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RESUMO

O objetivo deste trabalho é contribuir para a compreensão do comportamento humano em
termos da preferência revelada. Para tanto, elaborou-se uma revisão de literatura que cobre
o progresso da pesquisa econômica em meio aos avanços na tecnologia, sobretudo com
relação às novas técnicas de aprendizado de máquina. Argumenta-se que as ferramen-
tas computacionais devem contribuir para o desenvolvimento da economia como ciência.
Ademais, propusemos avaliar o desempenho dos modelos teóricos com base no desem-
penho de modelos de redes neurais a partir de métricas de restritividade e completeza
propostas por Fudenberg, Gao & Liang (2020). Também é apresentado um exemplo de
modelagem teórica voltada para atualização de crenças dos indivíduos em processos de
escolhas de dois estágios. A partir dessa proposta, obtemos, de maneira geral, que: i) o
perceptron multi-camadas mostrou-se uma alternativa promissora para aprimorar a estru-
tura de avaliação de modelos baseada nas medidas de restritividade e completeza; ii) o
axioma de reflexividade mostrou-se fundamental na preparação de dados; iii) as métricas de
restritividade e completeza podem ser utilizadas para construir uma ponte entre um modelo
determinístico e outro estocástico, o que contribui para a análise do potencial conjunto
dos modelos de entender o processo decisório por trás dos dados; iv ) a Consistência de
Flexibilidade, apresentada em Riella (2013), que é a condição necessária e suficiente para
obter uma atualização bayesiana em processos de escolha de dois estágios, sendo que em
ambos os estágios menus são escolhidos, é muito próxima da Consistência Aleatória, que é
a condição análoga de processos de escolha em que no segundo estágio são escolhidas
alternativas do menu selecionado no primeiro momento, muito embora uma não implique a
outra.

Palavras-chave: Economia, Aprendizado de Máquina, Avaliação de Modelos, Redes

Neurais, Aspirações, Preferências sobre Menus, Escolhas Aleatórias.
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ABSTRACT

The goal of this work is to improve the comprehension of human behavior in terms of the
revealed preference. To do so, we have made a literature review that covers the economic
research progress as the technologies advance, mainly accounting for the machine learning
new algorithms. We argue that computational tools should contribute to the economics devel-
opment. Furthermore, we propose a way to evaluate the performance of theoretical models
regarding the performance of neural networks using the restrictiveness and completeness
measures proposed by Fudenberg, Gao & Liang (2020). It is also presented an example
of theoretical model about the update of individuals’ beliefs when facing choice problems
with two stages. From this approach, we obtain that: i) the multi-layer perceptron seems to
be a promising option to improve the assessment framework based on restrictiveness and
completeness measures; ii) the reflexivity axiom plays an important role on data preparation;
iii) the restrictiveness and completeness measures can be used to build a bridge between
any deterministic model and another stochastic model, which contributes to the analysis
of their joint potential to understand the underlying behavior of observable choices; iv ) the
Flexibility Consistency, presented in Riella (2013), which is the the tightening condition to
get a bayesian update on two stages choice procedures, in which menus are chosen in
both stages, is pretty similar to Random Consistency, which turns out to be the analogous
tightening condition when in the second stage the individual choose among alternatives of a
previously selected menu, although one condition does not imply the other.

Keywords: Economics, Machine Learning, Model Evaluation, Artificial Neural Networks,

Aspirations, Preferences over Menus, Random Choice.
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Chapter 1

Introduction

People behave in many different and unique ways. To understand behavior, researchers

split it up into preferences, which are the roots of all human behavior. As a researcher

attempts to understand how choices are made, from the simplest, like deciding what to eat at

the breakfast, to more complex ones, like deciding between joining a university or following a

pro-fisherman life or even deciding a nominee for voting during a presidential election, many

views and interpretations are possible, so, it is fundamental to understand how behavior

connects to preferences.

Literature seems to walk towards a direction in which an individual cannot be fully charac-

terized by a single steady preference. This way, in most recent behavioral models, individuals

have many preferences, like multi-utility representations (Evren & Ok (2011)), and they

change according to the knowledge individual gets from the environment she is in or initial

conditions progress, like the random utility (Manski (1977), Gul & Pesendorfer (2006), Agranov

& Ortoleva (2017)) and update models (Riella (2013)).

On that matter, a discussion that kept its relevance within the progress of decision and

behavioral theory is how rationality can be comprised under these many different frameworks.

The major separation segregates rational preferences and bounded-rational preferences.

Rationality, according to Clippel & Rozen (2022) is often characterized by a single, stable

and well-behaved preference. In this sense, a preference is stable if it does not change

according to environmental conditions and can be regarded as well-behaved if it is complete

and transitive. As stated by the authors, a bounded rationality model, whose roots come

from Simon (1955), is a model that looses some of these assumptions, grounded on the idea
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that humans’ optimizing abilities fall short of supercomputers. The decision maker may have

difficulty distinguishing which is the better alternative in a given context because she may

not pay attention to all feasible options (Luce (1956), Eliaz & Ok (2006), Manzini & Mariotti

(2012b)), she may overlook some alternatives (Luce (1960), Manzini & Mariotti (2012a)), she

may be satisfied by fulfilling her preference to some degree (Tyson (2008), Barberà et al.

(2021)) and many more.

To expand the scope of investigation of decision theory even further to better understand

human behavior, some researchers analyze preferences over subsets of alternatives, called

menus. Furthermore, preferences may also be stochastic rather than deterministic. This

way, while we gain some flexibility, which allows theoretical models to find better support on

data, assigning probabilities of choice for each alternative in a given context, some difficulties

arise, namely the blur in the very notion of rationality, since one cannot easily state what is a

rational decision in the world of choice probabilities.

The impetus behind the development of stochastic models comes from the assessment

of deterministic models on data (Ok & Tserenjigmid (2019) and Ok & Tserenjigmid (2022)).

All the way decision theory and science’s overall progress is built on comparisons with data,

in the sense theorists do theory and empiricists seek correspondence of those theories in

real-world behavior. This way, data and model assessment play a central role in the very way

theoretical models arise. For example, a specific conjuncture in which current models do not

apply in a satisfactory manner makes researchers hectic to build models able to explain it.

Econometrics is the usual field of research within economics which helps with this task,

using and developing statistical tools for economic theory problems (Frisch (1933)). Recently,

it has been improved by many attempts to incorporate Machine Learning (ML) algorithms into

it. ML methods have been widespread across many fields of knowledge, and their prediction

power is superb when properly designed since the main goal of machine learning is to learn

statistical patterns in such a manner that the acquired relationships could be generalized.

That being said, whenever one may want to take advantage of high-accuracy predictions in

order to improve decision-making, ML is surely the methodology of choice.

However, some recent papers evaluate economic models on data and compare their

results with ML models’ predictions (García-García et al. (2022), Hillel et al. (2021)) and

suggests ML models are more suitable for economic matters than the economic models

2



themselves. This way, we aim precisely at a question discussed by Cranenburgh et al. (2022),

who asks “Is the machine learning paradigm strong enough to overthrow the four-decade

dominance of choice models?”.

We highlight that this kind of comparison should be made to improve economic research

and not to replace it, since the fields could help each other progress. As pointed out by

Brathwaite, Vij & Walker (2017),the microeconomic framework should be used for interpreting

ML models, and as stated by Fudenberg & Liang (2020), ML should be used to discover

regularities in data that are not captured by economic models.

On this matter, we also provide a novel approach to evaluate models or finding structure

in data grounded on the concepts of two measures developed by Fudenberg, Gao & Liang

(2020), Fudenberg & Liang (2020), namely restrictiveness and completeness. The fresh

touch to their proposed method is the use of Machine Learning (ML) to reveal known and

well-documented structures on unknown data. In particular, we focus on Artificial Neural

Networks (ANN) to help with the task of understanding data under the light of the wide

economic theory research. We aim to answer the question “Is this data set compatible

with which behavioral structure in which degree?”, fostering the idea that ML can help the

development of economics since this method allows a better clustering of data sets, for

example. This way, from a range of distinct models of preference of interest we seek which of

them has a higher degree of correspondence in data and then uncover some structure of the

behavior data set.

To make our method explicit, we compare a set of bounded rationality models that deal

with reference points in a choice procedure (Guney, Richter & Tsur (2018) and Silva & Riella

(2020)) together with some ANN designed to predict choice behavior. This way, the novel

approach of this work stands for the exploration of new evaluation metrics proposed by

Fudenberg, Gao & Liang (2020) to comprise a way to better evaluate economic models using

ML models as yardsticks. To the best of our knowledge, this is the first attempt to use ML on

the evaluation structure and not simply comparing economic models to ML.

The contribution of this work is three-fold and they are made on the following structure:

Chapter 2 provides a comprehensive literature review of economics many shapes of rationality,

going through econometrics, as well as the application of ML techniques. In the sequence, in

Chapter 3 we propose a method in which ML is used to hone the evaluation of correspondence

3



of theoretical models in the reality, recognizing behavior in data. Finally, Chapter 4 shifts the

focus to economic modeling itself, contributing on how agents may update their beliefs in a

dynamic environment from inner perspectives about the world.
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Chapter 2

Economics, Econometrics and Machine

Learning: A Literature Review

2.1 Introduction

The goal of this paper is to address the relationship between theoretical economic model-

ing and its object, namely the real world, and its empirical tools, mainly econometrics and the

recently borrowed tools from Machine Learning (ML). We point out some papers on the vast

and extensive literature regarding economics development as a science, which comprises its

etymology (Leshem (2016)), its definitions (Smith (1977), Robbins (1932)), its tools (Meyer

& Conrad (1957)), its rationality (Sen (1987), Booth (1993)) and how it fits or explain reality

phenomena. Furthermore, we intend to provide a literature review that covers the foundations

of economic modeling but also serves as an up-to-date to researchers concerning the most

recent tools applied to data-driven studies on economics.

We first go into the roots of theoretical modeling, discussing the notion of rationality and

how it stands as modeling goes from deterministic to stochastic frameworks. Rationality can

be seen as any reasoning that does not contradict itself, thus making sense on its own and

leading to a conclusion about its object, but it also comprises the usual notion of rational

behavior, which is closely related to the idea that when individuals are confronted with a set of

alternatives to choose, they choose what makes them happier and not the opposite. Next, we

focus on the reality test of models and the tools used for it, ranging from regression models of

econometrics to more advanced tools of machine learning.
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We aim to build a comprehensive and tightening literature review, which adds value to

current literature, allowing one not to only discover main the contributions to the area but how

they evolved and how to think the modeling and assessment matters.

This paper is placed in the academic literature as an attempt to face the clash between

economics and their methods in a more harmonic manner, trying to justify that these last

cannot overshadow the first. To the best of our knowledge, there is a gap in the literature of

papers that discuss the relationship between theoretical and experimental modeling, since

most papers are focused on modeling itself or empirical tests or literature surveys, but the

works that bridge economics and its tools, focusing on the main role of theory in this relation,

like did in Gilboa et al. (2018), Gilboa et al. (2022b), Gilboa et al. (2022a), Gilboa & Samuelson

(2022) are scarce.

To guide the reader, there are three pillars below this literature review. They are all

described by Gilboa et al. (2022b), who put economic theory in three big subsets: i) eco-

nomics, which examines economic phenomena; ii) methods, which deals with the use and

development of analytical tools; and iii) methodology, which examines the scientific endeavor

of economists. In those terms, in this work, we refer to economics as theoretical economics

and econometrics, and ML are comprised on the methods. As for methodology, we address

this question by considering economics as a useful compass for meaning.

To motivate our attempt, we highlight that, regarding theoretical economics and science

overall, often good models are simple, not making complex assumptions about the complex

reality. It is clear that a model reaches its objective when it helps to understand the world and

not when it emulates the world, which usually does not improve the comprehension of reality.

As Box (1976) remind us, the models are all wrong, but some of them are useful. Thus, we

may infer that in building a simple model we work towards building a useful model as well.

That being said, the most powerful way to decide if a given model is useful or not is to

confront it with its object, which turn out to be the reality. To wit, suppose a choice model which

claims that people have desires that influence their actual choice under some circumstances

like did in Guney, Richter & Tsur (2018) or Silva & Riella (2020). When a researcher tests

such a model with data of a certain conjecture, it may be able to answer if those individuals’

desires play a role in decision-making according to the model or not. In the case the model

does not find support on this conjuncture, that is not sufficient to conclude that the model is
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wrong or useless. However, if for many tests with different data sets, the model always fails to

get any support, then this model is probably close to the useless threshold.

It is important to note that even useless models have their space in the development

history of science. Recalling our previous choice model with desires, if it does not have

support in the real world at all, it at least points out that modeling desires’ effect on the choice

procedure is not a good direction to follow or the way it models that effect is particularly not

right, which should lead to questions to the model’s assumptions. This way, new models can

arise and explain the world we live in.

The main tool to do these real-world tests and aid economics’ progress is econometrics.

On this matter, no one can discuss the great relevance of multiple linear regression. However,

we cannot say our choice model with desires does not hold for a particular data set simply by

doing a linear regression and finding statistically non-significant coefficients. A meaningful

test in this case must start from the same assumptions the model makes, which is called

structural economics (Keane, Todd & Wolpin (2011)).

However, as econometrics progressed, developing better tools, it tried to be independent

of economics. It definitely should not be seen as an independent science looking for meaning

on itself far from economics. Recalling Goodhart’s law, present in Strathern (1997), “when

a measure becomes a target, it ceases to be a good measure”. That idea comes from a

usual phenomenon in which a field of research is born to be useful to another, but as it

improves and develops, researchers attempt to view it as an independent field. That being

said, the advance of ML techniques, which is a completely independent field of research from

economics, made econometrics borrow many tools, developing more robust strategies and

improving itself, fostering its attempt to become independent.

In this sense, many empirical works simply aim to compare ML algorithms’ performance

on data with that of economic models (García-García et al. (2022), Hillel et al. (2021),

Lee, Derrible & Pereira (2018)), which little contributes to economics progress, because a

theoretical economic model hardly can perform better than an ML tool, since it is not designed

for predictions like ML is. In the rare case in which that happens, such an experiment

simply shows that there must be something wrong with the algorithm itself. That particular

relationship between economics and ML is one of the main issues we address in this work.

We organize the paper as follows: Section 2.2 cover economic modeling and how the
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rationality idea can be seen in deterministic and stochastic setups, as well as the advantages

and disadvantages of both of them, which is closely related to the ability to find support on

real-world data, which is discussed in Section 2.3, which introduces econometrics approaches

of reduced form and structural estimations of parameters; Section 2.4 turns the focus to

recently developed ML tools and how they confront with economic modeling, covering many

applications. Finally, Section 2.5 presents the conclusion with final remarks on the purpose of

this literature review.

2.2 Deterministic and Stochastic Modeling in Economics

The main goal of this section is to discuss the root of modeling, which turns out to be

the rationality notion behind it, and how it can be translated into deterministic and stochastic

models in economics. Although a simple model has a higher probability of being useful, to do

so, it is crucial to build a rationality idea that finds some correspondence in the world, being

able to understand and explain it.

The main concept of rationality may vary across the several fields it appears in. In Choice

Theory, a choice function or a choice correspondence is often said to be rational if it arises

from the maximization process of a well-behaved preference relation (Ok & Tserenjigmid

(2019)), that is complete and transitive. That interpretation is closely related to that presented

by Ok & Tserenjigmid (2021), in which a rational individual makes choices in large menus in a

consistent fashion when compared to the pairwise choices between alternatives, which does

not to happen any kind of inattention. The literature on expanding this notion of rationality

is vast, so it may still hold if the preference relation is incomplete (Ribeiro & Riella (2016),

Ribeiro (2023)), which means the individuals may face some indecisiveness when choosing,

which leads to overthinking and inattention situations.

Although rationality is a pretty fluid concept, no matter how it may change, it is always

more intuitive and easier to catch under deterministic modeling (Ok & Tserenjigmid (2021)),

in which choice models, for example, point out exactly what is chosen as the circumstances

change. This way, under the rationality of a model which states that a certain individual always

chooses x when facing x and y, choosing x is considered rational and choosing y is not a

rational behavior. The main disadvantage related to deterministic models is their strictness in
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their choice predictions. Recalling the previous example, according to Apesteguia & Ballester

(2020), if in any experiment the individual chooses y over x, the model does not comprise

any explanation for that and it should be regarded as an error. For the authors, a perfect fit of

that model in the real world requires that we must always observe the models prediction to

hold, no matter how many times we repeat the experiment.

In the same sense, it is intuitive to believe that individuals are supposed to prefer more

money than less. However if for a given data point we find, for example, an individual who

chose a lower-income job instead of a higher-income job when both were available, it could be

taken at first as irrational, but we are not taking into account that the effect of the time is crucial

on decisions like that. To address this matter, according to Gul, Natenzon & Pesendorfer

(2014) real data regarding consumption choices across multiple periods violates the weak

axiom of revealed preference due to several reasons. They highlight the existence of income

effects, intertemporal complementarities, preference for variety and dynamic expectations.

This way, a deterministic model cannot capture if the lower-income job was chosen because

the individual valuation of leisure changes dynamically over time and other circumstances

or because the experience individual gets from that job helps her on finding an even higher

income job in the next period and so on.

Decision difficulty is a matter closely related to intertemporal environments. It is addressed

by Agranov & Ortoleva (2017). Performing two kinds of experiments regarding multiple

choices, namely one with distant choices from each other, and another with explicit repetitions

in a row, they find that stochastic choice is behaviorally consistent and present almost always

on hard questions, those in which one cannot point out a better option than the other. Those

hard questions are more related to which career to follow, rather than which career is better,

which gaming monitor to buy, rather than which monitor is better or where to eat today, rather

than which food you prefer. This way, when it decides with a real impact on someone’s life,

there is a lot more uncertainty.

Considering that some decision-making setups do not show an obvious correct alternative,

like in the hard question situations, Gilboa & Samuelson (2022) propose to use decision

theory as a coherence test. To those hard questions, we sum up the intertemporal issues, like

deciding which career to follow or which main subject to study when joining a university. Even

on those questions, one may simply argue that the right choice is the one that maximizes the
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utility function, but it should be accounted that no one has perfect knowledge about future

events or even about their inner selves.

However, may be a difficult task to picture an utility function for some scenarios and this

matter is still addressed by Gilboa & Samuelson (2022), who show concerns about it. That

being said, when they propose using decision theory as a coherence test, they argue that

from revealed preference assumption, it is possible to justify observed choices through a

previous known model, that is, the researcher should ask herself “there are beliefs that justify

this choice?”. Basically, it would be a interaction between decision maker and decision theory

in which the decision maker shows all the information he knows and ask what should she do

and decision theory reply grounded on a set of models. Such an incredible view is applied to

problems of all natures, we just require to exist scientific models about the matter of interest.

Furthermore, since the authors suggest a convenient way to implement this interaction in real

world situations, through a smartphone app, showing that there is a profitable commercial

value on it.

Many deviations from standard rational model like described above lead some researchers

to make the assumptions of rationality more loose, mainly flexibilizing the completeness and

transitiveness. This allowed to uncover new behavioral structure, which is now well docu-

mented across the literature, being called bounded rationality models. Bounded rationality is

still deterministic but comprises a set of behaviors that standard rationality cannot accomo-

date but we can explain them in a rational manner. It then led to the development of models

based on multi-utility representations, lack of attention (Avoyan et al. (2022)), overthinking

(Kahneman (2003), Rubinstein (2007)), stochastic choice and many others.

The issues brought by the lack of flexibility on deterministic models lead economic

modeling to flirt with stochastic models, which deals with real world data better, fitting its

uncertainties better at some extent. Ok & Tserenjigmid (2022) states, ipsis litteris, that “Among

the reasons behind the choice behavior of an individual taking a stochastic form are her

potential indifference or indecisiveness between certain alternatives, and/or her willingness to

experiment in the sense of occasionally deviating from choosing a best alternative to give a try

to other options”. As for deterministic modeling, when individual is indifferent between x and y,

we cannot determine the frequency in which any of them is chosen. Furthermore, being able

to capture a somewhat willingness to experiment an alternative becomes important because
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people overall don’t know their own preferences with perfection, that is why they change

constantly over time. This way, once a researcher captures this effect within a model, she

can better understand the whole process behind dynamic preferences. This way, the authors

statement makes clear that the transition between deterministic and stochastic models is a

matter that really could expand the comprehension of real world behavior.

Regarding the indecisiveness matter, a matter closely related to classical axiom of com-

plete preferences, experimental studies show that it exists and lead to randomization (Eliaz &

Ok (2006), Ok & Tserenjigmid (2022)). In this sense, Costa-Gomes et al. (2022) found on an

experiment with real goods that agents are leaned to sacrifice present utility through a costly

choice deferral and that makes the postponed choices more consistent with rationality idea.

This finding foster that deterministic models of choice can be more accurate when dealing

with one-period decisions without a great impact on future events. Whenever an agent may

face decision problems with a big change to her future, pondering about probabilities arises

naturally to better deal with risk.

However, when we go to stochastic modeling, the rationality idea becomes quite dim when

a model assumes the world is ruled by probability distributions, since we do not observe

probabilities in data, but they are convenient to understand how events, may it be natural or

psychological, interact and produce outcomes that we can observe. For example, Lillie does

not wake up everyday with probabilities on mind regarding taking the long road or the short

road to go to the workplace, although she is likely to take the short road, to save gas money.

However, she knows that on a given day, if it rains, there is a traffic accident, a friend ask for

a ride, she is troubled with something or she just want to try a new way, the chances of taking

any of the ways may change, but what we actually observe us the way she chooses.

The same way, Abraham does not choose probabilities when he goes for a dinner, let

alone roll a dice to decide what to choose. Of course we may impose him to choose among

lotteries when doing some research, but in the end of the day, he chooses a meal. However,

it probabilities capture better how his preferences show up on given circumstances, like eat

alongside his wife, his mother, his friends or alone. This way, modeling revealed preferences

in stochastic framework may comprise such situations better.

Across the literature of probabilistic decision models, the Random Utility Model (RUM) is

considered the best rational benchmark for a stochastic model. In this sense, Ok & Tserenjig-
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mid (2019) say that the RUM could be taken as the definition of rational stochastic choice

under the interpretation of the frequency of individuals on a society that happen to choose

an option among a set, since it simply accounts the choices of a group of deterministically

rational agents. Nonetheless, when the RUM is interpreted on the basis of a single individual

choice, who is supposed to have multiple preferences which cover her whole tastes and

personality, the rationality idea becomes dim.

The very first RUM model goes back to Marschak (1959). The author propose to combine

data from controlled experiments on pairwise comparison between options, surveys of choice

on large data sets and the temporal effect over total consumption. To do so, the study assume

choice obeys a probability distribution, which lead to different kinds of choices even from

the same problem. This way, RUM was born due to the inconsistencies found on individual

behavior, Manski (1977) points out. The author consider the behavior to be deterministic

over the set of alternatives, but the model maker only knows part of the information, instead

of considering the agent rolls a dice (whatsoever it may look like) to choose. Theoretical

researchers attempted to save the rationality in the terms they knew. When a rational model

does not explain some individual data, rather than claiming individual is irrational, model

makers claim those agents do not know all the information regarding the world and the

alternatives’ features. This way, preferences and thus utilities becomes random variables.

That viewpoint is present on relevant papers like McFadden (1973) and McFadden (1976).

2.3 Economics and Econometrics

When a theoretical model seeks support on data, attempting to fulfill its purpose of

explaining some real world phenomena under its own rationality notion, it resorts to a wide

range of techniques, tools and strategies. In particular, economists often apply statistical

tools to their matter’s scope, what is the so-called econometrics. Econometrics, differently

from Statistics, was born as a tool to serve economics.

In this sense, Hendry (2009) states that there is no way to dissociate applied econometrics

from an economic theoretical framework, in such a way that a pure statistic model fails to

interpret its findings. Doing so, it is like being lost in the high seas without a compass to guide

the way. Furthermore, the author claims that since economic theory is not complete, correct
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and immutable and never will be, one cannot justify an insistence on deriving empirical models

without theory. On the same line, Frisch (1933) states that, ipsis litteris, no amount of statistical

information, however complete and exact, can by itself explain economic phenomena. If we

are not to get lost in this overwhelming, bewildering mass of statistical data, we need the

guidance of a powerful theoretical framework. Without this, no significant interpretation of our

observations will be possible.

On the top of “atheoretical” econometrics or reduced form estimation, there is the ARIMA

models, statistical tools used often to understand the statistical features of data, allowing

to prepare it properly for future research. It is also called Box-Jenkins method, since it was

introduced by Box & Jenkins (1970), and often figures out as a initial step to decompose time

series data, so one cannot infer false causalities or derive misinterpretations, since they deal

with data based solely on its statistical features, like auto regressive, integrated and moving

averages process. Some applications are presented in Meyler et al. (1998), Dongdong (2010),

Kiriakidis & Kargas (2013), Kharimah F. (2015), Yang et al. (2016), Barnichon & Garda (2016),

Dritsakis & Klazoglou (2018). While it may be useful for understanding statistical features

and may be able to do predictions, it has little to contribute to economics development and is

far from replacing its contributions, as it is usually suggested.

Probably their ease to implement and understand lead to several meaningless applications

in economics (Keane (2010)). Within such tests, theoretical models often get discarded

because doing a regression with a data set does not support model theory, but note that the

parameters estimation cannot translate model’s rationality if it does not assume the same

assumptions as the model. To wit, the regression model often assumes the hypothesis of

classical linear regression model in order to estimate its parameters and a given behavioral

model supposes another completely different range of assumptions. This way, ignoring the

model’s hypothesis and simply estimating a regression could not verify model’s relevance.

That being said, doing econometrics together with economics is now labeled structural

econometrics, which brings to the parameter estimation task the hypothesis of the analyzed

model. It shows many benefits: it enables to deal with many endogenous variables (Hausman

(1983)), to deal better with consumer elasticities analysis (Reiss & Wolak (2007)), conduct

welfare analysis under a dynamic environment with changing prices (Nevo & Whinston (2010))

and makes possible to do serious counterfactual analysis, crucial for policy design (Su &
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Judd (2012)). The applications of structural modeling are many. For example, there are

researches on investment on human capital Keane & Wolpin (1997), on the effect of social

security and medicare on retirement behavior (Rust & Phelan (1997)), on adverse selection at

auto insurance (Jeziorski, Krasnokutskaya & Ceccarini (2017)) and on industrial organization,

labor economics and marketing (Arcidiacono & Miller (2013)).

2.4 Economics and Machine Learning

2.4.1 Origins and Classification of Machine Learning

More recently, the approach to capture statistical patterns of data was significantly im-

proved with Machine Learning (ML) algorithms as they provide sumptuous advances on

detecting non-linear interactions often not easily understood, uncovering hidden relation-

ships in data (Goodfellow, Bengio & Courville (2016)). Naturally, econometrics borrowed the

valuable contributions of ML to strengthen the reality tests of economics.

Regarding the origins of ML, it goes back to the use of computational tools to understand

data. Some contributions on the very beginning are undoubted remarkable, like the concept

of perceptron introduced by Rosenblatt (1957), which can be seen as a computational

implementation of Hebb (1950) cell assembly, which comprises a chain of neurons and

the connections between them. Back then, since the author algorithm’s dealt with image

classification based on probabilistic principles, being previously trained with labeled data, it

was classified as a supervised learning algorithm.

Further in time, the algorithm developed by Samuel (1959), designed to play checkers,

which was able to improve itself from past experience, is considered by many the very first in

ML history, that, in verbis, is the field of study that gives a computer the ability to learn without

being explicitly programmed. Nowadays that specific field of ML is called reinforcement

learning, in which algorithm learns from the payoff it gets from past experiences.

Aside from supervised and reinforcement learning, there is also the unsupervised learning.

ML is classified as unsupervised if the computer is able to learn with unlabeled data, that is,

based on mathematical and statistical similarity between data points, the algorithm is able to

learn statistical pattern previously unknown. This way, a computer can cluster observations
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based on a probability distribution (like Density-Based Spatial Clustering of Applications with

Noise algorithm from Ester et al. (1996)) or on spatial criteria (like k-means algorithm, whose

origins goes back to Steinhaus (1957), MacQueen (1967), and hierarchical clustering, whose

roots are mainly find in Sibson (1973), Defays (1977)), for example.

One of the very first unsupervised algorithms were related to association rules, which

got spread with Agrawal, Imieliński & Swami (1993), who developed an algorithm able to

finding relationships between products on a supermarkets, detecting which bundle of goods

are often bought together, so they can be arranged close to each other and increase sales,

thus improving comprehension about purchase behavior.

2.4.2 On the Use of Machine Learning in Economics

Undoubtedly, ML is able to provide a whole range of new tools to econometrics, as pointed

by Varian (2014), who covers classification and regression trees, random forests, LASSO

(which stands for “least absolute shrinkage and selection operator ”) and Spike-and-Slab

regressions, which helps on variable selection issues. The author still addresses important

matters for practitioners like causality, prediction and uncertainty, providing comprehensible

economic applications, like effect of race on mortgage using regression trees and variable

selection on growth questions using LASSO.

However, it is extremely important to perceive that the use o ML on economics should

be done according to the scientific method. According to Mullainathan & Spiess (2017), ML

solves a different kind of problem when compared to econometrics as well. While ML focus

on the problem of prediction, that is, ŷ, econometrics revolves around parameter estimation,

that is, β̂, whose meaning is associated to the impact or a variable on another. It is clear then

that the frontier between them is quite thin and there is an intersection on their applications,

since the estimation of the impact of a variable on another, allows one to make predictions.

Nevertheless, it is important to perceive that, on their roots, their scopes are not identical.

The key point the authors highlight is that applying ML to economics requires finding relevant

ŷ tasks, drawing attention to the fact that ML algorithms are now technically easy to use, what

could be risky, when they are naively applied or their output is misinterpreted.

On the same way, when comparing ML to standard empirical techniques, Kleinberg et al.
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(2015) clearly explains that the last are not optimized for prediction tasks, since they focus

on unbiased estimation, which creates problems for out-of-sample results. Ordinary Least

Squares (OLS), for example, does not allow the trade-off between variance and bias because

the OLS predictions vary in sample. On the other hand, ML does not minimize only in-sample

error, but also takes into account a regularizer that penalizes functions that create variance.

This regularizer is calibrated by a parameter that, according to the authors, can be seen as

the price between variance and bias, but can even be chosen using the data on more fancy

and sophisticated approaches.

Turning specifically to the comparison between theoretical economics and ML, some

other aspects also deserve attention. Theoretical economics, as previously discussed guides

interpretations of the real world and gives meaning to related empirical works, since they are,

before everything, grounded on a set behavioral hypothesis. Machine learning, on the other

hand, gets its fundamentals from optimization methods designed to learn statistical patterns

from data and generalize the acquired knowledge, that is, to capture hidden structural features

of data. Although their applications are manifold and distinct, there is also an intersection,

which turns out to be the predictions on behavioral environments.

In this sense, Parkes & Wellman (2015) makes a didactic distinction. While the homo

economicus is a mythical perfectly rational agent constructed by economics, the machina

economicus is a synthetic homo economicus. The same way economists know people slightly

differ from homo economicus, not because they are crazy or irrational, machina economicus

is a tool to better understand the interactions of homo economicus on complex environments,

this way leading to better understanding of real people on some contexts.

Following this standpoint, theoretic models are designed to understand behavior that is

previously characterized in terms of assumptions, not to fit data. That viewpoint is somehow

a theoretical economists uprising, which is precisely shared by Gilboa et al. (2018). The

authors propose a reflexion to think economics as a tool to point out weakness of arguments,

that is, to offer critiques. A field of research does not need to fulfill human predictions desire

to be scientific. They put the question in formal terms, formulating a model of economic

modeling to foster that predictive side is separated from the criticism side of economics.

Given an economic model, it may happen that for some conjuncture the model’s prediction

may be or not well accommodated. A high evaluation for some data implies that analyzed
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individuals indeed act according to the the model’s structure, since there is a tightening

bidirectional result. A poor evaluation though reveals that some model’s structure does not

match those individuals. If it does not hold for any conjuncture, it can be improved instead

of completely discarded. However, when a ML tool, trained and designed to generalize

the learned patterns, fails for some data, the main goal of the algorithm fails, since its main

objective failed, what is far from being the case of an economic model. To foster that, Gilboa et

al. (2022a) reiterates that a theory does not die as soon as it is refuted. Since that happen, it

can be refined or restricted. Even on the extreme case it is completely refuted, the conceptual

framework could be used to come up with other related theories that fit data.

That being said, we argue that economics should play an important role on interpretability

of ML models, since they are often seen as black-box algorithms. In this sense, a black-box

algorithm is a computational tool that performs well on its prediction purpose but fails on the

interpretability of its findings. According to Doshi-Velez & Kim (2017), interpretability is the

ability to explain or to present in understandable terms to a human.

This way, often ML fails that because the basic process in which the learning happens

is well known, like the calibration of weights and bias at an Artificial Neural Network (ANN)

through a clear specification of crucial functions like loss and optimizers. However, usually,

little is known about the hidden patterns found by the algorithm and how the output is

generated. The authors still separates ML’s interpretability into two branches: one that

consider an algorithm interpretable if it is useful on a practical issue and the another only

does it if the researcher claim that it is interpretable, providing a reasonable explanation for its

findings. According to their first branch, almost all ML becomes interpretable, what express a

false idea of understanding behind overall ML. This way, their second concept looks more

accurate.

Some studies, then, attempt to obtain some behavioral interpretation from ML, seeking

their interpretability to satiate avid researchers hungry for knowledge. In this sense, Montavon,

Samek & Müller (2018) claims that being able to interpret machine learning algorithms finds

its relevance mainly on fields like medicine and self-driving cars, in which wrong decisions may

have a fatal cost. For the authors, one key aspect on the improvement of ML transparency is

to identify the most important input variables, which they admit that figures out as a post-hoc

interpretability, applicable when there is no control on the model structure at all.
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Wang, Wang & Zhao (2020) aims to provide a way to compute all economic information

from ANN and highlight some challenges for interpreting them on the light of economic

structure. Their notion of interpretability is related to the recovery of crucial economic

variables like elasticity, willingness-to-pay, marginal rate of substitution and consumer surplus.

However, according to Gilpin et al. (2018), interpretability is not a sufficient feature for

achieving trust on machines behavior. To do so, humans requires explainability, which is

closely related to the ability of a algorithm to defend its actions, provide relevant responses to

questions and be audited, the authors say. Thus, explainability is a stronger condition which

assumes interpretability.

Looking from a side of the prism, explain a machine learning algorithm behavior is in fact

easy, since they act to optimize an objective function which leads to the “discovery” of hidden

patterns, which should be generalized in order to make predictions. What is hard and nearly

impossible is to explain their behavior under legal, ethical an moral aspects, because they

are often not taken into account when designing algorithms.

Such a task only becomes possible if the modeler makes those features clear on the root

of the algorithm, as evident constraints that the process must face when optimizing. In this

case, ML originally learns patterns assuming what cannot be done under the light of ethics,

law and moral. So, the problem behing the lack of interpretability and explainability are, in

the end of the day, the lack of structural constraints when designing these algorithms and

that is where the real challenge lies, that is, translating ethical concerns to constraints to

be incorporated to the algorithm structure. Of course if we go from a regular optimization

problem to a constrained one, we do not reach the first-best solution, but that is a reasonable

cost to design trustful algorithms.

