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Abstract: In this article, we present the development of the proportional odds hazard model for
discrete time-to-event data. In this work, inferences about the model’s parameters were formulated
considering the presence of right censoring and the discrete Weibull and log-logistic distributions.
Simulation studies were carried out to check the asymptotic properties of the estimators. In addition,
procedures for checking the proportional odds assumption were proposed, and the proposed model
is illustrated using a dataset on the survival time of patients with low back pain.
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1. Introduction

The proportional hazards model [1] is a regression model widely used in survival data
analysis, whose main characteristic is that the covariates act multiplicatively on the hazard
function. However, this characteristic cannot be met when survival times are discrete
(intrinsically discrete or grouped into intervals) since the hazard function is limited in the
interval (0,1). According to [2], the use of statistical methods that are specially designed
for discrete times has many advantages. Indeed, [3] illustrated through simulation studies
and application to real data that it is inadvisable to use a continuous model to analyze
discrete data.

Given this situation and the importance of correctly treating discrete data to effectively
model discrete time-to-event survival data, since the aforementioned model would not
always be the most suitable, the proportional odds hazard model has been used with some
frequency in the literature for this purpose. This model is an alternative version proposed
by [1] to be used when the time-to-event data are discrete, with the covariates having a
multiplicative effect on the odds hazard.

A comprehensive study of the model in which various link functions are considered
is presented in [2], and the semiparametric extensions that the model can take on in [4].
Applications of this model are given in [5–8].

The popularization of this model is due, in part, to the fact that users do not invest
effort in reporting the baseline hazard, which receives less attention in these studies.
However, according to [9], the behavior of the hazard function is of potential medical
interest because it is directly related to the course of a disease. To estimate this hazard
function informatively (i.e., smoothly), a parametric model may be appropriate. In this
context, parametric models in which the response variable is discrete to inform the baseline
hazard of the model efficiently become fundamental, and in recent years a large number
of research articles dealing with discrete distributions arising from the discretization of
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distributions of continuous random variables in a survival analysis context have emerged
among these are: discrete Weibull distribution (DW) in [10,11], discrete Weibull geometric
in [12], exponentiated discrete Weibull (EDW) in [13], discrete Gumbel in [14], discrete Burr
in [15] and discrete log-logistic in [16].

This work aims to formulate the proportional odds hazard model considering the
discrete Weibull and discrete log-logistic distributions as baseline distributions, as well as
the estimation via maximum likelihood of the model’s parameters for right-censored data.
The Weibull distribution was chosen due to its popularity in modeling survival data and
the log-logistic distribution, allowing model data with non-monotonic hazards. The quality
of the model’s fit was assessed using simulation studies. Finally, the proposed methodology
was illustrated using a data set whose response variable is the number of unsuccessful
sessions before pain relief or reduction in patients with low back pain [17].

2. Discrete Random Variables for Time-to-Event Data

Let T be a discrete random variable that takes on non-negative integer values (T =
0, 1, 2, . . .), whose distribution function, survival function and hazard function are defined,
respectively, by p(t) = P(T = t), S(t) = P(T > t) and h(t) = P(T = t|T ≥ t), t =
0, 1, . . .. Other relationships can be established from the functions mentioned, such as:

S(t) = P(T > t) =

 ∞

∑
k=btc+1

P(T = k)

I{t=0,1,2,...}, (1)

h(t) =
(

p(t)
S(t) + p(t)

)
I{t=0,1,2,...}, (2)

p(t) =
(
[1− S(0)]I{t=0} [S(t− 1)− S(t)](1−I{t=0})

)
I{t=0,1,2,...}

=
(
[h(0)]I{t=0} [h(t)S(t− 1)](1−I{t=0})

)
I{t=0,1,2,...} (3)

and

S(t) =

( btc
∏
k=0

[1− h(k)]

)
I{t=0,1,2,...}. (4)

In Equations (1) and (4), btc denotes the largest integer less than or equal to t. More
details on the functions and relationships presented can be found in [2].

