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Abstract: Recognizing insect pests using images is an important and challenging research issue.
A correct species classification will help choosing a more proper mitigation strategy regarding crop
management, but designing an automated solution is also difficult due to the high similarity between
species at similar maturity stages. This research proposes a solution to this problem using a few-shot
learning approach. First, a novel insect data set based on curated images from IP102 is presented. The
IP-FSL data set is composed of 97 classes of adult insect images, and 45 classes of early stages, totalling
6817 images. Second, a few-shot prototypical network is proposed based on a comparison with other
state-of-art models and further divergence analysis. Experiments were conducted separating the
adult classes and the early stages into different groups. The best results achieved an accuracy of
86.33% for the adults, and 87.91% for early stages, both using a Kullback–Leibler divergence measure.
These results are promising regarding a crop scenario where the more significant pests are few and it
is important to detect them at earlier stages . Further research directions would be in evaluating a
similar approach in particular crop ecosystems, and testing cross-domains.

Keywords: few-shot learning; insect pest classification; insect maturity stages; RGB images

1. Introduction

Crop yields are subject to many threats and conditions, such as pathological agents,
mismanagement of soil nutrients, and climate changes to name a few. Insect pests inflict
high damage on every crop, if not controlled, and a warming climate scenario may increase
insect infestations and losses, especially in tropical areas [1].

Insect pests are a major cause of concern in crops because of yield losses and the inten-
sive use of broad-spectrum insecticides [2]. Although, integrated pest management (IPM)
practices have attained importance, there are still lacks of precision on timely identifying
hazardous species of insects during a crop cycle [3]. If identified more precisely, and at
early stages, monitoring and controlling mitigation strategies could be brought in avoiding
economic losses, and helping in more sustainable practices [2].

The similarities between insect species, especially at the same maturity stages, make
conventional manual identification imprecise, time-consuming, and inefficient in most
cases, even for experienced agronomists [4]. Visual-based machine learning algorithms can
effectively address this issue. Using images to help classify insects for pest management
is a major research topic lately since the advance of machine learning techniques [5,6].
Deep learning is one of the most widely used approaches for insect classification tasks in
agriculture as demonstrated in [7–10]. However, supervised models require large labeled
data sets for training these models, which are scarce, very demanding, and are still far from
being able to bridge the gaps in insect classes variability [11]. Besides, computer vision and
deep learning methods may supply novel cost-efficient and automated sensor techniques
to the field of entomology [4].
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In recent years, many automated recognition systems, based on computer vision and
machine learning, were proposed to manage insect pests in agriculture. Karar et al. [12]
proposed a mobile application to classify five classes of insect pests using deep learning in
cloud computing. Chen et al. [13] proposed an embedded drone system and deep learning
to recognize insects in a tree. Li et al. [7] studied five state-of-the-art deep learning archi-
tectures for image recognition of ten categories of crop pests. Thenmozhi and Reddy [14]
proposed an improved deep convolutional network, outperforming fine-tuned models in
insect pest recognition. Deep learning have been the most used method for visual insect
recognition using image data sets, but no one has yet approached it separating maturity
stages and using few samples.

Recently, the data set IP102 [15] with 75,000 images of 102 categories of insects, mixing
samples in different life stages such as egg, larva, pupa, and adults, has been put together
and made available for researching this topic. Although being a major advance as data
availability for insect pest recognition, the IP102 is out of proportion in many species [15].
Moreover, the IP102, with different life stages of insect classes together, makes the automatic
visual recognition task even more difficult mainly due to its structural intra-class large
morphological samples [15].

Learning from a Small Amount of Data: Few-Shot Learning

Machine learning is a sub-area of artificial intelligence where computer programs
are designed to solve tasks T, based on gathering experience E, and approximating an
objective function using a performance measure P [16]. Despite its success in approaching
data-intensive applications, getting big amounts of supervised data (i.e., the experience
E) is not always feasible. Learning from a small amount of samples may be possible
though, if prior knowledge of few categories can be grouped and subsequently applied to
further categories [17]. Few-shot learning (FSL) refers to this problem of learning using few
samples, with interesting scenarios, approaches, and learning issues depending on the area
addressed [18].

