectures/system-architectures/amba/amba-2
https://www.qualcomm.com/products/snapdragon-855-mobile-platform
https://www.qualcomm.com/products/snapdragon-855-mobile-platform

Systems-on-Chip (ReCoSoC). IEEE, 2012. p. 1–8. ISBN 978-1-4673-2572-1. Available from In-
ternet: <http://ieeexplore.ieee.org/document/6322893/>.

[15] AMD. AMD, The "Zen"Core Architecture. AMD, https://www.amd.com/en/technologies/
zen-core. Retrieved July 22, 2019.

[16] INTEL. Intel, Second Generation Intel Xeon Scalable Processors. Intel,
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/
2nd-gen-xeon-scalable-processors-brief.html. Retrieved July 22, 2019.

[17] BARROS, J. B.; QUINTERO, C. H. L.; SAMPAIO, R. C. An adaptive discrete particle
swarm optimization for mapping real-time applications onto network-on-chip based mpsocs. In:
ACM. 32nd Symposium on Integrated Circuits and Systems Design (SBCCI ’19), August 26–30,
2019, Sao Paulo, Brazil. [S.l.], 2019.

[18] SALCEDO-SANZ, S. Modern meta-heuristics based on nonlinear physics processes: A review
of models and design procedures. Physics Reports, Elsevier, v. 655, p. 1–70, 2016.

[19] MIETTINEN, K. et al. Multiobjective Optimization: Interactive and Evolutionary Approa-
ches. 1. ed. [S.l.]: Springer-Verlag Berlin Heidelberg, 2008. (Lecture Notes in Computer Science
5252 : Theoretical Computer Science and General Issues). ISBN 9783540889076,3540889078.

[20] LAWLER, E. L.; WOOD, D. E. Branch-and-bound methods: A survey. Operations research,
INFORMS, v. 14, n. 4, p. 699–719, 1966.

[21] EDDY, S. R. What is dynamic programming? Nature Biotechnology, v. 22, n. 7, p. 909–910,
jul 2004. ISSN 1087-0156. Available from Internet: <http://www.nature.com/articles/nbt0704-
909>.

[22] GENT, I. P.; JEFFERSON, C.; NIGHTINGALE, P. Complexity of n-Queens Completion.
Journal of Artificial Intelligence Research, v. 59, p. 815–848, aug 2017. ISSN 1076-9757. Avai-
lable from Internet: <https://jair.org/index.php/jair/article/view/11079>.

[23] STONE, H. S.; STONE, J. M. Efficient search techniques-an empirical study of the n-queens
problem. IBM Journal of Research and Development, v. 31, n. 4, p. 464–474, July 1987. ISSN
0018-8646.

[24] LAZAROVA, M. Efficiency of parallel genetic algorithm for solving n-queens problem on
multicomputer platform. In: the 9th wseas international conference on evolutionary computing.
[S.l.: s.n.], 2008. p. 51–56.

[25] XIAOHUI, H.; EBERHART, R. C.; YUHUI, S. Swarm intelligence for permutation optimi-
zation: a case study of n-queens problem. In: Proceedings of the 2003 IEEE Swarm Intelligence
Symposium. SIS’03 (Cat. No.03EX706). IEEE, 2015. p. 243–246. ISBN 0-7803-7914-4. Availa-
ble from Internet: <http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1202275
http://ieeexplore.ieee.org/document/1202275/>.

[26] HEINEMAN, G. T.; POLLICE, G.; SELKOW, S. Algorithms in a nutshell: A practical guide.
[S.l.]: "O’Reilly Media, Inc.", 2016. 105-142 p.

[27] AWAD, N. H. et al. Problem Definitions and Evaluation Criteria for the CEC 2017 Special
Session and Competition on Single-Objective Real-Parameter Numerical Optimization. 2017.

[28] CHENG, R. et al. Benchmark Functions for the CEC2017 Competition
on Evolutionary Many-Objective Optimization. 2017. Available from Internet:
<http://www.cercia.ac.uk/news/cec2017maooc/CEC2017-MaOO-Tech-Report.pdf>.

191

https://www.amd.com/en/technologies/zen-core
https://www.amd.com/en/technologies/zen-core
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/2nd-gen-xeon-scalable-processors-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/2nd-gen-xeon-scalable-processors-brief.html

[29] CADENA, C. et al. Past, Present, and Future of Simultaneous Localization
and Mapping: Toward the Robust-Perception Age. IEEE Transactions on Robotics,
v. 32, n. 6, p. 1309–1332, dec 2016. ISSN 1552-3098. Available from Internet:
<http://ieeexplore.ieee.org/document/7747236/>.

[30] WOLF, W.; JERRAYA, A.; MARTIN, G. Multiprocessor System-on-Chip (MPSoC) Techno-
logy. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, v. 27,
n. 10, p. 1701–1713, oct 2008. ISSN 0278-0070.

[31] BORKAR, S. Thousand core chips. In: Proceedings of the 44th annual con-
ference on Design automation - DAC ’07. New York, New York, USA: ACM
Press, 2007. p. 746. ISBN 9781595936271. ISSN 0738100X. Available from Internet:
<http://portal.acm.org/citation.cfm?doid=1278480.1278667>.

[32] XILINX. ADAS Solutions Powered by Xilinx. Xilinx Application in Autonomous Driver
Assist, https://www.xilinx.com/applications/megatrends/automotive-driver-assist.
html. Retrieved July 18, 2019.

