
A NOVEL DUAL QUATERNION BASED NEWTON-EULER INVERSE
DYNAMICS ALGORITHM

CRISTIANA MIRANDA DE FARIAS

DISSERTAÇÃO DE MESTRADO EM ENGENHARIA ELÉTRICA
DEPARTAMENTO DE ENGENHARIA ELÉTRICA

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASÍLIA

UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

A NOVEL DUAL QUATERNION BASED NEWTON-EULER INVERSE
DYNAMICS ALGORITHM

UM NOVO MÉTODO PARA O ALGORÍTMO DE NEWTON-EULER
PARA DINÂMICA INVERSA BEASEADO EM QUATERNIOS DUAIS.

CRISTIANA MIRANDA DE FARIAS

ORIENTADOR: JOÃO YOSHIYUKI ISHIHARA

DISSERTAÇÃO DE MESTRADO EM
ENGENHARIA ELÉTRICA

PUBLICAÇÃO: PPGENE.DM-721/19

BRASÍLIA/DF: JULHO - 2019

FICHA CATALOGRÁFICA

MIRANDA DE FARIAS, CRISTIANA
A Novel Dual Quaternion based Newton-Euler Inverse Dynamics Algorithm [Distrito Federal] 2019.
xi+100 p., 210 x 297 mm (ENE/FT/UnB, Mestre em Engenharia Elétrica, Engenharia Elétrica, 2019).
DISSERTAÇÃO DE MESTRADO – Universidade de Brasília, Faculdade de Tecnologia.
Departamento de Engenharia Elétrica

1. Dual Quaternion 2. Newton Euler Inverse Dynamic Algorithm
3. Robotic Manipulation 4. Dynamic Modeling
I. ENE/FT/UnB II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA
CRISTIANA, M (2019). A Novel Dual Quaternion based Newton-Euler Inverse Dynamics Algorithm,
DISSERTAÇÃO DE MESTRADO, Publicação PPGENE.DM-721/19, Departamento de Engenharia Elétrica,
Universidade de Brasília, Brasília, DF, xi+100.

CESSÃO DE DIREITOS
AUTOR: Cristiana Miranda de Farias
TÍTULO: A Novel Dual Quaternion based Newton-Euler Inverse Dynamics Algorithm.
GRAU: Mestre ANO: 2019

É concedida à Universidade de Brasília permissão para reproduzir cópias desta dissertação de mestrado e para
emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. O autor reserva outros
direitos de publicação e nenhuma parte dessa dissertação de mestrado pode ser reproduzida sem autorização
por escrito do autor.

Cristiana Miranda de Farias

Departamento de Eng. Elétrica (ENE) - FT
Universidade de Brasília (UnB)
Campus Darcy Ribeiro
CEP 70919-970 - Brasília - DF - Brasil

ACKNOWLEDGMENTS

The experience of developing a Master thesis has been unique in my life. Between the many courses
I have attended, there were also countless hours of studying, thinking and overcoming many
difficulties. And it is in these most challenging moments that am most grateful for the many people
around me, giving me support and many moments of fun.

First I would like to express my gratitude to my advisor Prof. João Y. Ishihara, who was al-
ways very supportive and always provided me with excellent advice and great insights on the topics
I was studying. I would also like to extend my gratitude to all my labmates and friends from LARA,
thank you for the companionship, laughs and cake. I love being a part of this team and I am very
grateful for all the support you have all given me through the years. Also, I’d like to thank all
the people at BioRob. The months I spent interning in Switzerland were of incredible growth and
learning.

I would also like to thank Luis for all the help and support you have given me, even though
you were so distant.

Moreover, I would like to give a special thanks for all my dear lifelong friends. Girls, thanks for
cheering me on and for giving me so much support, especially when I was stressed and cranky. I
would also like to thank the boys from my years doing mechatronics at UnB, thank you for always
being there.

Finally, I could not forget to thank my wonderful familly and my incredible boyfriend for
always standing beside me on all my endeavours, you are amazing.

RESUMO

Título: Um novo método para o algorítmo de Newton-Euler para dinâmica inversa beaseado em quaternios
duais.
Autor: Cristiana Miranda de Farias
Orientador: João Yoshiyuki Ishihara

Neste trabalho, o conhecido algoritmo recursivo de dinâmica inversa de Newton-Euler para manipuladores
seriais é explorado e reformulado no contexto da álgebra dos Quatérnios Duais — como o dqRNEA (dual
quaternion based Recursive Newton-Euler inverse dynamics). Aqui nós estruturamos a descrição da cin-
emática para fase direta a partir da álgebra de screws e deslocamentos de linha ao invés da já bem estabelecida
parametrização de Denavit-Hartemberg. Dessa maneira, garantimos melhor eficiência e modelos dinâmicos
mais simples. Além disso, a iteração inversa do algoritmo usa os valores calculados anteriormente para estimar
os torques no espaço da junta.

Também apresentamos uma solução fechada para o dqRNEA, ou seja, reformulamos o problema recur-
sivo como uma equação fechada baseada em matrizes de quatérnios duais. A fim de formalizar tal equação,
definimos algumas das propriedades algébricas para vetores de quatérnios duais e matrizes de quatérnios duais.
Além disso, com uma formulação fechada do dqRNEA, também é possível formalizar um esquema de controle
de dinâmica inversa para o sistema. Ou seja, um método de linearização por feedback para controlar os torques
do manipulador serial no espaço das juntas.

Finalmente, este trabalho também aborda a questão da validação do algoritmo, tanto em termos de eficiên-
cia quanto em termos de funcionalidade. Com o objetivo de validar eficiência, é feita uma análise de custo
computacional das principais operações de Quatérnios Duais e do dqRNEA como um todo. Estes resultados
são comparado com outros da literatura. Para melhorar ainda mais o custo, também foi reformulada a operação
adjunta, de modo que ela requeira menos operações em sua execução. Para validar as funcionalidades do con-
trolador, foi criado um pacote MATLAB para executar o algoritmo dqRNEA, tanto da formulação recursiva
quanto na fechada, e testamos ambos junto a outros métodos na literatura e com o controle de dinâmica inversa.

i

ABSTRACT

Title: A Novel Dual Quaternion based Newton-Euler Inverse Dynamics Algorithm
Author: Cristiana Miranda de Farias
Supervisor: João Yoshiyuki Ishihara

In this manuscript, the well known recursive Newton- Euler inverse dynamics algorithm for serial manipu-
lators is explored and reformulated into the context of the algebra of Dual Quaternions—as the dqRNEA (dual
quaternion based Recursive Newton-Euler inverse dynamics). Here we structure the forward kinematic de-
scription with screws and line displacements rather than the well established Denavit-Hartemberg parameters,
thus accounting better efficiency, compactness and simpler dynamical models. Furthermore, the backwards
iteration uses the previously calculated values for estimating the joint space torques.

We also present a closed solution for the dqRNEA, that is, we reformulate the recursive problem as a closed
equation based on dual quaternion-matrices. In order to accomplish such an endeavor, we formalize some of
the algebra for dual quaternion-vectors and dual quaternion-matrices. Moreover, with a closed formulation
of the dqRNEA we are also capable of creating a dual quaternion based formulation for the computed torque
control, a feedback linearization method for controlling a serial manipulator’s torques in the joint space.

In addition, this manuscript also covers the matter of validating the algorithm, both in terms of efficiency
and in terms of functionality. Aiming to accomplish the former a computational cost analysis of the main Dual
Quaternions operations and of the Newton-Euler inverse dynamics algorithm as a whole is made and compared
with other results in the literature. To further improve on cost, we also reformulate the adjoint operation to run
with fewer operations. To validate the functionality of our controller we create a MATLAB package to run the
dqRNEA algorithm in both the recursive and closed formulation, and we test it both against other methods in
the literature and with the computed torque control.

CONTENTS

1 INTRODUCTION . 1
1.1 STATE OF THE ART . 3
1.2 OBJECTIVES . 4
1.3 CONTRIBUTIONS . 5
1.4 ORGANIZATION OF THIS MANUSCRIPT . 5

2 MATHEMATIC FUNDAMENTALS . 7
2.1 DUAL QUATERNION REPRESENTATION . 7

2.1.1 QUATERNIONS . 8
2.1.1.1 ISOMORPHISM TO R4 AND R3 . 12

2.1.2 DUAL NUMBERS . 13
2.1.3 DUAL QUATERNIONS . 13

2.1.3.1 ISOMORPHISM TO R8 AND R6 . 18
2.1.4 LINEAR TRANSFORMATIONS . 19
2.1.5 DUAL QUATERNION VECTORS AND MATRICES . 21
2.1.6 ADVANTAGES OF DUAL QUATERNIONS . 25

2.2 DUAL QUATERNIONS GEOMETRIC REPRESENTATION . 25
2.2.1 POINTS IN THREE-DIMENSIONAL SPACE . 25
2.2.2 PLUCKER COORDINATES: LINES IN THREE-DIMENSIONAL SPACE . 30
2.2.3 THE EXPONENTIAL: CURVES IN THREE-DIMENSIONAL SPACE . 32

3 ROBOTIC FUNDAMENTALS . 33
3.1 RIGID BODY KINEMATICS . 33

3.1.1 SCREW THEORY . 35
3.1.2 QUATERNION BASED REPRESENTATION OF RIGID BODY ROTATION . 38
3.1.3 DUAL QUATERNION BASED REPRESENTATION OF GENERAL RIGID MOTION 39

3.2 RIGID BODY DYNAMICS . 41
3.2.1 DYNAMICAL EQUATIONS OF MOTION . 41
3.2.2 INERTIA TENSOR . 43
3.2.3 RIGID BODY DYNAMICS IN DUAL QUATERNION ALGEBRA . 44

3.3 MANIPULATOR KINEMATICS . 46
3.3.1 FORWARD POSITION KINEMATICS MODELING . 48

3.3.1.1 DENAVIT-HARTENBERG PARAMETERS . 48
3.3.1.2 PRODUCT OF EXPONENTIALS . 49
3.3.1.3 COMPARISON . 50

4 DUAL QUATERNION RECURSIVE NEWTON EULER ALGORITHM (DQRNEA) 52
4.1 PRELIMINARIES . 52

4.1.1 INVERSE DYNAMICS . 53
4.1.1.1 LAGRANGE-EULER FORMULATION . 53
4.1.1.2 RECURSIVE NEWTON-EULER FORMULATION . 54
4.1.1.3 COMPARISON . 55

i

CONTENTS ii

4.2 ALGORITHM DEVELOPMENT . 55
4.2.1 FORWARD RECURSION . 56

4.2.1.1 ALGORITHM INITIALIZATION . 56
4.2.1.2 RECURSIVE POSITION AND TWIST . 57
4.2.1.3 RECURSIVE ACCELERATION . 57

4.2.2 BACKWARD RECURSION . 58
4.2.3 ALGORITHM SUMMARY . 60

4.3 DQRNEA IN CLOSED FORM . 60
4.3.1 DUAL QUATERNIONIC-MATRIX FORMULATION . 60
4.3.2 CLOSED FORM EQUATION . 68

4.4 DQ BASED INVERSE DYNAMICS CONTROLLER . 70
4.4.1 COMPUTED TORQUE CONTROL . 70

5 COMPUTATIONAL COST ANALYSIS . 72
5.1 METHODOLOGY FOR COMPUTATIONAL COST ANALYSIS . 72
5.2 COMPUTATIONAL COST OF DQ-BASED OPERATIONS . 73

5.2.1 COSTS FOR QUATERNION OPERATIONS . 73
5.2.2 COSTS FOR DUAL QUATERNION OPERATIONS . 73
5.2.3 OPTIMIZING THE ADJOINT MAPPING . 74

5.2.3.1 COMPUTATIONAL COSTS FOR THE NEW ADJOINT REPRESENTATION 77
5.3 COMPUTATIONAL COST OF DQRNEA .. 79
5.4 COMPUTATIONAL COSTS OF HOMOGENEOUS TRANSFORMATION MATRICES 82

5.4.1 COST OF HTM OPERATIONS . 82
5.4.2 COST OF HTM ALGORITHM . 83

5.5 COMPUTATIONAL COST COMPARISON . 85
5.5.1 RESULTS IN THE LITERATURE . 85
5.5.2 ALGORITHMS COMPARISON . 86

6 SIMULATION RESULTS . 91
6.1 METHODOLOGY . 91

6.1.1 MATLAB PACKAGE . 91
6.1.2 VALIDATION PACKAGES . 91
6.1.3 COMPUTATIONAL SETUP . 93

6.2 TWO LINK PLANAR ARM: MODELING AND CONTROLLING A SIMPLE ROBOT 93
6.2.1 ROBOT MODEL . 93
6.2.2 NUMERICAL RESULTS . 95
6.2.3 CONTROL ALGORITHM . 96

6.3 KUKA ROBOT: THE DQRNEA BASED CONTROLLER . 96
6.3.1 ROBOT MODEL . 96
6.3.2 NUMERICAL RESULTS . 101
6.3.3 MATLAB CONTROLLER . 101

7 CONCLUSION . 106
7.1 FUTURE WORK . 106

A INVERSE DYNAMIC ALGORITHM WITH HOMOGENEOUS MATRICES108

CONTENTS iii

A.1 HTM .. 108
A.1.1 POSITIONS, TWISTS, FORCES AND WRENCHES AS VECTORS . 108
A.1.2 ROTATION MATRIX . 110
A.1.3 HOMOGENEOUS TRANSFORMATION MATRICES . 111

A.2 THE NEWTON-EULER ALGORITHM AS PRESENTED IN THE LITERATURE . 111

B PUBLICATIONS . 113

BIBLIOGRAPHY .114

List of Figures

2.1 Representation of a point in Imaginary Plane represented in different frames 26
2.2 Representation of a point in three-dimensional space ... 28
2.3 Representation of a Plücker Line in three-dimensional space. ... 31

3.1 Generic illustration of a manipulator to exemplify the base, links and end-effector being con-
nected by different joints. In this illustration the robot is located besides the world frame. 34

3.2 Generic illustration of a manipulator with one of its links—that is one of the rigid bodies from
its structure—being highlighted. ... 35

3.3 Representation of a rigid displacement: Object rotates with angle θ around line with plucker
coordinates l and then moves distance d parallel to the screw axis. Source [1]. 36

3.4 System of forces and moments acting on a body. In this illustration we have 3.4a being the
representation of some of the forces and moments acting on the link (the red straight arrows
represent the forces being transmitted on each joint and f3 is the resulting gravity force the
curved arrows are the moments acting at the joints). In 3.40 we have a representation of the
resulting body wrench on the body (the straight arrow represents the resulting force fb and the
curved arrow represents the resulting moment mb). ... 42

3.5 In 3.5a we have an illustration of the Forward kinematics problem, in which we aim to find
end-effector pose given the joints. In 3.5b the inverse problem is illustrated, in which we want
to calculate the joints based on the end-effector’s pose. .. 47

3.6 Representation of the product of exponentials formula. Here we show the screw transformation
for each of the links. In A we have the robot at its home position, with all θi = 0, from B-D we
are moving one link at a time until the final robot configuration is reached in D. 49

4.1 Illustration of the steps taken to compute the RNEA in a three link manipulator. 54
4.2 Block diagram for computed torque control, following equations (4.77)-(4.82)........................ 71

5.1 Costs for Forward Kinematics computation using different representations. In blue we have
HTM and in red we have DQ representation. With the dotted line is the cost for D-H based
parametrization and the straight line is the screw theory parametrization. The value of n ranges
from 1-42. .. 87

5.2 Total costs for RNEA of both HTM and DQ. In the plots, the HTM is represented in blue and
the DQ is represented in Red. Also n ranges from 1-42. .. 89

5.3 Total costs the different versions of the algorithm presented in Table 5.4. with n ranging from
1-42. .. 90

6.1 Schematic Upper View of a two link planar arm in which both links measure 1m and the center
of mass is located exactly at the middle point of the link. .. 93

6.2 Matlab 3D Robot Plot for the two-link planar arm. .. 94
6.3 Torque plot for each of the joints in different versions of the algorithm. The straight lines

are the results for the matrix-quaternion formulation, the dash-dotted lines refers to the closed
equation and the dotted line are the torques for the recursive algorithm. Finally the dashed line
are the resulting torques for the recursive Newton-Euler algorithm from Peter Corke’s Toolbox. . 95

iv

LIST OF FIGURES v

6.4 Controller Design on Simulink—From the Peter Corke Toolbox, with the addition of our dual
quaternion based recursive newton euler function. ... 97

6.5 Robot plot at different configurations. Here we merged the images for the plot at the initial
joint configuration θ0 and the final joint configuration θend. .. 98

6.6 Plot for the Error Progression for the experiments in Figure 6.5 ... 98
6.7 Model of the robot, from left to right we have the DH model of the KUKA LWR4, taken

from [2], followed by the joint position and orientation and finally the center of mass fro each
link—with positions c1to c7 shown in Table .. 99

6.8 Torque plot for each of the joints in different versions of the algorithm. The straight lines
are the results for the matrix-quaternion formulation, the dash-dotted lines refers to the closed
equation and the dotted line are the torques for the recursive algorithm. Finally the dashed line
are the resulting torques for the recursive Newton-Euler algorithm from Peter Corke’s Toolbox. . 102

6.9 Simulink Computed Torque Control Diagram for KUKA LWR4. This is based on Peter Corke
robotic toolbox with the addition of our dual quaternion based recursive Newton Euler algorithm.103

6.10 Robot plot at different configurations. Here we merged the images for the plot at the initial
joint configuration θ0 and the final joint configuration θend. .. 104

6.11 Plot for the error progression for the experiments in Figure 6.10... 105

List of Tables

4.1 List of main operations in Dual Quaternionic-Matrix formulation ... 68

5.1 Cost requirements of quaternion algebra operations ... 73
5.2 Cost requirements for dual quaternion operations ... 74
5.3 Comparison between different manners of performing the adjoint mapping 80
5.4 Cost of operations for UDQ.. 82
5.5 Cost requirements for vector operations .. 83
5.6 Cost requirements for HTM operations ... 83
5.7 Cost of operations for HTM ... 85

6.1 Function description for dqRNEA MatLab Package. Variables from Subsection 4.3.2 92
6.2 DH parameters for the KUKA robot, based on [2] ... 99
6.3 PoE formulation for the KUKA robot–center of mass position with regards to equivalent joint,

as in Figure 6.7.. 101

vi

SYMBOLS LIST

Basic Symbols

a, b, c... Real Scalars are represented by lower case plain letters

a, b, c... Real Vectors are represented by lower case bold letters

a, b, c... Quaternions and Pure Quaternions are represented by lower case bold letters

a, b, c... Dual Numbers are represented by lower case underlined letter

a, b, c... Dual Quaternions and Pure Dual Quaternions are represented by lower case bold underlined letters

A,B,C... Dual Quaternion Vectors and Pure Dual Quaternions are represented by upper case bold underlined letters

A,B,C... Dual Quaternion Matrices and Pure Dual Quaternions are represented by upper case bold underlined letters

Symbols Related to Sets and Groups

R Real Number Set

Rn Real vector with n entries

Rn×m Real n by m Matrix

C Complex number Set

H Quaternion Set

H0 Pure Quaternion Set

S3 Unit Quaternion Set

Spin(3) Unit Quaternion Group

D Dual Numbers Set

H Dual Quaternions Set

H0 Pure Dual Quaternion Set

S Unit Dual Quaternion Set

Spin(3)n
R3

Unit Dual Quaternion Group

Hn Dual Quaternion Vector with n elements

Hn×m Dual Quaternion n by m Matrix

Hn0 Pure Dual Quaternion Vector with n elements

Hn×m0 Pure Dual Quaternion n by m Matrix

vii

viii

Symbols Related to Quaternions, Dual Numbers and Dual Quaternions

ı̂, ̂, k̂ Imaginary Units
ε Dual Unit

a∗ and a∗ Conjugate of a quaternion a and a dual quaternions a, respectively
a−1 and a−1 Inverse of a quaternion a and a dual quaternions a, respectively

AT Transpose of a dual quaternion Vector or MatrixA
A∗ Conjugate of a dual quaternion Vector or Matrix a

Re (q) Im (q) Real and Imaginary Parts of the quaternion q
Re
(
q
)

Im
(
q
)

Real and Imaginary Parts of the dual quaternion q
P(q), D(q) Primary and Dual Parts of the dual quaternion q

vec3a and vec4a Transformation from a pure quaternion or a quaternion to a vector in R3 or R4,respectively
vec6a and vec8a Transformation from a pure dual quat. or dual quat. to a vector in R6 or R8, respectively

vec Inverse of the vector Map
‖a‖and ‖a‖ Quaternion and dual quaternion norm

+

h(•) and
−
h(•) Quaternion Hamiltonians

+

h (•) and
−
h (•) Dual Quaternion Hamiltonians

Ad(a) and
Ad(a)

Quaternion and Dual Quaternion Adjoint

T4(•) and T8(•) Quaternion Linear Transformation and Dual Quaternion Linear Transformation
G(a) Dual Inertia Transformation
G(A) Dual Quaternion Vector Inertia Transformation

Quaternion and Dual Quaternion Operators

a× b Is the cross product operator between two pure quaternions

a× b Is the cross product operator between two pure dual quaternions

a · b Is the inner product operator between two pure quaternions

a · b Is the inner product operator between two pure dual quaternions

a� b Is the double geodesic product operator between two pure dual quaternions

A⊗B Is the element-wise cross product operator between two pure dual quaternions vectors

A}B Is the element-wise inner product operator between two pure dual quaternions vectors

A~B Is the element-wise double-Geodesic product operator between two pure dual quaternions vectors

ix

Important Variables

τi Joint Torques for robot joint i

τ Joint torque vector for robotic manipulator

θi and θi Double angle and angle for a robot joint i, respectively

θ Joint Angle Vector for robotic manipulator

F Frame of reference

ωi Twist of rigid body i

W Twist Vector for robotic manipulator

ωi Angular Velocity of rigid body i

vi Linear Velocity of rigid body i

f
i

Wrench of rigid body i

F Wrench Vector for robotic manipulator

f i Force acting on rigid body i

mi moment acting on rigid body i

ai Screw Axis of rigid body i

Other considerations

Throughout this manuscript we generally have

• xAB being the DQ representation of frame B in terms of frame A;

• xBA as transformation from frame A to frame B;

• pA
B

, for a p representing position, velocity or acceleration being the coordinate representation inA frame
of the position, velocity or acceleration of frame B.

INTRODUCTION

Throughout history, humans have always built machines to facilitate their work and make their labor more
bearable. Indeed, as we have built the wheel to make transport easier we have also created automated assembly
lines to spare workers from their monotonous (and many times dangerous) tasks. However, the story does not
end there: although we do build machines to help us out in our daily lives, we have also built machines to go to
places we could not go by ourselves. We have flown through the skies and we have dived to the depths of the
ocean, we raced around the earth and conquered the moon. Everyday science and engineering evolve to allow
us to go where we have never gone before and to do things that, once upon a time, were only science fiction.

It was indeed in fiction that human ingenuity has envisioned a perfect helper—the robot. This machine
would never tire and would be able to perform incredible tasks with amazing precision for the benefit of
humanity (when they were not rebelling against they creators, of course). The Czech author Karel Čapek is
usually considered to have been the first person to use the word robot in its modern context: his 1921 play
Rossumovi Univerzální Roboti (in English Rossum’s Universal Robots) starts out in a factory that creates
artificial people—the robots—to work for the humans. The narrative of this play centers on the mistrust people
at the time felt over the machine, and as such, was very popular with the public, running for 184 performances
on Broadway and popularizing the term that is used to this day [3].

Although the modern meaning of word robot was popularized only in the 1920’s, the idea of substituting real
individuals by machines has been around for a few millennia. In ancient Egypt priests would make animated
statues to communicate the will of the gods, the Inuit people had legends of robot-like creatures created by
sorcerers and Greek mythology has several tales of statues or metal creatures coming to life [3, 4]. Of course,
these ancient civilizations did not have the technology to make the robots of today, but there are also several
records of working designs for automatas, the oldest one being a “the pigeon”, a bird-like contraption with a
steam based propeller system, invented by Archytas of Tarentum (428–347 BC). Records of automata could
also be found in ancient Alexandria and China, however, it was the Arabic civilization that have first created
“programmable” robots, in the form of human figurines that could be adjusted to play different melodies [4,5].

Of course, as the centuries went by, different scientists and engineers have designed and imagined more
complex machines operating in a number of different contexts (for a full overview of ancient robotic history
see the works in [3, 4, 6]). Still, despite this long history we can trace for robotics, the modern design of these
machines has only emerged on the 1950’s, with first modern robot being the Unimate, designed in 1954 by
George Devol. The first Unimate, a manipulator capable of performing only one task and very difficult to
program, was sold in 1961 to General Motors and in the following years automation has only grown. And so
did research in robotics [6–8].

Despite its industrial roots, the robots of today have evolved—and is still evolving—to be fully integrated
in our society. Indeed, the advances in technology and the maturity the research has achieved since the 1950’s
has shifted the focus from industry to the human world, in which a new generation of robots is expected to
safely operate in different segments of our society, providing aid for education [9–12], health-care [13–15],
entertainment [5, 16] as well as a range of other services. More so, in the past few decades, a lot of effort has
also been put to deploy robots to environments not suited to humans: we have robots exploring archaeological
sites that are to fragile for humans to enter [17,18], we have robots diving to higher depths than a human could
endure [19], we have robots exploring Mars and repairing space stations [20–23], drones are flying faster then

1

1

we could to deliver medication [24], researchers are developing robots to operate in ever more challenging
rescue scenarios [25, 26] and these are only a few of the many applications being developed today.

In the context of the current research scenario, robots can already do amazing things and take us to explore
many of the places we could not go ourselves. Yet, despite all the advancements, the field of robotics is still in
its infancy, and there are many topics still to be better explored. Motivated by enormous potential of the area,
this manuscript aims at exploring ways to enhance a robot’s capabilities of interacting with the environment.

Particularly, many of the applications being studied today demand for more adaptable solutions, working
in unstructured environments while ensuring safety and being computationally efficient. Indeed, in the sce-
nario of industrial robotics we many times encounter controlled environments, in which, although versatility
might be welcomed, the nature of the tasks being performed require movements to be repeated many times
under the same conditions with precision. The common, and simpler solution for this problem, was the im-
plementation of position based controllers—if nothing were to change and conditions were known we could
simply define a path for the robot to follow, and then control this path with as much precision as possible. Of
course, a lot of innovation has come from those kinematic based controllers, as, after all, we are still studying
more complex solutions in this field (cooperative robotics, soft robotics, etc). However, this solutions are still
“human-unfriendly” and would not operate well at more unstructured environment, such as the world outside
the factories or when we add more variables to the industrial process (such as a human collaborator). Indeed,
its easy to imagine the very recurrent scenario of a robot manipulator set out to follow a path in order to grab
an object, when suddenly something (or someone) blocks the path. If the robot considers only the kinematic
variables, it will ignore the blockage and keep moving toward its target, thus causing damage or injury [27]. To
deal with this kind of uncertainty it is important we also consider the forces of the system to ensure an efficient
and safe response.

One way to guarantee the robustness and efficiency of a system is by choosing an adequate parametriza-
tion for it. Although there are many options in the literature, we believe the dual quaternions are particularly
well suited for robotic applications, as they have strong algebraic properties and can be used to represent rigid
motions, twists, wrenches and several geometrical primitives—e.g., Plücker lines, planes—in a very straight-
forward way [28].

In this manner, we set out to explore the usage of dual quaternions for describing the dynamics of a robotic
manipulator and for controlling its forces in such a way that we could ensure safety for Human Robot Interac-
tion (HRI) scenarios, as well as for the interaction of a robot with predominantly human environment. However,
we notice the literature relating to a dual quaternion based dynamical model for a serial manipulator was quite
lacking with works on the matter only surfacing a few months prior to this manuscript completion [29, 30] and
still being very scarce.

Therefore, this manuscript presents a novel formulation of a dual quaternion based Recursive Newton-
Euler Algorithm (dqRNEA)—as well its closed form equation. Here we add that we have not only chosen the
dual quaternion representation, but we have also made some other important design choices to ensure that the
algorithm is cost efficient and robust. We have chosen the Newton-Euler recursive formulation for the inverse
dynamics rather than the Lagrange-Euler methods or Kane’s dynamical equations. Also, we have chosen to
describe the robot forward kinematics by means of the Product of Exponential formulation rather than the more
usual Denavit–Hartenberg parameters.

Finally, in this work we also aim at guaranteeing the validity and efficiency of our algorithms. In this
manner, we have optimized some of the tools within the algebra of dual quaternions so that they would be faster
and remain in the algebra—in particular we have optimized the adjoint operation, which was very inefficient

2

in its traditional form. More so, we have also made a very thorough cost analysis of all the equations in our
algorithm and compared it to a similar formulation in another algebra. Lastly we have tested our dqRNEA
formulation within a computed torque based controller in order to further validate the equations.

1.1 STATE OF THE ART

Rigid body motion and control have been extensively studied in the past decades in a number of disciplines,
including, mechanical systems, robotic manipulation, satellites, etc. These were usually investigated and de-
signed by exploiting the Homogeneous Transformation Matrices (HTM), however, recently, many new works
have surfaced on the uses of dual quaternions (DQ) to describe such systems [31–35].

Particularly, regarding robotic manipulation, dual quaternion algebra proves itself to be advantageous com-
pared to other representations as it allows us to represent the complete robot position and attitude—the pose—
with a set of eight parameters. Moreover, it was argued in [36–39] that the unit dual quaternion (UDQ) in
addition to being non-minimal and free of singularities, are also a more compact, efficient and less computa-
tionally demanding representation for rigid-body displacements compared to HTM [40–42]. Indeed, we can
also list as further advantages of the dual quaternions the fact that they are very well suited to represent many
geometric primitives, such as lines and planes, in a simple and intuitive way [28] and the fact that dual quater-
nions have been argued to be most efficient way to represent a screw motion [41]. The benefits of using dual
quaternion algebra have been discussed also in many works with different applications comprising rigid body
motion stabilization, tracking, multiple body coordination [35, 43], kinematic control of manipulators with
single and multiple arms and human-robot interaction [37, 44–46], image based localization [47, 48], etc.

Although a lot has been published regarding the kinematic representation and control of robotic systems
using dual quaternion algebra, there is still a lot to be done with respect to representing and controlling the
dynamics of a robotic arm with DQ. Indeed, algorithms for rigid-body dynamics computation play a crucial role
for simulation of motion, analysis of forces, torques and for the design of control techniques in robotics [36,49,
50]. Rigid-body dynamics are at the core of many recent robotic applications in different fields, such as legged
robot stabilization, forceful Human-Robot Interaction (HRI), computer animation and even biomechanics [51].

In Dooley and McCarthy’s work [34] the authors propose one of the earliest formulations for the dynamic
modeling for an unconstrained rigid body and for a serial manipulator using dual quaternion algebra in Kane
and Levinson’s formulation [52]. Although they work is pioneer, their equations are overly complicate and
lack a clear and intuitive physical meaning. Other attempts to improve on [34] are presented on both the works
of [53] and [35] in which both authors propose a decoupled formulation for both the rotational and translational
dynamics using dual quaternions, and furthermore, they use this model in order to design a regulator for both
the attitude and position of a body. Neither of this works exploit formulations for the dynamical problem
that would couple together the translational and rotational forces acting on the body. Furthermore, a coupled
formulation for the dynamic of an unconstrained rigid body can be found in [31, 32, 54] in which the authors
exploit the manner in which dual quaternion twists and wrenches can couple together the linear and angular
variables.

We may further extend the dynamics of a rigid body to the dynamics of a whole articulated robotic manip-
ulator. In the literature, there are a few algorithms that are usually used to describe such systems [52, 55–57],
with the most famous ones being the recursive Newton-Euler algorithm (RNEA) and the Lagrange-Euler (LE)

3

formulation. The LE equations and the RNEA are both used to describe the relations between the joint torques,
forces at the end effector and kinematic variables, however, they differ in many other aspects. Concerning only
computational complexity, the Newton–Euler formulation is considerably more efficient due to its inherently
recursive formulation.

Regarding the dynamical representation of robotic manipulator in dual quaternion algebra, the literature is
more lacking—especially when considering Newton-Euler’s algorithm. Recent works on the subject include
[58], in which the authors exploit the principle of virtual work and UDQ to describe an efficient solution for the
dynamics of a parallel manipulator. In [34, 59] both authors show an illustrative examples to how we can build
the inverse dynamics of a manipulator, with [59] using the principle of virtual work and dual numbers and [34]
the dual quaternion formulation and Kane’s equations.

The only other works to focus on the dynamical description of a serial manipulator through a dual quater-
nion based on the recursive Newton-Euler algorithm have been published recently by [29, 30] and by our-
selves [60]. In [29, 30] the authors propose a formulation for describing the dynamics of a spacecraft-mounted
robotic manipulator configured with different joint types. Although the equations in [29, 30] have some simi-
larities to the ones proposed in this manuscript and in our work in [60] there are also many differences between
the algorithms. In [29,30] the authors propose framework, in which they take into account many different types
of joints. However one big drawback in their formulation is that many equations presented in [29,30] are in the
Euclidean vector-matrix formulation, and therefore have to be mapped and back to dual quaternions, creating
the need for transformations in and out of the algebra, which leads to more costly cumbersome and, although
correct, unintuitive equations.

Opposed to [29, 30], our work [60] proposed a more intuitive solution for both the recursive and closed
formulation of the Newton-Euler algorithm following the dual quaternion notation in the [37]. In its recursive
formulation our dqRNEA clearly presents a forward and a backward iteration, and the in the closed formulation
of the algorithm we identify the mass, Coriolis and gravity terms. More so, in addition, we also contribute with
an optimization of the adjoint transformation allowing our algorithm to be more cost efficient.

1.2 OBJECTIVES

The main objectives of this manuscript is to develop a novel and cost efficient formulation for the Newton-
Euler inverse dynamic algorithm based on the algebra of dual quaternions. With our dqRNEA we aim to answer
whether the advantages we find when describing the kinematics of a robotic arm with dual quaternions would
translate to a dynamical model.

With this context we aim to perform a cost analysis of the algorithm and compare it to results in the
literature. More so, to fully validate our algorithm we also aim to integrate it with a computed torque control
scheme and perform a few experiments.

Finally, we also aim to formulate our algorithm as a quaternion-matrix closed form equation, in which the
terms related to mass, Coriolis forces and gravity are explicit.

4

1.3 CONTRIBUTIONS

The main contributions of this manuscript are:

• Development of a novel cost efficient dual quaternion based version of the Newton-Euler inverse dynam-
ics algorithm (dqRNEA) based on the Product of Exponentials formulation for the forward kinematics.
In addition to the traditional recursive method for the dqRNEA algorithm we also rearrange the equations
in order to obtain the closed form inverse dynamic equations, from which the terms related to the mass,
coriolis/centripetal and gravitational forces can be extracted.

• Development of an alternative version of the adjoint mapping within the algebra of dual quaternions.
Our alternative representation stems from the fact that the traditional map is inefficient and, therefore, an
optimization is necessary.

• We also provide, in this work, a cost analysis of the main operations within dual quaternion algebra,
a cost analysis of the different methods for calculating the adjoint map and the cost analysis for the
dqRNEA. Furthermore, we also analyze the costs of some of operations with Homogeneous Transforma-
tion Matrices and for a recursive Newton-Euler inverse dynamics algorithm with this parametrization. A
comparison between these different methods is also provided.

• We created a MATLAB package with the tools to calculate the dqRNEA as well as the implementation
of the dqRNEA itself (in recursive form, closed form, and matrix form).

• We added our dqRNEA function to a computed torque controller and tested for two different robot
models. We also provide the description for these two models: the two-link planar arm and the Kuka
robot.

• The mathematical definition for dual quaternion vectors and dual quaternions matrices, along with the
main operations with these structures.

1.4 ORGANIZATION OF THIS MANUSCRIPT

This manuscript introduces, in Chapter 2 the main mathematic fundamentals used to construct the dqRNEA
algorithm. There we show the basic formalism behind quaternion and dual quaternion algebra, as well as some
more advanced proprieties, such as linear transformations within the dual quaternion group and the introduction
of dual quaternion vectors and dual quaternion matrices. We also show, in this chapter, the geometric proprieties
behind the dual quaternions.

