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Abstract: Caudal autotomy is a striking adaptation used by many lizard species to evade predators.
Most studies to date indicate that caudal autotomy impairs lizard locomotor performance. Surpris-
ingly, some species bearing the longest tails show negligible impacts of caudal autotomy on sprint
speed. Part of this variation has been attributed to lineage effects. For the first time, we model the
effects of caudal autotomy on the locomotor performance of a gymnophthalmid lizard, Micrablepharus
atticolus, which has a long and bright blue tail. To improve model accuracy, we incorporated the
effects of several covariates. We found that body temperature, pregnancy, mass, collection site, and
the length of the regenerated portion of the tail were the most important predictors of locomotor per-
formance. However, sprint speed was unaffected by tail loss. Apparently, the long tail of M. atticolus
is more useful when using undulation amidst the leaf litter and not when using quadrupedal lo-
comotion on a flat surface. Our findings highlight the intricate relationships among physiological,
morphological, and behavioral traits. We suggest that future studies about the impacts of caudal
autotomy among long-tailed lizards should consider the role of different microhabitats/substrates on
locomotor performance, using laboratory conditions that closely mimic their natural environments.

Keywords: lizard; autotomy; tail; locomotion; performance; temperature; predation

1. Introduction

Throughout evolutionary time, an “arms race” fostered varied strategies of prey
capture and predator escape [1]. Autotomy—the self-amputation of a body part in response
to an attack by a predator—is one of the most dramatic adaptations to avoid predation [2].
Caudal autotomy among reptiles has an ancient origin and was present in captorhinids
from the Early Permian [3]. It persists to this day among squamate reptiles, in some species
of snakes and most lizards, allowing them to escape while the predator is distracted by the
abandoned tail part [4–7]. The detachment of the tail in most species occurs through pre-
established, intravertebral fracture planes, the oldest and most common form of autotomy
to date, allowing a new tail to grow supported by a calcified cartilage tube [8–11].

Despite the immediate benefit of avoiding predation, autotomy also involves energy
costs that can influence survival. For instance, even when resources are limiting, tail
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regeneration is a priority, probably associated with long-term survival and reproductive
success [12,13]. Thus, the production of a new tail can negatively affect energy balance,
immunity, growth rate, social status, and immediate reproductive success [2,14]. Besides,
autotomy results in the temporary loss of an important mechanism to avoid predation.
Therefore, autotomized individuals may alter their patterns of activity and space use, as
well as foraging schedules and frequencies, to minimize exposure to predators [15,16].

In addition to affecting behavior, caudal autotomy affects the locomotor performance
of some species. The tail is a counterweight, balancing the head and body during racing;
therefore, its absence results in weight transfer to the forelimbs, making it challenging to
move [4]. Moreover, the tail can act as an inertial damper of pelvic girdle movements, and
its loss causes disordered oscillation of the hind limbs during the race [5] and reduced
jump stability and performance [17]. In general, caudal autotomy leads to decreased loco-
motor performance [18]. However, it may not interfere [19,20] or even increase locomotor
performance [21]. These opposite results may relate to interspecific differences in predation
intensity throughout ontogeny, life habits, and sexual dimorphism [15]. For example, in
sexually dimorphic species where males have conspicuous coloration, their locomotor
performance is little affected by autotomy, as potential predators and competitors can easily
see them [18,22]. Still, variation exists between and within evolutionary lineages associated
with different tail shapes and functions, such as sexual displays, predator distraction,
defense, balance, fat storage, stabilization, and an auxiliary organ in climbing [20,23].