[33] KAVALDJIEV, N.; SMIT, G. J. M. A Survey of Efficient On-Chip Communications for SoC.
Distributed and Embedded Security, v. 41, 2003.

[34] BOLOTIN, E. et al. Cost considerations in network on chip. Integration,
v. 38, n. 1, p. 19–42, oct 2004. ISSN 01679260. Available from Internet:
<https://linkinghub.elsevier.com/retrieve/pii/S0167926004000343>.

[35] GOOSSENS, K. et al. Guaranteeing the quality of services in networks on chip. In: Networks
on chip. [S.l.]: Springer, 2003. p. 61–82.

[36] MELLO, A. et al. Virtual channels in networks on chip: Implementation and evaluation on
hermes NoC. SBCCI 2005 - 18th Symposium on Integrated Circuits and Systems Design, p.
178–183, 2005.

[37] BURNS, A.; WELLINGS, A. J. Real-time systems and programming languages: Ada 95,
real-time Java, and real-time POSIX. [S.l.]: Pearson Education, 2001.

[38] DAVIS, R. I.; BURNS, A. A survey of hard real-time scheduling for multiprocessor systems.
ACM Computing Surveys, v. 43, n. 4, p. 1–44, oct 2011. ISSN 03600300. Available from Internet:
<http://dl.acm.org/citation.cfm?doid=1978802.1978814>.

[39] CARPENTER, J. et al. A categorization of real-time multiprocessor scheduling problems
and algorithms. In: Handbook on Scheduling Algorithms, Methods, and Models. [S.l.]: Chapman
Hall/CRC, Boca, 2004.

[40] LIU, C. L.; LAYLAND, J. W. Scheduling algorithms for multiprogramming in a hard-real-
time environment. Journal of the ACM (JACM), ACM, v. 20, n. 1, p. 46–61, 1973.

[41] DEVILLERS, R.; GOOSSENS, J. Liu and layland’s schedulability test revisited. Information
Processing Letters, Elsevier, v. 73, n. 5-6, p. 157–161, 2000.

[42] HORN, W. Some simple scheduling algorithms. Naval Research Logistics Quarterly, Wiley
Online Library, v. 21, n. 1, p. 177–185, 1974.

[43] AUDSLEY, N. et al. Applying new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal, v. 8, n. 5, p. 284–292, Sep. 1993. ISSN 0268-6961.

192

https://www.xilinx.com/applications/megatrends/automotive-driver-assist.html
https://www.xilinx.com/applications/megatrends/automotive-driver-assist.html

[44] INDRUSIAK, L. S.; BURNS, A.; NIKOLIĆ, B. Buffer-aware bounds to multi-point progres-
sive blocking in priority-preemptive nocs. In: IEEE. 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). [S.l.], 2018. p. 219–224.

[45] INDRUSIAK, L. S. End-to-end schedulability tests for multiprocessor embedded systems
based on networks-on-chip with priority-preemptive arbitration. Journal of Systems Architec-
ture, Elsevier B.V., v. 60, n. 7, p. 553–561, 2014. ISSN 13837621. Available from Internet:
<http://dx.doi.org/10.1016/j.sysarc.2014.05.002>.

[46] SHI, Z.; BURNS, A. Priority assignment for real-time wormhole communication in on-chip
networks. Proceedings - Real-Time Systems Symposium, p. 421–430, 2008. ISSN 10528725.

[47] XIONG, Q. et al. Extending real-time analysis for wormhole nocs. IEEE Transactions on
Computers, IEEE, v. 66, n. 9, p. 1532–1546, 2017.

[48] XIONG, Q. et al. Real-time analysis for wormhole noc: Revisited and revised. In: IEEE.
2016 International Great Lakes Symposium on VLSI (GLSVLSI). [S.l.], 2016. p. 75–80.

[49] STILL, L. R.; INDRUSIAK, L. S. Memory-aware genetic algorithms for task mapping on
hard real-time networks-on-chip. In: IEEE. 2018 26th Euromicro International Conference on
Parallel, Distributed and Network-based Processing (PDP). [S.l.], 2018. p. 601–608.

[50] Byungjae Kim et al. A real-time communication method for wormhole switching networks.
In: Proceedings. 1998 International Conference on Parallel Processing (Cat. No.98EX205).
IEEE Comput. Soc, 1998. p. 527–534. ISBN 0-8186-8650-2. Available from Internet:
<http://ieeexplore.ieee.org/document/708526/>.

[51] INDRUSIAK, L. S.; BURNS, A.; NIKOLIC, B. Analysis of buffering effects on hard real-time
priority-preemptive wormhole networks. arXiv preprint arXiv:1606.02942, 2016.

[52] SAYUTI, M. N. S. M.; INDRUSIAK, L. S. Real-time low-power task map-
ping in Networks-on-Chip. IEEE, 2013. 14–19 p. Available from Internet:
<http://ieeexplore.ieee.org/document/6654616/>.

[53] HANSSON, A.; GOOSSENS, K.; RĂDULESCU, A. A unified approach to mapping and
routing on a network-on-chip for both best-effort and guaranteed service traffic. VLSI design,
Hindawi, v. 2007, 2007.

[54] SAYUTI, M. N. S. M.; INDRUSIAK, L. S. A Function for Hard Real-Time System Search-
Based Task Mapping Optimisation. In: 2015 IEEE 18th International Symposium on Real-Time
Distributed Computing. IEEE, 2015. v. 18, p. 66–73. ISBN 978-1-4799-8781-8. Available from
Internet: <http://ieeexplore.ieee.org/document/7153791/>.