2.1. Discrete Weibull Distribution (DW)

The discrete Weibull distribution (DW) was first proposed by [10]. Denoted by T ∼
DW(q, η), 0 < q < 1 and η > 0, its probability function is given by:

pdw(t|q, η) = (qtη − q(t+1)η

)I{t=0,1,2,...}. (5)

The survival and hazard functions of the DW, obtained from Equations (1) and (2), are
expressed respectively by:

Sdw(t|q, η) =
(

q(btc+1)η
)
I{t≥0} (6)

and

hdw(t|q, η) =

(
qtη − q(t+1)η

qtη

)
I{t=0,1,2,...}. (7)



Axioms 2023, 12, 1102 3 of 17

In Equation (6), btc denotes the largest integer less than or equal to t.
According to [11], the DW hazard function has different shapes that are directly linked

to its shape parameter η, i.e., when η > 1, the hazard function is strictly increasing; η < 1,
the hazard function is strictly decreasing; η = 1, the hazard function is constant, in which
case the DW is reduced to the geometric distribution, which is a discrete analog of the
exponential distribution [3].

Discrete Log-Logistic Distribution (DLL)

Let T be a discrete random variable that follows a discrete log-logistic distribution
(DLL) which is the discrete analog of the continuous log-logistic distribution, with some
important results presented by [16], with parameters α > 0 and η > 0, denoted by
T ∼ DLL(α, η), the probability, survival, and hazard function are given by:

pdll(t|α, η) =

(
1

1 + (t/α)η −
1

1 + [(t + 1)/α]η

)
I{t=0,1,2,...}, (8)

Sdll(t|α, η) =

(
1

1 + [(btc+ 1)/α]η

)
I{t≥0}, (9)

and

hdll(t|α, η) =

(
1− 1 + (t/α)η

1 + [(t + 1)/α]η

)
I{t=0,1,2,...}. (10)

In Equation (9), btc denotes the largest integer less than or equal t. According to [14],
the DLL is a particular case of the discrete Burr distribution studied by [15], which is the
discrete analog of the continuous Burr distribution.

3. Materials and Methods
3.1. Proportional Odds Hazard Model for Discrete Time-to-Event

Let T be a discrete non-negative random variable that represents the time until the
occurrence of the event of interest follows the proportional odds hazard model (POHM)
if [1]:

h(t|z)
1− h(t|z) = exp {z′β} h0(t)

1− h0(t)
, (11)

where h0(·) is the baseline hazard function and β
′
= (β1, . . . , βp) is the vector of coefficients

associated with the vector of covariates z
′
= (z1, . . . , zp).

Note that the intercept β0 does not appear in the linear predictor because the baseline
hazard function, h0(t), absorbs this constant term. This model is a discrete version of the
Cox proportional hazards model to cover the possibility of an appreciable number of draws.

From expression (11), it is possible to establish the hazard function in the presence of
covariates:

h(t|z) =
(

exp {z′β}h0(t)
1 + (exp {z′β} − 1)h0(t)

)
I{t=0,1,2,...}. (12)

From (4) and (12), the survival function in the presence of covariates can be written as:

S(t|z) =
( btc

∏
k=0

[
1− h0(k)

1 + (exp {z′β} − 1)h0(k)

])
I{t≥0}, (13)

where, btc denotes the largest integer less than or equal to t.
Furthermore, using expressions (3) and (4), the probability function in the presence of

covariates is:
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p(t|z) =

[ exp {z′β}h0(0)
1 + (exp {z′β} − 1)h0(0)

]I{t=0}

×

×
[

exp {z′β}h0(t)
1 + (exp {z′β} − 1)h0(t)

t−1

∏
k=0

[
1− h0(k)

1 + (exp {z′β} − 1)h0(k)

]](1−I{t=0})
I{t=0,1,2,...}. (14)

To estimate the parameters of the proportional odds hazard model, consider an ob-
served random sample (t1, t2, . . . , tn) with its respective censoring indicators (δ1, δ2, . . . , δn),
where δi = 1 if ti is a failure time and δi = 0 if is a right-censored time and z

′
i =

(zi1, zi2, . . . , zip) the covariates vector of individual i, i = 1, 2, . . . , n. The model’s likeli-
hood function, where ξ represents the vector of parameters of the baseline distribution, is
given by:

L(ξ, β; t, δ, z) ∝
n

∏
i=1

[
exp {z′iβ}h0(ti|ξ)

1 + (exp {z′iβ} − 1)h0(ti|ξ)

ti−1

∏
k=0

[
1− h0(k|ξ)

1 + (exp {z′iβ} − 1)h0(k|ξ)

]](1−I{ti=0})δi

×
[

exp {z′iβ}h0(0|ξ)
1 + (exp {z′iβ} − 1)h0(0|ξ)

]I{ti=0}δi
[

ti

∏
k=0

[
1− h0(k|ξ)

1 + (exp {z′iβ} − 1)h0(k|ξ)