In Chapter 3 we discuss the main topics on robotics that have served as a basis for this research. Mainly this
chapter includes how to represent rigid body dynamics and kinematics with dual quaternions, as well as how to
represent a the forward kinematics of a manipulator with dual quaternions—both with the Denavit–Hartenberg
parameters and with the product of exponential formula.

Chapter 4 deals with the theory behind the inverse dynamics formulation and with the derivation of our
dqRNEA algorithm. Furthermore, we also propose here the quaternionic-Matrix formulation of the Newton-
Euler inverse dynamics, as well as the closed form of the algorithm. Finally, Chapter 4 also describes the
computer torque control scheme for our algorithm.

5

Chapter 5 in mainly concerned with the cost analysis of the algorithm. It shows the costs for the main
operations with quaternions and with dual quaternions as well as the dqRNEA algorithm. Moreover, in this
chapter we also proposed our optimized version of the adjoint matrix and analyze its costs. Finally, Chapter 5
also compared the results of the dual quaternion based representation with the costs for a similar algorithm but
with homogeneous transformation matrix (HTM) instead.

Chapter 6 shows the simulation results for our algorithm. Here we provide some remarks of how we
implemented the algorithm ass well as a description of the MATLAB functions we have used. More so, this
chapter shows the results for the dqRNEA and for a dqRNEA based controller for two different robot models:
a two-link planar arm and the Kuka LWR4.

Chapter 7 provides the concluding remarks as well as the direction for future works.

Finally, Appendix A shows some of the theory on the homogeneous transformation matrices and it presents
a version of the recusive Newton-Euler algorithm that uses this parametrization. There we also provide a cost
analysis for the algorithm.

6

MATHEMATIC FUNDAMENTALS

Throughout this manuscript we aim to introduce a novel description for the inverse dynamics of a serial robotic
manipulator by taking advantage of the dual quaternion algebra. In order to start constructing our algorithm we
must first introduce the main mathematical tools that we will be using for the rest of our work. In this manner
this Chapter lays the theoretical foundation of our work by introducing both the quaternion and dual quaternion
algebra, and, more so, by describing some of its main proprieties.

Thus, 2.1 starts describing the basic concepts behind the quaternions, dual numbers and dual quaternions
and then further describes some more advanced proprieties and its advantages. Furthermore, in Section 2.2 we
extend the geometric notion of the both the quaternions and dual quaternions in order to describe points, lines
and curves in space.

2.1 DUAL QUATERNION REPRESENTATION

In a letter written by a famous 19th century mathematician to his son, it was said,

Every morning in the early part of October 1843, on my coming down to breakfast, your brother
and yourself used to ask me: "Well, Papa, can you multiply triples?" Whereto I was always obliged
to reply, with a sad shake of the head, "No, I can only add and subtract them."

The mathematician in question was William Hamilton, who, for many years, sought a way to represent points
in space by a new numeric system: the triplets. This system of hypercomplex numbers composed of one
real and two imaginary components should represent tridimensional space similarly to how complex numbers
represented points on a two dimensional plain. This endeavor, however, was impossible as multiplication
proprieties would not hold in this systems and as was latter stated by Geog Frobenius1,

Proposition 2.1. There exists no three-dimensional algebra over the field of real numbers that extends the
complex numbers.

In order to fulfill his goal, Hamilton insightfully added another dimension to his system, thus defining the
Quaternions. Although at first his discovery was met with quite a lot of skepticism, as it was not usual at
Hamilton’s time to study a non-commutative algebra, the quaternions today are regarded as very powerful tools
used in a range of disciplines, from engineering to computer science, and even in quantum physics! With some
arguing that quaternions have “it opened the floodgates of modern abstract algebra” [62].

Although the quaternions are very useful to a number of applications—especially to represent rotations in
space—they do have a few limitations. Mainly, quaternions do not couple together the rotation and translation
of a body. A solution to this problem was introduced in 1873 by Willian Clifford who extended a structured
known as biquaternions over to the dual numbers, and thus created the dual quaternions(DQ) [63]. This new
structure would take advantage of the dual numbers in order to combine two quaternions into the eight param-
eter algebra, which can, in its unit form, represent solve the problem of representing both a translation and a

1A full proof of Frobenius Theorem can be found at [61]

7

2

rotation in space.

Throughout the remainder of this manuscript we shall be using many concepts of both quaternion and
dual quaternion algebra. In this manner, the remainder of this section will focus on formally defining the
Quaternions, Dual Numbers and Dual Quaternions as well as discussing some its proprieties. Thus, Subsection
2.1.1 introduces the quaternion algebra, Subsection 2.1.2 the Dual numbers and Subsection 2.1.3 the dual
quaternions. Moreover, we find it necessary to also discuss some other aspects of dual quaternion algebra
not covered in Subsections 2.1.1 to 2.1.3, and in this manner we shall discuss how we may perform linear
transformations with dual quaternions without leaving the group in Subsection 2.1.4 and in Subsection 2.1.5
we shall introduce dual quaternion vectors and matrices. Finally, in Subsection 2.1.6 we will be highlighting
the main advantages of using dual quaternion algebra in robotics.

2.1.1 Quaternions

In this section we shall introduce the algebra of quaternions and some of their main proprieties and par-
ticularities. As discussed in this section’s introduction, the set of quaternions was devised to be an extension
of the algebra of complex numbers, but we can also see the complex numbers as a subset of the quaternions
(C ⊂ H). This assertion leads to the intuitive notion that quaternions and complex numbers many times operate
in a similar fashion, such is the case for the addition/subtraction and multiplication operations. In the following
we formally define the first fundamental building block of this manuscript, the quaternions.

Definition 2.1. (Quaternions) [64] The quaternion algebra is composed by the set of linear combinations on
elements 1, ı̂, ̂ and k̂

H ,
{
η + µ : µ=µ1 ı̂+ µ2̂+ µ3k̂, η, µ1, µ2, µ3∈R

}
. (2.1)

with the following proprieties for any quaternions q = η + ı̂µ1 + ̂µ2 + k̂µ3 and q’ = η′ + ı̂µ′1 + ̂µ′2 + k̂µ′3
and α ∈ R.

Propriety 2.1. (Quaternion Equality)

The quaternion equality is defined by the equality of each of its elements, that is

q = q′ ⇐⇒ η = η′, µ1 = µ′1, µ2 = µ′2, µ3 = µ′3 (2.2)

Propriety 2.2. (Quaternion Addition/Subtraction)

The quaternion addition operation H×H 7→ H is defined as

q + q′ = (η + η′) + ı̂(µ1 + µ′1) + ̂(µ2 + µ′2) + k̂(µ3 + µ′3) (2.3)

Propriety 2.3. (Null Elements)

There exists a null element for addition/subtraction denoted as 0 such that 0 + q = q + 0 = q.

8

Propriety 2.4. (Scalar Multiplication)

The multiplication of a real number by a quaternion R×H 7→ H is a commutative operation defined as,

αq = qα = αη + ı̂(αµ1) + ̂(αµ2) + k̂(αµ3). (2.4)

Proprieties 2.1-2.4 yields that (H,+,R) is a real vector space, that is

∀ (q, q′ ∈ H) αq + βq′ ∈ H for any α,β ∈ R.

Propriety 2.5. (Quaternion Multiplication)

The quaternion multiplication operation H×H 7→ H is

qq′ =(ηη′ − µ1µ
′
1 − µ2µ

′
2 − µ3µ

′
3) + ı̂(η′µ1 + µ1η

′ + µ2µ
′
3 − µ3µ

′
2)+

̂(ηµ′2 − µ1µ
′
3 + µ2η

′ + µ3µ
′
1) + k̂(ηµ′3 + µ1µ

′
2 − µ2µ

′
1 + µ3η

′). (2.5)

Propriety 2.6. (Identity and Null Elements)

There exists a neutral element of a quaternion multiplication denoted as 1 ∈ H such that 1q = q1 = q.
Stemming from proprieties 2.1-2.6 we have that (H,+, ·) is an algebra.

Remark 2.1. Observing that for 1 ∈ R the scalar multiplication yields 1q = q1 = q, it is natural to identify
1 = 1.

Remark 2.2. From definition, it follows that the multiplication operation over H is both associative and dis-
tributive, however it is non-commutative, that is qq′ 6= q′q.

Remark 2.3. Also it follows that the quaternionic elements ı̂, ̂, k̂ satisfy

ı̂̂ = k̂, ̂k̂ = ı̂, and k̂ı̂ = ̂, but ̂̂ı = −k̂, k̂̂ = −ı̂ and ı̂k̂ = −̂.

In fact, these proprieties are used as an alternative way to define the multiplication itself.

Furthermore, quaternions may also be divided with respect to their real and imaginary parts [28], that is,
given q = η + µ1 ı̂+ µ2̂+ µ3k̂, we have

Re (q) , η, (2.6)

Im (q) , µ1 ı̂+ µ2̂+ µ3k̂. (2.7)

These operations allow us to rewrite the quaternion as q = Re (q) + Im (q), and consequently, we can
easily define the conjugate of a quaternion,

q∗ , Re (q)− Im (q) . (2.8)

One of the most important reasons for having the conjugate operation is to further define the quaternion square
norm and the inverse operation.

9

Definition 2.2. (Square Norm) [28, 37, 45]
Let q ∈ H, then we may define the quaternion’s norm as

‖q‖,
√
qq∗. (2.9)

Remark 2.4. We also highlight here that the norm of quaternion elements coincides with the Euclidean norm
of a vector vec q , [η µ1 µ2 µ3]

T ∈ R4, that is, ‖q‖ = ‖vec q‖.

From the quaternion norm of a non zero quaternion at (2.9) we may easily derive the inverse operation,
q−1. Starting from the definition that a quaternion multiplied by its inverse yields the unit element we have,

qq−1 = 1 = q−1q,

q∗qq−1 = q∗. (2.10)

From (2.10) and (2.9) we may easily define the quaternion inverse, as is done in Definition 2.3.

Definition 2.3. (Inverse Operation) [28, 37, 45] Let q ∈ H, then the inverse operation may be defined as

q−1 =
q∗

‖q‖2
. (2.11)

In the following, we will explore some subsets of the quaternions which are widely used and/or important
to the proper comprehension of the remainder of this manuscript. Particularly, we will introduce the manifold
that defines the group of unit quaternions, which can be used to define the rotation operation and the attitude
representation in Subsection (2.2.1).

Complex Numbers

The complex numbers [65], although formulated before the quaternions, may be seen as one of its subsets.
Indeed, if for a quaternion q = η + îµ1 + ĵµ2 + k̂µ3 we have µ2 and µ3 equal to zero, then qı̂ = η + ı̂µ1.
Thus, we have that

Cı̂ , {η + µ : µ=µ1 ı̂, η, µ1∈R} .

We highlight that, alternatively, we may have µ1 and µ3 equal to zero and q̂ = η + ̂µ2 or µ1 and µ2 equal to
zero and qk̂ = η + k̂µ3. The complex set for these cases would then be defined, respectively, as

C̂ , {η + µ : µ=µ2̂, η, µ2∈R}

or
Ck̂ ,

{
η + µ : µ=µ3k̂, η, µ3∈R

}
.

We will not detail the set of complex numbers here, however, its of easy verification that many of the
proprieties for the quaternions hold for the complexes as well. We highlight here, however, that due to the
lower number of dimensions C becomes commutative under multiplication.

10

Pure Imaginary Quaternions

The Pure Imaginary Quaternions [28, 37, 66] (or pure quaternions) are the subset of quaternions in which
the real part is null. That is,

H0 , {q0 : q0 ∈ H , Re (q0) = 0} .

In terms of the conjugate operation, we have that pure quaternions can also be defined as the set of q0 ∈ H
satisfying

q∗0 = −q0. (2.12)

The elements of this subset are isomorphic to the three-dimensional vectors2 R3, something that becomes
particularly useful when representing dynamic and kinematic variables (translation, angular and linear veloc-
ities, accelerations, momentum and wrenches). Indeed the pure quaternions are very well suited to represent
compactly an unified framework for robotics, and this will be further explored in Chapter 3. Here we will
explore a little more some of the mathematical proprieties that relate H0 and R3, mainly the inner and cross
product as defined in [28, 66]

Definition 2.4. (Cross Product) [28, 37, 66] Given two pure quaternions q = îµ1 + ĵµ2 + k̂µ3 and q′ =

îµ′1 + ĵµ′2 + k̂µ′3 the cross product between two pure quaternions is

q × q′ , qq′ − q′q
2

. (2.13)

Definition 2.5. (Inner Product) [28, 37, 66] Given two pure quaternions q = îµ1 + ĵµ2 + k̂µ3 and q′ =

îµ′1 + ĵµ′2 + k̂µ′3, the inner product is defined as

q · q′ , −qq
′ + q′q

2
= µ1µ

′
1 + µ2µ

′
2 + µ3µ

′
3. (2.14)

From definitions 2.5 and 2.4 we can redefine the multiplication of pure quaternions. That is, if q, q′ ∈ H0,
then from (2.5) we have

qq′ = −q·q′ + q × q′. (2.15)

And, furthermore, if the quaternions are perpendicular to each other, than the inner product is zero and qq′ =

−qq′ = q × q′. This result is once more analogous to how complex numbers represent motions in the plane
(see Section 2.2), thus furthering the notion that quaternions can represent a motion in space.

Unit Quaternions

The subset of unit quaternions [28, 37, 38, 66] is defined as

S3 , {q ∈ H : ‖q‖ = 1} . (2.16)

That is, the unit quaternion is the subset of quaternions corresponding to the three dimensional unit sphere in
R4 with norm equal to one. This set, when equipped with multiplication, forms the Lie group Spin(3) [67],
formally defined as follows.

2See Subsection 2.1.1.1

11

Definition 2.6. (Unit Quaternion Group)

The unit quaternion group, Spin(3), is defined by the set S3 equipped with the quaternion multiplication. Given
the quaternions q1, q2 and q3 ∈ Spin(3) the multiplication satisfies the following axioms:

1. (Closure) The multiplication of any pair of unit quaternions in Spin(3) results in a unit quaternion in the
group, thus q1q2 ∈ Spin(3).

2. (Identity) ∃1 , 1 ∈ S3 such that q1 = 1q = q;

3. (Inverse) The inverse operation exists and may be defined from (2.11) and (2.16). That is, considering
the unit norm of this group of quaternions, (2.11) becomes

q−1 = q∗; (2.17)

4. (Associative) q1(q2q3) = (q1q2)q3;

In particular Spin(3) is extremely important when we are describing a rigid body’s attitude, usually being
comparable to the Euler Angles and Rotations Matrices in its purpose. The remainder of this manuscript will
tackle related issues, such as the use of unit quaternions for frame transformation and point transformation (see
subsection (2.2.1)) and rigid body motion (see (3.1.2)).

2.1.1.1 Isomorphism to R4 and R3

Another important quality of the quaternions is that they are isomorphic to R4, or, in the case of pure
quaternions, are isomorphic to R3. What this means is that we are able to define an isomorphic map between
the two groups—that is, we may perform a one-to-one transformation between those groups such that the
operations of the original group will be respected [68].

This is an important definition, which allows some important results relating multiplication and com-
mutation as will be further discussed in Subsection 2.1.4. However, still in regards to the isomorphism be-
tween quaternions and 4-dimensional vectors, we believe it is important to introduce here the vector operator:
vec4 : H −→ R4. This is an one-by-one map between quaternions and vector, such that, for a quaternion
q = η + îµ1 + ĵµ2 + k̂µ3, we have

vec4q ,


η

µ1

µ2

µ3

 , (2.18)

and similarly the inverse operation is defined as vec4 : R4 −→ H [37, 66].

Similarly, we may may also consider the isomorphism between H0 and R3, which in this case may be
defined by means of the operator vec3 : H0 −→ R3, such that for a pure quaternion q0 = îµ1 + ĵµ2 + k̂µ3 ,
we shall have

vec3q0 ,

 µ1

µ2

µ3

 , (2.19)

12

and its inverse map vec4 : R3 −→ H0. We note that the pure quaternions’ isomorphism to R3 is particularly
interesting, as both the cross and inner products with quaternions are analogous to their counterpart in R3 [66].
Moreover, as a consequence of this, we may use H0 to represent positions and translations in space also in a
similar fashion to the real set.

2.1.2 Dual Numbers

The dual numbers are usually defined as motivators for the dual quaternions, however, they may be also
seen as a its subset, in which the the imaginary part of the dual quaternion is equal to zero. Formally they may
be defined as

D ,
{
µ = µ+ εµ′ : µ, µ′∈R

}
, (2.20)

in which ε is the dual unit, and ε2 = 0, ε 6= 0 [69].

As dual numbers share many proprieties with the dual quaternions, we shall not describe them in detail
here. However, we find it important to show here the Taylor Expansion of a dual number.

Definition 2.7. (Dual Number Taylor Expansion) [1, 37] Given the dual number µ = µ + εµ′ ∈ D, the
differentiable function f : D −→ D can be defined by its Taylor Expansion at the point µ

0
= µ. That is

f(µ) =

∞∑
n=0

f (n)
(
µ
)

n!

(
µ− µ

0

)n

= f
(
µ

0

)
+ f ′

(
µ

0

)(
µ− µ

0

)
+
f ′′
(
µ

0

)
2

(
µ− µ

0

)2

+ . . .

As ε2 = 0, then the term
(
µ− µ

0

)n
=
(
εµ′
)n

is equal to zero for any n ≥ 2. That results in

f(µ) = f
(
µ

0

)
+ εf ′

(
µ

0

)
µ′ (2.21)

Finally, we may also decompose the dual numbers in two different parts: the primary part and the dual part.
Considering the dual number µ = µ+ εµ′ these parts can be retrieved by means of the primary part operator,

P(µ) = µ, (2.22)

and the dual part operator
D(µ) = µ′. (2.23)

2.1.3 Dual Quaternions

The dual quaternions were developed aiming a more compact and efficient representation for motions in
space. In fact, the quaternions by themselves are very good to represent motions, however, they are limited
to describing only a translation or a rotation at a time. Thus, we introduce the set of dual quaternions [28, 37,
66, 70, 71], which take advantage of the dual numbers to couple together two quaternions and represent the
complete motion (or pose) of an object,

H ,
{
q = qP + εqD | qP , qD∈H

}
. (2.24)

13

As (2.24) makes clear, the dual quaternions expand the basis in H to
{

1, î, ĵ, k̂, ε, ε̂i, εĵ, εk̂
}

and its di-

mensions to eight and also ε is called dual unit with ε2 = 0, ε 6= 0. Indeed, similarly to how quaternions
expand on some proprieties of complex numbers, the dual quaternions expands the quaternions.

Another propriety of dual quaternions is that its elements can be decomposed in primary and dual parts.
That is, for a dual quaternion q = qP + εqD, we can define the primary part operator [28],

P(q) = qP (2.25)

and the dual part operator
D(q) = qD. (2.26)

From the operation defined in subsection 2.1.1 and by using (2.25) and (2.26) we may formally define the
dual quaternion algebra.

Definition 2.8. (Dual Quaternion Algebra) [37, 63] The dual quaternion algebra is composed by the set

H ,
{
q = qP + εqD | qP , qD∈H

}
(2.27)

with the following properties for any q and q′ ∈ H and α ∈ R.

Propriety 2.7. (Dual Quaternion Equality)

The dual quaternion equality is defined by the equality of each of its elements, that is

q = q′ ⇐⇒ P(q) = P(q′), D(q) = D(q′) (2.28)

Propriety 2.8. (Dual Quaternion Addition/Subtraction)
Dual quaternion addition/subtraction is defined as the operation ± : H×H 7→ H is defined as

q ± q′ =
(
P(q)± P(q′)

)
+ ε

(
D(q)±D(q)

)
. (2.29)

Propriety 2.9. (Dual Quaternion Null Element)
There exists a null element for addition/subtraction denoted as 0 such that 0 + q = q + 0 = q.

Propriety 2.10. (Scalar Multiplication)

The multiplication of a real number by a dual quaternion R×H 7→ H is a commutative operation defined as,

αq = αP(q) + εD(q) (2.30)

Proprieties 2.7-2.10 yields that (H,+,R) is a real vector space, that is

∀
(
q, q′ ∈ H

)
αq + βq′ ∈ H for any α,β ∈ R.

Propriety 2.11. (Dual Quaternion Multiplication)

The dual quaternion multiplication operation H × H 7→ H takes into account the ε2 = 0 propriety of the dual
numbers, thus being

qq′ = P(q)P(q′) + ε
(
P(q)D(q′) +D(q)P(q′)

)
(2.31)

14

Propriety 2.12. (Identity and Null Elements)

There exists a neutral element of a quaternion multiplication denoted as 1 ∈ H such that 1q = q1 = q.
Stemming from proprieties 2.7-2.12 we have that (H,+, ·) is an algebra.

Remark 2.5. For dual quaternions is still important to highlight that multiplication is both associative and
distributive, but non-commutative, as is the case of the quaternions. However, we also highlight that in contrast
to quaternion algebra, due to the presence of the dual number ε, the dual quaternion algebra is not a division
algebra. Indeed, as will be discussed in Definition (2.10) there is a subset of non-null H without a inverse
definition.

We may also divide dual quaternions into their real and imaginary parts bay using the Re(∗) and Im(∗)
operators. For a dual quaternion q ∈ H, the real and imaginary parts are respectively given by

Re(q) , Re
(
P(q)

)
+ εRe

(
D(q)

)
(2.32)

and
Im(q) , Im

(
P(q)

)
+ εIm

(
D(q)

)
. (2.33)

From (2.8), (2.32) and (2.33) we may also introduce the dual quaternion conjugate operation. Let q = P(q) +

εD(q) be a dual quaternion, then

q∗ , P(q)∗ + εD(q)∗ , Re(q)− Im(q). (2.34)

As can be seen, the conjugate of a dual quaternion can be defined both as the conjugate of the quaternions
representing the primary and dual parts, or as the real part minus the imaginary one. Furthermore, we can use
(2.34) to define the norm and inverse operations.

Let q ∈ H, then we may define the dual quaternion’s square semi-norm as well as its inverse.

Definition 2.9. (Square Semi-norm) [66] The dual quaternion semi-norm can be defined as∥∥q∥∥ =
√
q∗q =

√
qq∗. (2.35)

Definition 2.10. (Inverse Operation) [67] Similarly to definition (2.3), the dual quaternion’s inverse may be
defined as

q−1 =
q∗∥∥q∥∥2 (2.36)

and only exists if P(q) 6= 0 or, in other words, if
∥∥q∥∥ 6= 0a.

aThe algebra of dual quaternions is a eight dimensional associative and not commutative algebra over R8, however, as there are divisors
of zero, it does not form a division ring. The quaternions, on the other hand, are a division algebra over R4 and the octonions are a division
algebra over R8.

Remark 2.6. We notice here that this is not strictly a square norm, in which we would expect positive values
for all non-zero elements. For the particular case of q = εD(q) the norm will be zero for any element. Thus
we define this as the semi-norm rather than as a traditional norm.

Another important aspect of the dual quaternion semi-norm is that, differently from the quaternion norm,
its result does not coincide with the euclidian norm, but rather it yields a dual number. This becomes clearer

15

once we rewrite (2.35) as ∥∥q∥∥ =
√
q∗q

=
√[
P(q)∗P(q)

]
+ ε

[
P(q)∗D(q) +D(q)∗P(q)

]
=

√∥∥P(q)
∥∥2

+ ε2
(
P(q) · D(q)

)
=

√√√√(∥∥P(q)
∥∥+ ε

1∥∥P(q)
∥∥ (P(q) · D(q)

))2

=
∥∥P(q)

∥∥+ ε
1∥∥P(q)
∥∥ (P(q) · D(q)

)
. (2.37)

The dual quaternions also contains quite a few interesting subsets. In fact, the quaternion itself is a subset
of dual quaternions (R ⊂ C ⊂ H ⊂ H), as are the dual numbers (D ⊂ H). However, we also have other
subsets of interests, such as the dual numbers, pure dual quaternions and unit dual quaternions.

Pure Dual Quaternions

Much like the pure quaternions, the pure dual quaternions are the subset of quaternions with real part equal
to zero [28, 37, 66]. Thus, we may define the subset as

H0 ,
{
q

0
= qP + εqD | qP , qD∈H0

}
. (2.38)

Moreover, as was the case for pure quaternions, the pure dual quaternions can be defined in terms of the
conjugate operation. That is, the pure dual quaternions can be defined as the subset q

0
∈ H0 that satisfies

q∗
0

= −q
0
. (2.39)

Similar to pure quaternions, the elements in H0 can be deployed into the kinematics and dynamics analysis to
compactly express the coupled angular and linear generalized rigid body twist, accelerations, momentum and
wrenches [63]. In particular, the primary part of the dual quaternion will usually represent the angular part of
the motion and the dual part will deal with the linear velocities, accelerations or forces. We can exploit H0

to represent such physical qualities in a coupled manner due to the isomorphic relation they have with R6 3,
these equations of motion will be further explored in Chapter 3. Still, for the remainder of this section we shall
explore some other mathematical proprieties of the pure dual quaternions, in particular, the cross and inner
products, that, unlike the pure quaternions, do not coincide with their R6 counterparts.

Given two pure dual quaternions q = qP + εqD and q′ = q′P + εq′D

Definition 2.11. (Cross Product) [28] The cross product between two pure dual quaternions is defined in [37]
as

q × q′ ,
qq′ − q′q

2
. (2.40)

3See Subsection 2.1.3.1

16

Definition 2.12. (Inner Product) [28] The pure dual quaternion inner product is defined in [37] as

q · q′ , −
qq′ + q′q

2
. (2.41)

Remark 2.7. We highlight here that unlike the inner product of two vector in R6 and the inner product of two
pure quaternions, the dual quaternion inner product does not result in a real scalar. It results in a dual number.

A dual number does not always provide us with results that posses clear physical meaning. In order to attain
this we must define a new pure dual quaternion operation: the double geodesic product. This new product works
by taking the combined real value of the inner product from the primary part and dual parts, as can be seen in
the following Definition (2.13).

Definition 2.13. (Double Geodesic Product) Given two pure dual quaternions q = qP + εqD and q′ =

q′P + εq′D we define the double geodesic product as

q � q′ , qP · q′P + qD · q′D. (2.42)

Remark 2.8. .

Remark 2.9. This product is similar to the Euclidean norm of corresponding vectors and is similar to the
double-geodesic metric provided in Bullo and Murray [72] for the rigid body transformations using the group
of Euclidean displacements4.

Remark 2.10. We also remark here that, from (2.14), we have that the inner product between two quaternions is
commutative. As a consequence of this, the individual terms of (2.42) are also commutative, and q�q′ = q′�q

Unit Dual Quaternions

Once more, analogous to unit quaternions, the subset of unit dual quaternions is the one with unit semi-norm

S ,
{
q ∈ H :

∥∥q∥∥ = 1
}
. (2.43)

We stress here that (2.37) implies that
∥∥q∥∥ = 1 if and only if

∥∥P(q)
∥∥ = 1 and P(q) · D(q) = 05. Further-

more, under multiplication the set of unit dual quaternions forms the Lie group Spin(3) nR3 [67].

4It is important to highlight that there is no well-defined Riemannian metric for the group of Euclidean transformations nor for the
(pure) dual quaternions, but the double-geodesic approach used in [72] and herein ensures positiveness and equal actions in the attitude
and translation geodesics. The study on metrics for Euclidean displacements and the correspondent topological obstruction lies out of the
scope of the current manuscript, but readers are refereed to excel the works [72, 73] for further details.

5One interesting consequence of the unit dual quaternion group is that it no longer has a semi-norm, but a regular norm. Indeed all
elements have a clearly defined norm, which is

∥∥∥q∥∥∥ = 1.

17

Definition 2.14. (Unit Dual Quaternion Group) [66, 67]

The unit dual quaternion group, Spin(3)nR3, is defined if the quaternions q
1
, q

2
and q

3
∈ Spin(3) nR3 have

the following proprieties:

1. (Closure) The multiplication of any pair of unit quaternions in Spin(3)nR3 results in a unit dual quater-
nion in the group, thus q

1
q

2
∈ Spin(3) nR3.

2. (Identity) For all unit dual quaternion in Spin(3) n R3 the identity element is defined as 1 , 1 and
q1 = 1q = q.

3. (Inverse) The inverse operation exists and may be defined from (2.36) and (2.43). That is, considering
the unit semi-norm, (2.36) becomes

q−1 = q∗. (2.44)

4. (Associative) The associative propriety holds q
1
(q

2
q

3
) = (q

1
q

2
)q

3

In the same manner the unit quaternions describe a body’s attitude, the unit dual quaternions may describe
the complete pose of an object, coupling translation and rotation operations. Indeed, much like the homoge-
neous matrices (see Appendix (A)), the unit dual quaternions represent a complete rigid body motion, having a
double cover over the Special Euclidean Group SE(3).

The remainder of this manuscript will explore the use of dual quaternions —including unit dual quaternions
and pure dual quaternions— to represent the kinematics and dynamics of a body, particularly the dynamics of
a serial manipulator.

2.1.3.1 Isomorphism to R8 and R6

In Subsection 2.1.1.1 we have discussed how the quaternions and pure quaternions are isomorphic to R4

and R3, and how we may exploit this characteristic in order to define an operator the can map the two groups.
This notion can also be extended to the dual quaternions and the pure dual quaternions and, as was the case
in Subsection 2.1.1.1, the results this mapping yields are also important for expanding some proprieties of the
dual quaternions and will also be discussed in depth in section 2.1.4.

Here, however, we will present here the dual quaternion equivalent for equation (2.18), the vector operator:
vec8 : H −→ R8. This is an one-by-one map between dual quaternions and vector, such as, for a dual
quaternion q = P(q) + εD(q), we have

vec8q ,

[
vec4

(
P(q)

)
vec4

(
D(q)

)] , (2.45)

and similarly the inverse operation is defined as vec8 : R8 −→ H.

Regarding the pure dual quaternions we have the operator vec6 : H0 −→ R6 which can map a pure
quaternion such as q

0
= P(q

0
) + εD(q

0
) to R6 through the function

vec6q0
,

 vec3

(
P(q

0
)
)

vec3

(
D(q

0
)
)  , (2.46)

18

with the inverse mapping being defined as vec6 : R6 −→ H0 [28, 37, 66].

2.1.4 Linear Transformations

Whenever studying quaternion or dual quaternion algebra, the multiplication is always a delicate matter
to be addressed. Besides the issues that may arise with the non-commutativity of the multiplication, stated in
Definitions (2.5) and (2.11), we have also a need to properly address how linear transformations operate in this
algebra, specially those concerning the quaternion-matrix multiplication.

Stemming from (2.18) we have a simple manner to multiply a quaternion by a matrix. That is, by exploiting
the isomorphism between H and R4 we may perform ope rations such

q′ = vec4 (Mvec4(q)) , (2.47)

in which q and q′ ∈ H andM ∈ R4×4.

Similarly we may also exploit (2.45) and the isomorphism of H to R8 in order to multiply dual quaternions
by matrices. Thus, let q and q′ ∈ H andN ∈ R8×8, then DQ by matrix multiplication is

q′ = vec8

(
Nvec8(q)

)
. (2.48)

Furthermore, the transformations given in (2.47) and (2.48) can be also expressed solely in quaternion (or dual
quaternion) form.

Thus (2.47) may be rewritten as the operator T4 mapping an operation such as (2.47) to a quaternion without
the need to go to R4 and R4×4, yielding a matrix linear transformation such as

T4 (M) q = m1q1 +m2q2 +m3q3 +m4q4 (2.49)

withM =
[
m1 m2 m3 m4

]
being a vector of quaternionsmi ∈ H and q = q1+q2 ı̂+q3̂+q4k̂ ∈ H.

In the same manner,

T8 (N) q = n1q1 + n2q2 + n3q3 + n4q4 + n5q5 + n6q6 + n7q7 + n8q8 (2.50)

in which N =
[
n1 n2 n3 n4 n5 n6 n7 n8

]
being a vector of dual quaternions ni ∈ H and

q = q1 + q2 ı̂+ q3̂+ q4k̂ + ε
(
q5 + q6 ı̂+ q7̂+ q8k̂

)
∈ H.

As previously discussed it is well-known that H is non-commutative, and the same is valid for the dual
quaternions. Indeed, as discussed in Definitions 2.5 and 2.11, if a and b are dual quaternions, then ab 6= ba.
However, we may deal with this lack of commutativity with the approach proposed in [28, 37]. That is, by
taking the matrix algebra representation of quaternions or dual quaternions.

In [74], the quaternion commutativity is obtained by changes in the sign of the resulting matrix represen-
tation which is isomorphic to the quaternion group. The resulting orthogonal matrix is known as the Hamilton

operator
±
H (x) ∈ R4×4 of the quaternion element x [70, 75]. Thus, from (2.47), two quaternions a and b can

commute as follows

y = ab = vec4

(
+

H (a) vec4 b

)
= vec4

(
−
H (b) vec4 a

)
, (2.51)

19

in which the Hamilton operators for the right and left multiplications can be computed from the matrix repre-
sentation of a quaternion such as x = x1 + x2 ı̂+ x3̂+ x4k̂,

+

H (x) ,


x1 −x2 −x3 −x4

x2 x1 −x4 x3

x3 x4 x1 −x2

x4 −x3 x2 x1

 and
−
H (x) ,


x1 −x2 −x3 −x4

x2 x1 x4 −x3

x3 −x4 x1 x2

x4 x3 −x2 x1

. (2.52)

To reduce the notation of (2.52) we may note that the columns of the Hamiltonians are the orthogonal vectors
from x, thus

+

H (x) = [vec4 x vec4 (xı̂) vec4 (x̂) vec4

(
xk̂
)

];

−
H (x) = [vec4 x vec4 (̂ıx) vec4 (̂x) vec4

(
k̂x
)

].

(2.53)

We note that we have only been exploiting a matrix formulation for allowing the commutative propriety,
however, in this manuscript, we are more interested on the solutions that are defined within the quaternion
group, without needing to perform mapping to R4. One such solution can exploit (2.13) and extend it to H,
thus resulting in commutation for a and b ∈ H becoming

ab = ba− 2 Im (b)× Im (a) . (2.54)

Indeed, this simplifies the equations and quickens the computation. Nonetheless, the solution (2.54) is still
complex and we are more interested in easier, less computationally demanding and intuitive solutions. Thus,
by exploiting (2.49), in Definition 2.15 we present a quaternion representation of (2.53).

Definition 2.15. (Quaternion Hamiltonian) Given two quaternions a and b, the transformation based on the

quaternion multiplication (2.5) can commute within the group by exploiting the operators
+

h:H×H −→ H and
−
h:H×H −→ H, such that

y = ab =
+

h (a) b =ab0 + aı̂b1 + a̂b2 + ak̂b3,

=
−
h (b)a =ba0 + ı̂ba1 + ̂ba2 + k̂ba3.,

(2.55)

We highlight here that the operations in (2.55) are equivalent to the ones in (2.52).

The main advantage of the quaternion-Hamiltonian in (2.55) is that it is defined only as quaternion multi-
plication by scalars without the tedious and costly operation of mapping quaternions to R4and R4×4 and back
to H. Hence, all operations are defined within the group in a more compact and intuitive format.

Much like their quaternion counterpart, dual quaternions have a matrix algebra operator that can allow the
commutation of elements. This can be obtained based on a R8×8 multiplication by the vector representation
of a dual quaternion element—and, then mapped back to H—as in [28, 66]. Thus, for a and b ∈ H, and from
(2.31) we have

y = ab = vec8

(
+

H (a) vec8 b

)
= vec8

(
−
H (b) vec4 a

)
(2.56)

20

in which, this time, the dual quaternion Hamiltonians is defined from (2.52) as and with x = xP + εxD ∈H

+

H (x) =

 +

H (xP) 0
+

H (xD)
+

H (xP)

 and
−
H (x) =

 −
H (xP) 0
−
H (xD)

−
H (xP)

 (2.57)

In contrast, [70] introduces the concept of orthogonal dual matrix combining the Hamilton operator matrix
for quaternions (in 2.52) with dual unit ε. Herein, to commute between dual quaternions we take a similar
approach based on the direct product of dual numbers with quaternion Hamiltonian operators of Definition
2.15, thus we have Definition 2.16.