[55] MEJIA-ALVAREZ, P.; LEVNER, E.; MOSSÉ, D. Adaptive scheduling server for power-aware
real-time tasks. ACM Transactions on Embedded Computing Systems (TECS), ACM, v. 3, n. 2,
p. 284–306, 2004.

[56] DESALE, S. et al. Heuristic and meta-heuristic algorithms and their relevance to the real
world: a survey. Int. J. Comput. Eng. Res. Trends, Citeseer, v. 351, n. 5, p. 2349–7084, 2015.

[57] MACREADY, W. G.; WOLPERT, D. H. What makes an optimization problem hard? Com-
plexity, v. 1, n. 5, p. 40–46, 1996. ISSN 10990526.

[58] WOLPERT, D. H.; MACREADY, W. G. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, v. 1, n. 1, p. 67–82, 1997. ISSN 1089778X.

193

[59] EIBEN, A.; HINTERDING, R.; MICHALEWICZ, Z. Parameter control in evolutionary al-
gorithms. IEEE Transactions on Evolutionary Computation, v. 3, n. 2, p. 124–141, jul 1999.
ISSN 1089778X. Available from Internet: <http://ieeexplore.ieee.org/document/6322893/The
paramete>.

[60] KARAFOTIAS, G.; HOOGENDOORN, M.; EIBEN, A. E. Parameter Control in Evoluti-
onary Algorithms: Trends and Challenges. IEEE Transactions on Evolutionary Computation,
v. 19, n. 2, p. 167–187, 2015. ISSN 1089778X.

[61] SHI, Y.; EBERHART, R. A modified particle swarm optimizer. In: 1998 IEEE
International Conference on Evolutionary Computation Proceedings. IEEE World Con-
gress on Computational Intelligence (Cat. No.98TH8360). IEEE, 1998. p. 69–73.
ISBN 0-7803-4869-9. Available from Internet: <https://doi.org/10.1109/icec.1998.699146
http://ieeexplore.ieee.org/document/699146/>.

[62] HE, J.; YAO, X. From an individual to a population: An analysis of the first hitting time of
population-based evolutionary algorithms. IEEE Transactions on Evolutionary Computation,
v. 6, n. 5, p. 495–511, 2002. ISSN 1089778X.

[63] DIAZ-GOMEZ, P. A.; HOUGEN, D. Initial Population for Genetic Algorithms: A Metric Ap-
proach. Proceedings of the 2007 International Conference on Genetic and Evolutionary Methods,
p. 43–49, 2007.

[64] CHEN, T. et al. A large population size can be unhelpful in evolutionary algorithms. Theo-
retical Computer Science, Elsevier B.V., v. 436, p. 54–70, 2012. ISSN 03043975. Available from
Internet: <http://dx.doi.org/10.1016/j.tcs.2011.02.016>.

[65] TANABE, R.; FUKUNAGA, A. S. Improving the Search Performance of SHADE Using
Linear Population Size Reduction. In: IEEE Congress on Evolutionary Computation. Beijing,
China: IEEE, 2014.

[66] Razali N M; Geraghty J. Genetic algorithm performance with diffe-
rent selection strategies in solving TSP. Proceedings of the world con-
gress on engineering, p. 1134–1139, 2011. Available from Internet:
<https://pdfs.semanticscholar.org/010b/545848cfd29fe6e83987d494fdd00b486229.pdf>.

[67] STORN, R.; PRICE, K. Differential Evolution – A Simple and Efficient Heuristic for global
Optimization over Continuous Spaces. Journal of Global Optimization, v. 11, n. 4, p. 341–359,
1997. Available from Internet: <https://doi.org/10.1023/A:1008202821328>.

[68] KENNEDY, J.; EBERHART, R. Particle Swarm Optimization. Proceedings of the 1995
IEEE International Conference on Neural Networks, v. 4, p. 1942–1948, 1995. ISSN
1935-3812. Available from Internet: <http://www.scopus.com/inward/record.url?eid=2-s2.0-
0029535737&partnerID=40&md5=e6bf04ae50f3268ae545d88ed91d1fc5>.

[69] CLERC, M.; KENNEDY, J. The particle swarm - explosion, stability, and convergence in a
multidimensional complex space. IEEE Transactions on Evolutionary Computation, v. 6, n. 1,
p. 58–73, 2002. ISSN 1089-778X.

[70] MIRJALILI, S. et al. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design
problems. Advances in Engineering Software, Elsevier Ltd, v. 114, p. 163–191, 2017. ISSN
18735339. Available from Internet: <http://dx.doi.org/10.1016/j.advengsoft.2017.07.002>.

194

[71] MIRJALILI, S.; MIRJALILI, S. M.; LEWIS, A. Grey Wolf Optimizer. Advances in Engine-
ering Software, Elsevier Ltd, v. 69, p. 46–61, 2014. ISSN 09659978. Available from Internet:
<http://dx.doi.org/10.1016/j.advengsoft.2013.12.007>.

[72] WANG, G. G. et al. A new metaheuristic optimisation algorithm motivated by elephant her-
ding behaviour. International Journal of Bio-Inspired Computation, v. 8, n. 6, p. 394, 2016. ISSN
1758-0366. Available from Internet: <http://www.inderscience.com/link.php?id=10002274>.

