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Abstract: This work aimed to assess the potential of unmanned aerial vehicle (UAV) multi- and hyper-
spectral platforms to estimate chlorophyll-a (Chl-a) and cyanobacteria in experimental fishponds in
Brazil. In addition to spectral resolutions, the tested platforms differ in the price, payload, imaging
system, and processing. Hyperspectral airborne surveys were conducted using a push-broom system
276-band Headwall Nano-Hyperspec camera onboard a DJI Matrice 600 UAV. Multispectral airborne
surveys were conducted using a global shutter-frame 4-band Parrot Sequoia camera onboard a DJI
Phantom 4 UAV. Water quality field measurements were acquired using a portable fluorometer and
laboratory analysis. The concentration ranged from 14.3 to 290.7 µg/L and from 0 to 112.5 µg/L for
Chl-a and cyanobacteria, respectively. Forty-one Chl-a and cyanobacteria bio-optical retrieval models
were tested. The UAV hyperspectral image achieved robust Chl-a and cyanobacteria assessments,
with RMSE values of 32.8 and 12.1 µg/L, respectively. Multispectral images achieved Chl-a and
cyanobacteria retrieval with RMSE values of 47.6 and 35.1 µg/L, respectively, efficiently mapping
the broad Chl-a concentration classes. Hyperspectral platforms are ideal for the robust monitoring
of Chl-a and CyanoHABs; however, the integrated platform has a high cost. More accessible multi-
spectral platforms may represent a trade-off between the mapping efficiency and the deployment
costs, provided that the multispectral cameras offer narrow spectral bands in the 660–690 nm and
700–730 nm ranges for Chl-a and in the 600–625 nm and 700–730 nm spectral ranges for cyanobacteria.

Keywords: inland water; remote sensing; UAV; remotely piloted aircraft (RPA); drone; Parrot Sequoia;
Headwall Nano-Hyperspec; chlorophyll-a; cyanobacteria; CyanoHABs

1. Introduction

Phytoplankton are the most abundant primary producers in both inland and oceanic
waters. Therefore, they play a significant role in global oxygen production and their
monitoring is crucial for studies of the planet’s biogeochemical cycles [1,2]. In inland
waters, phytoplankton monitoring is essential for water use management, as it serves as an
indicator of water trophic levels. Furthermore, the proliferation of cyanobacteria and other
toxin-producing algae species (harmful algal blooms—HABs) can pose risks to aquatic
biota and even public health [2,3].

Remote sensing techniques, particularly satellite imagery, have been widely applied
to monitor phytoplankton and HABs in continental and oceanic waters using bio-optical
models [4–8]. Chlorophyll-a (Chl-a) is a photosynthetically and optically active pigment,
extensively used as an indicator of phytoplankton biomass in water quality monitoring
employing remote sensing techniques [2]. For cyanobacteria estimation, phycocyanin (PC)
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has been widely applied, as it is the only photosynthetic pigment intrinsically related to
this type of phytoplankton [9].

Robust Chl-a and cyanobacteria monitoring in inland waters demands higher spec-
tral resolutions than oceanic waters [10], corresponding to case II and case I waters, re-
spectively [11]. In oceanic waters, Chl-a monitoring has been effectively applied using
broadbands in blue and green wavelengths. However, this technique is less feasible in
inland waters due to the significant influence of other optically active components (OACs),
such as total suspended solids (TSS) and colored dissolved organic matter (CDOM), at
these wavelengths. Consequently, narrow bands of intense Chl-a absorption at 660–680 nm
and reflectance at 700–720 nm have been used with satisfactory results for monitoring this
parameter in inland waters [4,12,13]. For cyanobacteria, the main spectral feature of PC is
the absorption effect at 620–630 nm. Similar to Chl-a, bio-optical PC semi-empirical models
have also been applied with narrow bands covering the absorption peak at 620–630 nm
and the reflectance at 700–720 nm for PC at red wavelengths [9,14,15].

The recent and ongoing development of unmanned aerial vehicles (UAV) and small
cameras has led to a new remote sensing platform capable of bridging the gaps between
orbital and in situ platforms [16]. UAV platforms offer operational flexibility and the ability
to record short- to long-term algal bloom events at the centimeter scale [17]. Numerous
studies have demonstrated that UAV platforms can contribute valuable hydrology [18,19]
and water quality information [20,21], regarding algae [17,22–24] and other optically active
constituents [25–27]. The photogrammetry technique is widely employed in constructing
orthomosaics for many of these applications. However, it has certain limitations when
it comes to monitoring homogeneous areas, such as large bodies of water. To address
this issue, alternative water mosaicking techniques and sun glint corrections have been
developed as solutions [28,29].

UAV platforms offer not only ultra-high temporal and spatial resolution but also,
depending on the camera carried, the capability to provide a high spectral resolution with
suitable bands for robust phytoplankton monitoring. However, it is important to note that
there is a diversity of optical system cameras available, which differ in terms of imaging
systems, acquisition geometry, and spectral resolution [30], as well as weight, which may
require drones with a higher payload capacity, consequently affecting the price and ac-
cessibility for projects or users with limited resources. High-cost hyperspectral cameras
provide extremely narrow bands, capable of reproducing Chl-a and PC estimation algo-
rithms developed from a field spectroradiometer. More affordable multispectral cameras
are limited in reproducing these algorithms but can replicate other algorithms developed
from multispectral satellite imagery and may even have bands that cover or approximate
wavelengths of Chl-a and PC effects.

In this context, the objective of this study was to apply and evaluate the potential of
Chl-a and cyanobacteria bio-optical models in fishponds using a 276-band hyperspectral
camera and a 4-band multispectral camera, which also differ in the price, imaging system,
payload, UAV platform, and image processing. Furthermore, this study aims to propose
ideal bands for Chl-a and cyanobacteria monitoring with multispectral cameras.

2. Materials and Methods
2.1. Experimental Area and Water Quality Parameters

The experimental area is located in the center of Brazil (Figure 1B), within the cerrado
(savanna) biome, near Brasília city (Figure 1C), the country’s capital. The region’s climate is
tropical, characterized by a rainy season from October to March (spring–summer) and a dry
period from April to September (autumn–winter). The annual average precipitation ranges
from 1200 to 1800 mm, with January being the rainiest month (284 mm of precipitation)
and June being the driest month (7 mm of precipitation, on average).
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suction pump and a polysulfone filtration unit. The filtered samples were stored at a 
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spectrophotometer. To determine the Chl-a concentrations, the methodological 
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Figure 1. Location map of the ponds analyzed in this study, in the center of Brazil (B,C). Field
sampling points numbered from 1 to 18 are displayed on a high-resolution image acquired by
Phantom 4 during the UAV survey (A).

The study was conducted in fish farmland ponds used for fry breeding, where each
pond exhibited a distinct water quality standard. Each pond has an area of approximately
1000 m2 and is 1.6 m deep. Figure 1A displays the location map of these ponds in a high
spatial resolution orthomosaic obtained from true-color red–blue–green (RGB) images
captured by the UAV Phantom 4 system. The sampling points for in situ water quality data
are also shown in the same figure.