The lizard genus Micrablepharus (Squamata, Gymnophthalmidae) contains two species:
M. maximiliani (Reinhardt and Lütken, 1861), widely distributed across the South American
dry diagonal, comprising the Chaco, Cerrado, and Caatinga, and M. atticolus Rodrigues,
1996, endemic to the Cerrado [24–27]. The two species are diurnal, semifossorial, and live
among the leaf litter [28–31]. Reproductive activity peaks in the dry season, and populations
undergo an almost complete annual replacement [32,33]. They share an elongate trunk and
tail, short limbs, and digit reduction on the forelimbs (complete loss of digit I), whereas the
hindlimbs follow the pentadactyl condition [34,35]. They exhibit intermittent quadrupedal
locomotion, combining conspicuous axial traveling waves with trot-like coordination of the
limbs [36–38]. The vertebral axis is the main effector of locomotion, while the limbs play an
auxiliary role. On low friction substrates, the axial system of locomotion predominates, but
the limbs become increasingly involved as substrate friction increases and with increasing
speed [37]. Micrablepharus atticolus and M. maximiliani have a long and bright blue tail that
contributes to divert attention from visually oriented predators to a non-vital part of the
body at the time of an attack, which may be associated with higher rates of autotomy in
more open environments [39].

Tail loss in Micrablepharus atticolus does not affect body condition, suggesting that
the energetic costs of autotomy are low or that individuals compensate for the tail loss by
increasing foraging rate [39]. Consequently, autotomy may not impair locomotor perfor-
mance by reducing energy reserves [40]. However, because of the importance of the axial
system during locomotion [37], tail loss may compromise sprint speed. Locomotor perfor-
mance is an essential determinant of fitness, because its reduction can undermine survival,
reproductive success [41,42], foraging [43,44], and social dominance [45]. Since environ-
mental variation affects autotomy rates in M. atticolus, but these do not affect survival [39],
studying the effect of autotomy on the locomotor performance of lizards inhabiting different
environments can contribute to the understanding of possible compensatory mechanisms.

Here, we investigate the effects of caudal autotomy on the locomotor performance of
Micrablepharus atticolus from two different environments, one in the central Cerrado and
another in the Cerrado-Amazonia transition. We take into account the effects of geography,
sex, body temperature, and ontogeny since (1) locomotor performance tends to be lower in
females, especially during pregnancy, by the effect of the additional burden represented
by the litter [46,47]; (2) there is a positive allometric relationship between body size and
locomotor performance [48]; and (3) central Cerrado lizards are expected to have better
locomotor performance, assuming that environmental conditions should be optimal for
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performance in the core of species distributions [49]. Moreover, we investigate whether the
effects of autotomy on locomotor performance are proportional to the size of the remaining
or regenerated portion of the tail [50].

2. Materials and Methods
2.1. Study Sites

We collected data from lizards captured at two sites: Reserva do IBGE (15◦56′06′′ S,
47◦52′09′′ W), a protected area in Brasília, Distrito Federal, Brazil, in the central area of the
Cerrado; and Parque do Bacaba (14◦42′24′′ S, 52◦21′10′′ W), Nova Xavantina, Mato Grosso,
Brazil, in the Cerrado-Amazon transition. The climate in both sites is tropical with dry
winter, Aw in Köppen’s classification [51], with a dry season from May to September and a
rainy season from October to April. In Brasília, the average annual accumulated precipi-
tation is 1477.4 mm, and the average annual temperature is 21.0 ◦C; in Nova Xavantina,
1417.7 mm and 24.8 ◦C, respectively (https://portal.inmet.gov.br/normais, accessed on
30 March 2021).

2.2. Lizard Sampling

We captured lizards using arrays of pitfall traps interconnected by drift fences, as
part of a long-term, mark-recapture study on their demography and community dynamics.
Each array consisted of four plastic buckets of 35 L, buried to ground level and arranged
in the form of a “Y”, interconnected by three 6 m long and 50 cm high galvanized steel
plates that functioned as guide fences. Immediately after capture, we took the following
measurements from each lizard: body mass, using a Pesola spring dynamometer (0.1 g
precision); snout-vent length (SVL), total tail length, and length of the non-autotomized
part of the tail—in lizards with caudal autotomy—with a metal ruler (1 mm precision); and
sex, whenever possible, through palpation of the abdomen for the presence of vitellogenic
follicles or eggs in pregnant females and the extrusion of the hemipenis in males. Next,
we transported lizards to the lab and housed them in individual terraria, with vermiculite
substrate and water ad libitum. Up to 24 h after capture, we carried out ecophysiology
experiments (below), after which we permanently marked (by toe-clipping) and released
lizards next to their exact capture sites. We captured and handled all individuals with great
care to prevent any damage to the tail, such that autotomized tails resulted exclusively
from natural processes. Finally, we only used adult individuals in the analyses, comprising
39 lizards from Brasília and 64 from Nova Xavantina. We considered individuals with SVL
greater than 35 mm as adults [32].