[73] MIRJALILI, S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving
single-objective, discrete, and multi-objective problems. Neural Computing and Applications,
Springer London, v. 27, n. 4, p. 1053–1073, may 2016. ISSN 0941-0643. Available from Internet:
<http://link.springer.com/10.1007/s00521-015-1920-1>.

[74] MIRJALILI, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic pa-
radigm. Knowledge-Based Systems, Elsevier B.V., v. 89, p. 228–249, 2015. ISSN 0950-7051.
Available from Internet: <https://doi.org/10.1016/j.knosys.2015.07.006>.

[75] YANG, X. S.; GANDOMI, A. H. Bat algorithm: A novel approach for global engineering
optimization. Engineering Computations (Swansea, Wales), v. 29, n. 5, p. 464–483, 2012. ISSN
02644401.

[76] ZHANG, J.; SANDERSON, A. C. JADE: Adaptive Differential Evolution with Optional
External Archive. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, v. 13,
n. 5, p. 945–958, 2009.

[77] FAN, Q.; ZHANG, Y. Self-adaptive differential evolution algorithm with crossover strategies
adaptation and its application in parameter estimation. Chemometrics and Intelligent Labora-
tory Systems, Elsevier B.V., v. 151, n. 1550, p. 164–171, 2016. ISSN 18733239. Available from
Internet: <http://dx.doi.org/10.1016/j.chemolab.2015.12.020>.

[78] KANG, Q. et al. A Novel Discrete Particle Swarm Optimization Algorithm for Job Scheduling
in Grids. n. 60534060, p. 401–405, 2008.

[79] MONTALVO, I. et al. Improved performance of PSO with self-adaptive parameters for com-
puting the optimal design of Water Supply Systems. Engineering Applications of Artificial In-
telligence, v. 23, n. 5, p. 727–735, 2010. ISSN 09521976.

[80] KASHAN, A. H.; KARIMI, B. A discrete particle swarm optimization algorithm for schedu-
ling parallel machines. Computers & Industrial Engineering, Elsevier Ltd, v. 56, n. 1, p. 216–223,
2009. ISSN 0360-8352. Available from Internet: <http://dx.doi.org/10.1016/j.cie.2008.05.007>.

[81] GRAHAM, R. L. Bounds On Multiprocessing Timing Anomalies. SIAM Journal
on Applied Mathematics, v. 17, n. 2, p. 416–429, 1969. Available from Internet:
<https://doi.org/10.1137/0117039>.

[82] SANTOS, C. SELEÇÃO DE PARÂMETROS DE MÁQUINAS DE VETORES
DE SUPORTE USANDO OTIMIZAÇÃO MULTIOBJETIVO BASEADA EM META-
HEURÍSTICAS. Tese (Doutorado) — Universidade de Brasília, 2019.

[83] DEB, K.; AGRAWAL, R. B. Simulated binary crossover for continuous search space. Complex
systems, [Champaign, IL, USA: Complex Systems Publications, Inc., c1987-, v. 9, n. 2, p. 115–
148, 1995.

195

[84] EIBEN, A.; SCHUT, M. C.; WILDE, A. de. Is self-adaptation of selection pressure and
population size possible?–a case study. In: Parallel problem solving from nature-PPSN IX.
[S.l.]: Springer, 2006. p. 900–909.

[85] SAYUTI, M. N. S. M.; INDRUSIAK, L. S. A Constructive Task Mapping Algorithm for
Hard Real-Time Embedded NoCs. Proceedings - 2015 IEEE Conference on System, Process
and Control, ICSPC 2015, n. December, p. 123–128, 2016.

[86] Deb, K. et al. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions
on Evolutionary Computation, v. 6, n. 2, p. 182–197, April 2002. ISSN 1089-778X.

[87] GOUDOS, S. K. et al. A comparative study of common and self-adaptive Dif-
ferential Evolution strategies on numerical benchmark problems. Procedia Computer
Science, Elsevier, v. 3, p. 83–88, 2011. ISSN 18770509. Available from Internet:
<http://dx.doi.org/10.1016/j.procs.2010.12.015>.

[88] ZHAO, Z. et al. A differential evolution algorithm with self-adaptive strategy and control pa-
rameters based on symmetric Latin hypercube design for unconstrained optimization problems.
European Journal of Operational Research, Elsevier B.V., v. 250, n. 1, p. 30–45, 2016. ISSN
03772217. Available from Internet: <http://dx.doi.org/10.1016/j.ejor.2015.10.043>.

[89] WANG, J. et al. The model of chaotic sequences based on adaptive particle swarm op-
timization arithmetic combined with seasonal term. Applied Mathematical Modelling, El-
sevier Inc., v. 36, n. 3, p. 1184–1196, 2012. ISSN 0307904X. Available from Internet:
<http://dx.doi.org/10.1016/j.apm.2011.07.089>.

[90] JUANG, Y.-T.; TUNG, S.-L.; CHIU, H.-C. Adaptive fuzzy particle swarm optimization for
global optimization of multimodal functions. Information Sciences, Elsevier, v. 181, n. 20, p.
4539–4549, 2011.

[91] SAHU, P. K.; CHATTOPADHYAY, S. A survey on application mapping
strategies for network-on-chip design. Journal of Systems Architecture, Elsevier
B.V., v. 59, n. 1, p. 60–76, 2013. ISSN 13837621. Available from Internet:
<http://dx.doi.org/10.1016/j.sysarc.2012.10.004>.