]](1−δi)

(15)

Applying the logarithm to the likelihood function (15), we get:

`(ξ, β; t, δ, z) =
n

∑
i=1

{(
1− I{ti=0}

)
δi

[
log

[
exp {z′iβ}h0(ti|ξ)

1 + (exp {z′iβ} − 1)h0(ti|ξ)

]
+

ti−1

∑
k=0

log

[
1− h0(k|ξ)

1 + (exp {z′iβ} − 1)h0(k|ξ)

]]}
+

+
n

∑
i=1

{
I{ti=0}δi log

[
exp {z′iβ}h0(0|ξ)

1 + (exp {z′iβ} − 1)h0(0|ξ)

]}

+
n

∑
i=1

{
(1− δi)

ti

∑
k=0

log

[
1− h0(k|ξ)

1 + (exp {z′iβ} − 1)h0(k|ξ)

]}
+ c, (16)

where c is a constant that does not depend on ξ and β.
The likelihood equation is given by:

U(ϑ) =
∂`(ϑ)

∂ϑ
= 0. (17)

Thus, the value ϑ̂ = (ξ̂, β̂), that satisfies Equation (17), is the maximum likelihood
estimator of the POHM, which under appropriate regularity conditions has a multivariate
normal asymptotic distribution with mean ϑ and variance and covariance matrix given by:

Σ(ϑ̂) =

[
− ∂2`(ϑ)

∂ϑ∂ϑT

∣∣∣∣
ϑ=ϑ̂

]−1

=
[
−J(ϑ)|ϑ=ϑ̂

]−1. (18)

The ϑ̂ = (ξ̂, β̂) and the observed matrix J(ϑ) can be obtained numerically using
computational optimization methods using the Newton-Raphson type algorithm, which
provides an accurate numerical approximation for this matrix. From these results, it is
possible to construct confidence intervals for the parameters and carry out significance
tests on the POHM covariates.

When considering the model presented in (11), by assigning the baseline hazard
function to the hazard function of DW (7), DW with η = 1 and DLL (10), we obtain the
proportional odds hazard model: discrete Weibull (POHM-DW), geometric (POHM-G) and
discrete log-logistic (POHM-DLL), which will be studied in the following subsections.
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3.2. Verification of the Proportional Odds Hazard Assumption

The model proposed in (11), assumes that the odds hazard for two individuals are
proportional. Considering a discrete non-negative random variable T and a dichotomous
covariate z that takes on the values 0 and 1, the model assumes that:

h(t|z = 1)
1− h(t|z = 1)

= θ
h(t|z = 0)

1− h(t|z = 0)
, (19)

where h(·) is the hazard function and θ is the proportionality constant that does not depend
on t. Let gl(t) be the odds hazard function of an individual with covariate z = l; l = 0, 1,
expressed by:

gl(t) =
h(t|z = l)

1− h(t|z = l)
, l = 0, 1. (20)

The function Gl(.) is, in turn, the cumulative odds hazard function given by:

Gl(t) =
t

∑
u=0

gl(u) =
t

∑
u=0

h(u|z = l)
1− h(u|z = l)

, l = 0, 1. (21)

Note that, under the assumption of odds proportional hazard, expressions (19) and
(21), it follows that:

G1(t) = θG0(t). (22)

Applying the logarithm to both sides of the equality in (22), we get:

log (G1(t)) = log (θ) + log (G0(t)). (23)

Therefore, the relationship between log (G1(t)) and log (G0(t)) is a straight line with
the angular coefficient, m1, equal to 1 and the linear coefficient m0 = log (θ), i.e.,

log (G1(t)) = m0 + m1 log (G0(t)). (24)

Thus, the assumption of proportional odds hazard can be verified graphically by
fitting a simple regression line with an angular coefficient, m1, equal to one (fixed). In this
way we can plot the graph of points formed by the coordinates (log (G0(t)), log (G1(t))),
and the expected behavior is that the points formed by the coordinates are close to this
regression line.