Few-shot learning (FSL) [18] is a learning approach that seeks to define a relative
approximation between machine and human learning considering the challenging task of
learning from very few samples. One important category of FSL methods is metric-based
meta-learning [19]. Figure 1 provides an overview of FSL metric-based with meta-learning
paradigm. Given a labeled data set for training, from a particular problem, the goal is to
learn concepts in embedding space, through training tasks, to generalize classes in test
tasks from a novel problem by using a similarity metric. Convolutional neural networks
(CNN) are commonly used as embedding functions f and g for image feature extraction.

In this paradigm, an FSL model is typically trained through several N-way and K-
shot classification tasks. A classification task is referred to as a training episode. In an
episode, the support set S is composed of N classes containing K samples from each of
them (i.e., S = N × K), and the query set Q consists of q samples from the same classes
(i.e., Q = N × q). In Figure 1, a task is composed of two-way, two-shot, and Q = 1 from a
particular class for demonstration. The model goal is to label Q images into N classes of the
task. Furthermore, in meta-learning guidelines, a source set is used for training n tasks and
a Target set for test tasks, there is no overlap between classes in Source and Target sets.

At present, several areas have benefited from FSL approaches, including image clas-
sification [20], and object detection in images [21], with great potential for agricultural
applications. Few-shot enables the construction of models with drastic parameters re-
duction, which facilitates the application in embedded, mobile systems. Li and Yang [22]
classified cotton crop pests using prototypical nets in an embedded terminal. Yang et al. [23]
improved the results of prototypical nets by combining recognition and object localization.
They proposed a salient region detection mechanism, which represents the region with the
highest discriminatory characteristics for insect classification. Li and Yang [19] analyzed
the cross-domain few-shot classification problem in agriculture. They used insect and plant
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leaf diseases data sets. Their results showed that the mixed domain, in which meta-training
and meta-testing use classes of both types of data together, produces better results.

Figure 1. Meta-metric few-shot learning example representation. Illustrated settings of tasks are
2-way, 2-shot, and one query image. In some approaches, the embedding functions f and g may be
the same. Query images are labeled according to a similarity score with support embeddings.

In this research we propose to address insect pest recognition by firstly putting together
a different image data set (IP-FSL), derived of IP102, but distinguishing classes into two
maturity stages: early and adults. The approach for classification is by framing the insect
maturity stages classification problem in a few-shot learning paradigm, and then leveraging
a prototypical network by including divergence measures as similarity functions. We see
a need for an effective tool in agronomy for insect management to deal with rapid insect
classification by maturity stages with field images. Our research approaches this problem
by posing it in a few-shot learning paradigm. We achieved 86.33% and 87.91% of accuracy,
respectively, for adult and early insect classes on the IP-FSL data set.

The remaining of this paper describes the materials and methods used, Section 2,
and the Section 3 includes the description of the experiments. In Section 4, the results are
shown; Section 5 discusses the results obtained, and finally conclusions are summarized in
Section 6.

2. Materials and Methods
2.1. The Meta IP-FSL Data Set

IP102 [15] is a large insect pest data set that provides 75,222 images distributed in
102 classes. Most classes cover different stages of the insect life cycle such as egg, larva,
pupa, and adult. Its taxonomy comprises two major agricultural crop groups: field crops
(rice, corn, wheat, beet, and alfalfa), and economic crops (vitis, citrus, and mango).

We thoroughly analyzed the IP102 to rearrange classes, and to select samples, ac-
cording to two biological stages of the pests, adult and early stages, and assembled a
new data set, IP-FSL (insect pests for few-shot learning), for few-shot learning. Different
maturity stages in the same class can make it difficult to learn patterns from a particular
class, because visually they are far apart, and consequently, the resultant classifications of
the learning algorithms may be misleading. By separating the biological maturity stages,
we expect two advantages: (1) providing a more discriminative feature extraction for the
classes, and (2) more accurate recognition in the early stages of the pest, which is important
to control the spread of the insect pest.
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We built IP-FSL by selecting a maximum of 50 images from each class in the IP102.
This number was chosen because of the large diversity of the data set as a top limit, but
the exact numbers of some categories are less as is shown in Table 1. For the Early stage
subset, we considered those images containing the presence of egg, larva, or pupa. The
subset Adult stage includes young and adult insects. As a selection criterion, images with
field conditions were chosen. For the species containing images of both stages mentioned,
we created new classes for the respective insect species in the two subsets.

