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Resumo

Reologia e magnetização de emulsões diluídas de gotas de ferrofluido cobertas
por surfactante
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Doutorado em Ciências Mecânicas

Brasília, 2023

Neste trabalho, estudamos os efeitos combinados da elasticidade (𝐸), do fator de cobertura
(𝑋) do surfactante, do número de Péclet (𝑃𝑒) e do campo magnético no escoamento em
escala de gotas, além de seus impactos na reologia da emulsão e na magnetização média do
sistema. Nossa análise considera uma única gota bidimensional coberta por surfactante de
um ferrofluido superparamagnético suspenso em um líquido imiscível e não magnetizável,
confinado em um canal entre placas paralelas. O sistema é submetido simultaneamente a
um cisalhamento simples e a um campo magnético externo uniforme. Uma metodologia
alternativa é proposta aqui, combinando o método level set, para capturar a interface, e
o método closest point para resolver a equação de transporte do surfactante. Separamos
as contribuições das fases diluídas para a viscosidade da emulsão em: viscosidade capilar
[𝜂𝑐], associada ao salto de tensão normal, a viscosidade de Marangoni [𝜂𝑚], relacionada
à tensão tangente à interface, e a viscosidade magnética [𝜂𝑚𝑎𝑔], ligado à intensidade do
campo magnético. Além disso, quando a gota é submetida a um campo externo, também
separamos as partes simétrica e antissimétrica do tensor de tensões ⟨𝜎⟩, dividindo a
viscosidade da emulsão em duas contribuições distintas: viscosidade de cisalhamento [𝜂𝑠] e
rotacional [𝜂𝑟], respectivamente. Nossos resultados mostram que, na ausência de campo
magnético, 𝐸 e 𝑋 afetam a forma das gotas mais intensamente do que 𝑃𝑒. Por outro lado,
𝑃𝑒 afeta diretamente a viscosidade da emulsão. Para 𝑃𝑒 ≫ 1, a viscosidade capilar diminui
com 𝑋, enquanto a viscosidade Marangoni cresce com 𝑋. Tal mecanismo de compensação
permite o aumento da viscosidade da emulsão com 𝑋. Apresentamos também resultados
para a primeira diferença de tensões normais. Na presença de um campo magnético, o
comportamento reológico da emulsão é fortemente alterado, principalmente em regimes
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puramente advectivos (𝑃𝑒 ≫ 1), onde o tensoativo é varrido, não mais para as pontas das
gotas, mas para regiões posteriores ou anteriores, dependendo da direção do campo. Este
comportamento, somado ao alinhamento das gotas em relação ao escoamento, resulta em
grandes variações da reologia do sistema, principalmente da viscosidade de Marangoni,
uma vez que os locais das gotas de maior ∇𝑠𝜎 estão em regiões de alta e baixa taxa de
cisalhamento local, respectivamente, quando o campo magnético é perpendicular e paralelo
à direção do escoamento. Verificamos que embora as tensões de Marangoni não tenham
efeito sobre a viscosidade rotacional, [𝜂𝑟] ̸= [𝜂𝑚𝑎𝑔] and [𝜂𝑠] ̸= [𝜂𝑐] + [𝜂𝑚]. A diferença
entre [𝜂𝑟] e [𝜂𝑚𝑎𝑔] aumenta com a intensidade do campo magnético e 𝑋. Por sua vez,
a distribuição do surfactante ao longo da superfície da gota tem um efeito maior na
viscosidade de cisalhamento, aumentando-a à medida que 𝑃𝑒 e 𝑋 aumentam. Em relação
à magnetização média do sistema, nossos resultados mostram que |M*| é uma função mais
forte do comprimento projetado na direção do campo externo, onde as variações ao longo
da faixa 𝑋 são devidas à forma da gota. Finalmente, mostramos que a magnitude do
torque magnético aumenta com 𝑋 quando o campo magnético é perpendicular e quando o
campo é paralelo, 𝑋 tem pequeno efeito sobre o torque magnético.

Palavras-chaves: Surfactante; Campo magnético; Reologia; Level set; Closest point.
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In this work, we study the combined effects of surfactant elasticity (𝐸), coverage factor (𝑋),
Péclet number (𝑃𝑒), and the magnetic field on the flow at droplet’s scale, in addition to its
impacts on the emulsion’s rheology and the mean magnetization of the system. Our analysis
considers a single two-dimensional surfactant-covered droplet of a superparamagnetic
ferrofluid suspended in an immiscible, non-magnetizable liquid confined in a channel
between parallel plates. The system is simultaneously subjected to a simple shear flow
and an external uniform magnetic field. An alternative methodology is proposed here,
combining the level set method, to capture the interface and the closest point method
to solve the surfactant transport equation. We separate the dilute phase contribution to
emulsion viscosity in the capillary viscosity [𝜂𝑐], associated to the normal stress jump, the
Marangoni viscosity [𝜂𝑚], related to the stress tangent to the interface, and the magnetic
viscosity [𝜂𝑚𝑎𝑔], linked to the magnetic field intensity. In addition, when the droplet is
subjected to an external field, we also separate the symmetric and antisymmetric parts of
the stress tensor ⟨𝜎⟩, dividing the emulsion viscosity into two distinct contributions: shear
[𝜂𝑠] and rotational [𝜂𝑟] viscosities, respectively. Our results show that, in the absence of a
magnetic field, 𝐸 and 𝑋 affect the droplet shape more intensely than the 𝑃𝑒. On the other
hand, 𝑃𝑒 directly affects the emulsion’s bulk viscosity. For 𝑃𝑒 ≫ 1, the capillary viscosity
decreases with 𝑋, while the Marangoni viscosity grows with 𝑋. Such a compensation
mechanism allows the increase of the bulk viscosity with 𝑋. We also present results for the
first normal stress difference. In the presence of a magnetic field, the emulsion rheological
behavior is strongly altered, mainly in purely advective regimes (𝑃𝑒 ≫ 1), where the
surfactant is swept, no longer to the droplet tips, but to posterior or anterior regions to
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these locations, depending on the direction of the field. This behavior added to the droplet
alignment in relation to the flow, results in large variations of the system rheology, mainly
regarding the Marangoni viscosity, since the droplet locations of larger ∇𝑠𝜎 are in regions
of high and low local shear rate when the magnetic field is perpendicular and parallel
to the main flow direction, respectively. We found that, although Marangoni stresses
have no effect on the rotational viscosity, however [𝜂𝑟] ̸= [𝜂𝑚𝑎𝑔] and [𝜂𝑠] ̸= [𝜂𝑐] + [𝜂𝑚].
The difference between [𝜂𝑟] and [𝜂𝑚𝑎𝑔] increases with the strength of the magnetic field
and 𝑋. Additionally, the surfactant distribution along the droplet surface has a larger
effect on shear viscosity, increasing it as 𝑃𝑒 and 𝑋 increase. Regarding the system mean
magnetization, our results showed that |M*| is a stronger function of the length projected
in the direction of the external field, where the variations along of 𝑋 range are due to
the droplet shape. Finally, we show that the magnetic torque magnitude increases with 𝑋
when the magnetic field is perpendicular and when the magnetic field is parallel, 𝑋 has a
small effect on the magnetic torque.

Keywords: Surfactant; Magnetic field; Rheology; Level set; Closest point.
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1 Introduction

Multiphase immiscible fluid systems, such as emulsions, foams, vesicle suspensions,
and polymer mixtures, are found in engineering applications of many industries, such as
food, oil, biomedical, and plastics. During the processing of these systems, the droplets
of the dispersed phase are deformed, fragmented, and oriented in the continuous phase,
producing an evolving morphology or microstructure defined in part by the droplets’
density and viscosity, size distribution, shape, and orientation. The final morphology of
the system helps determine the material, mechanical, chemical, thermal, and sensory
properties of the final product.

The study of individual droplets under different conditions, for example, in the
presence of surfactants or under the influence of magnetic fields (in the case of magnetic
emulsions), is a crucial step to improve and control processes involving multiphase fluid
systems. Magnetic emulsions are two-phase mixtures that consist of ferrofluid droplets
suspended in a non-magnetic, immiscible liquid. This class of fluid systems represents
a promising alternative to other ordinary materials in many technological applications
(CUNHA et al., 2020). The macroscopic behavior of these emulsions is a function of complex
physical phenomena that occur at the microscopic level, such as droplet deformation,
rotation, and breakup, which, in turn, are ruled by the combined action of hydrodynamic
and magnetic effects (CUNHA et al., 2018). Thus, emulsions of ferrofluid droplets are
complex fluids whose response under flow can be controlled by external magnetic fields.

The interest in applications of magnetic fields to manipulate suspensions of de-
formable particles is growing. In biomedicine, these applications cover studies ranging
from the manipulation of DNA molecules (MARTÍNEZ-SANTIAGO; QUIÑONES, 2019;
TAMBASCO et al., 2020), hemorheology of red blood cells (RBCs) (JO et al., 2018),
to the selective manipulation and drug delivery (MONDAL; SHIT, 2017; HEDAYATI;
RAMIAR; LARIMI, 2018; SODAGAR et al., 2021), as for example to treat diseases such
as cancer tumors, where the drug is directed to the localized area of disease by using a
magnetic field (SODAGAR; SHAKIBA; NIAZMAND, 2020; LI et al., 2021). In addition,
several industrial and production processes use the magnetic field, either to stabilize the
emulsion (JALILI DARBANDI SOFLA; NOROUZI-APOURVARI; SCHAFFIE, 2020) or
to isolate a specific material that makes it up (such as the demulsification of water-in-oil
emulsions (ROMANOVA et al., 2019; GUO et al., 2019). In some of these processes,
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natural surfactants such as asphaltenes, resins, waxes, and similar can be found. Still, in
most cases, surfactants are added to the emulsion to act as an emulsifier (SORGENTONE;
TORNBERG; VLAHOVSKA, 2019). These surface active agents reduce the surface tension,
facilitating emulsification (LIU et al., 2018) and stabilizing the emulsion by avoiding direct
contact among droplets.

Surfactants are molecules that have a hydrophilic head and a hydrophobic tail,
that tend to migrate to the interfaces in the flow (XU; SHI; LAI, 2018). The presence of
these substances on the droplet surface alters the local thermodynamic environment and,
consequently, the mathematical nature of the dynamic boundary conditions. Surfactants
might be soluble if their molecules can dissolve into the liquid around the interface, or
insoluble if the surfactant’s mass on the surface is conserved. The balance between diffusion
and advection of insoluble surfactants produces surface tension gradients associated with
Marangoni stresses (KRUIJT-STEGEMAN; VOSSE; MEIJER, 2004) which, like the
droplets’ shape and orientation, has a direct influence on the emulsion’s rheology. It is
well-known that parameters like concentration, viscosity ratio, density ratio, and droplet
size distribution influence the mechanical behavior of surfactant-covered droplet emulsions
(MILLIKEN; STONE; LEAL, 1992; LI; POZRIKIDIS, 1997; XU et al., 2006). However,
the surfactant effects on the emulsion’s rheology still require more thorough investigation,
even more so when it comes to ferrofluid droplet emulsions subjected to magnetic fields.
This is an unexplored subject, although individually, both the effects of surfactants and
magnetic fields on droplet dynamics have been extensively studied.

There is a growing interest in the complex dynamics of ferrofluid emulsions under
the influence of an external magnetic field and the hydrodynamic flow. Ahmed, Fleck
and Waghmare (2018) presented a theoretical and experimental study of the effects of
an external magnetic field on the maximum spreading of a ferrofluid droplet impacting
a solid substrate. Jesus, Roma and Ceniceros (2018) used three-dimensional numerical
simulations to study the dynamics and deformation of a sheared ferrofluid droplet immersed
in a Newtonian viscous fluid subjected to a magnetic field. Just after, Hassan, Zhang
and Wang (2018) and Capobianchi, Lappa and Oliveira (2018) expanded the study of
Jesus, Roma and Ceniceros (2018) increasing knowledge about field-induced deformation
of ferrofluid droplets in shear flows. Cunha et al. (2018) were the great innovators in
the subject, being the first to explore the magnetic field effects on droplet breakup and
emulsion rheology. They showed that the intensity and direction of the external magnetic
field can be effectively used to induce or prevent the breakup of ferrofluid droplets under
shear. In addition, as the field directly affects the droplet shape, it can be able to be
adjusted to increase or decrease the viscosity of dilute magnetic emulsions. The results of
Cunha et al. (2018) for the breakup control by the action of external magnetic fields were
extended to shear flow at low Reynolds number by Hassan and Wang (2019). Recently,
Cunha et al. (2020) and Ishida and Matsunaga (2020) extended, respectively, in 2D and
3D, the previous analysis of Cunha et al. (2018) to further investigate the dynamics of
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ferrofluid droplets and the rheology of magnetic emulsions under shear. Abicalil et al.
(2021) extended to 3D the 2D study of Cunha et al. (2020) getting results qualitatively
similar on the magnetization of dilute magnetic emulsions subjected to shear flows and
external magnetic fields. Other works considered the effects of the magnetic field on the
lateral migration of a two-dimensional (2D) viscous ferrofluid droplet in a plane Poiseuille
flow (HASSAN; WANG, 2020) and on the magnetofluidic mixing of a ferrofluid droplet
(SHYAM; MONDAL; MEHTA, 2021). However, in all these cases, the surfactant effects
weren’t considered.

In turn, several numerical studies have been performed in the past three decades to
account for the effects of insoluble surfactants on the droplet deformation, orientation, and
breakup, in 2D (STONE; LEAL, 1990; MILLIKEN; STONE; LEAL, 1992; EGGLETON;
TSAI; STEBE, 2001; VLAHOVSKA; BLAWZDZIEWICZ; LOEWENBERG, 2002; JAMES;
LOWENGRUB, 2004) and in 3D (BAZHLEKOV; ANDERSON; MEIJER, 2006; FEIGL
et al., 2007); on the unsteady behavior (KRUIJT-STEGEMAN; VOSSE; MEIJER, 2004);
and on the emulsion’s rheology (LI; POZRIKIDIS, 1997). A number of studies focused
on the surfactant concentration evolution in different flow configurations (XU et al.,
2006; XU; YANG; LOWENGRUB, 2012; MURADOGLU; TRYGGVASON, 2014), the
dielectrophoresis (DEP) of a viscous droplet loaded with insoluble surfactant in the presence
of a non-uniform electric field (MANDAL; BANDOPADHYAY; CHAKRABORTY, 2016),
and the behavior of soluble surfactant-covered droplet (XU; SHI; LAI, 2018; SHI et
al., 2019). More specifically, in the last six years, several researchers have studied the
effect of the interfacial viscosity (PONCE-TORRES et al., 2017; LUO; SHANG; BAI,
2019; DANDEKAR; ARDEKANI, 2020; PANIGRAHI et al., 2021), Marangoni stress
(LUO; SHANG; BAI, 2018; HILL; AFUWAPE, 2020), and electric field (PODDAR et
al., 2018; PODDAR et al., 2019; SORGENTONE; TORNBERG; VLAHOVSKA, 2019;
SORGENTONE; VLAHOVSKA, 2021; ZHANG; LIU; ZHANG, 2021) on the droplet
dynamics under the simple shear, extensional, and Poiseuille flows. Other studies also
evaluated the surfactant’s effects on the deformation of viscoelastic droplets in a uniaxial
extensional flow (PANIGRAHI; DAS; CHAKRABORTY, 2018), droplet migration in
isothermal (DAS; MANDA; CHAKRABORTY, 2017) and non-isothermal Poiseuille flow
(DAS et al., 2017), thermocapillary migration in microchannels (LUO; LUO; BAI, 2020), the
droplet breakup, coalescence and size distribution in turbulent flow (SOLIGO; ROCCON;
SOLDATI, 2019a; SOLIGO; ROCCON; SOLDATI, 2019b), the behavior of a surfactant-
covered droplet on a solid surface subject to a three-dimensional shear flow (LIU et al.,
2020), and the flow inside a surfactant-laden droplet (SHAIK; VASANI; ARDEKANI,
2018). These works produced a series of results, today, well-known:

• At low capillary and larger Péclet numbers (convection dominated the surfactant
motion), the presence of surfactant causes larger deformation than would occur for
a droplet with a constant interfacial tension equal to the initial equilibrium value.
The increased deformation occurs owing to the surfactant being swept to the end
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of the droplet where it acts to locally lower the interfacial tension, which therefore
requires increased deformation to satisfy the normal stress balance. However, at
larger capillary numbers and finite deformations, this convective effect competes
with the surfactant dilution due to the interfacial area increasing. Furthermore,
at low or larger capillary numbers and small Péclet numbers (diffusion dominated
the surfactant motion), it occurs less droplet deformation than for larger Péclet
numbers (STONE; LEAL, 1990; MILLIKEN; STONE; LEAL, 1992; BAZHLEKOV;
ANDERSON; MEIJER, 2006; FEIGL et al., 2007). According to Milliken, Stone and
Leal (1992) and Feigl et al. (2007), these effects are found to be most pronounced for
small viscosity ratios, where Marangoni stresses substantially retard the interfacial
velocity and cause the droplet to behave as though it were more viscous. Bazhlekov,
Anderson and Meijer (2006) shows that this can happen locally as well as globally,
depending on the amount of surfactant.

• At larger surfactant concentrations, the surfactant accumulates at the droplet tips
and the surface tension drives near to zero. The droplet assumes a transient shape
with highly pointed tips, from which, thin liquid threads are pulled out, emitting
small surfactant-rich droplets from the termini of these threads. The scale of the
shed droplets depends on the initial surfactant coverage. Dilute initial coverage leads
to tip streaming, while high initial coverage leads to the tip-dropping breakup mode
(EGGLETON; TSAI; STEBE, 2001). According to James and Lowengrub (2004),
even when the initial surfactant distribution is dilute, the increases in surfactant
concentration at the droplet’s tips can result in a local deviation from the dilute
limit. This can lead to differences in effective surface tension, the Marangoni forces,
and the associated droplet dynamics between results using the linear and nonlinear
equations of state.

• Under weak-flow conditions, deformation is enhanced by the presence of surfactant,
but the leading-order perturbation of the droplet shape is independent of the
nonzero surfactant elasticity. In strong flows, droplet deformation depends non-
monotonically on surfactant elasticity. In the weak-flow limit with finite surfactant
elasticity, the emulsion behaves as a suspension of rigid spheres. In strong flows,
the stresses can approach the behavior for surfactant-free droplets (VLAHOVSKA;
BLAWZDZIEWICZ; LOEWENBERG, 2002).

• The presence of surfactant results in more complex droplet–droplet interactions
compared to the analogous cases for clean droplets. The effects of surfactants are
found to be most significant in flows with multiple droplets (XU et al., 2006), where
the surfactants can play a critical role in preventing droplet coalescence (XU; YANG;
LOWENGRUB, 2012).

• In the breakup of a surfactant-covered droplet under shear flow, a significant amount
of surfactant is trapped in the resulting satellite droplet. This result is directly linked
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to the surface viscosities, which play a critical role to explain the accumulation of
surfactant in the satellite droplet (PONCE-TORRES et al., 2017), since the shear
surface viscosity inhibits local convection, due to its suppression on the droplet
surface motion, and has remarkable influences on the droplet deformation (LUO;
SHANG; BAI, 2019; DANDEKAR; ARDEKANI, 2020). According to Dandekar and
Ardekani (2020), the inclusion of interfacial viscosities is important to accurately
model the migration characteristics of droplets for experiments involving droplet
manipulation in Poiseuille flow, because both the dilatational as well as the shear
surface viscosities suppress the lateral migration velocity of the droplet (PANIGRAHI
et al., 2021).

• In pressure-driven channel flow, surfactant-induced Marangoni stresses counteract
the shear-induced lift force and can reverse the lateral bubble migration completely,
i.e., to make the surfactant-covered bubble move away from the channel wall and
stabilizes at the center line (MURADOGLU; TRYGGVASON, 2014).

• In Poiseuille flows, the droplet migration is directly linked to the relationship between
surfactant diffusion and advection, where the direction and velocity of migration
depend on the droplet viscosity. If diffusion is dominant, increasing surfactant
elasticity reduces the axial velocity of the droplet. On the other hand, at larger
surface advection, the droplet always moves towards the flow center line, and the
axial velocity of the droplet is found to be independent of the surfactant distribution
(DAS; MANDA; CHAKRABORTY, 2017). When the flow is non-isothermal so that
temperature increases in the flow direction, surfactants retard the droplet motion as
compared with the surfactant-free droplets. If the imposed temperature decreases in
the flow direction, the presence of surfactants may increase or decrease the magnitude
of droplet velocity, depending on the surfactant coverage and elasticity (DAS et
al., 2017). The same is observed for surfactant-laden droplets inside microchannels,
where the migration is significantly retarded by the thermal convection (LUO; LUO;
BAI, 2020).

• The surfactant directly affects the additional pressure loss from the droplets in non-
circular microchannels. The surfactant-induced reduction in droplet surface tension
decreases the additional pressure loss, but this effect can be fully counteracted by
the effect of the surface tension gradient (Marangoni stress). The increasing effect of
the Marangoni stress is directly related to two surfactant-related dimensionless pa-
rameters, the surface Péclet number, and the elasticity number. Thus, the additional
pressure loss significantly increases with either of them increasing. (LUO; SHANG;
BAI, 2018).

• At low frequencies, nano-droplets behave like rigid spheres, but at the megahertz
frequencies of electroacoustic (and other spectral-based) diagnostics, the interfacial
concentration gradients are dynamic, coupling electromigration, advection, and diffu-
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sion fluxes. In these conditions, the droplet interface transits from a rigid/immobile
one to a fluid one (HILL; AFUWAPE, 2020).

• When either of the phases may exhibit a viscoelastic behavior, increasing Marangoni
stress decreases the effect of viscoelasticity on the shape deformation of the droplet.
Thus, in the limit of diffusion-dominated surfactant transport, the effect of the
surfactant convection is to diminish the relative importance of the viscoelastic effects
(PANIGRAHI; DAS; CHAKRABORTY, 2018).

• In turbulent flows, Marangoni stresses have a major role in restoring a uniform
surfactant distribution over the interface. This restoring effect is proportional to
the surfactant elasticity and is stronger for smaller droplets. Lower surface tension
(higher ratio between inertial and surface tension forces or higher surfactant elasticity)
increases the number of breakup events, but also the number of coalescence events
(SOLIGO; ROCCON; SOLDATI, 2019a; SOLIGO; ROCCON; SOLDATI, 2019b).

• For droplets in contact with solid surfaces as presented by Xu and Ren (2014), the
presence of surfactants not only increases droplet deformation but also promotes
droplet motion. Increasing surfactant coverage enhances droplet deformation and
motion, although the surfactant distribution becomes less non-uniform. The presence
of surfactants always decreases the critical capillary number for the breakup. This
effect is more pronounced at low viscosity ratio (LIU et al., 2020).

• For a perfectly conducting/dielectric droplet suspended in a perfectly dielectric
medium, the Marangoni stress always retards the dielectrophoretic velocity of the
droplet as compared with a surfactant-free droplet. For a leaky dielectric droplet sus-
pended in another leaky dielectric medium, in the low Péclet number limit, depending
on the electrical conductivity and permittivity of both the liquids, Marangoni stress
may aid or retard the dielectrophoretic velocity of the droplet. Marangoni stress also
has the ability to move the droplets with less viscosity in the opposite direction as
compared with a surfactant-free droplet. This was observed for particular values
of electrical conductivity and permittivity ratios. At larger Péclet number limit,
the surfactants completely immobilize the fluid velocity at the droplet interface,
making the droplet behaves like a solid sphere (MANDAL; BANDOPADHYAY;
CHAKRABORTY, 2016).

• The surfactant weakens the electrohydrodynamic flow, and thus dielectrophoretic
interactions play a more prominent role than surfactant-free droplets. If droplet
conductivity is the same as the suspending fluid, a non-diffusing surfactant can
arrest the droplets’ relative motion thereby effectively preventing coalescence (SOR-
GENTONE; VLAHOVSKA, 2021). If the droplet exhibits an oblate shape and the
electrical forces are large, the presence of surfactants almost does not affect droplet
deformation (ZHANG; LIU; ZHANG, 2021).
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• The location of the peak surfactant accumulation on the droplet surface may get
shifted from the plane of shear to a plane orthogonal to it, depending on the
inclination angle of the applied electric field and the force of the electrical stresses
relative to their hydrodynamic counterparts. This creates significant alterations
in the Marangoni stress around the droplet, triggering modulations in the bulk
shear viscosity. Thus, the balance between electrical and hydrodynamic stresses
modulates the emulsion viscosity (PODDAR et al., 2019). When a leaky dielectric
droplet is sedimenting in another leaky dielectric fluid at low Péclet number, the
Marangoni stress can oppose the electrohydrodynamic motion severely, thereby
causing corresponding changes in the internal flow pattern (PODDAR et al., 2018).

On the other hand, the effects of surfactants on the emulsion’s rheology were
initially studied by Li and Pozrikidis (1997) using a linear relationship between surface
tension and surfactant concentration. They found that surfactants have a greater impact
on the rheology of a suspension than on the deformation of individual droplets. The
rheology of a dilute emulsion of surfactant-covered spherical droplets was investigated by
Blawzdziewicz, Vlahovska and Loewenberg (2000) showing, like Li and Pozrikidis (1997),
that the rheological contributions of the droplets can be significantly affected by small
quantities of surfactant and the effects of droplet deformation and Marangoni stresses
are additive. Vlahovska, Blawzdziewicz and Loewenberg (2002) studied the nonlinear
rheology of a dilute emulsion of surfactant-covered spherical droplets in time-dependent
flows, considering low capillary numbers (negligible droplet deformation) and creeping-flow
conditions. Their results showed that the interplay between the Marangoni relaxation time,
rotation time, and period of imposed flow oscillations gives rise to a rich rheological behavior
in diluted emulsions with surfactant-covered spherical droplets, mainly manifesting in
terms of the normal stress differences.

More recently, Zinchenko and Davis (2017) proposed and tested a general constitu-
tive model for highly concentrated monodisperse emulsions of deformable droplets with
insoluble surfactant through long-time, large-scale, and high-resolution droplet simulations.
However, only the limit of small surfactant diffusivities (Péclet number tends to infinity)
was addressed, besides assuming a linear relationship between surfactant concentration
and surface tension. Mandal, Das and Chakraborty (2017) performed analytical investiga-
tions on the deformation and rheology of a dilute emulsion of surfactant-laden droplets
suspended in linear flows. As opposed to the work of Zinchenko and Davis (2017), the
analysis was carried out for situations dominated by surface diffusion (Péclet number tends
to zero). Mandal, Das and Chakraborty (2017) showed that increasing the non-uniformity
of the surfactant distribution results in larger droplet deformation and effective viscosity
for either of the linear flows considered. Under simple shear flow, the surfactant distri-
bution has no effects on the inclination angle. However, a higher viscosity ratio induces
the droplet alignment towards the flow direction. Das, Bhattacharjee and Chakraborty
(2018) studied the effect of the interfacial slip on the deformation and rheology of a dilute
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suspension of droplets in a linear flow using the assumption of negligible inertia effects in
both phases. In another work, Das and Chakraborty (2018) studied the effect of surface
viscosity on the thermocapillary migration of a surfactant-laden droplet in the presence of
non-isothermal Poiseuille flows. More recently Dandekar and Ardekani (2020) examined
the effect of interfacial rheology on the droplet dynamics assuming a purely viscous surface
with a small amount of surfactant, such that interfacial viscosity does not depend on the
surfactant concentration. They considered a surfactant-covered non-deformable droplet in
an unbounded Poiseuille at low surface Péclet numbers.

