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Resumo

Este trabalho apresenta um método baseado em homotopia para o cálculo de soluções
do Problema de Fluxo de Potência (PFP) partindo de uma estimativa inicial padrão, do tipo
flat start. Este método de Solução Orientada por Homotopia - Newton-Raphson (GSH-NR)
utiliza apenas a técnica de Newton-Raphson padrão para calcular as soluções fictícias ao
longo do caminho da homotopia. A metodologia consiste em estruturar as equações do
PFP durante o processo de homotopia para incorporar uma rede fictícia com elementos de
admitância shunt para solução do problema. Além das admitâncias, um fator de escala é
introduzido para fortalecer as interconexões próximas ao barramento de referência enquanto
a homotopia é processada. Tanto as admitâncias shunt quanto o fator de escala são removi-
dos completamente ao final do processo de homotopia. A vantagem da estratégia proposta
é que o PFP é sempre resolvido partindo de uma estimativa inicial padrão e utilizando o
método tradicional de NR ao longo das fases intermediárias do processo de homotopia. Para
demonstrar a eficácia da técnica em encontrar a solução correta para o PFP, as simulações
foram realizadas considerando vários modelos de sistemas de potência, incluindo um modelo
tutorial e um sistema de grande porte com 70.000 barras.

Palavras-Chave: Método da homotopia; Problema de fluxo de carga; Método de Newton-
Raphson; Admitância shunt; Rede fictícia; Estimativa inicial padrão; MATPOWER.
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Abstract

This work presents a homotopy-based method to calculate the solution of a power flow
problem (PFP) starting from a flat initial guess. This Guided Solution by Homotopy -
Newton-Raphson (GSH-NR) method uses only the standard NR technique to compute the
PFP fictitious states along the homotopy path. The methodology consists of structuring the
PFP equations during the homotopy process to incorporate a fictitious additional network
with shunt admittances to solve the problem. In addition to the admittances, a scaling factor
is also introduced for strengthening the interconnections at the boundary of the slack bus
while the homotopy is in progress. Both shunt admittances and the scaling factor are en-
tirely removed at the end of the homotopy process. The advantage of the proposed strategy
is that the PFP is always resolved by departing from a flat start estimate and using the tradi-
tional NR method along the intermediate stages of the homotopy procedure. To demonstrate
the efficacy of the technique in finding an effective solution to the PFP, simulations are ac-
complished considering several system models, including a tutorial system and a large-scale
system with 70,000 buses.

Keywords: Homotopy method; power flow problem; Newton-Raphson method; shunt ad-
mittance; fictitious network; flat start; MATPOWER.
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Chapter 1

Introduction

1.1 Overview

The Brazilian electrical system, like any other in general, undergoes constant changes
aiming at its expansion. Projections of the Brazilian Energy Research Company (Empresa de
Pesquisa Energética - EPE), in the reference scenario from 2021 to 2031 the sector should
have an average growth of 3.5% annually. The development leads to an average annual
growth of 22.9 TWh along the period [1].

Given the indicative character of the generation expansion, the process of elaboration
of the system operation and expansion studies recognizes the importance of the role of the
planned transmission network. A study of this nature must provide, in addition to adequate
conditions of operation reliability and electrical supply, also the flexibility to accommodate
different deployment strategies of generation sources. To this end, the initial survey of the
power grid is carried out by the analysis of performance on a steady state in the various load
levels and generation dispatch scenarios, by simulations of normal and non-simultaneous
power flows of network elements.

Knowing that the supply of electricity is a joint effort between generation, transmission
and distribution, the improvement and reduction of losses become a constant search. The
inherent non-linearity of the power grid presents a great challenge to analyze its dynamic
behaviors when subjected to disturbances, especially when a large amount of intermittent re-
newable energy is inserted. Identifying a stable equilibrium point of the dynamic system can
significantly improve the operation of the system and therefore will be of great importance
to avoid blackouts [2].

The study of the Power Flow Problem (PFP) has aroused the interest of researchers since
its inception. Improving the reliability of nonlinear solutions has been the subject of research
for decades [3]. This is a nonlinear problem that is of fundamental importance for determin-
ing the operating point of electrical power networks [4]. Its solution provides the equilibrium
point of the network, which allows for obtaining other information, such as power flows in
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interconnections, power produced in the power stations and the operational limits of the
equipment. Thus, it becomes an essential tool for analyzing the operation of electrical power
systems, evaluating the power system stability status and other applications, such as planning
the expansion of the networks.

The traditional and widely accepted technique for solving PFP is the Newton-Raphson
(NR) method [4, 5, 6, 7]. Other variants of the NR method are employed according to the
simplification allowed for the network configuration. On the other hand, the NR presents
local convergence and is sensitive to the initial estimate since it characterizes how close
the guess is to the nonlinear problem solution. Therefore, physical factors such as loading
conditions, network dimensions, and the number of iterations for ill- and well-conditioned
cases affect the performance of the technique to solve the PFP [8]. According to [7], an
ill-conditioned power system can be characterized as one which, although its solution does
exist, is not solvable by using the standard NR technique and a flat start guess.

A flat start initialization is characterized by nominal voltages in the load buses and spec-
ified voltages in controlled buses (generation buses). Besides, all voltage phase angles are
null. On the other hand, the flat start is a practical procedure to consider PFP initialization
when an estimate at the boundary of the solution is distant or absent [4]. It is well known
that the NR method presents quadratic convergence for an estimate inside the convergence
region and at the neighborhood of the solution. These aspects involving the traditional NR
method and its computational limitations motivated the investigation in the present work.
The interest is in using it and in overcoming its deficiencies, even by departing from a flat
start guess. To overcome these drawbacks, the combination of the NR method with a homo-
topy approach suggests an appropriate possibility to develop a hybrid approach, especially
for large-scale systems.

Historically, the homotopy theorem was first proposed by Witold Hurewicz in 1935 [9].
Over the years, it has been applied to solve nonlinear ordinary and partial differential equa-
tions in science, finance, and engineering [10] and different advances has been contributing
in the expanding field of algebraic topology. The homotopy method was applied in prac-
tical cases to solve nonlinear algebraic equations by Davidenko [11], around the 1960s in
pure mathematics [12]. The idea behind the technique consists of transforming a particular
complex system problem into a user-friendly problem. Behind this change in the system, the
appropriate employment of parameters allows it to be gradually transformed from an initial
operating point to an end point, namely, the solution of the original problem.

In general, the spectrum of applications for the homotopy theme is quite broad, even
for just the power flow topic. Therefore, although the same can be investigated for a grid
with different characteristics, the focus of this work is on the case in which the network is
modeled only by the positive sequence network.
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1.2 Study Motivation

The motivation of this study is to investigate the methods of load flow solutions and
understand their advantages and drawback face of large scale power systems, simulating real
scenarios. In normal operation, the system load changes in a predictable manner such that in
the load flow study, the state of the previous scenario can be used as a starting point for the
calculation of current flows. However, power systems are subject to contingencies that can
displace the point of operation significantly [13]. Severe contingencies can take the operating
point away from the starting point, which can hinder the work of the load flow solvers.

Knowing that conventional methods, such as Newton-Raphson method, are dependent on
initial estimate and present local convergence, the initial estimate close to the solution of the
problem is decisive to obtain the convergence in large scale systems, which can be difficult
to obtain in the case of severe contingencies.

Therefore, it is intended to investigate a solver capable of solving the load flow problem
starting from the flat start initialization, since it is a practical situation when the user have no
other information on the operational equilibrium point of the system.

1.3 Objectives

The main objective of this work is to investigate the advantages of the homotopy
method applied to the solution of the load flow problem considering the large-scale and
ill-conditioned problems.

The specific objectives are:

• Presentation of a homotopy-based technique for determining the PFP solution based
on the inclusion of an artificial admittance network.

• Development of the PFP solution technique with initial flat start estimation, regardless
of network size.

• Proposition of a technique with two homotopy parameters, allowing better control of
the homotopy process, aiming to depart from an initial estimates closer to the interme-
diate solutions that are calculated using the traditional NR method.

• Investigation of the impact due to the insertion of artificial strength interconnections
with the slack bus, whose control is carried out by a scaling factor introduced as a
function of a complementary homotopy process.
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1.4 Contributions

The main contribution of the work lies in the method’s ability to solve the power flow
problem in large systems starting from a flat start guess, which is not possible from known
solvers. In addition, the method proved to be versatile as it was able to successfully solve
both well-conditioned and ill-conditioned systems. Another important point, through ad-
justments of input parameters in MATPOWER, any electrical system can be modeled and
simulated in GSH-NR.

Considering the specific objectives, this work presents a homotopy-based method of cal-
culating the solution to a power flow problem starting from a flat initial guess. Initial estima-
tion of this nature attributed to a Newton-Raphson-based method for the PFP is desirable in
the situation in which one does not have a history of operating point results of the network
configuration under analysis, and when dealing with ill-conditioned systems. Mainly when
carrying out studies in large-scale and practical networks. The idea is to exploit two physical
aspects of the network and embed them into the homotopy process with the purpose of be-
ginning all simulations from a flat start estimate. One aspect is related to the creation of an
artificial local generation/load; a second aspect is related to the slack bus control to gener-
ate or absorb power along a typical homotopy process evolution. The methodology consists
of structuring the PFP equations to incorporate a fictitious additional network with shunt
admittances. The admittances in question are appropriately dimensioned so that the initial
solution of the problem is exactly equal to the initial estimate (flat start). This physically
means that an artificially local generation is created to supply its own load. Additionally, lo-
cal generation can supply power to an artificial local load. With this aim, there is no angular
difference between any two buses. These admittances are progressively overcome with the
advancement of the homotopy process, which is controlled by a first homotopy parameter
varying from a null to a unitary value. Thus, advancing by one step in the homotopy pro-
cess, a portion of the shunt admittances created is removed. A second homotopy parameter
and a scaling factor are used to strengthen interconnections close to the generation bus that
is selected as the slack bus. This strengthening process is kept only along the intermediate
homotopy process. When the first homotopy parameter reaches the unity value, the shunt
admittance network is completely removed, and the scaling factor used in the second pro-
cess is also removed. At this point in the process, the resulting network coincides with the
original network, which is effectively the model used to determine the PFP final solution.
The adopted strategy allows using the traditional NR method at each value of the first ho-
motopy parameter. In this case, the result of the previous step is used as the estimate for the
iteration in progress. Hence, an initial estimate for each NR application is always used at
the boundary of the solution, providing convergence with a very small number of iterations,
i.e., 2 to 4. Experiments considering several test systems, including a 70,000-bus system are
used to demonstrate the effectiveness of the proposed methodology.
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1.5 Related Publication

This research provided the following contributions:

• A. L. Silva and F. D. Freitas, "Investigation Study on the Voltage Stability Status of
a Power Flow Problem Solution," 2021 Workshop on Communication Networks and
Power Systems (WCNPS), 2021, pp. 1-6, doi: 10.1109/WCNPS53648.2021.9626316.

• F. D. Freitas and A. L. Silva, "Flat Start Guess Homotopy-based Power Flow Method
guided by Fictitious Network Compensation Control" Submitted to the journal Inter-
national Journal of Electrical Power and Energy Systems, 2022 (Article accepted).

1.6 Organization

In addition to this Chapter 1, this work is organized as fallows. It has the

• Chapter 2, where a bibliographic survey was carried out in order to identify research
related to homotopy and recent power flow advance studies;

• Chapter 3, where the basic equations of the PFP are described and some techniques
employed to solve power flow equations;

• Chapter 4, where the expressions to calculate the compensation admittances for the
homotopy problem are presented. An initial flat start estimate and a flat start first ho-
motopy (user-friendly) solution are also assumed, given that the compensation network
composed of the fictitious admittances is fully connected;

• Chapter 5, which introduces the homotopy-based method proposed in this work, illus-
trating how the fictitious network is connected according to the homotopy process;

• Chapter 6, where several experiments and results are presented, to demonstrate the
efficacy of the proposed homotopy-based technique;

• Conclusion, for concluding the work.
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Chapter 2

Literature Review

2.1 Introduction

A bibliographic survey of scientific papers was done in scientific databases in order to
verify the advances on the theme investigated in this work. The objective is to introduce the
homotopy method, its main fields of application, the evolution of studies and the applica-
tion in practical cases. To this end, it was proposed a systematic review of the main topics
concerned to the Homotopy and Power Flow Problem.

2.1.1 The Power Flow Problem and Homotopy

Over the years, several references can be found in the application of homotopy methods.
Recently, several techniques have been proposed, which use the homotopy method, by con-
sidering distinct approaches for solving the PFP. Chiang et al. [14] proposed to solve a power
flow convergence problem found in some traditional power flow methods, when applied to
distribution network with dispersed generations modeled as PV nodes. The use of homotopy
methods improved a convergence property of the implicit Z-bus Gauss-Seidel method. In
this work, the distributed generation was modeled initially as PQ bus, however being con-
verted to PV bus in the last stage. The power flow solution was obtained by using homotopy
method and considering a set of parameterized power flow equations. The proposed method
was applied to IEEE 13-bus, IEEE 123-bus, IEEE 8500-node test system and a practical
1101-node distribution network. The systems was tested comparing implicit Zbus method
and homotopy-enhanced method with different homotopy steps. The evaluation of 3-stages
methods has exhibited robust numerical properties and results were promising. However,
this work did not give analytical results to explain the significantly improved convergence of
the 3-stage method. To fill this gap, Chiang et al. [15] developed a new theory for general
homotopy methods to show the convergence of the homotopy-enhanced implicit Z-bus PF
method.
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Pandey et al. [16] proposed a robustness method to solve the PFP of large-scale systems
from arbitrary initial guesses. To achieve the correct physical solution, the network was
modeled using equivalent circuit formulation. The modeling is based on true state variables
of voltages and currents and uses circuit simulation methods to ensure robust convergence.
Based on G-min stepping method [16], the transmission lines and transformer are virtually
shorted, adding in parallel a large admittance for finding a trivial solution of the PFP. The
homotopy method was used to determine incrementally subsequent solutions of a PFP sub-
problem. Each sub-problem has a solution very close to the last one and the system is
gradually be recomposed according to the increment of the homotopy parameter, until it
reaches the original system topology. The method was tested at different ill-conditioned
systems, as 11-bus system, 13659-bus system considering ten arbitrary initial conditions,
and six distinct test systems, varying from 75k to 80k buses. The work shows that the
homotopy continuation method with equivalent circuit achieves convergence to the correct
physical solution and demonstrates robust convergence to the high voltage solution from an
arbitrary initial guess.