Definition 2.16. (Dual Quaternion Hamiltonian) Given two dual quaternions a and b the he transforma-
tion based on the operation y = a b in (2.31) can commute within the group by exploiting the operators
+

h:H×H −→ H and
−
h:H×H −→ H, such that

y =
+

h (a) b =
+

h(aP)bP + ε(
+

h(aP)bD +
+

h(aD)bP),

=
−
h (b)a =

−
h(bP)aP + ε(

+

h(bP)aD +
+

h(bD)aP),

(2.58)

in which a = aP +εaD and b = bP +εbD, and
+

h and
−
h yields an orthogonal dual matrix as described in [70].

Note the operators
+

h and
−
h are similar to the dual matrix described in [70], yet it maps to a dual quaternion

element. In other words, similarly to quaternion Hamiltonian operation in (2.55), the operations described in
(2.58) are exclusively defined within the algebra of dual quaternions with no need to external mapping.

2.1.5 Dual Quaternion Vectors and Matrices

Although not very usual in the literature, we believe it to be quite important to also describe how dual
quaternion vectors and dual quaternion matrices work6, as well as their main proprieties. Indeed, although
the formalism for dual quaternion matrices and vectors might be intuitive, we also list this section as one of
our contributions to the literature, as we have not found any references formally describing this mathematical
structures.

Following the traditional vector formalism, we may define a dual quaternion vector as

Hn ,

{[
q

1
q

2
q

3
. . . q

n

]T
: q

i
∈ H, i ∈ {1, 2, . . . , n}

}
, (2.59)

With one important propriety of the dual quaternion vectors being the transpose operation and the conjugate

6The definitions of vectors and matrices used throughout this paper are not strict, in the sense that vector elements are not defined over
a field (note that quaternions, for instance, are division rings, not fields). Nonetheless, operations from vector space are valid for our vector
definition as shown in the provided operations in the manuscript. The nomenclature is used for historical reasons and to easy analysis.

21

operation. Thus, given the dual quaternion vectorQ =



q
1

q
2

q
3
...
q
n


∈ Hn, we may also define its transpose as

QT ,
[
q

1
q

2
q

3
. . . q

n

]
, (2.60)

and its conjugate as

Q∗ =



q∗
1

q∗
2

q∗
3
...
q∗
n


. (2.61)

Moreover, we may also define some proprieties of the dual quaternion vector, such as the addition in Propriety
2.13.

Propriety 2.13. (Dual Quaternion Vector Addition) Given two dual quaternions vectors such as Q =[
q

1
q

2
q

3
. . . q

n

]
∈ Hn and Q′ =

[
q′

1
q′

2
q′

3
. . . q′

n

]
∈ Hn the addition operation

(Hn ×Hn −→ Hn) can be defined as

Q+Q′ :=
[
q

1
+ q′

1
q

2
+ q′

2
q

3
+ q′

3
. . . q

n
+ q′

n

]
, (2.62)

in which the individual elements of the vector are calculated by the dual quaternion addition in (2.29).

Propriety 2.14. (Dual Quaternion Vector Multiplication) Given two dual quaternions vectors such as Q =[
q

1
q

2
q

3
. . . q

n

]
∈ Hn and Q′ =

[
q′

1
q′

2
q′

3
. . . q′

n

]
∈ Hn the multiplication opera-

tion (Hn × (Hn)
T −→ H) can be defined as

Q
(
Q′
)T

= q
1
q′

1
+ q

2
q′

2
+ q

3
q′

3
+ . . .+ q

n
q′
n
, (2.63)

in which the product between two dual quaternions is defined in (2.31) and the addition is in (2.29).

Dual quaternion vectors can be very useful in some applications, as we will see in Chapter 4. However,
we may also find it necessary, in many cases, to further expand these vectors to their matrix notation. Thus,
similarly to (2.59) we may define the dual quaternion matrix as

Hn×m ,




q

1,1
q

1,2
. . . q

1,m

q
2,1

q
2,2

· · · q
2,m

...
...

. . .
...

q
n,1

q
n,2

. . . q
n,m

 : q
i,j
∈ H, i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}


. (2.64)

In this case, the elements may be combined similarly to how they are in real matrix notation to perform a
number of operations.

Furthermore, in Proprieties 2.15 and 2.16 we show the addition and multiplication.

22

Given two dual quaternion matrices such as Q =


q

1,1
q

1,2
. . . q

1,m

q
2,1

q
2,2

· · · q
2,m

...
...

. . .
...

q
n,1

q
n,2

. . . q
n,m

 ∈ Hn×m and Q′ =


q′

1,1
q′

1,2
. . . q′

1,m

q′
2,1

q′
2,2

· · · q′
2,m

...
...

. . .
...

q′
n,1

q′
n,2

. . . q′
n,m

 ∈ Hn×m we define the operations bellow.

Propriety 2.15. (Dual Quaternion Matrix Addition) The addition operation such that Hn×m × Hn×m −→
Hn×m can be defined as

Q+Q′ =


q

1,1
+ q′

1,1
q

1,2
+ q′

1,2
. . . q

1,m
+ q′

1,m

q
2,1

+ q′
2,1

q
2,2

+ q′
2,2

· · · q
2,m

+ q′
2,m

...
...

. . .
...

q
n,1

+ q′
n,1

q
n,2

+ q′
n,2

. . . q
n,m

+ q′
n,m

 , (2.65)

in which the individual elements of the vector calculated through the dual quaternion addition in (2.29)

Propriety 2.16. (Dual Quaternion Matrix Multiplication) The multiplication operation, such that Hn×m ×
Hm×n −→ Hn×n, can be defined as

Q
(
Q′)T =


q

1,1
q′

1,1
+ q

1,2
q′

1,2
+ . . .+ q

1,m
q′

1,m
. . . q

1,1
q′
n,1

+ q
1,2
q′
n,2

+ . . .+ q
1,m
q′
n,m

q
2,1
q′

1,1
+ q

2,2
q′

1,2
+ . . .+ q

2,m
q′

1,m
. . . q

2,1
q′
n,1

+ q
2,2
q′
n,2

+ . . .+ q
2,m
q′
n,m

...
. . .

...
q
n,1
q′

1,1
+ q

n,2
q′

1,2
+ . . .+ q

n,m
q′

1,m
. . . q

n,1
q′
n,1

+ q
n,2
q′
n,2

+ . . .+ q
n,m
q′
n,m


(2.66)

Remark 2.11. The dual quaternions vector multiplication defined in Propriety 2.14 is one particular case of
dual quaternion matrix multiplication, in which we are multiplying H1×n ×Hn×1 = H1×1.

As was the case for the vector, we have both the transposed and the conjugate operations. That is, given the

dual quaternion matrix Q =


q

1,1
q

1,2
. . . q

1,m

q
2,1

q
2,2

· · · q
2,m

...
...

. . .
...

q
n,1

q
n,2

. . . q
n,m

 ∈ Hn×m, we have the transpose operation being

the “swapping” of the matrix’s elements such as q
i,j

in which i 6= j, resulting in

QT =


q

1,1
q

2,1
. . . q

n,1

q
1,2

q
2,2

· · · q
n,2

...
...

. . .
...

q
1,m

q
2,m

. . . q
n,m

 . (2.67)

23

Regarding the conjugate, for the same matrixQ, we have

Q∗ =


q∗

1,1
q∗

1,2
. . . q∗

1,m

q∗
2,1

q∗
2,2

· · · q∗
2,m

...
...

. . .
...

q∗
n,1

q∗
n,2

. . . q∗
n,m

 , (2.68)

with each q∗
i,j

being the dual quaternion conjugate as in 2.34.

Finally, to close off this section, we must add that a subgroup for both the dual quaternion vector as the
dual quaternion matrices can be the one in which the the individual elements of the vector (or matrix) is a pure
quaternion. That is, the pure dual quaternion vector could be defined as

H0
n ,

{[
q

1
q

2
q

3
. . . q

n

]T
: q

i
∈ H0, i ∈ {1, 2, . . . , n}

}
, (2.69)

and the pure dual quaternion matrix would be

H0
n×m ,




q

1,1
q

1,2
. . . q

1,m

q
2,1

q
2,2

· · · q
2,m

...
...

. . .
...

q
n,1

q
n,2

. . . q
n,m

 : q
i,j
∈ H0, i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}


. (2.70)

Regarding the pure dual quaternion vectors we can also define three very important operations: the element-
wise cross product, the element-wise inner product and the element-wise double geodesic product. All this
operations take advantage of their equivalents in H0 and perform these operations between every two pairs of
pure dual quaternions in the vector. This can be better illustrated by Definitions 2.17 to 2.19.

Definition 2.17. (DQ-Vec Cross Product) Let P 1 =
[
p

1,1
p

1,2
. . . p

1,n

]T
and

P 2

[
p

2,1
p

2,2
. . . p

2,n

]T
∈ H0

n, then the element wise cross product operation⊗ : Hn×Hn −→ Hn

can be defined as the element wise cross product between the dual quaternions

P 1 ⊗ P 2 =
[
p

1,1
× p

2,1
p

1,2
× p

2,2
. . . p

1,n
× p

2,n

]T
. (2.71)

Definition 2.18. (DQ-Vec Inner Product) Let P 1 =
[
p

1,1
p

1,2
. . . p

1,n

]T
and

P 2

[
p

2,1
p

2,2
. . . p

2,n

]T
∈ Hn0 , then the element wise inner product operation } : Hn ×Hn −→ Hn

can be defined as the element wise inner product between the dual quaternions

P 1 } P 2 =
[
p

1,1
· p

2,1
p

1,2
· p

2,2
. . . p

1,n
· p

2,n

]T
. (2.72)

Definition 2.19. (DQ-Vec Double Geodesic Product) Once more let P 1 =
[
p

1,1
p

1,2
. . . p

1,n

]T
and

P 2

[
p

2,1
p

2,2
. . . p

2,n

]T
∈ H0

n, then the element-wise double geodesic product operation � : Hn ×
Hn −→ Hn can be defined as

P 1 � P 2 =
[
p

1,1
� p

2,1
p

1,2
� p

2,2
. . . p

1,n
� p

2,n

]T
. (2.73)

24

2.1.6 Advantages of Dual Quaternions

The algebra of dual quaternions, presented in this chapter, has many advantages when compared to other
representations. In particular, the DQ may represent complex problems in a compact and unified manner
[71, 76]. Particularly, the dual quaternions compactness can be verified in the fact that with only eight param-

eters they are capable of representing the full pose of a body—in contrast to the homogeneous transformation
matrices, which need 16 elements to represent a full pose. Moreover, the dual quaternions, opposed to the
rotations matrices and the Euler angles, represent both translations and rotations simultaneously, which is by
itself a great advantage for applications in control.

Another great advantage of dual quaternions is that they are also singularity free. That is, they can represent
many geometric meaningful variables and the representation itself will not produce any singularity, such as the
Gimbal lock, which is famous under the Euler angles. In terms of efficiency, we have many works providing
an extensive analysis between Dual Quaternions and other algebras and coming to the conclusion that they are
the best way to describe a screw in space [39–41, 77].

2.2 DUAL QUATERNIONS GEOMETRIC REPRESENTATION

Dual quaternions are particularly good for representing geometric variables in space. In particular, a good
motivation for the use of quaternions and dual quaternions in the literature is their compact and singularity free
representation for points in three-dimensional space—not only it is easy for us to represent a pose in space,
but it is also fairly easy to represent translations and rotations within these algebras. Regarding only dual
quaternions, they are an even richer tool for describing motions, as within this algebra we have the translation
and rotation coupled together in one single singularity free structure. In this manner, Subsection 2.2.1 will
explore the representation of a point in both 2D and 3D space.

Moreover, there are also other geometric structures we may wish to explore with the algebra of dual quater-
nions. In particular, although dual quaternions are very well suited to represent points in space, they are even
better at representing another geometric variable in space: lines. Indeed, as [41] has argued, dual quaternions
are the most compact and efficient manner to represent a line in space, providing us with one extra motivation
for studying the DQ lines. Thus, Subsection 2.2.2 will better explore how we may represent lines with dual
quaternions.

Finally, when dealing with serial robots we will also want to describe arc-like trajectories, which is done
via the exponential map. This will be explores in Subsection 2.2.3.

2.2.1 Points in Three-dimensional Space

Whenever we start reading a book on robotics one of the first aspects detailed there will usually be the
representation of a point in two or three-dimensional space. Indeed, to perform any task with a robot we must
know, before all else, where said robot is with respect to a frame of reference – or at least we must know where
the point located at its center of mass is.

To better illustrate the three-dimensional representation of a point in space, we first take a step back to the
2D case. Here we will look at the imaginary plane and a complex number p =

(
px + îpy

)
∈ C. Of course,

25

ppy

px

Im

Re

(a) First frame of reference to a point in 2D

ppy

px

Im

Re

Im
′

Re
′

p
′
y

p
′
x

θ

(b) Rotated frame of reference to a point in 2D

p
py

px

Im

Re

Im
′

Re
′

p
′
y p

′
x

θ

t

(c) Rotated frame of reference to a point in 2D

Figure 2.1: Representation of a point in Imaginary Plane represented in different frames

knowing that the orthogonal basis is
{

1, î
}

we can simply use the coordinates (px, py) and place the point p in
the plane, as in Figure 2.1a. When we rotate this plane by an angle of θ, however, the point p will change it’s
coordinates, as is seen in Figure 2.1b.

Let the frame in Figure 2.1a be F and the rotated frame in Figure 2.1b be F ′. From simple trigonometry
we can map the axis in F to F ′. That is,

Re : 1 −→ cos(θ) + îsin(θ)

Im : î −→ −sin(θ) + îcos(θ).

Thus we have the point p in frame F ′ is

p′ = px

(
cos(θ) + îsin(θ)

)
+ py

(
−sin(θ) + îcos(θ)

)
,

= (pxcos(θ)− pysin(θ)) + î (pxsin(θ) + pycos(θ))

=
(

cos(θ) + îsin(θ)
)(

px + îpy

)
(2.74)

=
(

cos(θ) + îsin(θ)
)
p.

We note in this example that p′ =
(

cos(θ) + îsin(θ)
)
p, thus we define r ,

(
cos(θ) + îsin(θ)

)
a frame

rotation around the origin of the complex plane and p′ = rp. Furthermore, if we want to also translate
the frame, as in Figure 2.1c, we shall add the components of the translation to the rotated point, that is for

26

t = tx + îty , p′ = rp+ t. Also, a number of successive frame rotations can be preformed by multiplying the
results, that is, if we rotate the frame by r1and then r2, the total rotation is rTotal = r1r2 and p′ = rTotalp =

r1r2p [28, 78].

Another interesting propriety in this scenario is the fact that rotations in the complex plane are made possible
by a subgroup of complex numbers with norm equal to one, that is, ‖r‖ =

√
r∗r = 1, and, similarly to what

was shown for unit quaternions r∗ = r−1. Furthermore, a complex number’s conjugate may represents a
rotation on the opposite direction. That is, for the angle −θ

cos(−θ) + îsin(−θ) = cos(θ)− îsin(θ) = r∗.

This implies that if we have a transformation from frame F to F ′ such as (2.74), to go back to F we must
simply multiply for the conjugate,

p′ = rp

r∗p′ = r∗rp

r∗p′ = p.

Here we presented the transformation of a fixed point at one frame of reference to another frame of ref-
erence. However, this may be seen at another perspective, complex numbers can be used in the similarly to
represent the position and orientation of a frame attached to a point in relation to a frame of reference.

As previously discussed, quaternions and complex numbers share many attributes, as the former is an
expansion to represent motions in the three-dimensional space. We shall now take a similar approach to describe
a point in space with quaternions. Thus, let us analyze the point p = îpx + ĵpy + k̂pz represented in Figure
2.2.

To represent the point at frame F0, as in Figure 2.2a we shall use the notation p0. We note that the point
is represented by its position, thus, it is a pure quaternion, with its coordinates in each of the orthogonal axis
(̂i, ĵ, k̂) and, as Re(p) = 0, we omit the real axis.

Translation can be achieved by adding pure quaternions, that is, if p0
t = îtx+ ĵty+ k̂tz is a pure quaternion

representing a point’s translation in F0, then the translation operation can be given by

p0
new = p0 + p0

t (2.75)

We also define here a quaternion rotation as follows.

Definition 2.20. (Quaternion Attitude) [28] A quaternion rotation of an angle θ around and axis u ∈ H0 is
defined as

r , cos
(
θ

2

)
+ usin

(
θ

2

)
, (2.76)

in which r will always be a unit quaternion.

With quaternion rotations we may perform both frame and point transformation [79]. Also, this definition
makes the reason behind why in (2.17) the unit quaternion conjugate represents the inverse of a rotation clearer.
If we take a simple inverse of the rotation angle we have that cos(−θ/2) = cos(θ/2) and sin(−θ/2) =

− sin(θ/2), which turns (2.76) in r∗.

27

p

pz

px

py

k̂

î

ĵ

(a) Point representation

p

k̂

î

ĵ

θ

(b) Frame rotation representation

p

pz

px

py

k̂

î

ĵ

θ

(c) Point rotation representation

Figure 2.2: Representation of a point in three-dimensional space

28

Moreover, we may also define the transformation of a point between two frames. That is, considering
p0 = îp0

x + ĵp0
y + k̂p0

z to be a point with regards to the fixed frame F0, p1 = îp1
x + ĵp1

y + k̂p1
z to be a the

same point but in F1 and the unit rotation r0
1 to be the transformation from F0 to F1, then transformation can

be given by
p1 = r0

1p
0
(
r0

1

)∗
, (2.77)

that is, we have changed the frame of reference of p while it remained fixed in space.

The operation in (2.77) is the adjoint transformation and it can be more succinctly expressed with the
operator Ad(•), as per Definition 2.21. The frame transformation operation is also illustrated in figure 2.2b.

Definition 2.21. (Quaternion Adjoint Transformation) [28] The adjoint transformation [28] can be defined
compactly expressed by the operator

Ad(r)p , rpr∗. (2.78)

Here, once more r is a unit quaternion and p is a pure quaternion.

From Definition 2.21 we have a frame transformation such as in Figure 2.2b. However, we may also define
a point rotation, such as in Figure 2.2c. In this case the transformation of point p0

0 to point p0
1 is defined as

p0
0 =

(
r0

1

)∗
p0

1r
0
1, (2.79)

with r0
1 being the rotation between the two points.

Herein, we highlight that (2.77) and (2.79) are closely connected and, as argued in [79] are simply a matter
of perspective. In other words, (2.77) can be interpreted as an observer fixed at point p, watching its reference
frame rotate at an angle of −θ. Conversely, (2.79) can be interpreted as if the observer is fixed to the reference
frame and watches as the point rotates −θ. However, this two equations are interchangeable, this is evident for
example when we invert (2.77) and obtain p0 =

(
r0

1

)∗
p1r0

1. This time the observer fixed at p sees the frame
rotating in the opposite direction. A good thought exercise it to apply this same interpretation to (2.75) in order
to differentiate point translation and frame translation.

As stated in Definition 2.6, the unit quaternion group has the closure propriety, this means that the product
of two rotations is still a rotation, and from that we may perform sequences of rotations in objects, such as
r0

3 = r0
1r

1
2r

2
3 and from (2.77) we can have

p1 = r0
3p

0
(
r0

3

)∗
=
(
r0

1r
1
2r

2
3

)
p0
(
r0

1r
1
2r

2
3

)∗
. (2.80)

Finally, we may also represent a full rigid body motion with quaternions by making compositions of both
(2.75) and (2.77).

To close this section we shall also present here how a point can be represented in three dimensions with
dual quaternion algebra.

29

Definition 2.22. (Dual Quaternion Pose) [47,80] We may represent an arbitrary displacement (or a pose) with
dual quaternions by defining a rotation followed by a translation, or, in terms of a unit dual quaternion,

x , r + ε
1

2
rp. (2.81)

In this case, r ∈ Spin(3) is a unit quaternion representation of the point’s attitude with respect to an inertial
frame, whilst p ∈ H0 is the position (or similarly the point’s rotation and translation).

We remark here that from 2.81 we may intuitively extract the rotation of element of (2.81) with the operator
(2.25),

r = P (x) . (2.82)

By taking advantage of (2.82) and the operator in (2.26), we may also define the translation element,

D (x) = (1/2)rp

2D (x) = rp

2P (x)
∗D (x) = p. (2.83)

We also highlight that (2.81) may also be rewritten as a translation followed by a rotation

x = r + ε(1/2)p′r. (2.84)

In this case, we may relate p and p′ by a frame transformation, such as p′ = Ad(r)p. This result is due to the
fact that p happens after the rotation, thus we must undo that rotation in order to get p′.

Finally, due to Definition 2.14, we may also represent a sequence of motions with dual quaternions as
sequence of multiplications. That is

x0
n = x0

1x
1
2 . . .x

n−1
n . (2.85)

2.2.2 Plucker Coordinates: Lines in Three-dimensional Space

Besides representing points, dual quaternions are also particularly good to represent lines in space and their
transformations. Herein, in this subsection, we will introduce the a formulation for Plücker’s representation
of a line based on dual quaternion lines, that is the dual quaternion Plücker coordinates. Figure 2.3 shows
the aforementioned representation in three dimensional space and in Definition 2.23 we formally present its
mathematical formulation.

Definition 2.23. (Plücker’s DQ Coordinates for a Line) [28, 40] A Plücker’s dual quaternion representation of
a line is a pure dual quaternion defined as

l , l+ εm, (2.86)

30

p

pz

px

py

k̂

î

ĵ

l

Figure 2.3: Representation of a Plücker Line in three-dimensional space.

in which l ∈ H0 and ‖l‖ = 1 is an unit vector representing the line direction, p ∈ H0 is a point in the line and
m ∈ H0 is the line’s moment with respect to the space frame origin, defined as

m = p× l. (2.87)

Furthermore, the set of of parameters l andm are collectively called Plücker’s coordinates.

Although the literature has many references to Plücker’s line representation with different algebras (as a
pair of free vectors) [49, 81–83], it fits particularly well in the dual quaternion formalism as we can have the l
andm coupled together in a unique element in the dual quaternion space.

Similarly to Definition 2.21 for quaternions, we may define the map of one frame to another within the
algebra of dual quaternions. That is, the line represented by l0 in frame F0 may be expressed in frame F1 as

l1 = xl0x∗. (2.88)

Here x ∈ Spin(3) nR3 is the transformation from F0 to F1.

Moreover, we may also find it useful to define frame transformations for dual quaternion lines as we have
defined for quaternion points in Definition 2.21.

Definition 2.24. (Dual Quaternion Adjoint) [28,37] The Adjoint representation of an unit dual quaternion x is
given by the operator Ad(x) defined over H0 as

Ad(x)p0 , xp0x∗ = p1. (2.89)

Having in mind that the primal and dual parts of a pure dual quaternion have physical interpretation, it is
convenient to describe the adjoint transformation in terms of these parts as in the following proposition.

31

Proposition 2.2. (Dual Quaternion Adjoint - Alternative definition) [60]a The Adjoint operation associated to
a unit dual quaternion x for any pure dual quaternion p = p+ εp′ can be defined as

Ad(x)p , AP (x)p+ ε (AP (x)p′ +AD(x)p) , (2.90)

in which AP (x) and AD(x) are given by

AP (x) =
+

h(x)
−

h(x∗),AD(x) = 2
+

h(x)
−

h(x′∗).
(2.91)

aA complete derivation for (2.90) is presented in Subsection 5.2.3

2.2.3 The Exponential: Curves in Three-dimensional Space

In this section we have explored the many different ways we can represent points, both in planes with
complex numbers and in space with quaternions and dual quaternions. We have also described how to represent
lines in space by means of Plücker coordinates and how to do frame transformations with them. Thus, we shall
introduce here the dual quaternion exponential and how they can be attached to a fixed point in a line in order
for it to rotate and perform a motion with an arc-like trajectory.

Much like with imaginary numbers, the dual quaternions exponential is suited to represent a curve in space.
In Definition 2.25 we show the exponential map for a dual quaternion.

Definition 2.25. (Dual Quaternion Exponential) [84] For a pure dual quaternion q, the exponential can be
defined as

exp(q) , P
(
exp(q)

)
+ εD

(
q
)
P
(
exp(q)

)
, (2.92)

with

P
(
exp(q)

)
,

cos
∥∥P (q)∥∥+

sin‖P(q)‖
‖P(q)‖ P

(
q
)

if
∥∥P (q)∥∥ 6=0

1 o.w.
(2.93)

32

ROBOTIC FUNDAMENTALS

According to the Robot Institute of America, in 1979, a robot could be defined as “A robot is a reprogrammable
multifunctional manipulator designed to move materials, parts, tools or specialized devices through variable
programmed motions for the performance of a variety of tasks”. That is, a robot was supposed to be a very
adaptable tool to interact with the environment in order to perform tasks—and that obvious tool at the time
was a robot arm. Indeed, one of the earliest examples of a modern robot was also a manipulator: the Unimate,
invented in 1950 by George Devol [3,6]. Of course, the definition of what a robot is supposed to be has evolved
through the years, and the robots have become much more sophisticated then Devol’s first prototype. Yet,
anthropomorphic robotic arms remain to this day one of the main areas of interest among roboticists around
the world—and, in particular, it is also the object of interest of this manuscript.

One of the kinds of anthropomorphic robotic arm that is widely available today are the serial manipulators.
These robots may be represented by a sequence of rigid bodies (links) connected to each other by means of
revolute, prismatic, cilindrical or spherical joints [5, 36, 49, 85]. In Figure 3.1 we see a representation of a
manipulator with four joints and three links. In addition, this manipulator also has a base and a gripper—the
end effector.

This Chapter will further explore the kinematics and dynamics of a manipulator such as in Figure 3.1. We
first introduce the unconstrained rigid body kinematics with the algebra of dual quaternions and then rigid body
dynamics. As each of the robot’s link represents a rigid body, it is important to define the physical equations that
rule these bodies motion when unconstrained. Afterwards, Section 3.3 introduces the manipulator’s kinematics.
In short, in this section we add the constrains imposed by the robot’s geometry in order to model the robot as a
whole.

3.1 RIGID BODY KINEMATICS

A manipulator is made out of interconnected rigid bodies called links. As defined in [85, 86], a rigid body
is a set of particles in which the relative distance of any two points is time invariant, regardless of the motion or
forces exerted on the body. Mathematically, we may define a rigid body as in Definition 3.1 and also the rigid
body’s motion, as in Definition 3.2.

Definition 3.1. (Rigid Body) [85] A rigid body is a collection of particles in which the position in time of any
two given particles, such as a(t) and b(t), will always preserve the relation

‖a(t)− b(t)‖ = ‖a(0)− b(0)‖ = K ∀t. (3.1)

In other words, at any given time the distances between particles a and b is a constant K. Thus, we consider
that deformations on rigid bodies can be neglected.

We may extend Definition 3.1 to also describe the motions of rigid bodies. That is, we may create a map g
between the current pose of the body’s particles to another pose, such as g : Spin(3) n R3 −→ Spin(3) n R3.

33

3

Base

End-Effectorj1

j2

j3

j4

Link 1

Link 3

Link 2

Figure 3.1: Generic illustration of a manipulator to exemplify the base, links and end-effector being connected
by different joints. In this illustration the robot is located besides the world frame.

This map will be a rigid transformation if it satisfies the conditions on Definition 3.2.

Definition 3.2. (Rigid Transformation) [85] A map g, g : Spin(3) n R3 −→ Spin(3) n R3 is a rigid transfor-
mation of a rigid body if the following conditions are satisfied:

1. The body’s length is preserved during the motion — or (3.1) is satisfied.

2. The cross product is preserved, that is, given two points in the body, such as a, b ∈ Spin(3) nR3, then

g(a× b) = g(a)× g(b). (3.2)

Remark 3.1. The cross product condition exists to avoid internal reflection of the rigid body.

The description of a rigid body and its transformations in Definitions 3.1 and 3.2 have in important con-
sequence for the study of rigid body kinematics: as all particles in the body preserve their distance we may
choose only one point to describe its pose. Furthermore, another important theorem, this time regarding the
rigid motion itself, is the Chasles Theorem, stated in Theorem (3.1)1.

Theorem 3.1. "The most general rigid body displacement can be produced by a translation along a line
followed (or preceded) by a rotation about that line."

Theorem 3.1 describes a motion reminiscent of the movement of a screw, and thus is referred to as a screw
motion, which will be further discussed in Subsection 3.1.1.

In Section 2.2 we have started to address the issue of rigid body kinematics by describing points in space
as well as their frame transformations. Thus, we shall further define the kinematics of rigid bodies in terms of
translations, rotations as well as their derivatives. To ensure completeness as well as a better understanding, the
Subsections 3.1.2 and 3.1.3 will tackle the kinematics of quaternions and dual quaternions.

1The proof of Chasles Theorem is out of the scope of this manuscript, however it can be easily found in [87].

34

F0

F1

F2

F3

F4

F2

Figure 3.2: Generic illustration of a manipulator with one of its links—that is one of the rigid bodies from its
structure—being highlighted.

Finally, to better illustrate the propositions presented in this section we have Figure 3.2, in which a frame
is attached to each of the rigid bodies that composes the robot. We note that usually each rigid body can be
completely described by the pose of its frame and the rigid transformations applied to it. There are, however,
some extra constrains imposed by the joints in the manipulator, which will be discussed in Section 3.3. Here we
shall present the unconstrained kinematic equations, for one single detached link, such as the one highlighted
in Figure 3.2.

3.1.1 Screw Theory

Following Theorem 3.1, we have the definition of screw motions. As stated, rigid body displacements can
be seen as a composition of a translation and a rotation around an axis—namely the screw axis.

The screw axis may be understood as a line composed of two concatenated three-dimensional vectors: the
first part being a unit directional vector and the second (dual) vector representing the moment produced by
the primary vector about a reference point in the line. Indeed, one manner to represent screws is through a
combination of parameters such as

S ={p, l, h}, (3.3)

in which p is a point in the axis, l is the unit directional vector and h is the screw pitch—or ratio of the linear
and angular parameters. In this representation the screw can also be represented by a combination of two R3

vectors such as ω, v ∈ R3 resulting in

S =

[
ω

v

]
∈ R6. (3.4)

Thus we may have two different scenarios: the first, and most general, motion has ‖ω‖ = 1 and v = −ω× q+

hω, with h = 0 in case of pure rotations; and the second represents only a translation, in which ω = 0 and the
pitch is infinite [49, 88].

Another way of representing a screw is through the use of dual quaternions’ Plücker’s representation of a

35

Figure 3.3: Representation of a rigid displacement: Object rotates with angle θ around line with plucker
coordinates l and then moves distance d parallel to the screw axis. Source [1].

line, as presented in Definition 2.23. Indeed, we can intuitively see how the parameters in (3.3) and (3.4) are
very similar to the Plücker coordinates in (2.86). In this case we have the screw axis being l = l + εm with
its unit direction given by l and moment m. Moreover, we may also wish to define θ as the motion’s rotation
angle and t as the translation with d = t · l being the distance of the translational motion in direction l. Also,
comparable to (3.3), we can define h = d

θ as the pitch of line [40]. Considering these coordinates, Figure 3.3
illustrates the motion of a screw with Plücker’s coordinates..

It is also important to derive the equation for the screw displacement, as presented in [1, 37, 43, 47, 80].
Thus, in order to connect the parameters θ and d, to the screw axis equation, let us consider the dual quaternion
x = x + εx′ and connect it to the Plücker line’s equation. In (2.81) we have the equation for a point’s
displacement (and also for a rigid body displacement, as will be discussed in Subsection 3.1.3) resulting in

x = r + ε
1

2
rtb = r + ε

1

2
tor. (3.5)

in which tb is the translation in the body frame and to is the translation relative to an inertial frame [80].

From (2.86) and (2.76) it is straightforward that the unit directional vector together with the angle θ relate
in

x = r = cos
(
θ

2

)
+ lsin

(
θ

2

)
, (3.6)

solving the problem for the primary part of the dual quaternion. Next, we have the quaternion to representing
the translation in the inertial frame, and from (2.83) we infer that to = 2x∗x′ and, therefore, d = 2 (x∗x′) · l.
Finally, the momentm can be derived as in [43, 47, 80, 89], resulting in

m =
1

2

(
to × l+ (to − dl) cot

(
θ

2

))
. (3.7)

Multiplying both sides of (3.7) by sin
(
θ
2

)
we have

msin
(
θ

2

)
=

1

2

(
to × lsin

(
θ

2

)
+ (to − dl) sin

(
θ

2

)
cot
(
θ

2

))
msin

(
θ

2

)
=

1

2

(
to × lsin

(
θ

2

)
+ (to − dl) cos

(
θ

2

))
msin

(
θ

2

)
+
d

2
cos
(
θ

2

)
=

1

2

(
to × lsin

(
θ

2

)
+ tocos

(
θ

2

))
. (3.8)

36

From (2.76) we also have

1

2
tor =

1

2
to
(

cos
(
θ

2

)
+ lsin

(
θ

2

))
1

2
tor =

1

2
tocos

(
θ

2

)
+

1

2
tolsin

(
θ

2

)
, (3.9)

and, as both l and t are pure quaternions, by using propriety (2.15) we may expand (3.9) such that

1

2
t0r =

1

2
tocos

(
θ

2

)
+

1

2
(−to·l+ to × l) sin

(
θ

2

)
1

2
tor =

1

2
tocos

(
θ

2

)
− 1

2
to·lsin

(
θ

2

)
+

1

2
to × lsin

(
θ

2

)
1

2
tor =

1

2

(
tocos

(
θ

2

)
+ to × lsin

(
θ

2

))
− 1

2
(to·l) sin

(
θ

2

)
As d = to · l and from (3.8)

1

2
tor =

(
msin

(
θ

2

)
+
d

2
cos
(
θ

2

))
− 1

2
(d) sin

(
θ

2

)
. (3.10)

We notice here that with the quaternion in the inertial frame. However, in the remainder of this manuscript we
shall be dealing with the variables in the body frame. As shown in [80] and (3.5) the transformations to the
inertial frame and the body frame are equivalent. Thus

1

2
rtb =

(
msin

(
θ

2

)
+
d

2
cos
(
θ

2

))
− 1

2
(d) sin

(
θ

2

)
. (3.11)

Finally, we may reassemble the quaternion in (3.5) with (3.6) and (3.11). That is,

x = r + ε
1

2
rtb

x = cos
(
θ

2

)
+ lsin

(
θ

2

)
+ ε

(
msin

(
θ

2

)
+
d

2
cos
(
θ

2

)
− 1

2
dsin

(
θ

2

))
x =

(
cos
(
θ

2

)
− εd

2
sin

(
θ

2

))
+

(
lsin
(
θ

2

)
+ ε

(
msin

(
θ

2

)
+
d

2
cos
(
θ

2

)))
. (3.12)

And to further simplify our equation, we may use (2.21) to obtain the sine and cosine functions of dual numbers.
That is

cos
(
θ + εd

2

)
= cos

(
θ

2

)
− εsin

(
θ

2

)
d

2
(3.13)

and

sin
(
θ + εd

2

)
= sin

(
θ

2

)
+ εcos

(
θ

2

)
d

2
. (3.14)

Then, we have that (3.12) becomes

x =

(
cos
(
θ + εd

2

))
+ sin

(
θ + εd

2

)
(l+ εm) ,

or, simply

x =

(
cos
(
θ

2

))
+ sin

(
θ

2

)
l (3.15)

with
θ = θ + εd (3.16)

37

being a dual angle.

Moreover, [90] states we may also use Taylor Expansion in order to obtain Euler’s Identity for dual quater-
nions, resulting in

exp

(
1

2
θl

)
, cos

(
θ

2

)
+ lsin

(
θ

2

)
. (3.17)

Thus, to summarize, we may introduce Definition (3.3) for the displacement of a screw.