The final configuration of the IP-FSL data set is presented in Figure 2. It has a total
of 6817 insect images. The subset Early stage is composed of 45 insect classes, totaling
2050 images. The adult stage consists of 97 classes, totaling 4767 images. Figure 3 shows
some examples of the IP-FSL data set, and class names and amounts are presented in
Table 1.

Figure 2. IP-FSL classes as derived and separated from IP102.

Figure 3. Some samples from the IP-FSL data set. Class labels refer to the numbers in Table 1. Some
examples of classes with two maturity stages (adult and early, appearing in both subsets, classes 2,
31, 67, 74, 87, and 89).
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Table 1. IP-FSL image data set information, derived from IP102 (Insect Pest 102) [15], assembled specifically for this few-shot learning research. The names of the
insects were kept as published in the original source (IP102), and in the categories may contain common, as well as scientific, names.

Category Name #Adult/#Early Category Name #Adult/#Early Category Name #Adult/#Early

1 rice leaf roller 50/50 35 wheat sawfly 50/50 69 Xylotrechus 50/-
2 rice leaf caterpillar 50/50 36 cerodonta denticornis 50/32 70 Cicadella viridis 50/-

3 paddy stem maggot 50/50 37 beet fly 50/- 71 Miridae 50/-
4 asiatic rice borer 50/50 38 flea beetle 50/- 72 Trialeurodes vaporariorum 50/-
5 yellow rice borer 50/50 39 cabbage army worm 50/50 73 Erythroneura apicalis 42/-
6 rice gall midge 50/31 40 beet army worm 50/50 74 Papilio xuthus 50/50

7 rice stemfly 50/47 41 Beet spot flies 50/50 75 Panonchus citri McGregor 50/-
8 brown plant hopper 50/17 42 meadow moth 50/25 76 Phyllocoptes oleiverus ashmead -/50

9 white backed plant hopper 50/18 43 beet weevil 50/- 77 Icerya purchasi Maskell 50/-
10 small brown plant hopper 50/- 44 sericaorient alismots chulsky 50/- 78 Unaspis yanonensis 50/-

11 rice water weevil 50/50 45 alfalfa weevil 50/50 79 Ceroplastes rubens 50/-
12 rice leafhopper 50/- 46 flax budworm 50/50 80 Chrysomphalus aonidum 50/-

13 grain spreader thrips 50/- 47 alfalfa plant bug 50/- 81 Parlatoria zizyphus Lucus 44/-
14 rice shell pest 50/50 48 tarnished plant bug 50/- 82 Nipaecoccus vastalor 50/-

15 grub -/50 49 Locustoidea 50/- 83 Aleurocanthus spiniferus -/50
16 mole cricket 50/- 50 lytta polita 50/- 84 Tetradacus c Bactrocera minax 50/50
17 wireworm 50/50 51 legume blister beetle 50/- 85 Dacus dorsalis (Hendel) 50/40

18 white margined moth 26/50 52 blister beetle 50/- 86 Bactrocera tsuneonis 50/20
19 black cutworm 50/50 53 therioaphis maculata Buckton 50/- 87 Prodenia litura 50/50
20 large cutworm 50/50 54 odontothrips loti 50/- 88 Adristyrannus 50/40

21 yellow cutworm 50/50 55 Thrips 50/- 89 Phyllocnistis citrella Stainton 50/50
22 red spider 50/- 56 alfalfa seed chalcid 50/- 90 Toxoptera citricidus 50/-
23 corn borer 50/50 57 Pieris canidia 50/- 91 Toxoptera aurantii 50/-