2.3. Locomotor Performance

We recorded sprint speed on a wooden track (300 cm long × 30 cm high × 40 cm wide).
We induced each lizard to run as fast as possible by manual stimulation, mimicking a
predatory chase, to record the maximum speed. Due to the thermal sensitivity of sprint
speed [52], we conducted runs at three different temperatures—cold (=ambient −5 ◦C),
ambient (~20 ◦C), and hot (=ambient +5 ◦C)—in each experiment. We used gel ice packs
and incandescent lamps to alter lizards’ body temperature, monitored with a fast-reading
cloacal thermometer (L-K Industries Miller & Weber T-6000 Cloacal 0/50 ◦C 0.2 precision).
We conducted two trials of each lizard at each temperature, totaling six runs. We recorded
runs at 420 fps with a Casio HS EX-FH25 digital camera mounted on an aluminum tripod
at 1.5 m height in the center of the track. Later, we analyzed videos with Tracker 4.80 to
obtain the maximum sprint speed of each lizard at each temperature.

Within at least one hour after the last run, we measured the critical thermal mini-
mum and maximum, with a one-hour interval between them, using a fast-reading cloacal
thermometer (L-K Industries Miller & Weber T-6000 Cloacal 0/50 ◦C 0.2 precision). We
exposed lizards to the sources of heat and cold mentioned above until they lost the righting
response, i.e., when they could not return to the prone position after turning in a supine
position without leading the animal to death. To build performance curves (below), we
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considered that sprint speed is equal to zero at the critical thermal minimum and maximum.
The Animal Use Ethics Committee of the University of Brasília approved all procedures
(process 33786/2016).

2.4. Statistical Analyses

To determine the effect of caudal autotomy on locomotor performance, we built
generalized mixed-effects additive models—GAMMs [53] with the MGCV package [54] in
the R environment [55]. We used GAMMs to generate performance curves and evaluate the
influence of predictors on the shape and location of curves because they allow nonlinear
responses and are flexible due to the non-parametric smoothing functions used in sections
of the data [56]. In these models, we used the maximum sprint speed as the response
variable; the individual as a random factor; and sex, pregnancy (gravid/non-gravid),
body temperature, mass, SVL, relative tail length (total tail length/SVL), caudal autotomy
(autotomized/not autotomized), relative length of the regenerated portion of the tail (length
of the regenerated portion of tail/SVL), and study site (Brasília/Nova Xavantina) as fixed
factors. To assess model significance, we used a likelihood-ratio test comparing its fit with
that of a null model, composed only of the response variable, the intercept, and the random
factor.

To evaluate predictor importance, we used a combination of model selection and
averaging based on the Akaike Information Criterion adjusted for small samples (AICc),
with the package MUMIN [57]. Model selection attempts to improve our understanding of
the relationship between the response and the predictors by reducing model’s complexity.
However, this approach often results in biased regression parameters and too small respec-
tive standard errors in finite samples because they do not reflect the uncertainty related to
the model selection process [58,59]. On the other hand, model averaging incorporates the
uncertainty intrinsic to model selection by combining parameter estimates across different
models [60,61]. Using this approach, we examined the complete set of possible models
combining the fixed effects to obtain model-averaged standardized parameter estimates for
statistical inference [62,63]. We used averages calculated across all models (“full averages”),
assuming that each model includes all variables, but that in some models the corresponding
coefficient (and its respective variance) is set to zero, which avoids biasing the values away
from zero [64]. Moreover, we calculated the importance of each predictor as the sum of
Akaike weights across all models containing that predictor.