Most of the investigations in the literature assume a linear relationship between
the surface tension and the surfactant concentration. To our knowledge, no works in the
literature dedicated to the effects of surfactant elasticity (sensitivity of surface tension to
variations in surfactant concentration), as well as the surfactant coverage (relationship
between the initial average surfactant concentration and the surfactant concentration at
the maximum packing) on the emulsion’s rheology. In addition, these studies focused on
specific cases, such as the low capillary number and small surfactant diffusivities. Most
importantly, no studies report the combined effects of surfactant and magnetic field.

The combined action of surfactants and magnetic field adds a new dynamics to the
individual droplets simulation. The major difficulty is dealing with the coupling between
the velocity field and the surfactant’s distribution since both are closely linked to the
morphology and mobility of the droplet interface, which is also affected by the action of
the magnetic field. In addition to mass and momentum equations, required to simulate
the droplet’s dynamics, it is now necessary to solve two extra equations, one for the
surfactant’s concentration (defined only on the surface) and another for the magnetic field.
In this sense, numerical simulations provide great possibilities to understand the physics of
these systems, making it possible to test from the simplest situations to the most difficult
ones to be reproduced in laboratories.

Several numerical methods were used to approach the surfactant-covered droplet
problems. In general, this can be divided into two paths: interface-tracking or interface-
capturing methods. The first group includes the front-tracking method (MURADOGLU;
TRYGGVASON, 2008; JESUS et al., 2015; MURADOGLU; TRYGGVASON, 2014; LU;
MURADOGLU; TRYGGVASON, 2017; LUO; SHANG; BAI, 2019), the boundary integral
method (BIM) (STONE; LEAL, 1990; MILLIKEN; STONE; LEAL, 1992; LI; POZRIKIDIS,
1997; EGGLETON; TSAI; STEBE, 2001; BAZHLEKOV; ANDERSON; MEIJER, 2006;
FEIGL et al., 2007; SORGENTONE; TORNBERG, 2018; HSU et al., 2019; PÅLSSON;
SIEGEL; TORNBERG, 2019; SORGENTONE; TORNBERG; VLAHOVSKA, 2019) and
the immersed boundary method (IBM) (LAI; TSENG; HUANG, 2008). These use a
separate mesh to trace the interface, which increases the complexity of discretizing the
equations. Interface-capturing methods use an indicator function to implicitly represent
the interface in an Eulerian mesh for better handling of large deformations and topological
changes using regular cartesian discretizations. Among these methods, the following stand
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out: volume-of-fluid (VOF) (HIRT; NICHOLS, 1981; JAMES; LOWENGRUB, 2004;
DRUMRIGHT-CLARKE; RENARDY, 2004), (OSHER; SETHIAN, 1988; XU et al., 2006;
XU; REN, 2014; LANGAVANT et al., 2017; TITTA et al., 2018; XU; SHI; LAI, 2018)
phase-field method (LIU; ZHANG, 2010; SHI et al., 2019; SOLIGO; ROCCON; SOLDATI,
2019a; SOLIGO; ROCCON; SOLDATI, 2019b; ZHU et al., 2019; SOLIGO; ROCCON;
SOLDATI, 2020).

The level set method was used to capture the surfactant-covered droplet interface
for the first time by Xu et al. (2006). This approach has been improved to consider the
flow dynamics (XU; YANG; LOWENGRUB, 2012) and the contact line for the cases
of insoluble surfactant (XU; REN, 2014) and soluble surfactant (XU; SHI; LAI, 2018).
In these studies, the surfactant concentration is extended to a small region around the
interface, and the surface Laplacian is rewritten, as described by Xu and Zhao (2003). In
addition, the level set method was also used by Cunha et al. (2018), Cunha et al. (2020),
and Abicalil et al. (2021) to capture the interface of ferrofluid droplets.

In this sense, an alternative methodology is proposed here. We use the level
set method to capture the interface, along with the closest point method (RUUTH;
MERRIMAN, 2008; MACDONALD; RUUTH, 2010) to extend the surfactant concentration
equation to a region around the interface. The closest point method has been applied
in the solution of many distinct systems involving partial differential equations (PDEs)
defined on surfaces (PETRAS; RUUTH, 2016; VOGL, 2017; PETRAS et al., 2019). One
of the advantages of this approach is that conventional finite differences/element methods
can be used for solving surface equations.

Up to the authors’ knowledge, our numerical approach is unprecedented for
surfactant-covered droplets and is used for the first time in this work. We consider
a single two-dimensional surfactant-covered droplet of a superparamagnetic ferrofluid sus-
pended in an immiscible, non-magnetizable liquid confined in a channel between parallel
plates. The system is simultaneously subjected to a simple shear flow and an external
uniform magnetic field. The model consists of an unsteady convection-diffusion equation to
compute the evolution of the surfactant concentration over the droplet surface, along with
the non-linear Langmuir equation of state to compute the surface tension, coupling the
surfactant concentration with the incompressible Navier–Stokes equations, and Maxwell’s
equations at the magnetostatic limit coupled to model the magnetic problem. The level
set method is used to capture the droplet interface and the closest point method to solve
partial differential equations on the droplet surface. We present a theoretical formulation
to calculate the stress tensor of a dilute emulsion of surfactant-covered ferrofluid droplets
in which the stress jump across the droplet surface accounts for the Marangoni stresses, in
addition to the usual capillary pressure jump and the magnetic stresses.

The main contribution of this work relies on the comprehension of the combined
effects of surfactant elasticity, coverage factors, and the magnetic field on the flow at the
droplet’s scale and its impacts on the emulsion’s rheology and bulk magnetization. We
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use a non-linear equation of state to calculate the surface tension as a function of the
surfactant concentration from diffusion-dominated to advection-dominated cases. Using a
particle stress formulation to compute the average emulsion’ stress tensor, we were able to
calculate the emulsion’s viscosity and separate the contributions from the normal stress
jump, which we called capillary viscosity, the contribution from the tangential stress jump,
which we called Marangoni viscosity, and the contribution of the magnetic field, which we
called magnetic viscosity. Using these new definitions, we show how emulsions of droplets of
the same shape display remarkably distinct rheological behavior. We found that capillary
and Marangoni viscosities have opposite behavior concerning the surfactant coverage and
elasticity. The magnetic field action evidences these differences and its direction (vertical
or horizontal) can invert the behavior of these quantities. We show how the competition
between these parcels of viscosity leads to a complex mechanical response of the emulsion
to shear flow and the magnetic field. We also found that the droplet deformation and
inclination depend more on the surfactant’s coverage and elasticity factors than on the
surface Péclet number. However, the Péclet number greatly influences the emulsion’s
rheology because it has a decisive impact on the Marangoni viscosity. The magnetic field
action changes the regions of surfactant accumulation so that the behavior of viscosity
parcels is strongly altered as a function of the magnetic field intensity and direction. We
also show that the complex configuration of the droplet and the surfactant concentration
makes the mean magnetization of the system become noncollinear with the external field,
leading to internal torques in the suspension. Finally, we explore the rheology of this
non-symmetric complex fluid in terms of the shear viscosity and rotational viscosities. The
numerical approach, combining level set and closest point methods, is a novelty as well.

1.1 Objectives

The thesis proposal is to perform a numerical study on the combined effect of
external magnetic fields and insoluble surfactants on the dynamics of ferrofluid droplets
under shear flow, on the rheological properties of the ferrofluid emulsions, and the mean
magnetization of the system, as well. Specific objectives are:

• To develop a numerical methodology based on the projection method for Navier-
Stokes equations, finite differences, level set, and closest point methods to simulate
surfactant-covered droplets under shear flow;

• To develop a numerical methodology to compute the droplet shape;

• To understand how magnetic fields and the surfactant can influence the kinematic
flow of surfactant-covered ferrofluid droplets;

• To study the rheology of surfactant-covered ferrofluid droplets emulsions subjected
(or not) to an external magnetic field;
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• To elucidate the link between the rheology of ferrofluid emulsions and the microscopic
dynamics of the constituent particles;

• To determine the feasibility of controlling the rheology and overall behavior of such
emulsions using external magnetic fields;

• To explore the surfactant effects on the emulsion mean magnetization;

• To elucidate how the methodology developed can be used to solve vesicle problems.
In addition to presenting the challenges of this innovation.

1.2 Scope of the work

This work is organized as follows. In chapter 2, the mathematical formulation
of the physics behind the problem is performed. Then the incompressible Navier-Stokes
equations with additional terms that take into account the influence of the surfactant
concentration and magnetic field, are presented, as well as the non-dimensionalization of
these equations. Chapter 3 is devoted to describing the numerical methodology used in
this research, considering technical aspects of the finite difference, projection, level set, and
closest point methods. In addition, a numerical methodology to compute the droplet shape
is presented. In chapter 4, the mathematical and numerical methodologies developed are
validated by comparisons with results available in the literature, the model is explored and
the results are discussed. First, only the surfactant effects are considered. The combined
effect of this surface active agent and the external magnetic field is evaluated in sequence.
Finally, chapter 6 contains the conclusions of this work.
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2 Formulation

In this chapter, the mathematical formulation of the physics behind a surfactant-
covered ferrofluid droplet under shear flow and an external magnetic field is presented. The
problem is detailed defining all relevant aspects and variables involved. Maxwell equations
are presented, followed by the fluid magnetization and electromagnetism considerations
used, leading to the so-called magnetostatic limit, where the magnetic field becomes
irrotational and the problem can be described by a magnetic potential field. Then, the
incompressible Navier-Stokes equations with additional terms that take into account the
influence of the surfactant and magnetic field, are presented. There is still an unsteady
convection-diffusion equation for computing the evolution of the surfactant concentration
at the droplet surface and the non-linear Langmuir equation of state for computing the
surface tension, coupling the surfactant concentration with the Navier-Stokes equations.
Following, the governing equations are normalized and the particle stress formulation is
explained to compute the average emulsion’ stress tensor, separating capillary, Marangoni
and magnetic viscosities. We also separate the symmetric and antisymmetric parts of the
stress tensor, dividing the emulsion viscosity into two distinct contributions: shear and
rotational viscosities, respectively. Finally, a brief discussion about bulk magnetization is
presented.

2.1 Problem statement

The problem consists of a two-dimensional channel between two fluid-filled parallel
plates in which there is a single surfactant-covered ferrofluid droplet placed at the center,
as shown in Figure 1. The surfactant concentration on the droplet surface is 𝑐. The
droplet is confined in the region Ω2 and the continuous phase occupies the region Ω1. The
interface Γ separates both regions. The continuous phase has viscosity 𝜂 and magnetic
permeability 𝜇0, which is assumed to be equal to the magnetic permeability of the free
space (𝜇0 = 4𝜋×10−7H ·m−1). The ferrofluid droplet, which is initially circular with radius
𝑎 and positioned at the domain center, has viscosity 𝜆𝜂 and magnetic permeability 𝜁𝜇0.
Thus, 𝜆 and 𝜁 represent, respectively, the viscosity ratio and magnetic permeability ratio
between the dispersed and continuous phases. Both phases are assumed Newtonian and
incompressible, with the same density 𝜌. The system is subjected to an external uniform
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magnetic field H0, which is applied either parallel or perpendicular to the plates, and a
simple shear flow with shear rate �̇�, driven by the motion of the channel walls in opposite
directions with velocity 𝑈𝑛 = �̇�𝐻𝑝/2 = −𝑈𝑠, where 𝐻𝑝 is the distance separating the walls.

Ω2, λ𝜂, 𝜁𝜇0, 𝜌

Ω1, 𝜂, 𝜇0, 𝜌

Γ

𝑐

𝐿

𝐻𝑝

𝑥

𝑦

𝑈𝑠

𝑈𝑛

𝐇0 2𝑎

Figure 1 – Schematic illustration of a surfactant-covered droplet under simple shear flow.
Ω2 corresponds to the droplet region and Ω1 corresponds to the continuous
phase, Γ is the the interface, 𝜂 is the continuous phase viscosity, 𝜆𝜂 is the
droplet viscosity, 𝜌 is the droplet and continuous phase density, 𝑎 is the droplet
radius, �̇� is the shear rate, 𝑐 is the surfactant concentration, 𝑈𝑛 = �̇�𝐻𝑝/2 = −𝑈𝑠
is the canal walls velocity, H0 is the external uniform magnetic field ,𝐻𝑝 is the
distance between the channel walls, and 𝐿 is the length of the channel walls.

The surfactant molecules consist of a hydrophilic head and a hydrophobic tail, as
shown in Figure 1. For insoluble surfactants, the molecules remain at the droplet surface,
now for soluble surfactants, the molecules can be adsorbed from the bulk fluid to the
interface and desorbed from the interface to the bulk fluid. In general, the surfactant reduces
the surface tension and as the flow develops and the droplet deforms, the non-uniform
distribution of the surfactant concentration gives rise to the surface tension gradient, i.e.,
the so-called Marangoni effect.

2.1.1 Superparamagnetic emulsions

Superparamagnetic materials can be much more magnetizable for the same magnetic
field than paramagnetic materials. As presented by Cunha et al. (2020), applied magnetic
field affects the magnetization M of the ferrofluid, which, in turn, contributes to the
magnetic induction as B = 𝜇0(H+M). In the absence of electric currents, H and B satisfy
magnetostatic Maxwell’s equations, ∇·B = 0 and ∇×H = 0. We assume that the ferrofluid
is superparamagnetic such that M = 𝜒𝑚H, where 𝜒𝑚 is the magnetic susceptibility. This
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assumption leads to B = 𝜇0𝜁H, where 𝜇0𝜁 = 𝜇0(1 + 𝜒𝑚) is the magnetic permeability of
the dispersed ferrofluid phase. Since H is an irrotational field, there is a scalar potential 𝜓
that satisfies H = −∇𝜓. Then, the magnetic problem is reduced to

∇ · [𝜇0𝜁(x)∇𝜓] = 0, (2.1)

where x is the position vector, and 𝜁(x) is the ratio between the local and the vacuum
magnetic permeabilities, 𝜁(x) = 𝜇(x)/𝜇0, being equal to the unit for the continuous phase.

2.2 The governing equations

In this section, the governing equations are presented and discussed. The fluid
motion is governed by the Navier-Stokes equations in the single-fluid formulation, as
follows:

∇ · u = 0, (2.2)

𝜌
𝐷u
𝐷𝑡

= −∇𝑝+ ∇ · [𝜆(x)𝜂(∇u + ∇u𝑇 )] + F𝑠 + F𝑚𝑎𝑔, (2.3)

where,

𝐷u
𝐷𝑡

= 𝜕u
𝜕𝑡

+ u · ∇u (2.4)

is the material derivative operator, ∇ is the gradient operator, ∇· is the divergence operator,
u is the velocity field, which has components 𝑢, 𝑣 and 𝑤, respectively, in the 𝑥, 𝑦 and
𝑧 directions, 𝑡 is the time, 𝜆(x) is the viscosity ratio between the local and continuous
phases, 𝑝 is the pressure field, F𝑚𝑎𝑔 is the magnetic force per unit of volume arising from
the magnetic field, given by

F𝑚𝑎𝑔 = 𝜇0 (𝜁(x) − 1) H · ∇H, (2.5)

and F𝑠 is a body force per unit of volume accounting for the stress jump across the
interface.

Balancing forces on a finite surface element 𝑑𝑆 at the droplet surface, as presented
in Figure 2, the effect associated with surface tension (energy per unit area) is reflected in a
force per unit length in the element’s contour 𝐶. That way, if the surface is in equilibrium,

−
∫︁
𝑆

Δ𝑝 n̂ 𝑑𝑆 =
∮︁
𝐶
𝜎b̂ 𝑑Γ, (2.6)

in which the term on the left is the force due to pressure field action, b̂ is the unit binormal
vector, perpendicular to tangential and normal unit vectors, t̂ and n̂, respectively, that
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Figure 2 – Surface element used to derive equations at surface. b̂ is the unit binormal
vector, t̂ is the unit tangential vector and n̂ is the unit normal vector. 𝐶
represents the contour and 𝑑𝑆 is the finite surface element.

is b̂ = t̂ × n̂ and 𝑑Γ is the differential arc length along 𝐶. Using a variation of Stokes
theorem, the right side of Eq. (2.6) can be rewritten as:

∮︁
𝐶
𝜎n̂ × t̂ 𝑑Γ =

∫︁
𝑆

{n̂ [∇ · (𝜎n̂)] − [∇ (𝜎n̂) · n̂]} 𝑑𝑆, (2.7)

where n̂ × t̂ = −b̂. These contributions are localized around the interface through the use
of a Dirac-delta function, therefore, from Eqs. (2.6) and (2.7), it can be shown that

F𝑠 = (∇𝑠𝜎 − 𝜎𝜅n̂)𝛿(‖x − xΓ‖). (2.8)

In Eq.(2.8), 𝜎 is the surface tension coefficient, 𝜅 = ∇ · n̂ is the local mean curvature, 𝛿 is
the Dirac delta function, ∇𝑠 = (I − n̂n̂) · ∇ is the surface gradient operator, and I is the
unity tensor. The Dirac delta function is computed at ‖x − xΓ‖, where xΓ is a point on
the interface, such that F𝑠 is concentrated at the droplet surface. Splitting F𝑠 into normal
and tangential components, we write

F𝑠 = F𝑚 + F𝑐, (2.9)

where F𝑚 will be called the Marangoni force and F𝑐, the capillary force, respectively, given
by

F𝑚 = (∇𝑠𝜎)𝛿(‖x − xΓ‖), (2.10)

end
F𝑐 = −(𝜎𝜅n̂)𝛿(‖x − xΓ‖). (2.11)

The concentrated body forces per unity of volume F𝑚 and F𝑐 can be interpreted
as “stresses per unit of thickness” of the interface, due to the tangential and normal stress
jumps, respectively.

Finally, replacing Eqs. (2.8) and (2.5) in Eq. (2.3), the fluid motion equation
becomes:

𝜌
𝐷u
𝐷𝑡

= −∇𝑝+ ∇ · [𝜆(x)𝜂(∇u + ∇u𝑇 )] + (∇𝑠𝜎 − 𝜎𝜅n̂)𝛿(‖x − xΓ‖)

+𝜇0 (𝜁(x) − 1) H · ∇H.
(2.12)
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2.2.1 Surfactant transport

The relationship between surface tension and local surfactant concentration is given
by constitutive equations, here it is computed via the non-linear Langmuir equation of
state (EOS),

𝜎(𝑐) = 𝜎0 +𝑅𝑇𝑐∞ ln
(︂

1 − 𝑐

𝑐∞

)︂
, (2.13)

where 𝜎0 is the surface tension of a clean interface (no surfactant), 𝑅 is the constant of the
ideal gas, 𝑇 is the absolute temperature, 𝑐 is the local interfacial surfactant concentration
and 𝑐∞ is the maximum packing concentration.

To develop an evolution equation for the concentration of an insoluble surfactant,
consider a material surface element 𝑆(𝑡) with differential surface area 𝑑𝑆 that lies on a
two-dimensional curved surface embedded in the deformable three-dimensional space, as
presented in Figure 2. In the absence of a chemical reaction or flux to the surface from
either of the surrounding bulk phases, a mass balance of the surfactant concentration per
unit area, 𝑐, require the conservation law:

𝐷

𝐷𝑡

∫︁
𝑆
𝑐 𝑑𝑆 = −

∮︁
𝐶

b̂ · j 𝑑Γ, (2.14)

where j is the tangential diffusion-flux vector, which is determined by Fick’s law of diffusion.
Since 𝑐 is only defined along the surface, this law is written as:

j = −𝐷𝑠∇𝑠𝑐, (2.15)

where 𝐷𝑠 is the surface diffusivity of the surfactant. If the surfactant were soluble, an
additional term expressing absorption or adsorption from the bulk of the fluid to or
from the interface would have to be added to the right-hand side of Eq. (2.14). Thus,
substituting Eq. (2.15) in Eq. (2.14),

𝐷

𝐷𝑡

∫︁
𝑆
𝑐 𝑑𝑆 = 𝐷𝑠

∮︁
𝐶

b̂ · ∇𝑠𝑐 𝑑Γ. (2.16)

The left side of Eq. (2.16) can be rewritten as

𝐷

𝐷𝑡

∫︁
𝑆
𝑐 𝑑𝑆 =

∫︁
𝑆

(︃
𝐷𝑐

𝐷𝑡
𝑑𝑆 + 𝑐

𝐷(𝑑𝑆)
𝐷𝑡

)︃
. (2.17)

Batchelor (1970) shows that the time rate of change of a material surface element with
vector area 𝑑S = n̂𝑑𝑆 is

𝐷(𝑑S)
𝐷𝑡

= 𝑑S∇ · u − (∇u) · 𝑑S, (2.18)
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performing the dot product of n̂ with Eq. (2.18),

𝐷(𝑑𝑆)
𝐷𝑡

= 𝑑𝑆 [∇ · u − n̂ · (∇u) · n̂] = 𝑑𝑆∇𝑠 · u, (2.19)

Using Eq. (2.19) and knowing that 𝑐 is only defined along the surface, Eq. (2.16)
can be rewritten as:

∫︁
𝑆

[︃
𝜕𝑐

𝜕𝑡
+ ∇𝑠 · (u𝑐)

]︃
𝑑𝑆 = 𝐷𝑠

∮︁
𝑐
b̂ · ∇𝑠𝑐 𝑑Γ. (2.20)

Using another variation of Stokes theorem, the integral on the right side of Eq.
(2.20) can be rewritten as:

∮︁
𝑐
(f × g) · t̂ 𝑑Γ =

∫︁
𝑆

[f (∇ · g) − g (∇ · f) + (g · ∇) f − (f · ∇) g] · n̂ 𝑑𝑆, (2.21)

in which f = n and g = ∇𝑐. Thus, using the localization theorem (CHANDRASEKHARA-
IAH; DEBNATH, 1994) , the Eq. (2.20) can be rewritten as:

𝜕𝑐

𝜕𝑡
+ ∇𝑠 · (u𝑐) = 𝐷𝑠∇2

𝑠𝑐, (2.22)

where ∇2
𝑠 = ∇𝑠 · ∇𝑠 is the surface Laplacian operator.

Finally, decomposing u into components along the surface, u𝑠 = (I − n̂n̂) · u that
represents the velocity field tangent to the interface, and (u · n̂) u normal to the surface,
the evolution of the interfacial surfactant concentration for the case of insoluble surfactants
is governed by

𝜕𝑐

𝜕𝑡
+ ∇𝑠 · (𝑐u𝑠) + 𝑐(∇𝑠 · n̂)(u · n̂) = 𝐷𝑠∇2

𝑠𝑐. (2.23)

Eq. (2.23) includes the standard convective and diffusive terms, but the term
𝑐(∇𝑠 · n)(u · n̂) is a contribution accounting for variation in surfactant concentration
resulting from local changes in the interfacial area, being a function of the product of the
mean curvature and the normal velocity.

2.3 Model normalization

The model is normalized using the dimensionless variables 𝑡* = 𝑡�̇�, x* = x/𝑎,
u* = u/(�̇�𝑎), 𝑝* = 𝑝/(𝜌𝑎2�̇�2), H* = H/ |H0|, 𝜎* = 𝜎/𝜎0 and 𝑐* = 𝑐/𝑐𝑒, where 𝑐𝑒 is the
initial average surfactant concentration, such that the dimensionless form of Eqs. (2.2),
(2.12), (2.13) and (2.23) are, respectively,

∇* · u* = 0, (2.24)
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𝐷u*

𝐷𝑡*
= −∇𝑝* 1

𝑅𝑒
∇* · [𝜆(x*)(∇*u* + ∇*u*𝑇 )]

+ 1
𝐶𝑎𝑅𝑒

𝛿(‖x* − x*
Γ‖)(∇*

𝑠𝜎
* − 𝜅*𝜎*n̂)

+ 𝐶𝑎𝑚𝑎𝑔
𝐶𝑎𝑅𝑒

(𝜁(x) − 1) H* · ∇*H*,

(2.25)

𝜎*(𝑐*) = 1 + 𝐸 ln (1 −𝑋 𝑐*) (2.26)

and

𝜕𝑐*

𝜕𝑡*
= −∇*

𝑠 · (𝑐*u*
𝑠) + 1

𝑃𝑒
∇*2
𝑠 𝑐

* − 𝑐*(∇*
𝑠 · n̂)(u* · n̂), (2.27)

where the surfactant elasticity, 𝐸, and the surfactant coverage, 𝑋, are, respectively,

𝐸 = 𝑅𝑇𝑐∞

𝜎0
and 𝑋 = 𝑐𝑒

𝑐∞
. (2.28)

The dimensionless groups are

𝑅𝑒 = 𝜌�̇�𝑎2

𝜂
, 𝐶𝑎 = 𝜂�̇�𝑎

𝜎0
, 𝑃 𝑒 = 𝑎2�̇�

𝐷𝑠

, 𝐶𝑎𝑚𝑎𝑔 = 𝜇0𝑎|H0|2

𝜎0
(2.29)

where the Reynolds number, 𝑅𝑒, expresses the ratio between inertia and viscous force; the
capillary number, 𝐶𝑎, is the ratio between viscous and capillary forces; the surface Péclet
number, 𝑃𝑒, expresses the ratio between the surfactant advection and diffusion rates on
the droplet surface; and the magnetic capillary number, 𝐶𝑎𝑚𝑎𝑔 is the ratio between the
magnetic and capillary forces.

2.4 Bulk stress on a surfactant-covered droplet emulsion

The bulk stress tensor of a suspension of solid or fluid particles, viewed as a
homogeneous equivalent fluid, is the volume-averaged stress tensor (the Stresslet) defined
by Batchelor (1970)

⟨𝜎⟩ = −⟨𝑝⟩I + 𝜂
(︁
⟨∇u⟩ + ⟨∇u𝑇 ⟩

)︁
+ ⟨𝜎𝑑⟩, (2.30)

where ⟨∙⟩ represents the volumetric average and ⟨𝜎𝑑⟩ is the contribution of the disperse
phase to the bulk stress tensor, also known as particle stress. For dilute suspensions and
emulsions, the hydrodynamic interaction among the particles is negligible, where it is
possible to show that (KENNEDY; POZRIKIDIS; SKALAK, 1994)

⟨𝜎𝑑⟩ = 1
𝑉

∫︁
𝑆

[xΔf + 𝜂(𝜆− 1)(un̂ + n̂u)] 𝑑𝑆, (2.31)

18



where 𝑉 is the volume of the system (dispersed and continuous phases), 𝑆 is the droplet
surface, and Δf is the stress jump across the interface between the fluids.