Definition 3.3. (Screw Displacement) Given the screw axis, defined as the Plücker coorditates l = l + εm

and the dual angle θ = θ + εd, with θ, d ∈ R, we can represent the line’s position as the unit dual quaternion
x ∈ Spin(3) nR3 defined as

x = exp

(
1

2
θl

)
= cos

(
θ

2

)
+ lsin

(
θ

2

)
. (3.18)

To close this section, we should also introduce another concept that arise from the definition of a screw and
screw displacement: the twists . A twist is the infinitesimal version of a screw motion, providing information
for the instantaneous velocity of a body in terms of linear and angular components. Considering the twist
represents the velocities around a screw axis, it can also be represented in terms of Plücker lines, that is

ω = ω + εv (3.19)

in which ω is the body’s angular velocity and v is the body linear velocity [31, 37]2.

3.1.2 Quaternion based representation of rigid body rotation

As discussed in subsection 2.2.1, quaternions can be used to represent both translation and rotations in
space, as is shown in (2.75) and (2.79). Although translations and rotations can be used to fully describe an
object, we are also interested in the differential kinematics, dealing with twists and velocities. Here we shall
show, as in [28, 66], how to obtain the fist derivative of a unit quaternion r that represents the attitude of the
body.

To start of, let us consider p0 as a rigidly fixed point in F0 such that ṗ0 = 0 and a frame transformation to
the point p1 in the moving frame F1 such as in (2.77), that is

p1 = r0
1p

0r1
0. (3.20)

Then, by differentiating (3.20) we obtain

ṗ1 = ṙ0
1p

0r1
0 + r0

1ṗ
0r1

0 + r0
1p

0ṙ1
0

ṗ1 = ṙ0
1p

0r1
0 + r0

1p
0ṙ1

0. (3.21)

Furthermore, as p0 = r1
0p

1r0
1, we may rewrite (3.21),

ṗ1 = ṙ0
1r

1
0p

1r0
1r

1
0 + r0

1r
1
0p

1r0
1ṙ

1
0

ṗ1 = ṙ0
1r

1
0p

1 + p1r0
1ṙ

1
0, (3.22)

2This manuscript is only dealing with the case where twists are described in terms of the body frame, and for simplicity we will omit
the superscript indicating so. If we wish to change the reference frame a transformation is needed, this is also described in [31, 37].

38

and also create the variable α = r0
1ṙ

1
0 to simplify (3.22). Here we note that α∗ =

(
r0

1ṙ
1
0

)∗
=
(
ṙ1

0

)∗ (
r0

1

)∗
=

ṙ0
1r

1
0 and, furthermore, that the pair r∗r = 1 and thus

˙(r∗r) = ṙ∗r + r∗ṙ = 0

= Re(ṙ∗r) + Re(r∗ṙ) = 0

= 2Re(ṙ∗r) = 0 (3.23)

= Re(ṙ∗r) = 0.

As α ∈ H0, this yields that

ṗ1 = α∗p1 + p1α

ṗ1 = p1α−αp1

ṗ1 = 2
(
p1 ×α

)
. (3.24)

But we know, from the discussions of Subsection 3.1.1 that the linear velocity should also be the cross product
between the body’s angular velocity and a point in the screw, that is ṗ1 =

(
p1 × ω1

10

)
, with ω1

10 being being
the angular velocity F0 in relation to F1 . Thus(

p1 × ω1
10

)
= 2

(
p1 ×α

)
ω1

10 = 2α = 2r0
1ṙ

1
0 (3.25)

which, in turn, yields the differential equation we have been looking for

ṙ1
0 =

1

2
r1

0ω
1
10. (3.26)

This result can be summarized in Definition (3.4).

Definition 3.4. (Quaternion Attitude Kinematics) [28,66] Given the unit quaternion r representing the rotation
of a rigid body, we have that its first order derivative is

ṙ =
1

2
rω. (3.27)

Here ω is a pure quaternion which represents the angular velocity in the body frame.

3.1.3 Dual quaternion based representation of general rigid motion

As was the case for the quaternions, we have presented how dual quaternions represent translations and
rotations in space, as well as how they can represent screws. Here we shall proceed as in Subsection 3.1.2 and
introduce the relation between a unit dual quaternion first order derivative and the body twist as in [28, 66].

To start, let us consider the derivative of the unit dual quaternion expressed in the body frame in (2.81)

ẋ = ṙ + ε
1

2
(ṙp+ rṗ) . (3.28)

We have from (3.27) that P(ẋ) = ṙ = 1
2rω in the body frame, and, moreover, that the derivative of the body’s

translation equals to the origin of the moving frame (body), or ṗ = v. From there we have

D(ẋ) =
1

2

(
1

2
rωp+ rv

)
=

1

2
r

(
1

2
ωp+ v

)
, (3.29)

39

and by reassembling the dual quaternion

ẋ =
1

2
rω + ε

1

2
r

(
1

2
ωp+ v

)
ẋ =

1

2
r

(
ω + ε

(
1

2
ωp+ v

))
. (3.30)

Now we shall hypothesize that ẋ = 1
2xω [31], withωb being the body twist. Then we have, from (2.81), (2.25)

and (2.26), that

ẋ = 1
2x [P(ω) + εD(ω)]

ẋ = 1
2

[
r + ε

1

2
rp

]
[P(ω) + εD(ω)]

ẋ = 1
2r

[
P(ω) + ε

(
D(ω) +

1

2
pP(ω)

)]
. (3.31)

Furthermore, comparing (3.30) to (3.31) we have

P(ω) + ε

(
D(ω) +

1

2
pP(ω)

)
= ω + ε

(
1

2
ωp+ v

)
thus

P(ω) = ω

and from (2.13),

D(ω) +
1

2
pω =

1

2
ωp+ v

D(ω) =
1

2
(ωp− pω) + v

D(ω) = (ω × p) + v

resulting in
ω = ω + ε ((ω × p) + v) . (3.32)

However, as we are defining the twist in the body frame, we may rewrite (3.32) as

ωb = ωb + εvb. (3.33)

With vb = (ω × p)+v and ωb = ω. We also note that (3.33) is equal to the body twist defined in (3.19). More
so, we also have our hypothesis confirmed, resulting in the rigid body kinematics equation, which is succinctly
defined in (3.5).

Definition 3.5. (Dual Quaternion Kinematics) Given the unit dual quaternion x we have that its first order
derivative is

ẋ = 1
2x ω

b. (3.34)

With ωb = ωb + εvb, vb = (ω × p) + v and ωb = ω and being the twist in the body frame.

40

3.2 RIGID BODY DYNAMICS

In this section we shall deal with the dynamics of an unconstrained rigid body, as presented in the formu-
lation proposed in [31]. Moreover, we shall start by introducing, in Subsection (3.2.1), Newton’s equations of
motion using dual quaternion algebra as well as Euler’s equation for rotating a rigid body and a formulation
for wrenches, furthermore, in subsection 3.2.2, we will discuss some aspects of the inertia tensor. Finally, in
Subsection 3.2.3 we shall introduce the formulation for rigid body dynamics used throughout the rest of this
manuscript.

3.2.1 Dynamical Equations of Motion

In this manuscript, we introduce a novel algorithm to calculate the inverse dynamics of a manipulator.
Indeed, so far we have been introducing the mathematical concepts behind dual quaternion algebra as well as
the very well established kinematic equations for a rigid body. However, the literature is still lagging behind
on many topics regarding general concepts of dynamics with dual quaternions, which motivate us to take our
time to systematically present even classic Newtonian dynamics here.

To better illustrate those classical concepts, let us look at Figure 3.4a. We note that a system of forces and
torques are acting on the body, each may be represented by a pure quaternion such as fi = fxi ı̂ + fyi ̂ + fzi k̂

andmi = mx
i ı̂+my

i ̂+mz
i k̂ respectively. Moreover, we may also represent this system of forces as one single

force acting on the body’s center of mass [49], that is, for n forces

f b ,
n∑

i=1

f i (3.35)

and for m torques

mb ,
m∑

i=1

mi. (3.36)

One important definition we must also take into account when describing a rigid body dynamic is the center
of mass itself. This point is defined as the place where, given a position ri for the point of massmi, the equation∑

i=1

miri , 0 (3.37)

is satisfied3.

Another important equations in this section are the quaternion version of the classic Newton law of motion
and the Euler’s equation for a rotating rigid body, which will be presented in Definitions 3.6 and 3.7 respectively.

3In this manuscript, we shall define the body frame to be located in the center of mass, unless stated otherwise. If any other point is
chosen, we must transform it to the center of mass before any dynamical equation presented here can be used.

41

f1

f2

f3

m1

m2

p

(a) Representation of different forces and
moments acting on a body

fb

mb

F2

(b) The body wrench

Figure 3.4: System of forces and moments acting on a body. In this illustration we have 3.4a being the rep-
resentation of some of the forces and moments acting on the link (the red straight arrows represent the forces
being transmitted on each joint and f3 is the resulting gravity force the curved arrows are the moments acting
at the joints). In 3.40 we have a representation of the resulting body wrench on the body (the straight arrow
represents the resulting force f b and the curved arrow represents the resulting momentmb).

Definition 3.6. (Newton Law of Motion) [49] The classic law of motion defined by Newton can be written as

f , mp̈, (3.38)

in which f ∈ H0 is a pure quaternion representing the force acting at the center of mass, p̈ ∈ H0 is the second
derivative of the center of mass’ position (its acceleration) and m ∈ R+ is a positive scalar denoting the body’s
mass [33, 34].

Definition 3.7. (Euler’s Equation of Rotational Motion) [33] The torque in Euler’s equations for the rotational
dynamics of a body in quaternion algebra is

m , T (I) ω̇ + ω × (T (I)ω) , (3.39)

in which I ∈ R3×3 is the body’s inertia, ω ∈ H0 is the angular velocity and ω̇ ∈ H0 its first order derivative.

Remark 3.2. We note from Definition 3.7 that, although I is sometimes defined as a matrix, it can be substituted
by other representations, as will be discussed in more length in Subsection 3.2.2.

Remark 3.3. It is also important to stress that (3.38) and (3.39) are generic equations expressed in the body
frame, but that can be easily transformed to another frame by means of an adjoint transformation as (2.78).

Finally, we shall also discuss here the definition of a wrench applied to a screw axis as illustrated in Figure
3.4b. Thus we introduce Poinsot’s theorem, stated bellow [83].

Theorem 3.2. "Every system of forces is equivalent to a single force, plus a couple with a moment parallel to
that force.”

As we can see, Theorem 3.2 is analogous to Theorem 3.1, only in terms of dynamic variables. Indeed,
due to their similarity both theorems can be written in terms of screw theory, which in the case proposed by

42

Chasles resulted in the definition of the body twist and in Poinsot’s case will result in the definition of a wrench.
Therefore, we may define a wrench as the pair of force and torque applied on a screw axis, which in terms of
Plücker coordinates is

f = f + εm. (3.40)

In (3.40) f represent the force and m the moment applied about the body’s center of mass [31, 37]4. As
previously stated wrenches, as twists, are made out of a linear component and an angular component acting
out along a screw axis, only in this case, this components are a force [as in (3.38)] and a moment [as in (3.39)]
respectively.

3.2.2 Inertia Tensor

One important model in rotational dynamics is the distribution of mass in a body, given by the inertia tensor
(some times also referred to as rotational inertia matrix). In its most basic form, the rotational inertia is a
function of a point’s position and its mass, which can be generally described by the six parameters

I =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 . (3.41)

The matrix (3.41) can be calculated through many different strategies and the literature also deals extensively
with identification algorithms in order to estimate its parameters for more complicated structures [54, 91, 92].
The identification problem is a complex and important one, which should be explored in more depth in future
works. In this manuscript, however, we will assume that the parameters of (3.41) are known. Furthermore, it is
still important to explore other aspects pertaining the inertia tensor.

The inertia tensor, much like the mass, is a value resisting the motion of a body —or ensuring its inertia.
In this manner, the inertia tensor is defined as symmetric and positive definite. Moreover, another important
observation regarding I is that it is calculated by taking in consideration the positions of the particles in the
body, and therefore it is not constant if represented at the inertial frame. However, if we represent Ib in a frame
rigidly attached to a rigid body, the positions of the particles will be constants, and consequently so will the
inertia tensor [49, 93].

Some authors, in order to write more concise and efficient equations, may also define a spatial inertia matrix
by creating an augmented matrix G ∈ R6×6 that encloses both (3.41) and the mass. That is,

G =

[
I 0

0 mI3

]
(3.42)

with I3 being the 3 × 3 identity matrix and m the mass. Although this approach suffices for applications in
R3, the dimensions in (3.42) are incompatible with a dual quaternion by matrix multiplication as defined in
Subsection 2.1.4, thus the need to adapt this solution arises. In [31] a more suitable matrix is formulated by
relying on a manifold mapping from H0 ⊗D to R8 and its inverse mapping. In other words, they introduce the

4As was the case for the twist, this manuscript is only dealing with the case where wrenches are described in terms of the body frame.
If we wish to change the reference frame a transformation is needed; this is also described in [31, 37].

43

Dual Inertia Matrix (a real 8× 8 symmetric matrix) as

Gb =


1 01×3 0 01×3

03×1 mI3 03×1 03×3

0 01×3 1 01×3

03×1 03×3 03×1 Ib

 . (3.43)

Although (3.43) provides us with a great solution to write down the dynamics of a rigid body in terms of dual
quaternions, there are still some issues with it. In [31] the use of (3.43) also creates the need for a complex
and counter-intuitive “switch operator” to properly describe the rigid body dynamics. Thus, in our previous
work [60] we have improved parts of the formulation in [31] by substituting (3.43) by our Dual Quaternion
Inertia Transformation (see Definiton 3.8), and, therefore, we were able to write the dynamical equations only
in terms of multiplications and additions, as will be further discussed in Subsection (3.2.3).

Finally, we introduce in Definition 3.8 our alternative to (3.42) and (3.43).

Definition 3.8. (Dual Quaternion Inertia Transformation) The Dual Quaternion Inertia Transformation is de-
fined by the operator G : H0 −→ H0, with

G(ωb) ,mD(ωb) + ε
(
Ibxωx + Ibyωy + Ibzωz

)
,

G(ω̇b) ,mD(ω̇b) + ε
(
Ibxω̇x + Ibyω̇y + Ibzω̇z

)
,

(3.44)

in which, ωb and ω̇b are the body generalized twist and accelerations, with respect to the center of mass. Also
the inertia tensor of the rigid body characterized by Ibx = Ixx ı̂ + Iyx̂ + Izxk̂, Iby = Ixy ı̂ + Iyy ̂ + Izyk̂, and
Ibz = Ixz ı̂+ Iyz ̂+ Izz k̂, in the body frame.

Remark 3.4. We notice that the angular component of ωb and ω̇b are given by P(ωb) = ωx ı̂+ ωy ̂+ ωz k̂ and
P(ω̇b) = ω̇x ı̂+ω̇y ̂+ω̇z k̂ respectively. We also note that they can be viewed as pure quaternion representations
of column vectors of (3.43).

3.2.3 Rigid Body Dynamics in Dual Quaternion Algebra

In this Subsection, we take advantage of the formulation proposed by [31] for the dynamics of an uncon-
strained rigid body and, together with the classical Newton-Euler equations in (3.38) and (3.39), the formulation
for wrenches in (3.40) and the Dual Quaternion Inertia Transformation in Definition 3.8, we shall introduce the
dynamic equations that will be used on the remainder of this manuscript.

Thus, let us consider a rigid body such as the one in Figure 3.4b, with its reference frame located at the
object’s center of mass. This body is made out of a finite number of particles with positions pi and mass mi,
also the body is moving with a body twist of ωb = ωb + εvb. From Definition 3.5 we can infer that

ṗi = vi = ωb × pi + vb

44

and, furthermore,

p̈i = ω̇b × pi + ωb × ṗi + v̇b

= ω̇b × pi + ωb ×
(
ωb × pi + vb

)
+ v̇b

= ω̇b × pi + ωb × ωb × pi + ωb × vb + v̇b. (3.45)

By incorporating (3.45) in (3.38) we have the force acting on each particle,

f i = mi

(
ω̇b × pi + ωb × ωb × pi + ωb × vb + v̇b

)
. (3.46)

Moreover, stemming from the fact that the sum of forces in a body can be substituted by a single force acting
along the wrench [Theorem 3.2 and (3.35)], we have

f b =
n∑

i=1

f i =
n∑

i=1

mi

(
ω̇b × pi + ωb × ωb × pi + ωb × vb + v̇b

)
(3.47)

Also, by direct verification, we see that (2.13) is endowed with the propriety that a× b = −b× a. By taking
advantage of this, we may rewrite (3.47) as

f b =
n∑

i=1

mi

(
−pi × ω̇b − pi × ωb × ωb + ωb × vb + v̇b

)
=

n∑
i=1

mi

(
ωb × vb + v̇b

)
−

n∑
i=1

mipi ×
(
ω̇b + ωb × ωb

)
. (3.48)

From (3.37) we also know that the sum of the products mipi for all particles should be equal to zero in the
center of mass, resulting in

n∑
i=1

mipi ×
(
ω̇b + ωb × ωb

)
= 0 and

f b =
n∑

i=1

mi

(
ωb × vb + v̇b

)
= m

(
ωb × vb + v̇b

)
. (3.49)

Considering the version of Newton’s equation in (3.49) and Euler’s equation in (3.39), also in the body
frame [i.e. mb = Ibω̇b + ωb ×

(
Ibωb

)
] we may write the body wrench

f b = f b + εmb

f b = m
(
ωb × vb + v̇b

)
+ ε

(
Ibω̇b + ωb ×

(
Ibωb

))
(3.50)

in which, for now, we assume I is a compatible inertia tensor. Furthermore, we can make use of two facts to
manipulate (3.50):

Fact 3.1. As follows directly from (2.13)vb ×mvb = 0

Fact 3.2. For any q ∈ H we have

q = qP + ε (qD + εq′D) = qP + εqD + ε2q′D = qP + εqD.

With Facts 3.1 and 3.2, (3.50) can become

f b = m
(
ωb × vb + v̇b

)
+ ε

(
Ibω̇b + ωb ×

(
Ibωb

)
+ vb ×mvb + εvb ×

(
Ibωb

))

45

Rearranging (3.50) we have

f b = ωb ×
(
mvb + ε

(
Ibωb

))
+
(
mv̇b + ε

(
Ibω̇b

))
+ ε

(
vb ×

(
mvb + ε

(
Ibω̇b

)))
f b =

(
ωb + εvb

)
×
(
mvb + ε

(
Ibωb

))
+
(
mv̇b + ε

(
Ibω̇b

))
. (3.51)

Moreover, as discussed in Subsection 3.2.2, there are different ways to represent the spatial inertia and not all
of them are well posed for for the dual quaternion problem. In [31], the matrix (3.43) requires us to switch the
primary and dual parts of ωb and ω̇b when performing multiplication, resulting in complicated equations which
are also a costly (See Chapter 5 for a discussion on computational cost). Since the linear and angular elements
of the generalized twist and body acceleration are described by pure quaternions of the form ωb = ωb + εvb,
we can take advantage of (3.19) to rewrite (3.51) in terms of the elements of Ib,

f b = ωb ×
(
mD(ωb) + ε

(
Ibxωx + Ibyωy + Ibzωz

))
+
(
mD(ω̇b) + ε

(
Ibxω̇x + Ibyω̇y + Ibzω̇z

))
. (3.52)

As the terms mD(ωb) + ε
(
Ibxωx + Ibyωy + Ibzωz

)
and mD(ω̇b) + ε

(
Ibxω̇x + Ibyω̇y + Ibzω̇z

)
in (3.52) are

the definition of the Dual Quaternion Inertia Transformation in (3.44), (3.52) becomes

f b = ωb ×G(ωb) +G(ω̇b). (3.53)

Thus, to summarize, we introduce Definition for the dynamics of a rigid body in terms of twists and wrenches.

Definition 3.9. (Rigid Body Dynamics) Given the twist of an object in the body frame, ωb, and the Dual
Quaternion Inertia Transformation in (3.44) we may obtain the object’s wrench f b, also in the body frame
from

f b = ωb ×G(ωb) +G(ω̇b), (3.54)

3.3 MANIPULATOR KINEMATICS

The kinematics of a manipulator is concerned with modeling the relationships between the robot’s joints
and links. Thus, to address this problem we shall return to the manipulator description stated in the beginning
of this chapter, and to Figure 3.1.

A manipulator—particularly a serial manipulator—is made out of a series of rigid bodies known as links
which are connected to each other by a set of joints. Indeed, we have addressed extensively the free movement
of one link (or rigid body) throughout Sections 3.1 and 3.2, yet we are still to explore the connections between
a series of links as well as the role of the joints.

To start understanding the full mechanism of a robotic arm we must first look at the joint which is attached
to a motor and therefore can provide movement to its adjacent links. Joints are mainly prismatic, revolute or
cylindrical, something that can be better understood when looking at the dual angle such as (3.16) of a link
performing a screw motion:

1. Revolute joints will only provide single axis rotation to the object they are attached to, thus in (3.16)
d = 0 and the motion will be governed by θ = θ;

46

F0

F1

F2

F3

F4

(a) Forward Kinematics

F0

F1

F2

F3

F4

(b) Inverse Kinematics

Figure 3.5: In 3.5a we have an illustration of the Forward kinematics problem, in which we aim to find end-
effector pose given the joints. In 3.5b the inverse problem is illustrated, in which we want to calculate the joints
based on the end-effector’s pose.

2. Prismatic Joints will provide a sliding motion in one axis, thus in (3.16) θ = 0 and the motion will be
governed by θ = εd;

3. Cylindrical joints will provide combination of the sliding and rotational motion of the previous joints ,
resulting in θ = θ + εd.

One important fact about the joints is that they not only provide movement, but also create constrains to the
body, something that is usually accounted when we refer to the “Degrees of Freedom” (DoF) of a robot. One
revolute or prismatic joints only allow for movements in one axis, thus they provide one DoF to the body,
cylindrical joints, on the other hand, yields two DoFs. To reach all points in space a mechanism would usually
need 6-DoFs (to allow both translation and rotation in the three orthogonal vectors), which is usually achieved
by connecting the joints and the links: as 6-DoF robots are needed, we usually expect robots to have six revolute
or prismatic joints. Robots with less than six joints are considered under-actuated and robots with more than
six degrees of freedom are over-actuated [85].

Following the discussion on the joints, we must also tackle the relationship between them and the links
in the whole chain of the robot. This problem is usually posed in terms of the Forward Kinematics (FKM)
or the Inverse Kinematics (IK) models. The forward kinematics problem, illustrated in Figure 3.5a, aims at
determining the end-effector configuration based on a function of the joints, this will be detailed in Subsection
3.3.1. Moreover, the inverse kinematic problem (Figure 3.5b) is, as the name suggests, the inverse problem:
we aim to find the joint variable in terms of the end-effector position. Indeed, while won’t be dealing with
the inverse problem in this manuscript, we would like to highlight that the IK is more difficult than the direct
problem, usually having multiple solutions.

Aditionally, in Subsection 3.3.1, we shall be discussing the FKM problem in dual quaternion algebra as
well as two different ways of parametrization for the equations.

47

3.3.1 Forward Position Kinematics Modeling

The forward position kinematics, as illustrated in Figure 3.5a, is a mapping of the joint configuration of an
n-joint robot to its end-effector pose, such that, we have the function f

FKM
: Dn → Spin(3) nR3 ,

xEF = f
FKM

(θ). (3.55)

Here xEF ∈ Spin(3) n R3 is the end-effector pose and θ ∈ Dn is the joint configuration vector defined as

θ =
[
θ1 θ2 θ3 . . . θn

]T
. In order to define the function (3.55) we should consider each intermediate

link’s pose relative to the previous one, and through a number of successive rigid transformations up to the
end of the chain we may obtain the end-effector pose itself—note that a sequence of rigid motions can be
represented by a sequence of unit dual quaternion multiplications [28, 66].

Therefore, let xii+1 be a transformation from link i to link i + 1, if we consider an n-joint serial chain we
may obtain the end-effector’s pose as

xEF = x0
1x

1
2...x

n
n+1. (3.56)

We highlight here that xii+1 is a function of θi, such as xii+1 = f
FKM,i

(θi), which in turn results in (3.56) being

a function of θ =
[
θ1 θ2 θ3 . . . θn

]
as described in (3.55).

Finally, in order to properly compute (3.55) we must define a convention to describe the pose of each link
relative to the last one. Indeed the literature provides us with quite a few solutions for the parametrization
of xii+1, the most typical one being the Denavit-Hartenberg (D-H) parameters. However, in this manuscript
we have chosen to use an alternative, less “famous” solution: the Product of Exponentials (PoE). In the next
few subsections we shall detail a bit more of both the D-H parameters and the Product of exponentials, and
furthermore, we shall also compare both of them in order to make our case for why the PoE formulation is
more suited for this work.

3.3.1.1 Denavit-Hartenberg parameters

The basic idea behind the D-H parameters is to derive the forward kinematics by attaching frames to each
of the robot’s links and then calculating its displacement through a set of four parameters, as exemplified
in [36, 37].

The first step to calculate (3.56) through this method is allocating the frames in the robot, something that
cannot be done arbitrarily in this case. The D-H convention has a set of rules to systematically assign frames
to links:

Rule 1: First we establish a base coordinate system, here we will use F0 = {x̂0, ŷ0, ẑ0} coinciding with the
robot’s base.

Rule 2: Then we establish the joint axis. The ẑi axis of Fi is aligned with the i + 1 joint axis , the ẑi+1 axis
of the frame Fi+1 coincides with the axis of joint i+ 2 and so forth. The direction of a positive rotation
around each ẑ axis is defined by the right hand rule.

Rule 3: The next step is defining origin Oi of each of the frames. Thus, we find the line segment that orthog-
onally intersects both ẑi and ẑi+1 and place frame Oi+1 there (alternatively we may place Oi+1 at the
intersection of the common normal between ẑi and ẑi+1 and the ẑi axis.

48

x4

δ4

x1

x2

x3

x0

θ1

θ2

θ3

A B

C

D

Figure 3.6: Representation of the product of exponentials formula. Here we show the screw transformation for
each of the links. In A we have the robot at its home position, with all θi = 0, from B-D we are moving one
link at a time until the final robot configuration is reached in D.

Rule 4: Next we must place x̂i+1in the direction of the common normal between ẑi and ẑi+1 .

Rule 5: Finally we determine ŷi at the direction satisfying the right hand rule, that is x̂i × ŷi = ẑi.

Once the frames are assigned to all links we will be able to calculate the four D-H parameters and thus the
transformation between the consecutive links. Hence, the transformation xDH is defined as

xDH = rẑ,θpẑ,dpx̂,arx̂,α, (3.57)

with the parameters being

rẑ,θ = cos θ2 + sin θ2 k̂ The quaternion rotation of θ along the ẑaxis;

p
ẑ,d

= 1 + ε
(

1
2d
)
k̂ The pure translation d along the ẑ axis;

p
x̂,a

= 1 + ε
(

1
2a
)
ı̂ The pure translation a along the x̂ axis;

rx̂,α = cosα2 + sinα2 ı̂ The quaternion rotation of α along the x̂axis.

Finally, by substituting each xii+1 in (3.56) by transformation (3.57) we may obtain the end-effector’s pose (as
well as the pose of all frames placed throughout the manipulator).

3.3.1.2 Product of Exponentials

One alternative to the Denavit-Hartenberg parameters is the product of exponentials formula (PoE) [40,49].
In this formulation we take key concepts of screw theory in order to model manipulator: in other words, here
we regard each joint as applying a screw motion to all the outward links. Moreover, to better contextualize the
PoE let us look at Figure (3.6) throughout the remainder of this section.

We start out the process of calculation the PoE based transformation by placing the robot at the home
configuration, that is, the set up θh in which all joints are at their initial position—this is represented by A in

49

Figure 3.6. At the home configuration, we also define δii−1 as the dual quaternion representing the configuration
of Fi−1 expressed in the frame Fi, where F0 is the base frame coinciding with the robot’s base and and
Fn+1 is the reference frame attached to the end-effector. We note here that the PoE does not impose any
constrains in regards to the positioning of the intermediate frames, however, as we are dealing with dynamic
equations in this manuscript, it becomes interesting to allocate the frames F1 to Fn at the center of mass of
each link. Furthermore, we can represent the transformation from one frame to another as δi−1

i =
(
δ0
i−1

)∗
δ0
i

and
(
δi−1
i

)∗
=δii−1=

(
δ0
i

)∗
δ0
i−1.

Hence, the rigid transformation from robot’s base to to its end-effector, δEF , in the home configuration can
be given by

δEF = δ0
1δ

1
2...δ

n
n+1. (3.58)

As all angles in (3.58) are in their initial state the transformation becomes very simple. However, we aim to
obtain a more general model of the robot when the joints are actuating. To this end we must return to the
concept outlined in the beginning of this subsection: that the PoE regards each joint as applying a screw motion
over the links. Thus, we proceed by taking the concepts of Subsection 3.1.1.

Still at the home position, we define the screw axis of the links as the Plucker line si = ωi + εvi, with
reference to the base frame. In this axis ωi and vi are the angular and linear velocity, respectively, and, if joint
i is a revolute joint, pi is a point located on the screw axis such that vi = pi × ωi. As this representation
is in frame F0, so we also need to transform it to each link’s own frame of reference, thus we use the adjoint
expression in (2.89) to make this change,

ai = Ad
(
δi0
)
si. (3.59)

Finally, with all screw axis in place we only need to move them over the dual angle displacement ∆θi =

θi(t)− θ
h
i . Thus, from (3.17) we have the pose transformation of the link i expressed in frame Fi−1,

xi−1
i (θi(t)) = δii−1exp

(
ai

∆θi
2

)
. (3.60)

As we can see in Figure 3.6 we may displace one joint at a time, through a screw, motion until we get to the
final pose. Indeed this process is an illustration of (3.56) in which each displacement is given by (3.60). Thus,
it becomes clear the end-pose stems from (3.56).

3.3.1.3 Comparison

In [28,40,94], we see different recursive techniques being presented to solve the forward kinematics model
(FKM) of a serial manipulator based on dual quaternions. The DH parameters are indeed the most popular way
to describe the transformations between one joint and another, as we do not need to be overly concerned with
frame placements and the robot model is very easily obtained. However, many applications demand the PoE
solution, and in particular, robotic systems described with dual quaternions benefit from it.

In [40], the authors makes a compelling case for the screw theory alternative. As it is argued, this approach
based on line transformations [95] is considerably more efficient then the other techniques such as the compu-
tation of the FKM based on DH approach. More so, the screw representation is much more intuitive and the
position of the frames can be chosen without the many restrictions that DH parameters impose, thus each link’s
frame of reference can be at the center of mass of the body, which simplifies the dynamical equations.

50

Of course, both representations have advantages and disadvantages. However, aiming to explore cost effi-
cient solutions, we believe the screw based approaches are more suited to the work being explored in the scope
of this manuscript.

51

DUAL QUATERNION RECURSIVE NEWTON
EULER ALGORITHM (DQRNEA)

In this chapter we shall continue our investigation over the equations that govern the motions of a robot and,
particularly, how they may be written in the dual quaternion formulation. Indeed, as was shown in Chapter 3,
a lot has been published regarding the kinematics representation of open chains in dual quaternion algebra and
on the dynamics of rigid bodies. Nonetheless, the literature is still quite lacking in terms of the representation
of manipulators with the algebra of dual quaternions.

In this context, we aim at introducing, to the best of the author’s knowledge, a novel, computationally
efficient algorithm for modeling the dynamics of a serial chain based on dual quaternion algebra: the Dual
Quaternion Recursive Newton Euler Algorithm (dqRNEA). In Section 4.1, we shall first explore the preliminary
concepts relating to the dynamics of serial chains, introducing the two main approaches to solving this problem.
In Section 4.2, we shall outline the algorithm we have developed and show its derivation stemming from the
concepts presented in Chapter 3. As will be discussed, the dqRNEA is a recursive algorithm, thus consisting
of many different steps, however, in Section 4.3 we show that with the aid of an alternative formulation for the
adjoint map we are able to rewrite the dqRNEA in a single closed equation. Finally, in order to better validate
our models we propose a simple dqRNEA based torque controller, as will be discussed in Section 4.4.

4.1 PRELIMINARIES

Due to the unstructured nature of the world, the study of forces that govern the motion of a robotic ma-
nipulator are paramount in reliable and robust applications. Indeed, to deal with kinematics alone implies that
models should reflect faithfully all facets of an ever-changing and many times unknown environment, which is
mostly unfeasible. In this sort of scenario we recur to the derivation of the dynamic equations of motion, which
are extremely important to most areas of robotic manipulation, including force control, mechanical design and
implementation of simulation models [5, 27].

In its most general form, the dynamic model can be expressed as a set of nonlinear, second-order, ordinary
differential equations which are depended on the inertial and kinematic properties seen, respectively, in Sections
3.2 and 3.3 of this manuscript. Furthermore, also as discussed in Section 3.3, was the distinction between the
forward kinematics problem and the inverse kinematics. As is the case in kinematics, the dynamical analysis of
a serial manipulator includes the distinction between direct (or forward) dynamics (FDY) and inverse dynamics
(FDY) [49]. The forward problem takes the form

θ̈ = fFDY(τ, θ, θ̇), (4.1)

in which we input the torque (τ), velocity (θ̇) and configuration (θ) of the robot’s joints in function fFDY(•),
and obtain the robot’s acceleration (θ̈). The inverse problem is of the form

τ = fIDY(θ, θ̇, θ̈). (4.2)

in which the inputs comprise of the joint configuration, velocity and acceleration and fIDY(•) results in the
joint’s torques.

52

4

The inverse dynamic function fIDY(•) can be written in terms of the mass function M(θ), which is a
positive definite invertible matrix, the combined Coriolis and centrifugal terms c(θ, θ̇) and a gravity function
g(θ) [49, 85], becoming

τ = fIDY(θ, θ̇, θ̈) = M(θ)θ̈ + c(θ, θ̇) + g(θ). (4.3)

Furthermore, as (4.1) and (4.2) are inversions of each other, we may rewrite the direct dynamics function as an
inversion of (4.3),

θ̈ = fFDY(τ, θ, θ̇) = M−1(θ)
[
τ + c(θ, θ̇) + g(θ)

]
. (4.4)

In this section we will better explore the basic concepts of both the inverse and direct dynamics. As is the
focus of this manuscript we will particularly explore the inverse problem and some of the different methods
for solving it: namely the Lagrange-Euler formulation is presented in Subsection 4.1.1.1 and the Recursive
Newton-Euler formulation is introduced in Subsection 4.1.1.2. We also take our time to compare both methods
in Subsection 4.1.1.3.

4.1.1 Inverse Dynamics

The inverse dynamics problem can be solved throughout many different methods, such as Kane’s method,
the principal of virtual work, the Lagrange-Euler (LE) formulation, the Newton-Euler Inverse dynamic algo-
rithm (RNEA), etc. Still, although many options do exist, the two most common solutions for this problem are
either the LE formulation and the RNEA. Here we shall present the basic concepts behind both formulations,
as well as comparison between them.

4.1.1.1 Lagrange-Euler Formulation

One of the methods for computing the inverse dynamics of a manipulator are the Lagrange-Euler equations,
which describe a robot in terms of the the work and energy stored in that system.

In order to determine the LE equations, one must first calculate the Lagrangian, defined as the difference
between the kinetic (K(θ, θ̇)) and potential (P(θ)) energies,

L(θ, θ̇) = K(θ, θ̇)− P(θ) (4.5)

and, from (4.5), solve the equation of motion—or the Euler-Lagrange equations—expressed as

f =
d

dt

∂L
∂θ̇
− ∂L
∂θ
. (4.6)

This manuscript will not delve into the details regarding this solution, however, we remark here that al-
though this formalism seems to be simple and elegant, it does become cumbersome and inefficient as the
degrees of freedom of the robot start to increase [49].

53

F0

F1

F2

F3

F4θ2

θ1

θ3

ω̇
ω

f
τ

Figure 4.1: Illustration of the steps taken to compute the RNEA in a three link manipulator.

4.1.1.2 Recursive Newton-Euler Formulation

The main method for computing the inverse dynamic equations in this manuscript is the recursive Newton-
Euler algorithm. This method should lead to the same torque as the Lagrangian method presented above,
however by taking a completely different approach: in the case of the RNEA, we exploit the balance of forces
in each of the robot’s links, taken one at a time.