Regarding the developed tools to provide some interpretability to black-box, Molnar (2018)

and Samek et al. (2021) covers some of them, like LIME (Ribeiro, Singh & Guestrin (2016)),

which stands for local interpretable model-agnostic explanations, global surrogate method

and Shapley values of features, from Shapley (1953). The global surrogate method is often

applied on engineering fields to replace a high cost resource for another substitute without a

significant loss on the outcome. When applied to ML, it does seek to interpret a black-box

using another surrogate black-box that approximates the first one. Likewise, as the very

name implies, LIME seeks interpretation without any model. The Shapley value comes
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from coalitional game theory, which assigns payouts to players (or features in the ML case)

depending on their contribution to the total payout.

We highlight that all these ways to interpret ML do not make the interpretability issue as

transparent as it should be, since they mainly deals with post-hoc interpretability, simply trying

to find a reasoning to justify the outputs of an algorithm. Sometimes, in order to do so, some

works use ML itself to seek interpretability of ML, as pointed out by Molnar (2018). Such a

task is dramatically different from the attempt to uncover the structure of black-box models in

such a way humans can understand properly and trust. As pointed out before, interpretability

and explainability should be a structural matter on ML algorithms, so they can be build ground

on a interpretable foundation (Molnar, Casalicchio & Bischl (2020), Alwosheel, Cranenburgh

& Chorus (2021), Martín-Baos, García-Ródenas & Rodriguez-Benitez (2021)).

On the other hand, supporting economists uprising to view their theory as a meaning

compass, Andrews et al. (2022) find that structured economic models outperform ML models

on out-of domain tests, but not on prediction errors regarding out-of-sample tests. A domain

essentially differ from a sample because it comprises a more general class of problem. It

could be a set of data samples from a research problem of same nature. For example,

different time-periods could represent the general notion of a domain. They argue that

black-box algorithms slightly fail on identifying structure that is commonly shared across

domains, not being able to effectively extrapolate behavior between sets of features. This way,

economic models allow to recover regularities that are general across a variety of domains.

2.4.3 Empirical Researches

Regarding the applications of ML on economics, they are essentially two-fold: applied

researches comparing the prediction power of ML against economic behavioral models;

and those which propose ML as a tool to improve economic modeling itself. We think that

both branches are closely related and can be summarized only on the last one, since the

competition between their prediction power makes no sense at all, as previously argued.

Even before the huge tide of ML models, one of the first works to compare their learning

performance with economics models were Cohen & Axelrod (1984), in order to highlight some

way to improvement. The authors study if a dynamic model of preferences fits data better than
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a standard utility maximization model with a non-varying preference on an environment where

a factory manager maximizes output allocating fixed available labor hours between production

and maintenance. The preference changing mechanism of their Artificial Intelligence (AI)1

is driven by experience, as a reinforcement learning, but not necessarily conscious. They

find the dynamic model based on a learning AI is better not only when stability is reached

but throughout the entire process of adaptation. That is an evidence the agents are aware

that their previous beliefs about the environment they are in were incorrect or incomplete,

requiring to be updated in order to achieve better satisfaction levels.

As for applied researches of ML on stock market, for example, Souza et al. (2019) investi-

gated how well ML algorithms perform on cryptocurrencies trading in terms of ability to make

profit and compare them with standard methods of algorithmic trading, like technical analysis.

They explore if support vector machines (SVM) and ANN could improve market efficiency or

exploit its inefficiencies, since, according to Kim (2003) ANN minimizes empirical risk, that is,

classification error, and SVM minimizes structural risk, accounting for the generalization of

the model and penalizing its complexity. They find that while SVM are more compatible with

risk-averse investors, since it ensures conservative returns even accounting for the risk and

transaction costs, the ANN has a great potential to exploit short run inefficiency, allowing to

obtain better profit during strong bull trends, even compared to buy-and-hold strategy.

Another application to finance is presented in Huang, Chen & Wang (2007), who high-

light the performance of SVM on credit scoring analysis, which compared to ANN, genetic

programming and decision trees needs less input data on training to reach same accuracy

level, contributing to the minimization of risk of creditors. The authors also address the issue

of over-training, which leads to over-fitting, that does not favor the generalization ability of

the algorithms, and the black-box nature of overall ML, whose advantage is not requiring

a previous knowledge of relationships of input and output variables. Thus, they suggest

combining ML with “other more interpretable models”. On this matter, Deng et al. (2017) focus

on ANN on a deep and recurrent framework tested on stock and commodity future markets,

dealing with real-time financial trading. They find that those tools can be in fact efficient

alternatives to technical analysis indicators, which has a high-level of ad-hoc parameters.
1As a disclaimer, AI and ML are not interchangeable terms. According to Kersting (2018), for example, AI is

a broader field which focus on making a machine behave as a human. On the other side, ML is part of AI which
is related to the ability of learning of a machine, even if it is not explicitly programmed to do so.
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Finally, Wellman & Rajan (2017) states that the use of AI on financial world reduces

transaction costs and brings more efficiency but at the cost of legal and ethical concerns.

It is due to the difficulty of distinguishing legitimate from illegitimate actions performed by

autonomous trading agents because they are not built to act according to law or ethics.

Instead of that, they are built to optimize, no matter the nature of the variables being used

or the side effects of their optimal behavior. To get around this issue, as previously stated,

the whole process of modeling a machine and building the algorithm should comprise clear

constraints that capture what could be done and what is unacceptable.

Aside from financial applications, on policy analysis, Andini et al. (2018) study how

decision trees optimize tax-rebate policies in order to accomplish the purpose of increased

consumption. Their reason for using decision trees instead of other algorithms is a matter

of transparency, since it provides a more transparent decision rule. They found that policy

effectiveness can be increased, but they highlight that accuracy is not a sufficient metric

to validate the model. Accuracy is a trustful indicator when the underlying data set of the

classification task is balanced, with similar proportions of positives and negatives. Complete

analysis also comprise another indicators like precision or negative predictive value, related

to the prediction power respectively according to true predictions, and recall or specificity,

mainly related to the prediction power with true data points.

On the context of a changing world in which agents perceive they must update their beliefs,

Holland & Miller (1991) shows that Artificial Adaptive Agents (AAA) can acquire sophisticated

behavioral patterns, showing that the observation of the course of learning can increase

the very understanding of economic issues. Those are models based on pure linguistic

descriptions that are infinitely flexible. While they are often logically consistent according to

the authors, mathematical (and hence economic) models have consistent structure and allow

general solution techniques, at the cost of losing flexibility. On this incredible flexibility, some

words from the authors must be highlighted as a criticism: “The possibilities (of AAA models)

are so rich that it is often difficult to predict on a priori grounds what behaviors and structures

will emerge”.

One of the most recent contributions to the use of ML in order to improve economic

research is presented by Fudenberg & Liang (2020). According to them, one can use ML to

identify regularities not captured by an incomplete theory, that is, with low correspondence
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in some data set. Aware of the aspects of real data that the model does not comprise, the

researcher could develop better models that encompass them. Furthermore, they state that

for complete theories ML can identify if that good fit is due to the capacity of the theory to

comprise any possible data or if it reveal behavior on real world.

This way, it is clear that ML models not only compete with economic models, they also

have been used to improve economics and decision making, thus improving policy design,

for example. On this matter, according to Hrnjic & Tomczak (2019), ML allows to reconsider

past decisions and to reevaluate the possible outcomes, reducing time to make a decision as

well as the cognitive cost of judgment. Kleinberg et al. (2017) cites the problem of judges’

decisions of releasing or not arrested criminals. They ask if a judge sentence could be

improved by ML algorithms designed to fine-tune the probability of an arrested criminal on

committing another crime or flee for example, allowing to reduce jail populations without

increase the crime rate.

Another relevant example is present in Kang Polina Kuznetsova & Yejin (2013), who

analyze social media relation with public health surveillance. The authors use the costumer

review analysis of restaurants as a tool for accessing hygiene of restaurants, improving

disclosure and decision making regarding when and where to conduct inspections. Their

work was a prominent contribution to literature specially because they use Natural Language

Processing (NLP) to deal with text data. Their algorithm has over 82% of accuracy in

discriminating severe offenders from places with no violation.

When it comes to NLP, according to Hirschberg & Manning (2015), it speaks to the

use of computational techniques for the purpose of learning, understanding and producing

human language content. Nadkarni, Ohno-Machado & Chapman (2011) says that it is not a

simple matter of text information retrieval, since it comprises the whole processing of natural

language data. A great part of NLP is focused on Sentiment Analysis (SA), which is the

identification of some feedback from reviews produced by humans.

That being said, regarding the use of NLP and SA on economics, we highlight Hansen,

McMahon & Prat (2017). The authors analyze transparency matters on Central Banks policies.

Their findings support the theory which claims that transparency improve accountability and

behavior, leading to a positive discipline effect and a negative conformity effect, from agency

theory. They mainly use Latent Dirichlet Allocation (LDA) method to reduce dimensionality of
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input text data from two different sections of meetings from Federal Open Market Committee

and find that, during the meeting, the use of numbers and data as well as the number of

topics discussed by rookie members (positive discipline effect) is higher. However, during

policy discussion, those inexperienced members discuss less topics and engage in a herding

behavior (negative conformity effect). It shows an important contribution for the interpretability

of large texts, regarding macroeconomics directions. An extensive review of this topic can be

found on Algaba et al. (2020).

Aside from NLP usage, regarding image processing in economics, Henderson, Storeygard

& Weil (2012) proposes estimating Gross Domestic Product (GDP) from satellite images.

They claim that satellite night-lights serves as proxy for economic activity at temporal and

geographic dimensions. This finding allows to better estimate poor quality data or growth on

sub and supranational regions where it is not accounted. They also find that this methodology

has a bigger potential on improving measurements of economic activity on low-quality national

accounts data.

Still on that matter, Naik, Raskar & Hidalgo (2016) use outer space images of the Earth to

reveal details of health, education, mobility and criminal rates of regions. They pre-process

data with Geometric Layout algorithm and then train a Support Vector Regression (SVR)

algorithm, further analyzing the effect of government spending on a region and the physical

urban change they observe in data. Their method provide an accurate estimate of the physical

urban change after the government intervention. For a complete and detailed review of this

literature, one may want to check Donaldson & Storeygard (2016).

Peysakhovich & Naecker (2017) study how economic models can incorporate ML. Using

LASSO and Ridge regression. They find that their algorithm basically learns expected utility

with probability weighting model from data under risk. However, as for ambiguity, the patterns

that the algorithm learns slightly differ from theoretical works, showing a gain. It is rather

important to clarify that risk supposes the individual knows the world framework and the

probabilistic structure. Ambiguity, on the other hand, happens when she does not know

for sure the probabilities assigned to events. That being said, ML points out that there are

regularities on the ambiguity setup that expected utility models do not capture, pointing out a

gap and a way theory could evolve.

Another relevant work that combines ML and choice models is Sifringer, Lurkin & Alahi
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(2020). The authors propose new choice models called Learning Multinominal Logit (LML)

and Learning Multinomial Nested Logit (LMNL) from combining ANN with those traditional

discrete choice models. They attempt to develop models based on standard framework of logit

models improving parameter specification as well as predictability of the model, without losing

their high level of interpretability. To do that, they integrate ANN with the utility specification

of a discrete choice model to discover the utility specification through data. This way, they

weaken the assumption these models make that model specification is previously known

to estimate its parameters. Thus, behavior is modeled first from a knowledge-driven part,

which specifies the model, and then data-driven part to optimally calculate the utility form and

parameters.

Other researches can address other features that ML lacks when compared to standard

methods. For example, Tehrani, Cheng & Hullermeier (2011) point out that monotonicity is far

from being guarantee on ML algorithms in general. They propose a way to improve the logistic

regression, which shows three distinct features, namely the linearity, the compreensibility and

the monotonicity. The authors change the linear restriction that logit model imposes between

inputs and output for the Choquet integral, allowing to keep the interpretability of the model

as well as the monotonicity but also capturing nonlinear dependencies. Furthermore, it is one

of the first works to embed Choquet integral in the ML context.

Bräuning et al. (2017) propose a way to generalize lexicographic preferences in order

to better understand them in a data-driven experiment. The relevance of such preferences

comes from the need of decision makers to evaluate simple criteria when choosing options

among overwhelming amount of psychological and environmental features. Lexicographic

order ranks options according to the payoff of the first eligible attribute. Their generalized

approach is based on decision trees and group some attributes in order to compare multiple

criteria at the same time.

On that same matter, Hüyük, Zame & Schaar (2022) discuss preferences based on multiple

and competing objectives. They provide an intuition for multi-utility models, which they call

multi-objective such that the individual priorities over objectives are lexicographic. They

attempt to infer multi-objective reward based representations of decision maker’s observed

preferences through a stochastic preference model, called LORI, from Lexicographically-

Ordered Reward Inference. The main idea is to find a reward function that makes the observed
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behavior as optimal then acquired function reproduce optimal policies through reinforcement

learning. Their contribution is to employ the method to find multiple multi-objective reward

functions, this way improving and understanding better behavior.

Further in this task of learning individuals preferences over a set from the revealed

preferences, we highlight Busa-Fekete, Hüllermeier & Szorenyi (2014). Like the so-called

random utility models in Decision Theory, the authors assume there is a fixed and unknown

probability distribution over the set of all total orders on a given set of alternatives. They aim to

understand this distribution, like the most likely top-item and the highest frequency preference

from pairwise preferences data, instead of individual evaluations. To do so, they assume the

distribution is a Mallows model (from Mallows (1957)), since it is better tractable, as being an

exponential distribution that is parametrized and based on distance. This way, they manage

to guarantee confidence on their predictions as well as minimizing sample complexity.

Finally, since the researchers curiosity can lead them anywhere, there are even attempts

to improve ML itself with economic theoretic contribution. Ahuja, Choudhury & Dandapat

(2022) extend the very concept of production functions to performance functions to evaluate

multilingual models based on NLP algorithms, such as some focused versions of Bidirectional

Encoder Representations from Transformers (BERT). Accounting for the costs of collecting

machine-translated and manually-created data, they point out the efficiency of their method

showing that optimal performance is attained with minimum cost if there is some amount of

manuscript data in the target language, since there is a positive cost for machine-translation.

2.5 Conclusion

This paper presents a comprehensive literature review on economics’ way of progress as

a science. We covered from the roots of modeling, discriminating deterministic and stochastic

models, and the tools used to test models’ potential to expand the understanding of the

world, which turn out to be econometrics and, more recently, with contributions from machine

learning. The very way models arise and fall pave the road of progress for economics, that is

the reason why reviewing such a rich literature have its relevance.

We mainly aimed to provide a work that serves as an up-to-date overview so readers

could get familiarized with the economics’ reasoning and recent works that use Machine
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Learning algorithms to understand economic phenomena. This way we intend to provide a

helpful work for researchers planning to do research on this field.

In this work, we also address several issues concerning economics with econometrics

as well with Machine Learning, such as the naive comparison between ML and economics

models performance on data, disregarding that each one has a different objective or the

excitement around the measure that makes it the target, which blurs the actual target, as

stated by Goodhart’s law. The reflexion about these issues and the implications of them

draws attention to the advantages and disadvantages of some research directions.

26



Chapter 3

Identifying Structure on Data using

Machine Learning

3.1 Introduction

On this chapter, we propose a way to evaluate how well economic models fit real world

data based on the metrics of restrictiveness and completeness introduced by Fudenberg,

Gao & Liang (2020). We say a model identifies data structure well if it is restrictive and

complete at the same time. That being said, our main contribution is methodological and

three-folded:

1. we use Machine Learning (ML) tools, namely Artificial Neural Networks (ANN) to hone

models’ evaluation results, may it be deterministic or stochastic. This way, one may be

able to point out which model from a selected range of theoretical modeling strategies

better identifies some data set structure. This allows one to compare theory-based

models between them or even help to decide which ML model is better trained and

better generalize some behavioral structure;

2. as for choice data preparation step, dealing with randomly generated data sets we also

find that imposing reflexiveness axiom to the sample improves significantly the mean-

ingfulness of the evaluation. On the other hand, imposing preference’s completeness

does not show any significant improvement for the meaning of evaluation;

27



3. we also use evaluation metrics to build a bridge between the notion of rationality and

real behavior grounded on economic theory, that is, we explore the potential of two

models, one deterministic and other stochastic, to explain rationality on behavioral data

and understand its uncertainty.

Regarding the metrics, restrictiveness speaks to the potential of a model to be compatible

with many random models and completeness is related to the compatibility of a model and

a given data set. Both lie in the unit interval in such a way that if both are close to one, the

model is restrictive and for the particular data set it is complete and thus identify its structure

regularities well. Those measures are calculated regarding a benchmark, which normalizes

the models’ assessment and is called naive mapping by Fudenberg, Gao & Liang (2020),

since they set it to be a simple model that any reasonable model could outperform. However,

we call this benchmark yardstick mapping, since it can vary and change the evaluation results.

This way, instead of considering the benchmark map as the map based on the uniform

distribution as did by the original work, we vary the yardstick mapping among four options and

find out that setting it to be an ANN improves the ability to identify data structure according to

the models, specially when it turns out to be a Multi Layer Perceptron (MLP).

Note that on one hand, restrictiveness is related to a specific model potential to comprise

many different modeling outcomes when compared to a yardstick previously chosen. On

another hand, completeness measures the degree of affinity of a model with collected data

regarding the yardstick. That being said, when a model is highly flexible, showing a low

restrictiveness, it is expected to have a high completeness for many data sets, which is due

to model looseness to comprise many behavioral frameworks and not because it has the

ability to unfold data structure. However a highly restrictive model with high completeness for

a given data set indeed reveals much about its structure, since it can approximate only a few

mappings good but for a given conjuncture it shows a great correspondence degree.

Our purpose is to assess decision models with data sets, revealing a degree of compati-

bility of a pair theory and data set. This way we can verify if, for example, the rational model

reveals more structure on a specific data than a selected bounded rationality model. This

helps on explaining some specific conjuncture or behavior, answering the question “This data

set is justified by a theory to which extent?”, which leads to a more accurate discussion of

further policy analysis, for example. It can lead to a cluster method to separate data sets
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within a selected models setup, which can lead to new research tasks. Lastly, we address a

long time issue in which ML algorithms are often seen as a candidate to replace economic

modeling itself, instead of a tool to aid its further development.

Our conducted tests evaluate two frameworks of models, one deterministic and another

stochastic. Under the deterministic setup, we analyze the bounded rationality models devel-

oped by Guney, Richter & Tsur (2018) and Silva & Riella (2020) and compare their evaluations

with deterministic models obtained from ANN previously trained, running their output proba-

bilities of choice to get a binary output. As for the stochastic, we compare the assessment of

ANN to a simple logit model, which is the usual benchmark for this kind of problem.

The chapter is organized as follows: Section 3.2 presents a literature review covering

details on restrictiveness and completeness, artificial neural networks and the bounded ratio-

nality models from Guney, Richter & Tsur (2018) and Silva & Riella (2020); Section 3.3 details

the assessment framework, presenting the choice framework, the models’ parametrizations,

the considered yardstick mappings and other computational details; Section 3.4 untangles

the synthetic data we used for our tests; Section 3.5 presents results for deterministic and

stochastic models and analyzes how these results change as the choice setup allows more

conceivable alternatives; Section 3.6 presents an attempt to bridge deterministic and stochas-

tic models using restrictiveness and completeness measures in order to identify their joint

potential to explain data in terms or behavior and uncertainty; and finally Section 3.7 presents

concluding remarks.

3.2 Literature Review

3.2.1 On the Measures

Here we cover the details of the two main measures proposed by Fudenberg, Gao &

Liang (2020) used to identify structure on data sets considering some economic models. The

purpose of the authors is to identify if a model fits data due to its potential to capture real

world regularities, describing well the underlying behavioral structure, or simply because it is

unrestrictive and flexible to accomodate all sorts of behavioral functions or correspondences.

Their work is related to information criteria like Akayke Information Criterion (AIC) from
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Akaike (1974) and Bayesian Information Criterion (BIC) from Schwarz (1978), used on model

selection and parameter inclusion, since meaningful parameters, according to Fudenberg,

Gao & Liang (2020), are the ones which brings a small decrease on restrictiveness and a

high gain of completeness.

To address and detail the assessment method and the formalities, consider first we are

interested in some aspect of the real world and we model it in such a way real situations

are mapped to a model predictions according to the assumptions of the world it makes. For

example, under the framework of decision theory, a model maps choice problems, that is,

a set of alternatives that are feasible or observable or both, into choices, denoting what is

actually chosen when individual faces a specific situation. That being said, following their

notation, let F be a set of all possible mappings for a given problem.

The primitives of the the evaluation structure are a set of permissive mappings FM ⊆ F

and the distribution µ which rules the draw of random mappings from FM. To provide a better

understanding on FM, consider the problem of modeling probabilities. In this case, F is the

set of maps whose image lies in R. However, since we are modeling probabilities, FM is

restricted to the mapping whose image lies on [0, 1]. In another case, when modeling choices

from a set S, FM is restricted to the mappings whose image lies in S.

The model we want to evaluate, which is in fact a parametrizable model, is represented by

FΘ, which comprises all parametrizations fθ of that model, including an yardstick mapping

fyardstick fixed by the researcher. Finally, consider a set of randomly generated mappings

{fm}M
m=1 from FM according to µ and a metric d which evaluate the distance between two

mappings. This metric d indicates how far the two mappings’ predictions are. It could be,

for example, the Mean Squared Error (MSE), Binary Crossentropy (BCE) or Categorical

Crossentropy (CCE). This way, the discrepancy δm between a model FΘ and a map fm,

according to Fudenberg, Gao & Liang (2020), is given by:

δm = d(FΘ, fm)
d(fyardstick, fm) ∈ [0, 1] (3.1)

On the Eq. (3.1), d(FΘ, f) = inffθ∈FΘ d(fθ, f) and since fyardstick ∈ FΘ, it is clear that δm

lies in the unit interval. That being said, they define the restrictiveness r of the model as

the expected value of the discrepancy over the set of random mappings, that is, r = E[δm].

Note that fyardstick is used to normalize the distance calculations. Thus, large values of δm
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implies that the model being analyzed does not approximate fm much better than the yardstick

mapping does. A model is said to be restrictive if these values are often high, which means it

does not have the ability to approximate a random set of M mappings better than the selected

yardstick.

On the other hand, completeness is defined by the authors as:

κ∗ = eP ∗(Fyardstick) − eP ∗(FΘ)
eP ∗(Fyardstick) − eP ∗(Fbest)

(3.2)

On Eq. (3.2), Fyardstick = {fyardstick}, Fbest = {fbest}, fbest is the mapping that best

approximates the true and unknown mapping f ∗ between X, which is the observable vector

of data inputs, and Y , which represents the observable vector of data outputs, and eP ∗

denotes the error between a map and a given data set according to the joint distribution P ∗

of (X, Y ). Since we observe only a sample of the data, we do not know P ∗ and to evaluate

completeness, the authors propose the following estimator:

κ∗ = CV (Fyardstick) − CV (FΘ)
CV (Fyardstick) − CV (Fbest)

(3.3)

Here, CV denotes the out of sample error of the model according to the k-fold cross-

validation procedure detailed at Fudenberg, Gao & Liang (2020). Although completeness

values lies within the unit interval, since the estimator in Eq. (3.3) uses the out of sample

error CV , it may end with negatives values in the presence of some usual issues of data

analysis, like overfitting or when the validation portion of the data is not a good replica

of the training set. To wit, suppose a single parametrization of the model fθ. This way,

FΘ = {fθ, fyardstick}. During the k-fold cross validation process, if the minimal error mapping

on the training set is fθ and it shows a higher error on the test set than fyardstick, it turns out

that CV (FΘ) > CV (Fyardstick), which implies that completeness may get a negative value.

That being said, before going into the details of our experiment, we do a brief review of

ANN structure and the bounded rationality models we chose then we present our results and

conclusions.
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3.2.2 On Artificial Neural Networks (ANN)

Artificial neural networks (ANN) are widespread learning tools often referred as super-

vised ML, although they can be used on unsupervised tasks as well. Nowadays, due to

computational progress and the huge amount of bundled built-in methods, ANN are quite

simple to understand and use. According to Charpentier, Flachaire & Ly (2019), ANN are

semi-parametric models. One can view ANN as semiparametric when they act as a super-

vised algorithm, since the researcher specifies the shape of the output, but do not point out

the form of relationship between the variables. That being said, when ANN are employed on

unsupervised learning, they can be seen as non-parametric models. Thus, it is clear, that

ANN is ideal to capture non-linearities on data.

In short, a set of inputs is transformed into a set of outputs according to a predefined

setting made by the researcher in a similar fashion the logistic regression does. However,

in order to better learn hidden features of data and generalize them, there is a number of

hidden layers between the input and output layers in which data is transformed several times.

The transformation process occurs on each of the smaller units of layers, called neurons, and

the chain begins with the first layer transforming raw or input data. Each neuron of each layer

takes the outputs of previous layer and transform then through the multiplication by weights

and addition of a bias. The obtained value is used to trigger an activation function to send it

to the next layer units or not.

There are two main groups of ANN, namely those in which the learning process occurs

on a straight direction only, called feed-forward ANN, like the simple Multi-Layer Perceptron

(MLP), and those that learns via a backpropagation process, like Recurrent Neural Networks

(RNN) and Convolutional Neural Networks (CNN). The backpropagation process introduced

a new generation of efficient ANN, since after the feedforward movement, the calculated

error goes back to layers in order to recalibrate their weights and biases. This method was

popularized by Rumelhart, Hinton & Williams (1986).

Regarding RNN, we do not go into details, since they are better applicable to handwritting

and speech recognition tasks. As for CNN, they introduced convolutional and pooling layers to

the MLP structure that work as filters to identify relevant and distinct features on data. Viewing

data as a matrix, these layers work as a sliding kernel over the matrix, doing sequential

transformations to small areas of the matrix. The CNN is widely applicable on image and
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spacial grid analysis, showing high efficiency when identifying different features, like objects

and living beings on images. To keep it simple, the convolutional layer produces a new matrix

called feature map, which has a high dimension and then the pooling layer is used to reduce

its dimensionality in the same style the previous transformations occur, that is, sliding a kernel

over a matrix. The origins of CNN goes back to Lecun et al. (1998), who used the term for

the first time.

As for the area with most advances regarding ANN, deep learning, its structures are often

referred as a bunch of connected ANN that works like a brain. LeCun, Bengio & Hinton

(2015) refer to deep learning as a branch of unsupervised learning. According to them, it

discovers intricate structure in large data sets through backpropagation to change the even

layers structure, that is, calibrating hyperparameters of the neural structure, which are often

said to be fixed parameters chosen by the researcher. For Mosavi et al. (2020), deep-learning

is associated with learning various weights at the same time for the same data, being better

suitable for investigating market trends than traditional ML. Finally, Srivastava et al. (2014)

say deep learning can even help on preventing a common issue, over-fitting, which decrease

the good generalization of learning algorithms.

3.2.3 On The Models

In regard to the models we evaluate, we focus on two bounded rationality models, namely

the aspiration-based choice from Guney, Richter & Tsur (2018) and the aspiration-based

reference dependence model developed in Silva & Riella (2020). Both models assume that

sometimes individual perceives an option that maximizes her utility but is not available for

choice. Those alternatives, however have some effect on the choice procedure, inducing a

reference point which affects the actual choice, for example.

According to Guney, Richter & Tsur (2018), the agent first identifies the aspiration over

the whole set of observable alternatives and then it induces the agent to choose the closest

feasible option to it, according to an endogenous and psychological metric. The main

difference present in Silva & Riella (2020) is a more flexible result, since their conclusion

states the existence of an attraction region, such that the closest option to the aspiration may

not be chosen. Instead of that, it works as a reference point that draws individual attention to
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some subset of feasible options including the reference itself. Do not imposing the reference

point to be the choice, the model amends a problem in which for any aspiration, one can find

a choice problem in which the agent chooses a strictly dominated option.

We select these two models to test the methodological approach for some reasons: i)

aspiration effect is a class of the so called and well-documented phantom effect in choice

procedure (Highhouse (1996), Pettibone & Wedell (2000) and Pettibone & Wedell (2007)),

which drops the axiom of independence of irrelevant alternatives or archimedian property; ii)

desires are inherent to humans and an interesting behavior to model, since any person has

some unavailable desired options that they dream about and define their present choices in

order to reach them; iii) empirical tests regarding aspirations are quite scarce, maybe due to

the difficulty to collect data that discriminates observable from feasible options; and iv) we

provide a method to investigate if the flexibility brought by the attraction region of the identified

reference point is actually relevant, since Fudenberg, Gao & Liang (2020) methodology allows

one to identify the relevance of parameters on a model, such that important parameters tends

to decrease restrictiveness of the model just a little, since adding parameters make models

less restrictive and make models able to comprise more outcomes, but showing a significant

gain of completeness.

To formally address the models, consider a set X of alternatives. The set of all non-empty

subsets of X is denoted by P(X). A choice problem is defined as a pair (S, T ), S, T ∈ P(X),

S ⊆ T . The interpretation is that when the agent faces this choice problem, she observes

all the alternatives in T , but only the alternatives in S are available for choice. The set of all

choice problems is denoted by C(X). A choice correspondence is c : C(X) → P(X) such that

for each (S, T ) ∈ C(X), c(S, T ) ⊆ S.

Under the structure defined by their axioms, one of the choice procedures in Silva & Riella

(2020) is described by:

c(S, T ) =
⋃

a∈a(T )
arg max u (S ∩ Q(r(S, a), a)), for any (S, T ) ∈ C(X) (3.4)

where u ∈ RX is a function, Q : X × X ⇒ X is a correspondence, d ∈ RX2 is a metric,

a(T ) = arg max
x∈T

u(x) is the set of aspirations and r(S, a) = arg min
x∈S

d(x, a) is the reference

induced by each aspiration. It is important to highlight that their conclusions comprise more
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than one aspiration for a same choice problem. As for Guney, Richter & Tsur (2018), the

representation is simpler:

c(S, T ) = r(S, a) for any (S, T ) ∈ C(X) (3.5)

Note that they identify only one aspiration for each choice problem.

3.3 Assessment Framework

In this section we explain the minimum necessary to understand how we get our main

results, giving further details on our tests and the data. We first cover the model parametriza-

tion we evaluate and then how the evaluation structure can be translated into the selected

framework. In the end of the day, the goal is to calculate restrictiveness and completeness of

some models and decide which yardstick option uncover most of the behavioral structure.

Regarding the aspiration models, once both of them provide the existence of a psycholog-

ical metric d to evaluate similarity between options, it becomes convenient because we set

from now on that all the distances calculations are made according to the usual euclidean

distance, unless we explicitly highlight that a different metric is being used.

About the structure of the set of alternatives X, we consider it to have four alternatives

arranged on the real line R. To give a further intuition, one can think the individual must

choose among four vehicles, namely an electric car, a hybrid car, a regular car or a motorcycle.

They are ordered like that, from highest price p ∈ RX to lowest. She has an endownment

w > p(x), ∀x. When all options are feasible, ordering the alternatives according to their

satisfaction levels results in the same order. Moreover, the distances between the alternatives

are set to be 1, according to Fig. (3.1).

However, when the best perceived option is not available, the agent choose the most

distant available option, in order to save her money and being likely to get the aspiration on a

next opportunity. That is formally written on Eq. (3.6). This way, the psychological difference

the agent perceives between the electric car and the hybrid car is the same she perceives

between the regular car and the motorcycle and twice the difference between the electic car

and the regular car for example. In short, if S = T there is a crescent disutility on the change,
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Figure 3.1: Arrangement of alternatives on the real line.

but a crescent utility on the change if S ̸= T .

Another reason behind such a parametrization would be that when aspiration is not

feasible, the individual becomes happier choosing something without a close resemblance to

it in order to forget she cannot have her first-best option.

u(x) =


−[m − p(x)], if S = T ;

−
[
m

(
1 − min

a∈a(T )
d(x, a)

)
− p(x)

]
, S ̸= T

(3.6)

We must also assume some form for the attraction region Q from representation of Silva

& Riella (2020). We set that the reference point draws individual attention to the options that

are different from it the same way it differs from the aspiration or less, like Eq. (3.7). For

example, if the aspiration is the hybrid car but agent must choose between a regular car and

a motorcycle, she first identifies the reference point, which turns out to be the regular car.

Thus, the regular attracts itself and the motorcycle, because their distance from the reference

is equal or less than the distance between the hybrid car and the regular car.

Q(r, a) := {x ∈ X : d(x, r) ≤ d(a, r)} (3.7)

Note that under this framework, the rational model, when c(S, T ) = c(S, S), showing that

the individual ignores any unavailable options when choosing, coincides with Guney, Richter

& Tsur (2018) model. Due to this reason, further we explore a more flexible framework in

order to assess the bounded rationality models as well as the rational model.

Our set of permissive mappings FM are restricted to c(S, T ) ⊆ S ⊆ T . It is worth

mentioning that the randomly generated mappings fm cannot predict an empty choice for
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any choice problems. The randomly generated mappings fm are complete mappings, in the

sense they impose both reflexivity and complete axioms on preferences. Furthermore, we set

M = 100, that is, our simulations are made with 100 random mappings, following what was

originally made in Fudenberg, Gao & Liang (2020). This way, to simplify the computational

work, without any loss, on our conducted tests FΘ is restricted to a single parametrization

of the model and a single naive mapping, in order to assess the model in terms of that

parametrization, in comparison to the yardstick mapping of choice.

3.3.1 ANN Settings

In regards to our computational work, it was made using Python version 3.7.6. The ML

distribution we chose is Tensor Flow version 1.14.0, from Google, which uses Graphics

Processing Unit (GPU) to achieve better results and faster. The simulations were made on a

device equipped with Windows 10, 64-bit, RAM memory of 16GB and GPU NVIDIA GeForce

930M with dedicated memory of 2GB.

Regarding our tested data sets, two aspects must be clear, namely that they are randomly

generated and the following terminology we adopt: we refer to complete data as the sample

of data generated according to a complete preorder, that is, we may observe one or more

choice from the feasible set but never c(S, T ) = ∅ ; incomplete data as the sample which

allows indecisiveness between different feasible alternatives, thus allowing c(S, T ) = ∅; and

ordinary data as the data sampled from ordinary preorders, which could even not be reflexive,

allowing c(S, T ) = ∅ even if S is a singleton. Moreover, the randomly generated data does not

allow one to choose an unavailable option. The codes containing the main classes used to

produce our results are shown on Appendix.

On the core part of our investigation, lies the choice of the yardstick mapping. To better

understand how to set the basis to normalize models evaluation, instead of simply choosing a

fixed naive option, like the uniform-distribution mapping, like Fudenberg, Gao & Liang (2020),

Fudenberg & Liang (2020), we tested four possibilities for it. The tested mappings for that

purpose are:

• The nothing yardstick mapping, denoted by fnothing, which maps a choice problem (S, T )

to ∅ for any (S, T );
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• The all yardstick mapping, denoted by fall, which maps a choice problem (S, T ) to S for

any (S, T );

• The net yardstick mappings, denoted by fMLP and fCNN, which correspond to the map-

pings generated from a MLP and a CNN respectively. They learned from a balanced

training set of complete, incomplete and ordinary data, with 50 observations each.

Since ANN outputs are probabilities between the categories, to set it to a deterministic

basis we run these probabilities once to get if options are chosen or not. Finally, they

have 16 neurons per layer and 2 layers each.

All the MLP on our simulations, may it be the MLP that serves as yardstick or the one set

to do predictions, have the same structure with 484 parameters and all of them are trainable.

As for the CNN, they have 980 parameters, all of trainable as well.

About the way we run probabilities for stochastic models, we provide the following expla-

nation. Only probabilities for feasible alternatives are run. For instance, for a choice problem

({x, y}, {x, y, z}), such that an ANN predicts choice probabilities of (0.95, 0.70, 0.05), we roll a

dice with 95% of chance of getting x chosen, then we roll a dice with 70% of chance of getting

y chosen, but we do not run a dice with 5% of chance of getting z chosen, we simply set 0

for z. We do that in order to impose a model to not predict an unavailable choice, to keep

the deterministic transformation of ANN in FM. To better study how output probabilities for

non-available option impacts the assessment of stochastic models, we change the euclidean

loss function to binary crossentropy on a further next section.