3. Results

We obtained ecophysiological data from 39 lizards from Brasília and 64 lizards from
Nova Xavantina (Table 1). The likelihood-ratio test indicated that our full GAMM differed
significantly from a null model and adequately fitted the data (χ2

[1] = 219.129, p < 0.001,
adjusted-r2 = 0.622). Among the parametric terms in the model, collection site and preg-
nancy were significant, while among smooth terms, body temperature, body mass, and the
length of the regenerated portion of the tail were significant (Table 2). Model selection and
averaging indicated that body temperature, pregnancy, mass, collection site, and the length
of the regenerated portion of the tail, in this order, were the most important predictors of lo-
comotor performance in Micrablepharus atticolus (Table 3). The GAMM predicted maximum
locomotor performance around 31 ◦C (Figure 1A). Gravid females had lower performance
than males and non-gravid females (Figure 1B), and lizards from Nova Xavantina achieved
higher performance—and at higher temperatures—than lizards from Brasília (Figure 1C).
Finally, the locomotor performance increased with body mass (Figure 2A) and the relative
length of the regenerated portion of the tail (Figure 2B).
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Table 1. Summary statistics of ecophysiological parameters of Micrablepharus atticolus from Brasília and Nova Xavantina,
Brazil. Values represent the mean ± one standard deviation.

Parameter Brasília Nova Xavantina Total

Sample size 39 64 103

Mass (g) 1.49 ± 0.35 0.82 ± 0.19 1.06 ± 0.41

Snout-vent length (mm) 38.22 ± 3.06 34.98 ± 2.76 36.12 ± 3.26

Tail length (mm) 48.62 ± 13.74 46.37 ± 17.64 47.17 ± 16.39

Relative tail length 1.27 ± 0.34 1.32 ± 0.50 1.31 ± 0.45

Length of regenerated portion of tail (mm) 6.38 ± 10.30 9.99 ± 11.95 8.71 ± 11.51

Relative length of regenerated portion of tail 0.16 ± 0.26 0.28 ± 0.34 0.24 ± 0.32

Body temperature during runs (◦C) 27.94 ± 6.72 27.53 ± 5.43 27.67 ± 5.88

Critical thermal minimum (◦C) 13.90 ± 1.78 15.20 ± 3.29 14.70 ± 2.08

Critical thermal maximum (◦C) 44.41 ± 1.84 40.00 ± 3.09 41.69 ± 3.43

Sprint speed (maximum) 0.07 ± 0.02 0.10 ± 0.04 0.09 ± 0.04

Table 2. Full generalized additive mixed-effects model (GAMM) relating predictors to locomotor performance (sprint speed)
of the lizard Micrablepharus atticolus. AU: caudal autotomy (yes/no), CCr: total tail length, RCr: length of the regenerated
portion of the tail, SVL: snout-vent length, NX: Nova Xavantina, edf: expected degrees-of-freedom.

Parametric Terms
Term Estimate Std. Error t p

(Intercept) 0.0411 0.0065 6.3080 <0.0001
LocalNX 0.0220 0.0069 3.1920 0.0015
SexMale 0.0015 0.0045 0.3230 0.7467
AUYes 0.0000 0.0070 −0.0040 0.9970

Pregnancy −0.0203 0.0068 −2.9700 0.0031
Smooth Terms

Term edf Ref. df F p
s(Temperature) 7.976 7.976 95.569 <0.00001

s(CCr) 1.000 1.000 0.036 0.84979
s(RCr) 1.000 1.000 3.037 0.08203
s(SVL) 1.000 1.000 0.365 0.54589
s(Mass) 3.119 3.119 4.983 0.00259

Table 3. Model selection and averaging of generalized additive mixed-effects models (GAMMs) relating predictors to
locomotor performance (sprint speed) of the lizard Micrablepharus atticolus. Models depicted are those with ∆AICc < 4. AU:
caudal autotomy (yes/no), RT: length of regenerated portion of tail, AICc: Akaike information criterion corrected for small
samples, ∆AICc: difference between given and best model, wAICc: Akaike weight.