Trying to overcome the weakness of ill-conditioned problem and poor initial start point
conditions, typical of the standard Newton-Raphson method, Murray et al. [17] proposed
techniques based on homotopy method to improve performance on large-scale power flow
cases. Three different ways were proposed to improve the robustness of NR-based meth-
ods against poor initial points. One technique was called Injection Homotopy (IH). By this
approach, virtual generators and loads are added to the network in such way that the power
flow equations are solved with initial guess sufficiently close of each one. Following the
same idea, a Phase Homotopy (PH) method was also proposed. The idea is to add virtually
line phase shift to the network in such way that departing from an flat start initial guess the
PFP is solved. The third approach was denominated Magnitude Homotopy (MH) method. It
is based on points having near voltage magnitudes in relation to a reference, which make the
region with physically meaningful attractive solutions. The approaches were tested for 1.2k-,
2.5k- and 46k-bus networks of two distinct North American Independent System Operators.
However, just the last one method shows robustness for solving the cases with different start-
ing points.

Yang et al. [18] used a homotopy and asymptotic numerical method for presenting a
robust numerical method to solve the power flow equations. The asymptotic method, based
on the computation of Taylor series expansion per step, provides an analytical continuous
representation of the path to find solutions solving a simple polynomial equation. As well
known that homotopy path often uses predictor-corrector path which has high computational
cost, the asymptotic numerical method enhanced the efficiency of the homotopy continu-
ation, mainly in ill-conditioned cases. At this study the generator reactive power limits
was considered and the method uses flat start as initialization for voltage unknowns. The
proposed method has been tested initially by using a 2-bus system. The NR method applied
for this system converged slowly, with 17 iterations. However, the proposed method takes
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only 6 steps with the same accuracy. Other systems has been tested, as 3-bus power systems,
43-bus ill-conditioned power system and 3375-bus power system considering the generator
reactive power limits constraints. The numerical examples show improvements at computa-
tional steps and computational time compared with the Newton’s method, and be reliable to
solve the ill-conditioned power flow problems.

Jereminov et al. [19] proposed a homotopy-based method considering virtual changes
in the network to solve the PFP. The problem is formulated by artificially creating shorted
circuit in equipment. The method consists in using large conductance from each node to
the ground. The grid parameters are changed, however the network topology is preserved at
the final stage of the homotopy process. Applying a homotopy factor µ to change the net-
work, the method suggest that the initial homotopy solution is more close to an intermediate
solution than the original network solution. The process of computing this intermediate
solution and using it as initialization for the next step improves convergence properties of
the method. In order to simulate the real operate conditions the method has been tested in
different large-scale systems, as 9241-, 10k-, 13659-, 25k-, and 70k-bus systems and other
synthetic test cases. The tests show efficiency and robustness considering large-scale systems
and ill-conditioned cases.

2.1.2 Optimal Power Flow

Optimal Power Flow (OPF) is an important tool for power system network analysis.
The main objective of the OPF method is to find the lowest cost of producing electricity,
considering the constraints of the elements that make up the network. With this objective,
different scenario possibilities are presented in scientific papers aiming to test solvers in real
power systems.

Park et al. [20], considering post-contingency scenarios, proposed to find a viable global
solution for the large-scale OPF problem to assist system operators in preventive and correc-
tive actions using homotopy methods. In this work the contingency, which is represented by
equipment failure, was simulated only on line outages, setting the impedance of the line to a
very high value. The contingency was introduced gradually with two homotopy parameters
that allow to trace a gradual line outage event, instead an abrupt line outage event. The initial
guess was provided by a standard case, without contingency. Testing different lines outages
on Polish networks, with 3374-bus network, and varying the homotopy parameters, was en-
sured convergence to a global solution with better performance under certain conditions.

On the other hand, whereas the OPF try to find the global optimum for the problem,
find a local convergency can be a challenging. In this regard, Pandey et al. [21] proposed a
robust local convergence with homotopy-based approach that solves a sequence of primal-
dual interior point problems for large systems as U.S. Eastern Interconnection sized test
networks
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Zárate-Miñano et al. [22] proposed a practical application for OPF considering different
load models. The loads considered were the maximum number of plug-in electric vehicles
that were inserted into the power system using homotopy-method to measure quantitatively
and qualitatively. Four models, which differ in the way electric vehicles are integrated into
the network, were simulated in the IEEE One Area RTS-96 with 24-bus system. The homo-
topy factor represented the number of vehicles inserted in the network. From a quantitative
point of view, the choice of model shows a significant difference in the number of vehicles
inserted in the system and in the quality of the loading of the system buses.

Molzahn et al. [23] proposed a algorithm that compute all OPF feasible spaces by dis-
cretizing OPF problem’s inequality constrains to get a set of power flow equations. Same
inequalities of OPF problem is discretized into equality constrains and the numerical poly-
nomial homotopy continuation was used to compute all solutions at each discretization point.
The method was tested for two small OPF problems, 5- and 9-bus systems, due to the in-
tractability of numerical polynomial homotopy continuation for large problems. The algo-
rithm uses continuation to trace all the complex solution from start system, with trivially
solution, to a original system along one-dimensional parameter.

2.1.3 Integration of Renewable Energies

With the popularization of the production of energy from renewable sources, the model-
ing of the electric power system has become a challenge. This is justified since renewable
energy sources are intermittent, such as wind and solar energy, and they are typically accom-
panied by the presence of energy storage elements. In this sense, power flow studies have
incorporated these new technologies into various areas of knowledge. Tests have been car-
ried out on large systems and their robustness is tested in several aspects to verify the impact
of the large-scale integration of renewable energies and new types of loads.

Agarwal et al. [24] proposed a multi-period optimal power flow as a large non-convex
nonlinear problem to optimally dispatch and control generators and energy storage elements.
The problem considers multiple time periods using a scalable and robust framework to solve
the problem using a differential dynamic programming scheme that consider energy storage
devices. Using the state at previous time, multi-period optimization was modeled for energy
storage and generator ramping are inherently time-variant. The energy storage system was
modeled charging and discharging power into the grid. The homotopy methods was used
to determine the state vector using the factor γNS varying 1 to 0 for changing power and
switching on or off conductances and susceptances, using the period’s time solution as an
initial condition and iteratively solves sub-problems leading to the optimal dispatch. The
framework was tested with the small system IEEE-14 bus, modified to include the energy
storage system, and large system like 70k+ bus SyntheticUSA initialized by flat start, 1
pu voltage magnitude and 0 voltage angle, to demonstrate efficiency and scalability. The
algorithm allow further speedup and the framework offers a robust tool to study OPF and
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exploring a large-scale optimization studies.

Chandra et al. [25] used different types of energy generators and elements to simulate
the impact of large-scale integration, as renewable, storage elements and dynamic loads. The
results was illustrated though the simulation of a 5-machine power system model with wind,
storage elements, and dynamic loads, into 7-bus system. In that work, they considered bat-
tery energy system in the wind power plant together with dynamic loads. Considering that
this systems has different parameters, they used homotopy methods to compute equilibrium
points using differential-algebraic model of the power system, parameterized by elements,
considering the nonlinear swing dynamics, wind power dynamics, battery model, load dy-
namics and power flow. The solution set consists of a finite number of smooth paths parame-
terized by homotopy factor that find an isolated solution using an predictor-corrector method
to find all the paths. The results show the entire parameter space using the homotopy based
algorithm solve efficiently the set of equations, and was used to evaluate all the equilibria in
an efficient manner.

Bie et al. proposed studies based on online multi-period power dispatch with AC con-
straints and renewable energy [26] and with renewable uncertainty and storage [27] for
solving OPF. Using the AC power flow equations, voltage limits, and thermal limits the
solution is ensured with no static violation and guaranteeing transfer capability. The renew-
able energy sources are incorporated into the problem formulation using scenario genera-
tion tool to generate renewable scenarios. The formulation takes into account linear and
nonlinear dependence between different renewable energy sources generated from historical
data. A four- and three-stage solution methodology was proposed to solve the problem us-
ing an adaptive homotopy-enhanced primal-dual interior point method and two-parameters
homotopy-enhanced method. Whereas the problem is solved in stages the method the ho-
motopy methodology was applied at first- and third-stage in [27], and fourth stage in [26].
The solutions was evaluated on IEEE 30-, IEEE 118-, IEEE 300- and 3012-bus system and
presented robustness and efficiency.

2.1.4 Voltage Stability

A power system is defined as robustness when operate in a state of equilibrium in normal
condition or some disturbance of parameters [4]. However, there are a lot of phenomena
that can cause network instability. For instance, events that change the transmission line
parameters can lead a system to voltage instability [28]. Hence, understanding of the stability
phenomena is a challenging for the voltage stability analysis considering it as a common
instrument for monitoring the network power flow by operators. Contingencies in the system
can be fast, in the order of seconds, or even longer with minutes. Therefore, understanding
interference, and finding ways to simulate them and predict scenarios, is of great value for
preventive and corrective actions.

Many recent studies have treated the subject based on homotopy techniques to solve the
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problem. Burgos et al. [29] proposed to combine homotopy techniques with quasi-steady-
state methods that consider both, static and dynamic aspects of the power system, to analyze
voltage stability efficiently from the point of view of the load margin. The idea is to use the
continuation factor associated with the time variable and the load variation to estimate the
saddle node bifurcation. The method was tested in the BOL 162-bus system and proved to
be suitable to calculate the load margin of a power system from the point of view of voltage
stability.

Using a scenario with large insertion of distributed generation, that may result in the
reversal power flow, Nguyen et al. [30] demonstrated the multistability phenomenon in radial
distribution and did a voltage stability analysis introducing admittance homotopy power flow
method to find solutions. The results was validated with dynamic simulations on IEEE 13-
bus and the method has better results than other traditional methods.

Kettner et al. [31] studied the impact of Kron reduction into numerical methods applied to
the analysis in unbalanced polyphase power systems. Among them, homotopy continuation
method was tested for voltage stability assessment. The main performance indicators of this
method are the number of steps to the solution and the computation burden. Results of the
Kron reduction showed that the steps fell by half and the running time decreased by a factor
of 10 and confirm the applicability of Kron reduction for this analysis.

2.2 Conclusion of this chapter

In this chapter, a bibliographic revision was carried out in scientific databases to identify
recent studies on the themes power flow and homotopy. It can be stated that the concepts
of homotopy are associated with solutions to the power flow problem with distinct robust
approaches applied to large-scale cases starting from arbitrary points and for ill-conditioned
cases. Themes as optimal power flow, integration of intermittent renewable energy sources,
voltage stability were found and also motivated the present work.

In addition, the works related to the theme of this work appear in recent papers dating
from 2016 to 2020, which demonstrates the relevance of the proposed research.
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Chapter 3

The Power Flow Problem Formulation

3.1 Introduction

A classical problem of electric circuit theory is to model the system by the impedance be-
tween branches as well as the voltage parameters of the generators, to result in the calculation
of current flow and voltages in the nodes. The solution of the equation of these characteris-
tics involves the solution of algebraic equations because the interest is the determination of
an operation point [7].

However, there is a key difference in the input data of the system that governs the math-
ematical approach to treat the problem. The system loads are modeled as active and reactive
power, constant power consumption, resulting in set of nonlinear equations. Therefore, the
aggregation of this information generates a set of nonlinear equations that is normally solved
numerically.

Thus, in order to solve nonlinear problems by numerical methods, many researchers
proposed solutions with advantages and drawbacks from different points of view. The ones
that will be shown in this chapter are directly linked to applications in the load flow and are
well known in the literature.

3.2 The Power Flow Problem

An energy transmission system is basically composed of elements such as intercon-
nections, device models, load, generations, and other characteristics with device ceilings,
transformer tap control, capacitor/reactor switching, etc. This set of elements compose the
network parameters and can be modeled in order to form the network equations [4]. The
Kirchhoff law relating current and voltage on each bus can be put as:
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
I1

I2
...
In

 =


Y11 Y12 · · · Y1n

Y21 Y22 · · · Y2n

...
... . . . ...

Ym1 Ym2 · · · Ymn

 ·

V 1

V 2

...
V n

⇔
[
I
]
=
[
Ybus

]
·
[
V
]

(3.1)

where:

In phasor current injected into the network at node n;
V n phasor voltage to ground at node n;
Yii self admittance of the matrix [Ybus] in the node i;
Yij mutual admittance of the matrix [Ybus] between nodes i and j;
n number of nodes;[
I
]

injected current vector;[
V
]

nodal voltage vector;
[Ybus] admittance matrix.

Therefore, the current in the kth node is given by (3.2):

Ik =

Nb∑
m=1

Y kmV m. (3.2)

The complex power is defined as [32]

Sk = Pk + jQk = V kI
∗
k (3.3)

Pk + jQk = V k

[
Nb∑
m=1

Y kmV m

]∗
. (3.4)

Moreover, V k = Vke
jθk , V

∗
m = Vme

−jθm and Y
∗
km = Gkm − jBkm. Then, replacing it in

(3.4)

Pk + jQk = Vk

Nb∑
m=1

(Gkm − jBkm)Vme
j(θk−θm). (3.5)

The angular difference between bus k and m is θk−θm = θkm. Using Euler’s formula, where
ejθkm = cos θkm + j sin θkm, it is obtained

Pk + jQk = Vk

Nb∑
m=1

Vm(Gkm − jBkm) [cos(θkm) + j sin(θkm)] . (3.6)

Finally, by reorganizing (3.6) and separating the imaginary from the real part, the net active
power injected into bus #k, Pk, and the net reactive power injected into the same bus, Qk,
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are

Pk = Vk

Nb∑
m=1

Vm [Gkm cos(θkm) +Bkm sin(θkm)] k = 1, 2, . . . , Nb (3.7)

Qk = Vk

Nb∑
m=1

Vm [Gkm sin(θkm)−Bkm cos(θkm)] k = 1, 2, . . . , Nb. (3.8)

The injected power Sk can be composed of a load demand SDk plus a power generated
SGk in the bus k, resulting in the net power Pk and Qk

Sk = SGk − SDk


P k = PGk − PDk

Qk = QGk −QDk.