Graphical analysis is very informative, and for a given assessment for decision-making
to be complete, it is advisable to have a measure of evidence. Thus, when considering
expression (24), a hypothesis test can be used to check whether the odds hazards are
proportional to each other. Thus, if t(j), with j = 1, 2, . . . , J, is the j-th distinct time observed
(censored or uncensored), the verification can be conducted by testing the hypothesis
that the angular coefficient of the straight line is different from one (m1 6= 1). Thus,
the hypotheses of interest are described by:

H0 : m1 = 1 vs. H1 : m1 6= 1. (25)

The statistical test of the hypothesis (25) is given by:

M =
m̂1 − 1√

∑J
j=1(xj−x̄)2

(J−2)∑J
j=1(yj−ȳ)2

, (26)
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where m̂1 =
J ∑J

j=1 xjyj −∑J
j=1 xj ∑J

j=1 yj

J ∑J
j=1 x2

j −
(

∑J
j=1 xj

)2 , x̄ =
∑J

j=1 xj

J
and ȳ =

∑J
j=1 yj

J
with xj =

log (O0(tj)) and yj = log (O1(tj)). Assuming normality of log (O1(t)), M follows a Stu-
dent’s t distribution with J − 2 degrees of freedom.

The procedures for checking the assumption of proportional odds hazard presented
here can be easily extended to categorical covariates with three or more levels, comparing
each level of the covariate two by two. In the case of numerical covariates, the same method
can be adopted when categorizing the covariate to be verified.

In case of lack of proportionality, the POHM might not perform optimally. In these
cases, other regression models for discrete data can be considered (see for examples Equa-
tions (27) and (28)).

4. Simulation Study

This section describes a simulation study to evaluate the behavior of the maximum
likelihood estimators of the POHM-DW and POHM-G models. The study was conducted
using data simulated in the R software [18], and the survival times of these models were
generated using the inverse transformation method. For more details, see [19].

The survival time samples were simulated, considering two covariates: a numeri-
cal covariate, Z1, with a standard normal distribution and a dichotomous covariate, Z2,
generated from a Bernoulli distribution with a probability of success p = 0.5, the various
parameters used take into account the baseline hazard of a WD and geometric distribution
(particular case of WD considering η = 1), more specifically the parameters of the two
scenarios are shown in Table 1.

Table 1. Scenarios used in the simulations.

Scenario q η β1 β2 Model

S1 0.9 1.50 2.0 1.0 POHM-DW

S2 0.5 1.00 2.0 1.0 POHM-G

To assess the behavior of the parameter estimators, the histograms of the parameter
estimates of the different scenarios resulting from 1000 Monte Carlo replications will be
evaluated for different sample sizes, i.e., n = 30, 50, 100, 250 and 500.

The mean of the parameter estimates, the mean squared error (MSE), and the cover-
age probability (CP) are shown alongside the above graphs. To construct the confidence
intervals for calculating the CP, a confidence level of 0.95 was used. In addition, for the
parameters of the probability distributions (q and η), which are limited in parametric space,
it is interesting to transform them to make them unrestricted. The appropriate transfor-
mations were made to the following parameters to construct the confidence intervals,
as described by [13].

The results from 1000 Monte Carlo replication that refer to the estimator q, η, β1 and
β2 are shown in Figures 1–4 respectively.

When evaluating the estimators in general, it can be seen that the mean estimates are
approximately equal to the respective true parameter values, regardless of the scenario and
sample size. For the estimators referring to the baseline distribution, it can be seen that the
mean values of the parameter estimates are concentrated close to the true parameter values,
and as the sample size increases, the mean estimates of the MSEs become closer to zero,
and the coverage probabilities converge to the adopted confidence level of 0.95.
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Figure 1. Results from 1000 Monte Carlo replications for the parameter q.

Figure 2. Results from 1000 Monte Carlo replications for the parameter η.



Axioms 2023, 12, 1102 8 of 17

Figure 3. Results from 1000 Monte Carlo replications for the parameter β1.

Figure 4. Results from 1000 Monte Carlo replications for the parameter β2.
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For the estimators related to the covariates, where β1 is associated with the numerical
variable and β2 associated with the dichotomous variable, similar behavior can be observed
between the two and, in turn, satisfactory performance concerning the estimates and
distributions of the data, just like the estimators referring to the baseline distribution.

When evaluating the estimators for the scenarios, it can be seen that the first scenario
is associated with a circumstance in which the discrete Weibull distribution is adopted as
the baseline distribution and the second in which the geometric distribution is adopted
(η = 1), it can be seen from the estimates and graphs presented that both baseline distribu-
tions are suitable for modeling discrete time-to-event data.

The entire evaluation up to this point has been carried out without censoring. There-
fore, considering the same scenarios and sample sizes in Table 2 shows the estimates
(average of parameter estimates, mean square error (MSE) and coverage probability (CP))
considering censoring percentages of 5, 10 and 30%. These estimates are the result of 1000
Monte Carlo replications.