24 army worm 35/50 58 Apolygus lucorum 50/- 92 Aphis citricola Vander Goot 50/-
25 aphids 50/- 59 Limacodidae 50/50 93 Scirtothrips dorsalis Hood 50/-

26 Potosiabre vitarsis 50/- 60 Viteus vitifoliae -/50 94 Dasineura sp. 33/50
27 peach borer 50/50 61 Colomerus vitis -/50 95 Lawana imitata Melichar 50/-

28 english grain aphid 50/- 62 Brevipoalpus lewisi McGregor 47/- 96 Salurnis marginella Guerr 50/-
29 green bug 50/- 63 oides decempunctata 50/- 97 Deporaus marginatus Pascoe 50/-

30 bird cherry-oataphid 50/- 64 Polyphagotars onemus latus 50/- 98 Chlumetia transversa 50/50
31 wheat blossom midge 50/50 65 Pseudococcus comstocki Kuwana 50/- 99 Mango flat beak leafhopper 50/-

32 penthaleus major 50/- 66 parathrene regalis 40/30 100 Rhytidodera bowrinii white 50/-
33 longlegged spider mite 50/- 67 Ampelophaga 50/50 101 Sternochetus frigidus 50/-

34 wheat phloeothrips 50/- 68 Lycorma delicatula 50/- 102 Cicadellidae 50/-

TOTAL 4767/2050
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2.2. Metric-Based Multi-Class Networks

FSL algorithms learn through tasks to adapt to new tasks, as shown in Figure 1. Match-
ing [24] and Prototypical [25] networks are competitive few-shot metric-based multi-class
approaches. Matching and prototypical networks originally use cosine and Euclidean dis-
tances as similarity measures. We propose here to leverage and evaluate those frameworks
using other divergences, such as Mahalanobis, Kullback–Leibler, and Itakura–Saito. This
group of divergences, also called Bregman divergences, measures differences between
distributions, and as we are going to show in this research, can produce even better results
in this FSL setting.

2.2.1. Matching Networks

Matching networks [24] are examples of multi-class classification. They consist of two
embedding functions ( f and g, being appropriate convolutional neural networks (CNN),
and potentially f = g) for feature extraction. An attention mechanism uses the cosine
similarity to compare a test sample x̂ with samples in the support set, where the class
probability is obtained, as given in Equation (1):

P(ŷ|x̂, S) =
N×K

∑
i=1

a(x̂, xi)yi, (1)

in which a(., .) is the attention mechanism described as Equation (2):

a(x̂, xi) =
exp(c( f (x̂), g(xi)))

∑N×K
j=1 exp(c( f (x̂), g(xj)))

, (2)

c(., .) is the cosine similarity, and f and g are the embedding functions.
In general, matching networks changes the way samples are embedded, matching the

support set S to the support and query samples, through a full context embeddings (FCE)
process. Query and support images go through f and g structures, respectively, for feature
extraction. Matching nets predict the probability of query samples by measuring the cosine
similarity between support and query embeddings.

2.2.2. Prototypical Networks

Prototypical nets (ProtoNet) architecture [25] consists of a CNN for image features
extraction, and a classifier based on Euclidean distance. The main idea is that the centroid
of support embeddings (prototypes) yields relevant class representatives. ProtoNet aims
to learn a metric in the feature space that represents a similarity by distance for image
predictions. Query images are labeled by finding the closest class prototype.

Each prototype corresponds to the average of the class embeddings, calculated accord-
ing to Equation (3):

cn =
1

Kn

Kn

∑
i=1

fΦ(Xi), (3)

where cn represents the centroid of the class n.
Query images are classified according to a probability distribution. Such probabilities

are given by softmax over distances between prototypes and query embeddings, according
to Equation (4):

pφ(y = n|X) =
exp(−d( fΦ(X), cn))

∑n′ exp(−d( fΦ(X), cn′))
. (4)

ProtoNet learning proceeds by minimizing the negative log-probability J(φ) = −logφ

(y = n|x) of the true class n via stochastic gradient descent (SGD).
The learning structure is an important factor in the metric models, but the performance

depends on the chosen similarity metric [24,25]. In the next section, the concepts of other
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divergences, not fully considered before for FSL frameworks, but used to quantify the
similarity between distributions, are revised for further use in this proposal.