(3.9)

By considering (3.7) and (3.8), there are four variables Vk, θk, Pk and Qk associated to
each bus. Depending on the type of bus, two of them need to be specified and the other
ones must be calculated. These buses can be categorized as three types [32]. A first type
called slack bus, named also swing bus. It is used as reference bus, where voltage magnitude
and the voltage angle are given and are used to balance the system losses. A second type
denominated PQ bus, also named as load bus, where active and reactive power are specified.
In this bus the voltage magnitude and phase angle are computed. Usually, it represents the
bus where a load is connected. Finally, the PV bus, named also as controlled voltage bus,
where a voltage source is connected. In this bus the voltage phase and reactive power are
calculated. Usually in the PV buses, reactive power constraining must be taken into account
[33]. Tab. 3.1 summarizes the buses type with input and computed data.

Table 3.1: Buses type

Bus Type Named as Input data Computed data
Slack bus Swing bus Vk θk Pk Qk

PQ bus Load bus Pk Qk Vk θk
PV bus Controlled voltage bus Pk Vk Qk θk

The power flow problem (PFP) for a network of Nb buses consists of solving a nonlinear
system of algebraic equations, (3.7) and (3.8), representing the system modeled before ex-
cluding the slack bus equations. This exclusion is justified since the states associated to the
slack bus are known (bus voltage magnitude and angle). Also, for the polar representation of
voltages, the equations related to the reactive power balance equations can be removed from
(3.8). Mathematically, this set of information leads to the classical power balance equations
(PBEs). The general set of nonlinear equations for a generic bus #k for PQ- and PV-type
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will be given by the standard net power injection formulation in polar form:

0 = Pk − Vk

Nb∑
m=1

Vm [Gkmcos(θkm) +Bkmsin(θkm)] , k ∈ PQ or PV (3.10)

0 = Qk − Vk

Nb∑
m=1

Vm [Gkmsin(θkm)−Bkmcos(θkm)] , k ∈ PQ. (3.11)

Assume that the set of PQ buses will be denoted by NPQ; the set of PVs, by NPV ; and the
AC network is synchronous with only one slack bus in such way that Nb = NPQ+NPV +1.
For convenience, bus #1 is labeled as the slack bus in this work, and the voltage at this bus
has a known real value, V0. Hence, the number of equations (3.10)-(3.11) is n = 2NPQ +

NPV . Then, a compact notation for the set of nonlinear equations is given by

f(x) = 0 (3.12)

where x =
[
θT VT

]T ∈ Rn is the network state and f(x) is a map of the type f(x) : Rn 7→
Rn.

In general, the PBE solution is determined numerically using iterative methods. In the
sequence, we describe how this process can be carried out by exploring some numerical
techniques.

3.2.1 Gauss-Seidel method

The Gauss-Seidel method is an iterative method that estimates the bus voltage from the
active and reactive power delivered by the generation or supplied to the load connected, the
estimated voltages in the adjacent buses and the impedance associated with that bus [34]. As
an implicit method, when the solution at xn+1 use data from previous point xn and an initial
estimate at point xn+1, like a corrector algorithm, in each iteration an new set of voltages
are obtained and solutions are approaching the response until a maximum error is reached.
Starting by power equation (3.3), the current can given by (3.13) or expressed by admittance
and voltage associated (3.15)

Ik =
Pk − jQk

V
∗
k

(3.13)

Pk − jQk

V
∗
k

= Y kkV k +

Nb∑
n=1
n̸=k

Y knV n. (3.14)

The voltage at PQ-bus k is given by
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V k =
1

Y kk

Pk − jQk

V
∗
k

−
Nb∑
n=1
n̸=k

Y knV n

 . (3.15)

For PV-bus the reactive power shall be calculated first using equation (3.16)

Pk − jQk =

Y kkV k +

Nb∑
n=1
n̸=k

Y knV n

V
∗
k with n = k, then Pk − jQk = V

∗
k

Nb∑
n=1

Y knV n

Qk = −Im

(
V

∗
k

Nb∑
n=1

Y knV n

)
(3.16)

and then, by applying the result in the equation (3.15). The method solves one equation at a
time and uses the values obtained in subsequent iterations.

3.2.2 Newton-Raphson method

A standard technique employed to solve power flow equations is the Newton-Raphson
iteration method. Whereas the power flow equations, f(x), are formed by nonlinear algebraic
equations, the intention is to determine the value of x for which the function f(x) = 0.
Considering an initial estimate x(0) near the solution of problem x∗, one can determine the
distance between x(0) and x∗ by expanding the function f(x) close to x(0).

Let f(x) ∈ R be a scalar function where x ∈ R. The expansion of f(x) in Taylor series
around estimate x(0) is given by

f(x) =
∑
n=0

f (n)
(
x(0)
)

n!

(
x− x(0)

)n

f(x) = f
(
x(0)
)
+ f ′

(
x(0)
) (

x− x(0)
)
+

f ′′
(
x(0)
)

2!

(
x− x(0)

)2
+

f ′′′
(
x(0)
)

3!

(
x− x(0)

)3
+ · · ·

A linear approximation, i.e., disregarding higher order terms greater than one, yields

f(x) ≈ f
(
x(0)
)
+ f ′

(
x(0)
) (

x− x(0)
)
. (3.17)

Given that f(x) = 0, then
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x− x(0) = −
f
(
x(0)
)

f ′ (x(0))

with x− x(0) = ∆x, then an linear approximation of f(x) around x(0) is

f(x) ≈ f
(
x(0) +∆x

)
≈ f

(
x(0)
)
+

[
∂f

∂x

∣∣∣∣
x(0)

]
∆x ≈ 0. (3.18)

The iterative solution of the NR method for the ith iteration is obtained as

x(i+1) = x(i) +∆x(i) (3.19)

where the increment ∆x(i) is computed for a mismatch f(x(i)) as

∆x(i) = −
[
J
(
x(i)
)]−1

f(x(i)) (3.20)

and Jacobian matrix for f(x) ∈ Rn and x ∈ Rn as

J(x(i)) =
∂f(x)

∂x

∣∣∣∣
x(i)

=



∂f1(x)

∂x1

∂f1(x)

∂x2

· · · ∂f1(x)

∂xn
∂f2(x)

∂x1

∂f2(x)

∂x2

· · · ∂f2(x)

∂xn...
... . . . ...

∂fn(x)

∂x1

∂fn(x)

∂x2

· · · ∂fn(x)

∂xn


.

The iterative value x(i+1) converges numerically to the root x∗ when ∥f(x∗)∥∞ < ϵ for
ϵ > 0 is sufficiently small, where

∥f(x∗)∥∞ = max {|f1|, . . . , |fn|} .

In case the convergence is not verified for a specified number of iterations, say maxiter, we
consider that the problem is divergent and the iterative process is interrupted.

The classical methods employed to solve the power flow problem consider the Gauss-
Seidel (GS), Newton-Raphson (NR) methods and their variants which are based on simpli-
fications carried out in the Jacobian matrix. Techniques such as the Fast Decoupled (FD)
among others ones are some examples. The NR method is the standard method used in
industrial applications [8]. However, the performance of a power flow method is strongly
dependent of the system condition mainly due to the following factors [35]:

i. Large number of radial lines.

ii. Heavy loading conditions.
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iii. Existence of negative line reactance.

iv. Lines with high resistance to reactance ratios.

v. Initial guess point outside of the region of attraction or far away from the solution.

The aforementioned characteristics can cause divergence for most standard PFP solver
methods based on NR. In this case, the system is said as ill-conditioned [7, 8]. The solution
of a power flow for ill-conditioned cases is still a challenging even for most of the available
robust methodologies [35].

Milano in [8] classifies the PFP into four categories as follows: 1) well-conditioned, when
the PF solution exists and is reachable using a flat initial guess (i.e., all load voltage mag-
nitudes equal to 1 and all bus voltage angles equal to 0) and a standard Newton–Raphson’s
method; 2) ill-conditioned, when the solution of the PFP does exist, but standard solution
methods fail to get this solution starting from a flat initial guess; 3) bifurcation point, whose
solution of the PF exists but it is either a saddle-node bifurcation or a limit-induced bifurca-
tion; and 4) unsolvable, when the PF solution does not exist.

There is a situation where the initial guess is inside the region of attraction of the solution
point. Then, in this case, the NR method applied to this situation is expected to converge.
However, in some cases, it can occur divergence. In this case the initial guess is far away
from the solution and robust numerical methods should be used before the NR method.

A commonly used situation when solving the PFP is starting from an estimate of the
type flat start. However, when dealing with large systems, this alternative may fail when
using the traditional NR method. Several robust methods have been developed in order to
solve the ill-conditioned cases associated with the PFP solution. A technique based on the
Newton-Continuous philosophy were proposed in [8].

3.3 The Newton’s Continuous Philosophy

For better understanding, the introduction of the Newton-Continuous method, it is ex-
plained, initially, based on an analogy with the representation of a non-linear continuous
dynamical system in the time domain. And then, on its analog simulation in the time domain
using a numerical integration method.

Assume that (3.21) represents the standard form for the notation of a set of ordinary
differential equations (ODEs) of an autonomous system.

ẋ(t) = g(x(t)) (3.21)

where x(t) ∈ Rn, g(x(t)) ∈ Rn is a nonlinear function of x(t) and ẋ(t) represents the
derivative with respect to a continuous parameter t ∈ R+. From the next paragraph, the
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parameter t will be omitted from the argument of the variable x(t).

Equation (3.21) can be solved for the discrete time parameter t by a numerical integration
method. The simplest method known in the literature is the explicit Euler, also known as
forward Euler (FE) method, whose k-th step is performed as follows:

∆x(k) = ∆tg
(
x(k)
)

x(k+1) = x(k) +∆x(k) = x(k) +∆tg
(
x(k)
) (3.22)

where ∆t is the integration step, assuming that the variable x is a function of the parameter
t; x(k) is the vector with the values of x in step k; and ∆x(k) is the increment calculated in
step k to obtain the result in step k + 1 of the variable x.

According to [8], assuming a nonsingular Jacobian matrix J(x) as defined for (3.20), a
direct analogy between (3.20) and (3.22) allows one to write

g
(
x(k)
)
= −

[
J
(
x(k)
)]−1

f
(
x(k)
)
. (3.23)

Based on this analogy, the traditional NR method for solving nonlinear equations can be
interpreted as an application of the explicit Euler method (see (3.22) with ∆t = 1 to solve
ODEs. From then on, the methodology became known as Newton’s continuous method and
began to be extended to other numerical integration approaches, in addition to the explicit
Euler approach.

In the same work, Milano [8] proposed to use a Runge-Kutta approach to perform the
numerical integration in (3.21) instead of the explicit Euler solver.

3.3.1 Runge-Kutta method

A classical fourth order Runge-Kutta method (RK4) was used to determine the PFP solu-
tion through the numerical integration of (3.21). The RK4 is an explicit numerical integration
method based on computations of the state xn+1 from an solution at point xn. Considering
a ill-conditioned system this method presents a better results compared to NR. The RK4
method is given by considering the following parts for composing the main computations at
the i-th iteration [8]:

K1 = g
(
x(i)
)

K2 = g
(
x(i) + 0.5∆tK1

)
K3 = g

(
x(i) + 0.5∆tK2

)
K4 = g

(
x(i) +∆tK3

)
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x(i+1) = x(i) +
∆t(K1 + 2K2 + 2K3 +K4)

6
. (3.24)

The mismatch can be estimated using the half-step of the equation (3.25).

ξ = max
{
abs
(
K2 − x(i+1)

)}
. (3.25)

The time interval ∆t can be adapted based on the truncation error estimated in the inte-
gration method. Thus, the ∆t step is adjusted according to the equation (3.26). Based on
these rules, the time interval is increased if the truncation error is greater than a certain limit
and decreased if the error is lower [8]. Then, the following rule is suggested for modifying
∆t

If ξ > 0.01, then ∆t← max{0.985 ·∆t, 0.75}

If ξ ≤ 0.01, then ∆t← min{1.015 ·∆t, 0.75}. (3.26)

Aiming at an improvement of the Euler method proposed previously, Milano in [7]
proposed to use the implicit (backward) Euler method, instead of the explicit one.

3.3.2 Backward Euler method

The application of the Backward Euler (BE) method involves some additional manipula-
tions of the expression (3.21).

Considering the implicit differential equation, the equation (3.23) can be rewritten as
(3.27) and be integrated by using a BE method [36]

J
(
x(k)
)
g
(
x(k)
)
= −f

(
x(k)
)
. (3.27)

Now, we need to solve the set of nonlinear equation [36]

0 = ϕ
(
x(k)
)
= J

(
x(k)
) (

x(k) − x(k−1)
)
+∆tf

(
x(k)
)
. (3.28)

The equation (3.28) can be solved by the Newton method, where the sub-index i in (3.29)
(internal loop) indicates the ith Newton iteration for the computation of the k-th step (external
loop), given that the k − 1)− th step is known

x
(k)
i+1 = x

(k)
i −

[
ϕx

(
x
(k)
i

)]−1

ϕ
(
x
(k)
i

)
(3.29)
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and ϕx denote the Jacobian matrix for the function ϕ(x) and

ϕ
(
x
(k)
i

)
= J

(
x
(k)
i

)(
x
(k)
i − x(k−1)

)
+∆tf

(
x
(k)
i

)
. (3.30)

To integrate this system we need to solve two loops, the inner over i and the main loop
over k. To compute the term ϕ

(k)
x , it is needed to calculate the Hessian matrix of the power

flow H = fxx from (3.30), yielding

ϕx

(
x
(k)
i

)
= H

(
x
(k)
i

)(
x
(k)
i − x

(k−1)
i

)
+ (1 + ∆t)J

(
x
(k)
i

)
. (3.31)

In view of the complexity for determining and implementing H for the case of the power
flow in large-scale models, empirical tests were proposed and validated in [36]. Results of
experiments have demonstrated that the term H(x

(k)
i )(x

(k)
i − x

(k−1)
i ) has little impact on the

convergence process. Hence, the expression (3.31) can be drastically simplified when we
consider x(k)

1 = x
(k−1)
1 . Then, a reasonable approximation for (3.31) is

ϕx

(
x
(k)
i

)
≈ (1 + ∆t)J

(
x
(k)
i

)
. (3.32)

Therefore, (3.29) can be rewritten as follows

x
(k)
i+1 ≈ x

(k)
i −

[
(1 + ∆t)J

(
x
(k)
i

)]−1

ϕ
(
x
(k)
i

)
. (3.33)

Hence, with expressions (3.30) and (3.33), we find

x
(k)
i+1 ≈ x

(k)
i − (1 + ∆t)−1

[
(x

(k)
i − x(k−1)) + ∆t

[
J
(
x
(k)
i

)]−1

f
(
x
(k)
i

)]
(3.34)

which can be rewritten as

x
(k)
i+1 ≈

1

1 + ∆t

{
x(k−1) +∆t

[
x
(k)
i −

[
J
(
x
(k)
i

)]−1

f
(
x
(k)
i

)]}
. (3.35)

We considered in this work an implicit continuous Newton method (ICNM) using BE
with some simplifications, as proposed in [36] according to expression (3.35). In this solver,
the Hessian matrix is neglected and the solution of the inner loop for the index i is approxi-
mated with its first iteration. The author in [36] labeled it as ICNM-J1.