Table 2. Average estimates, MSE and CP of the POHM-DW and POHM-G parameters considering
the simulation scenarios and different sample sizes and censoring percentages.

n Scen. Cens.
Perc.

q η β1 β2

Average MSE CP Average MSE CP Average MSE CP Average MSE CP

S1 0.9097 0.0025 0.9100 1.6238 0.0825 0.8350 2.1556 0.2825 0.9110 1.0513 0.4044 0.9470
S2

5% 0.5541 0.0187 0.9340 1.1186 0.0622 0.8280 2.1624 0.5490 0.8940 1.0735 0.7050 0.9410

S1 0.9129 0.0023 0.9150 1.6038 0.0801 0.8500 2.0721 0.2510 0.9230 1.0090 0.4077 0.9390
S2

10% 0.5889 0.0226 0.9130 1.0836 0.0578 0.8650 1.9374 0.4286 0.8590 0.9500 0.6541 0.9300

S1 0.9296 0.0026 0.8820 1.5611 0.0970 0.9010 1.8336 0.2723 0.8720 0.8186 0.4750 0.9200
30

S2
30% 0.6958 0.0493 0.6830 0.9668 0.0608 0.9360 1.4057 0.6068 0.6110 0.5878 0.7387 0.8940

S1 0.9075 0.0013 0.9340 1.5563 0.0380 0.8940 2.0476 0.1225 0.9350 1.0420 0.2177 0.9470
S2

5% 0.5505 0.0114 0.9330 1.0499 0.0249 0.9010 1.9943 0.2079 0.9070 1.0536 0.3455 0.9400

S1 0.9128 0.0013 0.9320 1.5460 0.0370 0.9060 1.9825 0.1242 0.9280 1.0032 0.2190 0.9450
S2

10% 0.5876 0.0158 0.8770 1.0258 0.0237 0.9270 1.8185 0.2195 0.8420 0.9682 0.3290 0.9280

S1 0.9309 0.0018 0.8770 1.5027 0.0435 0.9360 1.7629 0.1697 0.8480 0.8395 0.2562 0.9230
50

S2
30% 0.7037 0.0472 0.4060 0.9471 0.0294 0.9590 1.3543 0.5223 0.4350 0.6763 0.3798 0.8980

S1 0.9069 0.0007 0.9410 1.5288 0.0153 0.9290 2.0139 0.0604 0.9390 1.0045 0.0848 0.9510
S2

5% 0.5414 0.0060 0.9180 1.0215 0.0102 0.9320 1.9417 0.0913 0.9050 0.9766 0.1119 0.9460

S1 0.9119 0.0008 0.9210 1.5223 0.0164 0.9280 1.9644 0.0637 0.9270 0.9718 0.0867 0.9410
S2

10% 0.5763 0.0100 0.8230 1.0069 0.0103 0.9510 1.8175 0.1163 0.8290 0.9234 0.1127 0.9360

S1 0.9312 0.0014 0.7800 1.4917 0.0220 0.9490 1.7748 0.1127 0.7970 0.8686 0.1066 0.9280
100

S2
30% 0.6992 0.0417 0.0138 0.9563 0.0157 0.9450 1.4367 0.3828 0.3600 0.7579 0.1660 0.8810

S1 0.9060 0.0003 0.9430 1.5036 0.0062 0.9430 1.9614 0.0256 0.9300 0.9845 0.0299 0.9570
S2

5% 0.5429 0.0036 0.8490 1.0037 0.0044 0.9380 1.8817 0.0478 0.8520 0.9536 0.0493 0.9480

S1 0.9104 0.0004 0.9070 1.4928 0.0066 0.9390 1.9401 0.0326 0.8790 0.9546 0.0388 0.9340
S2

10% 0.5778 0.0074 0.5900 0.9489 0.0046 0.9420 1.7501 0.0932 0.6200 0.8940 0.0580 0.9100

S1 0.9303 0.011 0.5400 1.4579 0.0098 0.9420 1.7052 0.1092 0.4910 0.8492 0.0595 0.8710
250

S2
30% 0.6927 0.0348 0.0020 0.9248 0.0108 0.8630 1.3568 0.4352 0.0230 0.7080 0.1303 0.7000

S1 0.9057 0.0002 0.9210 1.5006 0.0033 0.9430 1.9480 0.0148 0.9000 0.9700 0.0224 0.9340
S2

5% 0.5404 0.0027 0.7380 0.9929 0.0023 0.9460 1.8399 0.0427 0.6870 0.9125 0.0371 0.8980