To better explain the algorithm, let us look once again at our three-link revolute robot illustration in Figure
4.1. In the case of the RNEA we shall analyze one link at a time, writing down the equations that describe its
angular and linear motion. Thus let us start looking at the base of our manipulator—the frame F0. If the base
is fixed (and let us consider it is), then the initial velocity in the base is zero as there are no joints allowing it
any degree of freedom. In this case, we will have the gravity acting on it, so we have that the acceleration is
equal to it.

We then move to our first link, in the frame F1. This link’s velocities are given by the sum of the twist
provoked by its joint (θ1) and the velocities inherited by the base, which for a fixed base are zero. Thus the first
link of our fixed based robot will have the twist being equal to ω1 = a1∆θ̇1(t) (here a is the link’s screw and
ω1 its twist. To see this equation in context refer to Subsection 4.2.1).

Next, to the second link, in frame F2. This will follow the same idea as the first one: the twist will be
a sum of the velocities generated by joint θ2 in the screw axis of link 2 and the velocities inherited from the
previous links—or more specifically, the velocity of the previous link, which should already account for the
velocity of the ones prior to it. One important remark here is that the inherited twist should be added in the
frame of the link we are considering, thus requiring a frame transformation. In this case we will therefore have
ω2 = a2∆θ̇2(t) + ω2

1. The last link will also follow the same procedure resulting in ω3 = a3∆θ̇3(t) + ω3
2.

The process of going from the base to the top of the manipulator recursively accounting for the twists (as
well as their first derivatives) is the forward recursion of the RNEA. The next step would be going back, now
from the tip of the manipulator, where am external force might be acting on the end-effector, back to the base,
this time calculating the forces on the links. This second part is the Backward Recursion of the algorithm.

For the manipulator in Figure 4.1 let us start from the End-Effector, in F4 where we consider initialize the
forces with the external forces acting on this point. Thus, these external wrenches will be equal f

4
.

54

Going down to link 3, back in F3, we now have to consider the balance of the forces, that is, according to
Newton’s law, the resulting forces in a body should be the sum of all forces acting on it. Thus, considering a
reduced system in which only the forces in the joints are acting in the system we will have, for link 3, that the
resulting force in the link is the force acting on joint 3 minus the force acting on the end effector (expressed in
the frame F3) f

R,3
= f

3
− f3

4
. Here we highlight that the resulting wrench equation is given by (3.54).

The process for link 3 will be repeated for links 2 and 1, respectively f
R,2

= f
2
− f2

3
, f

R,1
= f

1
− f1

2
.

We also add that with each force calculated we can also obtain the torques and all the equations here shall also
be explored in more detail in Section 4.2.

4.1.1.3 Comparison

One important question we should try to answer in regards to the two formulations presented above is
which one should we use, and how do they compare. Indeed, it becomes clear from the descriptions above
the two methods have widely varying philosophies: while the Lagrange takes the manipulator as a whole and
calculate the forces and torques through the energy of the system, the RNEA uses the mechanical constraints
and the transmission of forces and velocities through the links in order to balance the equations and describe
the motion.

Historically, both formulations evolved in parallel [93] each with its advantages and each providing different
insights to the mechanics of the manipulator. Due to some of those insights we have chosen the Newton-Euler
equations rather than the LE equations: we believe the dual quaternion formulation fits better with the former,
especially as we aim to obtain a cost efficient representation of the manipulator. Indeed, as discussed in the
previous chapters, dual quaternions are particularly good to represent geometric variables and they are the most
efficient manner to represent a screw, and the RNEA exploits a lot of those characteristics.

4.2 ALGORITHM DEVELOPMENT

In this section we introduce our formulation for a dual quaternion based recursive Newton-Euler inverse
dynamics algorithm (dqRNEA), as was proposed in our recent paper [60]. Our aim with this formulation
is to build upon the many works that detail the kinematic models and controllers within the dual quaternion
framework [45, 46, 96–101] and expand their possibilities to also encompass the dynamics of the manipula-
tor, opening the dual quaternion framework up for a number of more complex and robust possibilities. Of
course, as our aim is to use the dual quaternion representation for dynamic modeling, we also aim at ensuring
our algorithm retains the dual quaternion’s advantages for the kinematics representation—particularly its cost
effectiveness when compared to other algebras, the lack of representation singularities and its capabilities to
succinctly represent rigid body pose, velocities, accelerations, momentum and wrenches.

In order to ensure a better understanding of the dqRNEA, we have outlined and discussed, throughout the
manuscript, the many building blocks for our formulation. Chapter 2 introduces the mathematical concepts
behind dual quaternions, and moreover, it outlines the advantages of this framework. Particularly it delves into
the use of dual quaternions for the motions of points and lines in space. Chapter 3 expands the concepts point
and line representation to rigid body kinematics, and in Section 3.3 we make our case for using the product
of exponentials formulation rather than the DH parameters when representing an open chain manipulator. We

55

reiterate here that the screw description is particularly useful in the task we aim to accomplish, as it gives us
the ability to place the link’s frames at the center of mass location, thus making it possible to use the rigid
body dynamic equations presented in Section 3.2 without the need to translate the frame (which consequently
makes the algorithm equations simpler). Finally, in Section 4.1 he have also presented two of the main forms
of computing the inverse dynamics, and also we have made our case in Subsection 4.1.1.3 as to why we have
chosen to explore the Newton-Euler formulation in this manuscript.

As was introduced in Subsection 4.1.1.2 the Recursive Newton-Euler inverse dynamics algorithm is com-
posed of two steps the forwards iteration and backwards iteration, which will be derived in Subsections 4.2.1
and 4.2.2 respectively. Furthermore, in Subsection 4.2.3 we summarize the whole dqRNEA algorithm.

Finally, to aid our description of this algorithm throughout this section we have Figure 4.1 showing the
forward and backward iterations. Furthermore, we would also like to highlight that throughout the reminder
of this manuscript we shall consider manipulators with revolute joints only, thus simplifying the dual angle
θ = θ + ε0. However we point out that the extension for manipulators with prismatic or cylindrical joints (in
which d 6= 0) should be simple and intuitive.

4.2.1 Forward Recursion

The forward iteration of the dqRNEA aims at calculating recursively the positions, velocities and accelera-
tions the links are subjected to, starting at the robot’s base, and going up to its end-effector. We take inspiration
from the different recursive techniques for calculating the FKM explored in Section 3.3. Moreover, we take
a systematic approach in presenting this recursion, dividing it in algorithm initialization, recursive position,
recursive twist and recursive acceleration.

4.2.1.1 Algorithm Initialization

In this section, we use the PoE formulation to describe the configuration of each of the manipulator’s links,
and, therefore, we take into account the forward kinematics process described in subsection 3.3.1.2. To use the
product of exponentials formulation, we must first place the robot in its home configuration with all joints at
their initial position, that is, for an n-joint robot we will have the initial position vector θh ∈ Rn.

We then place frame F0 in the robot base, frames F1 to Fn at each of link’s center of mass and Fn+1 at
the end-effector’s center of mass. Next, as in Subsection 3.3.1.2, we have the transformation from frame Fi−1

to frame Fi defined as δi−1
i and its inverse transformation being

(
δi−1
i

)∗
=δii−1.

Finally, before moving to the next steps we must also initialize some of the variables used throughout the
algorithm:

1. The base velocity will be initialized as zero: ω0 = 0;

2. The base acceleration should be equal to the gravity: ω̇0 = −εg

3. The wrench applied at the end effector f
n+1

= f
EF

= fEF + εmEF.

This is perhaps the most important step of the dqRNEA algorithm; so, all variables should be initialized with
great care. A poorly modeled robot will certainly hinder the results of this algorithm, producing erroneous

56

results. In Chapter 6 models of a few robots will be presented and we will discuss some project considerations
regarding the computational implementation of this algorithm.

4.2.1.2 Recursive Position and Twist

The recursive calculation for the position is done via the PoE formula of Subsection 3.3.1.2. As the pro-
cedure for obtaining the link’s positions has already been thoroughly explained, we shall only summarize it
here.

First we define the screw of link i in frame F0 as si = ωi + εvi, with ωi and vi being respectively its
angular and linear velocities. Then, as in (3.59), we apply an adjoint transformation to represent the screw in
Fi, that is ai = Ad

(
δi0
)
si. From that we have the exponential formula of (3.60),

xi−1
i (θi(t)) = δii−1exp

(
ai

∆θi
2

)
.

Finally, we recall that the forward kinematics of a serial chain is given by the multiplication of the link’s
transformations, given by (3.56): xEF = x0

1x
1
2...x

n
n+1.

Regarding the recursive calculation of the twist, we have that for serial chains the twist of a particular link
is the sum of the twist at previous links (propagated from base to end-effector) added to the twist generated by
the velocities of that link’s joint (ai∆θ̇i(t)). Thus, for a twist ωi at link i, we have

ωi = ai∆θ̇i(t) +Ad(xi−1
i)ωi−1, (4.7)

in which we must include the transformation Ad(xi−1
i)ωi−1 in order to ensure ωi−1 is represented at Fi.

4.2.1.3 Recursive Acceleration

The links accelerations may also be calculated through recursive iterations, propagating from the base to
the end-effector. In particular, its formulation can be obtained by finding the derivative of (4.7). That is

ω̇i =
d

dt

(
ai∆θ̇i(t) +Ad(xi−1

i)ωi−1

)
. (4.8)

To solve (4.8) we must take into account that ai and δi−1
i are constants, and, as per (2.89), we may rewrite

the adjoint term as
Ad(xi−1

i)ωi−1 = xi−1
i ωi−1x

i
i−1 (4.9)

thus

ω̇i =ai∆θ̈i(t) +
d

dt

(
xi−1
i ωi−1x

i
i−1

)
=ai∆θ̈i(t) + xi−1

i ω̇i−1x
i
i−1 + ẋi−1

i ωi−1x
i
i−1 + xi−1

i ωi−1ẋ
i
i−1.

(4.10)

In order to simplify (4.10) we can look at the first derivative of (3.60),

ẋii−1 =
d

dt

(
δi−1
i exp

(
ai

∆θi
2

))
= δi−1

i exp

(
ai

∆θi
2

)
d

dt

(
ai

∆θi
2

)

57

and by going back to (3.60) itself,

ẋii−1 =
1

2
xii−1ai∆θ̇i(t). (4.11)

In order to solve for ẋi−1
i we can recall the inverse propriety of an unit dual quaternion in (2.44). As the inverse

changes the UDQ’s direction, ẋi−1
i can be rewritten as

(
ẋii−1

)∗
= ẋi−1

i , and consequently

ẋi−1
i =

(
1

2
xii−1ai∆θ̇i(t)

)∗
=

1

2
∆θ̇i(t)a

∗
ix

i−1
i . (4.12)

With the conjugate propriety for the set of pure dual quaternion in (2.38) we have that a∗i = −ai, thus (4.12)
becomes

ẋi−1
i = −1

2
∆θ̇i(t)aix

i−1
i . (4.13)

Also, from (2.89) the twist’s derivative frame transformation is

Ad(xi−1
i)ω̇i−1 = xi−1

i ω̇i−1x
i
i−1. (4.14)

Finally may combine (4.11), (4.13) and (4.14) with (4.10),

ω̇i = ai∆θ̈i(t) +Ad(xi−1
i)ω̇i−1 +

(
−1

2
∆θ̇i(t)aix

i−1
i

)
ωi−1x

i
i−1 + xi−1

i ωi−1

(
1

2
xii−1ai∆θ̇i(t)

)
= ai∆θ̈i(t) +Ad(xi−1

i)ω̇i−1 +
(
xi−1
i ωi−1x

i
i−1ai − aixi−1

i ωi−1x
i
i−1

) ∆θ̇i(t)

2
. (4.15)

By further analyzing the last term in (4.15) we notice that it fits Definition (2.11) for the dual quaternion cross
product, that is (

xi−1
i ωi−1x

i
i−1ai − aixi−1

i ωi−1x
i
i−1

)
= 2

(
xi−1
i ωi−1x

i
i−1

)
× ai. (4.16)

Now, combining 4.15 and (4.16), we have

ω̇i = ai∆θ̈i(t) +Ad(xi−1
i)ω̇i−1 +

((
xi−1
i ωi−1x

i
i−1

)
× ai

)
∆θ̇i(t). (4.17)

And finally, from (4.7), we obtain a final expression for the recursive forward model for the accelerations
derived solely from screw theory based on dual quaternion algebra,

ω̇i = ai∆θ̈i(t) +Ad(xi−1
i)ω̇i−1 + (ωi × ai) ∆θ̇i(t). (4.18)

4.2.2 Backward Recursion

In the backwards recursion of the dqRNEA, given the dual quaternion wrenches acting at the end-effector—
f

EF
, which is initialized in the forward iteration’s first step— and the resulting velocities and accelerations of

the link’s center of mass from the forward recursion, we may compute the required torques to be applied at the
joints to obtain the prescribed motion. In this case, we start our analysis at the end-effector and go back down
to the robot’s base (see Figure 4.1).

To calculate the resulting rigid body dynamics for each individual body, stemming from each link’s ve-
locities and accelerations, we may recall Newton’s and Euler’s laws discussed in Section 3.2, as well as the

58

resulting dual quaternion rigid body dynamical equation in (3.54), which is inspired by [31] work. Thus, for
each individual link i we have that the resulting wrench is

f
R,i

= ωi × (Gi (ωi)) +Gi (ω̇i) , (4.19)

in which Gi (•) is the Dual Quaternion Inertia Transformation, defined in (3.44).

Due to the balance of forces in the body, the resulting forces of a rigid body are equal to the sum of the
forces being applied in that body (in the case of a serial manipulator we will assume the the only forces being
applied on the link stems from attached joints). Thus, the resulting wrench f

R
must also be given by the

addition of the wrenches at the two adjacent joints (all expressed in the current link’s frame), that is,

f
R,i

= f
i
−Ad

(
xi+1
i

)
f
i+1

. (4.20)

Here we highlight that in the first iteration of the backward recursion, and considering an n joint manipulator,
we will have f

R,n
= f

n
+Ad

(
xn+1
n

)
f
n+1

. The term f
n+1

is the force at the end effector: f
n+1

= f
EF

.

In the next step we combine (4.19) and (4.20) in order to obtain the full dynamic equation for the required
wrench at link i. That is,

f
i

= ωb × (Gi (ωb)) +Gi(ω̇b) +Ad
(
xi+1
i

)
f
i+1

. (4.21)

Finally, stemming from (4.21) we may take advantage of the double geodesic product in (2.42) in order to
calculate the torques on each of the joints,

τi = f
i
� [D (ai) + εP (ai)] . (4.22)

We remark here that the double geodesic product is used rather than the usual product because we are dealing
with a robot with only revolute joints, and we have simplified ∆θ = θ ∈ R, therefore, it does not make
sense for the torque to be a dual number, such as would be the case if the inner product was used. Moreover,
we also highlight here the need to swap the primary and secondary parts of theai, that is due to the fact that
f
i

= f i + εmi and ai is related to the screw si = ωi + εvi. Thus, by making this change we will be pairing
up the linear and angular terms.

59

4.2.3 Algorithm Summary

Here we present a summary of the dual quaternion based recursive Newton Euler algorithm for an n-DoF
manipulator in Algorithm 4.1.

Algorithm 4.1 Dual-quaternion based recursive Newton-Euler Inverse Dynamics for n DoF Manipulator -
Basic Formulation
Initialization:
At the home config., set the frames F0 to the base, F1 to Fn to the n-links’ center of mass, and Fn+1 to the
end-effector.
Set δii−1, ai as the pose of Fi−1 and the screw axis of joint i expressed in Fi, with null vel. ω0=0 and gravity
accel. ω̇0=− εg at base and end-pose wrench f

EF
=fEF+εmEF .

Forward iteration
xi−1
i (θi(t)) = δii−1exp

(
ai

∆θi
2

)
ωi = aiθ̇i(t) +Ad(xi−1

i)ωi−1

ω̇i = aiθ̈i(t) +Ad(xi−1
i)ω̇i−1 + (ωi × ai) θ̇i(t)

Backward iteration
f
R,i

= ωi × (Gi (ωi)) +Gi (ω̇i)

f
i

= f
R,i

+Ad(xi+1
i)f

i+1

τi = f
i
� ai

4.3 DQRNEA IN CLOSED FORM

When dealing some applications it becomes interesting to have the recursive Newton-Euler algorithm
rewritten in a closed form, without the many recursive steps being taken. We therefore will present in Sub-
section 4.3.1 a dual quaternionic-matrix formulation for the equations in dqRNEA. This formulation, which
was inspired from [49], works by joining dual quaternions together in vectorial form. Subsequently, in Subsec-
tion 4.3.2 we use the quaternionic-matrix equations in order to obtain an expression similar to (4.3), which is
the actual closed formulation for the algorithm.

4.3.1 Dual Quaternionic-Matrix Formulation

In order to describe in Algorithm ?? in closed form we must first define a vectorial formulation for some
of the variables we will use to construct our equation, for such we will be using the notation and operations
presented in Subsection 2.1.5. Thus, we define the joint vector, torque vector, resulting force vector, force
vector and twist vector, respectively defined as

θ =
[
θ1(t) θ2(t) . . . θn(t)

]T
∈ Rn, (4.23)

τ =
[
τ1 τ2 . . . τn

]T
∈ Rn, (4.24)

FR =
[
f
R,1

f
R,2

. . . f
R,n

]T
∈ Hn0 , (4.25)

60

F =
[
f

1
f

2
. . . f

n

]T
∈ Hn0 , (4.26)

W =
[
ω1 ω2 . . . ωn

]T
∈ Hn0 (4.27)

and (4.23) and (4.27) derivatives are

θ̇ =
[
θ̇1(t) θ̇2(t) . . . θ̇n(t)

]T
∈ Rn, (4.28)

θ̈ =
[
θ̇1(t) θ̇2(t) . . . θ̇n(t)

]T
∈ Rn, (4.29)

Ẇ =
[
ω̇1 ω̇2 . . . ω̇n

]T
∈ Hn0 . (4.30)

We shall then look back at equation (4.7), and try to construct W line by line. That is, let us look at the
individual entries inW

ω1 = a1θ̇1(t) +Ad(x0
1)ω0,

ω2 = a2θ̇2(t) +Ad(x1
2)ω1,

ω3 = a3θ̇3(t) +Ad(x2
3)ω2,

...

ωn = anθ̇n(t) +Ad(xn−1
n)ωn−1. (4.31)

We then rewrite (4.31) in its vectorial form,

W =



ω1

ω2

ω3

...
ωn

 =



a1θ̇1(t) +Ad(x0
1)ω0

a2θ̇2(t) +Ad(x1
2)ω1

a3θ̇3(t) +Ad(x2
3)ω2

...
anθ̇n(t) +Ad(xn−1

n)ωn−1



=



a1θ̇1(t)

a2θ̇2(t)

a3θ̇3(t)
...

anθ̇n(t)

+



Ad(x0
1)ω0

Ad(x1
2)ω1

Ad(x2
3)ω2

...
Ad(xn−1

n)ωn−1

 . (4.32)

And as we have already defined θ̇ in (4.28) and W itself, we may rewrite (4.32) in terms of θ̇,W . However,
we must first address the issue of the adjoint map, defined in (2.89) as Ad(x)p = xpx∗. In order to isolate p
we must commute the terms p and x∗, which can be done through the operation defined in (2.58), yielding the
alternative version of (2.89)

AH(x)p =
+

h (x)
−
h (x∗)p. (4.33)

in which AH(x) =
+

h (x)
−
h (x∗) .

61

With (4.33) we can then rewrite (4.32) as

W =



ω1

ω2

ω3

...
ωn

 =



a1 0 0 . . . 0

0 a2 0 . . . 0

0 0 a3 . . . 0
...

...
...

. . .
...

0 0 0 0 an

 θ̇+



0 0 0 . . . 0

AH(x1
2) 0 0 . . . 0

0 AH(x2
3) 0 . . . 0

...
...

...
. . .

...
0 0 0 AH(xn−1

n) 0

W+


Ad(x0

1)ω0

0

0

0

0

 .
(4.34)

Furthermore, let us define the matrices,

A =



a1 0 0 . . . 0

0 a2 0 . . . 0

0 0 a3 . . . 0
...

...
...

. . .
...

0 0 0 0 an

 , (4.35)

Q =



0 0 0 . . . 0

AH(x1
2) 0 0 . . . 0

AH(x2
3) 0 . . . 0

...
...

...
. . .

...
0 0 0 AH(xn−1

n) 0

 , (4.36)

and the base vector, containing the initialization values,

W BASE =


Ad(x0

1)ω0

0

0

0

0

 , (4.37)

such that we may rewrite (4.34) as
W = Aθ̇ +QW +W BASE. (4.38)

Moreover, from (4.36) we can define
Ltmp = In −Q, (4.39)

in which In is the identity n× n dual quaternion matrix. We also notice that

Ltmp =



1 0 0 . . . 0

0 1 0 0 0

0 0 1 0 0
...

...
...

. . .
...

0 0 0 0 1

−


0 0 0 . . . 0 0

AH(x1
2) 0 0 . . . 0 0

0 AH(x2
3) 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . AH(xn−1
n) 0

 , (4.40)

=



1 0 0 . . . 0 0

−AH(x1
2) 1 0 . . . 0 0

0 −AH(x2
3) 1 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . −AH(xn−1
n) 1

 (4.41)

62

and considering that that there exists an inverse such that LtmpL
−1
tmp = In, such that

L−1
tmp =



1 0 0 . . . 0 0

AH(x1
2) 1 0 . . . 0 0

AH(x1
3) AH(x2

3) 1 . . . 0 0
...

...
...

. . .
...

...
AH(x1

n) AH(x2
n) AH(x3

n) . . . AH(xn−1
n) 1

 . (4.42)

Therefore, letting Ltmp = L−1 we may rearrange (4.38) such that

W = Aθ̇ +QW +W BASE

W −QW = Aθ̇ +W BASE

W
(
In −Q

)
= Aθ̇ +W BASE

WL−1 = Aθ̇ +W BASE

W = L
(
Aθ̇ +W BASE

)
. (4.43)

We may now employ the same procedure in order to obtain Ẇ . Thus, starting from (4.18), we have

ω̇1 = a1θ̈1(t) +Ad(x0
1)ω̇0 + (ω1 × a1) θ̇1(t)

ω̇2 = a2θ̈2(t) +Ad(x1
2)ω̇1 + (ω2 × a2) θ̇2(t)

ω̇3 = a3θ̈3(t) +Ad(x2
3)ω̇2 + (ω3 × a3) θ̇3(t)

...

ω̇n = anθ̈n(t) +Ad(xn−1
n)ω̇n−1 + (ωn × an) θ̇n(t) (4.44)

which in vectorial form becomes

Ẇ =



ω̇1

ω̇2

ω̇3

...
ω̇n

 =



a1θ̈1(t) +Ad(x0
1)ω̇0 + (ω1 × a1) θ̇1(t)

a2θ̈2(t) +Ad(x1
2)ω̇1 + (ω2 × a2) θ̇2(t)

a3θ̈3(t) +Ad(x2
3)ω̇2 + (ω3 × a3) θ̇3(t)

...
anθ̈n(t) +Ad(xn−1

n)ω̇n−1 + (ωn × an) θ̇n(t)



=



a1θ̈1(t)

a2θ̈2(t)

a3θ̈3(t)
...

anθ̈n(t)

+



Ad(x0
1)ω̇0

Ad(x1
2)ω̇1

Ad(x2
3)ω̇2

...
Ad(xn−1

n)ω̇n−1

+



(ω1 × a1) θ̇1(t)

(ω2 × a2) θ̇2(t)

(ω3 × a3) θ̇3(t)
...

(ωn × an) θ̇n(t)

 . (4.45)

By taking advantage of the already defined matrices in (4.35) and (4.36), as well as θ̇, θ̈ and Ẇ itself, defined
respectively in (4.28), (4.29) and (4.30), we can rewrite (4.45) as

Ẇ = Aθ̈ +QW +



(ω1 × a1) 0 0 . . . 0

0 (ω2 × a2) 0 0 0

0 0 (ω3 × a3) 0 0
...

...
...

. . .
...

0 0 0 0 (ωn × an)

 θ̈ +


Ad(x0

1)ω̇0

0

0

0

0

 .
(4.46)

63

Now let

C =



(ω1 × a1) 0 0 . . . 0

0 (ω2 × a2) 0 0 0

0 0 (ω3 × a3) 0 0
...

...
...

. . .
...

0 0 0 0 (ωn × an)

 , (4.47)

be the matrix for the cross product terms, and

Ẇ BASE =


Ad(x0

1)ω̇0

0

0

0

0

 , (4.48)

be the vector with initial accelerations. Then, (4.46) becomes

Ẇ = Aθ̈ +QW +Cθ̇ + Ẇ BASE. (4.49)

Moreover, if we take a similar approach to what was done in (4.43), we have

Ẇ = Aθ̈ +QW +Cθ̇ + Ẇ BASE

Ẇ −QW = Aθ̈ +Cθ̇ + Ẇ BASE

Ẇ
(
In −Q

)
= Aθ̈ +Cθ̇ + Ẇ BASE

ẆL−1 = Aθ̈ +Cθ̇ + Ẇ BASE

Ẇ = L
(
Aθ̈ +Cθ̇ + Ẇ BASE

)
(4.50)

Before proceeding to find a similar formulation for the equations in the backwards iteration let us define
one new operations for the Hn0 : the element-wise dual quaternion inertia transformation.

Definition 4.1. (DQ-Vec dual quaternion inertia transformation) The dual quaternion inertia operation
is defined, for dual quaternion vectors, as the operator G : Hn0 −→ Hn0 such that, given P =[
p

1
p

2
. . . p

n

]T
∈ Hn0 ,

G(P) =
[
G(p

1
) G(p

2
) . . . G(p

n
)
]T
. (4.51)

In which G(•) is the Dual Quaternion Inertia Transformation from Definition 3.8.

Remark 4.1. The dual quaternion inertia transformation can also be defined for matrices in a similar manner
to what was done in (4.51). In this case our operator shall be defined as G : Hn×m0 −→ Hn×m0 and we apply
G(•) in every element of the matrix.

Remark 4.2. We may also define some proprieties for the operator for the DQ-vec dual quaternion inertia

transformation in (4.51). Thus, given the dual quaternion-vectors P 1 =
[
p

1,1
p

1,2
. . . p

1,n

]T
and

P 2

[
p

2,1
p

2,2
. . . p

2,n

]T
∈ Hn0 and the constantK ∈ Rn we have

1. G (P 1 + P 2) = G (P 1) +G (P 2) ;

64

2. G (P 1K) = G (P 1)K.

Both proprieties can be proved by inspection.

With Definitions 2.17, 2.19 and 4.1 we may proceed to analyze (4.19) as was done with the other variables
in the dqRNEA. In this instance we shall have

f
R,1

= ω1 × (G1 (ω1)) +G1 (ω̇1)

f
R,2

= ω2 × (G2 (ω2)) +G2 (ω̇2)

f
R,3

= ω3 × (G3 (ω3)) +G3 (ω̇3)

...

f
R,n

= ωn × (Gn (ωn)) +Gn (ω̇n) , (4.52)

which, in vectorial form and from (4.25) becomes,

FR =



f
R,1

f
R,2

f
R,3
...

f
R,n


=



ω1 × (G1 (ω1)) +G1 (ω̇1)

ω2 × (G2 (ω2)) +G2 (ω̇2)

ω3 × (G3 (ω3)) +G3 (ω̇3)
...

ωn × (Gn (ωn)) +Gn (ω̇n)



=



ω1 × (G1 (ω1))

ω2 × (G2 (ω2))

ω3 × (G3 (ω3))
...

ωn × (Gn (ωn))

+



G1 (ω̇1)

G2 (ω̇2)

G3 (ω̇3)
...

Gn (ω̇n)

 . (4.53)

From our definition for the DQ-Vec Cross product in (2.71) and DQ-Vec dual quaternion inertia transformation
in (4.51), we may rewrite (4.53) as

FR = W ⊗G (W) +G
(
Ẇ
)
. (4.54)

The next equation is (4.20), with individual entries being

f
1

= f
R,1

+Ad(x2
1)f

2

f
2

= f
R,2

+Ad(x3
2)f

3

f
3

= f
R,3

+Ad(x4
3)f

4

...

f
n−1

= f
R,n−1

+Ad(xnn−1)f
n

f
n

= f
R,n

+Ad(xn+1
n)f

n+1
. (4.55)

65

From (4.55) we can write the vectorial formulation

F =



f
1

f
2

f
3
...

f
n−1

f
n


=



f
R,1

+Ad(x2
1)f

2

f
R,2

+Ad(x3
2)f

3

f
R,3

+Ad(x4
3)f

4
...

f
R,n−1

+Ad(xnn−1)f
n

f
R,n

+Ad(xn+1
n)f

n+1



=



f
R,1

f
R,2

f
R,3
...

f
R,n−1

f
R,n


+



Ad(x2
1)f

2

Ad(x3
2)f

3

Ad(x4
3)f

4
...

Ad(xnn−1)f
n

Ad(xn+1
n)f

n+1


, (4.56)

in which we may define force at the end effector as

F EF =



0

0

0
...
0

Ad(xn+1
n)f

n+1


. (4.57)

With (4.57), the adjoint definition in (4.33) and the vectors FR and F itself we can rewrite (4.56) as

F = FR +



0 AH(x2
1) 0 0 . . . 0

0 0 AH(x3
2) 0 . . . 0

0 0 0 AH(x4
3) . . . 0

...
...

...
...

. . . 0

0 0 0 0 . . . AH(xnn−1)

0 0 0 0 . . . 0


F + F EF. (4.58)

66

More so, from (4.36), we also highlight that

(
QT
)∗

=



0
(
AH(x1

2)
)∗

0 0 . . . 0

0 0
(
AH(x2

3)
)∗

0 . . . 0

0 0 0
(
AH(x3

4)
)∗

. . . 0
...

...
...

...
. . . 0

0 0 0 0 . . .
(
AH(xn−1

n)
)∗

0 0 0 0 . . . 0



=



0 AH(x2
1) 0 0 . . . 0

0 0 AH(x3
4) 0 . . . 0

0 0 0 AH(x4
3) . . . 0

...
...

...
...

. . . 0

0 0 0 0 . . . AH(xnn−1)

0 0 0 0 . . . 0


, (4.59)

and thus,
F = FR +

(
QT
)∗
F + F EF. (4.60)

Finally, by taking an approach similar to (4.43) and (4.50), we have

F = FR +
(
QT
)∗
F + F EF

F −
(
QT
)∗
F = FR + F EF

F
(
In −

(
QT
)∗)

= FR + F EF

F
((
L−1

)T)∗
= FR + F EF

F =
(
LT
)∗

(FR + F EF) . (4.61)

Lastly, we must calculate the torque, as in (4.20), thus checking the individual entries of the matrix

τ1 = f
1
� [D (a1) + εP (a1)]

τ2 = f
2
� [D (a2) + εP (a2)]

τ3 = f
3
� [D (a3) + εP (a3)]

...

τn = f
n
� [D (an) + εP (an)] . (4.62)

67

Equation

1 W = L
(
Aθ̇ +W BASE

)
2 Ẇ = L

(
Aθ̈ +Cθ̈ + Ẇ BASE

)
3 FR = W ⊗G (W) +G

(
Ẇ
)

4 F = L∗ (FR + F BASE) .

5 τ = F �AS

Table 4.1: List of main operations in Dual Quaternionic-Matrix formulation

To write (4.62) in the vectorial form we must take into account the product defined in (2.73) resulting in

τ =



τ1

τ2

τ3
...
τn

 =



f
1
� [D (a1) + εP (a1)]

f
2
� [D (a2) + εP (a2)]

f
3
� [D (a3) + εP (a3)]

...
f
n
� [D (an) + εP (an)]



=



f
1

f
2

f
3
...
f
n


�



D (a1) + εP (a1)

D (a2) + εP (a2)

D (a3) + εP (a3)
...

D (an) + εP (an)

 . (4.63)

Finally we may define

AS =



D (a1) + εP (a1)

D (a2) + εP (a2)

D (a3) + εP (a3)
...

D (an) + εP (an)

 (4.64)

and together with the vectors τ and F we have,

τ = F �AS , (4.65)

thus finishing the set of equations that form the dual quaternionic-matrix formulation.

To close this section, we present, in Table 4.1, a summary of the main equations used in this section to form
this non-recursive formulation.

4.3.2 Closed Form Equation

While writing the closed form equation for the dqRNEA our aim is to obtain a result similar to (4.3). Thus,
we shall use the expressions in Table 4.1.

Starting with (4.65), we must notice that

τ = F �AS = AS � F . (4.66)

68

Indeed, as the double geodesic product is commutative, and because the operation defined in (2.73) is done
element-wise throughout the vectors, then it stands that the vectors may commute as well. Furthermore, we
substitute (4.61) in the right-hand side of (4.66), thus

τ = AS � [L∗ (FR + F EF)]

τ = AS � [L∗FR +L∗F EF]

τ = AS � [L∗FR] +AS � [L∗F EF] . (4.67)

Next we combine (4.67) with (4.54) and rearrange the terms

τ = AS �
[
L∗
(
W ⊗G (W) +G

(
Ẇ
))]

+AS � [L∗F EF]

τ = AS �
[
L∗ (W ⊗G (W)) +L∗G

(
Ẇ
)]

+AS � [L∗F EF]

τ = AS � [L∗ (W ⊗G (W))] +AS �
[
L∗G

(
Ẇ
)]

+AS � [L∗F EF] . (4.68)

Finally, we substitute (4.43) and (4.50) in (4.68) and, once more, rearrange the terms,

τ = AS �
[
L∗
(
W ⊗G

(
L
(
Aθ̇ +W BASE

)))]
+AS �

[
L∗G

(
L
(
Aθ̈ +Cθ̇ + Ẇ BASE

))]
+AS � [L∗F EF]

= AS �
[
L∗
(
W ⊗G

(
LAθ̇ +LW BASE

))]
+AS �

[
L∗G

(
LAθ̈ +LCθ̇ +LẆ BASE

)]
+AS � [L∗F EF] .

(4.69)

Here we use the proprieties highlighted in Remark 4.2 in order to break down the terms inG(•). Thus

τ =AS �
[
L∗
(
W ⊗G

(
LAθ̇

)
+W ⊗G (LW BASE)

)]
+AS �

[
L∗G

(
LAθ̈

)
+L∗G

(
LCθ̇

)
+L∗G

(
LẆ BASE

)]
+AS � [L∗F EF]

=AS �
[
L∗W ⊗

(
G (LA) θ̇

)]
+AS � [L∗W ⊗G (LW BASE)]

+AS � [L∗G (LA)] θ̈ +AS � [L∗G (LC)] θ̇ +AS �
[
L∗G

(
LẆ BASE

)]
+ [AS �L∗]F EF.

(4.70)

The expression obtained in (4.70) is the closed form version of the dqRNEA, however, in order to ensure a
more intuitive representation, we may look again at (4.3). Finally, matching the two equations we have

τ = M(θ)θ̈ + c(θ, θ̇) + g(θ) + JT (θ)F EF, (4.71)

in which
M(θ) = AS � [L∗G (LA)] ; (4.72)

c(θ, θ̇) = AS �
[
L∗W ⊗

(
G (LA) θ̇

)]
+AS � [L∗W ⊗G (LW BASE)] +AS � [L∗G (LC)] θ̇; (4.73)

g(θ) = AS �
[
L∗G

(
LẆ BASE

)]
; (4.74)

JT (θ) = AS �L∗. (4.75)

We add here that our formulation for the dqRNEA is one attempt to close a gap in the literature, both with
the recursive formulation and the closed one. Indeed, there not many works tackling the use of dual quaternions
for describing the RNEA for serial manipulators (or any manipulator for that matter). One exception however
are the recent works in [29,30], which describe the quaternion-based inverse dynamics of a spacecraft-mounted

69

robotic manipulator configured with different joint types. We reiterate here, however, that although some of the
equations in [29,30] are similar to our own, their approach is vastly different. While they propose a framework
for all types of joint, they approach has many equations presented the Euclidean vector-matrix formulation.
This is solution, although valid, is more costly and many times also unintuitive and cumbersome, as there is the
need for mapping the dual quaternions to vectors and matrices.