In the presence of surfactants and magnetic fields, the ferrofluid droplet surface
undergoes capillary, tangential (Marangoni), and magnetic stress jumps, called Δ𝑓 𝑐, Δ𝑓𝑚
and Δ𝑓𝑚𝑎𝑔, respectively. According to Li and Pozrikidis (1997) and Cunha et al. (2020),
Δ𝑓 𝑐 = 𝜎𝜅n̂, Δ𝑓𝑚 = −∇𝑠𝜎, and Δ𝑓𝑚𝑎𝑔 = −1

2𝜇0(𝜁(x) − 1)𝐻2n̂. Therefore,

Δf = 𝜎𝜅n̂ − ∇𝑠𝜎 − 1
2𝜇0(𝜁(x) − 1)|H|2n̂, (2.32)

where |H| is the intensity of the magnetic field.

Using 𝜂�̇� as the characteristic tension scale to normalize ⟨𝜎⟩ and ⟨𝜎𝑑⟩, and com-
bining Eqs. (2.32) and (2.31), the non-dimensional form of the particle stress of a dilute
emulsion is given by

⟨𝜎𝑑*⟩ = 1
𝑉 *

∫︁
𝑆

[︂
𝜎*𝜅*

𝐶𝑎
x*n̂ − 1

𝐶𝑎
x*∇*

𝑠𝜎
* − 𝐶𝑎𝑚𝑎𝑔

2𝐶𝑎 (𝜁 − 1)|H*|2x*n̂

+ (𝜆− 1)(u*n̂ + n̂u*)] 𝑑𝑆*.

(2.33)

To isolate the contribution of the disperse phase to the bulk viscosity of the
emulsion, we use the reduced viscosity defined as

[𝜂] = ⟨𝜎𝑦𝑥⟩ − 𝜂�̇�

𝛽𝜂�̇�
=

⟨𝜎𝑑*
𝑦𝑥⟩
𝛽

. (2.34)

In addition, considering the different contributions of the stress jump, we define the reduced
capillary viscosity as

[𝜂𝑐] = ⟨𝜎𝑑*
𝑐,𝑦𝑥⟩/𝛽, (2.35)

where
⟨𝜎𝑑*

𝑐 ⟩ = 1
𝑉 *

∫︁
𝑆

𝜎*𝜅*

𝐶𝑎
x*n̂𝑑𝑆*, (2.36)

the reduced Marangoni viscosity as

[𝜂𝑚] = ⟨𝜎𝑑*
𝑚,𝑦𝑥⟩/𝛽, (2.37)

where
⟨𝜎𝑑*

𝑚 ⟩ = 1
𝑉 *

∫︁
𝑆

− 1
𝐶𝑎

x*∇*
𝑠𝜎

*𝑑𝑆*, (2.38)

and the reduced magnetic viscosity as

[𝜂𝑚𝑎𝑔] = ⟨𝜎𝑑*
𝑚𝑎𝑔,𝑦𝑥⟩/𝛽, (2.39)

where
⟨𝜎𝑑*

𝑚𝑎𝑔⟩ = 1
𝑉 *

∫︁
𝑆

−𝐶𝑎𝑚𝑎𝑔
2𝐶𝑎 (𝜁 − 1)|H*|2x*n̂𝑑𝑆*. (2.40)
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In the particular case of 𝜆 = 1, when the sole contribution of the disperse phase to the
emulsion’s viscosity comes from Δf , the reduced viscosity is the sum of the capillary,
Marangoni, and the magnetic parts, such that

[𝜂] = [𝜂𝑐] + [𝜂𝑚] + [𝜂𝑚𝑎𝑔]. (2.41)

The capillary, Marangoni, and magnetic viscosities separate the contributions of the
normal, tangential, and magnetic stress jumps across the interface to the reduced viscosity,
respectively, providing a new tool to analyze the influence of the interface dynamics on the
bulk stress tensor of the emulsion. Such a separation cannot be easily made in laboratory
experiments (in fact, the authors believe it could be impossible nowadays), but the particle
stress formulation allows the calculation of these quantities from numerical data, as done
in the present work. As it will become clear along with this paper, these definitions are
useful to the comprehension of the effects of surfactants on the interface of the droplets to
the macroscopic mechanical behavior of the emulsion.

2.5 Bulk magnetization of the emulsion

The bulk magnetization of the system can be calculated from the magnetization of
a single droplet as (CUNHA et al., 2020):

⟨M⟩ = 1
𝑉

∫︁
𝑉

(𝜁(x) − 1) H𝑑𝑉, (2.42)

where the non-magnetizable phase does not account to mean magnetization, since 𝜁𝜀(𝜑) = 1.
Eq. (2.42) essentially shows that ⟨M⟩ is a function of its geometry and the external magnetic
field. Thus, the normalized form of Eq. (2.42) is:

⟨M*⟩ = 1
𝑉 *

∫︁
𝑉

(𝜁(x) − 1) H*

𝛽
𝑑𝑉. (2.43)

Under shear flow, the emulsion magnetization does not perfectly align to the
external magnetic field. This misalignment produces internal torques that ultimately lead
to a non-symmetric stress tensor (CUNHA et al., 2020), which rotates the droplet toward
the external magnetic field direction. According to Rosensweig (2013), the magnetic torque
(per unit volume) is computed by

𝜏𝑚𝑎𝑔 = 𝜇0 ⟨M⟩ × H0, (2.44)

or, normalizing by 𝜂�̇�𝛽,

𝜏 *
𝑚𝑎𝑔 = 𝐶𝑎𝑚𝑎𝑔

𝐶𝑎
⟨M*⟩ × H*

0. (2.45)

Eq. (2.45) shows that this magnetic torque is proportional to ⟨M⟩ and sin(𝜃𝑚), where 𝜃𝑚
is the misalignment angle between the bulk magnetization and the external magnetic field.
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The angular momentum conservation law requires an opposite hydrodynamic torque
of the same magnitude, which manifests itself as an asymmetry in the particle stress
tensor. Thus, rewriting Eq. (2.30) as the sum of the symmetric and antisymmetric parts,
respectively, we have:

⟨𝜎⟩ = 𝑠𝑦𝑚⟨𝜎⟩ + 𝑎𝑠𝑦𝑚⟨𝜎⟩, (2.46)

where the antisymmetric part can be written in terms of the Levi- Civita permutation
tensor, 𝜀 and the dual vector, 𝜔 (CHANDRASEKHARAIAH; DEBNATH, 1994), as
follows:

⟨𝜎⟩ = 𝑠𝑦𝑚⟨𝜎⟩ + 1
2𝜀L (2.47)

where,

L = −𝜀 : ⟨𝜎𝑑⟩. (2.48)

Thus, the normalized hydrodynamic torque is given by

𝜏 *
ℎ𝑦𝑑 = L* = −𝜀 : ⟨𝜎𝑑*⟩. (2.49)

From this point in this work, all quantities are dimensionless and the asterisk will
be suppressed to alleviate the nomenclature unless stated otherwise.

2.6 Magnetic emulsion viscosity

The results of Cunha et al. (2020) showed that external magnetic fields dramatically
affect the droplet configuration in the flow, the bulk magnetization of the system. The
internal magnetic torques that appear change the viscosity of the equivalent magnetic
emulsion under shear, once the stress tensor becomes non-symmetrical, given by:

⟨𝜎⟩ = S + L, (2.50)

where S and L are the symmetric and antisymmetric parts of the stress tensor ⟨𝜎⟩,
respectively.

In this sense, it is convenient to split the viscosity into two distinct contributions:
a shear viscosity, 𝜂𝑠, related with S and a rotational viscosity, associated with L. These
viscosities are defined, respectively, as

𝜂𝑠 = 𝑆𝑦𝑥
𝜂�̇�

− 1 (2.51)
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and

𝜂𝑟 = 𝐿𝑦𝑥
𝜂�̇�

. (2.52)

In Eq. (2.51), the −1 term is used because 𝜂𝑠 accounts only for the contribution of the
dispersed phase to the emulsion shear viscosity. The same does not occur in Eq. (2.52)
because the rotational viscosity arises exclusively from the non-linear effects. Thus, the
emulsion’s reduced viscosity can be determined both by the sum of capillary, Marangoni,
and magnetic viscosities and by the sum of the reduced viscosities corresponding to 𝜂𝑠
and 𝜂𝑟, as follows:

[𝜂] = [𝜂𝑠] + [𝜂𝑟], (2.53)

in which [𝜂𝑠] = 𝜂𝑠/𝛽 and [𝜂𝑟] = 𝜂𝑟/𝛽.
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3 Numerical Methodology

This chapter presents the numerical methodology employed in this work, describing:
aspects of the finite difference method for a uniform staggered grid; the level set method and
the tube technology developed by Peng et al. (1999); aspects of the closest point method;
the projection method and finite difference discretization of the governing equations to the
flow; the boundary and initial conditions; a semi-implicit temporal discretization developed
by Xu and Zhao (2003) in conjunction with a spatial discretization via closest point and
finite differences methods to solve the surfactant transport equation; and a numerical
methodology to compute the droplet shape.

3.1 Finite difference method

The finite difference is a numerical method based on the expansion of Taylor’s
series to discretize differential equations by rewriting the derivatives as finite differences. In
this technique, equations relating to unknown functions are generated at a finite number
of points in the computational domain, known as grid. At each point, the function value is
related to the values at neighboring points, resulting in a linear system of equations after
the proper application of the problem boundary conditions. The solution of this system
gives the problem solution at each point of the grid.

The two-dimensional discretization used in the present work is based on a staggered
grid, as illustrated in Figure 3, in which the variables are not defined at the same position.
Here, the vectors fields components in 𝑥 and 𝑦 direction are evaluated on the right (empty
squares) and upper (empty triangles) faces of the cells, respectively. The fluid properties
and scalar fields are evaluated at the center of the cell (black circles). The position of the
cells in the 𝑥 and 𝑦 directions are determined, respectively, by 𝑖 and 𝑗. The grid is composed
of 𝑁𝑥 cells in the 𝑥-direction and 𝑁𝑦 cells in the 𝑦-direction. Therefore, there is [𝑁𝑥 ×𝑁𝑦]
points for scalar fields (central points), [𝑁𝑥 + 1 ×𝑁𝑦] points for vector components in
𝑥-direction and [𝑁𝑥 ×𝑁𝑦 + 1] points for vector components in 𝑦-direction.

The Taylor’s series states that the value of a generic continuous function with all
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∆𝑦

∆𝑥

(𝑖, 𝑗)

Figure 3 – Staggered grid and cell structures. Vector components in the 𝑥 and 𝑦 directions
are stored, respectively, at the empty squares and circles. Scalar quantities are
stored at the black circles.

derivatives also continuous, 𝑓 = 𝑓(𝑥), at a point 𝑥 in the neighbor of 𝑥0 may be given by

𝑓(𝑥) = 𝑓(𝑥0) + 𝑓 ′(𝑥0)
1! (𝑥− 𝑥0) + 𝑓 ′′(𝑥0)

2! (𝑥− 𝑥0)2 + 𝑓 ′′′(𝑥0)
3! (𝑥− 𝑥0)3 + ..., (3.1)

which can be rewritten in the more compact sigma notation as follows:

𝑓(𝑥) =
∞∑︁
𝑛=0

𝑓 (𝑛)(𝑥0)
𝑛! (𝑥− 𝑥0)𝑛. (3.2)

Consider the discretized one-dimensional domain as presented in Figure 4, is used
the Taylor’s series to predict the value of 𝑓 at the node 𝑖+ 1 and 𝑖− 1, respectively as,

𝑓𝑖+1 = 𝑓𝑖 + 𝑓 ′
𝑖

1!Δ𝑥+ 𝑓 ′′
𝑖

2! Δ𝑥2 + 𝒪(Δ𝑥3) (3.3)

and

𝑓𝑖−1 = 𝑓𝑖 − 𝑓 ′
𝑖

1!Δ𝑥+ 𝑓 ′′
𝑖

2! Δ𝑥2 + 𝒪(Δ𝑥3). (3.4)

𝑖𝑖 − 1𝑖 − 2 𝑖 + 1 𝑖 + 2

∆𝑥

2∆𝑥

Figure 4 – One-dimensional discretization domain for finite difference method.
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Note that in Eqs. (3.3) and (3.4) there is a loss in the prediction of the order
𝒪(Δ𝑥3). Subtracting and adding both equations, the first and second central differential
derivatives are obtained, respectively,

𝑓 ′
𝑖 = 𝑓𝑖+1 − 𝑓𝑖−1

2Δ𝑥 + 𝒪(Δ𝑥2) (3.5)

and

𝑓 ′′
𝑖 = 𝑓𝑖+1 − 2𝑓𝑖 + 𝑓𝑖−1

Δ𝑥2 + 𝒪(Δ𝑥2), (3.6)

with order error 𝒪(Δ𝑥2).

The staggered grid has some advantages for solving fluid motion equations because
inhibits pressure fluctuations due to the independence between pressure and velocity at
the same point. The derivative of velocity and pressure terms are computed over a distance
of only Δ𝑥 or Δ𝑦, equivalent to doubling the resolution of the grid whose properties were
evaluated in the same position. For example, this scheme allows the computation of the
partial derivatives of scalar fields on the right (empty squares) and upper (empty triangles)
faces of the cells shown in Figure 3. Therefore,

𝜕𝑓

𝜕𝑥

⃒⃒⃒⃒
⃒
𝑖,𝑗

= 𝜕𝑓

𝜕𝑥

⃒⃒⃒⃒
⃒
right

= 𝑓𝑖+1,𝑗 − 𝑓𝑖,𝑗
Δ𝑥 and, 𝜕𝑓

𝜕𝑦

⃒⃒⃒⃒
⃒
𝑖,𝑗

= 𝜕𝑓

𝜕𝑦

⃒⃒⃒⃒
⃒
upper

= 𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗
Δ𝑦 . (3.7)

Similarly, this scheme allows the computation of the partial derivatives of vector
field components at the center of the cell, black circles in Figure 3. Thus, considering the
velocity vector u,

𝜕𝑢

𝜕𝑥

⃒⃒⃒⃒
⃒
𝑖,𝑗

= 𝜕𝑢

𝜕𝑥

⃒⃒⃒⃒
⃒
center

= 𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗

Δ𝑥 and, 𝜕𝑣

𝜕𝑦

⃒⃒⃒⃒
⃒
𝑖,𝑗

= 𝜕𝑣

𝜕𝑦

⃒⃒⃒⃒
⃒
center

= 𝑣𝑖,𝑗 − 𝑣𝑖,𝑗−1

Δ𝑦 . (3.8)

This form will be very useful in the section 3.6.1 for the discretization of governing
equations. However, the use of simple forward and backward differencing schemes with a
two-point stencil is not suitable for the convective term of the Navier-Stokes equations as
well as for the transport and reset equations of the level set function, considering that these
schemes are first-order only. Therefore, the derivatives used in upwind schemes require
the use of higher order and, therefore, more complex schemes. For this, ENO (Essentially
Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes (OSHER;
FEDKIW, 2003) are used.
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3.2 Level set method

To capture the interface, we use the level set method (OSHER; SETHIAN, 1988).
In this approach, a level set function, 𝜑(x, 𝑡), is defined as the signaled distance from a
point x to the interface xΓ, as presented in Figure 5, such that:

𝜑(x, 𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖x − xΓ‖, x ∈ Ω1,

−‖x − xΓ‖, x ∈ Ω2,

0, x ∈ Γ.
(3.9)

|𝜙 𝐱 |

Γ

𝐱𝐱Γ𝜙 < 0

𝜙 > 0

Figure 5 – Representation of the level set function.

Therefore, in the level set method, the interface is implicitly given by the equation
𝜑(x, 𝑡) = 0. The level set function is assumed to be a conservative material property,
advected by the velocity field, such that the evolution of 𝜑 is given by

𝜕𝜑

𝜕𝑡
+ u · ∇𝜑 = 0. (3.10)

The level set function can also be used to smooth a constant and avoid an abrupt
transition between both regions (external and internal to Γ). For example, to evaluate
the viscosity and permeability ratios between the dispersed and the continuous phases,
𝜆 and 𝜁, respectively, 𝜆(x) = 𝜆(𝜑) and 𝜁(x) = 𝜆(𝜑), such that the discontinuities across
the liquid-liquid interface are replaced by smooth transitions occurring in a thin region of
thickness 𝜀. To this purpose, a smoothed Heaviside function is used, as follows:

𝐻𝜀(𝜑) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if 𝜑 < −𝜀,
1
2

[︁
1 + 𝜑

𝜀
+ 1

𝜋
sin

(︁
𝜋𝜑
𝜀

)︁]︁
, if |𝜑| ≤ 𝜀,

1, if 𝜑 > 𝜀.

(3.11)

Thus, the viscosity and permeability ratios are given, respectively, by:

𝜆𝜀(𝜑) = 𝜆+ (1 − 𝜆)𝐻𝜀(𝜑) (3.12)
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and

𝜁𝜀(𝜑) = 𝜁 + (1 − 𝜁)𝐻𝜀(𝜑). (3.13)

Using the definition of the Dirac delta in terms of the directional derivative of the
Heaviside function, it is possible to show that (OSHER; FEDKIW, 2003)

𝛿(‖x − xΓ‖) = ∇𝐻(𝜑) · n̂ = 𝜕𝐻

𝜕𝜑
|∇𝜑| = 𝛿(𝜑)|∇𝜑|. (3.14)

Thus, from the smoothed Heaviside function it is possible to define a smoothed Dirac delta
distribution,

𝛿𝜀(𝜑) = 𝜕𝐻𝜀(𝜑)
𝜕𝜑

=
⎧⎨⎩ 0, if |𝜑| > 𝜀;

1
2𝜀

[︁
1 + cos

(︁
𝜋𝜑
𝜀

)︁]︁
, if |𝜑| ≤ 𝜀.

(3.15)

It is also possible to compute the unit normal vector outward of the droplet surface,
the unit tangential vector, and the local mean curvature, respectively, as follows

n̂ = ∇𝜑
|∇𝜑|

, (3.16)

n̂ × t̂ = b̂, (3.17)

𝜅 = ∇ ·
(︃

∇𝜑
|∇𝜑|

)︃
. (3.18)

The solution of Eq. (3.10) gives the evolution of surface Γ(𝑡) over time and, that is,
the fluids interface propagation. Although the zero of the level set function, 𝜑, continues to
represent the surface, this evolution does not guarantee 𝜑 as the signed distance function
of the interface for all the domain. Sussman (1994) proposed a technique to re-initialize
the level set function in order to continue being a signed distance function of Γ(𝑡). Thus,
the level set function 𝜑 is re-initialized to be a distance function, so that |∇𝜑| ≈ 1, by
solving the following Hamilton–Jacobi equation until steady:

𝜕𝜑

𝜕𝜏
= 𝜑𝜏 = 𝑆(𝜑)(1 − |∇𝜑|), (3.19)

where 𝜏 is the pseudo-time and 𝑆(𝜑) is the sign function of 𝜑.

Every time Eq. (3.19) is solved, the zero level set has to be redefined. Although
this equation alone does not affect the position of the interface, in numerical computation,
every time the interface is re-initialized, errors are accumulated. In this context, Sussman
and Fatemi (1999) developed a constraint that significantly improves the accuracy of
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solving (3.19), that is, since the interface should not move, the volume should not change
either. therefore, Eq. (3.19) is modified:

𝜕𝜑

𝜕𝜏
= 𝜑𝜏 = 𝑆(𝜑)(1 − |∇𝜑|) + 𝜆𝑚𝛿𝜀(𝜑)|∇𝜑|, (3.20)

where and 𝜆𝑚 is a function of 𝜏 , which is obtained by imposing that

𝜕𝜏

∫︁
Ω
𝐻(𝜑) =

∫︁
Ω
𝛿(𝜑)𝜑𝜏 =

∫︁
Ω
𝛿𝜀(𝜑)𝑆(𝜑)(1 − |∇𝜑|) + 𝜆𝑚𝛿

2
𝜀(𝜑)|∇𝜑| = 0. (3.21)

Therefore,

𝜆𝑚 = −
∫︀

Ω 𝛿𝜀(𝜑)𝑆(𝜑)(1 − |∇𝜑|)∫︀
Ω 𝛿

2
𝜀(𝜑)|∇𝜑|

. (3.22)

The level set function is updated by the local level set method (PENG et al., 1999)
which consists in to delimit the regions Ω𝑇 in the domain where the equations will be solved,
as presented in Figure 6. The use of this technology strongly decreases the computational
efforts related to the solution of the advection and re-initialization equations of the level
set function and also avoids numerical problems close to the boundaries.

Ω𝑇

Figure 6 – Representation of the local level set method.

Accordingly, three tubes are constructed around the interface in which PDEs for
the level set function is solved, such as 𝑇𝑖 = {x : |𝜑(x, 𝑡)| ≤ 𝜖𝑖}, 𝑖 = 1, ..., 3 where for
ℎ = min(Δ𝑥,Δ𝑦), 𝜖1 = 12ℎ, 𝜖2 = 8ℎ and 𝜖3 = 4ℎ. A cut-off function 𝑐(𝜑) is also introduced
in Eq. (3.10), as follows:

𝜕𝜑

𝜕𝑡
+ 𝑐(𝜑)u · ∇𝜑 = 0, (3.23)
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where,

𝑐(𝜑) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if |𝜑| ≤ 𝜖2;
(|𝜑| − 𝜖1)2(2|𝜑| + 𝜖1 − 3𝜖2)/(𝜖1 − 𝜖2), if 𝜖2 < |𝜑| ≤ 𝜖1;
0, if |𝜑| > 𝜖1.

(3.24)

The temporal evolution of the level set function is performed using a Total Variation
Diminishing (TVD) Runge Kutta (RK) method of third-order, as described by Shu and
Osher (1988). This method guarantees that this solution will not affect the method’s
overall order. In addition, this method presents great stability due to the reduction of error
accumulation over the iterations. This Runge-Kutta method is performed in three steps,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜑𝑛+1
𝑖,𝑗 = 𝜑𝑛𝑖,𝑗 − Δ𝑡 𝑐

(︁
𝜑𝑛𝑖,𝑗

)︁
u𝑛𝑖,𝑗 · ∇𝜑𝑛𝑖,𝑗

𝜑
𝑛+ 1

2
𝑖,𝑗 = 3

4𝜑
𝑛
𝑖,𝑗 + 1

4𝜑
𝑛+1
𝑖,𝑗 − 1

4Δ𝑡 𝑐
(︁
𝜑𝑛+1
𝑖,𝑗

)︁
u𝑛+1
𝑖,𝑗 · ∇𝜑𝑛+1

𝑖,𝑗

𝜑𝑛+1
𝑖,𝑗 = 1

3𝜑
𝑛
𝑖,𝑗 + 2

3𝜑
𝑛+ 1

2
𝑖,𝑗 − 2

3Δ𝑡 𝑐
(︂
𝜑
𝑛+ 1

2
𝑖,𝑗

)︂
u𝑛+ 1

2
𝑖,𝑗 · ∇𝜑+ 1

2
𝑖,𝑗

(3.25)

where, the superscript 𝑛+ 1 represents the current time, 𝑛 represents the previous time
and 𝑛+ 1

2 is the mean time between 𝑛 and 𝑛+ 1.

In order to guarantee a great approximation of the spatial derivatives, the convective
term, u(𝑘)

𝑖,𝑗 · ∇𝜑(𝑘)
𝑖,𝑗 , are computed using a fifth-order Weighted Essentially Non-Oscillatory

(WENO) method for biased derivative approximations, in conjunction with Godunov and
upwind schemes (OSHER; FEDKIW, 2003), in which the choice of an approximation for
spatial derivatives is based on the sign of 𝑢 and 𝑣. For example, if 𝑢 > 0, the values of 𝜑 are
moving from left to right, therefore values to the left of 𝑥𝑖,𝑗 must be used to determine the
derivative of 𝜑. Similarly, if 𝑢 < 0, the values of 𝜑 are moving from right to left, therefore
values to the right of 𝑥𝑖,𝑗 must be used to determine the derivative of 𝜑. Thus,

u(𝑘)
𝑖,𝑗 · ∇𝜑(𝑘)

𝑖,𝑗 = min
(︁
�̄�

(𝑘)
𝑖,𝑗 , 0

)︁
𝐷+
𝑥 𝜑

(𝑘)
𝑖,𝑗 + max

(︁
�̄�

(𝑘)
𝑖,𝑗 , 0

)︁
𝐷−
𝑥 𝜑

(𝑘)
𝑖,𝑗 +

min
(︁
𝑣

(𝑘)
𝑖,𝑗 , 0

)︁
𝐷+
𝑦 𝜑

(𝑘)
𝑖,𝑗

+ max
(︁
𝑣

(𝑘)
𝑖,𝑗 , 0

)︁
𝐷−
𝑦 𝜑

(𝑘)
𝑖,𝑗
,

(3.26)

where 𝐷+
𝑥 𝜑, 𝐷−

𝑥 𝜑, 𝐷+
𝑦 and 𝐷−

𝑦 𝜑 are spatial derivatives from the level set function in the 𝑥
and 𝑦 directions obtained by fifth-order WENO; �̄�(𝑘)

𝑖,𝑗 and 𝑣
(𝑘)
𝑖,𝑗 are the components of the

velocity field, computed at the cell’s center via third-order Lagrange interpolation.

The re-initialization of the level set function follows the same steps as the advection.
This strategy is similar to the one used by Sussman (1994). Here, 𝑡 is exchanged for 𝜏 , and
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𝜑
(0)
𝑖,𝑗 = 𝜑𝑛+1

𝑖,𝑗 is the level set function after advection by Eq. (3.23) via Eq. (3.25). Therefore,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜑

(1)
𝑖,𝑗 = 𝜑

(0)
𝑖,𝑗 − Δ𝜏𝐿

(︁
𝜑

(0)
𝑖,𝑗

)︁
𝜑

(2)
𝑖,𝑗 = 3

4𝜑
(0)
𝑖,𝑗 + 1

4𝜑
(1)
𝑖,𝑗 − 1

4Δ𝜏𝐿
(︁
𝜑

(1)
𝑖,𝑗

)︁
𝜑

(3)
𝑖,𝑗 = 1

3𝜑
(0)
𝑖,𝑗 + 2

3𝜑
(2)
𝑖,𝑗 − 2

3Δ𝜏𝐿
(︁
𝜑

(2)
𝑖,𝑗

)︁ (3.27)

where,

𝐿
(︁
𝜑

(𝑘)
𝑖,𝑗

)︁
= 𝑆+

𝜀

(︁
𝜑

(0)
𝑖,𝑗

)︁(︃√︃
max

[︂(︁
𝑎+
𝑖,𝑗

)︁2
,
(︁
𝑏−
𝑖,𝑗

)︁2
]︂

+ max
[︂(︁
𝑐+
𝑖,𝑗

)︁2
,
(︁
𝑑−
𝑖,𝑗

)︁2
]︂

− 1
)︃

+𝑆−
𝜀

(︁
𝜑

(0)
𝑖,𝑗

)︁(︃√︃
max

[︂(︁
𝑎−
𝑖,𝑗

)︁2
,
(︁
𝑏+
𝑖,𝑗

)︁2
]︂

+ max
[︂(︁
𝑐−
𝑖,𝑗

)︁2
,
(︁
𝑑+
𝑖,𝑗

)︁2
]︂

− 1
)︃
,

(3.28)

the sign function is

𝑆𝜀(𝜑𝑖,𝑗) = 𝜑𝑖,𝑗√︁
𝜑2
𝑖,𝑗 + |∇𝜑|2𝑖,𝑗 min(Δ𝑥,Δ𝑦)2

, (3.29)

and the coefficients are:

𝑎𝑖,𝑗
(︁
𝜑

(𝑘)
𝑖,𝑗

)︁
= 𝐷−

𝑥 𝜑
(𝑘)
𝑖,𝑗 ,

𝑏𝑖,𝑗
(︁
𝜑

(𝑘)
𝑖,𝑗

)︁
= 𝐷+

𝑥 𝜑
(𝑘)
𝑖,𝑗 ,

𝑐𝑖,𝑗
(︁
𝜑

(𝑘)
𝑖,𝑗

)︁
= 𝐷−

𝑦 𝜑
(𝑘)
𝑖,𝑗 ,

𝑑𝑖,𝑗
(︁
𝜑

(𝑘)
𝑖,𝑗

)︁
= 𝐷+

𝑦 𝜑
(𝑘)
𝑖,𝑗 .