2.3. Leveraging FSL with Other Divergences

Bregman divergences have been applied to optimization, clustering, and machine
learning problems [26–28], but not fully explored in FSL. This group of divergences estab-
lishes a generalized measure between distributions, defined in terms of a strictly convex
function [29]. Therefore, given a continuously differentiable, strictly convex function,
F : S → R, defined in a convex domain S ⊆ Rd, a Bregman divergence between x, y ∈ S
induced by F, is defined as

DF(x,y) = F(x)− F(y)− 〈x− y,∇F(y)〉, (5)

where 〈.,.〉 denotes the inner product, and ∇F(y) represents the gradient vector of F
evaluated at y.

Bregman divergences have pertinent properties, among them non-negativity DF(x,y) ≥ 0,
in which DF(x,y) = 0 if and only if x = y. Furthermore, with some exceptions, Bregman
divergences are considered asymmetric, given that DF(x,y) 6= DF(y,x). The concepts of
three main Bregman divergences for similarity measure are presented in the next sections.

2.3.1. Squared Mahalanobis Divergence

The Mahalanobis divergence, generated by the convex function F(x) = xTAx, is
defined as a distance between a point and a distribution. For this reason, it takes into
account the covariance between the variables. The Mahalanobis distance between a vector
x and a distribution y can be calculated by Equation (6):

DF(x,y) = (x− y)TA(x− y), (6)

which is called Mahalanobis distance when A is the inverse of the covariance matrix.
Equation (6) attempts to solve the Euclidean distance problem when the data have a

linear correlation. It has the effect of transforming variables into uncorrelated variables,
by scaling them through the covariance matrix. That way, the Equation (6) corresponds to
computing the Euclidean distance with scaled data.

In this work, the low time cost for estimating the covariance matrix was prioritized.
Therefore, we assumed that the covariance estimation based on task prototypes yields
relevant results with low training time. That way, x corresponds to the query embeddings
set and y the prototypes set of a task. This approach allows using K-shot ≥ 1 without
paradigm shifts in the covariance estimation algorithm.

2.3.2. Kullback–Leibler Divergence

KL-divergence, or relative entropy, is generated by the convex function of nega-
tive entropy, for discrete distribution ∑d

j=1 xjlog2xj. It quantifies the difference between
two probability distributions. Bregman divergence between two discrete probability dis-
tributions, which corresponds to the convex function generating the KL-divergence, is
described as:

DF(x,y) =
d

∑
j=1

xjlog2(
xj

yj
) = KL(x||y). (7)

For the experiments in this work, the embeddings and prototypes from the task were
transformed into probability vectors for the KL-divergence computation. In other words,
given a feature vector y’, the new probability vector is calculated as y = y’/sum(y’) such
that ∑d

j=1 yj = 1. A constant ε was added to the vectors before calculating the divergence
to avoid infinite negative results (log0) or division by zero.
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2.3.3. Itakura–Saito Divergence

The Itakura–Saito divergence, or IS-divergence, is an asymmetric measure widely
used in signal processing. IS-divergence is generated by the function F(x) = −logx, and it
can be calculated as follows:

DF(x,y) =
d

∑
j=1

xj

yj
− log(

xj

yj
)− 1 = IS(x||y). (8)

As in the KL computation, probability vectors are generated and a constant ε added
for IS-divergence computation.

3. Experiments

The experiments were conducted using two main few-shot models, prototypical and
matching networks. We organized the experiments in three scenarios: (I) classification of
mini-imagenet data set as a baseline experiment for choosing the best network, (II) insect
classification at the adult maturity stage, and (III) insect classification at the early stage.

3.1. Episode Training Process
3.1.1. Prototypical Nets

The episode training of the prototypical net starts randomly selecting N classes from
the source set. Figure 4 presents the framework with a three-way task for demonstration.
After that, the data for the respective task is divided into support set S, and query set Q,
according to the parameters N-way, K-shot, and q, previously assigned, and the CNN
embeds all images to generate support and query embeddings. Prototypes are computed
from the support set as class representatives. The divergences are then computed be-
tween prototypes and query embeddings to classify Q images according to a probability
distribution over divergences.