[92] ASCIA, G.; CATANIA, V.; PALESI, M. Multi-objective Mapping for Mesh-based NoC Ar-
chitectures. 2004.

[93] BRUCH, J. V. et al. Deadline, Energy and Buffer-Aware Task Mapping Optimization in
NoC-Based SoCs Using Genetic Algorithms. In: 2017 VII Brazilian Symposium on Computing
Systems Engineering (SBESC). IEEE, 2017. v. 2017-Novem, p. 86–93. ISBN 978-1-5386-3590-2.
ISSN 23247894. Available from Internet: <http://ieeexplore.ieee.org/document/8116564/>.

[94] DURILLO, J. J.; NEBRO, A. J. jmetal: A java framework for multi-objective optimization.
Advances in Engineering Software, v. 42, p. 760–771, 2011. ISSN 0965-9978. Available from
Internet: <http://www.sciencedirect.com/science/article/pii/S0965997811001219>.

[95] IGEL, C.; HEIDRICH-MEISNER, V.; GLASMACHERS, T. Shark. Journal of Machine Le-
arning Research, v. 9, p. 993–996, 2008.

[96] GALIB. GAlib - A C++ Library of Genetic Algorithm Components. GAlib, http://lancet.
mit.edu/ga/. Retrieved July 22, 2019.

[97] GCC. GNU, the GNU Compiler Collection. GCC, https://gcc.gnu.org/. Retrieved July
22, 2019.

196

http://lancet.mit.edu/ga/
http://lancet.mit.edu/ga/
https://gcc.gnu.org/

[98] CMAKE. CMake - A cross-platform tool to build, test and package software. CMake, https:
//cmake.org/. Retrieved July 22, 2019.

[99] DERRAC, J. et al. A practical tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evo-
lutionary Computation, Elsevier B.V., v. 1, n. 1, p. 3–18, 2011. ISSN 22106502. Available from
Internet: <http://dx.doi.org/10.1016/j.swevo.2011.02.002>.

[100] SHESKIN, D. J. Handbook of parametric and nonparametric statistical procedures. [S.l.]:
Chapman and Hall/CRC, 2003.

[101] FINNER, H. On a Monotonicity Problem in Step-Down Multiple Test Procedures. Source
Journal of the American Statistical Association, v. 88, n. 423, p. 920–923, 1993. ISSN 0162-1459.

[102] LI, J. D. A two-step rejection procedure for testing multiple hypotheses. Journal of Sta-
tistical Planning and Inference, v. 138, n. 6, p. 1521–1527, 2008. Available from Internet:
<https://doi.org/10.1016/j.jspi.2007.04.032>.

[103] COELLO, C. A. C.; SIERRA, M. R. A study of the parallelization of a coevolutionary
multi-objective evolutionary algorithm. In: SPRINGER. Mexican International Conference on
Artificial Intelligence. [S.l.], 2004. p. 688–697.

[104] SHI, Z.; BURNS, A.; INDRUSIAK, L. S. Schedulability Analysis for Real Time On-Chip
Communication with Wormhole Switching. International Journal of Embedded and Real-Time
Communication Systems, v. 1, n. 2, p. 1–22, 2010. ISSN 1947-3176.

[105] BURKE, E. K. et al. Hyper-heuristics: A survey of the state of the art. Journal of the
Operational Research Society, Taylor & Francis, v. 64, n. 12, p. 1695–1724, 2013.

[106] ZITZLER, E.; LAUMANNS, M.; THIELE, L. Spea2: Improving the strength pareto evo-
lutionary algorithm. TIK-report, Eidgenössische Technische Hochschule Zürich (ETH), Institut
für Technische . . . , v. 103, 2001.

[107] SIERRA, M. R.; COELLO, C. A. C. Improving pso-based multi-objective optimization
using crowding, mutation and epsilon-dominance. In: SPRINGER. International conference on
evolutionary multi-criterion optimization. [S.l.], 2005. p. 505–519.

197

https://cmake.org/
https://cmake.org/

APPENDICES

198

I. BREAKDOWN FREQUENCY SCALING
VALUES

List of 255 breakdown frequency values used in this work ordered from smallest to greatest
starting with index i = 1 until i = 255 and values ranging from 0.01 to 100.

Tabela I.1 – List with the 255 frequency scaling values used.