It is important to clear out that ANN are trained with limited data sets, such that the data

used to train them does not feature all the possible choice problems. This way, for some

choice problems, they output choice probabilities from the patterns they learn from other

choice problems.

When it comes to the calculation of the restrictiveness, we take into account 100 random

mappings, following what is did by Fudenberg, Gao & Liang (2020). They are permissive

maps, that is, cannot predict the choice of unavailable options, and their output is non-empty.

To compute completeness we need to find the best mapping, fbest. This map is the closest

one to the true mapping f ∗, that is, for a given sample of data, it minimizes expected value

of the loss function. Since we are dealing with ANN, in order to find fbest, we set it to be the
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MLP with 32 neurons per layer and two hidden layers that is trained with the analyzed data,

over fitting it. Furthermore, we set the length of evaluation data sets to 5000 observations.

We set our loss function to be the usual euclidean distance. This way,

d(f, f ′) = EPx [(d(f(X), f ′(X))] (3.8)

Finally, when calculating completeness, to get the out of sample error, when doing the

k-fold crossvalidation we set k = 10. Regarding the ANN we set for predictions to compare

their assessment with our selected bounded rationality models, MLP and CNN, they were

trained from a balanced sample of complete, incomplete and ordinary data, each one with

1000 observations. Both have 16 neurons per hidden layer. We also train with the same

data a MLP and a CNN without the ordinary data, which may be seen as a noise, since it

does not even impose reflexibility. This way we also investigate how relevant this axiom is

for empirical implications. For this set we consider 1000 observations of complete data and

1000 observations of incomplete data.

The data used to train those ANN are different than that used to train the yardstick ANN,

fMLP and fCNN. The validation itself occurs on the completeness evaluation with data sets

with 5000 observations. On this matter, we analyzed two neural network setups. Also, since

the benchmark for ML models is often the logit model, we evaluate it and compare its results

as well. We reinforce that the ANN that we set for predictions, like those set as yardstick, also

learn from limited data sets.

We chose to set the size of the training batch of data large, having over than thousand

observations, in order to simulate the best scenario, in which the researcher has at hand a lot

of observations and a balanced of observations of each type.

The MLP we trained, both the MLP to be evaluated and the MLP set as a yardstick,

have 16 neurons, two hidden layers; their loss functions is set to binary crossentropy; and

their optimizer function is set to adam algorithm. As for both CNN, they were built with two

convolutional layers and a single pooling layer, which uses the max pooling method.

The last layer on each neural network are set to use sigmoid activation function instead of

softmax. The reason behind it is that although softmax function is a more generalized logistic

function often used on multiclass classification problems, forcing the output probabilities

for a given input to sum up to 1, the sigmoid fits better our framework since the choices
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are not mutually exclusive. That being said, softmax activation seems better suitable for

choice function modeling and not choice correspondences, since choice functions’ image is

singleton.

It is worth mentioning that in spite of our framework being defined as a multi-label

classification problem, whose target outputs are vectors of 0 and 1, indicating if options are

chosen or not, we do not use binary crossentropy or categorical crossentropy loss functions,

because our predictions are not probabilities. If we use these metrics on a deterministic setup,

we may end with some cases in which the distance equals log 0. Thus, binary crossentropy

or categorical crossentopy are suitable to calculate distance between a mapping generated

from a neural network and another map, since its predictions are probabilities. We do so on a

separated section.

This way, for the deterministic setup, we set the loss function to be the euclidean distance,

since the psychological metric of the models being evaluated are chosen to be the same

metric. However, instead of euclidean loss function, for example, one may also use mean

squared error as well.

3.4 Data

Since our setting comprises 4 options, data is a vector o ∈ R12, such that o = (c(S, T ), S, T )

and c(S, T ), S, T ∈ R4. Each coordinate of o receive 1 to indicate the presence of an option

on the c(S, T ), S or T and 0 indicates the absence of it. A comprehensive visualization of the

data structure is presented on Fig. (3.2).

Figure 3.2: Comprehensive visualization of each data observation o.

Now we provide a better image of what a prediction mapping f ∈ F looks like on our

setup. It is basically a function which maps all choice problems (S, T ) ∈ R8 into c(S, T ) ∈ R4.
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Under our restricted setting, we have roughly 65 choice problems. This way, we can see

models parametrizations and neural networks like prediction mappings as well, but with a

known structure behind it.

Note that meaningful choice problems are not in number of 256 (28), like it is for F . We

take into account only relevant problems, discarding settings in which there are no feasible or

observable options. Additionally, whenever an option is not observed, it cannot be feasible as

well. That restricts choice problems of FM to 65. Check Fig. (3.3) for a visual representation.

Figure 3.3: Visual representation of a mapping f structure.

Finally, the data we used for our computational simulations are randomly generated.

Finding revealed preferences data itself is not a trivial task. Furthermore, such data with

access to the options the agent observe, being aware of their existence, but cannot choose

them becomes even more difficult. We do not go into a survey because our main contribution

here is methodological, that is, we propose ANN as a feasible option to improve the ability

of discovering structure on data sets, so there is no loss in using random data. Moreover,

there is no loss on using random data to analyze the empirical implications of imposing some

decision axioms, as a part of data preparation and cleaning.
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3.5 Results

3.5.1 Deterministic Experiment

Being straightforward, regarding the ANN and logit outputs we first find that for a given

c(S, T ) with S ⊂ T , that is, a choice problem with observable options that are not available,

CNN spits out extreme low probabilities of choice for any x ∈ T but x /∈ S, in the order of

10−5 to 10−7. However, MLP probabilities for those alternatives are in the order of 10−3 to

10−4. The logit probabilities for these alternatives are relatively lower, in the order of 10−2. It

shows that CNN are better on detecting unavailable alternatives.This finding itself can be

explored on future research topics, since we did not found any documentation of this feature

on previous works. However, since we do not allow an unfeasible option to be chosen when

running probabilities, this fact cannot be captured by the deterministic evaluation of models.

Although completeness lies in the unit interval, its estimator (3.3) proposed by Fudenberg,

Gao & Liang (2020), which is based on the out-of-sample error CV may be negative in some

cases. Conducting some analysis, we found out that that happens due to overfitting or when

the test set is not a good replica of the training set. On such cases, it turns out that the

minimal error mapping on the training set shows a higher error on the test set. Precisely

on our case, since we are working with synthetic data, we found out some negative values

for completeness. However, on our simulations, all the negative values are not statistically

significant according to the statistics and standard errors proposed in Fudenberg, Gao &

Liang (2020), even accounting for a level of confidence of 5%.

Finally, in the next series of tables, the standard errors are displayed in parenthesis.

42



Restrictiveness Completeness
(Complete data)

Completeness
(Incomplete data)

Completeness
(Ordinary data)

Silva & Riella (2020) 0.417
(0.005)

0.871
(0.057)

0.835
(0.055)

-0.072*1

(0.103)

Guney, Richter & Tsur (2018) 0.418
(0.004)

0.856
(0.057)

0.832
(0.055)

-0.023*
(0.103)

MLP
0.496

(0.004)
0.744

(0.057)
0.718

(0.061)
-0.069*
(0.103)

MLPreflexive
0.418

(0.004)
0.860

(0.052)
0.841

(0.056)
-0.018*
(0.103)

CNN
0.678

(0.004)
0.474

(0.063)
0.420

(0.067)
-0.065*
(0.102)

CNNreflexive
0.531

(0.004)
0.711

(0.059)
0.684

(0.062)
-0.093*
(0.103)

Logit 0.471
(0.004)

0.791
(0.056)

0.714
(0.060)

0.123*
(0.103)

Table 3.1: Deterministic models assessment setting the yardstick map to fnothing. Standard
errors are displayed in parenthesis.

(a) Silva & Riella (2020) (b) Guney, Richter & Tsur (2018) (c) MLP (d) MLPreflexive

(e) CNN (f) CNNreflexive (g) Logit

Figure 3.4: Distribution of the δ-discrepancy of 100 random mappings, regarding the yardstick
map fnothing.

1The symbol * indicates that the values are not statistically significant for relevant values of significance of the
test. The negative values of completeness occurs due to the fact that the validation group is not a good replica
of the training set on the k-fold crossvalidation procedure. The problem may also happen due to overfitting,
which might require some treatment of the data.
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Restrictiveness Completeness
(Complete data)

Completeness
(Incomplete data)

Completeness
(Ordinary data)

Silva & Riella (2020) 0.979
(0.005)

0.000
(0.099)

-0.103*
(0.089)

0.000
(0.107)

Guney, Richter & Tsur (2018) 0.985
(0.004)

0.000
(0.099)

-0.105*
(0.089)

0.000
(0.107)

MLP
0.999

(0.001)
0.000

(0.099)
0.000

(0.090)
0.000

(0.107)

MLPreflexive
0.994

(0.002)
0.000

(0.099)
-0.053*
(0.088)

0.000
(0.107)

CNN
1.000

(0.000)
0.000

(0.099)
0.000

(0.090)
-0.120*
(0.107)

CNNreflexive
1.000

(0.000)
0.000

(0.099)
0.000

(0.090)
0.000

(0.107)

Logit 0.999
(0.001)

0.000
(0.099)

0.000
(0.090)

-0.003*
(0.106)

Table 3.2: Deterministic models assessment setting the yardstick map to fall. Standard errors
are displayed in parenthesis.

(a) Silva & Riella (2020) (b) Guney, Richter & Tsur (2018) (c) MLP (d) MLPreflexive

(e) CNN (f) CNNreflexive (g) Logit

Figure 3.5: Distribution of the δ-discrepancy of 100 random mappings, regarding the yardstick
map fall.
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Restrictiveness Completeness
(Complete data)

Completeness
(Incomplete data)

Completeness
(Ordinary data)

Silva & Riella (2020) 0.749
(0.010)

0.617
(0.075)

0.592
(0.070)

-0.090*
(0.104)

Guney, Richter & Tsur (2018) 0.751
(0.008)

0.573
(0.075)

0.586
(0.069)

-0.076*
(0.103)

MLP
0.888

(0.009)
0.238

(0.075)
0.303

(0.076)
-0.197*
(0.104)

MLPreflexive
0.760

(0.009)
0.577

(0.068)
0.594

(0.071)
0.072*
(0.103)

CNN
0.999

(0.001)
0.000

(0.079)
0.000

(0.080)
-0.064*
(0.103)

CNNreflexive
0.939

(0.006)
0.127

(0.077)
0.191

(0.079)
-0.014*
(0.103)

Logit 0.844
(0.008)

0.379
(0.073)

0.294
(0.076)

0.099*
(0.104)

Table 3.3: Deterministic models assessment setting the yardstick map to fMLP. Standard
errors are displayed in parenthesis.

(a) Silva & Riella (2020) (b) Guney, Richter & Tsur (2018) (c) MLP (d) MLPreflexive

(e) CNN (f) CNNreflexive (g) Logit

Figure 3.6: Distribution of the δ-discrepancy of 100 random mappings, regarding the yardstick
map fMLP.
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Restrictiveness Completeness
(Complete data)

Completeness
(Incomplete data)

Completeness
(Ordinary data)

Silva & Riella (2020) 0.610
(0.007)

0.757
(0.067)

0.713
(0.064)

-0.058*
(0.105)

Guney, Richter & Tsur (2018) 0.613
(0.007)

0.729
(0.067)

0.709
(0.063)

-0.067*
(0.104)

MLP
0.728

(0.008)
0.516

(0.067)
0.510

(0.070)
-0.103*
(0.104)

MLPreflexive
0.566

(0.007)
0.772

(0.058)
0.765

(0.062)
-0.139*
(0.104)

CNN
0.965

(0.004)
-0.019*
(0.074)

-0.045*
(0.076)

-0.168*
(0.104)

CNNreflexive
0.718

(0.006)
0.530

(0.066)
0.531

(0.069)
0.000

(0.104)

Logit 0.689
(0.007)

0.605
(0.065)

0.503
(0.069)

-0.018*
(0.105)

Table 3.4: Deterministic models assessment setting the yardstick map to fCNN. Standard
errors are displayed in parenthesis.

(a) Silva & Riella (2020) (b) Guney, Richter & Tsur (2018) (c) MLP (d) MLPreflexive

(e) CNN (f) CNN (g) Logit

Figure 3.7: Distribution of the δ-discrepancy of 100 random mappings, regarding the yardstick
map fCNN.
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Given the results presented on the Tables and Figures above, we summarize the main

findings below:

• Setting the yardstick to fnothing does not help to reveal much structure on data, since

all models are evaluated as flexible models with high completeness. That is expected,

since flexible models fit almost all conceivable data without capturing structure specific

to the observed data;

• ANN seems like the best yardstick option to reveal data structure. On this matter,

MLP yardstick appears as the option that shows the best pair restrictiveness and

completeness, with slightly restrictive models but a meaningful completeness level;

• Comparing theoretical models with ANN models when setting the yardstick to an

ANN, economic models reveal more structure, with a higher completeness evalua-

tion. Although economic models’ restrictiveness are a bit lower than ANN ones, their

completeness with both complete and incomplete data are considerably higher;

• On the comparison between aspirational models in Guney, Richter & Tsur (2018) and in

Silva & Riella (2020), the findings indicate that considering the existence of a attraction

region of the reference point, for the synthetic data we used, is in fact a good way to

approach data, since it leads to a small loss of restrictiveness and a higher gain of

completeness. This way, if such a finding repeats for data collected from real world,

it shows that the effect of the attraction region plays an important role in the decision

making under phantom and decoy effects;

• Economic models overall are better tools to identify structure on data. This result shows

that evaluating economic models with the use of ML foster that economic models serve

as a meaning compass to behavioral researches;

• CNN shows for almost all experiments the higher restrictiveness level. This indicates the

convolutional learning process is able to capture some particular behavioral patterns that

cannot accommodate many modeling strategies. However, those identified regularities

are not present on the batch of data we analyzed, due to the low completeness

evaluations;
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• Considering only the ANN and logit models, MLP had way better results than CNN and

even the usual benchmark, that is the logit model, with considerably high completeness

without being loose models able to comprise any data set;

• Imposing complete preferences on data does not seem to impair the evaluation of

models. Although the assessment of models with complete data is different from that

with incomplete data, they are pretty similar, without any significant change. This finding

indicates that removing indecisiveness from choice data may not be a part of data

preparation when dealing with choice data, fostering that indecisiveness is a core part

of individual’s behavior;

• Regarding the choice data set the researcher intends to investigate, our results show

that data preparation is a fundamental part of the data analysis, even dealing with

choice data. Looking at all the completeness evaluations for ordinary data, which can

be seen as a raw data with many noises, like a sparse matrix, their results are not

different from zero from a statistical view and hence not meaningful. This result also

shows the relevance of imposing reflexivity on choice theory, even for empirical analysis.

Reflexive data set used to train ANN shows a gain of structure for both MLP and CNN.

All results, aside from those setting yardstick to fall, shows that reflexive train data sets

make ANN a bit more flexible and then improve their completeness on data, may it be

complete or incomplete.

3.5.2 Stochastic Experiment

Now we analyze the trained neural networks on a stochastic choice domain, keeping their

output probabilities. Doing so, we can investigate if there is any significant difference on the

assessment of both MLP and the CNN, specially because their probabilities for unavailable

options slightly differ. Here we change the loss function to a more adequate option for this

analysis, that is, Binary Crossentropy (BCE). We still fix M = 100 and the yardstick map is set

to the logit map, which is the usual benchmark for stochastic models. The random mappings

fm are still kept as deterministic mappings.
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Restrictiveness Completeness
(Complete data)

Completeness
(Incomplete data)

Completeness
(Ordinary data)

MLP 0.899
(0.003)

0.429
(0.042)

0.494
(0.041)

0.147
(0.069)

CNN 1.000
(0.000)

0.000
(0.047)

0.000
(0.049)

0.000
(0.065)

Table 3.5: Assessment of ANN trained with a balanced set of complete, incomplete and
ordinary data setting the yardstick map to flogit. Standard errors are displayed in parenthesis.

Restrictiveness Completeness
(Complete data)

Completeness
(Incomplete data)

Completeness
(Ordinary data)

MLP 0.814
(0.003)

0.861
(0.044)

0.833
(0.044)

0.000
(0.068)

CNN 0.999
(0.000)

0.000
(0.054)

0.068
(0.057)

0.000
(0.068)

Table 3.6: Assessment of ANN trained with a balanced set of complete and incomplete data
setting the yardstick map to flogit. Standard errors are displayed in parenthesis.

(a) MLP (b) CNN

Figure 3.8: Distribution of the δ-discrepancy of 100 random mappings, regarding the yardstick
map flogit, considering the training set a balanced set with complete, incomplete and ordinary
data.

(a) MLP (b) CNN

Figure 3.9: Distribution of the δ-discrepancy of 100 random mappings, regarding the yardstick
map flogit, considering the training set a balanced set with complete and incomplete data.
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Restrictiveness Completeness
(Complete data)

Completeness
(Incomplete data)

Completeness
(Ordinary data)

MLP 0.689
(0.004)

0.893
(0.038)

0.691
(0.051)

0.000
(0.061)

CNN 0.911
(0.004)

0.244
(0.053)

0.320
(0.049)

0.030
(0.066)

Table 3.7: Assessment of ANN trained with a balanced set of complete data setting the
yardstick map to flogit. Standard errors are displayed in parenthesis.

(a) MLP (b) CNN

Figure 3.10: Distribution of the δ-discrepancy of 100 random mappings, regarding the
yardstick map flogit, considering the training set a balanced set with complete data.

According to the results presented on Tables and Figures below, the main conclusions are

the following:

• Even on the stochastic environment, imposing reflexivity on choice data still remains as

a crucial part of data preparation in order to get better and meaningful results;

• Training ANN with data after imposing reflexivity still remains a good strategy to bet-

ter evaluate ANN, specially in the case of MLP which showed a significant gain of

completeness followed by a timid drop on its restrictiveness;

• Comparing Tables 3.6 and 3.7, we conclude that imposing the axioms of complete

preferences when training ANN does not show any gains in terms of the networks

performance, since the MLP trained with both complete and incomplete data shows

higher restrictiveness and completeness levels than the one that is trained only with

complete data;

• MLP appears to have a higher degree of compatibility with decision theory analysis, in

which data use a binary representation for choices.
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3.5.3 A More Flexible Framework

Here, we build a wider experimental setup for deterministic choice problems, basically

allowing more options in order to investigate how much of previous results are related to the

restrictive setup with only four alternatives. Doing so, we are able to compare the rational

model with the covered bounded rationality models. The model we refer as rational under this

framework is the standard utility maximizer in which individual does not take into account any

x ∈ T \ S when choosing from S, simply picking arg maxx∈S u(x). The options the agent can

choose are shown in Fig. (3.11).

Figure 3.11: Spatial arrangement of alternatives the individual can choose on a framework
with 8 options.

We keep all parametrizations set before. When the agent observes all options and

can choose any of them, we set the satisfaction ordering (with decreasing prices) as being

electric SUV ≻ electric hatch ≻ hybrid SUV ≻ hybrid hatch ≻ regular SUV ≻ regular hatch ≻

electric motorcycle ≻ regular motorcycle. To get a glimpse on models predictions on this

framework, suppose the agent observes all options and the only unavailable option is the elec-

tric car, which turns out to be her aspiration. In this case, the rational model says she chooses

the electric hatch and aspiration-only model shows indifference between the references,

hybrid SUV and electric hatch. As for the aspiration-reference model, after identifying the two

references, her attention lies on them and on the hybrid hatch and regular SUV, leading to a

regular SUV choice, since it is cheaper. Furthermore, note that under this framework, the

only model that allows indifference is the aspiration-only model.

Regarding the structure of the yardsticks ANN, we had find 16 neurons per hidden layer

appears to be a better setting for uncovering data structure, instead of 32 neurons per layer

like set in the four alternatives case. It speaks to the fact that under a setting with more

alternatives, dropping the amount of neurons reduce the amount of parameters of the ANN,

which reduces over-fitting effects and improve the generalization capabilities of the ANN.
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About the number of parameters of the ANN used on this experiment, we set all of them

to be trainable, with MLP containing 680 parameters and CNN containing 1624 parameters.

The findings here are pretty much consistent with those previously found. However, since

we are analyzing completeness on a random data set, allowing individuals to choose more

options significantly drop models’ completeness evaluation.

Although not much different from each other, completeness levels for the random data

sets showed a slightly better degree of fitness of the aspiration-only model in relation with the

other models.
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Restrictiveness Completeness
(Complete data)

Completeness
(Incomplete data)

Completeness
(Ordinary data)

Rational 0.750
(0.000)

0.565
(0.069)

0.443
(0.072)

0.022*
(0.081)

Silva & Riella (2020) 0.750
(0.000)

0.546
(0.069)

0.448
(0.072)

0.043*
(0.082)

Guney, Richter & Tsur (2018) 0.748
(0.000)

0.567
(0.069)

0.456
(0.072)

0.038*
(0.081)

MLP
0.778

(0.000)
0.512

(0.066)
0.030

(0.073)
0.073*
(0.082)

MLPreflexive
0.778

(0.001)
0.512

(0.066)
0.315

(0.073)
-0.002*
(0.081)

CNN
0.814

(0.000)
0.419

(0.066)
0.242

(0.073)
-0.018*
(0.079)

CNNreflexive
0.805

(0.000)
0.451

(0.066)
0.236

(0.074)
0.022*
(0.082)

Logit 0.785
(0.001)

0.477
(0.066)

0.265
(0.073)

0.096*
(0.082)

Table 3.8: Deterministic models assessment setting the yardstick map to fnothing. Standard
errors are displayed in parenthesis.

(a) Rational (b) Silva & Riella (2020) (c) Guney, Richter & Tsur (2018) (d) MLP

(e) MLPreflexive (f) CNN (g) CNNreflexive (h) Logit

Figure 3.12: Distribution of the δ-discrepancy of 100 random mappings, regarding the
yardstick map fnothing.
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Restrictiveness Completeness
(Complete data)

Completeness
(Incomplete data)

Completeness
(Ordinary data)

Rational 1.000
(0.000)

0.000
(0.078)

0.054*
(0.082)

0.000
(0.084)

Aspiration-Reference 1.000
(0.000)

0.000
(0.078)

0.063*
(0.082)

-0.041*
(0.082)

Aspiration-only 1.000
(0.000)

0.000
(0.078)

0.076*
(0.082)

0.000
(0.082)

MLP
1.000

(0.000)
0.000

(0.078)
0.000

(0.082)
0.051*
(0.081)

MLPreflexive
1.000

(0.000)
0.000

(0.078)
0.000

(0.082)
0.030*
(0.080)

CNN
1.000

(0.000)
0.000

(0.078)
0.000

(0.082)
0.087*
(0.082)

CNNreflexive
1.000

(0.000)
0.000

(0.078)
0.000

(0.082)
0.071*
(0.081)

Logit 1.000
(0.000)

0.000
(0.078)

0.000
(0.082)

0.042*
(0.080)

Table 3.9: Deterministic models assessment setting the yardstick map to fall. Standard errors
are displayed in parenthesis.

(a) Rational (b) Silva & Riella (2020) (c) Guney, Richter & Tsur (2018) (d) MLP

(e) MLPreflexive (f) CNN (g) CNNreflexive (h) Logit

Figure 3.13: Distribution of the δ-discrepancy of 100 random mappings, regarding the
yardstick map fall.
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Restrictiveness Completeness
(Complete data)

Completeness
(Incomplete data)

Completeness
(Ordinary data)

Rational 0.900
(0.001)

0.312
(0.078)

0.288
(0.076)

-0.020*
(0.082)

Silva & Riella (2020) 0.901
(0.001)

0.281
(0.078)

0.295
(0.076)

-0.023*
(0.082)

Guney, Richter & Tsur (2018) 0.898
(0.001)

0.315
(0.078)

0.305
(0.077)

-0.035*
(0.082)

MLP
0.934

(0.001)
0.228

(0.074)
0.107

(0.078)
0.036*
(0.082)

MLPreflexive
0.934

(0.001)
0.228

(0.074)
0.126

(0.077)
-0.042*
(0.082)

CNN
0.978

(0.001)
0.080

(0.074)
0.033

(0.078)
0.000

(0.082)

CNNreflexive
0.966

(0.001)
0.130

(0.074)
0.024

(0.078)
-0.020*
(0.082)

Logit 0.942
(0.001)

0.172
(0.074)

0.061
(0.078)

0.061*
(0.083)

Table 3.10: Deterministic models assessment setting the yardstick map to fMLP. Standard
errors are displayed in parenthesis.

(a) Rational (b) Silva & Riella (2020) (c) Guney, Richter & Tsur (2018) (d) MLP

(e) MLPreflexive (f) CNN (g) CNNreflexive (h) Logit

Figure 3.14: Distribution of the δ-discrepancy of 100 random mappings, regarding the
yardstick map fMLP.
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Restrictiveness Completeness
(Complete data)

Completeness
(Incomplete data)

Completeness
(Ordinary data)

Rational 0.882
(0.001)

0.326
(0.078)

0.305
(0.076)

-0.043*
(0.081)

Silva & Riella (2020) 0.883
(0.001)

0.296
(0.077)

0.312
(0.076)

0.026*
(0.082)

Guney, Richter & Tsur (2018) 0.880
(0.001)

0.329
(0.077)

0.321
(0.076)

-0.003*
(0.082)

MLP
0.916

(0.001)
0.244

(0.074)
0.128

(0.078)
0.056*
(0.082)

MLPreflexive
0.915

(0.001)
0.244

(0.074)
0.146

(0.077)
-0.017*
(0.082)

CNN
0.958

(0.001)
0.100

(0.073)
0.056

(0.077)
0.000

(0.081)

CNNreflexive
0.947

(0.001)
0.148

(0.074)
0.048

(0.078)
-0.012*
(0.082)

Logit 0.924
(0.001)

0.189
(0.074)

0.084
(0.077)

0.080*
(0.083)

Table 3.11: Deterministic models assessment setting the yardstick map to fCNN. Standard
errors are displayed in parenthesis.

(a) Rational (b) Silva & Riella (2020) (c) Guney, Richter & Tsur (2018) (d) MLP

(e) MLPreflexive (f) CNN (g) CNNreflexive (h) Logit

Figure 3.15: Distribution of the δ-discrepancy of 100 random mappings, regarding the
yardstick map fCNN.
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3.6 Bridging Rationality and Real World Behavior: A Nu-

merical Approach

The main goal of this section is to use the metrics of restrictiveness and completeness

to explore the joint potential of a pair of models, one deterministic and another stochastic,

to explain real world conjunctures in terms or behavior and uncertainty. In this sense, the

deterministic model reveals its compatibility with data behavior and the stochastic models

reveals how much of the data uncertainty can be understood under its setup. This way, we

explore the advantages of both modeling strategies, namely the clear notion of rationality

under deterministic setups, and the flexibility of probabilistic models.

Previously we investigated the relationship between models and data, using ANN to better

understand it. Now we investigate the relationship between models, using data. By the end

of the day, the goal is the same as before, namely to identify structure on data. However, now

we give a step forward. After finding how much structure a deterministic model reveals for

some data set, we ask how much of the remaining uncertainty of data can be understood

under a stochastic model structure.

We propose a numerical method based on Fudenberg, Gao & Liang (2020) completeness

measure instead of an axiomatic approach, like developed in Ok & Tserenjigmid (2019), Ok &

Tserenjigmid (2021) and Ok & Tserenjigmid (2022). Although the approaches have a similar

purpose, seeking rationality, they slightly differ. While the authors attempt to compare the

rationality degree of stochastic models or look for some rational consistency on these models,

we attempt to numerically identify if the flexibility allowed by a probabilistic model helps to

explain the uncertainty in data that a deterministic model cannot explain.

By doing so, we may be able to get additional structure for the preferences underlying

some data set, since the stochastic model provides a more data-friendly way to improve

deterministic models comprehension, allowing to understand randomness on choices using a

stochastic model grounded on behavioral hypothesis as well.

Our approach is based on the following proposed measure, which is a score based on

completeness evaluation of the stochastic model, that we call it Deterministic-Completeness,

presented in the Eq. (3.9). For example, Deterministic-Completeness is referred as rational-

completeness if for a given stochastic model we evaluate its completeness setting the
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yardstick to the rational model, or aspirational-completeness, if we set the yardstick to be

some aspirational model:

κ = MSEyardstick − MSEmodel

MSEyardstick − MSEbest
(3.9)

Completeness definition is based on errors, that is, the errors of the mappings on some

data. As previously said, errors can be calculated in different manners, like euclidean distance,

mean squared error (MSE), binary crossentropy, categorical binary crossentropy and so on.

So far, we had used euclidean distance to calculate deterministic models’ errors and binary

crossentropy for stochastic models, but that is to be decided by the researcher according

to the nature of her problem. However, for the bridging approach, we propose using MSE

since it is meaningful for both deterministic and stochastic models. That being said, the only

difference from Eq. (3.9) and the completeness definition is that we specify the function used

to evaluate the error, which turned out to be the MSE.

On Eq. (3.9) we set the yardstick as being the deterministic model, the best model to be a

MLP over fitting analyzed data as did before and the model being evaluated as a set with the

stochastic model and the deterministic model, hence, the yardstick.

Note that for a deterministic model, regardless of its completeness level on a data set,

if the stochastic model shows a higher MSE than the deterministic model, its deterministic-

completeness is null. It shows that the flexibility allowed by that specific stochastic model

does not help understanding uncertainty on that data set, which may come to many factors,

like indecisiveness, experimentation or indifference. However, if a stochastic model shows

a not-null deterministic-completeness, we can understand some degree of its uncertainty

regarding the deterministic model under the theoretical structure that underlies that stochastic

model.

To turn the matter more comprehensible, suppose a stochastic model, let’s say a RUM,

shows a high rational-completeness κrational
RUM , that is, setting yardstick to be the rational model

for a given data set. Moreover, setting the yardstick to a MLP, we found an average com-

pleteness κ for the rational model. Then we conclude that the rational model captures data

structure at the degree of its completeness κ, and the portion that is regarded as error is

explained by RUM at the extent of κrational
RUM .

Although stochastic models mitigate the clear notion of rationality as we cannot see it
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through probabilities, they are built on the rational basis, that is, the economic theory. As for

the RUM, there is a set of preferences and some of them shows x as a maximal element. So

the probability of observing x chosen is simply the probability of the agent choose according

to a preference in which x is a maximal element. That being said, we identify how much of the

structure of a deterministic model is pointed out by the data and how much of its uncertainty

is captured by the stochastic model, in such a way both of them we can explain on rational

terms.

Doing so, we propose a way to further develop the completeness measure to better

understand data, building a bridge between deterministic and stochastic models grounded on

data. Henceforth, having two economic models, one deterministic and another stochastic,

a researcher can link the economic assumptions behind the two of them to better explain

revealed preferences without getting rid of a sturdy theoretical basis.

Since the method applies for a general stochastic model, it also applies to ANN. Thus,

next we show the results of our method applied to investigate how some MLP and CNN

(trained with 1000 observations from complete data and 1000 observation from incomple

data), which play the role of stochastic models, can further improve rational, Silva & Riella

(2020) and Guney, Richter & Tsur (2018) models fit to some random generated data. The

results are presented on Tab. (3.12), in which the yardstick is set to be a MLPyardstick trained

with a balanced data set with 50 observations from complete, incomplete and ordinary data

and completeness is evaluated on a complete data set with 5000 observations.

Note that, again we set the size of the training batch of data to be over 1000 observations

to simulate the best scenario in which the researcher have a balanced set of data with many

observations. The obtained results for this experiment are summarized on the following Table

and next discussions.
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Restrictiveness Completeness Deterministic-
Completeness of MLP2

Deterministic-
Completeness of CNN3

Rational 0.916
(0.001)

0.289
(0.078) 91.04% 80.05%

Silva & Riella (2020) 0.915
(0.001)

0.253
(0.078) 91.23% 80.47%

Guney, Richter & Tsur (2018) 0.913
(0.001)

0.285
(0.078) 91.06% 80.08%

Table 3.12: Results of the evaluation of different Deterministic-Completeness of a MLP and a
CNN. Standard errors are displayed in parenthesis.

According to Table 3.12, Deterministic-Completeness evaluations of MLP shows that

its potential of explaining residual uncertainty behind the data set when accounting for the

considered deterministic models is around 91%. It turns out that the same potential of the

CNN is around 80%. This results are compatible with the high completeness evaluations of

the ANN, although they show high levels of restrictiveness. In fact, the completeness of the

MLP is higher than that of the CNN, thus is expected that the MLP potential to comprise the

uncertainty is higher as well.

Furthermore, simulating the deterministic-completeness of a stochastic model whose

probabilities are drawn from uniform distribution, we found that the values were all null. It

shows that a random uniform probabilistic model does not help at all to understand the

uncertainty of the data we had. However, as pointed out by Table 3.12, ANN indeed help to

understand a considerable portion of it, as far as its own structure is known.

3.7 Conclusion

In this paper we explore the model assessment method developed in Fudenberg, Gao

& Liang (2020). We do experiments regarding the best decision for what they call a naive

mapping, but we refer to it as a yardstick mapping, since one can vary it according to the

research topic of interest. The yardstick plays a crucial role on evaluating restrictiveness and

completeness of a model, which are measures closely related to data structure.
2The MLP being evaluated here shows a restrictiveness of 0.739 (standard error of 0.000) and completeness

of 0.839 (standard error of 0.040), when setting the yardstick to be another MLP trained with complete,
incomplete and ordinary data.

3The CNN being evaluated here shows a restrictiveness of 0.803 (standard error of 0.000) and completeness
of 0.616 (standard error of 0.046), when setting the yardstick to be another MLP trained with complete,
incomplete and ordinary data.
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Our main findings indicate that ML techniques can be used together with economic models

to uncover structure on data, rather than being a tool that replaces theoretical modeling at all.

This way, setting the yardstick to be a MLP trained with a small balanced data set, showed the

best assessment results. Furthermore, we reinforce that data preparation is a fundamental

stage on choice data analysis and we conclude that imposing reflexivity on choice data

shows a high gain on the ability to identify structure, but imposing completeness does not

affect models’ evaluation. Finally, we use completeness measure to build a bridge between

deterministic and stochastic models, honing the ability to understand underlying preferences

and uncertainty inherent to a real world conjuncture.

Since the contribution is mostly methodological, future works may evaluate economic

models on real world data. Henceforth, one can identify the models that better unfold an

environment behavior which is extremely handful to conduct policy analysis and counterfactual

simulations based on preferences. Furthermore, next works may explore the potential of

CNN on better identifying unfeasiable alternatives, when compared to MLP or Logit models.
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Chapter 4

Updating Inner Perspectives about the

World in a Subjective Manner

4.1 Introduction

Many of our daily choices involve a two-staged decision process, first we choose where to

shop or in which restaurant to dine and then, once there, we choose what to buy or which

meal to order. This first stage characterizes a choice over menus of alternatives and the

second one a choice over the alternatives contained in the chosen menu. Since people often

present multiple tastes, meaning the same person will sometimes order pasta and sometimes

order salad, depending on the mood of the day, this second choice has a stochastic nature. It

is reasonable, in this context, to expect some consistency of the decision maker-henceforth

DM- when choosing between menus and between alternatives. As an example, if a menu

with a single additional alternative is strictly preferred to one without it, it must be because

the DM finds this additional alternative compelling and we ought to expect they would choose

it with positive probability.