21



3.4 Conclusion of this chapter

This chapter presented the formulation regarding the power flow problem and some meth-
ods to solve the problem of an iterative form. The standard Gauss-Seidel method was intro-
duced considering its historical employment in the past. The classical Newton-Raphson
method was presented as a key tool for solving the PFP. However, its characteristics of lo-
cal convergence gave space recently to several researches in order to search new and robust
techniques to expand the convergence region of the PFP. In this sense, methods based on the
Newton’s continuous philosophy were proposed in the literature and reviewed in this work.
Among them, techniques based on numerical integration for solving a problem represented
by ODEs were discussed. Therefore, solver for nonlinear equations considering the Euler
method (forward and backward) and Runge-Kutta were studied to be compared with other
approaches involving the standard NR method.

In the next chapters a technique based on homotopy and using the NR method is proposed
in order to solve ill-conditioned PFP.
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Chapter 4

Fictitious Network Compensation

4.1 Introduction

It is well known that the NR method has quadratic convergence, and it is expected that it
converges when an estimate x0 is in the solution attraction region. However, even for small
equation systems, this estimate may be difficult to assign inside this region. Even taking
place within this region, the iterative process can still diverge [7]. Additionally, practical
results occur for a range of voltage magnitudes near network nominal voltages. In this sense,
for the solution x∗, the investigation in this work addresses the problem of finding a robust
strategy to solve the PFP when x∗ exists and the Jacobian matrix of f(x∗) is nonsingular.

In this work, the objective is to solve the nonlinear equations by an iterative method,
departing from an estimate x(0) equal to the flat start point. Additionally, other strategies of
initial estimate are investigated as Gauss-Seidel iterations and the DC Power Flow (DCPF)
[37]. However, in this chapter only the initialization by assuming a flat start guess is ad-
dressed. This strategy ends up being recommended for cases where the user has no idea
of the operating point of the system, such as when a previous operational condition is un-
known, or even under conditions of severe contingencies. Therefore, starting from a nominal
operating point always becomes a more conservative alternative.

The flat start initialization procedure which will be used further for the homotopy process
is based on an inclusion of a fictitious network compensation according to the idea proposed
in this work. Then, the objective in this chapter is to show how to form this fictitious network
compensation, before introducing the homotopy process itself. This first stage is known as
the "easy" solution at a process of homotopy. The procedure consists in determining an
initial fictitious network that at the end of the homotpy solver is extinguished. This way, the
state solution coincides with that one of the original power system model, i.e., without the
compensation network.
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4.2 Setting of a fictitious network compensation

The main purpose of this section is to explain the creation of a fictitious network for
giving a PFP solution which is equal to the own initial estimate. With this aim, we intend to
prepare the initial condition to formulate in the next chapter a homotopy problem departing
from this "easy" solution.

The interest is to solve the PFP from an estimate x(0). Then, the idea is to adjust a
fictitious admittance (case of PQ bus) or conductances (case of PV-type bus), which allows
us to obtain a solution x∗ = x(0) when the estimate x(0) is assigned for the search of the root
of f(x) = 0 in (3.12). The aim is to set a compensation network in such way that the solution
is identical to the own initial estimate.

Let x(0) be an estimate of the flat start type for the set of nonlinear equations in (3.10)
and (3.11) for the NR method. i.e., all phase angles are zero, and the voltage magnitude at
the PQ bus is equal to 1. The voltage magnitudes at controlled bus #k are kept constant and
equal to V0k. The converged solution in this situation when it occurs is verified for x∗, which
is the network state to balance power generations, loads, and losses in the grid.

Now, suppose we connect a compensation shunt admittance yk = gk + jbk at bus #k of
PQ-type of the same network and conductance yk = gk at the bus #k of PV-type. First, the
interest is to impose a known solution to the set of equations (3.10) and (3.11) through the
introduction of the compensated admittance. Second, the solution should be fitted in such a
way that it coincides exactly with the initial estimate x(0). This implies that the deviations
∆x(i) in (3.19) must be zero for any iteration i. Therefore, the solution of the PFP satisfies
Vk = 1 for PQ buses and Vk = V0k for PV buses, where V0k is the controlled voltage
magnitude at the PV buses or slack bus and all phase angles are zero.

For illustration, consider the schematic diagram of a power system model in Fig. 4.1.

Considering the bus #k as PQ buses, and flat start voltage initialization at bus #k, #m

and #j, V k = V j = 1.0∠0◦ and V m = V0m∠0◦. V01 is the voltage in the slack bus. There-
fore, the general set of nonlinear mismatch equations in bus #k for PQ-type, in equation
(3.10) and (3.11) will be given by the power injection formulation below.

∆Pk = Pk − VkVj [Gkj cos(θkj) +Bkj sin(θkj)]− VkV01 [Gk1 cos(θk1) +Bk1 sin(θk1)]−

−VkV0m [Gkm cos(θkm) +Bkm sin(θkm)]− VkVk [Gkk] (4.1)
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Figure 4.1: Schematic diagram to determine the power flow equations at a bus #k (PQ-type)
- First iteration with flat start point

∆Qk = Qk − VkVj [Gkj sin(θkj)−Bkj cos(θkj)]− VkV01 [Bk1 sin(θk1)−Bk1 cos(θk1)]−

−VkV0m [Gkm sin(θkm)−Bkm cos(θkm)]− VkVk [−Bkk] . (4.2)

Handling the equations (4.1) and (4.2) with Vk = Vj = 1, sin(θkj) = sin(θkm) = sin(θkk) =

0 and cos(θkj) = cos(θkm) = cos(θkk) = 1

∆Pk = Pk −Gkj − V01Gk1 − V0mGkm −Gkk (4.3)

∆Qk = Qk +Bkj + V01Bk1 + V0mBkm +Bkk. (4.4)

Note that in (4.3) and (4.4), the mismatches ∆Pk and ∆Qk are not necessarily zero at all.
However, we can add a shunt admittance in the bus #k, yk = gk+jbk and set the mismatches
zero. This shunt admittance modifies only the terms Gkk and Bkk in the matrix YBUS . This
works as we have a modified term G

′

kk = Gkk + gk and B
′

kk = Bkk + bk. Then, the new
expressions including the fictitious shunt admittance in the bus #k are

∆Pk = Pk −Gkj − V01Gk1 − V0mGkm − (Gkk + gk) (4.5)

∆Qk = Qk +Bkj + V01Bk1 + V0mBkm + (Bkk + bk). (4.6)

Therefore, imposing the condition for null mismatches, the compensated admittance values
at PQ buses can be adjusted as gk (4.7) and bk (4.8)

gk = Pk −Gkj − V01Gk1 − V0mGkm −Gkk (4.7)
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bk = −(Qk +Bkj + V01Bk1 + V0mBkm +Bkk). (4.8)

The same way, considering the bus #k as PV type as illustrated in the scheme of Fig.
4.2, and flat start voltage initialization at bus #k, #m and #j, V k = V0k∠0◦, V j = 1.0∠0◦

and V m = V0m∠0◦, the general set of nonlinear equations in bus #k for PV-type, in equation
(3.10) will be given by the power injection formulation below.
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Gkj+Bkj

G1k+B1k Gkm+Bkm

Gkj+Bkj

G1k+B1k

Figure 4.2: Schematic diagram to determine the power flow equations at a bus #k (PV-type)
- First iteration with flat start point

∆Pk = Pk − V0kVj [Gkj cos(θkj) +Bkj sin(θkj)]− V0kV01 [Gk1 cos(θk1) +Bk1 sin(θk1)]−

−V0kV0m [Gkm cos(θkm) +Bkm sin(θkm)]− V0kV0kGkk. (4.9)

Manipulating the equations (4.9) and with Vj = 1, sin(θkj) = sin(θkm) = sin(θkk) = 0 and
cos(θkj) = cos(θkm) = cos(θkk) = 1

∆Pk = Pk − V0kGkj − V0kV01Gk1 − V0kV0mGkm − V0kV0kGkk. (4.10)

Therefore, the compensated admittance values at PV buses can be adjusted setting
G

′

kk = Gkk + gk and the new expression including the fictitious shunt admitance in the
bus #k is

∆Pk = Pk − V0kGkj − V0kV01Gk1 − V0kV0mGkm − V 2
0k (Gkk + gk) . (4.11)

In the same way, imposing the condition for null mismatches at PV-type, gk can be adjusted
as (4.12)

26



V 2
0kgk = Pk − V0kGkj − V0kV01Gk1 − V0kV0mGkm − V 2

0kGkk

gk =
Pk

V 2
0k

− 1

V0k

Gkj −
V01

V0k

Gk1 −
V0m

V0k

Gkm −Gkk. (4.12)

In order to compute the fictitious admittances for the compensated network, a general-
ization for any system can be addressed for the mismatch equations as follows. For a PQ-bus

∆Pk = Pk −
∑

j∈ΩPQ

j ̸=k

Gkj − V01Gk1 −
∑

m∈ΩPV
m̸=k

V0mGkm − (Gkk + gk), k ∈ PQ (4.13)

∆Qk = Qk +
∑

j∈ΩPQ

j ̸=k

Bkj + V01Bk1 +
∑

m∈ΩPV
m̸=k

V0mBkm + (Bkk + bk), k ∈ PQ (4.14)

and for a PV-bus

∆Pk = Pk − V0k

∑
j∈ΩPQ

j ̸=k

Gkj − V0kV01Gk1 − V0k

∑
j∈ΩPV
m ̸=k

V0mGkm − V 2
0k(Gkk + gk), k ∈ PV

(4.15)

where ΩPQ and ΩPV represent a set of PQ and PV buses, respectively.

When PQ buses are considered, (4.13) and (4.14) are used simultaneously. However,
when bus #k is of type PV, only (4.15) is necessary. Hence, imposing mismatch equal zero,
the compensated admittance values can be adjusted as follows:

gk = Pk −
∑

j∈ΩPQ

j ̸=k

Gkj − V01Gk1 −
∑

m∈ΩPV
m̸=k

V0mGkm −Gkk, k ∈ PQ (4.16)

bk = −

Qk +
∑

j∈ΩPQ

j ̸=k

Bkj + V01Bk1 +
∑

m∈ΩPV
m ̸=k

V0mBkm +Bkk

 , k ∈ PQ (4.17)

gk =
1

V 2
0k

(
Pk − V0k

Nb∑
m=1

V0mGkm

)
, k ∈ PV. (4.18)

The fictitious shunt compensation powers inserted in the network are assumed to be of
the constant impedance load type in such a way that they modify only the full diagonal of
the original bus admittance matrix. We discard insertion of this compensation at the slack
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bus, because the interest is the state computation at PQ- and PV-type bus.

However, the main objective is to calculate the solution of the PFP formulated accord-
ing to (3.10) and (3.11). Therefore, the network of compensation needs to be completely
removed. This de-insertion can be carried out gradually until it is totally disconnected. The
idea is that as progressive withdrawal from the network occurs, PFP solutions are calcu-
lated and used for the subsequent phases of the new de-insertion PFP. Evidently, the speed
of the associated convergence process depends on the de-insertion rate of the compensation
network. This process of gradual removal of the fictitious shunt compensation from the net-
work and calculation of solutions of the PFP at each removal can be carried out by applying
a numerical procedure well known as homotopy [7, 11]. In the next section, this problem is
discussed and introduced to determine the free compensation PFP solution by considering
the flat start guess and the changes in the compensation network previously presented.

4.3 Conclusion of this chapter

In this chapter, the main idea regarding the construction of an initial stage for an estimate
of a PFP solution was addressed. The purpose is to insert a fictitious network composed
of shunt admittances at PQ- and PV-bus of the system. Since these shunt admittances are
inserted to allow the NR method starting from a flat start estimation, they need to be removed
in steps such that in the last stage the original PFP solution is reached. The objective is to
use the partial solutions in the intermediate steps as initial estimate for the ones subsequent
until the final stage.

The computations of the compensation shunt admittance are based on mismatch of the
power equations (3.7) and (3.8). In this case, there are distinction between PV- and PQ-bus.
By imposing null mismatch on all buses for the initial iteration, the value of the compensation
admittances is adjusted. An important aspect of this adjustment is that it is necessary to
change only the elements of the main diagonal of the Ybus matrix.

In the next chapter, it is shown that the construction of the fictitious network presented
in this chapter is implemented as the "easy" stage on a homotopy method to compute a PFP
solution.
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Chapter 5

The Guided Solution by Homotopy
Method

5.1 Introduction

This section introduces the Guided Solution by Homotopy - Newton-Raphson (GSH-NR)
solver addressed to obtain the PFP solution through a state homotopy path controlled by a
proper fictitious network compensation insertion and withdrawal.

Homotopy methods are robust numerical techniques applied for solving systems of non-
linear algebraic equations as (3.12) [15, 38]. They are also called numerical path-following
methods since they depend on a path emanating from an initial state to a final equilibrium
point. The problem consists in designing an appropriate parameterized nonlinear equations
system for a parameter h ∈ [0, 1]. The formulation takes into account that at the initial state,
defined for h = 0, the problem is "easy" to solve or has a known solution, while at the final
state, for h = 1, it is identical to the "difficult" problem formulated for finding the roots of
f(x) = 0 [38].