(3.30)

Finally, the conservation of the droplet area is computed from the Eq. (3.27), as
follows:

𝜑𝑛+1
𝑖,𝑗 = 𝜑

(3)
𝑖,𝑗 + Δ𝜏𝜆𝑚𝑖,𝑗𝛿𝜀

(︁
𝜑

(0)
𝑖,𝑗

)︁ ⃒⃒⃒
∇𝜑(0)

𝑖,𝑗

⃒⃒⃒
. (3.31)

This procedure is repeated until the |∇𝜑| ≈ 1 in the tube regions, i.e. the steady state of
Eq. (3.20).

3.3 Closest point method

The closest point method is used to solve partial differential equations on the
surfaces. This method uses standard numerical approaches, such as finite differences, finite
volumes, or finite elements, in order to solve an embedding partial differential equation that
is a natural extension of the original surface equation. The closest point method consists
of precisely extending the functions defined on surfaces to their neighborhood (tube) so
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that these functions remain constant along the normal direction (RUUTH; MERRIMAN,
2008). Thus, the embedding PDE is formed by replacing intrinsic surface gradients with
standard gradients and the solution is computed on the tube surrounding the surface. For
instance,

∇𝑠(𝑓 (x𝑖,𝑗)) = ∇(𝑓 (cp (x𝑖,𝑗))) (3.32)

and

∇𝑠 · (∇𝑠(𝑓 (x𝑖,𝑗))) = ∇ · [∇(𝑓 (cp (x𝑖,𝑗)))] = ∇2(𝑓 (cp (x𝑖,𝑗))). (3.33)

The principles of equivalence of gradients and other differential operators yield a way
of dealing with surface differential operators by evaluating the corresponding differential
operator in the embedding space (MACDONALD; RUUTH, 2010). Thus, the constant
extension of surface properties in the normal direction is done by using the closest point
representation of the surface. For any point x in Ω, let cp(x) denote the closest point to x
in the surface Γ (RUUTH; MERRIMAN, 2008).

In Figure 7, note that the closest point to x1 at the interface, cp (x1) corresponds
to the position in the normal direction of x1, where 𝜑 (cp (x1) , 𝑡) = 0. Another important
note is that the distance between x1 and cp (x1) corresponds to the shortest distance
between x1 and the interface, in other words, it is the level set function 𝜑 (x1, 𝑡).

𝜙1

𝐱1

𝜙2

𝐱2

𝐧𝟏

𝐧𝟐

Γ

𝐜𝐩(𝐱1)

𝐜𝐩(𝐱2)

Figure 7 – Closest point method: a geometrical representation. Yellow dots are grid points
with their corresponding closest point on the surface as white square dots. Dots
into the blue region are used for interpolation of the surface property value
(white square dot). The interface normal vectors are drawn as arrow ended
segments.

Thus, considering the unit normal vector in a two-dimensional domain, the coor-
dinates of the closest points to all points of the domain, cp (x𝑖,𝑗), can be determined by
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similarity of triangles, as follows:

𝑥 (cp (x𝑖,𝑗)) = 𝑥𝑖,𝑗 − 𝜑 (x𝑖,𝑗, 𝑡)𝑛𝑥, (3.34)

𝑦 (cp (x𝑖,𝑗)) = 𝑦𝑖,𝑗 − 𝜑 (x𝑖,𝑗, 𝑡)𝑛𝑦, (3.35)

where 𝑛𝑥 and 𝑛𝑦 are the unit normal vector components in 𝑥 and 𝑦 directions, respectively.

The cp (x𝑖,𝑗) coordinates obtained from Eqs. (3.34) and (3.35) will hardly match
with discretized points of the computational mesh. Therefore, the closest point extension
needs an interpolation step, and the order of the interpolation should be sufficiently high
so that the interpolation errors do not dominate the solution (RUUTH; MERRIMAN,
2008). In this work, the Lagrange two-dimensional interpolation of third order is used, as
illustrated by dots into the blue region in Figure 7.

The closest point method is applied in the following steps:

• To set the computational domain, Ω𝑇 , as a tube around the surface;

• To replace surface gradients and divergences by gradients and divergent patterns;

• To extend the initial surface data to the computational domain, Ω𝑇 , using the closest
point method;

• To discretize the embedding PDE using standard finite differences in a Cartesian
mesh at the computational domain Ω𝑇 .

For convenience, the nomenclature to refer to the closest point of any mesh point,
cp (x𝑖,𝑗) is replaced by just, cp𝑖,𝑗. For example, ∇𝑠𝑓 = ∇𝑓

(︁
cp𝑖,𝑗

)︁
.

3.4 Coupling the level set method with the governing equations

In the simulation of multiphase systems, discontinuities can occur due to differences
between the properties of the fluids and the stress jump across the interface, for example.
However, the use of the level set method allows to smooth out these discontinuities by
using the Heaviside and Dirac delta functions. Applying the Eqs. (3.12), (3.13), (3.14) and
(3.16) in Eqs. (2.1) (2.24), (2.25), (2.26) and (2.27), it is obtained, respectively:

∇ · [𝜁𝜀(𝜑)∇𝜓] = 0, (3.36)

∇ · u = 0, (3.37)
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𝐷u
𝐷𝑡

= −∇𝑝+ 1
𝑅𝑒

∇ · [𝜆𝜀(𝜑)(∇u + ∇u𝑇 )]+ 1
𝐶𝑎𝑅𝑒

𝛿𝜀(𝜑)(|∇𝜑|∇𝑠𝜎 − 𝜅𝜎∇𝜑)

+ 𝐶𝑎𝑚𝑎𝑔
𝐶𝑎𝑅𝑒

(𝜁𝜀(𝜑) − 1) H · ∇H,

(3.38)

𝜎(𝑐) = 1 + 𝐸 ln (1 −𝑋𝑐) , (3.39)

and

𝜕𝑐

𝜕𝑡
= −∇𝑠 · (𝑐u𝑠) + 1

𝑃𝑒
∇2
𝑠𝑐− 𝑐(∇𝑠 · n)(u · n). (3.40)

3.5 Magnetic potential field numerical solution

The Eq. (3.36) is discretized using the finite difference method, as described in
section 3.1. Thus,

𝑎𝜓𝑖,𝑗𝜓𝑖−1,𝑗 + 𝑏𝜓𝑖,𝑗𝜓𝑖,𝑗−1 + 𝑐𝜓𝑖,𝑗𝜓𝑖,𝑗 + 𝑑𝜓𝑖,𝑗𝜓𝑖+1,𝑗 + 𝑒𝜓𝑖,𝑗𝜓𝑖,𝑗+1 = 0 (3.41)

where, the coefficients are

𝑎𝜓𝑖,𝑗 = 𝜁𝜀(𝜑)𝑖−1/2,𝑗

Δ𝑥2 , (3.42)

𝑏𝜓𝑖,𝑗 = 𝜁𝜀(𝜑)𝑖,𝑗−1/2

Δ𝑦2 , (3.43)

𝑐𝜓𝑖,𝑗 = −
𝜁𝜀(𝜑)𝑖−1/2,𝑗 + 𝜁𝜀(𝜑)𝑖+1/2,𝑗

Δ𝑥2 −
𝜁𝜀(𝜑)𝑖,𝑗−1/2 + 𝜁𝜀(𝜑)𝑖,𝑗+1/2

Δ𝑦2 , (3.44)

𝑑𝜓𝑖,𝑗 = 𝜁𝜀(𝜑)𝑖+1/2,𝑗

Δ𝑥2 (3.45)

and

𝑒𝜓𝑖,𝑗 = 𝜁𝜀(𝜑)𝑖,𝑗+1/2

Δ𝑦2 . (3.46)

The index (𝑖− 1/2, 𝑗), (𝑖+ 1/2, 𝑗), (𝑖, 𝑗 − 1/2) and (𝑖, 𝑗 + 1/2) refers, respectively,
to the left, right, bottom, and top boundaries of the cell presented in Fig. 3. Thus, in
these positions, 𝜁𝜀(𝜑) is computed by the harmonic average of neighboring points, in order
to avoid instabilities. For example, 𝜁𝜀(𝜑)𝑖+1/2,𝑗 is computed by harmonic average between
𝜁𝜀(𝜑)𝑖+1,𝑗 and 𝜁𝜀(𝜑)𝑖,𝑗.

The boundary conditions for the potential field are applied as heterogeneous
Neumann conditions, representing a Dirichlet condition for the magnetic field, ∇𝜑 = −H0.
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At the right boundary, Fig. 8, this condition is represented by 𝜕𝜓/𝜕𝑥 = −H0𝑥, which is
discretized by finite differences, as follows:

𝜓𝑁𝑥+1,1:𝑁𝑦 − 𝜓𝑁𝑥,1:𝑁𝑦

Δ𝑥 = −H0𝑥, (3.47)

therefore,

𝜓𝑁𝑥+1,1:𝑁𝑦 = 𝜓𝑁𝑥,1:𝑁𝑦 − Δ𝑥H0𝑥. (3.48)

𝐧Right

Boundary

𝜓𝑁𝑥,𝑗
𝜓𝑁𝑥+1,𝑗

Figure 8 – Right boundary. The red dots correspond to points outside the domain, but
which are used to solve Eq. (3.41).

Applying the boundary condition of Eq. (3.48) in Eq. (3.41) for all right border of
the domain [𝑁𝑥, 1 : 𝑁𝑦] it is obtained that:

⎧⎨⎩ 𝑐𝜓𝑖,𝑗 = 𝑐𝜓𝑖,𝑗 + 𝑑𝜓𝑖,𝑗,

𝜓𝑖+1,𝑗 = −Δ𝑥H0𝑥.
(3.49)

For other surfaces, the boundary conditions can be easily obtained in a similar way.

3.6 Projection method

One of the major difficulties in solving transient incompressible flow problems is
the fact that there is no explicit equation for pressure. When the flow is compressible,
the pressure field is a function of two independent thermodynamic properties (such as
temperature and density, for example). In this case, it is necessary to solve a state equation
to compute the pressure, which then enters in the motion equation. In incompressible flows,
pressure has no thermodynamic meaning and, therefore, there is no constitutive equation
to determine it. Thus, the velocity field must satisfy the condition of incompressibility. To
work around this problem, one alternative is to use projection methods, which consist of
decoupling the pressure and velocity computation in the motion equation.
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In the projection method presented here, velocity and pressure fields are computed in
two stages. First, a trial velocity field is computed using the motion equation neglecting the
effects of the pressure field and the incompressibility condition, obtaining an intermediate
velocity field u*. In the second stage, the trial velocity field is projected in the space of
the vector fields with zero divergences to calculate the trial pressure. From there, the
correction of the pressure and velocity fields is made satisfying the incompressibility
condition, obtaining 𝑝 and u.

A semi-explicit strategy is adopted to address the non-linearity of the diffusive
term when the viscosity ratio 𝜆 is not constant. This strategy, already presented by Xu,
Yang and Lowengrub (2012), Xu and Ren (2014), Xu, Shi and Lai (2018), Cunha et al.
(2018), consists of add the viscous term

(︁
�̄�/2𝑅𝑒

)︁
∇2u* and subtract

(︁
�̄�/2𝑅𝑒

)︁
∇2ũ𝑛+1 in

the motion equation, in which �̄� = max{1, 𝜆𝜀(𝜑)} and ũ𝑛+1 is the extrapolated velocity
from the previous time. It should be noted that both u* and ũ are trial velocities at the
current time. This approach preserves the symmetric of the equations of u*, which would
happen naturally if the viscosity were constant, without the need for this approximation.

Here, Eqs. (3.37) and (3.38) are broken down into three steps. First, the Eq. (3.38)
is divided into two equations using a modified semi-implicit Crank–Nicolson scheme and
the second-order-explicit Adams-Bashforth scheme for the convective terms, as follows:

u* − u𝑛

Δ𝑡 = −[(u · ∇)u]𝑛+1/2 + 1
𝑅𝑒

∇ ·
[︁
𝜆𝜀(𝜑)(∇u + ∇u𝑇 )

]︁𝑛+1/2

+ �̄�

2𝑅𝑒∇2u* − �̄�

2𝑅𝑒∇2ũ𝑛+1 + 1
𝐶𝑎𝑅𝑒

[𝛿𝜀(𝜑) (|∇𝜑|∇𝑠𝜎 − 𝜎𝜅∇𝜑)]𝑛+1/2

+𝐶𝑎𝑚𝑎𝑔
𝐶𝑎𝑅𝑒

[(𝜁𝜀(𝜑) − 1) H · ∇H]𝑛+1/2 ,

(3.50)

and

u𝑛+1 − u*

Δ𝑡 = −∇𝜒𝑛+1, (3.51)

in which Δ𝑡 is the time step, 𝜒 is the auxiliary variable to compute the pressure field,

∇2ũ𝑛+1 = 2∇2u𝑛 − ∇2u𝑛−1 (3.52)

and

[(u · ∇)u]𝑛+1/2 = 3
2[(u · ∇)u]𝑛 − 1

2[(u · ∇)u]𝑛−1. (3.53)

Thus, an intermediate velocity field is solved by Eq. (3.50).

In the second step, we take the divergent of Eq. (3.51) and force u𝑛+1 to be
incompressible to provide a Poisson equation for the trial pressure 𝜒 of the form

∇2𝜒
𝑛+1 = ∇ · u*

Δ𝑡 . (3.54)
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After solving Eq.(3.54), one computes u𝑛+1 using Eq.(3.51). Finally, substituting
Eq. (3.51) in Eq. (3.50), the pressure field equation is obtained as follows

𝑝𝑛+1/2 = 𝜒𝑛+1 − 1
2𝑅𝑒∇ · u*. (3.55)

3.6.1 Spatial discretization of the projection method

The governing equations are spatially discretized using the finite difference method
and the closest point method for the surface operators and quantities, as described in
sections 3.1 and 3.3, respectively. These equations have terms in common and therefore are
rewritten as a function of those terms. Thus, the Eqs. (3.50), (3.54) and (3.51) become,
respectively:

u*
𝑖,𝑗 − �̄�Δ𝑡

2𝑅𝑒∇2u*
𝑖,𝑗 = u𝑛𝑖,𝑗 + Δ𝑡

(︂
𝒢 (u𝑛)𝑖,𝑗 + 1

𝐶𝑎𝑅𝑒
F𝑠

𝑛+1/2
𝑖,𝑗 + 𝐶𝑎𝑚𝑎𝑔

𝐶𝑎𝑅𝑒
F𝑚𝑎𝑔

𝑛+1/2
𝑖,𝑗

)︂
, (3.56)

(︃
𝜒𝑛+1
𝑖+1,𝑗 + 𝜒𝑛+1

𝑖−1,𝑗 − 2𝜒𝑛+1
𝑖,𝑗

Δ𝑥2

)︃
+
(︃
𝜒𝑛+1
𝑖,𝑗+1 + 𝜒𝑛+1

𝑖,𝑗−1 − 2𝜒𝑛+1
𝑖,𝑗

Δ𝑦2

)︃
=

∇ · u*
𝑖,𝑗

Δ𝑡 , (3.57)

u𝑛+1
𝑖,𝑗 = u*

𝑖,𝑗 − Δ𝑡∇𝜒𝑛+1
𝑖,𝑗 , (3.58)

where the most complex terms,

𝒢 (u𝑛)𝑖,𝑗 = −[(u · ∇)u]𝑛+1/2
𝑖,𝑗 + 1

𝑅𝑒
∇ · [𝜆𝜀(𝜑)(∇u + ∇u𝑇 )]𝑛+1/2

𝑖,𝑗 − �̄�

2𝑅𝑒∇2ũ𝑛+1
𝑖,𝑗 , (3.59)

F𝑠
𝑛+1/2
𝑖,𝑗 = 𝛿𝜀

(︁
𝜑
𝑛+1/2
𝑖,𝑗

)︁ (︁
|∇𝜑|𝑛+1/2

𝑖,𝑗 ∇𝜎
(︁
cp𝑛+1/2

𝑖,𝑗

)︁
− 𝜎

𝑛+1/2
𝑖,𝑗 𝜅

𝑛+1/2
𝑖,𝑗 ∇𝜑𝑛+1/2

𝑖,𝑗

)︁
, (3.60)

and

F𝑚𝑎𝑔
𝑛+1/2
𝑖,𝑗 =

(︁
𝜁𝜀
(︁
𝜑
𝑛+1/2
𝑖,𝑗

)︁
− 1

)︁
(H · ∇H)𝑛+1/2

𝑖,𝑗 , (3.61)

are discretized in the sequence. For convenience, only the 𝑥-direction components (subscript
"𝑥") are presented, since for 𝑦-direction, the components can be easily obtained by following
the same steps. Thus, the component 𝒢

(︁
𝑢𝑛𝑖,𝑗

)︁
in Eq. (3.59) is determined using the Eqs.

(3.52), (3.53), as follows:
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𝒢
(︁
𝑢𝑛𝑖,𝑗

)︁
= −3

2

⎡⎣𝑢𝑛𝑖,𝑗
(︃
𝜕𝑢𝑛

𝜕𝑥

)︃
+

(︁
𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗 + 𝑣𝑛𝑖+1,𝑗−1 + 𝑣𝑛𝑖,𝑗−1

)︁
4

(︃
𝜕𝑢𝑛

𝜕𝑦

)︃⎤⎦
+1

2

⎡⎣𝑢𝑛−1
𝑖,𝑗

(︃
𝜕𝑢𝑛−1

𝜕𝑥

)︃
+

(︁
𝑣𝑛−1
𝑖,𝑗 + 𝑣𝑛−1

𝑖+1,𝑗 + 𝑣𝑛−1
𝑖+1,𝑗−1 + 𝑣𝑛−1

𝑖,𝑗−1

)︁
4

(︃
𝜕𝑢𝑛−1

𝜕𝑦

)︃⎤⎦
+ 3

2𝑅𝑒

[︃2𝜆𝜀(𝜑𝑛𝑖+1/2,𝑗)(𝑢𝑛𝑖+1,𝑗 − 𝑢𝑛𝑖,𝑗) − 2𝜆𝜀(𝜑𝑛𝑖−1/2,𝑗)(𝑢𝑛𝑖,𝑗 − 𝑢𝑛𝑖−1,𝑗)
Δ𝑥2

]︃

+ 3
2𝑅𝑒

[︃
𝜆𝜀(𝜑𝑛𝑖,𝑗+1/2)(𝑢𝑛𝑖,𝑗+1 − 𝑢𝑛𝑖,𝑗) − 𝜆𝜀(𝜑𝑛𝑖,𝑗−1/2)(𝑢𝑛𝑖,𝑗 − 𝑢𝑛𝑖,𝑗−1)

Δ𝑦2

]︃

+ 3
2𝑅𝑒

[︃
𝜆𝜀(𝜑𝑛𝑖,𝑗+1/2)(𝑣𝑛𝑖+1,𝑗 − 𝑣𝑛𝑖,𝑗) − 𝜆𝜀(𝜑𝑛𝑖,𝑗−1/2)(𝑣𝑛𝑖+1,𝑗−1 − 𝑣𝑛𝑖,𝑗−1)

Δ𝑦Δ𝑥

]︃

− 1
2𝑅𝑒

⎡⎣2𝜆𝜀(𝜑𝑛−1
𝑖+1/2,𝑗)(𝑢𝑛−1

𝑖+1,𝑗 − 𝑢𝑛−1
𝑖,𝑗 ) − 2𝜆𝜀(𝜑𝑛−1

𝑖−1/2,𝑗)(𝑢𝑛−1
𝑖,𝑗 − 𝑢𝑛−1

𝑖−1,𝑗)
Δ𝑥2

⎤⎦
− 1

2𝑅𝑒

⎡⎣𝜆𝜀(𝜑𝑛−1
𝑖,𝑗+1/2)(𝑢𝑛−1

𝑖,𝑗+1 − 𝑢𝑛−1
𝑖,𝑗 ) − 𝜆𝜀(𝜑𝑛−1

𝑖,𝑗−1/2)(𝑢𝑛−1
𝑖,𝑗 − 𝑢𝑛−1

𝑖,𝑗−1)
Δ𝑦2

⎤⎦
− 1

2𝑅𝑒

⎡⎣𝜆𝜀(𝜑𝑛−1
𝑖,𝑗+1/2)(𝑣𝑛−1

𝑖+1,𝑗 − 𝑣𝑛−1
𝑖,𝑗 ) − 𝜆𝜀(𝜑𝑛−1

𝑖,𝑗−1/2)(𝑣𝑛−1
𝑖+1,𝑗−1 − 𝑣𝑛−1

𝑖,𝑗−1)
Δ𝑦Δ𝑥

⎤⎦
− �̄�

𝑅𝑒

(︃
𝑢𝑛𝑖+1,𝑗 + 𝑢𝑛𝑖−1,𝑗 − 2𝑢𝑛𝑖,𝑗

Δ𝑥2 +
𝑢𝑛𝑖,𝑗+1 + 𝑢𝑛𝑖,𝑗−1 − 2𝑢𝑛𝑖,𝑗

Δ𝑦2

)︃

+ �̄�

2𝑅𝑒

(︃
𝑢𝑛−1
𝑖+1,𝑗 + 𝑢𝑛−1

𝑖−1,𝑗 − 2𝑢𝑛−1
𝑖,𝑗

Δ𝑥2 +
𝑢𝑛−1
𝑖,𝑗+1 + 𝑢𝑛−1

𝑖,𝑗−1 − 2𝑢𝑛−1
𝑖,𝑗

Δ𝑦2

)︃
,

(3.62)

The convective term in Eq. (3.62) presents unwanted oscillations since its numerical
computation is not always numerically accurate. Therefore 𝜕𝑢/𝜕𝑥 and 𝜕𝑢/𝜕𝑦 are computed
by second order ENO, as described by Osher and Fedkiw (2003).

The component 𝐹𝑠𝑥

𝑛+1/2
𝑖,𝑗 of the Eq. (3.60) is discretized in conjunction with the

closest point method, described in section 3.3. Therefore,

𝐹𝑠𝑥

𝑛+1/2
𝑖,𝑗 = 𝛿𝜀

⎛⎝𝜑𝑛+1/2
𝑖,𝑗 + 𝜑

𝑛+1/2
𝑖+1,𝑗

2

⎞⎠
⎡⎣⎛⎝ |∇𝜑|𝑛+1/2

𝑖,𝑗 + |∇𝜑|𝑛+1/2
𝑖+1,𝑗

2

⎞⎠⎛⎝𝜎
(︁
cp𝑛+1/2

𝑖+1,𝑗

)︁
− 𝜎

(︁
cp𝑛+1/2

𝑖,𝑗

)︁
Δ𝑥

⎞⎠
−

⎛⎝𝜎𝑛+1/2
𝑖+1,𝑗 + 𝜎

𝑛+1/2
𝑖,𝑗

2

⎞⎠⎛⎝𝜅𝑛+1/2
𝑖+1,𝑗 + 𝜅

𝑛+1/2
𝑖,𝑗

2

⎞⎠⎛⎝𝜑𝑛+1/2
𝑖+1,𝑗 − 𝜑

𝑛+1/2
𝑖,𝑗

Δ𝑥

⎞⎠⎤⎦ ,
(3.63)

where the curvature is

𝜅𝑖,𝑗 =
𝑛𝑥𝑖+1,𝑗

− 𝑛𝑥𝑖−1,𝑗

2Δ𝑥 +
𝑛𝑦𝑖,𝑗+1 − 𝑛𝑦𝑖,𝑗−1

2Δ𝑦 , (3.64)
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in which

𝑛𝑥𝑖,𝑗 =
𝜑𝑥𝑖,𝑗

|∇𝜑𝑖,𝑗|
, (3.65)

𝑛𝑦𝑖,𝑗 =
𝜑𝑦𝑖,𝑗

|∇𝜑𝑖,𝑗|
, (3.66)

𝜑𝑥𝑖,𝑗 = 𝜑𝑖+1,𝑗 − 𝜑𝑖−1,𝑗

2Δ𝑥 , (3.67)

𝜑𝑦𝑖,𝑗 = 𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗−1

2Δ𝑦 , (3.68)

and

|∇𝜑|𝑛+1/2
𝑖,𝑗 =

⎯⎸⎸⎸⎷⎛⎝𝜑𝑛+1/2
𝑖+1,𝑗 − 𝜑

𝑛+1/2
𝑖−1,𝑗

2Δ𝑥

⎞⎠2

+
⎛⎝𝜑𝑛+1/2

𝑖,𝑗+1 − 𝜑
𝑛+1/2
𝑖,𝑗−1

2Δ𝑦

⎞⎠2

. (3.69)

To discretize the component 𝐹𝑚𝑎𝑔𝑥

𝑛+1/2
𝑖,𝑗

of the Eq. (3.61) it is necessary to define
H𝑖,𝑗 =

(︁
𝐻𝑥𝑖,𝑗, 𝐻𝑦𝑖,𝑗

)︁
, where H𝑖,𝑗 = −∇𝜓𝑖,𝑗. Therefore,

𝐻𝑥𝑖,𝑗 = −𝜕𝜓

𝜕𝑥

⃒⃒⃒⃒
⃒
𝑖+1/2,𝑗

= −𝜓𝑖+1,𝑗 − 𝜓𝑖,𝑗
Δ𝑥 , (3.70)

𝐻𝑦𝑖,𝑗 = −𝜕𝜓

𝜕𝑦

⃒⃒⃒⃒
⃒
𝑖,𝑗+1/2

= −𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗
Δ𝑦 , (3.71)

and

𝐹𝑚𝑎𝑔𝑥

𝑛+1/2
𝑖,𝑗

=
⎛⎝𝜁𝜀

(︁
𝜑
𝑛+1/2
𝑖,𝑗

)︁
+ 𝜁𝜀

(︁
𝜑
𝑛+1/2
𝑖+1,𝑗

)︁
2 − 1

⎞⎠⎡⎣𝐻𝑥
𝑛+1/2
𝑖,𝑗

⎛⎝𝐻𝑥
𝑛+1/2
𝑖+1,𝑗 −𝐻𝑥

𝑛+1/2
𝑖−1,𝑗

2Δ𝑥

⎞⎠+
(︁
𝐻𝑦

𝑛+1/2
𝑖,𝑗 +𝐻𝑦

𝑛+1/2
𝑖+1,𝑗 +𝐻𝑦

𝑛+1/2
𝑖+1,𝑗−1 +𝐻𝑦

𝑛+1/2
𝑖,𝑗−1

)︁
4

⎛⎝𝐻𝑥
𝑛+1/2
𝑖,𝑗+1 −𝐻𝑥

𝑛+1/2
𝑖,𝑗−1

2Δ𝑦

⎞⎠⎤⎦ .
(3.72)