Concurrently with the airborne multi- and hyper-spectral data acquisition, in situ
water quality data were collected. Eighteen sampling locations were defined across
the area, one for each pond. Water samples were collected at a depth of 15 cm be-
tween 10:00 am and 2:00 pm on 31 May 2019, using 1000 mL dark plastic bottles with a
1.5 m-long handle. The water samples were placed on ice immediately after collection
and transported to the laboratory for processing. On the same day as the fieldwork, the
water samples were filtered through a glass fiber filter with a pore size of 0.7 µm using a
vacuum suction pump and a polysulfone filtration unit. The filtered samples were stored
at a temperature below 0 ◦C and were subsequently diluted in acetone for stratification in a
spectrophotometer. To determine the Chl-a concentrations, the methodological procedures
of [31] were followed. Simultaneously with the water sampling, a handheld fluorometer
(FluoroProbe, BBE Moldaenke Inc., Schwentinental, Germany) was used. FluoroProbe is a
highly sensitive measuring instrument for the analysis of chlorophyll with algae class de-
termination [12,13]: green algae, blue–green algae/cyanobacteria, diatoms/dinoflagellates,
and cryptophytes. It uses six excitation lasers, allowing discrimination of algae groups
and correcting the results according to the presence of dissolved organic matter and the
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turbidity level (of mineral origin) in the waters. To evaluate the agreement between in
situ and BBE FluoroProbe Chl-a measurements, the Pearson’s correlation coefficient was
calculated.

2.2. Multispectral Platform: Data Collection and Processing

The multispectral camera used was a Parrot Sequoia (Figure 2b) with 12-megapixel res-
olution discrete multispectral bands, capturing ~40 nm-wide bands in the green (~550 nm),
red (~660 nm), and near-infrared (~790 nm) regions, and one in the red-edge (~735 nm)
region with a 10 nm narrowband (Figure 2d). The capture system employs a global shutter.
This camera also features a sensor that captures data with a rolling shutter system in RGB
with 16-megapixel resolution.
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Figure 2. (a) Calibration panel, (b) Sequoia camera attached to the DJI Phantom 4 using a 3D-printed
support, (c) irradiance sensor, and (d) Sequoia camera and its multispectral and RGB sensors (Parrot
Company, Paris, France).

Due to its 135 g weight and small size, Sequoia is versatile and adaptable to various
UAV models. Although developed primarily for agricultural applications, it has been
tested for water quality monitoring [26,32]. Sequoia features a global positioning system
and an inertial measurement unit (GPS/IMU) magnetometer system and an irradiance
sensor (Figure 2b). Positioning and camera data, as well as irradiance data, are stored
by the camera, facilitating the generation of orthomosaics for multispectral bands with
at-sensor surface reflectance (asSR) values.

The Sequoia camera was mounted on the DJI Phantom 4 using a 3D-printed support
(Figure 2b). The autonomous flight plan was configured using the Drone Deploy mission
planning software at an altitude of 120 m above the ground, with a maximum flight speed
of 15 m/s, 80% lateral overlap, and 65% frontal overlap. The entire study area was imaged
with 10 flight lines in 11 min, comprising 411 individual images, covering 26 hectares, and
consuming only 1 battery. Sequoia provides a communication system via a Wi-Fi network
and uses an Internet Protocol code. It can be configured and programmed to acquire images
on any device with an internet browser.

The asSR orthomosaics were computationally generated using the digital photogram-
metry method, called Structure from Motion (SfM), in Pix4Dmapper software. SfM works
with the automatic identification of homologous points on a set of overlapping images
through a bundle adjustment procedure [33]. The construction of the orthomosaic in
Pix4Dmapper follows these steps: aligning the images, creating the 3D point cloud and
the triangular mesh, and the digital elevation model. The asSR values were automatically
computed using sensor settings, a sun irradiance sensor, and a calibration panel (Figure 2a).
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Sensor settings were retrieved from the Exif metadata for each image, which includes
exposure time, shutter speed, vignetting, dark current, and the ISO value. The irradiance
sensor (Figure 2c) provides a record of the light conditions during the flight in the same
spectral bands as those captured by the multispectral sensor. Images of the calibration
panel are required to perform corrections at least once during each flight, as long as sky and
illumination conditions remain stable during the acquisitions. Considering overlapping
images, Pix4Dmapper calculates the reflectance values for each pixel of the orthomosaics
using a weighted average of the pixels in all the original images that correspond to this
pixel, but it assigns more weight to images where the pixel is more central (Pix4D S.A.). In
this study, the asSR orthomosaics were generated with a ground sampling distance (GSD)
equal to 13 cm.

2.3. Hyperspectral Platform: Data Collection and Processing

Headwall Nano-Hyperspec is a hyperspectral sensor weighing 680 g, featuring
276 spectral bands at a 2.2 nm spectral resolution, covering a spectrum range from 400
to 1000 nm. This camera has a 28.1◦ sensor field of view using a 12-mm lens with a
complementary metal-oxide-semiconductor sensor. A subsystem can store 480 GB of the
12-bit radiometric resolution images. The images were acquired by a push-broom scanning
system for scanning pixel lines (Headwall Photonics Inc., Bolton, MA, USA). This type of
sensor acquires the entire line of the image at once and continuously captures the image
with the motion of the drone [24]. The Nano-Hyperspec is integrated with a GPS/IMU
system, featuring a GPS antenna and an internal magnetometer that generates the X, Y, and
Z coordinate information through the inertial navigation system (Figure 3b).
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Three software applications are integrated into the Nano-Hyperspec camera for config-
uration and data processing (Headwall Photonics Inc., Bolton, MA, USA). XSENS software
ensures effective scanning under sustained vibrations, prolonged accelerations, and mag-
netic disturbances, and provides trajectory corrections using the GPS/IMU system [34].
Hyperspec III software has several functional configurations: radiometric, geometric, GPS,
and automatic trigger settings. Spectral View software has the functions of processing the
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acquired images: orthorectification using GPS/IMU system information, conversion of
digital numbers to radiance, and spectral visualization of the scanners.

Nano-Hyperspec was installed on a Matrice 600 (M600) hexacopter (DJI Inc., Shenzhen,
China). M600 weighs 9.5 kg and can take off with a maximum weight of 15.5 kg (Figure 3c),
with a flight autonomy of approximately 25 min. The Nano-Hyperspec camera was cou-
pled to the M600 using a Gimbal (DJI RONIN MX) and a 3D-printed support (Figure 3).
Autonomous flights were configured using the DJI Ground Station Pro mission planner
software with an altitude of approximately 250 m above the ground, a maximum speed of
around 7 m/s with 20% lateral overlap, and 10% frontal overlap to generate orthomosaics
with a GSD equal to 17 cm. The flights for both cameras were performed with high solar
zenith angle conditions (>45◦) to avoid sun glint effects [24,26,35–37].

Digital number images from the Nano-Hyperspec camera were converted to radiance
using an internal calibration file that provides gains and offsets for each wavelength band
(i.e., radiance = gain × digital number + offset). Spectral View software was used for image
orthorectification and image mosaicking. Afterward, the mosaicked radiance images were
converted to surface reflectance asSR, computing the ratio between the irradiance and
radiance [38], which can be described as follows:

asSR =
Lw(λ)

Ed(λ)
(1)

where Lw (W m−2 nm−1 sr−1) is the upwelling radiance, representing the radiance images
from the Nano-Hyperspec camera, and Ed (W m−2 nm−1) is the downwelling irradiance
measured on the ground. Ed was measured simultaneous to the flight acquisitions with
a TriOS RAMSES hyperspectral irradiance spectroradiometer pointing at the zenith. This
instrument has a spectral resolution of approximately 2 nm, from 320 to 950 nm. Each pixel
in the final hyperspectral asSR images was corrected using a filtering method [37] based on
a Fourier transformation, to remove high-frequency components [39].