Ahn (2013) develop this connection between choice over menus and stochastic choice in

the DLR-GP representation, that links the Dekel, Lipman & Rustichini (2001) framework of

preferences over menus of lotteries to the Gul & Pesendorfer (2006) random expected utility

representation for the DM’s stochastic choice. They characterize the alignment between the

two choice procedures with two very intuitive conditions, the first of which described in the

example above.
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Under these conditions the DM would perfectly anticipate their future preferences. It is

reasonable to expect, however, that the DM may receive new information between the two

stages of the decision process, meaning that either some expected states never realize

or some unexpected states do. In the first case we could see some previously relevant

alternatives never being chosen and, in the second, formerly irrelevant alternatives are

chosen with positive probability. Ahn (2013) explicitly model this latter case in the unforeseen

contingencies representation while the former is a straightforward result of their work that we

formalize in Section 4.4.

This learning process, in which the underlying set of states is updated, is not restricted to

the transition from preferences over menus to random choice. Indeed, Riella (2013) discusses

a similar updating transition but between two preferences over menus. Intuitively, suppose

the DM is choosing where to dine in a given night and reveal a preference during the morning

and a different one after lunch. When do these two preferences reveal that the agent has

learned new information about her future preferences and dropped some subjective states

during lunch? They answer this question with the property of Flexibility Consistency, which

uses a set of additional alternatives to identify which subjective states were dropped.

In this paper we study some remaining processes of learning. Particularly we focus on

recognizing updates in random choice rules that follow a Finite Random Expected Utility

procedure, an adaptation of the model in Gul & Pesendorfer (2006) with finite state spaces.

As done in Ahn (2013), the finiteness of the state space requires the use of a tie-breaking

rule with infinite support. We also study the conditions under which a collection of random

choice rules may be understood as emerging from a partition of the state space that defines

either another Finite Random Expected Utility model or a Preference Over Menus that admits

a Dekel, Lipman & Rustichini (2001)-henceforth DLR- representation.

Our results allow us to characterize when different choice behaviors emerge from an

updating process between them. Suppose the DM decides to avoid meat at mondays. When

will this new revealed pattern, which we understand as a new random choice rule, be a

Bayesian update from the previously revealed pattern? Meaning that some alternatives

will be chosen less often, but the relative probabilities between unaffected choices remain

unchanged.

For the main theorem in this paper the order of the updating is not really relevant, meaning
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we can explain both when the learning process leads to a drop of states or to the enrichment of

the original set of states. In this sense, the theorem accommodates both the traditional notion

of Bayesian Updating, in which the state space shrinks, and that of Reverse Bayesianism,

discussed in Karni & Vierø (2013), in which the state space expands.

The remainder of this paper is organized as follow. In the next section we discuss the

primitives and main definitions necessary to our work. In Section 4.3 we pose our main

results, characterizing the updating between RCRs. We also provide the conditions under

which a collection of RCRs build a partition of the original one after the updating. In Section

4.4 we study the regular updating from Menus to Random Choice and provide a partitioning

result in this setting, similar to that of the previous section. In Section 4.5 we discuss the

connections between the updating under the different frameworks. The last section presents

our conclusions and the proofs are presented in Appendix A.2.

4.2 Setup

Let Z be a finite set with |Z| ≥ 2, ∆(Z) be the space of probability measures on Z

and A ⊂ ∆(Z) be the collection of all nonempty, finite subsets of ∆(Z) endowed with the

Hausdorff metric:

dh(A, B) := max
{

max
p∈A

min
q∈B

d(p, q), max
q∈B

min
p∈A

d(p, q)
}

.

We call an arbitrary element A ∈ A a choice problem or, similarly, a menu. Let ∆(∆(Z))

denote the space of all probability distributions over ∆(Z). We will denote by S the set of

possible states, be them subjective or objective, that will influence the DM’s preferences over

∆(Z). Let n := |Z|, since ∆(Z) ⊂ Rn we use the euclidean distance over lotteries and denote

by Bϵ(z) the open ball with radius ϵ and center z and by Bϵ(z) its closure. We denote by intA

the interior of a set A and by riA its relative interior.

Given a function (or a vector) u ∈ RZ we denote the expected utility of the lottery

p ∈ ∆(Z) with respect to u interchangeably as u(p) and u · p. We define the set of normalized
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(nonconstant) expected-utility functions by

U :=
{

u ∈ RZ :
∑
z∈Z

uz = 0,
∑
z∈Z

u2
z = 1

}
.

We note that every nontrivial expected utility preference over ∆(Z) is represented by one and

only one function u ∈ U . By ∆f (U) we mean the space of finitely additive probability measures

on U . Given an expected-utility function u ∈ RZ , we let M(A, u) denote the maximizers of u

in A:

M(A, u) :=
{

p ∈ A : u(p) = max
q∈A

u(q)
}

.

4.2.1 Random Choice Rules

We begin with the definition of a random choice rule:

Definition 1. A random choice rule (RCR) is a function ρ : A → ∆(∆Z) that associates to

each choice problem A a probability measure ρA on A, meaning, for any A ∈ A, ρA(A) = 1

and, if B, C ∈ A are such that B ∩ C = ∅, then ρA(B ∪ C) = ρA(B) + ρA(C).

Let U : S × ∆(Z) 7→ R be the agent’s utility function across states, such that Us ∈ RZ

is the expected-utility function that represents the agents preferences over ∆(Z) upon the

realization of state s ∈ S. If we have that, for some A ∈ A, |M(A, Us)| = 1 for every s ∈ S,

then the Finite Random Expected Utility representation of ρ on A would be resumed to

ρA(p) = µ ({s ∈ S : p ∈ M(A, Us)}) ,

where µ is a probability distribution over S.

As we work with a finite state space, though, we will need a rule to deal with situations

where a state with positive probability of realization leads to a tie among available alternatives.

In the original set-up of Gul & Pesendorfer (2006) this problem is averted as the authors

show that it is always possible to achieve an infinite state space representation where each

individual state has zero probability.1 We follow Ahn (2013) by defining a tie-breaking rule.
1They deal with nonregular random utility functions, requiring a tie-breaking rule in the supplemental material

to their paper.
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Definition 2. Given a finite state space S, a tie-breaking rule for S is a map τ : S → ∆f(U)

that satisfies the following regularity condition for all A ∈ A, p ∈ A and s ∈ S:

τs ({u ∈ U : u(p) > u(q), ∀q ∈ A \ {p}}) = τs

({
u ∈ U : u(p) = max

q∈A
u(q)

})
.

Note that, despite having finite states in S, the regularity condition implies that the tie-

breaking rule τs cannot have a finite support on U , otherwise it would itself lead back into ties

among lotteries.

With this we can define the Finite Random Expected Utility representation.

Definition 3. A Finite Random Expected Utility (FREU) representation is a tuple (S, U, µ, τ),

where S is a finite state space, U : S × ∆(Z) → R, µ is a probability distribution on S, and τ

is a tie-breaking rule over S such that the following statements hold:

(i) For every A ∈ A and p ∈ A,

ρA(p) =
∑
s∈S

µ(s)τs ({u ∈ U : p ∈ M(M(A, Us), u)})

(ii) For any two distinct states s, s′ ∈ S, Us and Us′ do not represent the same von

Neumann-Morgestern (vNM) preference on ∆(Z).

(iii) For every s ∈ S, µ(s) > 0 and Us is nonconstant.

In this setup every FREU representation is essentially unique. Meaning that, if (S, U, µ, τ)

and (S ′, U ′, µ′, τ ′) represent the same random choice rule, then it must be the case that for any

s ∈ S there is a unique s′ ∈ S ′ such that, for every A ⊂ ∆(Z), arg max Us(A) = arg max U ′
s′(A),

µ(s) = µ′(s′) and τ s = τ ′
s′, meaning that, essentially, S = S ′. Through the remainder of this

paper, whenever we say two subjective states, s, s′ are equal (s = s′), we mean that the

utilities they imply, say Us and U ′
s′, represent the same vNM preferences.

Whenever two RCRs, ρ and ρ′, have FREU representations (S, U, µ, τ) and (S ′, U ′, µ′, τ ′)

such that S ′ ⊆ S and, for every s ∈ S ′, µ′(s) = µ(s)
µ(S′) and τ ′

s = τs, we abuse notation by saying

(S ′, U, µS′ , τ) is a FREU representation of ρ′. Note that S ′ ⊆ S already implies that, for every

s ∈ S ′, Us and U ′
s represent the same vNM preferences over ∆(Z).
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4.2.2 Preferences over Menus

In sections 4.4 and 4.5 we work with preferences over menus and its relations to RCRs.

For that we use the canonical DLR representation with a finite subjective state space.

Definition 4. A preference over menus is a binary relation ≿⊆ A × A.

Definition 5. A preference over menus ≿ has a DLR representation if there is a tuple (S, U, µ),

where S is a finite state space, U : S×∆(Z) → R is a state-dependent expected-utility function,

and µ is a probability distribution on S, such that the following statements hold:

(i) A ≿ B if and only if V (A) ≥ V (B), where V : A → R is defined by V (A) =∑
s∈S µ(s) maxp∈A Us(p).

(ii) For any two distinct states s, s′ ∈ S, Us and Us′ do not represent the same von

Neumann-Morgenstern preference on ∆(Z).

(iii) For every s ∈ S, µ(s) > 0 and Us is nonconstant.

4.3 Updating Finite Random Expected Utility Representa-

tions

4.3.1 Main Result: Updating Between FREU representations

We proceed by stating our result of updating between FREU representations. Let ρ1 and

ρ2 be two RCRs, (S, U, µ, τ) and (T, U ′, µ′, τ ′) its respective FREU representations. Our main

theorem is based upon the axiom of Random Consistency.

Axiom 1 (Random Consistency). For any choice problem A ∈ A and p, q ∈ A, if ρA
1 (p)ρA

2 (q) >

ρA
1 (q)ρA

2 (p), then there exists a set B ∈ A and a radius δ > 0 such that, ρ
A∪B∪{pδ}
2 (pδ) = 0 for

every pδ ∈ Bδ(p) ∩ ∆(Z), but ρA∪B
1 (p) > 0.

What this axiom implies is that, given any menu A ∈ A, whenever we see a difference

in the relative probability of choice among two alternatives p, q ∈ A between ρ1 and ρ2, it

must be the case that there is some other set B ∈ A that inhibits the choice of p, and every

neighboring alternative, by ρ2 but not by ρ1. The intuition is that some of the subjective states

that led to the choice of p must have been dropped in the transition from ρ1 to ρ2, otherwise
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we should not see any change in relative probability among p and q. Therefore, by carefully

selecting the set B ∈ A, we can offer the DM some specific alternatives that will please them

more than p in the remaining states that lead to its choice in ρ2, but that are not as attractive

in the states that were dropped due to the updating, meaning we still have ρ1(p) > 0.

Clearly, this axiom depends on the space of alternatives being rich enough so we can

always find such set B. Still, we can craft an example in a simplified setup, with states of

nature that are external to the DM, that may help explicit the idea underlying the axiom. Let’s

say the DM is planning a barbecue with friends on a given Sunday. Suppose the options of

drinks at the barbecue will be A = {beer, wine}. On the day of the barbecue two independent

events may happen with 1/2 probability, the DM may play soccer and the day might be sunny.

Either if the day is sunny or the DM plays soccer they will prefer beer over wine, meaning that,

beforehand, the DM sees their probabilities of choice as ρA
1 (beer) = 3

4 and ρA
1 (wine) = 1

4 . On

friday, though, the DM starts feeling some knee pain, implying that playing soccer is out of

the question. After learning this, their choice probabilities become ρA
2 (beer) = ρA

2 (wine) = 1
2 ,

depending only on the day being sunny or not. What Random Consistency implies is that,

seeing this change in relative probabilities of choice, we must be able to find a new set of

drinks B so that we have ρA∪B
2 (beer) = 0, but ρA∪B

1 (beer) > 0. Suppose the DM prefers the

drink caipirinha to beer but only when it is sunny and they have not played soccer, and make

B = {caipirinha}. Now we see that ρA∪B
2 (beer) = 0 and ρA∪B

1 (beer) = 2
4 > 0.

With Random Consistency we can state the main theorem of our paper.

Theorem 1. Let ρ1 and ρ2 be two RCRs that admit FREU representations. The following

statements are equivalent:

1. The stochastic choice functions ρ1 and ρ2 satisfy Random Consistency;

2. either S ∩ T = ∅ or T ⊆ S and (T, U, µT , τ) is a random expected utility representation

of ρ2, where µT is the Bayesian update of µ after the observation of T .

As stated, theorem 1, implies that when ρ1 and ρ2 satisfy Random Consistency and have

FREU representations, then either ρ1 and ρ2 share none of their subjective states or ρ2 is the

update of ρ1 when the DM observes T . Random Consistency, therefore, can say very little

about the agents behavior when S ∩ T = ∅. If we want to make sure that at least one state is
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shared among S and T , meaning µ(T ) > 0, we can add the following very straightforward

axiom:

Axiom 2. For every A ∈ A, supp(ρA
1 ) ∩ supp(ρA

2 ) ̸= ∅.

Axiom 2 only says that, in any choice problem A ∈ A, there will be at least one alternative

for which both ρ1 and ρ2 attribute a positive probability of choice. Given the construction of

the FREU representations, this implies that S ∩ T ̸= ∅.

Corollary 1. Let ρ1 and ρ2 be two RCRs with FREU representations, then ρ1 and ρ2 satisfy

Random Consistency and Axiom 2 if, and only if, T ⊆ S, µ′ is the Bayesian update of µ after

the observation of T and they share the same tie-breaking rule (τ = τ ′).

With Corollary 1 we have, therefore, the desired result of the necessary and sufficient

conditions for ρ2 to be the update of ρ1 after the observation of T . Notice that, though we

number the RCRs ρ1 and ρ2, there is no necessary order implied in the axioms or theorems,

meaning the result may also imply that ρ1 is the update of ρ2 after the DM learns that there

are some unforeseen states (S \ T ) that might actually realize. This interpretation relates to

the notion of Reverse Bayesianism, discussed in Karni & Vierø (2013).

4.3.2 Multiple Signals and Partitions

Suppose now that the information received comes from a set o signals that is sufficiently

informative so that each subjective state is only realized after one possible signal, though the

same signal may still lead to different subjective states in the second stage. In this case the

collection of RCRs after the updating build a partition of the broader RCR from the first stage.

To characterize the relations between the original RCR an the collection formed after the

signal in this setting, consider a finite collection of I + 1 random choice rules, ρ and {ρi}i∈I ,

with FREU representations (S, U, µ, τ) and (Si, U i, µi, τ i), such that, for each i ∈ I, ρ and ρi

satisfy Random Consistency, Axiom 2 and the following axioms.

Axiom 3. For every i, j ∈ I, and A ∈ A, if, for some p ∈ ri∆(Z) and δ > 0, we have

ρ
A∪{pδ}
i (pδ) > 0 for every pδ ∈ Bδ(p) ∩ ∆(Z), then there is D ∈ A with ρ

A∪D∪{pδ}
i (pδ) > 0, but

ρ
A∪D∪{pδ}
j (pδ) = 0.
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Axiom 4. For any choice problem A ∈ A, supp(ρA) = ⋃
i∈I supp(ρA

i ).

Axiom 3 has an interpretation related to that of Random Consistency. It implies that, if ρi

and ρj are the RCRs after different signals are received by the DM, then if all the alternatives

in the neighborhood of some lottery p are chosen with positive probability from A ∈ A by ρi, it

must be the case that there is a set D ∈ A that would prevent the choice of the neighborhood

of p from A ∪ D to ρj but wouldn’t prevent it to ρi. Lemma 1 states that this condition is

sufficient to guarantee that the FREU representations of the RCRs in {ρi}i∈I have mutually

disjoint state spaces. Axiom 4 is fairly simpler and only makes sure that every alternative

chosen with positive probability before any signal keeps being chosen after at least one of

the possible signals.

Lemma 1. A collection of RCRs {ρi}i∈I with FREU representations {(Si, U i, µi, τ i)}i∈I satisfies

Axiom 3 if, and only if, for any i, j ∈ I, i ̸= j, we have Si ∩ Sj = {∅}.

With the axioms and lemma above we can now state our result of partitioning for RCRs.

Proposition 1. Let I be a finite set of indices and suppose ρ and {ρi}i∈I are random

choice rules with FREU representations such that, for each i ∈ I, ρ and ρi satisfy Random

Consistency and Axiom 2. Then, the collection {ρi}i∈I satisfy Axioms 3 and 4 if, and only if,

the collection {Si}i∈I is a partition of S and each ρi has a FREU representation (Si, U, µSi
, τ).

4.4 Updating from Menus to Random Choice Rules

Here we develop the traditional Bayesian updating direction between preference over

menus and random choice rules. This is the opposite direction of the unforeseen contin-

gencies representations from Ahn (2013) and a straightforward application of the second

part of the Proposition 2 from their paper. Beyond closing this small gap in the literature on

the transition from menus to Random Choice, this result will be useful for the discussion on

Section 4.5. We also explore the partitioning of a Preference Over Menus into a collection of

RCRs, similarly to what we have done in the previous section between RCRs.

The following axiom is a restatement of Axiom 2 in Ahn (2013).
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Axiom 5 (Sarver’s Axiom 2). Let A ∈ A be a menu and p ∈ ∆(Z) \ A an arbitrary lottery.

If there is δ > 0 such that ρD∪{pδ}(pδ) > 0 for every pδ ∈ Bδ(p) ∩ ∆(Z) and D ∈ A with

dh(A, D) < δ, then A ∪ {p} ≻ A.

Proposition 2. Let ρ be a RCR that admits a FREU representation and ≿ a preference over

menus that admits a DLR representation, then ρ and ≿ satisfy axiom 5 if, and only if, ≿ has a

DLR representation (S, U, µ) such that (T, U, µT , τ), T ⊆ S, is a FREU representation of ρ.

We now turn to the question of when a collection of random choice rules, {ρi}i∈I , with

FREU representations (Si, U i, µi, τ i), is a partition of the subjective state space from a DLR

representation of a preference over menus ≿.

Axiom 6. A ∪ {p} ≻ A if, and only if, there is i ∈ I and δ > 0 such that, ρ
D∪{pδ}
i (pδ) > 0 for

every pδ ∈ Bδ(p) ∩ ∆(Z) and D ∈ A with dh(A, D) < δ.

Proposition 3. Let ≿ be a preference over menus that admits a DLR representation and

{ρi}i∈I be a collection of random choice rules with FREU representations. Then, {ρi}i∈I

satisfies Axiom 3 and (≿, {ρi}i∈I) satisfy Axiom 6 if, and only if, ≿ has a DLR representation

(S, U, µ) such that, for each i ∈ I, (Si, U, µSi
, τi), is a FREU representation of ρi and {Si}i∈I is

a partition of S.

4.5 Connections of Updating Among Frameworks

In this section we discuss the connections between the axioms that characterize the

updating among preferences over menus and random choice rules. Before anything else, lets

define the DLR-GP representation as presented in Ahn (2013).

Definition 6 (DLR-GP representation). Let ≿ be a preference over menus and ρ a RCR. A

DLR-GP representation of (≿, ρ) is a tuple (S, U, µ, τ ), where (S, U, µ) is a DLR representation

of ≿ and (S, U, µ, τ) is a FREU representation of ρ.

Now, let ≿1 and ≿2 be two preferences over menus and ρ1 and ρ2 be two RCRs such that

(≿1, ρ1) and (≿2, ρ2) admit DLR-GP representations (S, U, µ, τ) and (T, U ′, µ′, τ ′), respectively.

To present the connections of the updating between random choice rules and preferences

over menus, we restate the Axiom 1 from Ahn (2013):
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Axiom 7 (Sarver’s Axiom 1). For any menu A ∈ A and lottery q ∈ ∆(Z), A ∪ {q} ≻ A implies

that ρA∪{q}(q) > 0.

With this we can now proceed to Corollary 2.

Corollary 2. Let ≿1 and ≿2 be two preferences over menus and ρ1 and ρ2 be two random

choice rules such that the pairs (≿1, ρ1) and (≿2, ρ2) admit DLR-GP representations. If ρ1 and

ρ2 satisfy Random Consistency and Axiom 2, then:

(i) ≿2 and ρ1 satisfy Sarver’s Axiom 1;

(ii) ≿1 and ρ2 satisfy Sarver’s Axiom 2.

What this corollary implies is that the connection built by Random Consistency and Axiom

2 among the RCRs from (≿1, ρ1) and (≿2, ρ2) transcribes into different relations between the

RCRs and the preferences over menus beyond that of the DLR-GP representation. This

result implies that (≿2, ρ1) admits an unforeseen contingencies representation (T, S, U, µ, τ),

which is the same as saying that there is a reverse updating from ≿2 to ρ1, and that ρ2 is an

update from ≿1, as described in Proposition 2.

As relevant as what is stated in Corollary 2 is what is missing. We cannot establish the

same relation between ≿1 and ≿2 without imposing additional conditions specifically over

the preferences over menus. That happens because, even with all the structure imposed by

the connection between ρ1 and ρ2, there may still be a considerable degree of variation of

scale between the state dependent utilities U and U ′. Though for each t ∈ T we have that Ut

and U ′
t represent the same vNM preferences over ∆(Z), the variations in scale among states

are enough to ensure we could have A ≻1 B and B ≿2 A, for some A, B ∈ A, and not only

because of the changes in the subjective state spaces from S to T . Therefore we cannot

imply that the axiom of Flexibility Consistency presented on Riella (2013) will be satisfied and

cannot characterize ≿2 as a proper Bayesian update from ≿1.

Though this means the implications of Theorem 1 do not propagate entirely to the relations

among preferences over menus, we believe it opens up a discussion on what these subjective

states mean in the FREU and in the DLR representations. What we see is that, apart from the

tie-breaking rule, the FREU representation is perfectly defined by the expected probability of

a given state, µ(s), and by the vNM preference given by Us, while in the DLR representation,

the scale of Us with respect to the other states still carries relevant information that cannot be

72



delimited from the perspective of the RCR implied by the DLR-GP representation.

4.6 Conclusion

In this paper we extended the theory of Bayesian and Reverse Bayesian updating to

the learning revealed between random choice rules. We worked in a framework of Finite

Random Expected Utilities already developed in Gul & Pesendorfer (2006) and Ahn (2013).

We proposed the property of Random Consistency that is closely related to the Axiom 2 in

Ahn (2013) and to the property of Flexibility Consistency in Riella (2013), which apply to the

transition from menus to random choice and between menus, respectively. We developed

the characterization of when a collection of random choice rules represents a partition of

the state space from another broader random choice rule or from a Preference Over Menus.

Finally we discussed the connections between our results and those in the related frameworks

mentioned above.
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Appendix A

Appendix

A.1 Codes

A.1.1 Four Alternatives Setup

# −*− coding : u t f −8 −*−

" " "

Created on Sat Ju l 16 09:24:38 2022

@author : mathe

OBS: verbose = 0 hides the keras . sequen t ia l . f i t process on console

" " "

import t enso r f l ow

from t enso r f l ow import keras

from t enso r f l ow . keras import l a ye rs

#from sk learn . model_select ion impor t KFold

#from sk learn . preprocessing impor t minmax_scale

#from sk learn . met r i cs impor t log_ loss

from sk learn . met r i cs import auc

from i t e r t o o l s import product

from random import r a n d i n t

from random import uni form

from random import random

from m a t p l o t l i b import pyp lo t as p l t

import pandas as pd

import numpy as np

#next l i n e o f code must be executed on o lde r vers ions o f tenso r f l ow

t enso r f l ow . enable_eager_execut ion ( )

bce = tenso r f l ow . keras . losses . BinaryCrossentropy ( )

class r e s t r i c t i v e n e s s ( ) :

" " "

A c lass to eva luate r e s t r i c t i v e n e s s and completeness o f a parametr ic asp i r a t i on −re ference model . Generates random

data , random non−parametr ic mappings . The general framework i s set to have fou r a l t e r n a t i v e s such t h a t there i s a

s t r i c t complete preorder rank ing them .

" " "

def _ _ i n i t _ _ ( s e l f , m) :

" " "
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I n i t i a l i z e an ob jec t o f a c lass wi th va l i d , f e a s i b l e op t ions must be observable , and re levan t , there are a t

l e a s t one observable op t ion as we l l an f e a s i b l e opt ion , choice problemes and random mappings from them to

choices .

Parameters

−−−−−−−−−−

m : i n t

the number o f random mappings to generate .

Returns

−−−−−−−

s e l f . choice_problems : l i s t o f v a l i d and re l evan t choice problems .

s e l f . mappings : l i s t o f m random mappings .

" " "

s e l f . cho ice_prob lems_ l i s t = [ ]

t = l i s t ( product ( range ( 2 ) , repeat = 4 ) )

t . pop ( 0 )

for i in range (0 , len ( t ) ) :

s = l i s t ( product ( range ( 2 ) , repeat = 4 ) )

s . pop ( 0 )

remove_ l i s t = [ ]

for j in range ( 0 , 4 ) :

for k in range (0 , len ( s ) ) :

i f t [ i ] [ j ] == 0 and s [ k ] [ j ] == 1 :

remove_ l i s t . append ( s [ k ] )

l i s t_ to_append = [ x for x in s i f x not in remove_ l i s t ]

for k in range (0 , len ( l i s t_ to_append ) ) :

s e l f . cho ice_prob lems_ l i s t . append ( l i s t ( l i s t_ to_append [ k ]+ t [ i ] ) )

s e l f . choice_problems = pd . DataFrame ( s e l f . cho ice_prob lems_ l is t , columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' ] )

s e l f . mappings = s e l f . mapping_generate (m)

s e l f . asp_ref_model = s e l f . f _ t h e t a ( )

s e l f . asp_only_model = s e l f . f _ the ta_no_re f ( )

s e l f . a l l_model = s e l f . f _ n a i v e _ a l l ( )

s e l f . nothing_model = s e l f . f_na ive_noth ing ( )

s e l f . r a t i o n a l = s e l f . f _ r a t i o n a l ( )

def data_generate ( s e l f , n ) :

" " "

Generates data f o r v a l i d choice problems cons ider ing a complete preorder . The i n d i v i d u a l must choose something .

Parameters

−−−−−−−−−−

n : i n t

the number o f observat ions o f h y p o t h e t i c a l data .

Returns

−−−−−−−

A data frame wi th n rows and 12 columns , the f i r s t f ou r denotes the choices , the middle fou r denotes the f e a s i b l e

opt ions , the l a s t f ou r denotes the observable op t ions .

" " "

# The f i r s t 4 p o s i t i o n s on the data are the choices

c h o i c e _ d a t a _ l i s t = [ ]

for h in range (0 , n ) :

obs_temp = (0 , 0 , 0 , 0) + tuple ( s e l f . cho ice_prob lems_ l i s t [ r a n d i n t (0 , len ( s e l f . cho ice_prob lems_ l i s t ) − 1 ) ] )

obs = l i s t ( obs_temp )

while sum( obs [ 0 : 4 ] ) < 1 :

for i in range ( 0 , 4 ) :

i f obs [ i +4] == 1:

obs [ i ] = r a n d i n t (0 ,1 )

c h o i c e _ d a t a _ l i s t . append ( obs )
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choice_data = pd . DataFrame ( cho i ce_da ta_ l i s t , columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' , ' J ' , 'K ' , ' L ' ] )

return ( choice_data )

def data_generate_ord_bin ( s e l f , n ) :

" " "

Generates data f o r v a l i d choice problems , compr is ing i n d i v i d u a l s who choose noth ing when there are two or more

opt ions to choose .

Parameters

−−−−−−−−−−

n : i n t

the number o f observat ions o f h y p o t h e t i c a l data .

Returns

−−−−−−−

A data frame wi th n rows and 12 columns , the f i r s t f ou r denotes the choices , the middle fou r denotes the f e a s i b l e

opt ions , the l a s t f ou r denotes the observable op t ions .

" " "

# The f i r s t 4 p o s i t i o n s on the data are the choices

c h o i c e _ d a t a _ l i s t = [ ]

for h in range (0 , n ) :

obs_temp = (0 , 0 , 0 , 0) + tuple ( s e l f . cho ice_prob lems_ l i s t [ r a n d i n t (0 , len ( s e l f . cho ice_prob lems_ l i s t ) − 1 ) ] )

obs = l i s t ( obs_temp )

for i in range ( 0 , 4 ) :

i f obs [ i +4] == 1:

obs [ i ] = r a n d i n t (0 ,1 )

c h o i c e _ d a t a _ l i s t . append ( obs )

choice_data = pd . DataFrame ( cho i ce_da ta_ l i s t , columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' , ' J ' , 'K ' , ' L ' ] )

return ( choice_data )

def data_generate_ inc_pref ( s e l f , n ) :

" " "

Generates data f o r v a l i d choice problems from a ord ina ry b inary r e l a t i o n , t h a t could not be r e f l e x i v e .

Parameters

−−−−−−−−−−

n : i n t

the number o f observat ions o f h y p o t h e t i c a l data .

Returns

−−−−−−−

A data frame wi th n rows and 12 columns , the f i r s t f ou r denotes the choices , the middle fou r denotes the f e a s i b l e

opt ions , the l a s t f ou r denotes the observable op t ions .

" " "

# The f i r s t 4 p o s i t i o n s on the data are the choices

c h o i c e _ d a t a _ l i s t = [ ]

for h in range (0 , n ) :

obs_temp = (0 , 0 , 0 , 0) + tuple ( s e l f . cho ice_prob lems_ l i s t [ r a n d i n t (0 , len ( s e l f . cho ice_prob lems_ l i s t ) − 1 ) ] )

obs = l i s t ( obs_temp )

i f sum( obs [ 4 : 8 ] ) == 1:

while sum( obs [ 0 : 4 ] ) < 1 :

for i in range ( 0 , 4 ) :

i f obs [ i +4] == 1:

obs [ i ] = r a n d i n t (0 ,1 )

else :

for i in range ( 0 , 4 ) :

i f obs [ i +4] == 1:

obs [ i ] = r a n d i n t (0 ,1 )

c h o i c e _ d a t a _ l i s t . append ( obs )

choice_data = pd . DataFrame ( cho i ce_da ta_ l i s t , columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' , ' J ' , 'K ' , ' L ' ] )

return ( choice_data )
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def mapping_generate ( s e l f , m, d e t e r m i n i s t i c = True ) :

" " "

Generate random mappings from v a l i d and re l evan t choice problems to ac tua l choices .

Mappings are choice correspondences , thus a l l ow ing m u l t i p l e choices .

Each mapping has 65 rows and 12 columns , the f i r s t f ou r denotes f e a s i b l e opt ions , the middle fou r denotes observa

b le a l t e r n a t i v e s and l a s t f ou r denotes the choices .

Parameters

−−−−−−−−−−

m : i n t

the number o f random mappings to generate .

Returns

−−−−−−−

A l i s t o f m random mappings .

" " "

# The l a s t 4 p o s i t i o n s on the mapping are the choices

mapp ing_ l i s t = [ ] # A l i s t o f dataframes 65x12

for i in range (0 ,m) :

mapping_predic t ions = [ ]

for j in range (0 , len ( s e l f . cho ice_prob lems_ l i s t ) ) :

i f d e t e r m i n i s t i c == True :

pred ic t ion_temp = tuple ( s e l f . cho ice_prob lems_ l i s t [ j ] ) + (0 , 0 , 0 , 0)

p r e d i c t i o n = l i s t ( p red ic t ion_temp )

while sum( p r e d i c t i o n [ 8 : 1 2 ] ) < 1 :

for h in range ( 0 , 4 ) :

i f p r e d i c t i o n [ h ] == 1:

p r e d i c t i o n [ h+8] = r a n d i n t (0 ,1 )

else :

p red ic t ion_temp = tuple ( s e l f . cho ice_prob lems_ l i s t [ j ] ) + ( uni form (0 , 1 ) , un i form (0 , 1 ) , un i form (0 , 1 ) , un i form (0 , 1 ) )

p r e d i c t i o n = l i s t ( p red ic t ion_temp )

mapping_predic t ions . append ( p r e d i c t i o n )

mapping = pd . DataFrame ( mapping_predict ions , columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' , ' J ' , 'K ' , ' L ' ] )

mapp ing_ l i s t . append ( mapping )

return ( mapp ing_ l i s t )

def perf_round ( s e l f , x , gamma ) :

" " "

Round values grea te r than 0.54 to 1 . Used to make p r o b a b i l i t i e s o f choice i n t o choices f o r a neura l network .

Parameters

−−−−−−−−−−

x : f l o a t

value to be rounded .

Returns

−−−−−−−

Rounded number .

" " "

i f x − i n t ( x ) >= gamma:

x = i n t ( x ) + 1

else :

x = i n t ( x )

return ( x )

def a s p i r a t i o n ( s e l f , T ) :

" " "

Get the index of the a s p i r a t i o n .

Parameters

−−−−−−−−−−
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T : l i s t

a l i s t o f leng th 4 and elements 0 or 1 .

Returns

−−−−−−−

i : i n t

index o f the a s p i r a t i o n .

" " "

for i in range ( 0 , 4 ) :

i f T [ i ] == 1 :

return i

def u_S( s e l f , S , T ) :

a = s e l f . a s p i r a t i o n (T )

a l t e r n a t i v e s = [ np . ar ray ( ( 0 , 3 ) ) , np . ar ray ( ( 0 , 2 ) ) , np . ar ray ( ( 0 , 1 ) ) , np . a r ray ( ( 0 , 0 ) ) ]

d i s t = [ i n t ( np . l i n a l g . norm ( a l t e r n a t i v e s [ a] − a l t e r n a t i v e s [ x ] ) ) for x in range ( 0 , 4 ) ]

for i in range (0 , len (S ) ) :

i f S[ i ] == 0:

d i s t [ i ] = 100

re ference = d i s t . index (min ( d i s t ) )

d i s t _ r e f = [ i n t ( np . l i n a l g . norm ( a l t e r n a t i v e s [ re ference ] − a l t e r n a t i v e s [ x ] ) ) for x in range ( 0 , 4 ) ]

for j in range (0 , len (S ) ) :

i f d i s t _ r e f [ j ] > i n t ( np . l i n a l g . norm ( a l t e r n a t i v e s [ a] − a l t e r n a t i v e s [ re ference ] ) ) :

S [ j ] = 0

i f re ference != 3 :

i f S[ re ference +1] == 1:

choice = re ference + 1

else :

choice = re ference

else :

choice = re ference

return ( choice )

def u_S_no_ref ( s e l f , S , T ) :

a = s e l f . a s p i r a t i o n (T )

a l t e r n a t i v e s = [ np . ar ray ( ( 0 , 3 ) ) , np . ar ray ( ( 0 , 2 ) ) , np . ar ray ( ( 0 , 1 ) ) , np . ar ray ( ( 0 , 0 ) ) ]

d i s t = [ i n t ( np . l i n a l g . norm ( a l t e r n a t i v e s [ a] − a l t e r n a t i v e s [ x ] ) ) for x in range ( 0 , 4 ) ]

for i in range (0 , len (S ) ) :

i f S[ i ] == 0:

d i s t [ i ] = 100

re ference = d i s t . index (min ( d i s t ) )

return ( re ference )

def f _ r a t i o n a l ( s e l f ) :

" " "

Creates a mapping from the choice problems of the 4 a l t e r n a t i v e s framework i n t o choices

according to the r a t i o n a l model , w i thou t observable but non f e a s i b l e op t ions . For t h i s setup ,

i t co inc ides wi th the asp i r a t i on −based choice model .

Returns

−−−−−−−

A data frame corresponding to the r a t i o n a l model , f o r each choice problem .