Discretizing the left side of Eq. (3.56), using Eqs. (3.62), (3.63), and (3.72), re-
ordering and grouping the terms in the 𝑥-direction,

𝑎𝑢𝑖,𝑗
𝑢*
𝑖−1,𝑗 + 𝑏𝑢𝑖,𝑗

𝑢*
𝑖,𝑗−1 + 𝑐𝑢𝑖,𝑗

𝑢*
𝑖,𝑗 + 𝑑𝑢𝑖,𝑗

𝑢*
𝑖+1,𝑗 + 𝑒𝑢𝑖,𝑗

𝑢*
𝑖,𝑗+1 = 𝑓𝑢𝑖,𝑗

(3.73)

where, the coefficients are,

𝑎𝑢𝑖,𝑗
= 𝑑𝑢𝑖,𝑗

= − �̄�Δ𝑡
2𝑅𝑒Δ𝑥2 , (3.74)
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𝑏𝑢𝑖,𝑗
= 𝑒𝑢𝑖,𝑗

= − �̄�Δ𝑡
2𝑅𝑒Δ𝑦2 , (3.75)

𝑐𝑢𝑖,𝑗
= 1 + �̄�Δ𝑡

𝑅𝑒Δ𝑥2 + �̄�Δ𝑡
𝑅𝑒Δ𝑦2 , (3.76)

and

𝑓𝑢𝑖,𝑗
= 𝑢𝑛𝑖,𝑗 + Δ𝑡

(︂
𝒢
(︁
𝑢𝑛𝑖,𝑗

)︁
+ 1
𝐶𝑎𝑅𝑒

𝐹𝑠𝑥

𝑛+1/2
𝑖,𝑗 + 𝐶𝑎𝑚𝑎𝑔

𝐶𝑎𝑅𝑒
𝐹𝑚𝑎𝑔𝑥

𝑛+1/2
𝑖,𝑗

)︂
. (3.77)

Now, discretizing Eq. (3.57), we have:

𝑎𝜒𝑖,𝑗
𝜒
𝑛+1/2
𝑖−1,𝑗 + 𝑏𝜒𝑖,𝑗

𝜒
𝑛+1/2
𝑖,𝑗−1 + 𝑐𝜒𝑖,𝑗

𝜒
𝑛+1/2
𝑖,𝑗 + 𝑑𝜒𝑖,𝑗

𝜒
𝑛+1/2
𝑖+1,𝑗 + 𝑒𝜒𝑖,𝑗

𝜒
𝑛+1/2
𝑖,𝑗+1 = 𝑓𝜒𝑖,𝑗

, (3.78)

where the coefficients are,

𝑎𝜒𝑖,𝑗
= 𝑑𝜒𝑖,𝑗

= 1
Δ𝑥2 , (3.79)

𝑏𝜒𝑖,𝑗
= 𝑑𝜒𝑖,𝑗

= 1
Δ𝑦2 , (3.80)

𝑐𝜒𝑖,𝑗
= − 2

Δ𝑥2 − 2
Δ𝑦2 , (3.81)

and

𝑓𝜒𝑖,𝑗
= 1

Δ𝑡

(︃
𝑢*
𝑖,𝑗 − 𝑢*

𝑖−1,𝑗

Δ𝑥 +
𝑣*
𝑖,𝑗 − 𝑣*

𝑖,𝑗−1

Δ𝑦

)︃
. (3.82)

Discretizing the 𝑥-components of Eq. (3.58), it is obtained

𝑢𝑛+1
𝑖,𝑗 = 𝑢*

𝑖,𝑗 − Δ𝑡
(︃
𝜒𝑛+1
𝑖+1,𝑗 − 𝜒𝑛+1

𝑖,𝑗

Δ𝑥

)︃
. (3.83)

Finally, Eq. (3.55) is discretized, obtaining

𝑝
𝑛+1/2
𝑖,𝑗 = 𝜒𝑛+1

𝑖,𝑗 − 1
2𝑅𝑒

(︃
𝑢*
𝑖,𝑗 − 𝑢*

𝑖−1,𝑗

Δ𝑥 +
𝑣*
𝑖,𝑗 − 𝑣*

𝑖,𝑗−1

Δ𝑦

)︃
. (3.84)

Thus, the equations for fluid motion are solved in the following order: Eqs. (3.73)
and a similar equation for 𝑦-direction, to compute the trial velocity field, u*; Eq. (3.78) to
compute 𝜒𝑛+1; Eq. (3.83) and a similar equation for 𝑦-direction, to compute velocity field,
u𝑛+1; and finally, Eq. (3.84) to compute pressure field, 𝑝𝑛+1/2. All linear systems presented
so far are solved by the Direct solution via Fourier Analysis, as shown in Annex A.
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3.7 Boundary and initial conditions

Considering simple shear flow, the periodic boundary condition for velocity and
pressure fields are used at the side boundaries. At the top and bottom boundaries, are
considered the no-slip condition at the channel walls, and the non-homogeneous Dirichlet
boundary condition is applied to the velocity field u. For the pressure field, Homogeneous
Neumann boundary conditions are used.

As shown in Figure 3, for cells located at the top and bottom boundaries, the
velocity components 𝑣 and 𝑣* coincide with the boundaries (positions where 𝑗 = 0 or
𝑗 = 𝑁𝑦) and have the same wall velocity. Therefore, such points are not part of the
solution domain of 𝑣 and 𝑣*. However, there are no points to evaluate any other properties
coinciding with the upper and lower boundaries. Thus, all fields, except 𝑣 and 𝑣* that
are computed in a domain [𝑁𝑥 × 𝑁𝑦 − 1], are evaluated in a domain [𝑁𝑥 × 𝑁𝑦], with
𝑖 = 1, 2, 3, ..., 𝑁𝑥 and 𝑗 = 1, 2, 3, ..., 𝑁𝑦.

By Eqs. (3.73) and (3.78), it can be seen that for any cell of the boundaries (𝑖 = 1
or 𝑖 = 𝑁𝑥 or 𝑗 = 1 or 𝑗 = 𝑁𝑦), at least one neighboring cell will be outside the domain
[𝑁𝑥 ×𝑁𝑦]. Therefore, at borders it is necessary to use ghost nodes, i.e. nodes out of the
domain, as the red dots in Figure 9. The ghost nodes are commonly used for the application
of boundary conditions as will be further explained.

𝐧

Upper

Boundary

𝑢𝑖,𝑁𝑦
∗

𝑣𝑖,𝑁𝑦
∗

𝜒𝑖,𝑁𝑦

𝑣g𝑖,𝑁𝑦+1
∗

𝑢g𝑖,𝑁𝑦+1
∗𝜒g𝑖,𝑁𝑦+1

∆𝑦
𝐧

Lower

Boundary

𝑢g𝑖,0
∗

𝑣g𝑖,0
∗

𝜒g𝑖,0

𝑣𝑖,1
∗

𝑢g𝑖,1
∗𝜒𝑖,1

∆𝑦

Figure 9 – Upper and lower boundaries. The red dots correspond to points outside the
solution domain, but which are used to solve the governing equations.

For 𝜒 and pressure field the boundary conditions on the upper and lower walls are,
respectively, ∇𝜒 · n = 0 and ∇𝑝 · n = 0, that is, in a domain [𝑁𝑥 ×𝑁𝑦] according to the
Figure 9,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜒1:𝑁𝑥,0 = 𝜒1:𝑁𝑥,1 , lower;
𝑝1:𝑁𝑥,0 = 𝑝1:𝑁𝑥,1 , lower;

𝜒1:𝑁𝑥,𝑁𝑦+1 = 𝜒1:𝑁𝑥,𝑁𝑦 , upper;
𝑝1:𝑁𝑥,𝑁𝑦+1 = 𝑝1:𝑁𝑥,𝑁𝑦 , upper.

(3.85)
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For the velocity field component 𝑢, the ghost nodes in the upper and lower contours
are determined based on the upper and lower wall velocities. From Figure 9, note that the
top wall is between nodes [1 : 𝑁𝑥, 𝑁𝑦] and [1 : 𝑁𝑥, 𝑁𝑦 + 1] at a distance Δ𝑦/2 of both, the
same happens in the lower wall, between the nodes [1 : 𝑁𝑥, 0] and [1 : 𝑁𝑥, 1]. Therefore,
on the upper and lower walls, respectively, the following condition is used:

𝑈𝑠 = 𝑢1:𝑁𝑥,0 + 𝑢1:𝑁𝑥,1

2 (3.86)

and

𝑈𝑛 = 𝑢1:𝑁𝑥,𝑁𝑦 + 𝑢1:𝑁𝑥,𝑁𝑦+1

2 . (3.87)

Thus, the ghosts nodes for 𝑢 and 𝑣 are:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[𝑙]𝑢1:𝑁𝑥,𝑁𝑦+1 = 2𝑈𝑛 − 𝑢1:𝑁𝑥,𝑁𝑦 , upper;
𝑢1:𝑁𝑥,0 = 2𝑈𝑠 − 𝑢1:𝑁𝑥,1 , lower;

𝑣1:𝑁𝑥,𝑁𝑦+1 = 𝑣1:𝑁𝑥,𝑁𝑦 = 0 , upper;
𝑣1:𝑁𝑥,0 = 0 , lower.

(3.88)

For the intermediate velocity field u*, it is necessary to relate the conditions of u
and u* by Eq. (3.51), so that, on the normal direction the walls,

u𝑛+1 · n = u* · n − Δ𝑡(∇𝜒 · n)𝑛+1 (3.89)

being ∇𝜒 · n = 0, u𝑛+1 · n = u* · n, that is, the boundary conditions known for u can be
directly applied to u* when the velocity component is normal to the wall. In the tangential
direction to the wall,

u𝑛+1 · t = u* · t − Δ𝑡(∇𝜒 · t)𝑛+1. (3.90)

Thus, based on Eqs. (3.86) and (3.87), the ghost nodes of u* when the velocity
component is tangential to the wall are:⎧⎨⎩𝑢

*
1:𝑁𝑥,𝑁𝑦+1 = 2𝑈*

𝑛 − 𝑢*
1:𝑁𝑥,𝑁𝑦

, upper;
𝑢*

1:𝑁𝑥,0 = 2𝑈*
𝑠 − 𝑢*

1:𝑁𝑥,1 , lower;
(3.91)

where,

𝑈* = 𝑈 + Δ𝑡
(︃
𝜒𝑛+1
𝑖+1,𝑗 − 𝜒𝑛+1

𝑖,𝑗

Δ𝑥

)︃
(3.92)

and

𝜒𝑛+1
𝑖,𝑗 = 2𝜒𝑛𝑖,𝑗 − 𝜒𝑛−1

𝑖,𝑗 . (3.93)
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The boundary conditions applied on the upper and lower walls change the coeffi-
cients of the governing equations of fluid motion, Eqs. (3.73) and (3.78), so that on the
upper wall [1 : 𝑁𝑥, 𝑁𝑦],

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑐𝑢𝑖,𝑗 = 𝑐𝑢𝑖,𝑗 − 𝑒𝑢𝑖,𝑗,

𝑢*
𝑖,𝑗+1 = 2𝑈*

𝑛,

𝑐𝜒𝑖,𝑗 = 𝑐𝜒𝑖,𝑗 + 𝑒𝜒𝑖,𝑗,

𝑒𝜒𝑖,𝑗 = 0.

(3.94)

and on the lower wall [1 : 𝑁𝑥, 1],

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑐𝑢𝑖,𝑗 = 𝑐𝑢𝑖,𝑗 − 𝑏𝑢𝑖,𝑗,

𝑢*
𝑖,𝑗−1 = 2𝑈*

𝑠 ,

𝑐𝜒𝑖,𝑗 = 𝑐𝜒𝑖,𝑗 + 𝑏𝜒𝑖,𝑗,

𝑏𝜒𝑖,𝑗 = 0.

(3.95)

On the domain sides, the boundary conditions are periodic, this means that, for a
given boundary, all flow properties must be identical to the properties on the opposite
boundary, including their respective derivatives. For the case of discretization presented
here, this is done by assigning values to the ghosts equal to the values of the internal
nodes adjacent to the opposite border, as shown in Figure 10.

𝐧 Left

Boundary

𝑢𝑁𝑥,𝑗
∗ 𝑢1,𝑗

∗

𝜒𝑁𝑥,𝑗 𝜒1,𝑗

𝑣𝑁𝑥,𝑗
∗ 𝑣1,𝑗

∗

𝑣𝑁𝑥,𝑗−1
∗ 𝑣1,𝑗−1

∗

𝑢𝑁𝑥−1,𝑗
∗

𝐧Right

Boundary

𝑢𝑁𝑥,𝑗
∗ 𝑢1,𝑗

∗

𝜒𝑁𝑥,𝑗 𝜒1,𝑗

𝑣𝑁𝑥,𝑗
∗ 𝑣1,𝑗

∗

𝑣𝑁𝑥,𝑗−1
∗ 𝑣1,𝑗−1

∗

𝑢𝑁𝑥−1,𝑗
∗

Figure 10 – Left and right boundaries. The red dots correspond to points outside the
domain, but which are used to solve the governing equations. As in these
boundaries, the boundary conditions are periodic, and the dots that are inside
and outside the domain are inverted from one side to another.
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Therefore, the ghost nodes for the domain sides are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢*
0,1:𝑁𝑦

= 𝑢*
𝑁𝑥,1:𝑁𝑦

, left;
𝑢*
𝑁𝑥+1,1:𝑁𝑦

= 𝑢*
1,1:𝑁𝑦

, right;
𝑣*

0,1:𝑁𝑦
= 𝑣*

𝑁𝑥,1:𝑁𝑦
, left;

𝑣*
𝑁𝑥+1,1:𝑁𝑦

= 𝑣*
1,1:𝑁𝑦

, right;
𝜒0,1:𝑁𝑦 = 𝜒𝑁𝑥,1:𝑁𝑦 , left;

𝜒𝑁𝑥+1,1:𝑁𝑦 = 𝜒1,1:𝑁𝑦 , right.

(3.96)

All conditions described in Eq. (3.96) for 𝑢*, 𝑣* and 𝜒 are also valid, respectively, for 𝑢, 𝑣
and 𝑝.

3.8 Surfactant concentration

The surfactant concentration, Eq. (3.40) is evolved by a semi-implicit Crank–Nicholson
scheme, similar to that developed by Xu and Zhao (2003), as follows:

𝑐𝑛+1 − 𝑐𝑛

Δ𝑡 = 3
2 [−∇𝑠 · (𝑐u𝑠) − 𝑐(∇𝑠 · n)(u · n)]𝑛

−1
2 [−∇𝑠 · (𝑐u𝑠) − 𝑐(∇𝑠 · n)(u · n)]𝑛−1

+ 1
2𝑃𝑒

(︁
∇2
𝑠𝑐
𝑛+1 + ∇2

𝑠𝑐
𝑛
)︁
,

(3.97)

the difference is that here, the Eq. (3.97) is changed by the closest point method as
presented by Ruuth and Merriman (2008), thus

∇𝑠 · (𝑐u𝑠) = ∇ ·
[︁
𝑐
(︁
cp𝑖,𝑗

)︁
u𝑠
(︁
cp𝑖,𝑗

)︁]︁
, (3.98)

𝑐(∇𝑠 · n)(u · n) = 𝑐
(︁
cp𝑖,𝑗

)︁ [︁
∇ · n

(︁
cp𝑖,𝑗

)︁]︁ [︁
u
(︁
cp𝑖,𝑗

)︁
· n
(︁
cp𝑖,𝑗

)︁]︁
(3.99)

and

∇2
𝑠𝑐 = ∇2𝑐

(︁
cp𝑖,𝑗

)︁
. (3.100)

Discretizing the Eq. (3.97) by finite differences and using the closest point method,

𝑎𝑐𝑖,𝑗𝑐
(︁
cp𝑛+1

𝑖−1,𝑗

)︁
+ 𝑏𝑐𝑖,𝑗𝑐

(︁
cp𝑛+1

𝑖,𝑗−1

)︁
+ 𝑐𝑐𝑖,𝑗𝑐

(︁
cp𝑛+1

𝑖,𝑗

)︁
+𝑑𝑐𝑖,𝑗𝑐𝑛+1

(︁
cp𝑖+1,𝑗

)︁
+ 𝑑𝑐𝑖,𝑗𝑐

(︁
cp𝑛+1

𝑖,𝑗+1

)︁
= 𝑓𝑐𝑖,𝑗

(3.101)

where the coefficients 𝑎𝑐𝑖,𝑗, 𝑏𝑐𝑖,𝑗, 𝑐𝑐𝑖,𝑗 and 𝑑𝑐𝑖,𝑗 are, respectively,

𝑎𝑐𝑖,𝑗 = 𝑑𝑐𝑖,𝑗 = − Δ𝑡
2𝑃𝑒Δ𝑥2 , (3.102)
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𝑏𝑐𝑖,𝑗 = 𝑒𝑐𝑖,𝑗 = − Δ𝑡
2𝑃𝑒Δ𝑦2 , (3.103)

𝑑𝑐𝑖,𝑗 = 1 + Δ𝑡
𝑃𝑒Δ𝑥2 + Δ𝑡

𝑃𝑒Δ𝑦2 (3.104)

and

𝑓𝑐𝑖,𝑗 = 3Δ𝑡
2

{︁
−∇ ·

[︁
𝑐
(︁
cp𝑛𝑖,𝑗

)︁
u𝑛𝑠
(︁
cp𝑛𝑖,𝑗

)︁]︁
−𝑐

(︁
cp𝑛𝑖,𝑗

)︁ [︁
∇ · n

(︁
cp𝑛𝑖,𝑗

)︁]︁ [︁
u
(︁
cp𝑛𝑖,𝑗

)︁
· n
(︁
cp𝑛𝑖,𝑗

)︁]︁}︁
−Δ𝑡

2
{︁
−∇ ·

[︁
𝑐
(︁
cp𝑛−1

𝑖,𝑗

)︁
u𝑠
(︁
cp𝑛−1

𝑖,𝑗

)︁]︁
−𝑐

(︁
cp𝑛−1

𝑖,𝑗

)︁ [︁
∇ · n

(︁
cp𝑛−1

𝑖,𝑗

)︁]︁ [︁
u
(︁
cp𝑛−1

𝑖,𝑗

)︁
· n
(︁
cp𝑛−1

𝑖,𝑗

)︁]︁}︁𝑛−1

+ Δ𝑡
2𝑃𝑒∇2𝑐

(︁
cp𝑛𝑖,𝑗

)︁
+ 𝑐𝑛𝑖,𝑗.

(3.105)

in which, regardless of the time step,
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and
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(3.108)

Eq. (3.101) is solved by the biconjugate gradient stabilized method, as shown in
Annex B.
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3.9 Numerical methodology to compute the droplet shape

The droplet deformation is measured by Taylor deformation parameter (TAYLOR,
1934), as follows:

𝐷𝑇 = 𝐿−𝐵

𝐿+𝐵
, (3.109)

where 𝐿 is the droplet length (largest dimension) and 𝐵 is the height (smallest dimension).
Note that Taylor deformation is zero for the case where 𝐿 = 𝐵 (spherical drop) and
converges to 1 when 𝐿 ≫ 𝐵.

In order to determine the droplet dimensions and inclination, a methodology is
developed to compute the surface points xΓ sequentially in the counter-clockwise direction.
From these points, it is possible to determine both the droplet size and the length of its
surface. This methodology is illustrated in Figure 11, consisting of firstly determining the
droplet center x𝑐 (black dot). Then the droplet contour is divided in 𝑛𝜃 points (yellow
dots), so that the position vector of each point, xΓ = (𝑥𝜃𝑖

, 𝑦𝜃𝑖
), which originates on the

droplet center, forms an angle 𝜃𝑖, 𝑖 = 1, ..., 𝑛𝜃 with the vector xΓ𝑛𝜃
= (0, 𝐿𝑥). These points

have the same angular spacing from each other, that is 𝜃𝑖+1 = 𝜃𝑖 + Δ𝜃 where Δ𝜃 = 2𝜋/𝑛𝜃.

𝐱𝑐 𝐱Γ𝑛𝜃

𝐱Γ𝑖

𝐱Γ𝑖+1

𝐱Γ𝑖+2

𝐱Γ𝑖+3

Figure 11 – Geometrical representation of the droplet measure. Each yellow dot on the
surface corresponds to an angle 𝜃𝑖.

For each value of 𝜃𝑖, xΓ𝑖
is determined by following system,⎧⎨⎩ 𝜑(xΓ𝑖

) = 0
(xΓ𝑖

− x𝑐) × x𝜃𝑖
= 0,

(3.110)
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which is solved by Newton-Raphson method considering,

⎧⎪⎨⎪⎩
𝑓1 = 𝜑(𝑥Γ𝑖

, 𝑦Γ𝑖
) = 0

𝑓2 = 𝑥Γ𝑖
𝑦𝜃𝑖

− 𝑦Γ𝑖
𝑥𝜃𝑖

− 𝑥𝑐𝑦𝜃𝑖
+ 𝑦𝑐𝑥𝜃𝑖

, (3.111)

where 𝑥𝜃𝑖
= cos 𝜃𝑖 and 𝑦𝜃𝑖

= sin 𝜃𝑖.

Therefore, the discrete points of the droplet surface for each 𝜃𝑖 are obtained by the
following steps:

1. tol = 10−10, 𝑖 = 0, 𝜃0 = 0;

2. 𝜃𝑖+1 = 𝜃𝑖 + Δ𝜃, 𝑘 = 0, 𝑥𝑘Γ𝑖
= 𝑥Γ𝑖 0 and 𝑦𝑘Γ𝑖

= 𝑦Γ𝑖 0. where, 𝑘 represents the iteration
of the Newton-Raphson method, 𝑥Γ𝑖 0 and 𝑦Γ𝑖 0 are the interface coordinates corre-
sponding to 𝜃𝑖 determined in the last droplet measurement. In the first iteration,
𝑥Γ𝑖 0 and 𝑦Γ𝑖 0 are estimated considering a spherical droplet;

3. Rewrite the system of equations using the Newton-Raphson method so that:⎛⎜⎝𝜕𝑓1
𝜕𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑦

⎞⎟⎠
⎛⎜⎝𝛿𝑥Γ𝑖

𝛿𝑦Γ𝑖

⎞⎟⎠ =

⎛⎜⎝−𝑓1

−𝑓2

⎞⎟⎠ , (3.112)

or ⎛⎜⎝𝜕𝜑
𝜕𝑥

(︁
𝑥𝑘Γ𝑖

, 𝑦𝑘Γ𝑖

)︁
𝜕𝜑
𝜕𝑦

(︁
𝑥𝑘Γ𝑖

, 𝑦𝑘Γ𝑖

)︁
𝑦𝜃𝑖

−𝑥𝜃𝑖

⎞⎟⎠
⎛⎜⎝𝛿𝑥𝑘Γ𝑖

𝛿𝑦𝑘Γ𝑖

⎞⎟⎠ =

⎛⎜⎝−𝑓𝑘1
−𝑓𝑘2

⎞⎟⎠ , (3.113)

where 𝛿𝑥𝑘Γ𝑖
and 𝛿𝑦𝑘Γ𝑖

are, respectively, the corrections of 𝑥𝑘Γ𝑖
and 𝑦𝑘Γ𝑖

;

4. Solve the system in Eq. (3.113) by Cramer’s rule to obtain: 𝛿𝑥𝑘Γ𝑖
and 𝛿𝑦𝑘Γ𝑖

;

5. Correct 𝑥𝑘Γ𝑖
and 𝑦𝑘Γ𝑖

by: ⎧⎪⎨⎪⎩
𝑥𝑘+1

Γ𝑖
= 𝑥𝑘Γ𝑖

+ 𝛿𝑥𝑘Γ𝑖
,

𝑦𝑘+1
Γ𝑖

= 𝑦𝑘Γ𝑖
+ 𝛿𝑦𝑘Γ𝑖

;
(3.114)

6. If |𝑓𝑘+1
1 | + |𝑓𝑘+1

2 | < tol, go to step 7, else 𝑘 = 𝑘 + 1 and return to step 3;

7. If 𝑖 = 𝑛𝜃, go to step 8, else 𝑖 = 𝑖+ 1 and return to step 2;

8. Finish.

Thus, the arc-length (the contour length) is computed by the sum of the distance
between the points xΓ𝑖

obtained by Eq. (3.110), the largest and smallest droplet dimensions
are, respectively, the largest and the smallest distance between xΓ𝑖

and the center of the
droplet, x𝑐.
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4 Results and discussions

This chapter is divided into two main parts. The first part deals only with the
effects of the surfactant, while the second deals with the combined effect of this surface
active agent and the action of an external magnetic field. The results are presented both in
terms of the individual properties of each droplet and the emulsion rheology, being explored
in terms of the droplet deformation and inclination, surfactant concentration and forces on
the interface, contributions of capillary and Marangoni stresses, and magnetic field to the
droplet shape, emulsion reduced viscosity, the first normal stress difference and the bulk
emulsion magnetization (only for ferrofluid droplets emulsions). For this purpose, we fixed
the Reynolds and capillary numbers to 𝑅𝑒 = 10−2 and 𝐶𝑎 = 0.1 (except for some special
cases for comparison with literature results) and used a range of Péclet numbers that
contemplates the dominance of the surfactant advection (𝑃𝑒 = 103), diffusion (𝑃𝑒 = 10−3)
and the equivalence of both (𝑃𝑒 = 1). The low Reynolds number mitigates the inertial
effects so that the emulsion can be considered a rheological material.

In all simulations, the dispersed and continuous phases are assumed to have the
same viscosity, 𝜆 = 1. In addition, we set ℎ = Δ𝑥 = Δ𝑦. Due to the diversity of tests
performed and the reproduction of some results present in the literature, the individual
characteristics of each simulation, such as domain, mesh, time step, surfactant coverage
and elasticity, and magnetic field intensity, are presented in each section.

4.1 Non-magnetic surfactant-covered droplets

In this section, we perform a rate of convergence test of the numerical model and
verification by comparison with the numerical results of Li and Pozrikidis (1997) for a
surfactant-covered droplet, as well. In addition, we investigate the surfactant concentration,
surface tension coefficient, and signed magnitude of capillary and Marangoni forces over
the droplet surface. Our results are compared to those of Xu, Yang and Lowengrub (2012).
These studies are performed to verify the accuracy of the proposed model. Then, results on
the effects of elasticity and surfactant coverage on the emulsion rheology are presented. It
is well-known that the macroscopic rheological properties of emulsions are closely related
to the flow at the droplet scale. Here, we present cases in which the rheological properties
are more affected by the presence of the surfactant than by the droplet shape.
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Table 1 – Errors and convergence rate for the surfactant concentration at 𝑡 = 0.5 for
𝑋 = 0.6, 𝐸 = 0.2, 𝜆 = 1, 𝐶𝑎 = 0.1, 𝑃𝑒 = 10 and 𝑅𝑒 = 10.