2.4. Chl-a and HABs Algorithms and Analysis of Performances

The entire UAV acquisition methodology was as follows: (a) planning and execution of
UAV surveys, (b) field collection of limnological in situ data simultaneous to UAV surveys,
(c) image processing to generate asSR orthomosaics, (d) retrieval of the limnological status
of each pond, (e) analysis of the statistical performances of bio-optical models against the
Chl-a and cyanobacteria field data, and (f) Chl-a and cyanobacteria mapping using the most
robust models for both UAV platforms. The asSR pixel values, a sample of eight pixels,
from the multi- and hyper-spectral orthomosaics, were extracted at the same geographic
positions of the water sampling points for application of Chl-a and cyanobacteria bio-optical
models.

The optical properties of water are the basis for the development of bio-optical models
for estimating the OAC, such as photosynthetic pigments. Bio-optical models are classified
into different categories: empirical, semi-empirical, semi-analytical, quasi-analytical, and
analytical [8,40]. There is a wide variety of Chl-a and cyanobacteria models applied in
inland waters with a large range of concentration levels and with multiple radiometric data
sources: spaceborne, airborne, and in situ sensors [4–6].

Chl-a was estimated using two-band algorithms that cover wavelengths of maximum
(~660–680 nm) and minimum (~700–720 nm) absorption effects, yielding satisfactory results
for monitoring this parameter in continental waters. For turbid and productive waters,
three-band models between near-infrared (NIR) and red wavelengths have been devel-
oped [41]. These models incorporate bands in NIR wavelengths, taking into account the
minimal absorption wavelengths of Chl-a. In extremely turbid waters, four-band models
have been adapted from the three-band models to minimize the absorption and scattering
effects of total suspended solids (TSS) [41].

Bio-optical PC models, particularly semi-empirical ones, have also been applied in the
literature and share a similar rationale as those for Chl-a. Two-band models are employed
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as well, but with the aim of identifying the peak and absorption of PC at red wavelengths.
Three-band models, on the other hand, are based on the wavelengths that are most and
least sensitive to PC absorption, along with a third band that has a negligible influence
on this pigment. Spectral indices have also been developed for estimating PC, as well as
Chl-a [9].

Bio-optical models from the literature were retrieved and adjusted to estimate Chl-a
and cyanobacteria based on the Headwall Nano-Hyperspec and Parrot Sequoia camera
spectral bands. The effectiveness of the models was evaluated using a bootstrap resampling
method [42]. Bootstrap and cross-validation are useful statistical tools for validation with
small sample sizes. In these methods, the training and testing data of the models are
continuously resampled with replacement within the sample distribution. Each data point
in the available sample can be resampled multiple times, for both training and testing [43].
Bootstrap resampling was performed 1000 times (number of interactions between training
and testing), and the R-squared (R2), root mean square error (RMSE), and mean absolute
error (MAE) mean values of the 1000 interactions were calculated. The equations for R2,
RMSE, and MAE are as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(X− X)2 (2)

MAE =
1
N

N

∑
i=1

[
X′ − X

]
(3)

R2 = 1− ∑N
i=1[X

′ − X ]2

∑N
i=1[X− − X ]2

(4)

where X’ represents the UAV-derived values, X− is the average value of the samples, and X
represents the in situ Chl-a and cyanobacteria concentrations, with N being the number of
data points. Regression results between estimated and in situ-measured parameters were
also used to further interpret the retrieval performance of each model: slope, intercept, and
R2.

RMSE was considered a key validation parameter because it represents the average
difference between the observed values and the values predicted by the regression model.
It provides an estimate of the magnitude of prediction errors and is used to evaluate the
performance of the model in absolute terms. The R-squared (R2) value was calculated to
assess the explanatory power of the model in relation to the variation in the observed data.
Additionally, the mean absolute error (MAE) was calculated to verify its consistency with
the RMSE values.

Geoprocessing tools were utilized to extract the asSR values and to implement the
most robust bio-optical model for mapping chlorophyll-a (Chl-a) and cyanobacteria within
the designated study areas. Figure 4 presents the flowchart illustrating the sequential steps
of the methodological procedures employed.
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3. Results
3.1. Exploratory In Situ Analysis

Table 1 presents the statistics of the limnological data collected by sonde concomitant
with the UAV surveys. Overall, higher Chl-a concentrations are associated with greater
pH, conductivity, temperature, and turbidity values. According to the analyzed data, the
BEE fluorometer showed a predominance of green algae, followed by blue–green algae,
diatoms, and cryptophyta. FluoroProbe Chl-a concentration estimates were compared with
water samples processed in the laboratory using the conventional method [40], showing
consistency, with a correlation coefficient of 0.9. The highest Chl-a concentrations were
observed in the ponds corresponding to the sample points 13, 14, and 10 (Figure 1), with
concentrations of 244.1, 290.7, and 245.8 µg/L, respectively. Only ponds 1, 7, and 11 showed
Chl-a levels below the maximum acceptable level for aquaculture in Brazil (i.e., 30 µg/L),
considering Class 2, according to Conama Resolution No. 357 of 2005 [44]. The correlation
between Chl-a and cyanobacteria was 0.55.

Table 1. Summary of the water quality parameters and pigment distribution as registered during the
field surveys.

Parameters Mean * Median * Min * Max * Std.
Deviation *

Chl-a (µg/L) 116.31 113.85 14.30 290.70 80.81
Green algae (µg/L) 81.18 84.55 13.98 193.90 48.25

Blue–green algae (µg/L) 22.23 3.10 0.00 112.50 35.36
Diatoms (µg/L) 8.54 5.50 0.09 43.10 10.27

Cryptophyta (µg/L) 4.38 0.01 0.00 20.30 6.63
Yellow substances (µg/L) 0.24 0.00 0.00 3.29 0.75

pH 8.79 9.10 6.30 9.80 0.89
Conductivity (µS/cm) 49.43 51.00 14.40 90.10 18.95

Turbidity (FNU) 40.70 15.90 2.50 366.10 82.56
Temperature (◦C) 25.68 25.80 24.00 26.80 0.75

* N = 18.

3.2. Spectral Analysis from Multi- and Hyper-Spectral UAV Platforms

Figure 5 displays the orthomosaic radiance images captured at λ = 832 nm. The
calibration process for asSR (apparent surface reflectance) was conducted using Equation
(1), resulting in the generation of spatialized reflectance spectral information for 250 bands
spanning from λ400 to λ950 nm. It is important to note that although the Nano-Hyperspec
camera has 276 bands, the bands with λ > 950 nm were excluded from the calibration
process. This decision was made due to the coverage of the Ramses irradiance sensor,
which extends up to λ > 950 nm, and the fact that water reflectance becomes null beyond
these wavelengths [45]. Figure 6 presents the orthomosaics of the multispectral images
obtained using the Sequoia camera in asSR. It is worth noting that flights conducted under
both mean and high solar zenith angle conditions resulted in the absence of sun glint in all
orthomosaics, as depicted in Figures 5 and 6.