i Scale i Scale i Scale
1 1.0000000e-02 86 4.2187500e-01 171 2.6875000e+00
2 1.0685484e-02 87 4.2968750e-01 172 2.7500000e+00
3 1.1370968e-02 88 4.3750000e-01 173 2.8125000e+00
4 1.2056452e-02 89 4.4531250e-01 174 2.8750000e+00
5 1.2741935e-02 90 4.5312500e-01 175 2.9375000e+00
6 1.3427419e-02 91 4.6093750e-01 176 3.0000000e+00
7 1.4112903e-02 92 4.6875000e-01 177 3.0625000e+00
8 1.4798387e-02 93 4.7656250e-01 178 3.1250000e+00
9 1.5483871e-02 94 4.8437500e-01 179 3.1875000e+00
10 1.6169355e-02 95 4.9218750e-01 180 3.2500000e+00
11 1.6854839e-02 96 5.0000000e-01 181 3.3125000e+00
12 1.7540323e-02 97 5.1562500e-01 182 3.3750000e+00
13 1.8225806e-02 98 5.3125000e-01 183 3.4375000e+00
14 1.8911290e-02 99 5.4687500e-01 184 3.5000000e+00
15 1.9596774e-02 100 5.6250000e-01 185 3.5625000e+00
16 2.0282258e-02 101 5.7812500e-01 186 3.6250000e+00
17 2.0967742e-02 102 5.9375000e-01 187 3.6875000e+00
18 2.1653226e-02 103 6.0937500e-01 188 3.7500000e+00
19 2.2338710e-02 104 6.2500000e-01 189 3.8125000e+00
20 2.3024194e-02 105 6.4062500e-01 190 3.8750000e+00
21 2.3709677e-02 106 6.5625000e-01 191 3.9375000e+00
22 2.4395161e-02 107 6.7187500e-01 192 4.0000000e+00
23 2.5080645e-02 108 6.8750000e-01 193 4.8750000e+00
24 2.5766129e-02 109 7.0312500e-01 194 5.7500000e+00
25 2.6451613e-02 110 7.1875000e-01 195 6.6250000e+00
26 2.7137097e-02 111 7.3437500e-01 196 7.5000000e+00
27 2.7822581e-02 112 7.5000000e-01 197 8.3750000e+00
28 2.8508065e-02 113 7.6562500e-01 198 9.2500000e+00
29 2.9193548e-02 114 7.8125000e-01 199 1.0125000e+01
30 2.9879032e-02 115 7.9687500e-01 200 1.1000000e+01

Continued on next page

199

Tabela I.1 – Continued from previous page
i Scale i Scale i Scale
31 3.0564516e-02 116 8.1250000e-01 201 1.1875000e+01
32 3.1250000e-02 117 8.2812500e-01 202 1.2750000e+01
33 3.8085938e-02 118 8.4375000e-01 203 1.3625000e+01
34 4.4921875e-02 119 8.5937500e-01 204 1.4500000e+01
35 5.1757812e-02 120 8.7500000e-01 205 1.5375000e+01
36 5.8593750e-02 121 8.9062500e-01 206 1.6250000e+01
37 6.5429688e-02 122 9.0625000e-01 207 1.7125000e+01
38 7.2265625e-02 123 9.2187500e-01 208 1.8000000e+01
39 7.9101562e-02 124 9.3750000e-01 209 1.8875000e+01
40 8.5937500e-02 125 9.5312500e-01 210 1.9750000e+01
41 9.2773438e-02 126 9.6875000e-01 211 2.0625000e+01
42 9.9609375e-02 127 9.8437500e-01 212 2.1500000e+01
43 1.0644531e-01 128 1.0000000e+00 213 2.2375000e+01
44 1.1328125e-01 129 1.0312500e+00 214 2.3250000e+01
45 1.2011719e-01 130 1.0625000e+00 215 2.4125000e+01
46 1.2695312e-01 131 1.0937500e+00 216 2.5000000e+01
47 1.3378906e-01 132 1.1250000e+00 217 2.5875000e+01
48 1.4062500e-01 133 1.1562500e+00 218 2.6750000e+01
49 1.4746094e-01 134 1.1875000e+00 219 2.7625000e+01
50 1.5429688e-01 135 1.2187500e+00 220 2.8500000e+01
51 1.6113281e-01 136 1.2500000e+00 221 2.9375000e+01
52 1.6796875e-01 137 1.2812500e+00 222 3.0250000e+01
53 1.7480469e-01 138 1.3125000e+00 223 3.1125000e+01
54 1.8164062e-01 139 1.3437500e+00 224 3.2000000e+01
55 1.8847656e-01 140 1.3750000e+00 225 3.4193548e+01
56 1.9531250e-01 141 1.4062500e+00 226 3.6387097e+01
57 2.0214844e-01 142 1.4375000e+00 227 3.8580645e+01
58 2.0898438e-01 143 1.4687500e+00 228 4.0774194e+01
59 2.1582031e-01 144 1.5000000e+00 229 4.2967742e+01
60 2.2265625e-01 145 1.5312500e+00 230 4.5161290e+01
61 2.2949219e-01 146 1.5625000e+00 231 4.7354839e+01
62 2.3632812e-01 147 1.5937500e+00 232 4.9548387e+01
63 2.4316406e-01 148 1.6250000e+00 233 5.1741935e+01
64 2.5000000e-01 149 1.6562500e+00 234 5.3935484e+01
65 2.5781250e-01 150 1.6875000e+00 235 5.6129032e+01
66 2.6562500e-01 151 1.7187500e+00 236 5.8322581e+01
67 2.7343750e-01 152 1.7500000e+00 237 6.0516129e+01
68 2.8125000e-01 153 1.7812500e+00 238 6.2709677e+01
69 2.8906250e-01 154 1.8125000e+00 239 6.4903226e+01