ℎ 𝑐ℎ
⃒⃒⃒
𝑐ℎ − 𝑐ℎ/2

⃒⃒⃒
𝑟

0.08 0.9194190291 0.0027084028 0.6850475492
0.04 0.9221274319 0.0016845868 0.9221863430
0.02 0.9238120187 0.0008889711 0.9741642078
0.01 0.9247009898 0.0004525171 1.0003880508
0.005 0.9251535069 0.0002261977 -
0.0025 0.9253797046 - -

4.1.1 Convergence rate and droplet shape comparison with results from the
literature

In Table 1 results of the convergence rate study for the surfactant concentration are
presented. We consider a simulation until the instant 𝑡 = 0.5 in a [10 × 4] non-dimensional
domain, discretized by a regular 500 × 200 cells mesh, for 𝑋 = 0.6, 𝐸 = 0.2, 𝜆 = 1,
𝐶𝑎 = 0.1, 𝑃𝑒 = 10 and 𝑅𝑒 = 10. The concentration was computed in the droplet surface
at 𝑥 = 6 and 𝑦 = 2 using a third-order Lagrange interpolation. The convergence rate, 𝑟 was

calculated using Richardson extrapolation by 𝑟 = log2

(︃
𝑐ℎ − 𝑐ℎ/2

𝑐ℎ/2 − 𝑐ℎ/4

)︃
+ 𝒪(ℎ), resulting in

first order convergence rate for concentration. This result is compatible with the work of Xu,
Yang and Lowengrub (2012), which has used an Adams-Bashford formula combined with
normally extended values of concentration, around the interface. The same convergence
rate is commonly obtained in conventional continuum surface force methods like Immersed
Boundary (see e.g. Li and Ito (2006)).

In Figure 12 we present the deformation and inclination (inset) of a surfactant-laden
three-dimensional droplet subjected to a simple shear flow as a function of 𝐶𝑎 (red curves).
We considered a square domain, [8 × 8], discretized by a regular 400 × 400 cells mesh and
minimized the inertia effects by setting 𝑅𝑒 = 10−2. We compared our results for droplet
deformation and inclination with data from the work of Li and Pozrikidis (1997) (black
line) for 𝜆 = 1, 𝑃𝑒 = 103, 𝑋 = 0.6, and 𝐸 = 0.1, obtained using 3D Boundary Integral
Simulations. We found a good agreement for 𝐷𝑇 , at 𝐶𝑎 < 0.15, and for inclination at the
entire range. At larger 𝐶𝑎, results begin to diverge due to the increasing importance of 3D
deformation mechanisms, which become more important at higher deformations (SOLIGO;
ROCCON; SOLDATI, 2019b).

4.1.2 Surfactant concentration and forces on the interface

Figures 13 and 14 present interface quantities as functions of the arc-length at the
steady state in a [10 × 4] non-dimensional domain, discretized by a regular 500 × 200 cell
mesh. For these simulations, we have considered 𝑅𝑒 = 10, 𝐶𝑎 = 0.1, 𝑋 = 0.6, 𝐸 = 0.2,
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Figure 12 – Taylor deformation, 𝐷𝑇 , as function of 𝐶𝑎 for 𝑋 = 0.6, 𝐸 = 0.1 and
𝛼 = 𝑃𝑒/𝐶𝑎 = 10. Red curve and black line corresponds, respectively, to the
present model and the work of Li and Pozrikidis (1997). The inset shows the
dependence of the droplet inclination, 𝜃, as functions of 𝐶𝑎.
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Figure 13 – (a) Surfactant concentration and (b) surface tension coefficient over droplet
surface for 𝑅𝑒 = 10, 𝐶𝑎 = 0.1, 𝑋 = 0.6, 𝐸 = 0.2, 𝑃𝑒 = 10 (red line), and
𝑃𝑒 = 1 (blue line). The black dotted line corresponds to the work of Xu, Yang
and Lowengrub (2012). The insets of (a) shows droplet contours colored by
surfactant concentration for 𝑃𝑒 = 10 and the droplet shapes for 𝑃𝑒 = 1 and
𝑃𝑒 = 10.

𝑃𝑒 = 10 (red line) and 𝑃𝑒 = 1 (blue line). The arc-length coordinate starts at the point
on the surface that crosses the 𝑥-axis and increases in the counterclockwise direction. The
black dotted line corresponds to data from the work of Xu, Yang and Lowengrub (2012),
which are in close agreement with ours, suggesting good accuracy of both methodologies.

Figures 13(a) and (b) present the surfactant concentration and the surface tension
coefficient as functions of the arc-length. In Figure 13(a) it is clear that the surfactant
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Figure 14 – Concentrated body forces for 𝑅𝑒 = 10, 𝐶𝑎 = 0.1, 𝑋 = 0.6, 𝐸 = 0.2, 𝑃𝑒 = 10
(red line), and 𝑃𝑒 = 1 (blue line). (a) Signaled capillary force magnitude
(F𝑐 · n̂) and (b) signaled Marangoni force magnitude (F𝑚 · t̂). The black dotted
line corresponds to the work of Xu, Yang and Lowengrub (2012). The inset of
(b) shows where F𝑚 · t̂ is positive (red contour) or negative (black contour).

concentration increases at the droplet tips and decreases at the more elongated surface.
This is due to the flow action, which sweeps the surfactant to the droplet tips. In addition,
we show the contour of the droplet for 𝑃𝑒 = 1 and 𝑃𝑒 = 10. The shapes are remarkably
similar, indicating that Péclet variations alone do not significantly affect the droplet
geometry; even drastic variations of surfactant concentration and surface tension coefficient
are visibly more pronounced for 𝑃𝑒 = 10. In fact, for 𝑃𝑒 = 1, diffusion almost uniformly
distributes the surfactant over the droplet surface, leading to a maximal variation of 𝜎 of
0.76%, around the mean value. In these situations, Marangoni forces are very small, and
the interface behaves as in a clean droplet, with mean surface tension uniformly reduced
by the covering substance.

The curves in Figure 14(a) show the signaled magnitude of the capillary force,
defined as F𝑐 · n̂, as a function of the arc-length. Negative values of this quantity can
be considered as forces compressing the fluid inside the droplet. The maximum absolute
value of F𝑐 · n̂ are considerably higher for 𝑃𝑒 = 1 when compared to 𝑃𝑒 = 10. For 𝑃𝑒 = 1,
diffusion is able to remove the surfactant from the tips, such that surface tension, and
consequently the capillary forces, became higher in these regions.

Figure 14(b) shows the signaled magnitude of the Marangoni force, defined as
F𝑚 · t̂, as a function of the arc-length. In contrast to the capillary forces, the signal of
the Marangoni forces varies along the interface. The inset in Figure 14(b) show where
the signal of F𝑚 · t̂ is positive (red lines) or negative (black lines). At the locations where
F𝑚 · t̂ > 0, the Marangoni force is in the opposite direction of the vorticity, meaning that
in these regions F𝑚 resists the flow. On the other hand, if F𝑚 · t̂ < 0, then F𝑚 favors the
flow field, contributing to drive the rotation of the droplet in the same direction of the
vorticity.
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Figure 15 – (a) Taylor deformation parameter and (b) droplet inclination as functions of
𝑋 for 𝐸 = 0.2 (diamonds) and 𝐸 = 0.4 (circles). 𝑃𝑒 = 103 (red), 𝑃𝑒 = 1
(green), and 𝑃𝑒 = 10−3 (blue). The insets show the variation of 𝐷𝑇 and 𝜃 as
functions of 𝐸 for 𝑋 = 0.6.

4.1.3 Influence of the surfactant’s elasticity and coverage factor in the droplet
shape

The droplet shape is influenced by the parameters related to the surfactant and its
distribution over the droplet surface. In this section, we use the same domain and mesh
considered in the preceding section to study the influence of the elasticity and coverage
parameters on the droplet deformation (𝐷𝑇 ), and inclination angle (𝜃), defined between
the principal deformation axis of the droplet and the vertical. We considered 𝐶𝑎 = 0.1 and
𝜆 = 1, allowing moderate deformation, but avoiding droplet breakup. We set 𝑅𝑒 = 10−2

to minimize inertia effects on the flow at the droplet scale.

Figure 15(a) and (b) present the Taylor deformation parameter and droplet incli-
nation angle, as functions of the coverage parameter, respectively. We present results for
𝑃𝑒 = 103 (red), 𝑃𝑒 = 1 (green), and 𝑃𝑒 = 10−3 (blue). The diamonds represent 𝐸 = 0.2,
and the circles, 𝐸 = 0.4.

Regarding Figs.15(a) and (b), the results show that, as coverage increases, 𝐷𝑇

increases and 𝜃 decreases, regardless of the 𝑃𝑒 or 𝐸. Such behavior is a direct consequence
of the overall diminishing of the surface tension as the amount of surfactant on the interface
increases. As the surface became less stiff, the shear flow causes higher deformations, and
bent the droplet in the direction of the main flow (decreasing the 𝜃). The deformation
varied more significantly as a function of the elasticity than the Péclet number. The inset
of Figure 15(a) shows the curves of 𝐷𝑇 as a function of 𝐸, for 𝑋 = 0.6 and the same
Péclet numbers. The curves are very similar, with a small vertical displacement.

The droplet deformation depends strongly on 𝑋 and 𝐸, and the influence of 𝑃𝑒 is
less significant. It turns out that the elasticity and coverage factors directly impact the
value of the surface tension coefficient (𝑋 accounting for the amount of surfactant and 𝐸
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for the sensibility of 𝜎 on the concentration) and, consequently, on the normal forces on
the surface, which are capable of changing the droplet’s shape. The Péclet number, in turn,
alters the surfactant distribution, and its effect on the surface tension coefficient elapses
from a more elaborate mechanism. In a diffusion dominating situation (low 𝑃𝑒), surfactant
tends to uniformly distribute, reducing the surface tension on the entire interface. On the
other hand, for advective dominating regimes (high 𝑃𝑒), the surfactant concentrates on
the high curvature regions, leaving the less curved sections partially uncovered. Our results
indicate that concentrating the surfactant in the high curvature regions allows slightly
more deformed droplets than in the situation where 𝜎 is reduced in the entire interface.

In general, the droplet inclination angle 𝜃 is a monotonic decreasing function of 𝑋,
as can be seen in Fig.15(b). For a fixed 𝐸, the green and blue curves are very close in the
entire range of 𝑋, indicating that for 𝑃𝑒 ≤ 1, 𝜃 is only a weak function of 𝑃𝑒 and much
more sensitive to variations of 𝑋. The inset in Fig.15(b) show the dependence of 𝜃 on 𝐸 for
𝑋 = 0.6. One can note that the inclination angle does not depend on 𝑃𝑒 for very elastic
surfactants. The relationship between the inclination angle, 𝜃, and the parameters 𝑃𝑒, 𝐸,
and 𝑋 is more intricate than what is observed in the case of Taylor deformation. In a
situation where the surfactant is uniformly distributed over the surface, it is expected that
a higher elasticity causes the deformed droplet to bend towards the main flow direction
(smaller 𝜃), as a consequence of the more intense reduction of the surface tension. This is
actually observed for high coverage factors (𝑋 ≥ 0.6, approximately), regardless of the
𝑃𝑒. However, for 𝑋 < 0.6, the balance between diffusion and advection might change this
relation, and surfactants with 𝐸 = 0.4 (more elastic) for 𝑃𝑒 = 1 and 𝑃𝑒 = 10−3 (a lot
of diffusion) are less aligned to the flow (higher 𝜃) than surfactants with 𝐸 = 0.2 (less
elastic) for 𝑃𝑒 = 103 (advection-dominated).

As a general rule, the addition of surfactant in the droplet surface, which causes
a reduction of the surface tension coefficient, implies in higher deformation and droplet
alignment with the flow. The same is observed in clean droplets, for increasingly higher
capillary numbers. This is not surprising since the droplet shape should be directly related
to forces and displacements in the normal direction of the interface, and lowering 𝜎, thus
reducing the normal stress jump. The tangential forces, which arise from non-uniform
surfactant distribution over the surface, cannot move material fluid particles out of the
current interface region. In this manner, Marangoni stresses affect the droplet shape only
indirectly. The rheology, however, depends on the stresses on the surface, which are strongly
affected by the surfactant’s dynamics. In the next section, we present results which show
that, in the presence of surfactants, emulsion rheology cannot be directly associated to
the droplet shape, as is the case in clean droplet emulsions.
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Figure 16 – Capillary viscosity (squares) and Marangoni viscosity (triangles) for (a)
𝐸 = 0.2 and (b) 𝐸 = 0.4. 𝑃𝑒 = 103 (red), 𝑃𝑒 = 1 (green), and 𝑃𝑒 = 10−3

(blue). The inset of (a) show the droplet contours colored by surfactant
concentration for the same 𝐸 and 𝑋. The inset of (b) show the parallel
between the capillary viscosity and the reduced viscosity for 𝑃𝑒 = 10−3.

4.1.4 Effects of the surfactant coverage, elasticity, and Péclet number on the
emulsion’s rheology

In Figure 16 we present the capillary viscosity Eq. (2.35) and Marangoni viscosity
(Eq. 2.37) as functions of the coverage factor, for (a) 𝐸 = 0.2 and (b) 𝐸 = 0.4, and
𝑃𝑒 = 103 (red), 𝑃𝑒 = 1 (green), and 𝑃𝑒 = 10−3 (blue).

For 𝑃𝑒 = 1, the Marangoni viscosity grows significantly as 𝑋 increases, becoming
comparable to the capillary viscosity for 𝑋 > 0.8. In the fully advective regime, at
𝑃𝑒 = 103, [𝜂𝑚] becomes bigger than [𝜂𝑐] for a sufficient coverage. We observed that the
value of 𝑋, from which the Marangoni viscosity becomes bigger than the capillary viscosity,
becomes smaller for higher values of 𝐸. This can be observed when comparing the points
where the red curves cross, between Fig.16(a) and (b). These effects are a consequence of
the availability of insoluble surfactant on the droplet surface, under conditions where the
surface flow maintains a convective transport rate dominant compared to diffusion. As
the amount of surfactant on the surface increases, the reduction in the surface tension
coefficient leads to a decrease in the capillary viscosity. However, if there is enough
advection to induce strong concentration gradients, the increase in the Marangoni viscosity
can compensate the reduction in the capillary viscosity.

Figure 17(a) and (b) shows the reduced viscosity as a function of the coverage
parameter for 𝐸 = 0.2 and 𝐸 = 0.4, respectively. The inset show the droplet contours for
the three Péclet numbers at the same 𝑋 and 𝐸. It is clear that the droplet shapes are
remarkably similar and the differences in the reduced viscosity are clearly not associated
to the droplet elongation and inclination.

Since in this work we set 𝜆 = 1, the reduced viscosity [𝜂] is the sum of [𝜂𝑐] and [𝜂𝑚].
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Figure 17 – Reduced viscosity as a function of 𝑋 for (a) 𝐸 = 0.2 and (b) 𝐸 = 0.4.
𝑃𝑒 = 103 (red), 𝑃𝑒 = 1 (green), and 𝑃𝑒 = 10−3 (blue). The insets show
droplets for all Péclet numbers.

In this way, the variations of the reduced viscosity as a function of 𝑃𝑒, 𝑋, and 𝐸 can be
analyzed in terms of the variations of [𝜂𝑐] and [𝜂𝑚] as a function of those parameters. For
𝜆 ̸= 1, the influence of the surfactant parameters on the reduced viscosity will be similar
(since we can expect [𝜂𝑐] and [𝜂𝑚] to behave in the same way), although the [𝜂] will be not
given by the sum of the capillary and Marangoni viscosity.

Figure 17 shows that for 𝑃𝑒 = 10−3, the reduced viscosity is a decreasing function
of 𝑋. It happens that the Marangoni viscosity is practically null and the capillary viscosity
reduces as the amount of surfactant on the surface increases. Comparing the blue curves
in Figure 17(a) and (b), we can see that, the more elastic the surfactant, the steeper
the [𝜂] curve will be, which is not surprising since the reduction of the surface tension
coefficient is more accentuated for higher 𝐸. On the other hand, for 𝑃𝑒 = 1 and, more
noticeably, for 𝑃𝑒 = 103, [𝜂] increases as a function of 𝑋 because the growth rate of [𝜂𝑚]
relative to 𝑋 (𝜕[𝜂𝑚]/𝜕𝑋) overcomes the decrease rate of [𝜂]𝑐 relative to 𝑋 (𝜕[𝜂𝑐]/𝜕𝑋). The
critical points in the red curves in Figure 17(b) occur when ‖𝜕[𝜂𝑚]/𝜕𝑋‖ = ‖𝜕[𝜂𝑐]/𝜕𝑋‖.
The decreasing of [𝜂] in those curves might be caused by the relative reduction of the
surfactant concentration gradients because the surface is near to the saturation, reducing
𝜕[𝜂𝑚]/𝜕𝑋. In other words, the non-monotonic variation of the reduced viscosity arises from
the antagonistic behavior of the capillary and the Marangoni viscosity in the function of
the coverage and elasticity factors. The capillary viscosity is always a decreasing function
of the coverage (𝑋) and elasticity (𝐸). On the other hand, the Marangoni viscosity is
either constant, for the low Péclet regime, or a growing function of 𝑋 and 𝐸, if 𝑃𝑒 is high
enough. In this sense, the 𝑃𝑒 acts as an activation parameter of the Marangoni viscosity:
for low 𝑃𝑒, the Marangoni viscosity is absent; for high 𝑃𝑒, the Marangoni viscosity shows
a vigorous increase in function of 𝑋 and 𝐸. As the reduced viscosity is the sum of the
capillary and the Marangoni viscosities, the competition between these two parcels leads
to a non-monotonic behavior of the bulk shear viscosity.

54



(a)

(b)

Figure 18 – Stream lines and pressure field for 𝑋 = 0.6, 𝐸 = 0.4, (a) 𝑃𝑒 = 10−3, and (b)
𝑃𝑒 = 103.

Figure 18(a) and (b) shows the streamlines and pressure field for 𝑋 = 0.6 in the
conditions of the blue and red curves of Figure 17(b), respectively. The pressure levels are
the same in the two figures. Although the droplet shape is virtually the same as can be
seen in Figure 15, the different surfactant distributions over droplet surface affects the flow
profile around and inside of the droplet. In Figure 10(a), as 𝑃𝑒 = 10−3, diffusion dominates,
and surfactant is almost uniformly distributed. In this way, the interface behaves like a
clean surface (with lower interfacial tension), such that the jump in the normal stress is
more intense in the droplet’s tips. At 𝑃𝑒 = 103, advection moves the surfactant towards
the droplet tips and reduces the normal stress jump in this location. As can be seen in the
figures, the velocity and pressure fields are strongly influenced by the distinct surfactant
action in diffusion or advection-dominated regimes.

Figure 19 shows the dependence of the reduced viscosity and it Marangoni and
capillary parts on the elasticity for 𝑃𝑒 = 103. Blue curves refers to 𝑋 = 0.3 and red
curves, to 𝑋 = 0.6. The higher the surfactants sensibility, the lower the surface tension
coefficient, in such a way that the deformation increases and the droplets align toward the
flow direction for increasing 𝐸 (as made clear in the insets of Fig.15). As the capillary
viscosity relies heavily on deformation and inclination, it decreases monotonically with 𝐸,
as can be seen in Figure 19(a) (curves with squares). The reduction is more accentuated
for 𝑋 = 0.6, due to the higher deformation and smaller inclination angle of the droplet.

On the other hand, the Marangoni viscosity does not behave monotonically in all
situations. This effect might be a consequence of the larger interface area for higher 𝐸 and
𝑋, as a consequence of higher deformation, which in turn tends to diminish the surface
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Figure 19 – (a) Capillary viscosity (squares) and Marangoni viscosity (triangles). (b)
Reduced viscosity. 𝑃𝑒 = 103, 𝑋 = 0.3 (blue) and 𝑋 = 0.6 (red).

gradients of 𝜎, responsible for the Marangoni viscosity. In other words, the saturation
(and even the slight reduction) of [𝜂𝑚] near to 𝐸 = 0.6, observed for 𝑋 = 0.6, might be a
consequence of the surfactant’s dilution in the deformed droplet. Therefore, the reduced
viscosity for 𝑋 = 0.6 (red curve in Figure 19(b)) assumes a maximum value with respect
to 𝐸. After this critical point, the reduced viscosity of the emulsion decreases as a function
of 𝐸. It is worth mentioning that variations of 𝐸 can be induced by changing the emulsion
temperature (see Eq.(2.28)).

4.1.5 Surfactant-covered droplets first normal stress difference

The first normal stress difference is a viscometric function strictly related to the
elastic response of the fluid. It is defined as 𝑁1 = 𝜎11 − 𝜎22, where 1 stands for the fluid
velocity direction and 2 for the direction of velocity variation. Considering the definitions
in the present work, and that the contribution of the Newtonian part of the stress tensor
to 𝑁1 is exactly zero in shear flow, we compute the first normal stress difference using
𝑁1 = 𝜎(𝑑)

𝑥𝑥 − 𝜎(𝑑)
𝑦𝑦 .

An emulsion can either exhibit positive or negative 𝑁1 under simple shear, de-
pending on different factors. The first theoretical prediction found positive 𝑁1 for dilute
emulsions under conditions of small deformation of droplets (SCHOWALTER; CHAF-
FEY; BRENNER, 1968). Various studies later confirmed this prediction for concentrated
emulsions, highly deformed droplets, or high viscosity ratios (BRADY; BOSSIS, 1988;
OLIVEIRA; CUNHA, 2015). For all those cases, the mechanism leading to the positiveness
of 𝑁1 arises from the deformation and relative inclination, towards the velocity direction,
of the droplets in the emulsion. Inertia in the droplet scale might induce significant changes
in the droplets’ inclination angle, and induce negative 𝑁1 in emulsions (SRIVASTAVA;
MALIPEDDI; SARKAR, 2016). Clustering formation due to strong hydrodynamics forces
also give rise to negative 𝑁1 (FOSS; BRADY, 2000).
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Figure 20 – First normal stress difference as a function of 𝑋, for 𝐸 = 0.2 (diamonds) and
𝐸 = 0.4 (circles). 𝑃𝑒 = 103 (red), 𝑃𝑒 = 1 (green), and 𝑃𝑒 = 10−3 (blue).

Figure 20 present 𝑁1 as a function of 𝑋, for three Péclet numbers and two elasticity
factors. Our results show that 𝑁1 is positive for all cases we simulated. We found that 𝑁1

increases with 𝑋. Figure 20 also shows that, for a given 𝑋, 𝑁1 for 𝐸 = 0.4 is greater than
for 𝑁1 for 𝐸 = 0.2. As the droplet deformation and inclination increase with 𝑋 and 𝐸,
our results indicate that the 𝑁1 behavior for dilute emulsion with insoluble surfactants
is strongly depended on the droplet shape, as previously reported in the literature. In
the conditions of the present work, the tangential stresses do not change the general
macroscopic behavior of 𝑁1 in a dilute emulsion as they do in the case of the reduced
viscosity. In this sense, we believe that the presence of surfactants in dilute emulsions
cannot change the signal of 𝑁1.

We speculate that, for concentrated emulsion, the influence of the surfactants on
the attractive/repulsive forces between the droplets can impact the cluster’s formation. In
such case, it is possible that the surfactant dynamics can have more pronounced influence
on 𝑁1, possibly changing its signal. This interesting question might be addressed in future
works.

4.2 Surfactant-covered ferrofluid droplets under external magnetic
field

In this section, we first reproduced some results of Cunha et al. (2020) for a single
surfactant-free ferrofluid droplet subjected to an external magnetic field, placed at the
center of a [12 × 12] non-dimensional domain, discretized by a regular 416 × 416 cell mesh.
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This study was performed in order to verify the agreement with the physics of the magnetic
problem. For this, we set 𝜀 = 1.5ℎ, 𝐶𝑎 = 0.2, 𝑅𝑒 = 10−2, 𝜆 = 1, 𝜁 = 2 and a time step
Δ𝑡 = 5 × 10−4. Next, results on the effects of surfactant on ferrofluid droplets subjected to
an external magnetic field are presented in terms of the droplet shape, emulsion rheology,
and the mean magnetization of the system. Finally, we explore the rheology of this complex
fluid in terms of the shear and rotational viscosities.

We considered 𝐶𝑎 = 0.1 and 𝜆 = 1, allowing moderate deformation, but avoiding
droplet breakup. We set 𝑅𝑒 = 10−2 to minimize inertia effects on the flow at the droplet
scale, and 𝜀 = 2ℎ, 𝜁 = 2 and Δ𝑡 = 5 × 10−4. These simulations were conducted in
situations ranging from the absence of a magnetic field, 𝐶𝑎𝑚𝑎𝑔 = 0 to higher intensity
fields, 𝐶𝑎𝑚𝑎𝑔 = 10, both in the absence and in the presence of surfactant in a series
of conditions, 𝐸 = 0.2 and 𝐸 = 0.4, 𝑋 = 0 (absence of surfactant) to 𝑋 = 0.9, and
𝑃𝑒 = 10−3 to 𝑃𝑒 = 103. For this, we have considered a [8 × 8] non-dimensional domain,
discretized by a regular 320 × 320 cell mesh. It is a domain that, although smaller than the
one used by Cunha et al. (2020), also minimizes the effects of confinement by the channel
walls on the droplet dynamics and magnetic field. Choosing this domain allows for greater
mesh resolution using fewer cells. If we quantify, here we have ℎ = 0.025, while in a domain
[12 × 12] discretized by 416 × 416 we have ℎ = 0.0288. The presence of the surfactant and
the magnetic field action require the solution of two extra equations in relation to the
conventional problems of droplets under shear flow. In addition, the surfactant increases the
unsteady period of the simulation, and the evolution of the surfactant concentration over
droplets requires the use of the closest point method. All this increases the computational
cost. Therefore, decreasing the number of cells without damage to the mesh resolution is a
good alternative to the problem addressed in this work.

4.2.1 Surfactant-free ferrofluid droplet

Here, some results of the two-dimensional numerical study conducted by Cunha et
al. (2020) are reproduced. The work of Cunha et al. (2020) discusses more extensively the
results of this section. We will comment on some aspects of the flow of magnetic droplets
without surfactants that will be instructive for future discussions of this thesis. Interested
readers should refer to the work of Cunha et al. (2020) for more details on the rheology of
surfactant-free magnetic emulsions.

Figure 21 presents the droplet deformation and inclination, emulsion reduced viscos-
ity, hydrodynamic and magnetic torques (normalized by 𝜂�̇�𝛽), magnetization (normalized
by 𝛽H0), and the angle between the magnetic field and magnetization of the emulsion as
a bulk fluid, both as a function of 𝐶𝑎𝑚𝑎𝑔 under horizontal and vertical external magnetic
fields. Red and black symbols correspond to the present model and the work of Cunha et
al. (2020), respectively.

Figure 21 shows a good agreement between the results of the present work and those
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Figure 21 – (a) Taylor deformation, (b) reduced viscosity, (c) normalized magnetic torque,
and (d) normalized magnetization. The insets of (a), (c) and (d), show the
droplet inclination, hydrodynamic torque, and the misalignment angle between
the bulk magnetization and the external magnetic field, respectively. Circles
and cross (+) correspond to parallel external field; squares and cross (×)
correspond to perpendicular external field. Results of Cunha et al. (2020) are
represented by circles and squares.

of Cunha et al. (2020), suggesting good accuracy of the numerical methodology used. Table
2 shows the average deviation for Taylor deformation, droplet inclination, reduced viscosity,
normalized magnetic and hydrodynamics torque, normalized magnetization, and angle
between the magnetic field and the emulsion’s magnetization when the external magnetic
field is parallel and perpendicular to the main flow. It should be noted that although
Cunha et al. (2020) have used the level set method, they did not use the area conservation
procedure in the re-initialization of 𝜑, which may explain some small differences between
the results.