Figure 7 presents the variation of the asSR and the determination coefficient calculated
between each spectral value and Chl-a and the algae groups (green algae, blue–green algae,
diatoms, and cryptophyta). The asSR spectra were extracted over the 18 field sampling
points from the calibrated images of the Nano-Hyperspec and Sequoia cameras. Spectral
features related to pigment absorption clearly appeared with the ~2 nm spectral resolution
of the Nano-Hyperspec camera (Figure 7a), while those patterns were much less clear when
considering the four multispectral bands of the Sequoia camera (Figure 7b).
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The high spectral resolution of Nano-Hyperspec (Figure 7a) allowed extracting the
water’s spectral signatures with limited noise after the application of the Fourier filter.
Numerous previous works related the reflectance trough at 440 nm with the Chl-a absorp-
tion maximum in the same spectral range. Correspondingly, the reflectance maximum
between λ550 and λ555 nm was probably induced by the Chl-a absorption minimum in
the same spectral range. At larger wavelengths, the maximum Chl-a absorption feature
in the red region (λ660 to λ680 nm) induced a reflectance local minimum, which was
followed by an absorption minimum within λ700–λ730 nm, reported extensively in the
literature to be linked to Chl-a optical properties [46,47]. Regarding phycocyanin, in some
spectral features, it was possible to observe an absorption feature near λ620 nm and a peak
scattering near λ650 nm, as reported in the literature for aquatic environments containing
cyanobacteria [24,48,49].

Figure 5b displays the asSR spectra acquired using Sequoia’s multispectral camera.
Due to the camera’s low spectral resolution, the optical features induced by the phyto-
plankton pigments were hardly visible. However, the reflectance behavior from the green
(~λ550 nm) to the NIR (~λ790 nm) spectra well-matched the reflectance variation recorded
using the hyperspectral camera, resulting in a determination coefficient value between
SR−1 and Chl-a concentrations almost similar for both cameras.

3.3. Chl-a Bio-Optical Models from Multi- and Hyper-Spectral UAV Platforms

Twenty-seven Chl-a bio-optical models were tested (Table 2). The high spectral reso-
lution of the Nano-Hyperspec camera made it possible to test a broad variety of models,
including models developed from in situ hyperspectral spectroradiometer data. The lower
spectral resolution of the Sequoia camera did not enable testing such a diversity of models
(Table 2). For most models applied, some adaptations were made to fit the spectral ranges
of the Sequoia bands.

Among the various types of models considered for Chl-a and CyanoHAB mapping,
including two-band, three-band, indexes, and semi-analytical models, at least one model
from each group exhibited high performance across different statistical categories; notably,
model #1 (RMSE: 32.8 µg/L), model #2 (RMSE: 33.1 µg/L), and model #7 (RMSE: 32.9).
Based on the information provided, it is stated that model #1 was chosen for Chl-a mapping
due to its low RMSE value (considered a decisive parameter) and high R2 value. A lower
RMSE value indicates better accuracy in predicting Chl-a concentrations, while a higher
R2 value suggests a stronger correlation between the model’s predictions and the actual
Chl-a values. These best-performing models (#1, #2, and #7) could not be utilized for the
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Sequoia camera due to limitations in its spectral resolution. In Table 2, it is demonstrated
that the adapted Normalized Difference Chlorophyll Index (NDCI) model #14 emerged as
the most effective model for the multispectral configuration, (RMSE: 47.6 µg/L). Therefore,
the adapted NDCI model (#14) was selected as the most suitable option for Chl-a mapping
using the Sequoia camera. Additional statistical details regarding the bio-optical Chl-a
models throughout the bootstrap process are presented in Table A1 of Appendix A.

Table 2. Chl-a bio-optical models and their statistical results.

Code Model Algorithm Nano-Hyperspec Parrot Sequoia
Ref.

R2 RMSE MAE R2 RMSE MAE

Two-band NIR and Red models

1 SR716/SR676 0.87 32.8 25.7 Not applicable
2 SR709/SR665 0.86 33.1 26.8 Not applicable [24]
3 SR705/SR665 0.84 36.8 29.8 Not applicable [50]
4 SR740/SR665 * 0.81 38.7 29.8 0.59 57.7 42.0 [51]
5 SR666

−1 × SR704 0.81 39.7 32 Not applicable [52]
6 SR665

−1 × SR783 * 0.78 39.7 32.8 0.28 72.5 52.4 [41]

Three-band NIR and Red models

7 (SR666
−1 − SR704

−1) × SR723 0.86 32.9 25.6 Not applicable [52]
8 (SR665

−1 − SR705
−1) × SR740 0.84 35.0 27.0 Not applicable [53]

9 (SR665
−1 − SR705

−1) × SR783 * 0.83 36.9 28.2 0.44 65.5 46.6 [51]
10 (1/SR670 − 1/SR710) × SR750 0.83 36.1 28.0 Not applicable [54]
11 (SR665

−1 − SR708
−1) × SR753 0.84 36.2 28.1 Not applicable [55]

12 (1/SR660 − 1/SR708) × SR755 0.83 37.3 29.0 Not applicable [23]

Index models

13 FLH: SR680 − [SR665 + (SR708/SR665) ×
((λ680 − λ665)/(λ708 − λ665))] 0.86 35.2 28.5 Not applicable [56]

14 NDCI: (SR708 − SR665)/(SR708 +
SR665) * 0.82 38.6 31.4 0.72 47.6 37.0 [57]

15 BNDVI: (N − B)/(N + B) 0.67 52.2 42.1 Not applicable [58]

16 INDEX: (SR665
−1 − SR708

−1)/(SR753
−1

+ SR708
−1)

0.67 53.2 39.7 Not applicable [59]

17 SABI: (N − R)/(B + G) 0.6 56.8 46.5 Not applicable [60]
18 NDVI: (N − R)/(N + R) 0.56 59.9 49.3 0.66 52.1 41.0 [61]

19 AI: ((SR850 − SR660)/(SR850 + SR660)) +
((SR850 − SR625)/(SR850 + SR625)) 0.56 61.3 51.6 Not applicable [62]

20 GNDVI: (N − G)/(N + G) 0.36 73.8 61.6 0.40 68.1 56.7 [17]
21 NGRDI: (G − R)/(G + R) 0.29 74.8 61.6 0.37 73.1 57.9 [63]
22 KIVU: (B − R)/G 0.20 82.9 68.0 Not applicable [64]
23 GLI: (2 × G − R − B)/(2 × G + R + B) 0.14 82.8 70.3 Not applicable [65]
24 NGBDI: (G − B)/(G + B) −0.05 89.3 74.8 Not applicable [66]
25 EXG: 2 × G − R − B 0 91.7 76.9 Not applicable [67]

Semi-analytical models

26 [35.7 × (SR708/SR665) − 19.3]1.124 * 0.86 34.3 27.6 Not applicable [65]
27 (SR662 − SR693)/(SR740 + SR705) * 0.14 89.4 72.3 Not applicable [66]

* Adapted for Sequoia bands.