In this work, the homotopy process is formulated assuming the inclusion of parameters
to gradually modify a fictitious network compensated (formulation for the "easy" problem,
which has a trivial solution) modifying it until the original network is recovered (the "dif-
ficult" problem, which corresponds to find the zeros of (3.12)), i.e., free of the fictitious
network compensated. We also assume that the trivial solution of the "easy" problem is ex-
actly equal to the initial estimate for solving the NR problem at this stage of the homotopy
path. This way, the terms (4.16), (4.17) and (4.18) can straightforwardly be computed. The
trivial solution considered in the problem is the flat start estimate. However, any other type
could be imposed.
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5.2 Inclusion of a fictitious network

The homotopy technique applied to a specific problem depends on a homotopy map G

based on the original system of equations f(x) = 0 according to [7]:

G(x,h) = f(x,h) (5.1)

where h = [h1 h2 . . . hq]
T is the continuation parameter set; a map G is defined as G :

Rn+nh 7→ Rn. h is an independent variable such that G : Rn×Rnh 7→ Rn, where in this work
we assigned nh = 2. Therefore, the content of f(x,h) is adequately modified according to
how the homotopy process is implemented in (3.12) and incorporating the changes promoted
by the parameters h1 and h2 as explained in the sequence.

We propose implicitly defining the map G as follows. The parameters h1 and h2 are used
to modify

• the admittance matrix of the system, which initiates with a fictitious value and finishes
with its own original value at the end of the homotopy process;

• the value of impedances connecting the slack bus to all other adjacent ones to this bus
or, alternatively, other buses at the slack bus’ neighborhood.

The intended changes produce an analogous formulation similar to the "continuation
power flow" problem with two-continuation parameters. Suppose initially a 1-parameter
homotopy problem, where (5.1) and (3.12) are related according to an embedding parameter
h = t which is applied for the elements of a modified admittance matrix Ŷ(t). Then (3.10)-
(3.11) can be organized in the pattern of (3.12), where now the states x are dependent on the
parameter t. Changes in t leads to

dG(x, t) =
∂G

∂x
dx(t) +

∂G

∂t
dt = 0 (5.2)

generating the nonlinear system of Ordinary Differential Equations (ODEs)

Gx
dx(t)

dt
= −Gt, x(0) = x0 (5.3)

where Gx stands for Gx = ∇T
xG(x, t) is a Jacobian matrix of the homotopy problem and

Gt, for Gt = ∇T
t G(x, t) and∇x(·) stands for the gradient operator of (·) for the variable x.

Note that in (5.3), Gx needs to be nonsingular for all t. Then a homotopy path curve γ(t),
0 ≤ t ≤ 1, associated with the states at each t, has a finite arc length [38]. Case for some t

the Jacobian Gx is singular (the situation for a saddle-point), the resolution of the problem
fails, and the path does not reach the final state at t = 1. This introduces an important
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aspect of the definition of the homotopy approach applied to the resolution of finding the
appropriate solution to the equation f(x) = 0. However, this fact does not imply that the
"difficult" problem has no solution.

Therefore, the homotopy problem can be transformed into a "dynamical" problem [7],
also analogous to Newton’s continuous problem discussed in the Chapter 3 and proposed
in [8, 7, 36] for solving nonlinear equations. The problem can be extended for a multi-
parameter homotopy problem, according to the number of parameters defined in h. In this
case, a nonlinear Partial Differential Equation (PDE) system should be solved.

Different from the standard Continuation Power Flow Problem (CFP), where a loading
factor is changed to modify the system load/generation, in the case of the homotopy exists,
only one physical operation point, which is the last one determined by solving the "difficult"
problem. i.e., the intermediate operation points that are generated according to the "loading
factor" h have no physical meaning. Note that as the physical CFP, the homotopy also has
its numerical limitations in relation to the convergence. For instance, the straightforward
application of the NR method for this formulation when a saddle-point is reached leads to
the failure of convergence [7]. Then, how the homotopy problem formulation is proposed
can lead to a "physically" strong (or weak) fictitious network globally. In this sense, our pur-
pose in relation to the implementation of the homotopy problem is to act by modifying only
the content of the bus admittance matrix along the homotopy process. This means working
only with changes in impedances (admittances), either modifying impedance representing a
branch k-m or an equivalent fictitious load/generation. It is demonstrated that the homotopy
process can also be interpreted analogously as a nonlinear dynamical problem [7], where a
single-homotopy parameter is equivalent to the time t for a generic dynamical system. Con-
sequently, a similar simulation in analogy to the traditional transient stability study in power
systems [39] can be applied to evaluate the trajectories of the state path in the homotopy
problem. Then, considering these analogies, the original network is modified along the ho-
motopy process proposed in this work, emanating from a flat start guess up to reach a final
state when h1 = h2 = 1. Evidently, how this path is determined will depend on the iterative
process adopted and the discretization of the homotopy parameters h1 and h2.

Let Ȳkk be a diagonal entry of the original admittance matrix Y. Then, a convex homo-
topy [15] is adopted as follows. Firstly, the homotopy parameter, h1, 0 ≤ h1 ≤ 1, is applied
to compute a parametric dependent diagonal element as

Ŷkk = h1Ykk + (1− h1)(gk + jbk), k ∈ PQ. (5.4)

For PV-bus, bk is set to zero. No change is needed for the slack bus. See Fig. 5.1 and 5.2
for an illustration considering fictitious shunt compensation at bus #k. The fictitious shunt
elements at the bus are composed of susceptance b(1−h1)

k and conductance g(1−h1)
k . The branch

element y(h2)1k is controlled by the homotopy parameter h2, as explained in the sequence.
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Figure 5.1: Network compensation example by applying 2-parameter homotopy h1 and h2

and detailing the resulting circuit at a bus #k of the type PQ
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Figure 5.2: Network compensation example by applying 2-parameter homotopy h1 and h2

and detailing the resulting circuit at a bus #k of the type PV

Secondly, the parameter h2 is used to modify the admittances (or impedances) of the
branches connecting buses at the slack bus neighborhood Ωs. This parameter acts by chang-
ing the branch admittance value ykm ∈ Ωs connecting the bus #k to #m. We propose
changes in such a way that an updating in the branch admittance can be performed as

ŷkm = h2ykm + (1− h2)δykm, ykm ∈ Ωs (5.5)

where a scaling factor δ is adopted to "physically" reinforce the interconnections at the neigh-
borhood of the slack bus along the homotopy process. An artificial strategy of this nature
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aims to turn the region near the slack bus stronger and offer a “higher transmission capacity”
[39] for the respective links along with the homotopy process. This way, it is expected that
the transmission links that connect the slack bus have a wide range of power variation flex-
ibility. This can be useful not only during PFP execution but also throughout the homotopy
process. Remember that this can be seen as a "dynamic" process and that it is, therefore, sub-
ject to the effect of high nonlinearities throughout the simulation when varying the homotopy
parameter in the range [0,1]. We emphasize that the scaling-factor is entirely removed when
h2 reaches the unitary value. Fig. 5.3 exhibits a schematic illustrating a set of buses defined
for a region Ωs. The links in the region include up to two links beyond the slack bus (see
interconnections highlighted in red).
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Figure 5.3: Network compensation example by applying 2-parameter homotopy h1 and h2

and detailing the resulting compensation circuit at a bus #k of type PQ and using the scaling
factor δ for all the interconnection near slack bus (red color in the sketch)

The purpose is to handle only the reactance value of the impedances, zkm = rkm+jxkm =

1/ykm, since, in general, the resistances have small values. The strategy consists of reducing
(keeping, in the worst case) the reactance values by a positive factor δ ≤ 1 to elevate the
capacity of the transmission links at the region, Ωs, in the neighborhood of the slack bus.
Consequently, if the reactances of the original interconnection are xkm, k = 1, 2, . . . , nk,
(nk is the number of transmission links connecting buses #k and #m), then δ · xkm is the
modified reactance by the factor δ. Finally, the second parameter of homotopy, h2, is set to
modify this fictitious reactance while h1 < 1. This generates a fictitious branch impedance

ẑkm = rkm + j[h2xkm + (1− h2)δxkm)]. (5.6)

The scaling factor δ is a user-defined parameter, while we set the homotopy parameter h2

assuming only two natural values, 0 or 1. Hence, the parameter h2 acts as a switch to activate
or not the inclusion of δ, while the parameter h1 varies. For the experiments, empirically, a
unitary value for δ is always adopted on starting a homotopy process. In case of divergence,
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the value is reduced to 50%. If the divergence is kept, the last value is reduced again in 50%.
This process goes on up to reach a minimum threshold δmin. Each time the scaling factor
is modified, a loop involving the computations due to changes in h1 needs to be carried out
in the range [0, 1]. Therefore, an iterative problem established this way can be viewed as a
two-loop procedure consisting of an external loop for the variation of δ and an internal loop
involving steps dependent on changes in h1.

Finally, considering

• the inclusion of the fictitious shunt admittances for modifying a diagonal entry Ŷkk;
and

• the value of branch admittances ŷkm = 1/ẑkm ∈ Ωs,

an updated admittance matrix Ŷ is calculated with the changes promoted by h1 and h2 and
used for the execution of the PFP via NR method. This result produces a state x

(h1,h2)
new from

the initial estimate (previous state) x(h1,h2)
old in case of convergence of the NR method.

5.3 The NR-based solver

The polar representation for voltages and mismatches of power (see (3.10)-(3.11)) are
used to determine the PFP solution via homotopy as proposed in this work. The standard NR
method is the one employed to compute each state driven according to the homotopy path.
Hence, we denominated this strategy as GSH-NR.

Since the parameter h2 assumes a binary value, the states along the path are controlled
by the parameter h1, for a given value of the scaling factor δ and according to h2 = 0 (or 1).
In this work, we adopted a constant step ∆h1, in such a way that the embedding parameter
h1 is updated as h(k+1)

1 = h
(k)
1 +∆h1, k = 0, 1, · · · , N − 1, where N is the number of steps

for the discretization of h1 in the range 0 ≤ h1 ≤ 1.

Let k be an index for a point of the homotopy path. For this point, if we define h
(k)
1 , then

x̄
(k)
0 is an initial estimate for the variable x at the path point k, while x̄(k) is the determined

(converged) state by the NR method at the point k. The process starts with h
(0)
1 = 0, which

it is associated with the initial estimate x̄
(0)
0 leading to the trivial solution x̄(0) = x̄

(0)
0 = x0.

The resolution of the NR method along the homotopy path starts with the "easy" problem
solution x̄(0). This result is used as an initial estimate for the computation of the path state at
the next point. i.e, x̄(1)

0 = x̄(0). The process goes on to a generic path point k+1 in such way
that x̄(k+1)

0 = x̄(k), k = 0, 1, 2, · · · , N − 1. In the case of convergence for all N points, the
solution of PFP was found. Case a divergence of the NR occurs along the homotopy path,
the computations are interrupted, and a new strategy of searching for a converged solution
is initiated, considering two possible alternatives. The first one is simply to reduce step
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Figure 5.4: Flowchart illustrating the main procedure aspects of the GSH-NR solver for
solving the PFP

∆h1 and restart the "dynamic" simulation in the embedding parameter h1 (internal loop). A
second option, in case the reduction of the step fails, is to reduce the scaling factor δ and
restart the "dynamic" simulation involving h1 (external loop). Case these two alternatives
still fail, we consider that the iterative problem diverges.

Figure 5.4 illustrates a flowchart for the computation of the PFP following the
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methodology for the GSH-NR solver. The numerical resolution of the homotopy problem
aiming to obtain the PFP solution begins with the initialization of variables, parameters, and
establishment of thresholds for some parameters. The tolerance for the convergence of the
PFP for all homotopy steps is ϵ = 10−8 pu of power; maxiter is the maximum number of it-
erations for convergence of the NR method; while max_it_h controls the maximum number
of iterations allowed for solving the homotopy problem. The scaling factor for a link in Ωs is
always initiated with δ0 = 1. ∆hmin

1 is the minimum step acceptable to discretize h1, while
∆h1 is a constant step adopted along with the discrete computation of the homotopy path.
Since the scaling factor δ is defined, starting with the value δ0, the internal loop correspond-
ing to the steps for the discretization of h1 is performed. This internal loop goes on up to h1

reaches the unitary value. At this step, h2 is switched from 0 to 1, indicating that the last NR
problem will be solved, and a possible final solution of the PFP is searched. Even in case of
success for convergence, the result needs to be checked whether it is adequate considering
the voltages. For this verification, it is followed the definition in [16]. According to [16],
a “correct physical solution” can be acceptable, case the system voltages are in a usually
acceptable interval and the angle differences between two connected adjacent nodes are less
than 90°. In case of fail, the simulation is restarted initially by reducing the step length ∆h1

until the minimum value if necessary; else, the external loop begins with a reduced scaling
factor δ and the step length ∆h1 original. Even so, case none of these interventions leads to
success, we consider that the iterative process diverges and the execution must be interrupted.

At each step in the flowchart, the NR method uses an initial estimate x
(h1,h2)
old , which for

h1 = 0 corresponds to x
(h1,h2)
old = x0. The value x

(h1,h2)
new is the converged solution for the

steps h1 and h2. This value will be assigned to the next xold variable, which will be the initial
estimate for the computation of the variable xnew. In general, the NR method converges in
mean with 3 to 4 iterations at each step for h1. However, very small step length ∆h1 will
require a large number of discrete points and consequently a large number of iterations up
to reach the final solution of the PFP. Some works using the homotopy approach initially
adopt a large number of discrete points and reduce it along the iterative process according to
the convergence. In this work, we have kept constant the step ∆h1 along with a search and
modified it according to the flowchart shown in Fig. 5.4.

Simulations are developed and detailed in the sequence to verify the performance of the
proposed approach.

5.4 Conclusion of the chapter

This chapter presented the central methodology proposed in this work. The method of
calculating the solution to the power flow problem was explained based on the homotopy
method. The main contribution was to develop a PFP solution from intermediate solutions
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obtained along the path of the homotopy process. These intermediate solutions are used
as initial conditions for the subsequent ones. In this way, we start with estimation from
a flat start solution ("easy" solution) until reaching the final solution ("difficult" solution).
The elements of a fictitious network (see Chapter 4 for setting of this fictitious network)
along the homotopy process are modified through a first homotopy parameter. In addition, a
second homotopy parameter is used to reinforce the links close to the slack bus. However,
in the last stage of the homotopy path, these parameters assume a unit value, signaling the
removal of all dummy links. Thus, the final result of the homotopy process is obtained,
which corresponds only to the development of the original PFP.