" " "

n a i v e _ l i s t = [ ]

for i in range (0 , len ( s e l f . cho ice_prob lems_ l i s t ) ) :

S = s e l f . cho ice_prob lems_ l i s t [ i ] [ 0 : 4 ]

choice_index = s e l f . a s p i r a t i o n (S)

temp = [0 , 0 , 0 , 0 ]

temp [ choice_index ] = 1

naive_predic t_temp = tuple ( s e l f . cho ice_prob lems_ l i s t [ i ] ) + tuple ( temp )

na i ve_p red i c t = l i s t ( na ive_predic t_temp )

n a i v e _ l i s t . append ( na i ve_p red i c t )
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naive = pd . DataFrame ( n a i v e _ l i s t , columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' , ' J ' , 'K ' , ' L ' ] )

return ( naive )

def f _ n a i v e _ a l l ( s e l f ) :

" " "

Creates a mapping from the choice problems of the 4 a l t e r n a t i v e s framework i n t o choices

i n such a way every th ing t h a t i s a v a i l a b l e to choose i s chosen .

Returns

−−−−−−−

A data frame corresponding to the naive p red i c t i ons , f o r each choice problem .

" " "

n a i v e _ l i s t = [ ]

for i in range (0 , len ( s e l f . cho ice_prob lems_ l i s t ) ) :

S = s e l f . cho ice_prob lems_ l i s t [ i ] [ 0 : 4 ]

naive_predic t_temp = tuple ( s e l f . cho ice_prob lems_ l i s t [ i ] ) + tuple (S)

na i ve_p red i c t = l i s t ( na ive_predic t_temp )

n a i v e _ l i s t . append ( na i ve_p red i c t )

naive = pd . DataFrame ( n a i v e _ l i s t , columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' , ' J ' , 'K ' , ' L ' ] )

return ( naive )

def f_na ive_noth ing ( s e l f ) :

" " "

Creates a mapping from the choice problems of the 4 a l t e r n a t i v e s framework i n t o choices

i n such a way noth ing i s chosen .

Returns

−−−−−−−

A data frame corresponding to the naive p red i c t i ons , f o r each choice problem .

" " "

n a i v e _ l i s t = [ ]

for i in range (0 , len ( s e l f . cho ice_prob lems_ l i s t ) ) :

na ive_predic t_temp = tuple ( s e l f . cho ice_prob lems_ l i s t [ i ] ) + (0 , 0 , 0 , 0)

na i ve_p red i c t = l i s t ( na ive_predic t_temp )

n a i v e _ l i s t . append ( na i ve_p red i c t )

naive = pd . DataFrame ( n a i v e _ l i s t , columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' , ' J ' , 'K ' , ' L ' ] )

return ( naive )

def f _ t h e t a ( s e l f ) :

" " "

Creates a mapping from the choice problems of the 4 a l t e r n a t i v e s framework i n t o choices

according to asp i r a t i on −based re ference dependance model .

Returns

−−−−−−−

A data frame corresponding to asp i r a t i on −based re ference dependance model ' s p r e d i c t i o n s

f o r each choice problem .

" " "

mode l_ l i s t = [ ]

for i in range (0 , len ( s e l f . cho ice_prob lems_ l i s t ) ) :

S = s e l f . cho ice_prob lems_ l i s t [ i ] [ 0 : 4 ]

T = s e l f . cho ice_prob lems_ l i s t [ i ] [ 4 : 8 ]

i f S == T :

choice_index = s e l f . a s p i r a t i o n (T )

else :

choice_index = s e l f . u_S (S, T )

temp = [0 , 0 , 0 , 0 ]

temp [ choice_index ] = 1

model_predict_temp = tuple ( s e l f . cho ice_prob lems_ l i s t [ i ] ) + tuple ( temp )

model_predic t = l i s t ( model_predict_temp )

mode l_ l i s t . append ( model_predic t )
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model = pd . DataFrame ( mode l_ l i s t , columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' , ' J ' , 'K ' , ' L ' ] )

return ( model )

def f _ the ta_no_re f ( s e l f ) :

" " "

Creates a mapping from the choice problems of the 4 a l t e r n a t i v e s framework i n t o choices

according to asp i r a t i on −based choice model .

Returns

−−−−−−−

A data frame corresponding to asp i r a t i on −based choice model ' s p red i c t i ons , f o r each

choice problem .

" " "

mode l_ l i s t = [ ]

for i in range (0 , len ( s e l f . cho ice_prob lems_ l i s t ) ) :

S = s e l f . cho ice_prob lems_ l i s t [ i ] [ 0 : 4 ]

T = s e l f . cho ice_prob lems_ l i s t [ i ] [ 4 : 8 ]

i f S == T :

choice_index = s e l f . a s p i r a t i o n (T )

else :

choice_index = s e l f . u_S_no_ref (S, T )

temp = [0 , 0 , 0 , 0 ]

temp [ choice_index ] = 1

model_predict_temp = tuple ( s e l f . cho ice_prob lems_ l i s t [ i ] ) + tuple ( temp )

model_predic t = l i s t ( model_predict_temp )

mode l_ l i s t . append ( model_predic t )

model = pd . DataFrame ( mode l_ l i s t , columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' , ' J ' , 'K ' , ' L ' ] )

return ( model )

def f _ l o g i t ( s e l f , data , d e t e r m i n i s t i c = True ) :

x _ t r a i n = data [ [ 'E ' , ' F ' , 'G ' , 'H ' , ' I ' , ' J ' , 'K ' , ' L ' ] ]

y _ t r a i n = data [ [ 'A ' , 'B ' , 'C ' , 'D ' ] ]

l og i t_mode l = keras . Sequent ia l ( [

keras . Inpu t ( shape = ( 8 ) ) ,

l aye rs . Dense (4 , a c t i v a t i o n = ' sigmoid ' ) ] )

log i t_mode l . compile ( loss = ' b inary_crossent ropy ' , op t im ize r = 'adam ' , met r i cs = [ ' accuracy ' ] )

log i t_mode l . f i t ( x_ t ra in , y_ t ra in , batch_s ize = 32 , epochs = 100)

p r e d i c t _ d f = log i t_mode l . p r e d i c t ( s e l f . choice_problems )

p r e d i c t _ d f = pd . DataFrame ( p r e d i c t _ d f )

i f d e t e r m i n i s t i c == True :

# p r e d i c t _ d f = p r e d i c t _ d f . applymap ( s e l f . per f_round )

for i in range (0 , len ( s e l f . choice_problems ) ) :

for j in range ( 0 , 4 ) :

i f s e l f . choice_problems . i a t [ i , j ] == 0 :

p r e d i c t _ d f . i a t [ i , j ] = 0

else :

p r e d i c t _ d f . i a t [ i , j ] = i n t ( np . random . choice ( [ 0 , 1 ] , 1 , p = [1 − p r e d i c t _ d f . i a t [ i , j ] , p r e d i c t _ d f . i a t [ i , j ] ] ) )

nn = pd . concat ( [ s e l f . choice_problems , p r e d i c t _ d f ] , ax is =1)

return ( nn )

def f_NN ( s e l f , data , N, d e t e r m i n i s t i c = True ) :

" " "

Creates a mapping from the choice problems of the 4 a l t e r n a t i v e s framework i n t o choices

according to a neura l network . By de fau l t , the neura l net has two hidden layers , each

wi th same amount o f neurons .

Parameters

−−−−−−−−−−

data : pandas . DataFrame

Data used to t r a i n the neura l net .

N : i n t

80



Number o f neurons f o r each hidden laye r o f the neura l net .

Returns

−−−−−−−

A data frame corresponding to the t r e i n e d neura l net ' s p red i c t i ons , f o r each choice problem .

" " "

x _ t r a i n = data [ [ 'E ' , ' F ' , 'G ' , 'H ' , ' I ' , ' J ' , 'K ' , ' L ' ] ]

y _ t r a i n = data [ [ 'A ' , 'B ' , 'C ' , 'D ' ] ]

one_hidden_layer_nn = keras . Sequent ia l ( [

keras . Inpu t ( shape = ( 8 ) ) ,

l aye rs . Dense (N, a c t i v a t i o n = ' r e l u ' ) ,

l aye rs . Dense (N, a c t i v a t i o n = ' r e l u ' ) ,

l aye rs . Dense (4 , a c t i v a t i o n = ' sigmoid ' ) ] )

one_hidden_layer_nn . compile ( loss = ' b inary_crossent ropy ' , op t im ize r = 'adam ' , met r i cs = [ ' accuracy ' ] )

one_hidden_layer_nn . f i t ( x_ t ra in , y_ t ra in , batch_s ize = 32 , epochs = 100)

p r e d i c t _ d f = one_hidden_layer_nn . p r e d i c t ( s e l f . choice_problems )

p r e d i c t _ d f = pd . DataFrame ( p r e d i c t _ d f )

i f d e t e r m i n i s t i c == True :

# p r e d i c t _ d f = p r e d i c t _ d f . applymap ( s e l f . per f_round )

for i in range (0 , len ( s e l f . choice_problems ) ) :

for j in range ( 0 , 4 ) :

i f s e l f . choice_problems . i a t [ i , j ] == 0 :

p r e d i c t _ d f . i a t [ i , j ] = 0

else :

p r e d i c t _ d f . i a t [ i , j ] = i n t ( np . random . choice ( [ 0 , 1 ] , 1 , p = [1 − p r e d i c t _ d f . i a t [ i , j ] , p r e d i c t _ d f . i a t [ i , j ] ] ) )

nn = pd . concat ( [ s e l f . choice_problems , p r e d i c t _ d f ] , ax is =1)

return ( nn )

def f_CNN( s e l f , data , N, d e t e r m i n i s t i c = True ) :

x _ t r a i n = data [ [ 'E ' , ' F ' , 'G ' , 'H ' , ' I ' , ' J ' , 'K ' , ' L ' ] ]

x _ t r a i n = np . ar ray ( x _ t r a i n )

x _ t r a i n = x _ t r a i n . reshape ( len ( x _ t r a i n ) , 8 , 1)

y _ t r a i n = data [ [ 'A ' , 'B ' , 'C ' , 'D ' ] ]

# y _ t r a i n = np . ar ray ( y _ t r a i n )

# y _ t r a i n = y _ t r a i n . reshape ( len ( y _ t r a i n ) , 8 , 1)

convo lu t iona l_nn = keras . Sequent ia l ( [

l aye rs . Conv1D(N, ke rne l_s i ze =3 , a c t i v a t i o n = ' r e l u ' , input_shape =(8 , 1 ) ) ,

l aye rs . Conv1D(N, ke rne l_s i ze =3 , a c t i v a t i o n = ' r e l u ' ) ,

l aye rs . Dropout ( 0 . 5 ) ,

l aye rs . MaxPooling1D ( poo l_s ize =2) ,

l aye rs . F l a t t e n ( ) ,

l aye rs . Dense (4 , a c t i v a t i o n = ' sigmoid ' ) ] )

convo lu t iona l_nn . compile ( loss = ' b inary_crossent ropy ' , op t im ize r = 'adam ' , met r i cs = [ ' accuracy ' ] )

convo lu t iona l_nn . f i t ( x_ t ra in , y_ t ra in , batch_s ize = 32 , epochs = 100)

x_ tes t = np . ar ray ( s e l f . choice_problems )

x_ tes t = x_ tes t . reshape ( len ( x_ tes t ) , 8 , 1)

p r e d i c t _ d f = convo lu t iona l_nn . p r e d i c t ( x_ tes t )

p r e d i c t _ d f = pd . DataFrame ( p r e d i c t _ d f )

i f d e t e r m i n i s t i c == True :

# p r e d i c t _ d f = p r e d i c t _ d f . applymap ( s e l f . per f_round )

for i in range (0 , len ( s e l f . choice_problems ) ) :

for j in range ( 0 , 4 ) :

i f s e l f . choice_problems . i a t [ i , j ] == 0 :

p r e d i c t _ d f . i a t [ i , j ] = 0

else :

p r e d i c t _ d f . i a t [ i , j ] = i n t ( np . random . choice ( [ 0 , 1 ] , 1 , p = [1 − p r e d i c t _ d f . i a t [ i , j ] , p r e d i c t _ d f . i a t [ i , j ] ] ) )
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nn = pd . concat ( [ s e l f . choice_problems , p r e d i c t _ d f ] , ax is =1)

return ( nn )

def mode l_ f i t ( s e l f , data , modelo ) :

" " "

Generate a model ' s p red i c t i on , choices , based on inpu t data , choice problem .

Parameters

−−−−−−−−−−

data : pandas . DataFrame

A data frame wi th n rows and 12 columns , w i th the l a s t 8 being the choice problem , f e a s i b l e and observable

op t ions ) .

modelo : pandas . DataFrame

A data frame , corresponding to a mapping or a model , w i th 12 columns , being the f i r s t e i gh t the choice

problem and the l a s t 4 the choice correspondent to the choice problem .

Returns

−−−−−−−

A data frame con ta in ing the p r e d i c t i o n s o f the model f o r the data i npu t .

" " "

mode l_ f i t = pd . merge ( data , modelo , how= ' l e f t ' , l e f t _ o n =[ 'E ' , ' F ' , 'G ' , 'H ' , ' I ' , ' J ' , 'K ' , ' L ' ] ,

r i gh t_on = [ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' ] )

mode l_ f i t = mode l_ f i t . i l o c [ : , 2 0 : 2 4 ]

return ( mode l_ f i t )

def distance_map ( s e l f , f , F_Theta , d e t e r m i n i s t i c = True ) :

" " "

Evaluates d is tance between mappings , according to the usual euc l idean d is tance .

Parameters

−−−−−−−−−−

f : pandas . DataFrame

Mapping from choice problems i n t o choices , 65 rows and 12 columns .

F_Theta : l i s t

A l i s t con ta in ing the mappings corresponding to the paramet r i za t i ons o f the model , data frames wi th 65 rows

and 12 columns . On the s imp les t case , i t comprises a paramet r i za t i on o f i n t e r e s t and the naive mapping .

Returns

−−−−−−−

The minimum dis tance of model pa ramet r i za t i ons and a given map.

" " "

d i s t _ l i s t = [ ]

# f_ func = f [ [ ' I ' , ' J ' , 'K ' , ' L ' ] ]

i f d e t e r m i n i s t i c == True :

f_ func = np . ar ray ( f )

for i in range (0 , len ( F_Theta ) ) :

# paramet r i za t ion_pred = F_Theta [ i ] [ [ ' I ' , ' J ' , 'K ' , ' L ' ] ]

paramet r i za t ion_pred = np . ar ray ( F_Theta [ i ] )

d i s t = [ np . l i n a l g . norm ( f_ func [ j ] − paramet r i za t ion_pred [ j ] ) for j in range (0 , len ( f ) ) ]

d i s t = np . ar ray ( d i s t )

mean_dist = d i s t . mean ( )

d i s t _ l i s t . append ( mean_dist )

else :

f_ func = f [ [ ' I ' , ' J ' , 'K ' , ' L ' ] ]

f_ func = np . ar ray ( f_ func )

for i in range (0 , len ( F_Theta ) ) :

paramet r i za t ion_pred = F_Theta [ i ] [ [ 0 , 1 , 2 , 3 ] ]

paramet r i za t ion_pred = np . ar ray ( paramet r i za t ion_pred )

d i s t = [ bce ( f_ func [ j ] , paramet r i za t ion_pred [ j ] ) . numpy ( ) for j in range (0 , len ( f ) ) ]

d i s t = np . ar ray ( d i s t )

mean_dist = d i s t . mean ( )
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d i s t _ l i s t . append ( mean_dist )

d i s t _ l i s t = np . ar ray ( d i s t _ l i s t )

e r r o r = d i s t _ l i s t . min ( )

return ( e r r o r )

def best_map ( s e l f , data , det = True ) :

" " "

I t e r a t e s over 1000 maps to f i n d the map t h a t minimizes the expected loss f u n c t i o n f o r the given data .

Parameters

−−−−−−−−−−

data : pandas . DataFrame

Data i n which the f u n c t i o n i t e r a t e s over random mappings to f i n d the best one .

Returns

−−−−−−−

The best map f o r the given data .

" " "

i f det == True :

maps = s e l f . mapping_generate (1000)

else :

maps = s e l f . mapping_generate (1000 , d e t e r m i n i s t i c = det )

" " "

f o r k i n range (0 , len (maps ) ) :

maps [ k ] [ [ ' I ' , ' J ' , 'K ' , ' L ' ] ] = maps [ k ] [ [ ' I ' , ' J ' , 'K ' , ' L ' ] ] . rep lace (0 , 0.001)

maps [ k ] [ [ ' I ' , ' J ' , 'K ' , ' L ' ] ] = maps [ k ] [ [ ' I ' , ' J ' , 'K ' , ' L ' ] ] . rep lace (1 , 0.999)

" " "

d i s t _ l i s t = [ ]

Y = data [ [ 'A ' , 'B ' , 'C ' , 'D ' ] ]

Y = np . ar ray (Y)

for i in range (0 , len (maps ) ) :

map_f i t = s e l f . mode l_ f i t ( data , maps [ i ] )

map_f i t = np . ar ray ( map_f i t )

i f det == True :

d i s t = [ np . l i n a l g . norm (Y[ j ] − map_f i t [ j ] ) for j in range (0 , len (Y ) ) ]

else :

d i s t = [ bce (Y [ j ] , map_f i t [ j ] ) . numpy ( ) for j in range (0 , len (Y ) ) ]

d i s t = np . ar ray ( d i s t )

mean_dist = d i s t . mean ( )

d i s t _ l i s t . append ( mean_dist )

d i s t _ l i s t = np . ar ray ( d i s t _ l i s t )

optimal_map = np . argmin ( d i s t _ l i s t )

return (maps [ optimal_map ] )

def mean_discrepancy ( s e l f , F_Theta , d e t e r m i n i s t i c = True ) :

" " "

Evaluates the r e s t r i c t i v e n e s s o f a model , t ak ing i n t o account the respec t i ve naive mapping .

Parameters

−−−−−−−−−−

F_Theta : l i s t

A l i s t con ta in ing data frames represen t ing model ' s pa ramet r i za t i ons mappings , w i th 65 rows and 12

columns . By the defaut , the l a s t element must be the naive mapping .

Returns

−−−−−−−

A numpy . ar ray w i th the discrepancy f o r each random generated mapping .

" " "

d e l t a _ l i s t = [ ]

# F_ the ta_p red ic t i ons = [ ]

f_na ive = [ ]

#Y = data [ [ ' A ' , 'B ' , 'C ' , 'D ' ] ]
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" " "

f o r j i n range (0 , len ( F_Theta ) ) :

p r e d i c t i o n s = s e l f . mode l_ f i t ( data , F_Theta [ j ] )

F_ the ta_p red ic t i ons . append ( p r e d i c t i o n s )

" " "

f_na ive . append ( F_Theta [ −1 ] )

for i in range (0 , len ( s e l f . mappings ) ) :

# mapping_f i t = s e l f . mode l_ f i t ( data , s e l f . mappings [ i ] )

i f d e t e r m i n i s t i c == True :

de l t a = s e l f . distance_map ( s e l f . mappings [ i ] , F_Theta , d e t e r m i n i s t i c = True ) / s e l f . distance_map ( s e l f . mappings [ i ] ,

f_naive , d e t e r m i n i s t i c = True )

else :

de l t a = s e l f . distance_map ( s e l f . mappings [ i ] , F_Theta , d e t e r m i n i s t i c = False ) / s e l f . distance_map ( s e l f . mappings [ i ] ,

f_naive , d e t e r m i n i s t i c = False )

d e l t a _ l i s t . append ( de l t a )

d e l t a _ l i s t = np . ar ray ( d e l t a _ l i s t )

return ( d e l t a _ l i s t )

def mean_discrepancy_std_error ( s e l f , F_Theta , d e t e r m i n i s t i c = True ) :

" " "

Evaluates the r e s t r i c t i v e n e s s o f a model , t ak ing i n t o account the respec t i ve naive mapping .

Parameters

−−−−−−−−−−

F_Theta : l i s t

A l i s t con ta in ing data frames represen t ing model ' s pa ramet r i za t i ons mappings , w i th 65 rows and 12

columns . By the defaut , the l a s t element must be the naive mapping .

Returns

−−−−−−−

A numpy . ar ray w i th the discrepancy f o r each random generated mapping .

" " "

d e l t a _ l i s t = [ ]

# F_ the ta_p red ic t i ons = [ ]

f_na ive = [ ]

#Y = data [ [ ' A ' , 'B ' , 'C ' , 'D ' ] ]

" " "

f o r j i n range (0 , len ( F_Theta ) ) :

p r e d i c t i o n s = s e l f . mode l_ f i t ( data , F_Theta [ j ] )

F_ the ta_p red ic t i ons . append ( p r e d i c t i o n s )

" " "

f_na ive . append ( F_Theta [ −1 ] )

for i in range (0 , len ( s e l f . mappings ) ) :

# mapping_f i t = s e l f . mode l_ f i t ( data , s e l f . mappings [ i ] )

i f d e t e r m i n i s t i c == True :

de l t a = s e l f . distance_map ( s e l f . mappings [ i ] , F_Theta , d e t e r m i n i s t i c = True ) / s e l f . distance_map ( s e l f . mappings [ i ] ,

f_naive , d e t e r m i n i s t i c = True )

else :

de l t a = s e l f . distance_map ( s e l f . mappings [ i ] , F_Theta , d e t e r m i n i s t i c = False ) / s e l f . distance_map ( s e l f . mappings [ i ] ,

f_naive , d e t e r m i n i s t i c = False )

d e l t a _ l i s t . append ( de l t a )

d e l t a _ l i s t = np . ar ray ( d e l t a _ l i s t )

d e l t a _ l i s t = np . square ( d e l t a _ l i s t − d e l t a _ l i s t . mean ( ) )

ep = np . s q r t ( d e l t a _ l i s t . mean ( ) / len ( s e l f . mappings ) )

return ( ep )

def d a t a _ s p l i t ( s e l f , data , k ) :

" " "

Shu f f l es data and s p l i t s i t i n t o groups . The f i r s t k−1 groups have the same leng th . The l a s t k

group only has the same s ize as other groups i f the d i v i s i o n o f rows of data by k i s an i n t e g e r .

Parameters

−−−−−−−−−−
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data : pandas . DataFrame

Data to be s p l i t t e d .

k : i n t

Number o f groups to be formed .

Returns

−−−−−−−

A l i s t w i th k data frames .

" " "

group_size = i n t ( len ( data ) / k )

f o l d s = [ ]

data = data . sample ( f r a c =1) . rese t_ index ( )

del data [ ' index ' ]

for i in range (0 , k ) :

i f i < k −1:

paper = data . i l o c [ i * group_size : ( i +1)* group_size , ]

f o l d s . append ( paper )

else :

paper = data . i l o c [ i * group_size : , ]

f o l d s . append ( paper )

return ( f o l d s )

def k_ fo ld ( s e l f , d a t a _ s p l i t t e d , F , d e t e r m i n i s t i c = True ) :

" " "

Perform the k− f o l d cross v a l i d a t i o n o f a model , eva lua t i ng the e r r o r f o r each group of the data .

Parameters

−−−−−−−−−−

d a t a _ s p l i t t e d : l i s t

A l i s t o f groups of data .

F : l i s t

A l i s t o f mappings , may be random or a set o f a model ' s pa ramet r i za t i ons .

Returns

−−−−−−−

The mean e r r o r o f the k groups .

" " "

group_size = len ( d a t a _ s p l i t t e d [ 0 ] )

e r r o r _ l i s t = [ ]

for i in range (0 , len ( d a t a _ s p l i t t e d ) ) :

d i s t _ l i s t = [ ]

temp = [ x for x in d a t a _ s p l i t t e d i f not ( x . equals ( d a t a _ s p l i t t e d [ i ] ) ) ]

t e s t = d a t a _ s p l i t t e d [ i ]

Y_test = t e s t [ [ 'A ' , 'B ' , 'C ' , 'D ' ] ]

Y_test = np . ar ray ( Y_test )

t r a i n = pd . concat ( temp , ignore_ index = True )

Y_ t ra in = t r a i n [ [ 'A ' , 'B ' , 'C ' , 'D ' ] ]

Y_ t ra in = np . ar ray ( Y_ t ra in )

for j in range (0 , len (F ) ) :

mapp ing_f i t = s e l f . mode l_ f i t ( t r a i n , F [ j ] )

mapp ing_f i t = np . ar ray ( mapp ing_f i t )

i f d e t e r m i n i s t i c == True :

d i s t = [ np . l i n a l g . norm ( Y_ t ra in [ k ] − mapp ing_f i t [ k ] ) for k in range (0 , len ( Y_ t ra in ) ) ]

else :

d i s t = [ bce ( Y_ t ra in [ k ] , mapp ing_f i t [ k ] ) for k in range (0 , len ( Y_ t ra in ) ) ]

d i s t = np . ar ray ( d i s t )

dist_sum = d i s t .sum ( )

d i s t _ l i s t . append ( dist_sum )

d i s t _ l i s t = np . ar ray ( d i s t _ l i s t )

d i s t _ l i s t = ( 1 / len ( t r a i n ) ) * d i s t _ l i s t

f_k = np . argmin ( d i s t _ l i s t )

o p t i m a l _ f i t = s e l f . mode l_ f i t ( t es t , F [ f_k ] )
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o p t i m a l _ f i t = np . ar ray ( o p t i m a l _ f i t )

i f d e t e r m i n i s t i c == True :

o p t i m a l _ d i s t = [ np . l i n a l g . norm ( Y_test [ h] − o p t i m a l _ f i t [ h ] ) for h in range (0 , len ( Y_test ) ) ]

else :

o p t i m a l _ d i s t = [ bce ( Y_test [ h ] , o p t i m a l _ f i t [ h ] ) for h in range (0 , len ( Y_test ) ) ]

o p t i m a l _ d i s t = np . ar ray ( o p t i m a l _ d i s t )

opt imal_dis t_sum = o p t i m a l _ d i s t .sum ( )

e r r o r = ( 1 / group_size ) * opt imal_dis t_sum

e r r o r _ l i s t . append ( e r r o r )

e r r o r _ l i s t = np . ar ray ( e r r o r _ l i s t )

e r ro r_ l i s t_mean = e r r o r _ l i s t . mean ( )

return ( e r ro r_ l i s t_mean )

def completeness_std_error ( s e l f , d a t a _ s p l i t t e d , F , f_best , d e t e r m i n i s t i c = True ) :

" " "

Perform the k− f o l d cross v a l i d a t i o n o f a model , eva lua t i ng the e r r o r f o r each group of the data .

Parameters

−−−−−−−−−−

d a t a _ s p l i t t e d : l i s t

A l i s t o f groups of data .

F : l i s t

A l i s t o f mappings , may be random or a set o f a model ' s pa ramet r i za t i ons .

Returns

−−−−−−−

The mean e r r o r o f the k groups .

" " "

group_size = len ( d a t a _ s p l i t t e d [ 0 ] )

v a r _ l i s t = [ ]

for i in range (0 , len ( d a t a _ s p l i t t e d ) ) :

d i s t _ l i s t = [ ]

temp = [ x for x in d a t a _ s p l i t t e d i f not ( x . equals ( d a t a _ s p l i t t e d [ i ] ) ) ]

t e s t = d a t a _ s p l i t t e d [ i ]

Y_test = t e s t [ [ 'A ' , 'B ' , 'C ' , 'D ' ] ]

Y_test = np . ar ray ( Y_test )

t r a i n = pd . concat ( temp , ignore_ index = True )

Y_ t ra in = t r a i n [ [ 'A ' , 'B ' , 'C ' , 'D ' ] ]

Y_ t ra in = np . ar ray ( Y_ t ra in )

for j in range (0 , len (F ) ) :

mapp ing_f i t = s e l f . mode l_ f i t ( t r a i n , F [ j ] )

mapp ing_f i t = np . ar ray ( mapp ing_f i t )

i f d e t e r m i n i s t i c == True :

d i s t = [ np . l i n a l g . norm ( Y_ t ra in [ k ] − mapp ing_f i t [ k ] ) for k in range (0 , len ( Y_ t ra in ) ) ]

else :

d i s t = [ bce ( Y_ t ra in [ k ] , mapp ing_f i t [ k ] ) for k in range (0 , len ( Y_ t ra in ) ) ]

d i s t = np . ar ray ( d i s t )

dist_sum = d i s t .sum ( )

d i s t _ l i s t . append ( dist_sum )

d i s t _ l i s t = np . ar ray ( d i s t _ l i s t )

d i s t _ l i s t = ( 1 / len ( t r a i n ) ) * d i s t _ l i s t

f_k = np . argmin ( d i s t _ l i s t )

o p t i m a l _ f i t = s e l f . mode l_ f i t ( t es t , F [ f_k ] )

o p t i m a l _ f i t = np . ar ray ( o p t i m a l _ f i t )

b e s t _ f i t = s e l f . mode l_ f i t ( t es t , f_bes t )

b e s t _ f i t = np . ar ray ( b e s t _ f i t )

i f d e t e r m i n i s t i c == True :

o p t i m a l _ d i s t = [ np . l i n a l g . norm ( Y_test [ h] − o p t i m a l _ f i t [ h ] ) for h in range (0 , len ( Y_test ) ) ]

b e s t _ d i s t = [ np . l i n a l g . norm ( Y_test [ h] − b e s t _ f i t [ h ] ) for h in range (0 , len ( Y_test ) ) ]

else :

o p t i m a l _ d i s t = [ bce ( Y_test [ h ] , o p t i m a l _ f i t [ h ] ) for h in range (0 , len ( Y_test ) ) ]

b e s t _ d i s t = [ bce ( Y_test [ h ] , b e s t _ f i t [ h ] ) for h in range (0 , len ( Y_test ) ) ]

o p t i m a l _ d i s t = np . ar ray ( o p t i m a l _ d i s t )
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b e s t _ d i s t = np . ar ray ( b e s t _ d i s t )

de l ta_z = o p t i m a l _ d i s t − b e s t _ d i s t

delta_z_sum = de l ta_z .sum ( )

e r r o r = ( 1 / group_size ) * delta_z_sum

d e l t a _ l i s t = np . square ( de l ta_z − e r r o r )

var_sum = d e l t a _ l i s t .sum ( )

var = ( 1 / ( group_size −1 ) ) * var_sum

### IMPORTANTE ###

v a r _ l i s t . append ( var )

v a r _ l i s t = np . ar ray ( v a r _ l i s t )

var_ l i s t_sum = v a r _ l i s t .sum ( )

f _ s t a r = [ ]

f _ s t a r . append ( f_bes t )

f_na ive = [ ]

f_na ive . append (F [ −1 ] )

cv_best = s e l f . k_ fo ld ( d a t a _ s p l i t t e d , f _s ta r , d e t e r m i n i s t i c = d e t e r m i n i s t i c )

cv_f_naive = s e l f . k_ fo ld ( d a t a _ s p l i t t e d , f_naive , d e t e r m i n i s t i c = d e t e r m i n i s t i c )

s t d _ v a r i a t i o n = np . s q r t ( var_ l i s t_sum / ( cv_f_naive −cv_best ) )

ep = np . s q r t ( s t d _ v a r i a t i o n / group_size )

return ( ep )

def completeness ( s e l f , d a t a _ l i s t , F_Theta , f_best , det = True ) :

" " "

Evaluates the completeness o f a model , according to the naive mapping .

Parameters

−−−−−−−−−−

d a t a _ l i s t : l i s t

A l i s t o f groups of data . .

F_Theta : l i s t

A l i s t o f model ' s pa ramet r i za t i ons . By de fau l t , the l a s t element must be the naive mapping .

f_bes t : pandas . DataFrame

A data frame corresponding to the best mapping f o r the data correspondent to d a t a _ l i s t .

Returns

−−−−−−−

The completeness l e v e l o f the model .