Continued on next page

200

Tabela I.1 – Continued from previous page
i Scale i Scale i Scale
70 2.9687500e-01 155 1.8437500e+00 240 6.7096774e+01
71 3.0468750e-01 156 1.8750000e+00 241 6.9290323e+01
72 3.1250000e-01 157 1.9062500e+00 242 7.1483871e+01
73 3.2031250e-01 158 1.9375000e+00 243 7.3677419e+01
74 3.2812500e-01 159 1.9687500e+00 244 7.5870968e+01
75 3.3593750e-01 160 2.0000000e+00 245 7.8064516e+01
76 3.4375000e-01 161 2.0625000e+00 246 8.0258065e+01
77 3.5156250e-01 162 2.1250000e+00 247 8.2451613e+01
78 3.5937500e-01 163 2.1875000e+00 248 8.4645161e+01
79 3.6718750e-01 164 2.2500000e+00 249 8.6838710e+01
80 3.7500000e-01 165 2.3125000e+00 250 8.9032258e+01
81 3.8281250e-01 166 2.3750000e+00 251 9.1225806e+01
82 3.9062500e-01 167 2.4375000e+00 252 9.3419355e+01
83 3.9843750e-01 168 2.5000000e+00 253 9.5612903e+01
84 4.0625000e-01 169 2.5625000e+00 254 9.7806452e+01
85 4.1406250e-01 170 2.6250000e+00 255 1.0000000e+02

201

II. REAL-TIME APPLICATION TASK SET

List of task set for the model of real-time applications used in this work. Table II.1 contains
the Autonomous Vehicle Application (AVA) task set where the fields Cost, Deadline, and Period
are expressed in seconds, the field Message Size is expressed in bits, and the Code Memory field
is expressed in bytes.

Tabela II.1 – Autonomous Vehicle Application (AVA) Benchmark.

Name Cost (s) Deadline (s) Period (s) Destination Message Size (b) Priority Code Memory (B)
POSI-A 0.005 0.5 0.5 NAVC-A 16384 31 55048
NAVC-A 0.01 0.5 0.5 OBDB-A 32768 32 25088
OBDB-A 0.15 0.5 0.5 NAVC-X 262144 33 81624
OBDB-B 0.15 1 1 OBMG-B 524288 34 81624
NAVC-C 0.02 0.1 0.1 DIRC-X 8192 24 25088
SPES-C 0.005 0.1 0.1 NAVC-C 8192 25 34992
NAVC-D 0.01 0.1 0.1 DIRC-X 16384 26 25088
FBU3-E 0.01 0.04 0.04 VOD1-X 614400 1 102552
FBU8-F 0.01 0.04 0.04 VOD2-X 614400 2 102552
VOD1 0.02 0.5 0.5 NAVC-X 8192 3 78128
VOD2 0.02 0.5 0.5 NAVC-X 8192 4 78128
FBU1 0.01 0.04 0.04 BFE1 614400 5 102552
FBU2 0.01 0.04 0.04 BFE2 614400 6 102552
FBU3 0.01 0.04 0.04 BFE3 614400 7 102552
FBU4 0.01 0.04 0.04 BFE4 614400 8 102552
FBU5 0.01 0.04 0.04 BFE5 614400 9 102552
FBU6 0.01 0.04 0.04 BFE6 614400 10 102552
FBU7 0.01 0.04 0.04 BFE7 614400 11 102552
FBU8 0.01 0.04 0.04 BFE8 614400 12 102552
BFE1 0.02 0.04 0.04 FDF1 32768 13 72560
BFE2 0.02 0.04 0.04 OBMG-X 32768 14 72560
BFE3 0.02 0.04 0.04 OBMG-X 32768 15 72560
BFE4 0.02 0.04 0.04 OBMG-X 32768 16 72560
BFE5 0.02 0.04 0.04 FDF2 32768 17 72560
BFE6 0.02 0.04 0.04 THRC-X 32768 18 72560
BFE7 0.02 0.04 0.04 THRC-X 32768 19 72560
BFE8 0.02 0.04 0.04 THRC-X 32768 20 72560
FDF1 0.01 0.04 0.04 STPH 131072 21 45648
FDF2 0.01 0.04 0.04 STPH-X 131072 22 45648

Continued on next page

202

Tabela II.1 – Continued from previous page
Name Cost (s) Deadline (s) Period (s) Destination Message Size (b) Priority Code Memory (B)
STPH 0.03 0.04 0.04 OBMG-X 65536 23 77008
POSI-Q 0.005 0.5 0.5 OBMG-X 16384 35 55048
USOS 0.005 0.1 0.1 OBMG-X 16384 27 26000

OBMG-B 0.02 1 1 OBDB-X 65536 37 17752
TPMS 0.005 0.5 0.5 STAC-S 32768 36 35384
VIBS 0.005 0.1 0.1 STAC-T 8192 28 33864

STAC-S 0.01 1 1 TPMS-X 32768 38 52080
SPES-U 0.005 0.1 0.1 STAC-X 16384 29 34992
STAC-T 0.01 0.1 0.1 THRC-X 16384 30 52080
OBMG-V 0.0005 1 1 OBDB-X 32768 39 17752
DIRC-X 40
OBDB-X 41
NAVC-X 42
OBMG-X 43
THRC-X 44
STAC-X 45
TPMS-X 46
VOD1-X 47
VOD2-X 48
FDF1-X 49
FDF2-X 50
STPH-X 51

203

	Introduction
	Contextualization
	Commercial Applications of MPSoC and NoCs
	Objectives
	Primary Objective
	Secondary Objectives

	Methodology
	Contributions
	Manuscript Organization

	Optimization Problems
	Introduction
	Problem Modeling and Codification
	Single-Objective Optimization Problem
	Multi-Objective Optimization

	Examples of Optimization Problems
	Combinatorial/Discrete Problems
	Continuous Problems

	Conclusions of the Chapter

	Real-Time Network-on-a-Chip based MPSoC
	System-on-a-Chip (SoC)
	Multi-/Many- Processors System-on-a-Chip (MPSoC)