Chl-a maps were generated from the best retrieval model for the multi- and hyper-
spectral images (Figure 8). Most ponds showed elevated Chl-a concentrations, and the
maps produced from both airborne systems showed consistent results. In several ponds,
the Chl-a levels were above the maximum acceptable concentration for aquaculture in
Brazil, that is 30 µg/L, for Class 2, according to Conama Resolution No. 357 of 2005 [44].
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3.4. Cyanobacteria Bio-Optical Models from Multi- and Hyper-Spectral UAV Platforms

Cyanobacteria (blue–green algae) bio-optical models are not as widely disseminated
in the literature as those designed for Chl-a retrieval. However, cyanobacteria retrieval
models are receiving growing attention, mainly because they make it possible to detect
HABs [24,67–69]. Table 3 presents 14 retrieval models that were analyzed in this work
using hyperspectral data.
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According to the provided information, the cyanobacteria models generated using
the Nano-Hyperspec camera showed favorable statistical results, as indicated in Table 3.
Among the considered models, model #35 exhibited the best performance, characterized by
a low RMSE value and a high R2 value. Consequently, model #35 was selected for mapping
cyanobacteria levels in the ponds, and this mapping is illustrated in Figure 9A.
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It is stated that cyanobacteria models require a higher spectral resolution compared
to Chl-a models. Consequently, only two models were suitable for the Sequoia camera
(Table 2). However, these two models adapted for the Sequoia camera failed to achieve
acceptable statistical performances, with an R2 value below 0.5 and an RMSE value higher
than 35 µg/L. In contrast, the bio-optical model (model #34) applied to the Sequoia camera
(Figure 9B) resulted in an RMSE approximately 200% higher than that of the model used
with the hyperspectral camera (model #35). These results show that the hyperspectral
camera outperformed the multispectral camera in monitoring cyanobacteria, offering a
higher accuracy. Therefore, it can be inferred that the hyperspectral camera is better suited
for accurately monitoring cyanobacteria compared to the Sequoia camera. For additional
statistical details of the bio-optical Chl-a model and the bio-optical cyanobacteria models
during the bootstrap process, please refer to Tables A1 and A2, respectively, in Appendix A.

Table 3. Cyanobacteria bio-optical models and their statistical results.

Code Model Algorithm
Nano-Hyperspec Parrot Sequoia

Ref.
R2 RMSE MAE R2 RMSE MAE

Two-Band Models

28 SR708/SR622 0.73 13.5 9.5 Not applicable [23]
29 SR710/SR620 0.64 14.0 10.2 Not applicable [24]
30 SR709/SR600 0.55 15.1 10.8 Not applicable [68]
31 SR700/SR600 0.71 20.0 13.5 Not applicable [70]
32 SR724/SR600 0.04 21.0 14.2 Not applicable [15]
33 SR650/SR625 0.61 28.9 21.9 Not applicable [71]
34 SR724/SR660 * 0.39 34.6 24.5 0.47 35.1 25.5 [72]

Three-band NIR and Red models

35 (SR624
−1 − SR600

−1) × SR725 0.83 12.1 9.0 Not applicable [73]
36 (1/SR622 − 1/SR708) × SR755 * 0.56 15.6 10.8 0.27 37.2 26.7 [23]
37 (SR615

−1 − SR600
−1) × SR725 0.65 15.5 11.5 Not applicable [74]

Index models

38 PCI: SR555 − (SR555 − SR665)/(λ655 − λ555) ×
(λ630 − λ555) − SR630

0.52 19.8 14.1 Not applicable [75]

39 SLH: SR714 − [SR654 + ((SR754 − SR654)/(λ754
− λ654)) × (λ714 − λ654)] 0.68 33.4 22.8 Not applicable [76]

40 CI: SR681 − SR665 − (SR709 − SR665) × ((λ681
− λ665))/(λ709 − λ665)) 0.64 32.5 22.7 Not applicable [76]

41 (SR556 − SR510)/(λ556 − λ510) 0.51 38.8 27.8 Not applicable [77]

* Adapted for Sequoia bands.

4. Discussion
4.1. Retrieval of Water Quality in the Artificial Ponds

The Chl-a levels in the ponds were mostly above what the Brazilian environmental
resolution endorses, indicating the need for remediation. Concerning the Chl-a concentra-
tion, fifteen out of eighteen ponds had concentrations above 30 µg/L based on the field
water samplings. Both hyperspectral and multispectral cameras successfully detected those
fifteen ponds, but the Sequoia camera produced one false-positive detection. Examining
the most eutrophic ponds, the hyperspectral camera and water samplings revealed that
ten out of eighteen ponds had a Chl-a concentration above 100 µg/L. The multispectral
camera successfully detected those ten ponds as well, but it erroneously attributed two
additional ponds to the upper range of concentrations. Finally, while water samplings
revealed that only ponds 1, 7, and 11 (Figure 1) had Chl-a concentrations below 30 µg/L,
the hyperspectral camera retrieved Chl-a concentrations below 30 µg/L for ponds 7, 11,
and 18. For the lower range of Chl-a concentrations, the Sequoia camera detected only two
ponds (7 and 18). We assessed that fourteen out of eighteen ponds were correctly mapped



Drones 2023, 7, 410 15 of 26

regarding their eutrophic status using the hyperspectral camera when compared to field
monitoring. The same fourteen ponds were also correctly mapped with the multispectral
camera, demonstrating that the Sequoia camera enabled satisfying monitoring results.
The primary differences between both airborne sensors were the slightly larger number
of false-positive detections of some eutrophic ponds and the lower accuracy in detecting
oligotrophic conditions.

Regarding cyanobacteria, field water measurements detected four ponds with con-
centrations above 30 µg/L, of which two ponds had concentrations above 100 µg/L (i.e.,
ponds 10 and 13). The hyperspectral camera mapped 5 out of the 18 surveyed ponds with
concentrations above 30 µg/L, of which 2 ponds were mapped with concentrations above
100 µg/L (i.e., ponds 10 and 13). The multispectral camera successfully classified only three
ponds with cyanobacteria concentrations above 30 µg/L but failed to detect the two most
eutrophic ponds (i.e., above 100 µg/L).

4.2. Chl-a Retrieved from Multi- and Hyper-Spectral UAV Platforms

Table 2 demonstrates the unquestionable capacity of the Nano-Hyperspec camera to
support the use of a wide variety of Chl-a bio-optical models. Of the twenty-seven models
tested, fourteen obtained R2 > 0.8. It is worth noting that almost all of the fifteen most
robust models utilized narrow bands between 660 and 730 nm, highlighting the impor-
tance of an ideal sensor having at least two bands covering both the absorption peaks at
~660–680 nm and the reflectance maximum at ~700–730 nm from Chl-a [78]. Several studies
have tested and confirmed the efficiency of bio-optical models using spectral bands at those
wavelengths to estimate Chl-a in continental waters [12,13,41,79–84]. It is worth mentioning
that the authors of [13] concluded that there is no universal model for estimating Chl-a, as
most models perform better for specific concentration ranges and/or water types and/or
for a given location, but not for another set of conditions. Our results showed that the
hyperspectral camera has high potential for Chl-a monitoring using drone platforms, as it
allows the use of a large variety of retrieval models that may be selected according to the
pond-specific conditions.