Figure 21(a) shows that as the magnetic field force increases, the Taylor deformation
also increases, and the main droplet axis tends to become more aligned with the external
field direction. Thus, when the external magnetic field is parallel to the flow direction, 𝜃
decreases with 𝐶𝑎𝑚𝑎𝑔 and approaches to zero for sufficiently large 𝐶𝑎𝑚𝑎𝑔 (at 𝐶𝑎𝑚𝑎𝑔 = 10,
𝜃 = 3.94∘, vide inset of Figure 21(a)). As the droplet is deformed along the field direction,
it assumes a shape that imposes less resistance to the flow, both by weaker shear stress on
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Table 2 – Average deviation for Taylor deformation, droplet inclination, reduced viscosity,
normalized magnetic and hydrodynamics torque, normalized magnetization and
angle between magnetic field and the emulsion’s magnetization.

Parallel field Perpendicular field
𝐷𝑇 0.50% 0.51%
𝜃 1.08% 0.18%

[𝜂] 2.65% 0.61%
𝜏 *
𝑚𝑎𝑔 1.52% 2.26%
𝜏 *
𝑔𝑦𝑑 4.00% 2.28%

|M*| 2.61% 2.79%
𝜃𝑚 2.73% 1.32%

the droplet and by reducing the sectional area in relation to the flow direction, decreasing
the reduced viscosity, as presented in Figure 21(b). Although 21(d) shows the bulk
magnetization increasing with 𝐶𝑎𝑚𝑎𝑔 in all cases, its inset shows that the angle between
the magnetic field and the emulsion’s magnetization has an opposite behavior for vertical
and horizontal fields, increasing or decreasing, respectively, with 𝐶𝑎𝑚𝑎𝑔. In fact, for a
magnetic field parallel to the flow, the droplet is expected to become more aligned to the
direction of the field, such that M* and 𝐻0 align to each other. Under these conditions,
since the magnetic and hydrodynamic torques are proportional to |M * | and 𝜃𝑚, the
magnitude of magnetic and hydrodynamic torque is not an increasing function of 𝐶𝑎𝑚𝑎𝑔,
as can be seen in Figure 21(c).

On the other hand, when the external magnetic field is perpendicular to the
flow direction, the opposite occurs. The external magnetic field magnetizes the ferrofluid
droplet, while the shear rate rotates the bulk magnetization vector in the clockwise
direction, leading to a misalignment between 𝐻0 and M* (CUNHA et al., 2020). The
final equilibrium configuration depends on the balance between shear and magnetic forces.
The magnetic field induces a droplet deformation in the vertical direction, increasing the
magnitude of the magnetic and hydrodynamic torque, as can be seen, 21(c), that acts
to rotate the droplet back to the flow direction. Thus, as the strength of the magnetic
field increases, the droplet assumes a shape that imposes more resistance to the flow,
both by stronger shear stresses in regions of high curvature and by presenting a larger
cross-sectional area relative to the flow direction. The misalignment between the droplet
and flow requires that the streamlines deflect to contour the droplet shape, increasing the
reduced viscosity, as presented in Figure 21(b). Therefore, when the external magnetic
field is perpendicular to the flow direction, 𝐷𝑇 , 𝜃, [𝜂], |𝜏 *

𝑚𝑎𝑔|, |𝜏 *
ℎ𝑦𝑑|, |M*|, and 𝜃𝑚 increases

with 𝐶𝑎𝑚𝑎𝑔.
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4.2.2 Effects of the magnetic field and surfactants on the surface properties

As shown in the section 4.1.2, the largest variations of surfactant concentration and
forces on the interface occur when the surfactant transport is purely advective, 𝑃𝑒 = 103.
Therefore, here we considered this condition to study the effects of the magnetic field
on these surface quantities. Another fundamental parameter to understand the surface
quantities distribution in a two-dimensional problem is the droplet perimeter (or the
Surface Area in a 3D case), which is directly related to the mean surface concentration
due to the surfactant dilution. Figure 22 shows the droplet perimeter as function of 𝑋
for 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+), 𝐶𝑎𝑚𝑎𝑔 = 5 (diamonds) and 𝐶𝑎𝑚𝑎𝑔 = 10 (circles). It is clear
that the magnetic field action increases the droplet’s perimeter, making its surface more
elongated. However, the field direction has a small influence on the final perimeter of
the droplet. On the other hand, increasing the surfactant coverage increases the droplet
perimeter to the same 𝐶𝑎𝑚𝑎𝑔, which is not surprising, since increasing 𝑋 reduces the
average surface tension coefficient over the droplet. However, none of these differences its
compare to the effects of increasing 𝐶𝑎𝑚𝑎𝑔, making it clear that the droplet perimeter is a
stronger function of 𝐶𝑎𝑚𝑎𝑔 than the direction of the magnetic field and 𝑋.
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Figure 22 – Droplet perimeter at steady state under perpendicular (red) and parallel
(blue) external magnetic field for 𝐶𝑎𝑚𝑎𝑔 = 0 (crosses), 𝐶𝑎𝑚𝑎𝑔 = 5 (diamonds)
and 𝐶𝑎𝑚𝑎𝑔 = 10 (circles), when 𝑃𝑒 = 103 and 𝐸 = 0.2.

Increasing the droplet perimeter tends to globally decrease the surfactant con-
centration on its surface, this dilution process competes with the surfactant advection
which tends to increase the surfactant concentration at the droplet tips. When 𝑃𝑒 is
low enough, no matter how much the flow sweeps the surfactant to the droplet’s tips,
the diffusion occurs instantaneously, reestablishing the concentration equilibrium. Under
these conditions, increasing the perimeter causes a uniform decrease in the surfactant
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Figure 23 – Surfactant concentration under (a) vertical and (b) horizontal external mag-
netic field for 𝑋 = 0.3 (dashed line) and 𝑋 = 0.6 (continuous line), when
𝑃𝑒 = 103, 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (black), 𝐶𝑎𝑚𝑎𝑔 = 5 (green) and 𝐶𝑎𝑚𝑎𝑔 = 10
(red). The insets show droplets contours colored by surfactant concentration
on a scale from (a) 0.1 (green) to 1.2 (red).

concentration over the droplet surface. As 𝑃𝑒 increases, the surfactant behavior on the
droplet surface deviates from that described previously, so that, for large 𝑃𝑒 (which is
the case in this work) the diffusion is not strong enough to rebalance the surfactant
concentration, which will depend on both of the external flow conditions and the droplet
perimeter growing. This behavior is discussed deeply in the following paragraphs.

Figures 23 and 24 present surfactant concentration and surface tension coefficient,
respectively, as functions of the arc-length at the steady state for 𝐸 = 0.2, 𝑋 = 0.3 (dashed
lines) and 𝑋 = 0.6 (continuous lines), 𝐶𝑎𝑚𝑎𝑔 = 0 (black lines), 𝐶𝑎𝑚𝑎𝑔 = 5 (green lines),
and 𝐶𝑎𝑚𝑎𝑔 = 10 red lines), where the arc-length coordinate starts at the point on the
surface that crosses the 𝑥-axis and increases in the counterclockwise direction. In Figures
23 and 24, (a) and (b) correspond, respectively, to an external magnetic field perpendicular
and parallel to the main flow direction.

Figure 23 shows that under an external magnetic field, the surfactant concentration
presents a behavior different from that presented by non-magnetic droplets under shear
flow. In the absence of a magnetic field, it is well known that the surfactant accumulates
at the droplet tips. However, if the droplet is subjected to a perpendicular magnetic field,
the inset of Figure 23(a) shows that the surfactant accumulates in a region posterior to
the droplet tip (clockwise) because the droplet orientation causes the flow to sweep the
surfactant, that would accumulate at the droplet tips, to a region that follows the vorticity
direction. On the other hand, the inset of Figure 23(b) shows that when the magnetic field
is parallel, the flow, which is weak near the channel center, sweeps the surfactant from
regions of smaller curvature, accumulating in the anterior region of the droplet tips. In
addition, note that although the concentration near the droplet tips is higher for 𝑋 = 0.3
than for 𝑋 = 0.6, the amount of surfactant is not, as 𝑐 is normalized by the initial average
surfactant concentration, as presented in section 2.3. This is evident in Figure 24, where
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Figure 24 – Surface tension coefficient over droplet surface under (a) vertical and (b)
horizontal external magnetic field for 𝑋 = 0.3 (dashed line) and 𝑋 = 0.6
(continuous line), when 𝑃𝑒 = 103 and 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (black), 𝐶𝑎𝑚𝑎𝑔 = 5
(green) and 𝐶𝑎𝑚𝑎𝑔 = 10 (red).

the lower surface tension coefficients occur for 𝑋 = 0.6.

The droplet orientation is fundamental to understand this behavior of the surfactant
concentration. If the magnetic field is perpendicular to the main flow direction, the droplet
is elongated in a direction where its tips stay in regions that increases the shear rate on
the droplet, making the advective effects more evident. This becomes clear by measuring
the difference between the larger and the smaller concentration in each case. The bigger
difference occurs for 𝑋 = 0.3 and 𝐶𝑎𝑚𝑎𝑔 = 10, wherein the zones of smaller curvature the
concentration approaches 0 and the surface tension coefficient approaches to 1 (Figure
24(a)). This condition is closer to a surfactant-free surface. Note that this difference is
smaller when the magnetic field is parallel (Figure 23(b)), because the droplet is elongated
in the flow direction, placing it in a flow region that decreases the local shear rate over its
surface. Thus, the larger intensity of the magnetic field, the larger this effect. The flow
weak action is not enough to sweep the same amount of surfactant to the droplet tip when
compared to cases where the magnetic field is perpendicular.

In Figure 23(a) the peaks of higher surfactant concentration are close for both
magnetic field intensities. The most significant differences are in the locations where these
peaks occur and in the concentration of the more elongated regions. This behavior is a
function of both the action of the external flow (which tends to sweep the surfactant) and
dilution and the concentration at the maximum packing. As the flow sweeps the surfactant
to near the droplet tips, it increases the surfactant concentration in these regions. If 𝑋
is large enough, the amount of surfactant available on the droplet surface is also large
and the droplet can have two maximum packing zones as the flow develops (provided 𝑃𝑒

is also large enough). When the maximum packing is reached, the surfactant transport
in this region is interrupted. This can be seen in Figure 23(a), where for 𝑋 = 0.6 the
maximum surfactant concentration is approximately the same for 𝐶𝑎𝑚𝑎𝑔 = 0, 𝐶𝑎𝑚𝑎𝑔 = 5
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and 𝐶𝑎𝑚𝑎𝑔 = 10, suggesting that this is the maximum packing, as even with increasing
surfactant dilution (due to increasing droplet perimeter with 𝐶𝑎𝑚𝑎𝑔) the concentration
peaks do not change. On the other hand, the surfactant dilution and transport to near
the droplet tips decrease a lot the surfactant concentration in regions of small curvature
as 𝐶𝑎𝑚𝑎𝑔 increases, considerably increasing the local surface tension coefficient (Figure
24(a)).

The same behavior is not observed for 𝑋 = 0.3, where the surfactant amount on
the droplet surface is not enough to achieve maximum packing concentration. Under these
conditions, the surfactant concentration peaks are sensitive to changes in 𝐶𝑎𝑚𝑎𝑔 both for
the parallel (Figure 23(b)) and perpendicular (Figure 23(a)), being that in this latter the
sensibility is larger due to the increase in the shear rate over the droplet surface, caused
by the droplet stretching towards the channel walls.

When the magnetic field is parallel (Figure 23(b)) and 𝑋 = 0.6 the surfactant
concentration peaks undergo small decreases as 𝐶𝑎𝑚𝑎𝑔 increases. This is due to the droplet
configuration in a region of the channel where the shear rate is small, which reduces the
flow capacity to sweep the surfactant to near of the droplet tips and offset the dilution
effects. In this sense, it can be established that for a droplet whose maximum packing
concentration is already reached at its tips when 𝐶𝑎𝑚𝑎𝑔 = 0, the action of the magnetic
field can maintain these conditions when applied in a direction perpendicular to the main
flow or disfavor it when applied in the same flow direction.

On the other hand, note in Figure 23(b) that when 𝑋 = 0.3 the concentration
peaks have an antagonistic behavior to those for 𝑋 = 0.6 as 𝐶𝑎𝑚𝑎𝑔 increases, although
the droplet is subject to the same conditions as external flow. This behavior suggests
that it is easier to sweep surfactant when it is in small amounts along the droplet surface,
so that even though the flow intensity decreases over the droplet surface when 𝐶𝑎𝑚𝑎𝑔

increases, the overall decrease of the surfactant concentration due to dilution facilitates
the surfactant transport to near of the droplet tips, i.e., greater amounts of surfactant can
be transported even at weaker flows, since 𝑋 is small enough.

The surfactant distribution along the droplet surface directly affects the surface
tension coefficient, as presented in Figure 24. Roughly speaking, for a given 𝑋, the higher
the surfactant concentration, the lower the surface tension coefficient. In turn, the profile
of 𝜎 along the droplet surface directly affects the profile of the normal and tangential
components of the surface force. In this sense, Figures 25 and 26 present the signaled
Marangoni and capillary forces, respectively, as functions of the arc-length at the steady
state for 𝐸 = 0.2, 𝑋 = 0.3 (dashed lines) and 𝑋 = 0.6 (continuous lines), 𝐶𝑎𝑚𝑎𝑔 = 0
(black lines), 𝐶𝑎𝑚𝑎𝑔 = 5 (green lines), and 𝐶𝑎𝑚𝑎𝑔 = 10 red lines), where (a) and (b)
correspond, respectively, to an external magnetic field perpendicular and parallel to the
main flow direction.

Figure 25(a) shows that near to the droplet tips, the signaled Marangoni force
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Figure 25 – Signaled Marangoni force magnitude under (a) vertical and (b) horizontal
external magnetic field for 𝑋 = 0.3 (dashed line) and 𝑋 = 0.6 (continuous
line), when 𝑃𝑒 = 103, 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (black), 𝐶𝑎𝑚𝑎𝑔 = 5 (green) and
𝐶𝑎𝑚𝑎𝑔 = 10 (red). The insets show droplets contours colored by Signaled
Marangoni force on a scale from (a) −0.4 (blue) to 0.6 (red).

magnitude is zero due to symmetry and near these regions, presenting positive and
negative peaks. In addition, the Marangoni forces variations increase with the surfactant
coverage. When the magnetic field is perpendicular, the large variations of the surfactant
concentration that occur at the droplet tips, as shown in Figure 23, lead to large values of
∇𝑠𝜎 in these zones. A consequence of this is the positive peaks of the Marangoni force in
Figure 25(a), which increases with 𝐶𝑎𝑚𝑎𝑔 and acts to resist the external flow, in the sense
that the interface causes a shear stress slowing down the flow near the tips. Moreover, the
insets of Figure 25(a) show that increasing 𝐶𝑎𝑚𝑎𝑔 move the point on the surface where
F𝑚 · t̂ > 0 clockwise, that is, the resistance to the flow occurs in a smaller portion of
the droplet surface as 𝐶𝑎𝑚𝑎𝑔 increases. However, this happens in a region where the flow
intensity is stronger. This balance is fundamental to understanding the Marangoni stress
effects on the emulsion rheology and will be discussed in more detail in the next sections.

When the magnetic field is parallel, Figure 25 (b) shows a different behavior of
the Marangoni forces than those presented for a perpendicular field. Looking for the solid
curves (𝑋 = 0.6) one observes that as the magnetic field gets stronger, the minimum value
of the Marangoni force gets progressively smaller. As F𝑚 · t̂ is negative, in these regions
the tangential stress favors the external flow. As for the vertical field the maximum F𝑚 · t̂
increases with 𝐶𝑎𝑚𝑎𝑔, for a horizontal field, the minimum of F𝑚 · t̂ decreases with 𝐶𝑎𝑚𝑎𝑔. As
already reported for the parallel field, the variations of the surfactant concentration along
the arc-length become smaller as the droplet elongates in the flow direction. Therefore ∇𝑠𝜎

decreases as 𝐶𝑎𝑚𝑎𝑔 increases, i. e., the absolute value of the Marangoni force decreases as
the magnetic field becomes stronger in the flow direction. Comparing the insets in Figure
25(a) and (b), it is clear that F𝑚 · t̂ < 0 (blue zones) in a smaller portion of the droplet
surface when the magnetic field is parallel, however in locations where F𝑚 · t̂ > 0 the shear
stress is smaller than when the magnetic field magnetic is perpendicular.

65



0 2 4 6 8
- 3

- 2

- 1

0
Ca

pil
lar

y f
orc

e

A r c - l e n g t h

( a )

0 2 4 6 8
- 3

- 2

- 1

0

Ca
pil

lar
y f

orc
e

A r c - l e n g t h

( b )

Figure 26 – Signaled capillary force magnitude under (a) vertical and (b) horizontal
external magnetic field for 𝑋 = 0.3 (dashed line) and 𝑋 = 0.6 (continuous
line), when 𝑃𝑒 = 103, 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (black), 𝐶𝑎𝑚𝑎𝑔 = 5 (green) and
𝐶𝑎𝑚𝑎𝑔 = 10 (red). The insets show droplets contours colored by Signaled
capillary force on a scale from (a) −2.6 (red) to 0 (blue).

In contrast to the Marangoni forces, Figure 26 shows that the signal of the signaled
capillary force magnitude doesn’t change along the interface, and for the same 𝐶𝑎𝑚𝑎𝑔 is a
weak function of the surfactant coverage and the magnetic field direction, which practically
only changes the location of the force peaks. These results indicate that the signaled
capillary force is a stronger function of local curvature than of surfactant distribution. As
F𝑐 · n̂ = −𝜎𝜅, the decreasing 𝜎 due to the increasing concentration is compensated as the
curvature increase. Note in Figure 26 that the signed magnitude of the capillary force is
larger at the droplet tips due to the high curvature. As the droplet is elongated (𝐶𝑎𝑚𝑎𝑔
increasing), the force magnitude increases, which indicates the tendency to compress
the droplet fluid. Thus, variations in capillary force along the surface increase with the
magnetic field intensity.

4.2.3 Effects of the surfactant and magnetic field in the droplet shape

It is well known that the shape of a magnetic droplet is influenced by the action of
surfactants over the interface and by an external magnetic field. In this section, we study
the combined influence of surfactants and the external field on droplet deformation and
inclination. In all results presented in the next sections, the red, green, and blue lines
correspond, respectively, to 𝑃𝑒 = 103, 𝑃𝑒 = 1, and 𝑃𝑒 = 10−3.

Figure 27(a-b) and (c-d) present, respectively, the Taylor deformation parameter
and droplet inclination angle as functions of the surfactant coverage for three magnetic
field intensities, 𝐶𝑎𝑚𝑎𝑔 = 0 (triangles), 𝐶𝑎𝑚𝑎𝑔 = 5 (squares), and 𝐶𝑎𝑚𝑎𝑔 = 10 (diamonds).
In (a) and (c), (b) and (d) the droplet is subjected to perpendicular and parallel external
magnetic fields, respectively. Figure 27 makes it clear that the Péclet number does not
influence the droplet shape. The same was observed for non-magnetic emulsions (section
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Figure 27 – Taylor deformation and droplet inclination as functions of surfactant coverage
𝑋 for 𝐸 = 0.2. (a) and (c) perpendicular field, (b) and (d) parallel field;
𝑃𝑒 = 103 (red), 𝑃𝑒 = 1 (green), and 𝑃𝑒 = 10−3 (blue); 𝐶𝑎𝑚𝑎𝑔 = 0 (triangles),
𝐶𝑎𝑚𝑎𝑔 = 5 (squares), and 𝐶𝑎𝑚𝑎𝑔 = 10 (diamonds).

4.1.3. Therefore, the presence of magnetic fields does not affect this particular aspect
of the surfactant-covered droplet dynamics. For the same 𝐶𝑎𝑚𝑎𝑔, 𝐷𝑇 increases and 𝜃

decreases with 𝑋, regardless of the 𝑃𝑒 and the magnetic field direction. On the other
hand, increasing 𝐶𝑎𝑚𝑎𝑔 results in parallel deformation and inclination curves, i. e, the
magnetic field displaces vertically the curves of 𝐷𝑇 and 𝜃 as a function of 𝑋.

The contributions of 𝑋 and 𝐶𝑎𝑚𝑎𝑔 to 𝐷𝑇 and 𝜃 are given in different ways. The
overall increase of 𝑋 decreases the surface tension because higher 𝑋 means more surfactant
on the interface, favoring to deformation and aligning the droplet in the flow direction.
In the presence of the magnetic field, the droplet is stretched in the field direction, and
increasing 𝑋 facilitates this process. The shear flow tends to decrease the droplet inclination
as 𝐷𝑇 (or 𝑋) increases. Moreover, if the magnetic field is perpendicular to the main flow
direction, the magnetic force tends to increase the droplet inclination, as presented in
Figure 27. When the magnetic field is parallel, Figure 27(d), both the flow and magnetic
force tend to decrease the droplet inclination.

To explain these results, we plot in Figure 28 𝐷𝑇 and 𝜃 (insets) as a function
of 𝐶𝑎𝑚𝑎𝑔 for (a) perpendicular and (b) parallel external magnetic field when 𝐸 = 0.4,
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Figure 28 – Taylor deformation parameter as function of 𝐶𝑎𝑚𝑎𝑔 for 𝑃𝑒 = 103 (red), 𝑃𝑒 = 1
(green), and 𝑃𝑒 = 10−3 (blue) when 𝐸 = 0.4, 𝑋 = 0.3 (circles) 𝑋 = 0.6
(diamonds), under (a) perpendicular and (b) parallel external magnetic field.
The insets show the droplet inclination as function of 𝐶𝑎𝑚𝑎𝑔. Black crosses
corresponds to surfactant-free surface.

𝑋 = 0.3 (circles) and 𝑋 = 0.6 (diamonds), under the same range of Péclet number as the
Figure 27. The black curves correspond to surfactant-free ferrofluid droplets.

As a general rule, the droplet shape is a stronger function of 𝐶𝑎𝑚𝑎𝑔 than of 𝑋 and
𝐸. The insets of Figure 28 make it clear that |𝜕𝜃/𝜕(𝐶𝑎𝑚𝑎𝑔)| decreases as 𝐶𝑎𝑚𝑎𝑔 increases,
i. e., the magnetic field effects on the droplet inclination gets weaker as it approaches to 90∘

(perpendicular field) and 0∘ (parallel field). As the droplet deforms towards the channel
walls (perpendicular field), the flow’s force (from the regions of higher velocity), which
acts to bend the droplet, increases. Thus, the magnetic field effects on 𝜃 become weaker
as 𝐶𝑎𝑚𝑎𝑔 increases. When the magnetic field is parallel, both the flow action and the
magnetic field bend the droplet to the horizontal axis. So 𝜃 is closer to zero (under parallel
field) than 90∘ (under perpendicular field). On the other hand, 𝜕𝐷𝑇/𝜕(𝐶𝑎𝑚𝑎𝑔) undergoes
few changes along the 𝐶𝑎𝑚𝑎𝑔 range. Logically, by increasing the magnetic field strength
we would obtain a behavior of 𝐷𝑇 similar to that of 𝜃, and for some cases (depending on
𝐶𝑎), even the droplet breakup would be reached (CUNHA et al., 2018).

The results of this section showed that the droplet shape is not a function of 𝑃𝑒,
either for magnetic or non-magnetic emulsions. On the other hand, the direction of the
magnetic field does not (or little affects) the Taylor deformation. Already the behavior
of 𝜃 depends on the field direction. These patterns of 𝐷𝑇 and 𝜃 are the same as those
observed for surfactant-free droplets. Although the surfactant presence increases the droplet
deformation and decreases its inclination, i. e. vertically displaces the curves of 𝐷𝑇 and 𝜃
versus 𝐶𝑎𝑚𝑎𝑔.
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4.2.4 Combined effect of surfactant and magnetic field on the emulsion
rheology

In section 4.1.4 we presented results of surfactant effects on the rheology of non-
magnetic emulsions. On the other hand, magnetic field effects were presented by Cunha et
al. (2018), Cunha et al. (2020). Here, we study how the magnetic field affects the rheology
of surfactant-covered ferrofluid droplet emulsions in terms of the Marangoni, capillary,
magnetic and reduced viscosities. These material functions are presented in terms of 𝐶𝑎𝑚𝑎𝑔
for 𝐸 = 0.4 and two coverage factors, 𝑋 = 0.3 (circles) and 𝑋 = 0.6 (diamonds). In
addition, we consider 𝑃𝑒 = 10−3 (blue), 𝑃𝑒 = 1 (green), and 𝑃𝑒 = 103 (red).

4.2.4.1 Marangoni viscosity

Figures 29 and 30 presents the Marangoni viscosity as a function of (a) 𝐶𝑎𝑚𝑎𝑔 and
(b) 𝜃 when the droplet is subjected to a perpendicular and parallel external magnetic
field, respectively. The insets of Figures 29(a) and 30(a) show the Marangoni viscosity
as function of surfactant coverage, 𝑋, for 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+), 𝐶𝑎𝑚𝑎𝑔 = 5 (×) and
𝐶𝑎𝑚𝑎𝑔 = 10 (*). In addition, some droplet contours, colored by the signaled Marangoni
force magnitude, are shown in (a) and (b).
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Figure 29 – Marangoni viscosity as function of (a) 𝐶𝑎𝑚𝑎𝑔 and (b) 𝜃 for 𝐸 = 0.4, 𝑋 = 0.3
(circles) and 𝑋 = 0.6 (diamonds), 𝑃𝑒 = 10−3 (blue), 𝑃𝑒 = 1 (green), and
𝑃𝑒 = 103 (red) under a perpendicular external magnetic field. The insets show
Marangoni viscosity as function of 𝑋, for 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+), 𝐶𝑎𝑚𝑎𝑔 = 5
(×) and 𝐶𝑎𝑚𝑎𝑔 = 10 (*); and some droplets contours colored by Signaled
Marangoni force from −0.4 (blue) to 0.6 (red).

Figure 29 shows that when the advective effects cannot be neglected (𝑃𝑒 = 1 and,
mainly, 𝑃𝑒 = 103) the Marangoni viscosity increases with the magnetic field intensity over
the entire range of 𝑋 and 𝐸. As a general rule, the magnetic field changes the surfactant
distribution on the droplet surface, which in turn changes the Marangoni forces and
consequently the [𝜂𝑚], i.e., the emulsion rheology. This is a combined effect of the droplet
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orientation, deformation and the signaled Marangoni force magnitude over the interface.
It should be noted that the inclination angle varies just slightly with 𝑋 (Figure 27) and
the variations of [𝜂𝑚] are not correlated to the relative inclination of the droplet along the
𝑋 range.