Remark 4.3. The closed formulation presented in (4.71) is exactly the same the general formulation presented
in (4.3). We note however, that the individual terms ((4.72) to (4.75)) are not the same as they would have been
in other algebras.

4.4 DQ BASED INVERSE DYNAMICS CONTROLLER

One of the many applications for the models derived throughout this chapter is on the control of robotic
mechanisms. Indeed, dynamical controllers are very important and can be deployed in a number of applications
[102–107] in order to enhance a robot’s abilities to reliably interact with its environment.

In this context, and in order to further validate our models, we propose to close up this chapter with by
designing of a computed torque controller based on dual quaternions1. Although conceptually simple and well
known, this MIMO controller can be quite powerful to fully compensate the non-linearities of presented in the
dynamics of a robot motion [49, 93]. Thus, in Subsection 4.4.1 we present, as a contribution, the formulation
for a PD computed torque controller based on the equations of Subsection 4.3.2.

4.4.1 Computed Torque Control

The computed-torque control (CTC) is a well known technique to control the motion of a manipulator
while accounting for the robot’s dynamics model [108]. As a special case of a feedback stabilization scheme
for non linear systems the CTC produces a very intuitive and easy to understand linear system. Provided that
the robot model is well known, we may use this approach to control our manipulator very reliably, however,
more complex approaches should be taken once we deal with real world systems in which many parameters are
not completely known. Although in this manuscript we are only presenting the basic formulation for the CTC,
we highlight there is a great variety of torque control based approaches that can better account for uncertainties
in the models being used [5, 49, 93, 108, 109].

To design our controller we take (4.71) as a starting point, however, in order to simplify our problem we
consider that no forces are acting on the end-effector—thus F BASE = 0, turning our model into

τ = M(θ)θ̈ + c(θ, θ̇) + g(θ). (4.76)

The intuition for this controller is that we want to find a feedback law such that

τinput = f(θ, θ̇, θ̈)

results in a linear system when substituted in our original system (4.76). Usually, for a multi-variable non-linear
system τinputwould incredibly difficult to find, however, for our particular system, in which we considerM(θ),
c(θ, θ̇) and g(θ) to be completely known, the problem becomes quite simple [93].

1Also known as inverse dynamic control

70

Robot

g(θ)

C(θ, θ̇)

M(θ)

θ

θ̇

θ̈

Kv Kp

θ
θ̇

Figure 4.2: Block diagram for computed torque control, following equations (4.77)-(4.82)

Let us choose a control law such

τinput = M(θ)ac + c(θ, θ̇) + g(θ), (4.77)

in which ac is an input we are still to choose. Furthermore, since M(θ) is invertible, then we may combine
(4.76) and (4.77) to obtain

θ̈ = ac. (4.78)

The system in (4.78) is known as a double integrator system and it stands out as a linear and decoupled system,
enabling us to use each individual element of ac to control each output.

We now design the input ac with a control law of our choice, in this case we will choose a PD controller
scheme to drive the input as a function of the position and velocity, that is,

ac = −KPθ −KDθ̇ + r(t) (4.79)

with KP and KD being respectively the proportional and derivative gains and r(t) is the desired feed-forward
trajectory, which we may define as

r(t) = θ̈desired +KPθdesired +KDθ̇desired. (4.80)

Substituting (4.80) in (4.79) we have

ac = KP (θdesired − θ) +KD

(
θ̇desired − θ̇

)
+ θ̈desired, (4.81)

in which we may define (θdesired − θ) = e and
(
θ̇desired − θ̇

)
= ė as the error functions, thus creating our

control law,
ac = KPe+KDė+ θ̈desired. (4.82)

As stated this controller is quite simple and yet very powerful, making it ideal for validating our models. In
Figure 4.2 we show the block diagram for this particular control-scheme.

71

COMPUTATIONAL COST ANALYSIS

One of the main goals of the work being described in the manuscript was to introduce a cost efficient, dual
quaternion based inverse dynamics algorithm. Indeed, throughout Chapter 4 we have shown both the recursive
and closed versions of the dqRNEA and we have shown how some of the main design choices for this algorithm
were taken in order to guarantee better computational cost.

In this chapter, we shall take a better look at the computational costs involved in our algorithm and compare
it with some results in the literature. Thus, in Section 5.1 we present the methodology we will be using
for calculating the costs throughout this chapter. In Section 5.2 we show the individual costs for each dual
quaternion operation, and more so, we show how to optimize the adjoint operation so that it will produce a
lower computational cost. In Section 5.3 we show the costs for the dqRNEA algorithm, in Section 5.4 we show
the costs for a similar algorithm, but described in HTM and, finally, in Section 5.5 we compare those costs with
similar algorithms in the literature.

5.1 METHODOLOGY FOR COMPUTATIONAL COST ANALYSIS

In this section we detail the methodology used for evaluating our algorithm performance and computational
costs associated with the rigid body kinematics and dynamics. The methodology we will present is not a
novelty and has been done in the works of [37, 39–41, 77], and here, as in our previous work [60], we add as
a contribution the analysis of individual costs for operations with dual quaternions, as well as the costs for our
dqRNEA algorithm.

The computational cost is, therefore, computed in terms of the function

costTotal(Operation) = ([storage] f, [nº Mult.]×, [nº Add.] +) . (5.1)

In other words, we calculate the costs in terms of the number of elementary operations (multiplications/division
and addition/subtraction of floating units), and we also add the storage costs, as fetching an operand from
the memory greatly affects the computational time for the algorithm [110]. In order to illustrate how (5.1)
can be used, let us look at the quaternion addition in (2.3). In this case we have two quaternions: q =

η+ ı̂µ1 + ̂µ2 + k̂µ3, consisting of four real numbers, and q’ = η′+ ı̂µ′1 + ̂µ′2 + k̂µ′3, consisting of another four
real units, thus making necessary eight floating points of storage. Moreover, the quaternion addition is defined
as

q + q′ = (η + η′) + ı̂(µ1 + µ′1) + ̂(µ2 + µ′2) + k̂(µ3 + µ′3),

thus having four additions and zero multiplications between the real numbers. This analysis results on

costTotal(Quat. Addition)=(8f, 0×, 4+). (5.2)

Another illustrative example would be the sum of n quaternions. In this case each quaternion would have a
storage cost of 4f and we would have the four additions of (5.2) being repeated (n− 1) times. Thus, the total
cost would be

costTotal(
n∑

i=1

qi) =

 n

1

n− 1

 (4f, 0×, 4+) . (5.3)

72

5

We highlight that this analysis does not take computational costs into account, as it is dependent on software
and hardware specifications.

5.2 COMPUTATIONAL COST OF DQ-BASED OPERATIONS

In this Section we use the methodology presented in Section 5.1 to calculate the computational costs for
the main quaternion (Subsection 5.2.1) and dual quaternion (Subsection 5.2.2) operations found in Chapter (2).
Furthermore, we acknowledge the DQ based operation for the adjoint mapping is not as optimized as some
representations for the HTM based adjoint, thus, stemming from our work in [60] we propose in Subsection
5.2.3 an optimized version of (2.89).

5.2.1 Costs for Quaternion Operations

Here, Table 5.1 lists the storage and computational costs related to quaternion algebra.

Table 5.1: Cost requirements of quaternion algebra operations

Operation Storage ×/÷ +/−

Addition (x1 + x2) (2.3) 8f 0× 4+

Multiplication by Scalar (αx) (2.4) 5f 4× 0+

Quat. Multiplication x1x2 (2.5) 8f 16× 12+

Quat. Cross Product (2.13) 6f 9× 5+

Quat. Inner Product (2.14) 6f 3× 2+

Matrix Linear Transf. T4 (2.49) 20f 16× 12+

Quat. Hamilton Operator
+

h (•) or
−
h (•) (2.55) 8f 16× 12+

Quat. Adjoint Transformation (2.78) 7f 20× 28+

* where α ∈ R and x1,x2 ∈ H

Note that, although we reckon the same computational complexity could be directly extracted from basic
operations, to explicitly state the compound operations is valid for future reference and computational cost
analysis within the quaternion algebra.

5.2.2 Costs for Dual Quaternion Operations

In Table 5.2 we show a detailed list of dual quaternion operations with respective storage and elementary
operation costs, following the methodology described in 5.1.

The costs of operations for dual quaternions are generally lower than for other algebras. In particular, the
fact that the general dual quaternion needs only eight parameters is in itself an advantage, as a [110] argues
the cost for memory access exceeds the cost for basic arithmetic operations. Moreover, although there are
many other interesting proprieties that come with using a dual quaternion algebra for kinematic and dynamic

73

Table 5.2: Cost requirements for dual quaternion operations

Operation Storage ×/÷ +/−

Addition (x1 + x2) 16f 0× 8+

Multiplication by Scalar (αx1) 9f 8× 0+

Dual Quat. Multiplication (x1x2) 16f 48× 40+

Cross Product (2.40) 12f 18× 12+

Inner Product (2.41) 12f 6× 5+

Double Geodesic Product (4.20) 12f 6× 5+

Dual Quat Linear Transformation 72f 64× 56+

Dual Quat. Hamilton Operator (2.58) 28f 48× 48+

Adjoint Transformation (2.89) 14f 84× 70+

* where α ∈ R and x1,x2 ∈ H

algorithms, we still aim to create a cost efficient representation. In this manner, we may notice from Tables 5.1
and 5.2 that the Adjoint transformation is generally quite costly in its traditional form. Thus, in the next section
we present our optimization for this operation, and analyze its subsequent costs.

5.2.3 Optimizing the Adjoint Mapping

The usual adjoint mapping for dual quaternions, as defined in (2.89), can present quite a few issues for the
cost efficient dqRNEA algorithm we aimed at designing. As we previously stated, many of our design choices
were made to optimize the algorithm in terms of computational cost. More so, as discussed in Subsection
4.3.1, sometimes, in order to isolate mapped out variable in the equation we might also need to commute the
elements on (2.89). Thus, taking these issues into account we proposed the alternative Definition 2.2 for the
dual quaternion adjoint [60].

In order to derivate the alternative expressions (2.90) and (2.91) we should use as a starting point the
traditional adjoint map of (2.89),

Ad(x)p = xpx∗, (5.4)

in which we have that x = xP + εxD and p = pP + εpD. As stated, one of our aims of this alternative
representation is to isolate the variable we are mapping out, which in (5.4) is p. Therefore, we use here the
dual quaternion hamiltonians defined in (2.58), such that

Ad(x)p =
+

h (x)
−
h (x∗)p. (5.5)

Next, by expanding
−
h (x∗) =

−
h (x∗P) + ε

−
h (x∗D) and p we have

Ad(x)p =
+

h (x)

(
−
h (x∗P) + ε

−
h (x∗D)

)
(pP + εpD)

=
+

h (x)

(
−
h (x∗P)pP + ε

(
−
h (x∗P)pD +

−
h (x∗D)pP

))
, (5.6)

74

and from
+

h (x) =
+

h (xP) + ε
+

h (xD),

Ad(x)p =

(
+

h (xP) + ε
+

h (xD)

)(
−
h (x∗P)pP + ε

(
−
h (x∗P)pD +

−
h (x∗D)pP

))
=

[
+

h (xP)
−
h (x∗P)

]
pP + ε

[
+

h (xP)
−
h (x∗P)

]
pD + ε

[
+

h (xP)
−
h (x∗D)

]
pP + ε

[
+

h (xD)
−
h (x∗P)

]
pP

=

[
+

h (xP)
−
h (x∗P)

]
pP + ε

[
+

h (xP)
−
h (x∗P)

]
pD + ε

[
+

h (xP)
−
h (x∗D) +

+

h (xD)
−
h (x∗P)

]
pP .

(5.7)

Now let us define the auxiliary adjunct terms, AP and AD,

AP(x) =

[
+

h (xP)
−
h (x∗P)

]
and AD(x) =

[
+

h (xP)
−
h (x∗D) +

+

h (xD)
−
h (x∗P)

]
, (5.8)

which allow us to rewrite (5.7) as

Ad(x)p = AP(x)pP + εAP(x)pD + εAD(x)pP (5.9)

= AP(x)pP + ε (AP(x)pD +AD(x)pP) .

Next, by using (2.55), we may further analyze the terms in (5.8). Thus we note that APµ, for any µ =

µ0 + µ1 ı̂+ µ2̂+ µ3k̂ ∈ H0, can be written as

AP(x)µ =
+

h (xP)
−
h (x∗P)µ

=
+

h (xP)
(
x∗Pµ0 + ı̂x∗Pµ1 + ̂x∗Pµ2 + k̂x∗Pµ3

)
=
(
xPx

∗
Pµ0 + xP ı̂x

∗
Pµ1 + xP ̂x

∗
Pµ2 + xP k̂x

∗
Pµ3

)
, (5.10)

and since µ ∈ H0, we have that µ0 = 0 and in turn (5.10) becomes

AP(x)µ = (xP ı̂x
∗
P)µ1 + (xP ̂x

∗
P)µ2 +

(
xP k̂x

∗
P

)
µ3

= APı̂
µ1 + AP̂

µ2 + APk̂
µ3, (5.11)

with APı̂
= (xP ı̂x

∗
P), AP̂

= (xP ̂x
∗
P) and APk̂

=
(
xP k̂x

∗
P

)
being the individual base transformation.

We highlight here that AP(x)µ is the adjoint quaternion transformation defined in (2.78) and here taking
the form of xPµxP

∗. Such concept for adjoint transformation is considerably intuitive in the sense that the
classic quaternion adjoint transformation is used to either rotate the point µ or to observe the same point in a
different frame, the quaternion adjointAP(x)µ redefines the quaternionic elements in the frame of interest. In
other words, the adjoint transformation is performed for every quaternionic unit ı̂, ̂, k̂ and the point µ is simple
redefined within the new base.

Similarly to AP(x), we may rewrite the term AD(x)µ, for any µ = µ0 + µ1 ı̂+ µ2̂+ µ3k̂ ∈ H0, as

AD(x)µ =

[
+

h (xP)
−
h (x∗D) +

+

h (xD)
−
h (x∗P)

]
µ

=
+

h (xP)
(
x∗Dµ0 + ı̂x∗Dµ1 + ̂x∗Dµ2 + k̂x∗Dµ3

)
+

+

h (xD)
(
x∗Pµ0 + ı̂x∗Pµ1 + ̂x∗Pµ2 + k̂x∗Pµ3.

)
=
(
xPx

∗
Dµ0 + xP ı̂x

∗
Dµ1 + xP ̂x

∗
Dµ2 + xP k̂x

∗
Dµ3

)
+
(
xDx

∗
Pµ0 + xD ı̂x

∗
Pµ1 + xD ̂x

∗
Pµ2 + xDk̂x

∗
Pµ3.

)
.

(5.12)

75

As µ0 = 0 (µ is a pure quaternions) we can rewrite the equation as

AD(x)µ =
(
xP ı̂x

∗
Dµ1 + xP ̂x

∗
Dµ2 + xP k̂x

∗
Dµ3

)
+
(
xD ı̂x

∗
Pµ1 + xD ̂x

∗
Pµ2 + xDk̂x

∗
Pµ3.

)
= (xP ı̂x

∗
D + xD ı̂x

∗
P)µ1 + (xP ̂x

∗
D + xD ̂x

∗
P)µ2 +

(
xP k̂x

∗
D + xDk̂x

∗
P

)
µ3

=
(
xP ı̂x

∗
D − (xP ı̂x

∗
D)
∗)
µ1 +

(
xP ̂x

∗
D − (xP ̂x

∗
D)
∗)
µ2 +

(
xP k̂x

∗
D −

(
xP k̂x

∗
D

))
µ3. (5.13)

Now, for an arbitrary pure quaternion q0, let us consider an expression such as

q0 − q∗0. (5.14)

We notice that (5.14) is the sum of a quaternion with the negative of its conjugate, and from (2.12), we have

q0 = Im(q0) =
1

2
(q0 − q∗0) . (5.15)

With the propriety described in (5.15), and knowing that the adjoint map of a pure quaternion yields a pure
quaternion, we have that for any quaternionic unit η̂ = {ı̂, ̂, k̂}

xP η̂x
∗
D − (xP η̂x

∗
D)
∗

= 2 Im (xP η̂xD
∗) . (5.16)

And thus, we may rewrite (5.13) as

AD(x)µ = 2 Im (xP ı̂xD
∗)µ1 + 2 Im (xP ̂xD

∗)µ2 + 2 Im
(
xP k̂xD

)
µ3

= 2
(

Im (xP ı̂xD
∗)µ1 + Im (xP ̂xD

∗)µ2 + Im
(
xP k̂xD

)
µ3

)
= ADı̂

µ1 + AD̂
µ2 + ADk̂

µ3, (5.17)

with ADı̂
= 2 Im (xP ı̂xD

∗), ADı̂
= 2 Im (xP ̂xD

∗) and ADı̂
= 2 Im

(
xP k̂xD

∗
)

.

Finally, going back to the adjoint definition in (5.9), we have

Ad(x)p = xpx∗

= AP(x)pP + ε (AP(x)pD +AD(x)pP) , (5.18)

with AP(x) and AD(x) being defined respectively as (5.11) and (5.17).

Remark 5.1. To close of the demonstration for the alternative adjoint we should once more return to (5.17), in
which, due to the fact that for any quaternionic unit η̂ = {ı̂, ̂, k̂}, we have that xP η̂x∗D is a pure quaternion,
and consequently xP η̂x∗D = Im (xP η̂xD

∗), we have

AD(x)µ = 2
(

Im (xP ı̂xD
∗)µ1 + Im (xP ̂xD

∗)µ2 + Im
(
xP k̂xD

)
µ3

)
= 2

(
xP ı̂xD

∗µ1 + xP ̂xD
∗µ2 + xP k̂xDµ3

)
= 2

+

h (xP)
(
ı̂xD

∗µ1 + ̂xD
∗µ2 + k̂xDµ3

)
= 2

+

h (xP)
−
h (xD

∗)µ. (5.19)

Furthermore from (5.10) we also have that

AP(x)µ =
+

h (xP)
−
h (x∗P)µ. (5.20)

76

Thus we may similarly represent the adjoint transformation as introduced in [60] and Definition 2.2, that is,
defining

AP (x) =
+

h (xP)
−
h (x∗P) and AD(x) = 2

+

h (xP)
−
h (xD

∗) (5.21)

and
Ad(x)p = AP (x)pP + ε (AP (x)pD +AD(x)pP) . (5.22)

The representation in (5.11), (5.17) and (5.18) is equivalent to the one in Definition 2.2, which is what
was used in [60] for lowering the computational costs of the algorithm. However, we believe that AP(x) and
AD(x) are both more intuitive reformulations for the adjoint operator, as well as more cost efficient.

Remark 5.2. Finally, we also remark here how this new representation of the adjoint works with our Algorithm
??.

In this case, we shall compute AP(x) and AD(x) (or instead AP (x) and AD(x)) and only use the value
stored in the memory for the subsequent transformations.

Thus, we have Algorithm 5.1, in which we add the computation of AP(x) and AD(x).

Algorithm 5.1 Dual-quaternion based recursive Newton-Euler Inverse Dynamics for n DoF Manipulator
Initialization:
At the home config., set the frames F0 to the base, F1 to Fn to the n-links’ center of mass, and Fn+1 to the
end-pose.
Set δii−1, ai as the pose of Fi−1 and the screw axis of joint i expressed in Fi, with null vel. ω0=0 and gravity
accel. ω̇0=− εg at base and end-pose wrench f

EF
=fEF+εmEF .

Forward iteration
xi−1
i (θi(t)) = δii−1exp

(
ai

∆θi
2

)
Compute AP (xi−1

i) and AD(xi−1
i) from (2.91)

ωi = aiθ̇i(t) +Ad(xi−1
i)ωi−1

ω̇i = aiθ̈i(t) +Ad(xi−1
i)ω̇i−1 + (ωi × ai) θ̇i(t)

Backward iteration
f
R,i

= ωi × (Gi (ωi)) +Gi (ω̇i)

f
i

= f
R,i

+Ad(xi+1
i)f

i+1

τi = f
i
� ai

5.2.3.1 Computational Costs for the new adjoint representation

When computing the costs of the adjoint transformations presented in this section we must take in consid-
eration two different steps:

1. The costs for calculating the adjoint operands (AP(x) and AD(x) orAP (x) andAD(x);

2. The costs of the adjoint transformation as described in (5.18).

Regarding AP(x) in (5.18), we may analyze the cost equations and notice that (5.11) has the individual
elements APı̂

= (xP ı̂x
∗
P), AP̂

= (xP ̂x
∗
P) and APk̂

=
(
xP k̂x

∗
P

)
. In this case,

costTotal (xP ı̂) = (4f, 4×, 0+) (5.23)

77

and costTotal ((xP ı̂)x
∗
P) will be equal to the cost for (5.23) plus the cost for the the multiplication of two

quaternions, that is

costTotal (xP ı̂x
∗
P) = (4f, 4×, 0+) + (0f, 16×, 12+) = (4f, 20×, 12+) . (5.24)

Thus, noting that the costs for AP̂
and APk̂

are the same as (5.24), we have a total cost for computing AP(x)

costTotal (AP(x)) = 3 (4f, 20×, 12+)− 2 (4f, 0×, 0+)︸ ︷︷ ︸
Repeated xP

= (4f, 60×, 36+) .

Taking into consideration the cost for the adjoint transformation once AP(x) is already built and stored,
we must look at (5.11) once more. That is we must compute

costTotal
(
APı̂

µ1 + AP̂
µ2 + APk̂

µ3

)
= costTotal (APı̂

µ1)︸ ︷︷ ︸
(5f,3×,0+)

+ costTotal
(
AP̂

µ2

)︸ ︷︷ ︸
(5f,3×,3+)

+ costTotal
(
APk̂

µ3

)︸ ︷︷ ︸
(5f,3×,3+)

. (5.25)

Which yields,
costTotal (AP(x)µ) = (15f, 9×, 6+) . (5.26)

Similarly we may calculate the costs forAD. In this case, from (5.17) we have the individual elements that
form AD being ADı̂

= 2 Im (xP ı̂xD
∗), ADı̂

= 2 Im (xP ̂xD
∗) and ADı̂

= 2 Im
(
xP k̂xD

∗
)

. Here we
notice that, due to (2.81)

ADı̂
= 2 Im (xP ı̂xD

∗) = 2 Im
(
xP ı̂ (0.5x.translationxP)

∗)
= Im (xP ı̂xP (x.translation)) , (5.27)

but xP ı̂xP (xP ̂xP or xP k̂xP) has already been calculated in 5.24, thus we do not need to compute this again
only retrieve it from memory. Thus, the total cost will be only one quaternion multiplication

costTotal (Im ((xP ı̂xP) (x.translation))) = (8f, 16×, 12+) . (5.28)

Furthermore the cost for AD will be

costTotal (AD(x)) = 3 (8f, 16×, 12+)− 2 (8f, 0×, 0+)︸ ︷︷ ︸
Repeated xP xD

= (8f, 48×, 36+) . (5.29)

With AD built and stored we can calculate the cost for the AD(x)µ, thus, from (5.17) we have the exact same
cost as for (5.25),

costTotal
(
ADı̂

µ1 + AD̂
µ2 + ADk̂

µ3

)
= costTotal (ADı̂

µ1)︸ ︷︷ ︸
(5f,3×,0+)

+ costTotal
(
AD̂

µ2

)︸ ︷︷ ︸
(5f,3×,3+)

+ costTotal
(
ADk̂

µ3

)︸ ︷︷ ︸
(5f,3×,3+)

costTotal (AP(x)µ) = (15f, 9×, 6+) . (5.30)

Finally, we have the cost for the whole adjoint transformation, defined in (5.18). Here we consider thatAP
andAD have already been computed, thus we shall only consider the costs for fetching them from the memory
and multiplying by a pure quaternion, as in (5.26) and (5.30), thus

costTotal
(
Ad(x)p

)
= costTotal (AP(x)pP) + costTotal (AP(x)pD +AD(x)pP) .

= (15f, 9×, 9+)︸ ︷︷ ︸
AP (x)pP

+ (15f, 9×, 9+)︸ ︷︷ ︸
AP (x)pD

+ (15f, 9×, 9+)︸ ︷︷ ︸
AD(x)pP

+ (0f, 0×, 3+)︸ ︷︷ ︸
Addition in H0

− (15f, 0×, 0+)︸ ︷︷ ︸,
RepeatedAP , pP

(5.31)

78

yielding a total cost of
costTotal

(
Ad(x)p

)
= (30f, 27×, 30+) . (5.32)

The cost for operators AP (x) and AD(x) is a bit more straightforward to calculate. In this case we have
thatAP (x) has the same cost as aHamiltonian operators for quaternion, (2.55). Thus

costTotal(AP (x)) = costTotal

(
+

h (xP)
−
h (x∗P)

)
= (4f, 16×, 12+) (5.33)

andAD(x) has also the same cost, with the added scalar multiplication,

costTotal(AD(x)) = costTotal

(
2

+

h (xP)
−
h (xD

∗)

)
= (8f, 20×, 12+) . (5.34)

Furthermore the cost forAP (x)µ (orAD(x)µ) is the cost of a further Hamiltonian operator

costTotal (AP (x)µ) = (14f, 20×, 12+) . (5.35)

Finally the adjoint transformation as in Definition 2.2 has the total cost of

costTotal
(
Ad(x)p

)
= costTotal (AP (x)pP) + costTotal (AP (x)pD +AD(x)pP)

= (14f, 20×, 12+)︸ ︷︷ ︸
AP (x)pP

+ (14f, 20×, 12+)︸ ︷︷ ︸
AP (x)pD

+ (14f, 20×, 12+)︸ ︷︷ ︸
AD(x)pP

+ 3(0f, 0×, 3+)︸ ︷︷ ︸
Addition in H0

− (14f, 0×, 0+)︸ ︷︷ ︸,
Repeated AP , pP

(5.36)

yielding a total cost of
costTotal

(
Ad(x)p

)
= (28f, 60×, 39+) . (5.37)

Before closing up this section we also present Table 5.3, in which we see the total weight the costs of the
adjoint transformations would have in the whole Algorithm 4.2—that is the cost for constructing the matrix
and the cost for all three times it appears throughout the algorithm.

We notice here that, as we are not retrieving from memory AP(x) and AD(x) (or AP (x) and AD(x))
the cost for the storage for the traditional adjoint transformation is considerably less than the for the other
representations, however, the number of additions and multiplications in this case are much greater. We also
notice here that for the Adjoint Map of Subsection 5.2.3 the operator’s construction cost is higher than for
Adjoint Map in Definition 2.2, however the added costs for each recursion are generally lesser. Indeed, for
our particular algorithm we believe the two more optimized solutions are better, with (5.18) having a slight
advantage.

5.3 COMPUTATIONAL COST OF DQRNEA

In this section we shall use the data of cost operations within the unit dual quaternion framework, as
presented in Tables 5.1 and 5.2 in order to calculate the costs for dqRNEA algorithm. We can compute the
total cost for the forward and backward iteration of the proposed dual quaternion based Newton-Euler inverse
dynamics algorithm for a n-joints serial manipulator. Such results are presented on Table III.

Starting out from (3.56) we have, as presented in [40], we have the cost for n consecutive dual quaternion
multiplication

costTotal (xEF) = costTotal
(
x0

1x
1
2...x

n
n+1

)
= n (8f, 48×, 40+) . (5.38)

79

Table 5.3: Comparison between different manners of performing the adjoint mapping

Mapping Type
Cost

Observation
Storage ×/÷ +/−

Traditional Adjoint Map (2.89)
14f 84× 70+ Costs from (2.89)

42f 252× 210+ Total for Algorithm 5.1

Adjoint Map in Definition 2.2

4f 16× 12+ AP (x): Needs to be computed only once per recursion

8f 20× 12+ AD(x): Needs to be computed only once per recursion

28f 60× 39+ Ad(x)p: Computed multiple times per recursion

96f 216× 141+ Total for Algorithm 5.1

Adjoint Map of Subsection 5.2.3

4f 60× 36+ AP(x): Needs to be computed only once per recursion

8f 48× 36+ AD(x): Needs to be computed only once per recursion

30f 27× 30+ Ad(x)p: Computed multiple times per recursion

102f 189× 162+ Total for Algorithm 5.1

Before proceeding for the costs of the other equations, we also find it interesting highlight that the cost of (3.56)
when parametrized with the PoE formulation is much smaller than the one with DH Parameters [40]. That is,
due to (3.57) we have that each element in (3.56) has three extra dual quaternion multiplications imbued in this
computation, thus

costTotal
(
xDHEF

)
= 3n (8f, 48×, 40+) , (5.39)

which corroborate the choice for using the PoE representation in our cost effective algorithm.

Next, we calculate the cost for the twist equation, (4.7),

costTotal (ωi) = costTotal

(
ai∆θ̇i(t) +Ad(xi−1

i)ωi−1

)
= costTotal

(
ai∆θ̇i(t)

)
︸ ︷︷ ︸

Pure DQ times Scalar

+ costTotal (Pure DQ Add.) + costTotal
(
Ad(xi−1

i)ωi−1

)
= (7f, 6×, 0+) + (0f, 0×, 6+) + (30f, 27×, 30+)

= (37f, 33×, 36+) . (5.40)

As the algorithm is repeated n-times we have the total cost being n (37f, 33×, 36+). Here we must also add
that the adjoint is in our new formulation proposed in Subsection 5.2.3. When using the traditional adjoint we
would need to replace (30f, 27×, 30+) by (14f, 84×, 70+), thus resulting in a total cost of n (21f, 90×, 76+).

Regarding 4.18 we have

costTotal (ω̇i) = costTotal

(
ai∆θ̈i(t) +Ad(xi−1

i)ω̇i−1 + (ωi × ai) ∆θ̇i(t)
)

= costTotal

(
ai∆θ̈i(t)

)
︸ ︷︷ ︸

Pure DQ times Scalar

+2costTotal (Pure DQ Add.) + costTotal
(
Ad(xi−1

i)ω̇i−1

)
+ costTotal

(
(ωi × ai) ∆θ̇i(t

)
︸ ︷︷ ︸

DQ cross Product
Pure DQ times Scalar

= (7f, 6×, 0+) + 2 (0f, 0×, 6+) + (30f, 27×, 30+) + (6f, 18×, 12+) + (1f, 6×, 0+)

= (44f, 57×, 54+) . (5.41)

80

Once more, we reiterate that this was computed using the adjoint, of Subsection 5.2.3. When using the tradi-
tional adjoint the cost would go up to (28f, 114×, 94+). Also, (5.41) is repeated n-times bringing the total
cost to n (44f, 57×, 54+) (or n (28f, 114×, 94+))

Now, we go to the backward iteration of the algorithm. In this case we shall start with the cost for the Dual
Quaternion Inertia Transformation, from (3.44),

costTotal
(
Gi
(
q
))

= costTotal

(
mD(q) + ε

(
Ibxqx + Ibyqy + Ibzqz

))
= costTotal

(
mD(q)

)︸ ︷︷ ︸
Pure Quat. times Scalar

+ costTotal

(
Ibxqx + Ibyqy + Ibzqz

)
︸ ︷︷ ︸

3times Pure Quat. times Scalar
2 Pure quaternion Add

= (16f, 12×, 6+) . (5.42)

Then, we may calculate the cost of (4.19)

costTotal

(
f
R,i

)
= costTotal (ωi × (Gi (ωi)) +Gi (ω̇i))

= costTotal (ωi × (Gi (ωi)))︸ ︷︷ ︸
G function + Cross Product

+ costTotal (Pure DQ Add.) + costTotal (Gi (ω̇i))

= (16f, 12×, 6+) + (0f, 18×, 12+) + (0f, 0×, 6+) + (6f, 12×, 6+)

= (22f, 42×, 30+) , (5.43)

which becomes n (22f, 42×, 30+) when considering the calculation for all n links.

The next cost is for the resulting force, in (4.20),

costTotal

(
f
i

)
= costTotal

(
f
R,i

+Ad
(
xi+1
i

)
f
i+1

)
= costTotal

(
f
R,i

)
+ costTotal (Pure DQ Add.) + costTotal

(
Ad
(
xi+1
i

)
f
i+1

)
= (6f, 0×, 0+) + (0f, 0×, 6+) + (30f, 27×, 30+)

= (36f, 27×, 36+) . (5.44)

In this case we will have a total of n (36f, 27×, 36+) for the whole n-link manipulator and n(20f, 84×, 76+)

for the traditional adjoint operation.

Finally, the cost for the torque is

costTotal (τi) = costTotal

(
f
i
� [D (ai) + εP (ai)]

)
= costTotal (DG Product)

= (12f, 6×, 5+) , (5.45)

and n (12f, 6×, 5+) for all links.

Table 5.4 shows the total cost of operations for different formulations of the the algorithm. Our preferred
version uses the PoE formulation, dual quaternion algebra and the adjoint proposed in this chapter is presented

81

Table 5.4: Cost of operations for UDQ

Oper.
DQ - PoE - New Adjoint DQ - PoE - Old Adjoint DQ - DH - New Adjoint DQ - DH - Old Adjoint

Storage(f) ×/÷ +/− Storage(f) ×/÷ +/− Storage(f) ×/÷ +/− Storage(f) ×/÷ +/−

Eq. (3.56) 8n 48n 40n 8n 48n 40n 24n 144n 120n 24n 144n 120n

Eqs. (5.11, 5.17) 12n 112n 72n 0 0 0 12n 112n 72n 0 0 0

Eq. (4.7) 37n 33n 36n 21n 90n 76n 37n 33n 36n 21n 90n 76n

Eq. (4.18) 44n 57n 54n 28n 114n 94n 44n 57n 54n 28n 114n 94n

Eq. (4.19) 22n 42n 30n 22n 42n 30n 22n 42n 30n 22n 42n 30n

Eq. (4.20) 36n 27n 36n 20n 84n 76n 36n 27n 36n 20n 84n 76n

Eq. (4.22) 12n 6n 5n 12n 6n 5n 12n 6n 5n 12n 6n 5n

TOTAL 171n 325n 273n 111n 384n 321n 187n 421n 353n 127n 480n 401n

in the first column of the Table. This version proves to be quite good as it has a lesser general cost, even
though storage is a little higher in this case. The last two columns in Table 5.4 show how the cost would be
with the forward kinematics being calculated with DH parameters. These two columns were just added here
for comparison purposes, however, we remark that there must be a transformation of the center of mass for us
to use the DH parameters with our formulation, and this would imply in an even bigger cost for all subsequent
operations.

5.4 COMPUTATIONAL COSTS OF HOMOGENEOUS TRANSFOR-
MATION MATRICES

In this Section we shall present the costs for an alternative RNEA algorithm based on Homogeneous Trans-
formation Matrices (HTM), as per Appendix A. Here we have calculated the computational costs based on the
same methodology used in Section 5.1, in which we divide the costs between storage addition/subtraction and
multiplication/division. In Subsection 5.4.1 we show both the cost for HTM operations and for vectors in R6.
Moreover, in Subsection 5.4.2 we show the the costs for the algorithm as a whole.

5.4.1 Cost of HTM operations

In this Subsection we present the costs for the main operations used for the RNEA algorithm based on
HTM.

Table 5.5 shows the costs for the main operations for the vectors introduced in Subsection A.1.1, with
X1, X2 ∈ R6 and α ∈ R. We highlight that we also show the costs for the vector adjoint multiplying a vector
in R6, such as in (A.8).

Furthermore, Table 5.6 is concerned with the costs for the homogeneous transformation matrices from
Subsection A.1.3, with X1 ∈ R6 , α ∈ R and T 1, T 2 ∈ R4×4. Moreover, the first four lines of the table
deal with the traditional multiplication and addition operations, but the las two lines deal with the adjoint

82

Table 5.5: Cost requirements for vector operations

Operation Storage ×/÷ +/−

Addition (X1 +X2) 12f 0× 6+

Multiplication by Scalar (αX1) 7f 6× 0+

Vector MultiplicationXT
1X2 12f 6× 5+

Vector Adjoint (A.8) 42f 36× 30+

transformation. Adjoint construction is the cost for building the adjoint matrix, in (A.17)—that is, the cost for
the product [p]R, and the adjoint transformation is the cost for the a 6× 6 matrix multiplying a R6 vector.