In the following chapter, experiments are carried out, and the respective results are pre-
sented in order to demonstrate the effectiveness of the methodology proposed in this work.
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Chapter 6

Experiments and Results

6.1 Introduction

This section aims to present experiments in power system models of different scale sizes
with the objective of demonstrating the efficacy of the homotopy-based approach proposed
in this work to solve the PFP. The results are compared with those ones obtained from simu-
lations carried out by using other numerical techniques or approaches for calculating a PFP
solution. All tests are carried out in the MATPOWER tool [40] and by employing adapta-
tion in its native code to implement the homotopy-based problem. The MATPOWER’s case
database was accessed with its vast set of benchmarks and used for performing the simula-
tions. We have considered all test systems which present divergence for the standard NR for
an initial estimate of the flat start type.

The following cases from the MATPOWER’s database and also studied in [41] were
used to assess simulations aiming to evaluate the impact of the initial estimate on the meth-
ods: case1888rte, case1951rte, case3012wp, case3375wp, case6515rte,
case13659pegase, and case_ACTIVSg70k. Besides that, two smaller test systems,
case9 and case300, were investigated to demonstrate the effect of the homotopy-based
technique for well-conditioned models. i.e., simulations whose initial estimate of type flat
start also converge to the standard NR method. The data for each one of the test systems can
be accessed in [42] and the main physical characteristic of the systems are summarized in
Tab. 6.1.

Both the database and code were properly adapted to allow the simulations and the im-
plementation of the method based on homotopy, as described in this work. In this sense, for
convenience, the first data line in the bus data case files must be assigned to the slack bus,
as well as the first data line on the generator data. Therefore, we ensure that the slack bus
will always be the first one on the bus labels, considering reference, PQ and PV buses. Also,
only one slack bus is assumed.

Several methods have a particular script in the MATPOWER tool [40]. We have used the
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Table 6.1: Main physical characteristics of the studied cases

Number of elements
CASE Buses Generators Committed Gens Loads Shunts Branches Transformers

3 3 1 1 2 0 2 0
9 9 3 3 3 0 9 0

300 300 69 69 201 29 411 107
1888rte 1,888 296 290 1,000 45 2,531 2,531
1951rte 1,951 390 365 1,016 24 2,596 2,596
6515rte 6,515 1,368 684 3,673 102 9,037 9,037
3012wp 3,012 502 385 2,271 9 3,572 201
3375wp 3,375 596 479 2,434 9 4,161 383

13659pegase 13,659 4,092 4,092 5,544 8,754 20,467 5,713
ACTIVSg70k 70,000 10,390 8,107 32,460 3,477 88,207 16,855

NR method in its full version to carry out the simulations and compare their results with the
homotopy-based approach results. For this situation, simulations were performed with the
NR method by considering firstly the initial estimate given in MATPOWER’s databank and
secondly, an estimate, where a guess of flat start type is imposed.

Additionally, some tests were performed to verify the influence of initial estimates for
the PFP solution calculated by the classical NR method. We have always performed the
simulations by considering the initial estimate given in MATPOWER’s databank and an
assessment, where guesses of flat start, DC Power Flow (DCPF), and Gauss-Seidel (GS)
types are imposed.

In other words, the purpose is to employ the NR method for an initial estimation and ver-
ify its status related to the convergence. In case of divergence, we simply run MATPOWER
assuming the initial estimate assigned in its native case file and assume the solution as a ref-
erence for comparison with other approaches. For large-scale systems with initial estimate
from MATPOWER, convergence via the NR method is successfully obtained. This occurs
because the estimate is assigned as an approximation close to the effective solution, as will
be verified later in the simulations. In a second simulation, the GSH-NR is employed, always
considering only the initialization of flat start type.

We perform simulations on ten test systems with 3, 9, 300, 1,888, 1,951, 3,012, 3,375,
6,515, 13,659 and 70,000 buses. Simulations on the smallest test system aim to explain the
use of the GSH-NR in a tutorial form. The other simulations were investigated considering
the three types of estimates for the NR method, and the results were compared with the
reference solution obtained via MATPOWER with its native database estimate.

In the simulations considering the GSH-NR, the trivial solution for the PFP is obtained
for h1 = 0 and is equal to the own "flat start" initial estimate. The result is verified because
all mismatches are zero and invariant for the initial values of the homotopy parameters h1

and h2. At point h1 = 1, the final solution for the PFP is reached in the case of a convergent
problem. The application of the procedure highlighted by the flowchart in Fig. 5.4 allows
for executing all steps for computations and validation of results.
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The GSH-NR method results were then compared to the solution determined by the NR
method via MATPOWER, when this latter uses an initial estimate closer to the solution.
Additional results were generated based on simulations assessed using other numerical tech-
niques for the resolution of the PFP. Two techniques exploit the philosophy of the Con-
tinuous Newton’s Method (CNM) as proposed in [7, 8]. Then, considering this idea, we
perform simulation on a straightforward approach that uses the Runge-Kutta formula (de-
fined in [8] as classical fourth-order Runge–Kutta formula) (RK4) to solve the CNM; and
an implicit formulation of the CNM denominated Implicit CNM (ICNM) [36]. The method
uses a Backward Euler integration method to solve the problem. For this last approach, it was
implemented the alternative called ICNM-J1, for which the computation of a Hessian matrix
is avoided. A third technique uses a homotopy-based method called Injection Homotopy
(IH) [17]. By this approach, an equivalent power is injected at each bus for initiating the ho-
motopy process. Therefore, at this step, the consumption (generation) of the bus is supplied
(absorbed) by the own bus. The amount of fictitious power is removed until it disappears
entirely at the end of the homotopy process.

Finally, simulations were conducted by considering operational limits of reactive power
at the power generations. The goal of these simulations is to demonstrate that the challenge
is to compute the initial PFP convergent solution for the operation point free of limits. Then,
using this solution as an initial guess for the constrained cases, the convergence is obtained by
applying only the standard NR for a few iterations to find the solution with such constraints.

An essential aspect of the GSH-NR solver application is computing the middle path
between the initial and the final states. Only the final one needs a high accuracy for the
mismatches. Then, considering this argument, we have suggested relaxing the tolerance for
a PFP convergence along the path of intermediate states. The fact is justified since the idea is
to obtain closer states at each step h1 until the final equilibrium point is achieved. Based on
these fundamentals, we adopted for simulations the power mismatch tolerance ϵ = 10−8 pu
for the results of all PFP, except those ones from intermediate states of a homotopy path. In
this case, a relaxed tolerance ϵ = 10−2 pu and a maximum of 6 iterations are adopted.

All simulations were performed by using MATLAB R2018a with MATPOWER 6.0 [42].
To provide comparisons of the time results of different computers, the simulations were run
on a personal computer, Intel(R) Core(TM) i7-8565U 8th Gen, 256 GB SSD CPU, 1.80 GHz,
8 GB RAM, 64-bit OS.

6.2 Experiments on a 3-bus test-system

Some tests were carried out on a 3-bus test system to illustrate the use of the GSH-NR
solver. The one-line diagram of the network is exhibited in Fig. 6.1. The single system
is modeled by a slack bus and two equivalent PQ buses. Two interconnections link the
buses. Only longitudinal admittances connect the buses. The two loads at buses #2 and
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#3 are of type constant power, and their complex values are SL2 = 0.70 − j0.30 pu and
SL3 = − 0.35 − j0.12 pu, respectively. The admittances linking two buses are y12

and y23 computed, respectively, as the inverse of the impedances z12 = 0.5 + j0.8 pu and
z23 = 0.5 + j0.9 pu. The voltage at the slack bus is set V 1 = 1.0∠0o.
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Figure 6.1: One-line diagram for the 3-bus test system

The application of the homotopy process begins with the definition of the pertinent pa-
rameters h1, h2, δ, gk and bk. First, we compute gk and bk according to (4.16) and (4.17)

g2 = P2 −G23 − V01G21 −G22

b2 = − (Q2 +B23 + V01B21 +B22)
(6.1)

g3 = P3 −G32 −G33

b3 = − (Q3 +B32 +B33)
(6.2)

knowing that the admitance element yij = gij + jbij =
1

Rij + jXij

, and the element of Ybus,

out of the main diagonal, Yij (i ̸= j), is −yij , then

G21 + jB21 = −y21 = −
1

0.5 + j0.8
= −0.562 + j0.899

G23 + jB23 = −y23 = −
1

0.5 + j0.9
= −0.472 + j0.849

(6.3)

and the main diagonal of Ybus, Yij(i = j), consists of the sum of the adjacent elements, as

G22 + jB22 = y21 + y23 =
1

0.5 + j0.8
+

1

0.5 + j0.9
= (0.562− j0.899) + (0.472− j0.849)

G33 + jB33 = y23 =
1

0.5 + j0.9
= 0.472− j0.849

(6.4)

41



therefore, according to (6.1) and (6.2)

g2 = −0.70− (−0.472)− 1.0 · (−0.562)− (0.562 + 0.472)

b2 = − [0.3 + 0.849 + 1.0 · 0.899 + (−0.899− 0.849)]
(6.5)

g3 = 0.35− (−0.472)− 0.472

b3 = − [0.12 + 0.849 + (−0.849)]
(6.6)

giving the values g2 = −0.70 pu, b2 = −0.30 pu, g3 = 0.35 pu and b3 = −0.12 pu. These
parameters depend only on the configuration and loading of the original network. Then,
when the estimated values for the voltages are V

(0)
2 = V

(0)
3 = 1 pu and θ

(0)
2 = θ

(0)
3 = 0o, the

net load at each bus is zero. Therefore, the result found for the nodal voltages from the power
flow resolution for h1 = 0 is trivial and equal to 1.0 pu for all buses. It is worth noting that
the complex values for gk + jbk, k = 2, 3 coincide with −S∗

L2 and −S∗
L3 because there is

only the slack bus as a controlled voltage source in the system and set for 1,0 pu. In addition,
if the voltage on the slack bus were different from 1 pu, the values gk and bk would need to
be corrected with the assigned voltage at the slack bus, according to expressions (4.16) and
(4.17). Likewise, if there were a PV bus, the voltage controlled in the generating bus would
also need to be used for correcting gk and bk in PQ bus.

The second homotopy parameter h2 is also associated with the scaling factor δ to modify
an impedance zkm to ẑkm, as explained in Section 5. Due to the small size of the model, only
the connection 1-2 is chosen to compose the region Ωs. This means that h2 is used to switch
from the modified bus impedance ẑ12 to the original impedance z12. Then, the impedance
z12 will be modified according to the homotopy parameter h2 as ẑ12 = δz12 for h1 < 1, i.e.,
h2 = 0; or ẑ12 = z12 for h1 = 1, i.e., h2 = 1.

Simulations were carried out by applying the NR method with a flat start estimate
to determine the PFP solution. The calculated nodal voltages for buses 2 and 3 were
V 2 = 0.909∠−32.228o pu and V 3 = 1.131∠−17.859o pu, respectively. Six iterations
were needed to reach the convergence. In this case, the use of the GSH-NR is senseless,
given that the standard NR method is adequate to resolve the problem directly. On the other
hand, the homotopy method was used to solve the problem and verify how the step ∆h1 and
the scaling factor δ influence the computation of the PFP. We emphasize that the straightfor-
ward use of the NR method in this study would be sufficient to obtain the PFP solution at the
operation point and that the example has a tutorial purpose only.

The simulations involving the homotopy process have considered changes in step ∆h1

for two values, 0.1 and 0.2. For both investigations, it was assigned the values 0.05, 0.1, 0.5,
and 1.0 for the scaling factor δ. Fig. 6.2 exhibits the results for nodal voltage magnitude
and angle in bus 2 (similar results were also obtained for bus 3 and not shown here). The
simulations show that the homotopy parameter h1 is sensitive to step ∆h1 for small values of
δ. When ∆h1 = 0.1 (see Figs. 6.2.a and 6.2.b), the final state of the homotopy path converges
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Figure 6.2: Trajectories along to the homotopy process, when ∆h1 = 0.1 (cases (a) and (b))
and ∆h1 = 0.2 (cases (c) and (d)), of the quantity values of voltage magnitude and angle at
bus 2
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to a Low Voltage (LV) operation point for δ = 0.05. The value is V 2 = 0.631∠−49.73o pu,
which has well smaller magnitude than the High Voltage (HV) V 2 = 0.909∠−32.228o pu,
calculated by the MATPOWER’s software. Higher values for δ leads to the convergence to
HV point, despite it occurring through different paths. An increment in ∆h1 to 0.2 (see Figs.
6.2.c and 6.2.d) reduces the influence of δ on the search for the HV solution, however, it still
affects the homotopy path.

Despite the simplicity of the model, we can conclude from the simulations that both ∆h1

and δ affect the homotopy path, and this sensitivity can be significant for some specific power
system model.

6.3 Experiments on a 9-bus test system

In this subsection, the results for experiments from a classical 9-bus test system are pre-
sented. The data of this small test system were obtained from MATPOWER’s databank
(case9.m file) [37]. When the NR method is applied to solve the power flow problem
for the scenario represented by the network, the process is convergent using an initialization
flat start. We present these tests to account for this type of process, which is less restrictive
for the methodology proposed in this work. Additionally, the reader can follow up on the
methodology using a reduced and more accessible system regarding the handling of results.
The system has 9 buses, of which, in addition to the slack bus, there are two generation buses
and six load buses.

Regarding the homotopy-based method application, we performed simulations by using
δ = 0.1. The homotopy parameter h1 was incremented by a step equal to 0.1. Fig. 6.3
shows the evolution of the voltage magnitudes and phase angles as a function of h1. Until
the value h1 = 0.9, the value h2 is zero, which indicates that the scaling factor δ = 0.1 is
used to reduce the impedance of the interconnection connected to the slack bus. This justifies
the jumps on the curves in the interval for h1 between 0.9 and 1.0 when h2 jumps to unity.
A better refinement could be implemented for h1, adjusting a smaller step for this interval.
However, our empirical results have demonstrated small computational gains in relation to
the concern of an additional burden due to the need to run new power flow problems for new
values of the parameter h1.