S1 0.9102 0.0002 0.8620 1.4864 0.0035 0.9570 1.8845 0.0246 0.7870 0.9405 0.0244 0.9140
S2

10% 0.5750 0.0660 0.3100 0.9817 0.0023 0.9650 1.7225 0.0873 0.3060 0.8496 0.0486 0.8160

S1 0.9301 0.0010 0.2810 1.4489 0.0073 0.8830 1.6718 0.1195 0.1380 0.8368 0.0476 0.7660
500

S2
30% 0.6902 0.0369 0.0010 0.9120 0.0105 0.6450 1.2752 0.5362 0.0000 0.6307 0.1590 0.2790

In the presence of censoring, it can be seen that the higher the percentage of censoring,
the greater the deviations of the estimates from the true value of the parameter. This
behavior is expected since the higher the percentage of censoring, the more the empirical
distribution of the simulated data differs from the theoretical distribution used to generate
the data. The probability of coverage, which has a confidence level of 0.95, reinforces
this statement. Note that as the amount of censoring increases, the greater the differences
between the CP and the confidence level stipulated for constructing the intervals.

Another pertinent aspect is that, even with this shift in the true value of the parameter,
the distribution of the estimators, even in the presence of censoring, is similar to the
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estimators in the absence of censoring (see, for example, Figure 5, which shows the estimator
of β1, considering 30% censoring, which has the lowest CP values among the estimators).

Figure 5. Results from 1000 Monte Carlo replications for the parameter β1 (30% censoring).

Therefore, it can be seen from the results of the estimates and histograms, regardless
of the scenario, censoring percentage, or sample size, that the shape of the empirical
distribution of the estimators suggests adherence to the normal distribution. Thus, this
distribution can be used for interval parameter estimation. As a result, hypothesis tests
approximated by a normal distribution to verify the significance of the covariate can also
be used in applications.

5. Application

Chronic low back pain is a major public health problem, as it can affect the quality of
life and daily activities. Low back pain is also responsible for high rates of absenteeism
from work.

The data set used in this study comes from [17], whose time-to-event is the number of
unsuccessful sessions before the session that reduced or relieved the low back pain. Here,
t = 0 represents the patient who would have had pain relief in the very first session.

Observations were considered censored when the patient’s follow-up was interrupted
for some reason unrelated to the event of interest in the study or after 11 unsuccessful
sessions. Table 3 shows the number of patients who experienced a reduction or relief of low
back pain and the number and percentage of censored patient observations per number of
unsuccessful sessions.
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Table 3. Patients with low back pain relief by number of unsuccessful sessions.

Time-to-Event Patients with Relief Number of Censures % of Censures

0 85 0 0.00%
1 29 0 0.00%
2 7 1 0.67%
3 5 1 0.67%
4 4 0 0.00%
5 6 0 0.00%
6 1 0 0.00%
7 3 0 0.00%
9 1 0 0.00%
11 2 5 3.33%

Total 143 7 4.67%

Souce: [17].

In addition to the number of unsuccessful sessions, the data set includes information
on the various characteristics of the 150 patients (6 covariates). The covariates age, body
mass index (BMI), and duration of pain were originally quantitative and were categorized.
The patients were divided into two age groups, one for individuals aged up to 50 and the
other aged 50 or over; into two BMI groups, non-obese (BMI less than 30) and obese (BMI
greater than or equal to 30); into two pain time groups, one with less than five years of pain
and the other with five years or more of pain. This information is summarized in Table 4.

Table 4. Summary of study covariates by category.

Covariates Categories Frequency %

Treatment Placebo 50 33.33%
Active 100 66.67%

Sex Female 115 76.67%
Male 35 23.33%

Age Up to 50 years 64 44.00%
50 years and over 84 56.00%

BMI Up to 30 108 72.00%
30 or more 42 28.00%

Pain duration 5 years or more 93 62.00%
Less than 5 years 57 38.00%

Medicines Yes 115 76.67%
No 35 23.33%

The application data was then adjusted using POHM-G, POHM-DW and POHM-DLL.
Initially, these multiple models were adjusted to check the significance of their covariates
(H0 : β1 = 0 to H0 : β6 = 0). The p-value results of the multiple models are shown in
Table 5.

According to the results in Table 5, the covariates treatment and medicines are signifi-
cant (at a significance level of 5%) in all three models.