	Communication Architectures
	Buses
	Network-on-a-Chip

	Network-on-a-Chip (NoC)
	Components
	Connection Topology
	Routing Algorithm
	Switching Strategies
	Arbitration Policies
	Virtual Channels

	Real-Time Network-on-a-Chip
	Real-Time Systems
	Multiprocessor Real-Time System Modeling and Scheduling Algorithms
	Real-Time Application Modeling
	Scheduling Problems and Algorithms
	Priority Assignment
	Task Assignment

	Modeling and Scheduling Algorithms for RTNoC-based MPSoCs
	Platform Model
	Real-Time Application Model
	Processors and Links Utilization Factors Test
	Multi-point Progressive Blocking Worst-Case Latency Analysis
	End-to-End Schedulability Test
	Required Local Memory for Processor Cores Test
	Normalized Energy Dissipation Model

	Task Mapping onto a RTNoC-based MPSoC as an Optimization Problem
	Task Mapping Encoding
	Utilization Test as an Objective Function
	End-to-End Schedulability Test as an Objective Function
	Normalized Energy Dissipation as an Objective Function
	Maximum Required Local Memory as an Objective Function
	Breakdown Frequency as an Objective Function
	End-to-End Scheduling Test with Slack Awareness as an Objective Function: a new Proposed Approach
	Multi-Objective Task Mapping Optimization

	Conclusions of the Chapter

	Search-based Optimization Bio-inspired Meta-Heuristics
	Bio-inspired Meta-Heuristics
	Adaptive Techniques for Bio-Inspired Meta-Heuristics
	Parameter Setting Strategies
	Adaptive Operator Selection

	Single-Objective Optimization Bio-Inspired Meta-Heuristics from Literature
	Genetic Algorithm (GA)
	Differential Evolution (DE)
	Particle Swarm Optimization (PSO)
	Salps Swarm Algorithm (SSA)
	Gray Wolf Optimization (GWO)
	Elephant Herd Optimization (EHO)
	Dragonfly Algorithm (DA)
	Moth-Flame Optimization (MFO)
	Whale Optimization Algorithm (WOA)
	Bat Algorithm (BA)
	Adaptive Differential Evolution (JADE)
	Crossover Strategy Adaptive Self-Adaptive DE (CSASADE)
	Discrete Particle Swarm Optimization (DPSO)
	Self-Adaptive Particle Swarm Optimization (SAPSO)
	Hybrid Discrete Particle Swarm Optimization Makespan-based (HDPSO-M)

	Single-Objective Optimization Bio-Inpired Meta-Heuristics Developed in this Work
	Single-Objective Adaptive with Modified Selection Differential Evolution (SOAMSDE)
	Adaptive Genetic Algorithm v1 (AGAv1)
	Adaptive Genetic Algorithm v2 (AGAv2)
	Adaptive Genetic Algorithm v3 (AGAv3)
	Adaptive Genetic Algorithm v4 (AGAv4)
	Adaptive Particle Swarm Optimization (APSO)
	Adaptive Particle Swarm Optimization v2 (APSOv2)
	Hybrid Discrete Particle Swarm Optimization Utilization-based (HDPSO-U)
	Adaptive Hybrid Discrete Particle Swarm Optimization Utilization-based (AHDPSO-U)
	Adaptive Gray Wolf Optimization (AGWO)

	Multi-Objective Optimization Bio-Inpired Meta-Heuristics from Literature
	Non-dominated Sorting Genetic Algorithm II (NSGA-II)
	Adaptive Parameter with Mutation Tournament Multi-Objective DE (APMTMODE)

	Multi-Objective Optimization Bio-Inspired Meta-Heuristics Developed in this Work
	Non-dominant Sorting Adaptive Genetic Algorithm (NSAGA)
	Multi-Objective Non-dominant Sorting Adaptive DE (MONSADE)

	Conclusions of the Chapter

	Related Works
	Introduction
	Search-Based Meta-Heuristics Algorithms
	Adaptive Techniques

	Task Mapping Problem for RTNoC-based MPSoC
	Conclusions of the Chapter

	Search-Based Optimization Meta-Heuristic Framework
	Introduction
	Developed Software Architecture and Design
	End-user Tutorial
	Perform Single-Objective Meta-Heuristic Experiment using Benchmark Functions
	Perform Multi-Objective Meta-Heuristic Experiment using Benchmark Functions
	Generate Synthetic Real-Time Application
	Perform Single-Objective Task Mapping onto RTNoC-based MPSoC Experiment
	Perform Multi-Objective Task Mapping onto RTNoC-based MPSoC Experiment

	Conclusions of the Chapter

	Experimental Setup and Results
	Introduction
	Statistical Framework
	Friedman Test with post-hoc procedures

	Shared Experimental Setup Characteristics
	Experimental Setup - Single-Objective Benchmark Functions
	Experimental Setup - Multi-Objective Benchmark Functions
	Experimental Setup - Real-Time Application Mapping onto RTNoC-based MPSoC
	Synthetic Real-time Application Generation
	End-to-End Response Time Scheduling
	Breakdown Frequency Optimization
	End-to-End Response Time Scheduling with Slack Awareness
	Multi-Objective Scheduling with Slack, Energy Dissipation, and Memory Requirement Awareness

	Conclusions

	Conclusions
	Future Works

	BIBLIOGRAPHIC REFERENCES
	Appendices
	Breakdown Frequency Scaling Values
	Real-Time Application Task Set