Other experiments were also performed for δ = 0.01 and δ = 0.5. However, unless
the natural changes at homotopy trajectories, the final results agree with those ones found
by employing δ = 0.1. All results determined by the homotopy-based approach concerning
the final state of the systems are in accordance with those ones found by the traditional NR
method.
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Figure 6.3: Evolution of the quantity values of voltage (a) and angle (b) with h1 for the 9-bus
system

6.4 Medium to large-scale test system models

This subsection provides a descriptive summary of medium to large-scale test systems
used to assess simulations in the remainder of this work. All the test system model data can
be found in the MATPOWER’s case databank (see additional details in [37]), and any power
system can be tuned to fit MATPOWER. In the subsequent studies, the test systems were used
to evaluate the performance of the proposed method and compared with the performance of
other techniques. The initialization of the NR method is also investigated for alternatives of
initial estimate different from the flat start.

6.4.1 300-bus system

The test system is known as the IEEE 300-bus system. It is a synthetic model created
by the IEEE Test Systems Task Force in 1993 and is a benchmark widely used for PFP
and optimal PFP studies [43]. The PFP running for this test system with the NR method
converges for an initial estimate of type flat start. The inclusion in this study is justified to
have also results at all for a well-conditioned model.
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6.4.2 European RTE models

They are test system models consisting of some equivalent networks of the French high
voltage transmission system [44]. Three test systems were used in our simulations, known
as case1888rte.m, case1951rte.m, and case6515rte.m. The number of com-
ponents in each equivalent model, therefore, will depend on the size of the selected model.

6.4.3 Polish model

It consists of models representing the Polish’s system during the winter of 2007-08
evening load peak conditions [37]. Two equivalent test systems corresponding to the
case3012wp.m and case3375wp.m (the latter with bus #10,287 isolated) are studied
in this work.

6.4.4 13,659-bus Pegase test system

This network base case represents the size and high voltage transmission network of
a European equivalent system, including voltages ranging from 110 kV to 750 kV. The
model has 13,659 buses, 4,092 generators, and 20,467 branches (see [45] for additional de-
tails). All information in relation to the data can be obtained from MATPOWER’s databank
(case13659pegase.m).

6.4.5 Synthetic USA test system

The model presents 70,000 buses and represents a synthetic eastern United States power
system model, as presented in [46, 47]. The model is in MATPOWER’s databank as file
case_ACTIVSg70k.m. We have used the same data file, but moving the slack bus data
line to the first position at the bus data allocation.

6.5 Simulations on the medium to large-scale test systems

This subsection aims to describe the results of simulations at all eight test systems pre-
sented in Subsection 6.4. For all simulations, the equipment’s operational limits are assumed
free.

The base cases of each test system were evaluated by using the initial estimate set in
the MATPOWER’s native case databank (NR-MAT). For this condition, they all presented
convergence for a solution for running the PFP by using the MATPOWER’s solver based
on the classical NR, as can be seen at columns eight and nine in Tab. 6.2. Such converged
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values are adopted here as the reference result for comparison purposes. However, when a
flat start estimate is adopted for the MATPOWER’s NR solver, just the case300.m reached
convergence, yielding the expected reference result (see 2nd and 3rd columns). All other
cases had divergence for the standard NR solver, as can be seen at columns two and three.
Two different forms of establishing an initial guess for the NR solver were evaluated for
the test systems. The first one is based on the DC power flow (DCPF) used to compute
only voltage angles. A second one is based on two iterations of the Gauss-Seidel (GS)
method initializing from a flat start estimate. Tab. 6.2 summarizes aspects of convergence
and required iterations for convergence for these conditions. Columns four and five show
the status for the initialization by DCPF and the necessary number of iterations (iter) for
convergence for the NR solver, respectively. Columns six and seven are similar results for
initialization with two iterations of the GS method. The last column presents the number of
iterations required for convergence by the NR solver when the MATPOWER’s initialization
is adopted. Note that for both cases 1888rte and 1951rte, the initialization is the own solution
of the PFP.

Even with the initialization with GS, the NR solver cannot correctly solve the PFP to the
two most significant models. Additional iterations allowed to the GS method do not improve
the NR solver’s performance. On the contrary, it causes deterioration of the convergence.

The study was extended to the evaluation aiming for improvements based on the proposed
GSH-NR method and three other established approaches. The alternative approaches are
based on an Injection Homotopy (IH) [17]; Backward Euler (BE) solver for determining the
PFP solution following the implicit continuous Newton’s method (CNM) philosophy [36];
and an RK4 solver to assess the PFP solution now with an explicit approach for the CNM phi-
losophy [8]. All simulations considering these techniques assumed a flat start initialization
since it was a more rigid form of initialization for the iterative NR-based methods. Besides
the initialization, all these techniques are parameter-dependent. The simulation results for
the four approaches are given in Tab. 6.3.

The BE method needs the setting of a step α, inserted in column two. This parameter is

Table 6.2: Simulations with initial estimate for the NR computed from different estimate,
including the flat start type

NR guess NR
CASE NR-flat iter DCPF iter GS iter NR-MAT iter

300
√

5
√

5
√

5
√

5
1888rte X -

√
5
√

6
√

1
1951rte X - X –

√
6

√
1

6515rte X -
√

7
√

7
√

2
3012wp X - X –

√
5

√
3

3375wp X - X –
√

5
√

4
13659pegase X -

√∗ 6
√∗ 6

√
5

ACTIVSg70k X - X – X –
√

6√
: convergence; X: divergence;√∗: convergence to a different solution.
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equal to ∆t as defined in Subsection 3.3.2 In this work, the step is kept constant along with
the iterations, whose number for convergence is indicated in column three. The parameters
and iterations for the RK4 solver are shown from the fourth column up to the seventh one.
The RK’s step is usually defined as h = ∆t (see Subsection 3.3.1). In this work, it will
be called α to avoid double definition with the parameter h used in the homotopy context.
Then for the RK4 solver, we adopt a constant step α1 until the iteration iter1. After that,
the step is changed to α2, when the convergence is not obtained for the iteration iter1. It is
kept constant for the remainder of iterations. In the seventh column is indicated the global
number of iterations for convergence.

The injection homotopy described in [17] was implemented being the homotopy-based
method for comparison with the performance of the GSH-NR. It was also carried out an adap-
tation to include phase-shifter models on the control performed by the homotopy parameter.
Without this control, it was verified divergence on several test systems. The implementation
of the method is based on the compensation of constant power injection (load/generation)
along the homotopy path. Therefore, fictitious generations and loads are connected to the
network and removed gradually by the insertion of the homotopy until the final state. We
adopt here for this method a homotopy parameter h, which is discretized in steps ∆h. The
eighth and ninth columns in Tab. 6.3 gives step ∆h and the number of iterations required
to solve the homotopy problem. Step ∆h is set initially in 0.5. In case of divergence, it is
reduced by a half until a minimum threshold 0.05. Therefore the number of iterations shown
in the table is equal to the number of runs of the NR problem.

The results from the GSH-NR solver are shown from the tenth to the twelfth column. The
tenth column exhibits the final step ∆h1, for the discretization of the homotopy parameter h1.
According to the flowchart in Fig. 5.4, the step starts with ∆h1 = 0.5 and is reduced to a half
in case of divergence of the NR method the first time along with the current homotopy path.
This fact causes the restart of the computations requiring an updated ∆h1. For this condition,
the step is reduced following this strategy until the threshold ∆hmin

1 be reached. Step ∆h1

can reach its low limit. In this case, the scaling factor δ must be reduced (external loop
action) by a half and the internal loop that control the variation of h1 is activated, beginning

Table 6.3: Performance of the GSH-NR and other techniques for simulations on the eight
test systems

BE RK4 IH GSH-NR
CASE α iter α1 iter1 α2 iter2 ∆h iter ∆h1 δ iter

300 104
√

5 1.0
√

2 1.6
√

5 0.5
√

2 0.5
√

1.0 2
1888rte X – X – X – 0.5

√
2 0.25

√
1.0 5

1951rte X – X – X – X – 0.25
√

1.0 5
6515rte X – X – X – 0.25

√
6 0.0625

√
1.0 19

3012wp 1.0
√

37 0.1
√

2 1.6
√

6 0.5
√

2 0.25
√

1.0 6
3375wp 1.0

√
37 0.1

√
2 1.6

√
6 0.5

√
2 0.25

√
1.0 6

13659pegase 100
√

9 0.1
√

2 1.6
√

7 0.25
√

6 0.25
√

0.125 19
ACTIVSg70k 0.1

√
259 X – X – X – 0.125

√
1.0 11√

: convergence; X: divergence.
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Table 6.4: Execution time in seconds for the tests carried out according to Tab. 6.3 (iteration
number between parenthesis)

CASE BE RK IH GSH-NR NR
1888rte – – 0.0415 (2) 0.495 (5) 0.0208 (1)
1951rte – – – 0.550 (5) 0.0338 (1)
6515rte – – 0.676 (6) 2.185 (19) 0.1116 (2)
3012wp 0.6187 (37) 0.401 (8) 0.123 (2) 0.4412 (6) 0.0570 (3)
3375wp 0.6902 (37) 0.465 (8) 0.131 (2) 0.458 (6) 0.0764 (4)

13659pegase 0.7304 (9) 2.27 (9) 2.511 (6) 8.19 (19) 0.4425 (5)
ACTIVSg70k 139.7 (259) – – 33.77 (11) 3.072 (6)

again from the value ∆h1 = 0.5. While a complete homotopy path is not concluded, this
process continues until the external loop with δ also reaches a minimum value. Therefore,
the total number of iterations accounted for in the twelfth column is the sum of all number
of NR’s solutions necessary to reach the final state on the finite homotopy path search to
calculate the PFP’s solution.

Remember that an NR solver in the homotopy process "solves a PFP" at each point of the
homotopy line search h1 ∈ [0, 1]. Each one of these PFPs presents a mean of 3 to 4 iterations.
As we are interested in obtaining the final solution of the PFP (the "difficult" problem) from
an initial estimate based on a flat start, the intermediate states of the homotopy path are not
physically significant. Therefore, we suggest constraining the maximum number of the NR
iterations, maxiter, to check convergence and relax the tolerance. For this intermediate point
of the homotopy path we have considered at most six iterations, and a tolerance 10−2, which
is significantly reduced compared to the tolerance 10−8 kept to the computation of the final
state.

The execution times for the simulations of the test systems were measured. The same
conditions in Tab. 6.3 were considered, assuming all convergent situations. Tab. 6.4 presents
the runtime necessary to perform the computations in Tab. 6.3. At the side of the time,
between parenthesis, is given the number of iterations which are also verified in Tab. 6.3.
As can be seen from both Tabs. 6.3 and 6.4, considering flat start estimation, the GSH-NR
and BE solvers are able to resolve the PFP for the most significant test system. However, the
BE method demands a high cost when the computational burden is compared. Additionally,
while the GSH-NR is able to find a solution to the PFP for all test systems, the BE solver fails
to calculate a solution in the case of the RTE’s equivalent models. The GSH-NR requires
high computational cost compared to the standard NR figure. This is verified because the NR
results are obtained from the initial estimate closer to the solution defined in MATPOWER’s
case databank.

In the sequence, specific studies related to the GSH-NR are performed on the two biggest
test model to evaluate the impact of the step ∆h1 and δ, since they are parameters that can
affect the convergence of a given test system. An example is found in Tab. 6.3 for the
case13659pegase, which is affected by both ∆h1 and δ (see tenth to the eleventh column

49



in Tab. 6.3). We investigated the influence of these parameters on the two biggest test models
in the following subsections.

6.6 Experiments on a 13,659-bus system

This subsection provides results for experiments assessed for a large-scale system. The
simulations demonstrate the necessity for using the scaling factor δ in the convergence pro-
cess and the robustness of the method to be guided to the solution when the homotopy-
based method is applied. Simulations were carried out on the network base case obtained
from MATPOWER’s databank (case13659pegase.m). The system represents the size
and high voltage transmission network of a European equivalent system, including voltages
ranging from 110 kV to 750 kV. The model has 13,659 buses, 4,092 generators, and 20,467
branches (see [45] for additional details).

We have performed the simulations with the NR method by considering the initial es-
timate given in MATPOWER’s databank and a second estimate, where an initial estimate
of flat start type is imposed. When the initial estimate from MATPOWER is used, the NR
method converges. However, for the flat start initialization, the NR method is divergent. The
MATPOWER’s initial estimate for running the NR method is illustrated in the plots of Fig.
6.4. The solution of the PFP is included in the same plot. We can verify that the solution and
initial estimate have very close values. This pattern contributes to the convergence of the NR
method.

The application of the homotopy-based method depends on the usual parameters, as done
for other experiments described previously. The scaling factor δ was applied for the single
impedance between the low and high voltage buses connecting the slack bus (at the low volt-
age side) according to the homotopy parameter h2. As usual, a step 0.1 was adopted for h1.
However, concerning the parameter δ, its value can affect the process of convergence. Then,
some experiments were performed to verify its impact on the final state results. Consider-
ing that the system is ill-conditioned, judging by the divergence of the problem with the flat
start type initialization [8], a maximum δ value was investigated to assess its impact on the
analysis. This value was determined iteratively, starting with small δ values until reaching
a limit for which the state values either diverge or are very different from those previously
computed for smaller δ. Then, following this procedure, four situations were analyzed for
the values 0.01, 0.1, 0.12, and 0.13.

The plots in Figs. 6.5, 6.6 and 6.7 illustrate curves of trajectories of magnitude and
phases of voltages (some states) involving varying aspects δ. The magnitude and angle of
voltages at the index of buses #461, #3054, #7130, #8575, and #9846 are monitored.
From the voltage magnitude plots, no significant variation is observed. On the other hand,
when the analysis involves the phase angles, a big change along the homotopy process is
verified, augmenting δ. These elevated values occur mainly in the interval for h1 between
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Figure 6.4: Initial estimation and final states for the 13,659-bus system

0.2 and 0.8. The angle curves are practically continuous for δ until 0.12. From Fig. 6.7.b,
which corresponds to the case δ = 0.13, the angles suffer discontinuity. This characteristic
indicates that the operation point changed to the other condition in relation to the previous
states obtained for smaller values of δ. This is typical of an unstable voltage operation
point considering the elevated variation in the phase. In fact, we computed the generation
produced by the slack bus for the final homotopy state (h1 = 1), and active and reactive
power generation were 0.7687 pu and 0.1581 pu, respectively, for values of δ ≤ 0.12. For
δ = 0.13, the same generation changed to 1.564 pu and 14.6 pu. When the simulation is
carried out for δ ≥ 0.14, the process no longer converges.