The Sequoia camera does not offer multiple spectral bands at red and NIR wave-
lengths, but its spectral resolution may be adequate to capture spectral patterns related
to the presence of photosynthetic pigments, allowing for reliable estimates for Chl-a. The
Sequoia red band extends from 640 to 680 nm and is partly impacted by the Chl-a light
absorption maximum from 660 to 680 nm. The red-edge band covers a narrow wavelength
range from 730 to 740 nm that is partly impacted by the Chl-a reflectance peak. We exam-
ined the bio-optical models that could be used for both hyperspectral and multispectral
cameras, such as models #4, #6, #9, and #14 (Table 2). Those models were modified for the
multispectral camera to match the spectral bands but retained their mathematical expres-
sion. We observed that the multispectral models presented an average RMSE value that
was 56.1% higher than when using their hyperspectral forms. In particular, multispectral
forms of models #4, #6, #9, and #14 reached RMSE values 48.4%, 73.4%, 78.8%, and 24%
higher in comparison to their hyperspectral forms, respectively. From a user perspective,
this difference in Chl-a retrieval performance may be evaluated as significant but should
be assessed more generally, also considering drone deployment flexibility and investment
costs (see Section 4.4).

The best statistical adjustment of the tested models for the Sequoia camera was model
#14, which is an adaptation of the NDCI model followed by the NDVI model. NDCI is an
index created to determine Chl-a over turbid and productive waters that uses a mathemati-
cal expression similar to the NDVI index previously developed for terrestrial vegetation. It
was originally developed for medium-spectral resolution imaging spectrometer (MERIS)
images using 708 nm and 665 nm bands [57]. For our study, the NDCI model adapted
to the Sequoia camera used the red-edge and red bands, generating the best statistical
performance for the Sequoia camera, and was used to estimate Chl-a in the fishponds
(Figure 8).
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The results demonstrated advances in UAV platforms for accurate Chl-a monitoring.
Considering the strong eutrophic conditions in the monitored ponds (i.e., mean in situ Chl-a
concentration of 116.31 µg/L), the best retrieval performances for the Nano-Hyperspec
camera (model #1) were considered consistent with other remote sensing-based mapping
methods. Although less accurate, the results for the Sequoia camera (model #14) were also
consistent, considering studies in the literature using satellite images. The authors of [81]
reported a MAPE of 41.2% using Sentinel 2 MSI and a MAPE of 57.3% using Landsat 8 OLI.
The authors of [85] reported an R2 of 0.49 and an RMSE of 48.5% using Sentinel 2 images.
Field spectroradiometers may allow for achieving a better performance, such as the results
presented in [83], with a MAPE of 16.6%, by the authors of [86], who obtained an R2 of 0.78
and an RMSE of 10.4 µg/L, and by the authors of [87], who found an R2 from 0.82 to 0.85
and an RMSE from 45.3% to 52.5%, simulating Sentinel-2 bands. However, the use of field
spectroradiometers is much more limited in terms of surface coverage when compared to
UAV platforms.

A low Chl-a concentration (i.e., below 10 µg/L) may result in degraded retrieval
performances, as the spectral patterns are much more subtle, leading to a lower signal-to-
noise ratio. However, fine Chl-a retrieval over oligotrophic conditions is considered much
less critical than the detection of eutrophic conditions concerning licensing requirements
by environmental stakeholders. The Brazilian National Council of the Environment’s
(CONAMA) 30 µg/L threshold for fish-farming activities in freshwaters confirms the
importance of focusing on the detection of this Chl-a concentration range as a critical
operational issue.

4.3. Cyanobacteria Retrieved from Multi- and Hyper-Spectral UAV Platforms

Unlike Chl-a retrieval, a fine spectral resolution is considered essential for cyanobacte-
ria and HAB mapping, as all bio-optical models available in the literature require narrow
spectral bands within the 600–625 nm spectral domain. In most cases, multispectral cameras
do not offer specific bands at these wavelengths, such as the Sequoia camera, which was
primarily developed for agricultural applications.

The results in Table 3 confirmed that an ideal multispectral camera for cyanobacteria
monitoring must offer a narrow band located in the 600–625 nm range, in addition to
another spectral band in the red-edge spectrum, to provide accurate assessments. Of all
fourteen models tested with the hyperspectral camera for cyanobacteria retrieval (Table 3),
only two models could be adapted to the Sequoia multispectral camera’s spectral config-
uration. Model #34 was adapted from the original SR724/SR660 two-band model for the
multispectral configuration. Model #34 performed poorly for both hyperspectral and multi-
spectral cameras, with RMSE values around 35 µg/L. Model #36, based on a three-band
model, was also adapted to the multispectral configuration. This model exhibited a higher
performance with the Nano-Hyperspec camera (R2: 0.56) than with the Sequoia camera (R2:
0.27). Despite the low statistical performance, model #34 was used to map cyanobacteria
with the Sequoia camera, using the red-edge/red band ratio. Additional research should
be carried out with refined sensors for precise detection using multispectral cameras.

As with Chl-a, the results in Table 3 also demonstrate the high potential of the Nano-
Hyperspec camera to apply several cyanobacteria/HAB bio-optical models. Of the 14 mod-
els tested, 3 models obtained an R2 ≥ 0.7, with emphasis on models #35, #28, and #29
(various studies have also tested and validated the efficiency of these models for estimat-
ing cyanobacteria/HAB in continental waters [9,88–91]. The three-band model (model
#35) originally proposed in [73] was robustly applied for monitoring cyanobacteria in
fish-farming tanks, showing results compatible with those presented in this study.

4.4. Benefits and Costs of Multi- and Hyper-Spectral UAV Platforms

The robust models used with the hyperspectral camera for Chl-a and cyanobacteria
monitoring achieved a correlation with in situ samplings of 0.87 and 0.83, respectively,
under a bootstrap method of 1000 interactions. For the multispectral camera, the robust
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models achieved a correlation of 0.72 for Chl-a and 0.47 for cyanobacteria. Undoubtedly,
hyperspectral platforms are ideal for the robust monitoring of Chl-a and HABs since they
provide the applicability of a wide range of models that demand a high spectral resolution.
Similar results were also obtained in [24] for cyanobacteria by phycocyanin detection using
hyperspectral imagery. Multispectral systems may be regarded as an interesting alternative
perspective for Chl-a detection, as they are flexible and low-cost platforms, making it
possible to map at a very high resolution (~13 cm spatial resolution in this work), ideal for
small artificial ponds. It is worth noting that the hyperspectral platform used in this work
has a cost ten times higher than the multispectral platform (Table 4).

Table 4. Cost comparison between the multi- and hyper-spectral UAV platforms used in this study.

Devices Weight
(kg)

Cost in USD
(×1000) Devices Weight

(kg)
Cost in USD

(×1000)

Parrot Sequoia with irradiance sensor 0.25 4 Headwall Nano-Hyperspec Package 0.68 80
DJI Phantom 4 UAV 0.9 2

UAV Battery 0.47 0.1 DJI Matrice 600 UAV 5.9 4
Blank row

Pix4Dmapper Software 2 Battery package 4.1 1
3D support 0.1 0.2

DJI GIMBAL RONIM MX 2.2 1.5
3D support 0.1 0.1

Total 1.7 8.6 Total ~13 86.6

The current cost of hyperspectral platforms can be a strong limiting factor, limited to
the financial viability of users’ projects. Consequently, the use of multispectral platforms
is a sustainable alternative for inland waters, in particular if the sensor used covers the
wavelengths related to the light maximum and minimum peak absorption of Chl-a and
cyanobacteria pigments in the 600–750 nm spectral range.