On the other hand, the other covariates are not significant and would not influence
the relief or reduction of the patient’s back pain. The significance test was therefore carried
out by adjusting only the significant covariates, and the results are shown in Table 6.

The results in Table 6 show that the covariates treatment and medicines influence
the relief or reduction of patients’ low back pain. Therefore, taking these covariates into
account, the study to verify the assumption of proportional odds hazard will be carried out
using the methods presented in Section 3.2.

The assumption of proportional odds hazard will be verified for the data set, ob-
serving this proportionality between the levels of the covariate treatment and the co-
variate medicines and for each of the levels of these two covariates, using the graph:
log(G0(t))× log(G1(t)) and the hypothesis test proposed in (25).
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Table 5. Test of significance of covariates for multiple POHM-G, POHM-DW and POHM-DLL.

Identification p-Value

Variable Parameter POHM-G POHM-DW POHM-DLL

Treatment 1 β1 5× 10−5 0.0035 0.0050
Sex 2 β2 0.9124 0.9601 0.9889
Age 3 β3 0.2915 0.4440 0.4272
BMI 4 β4 0.6500 0.7280 0.7357

Pain duration 5 β5 0.0129 0.0879 0.1098
Medicines 6 β6 0.0600 0.0396 0.0397

Reference level of the covariates: 1 = Placebo; 2 = Female; 3 = Up to 50 years; 4 = Up to 30; 5 = 5 years or more;
6 = Yes.

Table 6. Test of significance of covariates for POHM-G, POHM-DW and POHM-DLL for signifi-
cant covariates.

Identification p-Value

Variable Parameter POHM-G POHM-DW POHM-DLL

Treatment 1 β1 2× 10−5 0.0028 0.0045
Medicines 2 β2 0.0010 0.0172 0.0202

Reference level of the covariates: 1 = Placebo; 2 = Yes.

Since five consecutive tests were carried out, the Bonferroni correction will be used to
correct the probability of incorrectly rejecting the null hypothesis, and thus the significance
level will be 0.05/5 = 0.01. The results are shown in Figure 6, assuming: z1 = level of
the covariate treatment (z1 = 0: placebo; z1 = 1: active) and z2 = level of the covariate
medicines (z2 = 0: yes; z2 = 1: no).

It is important to note that the number of tests to be carried out would be eight, that is,
four levels of covariates combined two by two, totaling six tests plus the two levels within
the covariates. However, one of the covariate levels (z1 = 0; z2 = 1) has a limited number
of observations (<10), making it inadequate to construct graphs and test hypotheses.

The test results shown in Figure 6 show that the proportional odds hazard assumption
was not rejected for 3 of the five levels of covariates considered in this study (given a
significance level of 1%). The log(G0(t))× log(G1(t)) graphs shown corroborate that the
proportional odds hazard was not rejected in the hypothesis tests, as the points are close to
the fitted regression line.

The fact that most of the two-by-two levels studied have proportional odds hazard
indicates that the data under study have proportional odds hazard, which justifies using
this methodology in this data set.

Thus, for the POHM-G, POHM-DW, and POHM-DLL models as a whole, considering
the two significant covariates, the point and interval estimates of their parameters were
calculated and are shown in Table 7.

The estimates in Table 7, provide an interpretation of the odds hazard for the different
categories of the covariates under study. Taking the POHM-DW model and the treatment
covariate as an example. Since exp{β1} represents the ratio of the odds hazard of the
different groups, constant over time, considering that the covariate medicines is constant.
Assuming the group of patients with active treatment (z1 = 1). In this context, the odds
hazard for patients on active treatment is exp{0.7153} = 2.0448 times the odds hazard for
patients on placebo treatment.
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Figure 6. Verification of the proportional hazards assumption for the covariates treatment (z1) and
medicines (z2). (a) (z1 = 0; z2 = 0) × (z1 = 1; z2 = 0); (b) (z1 = 0; z2 = 0) × (z1 = 1; z2 = 1);
(c) (z1 = 1; z2 = 0) × (z1 = 1; z2 = 1); (d) treatment; (e) medicines.
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Table 7. POHM-G, POHM-DW and POHM-DLL joint parameter estimates—significant covariates.