" " "

#data = pd . concat ( d a t a _ l i s t , ignore_ index = True )

f _ s t a r = [ ]

f _ s t a r . append ( f_bes t )

f_na ive = [ ]

f_na ive . append ( F_Theta [ −1 ] )

cv_best = s e l f . k_ fo ld ( d a t a _ l i s t , f _s ta r , d e t e r m i n i s t i c = det )

cv_F_Theta = s e l f . k_ fo ld ( d a t a _ l i s t , F_Theta , d e t e r m i n i s t i c = det )

cv_f_naive = s e l f . k_ fo ld ( d a t a _ l i s t , f_naive , d e t e r m i n i s t i c = det )

#completeness_level = ( cv_F_Theta − cv_mappings ) / ( cv_f_naive − cv_mappings )

completeness_level = ( cv_f_naive − cv_F_Theta ) / ( cv_f_naive − cv_best )

return ( completeness_level )

def s i m i l a r i t y ( s e l f , det_model , sto_model , n ) :

r e s t r i c t i v e n e s s _ l i s t = [ ]

t h resho ld = np . arange (0 ,1 .05 ,0 .05 )

round_funct ions = [ ]

for i in range (0 , len ( th resho ld ) ) :

def pf ( x , gamma = th resho ld [ i ] ) :

i f x − i n t ( x ) >= gamma:

x = i n t ( x ) + 1

else :

x = i n t ( x )

return ( x )

round_funct ions . append ( p f )

s t o _ p r e d i c t = sto_model [ [ 0 , 1 , 2 , 3 ] ]
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r u n _ l i s t = [ ]

for i in range (0 , n ) :

sto_temp = pd . DataFrame ( np . zeros ( ( 6 5 , 4 ) ) )

na ive_tp = pd . DataFrame ( np . zeros ( ( 6 5 , 4 ) ) )

for k in range (0 , len ( s e l f . choice_problems ) ) :

for j in range ( 0 , 4 ) :

i f s e l f . choice_problems . i a t [ k , j ] == 0 :

sto_temp . i a t [ k , j ] = 0

naive_tp . i a t [ k , j ] = 0

else :

sto_temp . i a t [ k , j ] = i n t ( np . random . choice ( [ 0 , 1 ] , 1 , p = [1 − s t o _ p r e d i c t . i a t [ k , j ] , s t o _ p r e d i c t . i a t [ k , j ] ] ) )

na ive_tp . i a t [ k , j ] = s t o _ p r e d i c t . i a t [ k , j ]

sto_temp = pd . concat ( [ s e l f . choice_problems , sto_temp ] , ax is =1)

r u n _ l i s t . append ( sto_temp )

for v in range (0 , len ( round_funct ions ) ) :

naive = naive_tp . applymap ( round_funct ions [ v ] )

naive = pd . concat ( [ s e l f . choice_problems , naive ] , ax is =1)

d e l t a _ l i s t = [ ]

d e t _ l i s t = [ ]

f_na ive = [ ]

d e t _ l i s t . append ( det_model )

d e t _ l i s t . append ( naive )

f_na ive . append ( naive )

for i in range (0 , n ) :

de l t a = s e l f . distance_map ( r u n _ l i s t [ i ] , d e t _ l i s t , d e t e r m i n i s t i c = True ) / s e l f . distance_map ( r u n _ l i s t [ i ] , f_naive , d e t e r m i n i s t i c = True )

d e l t a _ l i s t . append ( de l t a )

d e l t a _ l i s t = np . ar ray ( d e l t a _ l i s t )

r e s t r i c t i v e n e s s _ l i s t . append ( d e l t a _ l i s t . mean ( ) )

th resho ld = pd . DataFrame ( th resho ld )

r e s t r i c t i v e n e s s _ l i s t = pd . DataFrame ( r e s t r i c t i v e n e s s _ l i s t )

graph = pd . concat ( [ th resho ld , r e s t r i c t i v e n e s s _ l i s t ] , ax is =1 , ignore_ index=True )

return ( graph )

def curve ( s e l f , data , sto_model , n ) :

Y_data = data [ [ 'A ' , 'B ' , 'C ' , 'D ' ] ]

Y_data = np . ar ray ( Y_data )

r e s t r i c t i v e n e s s _ l i s t = [ ]

t h resho ld = np . arange (0 .01 ,1 .01 ,0 .01 )

round_funct ions = [ ]

for i in range (0 , len ( th resho ld ) ) :

def pf ( x , gamma = th resho ld [ i ] ) :

i f x − i n t ( x ) >= gamma:

x = i n t ( x ) + 1

else :

x = i n t ( x )

return ( x )

round_funct ions . append ( p f )

s t o _ p r e d i c t = sto_model [ [ 0 , 1 , 2 , 3 ] ]

r u n _ l i s t = [ ]

for i in range (0 , n ) :

sto_temp = pd . DataFrame ( np . zeros ( ( 6 5 , 4 ) ) )

na ive_tp = pd . DataFrame ( np . zeros ( ( 6 5 , 4 ) ) )

for k in range (0 , len ( s e l f . choice_problems ) ) :

for j in range ( 0 , 4 ) :

i f s e l f . choice_problems . i a t [ k , j ] == 0 :

sto_temp . i a t [ k , j ] = 0

naive_tp . i a t [ k , j ] = 0

else :

sto_temp . i a t [ k , j ] = i n t ( np . random . choice ( [ 0 , 1 ] , 1 , p = [1 − s t o _ p r e d i c t . i a t [ k , j ] , s t o _ p r e d i c t . i a t [ k , j ] ] ) )

na ive_tp . i a t [ k , j ] = s t o _ p r e d i c t . i a t [ k , j ]

sto_temp = pd . concat ( [ s e l f . choice_problems , sto_temp ] , ax is =1)

r u n _ l i s t . append ( sto_temp )

for v in range (0 , len ( round_funct ions ) ) :

naive = naive_tp . applymap ( round_funct ions [ v ] )
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naive = pd . concat ( [ s e l f . choice_problems , naive ] , ax is =1)

n a i v e _ f i t = s e l f . mode l_ f i t ( data , naive )

n a i v e _ f i t = np . ar ray ( n a i v e _ f i t )

na i ve_d i s t = [ np . l i n a l g . norm ( Y_data [ h] − n a i v e _ f i t [ h ] ) for h in range (0 , len ( Y_data ) ) ]

na i ve_d i s t = np . ar ray ( na i ve_d i s t )

na ive_er ro r = na i ve_d i s t . mean ( )

d e l t a _ l i s t = [ ]

for i in range (0 , n ) :

r e a l i z a t i o n _ f i t = s e l f . mode l_ f i t ( data , r u n _ l i s t [ i ] )

r e a l i z a t i o n _ f i t = np . ar ray ( r e a l i z a t i o n _ f i t )

r e a l i z a t i o n _ d i s t = [ np . l i n a l g . norm ( Y_data [ h] − r e a l i z a t i o n _ f i t [ h ] ) for h in range (0 , len ( Y_data ) ) ]

r e a l i z a t i o n _ d i s t = np . ar ray ( r e a l i z a t i o n _ d i s t )

r e a l i z a t i o n _ e r r o r = r e a l i z a t i o n _ d i s t . mean ( )

r e a l i z a t i o n _ e r r o r = min ( r e a l i z a t i o n _ e r r o r , na ive_er ro r )

kappa = ( na ive_er ror − r e a l i z a t i o n _ e r r o r ) / na i ve_er ro r

d e l t a _ l i s t . append ( kappa )

d e l t a _ l i s t = np . ar ray ( d e l t a _ l i s t )

r e s t r i c t i v e n e s s _ l i s t . append ( d e l t a _ l i s t . mean ( ) )

th resho ld = pd . DataFrame ( th resho ld )

r e s t r i c t i v e n e s s _ l i s t = pd . DataFrame ( r e s t r i c t i v e n e s s _ l i s t )

graph = pd . concat ( [ th resho ld , r e s t r i c t i v e n e s s _ l i s t ] , ax is =1 , ignore_ index=True )

return ( graph )

A.1.2 Eight Alternatives Setup

# −*− coding : u t f −8 −*−

" " "

Created on Sat Ju l 16 09:24:38 2022

@author : mathe

OBS: verbose = 0 hides the keras . sequen t ia l . f i t process on console

" " "

import t enso r f l ow

from t enso r f l ow import keras

from t enso r f l ow . keras import l a ye rs

#from sk learn . model_select ion impor t KFold

#from sk learn . preprocessing impor t minmax_scale

#from sk learn . met r i cs impor t

from sk learn . met r i cs import mean_squared_error as mse

#from sk learn . met r i cs impor t auc

from i t e r t o o l s import product

from random import r a n d i n t

from random import uni form

from m a t p l o t l i b import pyp lo t as p l t

import pandas as pd

import numpy as np

#next l i n e o f code must be executed on o lde r vers ions o f tenso r f l ow

t enso r f l ow . enable_eager_execut ion ( )

bce = tenso r f l ow . keras . losses . BinaryCrossentropy ( )

class r e s t r i c t i v e n e s s _ 2 d g r i d ( ) :

" " "

A c lass to eva luate r e s t r i c t i v e n e s s and completeness o f a parametr ic asp i r a t i on −re ference model . Generates random

data , random non−parametr ic mappings . The general framework i s set to have fou r a l t e r n a t i v e s such t h a t there i s a

s t r i c t complete preorder rank ing them .

" " "

def _ _ i n i t _ _ ( s e l f , m) :

" " "

I n i t i a l i z e an ob jec t o f a c lass wi th va l i d , f e a s i b l e op t ions must be observable , and re levan t , there are a t

l e a s t one observable op t ion as we l l an f e a s i b l e opt ion , choice problemes and random mappings from them to
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choices .

Parameters

−−−−−−−−−−

m : i n t

the number o f random mappings to generate .

Returns

−−−−−−−

s e l f . choice_problems : l i s t o f v a l i d and re l evan t choice problems .

s e l f . mappings : l i s t o f m random mappings .

" " "

s e l f . cho ice_prob lems_ l i s t = [ ]

t = l i s t ( product ( range ( 2 ) , repeat = 8 ) )

t . pop ( 0 )

for i in range (0 , len ( t ) ) :

s = l i s t ( product ( range ( 2 ) , repeat = 8 ) )

s . pop ( 0 )

remove_ l i s t = [ ]

for j in range ( 0 , 8 ) :

for k in range (0 , len ( s ) ) :

i f t [ i ] [ j ] == 0 and s [ k ] [ j ] == 1 :

remove_ l i s t . append ( s [ k ] )

l i s t_ to_append = [ x for x in s i f x not in remove_ l i s t ]

for k in range (0 , len ( l i s t_ to_append ) ) :

s e l f . cho ice_prob lems_ l i s t . append ( l i s t ( l i s t_ to_append [ k ]+ t [ i ] ) )

s e l f . choice_problems = pd . DataFrame ( s e l f . cho ice_prob lems_ l is t ,

columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' ,

' I ' , ' J ' , 'K ' , ' L ' , 'M ' , 'N ' , 'O ' , 'P ' ] )

s e l f . mappings = s e l f . mapping_generate (m)

s e l f . asp_ref_model = s e l f . f _ t h e t a ( )

s e l f . asp_only_model = s e l f . f _ the ta_no_re f ( )

s e l f . a l l_model = s e l f . f _ n a i v e _ a l l ( )

s e l f . nothing_model = s e l f . f_na ive_noth ing ( )

s e l f . r a t i o n a l = s e l f . f _ r a t i o n a l ( )

def data_generate ( s e l f , n ) :

" " "

Generates data f o r v a l i d choice problems cons ider ing a complete preorder . The i n d i v i d u a l must choose something .

Parameters

−−−−−−−−−−

n : i n t

the number o f observat ions o f h y p o t h e t i c a l data .

Returns

−−−−−−−

A data frame wi th n rows and 12 columns , the f i r s t f ou r denotes the choices , the middle fou r denotes the f e a s i b l e

opt ions , the l a s t f ou r denotes the observable op t ions .

" " "

# The f i r s t 4 p o s i t i o n s on the data are the choices

c h o i c e _ d a t a _ l i s t = [ ]

for h in range (0 , n ) :

obs_temp = (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) + tuple ( s e l f . cho ice_prob lems_ l i s t [ r a n d i n t (0 , len ( s e l f . cho ice_prob lems_ l i s t ) − 1 ) ] )

obs = l i s t ( obs_temp )

while sum( obs [ 0 : 8 ] ) < 1 :

for i in range ( 0 , 8 ) :

i f obs [ i +8] == 1:

obs [ i ] = r a n d i n t (0 ,1 )

c h o i c e _ d a t a _ l i s t . append ( obs )
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choice_data = pd . DataFrame ( cho i ce_da ta_ l i s t ,

columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' ,

' J ' , 'K ' , ' L ' , 'M ' , 'N ' , 'O ' , 'P ' , 'Q ' , 'R ' , 'S ' , ' T ' , 'U ' , 'V ' , 'X ' , 'Y ' ] )

return ( choice_data )

def data_generate_ord_bin ( s e l f , n ) :

" " "

Generates data f o r v a l i d choice problems , compr is ing i n d i v i d u a l s who choose noth ing when there are two or more

opt ions to choose .

Parameters

−−−−−−−−−−

n : i n t

the number o f observat ions o f h y p o t h e t i c a l data .

Returns

−−−−−−−

A data frame wi th n rows and 12 columns , the f i r s t f ou r denotes the choices , the middle fou r denotes the f e a s i b l e

opt ions , the l a s t f ou r denotes the observable op t ions .

" " "

# The f i r s t 4 p o s i t i o n s on the data are the choices

c h o i c e _ d a t a _ l i s t = [ ]

for h in range (0 , n ) :

obs_temp = (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) + tuple ( s e l f . cho ice_prob lems_ l i s t [ r a n d i n t (0 , len ( s e l f . cho ice_prob lems_ l i s t ) − 1 ) ] )

obs = l i s t ( obs_temp )

for i in range ( 0 , 8 ) :

i f obs [ i +8] == 1:

obs [ i ] = r a n d i n t (0 ,1 )

c h o i c e _ d a t a _ l i s t . append ( obs )

choice_data = pd . DataFrame ( cho i ce_da ta_ l i s t ,

columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' ,

' J ' , 'K ' , ' L ' , 'M ' , 'N ' , 'O ' , 'P ' , 'Q ' , 'R ' , 'S ' , ' T ' , 'U ' , 'V ' , 'X ' , 'Y ' ] )

return ( choice_data )

def data_generate_ inc_pref ( s e l f , n ) :

" " "

Generates data f o r v a l i d choice problems from a ord ina ry b inary r e l a t i o n , t h a t could not be r e f l e x i v e .

Parameters

−−−−−−−−−−

n : i n t

the number o f observat ions o f h y p o t h e t i c a l data .

Returns

−−−−−−−

A data frame wi th n rows and 12 columns , the f i r s t f ou r denotes the choices , the middle fou r denotes the f e a s i b l e

opt ions , the l a s t f ou r denotes the observable op t ions .

" " "

# The f i r s t 4 p o s i t i o n s on the data are the choices

c h o i c e _ d a t a _ l i s t = [ ]

for h in range (0 , n ) :

obs_temp = (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) + tuple ( s e l f . cho ice_prob lems_ l i s t [ r a n d i n t (0 , len ( s e l f . cho ice_prob lems_ l i s t ) − 1 ) ] )

obs = l i s t ( obs_temp )

i f sum( obs [ 8 : 1 6 ] ) == 1:

while sum( obs [ 0 : 8 ] ) < 1 :

for i in range ( 0 , 8 ) :

i f obs [ i +8] == 1:

obs [ i ] = r a n d i n t (0 ,1 )

else :

for i in range ( 0 , 8 ) :

i f obs [ i +8] == 1:

obs [ i ] = r a n d i n t (0 ,1 )
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c h o i c e _ d a t a _ l i s t . append ( obs )

choice_data = pd . DataFrame ( cho i ce_da ta_ l i s t ,

columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' ,

' J ' , 'K ' , ' L ' , 'M ' , 'N ' , 'O ' , 'P ' , 'Q ' , 'R ' , 'S ' , ' T ' , 'U ' , 'V ' , 'X ' , 'Y ' ] )

return ( choice_data )

def mapping_generate ( s e l f , m, d e t e r m i n i s t i c = True ) :

" " "

Generate random mappings from v a l i d and re l evan t choice problems to ac tua l choices .

Mappings are choice correspondences , thus a l l ow ing m u l t i p l e choices .

Each mapping has 65 rows and 12 columns , the f i r s t f ou r denotes f e a s i b l e opt ions , the middle fou r denotes observa

b le a l t e r n a t i v e s and l a s t f ou r denotes the choices .

Parameters

−−−−−−−−−−

m : i n t

the number o f random mappings to generate .

Returns

−−−−−−−

A l i s t o f m random mappings .

" " "

# The l a s t 4 p o s i t i o n s on the mapping are the choices

mapp ing_ l i s t = [ ] # A l i s t o f dataframes 65x12

for i in range (0 ,m) :

mapping_predic t ions = [ ]

for j in range (0 , len ( s e l f . cho ice_prob lems_ l i s t ) ) :

i f d e t e r m i n i s t i c == True :

pred ic t ion_temp = tuple ( s e l f . cho ice_prob lems_ l i s t [ j ] ) + (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0)

p r e d i c t i o n = l i s t ( p red ic t ion_temp )

while sum( p r e d i c t i o n [ 1 6 : 2 4 ] ) < 1 :

for h in range ( 0 , 8 ) :

i f p r e d i c t i o n [ h ] == 1:

p r e d i c t i o n [ h+16] = r a n d i n t (0 ,1 )

else :

p red ic t ion_temp = tuple ( s e l f . cho ice_prob lems_ l i s t [ j ] ) + ( uni form (0 , 1 ) , un i form (0 , 1 ) ,

un i form (0 , 1 ) , un i form (0 , 1 ) ,

un i form (0 , 1 ) , un i form (0 , 1 ) ,

un i form (0 , 1 ) , un i form (0 , 1 ) )

p r e d i c t i o n = l i s t ( p red ic t ion_temp )

mapping_predic t ions . append ( p r e d i c t i o n )

mapping = pd . DataFrame ( mapping_predict ions , columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' ,

' J ' , 'K ' , ' L ' , 'M ' , 'N ' , 'O ' , 'P ' , 'Q ' , 'R ' ,

'S ' , ' T ' , 'U ' , 'V ' , 'X ' , 'Y ' ] )

mapp ing_ l i s t . append ( mapping )

return ( mapp ing_ l i s t )

def perf_round ( s e l f , x , gamma ) :

" " "

Round values grea te r than 0.54 to 1 . Used to make p r o b a b i l i t i e s o f choice i n t o choices f o r a neura l network .

Parameters

−−−−−−−−−−

x : f l o a t

value to be rounded .

Returns

−−−−−−−

Rounded number .

" " "

i f x − i n t ( x ) >= gamma:
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x = i n t ( x ) + 1

else :

x = i n t ( x )

return ( x )

def a s p i r a t i o n ( s e l f , T ) :

" " "

Get the index of the a s p i r a t i o n .

Parameters

−−−−−−−−−−

T : l i s t

a l i s t o f leng th 4 and elements 0 or 1 .

Returns

−−−−−−−

i : i n t

index o f the a s p i r a t i o n .

" " "

for i in range ( 0 , 8 ) :

i f T [ i ] == 1 :

return i

def u_S( s e l f , S , T ) :

a = s e l f . a s p i r a t i o n (T )

a l t e r n a t i v e s = [ np . ar ray ( ( 0 , 1 ) ) , np . ar ray ( ( 0 , 0 ) ) , np . ar ray ( ( 1 , 1 ) ) , np . a r ray ( ( 1 , 0 ) ) ,

np . ar ray ( ( 2 , 1 ) ) , np . ar ray ( ( 2 , 0 ) ) , np . a r ray ( ( 3 , 1 ) ) , np . a r ray ( ( 3 , 0 ) ) ]

d i s t = [ f l o a t ( np . l i n a l g . norm ( a l t e r n a t i v e s [ a] − a l t e r n a t i v e s [ x ] ) ) for x in range ( 0 , 8 ) ]

for i in range (0 , len (S ) ) :

i f S[ i ] == 0:

d i s t [ i ] = 100

# re ference = d i s t . index ( min ( d i s t ) )

re ferences = l i s t ( np . where ( np . ar ray ( d i s t ) == min ( d i s t ) ) [ 0 ] )

d i s t _ r e f _ l i s t = [ ]

for v in range (0 , len ( re ferences ) ) :

d i s t _ r e f = [ f l o a t ( np . l i n a l g . norm ( a l t e r n a t i v e s [ re ferences [ v ] ] − a l t e r n a t i v e s [ x ] ) ) for x in range ( 0 , 8 ) ]

d i s t _ r e f _ l i s t . append ( d i s t _ r e f )

for j in range (0 , len (S ) ) :

k=0

while k < len ( re ferences ) :

i f d i s t _ r e f _ l i s t [ k ] [ j ] > f l o a t ( np . l i n a l g . norm ( a l t e r n a t i v e s [ a] − a l t e r n a t i v e s [ re ferences [ 0 ] ] ) ) :

i f k == len ( re ferences ) −1:

S [ j ] = 0

k=k+1

else :

k = len ( re ferences )

for y in range ( 0 , 8 ) :

i f S[ −y −1] == 1:

choice = 7−y

return ( choice )

def u_S_no_ref ( s e l f , S , T ) :

a = s e l f . a s p i r a t i o n (T )

a l t e r n a t i v e s = [ np . ar ray ( ( 0 , 1 ) ) , np . ar ray ( ( 0 , 0 ) ) , np . a r ray ( ( 1 , 1 ) ) , np . a r ray ( ( 1 , 0 ) ) , np . a r ray ( ( 2 , 1 ) ) ,

np . ar ray ( ( 2 , 0 ) ) , np . ar ray ( ( 3 , 1 ) ) , np . a r ray ( ( 3 , 0 ) ) ]

d i s t = [ f l o a t ( np . l i n a l g . norm ( a l t e r n a t i v e s [ a] − a l t e r n a t i v e s [ x ] ) ) for x in range ( 0 , 8 ) ]

for i in range (0 , len (S ) ) :

i f S[ i ] == 0 :

d i s t [ i ] = 100

references = l i s t ( np . where ( np . ar ray ( d i s t ) == min ( d i s t ) ) [ 0 ] )

return ( re ferences )

def f _ r a t i o n a l ( s e l f ) :

93



" " "

Creates a mapping from the choice problems of the 4 a l t e r n a t i v e s framework i n t o choices

according to the r a t i o n a l model , w i thou t observable but non f e a s i b l e op t ions . For t h i s setup ,

i t co inc ides wi th the asp i r a t i on −based choice model .

Returns

−−−−−−−

A data frame corresponding to the r a t i o n a l model , f o r each choice problem .

" " "

n a i v e _ l i s t = [ ]

for i in range (0 , len ( s e l f . cho ice_prob lems_ l i s t ) ) :

S = s e l f . cho ice_prob lems_ l i s t [ i ] [ 0 : 8 ]

choice_index = s e l f . a s p i r a t i o n (S)

temp = [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

temp [ choice_index ] = 1

naive_predic t_temp = tuple ( s e l f . cho ice_prob lems_ l i s t [ i ] ) + tuple ( temp )

na i ve_p red i c t = l i s t ( na ive_predic t_temp )

n a i v e _ l i s t . append ( na i ve_p red i c t )

naive = pd . DataFrame ( n a i v e _ l i s t , columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' ,

' J ' , 'K ' , ' L ' , 'M ' , 'N ' , 'O ' , 'P ' , 'Q ' ,

'R ' , 'S ' , ' T ' , 'U ' , 'V ' , 'X ' , 'Y ' ] )

return ( naive )

def f _ n a i v e _ a l l ( s e l f ) :

" " "

Creates a mapping from the choice problems of the 4 a l t e r n a t i v e s framework i n t o choices

i n such a way every th ing t h a t i s a v a i l a b l e to choose i s chosen .

Returns

−−−−−−−

A data frame corresponding to the naive p red i c t i ons , f o r each choice problem .

" " "

n a i v e _ l i s t = [ ]

for i in range (0 , len ( s e l f . cho ice_prob lems_ l i s t ) ) :

S = s e l f . cho ice_prob lems_ l i s t [ i ] [ 0 : 8 ]

naive_predic t_temp = tuple ( s e l f . cho ice_prob lems_ l i s t [ i ] ) + tuple (S)

na i ve_p red i c t = l i s t ( na ive_predic t_temp )

n a i v e _ l i s t . append ( na i ve_p red i c t )

naive = pd . DataFrame ( n a i v e _ l i s t , columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' ,

' J ' , 'K ' , ' L ' , 'M ' , 'N ' , 'O ' , 'P ' , 'Q ' , 'R ' , 'S ' , ' T ' , 'U ' , 'V ' , 'X ' , 'Y ' ] )

return ( naive )

def f_na ive_noth ing ( s e l f ) :

" " "

Creates a mapping from the choice problems of the 4 a l t e r n a t i v e s framework i n t o choices

i n such a way noth ing i s chosen .

Returns

−−−−−−−

A data frame corresponding to the naive p red i c t i ons , f o r each choice problem .

" " "

n a i v e _ l i s t = [ ]

for i in range (0 , len ( s e l f . cho ice_prob lems_ l i s t ) ) :

na ive_predic t_temp = tuple ( s e l f . cho ice_prob lems_ l i s t [ i ] ) + (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0)

na i ve_p red i c t = l i s t ( na ive_predic t_temp )

n a i v e _ l i s t . append ( na i ve_p red i c t )

naive = pd . DataFrame ( n a i v e _ l i s t , columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' ,

' J ' , 'K ' , ' L ' , 'M ' , 'N ' , 'O ' , 'P ' , 'Q ' , 'R ' , 'S ' , ' T ' , 'U ' , 'V ' , 'X ' , 'Y ' ] )

return ( naive )

def f _ t h e t a ( s e l f ) :
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# the ta e o modelo do s i l v a

" " "

Creates a mapping from the choice problems of the 4 a l t e r n a t i v e s framework i n t o choices

according to asp i r a t i on −based re ference dependance model .

Returns

−−−−−−−

A data frame corresponding to asp i r a t i on −based re ference dependance model ' s p r e d i c t i o n s

f o r each choice problem .

" " "

mode l_ l i s t = [ ]

for i in range (0 , len ( s e l f . cho ice_prob lems_ l i s t ) ) :

S = s e l f . cho ice_prob lems_ l i s t [ i ] [ 0 : 8 ]

T = s e l f . cho ice_prob lems_ l i s t [ i ] [ 8 : 1 6 ]

i f S == T :

choice_index = s e l f . a s p i r a t i o n (T )

else :

choice_index = s e l f . u_S (S, T )

temp = [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

temp [ choice_index ] = 1

model_predict_temp = tuple ( s e l f . cho ice_prob lems_ l i s t [ i ] ) + tuple ( temp )

model_predic t = l i s t ( model_predict_temp )

mode l_ l i s t . append ( model_predic t )

model = pd . DataFrame ( mode l_ l i s t , columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' , ' J ' ,

'K ' , ' L ' , 'M ' , 'N ' , 'O ' , 'P ' , 'Q ' , 'R ' , 'S ' , ' T ' , 'U ' , 'V ' , 'X ' , 'Y ' ] )

return ( model )

def f _ the ta_no_re f ( s e l f ) :

# the ta_no_re f e o modelo do guney

" " "

Creates a mapping from the choice problems of the 4 a l t e r n a t i v e s framework i n t o choices

according to asp i r a t i on −based choice model .

Returns

−−−−−−−

A data frame corresponding to asp i r a t i on −based choice model ' s p red i c t i ons , f o r each

choice problem .

" " "

mode l_ l i s t = [ ]

for i in range (0 , len ( s e l f . cho ice_prob lems_ l i s t ) ) :

S = s e l f . cho ice_prob lems_ l i s t [ i ] [ 0 : 8 ]

T = s e l f . cho ice_prob lems_ l i s t [ i ] [ 8 : 1 6 ]

i f S == T :

choice_index = [ s e l f . a s p i r a t i o n (T ) ]

else :

choice_index = s e l f . u_S_no_ref (S, T )

temp = [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

for v in range (0 , len ( choice_index ) ) :

temp [ choice_index [ v ] ] = 1

model_predict_temp = tuple ( s e l f . cho ice_prob lems_ l i s t [ i ] ) + tuple ( temp )

model_predic t = l i s t ( model_predict_temp )

mode l_ l i s t . append ( model_predic t )

model = pd . DataFrame ( mode l_ l i s t , columns =[ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' , ' I ' ,

' J ' , 'K ' , ' L ' , 'M ' , 'N ' , 'O ' , 'P ' , 'Q ' , 'R ' , 'S ' , ' T ' , 'U ' , 'V ' , 'X ' , 'Y ' ] )

return ( model )

def f _ l o g i t ( s e l f , data , d e t e r m i n i s t i c = True ) :

x _ t r a i n = data [ [ ' I ' , ' J ' , 'K ' , ' L ' , 'M ' , 'N ' , 'O ' , 'P ' , 'Q ' , 'R ' , 'S ' , ' T ' , 'U ' , 'V ' , 'X ' , 'Y ' ] ]

y _ t r a i n = data [ [ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' ] ]

l og i t_mode l = keras . Sequent ia l ( [

keras . Inpu t ( shape = (16 ) ) ,

l aye rs . Dense (8 , a c t i v a t i o n = ' sigmoid ' ) ] )
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l og i t_mode l . compile ( loss = ' b inary_crossent ropy ' , op t im ize r = 'adam ' , met r i cs = [ ' accuracy ' ] )

log i t_mode l . f i t ( x_ t ra in , y_ t ra in , batch_s ize = 32 , epochs = 100)

p r e d i c t _ d f = log i t_mode l . p r e d i c t ( s e l f . choice_problems )

p r e d i c t _ d f = pd . DataFrame ( p r e d i c t _ d f )

i f d e t e r m i n i s t i c == True :

# p r e d i c t _ d f = p r e d i c t _ d f . applymap ( s e l f . per f_round )

for i in range (0 , len ( s e l f . choice_problems ) ) :

for j in range ( 0 , 8 ) :

i f s e l f . choice_problems . i a t [ i , j ] == 0 :

p r e d i c t _ d f . i a t [ i , j ] = 0

else :

p r e d i c t _ d f . i a t [ i , j ] = i n t ( np . random . choice ( [ 0 , 1 ] , 1 , p = [1 − p r e d i c t _ d f . i a t [ i , j ] , p r e d i c t _ d f . i a t [ i , j ] ] ) )

nn = pd . concat ( [ s e l f . choice_problems , p r e d i c t _ d f ] , ax is =1)

return ( nn )

def f_NN ( s e l f , data , N, d e t e r m i n i s t i c = True ) :

" " "

Creates a mapping from the choice problems of the 4 a l t e r n a t i v e s framework i n t o choices

according to a neura l network . By de fau l t , the neura l net has two hidden layers , each

wi th same amount o f neurons .

Parameters

−−−−−−−−−−

data : pandas . DataFrame

Data used to t r a i n the neura l net .

N : i n t

Number o f neurons f o r each hidden laye r o f the neura l net .

Returns

−−−−−−−

A data frame corresponding to the t r e i n e d neura l net ' s p red i c t i ons , f o r each choice problem .

" " "

x _ t r a i n = data [ [ ' I ' , ' J ' , 'K ' , ' L ' , 'M ' , 'N ' , 'O ' , 'P ' , 'Q ' , 'R ' , 'S ' , ' T ' , 'U ' , 'V ' , 'X ' , 'Y ' ] ]

y _ t r a i n = data [ [ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' ] ]

one_hidden_layer_nn = keras . Sequent ia l ( [

keras . Inpu t ( shape = (16 ) ) ,

l aye rs . Dense (N, a c t i v a t i o n = ' r e l u ' ) ,

l aye rs . Dense (N, a c t i v a t i o n = ' r e l u ' ) ,

l aye rs . Dense (8 , a c t i v a t i o n = ' sigmoid ' ) ] )

one_hidden_layer_nn . compile ( loss = ' b inary_crossent ropy ' , op t im i ze r = 'adam ' , met r i cs = [ ' accuracy ' ] )

one_hidden_layer_nn . f i t ( x_ t ra in , y_ t ra in , batch_s ize = 32 , epochs = 100)

p r e d i c t _ d f = one_hidden_layer_nn . p r e d i c t ( s e l f . choice_problems )

p r e d i c t _ d f = pd . DataFrame ( p r e d i c t _ d f )

i f d e t e r m i n i s t i c == True :

# p r e d i c t _ d f = p r e d i c t _ d f . applymap ( s e l f . per f_round )

for i in range (0 , len ( s e l f . choice_problems ) ) :

for j in range ( 0 , 8 ) :

i f s e l f . choice_problems . i a t [ i , j ] == 0 :

p r e d i c t _ d f . i a t [ i , j ] = 0

else :

p r e d i c t _ d f . i a t [ i , j ] = i n t ( np . random . choice ( [ 0 , 1 ] , 1 , p = [1 − p r e d i c t _ d f . i a t [ i , j ] , p r e d i c t _ d f . i a t [ i , j ] ] ) )

nn = pd . concat ( [ s e l f . choice_problems , p r e d i c t _ d f ] , ax is =1)

return ( one_hidden_layer_nn . summary ( ) )

def f_CNN( s e l f , data , N, d e t e r m i n i s t i c = True ) :

x _ t r a i n = data [ [ ' I ' , ' J ' , 'K ' , ' L ' , 'M ' , 'N ' , 'O ' , 'P ' , 'Q ' , 'R ' , 'S ' , ' T ' , 'U ' , 'V ' , 'X ' , 'Y ' ] ]

x _ t r a i n = np . ar ray ( x _ t r a i n )

x _ t r a i n = x _ t r a i n . reshape ( len ( x _ t r a i n ) , 16 , 1)

y _ t r a i n = data [ [ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' ] ]
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# y _ t r a i n = np . ar ray ( y _ t r a i n )

# y _ t r a i n = y _ t r a i n . reshape ( len ( y _ t r a i n ) , 8 , 1)

convo lu t iona l_nn = keras . Sequent ia l ( [

l aye rs . Conv1D(N, ke rne l_s i ze =3 , a c t i v a t i o n = ' r e l u ' , input_shape =(16 , 1 ) ) ,

l aye rs . Conv1D(N, ke rne l_s i ze =3 , a c t i v a t i o n = ' r e l u ' ) ,

l aye rs . Dropout ( 0 . 5 ) ,

l aye rs . MaxPooling1D ( poo l_s ize =2) ,

l aye rs . F l a t t e n ( ) ,

l aye rs . Dense (8 , a c t i v a t i o n = ' sigmoid ' ) ] )

convo lu t iona l_nn . compile ( loss = ' b inary_crossent ropy ' , op t im ize r = 'adam ' , met r i cs = [ ' accuracy ' ] )

convo lu t iona l_nn . f i t ( x_ t ra in , y_ t ra in , batch_s ize = 32 , epochs = 100)

x_ tes t = np . ar ray ( s e l f . choice_problems )

x_ tes t = x_ tes t . reshape ( len ( x_ tes t ) , 16 , 1)

p r e d i c t _ d f = convo lu t iona l_nn . p r e d i c t ( x_ tes t )

p r e d i c t _ d f = pd . DataFrame ( p r e d i c t _ d f )

i f d e t e r m i n i s t i c == True :

# p r e d i c t _ d f = p r e d i c t _ d f . applymap ( s e l f . per f_round )

for i in range (0 , len ( s e l f . choice_problems ) ) :

for j in range ( 0 , 8 ) :

i f s e l f . choice_problems . i a t [ i , j ] == 0 :

p r e d i c t _ d f . i a t [ i , j ] = 0

else :

p r e d i c t _ d f . i a t [ i , j ] = i n t ( np . random . choice ( [ 0 , 1 ] , 1 , p = [1 − p r e d i c t _ d f . i a t [ i , j ] , p r e d i c t _ d f . i a t [ i , j ] ] ) )

nn = pd . concat ( [ s e l f . choice_problems , p r e d i c t _ d f ] , ax is =1)

return ( convo lu t iona l_nn . summary ( ) )

def mode l_ f i t ( s e l f , data , modelo ) :

" " "

Generate a model ' s p red i c t i on , choices , based on inpu t data , choice problem .

Parameters

−−−−−−−−−−

data : pandas . DataFrame

A data frame wi th n rows and 12 columns , w i th the l a s t 8 being the choice problem , f e a s i b l e and observable

op t ions ) .

modelo : pandas . DataFrame

A data frame , corresponding to a mapping or a model , w i th 12 columns , being the f i r s t e i gh t the choice

problem and the l a s t 4 the choice correspondent to the choice problem .

Returns

−−−−−−−

A data frame con ta in ing the p r e d i c t i o n s o f the model f o r the data i npu t .

" " "

mode l_ f i t = pd . merge ( data , modelo , how= ' l e f t ' , l e f t _ o n =[ ' I ' , ' J ' , 'K ' , ' L ' , 'M ' , 'N ' , 'O ' , 'P ' ,

'Q ' , 'R ' , 'S ' , ' T ' , 'U ' , 'V ' , 'X ' , 'Y ' ] ,

r i gh t_on = [ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' ,

' I ' , ' J ' , 'K ' , ' L ' , 'M ' , 'N ' , 'O ' , 'P ' ] )

mode l_ f i t = mode l_ f i t . i l o c [ : , 4 0 : 4 8 ]

return ( mode l_ f i t )

def distance_map ( s e l f , f , F_Theta , d e t e r m i n i s t i c = True ) :

" " "

Evaluates d is tance between mappings , according to the usual euc l idean d is tance .

Parameters

−−−−−−−−−−

f : pandas . DataFrame

Mapping from choice problems i n t o choices , 65 rows and 12 columns .

F_Theta : l i s t

A l i s t con ta in ing the mappings corresponding to the paramet r i za t i ons o f the model , data frames wi th 65 rows

and 12 columns . On the s imp les t case , i t comprises a paramet r i za t i on o f i n t e r e s t and the naive mapping .
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Returns

−−−−−−−

The minimum dis tance of model pa ramet r i za t i ons and a given map.

" " "

d i s t _ l i s t = [ ]

# f_ func = f [ [ ' I ' , ' J ' , 'K ' , ' L ' ] ]

i f d e t e r m i n i s t i c == True :

f_ func = np . ar ray ( f )

for i in range (0 , len ( F_Theta ) ) :

# paramet r i za t ion_pred = F_Theta [ i ] [ [ ' I ' , ' J ' , 'K ' , ' L ' ] ]

paramet r i za t ion_pred = np . ar ray ( F_Theta [ i ] )

d i s t = [ np . l i n a l g . norm ( f_ func [ j ] − paramet r i za t ion_pred [ j ] ) for j in range (0 , len ( f ) ) ]

d i s t = np . ar ray ( d i s t )

mean_dist = d i s t . mean ( )

d i s t _ l i s t . append ( mean_dist )

else :

f_ func = f [ [ 'Q ' , 'R ' , 'S ' , ' T ' , 'U ' , 'V ' , 'X ' , 'Y ' ] ]

f_ func = np . ar ray ( f_ func )

for i in range (0 , len ( F_Theta ) ) :

paramet r i za t ion_pred = F_Theta [ i ] [ [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ] ]

paramet r i za t ion_pred = np . ar ray ( paramet r i za t ion_pred )

d i s t = [ bce ( f_ func [ j ] , paramet r i za t ion_pred [ j ] ) . numpy ( ) for j in range (0 , len ( f ) ) ]

d i s t = np . ar ray ( d i s t )

mean_dist = d i s t . mean ( )

d i s t _ l i s t . append ( mean_dist )

d i s t _ l i s t = np . ar ray ( d i s t _ l i s t )

e r r o r = d i s t _ l i s t . min ( )

return ( e r r o r )

def best_map ( s e l f , data , det = True ) :

" " "

I t e r a t e s over 1000 maps to f i n d the map t h a t minimizes the expected loss f u n c t i o n f o r the given data .