Model Selection
Model df logLik AICc ∆AICc wAICc

Pregnancy + Site + s(Mass) + s(RCr) + s(Temperature) 11 934.81 −1847.06 0.00 0.25
AU + Pregnancy + Site + s(Mass) + s(RCr) + s(Temperature) 12 934.84 −1845.01 2.05 0.09
Pregnancy + Site + s(Mass) + s(RCr) + s(Temperature)+ Sex 12 934.82 −1844.97 2.10 0.09

Pregnancy + Site + s(Mass) + s(Temperature) 9 931.35 −1844.32 2.75 0.06
AU + Pregnancy + Site + s(Mass) + s(Temperature) 10 932.22 −1843.96 3.10 0.05

Pregnancy + Site + s(Mass) + s(RCr) + s(SVL) + s(Temperature) 13 934.93 −1843.07 3.99 0.03
Model Averaging

Importance s(Temperature) Pregnancy s(Mass) Site s(RCr) AU Sex s(CCr) s(SVL)
Sum of model weights 1.00 0.93 0.90 0.89 0.73 0.33 0.27 0.15 0.14

Number of containing models 255 253 253 254 254 255 255 255 254
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Figure 1. Locomotor performance (sprint speed) of the lizard Micrablepharus atticolus as a function of (A) body temperature,
(B) body temperature and female reproductive condition (gravid females vs. non-gravid females and males), and (C) body
temperature and geography. Points represent partial residuals of a generalized additive mixed model (GAMM), while lines
and bands represent the predictions and confidence limits, respectively.
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4. Discussion

We assessed the effects of caudal autotomy on the locomotor performance of
Micrablepharus atticolus, controlling for the influence of several covariates. We found that
the performance is significantly affected by body temperature, female reproductive con-
dition, body mass, geography, and caudal autotomy. Overall, our findings highlight the
complex patterns of association among physiological, morphological, and behavioral traits
and that meaningful inference and prediction based on physiological performance must
consider such patterns [65–68].

Body temperature was the foremost factor affecting performance. This outcome is
not surprising, given that body temperature is one of the most critical ecophysiological
variables affecting the performance of ectotherms [69–71]. Sprint speed peaked at ca. 31 ◦C,
which is substantially higher than that recorded for Caparaonia itaiquara (24.51 ◦C) and
Colobodactylus dalcianus (25.81 ◦C), two closely related gymnophthalmines from high-
elevation areas in the Atlantic Forest of southeastern Brazil [72,73]. Moreover, our analyses
showed that lizards from Nova Xavantina achieve higher sprint speeds at higher body
temperatures than lizards from Brasília. Such differences might be related to altitudinal,
latitudinal, or even lineage effects [74]. As environmental temperatures in Nova Xavantina
are ca. 4 ◦C higher than in Brasília (and even higher than in high elevations of southeast-
ern Brazil), our results are consistent with the notion that geographic variation of thermal
sensitivity in locomotor performance is adaptive, such that organisms adjust optimal perfor-
mance temperatures to prevalent field body temperatures [67]. For instance, based on the
principle that biochemical and physiological systems operating at high temperatures have
a high catalytic capacity, the “hotter is better” hypothesis predicts a positive relationship be-
tween maximal organismal performance and optimal temperatures [75]. This relationship
holds when considering interspecific [65,76] or intraspecific comparisons [77,78].

Whereas Brasília is at the core of Micrablepharus atticolus’ geographic distribution,
Nova Xavantina is closer to its periphery, next to the Cerrado–Amazonia ecotone [26,79].
Therefore, we expected higher physiological performance in the core population, as pre-
dicted by the core-periphery hypothesis [49,80]. However, we found the opposite pattern,
with higher performance in the more peripheral population. Several factors might account
for this result. For example, despite the centrality difference between the two sites relative
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to the species’ range, they might have the same or even opposite patterns of environmental
suitability, i.e., the geometric center of the geographic distribution may not coincide with
areas of greater suitability and vice-versa [81,82]. Moreover, due to phenotypic plasticity
or adaptation to local conditions, species range boundaries may not be driven by thermal
performance [72,83].