Figure 4. A generalized episode of prototypical networks, where ’dim’ represents the dimension
of the vectors. (1) Random selection of classes. (2) Samples division into support and query sets.
(3) Embeddings generation. (4) Prototypes generation.

3.1.2. Matching Nets

The matching net episode training (Figure 5), differ to the prototypical episode in
two aspects: (1) it uses a mechanism to generate full context embeddings (FCE), and
(2) similarities are computed between query and support embeddings, instead of query
and prototypes.

A test episode is similar to a training episode for both networks, except that the
parameters of the models are frozen during testing time. Furthermore, the target set is
used instead of the source set. Finally, the test episode ends with the classification of Q test
images, where the accuracy of the model is computed.
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Figure 5. A generalized episode of Matching networks, where ’dim’ represents the dimension of the
vectors. (1) Random selection of classes. (2) Samples division into support and query sets. (3) Full
context embeddings generation.

3.2. Experiment I

The first experiment evaluates prototypical and matching networks, along with differ-
ent divergences, in a benchmark public data set. The goal is to choose the best model for
insect classification, based on experimental results in a consolidated benchmark data set.
Mini-ImageNet [24] is a widely used benchmark for few-shot classification. This data set
consists of 100 classes, each containing 600 images. Here, the classes were divided into 80%
for models training (source set) and 20% for testing (target set), following a conventional
division training/testing [16]. We evaluated the models in one-shot and five-shot settings.
Moreover, we used five-way tasks with q = 15.

3.3. Experiment II

This experiment aims to use the model with the highest accuracy provided by Experi-
ment I. The training steps of the respective model, as presented in Section 3.1, were used to
classify insects only in adult maturity stage. We divided the adult stage subset classes at a
rate of 80:20 for training and testing [16], respectively. Therefore, the model was tested on
classes unseen in training tasks.

Different divergences were evaluated as a few-shot similarity function in n-way k-shot
parameters settings to obtain the best model performance. For all experiments, therefore,
we analyzed one-shot and five-shot in three-way and five-way tasks. In addition, q = 5 was
fixed for all experiments.

3.4. Experiment III

The third experiment consists of insect classification only at the early maturity stage.
The procedures match with those in Experiment II, including the network used. We divided
early stage subset classes at a rate of 80:20 for training and testing [16], and then evaluated
the classification tasks for one-shot and five-shot settings related to three-way and five-way
tasks. Moreover, we set q = 5.

3.5. Experiments Setups

All training and testing setups were equally performed for insect classification into two
maturity stages. The model inputs color images (RGB) without any image preprocessing.
However, some transformations were carried out to standardize and increase the number of
classes. Initially, all the images in IP-FSL were resized to 96 × 96 × 3 format, and rotated in
multiples of 90º to create new augmented classes. Thus, after multiple rotations up to 270º,
each subset ended with four-fold the initial number of classes, keeping the same number of
samples in each class.

The experiments were conducted through the Google Colaboratory platform. The
Pytorch library version 1.9.0 was used for writing and training the models. The model was
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trained using the source set for 10 epochs, with 2000 episodes/epoch. We carried out 20,000
training episodes in each combination setting of N-way, K-shot, and divergence. The initial
learning rate of 10−3 falls in half after each epoch.

In few-shot learning, the results are commonly presented as the average of several
testing tasks. In this work, the average accuracy of 1000 testing episodes for each experiment
is computed and shown.

4. Results

The models learn image features to differentiate classes through a set of divergences. In
addition to the Euclidean, we investigated the results of the Mahalanobis, Kullback–Leibler,
and Itakura–Saito divergences. Our implementation, therefore, integrates these divergences
as dissimilarity measures for Mini-ImageNet data set classification in Experiment I, and for
insect classification of adult and early life cycle, through Experiments II and III, respectively.