Parameters

−−−−−−−−−−

data : pandas . DataFrame

Data i n which the f u n c t i o n i t e r a t e s over random mappings to f i n d the best one .

Returns

−−−−−−−

The best map f o r the given data .

" " "

i f det == True :

maps = s e l f . mapping_generate (1000)

else :

maps = s e l f . mapping_generate (1000 , d e t e r m i n i s t i c = det )

" " "

f o r k i n range (0 , len (maps ) ) :

maps [ k ] [ [ ' I ' , ' J ' , 'K ' , ' L ' ] ] = maps [ k ] [ [ ' I ' , ' J ' , 'K ' , ' L ' ] ] . rep lace (0 , 0.001)

maps [ k ] [ [ ' I ' , ' J ' , 'K ' , ' L ' ] ] = maps [ k ] [ [ ' I ' , ' J ' , 'K ' , ' L ' ] ] . rep lace (1 , 0.999)

" " "

d i s t _ l i s t = [ ]

Y = data [ [ 'A ' , 'B ' , 'C ' , 'D ' ] ]

Y = np . ar ray (Y)

for i in range (0 , len (maps ) ) :

map_f i t = s e l f . mode l_ f i t ( data , maps [ i ] )

map_f i t = np . ar ray ( map_f i t )

i f det == True :

d i s t = [ np . l i n a l g . norm (Y[ j ] − map_f i t [ j ] ) for j in range (0 , len (Y ) ) ]

else :

d i s t = [ bce (Y [ j ] , map_f i t [ j ] ) . numpy ( ) for j in range (0 , len (Y ) ) ]
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d i s t = np . ar ray ( d i s t )

mean_dist = d i s t . mean ( )

d i s t _ l i s t . append ( mean_dist )

d i s t _ l i s t = np . ar ray ( d i s t _ l i s t )

optimal_map = np . argmin ( d i s t _ l i s t )

return (maps [ optimal_map ] )

def mean_discrepancy ( s e l f , F_Theta , d e t e r m i n i s t i c = True ) :

" " "

Evaluates the r e s t r i c t i v e n e s s o f a model , t ak ing i n t o account the respec t i ve naive mapping .

Parameters

−−−−−−−−−−

F_Theta : l i s t

A l i s t con ta in ing data frames represen t ing model ' s pa ramet r i za t i ons mappings , w i th 65 rows and 12

columns . By the defaut , the l a s t element must be the naive mapping .

Returns

−−−−−−−

A numpy . ar ray w i th the discrepancy f o r each random generated mapping .

" " "

d e l t a _ l i s t = [ ]

# F_ the ta_p red ic t i ons = [ ]

f_na ive = [ ]

#Y = data [ [ ' A ' , 'B ' , 'C ' , 'D ' ] ]

" " "

f o r j i n range (0 , len ( F_Theta ) ) :

p r e d i c t i o n s = s e l f . mode l_ f i t ( data , F_Theta [ j ] )

F_ the ta_p red ic t i ons . append ( p r e d i c t i o n s )

" " "

f_na ive . append ( F_Theta [ −1 ] )

for i in range (0 , len ( s e l f . mappings ) ) :

# mapping_f i t = s e l f . mode l_ f i t ( data , s e l f . mappings [ i ] )

i f d e t e r m i n i s t i c == True :

de l t a = s e l f . distance_map ( s e l f . mappings [ i ] , F_Theta , d e t e r m i n i s t i c = True ) / s e l f . distance_map (

s e l f . mappings [ i ] , f_naive , d e t e r m i n i s t i c = True )

else :

de l t a = s e l f . distance_map ( s e l f . mappings [ i ] , F_Theta , d e t e r m i n i s t i c = False ) / s e l f . distance_map (

s e l f . mappings [ i ] , f_naive , d e t e r m i n i s t i c = False )

d e l t a _ l i s t . append ( de l t a )

d e l t a _ l i s t = np . ar ray ( d e l t a _ l i s t )

return ( d e l t a _ l i s t )

def mean_discrepancy_std_error ( s e l f , F_Theta , d e t e r m i n i s t i c = True ) :

" " "

Evaluates the r e s t r i c t i v e n e s s o f a model , t ak ing i n t o account the respec t i ve naive mapping .

Parameters

−−−−−−−−−−

F_Theta : l i s t

A l i s t con ta in ing data frames represen t ing model ' s pa ramet r i za t i ons mappings , w i th 65 rows and 12

columns . By the defaut , the l a s t element must be the naive mapping .

Returns

−−−−−−−

A numpy . ar ray w i th the discrepancy f o r each random generated mapping .

" " "

d e l t a _ l i s t = [ ]

# F_ the ta_p red ic t i ons = [ ]

f_na ive = [ ]

#Y = data [ [ ' A ' , 'B ' , 'C ' , 'D ' ] ]

" " "
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f o r j i n range (0 , len ( F_Theta ) ) :

p r e d i c t i o n s = s e l f . mode l_ f i t ( data , F_Theta [ j ] )

F_ the ta_p red ic t i ons . append ( p r e d i c t i o n s )

" " "

f_na ive . append ( F_Theta [ −1 ] )

for i in range (0 , len ( s e l f . mappings ) ) :

# mapping_f i t = s e l f . mode l_ f i t ( data , s e l f . mappings [ i ] )

i f d e t e r m i n i s t i c == True :

de l t a = s e l f . distance_map ( s e l f . mappings [ i ] , F_Theta , d e t e r m i n i s t i c = True ) / s e l f . distance_map (

s e l f . mappings [ i ] , f_naive , d e t e r m i n i s t i c = True )

else :

de l t a = s e l f . distance_map ( s e l f . mappings [ i ] , F_Theta , d e t e r m i n i s t i c = False ) / s e l f . distance_map (

s e l f . mappings [ i ] , f_naive , d e t e r m i n i s t i c = False )

d e l t a _ l i s t . append ( de l t a )

d e l t a _ l i s t = np . ar ray ( d e l t a _ l i s t )

d e l t a _ l i s t = np . square ( d e l t a _ l i s t − d e l t a _ l i s t . mean ( ) )

ep = np . s q r t ( d e l t a _ l i s t . mean ( ) / len ( s e l f . mappings ) )

return ( ep )

def d a t a _ s p l i t ( s e l f , data , k ) :

" " "

Shu f f l es data and s p l i t s i t i n t o groups . The f i r s t k−1 groups have the same leng th . The l a s t k

group only has the same s ize as other groups i f the d i v i s i o n o f rows of data by k i s an i n t e g e r .

Parameters

−−−−−−−−−−

data : pandas . DataFrame

Data to be s p l i t t e d .

k : i n t

Number o f groups to be formed .

Returns

−−−−−−−

A l i s t w i th k data frames .

" " "

group_size = i n t ( len ( data ) / k )

f o l d s = [ ]

data = data . sample ( f r a c =1) . rese t_ index ( )

del data [ ' index ' ]

for i in range (0 , k ) :

i f i < k −1:

paper = data . i l o c [ i * group_size : ( i +1)* group_size , ]

f o l d s . append ( paper )

else :

paper = data . i l o c [ i * group_size : , ]

f o l d s . append ( paper )

return ( f o l d s )

def k_ fo ld ( s e l f , d a t a _ s p l i t t e d , F , d e t e r m i n i s t i c = True ) :

" " "

Perform the k− f o l d cross v a l i d a t i o n o f a model , eva lua t i ng the e r r o r f o r each group of the data .

Parameters

−−−−−−−−−−

d a t a _ s p l i t t e d : l i s t

A l i s t o f groups of data .

F : l i s t

A l i s t o f mappings , may be random or a set o f a model ' s pa ramet r i za t i ons .

Returns

−−−−−−−

The mean e r r o r o f the k groups .
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" " "

group_size = len ( d a t a _ s p l i t t e d [ 0 ] )

e r r o r _ l i s t = [ ]

for i in range (0 , len ( d a t a _ s p l i t t e d ) ) :

d i s t _ l i s t = [ ]

temp = [ x for x in d a t a _ s p l i t t e d i f not ( x . equals ( d a t a _ s p l i t t e d [ i ] ) ) ]

t e s t = d a t a _ s p l i t t e d [ i ]

Y_test = t e s t [ [ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' ] ]

Y_test = np . ar ray ( Y_test )

t r a i n = pd . concat ( temp , ignore_ index = True )

Y_ t ra in = t r a i n [ [ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' ] ]

Y_ t ra in = np . ar ray ( Y_ t ra in )

for j in range (0 , len (F ) ) :

mapp ing_f i t = s e l f . mode l_ f i t ( t r a i n , F [ j ] )

mapp ing_f i t = np . ar ray ( mapp ing_f i t )

i f d e t e r m i n i s t i c == True :

d i s t = [ np . l i n a l g . norm ( Y_ t ra in [ k ] − mapp ing_f i t [ k ] ) for k in range (0 , len ( Y_ t ra in ) ) ]

else :

d i s t = [ bce ( Y_ t ra in [ k ] , mapp ing_f i t [ k ] ) for k in range (0 , len ( Y_ t ra in ) ) ]

d i s t = np . ar ray ( d i s t )

dist_sum = d i s t .sum ( )

d i s t _ l i s t . append ( dist_sum )

d i s t _ l i s t = np . ar ray ( d i s t _ l i s t )

d i s t _ l i s t = ( 1 / len ( t r a i n ) ) * d i s t _ l i s t

f_k = np . argmin ( d i s t _ l i s t )

o p t i m a l _ f i t = s e l f . mode l_ f i t ( t es t , F [ f_k ] )

o p t i m a l _ f i t = np . ar ray ( o p t i m a l _ f i t )

i f d e t e r m i n i s t i c == True :

o p t i m a l _ d i s t = [ np . l i n a l g . norm ( Y_test [ h] − o p t i m a l _ f i t [ h ] ) for h in range (0 , len ( Y_test ) ) ]

else :

o p t i m a l _ d i s t = [ bce ( Y_test [ h ] , o p t i m a l _ f i t [ h ] ) for h in range (0 , len ( Y_test ) ) ]

o p t i m a l _ d i s t = np . ar ray ( o p t i m a l _ d i s t )

opt imal_dis t_sum = o p t i m a l _ d i s t .sum ( )

e r r o r = ( 1 / group_size ) * opt imal_dis t_sum

e r r o r _ l i s t . append ( e r r o r )

e r r o r _ l i s t = np . ar ray ( e r r o r _ l i s t )

e r ro r_ l i s t_mean = e r r o r _ l i s t . mean ( )

return ( e r ro r_ l i s t_mean )

def completeness_std_error ( s e l f , d a t a _ s p l i t t e d , F , f_best , d e t e r m i n i s t i c = True ) :

" " "

Perform the k− f o l d cross v a l i d a t i o n o f a model , eva lua t i ng the e r r o r f o r each group of the data .

Parameters

−−−−−−−−−−

d a t a _ s p l i t t e d : l i s t

A l i s t o f groups of data .

F : l i s t

A l i s t o f mappings , may be random or a set o f a model ' s pa ramet r i za t i ons .

Returns

−−−−−−−

The mean e r r o r o f the k groups .

" " "

group_size = len ( d a t a _ s p l i t t e d [ 0 ] )

v a r _ l i s t = [ ]

for i in range (0 , len ( d a t a _ s p l i t t e d ) ) :

d i s t _ l i s t = [ ]

temp = [ x for x in d a t a _ s p l i t t e d i f not ( x . equals ( d a t a _ s p l i t t e d [ i ] ) ) ]

t e s t = d a t a _ s p l i t t e d [ i ]

Y_test = t e s t [ [ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' ] ]

Y_test = np . ar ray ( Y_test )

t r a i n = pd . concat ( temp , ignore_ index = True )
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Y_t ra in = t r a i n [ [ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' ] ]

Y_ t ra in = np . ar ray ( Y_ t ra in )

for j in range (0 , len (F ) ) :

mapp ing_f i t = s e l f . mode l_ f i t ( t r a i n , F [ j ] )

mapp ing_f i t = np . ar ray ( mapp ing_f i t )

i f d e t e r m i n i s t i c == True :

d i s t = [ np . l i n a l g . norm ( Y_ t ra in [ k ] − mapp ing_f i t [ k ] ) for k in range (0 , len ( Y_ t ra in ) ) ]

else :

d i s t = [ bce ( Y_ t ra in [ k ] , mapp ing_f i t [ k ] ) for k in range (0 , len ( Y_ t ra in ) ) ]

d i s t = np . ar ray ( d i s t )

dist_sum = d i s t .sum ( )

d i s t _ l i s t . append ( dist_sum )

d i s t _ l i s t = np . ar ray ( d i s t _ l i s t )

d i s t _ l i s t = ( 1 / len ( t r a i n ) ) * d i s t _ l i s t

f_k = np . argmin ( d i s t _ l i s t )

o p t i m a l _ f i t = s e l f . mode l_ f i t ( t es t , F [ f_k ] )

o p t i m a l _ f i t = np . ar ray ( o p t i m a l _ f i t )

b e s t _ f i t = s e l f . mode l_ f i t ( t es t , f_bes t )

b e s t _ f i t = np . ar ray ( b e s t _ f i t )

i f d e t e r m i n i s t i c == True :

o p t i m a l _ d i s t = [ np . l i n a l g . norm ( Y_test [ h] − o p t i m a l _ f i t [ h ] ) for h in range (0 , len ( Y_test ) ) ]

b e s t _ d i s t = [ np . l i n a l g . norm ( Y_test [ h] − b e s t _ f i t [ h ] ) for h in range (0 , len ( Y_test ) ) ]

else :

o p t i m a l _ d i s t = [ bce ( Y_test [ h ] , o p t i m a l _ f i t [ h ] ) for h in range (0 , len ( Y_test ) ) ]

b e s t _ d i s t = [ bce ( Y_test [ h ] , b e s t _ f i t [ h ] ) for h in range (0 , len ( Y_test ) ) ]

o p t i m a l _ d i s t = np . ar ray ( o p t i m a l _ d i s t )

b e s t _ d i s t = np . ar ray ( b e s t _ d i s t )

de l ta_z = o p t i m a l _ d i s t − b e s t _ d i s t

delta_z_sum = de l ta_z .sum ( )

e r r o r = ( 1 / group_size ) * delta_z_sum

d e l t a _ l i s t = np . square ( de l ta_z − e r r o r )

var_sum = d e l t a _ l i s t .sum ( )

var = ( 1 / ( group_size −1 ) ) * var_sum

v a r _ l i s t . append ( var )

v a r _ l i s t = np . ar ray ( v a r _ l i s t )

var_ l i s t_sum = v a r _ l i s t .sum ( )

f _ s t a r = [ ]

f _ s t a r . append ( f_bes t )

f_na ive = [ ]

f_na ive . append (F [ −1 ] )

cv_best = s e l f . k_ fo ld ( d a t a _ s p l i t t e d , f _s ta r , d e t e r m i n i s t i c = d e t e r m i n i s t i c )

cv_f_naive = s e l f . k_ fo ld ( d a t a _ s p l i t t e d , f_naive , d e t e r m i n i s t i c = d e t e r m i n i s t i c )

s t d _ v a r i a t i o n = np . s q r t ( var_ l i s t_sum / ( cv_f_naive −cv_best ) )

ep = np . s q r t ( s t d _ v a r i a t i o n / group_size )

return ( ep )

def completeness ( s e l f , d a t a _ l i s t , F_Theta , f_best , det = True ) :

" " "

Evaluates the completeness o f a model , according to the naive mapping .

Parameters

−−−−−−−−−−

d a t a _ l i s t : l i s t

A l i s t o f groups of data . .

F_Theta : l i s t

A l i s t o f model ' s pa ramet r i za t i ons . By de fau l t , the l a s t element must be the naive mapping .

f_bes t : pandas . DataFrame

A data frame corresponding to the best mapping f o r the data correspondent to d a t a _ l i s t .

Returns

−−−−−−−

The completeness l e v e l o f the model .

" " "
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#data = pd . concat ( d a t a _ l i s t , ignore_ index = True )

f _ s t a r = [ ]

f _ s t a r . append ( f_bes t )

f_na ive = [ ]

f_na ive . append ( F_Theta [ −1 ] )

cv_best = s e l f . k_ fo ld ( d a t a _ l i s t , f _s ta r , d e t e r m i n i s t i c = det )

cv_F_Theta = s e l f . k_ fo ld ( d a t a _ l i s t , F_Theta , d e t e r m i n i s t i c = det )

cv_f_naive = s e l f . k_ fo ld ( d a t a _ l i s t , f_naive , d e t e r m i n i s t i c = det )

#completeness_level = ( cv_F_Theta − cv_mappings ) / ( cv_f_naive − cv_mappings )

completeness_level = ( cv_f_naive − cv_F_Theta ) / ( cv_f_naive − cv_best )

return ( completeness_level )

def k_mse ( s e l f , data , F ) :

Y_data = data [ [ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' ] ]

Y_data = np . ar ray ( Y_data )

d i s t _ l i s t = [ ]

d ist_modelo = [ ]

for j in range (0 , len (F ) ) :

mapp ing_f i t = s e l f . mode l_ f i t ( data , F [ j ] )

mapp ing_f i t = np . ar ray ( mapp ing_f i t )

d i s t = [mse( Y_data [ k ] , mapp ing_f i t [ k ] ) for k in range (0 , len ( Y_data ) ) ]

d i s t = np . ar ray ( d i s t )

dist_mean = d i s t . mean ( )

d i s t _ l i s t . append ( dist_mean )

d i s t _ b e s t = d i s t _ l i s t [ 0 ]

dist_modelo . append ( d i s t _ l i s t [ 1 ] )

d ist_modelo . append ( d i s t _ l i s t [ 2 ] )

d i s t _na i ve = d i s t _ l i s t [ −1 ]

det_completeness = ( d is t_na ive −min ( d ist_modelo ) ) / ( d i s t_na ive − d i s t _b e s t )

return ( det_completeness )

def s i m i l a r i t y ( s e l f , det_model , sto_model , n ) :

r e s t r i c t i v e n e s s _ l i s t = [ ]

t h resho ld = np . arange (0 .01 ,1 .01 ,0 .01 )

round_funct ions = [ ]

for i in range (0 , len ( th resho ld ) ) :

def pf ( x , gamma = th resho ld [ i ] ) :

i f x − i n t ( x ) >= gamma:

x = i n t ( x ) + 1

else :

x = i n t ( x )

return ( x )

round_funct ions . append ( p f )

s t o _ p r e d i c t = sto_model [ [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ] ]

r u n _ l i s t = [ ]

for i in range (0 , n ) :

sto_temp = pd . DataFrame ( np . zeros ( ( len ( s e l f . choice_problems ) , 8 ) ) )

na ive_tp = pd . DataFrame ( np . zeros ( ( len ( s e l f . choice_problems ) , 8 ) ) )

for k in range (0 , len ( s e l f . choice_problems ) ) :

for j in range ( 0 , 8 ) :

i f s e l f . choice_problems . i a t [ k , j ] == 0 :

sto_temp . i a t [ k , j ] = 0

naive_tp . i a t [ k , j ] = 0

else :

sto_temp . i a t [ k , j ] = i n t ( np . random . choice ( [ 0 , 1 ] , 1 , p = [1 − s t o _ p r e d i c t . i a t [ k , j ] , s t o _ p r e d i c t . i a t [ k , j ] ] ) )

na ive_tp . i a t [ k , j ] = s t o _ p r e d i c t . i a t [ k , j ]

sto_temp = pd . concat ( [ s e l f . choice_problems , sto_temp ] , ax is =1)

r u n _ l i s t . append ( sto_temp )

for v in range (0 , len ( round_funct ions ) ) :

naive = naive_tp . applymap ( round_funct ions [ v ] )

naive = pd . concat ( [ s e l f . choice_problems , naive ] , ax is =1)

d e l t a _ l i s t = [ ]

f_na ive = [ ]

f_na ive . append ( naive )
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for i in range (0 , n ) :

mode l_ l i s t = [ ]

mode l_ l i s t . append ( r u n _ l i s t [ i ] )

mode l_ l i s t . append ( naive )

de l t a = s e l f . distance_map ( det_model , mode l_ l i s t , d e t e r m i n i s t i c = True ) / s e l f . distance_map (

det_model , f_naive , d e t e r m i n i s t i c = True )

d e l t a _ l i s t . append ( de l t a )

d e l t a _ l i s t = np . ar ray ( d e l t a _ l i s t )

r e s t r i c t i v e n e s s _ l i s t . append ( d e l t a _ l i s t . mean ( ) )

th resho ld = pd . DataFrame ( th resho ld )

r e s t r i c t i v e n e s s _ l i s t = pd . DataFrame ( r e s t r i c t i v e n e s s _ l i s t )

graph = pd . concat ( [ th resho ld , r e s t r i c t i v e n e s s _ l i s t ] , ax is =1 , ignore_ index=True )

return ( graph )

def curve ( s e l f , data , sto_model , n ) :

Y_data = data [ [ 'A ' , 'B ' , 'C ' , 'D ' , 'E ' , ' F ' , 'G ' , 'H ' ] ]

Y_data = np . ar ray ( Y_data )

r e s t r i c t i v e n e s s _ l i s t = [ ]

t h resho ld = np . arange (0 .01 ,1 .01 ,0 .01 )

round_funct ions = [ ]

for i in range (0 , len ( th resho ld ) ) :

def pf ( x , gamma = th resho ld [ i ] ) :

i f x − i n t ( x ) >= gamma:

x = i n t ( x ) + 1

else :

x = i n t ( x )

return ( x )

round_funct ions . append ( p f )

s t o _ p r e d i c t = sto_model [ [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ] ]

r u n _ l i s t = [ ]

for i in range (0 , n ) :

sto_temp = pd . DataFrame ( np . zeros ( ( len ( sto_model ) , 8 ) ) )

na ive_tp = pd . DataFrame ( np . zeros ( ( len ( sto_model ) , 8 ) ) )

for k in range (0 , len ( s e l f . choice_problems ) ) :

for j in range ( 0 , 8 ) :

i f s e l f . choice_problems . i a t [ k , j ] == 0 :

sto_temp . i a t [ k , j ] = 0

naive_tp . i a t [ k , j ] = 0

else :

sto_temp . i a t [ k , j ] = i n t ( np . random . choice ( [ 0 , 1 ] , 1 , p = [1 − s t o _ p r e d i c t . i a t [ k , j ] , s t o _ p r e d i c t . i a t [ k , j ] ] ) )

na ive_tp . i a t [ k , j ] = s t o _ p r e d i c t . i a t [ k , j ]

sto_temp = pd . concat ( [ s e l f . choice_problems , sto_temp ] , ax is =1)

r u n _ l i s t . append ( sto_temp )

for v in range (0 , len ( round_funct ions ) ) :

naive = naive_tp . applymap ( round_funct ions [ v ] )

naive = pd . concat ( [ s e l f . choice_problems , naive ] , ax is =1)

n a i v e _ f i t = s e l f . mode l_ f i t ( data , naive )

n a i v e _ f i t = np . ar ray ( n a i v e _ f i t )

na i ve_d i s t = [ np . l i n a l g . norm ( Y_data [ h] − n a i v e _ f i t [ h ] ) for h in range (0 , len ( Y_data ) ) ]

na i ve_d i s t = np . ar ray ( na i ve_d i s t )

na ive_er ro r = na i ve_d i s t . mean ( )

d e l t a _ l i s t = [ ]

for i in range (0 , n ) :

r e a l i z a t i o n _ f i t = s e l f . mode l_ f i t ( data , r u n _ l i s t [ i ] )

r e a l i z a t i o n _ f i t = np . ar ray ( r e a l i z a t i o n _ f i t )

r e a l i z a t i o n _ d i s t = [ np . l i n a l g . norm ( Y_data [ h] − r e a l i z a t i o n _ f i t [ h ] ) for h in range (0 , len ( Y_data ) ) ]

r e a l i z a t i o n _ d i s t = np . ar ray ( r e a l i z a t i o n _ d i s t )

r e a l i z a t i o n _ e r r o r = r e a l i z a t i o n _ d i s t . mean ( )

r e a l i z a t i o n _ e r r o r = min ( r e a l i z a t i o n _ e r r o r , na ive_er ro r )

kappa = ( na ive_er ror − r e a l i z a t i o n _ e r r o r ) / na i ve_er ro r

d e l t a _ l i s t . append ( kappa )

d e l t a _ l i s t = np . ar ray ( d e l t a _ l i s t )

r e s t r i c t i v e n e s s _ l i s t . append ( d e l t a _ l i s t . mean ( ) )

th resho ld = pd . DataFrame ( th resho ld )
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r e s t r i c t i v e n e s s _ l i s t = pd . DataFrame ( r e s t r i c t i v e n e s s _ l i s t )

graph = pd . concat ( [ th resho ld , r e s t r i c t i v e n e s s _ l i s t ] , ax is =1 , ignore_ index=True )

return ( graph )

A.2 Proofs

A.2.1 Proof of Theorem 1

Proof Suppose ρ1 and ρ2 satisfy Random Consistency and S ∩ T ̸= ∅, so that µ(T ) > 0. Fix

any menu A and p ∈ A. Without loss of generality, we may assume that A ⊆ ri∆(Z).1 Let

E ⊆ ri∆(Z) be any sphere. Let C be the subset of E that includes only the maximizers of s

for all s ∈ S \ T and D be the subset of the maximizers of s for all s ∈ T . For each λ ∈ (0, 1),

define Aλ := C ∪(λD+(1−λ)A). Let λ be large enough so that arg max U(Aλ, s) ⊆ C for every

s ∈ S \ T and arg max Us(Aλ) ⊆ λD + (1 − λ)A for every s ∈ T .2 Suppose q ∈ λD + (1 − λ)A

is such that ρAλ

2 (q) > 0 and fix p ∈ λD + (1 − λ)A with ρAλ

1 (p) > 0.3 We note that this

implies that there exist unique s, s′ ∈ T with p ∈ arg max U(Aλ, s) and q ∈ arg max U(Aλ, s′).

Suppose now that either ρAλ

1 (q) = 0 or ρAλ

2 (p) = 0. By Random Consistency, there must

exist a finite set B ⊆ ∆(Z) and δ > 0 such that ρAλ∪B
1 (p) > 0, but ρ

Aλ∪B∪{pδ}
2 (pδ) = 0 for

every pδ ∈ Bδ(p) ∩ ∆(Z). However, ρ
Aλ∪B∪{pδ}
2 (pδ) = 0 for every pδ ∈ Bδ(p) can happen

only if maxr∈B U(r, s) > U(p, s), which would imply that ρAλ∪B
1 (p) = 0. We conclude that, for

any p ∈ λD + (1 − λ)A, ρAλ

1 (p) > 0 if and only if ρAλ

2 (p) > 0. We note that this implies that

T ⊆ S. Fix any p, q ∈ λD + (1 − λ)A with ρAλ

1 (p) > 0 and ρAλ

1 (q) > 0. Assume, without loss

of generality, that ρAλ

1 (p)ρAλ

2 (q) ≥ ρAλ

1 (q)ρAλ

2 (p). There must exist a unique s ∈ T such that

p ∈ arg maxr∈Aλ U(r, s). But then, there exists a finite set B and δ > 0 with ρ
Aλ∪B∪{pδ}
2 (pδ) = 0

for every pδ ∈ Bδ(p) only if maxr∈B U(r, s) > U(p, s). This implies that ρAλ∪B
1 (p) = 0, so that,

by Random Consistency, we must have ρAλ

1 (p)ρAλ

2 (q) = ρAλ

1 (q)ρAλ

2 (p). We conclude that, for

1Otherwise, just work with 1
2 A + 1

2 {p}, where p is any lottery with full support.
2Such λ must exist since, if we took λ = 1, then Aλ = C ∪ D, and, for any s ∈ S ∪ T , | arg max Us(Aλ)| = 1. If

s ∈ S \ T , then arg max Us(Aλ) ⊆ C, and arg max Us(Aλ) ⊆ D, otherwise. Therefore, for every λ ∈ (0, 1) close
enough to 1, max Us(C) > max Us (λD + (1 − λ)A), if s ∈ S \ T , and max Us(C) < max Us (λD + (1 − λ)A), if
s ∈ T .

Note that, in this context, if a ∈ arg max Us(A) and qs = arg max Us(D) for some s ∈ T , then
Us (λqs + (1 − λ)a) > Us (λq + (1 − λ)a), for any q ∈ D \ {qs}, Us (λqs + (1 − λ)a) ≥ Us (λqs + (1 − λ)a′) for
any a′ ∈ A \ {a} and Us (λqs + (1 − λ)a) = Us (λqs + (1 − λ)a′) if, and only if, {a, a′} ⊆ arg max Us(A).

3Such a p is guaranteed to exist because µ(T ) > 0.
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any p, q ∈ λD + (1 − λ)A with ρAλ

1 (q) > 0, we must have

ρAλ

1 (p)
ρAλ

1 (q)
= ρAλ

2 (p)
ρAλ

2 (q)
.

Now note that ∑
p∈λD+(1−λ)A

ρ1(p) = µ(T )

and ∑
p∈λD+(1−λ)A

ρ2(p) = µ′(T ) = 1.

But then, for any p ∈ λD + (1 − λ)A,

ρAλ

1 (p)
µ(T ) = ρAλ

1 (p)∑
q∈λD+(1−λ)A ρ1(q)

= ρAλ

2 (p)∑
q∈λD+(1−λ)A ρ2(q)

= ρAλ

2 (p)

And, therefore, for any p ∈ A,

ρA
2 (p) =

∑
q∈D

ρAλ

2 (λq + (1 − λ)p)

= 1
µ(T )

∑
q∈D

ρAλ

1 (λq + (1 − λ)p)

= 1
µ(T )

∑
q∈D

∑
s∈S

µ(s)τs

({
u ∈ U : λq + (1 − λ)p ∈ M(M(Aλ, Us), u)

})
= 1

µ(T )
∑
q∈D

∑
s∈T

µ(s)τs

({
u ∈ U : λq + (1 − λ)p ∈ M(M(Aλ, Us), u)

})
= 1

µ(T )
∑
s∈T

µ(s)τs ({u ∈ U : p ∈ M(M(A, Us), u)})

This proves statement 2. Conversely, suppose there exists a set T ⊆ S, such that (T, U, µT , τ)

is a FREU representation of ρ2. Fix a menu A ⊆ ri∆(Z) and p, q ∈ A with ρA
1 (p)ρA

2 (q) >

ρA
1 (q)ρA

2 (p). For that to happen, we must have ρA
2 (q) > 0, which also implies that ρA

1 (q) > 0.
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Therefore, the previous condition can be written as

ρA
1 (p)

ρA
1 (q) >

ρA
2 (p)

ρA
2 (q) .

It is clear that this can happen only if there exists s∗ ∈ S\T with τs∗ ({u ∈ U : p ∈ M(M(A, Us∗), u)}) >

0. Following the same steps as in the proof of the main result in Riella (2013), we can

find a finite set B such that maxq∈B U(q, s) > maxq∈A U(q, s) for every s ∈ S \ {s∗}, but

U(p, s∗) > maxq∈B U(q, s∗). Let δ be small enough so that maxq∈B U(q, s) > U(pδ, s) for ev-

ery s ∈ S \ {s∗} and pδ ∈ Bδ(p). Note that this implies that ρ
A∪B∪{pδ}
2 (pδ) = 0 for every

pδ ∈ Bδ(p), but ρA∪B
1 (p) > 0. That is, ρ1 and ρ2 satisfy Random Consistency. Finally, if

S ∩ T = ∅, it is clear that ρA
1 (p)ρA

2 (q) > ρA
1 (q)ρA

2 (p) implies that there exists s∗ ∈ S \ T with

τs∗ ({u ∈ U : p ∈ M(M(A, Us∗), u)}) > 0. We may now follow the same steps as above to find

a menu B and a δ > 0 such that ρ
A∪B∪{pδ}
2 (pδ) = 0 for every pδ ∈ Bδ(p), but ρA∪B

1 (p) > 0.

Again, this shows that ρ1 and ρ2 satisfy Random Consistency.

A.2.2 Proof of Corollary 1

Proof Take some p ∈ ri∆(Z) and ϵ > 0 such that Bϵ(p) ∩ ∆(Z) ⊂ ri∆(Z) and define, for each

s ∈ S ∪ T , qs = argmaxq∈Bϵ(p)Us(q). Note that qs = qs′ implies that Us and Us′ represent the

same vNM preference over lotteries. Take now A := {qs ∈ ∆(Z) : s ∈ S ∪ T}. We must

have that, if supp(ρA
1 ) ∩ supp(ρA

2 ) ̸= ∅, then argmaxq∈Bϵ(p)Us(q) = argmaxq∈Bϵ(p)Us′(q) meaning

that there are s ∈ S and s′ ∈ T such that Us and Us′ represent the same vNM preferences,

implying s = s′ and s ∈ S ∩ T .

A.2.3 Proof of Lemma 1

Proof As stated in Section 4.2, Si ∩ Sj = {∅} means that for any s ∈ Si and s′ ∈ Sj, U i
s and

U j
s′ do not represent the same vNM preferences. Fix any arbitrary i, j ∈ I with i ̸= j.

107



[ =⇒ ] Suppose {ρi, ρj} satisfies Axiom 3. Take some p ∈ ri∆(Z) and ϵ > 0 such that

Bϵ(p) ∩ ∆(Z) ⊂ ri∆(Z). Define Û : Si ∪ Sj × ∆(Z) 7→ R as

Ûs :=


U i

s if s ∈ Si

U j
s if s ∈ Sj \ Si

.

For each s ∈ Si ∪ Sj, define qs = argmaxq∈Bϵ(p)∩∆(Z)Ûs(q) and let A := {qs ∈ ∆(Z) : s ∈

Si ∪ Sj}. Now choose some q ∈ A such that ρA
i (q) > 0. By construction, there is an unique

s ∈ Si with Ûs(q) > maxp∈A\{q} Ûs(p) and Ûs′(q) < maxp∈A\{q} Ûs′(p) for every s′ ∈ (Si ∪ Sj) \ s.

We must then have that, for some δ > 0, ρ
(A\{q})∪{qδ}
i (qδ) > 0 for every qδ ∈ Bδ(q) ∩ ∆(Z)

which, by 3, implies the existence of some D ∈ A such that ρ
(A\{q})∪D∪{qδ}
i (qδ) > 0, but

ρ
(A\{q})∪D∪{qδ}
j (qδ) = 0, for every qδ ∈ Bδ(q) ∩ ∆(Z). For ρ

(A\{q})∪D∪{qδ}
j (qδ) = 0 to be true for

every qδ ∈ Bδ(q) ∩ ∆(Z), it must be the case that Ûs′(q) < maxp∈(A\{q})∪D Ûs′(p) for every

s′ ∈ Sj, which can only happen if s /∈ Sj. Since we took s ∈ Si arbitrarily, we must have that

Si ∩ Sj = {∅}.