In addition to methodological and financial issues, it is still necessary to consider
operational and technical issues. In general, hyperspectral cameras have a much greater
weight (Table 4) and thus demand more robust UAVs than multispectral cameras. Moreover,
hyperspectral push-broom cameras, such as the Nano-Hyperspec, have a more complex
scanner imaging system. To generate a good-quality image, the UAV must fly at a constant
speed and height, harmonized with the trigger configuration of the camera during the
scanning process. Considering multispectral cameras’ low-weight characteristics, such as
the Sequoia camera, these models are versatile and adaptable to light, low-cost, and easy-
to-handle UAVs. Thus, considering the practical aspects regarding the operational issues,
multispectral platforms appear, once again, as a rational pick for monitoring phytoplankton
in inland waters.

We analyzed how UAV platforms compare to other methods that may be used for
Chl-a and cyanobacteria monitoring, including conventional methods. Considering satellite
data, no space-borne platforms are currently simultaneously delivering low costs and high
spatial, temporal, and spectral resolutions. Our results confirmed that UAVs can achieve
enhanced retrieval performances in comparison to spaceborne platforms. Additionally,
the satellite data quality may be hampered by complex atmospheric conditions, requiring
precise corrections. Another advantage of UAVs is related to the limitation of satellite
data during cloudy days, which may dramatically reduce the availability of orbital images
during the rainy season in tropical areas [10,26,45].

Lastly, field spectroradiometer systems allow for obtaining precise spectral curves over
individual points and applying a large range of bio-optical models. However, pointwise
surveys are limited in characterizing the spatial heterogeneity of water bodies compared to
UAVs.
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5. Conclusions

The recent and continuous developments of UAVs and small cameras with different
spectral resolutions and imaging systems promote new remote sensing platforms that
enable water quality monitoring at high spatial and temporal resolutions. These platforms
are especially well-suited for small areas where it is difficult to rely on manned airborne or
orbital platforms, such as aquaculture ponds.

UAV remote sensing platforms, combined with the application of bio-optical models,
provide a robust and practical tool for monitoring the spatial distribution of Chl-a and
cyanobacteria concentrations in inland water bodies. However, spectral resolution is
critical for high-accuracy assessments. The Nano-Hyperspec camera can estimate Chl-a and
cyanobacteria concentrations more accurately than the Sequoia camera (the hyperspectral
camera improved the RMSE value by 14.8 µg/L and 21.6 µg/L for Chl-a and cyanobacteria,
respectively, in relation to the multispectral camera). Nevertheless, this work demonstrated
that a low-cost configuration allows for denser monitoring over areas that are difficult to
survey due to the limited spatial resolution of satellite images. This supports the definition
of a practical and robust automatic monitoring system for water quality in fish-farming
ponds.

Nano-Hyperspec is an excellent camera for monitoring Chl-a and cyanobacteria with
high precision. However, its integrated platform has a high cost (i.e., ten times greater than
the Sequoia platform) that may be inaccessible to projects or users with limited resources.
Thus, more accessible multispectral platforms, such as the Parrot Sequoia camera, can
be used for monitoring these parameters with moderate precision. For a more precise
assessment with multispectral platforms, we recommend using a multispectral camera
with specific narrow bands between 660–690 nm and 700–730 nm for Chl-a, and between
600–625 nm and 700–725 nm for cyanobacteria. Our results suggested that including UAV
imagery as part of the conventional monitoring practices for fish farming has significant
potential that deserves further exploration.
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Appendix A

Table A1. More detailed statistical results of the Chl-a bio-optical models.

Code Model Algorithm
Nano-Hyperspec Parrot Sequoia *

Ref.
Est. Std. e. Min. Max. Est. Std. e. Min. Max.

Two-band NIR and Red models

1 SR716/SR676 Not applicable
Intercept −68.9 15.2 −110.1 −32.3

coefficient 98.8 11.1 72.5 128.1
2 SR709/SR665 Not applicable [20]

Intercept −124.9 21.2 −183.5 −68.1
coefficient 147.6 15.7 106.7 187.7

3 SR705/SR665 Not applicable [46]
Intercept −175.6 29.5 −252.4 −99.2

coefficient 189.1 22.0 129.1 244.6
4 SR740/SR665 [47]

Intercept −41.6 19.2 −86.4 −12.5 −35.3 35.9 −131.8 37.4
coefficient 195.4 28.7 126.9 262.6 125 34.5 68.4 221.5

5 SR666
−1 × SR704 Not applicable [48]

Intercept −212.4 38.9 −325.6 −123
coefficient 221.3 29.4 149.2 302.6

6 SR665
−1 × SR783 [38]

Intercept −43.4 21.7 −98.6 8.7 −18.1 45.4 −122.0 64.6
coefficient 191.8 30.6 122.2 267.1 110.8 42.5 47.4 207.9

Three-band NIR and Red models

7 (SR666
−1 − SR704

−1) × SR723 Not applicable [38]
Intercept 25.3 7.1 8.4 44.8

coefficient 174.3 19.8 123.9 224.2
8 (SR665

−1 − SR705
−1) × SR740 Not applicable [49]

Intercept 29.6 8.0 11.6 51.4
coefficient 281.2 36.7 195.7 368.9

9 (SR665
−1 − SR705

−1) × SR783 [47]
Intercept 29.3 8.5 9.11 53.2 91.7 9.1 69.8 123.5

coefficient 274.8 37.2 189.7 366.2 115.6 39.6 54.7 215.9
10 (1/SR670 − 1/SR710) × SR750 Not applicable [50]

Intercept 29.9 7.4 11.6 55.8
coefficient 210.1 26.3 142.4 281.1

11 (SR665
−1 − SR708

−1) × SR753 Not applicable [51]
Intercept 31.2 8.6 12.1 55.5

coefficient 257.2 35.3 178.4 338.1
12 (1/SR660

−1/SR708) × SR755 Not applicable [52]
Intercept 38.1 7.6 20.9 59.7

coefficient 281.3 37.7 190.9 369.2

Index models

13 FLH: SR680 − [SR665 + (SR708/SR665)
× ((λ680 − λ665)/(λ708 − λ665))] Not applicable [53]

Intercept −147.7 25.3 −220 −86.2
coefficient −474.6 53.9 −607.5 −341.3

14 NDCI: (SR708 − SR665)/(SR708 +
SR665) [54]

Intercept 19.3 11 −17.7 39.5 99.1 8.7 79.1 121.5
coefficient 379.2 49.6 266.5 517.2 329.3 56.5 205.8 502.3

15 BNDVI: (N − B)/(N + B) Not applicable [55]
Intercept 84.8 12.6 50.2 117.9

coefficient 513.6 97.3 265.7 797.7
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Table A1. Cont.

Code Model Algorithm
Nano-Hyperspec Parrot Sequoia *

Ref.
Est. Std. e. Min. Max. Est. Std. e. Min. Max.