4.1. Experiment I: Mini-ImageNet Classification

The Experiment I was carried out to evaluate the Prototypical and Matching networks
performance on the Mini-ImageNet data set, with the proposed divergences in order to
choose the most appropriate. Table 2 presents these results, in which bold numbers indicate
the best accuracy for each model and related K-shot setting.

Table 2. Results for Experiment I (Mini-ImageNet). ED: Euclidean distance, MD: Mahalanobis
distance, KL: KL-divergence, IS: IS-divergence.

Model
One-Shot Five-Shot

ED MD KL IS ED MD KL IS

Prototypical networks 0.4979 0.4389 0.5179 0.5008 0.6986 0.6270 0.7097 0.6984
Matching networks 0.4900 0.5280 0.5260 0.5360 0.6480 0.6300 0.6620 0.6104

From the results in Table 2, both networks show close accuracy to each other. However,
prototypical networks achieved the highest accuracy of 0.7097. Because of this, further
experiments were performed with prototypical networks on the IP-FSL data set.

4.2. Experiment II: Adult Stage Insect Classification

For the adult stage subset, prototypical networks training and testing were carried
out in a meta-learning procedure, that is, performed on source and target sets, respectively,
without classes overlap. A chain of 16 experiment types was carried out for evaluation.
For each of the divergences investigated, we evaluated tasks of three-way, five-way, and
one-shot, five-shot settings, and results are presented in Table 3.

Table 3. Results for Experiment II: prototypical networks on adult stage subset.

N-Way
One-Shot Five-Shot

ED MD KL IS ED MD KL IS

Three-way 0.7434 0.7568 0.7797 0.7595 0.8435 0.8527 0.8633 0.8471
Five-way 0.6216 0.6321 0.6694 0.6580 0.7615 0.7476 0.7743 0.7768

4.3. Experiment III: Early Stage Insect Classification

For the early stage experiments, model training and testing were also performed by
meta-learning paradigm using source and target sets, respectively, without class relation-
ship between both. Table 4 gives the results.
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Table 4. Results for Experiment III: prototypical networks on early stage subset.

N-Way
One-Shot Five-Shot

ED MD KL IS ED MD KL IS

Three-way 0.8045 0.7920 0.8167 0.8107 0.8621 0.8670 0.8791 0.8778
Five-way 0.6758 0.6786 0.6906 0.6859 0.7722 0.7780 0.8072 0.8044

5. Discussion

In this study we have addressed the important problem of insect pest image recog-
nition, adult and early stage maturity categories, using few samples and a leveraged
prototypical network learning approach. Since insects at different stages can damage crops
to different levels, recognizing specific stages can mitigate the spread and the impact of
further damage on crops. For this reason, we assembled the IP-FSL based on two life cycles,
and we designed a few-shot experimental approach to differentiate insects by leveraging
state-of-art models with other divergences for similarity measurement, and compared their
performance. Encouraging general results were obtained with respect to the two maturity
stages, comparable with literature results but using fewer samples. We have achieved high
accuracy in both categories, adult and early, of 86.33% and 87.91%, respectively.

Insect pest recognition is a challenging and relevant issue in agriculture, and entomol-
ogy in general [4]. Practical applications require rapid and accurate visual recognition to
control infestations in crops. Two of the ways to address it are using few-samples machine
learning algorithms, and learn them in a specific maturity stage of the pests, separately. In
our approach we propose to have insect maturity stages categories addressed separately,
since visually they are far distinct.

Figure 6 presents a sample classification task performed in Experiment II, for the adult
insect recognition, in which 15 query images are labeled according to three-way classes.
The performance for the three-way in Experiment II, given in Table 3, showed that our
approach recognized insects with better accuracy of 77.97% in one-shot and 86.33% in
five-shot using KL-divergence. In the five-way tasks, the best performance for one-shot
achieved 66.4% using KL, and 77.68% in five-shot using IS-divergence, although KL came
very close with 77.43% in five-shot. While IS outperforms KL in five-shot, the difference is
very low (0.25%). We assume that there is an advantage of KL-divergence for the adult stage
insect classification, since it was the most accurate by a larger margin in the three-way case .
In contrast, Euclidean and Mahalanobis distances yielded considerably lower accuracy. KL
and IS were shown to be promising approaches to measure the dissimilarity between adult
insects, with the best accuracy achieved by KL, which improved the final performance of
the few-shot model.