Our analysis indicates no intersexual differences in sprint speed in Micrablepharus
atticolus, most likely related to the lack of sexual size dimorphism [29]. However, we
found that pregnant females have lower locomotor performance than males. This decrease
likely occurs due to the additional physical load of the litter, making the body broader and
heavier [84]. However, as locomotor performance increased with body mass, the lower
performance in pregnant females may be related to physiological changes linked to repro-
duction [85], such as decreased muscle strength, reduced metabolic capacity, motivation
to escape [86], and energy allocation [87]. These physiological changes ensure adequate
embryonic development and remain for a while after egg-laying [85,88]. A decrease in
gravid females’ locomotor performance was also recorded in other lizard species [89–93].
By becoming slower, pregnant females are more susceptible to predation, and this can
promote several behavioral changes during pregnancy, such as foraging near potential
shelters and avoiding long races during a predatory escape.

The body mass of individuals is an essential factor in determining sprint speed [76]. We
found continuously increased performance with increasing body mass, which would prob-
ably occur until the optimal mass is reached, beyond which performance decreases [94,95].
This increase in performance with body mass is typical among quadruped species [45,76,96,97].
Despite using lateral undulation when moving in the middle of the leaf litter, Micrablepharus
atticolus can also rely on quadrupedal locomotion when on a flat substrate [36,37]. We
advance that the ever-increasing locomotor performance associated with increased body
mass results from the very short lifespan of M. atticolus [32], such that individuals never
reach a critical body mass.

In most cases, the tail has an active role in improving lizard sprint speed, and caudal
autotomy undermines locomotor performance [14,20]. Moreover, the greater the relative
size of the intact tail, the higher the magnitude of sprint speed change following autotomy.
However, we found that sprint speed was unaffected by tail loss but by the relative length
of the regenerated portion of the tail, i.e., the longer the regenerated tail, the higher the
sprint speed. Still, this effect was meager, unlike patterns documented elsewhere for
eublepharids, lacertids, and skinks, [46,98–100]. Caudal autotomy has no impact on the
locomotor performance of some lizard species [19,20]. Some researchers have argued
that this reflects these species’ skinny and short tails [19] or even that adverse effects
of autotomy result from researchers damaging the lizards’ locomotor muscles during
experimental tail breakage [101]. Individuals of Micrablepharus atticolus have a long tail
(in our samples, ~1.7× SVL in individuals with intact tails), one of the longest among
gymnophthalmids [102], and we used lizards with naturally broken and regenerated tails.
Therefore, these explanations cannot account for the patterns we observed.

A synthesis on the effects of tail autotomy, tail size, and locomotor performance in
lizards identified clear phylogenetic patterns in the data [20]. Hence, among-lineage dif-
ferences in the biomechanics of locomotion and the tail function during sprinting may
account for the different effects of tail loss on locomotor performance. The single previous
study on the locomotion of Micrablepharus did not address the impact of caudal autotomy
on performance [37], and to the best of our knowledge, ours is the first study on this issue
within Gymnophthalmidae. This lineage comprises small, cryptic, and often fossorial or
semifossorial Neotropical species, characterized by many instances of the evolution of
body elongation and limb reduction [34,35,103]. Indeed, fossoriality is a critical driver
of the evolution of a snake-like morphology among squamates [104,105]. Therefore, in
such species, the tail may have a very context-specific role in locomotion, which may not
be apparent when individuals move on a flat substrate. For instance, in Colobodactylus
taunayi, a gymnophthalmine, the tail remains stretched during displacement on a flat



Diversity 2021, 13, 562 9 of 13

surface [102] and a similar pattern is apparent in M. maximiliani when moving on gravel
or sand (Figures 3 and 6 in [37]). Tail loss in lizards of the genus Takydromus, where the
tail can be three times as long as the SVL, similarly had little effect on locomotor perfor-
mance [20,50,106]. These species often use a three-dimensional, cluttered environment
amidst the leaf litter, much like “grass-swimmer” lizards [107,108]. We conjecture that the
long tail of M. atticolus is more useful when using undulation amidst the leaf litter and not
when using quadrupedal locomotion on a flat surface. Future studies on the impacts of
caudal autotomy on long-tailed lizards should consider the role of different microhabi-
tats/substrates on locomotor performance, using laboratory conditions that closely mimic
their natural environment.
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