[ ⇐= ] Suppose that ρi and ρj have FREU representations such that Si ∩ Sj = {∅}. Take

some A ∈ A, p ∈ ri∆(Z) and δ > 0 such that ρ
A∪{pδ}
i (pδ) > 0 for every pδ ∈ Bδ(p) ∩ ∆(Z). Fix

some s ∈ Si such that, µi(s)τ i
s ({u ∈ U : p ∈ M(M(A, U i

s), u)}) > 0. Let v̂ be the vector in RZ

such that v̂ · q = U i
s(q) for every q ∈ ∆(Z) and

v := v̂ −
(

1
|Z|

∑
z∈Z

v̂z

)
1,

where 1 = (1, . . . , 1) is the unit vector of size |Z|. Take ϵ > 0 so that Bd(p,p−ϵv)(p − ϵv) ∩

Span(∆(Z)) ⊂ ∆(Z). Now, for each s′ ∈ Sj, let qs′ := arg maxq∈Bd(p,p−ϵv)(p−ϵv) U j
s′(q) and

D := {qs′ : s′ ∈ Sj}. Note that, since s /∈ Sj, p /∈ D, U i
s(p) > maxq∈D U i

s(q) and, for each

s′ ∈ Sj, U j
s′(p) < U j

s′(qs′). Therefore, choosing δ′ ∈ (0, δ] small enough, we must have that

ρ
A∪D∪{pδ′ }
i (pδ′) > 0, but ρ

A∪D∪{pδ′ }
j (pδ′) = 0, for every pδ′ ∈ Bδ′(p) ∩ ∆(Z), proving that Axiom 3

is satisfied.
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A.2.4 Proof of Proposition 1

Proof [ =⇒ ] Suppose the collection {ρi}i∈I satisfies Axioms 3 and 4. Since, for each i ∈ I, ρ

and ρi satisfy Random Consistency and Axiom 2, Theorem 1 implies that Si ⊂ S, µi = µSi
and,

for each s ∈ Si, τs = τ i
s. Therefore, for each i ∈ I, (Si, U, µSi

, τ) is a FREU representation of

ρi. Since the collection {ρi}i∈I satisfies Axiom 3, Lemma 1 implies that, for each i, j ∈ I, i ̸= j,

Si ∩ Sj = {∅}. It remains for us to show that S ⊆ ⋃
i∈I Si. To see that take some p ∈ ri∆(Z)

and ϵ > 0 such that Bϵ(p) ∩ ∆(Z) ⊂ ri∆(Z) and, as we did in the proof of Lemma 1, for

each s ∈ S, define qs = argmaxq∈Bϵ(p)∩∆(Z)Us(q) and let A := {qs ∈ ∆(Z) : s ∈ S}. Now,

suppose there is s′ ∈ S \ ⋃i∈I Si. But then we should have qs′ ∈ supp(ρA) \ ⋃i∈I supp(ρA
i ),

which contradicts Axiom 4.

[ ⇐= ] Conversely, suppose {Si}i∈I is a partition of S. Axiom 4 is an immediate conse-

quence of this fact, and Lemma 1 implies that Axiom 3 holds.

A.2.5 Proof of Proposition 2

Proof Let (S, U ′, µ′) be a DLR representation of ≿ and (T, Û , µ̂, τ) a representation of ρ. The

second part of the Proposition 2 in Ahn (2013) assures us that ρ and ≿ satisfy Axiom 5 if,

and only if, T ⊆ S. This means that, for each t ∈ T there is an unique s ∈ S such that Û t

and U ′
s represent the same vNM preference over ∆(Z). Therefore, the necessity of Axiom 5

follows directly. It remains for us to show that there is a state dependent utility function U and

a probability distribution over states µ such that (S, U, µ) is a DLR representation of ≿ and

(T, U, µT , τ) is a FREU representation of ρ.

For that, define

µ(s) :=


µ′(T )µ̂(s) if s ∈ T

µ′(s) if s ∈ S \ T

,

and

Us := µ′(s)
µ(s) U ′

s.
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Notice this implies that, for any A ∈ A and p ∈ A,

∑
s∈S

µ(s) max
p∈A

Us(p) =
∑

s∈S\T

µ′(s) max
p∈A

[
µ′(s)
µ′(s)U ′

s(p)
]

+
∑
s∈T

µ′(T )µ̂(s) max
p∈A

[
µ′(s)

µ′(T )µ̂(s)U ′
s(p)

]

=
∑
s∈S

µ′(s) max
p∈A

U ′
s(p),

and

ρA(p) =
∑
s∈T

µ̂(s)τs

({
u ∈ U : p ∈ M(M(A, Ûs), u)

})
=
∑
s∈T

µ(s)
µ′(T )τs ({u ∈ U : p ∈ M(M(A, Us), u)})

=
∑
s∈T

µT (s)τs ({u ∈ U : p ∈ M(M(A, Us), u)}) .

Therefore we have that (S, U, µ) is a DLR representation of ≿ and (T, U, µT , τ) is a

representation of ρ.

A.2.6 Proof of Proposition 3

Proof [ =⇒ ] Let (S, U ′, µ′) be any DLR representation for ≿ and for each ρi let (Si, Û i, µ̂i, τ i)

be its FREU representation. By Lemma 1, we know that for each i, j ∈ I, with i ̸= j,

Si ∩ Sj = {∅}. Fix some i ∈ I. Axiom 6 implies that, if there is some δ > 0 such that,

ρ
D∪{pδ}
i (pδ) > 0 for every pδ ∈ Bδ(p) ∩ ∆(Z) and D ∈ A with dh(A, D) < δ, then we must have

A ∪ {p} ≻ A, meaning that ≿ and ρi satisfy Axiom 5. Therefore, by Proposition 2, for each

i ∈ I, we have that Si ⊆ S. Now, similarly to what we did in the proof of Proposition 1, take

some p ∈ ri∆(Z) and ϵ > 0 such that Bϵ(p) ∩ ∆(Z) ⊂ ri∆(Z) and for each s ∈ S, define

q′
s = argmaxq∈Bϵ(p)∩∆(Z)U

′
s(q) and, for each i ∈ I and ŝ ∈ Si, qi

ŝ = argmaxq∈Bϵ(p)∩∆(Z)Ûŝ(q). Let

A′ := {qs′ ∈ ∆(Z) : s′ ∈ S} and Â := {qŝ ∈ ∆(Z) : ŝ ∈ Si, i ∈ I}. Since Si ⊆ S for every i ∈ I,

we must have that Â ⊆ A′. If there was some s ∈ S \ ⋃i∈I Si, we should have that q′
s /∈ Â,

Û i
ŝ(q′

s) < maxq∈Â Û i
ŝ(q) and, for some δ > 0 small enough, for every i ∈ I, ρ

D∪{pδ}
i (pδ) = 0

for every pδ ∈ Bδ(q′
s) ∩ ∆(Z), D ∈ A with dh(A′, D) < δ. This contradicts Axiom 6, since

{q′
s} = arg maxq∈A′ U ′

s(q), implying A′ ≻ A′ \ {q′
s}. Therefore, we must have S = ⋃

i∈I Si and

{Si}i∈I is a partition of S.
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Now define µ := ∑
i∈I µ′(Si)µ̂i and Us := µ′(s)

µ(s) U ′
s, for every s ∈ S, and note that, for any

A ∈ A and s ∈ Ŝ,

µ′(s) max
p∈A

U ′
s(p) =

∑
i∈I µ′(S ′

i)µ̂i(s)∑
i∈I µ′(S ′

i)µ̂i(s)µ′(s) max
p∈A

U ′
s(p)

=
∑
i∈I

µ′(S ′
i)µ̂i(s) max

p∈A

µ′(s)∑
i∈I µ′(S ′

i)µ̂i(s)U ′
s(p)

= µ(s) max
p∈A

Us(p),

meaning that (S, U, µ) is a DLR representation for ≿. Since, for each i ∈ I and s ∈ S,

µSi
(s) = µ̂i(s) and Û i

s and Us represent the same vNM preferences on ∆(Z), we have that,

for each i ∈ I, (Si, U, µSi
, τ) is a FREU representation of ρi.

[ ⇐= ] Suppose now ≿ has a DLR representation (S, U, µ) such that for each i ∈ I,

(Si, U, µSi
, τ) is a FREU representation of ρi and {Si}i∈I is a partition of S. Lemma 1 assures

us that Axiom 3 is satisfied, so we only need to show that Axiom 6 also holds. Fix some

arbitrary A ∈ A, p ∈ ∆(Z) and suppose A ∪ {p} ≻ A, this implies that, for some s ∈ S,

Us(p) > maxa∈A Us(a). Since A is finite and Us is continuous, we must have that there is δ > 0

such that, for every pδ ∈ Bδ(p), Us(pδ) > maxa∈A Us(a). Since s ∈ Si for some i ∈ I and, we

must have µSi
(s) > 0 and ρ

A∪{pδ}
i (pδ) > 0, for every pδ ∈ Bδ(p).

A.2.7 Proof of Corollary 2

Proof Let (S, U, µ, τ) be a DLR-GP representation of (≿1, ρ1) and (T, U ′, µ′, τ ′) a DLR-GP

representation of (≿2, ρ2). Since ρ1 and ρ2 satisfy Random Consistency and Axiom 2, Theorem

1 and 1 imply that, for some T ⊆ S, (T, U, µT , τ) is a FREU representation of ρ2 and,

consequently, µT = µ′, τ = τ ′ and, for each t ∈ T , Ut and U ′
t represent the same vNM

preferences over ∆(Z).

(i) For any menu A ∈ A and q ∈ ∆(Z), A ∪ {q} ≻2 A implies there is some t ∈ T such that

{q} = M(A ∪ {q}, U ′
t) = M(A ∪ {q}, Ut). Since t ∈ S and µ(t) > 0 by definition, this implies

ρ
A∪{q}
1 (q) > 0.

(ii) Take any menu A ∈ A and lottery p ∈ ∆(Z) \ A such that, for some δ > 0, we have

ρ
D∪{pδ}
2 (pδ) > 0 for every pδ ∈ Bδ(p) ∩ ∆(Z) and D ∈ A with dh(A, D) < δ. It must be the case
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that, for some t ∈ T , {p} = M(A ∪ {p}, Ut). Since t ∈ S, this implies

∑
s∈S

µ(s) max
q∈A∪{p}

Us(q) >
∑
s∈S

µ(s) max
q∈A

Us(q),

and, therefore, A ∪ {p} ≻1 A.
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AGRAWAL, R.; IMIELIŃSKI, T.; SWAMI, A. Mining association rules between sets of
items in large databases. In: Proceedings of the 1993 ACM SIGMOD international
conference on Management of data - SIGMOD '93. [S.l.]: ACM Press, 1993.
AHN, T. S. D. S. Preference for flexibility and random choice. Econometrica, The
Econometric Society, v. 81, n. 1, p. 341–361, 2013.
AHUJA, K.; CHOUDHURY, M.; DANDAPAT, S. On the Economics of Multilingual
Few-shot Learning: Modeling the Cost-Performance Trade-offs of Machine Translated
and Manual Data. [S.l.]: arXiv, 2022.
AKAIKE, H. A new look at the statistical model identification. IEEE Transactions on
Automatic Control, Institute of Electrical and Electronics Engineers (IEEE), v. 19, n. 6, p.
716–723, dec 1974.
ALGABA, A. et al. ECONOMETRICS MEETS SENTIMENT: AN OVERVIEW OF
METHODOLOGY AND APPLICATIONS. Journal of Economic Surveys, Wiley, v. 34,
n. 3, p. 512–547, may 2020.
ALWOSHEEL, A.; CRANENBURGH, S. van; CHORUS, C. G. Why did you predict that?
towards explainable artificial neural networks for travel demand analysis. Transportation
Research Part C: Emerging Technologies, Elsevier BV, v. 128, p. 103143, jul 2021.
ANDINI, M. et al. Targeting with machine learning: An application to a tax rebate
program in italy. Journal of Economic Behavior &amp Organization, Elsevier BV, v. 156,
p. 86–102, dec 2018.
ANDREWS, I. et al. The Transfer Performance of Economic Models. [S.l.]: arXiv, 2022.
APESTEGUIA, J.; BALLESTER, M. A. Separating predicted randomness from residual
behavior. Journal of the European Economic Association, Oxford University Press
(OUP), v. 19, n. 2, p. 1041–1076, may 2020.
ARCIDIACONO, P.; MILLER, R. A. Identifying dynamic discrete choice models off short
panels. 2013.
AVOYAN, A. et al. Planned vs. actual attention. 2022.
BARBERÀ, S. et al. Order-k rationality. Economic Theory, Springer Science and
Business Media LLC, v. 73, n. 4, p. 1135–1153, mar 2021.
BARNICHON, R.; GARDA, P. Forecasting unemployment across countries: The ins and
outs. European Economic Review, Elsevier BV, v. 84, p. 165–183, may 2016.
BOOTH, W. J. Households: on the moral architecture of the economy. [S.l.]: Cornell
University Press, 1993. 305 p. ISBN 0801427916.
BOX, G.; JENKINS, G. Time series analysis: Forecasting and control. Holden-Day, San

113



Francisco, 1970.
BOX, G. E. P. Science and statistics. Journal of the American Statistical Association,
Informa UK Limited, v. 71, n. 356, p. 791–799, dec 1976.
BRATHWAITE, T.; VIJ, A.; WALKER, J. L. Machine Learning Meets Microeconomics:
The Case of Decision Trees and Discrete Choice. [S.l.]: arXiv, 2017.
BRäUNING, M. et al. Lexicographic preferences for predictive modeling of human
decision making: A new machine learning method with an application in accounting.
European Journal of Operational Research, Elsevier BV, v. 258, n. 1, p. 295–306, apr
2017.
BUSA-FEKETE, R.; HüLLERMEIER, E.; SZORENYI, B. Preference-based rank
elicitation using statistical models: The case of mallows. ICML, 2014.
CHARPENTIER, A.; FLACHAIRE, E.; LY, A. Econometrics and machine learning.
Economie et Statistique / Economics and Statistics, Institut National de la Statistique et
des Etudes Economiques (INSEE), n. 505d, p. 147–169, apr 2019.
CLIPPEL, G. de; ROZEN, K. Bounded rationality in choice theory: A survey. 2022.
COHEN, M. D.; AXELROD, R. Coping with complexity: The adaptive value of changing
utility. American Economic Review, v. 74, n. 1, p. 30–42, mar. 1984.
COSTA-GOMES, M. A. et al. Choice, deferral, and consistency. Quantitative Economics,
The Econometric Society, v. 13, n. 3, p. 1297–1318, 2022.
CRANENBURGH, S. van et al. Choice modelling in the age of machine learning -
discussion paper. Journal of Choice Modelling, Elsevier BV, v. 42, p. 100340, mar 2022.
DEFAYS, D. An efficient algorithm for a complete link method. The Computer Journal,
Oxford University Press (OUP), v. 20, n. 4, p. 364–366, apr 1977.
DEKEL, E.; LIPMAN, B. L.; RUSTICHINI, A. Representing preferences with a unique
subjective state space. Econometrica, The Econometric Society, v. 69, n. 4, p. 891–934,
jul 2001.
DENG, Y. et al. Deep direct reinforcement learning for financial signal representation
and trading. IEEE Transactions on Neural Networks and Learning Systems, Institute of
Electrical and Electronics Engineers (IEEE), v. 28, n. 3, p. 653–664, mar 2017.
DONALDSON, D.; STOREYGARD, A. The view from above: Applications of satellite
data in economics. Journal of Economic Perspectives, American Economic Association,
v. 30, n. 4, p. 171–198, nov 2016.
DONGDONG, W. The consumer price index forecast based on ARIMA model. In: 2010
WASE International Conference on Information Engineering. [S.l.]: IEEE, 2010.
DOSHI-VELEZ, F.; KIM, B. Towards A Rigorous Science of Interpretable Machine
Learning. [S.l.]: arXiv, 2017.
DRITSAKIS, N.; KLAZOGLOU, P. Forecasting unemployment rates in usa using
box-jenkins methodology. International Journal of Economics and Financial Issues, v. 8,
n. 1, p. 9–20, 2018.
ELIAZ, K.; OK, E. A. Indifference or indecisiveness? choice-theoretic foundations of
incomplete preferences. Games and Economic Behavior, Elsevier BV, v. 56, n. 1, p.
61–86, jul 2006.
ESTER, M. et al. A density-based algorithm for discovering clusters in large spatial
databases with noise. United States, dez. 1996.
EVREN, O.; OK, E. A. On the multi-utility representation of preference relations. Journal
of Mathematical Economics, Elsevier BV, v. 47, n. 4-5, p. 554–563, aug 2011.

114



FRISCH, R. "editorial". Econometrica, 1, p. 2, 1933.
FUDENBERG, D.; GAO, W.; LIANG, A. How Flexible is that Functional Form?
Quantifying the Restrictiveness of Theories. [S.l.]: arXiv, 2020.
FUDENBERG, D.; LIANG, A. Machine learning for evaluating and improving theories.
ACM SIGecom Exchanges, Association for Computing Machinery (ACM), v. 18, n. 1, p.
4–11, dec 2020.
GARCÍA-GARCÍA, J. C. et al. A comparative study of machine learning, deep neural
networks and random utility maximization models for travel mode choice modelling.
Transportation Research Procedia, Elsevier BV, v. 62, p. 374–382, 2022.
GILBOA, I. et al. ECONOMICS: BETWEEN PREDICTION AND CRITICISM.
International Economic Review, Wiley, v. 59, n. 2, p. 367–390, apr 2018.
GILBOA, I. et al. Economic theories and their dueling interpretations. 2022.
GILBOA, I. et al. Economic theory:economics, methods and methodology. 2022.
GILBOA, I.; SAMUELSON, L. What were you thinking? decision theory as coherence
test. Theoretical Economics, The Econometric Society, v. 17, n. 2, p. 507–519, 2022.
GILPIN, L. H. et al. Explaining explanations: An overview of interpretability of machine
learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced
Analytics (DSAA). [S.l.]: IEEE, 2018.
GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press,
2016.
GUL, F.; NATENZON, P.; PESENDORFER, W. Random choice as behavioral
optimization. Econometrica, The Econometric Society, v. 82, n. 5, p. 1873–1912, 2014.
GUL, F.; PESENDORFER, W. Random expected utility. Econometrica, The Econometric
Society, v. 74, n. 1, p. 121–146, jan 2006.
GUNEY, B.; RICHTER, M.; TSUR, M. Aspiration-based choice. Journal of Economic
Theory, v. 176, n. C, p. 935–956, 2018.
HANSEN, S.; MCMAHON, M.; PRAT, A. Transparency and deliberation within the
FOMC: A computational linguistics approach. The Quarterly Journal of Economics,
Oxford University Press, v. 133, n. 2, p. 801–870, oct 2017.
HAUSMAN, J. A. Specification and estimation of simultaneous equation models. In:

. [S.l.]: Elsevier BV, 1983. (Handbook of Econometrics, v. 1), cap. 7, p. 391–448.
HEBB, D. O. The organization of behavior: A neuropsychological theory. new york:
John wiley and sons. Science Education, Wiley, v. 34, n. 5, p. 336–337, dec 1950.
HENDERSON, J. V.; STOREYGARD, A.; WEIL, D. N. Measuring economic growth from
outer space. American Economic Review, American Economic Association, v. 102, n. 2,
p. 994–1028, apr 2012.
HENDRY, D. F. The methodology of empirical econometric modeling: Applied
econometrics through the looking-glass. In: Palgrave Handbook of Econometrics. [S.l.]:
Palgrave Macmillan UK, 2009. p. 3–67.
HIGHHOUSE, S. Context-dependent selection: The effects of decoy and phantom job
candidates. Organizational Behavior and Human Decision Processes, Elsevier BV,
v. 65, n. 1, p. 68–76, jan 1996.
HILLEL, T. et al. A systematic review of machine learning classification methodologies
for modelling passenger mode choice. Journal of Choice Modelling, Elsevier BV, v. 38,
p. 100221, mar 2021.
HIRSCHBERG, J.; MANNING, C. D. Advances in natural language processing. Science,

115



American Association for the Advancement of Science (AAAS), v. 349, n. 6245, p.
261–266, jul 2015.
HOLLAND, J. H.; MILLER, J. H. Artificial adaptative agents n economic theory. The
American Economic Review, v. 81, n. 2, p. 365–370, maio 1991.
HRNJIC, E.; TOMCZAK, N. Machine learning and behavioral economics for
personalized choice architecture. [S.l.]: arXiv, 2019.
HUANG, C.-L.; CHEN, M.-C.; WANG, C.-J. Credit scoring with a data mining approach
based on support vector machines. Expert Systems with Applications, Elsevier BV,
v. 33, n. 4, p. 847–856, nov 2007.
HüYüK, A.; ZAME, W. R.; SCHAAR, M. van der. Inferring lexicographically-ordered
rewards from preferences. Proceedings of the AAAI Conference on Artificial Intelligence,
Association for the Advancement of Artificial Intelligence (AAAI), v. 36, n. 5, p.
5737–5745, jun 2022.
JEZIORSKI, P.; KRASNOKUTSKAYA, E.; CECCARINI, O. Adverse selection and moral
hazard in a dynamic model of auto insurance. In: . [S.l.: s.n.], 2017.
KAHNEMAN, D. Maps of bounded rationality: Psychology for behavioral economics.
American Economic Review, American Economic Association, v. 93, n. 5, p. 1449–1475,
nov 2003.
KANG POLINA KUZNETSOVA, M. L. J. S.; YEJIN, C. Where not to eat? improving
public policy by predicting hygiene inspections using online reviews. In: ASSOCIATION
FOR COMPUTATIONAL LINGUISTICS. Stroudsburg, 2013. (Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing), p. 1443–48.
KARNI, E.; VIERØ, M.-L. “reverse bayesianism”: A choice-based theory of growing
awareness. American Economic Review, American Economic Association, v. 103, n. 7,
p. 2790–2810, dec 2013.
KEANE, M. P. Structural vs. atheoretic approaches to econometrics. Journal of
Econometrics, Elsevier BV, v. 156, n. 1, p. 3–20, May 2010.
KEANE, M. P.; TODD, P. E.; WOLPIN, K. I. The structural estimation of behavioral
models: Discrete choice dynamic programming methods and applications. In:
Handbook of Labor Economics. [S.l.]: Elsevier, 2011. p. 331–461.
KEANE, M. P.; WOLPIN, K. I. The career decisions of young men. Journal of political
Economy, The University of Chicago Press, v. 105, n. 3, p. 473–522, 1997.
KERSTING, K. Machine learning and artificial intelligence: Two fellow travelers on the
quest for intelligent behavior in machines. Frontiers in Big Data, Frontiers Media SA,
v. 1, nov 2018.
KHARIMAH F., U. M. W. W. . E. F. A. M. Time series modeling and forecasting of the
consumer price index bandar lampung. Science International Lahore, v. 27, n. 5, p.
4619–4624, 2015.
KIM, K. Financial time series forecasting using support vector machines.
Neurocomputing, Elsevier BV, v. 55, n. 1-2, p. 307–319, sep 2003.
KIRIAKIDIS, M.; KARGAS, A. Greek GDP forecast estimates. Applied Economics
Letters, Informa UK Limited, v. 20, n. 8, p. 767–772, may 2013.
KLEINBERG, J. et al. Human decisions and machine predictions. The Quarterly
Journal of Economics, Oxford University Press (OUP), aug 2017.
KLEINBERG, J. et al. Prediction policy problems. American Economic Review,
American Economic Association, v. 105, n. 5, p. 491–495, may 2015.

116



LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, Springer Science and
Business Media LLC, v. 521, n. 7553, p. 436–444, may 2015.
LECUN, Y. et al. Gradient-based learning applied to document recognition. Proceedings
of the IEEE, Institute of Electrical and Electronics Engineers (IEEE), v. 86, n. 11, p.
2278–2324, 1998.
LEE, D.; DERRIBLE, S.; PEREIRA, F. C. Comparison of four types of artificial neural
network and a multinomial logit model for travel mode choice modeling. Transportation
Research Record: Journal of the Transportation Research Board, SAGE Publications,
v. 2672, n. 49, p. 101–112, sep 2018.
LESHEM, D. Retrospectives: What did the ancient greeks mean by ioikonomia/i?
Journal of Economic Perspectives, American Economic Association, v. 30, n. 1, p.
225–238, feb 2016.
LUCE, R. D. Semiorders and a theory of utility discrimination. Econometrica, JSTOR,
v. 24, n. 2, p. 178, apr 1956.
LUCE, R. D. Individual choice behavior: A theoretical analysis. Journal of the Royal
Statistical Society. Series A (General), JSTOR, v. 123, n. 4, p. 486, 1960.
MACQUEEN, J. Some methods for classification and analysis of multivariate
observations. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability, v. 1, p. 281–297, 1967.
MALLOWS, C. L. Non-null ranking models. Biometrika, Oxford University Press (OUP),
v. 44, n. 1-2, p. 114–130, 1957.
MANSKI, C. F. The structure of random utility models. Theory and Decision, Springer
Science and Business Media LLC, v. 8, n. 3, p. 229–254, jul 1977.
MANZINI, P.; MARIOTTI, M. CATEGORIZE THEN CHOOSE: BOUNDEDLY RATIONAL
CHOICE AND WELFARE. Journal of the European Economic Association, Oxford
University Press (OUP), v. 10, n. 5, p. 1141–1165, jun 2012.
MANZINI, P.; MARIOTTI, M. Choice by lexicographic semiorders. Theoretical
Economics, The Econometric Society, v. 7, n. 1, p. 1–23, jan 2012.
MARSCHAK, J. Binary-choice constraints and random utility indicators. In: Cowles
Foundation Discussion Papers 74. [S.l.]: Cowles Foundation for Research in Economics,
Yale University, 1959.
MARTÍN-BAOS, J. Á.; GARCÍA-RÓDENAS, R.; RODRIGUEZ-BENITEZ, L. Revisiting
kernel logistic regression under the random utility models perspective. an interpretable
machine-learning approach. Transportation Letters, Informa UK Limited, v. 13, n. 3, p.
151–162, jan 2021.
MCFADDEN, D. Conditional logit analysis of qualitative choice behaviour. Frontiers in
Econometrics, Academic Press, 1973.
MCFADDEN, D. The revealed preferences of a government bureaucracy: Empirical
evidence. The Bell Journal of Economics, JSTOR, v. 7, n. 1, p. 55, 1976.
MEYER, J. R.; CONRAD, A. H. Economic theory, statistical inference, and economic
history. The Journal of Economic History, Cambridge University Press (CUP), v. 17,
n. 4, p. 524–544, dec 1957.
MEYLER, A. et al. Forecasting irish inflation using arima models (no. 3/rt/98). Central
Bank of Ireland., 1998.
MOLNAR, C. iml: An r package for interpretable machine learning. Journal of Open
Source Software, The Open Journal, v. 3, n. 26, p. 786, jun 2018.

117



MOLNAR, C.; CASALICCHIO, G.; BISCHL, B. Interpretable machine learning – a brief
history, state-of-the-art and challenges. arXiv, 2020.
MONTAVON, G.; SAMEK, W.; MüLLER, K.-R. Methods for interpreting and
understanding deep neural networks. Digital Signal Processing, Elsevier BV, v. 73, p.
1–15, feb 2018.
MOSAVI, A. et al. Comprehensive review of deep reinforcement learning methods and
applications in economics. Mathematics, MDPI AG, v. 8, n. 10, p. 1640, sep 2020.
MULLAINATHAN, S.; SPIESS, J. Machine learning: An applied econometric approach.
Journal of Economic Perspectives, American Economic Association, v. 31, n. 2, p.
87–106, may 2017.
NADKARNI, P. M.; OHNO-MACHADO, L.; CHAPMAN, W. W. Natural language
processing: an introduction. Journal of the American Medical Informatics Association,
Oxford University Press (OUP), v. 18, n. 5, p. 544–551, sep 2011.
NAIK, N.; RASKAR, R.; HIDALGO, C. A. Cities are physical too: Using computer vision
to measure the quality and impact of urban appearance. American Economic Review,
American Economic Association, v. 106, n. 5, p. 128–132, may 2016.
NEVO, A.; WHINSTON, M. D. Taking the dogma out of econometrics: Structural
modeling and credible inference. Journal of Economic Perspectives, American
Economic Association, v. 24, n. 2, p. 69–82, May 2010.
OK, E. A.; TSERENJIGMID, G. Deterministic rationality of stochastic choice behavior.
maio 2019.
OK, E. A.; TSERENJIGMID, G. Comparative rationality of random choice behaviors. jul.
2021.
OK, E. A.; TSERENJIGMID, G. Indifference, indecisiveness, experimentation, and
stochastic choice. Theoretical Economics, The Econometric Society, v. 17, n. 2, p.
651–686, 2022.
PARKES, D. C.; WELLMAN, M. P. Economic reasoning and artificial intelligence.
Science, American Association for the Advancement of Science (AAAS), v. 349,
n. 6245, p. 267–272, jul 2015.
PETTIBONE, J. C.; WEDELL, D. H. Examining models of nondominated decoy effects
across judgment and choice. Organizational Behavior and Human Decision Processes,
v. 81, n. 2, p. 300–328, 2000.
PETTIBONE, J. C.; WEDELL, D. H. Testing alternative explanations of phantom decoy
effects. Journal of Behavioral Decision Making, Wiley, v. 20, n. 3, p. 323–341, 2007.
PEYSAKHOVICH, A.; NAECKER, J. Using methods from machine learning to evaluate
behavioral models of choice under risk and ambiguity. Journal of Economic Behavior
&amp Organization, Elsevier BV, v. 133, p. 373–384, jan 2017.
REISS, P. C.; WOLAK, F. A. Chapter 64 Structural econometric modeling: Rationales
and examples from industrial organization. In: Handbook of Econometrics. [S.l.]:
Elsevier BV, 2007. p. 4277–4415.
RIBEIRO, M. Comparative rationality. 2023.
RIBEIRO, M.; RIELLA, G. Regular preorders and behavioral indifference. Theory and
Decision, Springer Science and Business Media LLC, v. 82, n. 1, p. 1–12, jun 2016.
RIBEIRO, M. T.; SINGH, S.; GUESTRIN, C. "Why Should I Trust You?": Explaining the
Predictions of Any Classifier. [S.l.]: arXiv, 2016.
RIELLA, G. Preference for flexibility and dynamic consistency. Journal of Economic

118



Theory, Elsevier BV, v. 148, n. 6, p. 2467–2482, nov 2013.
ROBBINS, L. An essay on the nature and significance of economic science. London:
Macmillan, 1932.
ROSENBLATT, F. The perceptron: A perceiving and recognizing automaton. Cornell
Aeronautical Laboratory, 1957.
RUBINSTEIN, A. Instinctive and cognitive reasoning: A study of response times. The
Economic Journal, Oxford University Press (OUP), v. 117, n. 523, p. 1243–1259, sep
2007.
RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by
back-propagating errors. Nature, Springer Science and Business Media LLC, v. 323,
n. 6088, p. 533–536, oct 1986.
RUST, J.; PHELAN, C. How social security and medicare affect retirement behavior in
a world of incomplete markets. Econometrica: Journal of the Econometric Society,
JSTOR, p. 781–831, 1997.
SAMEK, W. et al. Explaining deep neural networks and beyond: A review of methods
and applications. Proceedings of the IEEE, Institute of Electrical and Electronics
Engineers (IEEE), v. 109, n. 3, p. 247–278, mar 2021.
SAMUEL, A. L. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, IBM, v. 3, n. 3, p. 210–229, jul 1959.
SCHWARZ, G. Estimating the dimension of a model. The Annals of Statistics, Institute
of Mathematical Statistics, v. 6, n. 2, mar 1978.
SEN, A. K. On ethics and economics. [S.l.]: Blackwell, 1987. 131 p. ISBN 0631164014.
SHAPLEY, L. S. A value for n-person games. Contributions to the Theory of Games,
v. 28, n. 2, p. 307–317, 1953.
SIBSON, R. SLINK: An optimally efficient algorithm for the single-link cluster method.
The Computer Journal, Oxford University Press (OUP), v. 16, n. 1, p. 30–34, jan 1973.
SIFRINGER, B.; LURKIN, V.; ALAHI, A. Enhancing discrete choice models with
representation learning. Transportation Research Part B: Methodological, Elsevier BV,
v. 140, p. 236–261, oct 2020.
SILVA, M.; RIELLA, G. Aspiration-based reference dependance. 2020.
SIMON, H. A. A behavioral model of rational choice. The Quarterly Journal of
Economics, Oxford University Press (OUP), v. 69, n. 1, p. 99, feb 1955.
SMITH, A. An Inquiry into the Nature and Causes of the Wealth of Nations. [S.l.]:
University Of Chicago Press, 1977. 1152 p. ISBN 9780226763743.
SOUZA, M. J. S. et al. Can artificial intelligence enhance the bitcoin bonanza. The
Journal of Finance and Data Science, Elsevier BV, v. 5, n. 2, p. 83–98, jun 2019.
SRIVASTAVA, N. et al. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, v. 15, n. 56, p. 1929–1958, 2014.
STEINHAUS, H. Sur la division des corps matériels en parties. Bulletin L’Académie
Polonaise des Science, v. 4, p. 801–804, 1957.
STRATHERN, M. ‘improving ratings’: audit in the british university system. European
Review, Cambridge University Press (CUP), v. 5, n. 3, p. 305–321, jul 1997.
SU, C.-L.; JUDD, K. L. Constrained optimization approaches to estimation of structural
models. Econometrica, The Econometric Society, v. 80, n. 5, p. 2213–2230, 2012.
TEHRANI, A. F.; CHENG, W.; HULLERMEIER, E. Choquistic regression: Generalizing
logistic regression using the choquet integral. In: Proceedings of the 7th conference of

119



the European Society for Fuzzy Logic and Technology (EUSFLAT-2011). [S.l.]: Atlantis
Press, 2011.
TYSON, C. J. Cognitive constraints, contraction consistency, and the satisficing
criterion. Journal of Economic Theory, Elsevier BV, v. 138, n. 1, p. 51–70, jan 2008.
VARIAN, H. R. Big data: New tricks for econometrics. Journal of Economic Perspectives,
American Economic Association, v. 28, n. 2, p. 3–28, may 2014.
WANG, S.; WANG, Q.; ZHAO, J. Deep neural networks for choice analysis: Extracting
complete economic information for interpretation. Transportation Research Part C:
Emerging Technologies, Elsevier BV, v. 118, p. 102701, sep 2020.
WELLMAN, M. P.; RAJAN, U. Ethical issues for autonomous trading agents. Minds and
Machines, Springer Science and Business Media LLC, v. 27, n. 4, p. 609–624, jan
2017.
YANG, B. et al. Application of ARIMA model in the prediction of the gross domestic
product. In: Proceedings of the 2016 6th International Conference on Mechatronics,
Computer and Education Informationization (MCEI 2016). [S.l.]: Atlantis Press, 2016.

120


	Introduction
	Economics, Econometrics and Machine Learning: A Literature Review
	Introduction
	Deterministic and Stochastic Modeling in Economics
	Economics and Econometrics
	Economics and Machine Learning
	Origins and Classification of Machine Learning
	On the Use of Machine Learning in Economics
	Empirical Researches

	Conclusion

	Identifying Structure on Data using Machine Learning
	Introduction
	Literature Review
	On the Measures
	On Artificial Neural Networks (ANN)
	On The Models

	Assessment Framework
	ANN Settings

	Data
	Results
	Deterministic Experiment
	Stochastic Experiment
	A More Flexible Framework

	Bridging Rationality and Real World Behavior: A Numerical Approach
	Conclusion

	Updating Inner Perspectives about the World in a Subjective Manner
	Introduction
	Setup
	Random Choice Rules
	Preferences over Menus

	Updating Finite Random Expected Utility Representations
	Main Result: Updating Between FREU representations
	Multiple Signals and Partitions

	Updating from Menus to Random Choice Rules 
	Connections of Updating Among Frameworks
	Conclusion

	Appendix
	Codes
	Four Alternatives Setup
	Eight Alternatives Setup

	Proofs
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Lemma 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Corollary 2


	Bibliography