Table 5.6: Cost requirements for HTM operations

Operation Storage ×/÷ +/−

Addition (T 1 + T 2) 32f 0× 16+

Multiplication by Scalar (αT 1) 17f 16× 0+

Matrix-by-Matrix Multiplication T 1T 2 32f 64× 48+

Matrix-by-Vector Multiplication TX1 20f 16× 12+

Adjoint Construction (A.17) 12f 27× 18+

Adjoint transformation (A.18) 42f 36× 30+

5.4.2 Cost of HTM Algorithm

In this Subsection we shall use the costs from Tables 5.5 and 5.6 together with the methodology in 5.1 to
calculate the whole cost of the HTM based algorithm described in (A.20) to (A.25) (Appendix A).

Thus, we start by calculating the costs for (A.20). This is the cost for a series of n HTM multiplications,
that is,

costTotal (TEF) = n (16f, 64×, 48+) . (5.46)

We also note here that, as was the case for the dual quaternions, this equation is parametrized in the PoE
formulation. However, if we choose to use the DH notation the cost for each transformation will triplicate, as
there will also be three extra transformations. Thus

costTotal

(
TDHEF

)
= 3n (16f, 64×, 48+) . (5.47)

Next we calculate the costs for (A.21),

costTotal (W i) = costTotal

([
AdT i−1

i

]
W i−1 +Aiθ̇i

)
= costTotal

([
AdT i−1

i

]
W i−1

)
︸ ︷︷ ︸

Cost of Adjoint Transform

+ costTotal (Vector Add.) + costTotal

(
Aiθ̇i

)
︸ ︷︷ ︸

Cost for vec. scalar mult.

= (42f, 36×, 30+) + (0f, 0×, 6+) + (7f, 6×, 0+)

= (49f, 42×, 36+) , (5.48)

83

and the costs for (A.22)

costTotal

(
Ẇ i

)
= costTotal

([
AdT i−1

i

]
Ẇ i−1 + adWi (Ai) +Aiθ̈i

)
= costTotal

([
AdT i−1

i

]
Ẇ i−1

)
︸ ︷︷ ︸

Cost of Adjoint Transform

+ costTotal

(
adWi (Ai) θ̇i

)
︸ ︷︷ ︸

Cost of vector Adjoint
Cost of vec. by scalar

+ costTotal

(
Aiθ̈i

)
︸ ︷︷ ︸

Cost for vec. scalar mult.

+ 2costTotal (Vec. Add.)

= (42f, 36×, 30+) + [(42f, 36×, 30+) + (1f, 6×, 0+)] + (1f, 6×, 0+) + 2 (0f, 0×, 6+)

= (86f, 84×, 72+) . (5.49)

We note that both the costs for (5.48) and (5.49) are repeated n-times, thus resulting in a total of cost of
n (49f, 42×, 36+) and n (86f, 84×, 72+) respectively. Furthermore, we also highlight here that we are con-
sidering that the adjoint matrix has already been constructed and is just being retrieved from memory. In fact
this is the approach we will be following for both the matrix and vector adjoint throughout the remainder of
this section.

Now we move to the backward iteration, and before calculating the costs for (A.23), we must account for
the costs for the inertia matrix, that is

costTotal (G) = costTotal

 I 0

0 mI3

 = (10f, 9×, 0+) . (5.50)

We remark that (5.50) should only be calculated once at the beginning of the algorithm, and retrieved from
memory in the subsequent iterations of the algorithm. After we is construct G we can calculate the costs for
the resulting forces

costTotal (FR,i) = costTotal

(
GiẆ i − adTWi

(GiW i)
)

= costTotal

(
GiẆ i

)
︸ ︷︷ ︸

Cost of Multiplication

+ costTotal (Vec. Sub.) + costTotal
(
adTWi

(GiW i)
)︸ ︷︷ ︸

GiW i multiplication
Cost of Vector Adjoint

= (42f, 36×, 30+) + (0f, 0×, 6+) + [(6f, 36×, 30+) + (36f, 36×, 30+)]

= (84f, 108×, 96+) , (5.51)

in which we must remember that for n-iterations of the algorithm the cost would be n (84f, 108×, 96+).
Following that we calculate the costs for (A.24)

costTotal (F i) = costTotal

([
AdT i

i+1

]T
F i+1 + FR,i

)
= costTotal

([
AdT i

i+1

]T
F i+1

)
︸ ︷︷ ︸

Cost of Adjoint Transform

+ costTotal (Vec. Addition) + costTotal (FR,i)

= (42f, 36×, 30+) + (0f, 0×, 6+) + (6f, 0×, 0+)

= (48f, 36×, 36+) , (5.52)

with the costs for n-iterations being n (48f, 36×, 36+) .

Finally, we have the costs for the torque in (A.25),

costTotal (τi) = costTotal

(
F Ti Ai

)
= costTotal (Vector Multiplication)

= (12f, 6×, 5+) , (5.53)

84

Table 5.7: Cost of operations for HTM

Oper.
HTM - PoE HTM - DH

Storage(f) ×/÷ +/− Storage(f) ×/÷ +/−

Eq. (3.42) 10 9 0 10 9 0

Eq. (A.20) 16n 64n 48n 48n 192n 144n

Eq. (A.17) 12n 27n 18n 12n 27n 18n

Eq. (A.8) 12n 0 0 12n 0 0

Eq. (A.21) 49n 42n 36n 49n 42n 36n

Eq. (A.22) 86n 84n 72n 86n 84n 72n

Eq. (A.23) 84n 108n 96n 84n 108n 96n

Eq. (A.24) 48n 36n 36n 48n 36n 36n

Eq. (A.25) 12n 6n 5n 12n 6n 5n

TOTAL 319n+ 10 367n+ 9 311n 351n+ 10 495n+ 9 407n

with a total cost for the whole algorithm being n (12f, 6×, 5+) .

In Table 5.7 we show, in the first column the total cost of operations for the HTM based algorithm from
in [49]. In the second column we show the added cost if we had used a DH notation for the forward kinematics.
As was the case for the dqRNEA we highlight that the actual costs for an algorithm of this kind using the DH
parameters would be even greater, as we would need to change the position of the center of mass. Furthermore,
a full comparison of the algorithms is presented in Subsection 5.5.2.

5.5 COMPUTATIONAL COST COMPARISON

In this Section we elaborate more on the discussion presented in the end of Section 5.3, in which we
compared the computational costs of different formulations of the dqRNEA algorithm. Furthermore, given the
costs for an HTM based recursive Newton Euler algorithm found in the literature (see Appendix 5.4) we shall
also discuss some of the differences in performance for this cases.

5.5.1 Results in the Literature

Before looking at our algorithm, we believe it is interesting to account for some of the discussions found
in the literature regarding this subject. Indeed, ever since the 1990’s people have been making comparisons
between the computational costs of quaternions, dual quaternions and other algebras.

In [41] four different formalisms are compared regarding regarding their efficiency for representing a rigid
body’s screw displacement, the dual orthogonal 3 x 3 matrix,unit dual quaternions, dual special unitary 2 x 2
matrix, and dual Pauli spin matrices. The paper argues that the most advantageous formalism is has to be com-
pact and computationally efficient—as both [41,110] address, the costs for fetching an operand may sometimes
exceed the costs for performing basic arithmetic operations, thus making the storage an important point for us

85

to consider in our analysis. Furthermore, [41] concludes their analysis by stating that for sequential operation
the unit dual quaternions are indeed the most compact and computationally efficient manner to represent a
screw displacement of a line in space.

Following the results of [41], quite a few works have presented a computation efficiency calculation for
the forwards and inverse kinematics problem of a serial manipulator, it is shown in [37, 40, 77, 110] that, for
the kinematics, a DQ based implementation performs better than an HTM in terms of computational cost.
In particular [40] states that the use of the D-H parameters also make costs increase the cost of the forward
dynamics by three, as shown in (5.39).

In [110] the authors make an analyzes that concludes that the inverse kinematics is also more efficient in
dual quaternion algebra than when using quaternions or exponential maps. However [37] concludes that when
calculating the Jacobian matrix, fewer multiplications are necessary for a geometric Jacobian than the dual
quaternion Jacobian (as the former is of the size 6× n and the latter is 8× n).

Finally, we must also highlight here most of our design choices for the dqRNEA algorithm were made
taking into consideration the results in the literature which were more efficient. However, sometimes a greater
computational cost may be well justified. As [37] argues, the dual quaternion may perform poorly in some
accounts, but it does have some attractive proprieties that can justify its use: the DQs are more compact on
themselves, they are singularity free, we may use the Hamiltonian operators in order to commute elements and
we may use the same set of variables for the kinematics, dynamics and control. And those are only to cite a
few of those advantages.

In this manner, we do aim to find a more compact and cost efficient solution for the dynamics, however, the
representation of the dual quaternion based recursive Newton Euler algorithm can be justified for its novelty
alone.

5.5.2 Algorithms Comparison

In this subsection we compare the different costs for both the HTM based algorithm, based on both Table
5.4 and Table 5.7 (See Appendix A).

To start our analysis of the costs for the algorithm we believe it is interesting to look back some the dis-
cussion in Subsection 5.5.1. In particular, we shall look Figure 5.1 which shows how the costs for forward
kinematics transformation from 3.55 grow. Indeed, it is shown in [37], [40] that the dual quaternions perform
better than the HTM for the FKM transformation, and that the PoE formulation has an advantage over the DH
parameters. As it can be seen, for a manipulator with few degrees of freedom the difference might be small,
but it becomes relevant as n—the number of DoFs—increases (and more so with the algorithm running many
times in order to control a robot).

Furthermore, in Figure 5.2 we show the cost comparison between the dqRNEA with PoE and the new
adjoint in comparison to the HTM recursive Newton-Euler presented in Appendix A. Indeed, one of our goals
throughout this work was to create a version of the RNE algorithm with dual quaternions and evaluate whether
it is cost efficient when compared to a similar representation, and, in this manner, Figure 5.2 provides us this
answer. We notice that for all three variables we have measured the dual quaternion representation performs
significantly better.

Still regarding the results of Figure 5.2, we must add that there are other versions of this algorithm through-

86

0 10 20 30 40

Number of DoFs (n)

0

500

1000

1500

2000

2500
C

o
st HTM

DQ

(a) Costs for Addition

0 10 20 30 40
Number of DoFs (n)

0

500

1000

1500

2000

2500

3000

C
o
st

HTM

DQ

(b) Costs for Multiplication

Figure 5.1: Costs for Forward Kinematics computation using different representations. In blue we have HTM
and in red we have DQ representation. With the dotted line is the cost for D-H based parametrization and the
straight line is the screw theory parametrization. The value of n ranges from 1-42.

87

out the literature and some of them highly optimized for specific applications, thus presenting lower costs then
the ones in this manuscript. More so, the manner in which different authors calculate the costs may also differ,
making it difficult to make a comparison between results such as in [55, 111], where the costs for some RNE
algorithms are lower.

In this manner, we have chosen to compare our results to the classic version of Homogeneous Transfor-
mation Matrix based RNE presented in Appendix A, and to calculate the costs of that algorithm by using our
methodology. One of the main reasons for our choice of algorithm was that HTM are comparable to dual
quaternions in being both singularity free and for having the translation and rotation coupled together in only
one structure, which by itself is one great advantage for applications in path planning and control. Another
reason for choosing the version in Appendix A of the algorithm was that it made some similar design choices
to our own and did not use any novel proprieties that would complicate the cost calculation.

Finally, before finishing this section we also present, in Figure 5.3 the cost comparison for all the versions
of the algorithm. Which depending on what we are evaluating they perform differently. We consider the best
version of our algorithm to be the one with the New Adjoint and the PoE (in Figure 5.3 represented by the
red line) and the one that performs more poorly to be the DH based version with the old adjoint (in Figure 5.3
represented by the black line).

88

0 5 10 15 20 25 30 35 40 45
Number of DoFs (n)

0

2000

4000

6000

8000

10000

12000

14000

C
os

t

HTM

DQ

(a) Storage Costs

0 5 10 15 20 25 30 35 40 45
Number of DoFs (n)

0

2000

4000

6000

8000

10000

12000

14000

C
os

t

HTM

DQ

(b) Addition Costs

0 5 10 15 20 25 30 35 40 45
Number of DoFs (n)

HTM

DQ

0

2000

4000

6000

8000

10000

12000

14000

16000

C
os

t

(c) Multiplication Costs

Figure 5.2: Total costs for RNEA of both HTM and DQ. In the plots, the HTM is represented in blue and the
DQ is represented in Red. Also n ranges from 1-42.

89

0 5 10 15 20 25 30 35 40 45
Number of DoFs (n)

0

1000

2000

3000

4000

5000

6000

7000

8000

C
os

t

Old Adjoint - PoE
New Adjoint - PoE
New Adjoint - DH
Old Adjoint - DH

(a) Storage Costs

0 5 10 15 20 25 30 35 40 45
Number of DoFs (n)

Old Adjoint - PoE
New Adjoint - PoE
New Adjoint - DH
Old Adjoint - DH

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

C
os

t

(b) Addition Costs

0 5 10 15 20 25 30 35 40 45
Number of DoFs (n)

0

0.5

1

1.5

2

2.5

C
os

t

104

Old Adjoint - PoE
New Adjoint - PoE
New Adjoint - DH
Old Adjoint - DH

(c) Multiplication Costs

Figure 5.3: Total costs the different versions of the algorithm presented in Table 5.4. with n ranging from 1-42.

90

SIMULATION RESULTS

Simulation is an incredibly important tool for validating and testing algorithms. Thus in this Chapter we show
some of the tests and results we achieved when using the algorithms and equations proposed in this manuscript.

To start off this Chapter, in Section 6.1 we first discuss the methodology we used for algorithm development
and for analyzing our results. Furthermore, in Section 6.2 we provide a very didactic example of how to use
the algorithms to program and control a simple Two Link Planar arm. In Section 6.3 we move on to a more
complex example: that of the 7-DoF Kuka robot.

6.1 METHODOLOGY

In order to implement and validate our results we have used mainly the MATLAB software and the
DQ_Robotics Toolbox1. Our main method of analysis was comparing the results of our package with the
results for similar algorithms in another package (in this case the robotics toolbox). To further analyze the
results we have implemented a computed torque controller in different situations and analyzed its convergence.

Taking advantage of these tools our methodology can be divided into three main parts which will be further
explored in the next subsections:

1. Implementation of a MATLAB package for the functions described in Chapter 4. Here we have used
native MATLAB routines coupled together with the DQ_Robotic toolbox which allowed us to promptly
use quaternion and dual quaternion algebra. This is presented in Subsection 6.1.1;

2. The Peter Corke robotics toolbox has many different functions available, including the recursive Newton-
Euler algorithm for dynamics. As this toolboxes are widely used, we believe they are an important tool
for validation. Thus, in Subsection 6.1.2 we describe in a bit more depth.

3. Computational Setup for the experiments.

6.1.1 MATLAB Package

In order to validate our algorithm we have created a MATLAB package with the functions of Chapter 4.
Here we added the dual quaternion functionality by means of DQ_Robotics Toolbox. Table 6.1 shows the main
functions implemented and their description.

6.1.2 Validation Packages

For validation purposes we have used a well know robotic toolboxe: Peter Corke Robotic toolbox [112].
As both this toolbox is widely used and have functions for the recursive Newton-Euler Algorithm we have set
it up for benchmarking the results we have obtained in our algorithms.

1The DQ Robotics Toolbox can be found at https://dqrobotics.github.io/

91

6

Table 6.1: Function description for dqRNEA MatLab Package. Variables from Subsection 4.3.2

Function name Description Input

Main dqRNEA functions

dqRNE The dual quaternion recursive Newton Euler Function as

described in Algorithm ??.

Robot Model; Joint

trajectories; Joint Velocity;

Joint Accelerations

matrix_invdyn The matrix-quaternion version of the dqRNEA

algorithm: that is the equations in Table 4.1

Robot Model; Joint

trajectories; Joint Velocity;

Joint Accelerations

closed_invdyn Closed version of the algorithm. As in (4.71). Robot Model; Joint

trajectories; Joint Velocity;

Joint Accelerations

Closed form sub-functions

M_function Mass function, as in (4.72). Returns the inertial terms of

the inverse dynamic equation.

A, L,L∗, robot model,

Number of Degrees of

Freedom.

C_function Centripetal and Coriolis function, as in (4.73). Returns

the Centripetal and Coriolis terms of the inverse dynamic

equation.

A, L,L∗,C,W ,

W BASE,θ̇, robot model,

Number of Degrees of

Freedom.

G_function Gravity function as in (4.74). Returns the gravity terms

of the inverse dynamics equation.

A, L,L∗,W , Ẇ BASE,

robot model, Number of

Degrees of Freedom.

f_jacob Contact Jacobian as in (4.75). Used when there is a force

at the end-effector.

A,L∗, Number of Degrees

of Freedom

Auxiliary Functions

DG_product Double Geodesic Product as described in (2.42). Two pure dual quaternions

cross_Vec Element wise cross product between two dual quaternion

vectors. As in (2.71).

Two dual quaternion vectors

G_ Dual Quaternion Inertia Transformation as in (3.44). Dual Quaternion, robot

model, iteration

G_vec Vectorial version of the Dual Quaternion Inertia

transformation as in (4.51).

Dual Quaternion vector,

robot model

G_Mat Matrix version of the Dual Quaternion Inertia

Transformation.

Dual Quaternion Matrix,

robot model

vec2DQ Real Vector to quaternion vector transformation. Vector

Mat2DQMat Real Matrix to dual quaternion matrix transformation. Matrix

DQ2vec Dual quaternion vector to real vector transformation. Dual Quaternion Vector

DQMat2Mat Dual quaternion matrix to real matrix transformation. Dual Quaternion Matrix

92

1 1

0.5 0.5

Figure 6.1: Schematic Upper View of a two link planar arm in which both links measure 1m and the center of
mass is located exactly at the middle point of the link.

Regarding Peter Corke’s toolbox, we have the RNE algorithm developed based on the equations presented
in [56]. These are written as decoupled vector-based equations and use the Denavit-Hartemberg notation.

6.1.3 Computational Setup

For all the experiments detailed in this chapter we have adopted as hardware setup a Dell Inspiron with
16GB of RAM running on an Intel Core i7-7500U CPU at 2.70GHz with 4 cores. Furthermore, all algorithms
were tested for MATLAB R2017b, running on a Ubuntu 16.04 64-bit version.

Some of the experiments also use MATLAB-Simulink in order to control the robot, in this case wee have set
the simulation to use a variable-step with maximum step size of 0.05s and an ODE23t (mod. stiff/Trapezoidal)
solver.

6.2 TWO LINK PLANAR ARM: MODELING AND CONTROLLING
A SIMPLE ROBOT

In this section we shall present a simple example of how to model a robot and implement it in the MATLAB
framework we have designed. For that we shall use a simple two-link planar arm. In Subsection 6.2.1 we shall
present the model of our robot, in Subsection 6.2.2 we show the numerical results and in Subsection 6.2.3 we
show the implementation of the computed torque control as in 4.4.1

6.2.1 Robot Model

Here we present the model for the two link planar arm we used for this experiment. We note that the model
plotted in Figure 6.2 was taken from the Peter Corke’s robotic toolbox—and as such, uses the DH notation to
describe its kinematics. In this case the transformation from DH parameters to the PoE formulation is quite
straightforward, as all joint axis are parallel to each other, that is, all can be defined in the same axis of the
referenced frame. Figure 6.1 shows the layout of the robot, in which each link is measured one meter and the
center of mass is located at 0.5m from each joint axis

Following Figure 6.1 we can program our screw-based model, which in this case shall follow Listing 6.1.
We highlight here that our model is structured in two parts: the first one being the transformation from the
beginning of the link (where the joint is) to the object’s center of mass. This is followed by the transformation

93

Figure 6.2: Matlab 3D Robot Plot for the two-link planar arm.

from one link to the other.

Listing 6.1: Two Link Arm PoE model for dqRNEA algorithm

function [linktwist,MT,NT] = twolink_dq_screw()

% Screw axis on each joint is the same

linktwist = DQ([0 0 0 1]);

%%

% Link transformation: Must remember to divide by two for dual

% quaternion motion.

%%

% Transformation from each link to its center of mass

MT(1) = DQ([1 0 0 0, 0 0.5/2 0 0]);

MT(2) = DQ([1 0 0 0, 0 0.5/2 0 0]);

% Transformation from each link to the other

NT(1) = DQ([1 0 0 0, 0 1/2 0 0]);

NT(2) = DQ([1 0 0 0, 0 1/2 0 0]);

end

Once the model is defined, as in Listing 6.1 we can easily use them to calculate the forward kinematics.
As shown in (3.60) we need both the axis of rotation aiwhich is defined as the variable “linktwist” and the

94

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

-100

-80

-60

-40

-20

0

20

40

60

80

100

To
rq

ue

Matrix-Quaternion
Closed Formula
Recursive Newton-Euler
Peter Corke’s Toolbox - RNE

Figure 6.3: Torque plot for each of the joints in different versions of the algorithm. The straight lines are the
results for the matrix-quaternion formulation, the dash-dotted lines refers to the closed equation and the dotted
line are the torques for the recursive algorithm. Finally the dashed line are the resulting torques for the recursive
Newton-Euler algorithm from Peter Corke’s Toolbox.

home position link-transformations δii−1, which are obtained from the variables “MT” and “NT”, such that the
resulting transformation can be calculated as

xi−1
i (θi(t)) = MT ∗i (NTi (exp (−0.5aiθi))) MTi+1. (6.1)

As described in Listing 6.1 NT is the transformation from one joint to the next, and MT is the transformation
from the joint to the center of mass. To make the models more intuitive we combine the two expressions such
that we have (6.1).

6.2.2 Numerical Results

In order to validate our algorithms we have ran all of the three main dqRNEA functions from Table 6.1, and
compared it to the results for the recursive Newton-Euler function provided by Peter Corke’s toolbox.

As input parameters for the inverse dynamics functions we have input a random sinusoidal trajectory (and
their derivatives) and the model for the robot followed what was described in subsection 6.2.1 (for Peter Corke’s
toobox we have used the equivalent DH Parameters). The plot in Figure 6.3 shows the resulting torques for
each of the algorithms.

We note that for this model all algorithms result in the exact same value for the torques, as expected since
different modeling or computation strategies should not provide different values for the mechanical system.
This exercise is presented herein purely to endorse such analysis.

95

6.2.3 Control Algorithm

Here we present the results for the computed torque controller implemented in the two link planar arm.
In order to implement this controller and simulate its results we need also to implement the forward dynamic
equations. To this aim, we have taken advantage of a MATLAB-SimuLink model provided by Peter Corke’s
Robotic toolbox [112]. The Simulink model was adapted to compute the torque-based control inputs following
the proposed inverse dynamics algorithms, dqRNEA. Figure 6.4 illustrates the control strategy on Simulink.

Furthermore, we have set our control input to a few different trajectories. In Figures 6.5 and 6.6 we show
the progression of the position error for some of the tests performed.

We notice here that from all the setups the controller is converging to the desired pose. Depending on the
configuration, however, we can see there is a small stationary error—the biggest on being shown in Figure 6.6b.

6.3 KUKA ROBOT: THE DQRNEA BASED CONTROLLER

In order to better validate our models we have also implemented our algorithms in a more realistic robot:
the KUKA [2]. In this manner, we start this section, in Subsection 6.3.1, by presenting the robot model for the
KUKA robot—in particular, we detail here how to interpret the DH parameters in order to describe the robot in
our PoE formulation. Furthermore, we present the numerical results for the dqRNEA algorithm in Subsection
6.3.2 and the controller implemented in MATLAB-Simulink in Subsection 6.3.3.

6.3.1 Robot Model

In this section we will present the robot model of the KUKA LWR4, which can be seen in Figure 6.7. The
correspondent DH parameters can be seen in Table 6.2 and the position for the center of mass used in the PoE
formulation is seen in Table 6.3.

In order to transform the parameters on Table 6.2 to the ones in Table 6.3 we simply need to look at the
schematic for the robot, presented in Figure 6.7. We first notice that the DH frames are rotated to coincide with
each rotation axis, thus the centers of mass given in Table 6.3 are with relation to those rotated frames. In our
model, however, we start from the notion that all frames are aligned at home position and the center of mass is
given by taking the joints as references. The transformation from the DH to PoE is then given as a rotation of
each link’s axis so that they are all aligned.

96

2
err

1
q

q
two link

Robot Plot

q

qd

qdd Tfb

Q

q

qd

qdd

two link

PETER CORKE DIRECT DYNAMICS

200

Kp

10

Kd

error

3
tau

In1

In2

In3

Out1

dqRNEA

Figure 6.4: Controller Design on Simulink—From the Peter Corke Toolbox, with the addition of our dual
quaternion based recursive newton euler function.

97

(a) Robot initial and final position: θ0 = {0, 0} , θend =
{
0, π

2

}
. (b) Robot initial and final position: θ0 = {0, 0} , θend = {0, π}

(c) Robot initial and final position: θ0 = {0, 0} , θend =
{
π, π

2

}
(d) Robot initial and final position: θ0 = {0, 0} , θend =

{
π, π

2

}
Figure 6.5: Robot plot at different configurations. Here we merged the images for the plot at the initial joint
configuration θ0 and the final joint configuration θend.

0 1 2 3 4 5 6 7 8 9 10
-3

-2

-1

0

1

2

3

4

5

6 10−4

Joint 1
Joint 2

Time (s)

E
rr

or

(a) Error progression for achieving the final position in Figure 6.5a

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-1

-0.5

0

0.5

1

1.5

2

E
rr

or

10−3

Joint 1
Joint 2

(b) Error progression for achieving the final position in Figure 6.5b

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-1.5

-1

-0.5

0

0.5

1

E
rr

or

10−3

Joint 1
Joint 2

(c) Error progression for achieving the final position in Figure 6.5c

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-3

-2

-1

0

1

2

3

E
rr

or

10−4

Joint 1
Joint 2

(d) Error progression for achieving the final position in Figure 6.5d

Figure 6.6: Plot for the Error Progression for the experiments in Figure 6.5

98

j1

j2

j3

j4

j5

j6

j7

z

y

x

c1

c2

c3

c4

c5

c6

c7

Figure 6.7: Model of the robot, from left to right we have the DH model of the KUKA LWR4, taken from [2],
followed by the joint position and orientation and finally the center of mass fro each link—with positions c1to
c7 shown in Table

Table 6.2: DH parameters for the KUKA robot, based on [2]

(a) DH Parameters

DH-Parameters

d a α θ

0.2 0 π
2 θ1

0 0 −π2 θ2

0.4 0 −π2 θ3

0 0 π
2 θ4

0.39 0 π
2 θ5

0 0 −π2 θ6

0 0 0 θ7

(b) Center of mass for each of the links. The frame of
reference is the DH frame.

Center of mass

cx cy cz

c1 0.001340 -0.087777 -0.026220

c2 0.001340 -0.026220 0.087777

c3 -0.001340 0.087777 -0.026220

c4 -0.001340 0.026220 0.087777

c5 -0.000993 -0.111650 -0.026958

c6 -0.000259 -0.005956 -0.005328

c7 0 0 0.063

99

Listing 6.2: Two Link Arm PoE model for dqRNEA algorithm

function [linktwist, NT, MT] = kuka_dq_screw()

% Screw from each joint

linktwist(1) = DQ([0 0 0 1 0 0 0 0]);

linktwist(2) = DQ([0 0 -1 0 0 0 0 0]);

linktwist(3) = DQ([0 0 0 1 0 0 0 0]);

linktwist(4) = DQ([0 0 1 0 0 0 0 0]);

linktwist(5) = DQ([0 0 0 1 0 0 0 0]);

linktwist(6) = DQ([0 0 -1 0 0 0 0 0]);

linktwist(7) = DQ([0 0 0 1 0 0 0 0]);

% Transformation from each link to the other

NT(1) = DQ([1 0 0 0, 0 0 0 0.2/2]);

NT(2) = DQ([1 0 0 0, 0 0 0 0.2/2]);

NT(3) = DQ([1 0 0 0, 0 0 0 0.2/2]);

NT(4) = DQ([1 0 0 0, 0 0 0 0.2/2]);

NT(5) = DQ([1 0 0 0, 0 0 0 0.19/2]);

NT(6) = DQ([1 0 0 0, 0 0 0 0]);

NT(7) = DQ([1 0 0 0, 0 0 0 0.078/2]);

% Transformation from each link to its center of mass

a = 0.087777;

b = 0.02622;

c = 0.001340;

MT(1) = DQ([1 0 0 0, 0 c/2 b/2 a/2

]);

MT(2) = DQ([1 0 0 0, 0 c/2 -b/2 (0.2-a)/2

]);

MT(3) = DQ([1 0 0 0, 0 -c/2 -b/2 a/2

]);

MT(4) = DQ([1 0 0 0, 0 -c/2 b/2 (0.2-a)/2

]);

MT(5) = DQ([1 0 0 0, 0 -0.0009930/2 0.026958/2 0.11165/2

]);

MT(6) = DQ([1 0 0 0, 0 -0.000259/2 -0.005328/2 0.005956/2

]);

MT(7) = DQ([1 0 0 0, 0 0 0 (0.078-0.063)/2

]);

end

100

Table 6.3: PoE formulation for the KUKA robot–center of mass position with regards to equivalent joint, as in
Figure 6.7

Center of mass

cx cy cz

c1 0.001340 0.02622 0.087777

c2 0.001340 -0.02622 0.1122

c3 -0.001340 -0.02622 0.087777

c4 -0.001340 0.02622 0.1122

c5 -0.000930 -0.026958 0.111650

c6 -0.000259 -0.005328 0.005956

c7 0 0 0.0150

Finally, following what was done in Subsection 6.2.1 we could program the KUKA model in the function
presented in Listing 6.2.

6.3.2 Numerical Results

In this Subsection we present the numerical results for our algorithm with the three functions in the first
section of Table 6.1, as well as the comparison with the RNE toolbox. Here, like in Subsection 6.2.2, we input
to the functions our robot model as well as random trajectories for the joints (and their derivatives). Figure 6.8
shows the numerical results for the different implementations of our algorithm as well as the result from Peter
Corke’s Toolbox.

We notice that for our quaternion based inverse dynamics the results are exactly the same in any of the
forms of our algorithm. However, when we compare to Peter Corke’s RNE there is a difference. In particular
the algorithm we have created is very dependent on the model for the robot, and any uncertainties may cause
deviations of the output. The effects of this uncertainties, as in any system, may generate negligible error,
but also it may generate more considerable deviations in the results. In this particular case, there was some
uncertainty in the inertia parameters that we used, therefore, although we have already validated the algorithm
there might be some slight differences in the resulting torque due to some difference in the robot model.

6.3.3 MATLAB Controller

Here we have implemented the computed torque control, once more, by taking advantage of the Simulink
blocks from Peter Corke’s robotic toolbox. The model we present in Figure 6.9 is indeed identical to the one
used on Subsection 6.2.3, with the only changes being the input parameters, and robot model.

Again, as in Subsection 6.2.3 we have set our control target to different positions and analyzed our results
in Figures 6.10 and 6.11.

We notice the results are also satisfactory in this case, with all the robot joints achieving a low steady state
error in the end of the experiments, as was the case for the two link planar arm.

101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

-120

-100

-80

-60

-40

-20

0

20

40

60

To
rq

ue

Matrix-Quaternion
Closed Formula
Recursive Newton-Euler
Peter Corke’s Toolbox - RNE

Figure 6.8: Torque plot for each of the joints in different versions of the algorithm. The straight lines are the
results for the matrix-quaternion formulation, the dash-dotted lines refers to the closed equation and the dotted
line are the torques for the recursive algorithm. Finally the dashed line are the resulting torques for the recursive
Newton-Euler algorithm from Peter Corke’s Toolbox.

As one last remark, we would like to add on Subsection 6.3.2 discussion about the error. As can be seen
in Figure 6.9, we have the blocks referring to the computed torque control, which we are using our dqRNEA
algorithm, and we have Peter Corke’s toolbox’s direct dynamics. One of the reasons we chose not to design
the direct dynamics ourselves was to ensure a more realistic depiction of the controller: if the direct dynamics
was also our own, we would always have the error equal to zero, as we would be just canceling the terms we
provided ourselves. However, this is not the case, for this experiment, as there are uncertainties between our
model and the toolbox’s. As we have discussed, this uncertainties were visible with the resulting torques of
Figure 6.8, and they are also visible on the steady state errors in the results of Figure 6.11, which have a higher
order of magnitude than the errors in Figure 6.6.

In the case of our experiments with our Kuka model were able to reach its target position and work as
expected, despite the steady state error. This result however, can motivate a further research on the topic
of computed torque control. Indeed, as discussed in Subsection 4.4.1, we have only implemented a simple
PD controller that uses feedback linearization in order to negate the non-linear terms. This controller is very
powerful and operates very well in scenarios in which the robot model is well known, as was the case for the
Two Link planar arm. For cases when the robot model is not completely known or in the presence of more
uncertainties it starts to fail, creating the need for more sophisticated controllers. Although this is not in the
scope of this manuscript, there are many works discussing different, more sophisticated solutions can be found
in the works in [108, 109], in which the authors review many different solutions for improving the control
strategy.

102

computed torque

trajectory
(demand)

2
err

1
q

q
mykuka

q

qd

qdd Tfb

Q

q

qd

qdd

mykuka

PETER CORKE DIRECT DYNAMICS

200

Kp

10

Kd

error

3
tau

In1

In2

In3

Out1

dqRNEA

Figure 6.9: Simulink Computed Torque Control Diagram for KUKA LWR4. This is based on Peter Corke
robotic toolbox with the addition of our dual quaternion based recursive Newton Euler algorithm.

103

(a) Robot initial and final position: θ0 = {0, 0, 0, 0, 0, 0, 0}, θend ={
0, π

2
, 0, 0, 0, 0, 0

}
.

(b) Robot initial and final position: θ0 = {0, 0, 0, 0, 0, 0, 0}, θend ={
0, π

4
, 0,−π

4
, 0, π

4
, 0

}

(c) Robot initial and final position: θ0 = {0, 0, 0, 0, 0, 0, 0}, θend ={
0, π

6
, π
2
, π
4
, 0, 0, π

2

}

(d) Robot initial and final position:θ0 = {0, 0, 0, 0, 0, 0, 0}, θend ={
π
2
,−π

4
, π, 0, π, 0, π

4

}
Figure 6.10: Robot plot at different configurations. Here we merged the images for the plot at the initial joint
configuration θ0 and the final joint configuration θend.

104

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

E
rr

or

joint 1
joint 2
joint 3
joint 4

joint 5
joint 6
joint 7

(a) Error progression for achieving the final position in Figure 6.10a

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-0.1

-0.05

0

0.05

E
rr

or

joint 1
joint 2
joint 3
joint 4

joint 5
joint 6
joint 7

(b) Error progression for achieving the final position in Figure 6.10b

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

E
rr

or

joint 1
joint 2
joint 3
joint 4

joint 5
joint 6
joint 7

(c) Error progression for achieving the final position in Figure 6.10c

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-0.12
-0.1
-0.08
-0.06
-0.04
-0.02
0

0.02
0.04
0.06
0.08

E
rr

or

joint 1
joint 2
joint 3
joint 4

joint 5
joint 6
joint 7

(d) Error progression for achieving the final position in Figure 6.10d

Figure 6.11: Plot for the error progression for the experiments in Figure 6.10

105

CONCLUSION

This manuscript focused on the study and development of a novel, cost efficient, formalization for a dual
quaternion based recursive Newton-Euler algorithm. Here we have explored different concepts in the literature
and developed different tools in order to better implement our dqRNEA thus contributing to strengthening a
concept that is still lacking in the literature.

At the beginning of this work we set out not only to design a model for the inverse dynamics of a serial
manipulator based on DQ, but also, to answer whether this model would retain all the advantages that dual
quaternions usually have when used to represent the kinematics of system. Our main approach to answer
this question was an extensive computational cost analysis of the algorithm and comparison with a similar
model described in another algebra—after all, one of the main characteristics of dual quaternions is that it is
more efficient than other non-minimal representations. Indeed we noticed from our analysis that our algorithm
performs better then an algorithm based on Homogeneous Transformation Matrices.