POHM-G

Variable Parameter Estimate Standard Error CI (95%) p-value

- q 0.2359 0.0325 [0.1722; 0.2996] -
Treatment 1 β1 0.9657 0.2277 [0.5195; 1.4412] 2× 10−5

Medicines 2 β2 0.9967 0.3048 [0.3993; 1.5942] 0.0010

POHM-DW

Variable Parameter Estimate Standard Error CI (95%) p-value

- q 0.5827 0.0574 [0.4701; 0.6953] -
- η 0.5887 0.0670 [0.4573; 0.7201] -

Treatment 1 β1 0.7153 0.2390 [0.2468; 1.1838] 0.0028
Medicines 2 β2 0.7553 0.3169 [0.1342; 1.3764] 0.0172

POHM-DLL

Variable Parameter Estimate Standard Error CI (95%) p-value

- α 1.4299 0.3606 [0.7231; 2.1367] -
- η 0.9568 0.1253 [0.7111; 1.2024] -

Treatment 1 β1 0.6875 0.2419 [0.2135; 1.1615] 0.0045
Medicines 2 β2 0.7366 0.3171 [0.1151; 1.3582] 0.0202

Reference level of the covariates: 1 = Placebo; 2 = Yes.

Therefore, the odds hazard of the patient having active treatment is 1.0448 times
greater than the odds hazard of the patient having placebo treatment (z1 = 0). In this
circumstance, the odds hazard for patients who do not use medication is 1.1282 times
greater than the odds hazard for patients who do use medication.

The same interpretation can be made for the other models with different numerical
values. However, the odds hazard remain higher for active treatment and patients not
taking medication.

To assess the fit of the models to the data, the survival graphs of the Kaplan-Meier
estimator (K-M) [20] and the survival curves of the models under study were drawn for
each of the covariate levels to analyze the set of graphs and interpret their overall fit
(Figure 7).

Figure 7 shows that the models fit the data well, with the survival estimates of these
models always being close to the empirical estimates, with a positive highlight for the
POHM-DLL and POHM-DW models, where the survival estimates are closer to the survival
estimates of the Kaplan-Meier estimator.

Figure 7. Cont.
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Figure 7. Fitting the models to the low back pain data by level of the covariates treatment and
medicines.

In order to compare with pre-existing discrete models in the literature, regression mod-
els were fitted taking into account the DW (expressions (5)–(7)) and geometric distribution
(DW with η = 1) with the covariates associated in the parameter q through a logit link
function, i.e.,

q =
exp {z′β}

1 + exp {z′β}
. (27)

These models will be referred to respectively as the discrete Weibull regression model
(DWRM) and the geometric regression model (GRM).

In addition, we also consider the DLL (expressions (8)–(10)) with the covariates associ-
ated in the parameter α through a logarithmic link function, i.e.,

α = exp {z′β}. (28)

This model will be called the discrete log-logistic regression model (DLLRM).
Note, through Figure 8, that for levels z1 = 1; z2 = 0 and z1 = 1; z2 = 1, the so-

called traditional models behaved similarly to the model under study. However, for the
other levels, the estimates of these models are more distant from the empirical estimates
compared to the model under study, providing indications that the proportional odds
hazard structure for discrete data provides a better fit to the data when compared to
traditional discrete models.

Figure 8. Cont.
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Figure 8. Fitting traditional discrete models to low back pain data by level of covariates treatment
and medicines.

6. Conclusions

The proportional odds hazard model (POHM) presented in this paper is a regression
model developed for discrete data that has been used in the literature because it has the
advantage of facilitating the interpretation of its coefficients without having to worry about
using the baseline hazard. However, in certain studies, correctly informing the baseline
hazard is essential.

In this study, the POHM was formulated considering the following distributions:
discrete Weibull of [10], geometric and discrete log-logistic. The inferential process was
developed in a survival analysis context using the maximum likelihood estimation method.
The results obtained on simulated data showed evidence of the asymptotic properties of
the estimators for two different baseline distributions. Furthermore, the model proposed
by adopting three different baseline distributions (geometric, discrete Weibull and discrete
log-logistic) showed a good fit to the real data set, demonstrating that the estimation
method developed and the use of baseline distributions for discrete random variables used
to develop the POHM is a highly viable alternative for modeling discrete survival data
with covariates.
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Abbreviations
The following abbreviations are used in this manuscript:

CP Coverage probability
DW Discrete Weibull distribution
DLL Discrete log-logistic distribution
DLLRM Discrete log-logistic regression model
DWRM Discrete Weibull regression model
GRM Geometric regression model
MSE Mean squared error
POHM Proportional odds hazard model
POHM-G Proportional odds hazard model geometric
POHM-DW Proportional odds hazard model discrete Weibull
POHM-DLL Proportional odds hazard model discrete log-logistic
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