16 INDEX: (SR665
−1 −

SR708
−1)/(SR753

−1 + SR708
−1)

Not applicable [56]

Intercept 51.9 12.1 22.1 84.1
coefficient 79.4 20.2 44.5 139.2

17 SABI: (N − R)/(B + G) Not applicable [57]
Intercept 122.9 13.1 90.1 156.5

coefficient 435.3 82.6 248.1 659.6
18 NDVI: (N − R)/(N + R) [58]

Intercept 125 13.7 93.2 159.6
coefficient 314.9 64.2 170.4 506.8

19 AI: ((SR850 − SR660)/(SR850 + SR660))
+ ((SR850 − SR625)/(SR850 + SR625)) Not applicable [59]

Intercept 180.1 22.3 120.6 231.9
coefficient 169.9 38.6 75.9 273.7

20 GNDVI: (N − G)/(N + G) [14]
Intercept 236.8 44.4 126.7 365.2 195.1 29.0 115.6 259.7

coefficient 375.4 124.3 105 792.9 336.2 95.8 84.0 584.4
21 NGRDVI: (G − R)/(G + R) [60]

Intercept −18.2 39.5 −124.2 149.3 −45.6 50.8 −201.5 92.7
coefficient 448.5 126.2 −17.5 780 562.0 180.1 182.0 1128.5

22 KIVU: (B − R)/G Not applicable [61]
Intercept 144.6 24.7 87.7 227.3

coefficient 290.5 140.2 −99.7 805.7

23 GLI: (2 × G − R − B)/(2 × G + R +
B) Not applicable [62]

Intercept 19.1 50.5 −100.4 177
coefficient 177.8 81.7 −51.1 451

24 NGDBI: (G − B)/(G + B) Not applicable [63]
Intercept 37.2 91.2 −226.6 266.1

coefficient 206.1 220.5 −386.8 826.5
25 EXG: 2 × G − R − B Not applicable [64]

Intercept 96.3 51.9 −22.6 249.7
coefficient 5915.4 14,524 −43.145 411,666

Semi-analytical models

26 [35.7 × (SR708/SR665) − 19.3]1.124 Not applicable [62]
Intercept −42.7 13.2 −80.7 −9.1

coefficient 2.7 0.3 1.9 3.4
27 (SR662 − SR693)/(SR740 + SR705) Not applicable [63]

Intercept 93.8 19.4 48.6 151.3
coefficient 212.6 109.5 41.4 491.5

* Adapted for Sequoia bands. Code: Model Algorithm code. Est.: estimated intercept and coefficient values. Std.
e.: Standard error of the intercept and coefficient values. Min.: minimum values of the intercept and coefficient
values. Max.: Maximum values of the intercept and coefficient values. Ref.: Model Algorithm reference.

Table A2. More detailed statistical results of the cyanobacteria bio-optical models.

Code Model Algorithm
Nano-Hyperspec Parrot Sequoia

Ref.
Est. Std. e. Min. Max. Est. Std. e. Min. Max.

Two-band models

28 SR708/SR622 Not applicable [52]
a 117.5 28.0 32.3 206.0
b −238 71.9 −475.2 −41.5
c 121.3 43.2 6.8 264.6
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Table A2. Cont.

Code Model Algorithm
Nano-Hyperspec Parrot Sequoia

Ref.
Est. Std. e. Min. Max. Est. Std. e. Min. Max.

29 SR710/SR620 Not applicable [20]
a 94.4 24.8 15.0 183.4
b −196.4 65.5 −424.4 −10.0
c 102.0 40.0 −3.0 250.0

30 SR709/SR600 Not applicable [11]
a 174.1 44.9 30.2 306.8
b −305.8 98.3 −628.6 −20.5
c 134.0 50.9 0.98 310.7

31 SR700/SR600 Not applicable [66]
a 898.5 343.4 336.9 1959.2
b −1417.3 600.1 −3316.4 −404.0
c 558.8 259.5 99.4 1405.0

32 SR724/SR600 Not applicable [12]
a 116.2 54.8 −41.3 279.1
b −149.3 100.7 −472.5 121.9
c 49.3 40.9 −59.9 186.5

33 SR650/SR625 Not applicable [67]
a 2074.7 1613.7 −7440.6 7712.1
b −3691.7 3043.5 −14,563 13,896
c 1644.3 1434.0 −6468.2 6877.4

34 SR724/SR660 [68]

Intercept −16.6 52.5 −168.3 150.1 −23.8 17.6 −72.9 7.6
coefficient * 18.2 45.5 −78.8 188.3 38.0 18.0 10.1 88.6
coefficient 9.0 103.3 −341.4 267.7

Three-band NIR and Red models

35 (SR624
−1 − SR600

−1) × SR725 Not applicable [69]
a 1007.3 248.8 67.8 1480.0
b −199.3 97.7 −424.7 94.5
c 11.1 6.4 −5.8 −31.9

36 (1/SR622 − 1/SR708) × SR755 [52]
a 316.3 115.7 −64.7 640.0 34.9 19.4 8.6 90.3
b −15.3 48.8 −176.6 95.2
c 1.6 1.9 −3.9 6.4 15.0 5.7 3.7 31.1
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Table A2. Cont.

Code Model Algorithm
Nano-Hyperspec Parrot Sequoia

Ref.
Est. Std. e. Min. Max. Est. Std. e. Min. Max.

37 (SR615
−1 − SR600

−1) × SR725 Not applicable [70]
a 4108.8 1122.7 5.6 6832.1
b −705.9 283.2 −1540.5 171.9
c 29.8 14.5 −6.5 78.0

Index models

38
PCI: SR555 − (SR555 −

SR665)/(λ655 − λ555) × (λ630 −
λ555) − SR630

Not applicable [71]

a 2.2 ×
1016

1.1 ×
1016

−1.5 ×
1016

5.4 ×
1015

b 90.5 27.2 36.6 159.9
c 10.4 4.2 1.7 22.9

39
SLH: SR714 − [SR654 + ((SR754 −
SR654)/(λ754 − λ654)) × (λ714 −

λ654)]
Not applicable [72]

a 1.4 ×
1016

1.9 ×
1016

−1.9 ×
1016

9.6 ×
1015

b −4984.5 46.9 −194.1 98.6
c 0.16 24.1 −65.9 99.2

40
CI: SR681 − SR665 − (SR709 −

SR665) × ((λ681 − λ665))/(λ709 −
λ665))

Not applicable [72]

a 2.77 ×
1015

4.73 ×
1015

−6.87
× 1015

2.17 ×
1016

b −13,755.4 59,481 −161,755 179,961
c −1.1 12.5 −39.1 33.5

41 (SR556 − SR510)/(λ556 − λ510) Not applicable [73]
a 239.4 1850.6 −7550.6 4976.9
b 531.7 2266.3 −8860.5 6515.2
c 253.2 689.0 −2551.5 2139.5

* Adapted for Sequoia bands. Code: Model Algorithm code. a: coefficient “a” of the second-degree term in a
polynomial equation. b: coefficient “b” of the second-degree term in a polynomial equation. c: intercept “c” of the
second-degree term in a polynomial equation Est.: estimated intercept and coefficient values. Std. e.: Standard
error of the intercept and coefficient values. Min.: minimum values of the intercept and coefficient values. Max.:
Maximum values of the intercept and coefficient values. Ref.: Model Algorithm reference.
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