One particularity of our model is that we have also introduced some new mathematical tools to allow us
to create the closed form Newton-Euler equations, namely the dual quaternion vectors and matrices. Still,
perhaps our main contribution in the the form of dual quaternion basic functions was probably our alternative
description of the adjoint transformation, which perform much better than the traditional map, allowing for
even more efficiency.

More so, we also aimed at ensuring the validity of our model by means of a few experiments in a simulated
environment. In this manner, we have developed a package for MATLAB to implement our functions and we
analyzed its validity both compared to another implementation of the RNEA and by itself on a controller. As
our algorithm rely on an accurate robot description, we have been able to produce both very precise results as
well as some results with some level of error (in the case of the experiment with the Kuka). However, the errors
were still small and the controllers we have implemented still converged.

Finally, the dual quaternion description itself also endows the dqRNEA with some of the DQ proprieties:
the representation is singularity free and the linear and angular velocities are coupled together—be it in as unit
dual quaternions or representing twists and wrenches. Therefore, we believe the answer to our question is yes.
It is indeed possible to represent the dynamics of a serial manipulator in dual quaternion algebra and it does
retain the proprieties that make this representation attractive. And with this notion we also believe the equations
provided in this manuscript opens up the possibilities of many subsequent research with dual quaternion and
on the more ways we can further empower a robotic manipulator to act on our world.

7.1 FUTURE WORK

Although we were able to describe the dqRNEA algorithm, create a MATLAB package for it and validate
our results in a simple controller, there is still a lot that can be done in this work. Indeed, as we have created a
formulation for modeling a robotic arm using [37]’s framework for dual quaternions, we can use the many tools
at our disposal both with regards to the dual quaternion framework and robotics theory to follow this work in
many different directions.

106

7

One obvious direction regarding the possible future works that wee can follow is to delve deeper in control
theory and create more powerful controllers using the models proposed in this manuscript. Indeed, as wee have
discussed, the computed torque controller we used to validate our experiments is very powerful, however, it
requires knowledge of robot model. This, of course, is an unrealistic scenario in the real world—models are
never fully available to us, and when they are, they usually have many uncertainties and noise. In this manner,
dealing with this is imperative for real world solutions that would operate safely and reliably in a number of
applications. In [108, 109] there is a number of different suggestions on how to improve the computed torque
controller. More so, a popular solution in the literature for multi-variable non-linear systems are sliding mode
controllers [113–115].

Besides exploring the many options of controllers within the joint space, we may also transform our equa-
tions to the task-space and focus on controlling the end-effector itself. Indeed, this approach should open the
possibility for many different applications, one of them being exploiting the already existing works on coop-
erative robotics within the dual quaternion framework to also use cooperative tasks primitives that encompass
the forces of the system.

One other way of extending this work can also be to extend the model itself to be more general. In this
work we have only considered serial robots with a fixed based and revolute joints. It could be advantageous
to expand this to a more universal framework. Another choice for expanding this model is, by following the
work in [116], to create the dqERNEA—a dual quaternion based elastic recursive Newton-Euler algorithm—
describing a robot with elastic joints.

Of course, these are only some of the many possibilities of future works that can stem from what has been
presented in this manuscript. We strongly believe our approach may also result in different works with varied
scopes, as well as insights other descriptions would not provide.

107

INVERSE DYNAMIC ALGORITHM WITH
HOMOGENEOUS MATRICES

In this chapter we introduce some of the basic concepts for the Homogeneous Transformation Matrices (HTM)
as described in [5, 36, 49, 85, 93]. In Section A.1 we present some of the main operations when using HTM, in
particular the ones needed for a clear understanding of the classic version of recursive Newton-Euler inverse
dynamics algorithm, which we will present in Section A.2.

A.1 HTM

In order to represent positions and rigid motions in space we may use a notation with matrices and vectors.
In this section we shall start out by showing how we may separately write a translation (or a point) as a vector in
R3 and a rotation matrix in R3×3, this shall be presented, respectively, in Subsections A.1.1 and A.1.2. Finally,
in Subsection A.1.3 we show how to construct a Homogeneous transformation matrix, which simultaneously
describes motions and rotations in space (analogous to the dual quaternion), and describe some of the most
pertinent proprieties it has.

We highlight here that there are many proprieties regarding the mathematical tools introduced in this sec-
tion, however, it is not the scope of this manuscript to review all particularities relating to HTM. Or aim in this
Chapter is present the recursive Newton-Euler algorithm in terms of an algebra that may be comparable to dual
quaternions, and, in this manner, the purpose of this is only to overview some of the structures and operations
that are used in the RNE algorithm we have chosen to present in Section A.2.

A.1.1 Positions, Twists, Forces and Wrenches as vectors

A rigid body’s position p with respect to the coordinate frame F ={x, y, z} can be expressed as

p = pxx+ pyy + pzz,

in which px, py, pz are the coordinated for each axis. In order to compactly express this position we may use
the vector formulation

p =


px

py

pz

 . (A.1)

We highlight here, that the formulation in (A.1) is isomorphic to the pure quaternion set, as we have discussed
in Subsection 2.1.1.1.

Moreover, it is also interesting to note here that we may use vector algebra to write some other important

108

A

variables. For instance, the linear and angular velocities are represented, respectively, by

v =


vx

vy

vz

 , and ω =


ωx

ωy

ωz

 . (A.2)

Following from (A.2) we can represent a body twist as

W =

 v

ω

 ∈ R6. (A.3)

In this section, we also find it interesting to add that forces and moments can be represented similarly to
how the linear and angular velocities of (A.2) are represented in R3. That is,

f =


fx

fy

fz

 , andm =


mx

my

mz

 , (A.4)

with the subsequent wrench being

F =

 m

f

 ∈ R6. (A.5)

We also present here Definition A.1 for the Skew-symmetric representation of a vector.

Definition A.1. (Skew-symmetric representation of a vector) Given a vector p =
[
p1 p2 p3

]
∈ R3, we

may define a skew-symmetric matrix of p, that is

[p] =


0 −p3 p2

p3 0 −p1

−p2 p1 0

 . (A.6)

Being skew symmetric it follows from Definition A.1 that

[p] = − [p]
T
. (A.7)

Another important propriety in this section is the adjoint transformation of a vector in R6 by another vector
in R6. In this case let us use the vectorW and F , thus we have the mapping

adTW =

 [ω] 0

[v] [ω]

T , (A.8)

which leads to a transformation of the type

adTW (F) =

 [ω] 0

[v] [ω]

T  m

f

 (A.9)

109

A.1.2 Rotation Matrix

While we may use a vector to describe a position, we use matrices to describe the orientation and rotation
of a frame attached to an object. Thus, let us consider an orthonormal frame F0 = {x, y, z} attached to an
object. The rotation from frame F0 to F1 = {x1, y1, z1} can be defined through its individual components

x1 = x1
xx+ x1

yy + x1
zz,

y1 = y1
xx+ y1

yy + y1
zz,

z1 = z1
xx+ z1

yy + z1
zz. (A.10)

Furthermore, those nine components can be expressed in the form of a rotation matrix,

R =


x1
x y1

x z1
x

x1
y y1

y z1
y

x1
z y1

z z1
z

 ∈ R3×3. (A.11)

Although the rotation matrix is described as a set of nine components, we must add that the orientation of
an object in space has only three degrees of freedom. In this manner only three entries in (A.11) can be chosen
independently—or, in other words, the forR to be a rotation matrix, it has six constrains:

1. Unit Norm: As we are only rotating the orthogonal frame F0(in which all axis are unitary), we must have
a resulting frame with its axis being restricted to the unit norm as well. That is, from (A.10) we have(

x1
x

)2
+
(
x1
y

)2
+
(
x1
z

)2
= 1,(

y1
x

)2
+
(
y1
y

)2
+
(
y1
z

)2
= 1,(

z1
x

)2
+
(
z1
y

)2
+
(
z1
z

)2
= 1. (A.12)

2. Orthogonality: All three axis of the new frame must remain orthogonal. Thus,

x1 · y1 = x1 · z1 = y1 · z1 = 0. (A.13)

Indeed, all those constrains can be compactly express through the condition

RTR = I3, (A.14)

in which I3 is the identity matrix.

Finally, to account for the handedness of the matrix, as the above conditions do not distinguish between a
right-handed frame (in which x1×y1 = z1) or a left-handed frame (in which x1×y1 = −z1). Therefore, let
us consider the determinant equation for our matrix (A.1.2)

detR =
(
x1
)T (

y1 × z1
)

=
(
z1
)T (

x1 × y1
)

=
(
y1
)T (

z1 × x1
)
. (A.15)

If we have a right-handed matrix then our determinant will be detR = 1, otherwise we will have detR = −1.

We also mention here that the rotation matrices which follows the constrains imposed by (A.13) and that
are right-handed (detR = 1) form the special orthogonal group SO(3).

110

A.1.3 Homogeneous Transformation Matrices

To close this section we shall present the formulation for the homogeneous transformation matrix, which
takes advantage of both (A.1) and (A.14) to represent the translation and rotation of a body simultaneously.
Thus, we have

T =

 R p

0 1

 ∈ R4×4, (A.16)

which is also an element of the Special Euclidean Group SE(3), denoting a full rigid body motion.

The many proprieties and uses of the HTMs can be found in the works of [5, 49, 93, 117]. In this section,
though, we find it important to show the adjoint mapping, which will be used in on the RNE algorithm of next
section.

Let us take the twist W 1 in frame F1, considering the transformation T that would lead to W 2 in F2, we
can define the adjoint map in a matrix formulation to be

[AdT] =

 R 0

[p]R R

 ∈ R6×6. (A.17)

Thus, making the frame transformation become

W2 = [AdT]W1. (A.18)

We remark here that this is only one of the the formulations for this adjoint transformation, there are a
number of other manners to represent it in the literature.

A.2 THE NEWTON-EULER ALGORITHM AS PRESENTED IN THE
LITERATURE

There are many different formulations for the Recursive Newton-Euler algorithm in the literature [5, 36,
49, 56, 118–120], in this section, particularly, we shall present the RNEA as shown in [49] as we believe that
this version is particularly well suited when comparing to our version of the dqRNEA, as it uses HTM. For
one we have the similarities between the dual quaternions and the homogeneous transformation matrices, as
the two representations can fully describe both the translation and rotation of a body in a single structure.
Furthermore, both DQ and HTM are free from representations singularities, making them more reliable for
many applications.

This algorithm is initialized by attaching frame F0 to the base, frames F1 to Fn to the center of mass of
each link and frame Fn+1 to the end-effector (considering an n-link manipulator). Furthermore the initial twist

is W 0 = 0 and W 0 =
[

0 −g
]T

, the initial forces at the end effector are F n+1 =
[
mtip f tip

]T
and

the transformation from link i − 1 to link i at the home configuration is given by M i−1
i . The inertia matrix is

given by G ∈ R6×6 , the joint variables are θ, θ̇ and θ̈ and the screw axis is given byA ∈ R6.

We then have the main steps of the algorithm, which are similar to the dqRNEA—or, for that matter, to any
other version of the recursive Newton-Euler algorithm. We first we calculate the link’s transformation

T i−1
i = exp (− [Ai] θi)M

i−1
i , (A.19)

111

and the forward kinematics of a serial chain

TEF = T 0
1T

1
2 . . .T

n
n+1. (A.20)

Then we calculate the twist and its derivative

W i =
[
AdT i−1

i

]
W i−1 +Aiθ̇i, (A.21)

Ẇ i =
[
AdT i−1

i

]
Ẇ i−1 + adWi (Ai) θ̇i +Aiθ̈i. (A.22)

Next we have the backward iteration, here we start out calculating the resulting forces for each link,

FR,i = GiẆ i − adTWi
(GiW i) . (A.23)

Then we have that F i is given by

F i =
[
AdT i

i+1

]T
F i+1 + FR,i, (A.24)

and the torque is
τi = F Ti Ai. (A.25)

112

PUBLICATIONS

Some of the results presented in this manuscript have been published in the following paper:

• C. M. Farias, L. F. C. Figueredo and J. Y. Ishihara. Performance Study on dqRNEA - A Novel Dual
Quaternion based Recursive Newton-Euler Inverse Dynamics Algorithms. In 2019 IEEE Third Interna-
tional Conference on Robotic Computing (IRC), 2019 (Accepted - 27% acceptance rate). Naples, Italy,
Feb 2019, pp. 94-101. doi: 10.1109/IRC.2019.00022

113

B

Bibliography

[1] J. Yan-Bin, “Dual quaternion handout,” May, 2018. [Online]. Available:
"http://web.cs.iastate.edu/ cs577/handouts/"

[2] M. Cefalo, “Notes on the kuka lwr4 dynamic model,” 2015. [Online]. Available:
"http://www.coppeliarobotics.com/contributions/"

[3] T. Logsdon, The Robot Revolution. Simon & Schuster Trade, 1984, vol. 1.

[4] A. Gasparetto, Robots in History: Legends and Prototypes from Ancient Times to the Industrial Revolu-
tion, 2016, vol. 32, pp. 39–49.

[5] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2007.

[6] J. Wallén, The History of the Industrial Robot. Linköping: Linköping University Electronic Press,
2008.

[7] A. Gasparetto and L. Scalera, “A brief history of industrial robotics in the 20th century,” Advances in
Historical Studies, vol. 08, pp. 24–35, 2019.

[8] I. Zamalloa, R. Kojcev, A. Hernández, I. Muguruza, L. U. S. Juan, A. Bilbao, and V. Mayoral, “Dissect-
ing robotics - historical overview and future perspectives,” CoRR, vol. abs/1704.08617, 2017.

[9] L. P. E. Toh, A. Causo, P.-W. Tzuo, I.-M. Chen, and S. H. Yeo, “A review on the use of robots in education
and young children,” Journal of Educational Technology & Society, vol. 19, no. 2, pp. 148–163, 2016.

[10] I. R. Nourbakhsh et al., “Robots and education in the classroom and in the museum: On the study of
robots, and robots for study,” 2000.

[11] O. Mubin, C. J. Stevens, S. Shahid, A. Al Mahmud, and J.-J. Dong, “A review of the applicability of
robots in education,” Journal of Technology in Education and Learning, vol. 1, no. 209-0015, p. 13,
2013.

[12] T. Belpaeme, J. Kennedy, A. Ramachandran, B. Scassellati, and F. Tanaka, “Social robots for education:
A review,” Science Robotics, vol. 3, no. 21, 2018.

[13] A. R. Lanfranco, A. E. Castellanos, J. P. Desai, and W. C. Meyers, “Robotic surgery: a current perspec-
tive,” Annals of surgery, vol. 239, no. 1, p. 14, 2004.

[14] H. S. Ahn, S. Zhang, M. H. Lee, J. Y. Lim, and B. A. MacDonald, “Robotic healthcare service system to
serve multiple patients with multiple robots,” in Social Robotics, S. S. Ge, J.-J. Cabibihan, M. A. Salichs,
E. Broadbent, H. He, A. R. Wagner, and Á. Castro-González, Eds. Cham: Springer International
Publishing, 2018, pp. 493–502.

[15] J. Abdi, A. Al-Hindawi, T. Ng, and M. P. Vizcaychipi, “Scoping review on the use of socially assistive
robot technology in elderly care,” BMJ open, vol. 8, no. 2, 2018.

[16] S. M. Silverstein and K. Yamane, Humanoid Robots for Entertainment. Dordrecht: Springer Nether-
lands, 2019, pp. 2599–2615.

114

[17] V. A. Ziparo, M. Zaratti, G. Grisetti, T. M. Bonanni, J. Serafin, M. Di Cicco, M. Proesmans, L. van Gool,
O. Vysotska, I. Bogoslavskyi, and C. Stachniss, “Exploration and mapping of catacombs with mobile
robots,” in 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Oct
2013, pp. 1–2.

[18] L. Bordoni, F. Mele, and A. Sorgente, Artificial Intelligence for Cultural Heritage. Cambridge Scholars
Publishing, 2016.

[19] O. Khatib, X. Yeh, G. Brantner, B. Soe, B. Kim, S. Ganguly, H. Stuart, S. Wang, M. Cutkosky,
A. Edsinger et al., “Ocean one: A robotic avatar for oceanic discovery,” IEEE Robotics & Automation
Magazine, vol. 23, no. 4, pp. 20–29, 2016.

[20] P. Nilsson, S. Haesaert, R. Thakker, K. Otsu, C. I. Vasile, A.-A. Agha-Mohammadi, R. M. Murray,
and A. D. Ames, “Toward specification-guided active mars exploration for cooperative robot teams.” in
Robotics: Science and Systems, 2018.

[21] T. Huntsberger, G. Rodriguez, and P. S. Schenker, “Robotics challenges for robotic and human mars
exploration,” Proceedings of ROBOTICS2000, Albuquerque, NM, 2000.

[22] M. F. Stieber, C. P. Trudel, and D. G. Hunter, “Robotic systems for the international space station,” in
Proceedings of International Conference on Robotics and Automation, vol. 4, April 1997, pp. 3068–3073
vol.4.

[23] H. Li, B. Qin, Z. Jiang, and M. Ceccarelli, “Multi-arm motion planning of beijing astronaut robot,” in
Advances in Mechanism and Machine Science, T. Uhl, Ed. Cham: Springer International Publishing,
2019, pp. 2873–2882.

[24] J. E. Scott and C. H. Scott, “Models for drone delivery of medications and other healthcare items,” in
Unmanned Aerial Vehicles: Breakthroughs in Research and Practice. IGI Global, 2019, pp. 376–392.

[25] R. Bogue, “Disaster relief, and search and rescue robots: the way forward,” Industrial Robot: the inter-
national journal of robotics research and application, vol. 46, no. 2, pp. 181–187, 2019.

[26] M. Moniruzzaman, M. S. R. Zishan, S. Rahman, S. Mahmud, and A. Shaha, “Design and implementation
of urban search and rescue robot,” Int. J. Eng. Manuf.(IJEM), vol. 8, no. 2, pp. 12–20, 2018.

[27] J. Heinzmann and A. Zelinsky, “A safe-control paradigm for human–robot interaction,” Journal of Intel-
ligent and Robotic Systems, vol. 25, no. 4, pp. 295–310, Aug 1999.

[28] B. Vilhena Adorno, “Robot Kinematic Modeling and Control Based on Dual Quaternion Algebra — Part
I: Fundamentals.” Feb. 2017, working paper or preprint.

[29] A. Valverde and P. Tsiotras, “Dual quaternion framework for modeling of spacecraft-mounted multibody
robotic systems,” Frontiers in Robotics and AI, vol. 5, Nov, 2018.

[30] ——, “Modeling of spacecraft-mounted robot dynamics and control using dual quaternions,” June 2018,
pp. 670–675.

[31] N. Filipe and P. Tsiotras, “Simultaneous position and attitude control without linear and angular velocity
feedback using dual quaternions,” in Proceedings of the 2013 American Control Conference (ACC),
2013, pp. 4808–4813.

115

[32] ——, “Adaptive Model-Independent Tracking of Rigid Body Position and Attitude Motion with Mass
and Inertia Matrix Identification using Dual Quaternions,” AIAA Guidance, Navigation, and Control
(GNC) Conference, no. January 2015, pp. 1–15, 2013.

[33] X. Wang and C. Yu, “Feedback linearization regulator with coupled attitude and translation dynamics
based on unit dual quaternion,” in IEEE International Symposium on Intelligent Control - Proceedings,
2010, pp. 2380–2384.

[34] J. R. Dooley and J. M. McCarthy, “Spatial rigid body dynamics using dual quaternion components,” in
Proceedings of 1991 IEEE International Conference on Robotics and Automation, 1991, pp. 90–95.

[35] D. Han, Q. Wei, and Z. Li, “A dual-quaternion method for control of spatial rigid body,” in 2008 IEEE
International Conference on Networking, Sensing and Control, April 2008, pp. 1–6.

[36] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling, planning and control.
Springer Verlag, 2009.

[37] B. V. Adorno, “Two-arm Manipulation: From Manipulators to Enhanced Human-Robot Collaboration,”
PhD thesis, Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM)
- Université Montpellier 2, Montpellier, France, 2011.

[38] X. Wang and H. Zhu, “On the comparisons of unit dual quaternion and homogeneous transformation
matrix,” Advances in Applied Clifford Algebras, vol. 24, pp. 213–229, 2014.

[39] N. A. Aspragathos and J. K. Dimitros, “A Comparative Study of Three Methods for Robot Kinematics,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 28, no. 2, pp. 135–145,
1998.

[40] E. Özgür and Y. Mezouar, “Kinematic modeling and control of a robot arm using unit dual quaternions,”
Robotics and Autonomous Systems, vol. 77, pp. 66–73, 2016.

[41] J. Funda and R. Paul, “A computational analysis of screw transformations in robotics,” IEEE Transac-
tions on Robotics and Automation, vol. 6, no. 3, pp. 348–356, 1990.

[42] S. Chiaverini, “Singularity-robust task-priority redundancy resolution for real-time kinematic control of
robot manipulators,” IEEE Transactions on Robotics and Automation, vol. 13, no. 3, pp. 398–410, Jun.
1997.

[43] X. Wang, D. Han, C. Yu, and Z. Zheng, “The geometric structure of unit dual quaternion with application
in kinematic control,” Journal of Mathematical Analysis and Applications, vol. 389, no. 2, pp. 1352–
1364, May 2012.

[44] B. V. Adorno, P. Fraisse, and S. Druon, “Dual position control strategies using the cooperative dual task-
space framework,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei,
Oct. 2010, pp. 3955–3960.

[45] L. F. C. Figueredo, B. V. Adorno, J. Y. Ishihara, and G. A. Borges, “Robust kinematic control of manip-
ulator robots using dual quaternion representation,” in 2013 IEEE International Conference on Robotics
and Automation, 2013, pp. 1949–1955.

[46] C. M. de Farias, Y. G. Rocha, L. F. C. Figueredo, and M. C. Bernardes, “Design of singularity-robust and
task-priority primitive controllers for cooperative manipulation using dual quaternion representation,” in
IEEE Conference on Control Technology and Applications (CCTA), 2017, pp. 740–745.

116

[47] K. Daniilidis, “Hand-eye calibration using dual quaternions,” The International Journal of Robotics
Research, vol. 18, pp. 286–298, 1999.

[48] J. Cheng, J. Kim, Z. Jiang, and W. Che, “Dual quaternion-based graphical slam,” Robotics and Au-
tonomous Systems, vol. 77, pp. 15 – 24, 2016.

[49] K. Lynch and F. Park, “Modern robotics.” Cambridge University Press, 2017, ch. 8.

[50] R. Featherstone, Rigid Body Dynamics Algorithms. Berlin, Heidelberg: Springer-Verlag, 2007.

[51] J. Carpentier, “Analytical Derivatives of Rigid Body Dynamics Algorithms,” May 2018, robotics: Sci-
ence and Systems.

[52] T. R. Kane and D. A. Levinson, “The use of kane’s dynamical equations in robotics,” The International
Journal of Robotics Research, vol. 2, no. 3, pp. 3–21, 1983.

[53] X. Wang and C. Yu, “Feedback linearization regulator with coupled attitude and translation dynamics
based on unit dual quaternion,” in IEEE International Symposium on Intelligent Control - Part of 2010
IEEE Multi-Conference on Systems and Control, 2010, pp. 2380–2384.

[54] N. Filipe and P. Tsiotras, “Adaptive position and attitude-tracking controller for satellite proximity oper-
ations using dual quaternions,” Journal of Guidance, Control, and Dynamics, vol. 38, no. 4, pp. 566–577,
2014.

[55] J. M. Hollerbach, “A recursive lagrangian formulation of maniputator dynamics and a comparative study
of dynamics formulation complexity,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 10,
pp. 730–736, 1980.

[56] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, “On-line computation scheme for mechanical manipula-
tors,” Journal of Dynamic Systems Measurement and Control-transactions of The Asme - J DYN SYST
MEAS CONTR, vol. 102, 06 1980.

[57] M. Nasser, “Recursive newton-euler formulation of manipulator dynamics,” in NASA Conference on
Space Telerobotics, 1989, p. 309.

[58] X. L. Yang, H. T. Wu, Y. Li, S. Z. Kang, and B. Chen, “Computationally Efficient Inverse Dynamics
of a Class of Six-DOF Parallel Robots: Dual Quaternion Approach,” Journal of Intelligent and Robotic
Systems: Theory and Applications, pp. 1–13, 2018.

[59] V. Brodsky and M. Shoham, “The Dual Inertia Operator and Its Application to Robot Dynamics,” Jour-
nal of Mechanical Design, vol. 116, no. 4, p. 1089, 1994.

[60] C. Miranda de Farias, L. F. da Cruz Figueredo, and J. Yoshiyuki Ishihara, “Performance study on dqrnea
- a novel dual quaternion based recursive newton-euler inverse dynamics algorithms,” in 2019 Third
IEEE International Conference on Robotic Computing (IRC), Feb 2019, pp. 94–101.

[61] R. Palais, “The classification of real division algebras,” American Mathematical Monthly, vol. 75, pp.
366–, April 1968.

[62] A. Buchmann, “A brief history of quaternions and of the theory of holomorphic functions of quaternionic
variables,” vol. 1, Nov 2011.

117

[63] W. Clifford, “Preliminary sketch of biquaternions,” Proc. London Mathematical Society, vol. 4, no. 64,
pp. 381–395, 1873.

[64] W. R. Hamilton, “On quaternions, or on a new system of imaginaries in algebra: Copy of a letter from
Sir William R. Hamilton to John T. Graves, esq. on quaternions,” Journal of Mechanical Design - Trans-
actions of ASME, vol. 25, no. 3, pp. 489–495, 1844.

[65] L. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex
Variable, ser. International Series in pure and applied mathematics. McGraw-Hill Interamericana,
1953.

[66] L. F. da Cruz Figueredo, “Kinematic control based on dual quaternion algebra and its application to
robot manipulators,” Ph.D. dissertation, Universidade de Brasilia, July 2016.

[67] J. M. Selig, Geometric Fundamentals of Robotics, 2nd ed. Springer-Verlag New York Inc., 2005.

[68] H. Anton, Elementary linear algebra. John Wiley & Sons, 2010.

[69] A. A. Harkin and J. B. Harkin, “Geometry of generalized complex numbers,” Mathematics Magazine,
vol. 77, no. 2, pp. 118–129, April 2004.

[70] B. Akyar, “Dual quaternions in spatial kinematics in an algebraic sense,” Turk. J. Math, vol. 32, pp.
373–391, 2008.

[71] B. Kenwright, “A beginners guide to dual-quaternions: What they are, how they work, and how to use
them for 3d,” in The 20th International Conference on Computer Graphics, Visualization and Computer
Vision, WSCG 2012 Communication Proceedings, 2012, pp. 1–13.

[72] F. Bullo and R. Murray, “Proportional derivative (PD) control on the euclidean group,” Division of
Engineering and Applied Science, California Institute of Technology, Technical Report Caltech/CDS
95–010, 1995.

[73] F. C. Park, “Distance Metrics on the Rigid-Body Motions with Applications to Mechanism Design,”
ASME. Journal of Mechanical Design, vol. 117, no. 1, pp. 48–54, 1995.

[74] J. C. K. Chou, “Quaternion kinematic and dynamic differential equations,” IEEE Transactions on
Robotics and Automation, vol. 8, no. 1, pp. 53–64, Feb. 1992.

[75] O. P. Agrawal, “Hamilton operators and dual-number-quaternions in spatial kinematics,” Mechanism
and Machine Theory, vol. 22, no. 6, pp. 569–575, 1987.

[76] B. Kenwright, “Dual quaternion - from classical mechanics to computer graphics and beyond,” 2012.

[77] A.-N. Sharkawy and N. Aspragathos, “A comparative study of two methods for forward kinematics and
Jacobian matrix determination,” in 2017 International Conference on Mechanical, System and Control
Engineering, ICMSC 2017, 2017.

[78] I. Yaglom, Complex numbers in geometry. Academic Press, Translated by E. J .F. Primrose, 1968.

[79] J. Kuipers, Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and
Virtual Reality. Princeton University Press, 1999.

118

[80] Y. Wu, X. Hu, D. Hu, T. Li, and J. Lian, “Strapdown inertial navigation system algorithms based on dual
quaternions,” IEEE Transactions On Aerospace And Electronic Systems, vol. 41, no. 1, pp. 110–132,
2005.

[81] H. S. M. Coxeter, “Review: Methods of algebraic geometry.” Bull. Amer. Math. Soc., vol. 2, no. 6, pp.
678–679, 11 1952.

[82] H. Coxeter, Non-Euclidean Geometry: Fifth Edition, ser. Heritage. University of Toronto Press, Schol-
arly Publishing Division, 1965.

[83] M. Mason, Mechanics of Robotic Manipulation, ser. Intelligent Robotics and Autonomous Agents series.
MIT Press, 2001.

[84] M.-j. Kim, M.-s. Kim, and S. Y. Shin, “A compact differential formula for the first derivative of a unit
quaternion curve,” The Journal of Visualization and Computer Animation, vol. 7, no. 1, pp. 43–57, 1996.

[85] S. S. S. Richard M. Murray, Zexiang Li, A Mathematical Introduction to Robotic Manipulation. CRC
Press, 3 1994.

[86] M. P. M. Paulo Marcos de Aguiar, Glauco Augusto de Paula Caurin, “Análise cinestática de uma garra
antropomórfica de três dedos utilizando a teoria helicoidal,” in II Congresso Nacional de Engenharia
Mecânica. ABMC, 2012.

[87] T. Schon, “Chasles theorem,” November 2008. [Online]. Available:
https://www.control.isy.liu.se/student/graduate/DynVis/Lectures/le1Chasles.pdf

[88] J. Gallardo-Alvarado, Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory.
Springer, June 2016.

[89] B. Busam, T. Birdal, and N. Navab, “Camera pose filtering with local regression geodesics on the rieman-
nian manifold of dual quaternions,” 2017 IEEE International Conference on Computer Vision Workshops
(ICCVW), pp. 2436–2445, 2017.

[90] L. Kavan, S. Collins, C. OâSullivan, and J. Zara, “Dual quaternions for rigid transformation blending,”
Technical report, Trinity College Dublin, 2006.

[91] D. S. Byung-EulJun and N. HarrisMcClamroch, “Identification of the inertia matrix of a rotating body
based on errors-in-variables models,” IFAC Proceedings Volumes, vol. 40, no. 12, pp. 182 – 187, 2007,
7th IFAC Symposium on Nonlinear Control Systems.

[92] A. Valverde, “Dynamic modeling and control of spacecraft robotic systems using dual quaternions,”
Ph.D. dissertation, Georgia Institute of Technology, 2018.

[93] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control. John Wiley & Sons, 2006.

[94] A. S. de Oliveira, E. R. De Pieri, and U. F. Moreno, “A new method of applying differential kinematics
through dual quaternions,” Robotica, vol. 35, no. 4, p. 907â921, 2017.

[95] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation. CRC,
1994.

119

[96] L. F. C. Figueredo, B. V. Adorno, J. Y. Ishihara, and G. A. Borges, “Switching strategy for flexible task
execution using the cooperative dual task-space framework,” in 2014 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2014, pp. 1703–1709.

[97] J. Vilela, L. F. C. Figueredo, J. Y. Ishihara, and G. A. Borges, “Quaternion-based H∞ kinematic attitude
control subjected to input time-varying delays,” in 2015 54th IEEE Conference on Decision and Control
(CDC), 2015, pp. 7066–7071.

[98] M. M. Marinho, L. F. C. Figueredo, and B. V. Adorno, “A dual quaternion linear-quadratic optimal
controller for trajectory tracking,” in 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2015, pp. 4047–4052.

[99] J. Cavalcanti, L. F. C. Figueredo, and J. Y. Ishihara, “Quaternion-based H∞ attitude tracking control
of rigid bodies with time-varying delay in attitude measurements,” in 2016 IEEE 55th Conference on
Decision and Control (CDC), 2016, pp. 1423–1428.

[100] ——, “Robust controller design for attitude dynamics subjected to time-delayed state measurements,”
IEEE Transactions on Automatic Control, 2016.

[101] H. T. Kussaba, L. F. C. Figueredo, B. V. Adorno, and J. Y. Ishihara, “Hybrid kinematic control for rigid
body pose stabilization using dual quaternions,” Journal of the Franklin Institute, 2017.

[102] B. Nemec, N. Likar, A. Gams, and A. Ude, “Bimanual human robot cooperation with adaptive stiffness
control,” in 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Nov
2016, pp. 607–613.

[103] G. Magnani, P. Rocco, L. Trevisan, A. M. Zanchettin, and A. Rusconi, “Torque control in the joint of a
space robotic arm,” in IEEE 2009 International Conference on Mechatronics, ICM 2009, 01 2009.

[104] A. De Santis, V. Lippiello, B. Siciliano, and V. Luigi, Human-Robot Interaction Control Using Force
and Vision, June 2007, vol. 353, pp. 51–70.

[105] H.-S. Liu and Y. Huang, “Bounded adaptive output feedback tracking control for flexible-joint robot
manipulators,” Journal of Zhejiang University-SCIENCE A, vol. 19, no. 7, pp. 557–578, Jul 2018.

[106] S. Ulrich, J. Z. Sasiadek, and I. Barkana, “Nonlinear adaptive output feedback control of flexible-joint
space manipulators with joint stiffness uncertainties,” Journal of Guidance Control Dynamics, vol. 37,
pp. 1961–1975, 2014.

[107] G. Garofalo, A. Werner, F. Loeffl, and C. Ott, “Joint-space impedance control using intrinsic parameters
of compliant actuators and inner sliding mode torque loop,” IEEE Control Systems Letters, vol. 3, no. 1,
pp. 1–6, Jan 2019.

[108] F. Lewis, D. Dawson, and C. Abdallah, Robot Manipulator Control: Theory and Practice, ser. Automa-
tion and Control Engineering. CRC Press, 2003.

[109] V. S. R. Kelly and A. Loria, Control of robot manipulators in joint space, ser. Advanced Textbooks in
Control and Signal Processing. Springer-Verlag London Limited 2005, 2005.

[110] E. Sariyildiz and H. Temeltas, “A Singularity Free Trajectory Tracking Method for the Cooperative
Working of Multi-Arm Robots using Screw Theory,” in Proceedings of the 2011 IEEE International
Conference on Mechatronics, Istanbul, Turkey, Apr. 2011, pp. 451–456.

120

[111] C. P. Neuman and J. J. Murray, “Computational robot dynamics: Foundations and applications,” Journal
of Robotic Systems, vol. 2, no. 4, pp. 425–452, 1985.

[112] P. Corke, Robotics, Vision and Control: Fundamental Algorithms In MATLAB. Springer International
Publishing, 2017.

[113] F. Piltan and N. B. Sulaiman, “Review of sliding mode control of robotic manipulator,” 2012.

[114] Y.-P. Chen and J.-L. Chang, “Sliding-mode force control of manipulators,” Proc. Natl. Sci. Counc.
ROC(A), vol. 23, March 1999.

[115] D. Shiferaw and A. Jain, “Comparision of joint space and task space integral sliding mode controller
implementations for a 6-dof parallel robot,” in Proceedings of the 11th WSEAS International Conference
on Robotics, Control and Manufacturing Technology, and 11th WSEAS International Conference on
Multimedia Systems. Stevens Point, Wisconsin, USA: World Scientific and Engineering Academy and
Society (WSEAS), 2011, pp. 163–169.

[116] G. Buondonno and A. De Luca, “A recursive newton-euler algorithm for robots with elastic joints and its
application to control,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sep. 2015, pp. 5526–5532.

[117] R. M. Murray, “Optimization-based control,” in Feedback Systems, K. J. Åström and R. M. Murray, Eds.
Princeton Univ. Press, 2010.

[118] D. Orin, R. McGhee, M. Vukobratovic, and G. Hartoch, “Kinematic and kinetic analysis of open-chain
linkages utilizing newton-euler methods,” Mathematical Biosciences, vol. 43, no. 1, pp. 107 – 130, Feb.
1979.

[119] R. Featherstone, Robot dynamics algorithms. The University of Edinburgh, 1984.

[120] W. Khalil, “Dynamic modeling of robots using recursive newton-euler techniques.” in ICINCO 2010 -
Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics,
vol. 1, Jun 2010, pp. 19–31.

121