In the early stage insect classification (Experiment III), KL and IS also yielded better
accuracy, with KL achieving best results in all settings. The three-way setting procedure is
presented in Figure 7, where 15 query images are labeled according to three task classes.
In this situation, KL-divergence achieved the better accuracy of 81.67% in one-shot, and
87.91% in five-shot. In five-way, KL is also the best similarity approach, achieving 69.06%
and 80.72% for one-shot and five-shot, respectively.

As seen in the Experiments I, II, and III, accuracy increases as K-shot increases. K-shot
represents the number of support images in each insect class. It is presumptive to say
that there is more information learned by the network when a greater number of class
images are explored, possibly it can be enhanced in 10-shot. But in a few-shot context, it is
important that K is not high.

In contrast to K-shot, accuracy increases when N-way is smaller. N-way represents
the number of classes within a classification task, for which the model needs to label the
query images. It is also presumptive to say that a greater range of classes to label query
images results in greater difficulty in correctly classifying them.
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Figure 6. Instance of Adult stage insect classification in 3-way, 5-shot and q = 5.

Figure 7. Instance of early stage insect classification in 3-way, 5-shot and q = 5.

We observed that the insects in the early maturity stages are more accurately classified
in IP-FSL. A possible reason is that adult insects have a higher visual similarity, which
makes it difficult to label images correctly. This may explain the importance of identifying
a more suitable similarity metric in few-shot learning, such as KL-divergence as shown.

To the best of our knowledge no other work has approached this proposed split into
maturity categories (early and adult) yet. Regarding the whole IP102 data set, Wu et al. [15]
reported accuracy rates of 49.5%, in [30] 55.2% was achieved, and more recently,
Nanni et al. [31] showed accuracy results of 74.11%. Xie et al. [32] have proposed an insect
image data set with 4508 images divided into 40 classes, and they designed a multi-level
learning features procedure to represent the categories and then approached classification.
Their accuracy was 89.30% in their data set. In smaller insect data sets, Ayan et al. [33]
have experimented an ensemble procedure to combine CNN models based on a genetic
algorithm to weight the results in the classifier. They have tested on a data set by [34]
with 562 images, 10 classes, and achieved best accuracy of 95.16%. Deng et al. [34] on their
proposed data set have obtained accuracy results of 85.50%.

As compared with the other works from the literature, our work here has brought in
the following novelties:
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• The IP-FSL data set with 6817 insect pest images, divided into species maturity stages
(97 of adults, 45 of early stage samples);

• A few-shot leveraged prototypical network for classification, which achieved 86.33%,
and 87.91% accuracy for adults and early categories, respectively.

These results are relevant for the classification of insect pests using few samples. We
see it as a promising approach for practical field applications, especially if crop based
focusing on the the most damaging species for a particular crop. Previous works did not
focus on specific maturity stages to classify insects on image databases, and as discussed
the accuracy rates reported are competitive with the results presented here.

6. Conclusions

We have approached insect pest image recognition with few samples, and also sep-
arating maturity stages, in this work, by an improved few-shot learning network. We
have proposed a data set, IP-FSL, with 6817 samples of adults (97 classes), and early stages
(45 classes) of insect pests, derived from IP102, and properly organized for this problem.
We proposed to evaluate other divergences along with state-of-art FSL matching and pro-
totypical networks, and we have shown that a leveraged prototypical network with KL
divergence is the most promising for this setting.

Our results on adult, and early stages of the insect pests achieved 86.33% and 87.91%
accuracy for three-way and five-shot experiments, respectively, which are high figures even
if compared to other approaches with only adult classes.

Future directions to be explored include studies on cross-domain shifts in insect pest
recognition, focus on specific crops and related insect ecosystems, and deploying mobile
applications to help agronomists on detecting and identifying potential insect infestations
on crops.
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