Another set of tests considered the scaling factor δ, which was also extended to the links
connecting the high voltage side of the slack bus. In the previous simulations, the scaling
factor δ was applied to only 1 link that connects the slack bus and the high voltage bus
side. Therefore, the region Ωs has just one element. However, other 26 additional links are
connected to the high voltage bus. Then, for this new simulation, the impedances of these
interconnections were also modified according to δ and h2. Now, the region Ωs has 27 ele-
ments. Considering this extension, the limit for using δ was increased to 0.37 rather than that
of 0.12 obtained without the additional link changes. Therefore, when many weak connec-
tions exist with the slack bus (or near it), the strengthening of the links at the neighborhood
of the slack bus improves the capacity of power transmission from/to this bus. Then, this
temporary and artificial reinforcement provided by acting in the parameter δ works as an
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essential source to support a high variation of power during the homotopy process. This is
in agreement with the results found in Tab. 6.3, when there δ = 0.125 was used and still
sufficient for convergence. On the other hand, when δ = 0.13, the PFP found a solution
giving phase difference for some two buses greater than 90o.
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(c) Voltage magnitude, δ = 0.12

Figure 6.5: Evolution of voltage magnitude in some buses of the 13,659-bus system for δ
equal to 0.01, 0.1 and 0.12

6.7 Experiments on a very large-scale model

This subsection describes tests and results on the 70,000-bus test system [46, 47].

Again, simulations were assessed with the NR method by considering the initial estimate
given in MATPOWER’s databank and an estimation of the flat start type imposed in this
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Figure 6.6: Evolution of voltage angle in some buses of the 13,659-bus system for δ equal to
0.01, 0.1 and 0.12

work. For the first situation, the NR method converged to the solution with 6 iterations. Fig.
6.8 is a plot illustration of the initial state values (voltage magnitude and phase angle) and
the final solution. Note that the initial states have values closer to the solution. However, for
the second situation, the convergence failed, requiring another strategy to solve the problem.
Then, the GSH-NR method was applied for this divergent case.

The homotopy-based method was employed by using step 0.1 for h1. This demands
solving 11 times a standard PFP via the NR method with a mean of 3 to 4 iterations to
converge each iteration. However, this is the price paid to solve the problem, which could not
be resolved numerically through the standard NR method and other technique investigated
in Tab. 6.3.
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Figure 6.7: Evolution of voltage in some buses of the 13,659-bus system for δ = 0.13
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Figure 6.8: Initial estimation and final states for the 70,000-bus system
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In contrast to the 13,659-bus model, the parameter δ for the 70,000-bus system was
adopted for a large range of values without restrictions. This way, it is adequate for δ ≤ 1.0.
An explanation for this is the reduced number of interconnections at the high voltage side
neighborhood of the slack bus (#30902) and the adequate capacity of the links to support
elevated changes at the interconnections. While the latter has only 2 links connecting the
high voltage side, as can be seen from Fig. 6.9.b, the former has 26 links, as can be seen
from Fig. 6.9.a. Both systems have just 1 direct connection (transformer device) with the
slack bus (low voltage). Fig. 6.10 and 6.11 depicts plots for values 0.1 and 1.0 for δ. The
magnitude and angle of voltages at the index of buses #461, #3054, #8575, #9846, and
#50000 are observed. Note that both voltage magnitudes and phase angles are practically
insensitive to changes in this parameter. Despite the large variation in the phase angles, they
occur in continuous form, indicating that the homotopy process is adequate for searching the
operation point, even for large changes in the phase angle.

(a) Buses neighborhood near by slack bus (#1) at 13659-bus system

(b) Buses neighborhood near by slack bus (#30902) at 70k-bus system

Figure 6.9: Buses near by slack bus

6.7.1 Execution time

This subsection highlights the execution time (CPU time) for running the scripts associ-
ated with the 9-, 13,659- and 70,000-bus system used in the simulations. Each simulation
was repeated 100 times, and the mean time for one simulation was obtained. Table 6.5 shows
the mean CPU time for a given system considering the value of the parameter δ to perform
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Figure 6.10: Evolution of voltage magnitude in some buses for the 70,000-bus system con-
sidering δ equal to 0.1 and 1.0

simulations by using the GSH-NR method. Using the same step 0.1 for the homotopy param-
eter, a standard PFP is solved 11 times to reach the final solution at h1 = 1. In general, for a
given model, the mean time is approximately the same independent of the δ value adopted.
Additionally, assuming that the PFP is convergent, only 3 iterations are required to obtain
the solution at a particular parameter h1 (solution obtained by a standard NR method). This
is justified because the solution obtained for a previous step of h1 approximates well that of
the next step.

Table 6.5: Mean CPU Time for running the experiments according to the model size and the
δ value.

CASE 9 13659pegase ACTIVSg70k
δ 0.01 0.10 0.5 0.01 0.10 0.12 0.13 0.1

tCPU (s) 0.0803 0.0880 0.0816 9.7405 9.7502 9.7458 10.5538 421.3

Table 6.6 shows results for the two most significant models, including details of the exe-
cution time for intermediate states along the homotopy process. Also, for illustration, it is in-
dicated the runtime for the standard NR method using the initial estimate from MATPOWER.
We can observe that the homotopy-based method needs several steps to move from the ini-
tial solution to the final one. However, it reaches a solution from an initial estimate of type
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Figure 6.11: Evolution of voltage angle in some buses for the 70,000-bus system considering
δ equal to 0.1 and 1.0

flat start. The NR method converges only by using an estimate very close to the solution.
Therefore, even with the computational burden about eight times the cost of the standard NR
solver, the performance of the homotopy-based method is well adequate.

Table 6.6: Execution time in seconds for computation of a homotopy path with a given step
∆h1 and the partial CPU time required at an intermediate state

CASE Homotopy NR

13659
pegase

h1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -
iter. - 5 4 4 4 4 4 4 4 4 4 5
tcpu - 0.4080 0.2995 0.3008 0.2970 0.3080 0.3040 0.3080 0.3070 0.3160 0.2950 0.4425

ACTIVS
g70k

h1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -
iter. - 5 4 4 4 4 4 4 4 4 5 6
tcpu - 2.5220 1.9930 1.9520 2.0050 2.0040 1.9950 1.9570 1.9600 1.9870 2.4550 3.0720

h1: Homotopy parameter; iter.: Iteration number; tcpu: Computer burden in seconds.

6.7.2 Experiments considering reactive power operational limits

To determine the ability of the PFP to deal with reactive operational limits in generators,
experiments were carried out specifically for this purpose. With no loss of content, as the
13,659- and 70,000-bus models are the most complex to address because of their sizes, only
their results are presented.
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To simulate the effect of operational limit inclusion, we use a traditional method that
is based on the iterative computation of the PFP solution, followed by the monitoring of
the reactive power generator operational limits [40, 42]. Following this strategy, a PFP is
solved, and in the sequence, whether the operational limits of all generators are satisfied.
If any limit is violated, the PV bus associated with the violated limit is converted to a PQ
bus, and the PFP is resolved again. In the sequence, we verify whether the PV buses that
were converted to PQ continue with their reactive power out of the limits. Case positive,
the conversion to PQ bus is kept; otherwise, the PQ bus is transformed back to PV. This
procedure is repeated until a result for convergence/failure is obtained. For the first iteration,
the calculation is carried out with all operational limits free. The GSH-NR method with flat
start initialization is applied since the straightforward application of the NR method with
flat start is divergent for all system, unless the 9- and 300-bus model. From the solution,
in case of violation of limits, they are separated to be provided the conversion of PV to PQ
buses. In the subsequent iterations, for all test system used in this work, only the NR method
is used because the solution associated with the previous iteration is closer to the result for
the current iteration. All simulations were executed using MATPOWER’s framework with
the code properly adapted. To track the impact of the modification on the limits, we have
observed the generation results in the slack bus.

The 13,659-bus system had its first limit-based iteration resolved by considering δ = 0.1

and was applied as a scaling factor to the links connecting the low voltage and high voltage
of the slack bus. The generation at the slack bus with a free limit at all generation buses
was 0.7687 pu and 0.1581 pu for the active and reactive power, respectively. It was detected
that only 1 upper limit of a generator had been exceeded. In the iteration performed in the
sequence considering the exceeded limit, the generation in the slack bus was 0.7713 pu and
0.1583 pu for the active and reactive power, respectively. After this limit-based iteration, all
constraints were met this time.

The 70,000-bus model presented much more exceeded limits. This method requires more
iterations at the limit-based loop to reach convergence. The first iteration (with limit free)
and GSH-NR method was performed considering δ = 0.1. The generation at the slack bus
was 13.2478 pu and 0.7668 pu, for the active and reactive power, respectively. However, a
total of 4,588 limits (2,190 upper and 2,398 lower) were violated. In the second iteration,
after correction of limits, the generation of the slack bus was 14.2054 pu and 0.9828 pu for
the active and reactive power, respectively. At the end of the iteration, a total of 700 limits
were exceeded (422 upper and 278 lower). For the third iteration, the slack bus provided
14.5396 pu and 1.0614 pu, respectively, for the active and reactive power, but 200 limits
(143 upper and 57 lower) were still exceeded. In the fourth iteration, only 11 limits were
violated, and the generation at the slack bus was 14.5722 pu and 1.0692 pu, respectively, for
the active and reactive power. Finally, in the fifth iteration, no more limits were exceeded,
and the final generation for the active and reactive power at the slack bus was 14.5726 pu
and 1.0693 pu, respectively. The Tab. 6.7 summarize the steps to reach the correct answer
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considering the reactive limits.

Table 6.7: Results considering the reactive limits

Limits free Limits considered
Case Violated Limits 1st 2nd 3th 4th 5th

13659
pegase

Upper: 1 0 - - -
Lower: 0 0 - - -
Ps: 0.7687 0.7713 - - -
Qs: 0.1581 0.1583 - - -

#iter: - 3 - - -

ACTIVS
g70k

Upper: 2190 422 143 8 0
Lower: 2398 278 57 3 0
Ps: 13.2478 14.2054 14.5396 14.5722 14.5726
Qs: 0.7668 0.9828 1.0614 1.0692 1.0693

#iter: - 4 3 3 2

Note that for each iteration in which the limits are modified, the generation at the slack
bus is augmented. Additionally, the standard NR method for the limit-based iteration gen-
erally converges with 2 or 3 iterations, confirming that the results between one iteration and
the other are closer.

6.8 Conclusion of this chapter

In this chapter, the method GSH-NR was tested in different power systems network to
evaluate the convergence effectiveness and computational cost efficiency as well as number
of iterations. The systems case3.m, case9.m and case300.m was used just to illus-
trate the GSH-NR since they are well-conditioned cases. The other ones are considered
ill-conditioned systems and large-scale systems. They converged to the right solution start-
ing from flat start point. To validate the results others techniques were simulated, as BE, RK4
and IH. Experiments with these techniques they do not reach convergence starting from the
flat initial guess. The computational burden was presented to demonstrate that the GSH-NR
has additional burden due to the need to run NR in different steps along the homotopy path.
The experiments showed that the implemented algorithm considers the reactive power limits
imposed by the generators of the systems, which is practical for the solution of large-scale
power systems.
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Chapter 7

Conclusion

7.1 General Conclusion

This work presented a homotopy-based method to calculate the solution of a power
flow problem. We denominated Guided Solution Homotopy - Newton-Raphson (GSH-NR)
solver, since it uses the standard NR method to determine the solution along with the ho-
motopy path. The proposed technique search a solution through an iterative homotopy path,
where a partial fictitious network is inserted in the beginning of the process and removed
gradually depending on two homotopy parameters.

The proposed method

• is based on the control of a fictitious compensation network which is inserted at the
first step of the homotopy process, being their parameters designed to allow a flat start
type initial estimate for the PFP; also, producing a trivial solution equal to the initial
estimate;

• worked properly for large-scale and well- and ill-conditioned power system models,
being tested for model of practical power system size, as the 70,000-bus synthetic USA
test system [46, 47];

• is fully compatible with the MATPOWER’s case databank and this way it can be im-
plemented in the kernel of this well-known software through single adaptations;

• allows for solving problems which the standard NR and other methods are unable to
resolve starting from an initial estimate of flat start type;

• employs the polar representation form for voltages and power mismatches, being that
along with the homotopy path different from the last state of the path, the tolerance
for convergence of the classical NR method can be relaxed, e.g. for 10−2 pu, which is
well smaller than the usual 10−8 pu.
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Simulations were carried out by using other approaches, as the implicit Continuous New-
ton’s method philosophy (implicit and explicit form), and a power injection homotopy-based
method. The GSH-NR have presented superior performance compared to other techniques
studied in this work.

Other tests also considered situations for reactive operational limits in generators. The
first limit-based iteration is carried out free of limits and by using the GSH-NR solver. How-
ever, we have observed in our tests that the standard NR method can be used after evaluating
the first limit-based iteration without the need to implement a new homotopy process.

To achieve the final results, this work considered an introductory part emphasizing the
motivation and highlighting the main objectives of the work. Following, a chapter was ded-
icated to a basic bibliographic review of works involving the dissertation theme. An intro-
duction of the load flow problem and the methods of solving the problem was included in
the third chapter. Besides the traditional approach by the NR method, other ones based on
the called Newton’s continuous method were discussed. It was explained how the homo-
topy problem was addressed, going through the definition of its formulation from a fictitious
compensation network. Finally, several experiments were carried out considering miscella-
neous test systems, with different characteristics such as well- or ill-conditioned profile and
also small and large-scale size.

7.2 Future Works

The homotopy method applied to the study of power flow allows a broadening of the
approach, as well as simulating different possible scenarios within the context of power
systems. Among the ideas for future works can be cited the following:

• investigate other forms of generating and setting fictitious network compensation;

• test the methodology with other modeling networks as isolated power system (micro-
grid);

• simulate real scenarios under contingencies;

• extend the methodology to cover the PFP for distribution systems involving different
sources of generations, loads, and transformer configurations;

• test other more robust algorithms for solving ill-conditioned cases instead of NR for
the intermediate steps of the homotopy process and test the efficiency for large scale
systems.
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