As presented in the previous section, the action of a perpendicular magnetic field
increases the droplet inclination and deformation, delays the decrease of 𝜃 with 𝑋, and
increases the Marangoni force peaks at the droplet tips. Thus, the increase of 𝐶𝑎𝑚𝑎𝑔 leads
these peaks to regions of higher local shear rate inside the flow, as seen in the droplet
contours colored by signaled Marangoni force magnitude. As these forces act to resist the
flow, [𝜂𝑚] increases with 𝐶𝑎𝑚𝑎𝑔. This happens for any 𝐸 and 𝑋, becoming more significant
as 𝐸 and/or 𝑋 grows (see Figure 25), due to the increases of the droplet deformation, of
the F𝑚 · t̂ peaks, and of the surface portion where F𝑚 · t̂ > 0.

Figure 29(b) makes it clear that, for 𝑃𝑒 = 103, [𝜂𝑚] becomes a stronger function
of 𝜃 as 𝐶𝑎𝑚𝑎𝑔 increases. As shown in Figure 28, 𝜕𝜃/𝜕𝐶𝑎𝑚𝑎𝑔 decreases as 𝜃 approaches
to 𝜋/2, due to the competition between the magnetic field (which tends to bend the
droplet to the vertical direction) and the flow (which tends to bend the droplet to the
horizontal direction). On the other hand, 𝜕𝐷𝑇/𝜕𝐶𝑎𝑚𝑎𝑔 tends to remain almost constant
over the studied range of 𝐶𝑎𝑚𝑎𝑔. In other words, the droplet tends to stop skewing as
𝐶𝑎𝑚𝑎𝑔 increases, but it keeps stretching. Combining this with the results of the Marangoni
force presented in section 4.2.2, it is noted that the intensity of ∇𝑠𝜎 near the droplet tips
increases significantly with 𝐶𝑎𝑚𝑎𝑔 by the combined action of the droplet elongation, which
causes the surfactant dilution, and by the flow action, which becomes stronger at the
droplet tips as 𝐷𝑇 increases.

On the other hand, if the advective effects are small, 𝑃𝑒 = 10−3, the Marangoni
viscosity tends to zero regardless of 𝐸, 𝑋, and 𝐶𝑎𝑚𝑎𝑔. The droplet contours in Figure
29 show that there is a small difference between the Marangoni forces that act in large
and small curvature regions since at low 𝑃𝑒, the surfactant tends to uniformly distribute,
reducing the surface tension, and hence the ∇𝑠𝜎 on the entire interface. Our results make
it clear that the Marangoni viscosity is a stronger function of 𝑃𝑒 than of 𝐶𝑎𝑚𝑎𝑔, 𝑋 or 𝐸,
that is, 𝜂𝑚 is a function of the surfactant distribution over droplet surface.

When the magnetic field is parallel to the main flow direction, Figure 30(a) shows
that increasing the field intensity results in an opposite behavior to that observed for
[𝜂𝑚] when the magnetic field is perpendicular, i. e., [𝜂𝑚] becomes a decreasing function of
𝐶𝑎𝑚𝑎𝑔, although remains increasing with 𝐸, 𝑋, 𝑃𝑒, and 𝜃 (Figure 30(b)). This is because
the Marangoni forces along the surface decrease with 𝐶𝑎𝑚𝑎𝑔 (see Figure 25), resulting in
larger negative peaks of F𝑚 · t̂, that act in favor to the flow and tend to decrease [𝜂𝑚].
Furthermore, the droplet elongation in the flow direction leads the droplet surface locations
where F𝑚 · t̂ > 0 (green region of the droplet contours) to regions of smaller local shear
rate, decreasing the contribution from the tangential stress jump to the reduced viscosity.
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Figure 30 – Marangoni viscosity as function of (a) 𝐶𝑎𝑚𝑎𝑔 and (b) 𝜃 for 𝐸 = 0.4, 𝑋 = 0.3
(circles) and 𝑋 = 0.6 (diamonds), 𝑃𝑒 = 10−3 (blue), 𝑃𝑒 = 1 (green), and
𝑃𝑒 = 103 (red) under a parallel external magnetic field. The insets show
Marangoni viscosity as function of 𝑋, for 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+), 𝐶𝑎𝑚𝑎𝑔 = 5
(×) and 𝐶𝑎𝑚𝑎𝑔 = 10 (*); and some droplets contours colored by Signaled
Marangoni force from −0.4 (blue) to 0.6 (red).

Figures 29(b) and 30(b) show that [𝜂𝑚] is always an increasing function of 𝜃, since
𝜂𝑚 is directly related to the relative position of the droplet surfaces regions where F𝑚 · t̂ > 0
inside the flow. The insets of Figures 29(a) and 30(a) illustrate the behavior of [𝜂𝑚] for
different magnetic field direction. For perpendicular fields, increasing 𝐶𝑎𝑚𝑎𝑔 results in
a positive vertical displacement of the curves [𝜂𝑚] ×𝑋 due to the relationship between
increasing shear rate over the droplet and the location of the positive peaks of Marangoni
force, which acts to resist the flow. When the field is parallel this displacement is negative,
because in addition to the Marangoni forces along the droplet surface (see Figure 25) are
smaller than when the magnetic field is perpendicular, the droplet configuration inside the
channel decreases the shear rate over it.

On the other hand, Figure 30 shows that the variations of 𝐸, 𝑋, and 𝑃𝑒 result in
similar effects (although of lower intensity) to those shown in Figure 29, since 𝜂𝑚 remains
an increasing function of these quantities. Even though the parallel magnetic field elongates
the droplet in the flow direction, decreasing the shear rate on the droplet, the increase of
the surfactant elasticity (𝐸) and/or the amount (𝑋), as well of the advective effects (𝑃𝑒),
result in the growth of ∇𝑠𝜎 and consequently of 𝜂𝑚.

4.2.4.2 Capillary viscosity

Figures 31 and 32 present the capillary viscosity as a function of (a) 𝐶𝑎𝑚𝑎𝑔 and (b)
𝐷𝑇 when the droplet is subjected to a perpendicular and parallel external magnetic field,
respectively. Some droplet contours colored by the signaled capillary force magnitude are
indicated in both (a) and (b), in the scale from 0 (blue) to −2.6 (red). In addition, the
insets of Figures 31(a) and 32(a) show the capillary viscosity as a function of surfactant
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coverage, 𝑋, under same conditions of the previous section.
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Figure 31 – Capillary viscosity as function of (a) 𝐶𝑎𝑚𝑎𝑔 and (b) 𝐷𝑇 for 𝐸 = 0.4, 𝑋 = 0.3
(circles) and 𝑋 = 0.6 (diamonds), 𝑃𝑒 = 10−3 (blue), 𝑃𝑒 = 1 (green), and
𝑃𝑒 = 103 (red) under a perpendicular external magnetic field. The insets show
capillary viscosity as function of 𝑋, for 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+), 𝐶𝑎𝑚𝑎𝑔 = 5
(×) and 𝐶𝑎𝑚𝑎𝑔 = 10 (*); and some droplets contours colored by absolute
capillary force from 0 (blue) to −2.6 (red).

Figure 31(a) shows that the presence of the magnetic field alters the effects of 𝑋
on [𝜂𝑐] in the 𝑃𝑒 range studied. When 𝑃𝑒 = 10−3, increasing 𝐶𝑎𝑚𝑎𝑔 results in lower [𝜂𝑐]
for 𝑋 = 0.3 (circles) than for 𝑋 = 0.6 (diamonds). The opposite is observed when 𝑃𝑒 = 1
and especially when 𝑃𝑒 = 103. In addition, the inset of Figure 31(a) makes it evident that
in the absence of a magnetic field, [𝜂𝑐] is a decreasing function of 𝐸 and 𝑋. That is, when
the amount of surfactant increases or a more elastic surfactant is used, the surface tension
coefficient decreases, leading to a decrease of [𝜂𝑐]. If the surface flow maintains a convective
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Figure 32 – Capillary viscosity as function of (a) 𝐶𝑎𝑚𝑎𝑔 and (b) 𝐷𝑇 for 𝐸 = 0.4, 𝑋 = 0.3
(circles) and 𝑋 = 0.6 (diamonds), 𝑃𝑒 = 10−3 (blue), 𝑃𝑒 = 1 (green), and
𝑃𝑒 = 103 (red) under a parallel external magnetic field. The insets show
capillary viscosity as function of 𝑋, for 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+), 𝐶𝑎𝑚𝑎𝑔 = 5
(×) and 𝐶𝑎𝑚𝑎𝑔 = 10 (*); and some droplets contours colored by absolute
capillary force from 0 (blue) to −2.6 (red).
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transport rate of surfactant dominant compared to diffusion, these effects become more
evident, because the concentration peaks near the droplet tips cause abrupt reductions in
𝜎 in these regions and a small increase of 𝜎 in regions of low curvature. These differences
can be observed by comparing the droplets contours colored by signaled capillary force
magnitude, although the differences are not as evident as in the case of Marangoni forces.
This is because even under the effect of external magnetic fields, 𝑃𝑒 has little effect on the
droplet shape, that is, on 𝜅. On the other hand, the effects of 𝑃𝑒 on 𝜎 are significant. It
should be noted that the variations in the numerical values of 𝜅 along a deformed droplet
are significantly larger than in the numerical values of 𝜎. Thus, since F𝑐 = −𝜎𝜅n̂𝛿𝜀(𝜑),
variations of 𝜎 cause smaller numerical variations in F𝑐 · n̂ than 𝜅, although this does not
mean less effect on rheology.

Figure 31(b) shows that the behavior of [𝜂𝑐] is directly related to the surfactant
distribution on the droplet surface, unlike what occurs in surfactant-free droplets, where
[𝜂𝑐] is a direct function of the droplet shape. This behavior becomes even clearer when
analyzing the contours of droplets of the inset of Figure 31(a). Note that the droplet
becomes more elongated in the perpendicular flow direction as 𝑋 increases. If we just look
at the droplet shape, leaving aside the surfactant distribution on the surface, the highest
flow resistance would occur for 𝐶𝑎𝑚𝑎𝑔 = 10 and 𝑋 = 0.9, which is precisely the case where
[𝜂𝑐] presents the smallest values.

As the droplet shape is not a function of 𝑃𝑒, there are no significant variations
in the curvature at the droplet tips for the 𝑃𝑒 range studied, and the behavior of [𝜂𝑐] is
an exclusive function of the surfactant concentration in these regions. When 𝑃𝑒 = 10−3

the diffusive effects tend to maintain a constant concentration along the droplet surface,
evidencing the effects of the surfactant dilution caused by the droplet elongation. These
phenomena reduce the surfactant concentration at the droplet tips in relation to the cases
of 𝑃𝑒 > 1, increasing the surface tension coefficient in these regions. Thus, the increase
of 𝐶𝑎𝑚𝑎𝑔 increases |F𝑐 · n̂| at the droplet tips, i. e., increases the droplet surface normal
stress jump and consequently [𝜂𝑐].

For 𝑃𝑒 = 1, and mainly 𝑃𝑒 = 103, the curves of [𝜂𝑐] are a decreasing function of 𝑋
regardless of the magnetic field, which in turn causes a positive vertical displacement of
these curves as its intensity increases. These effects are a combination of the surfactant
advection and droplet deformation. It is well known that a greater amount of surfactant is
swept to near the droplet tips as 𝑃𝑒 increases, reducing |F𝑐 · n̂| in these regions. In turn,
the magnetic field action increases the droplet deformation, reducing 𝜅 at the regions of
smaller surfactant concentration and increasing it at larger concentration regions. Thus, it
is possible to divide the droplet into two regions as 𝐶𝑎𝑚𝑎𝑔 increases: one in which the local
shear rate is smaller, 𝜅 decreases (longer droplet portion), and 𝜎 increases (due to the
surfactant being swept to the droplet tips); and another in which the local shear rate is
higher, 𝜅 increases (droplet tips) and 𝜎 decreases by surfactant accumulation. The balance
of this antagonistic behavior is what determines [𝜂𝑐]. When the surfactant advection
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cannot be neglected, an increase of 𝑋 under the same 𝐶𝑎𝑚𝑎𝑔 causes the 𝜎 reduction effects
near the droplet tips to overcome those of the curvature increase in these regions and,
therefore, [𝜂𝑐] decreases with 𝑋, as presented in inset of Figure 31(a). This decrease is
more pronounced in the curve of 𝐶𝑎𝑚𝑎𝑔 = 10 and 𝑃𝑒 = 103, where for 𝑋 = 0.8 [𝜂𝑐] is the
same order as those of a surfactant-free emulsion. In a way, this result indicates that the
magnetic field cancels out the mechanical (or rheological) effects of surfactant with respect
to [𝜂𝑐]. However, we expect that other effects, such as emulsion stabilization, will remain
preserved.

Fixing the surfactant coverage factor and elasticity, Figures 31(a) and (b) show that
for 𝑃𝑒 ≤ 1 [𝜂𝑐] increases with 𝐶𝑎𝑚𝑎𝑔 and 𝐷𝑇 . As surfactant advection is at most equivalent
to diffusion under these conditions, the amount of surfactant transported to near the
droplet tips is not sufficient to reduce |F𝑐 · n̂| in these regions to the point of to decrease
[𝜂𝑐] when the field intensity increase. Furthermore, as the droplet deformation/inclination
is a stronger function of 𝐶𝑎𝑚𝑎𝑔 than other quantities related to surfactant, the dilution
effects, which increase 𝜎 over the droplet, become more evident as 𝑃𝑒 decreases and 𝐶𝑎𝑚𝑎𝑔
increases.

On the other hand, when 𝑃𝑒 is high, the surfactant dilution is restricted to the
most elongated parts of the droplets, being overcome by the surfactant advection near
the droplet tips. Thus, more surfactant is swept to these regions, decreasing |F𝑐 · n̂|. For
𝐶𝑎𝑚𝑎𝑔 ≥ 5, the effects of this reduction overcome the growth of |F𝑐 · n̂| on the more
elongated part of the droplet, and therefore [𝜂𝑐] which starts decreasing with 𝐶𝑎𝑚𝑎𝑔. In
other words, the surfactant effects on the droplet regions of larger curvature become
dominant over [𝜂𝑐] from a critical 𝐶𝑎𝑚𝑎𝑔. For example, when 𝐸 = 0.4, 𝑋 = 0.6 and
𝐶𝑎𝑚𝑎𝑔 = 10 the maximum and minimum absolute values of F𝑐 · n̂ are, respectively, 2.70
and 0.10 for 𝑃𝑒 = 103, while for 𝑃𝑒 = 10−3 these values are 3.01 and 0.09. Therefore,
non-monotonic variation of the [𝜂𝑐] when 𝑃𝑒 = 103 arises from the antagonistic behavior
of 𝜅 and 𝜎. Furthermore, note that this critical 𝐶𝑎𝑚𝑎𝑔 only occurs in curves of 𝑃𝑒 = 103

(see Figure 31(a)), evidencing that there is also a critical 𝑃𝑒 between 0 and 103 from which
the curves [𝜂𝑐] × 𝐶𝑎𝑚𝑎𝑔 invert its behavior.

When the magnetic field is parallel to the main flow direction, Figure 32 shows an
inverse behavior to that observed when the field is perpendicular. Here, [𝜂𝑐] is always a
decreasing function of 𝐸, 𝑋, 𝑃𝑒 and 𝐶𝑎𝑚𝑎𝑔. In the inset of Figure 32(a) the action of the
magnetic field displaces negatively the curves of [𝜂𝑐] as a function of 𝑋, in addition, to
reduce the effects of 𝑃𝑒, so that for 𝐶𝑎𝑚𝑎𝑔 = 10 the results for 𝑃𝑒 = 10−3 and 𝑃𝑒 = 103

are almost identical. This is because the droplet is localized in a flow region where there is
no effective �̇� to promote surfactant transportation. So, even though the advective effects
are strong, the shear rate is not enough to cause the same variations in the surfactant
concentration and, consequently, in the surface tension coefficient that occurs when the
magnetic field is perpendicular. Therefore, |F𝑐 · n̂| becomes a stronger function of curvature
than of 𝜎. Associated with this, the changes of the droplet shape with the growth of 𝐶𝑎𝑚𝑎𝑔
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decreases the shear rate on the droplet, reducing the normal voltage jump at the interface
and consequently [𝜂𝑐].

This behavior becomes more evident comparing the Figures 32(a) and (b), where
the increasing of magnetic field intensity decreases the variations of [𝜂𝑐] with 𝑋 and 𝑃𝑒. It
is clear that when the magnetic field is parallel to the main flow direction, the contributions
of capillary forces to the reduced viscosity are much more related to droplet deformation
than to the previously mentioned parameters. As 𝐷𝑇 increases (due to increasing of 𝐶𝑎𝑚𝑎𝑔),
the amount of surfactant on the droplet surface, as well its elasticity or advection rate,
cease to influence [𝜂𝑐], which tends to its minimum value when the deformation tends to
the maximum since under these conditions the droplet assumes the shape that imposes
less resistance to the flow.

4.2.4.3 Magnetic viscosity

Now, Figures 33 and 34 present the magnetic viscosity as a function of (a) 𝐶𝑎𝑚𝑎𝑔
and (b) 𝐷𝑇 when the droplet is subjected to perpendicular and parallel external magnetic
field, respectively. The insets of Figures 31(a) and 32(a) show the magnetic viscosity as a
function of surfactant coverage, 𝑋, under same conditions of section 4.2.4.1. Note that
in all curves shown the effects of 𝑃𝑒 are very small, that is, the magnetic viscosity is
independent of the surfactant distribution on the droplet surface.
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Figure 33 – Magnetic viscosity as function of (a) 𝐶𝑎𝑚𝑎𝑔 and (b) 𝐷𝑇 for 𝐸 = 0.4, 𝑋 = 0.3
(circles) and 𝑋 = 0.6 (diamonds), 𝑃𝑒 = 10−3 (blue), 𝑃𝑒 = 1 (green), and
𝑃𝑒 = 103 (red) under a perpendicular external magnetic field. The inset of
(a) shows magnetic viscosity as function of 𝑋, for 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+),
𝐶𝑎𝑚𝑎𝑔 = 5 (×) and 𝐶𝑎𝑚𝑎𝑔 = 10 (*).

When the magnetic field is perpendicular, Figures 33(a) shows that [𝜂𝑚𝑎𝑔] increases
with 𝐶𝑎𝑚𝑎𝑔 and 𝑋, because these parameters directly influence the droplet deformation.
This behavior is easily explained in Figure 33(b), where the plotted curves tend to
coincide regardless of the surfactant related parameters, making it clear that [𝜂𝑚𝑎𝑔] is a
quasi-exclusive function of 𝐷𝑇 . Also, note that the positive values of [𝜂𝑚𝑎𝑔] contribute to
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Figure 34 – Magnetic viscosity as function of (a) 𝐶𝑎𝑚𝑎𝑔 and (b) 𝐷𝑇 for 𝐸 = 0.4, 𝑋 = 0.3
(circles) and 𝑋 = 0.6 (diamonds), 𝑃𝑒 = 10−3 (blue), 𝑃𝑒 = 1 (green), and
𝑃𝑒 = 103 (red) under a parallel external magnetic field. The inset of (a) shows
magnetic viscosity as function of 𝑋, for 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+), 𝐶𝑎𝑚𝑎𝑔 = 5
(×) and 𝐶𝑎𝑚𝑎𝑔 = 10 (*).

increasing the reduced viscosity of the emulsion because the action of the perpendicular
magnetic field puts the droplet in a position that increases the resistance to the flow.

On the other hand, when the magnetic field is parallel, Figures 34(a) and (b) show
that [𝜂𝑚𝑎𝑔] is a weak function of 𝐶𝑎𝑚𝑎𝑔 and consequently 𝐷𝑇 since the droplet configuration
within the channel does not have large effects on the flow. Under these conditions, the
droplet alignment facilitates the flow, so that [𝜂𝑚𝑎𝑔] has negative values of small magnitude.
Therefore, the magnetic viscosity contributes to decreasing the emulsion reduced viscosity.

4.2.4.4 Reduced viscosity

The reduced viscosity [𝜂] is the sum of [𝜂𝑐], [𝜂𝑚], and [𝜂𝑚𝑎𝑔]. So that, its variations
can be analyzed in terms of the [𝜂𝑐], [𝜂𝑚] and [𝜂𝑚𝑎𝑔] as a function of 𝐶𝑎𝑚𝑎𝑔, 𝑃𝑒 and 𝑋.
Figures 35(a) and (b) show the reduced viscosity as a function of 𝐶𝑎𝑚𝑎𝑔 and 𝑋, respectively,
when the droplet is subjected to a perpendicular magnetic field. Figures 36(a) and (b)
correspond to the same previous conditions under a parallel magnetic field. It is clear
that the behavior of [𝜂] presented in section 4.1.4 is largely affected by the magnetic field
action, which has a direct effect on the droplet shape and the surfactant distribution.

When the magnetic field is perpendicular, the surfactant effects always cause a
positive displacement of the curves of [𝜂] as a function of 𝐶𝑎𝑚𝑎𝑔 [Figure 35(a)]. This is
not surprising, since the surfactant reduces the surface tension, increasing the droplet’s
deformation in the external magnetic field direction and consequently its resistance to the
flow. This happens even when the surfactant is evenly distributed over the droplet surface
(𝑃𝑒 = 10−3), and the Marangoni viscosity tends to zero. In this specific case, the growth
of [𝜂] is due to the increase of [𝜂𝑐] and [𝜂𝑚𝑎𝑔]. However, the effects of 𝐶𝑎𝑚𝑎𝑔 on [𝜂] become
more evident when 𝑋 or 𝑃𝑒 increase, since in this case the Marangoni viscosity cannot
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Figure 35 – (a) Reduced viscosity as function of 𝐶𝑎𝑚𝑎𝑔 for 𝐸 = 0.4, 𝑋 = 0.3 (circles) and
𝑋 = 0.6 (diamonds). Black crosses corresponds to surfactant-free surface. (b)
Reduced viscosity as function of 𝑋, for 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+), 𝐶𝑎𝑚𝑎𝑔 = 5
(×) and 𝐶𝑎𝑚𝑎𝑔 = 10 (*). Perpendicular field for 𝑃𝑒 = 103 (red), 𝑃𝑒 = 1
(green), and 𝑃𝑒 = 10−3 (blue).
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Figure 36 – (a) Reduced viscosity as function of 𝐶𝑎𝑚𝑎𝑔 for 𝐸 = 0.4, 𝑋 = 0.3 (circles) and
𝑋 = 0.6 (diamonds). Black crosses corresponds to surfactant-free surface. (b)
Reduced viscosity as function of 𝑋, for 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+), 𝐶𝑎𝑚𝑎𝑔 = 5
(×) and 𝐶𝑎𝑚𝑎𝑔 = 10 (*). Parallel field for 𝑃𝑒 = 103 (red), 𝑃𝑒 = 1 (green),
and 𝑃𝑒 = 10−3 (blue).

be neglected. So, even in the specific case where 𝜕[𝜂𝑐]/𝜕𝐶𝑎𝑚𝑎𝑔 ≤ 0 (for 𝐶𝑎𝑚𝑎𝑔 ≥ 5 and
𝑃𝑒 = 103), the reduced viscosity continues to be a growing function of 𝐶𝑎𝑚𝑎𝑔 due to the
magnetic and Marangoni viscosities. Figure 35(b) makes it clear how the magnetic field
affects the [𝜂] ×𝑋 curves, positively displacing them as 𝐶𝑎𝑚𝑎𝑔 increases. This is due to
the increase of [𝜂𝑚] and [𝜂𝑚𝑎𝑔] with 𝑋, since under magnetic field and 𝑃𝑒 ≥ 1, [𝜂𝑐] is a
decreasing function of 𝑋 [see inset of Figure 31(a)]. Also note that 𝜕[𝜂]/𝜕𝑋 increases with
𝑋 and 𝐶𝑎𝑚𝑎𝑔, which is due to 𝜕[𝜂]𝑚/𝜕𝑋, which is larger than 𝜕[𝜂]𝑚𝑎𝑔/𝜕𝑋.

The same behavior is not observed when the magnetic field is parallel to the main
flow direction (Figure 36). Under these conditions, Marangoni, capillary, and magnetic
viscosities are decreasing functions of 𝐶𝑎𝑚𝑎𝑔, and consequently, the reduced viscosity has
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the same behavior. The difference is that, here, it is possible to separate the curves as
functions of 𝑃𝑒. Note that for 𝑃𝑒 = 1, [𝜂] curve gets closer to those for a surfactant-free
droplet as 𝐶𝑎𝑚𝑎𝑔 increases, being positively displaced when 𝑃𝑒 = 103 and negatively
displaced when 𝑃𝑒 = 10−3. As shown in section 4.2.3, for the same 𝑋, 𝐸 and 𝐶𝑎𝑚𝑎𝑔,
the droplet shape does not change with 𝑃𝑒. Thus, our results show that in such cases,
the reduced viscosity is closely linked with the surfactant distribution over the droplet
surface, such that [𝜂] increases as the surfactant concentration becomes less uniform. In
other words, [𝜂] becomes a stronger function of [𝜂𝑚] as 𝐶𝑎𝑚𝑎𝑔 increases, because [𝜂𝑐] and
[𝜂𝑚𝑎𝑔] are stronger functions of the droplet shape, which does not change with 𝑃𝑒. Figure
36(b) shows that the magnetic field negatively displaces the curves [𝜂] ×𝑋, but without
changing its patterns. Note that the differences between the curves from 𝐶𝑎𝑚𝑎𝑔 = 0 to
𝐶𝑎𝑚𝑎𝑔 = 5 are greater than those between 𝐶𝑎𝑚𝑎𝑔 = 5 to 𝐶𝑎𝑚𝑎𝑔 = 10, showing that, as
𝐶𝑎𝑚𝑎𝑔 increases, the viscosities become less sensitive to these variations, as the droplet
assumes a shape that, in addition to offering low resistance to the flow, leaves it in a
channel region where there is no effective �̇� to promote surfactant transportation.

4.2.4.5 Shear and rotational viscosities

Figures 37 and 38 present, respectively, the shear and rotational viscosities in their
reduced form, as functions of 𝑋 under (a) perpendicular and (b) parallel external field,
for 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+), 𝐶𝑎𝑚𝑎𝑔 = 5 (×) and 𝐶𝑎𝑚𝑎𝑔 = 10 (*).
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Figure 37 – Shear viscosity as functions of surfactant coverage, 𝑋, for 𝑃𝑒 = 103 (red),
𝑃𝑒 = 1 (green), and 𝑃𝑒 = 10−3 (blue) when 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+),
𝐶𝑎𝑚𝑎𝑔 = 5 (×) and 𝐶𝑎𝑚𝑎𝑔 = 10 (*). (a) and (b) correspond to perpendicular
and parallel external magnetic field, respectively.

When the external field is perpendicular to the flow, [𝜂𝑠] and [𝜂𝑟] continuously
increase with 𝑋 and both have positive values [Figures 37(a) and 38(a)]. This is due to
both the increase of the droplet deformation and Marangoni stresses. Increasing 𝐶𝑎𝑚𝑎𝑔
causes a positive displacement of the [𝜂𝑠] and [𝜂𝑟] curves, which is linked to the increase of
𝐷𝑇 and 𝜃, that is, it is closely related to the droplet length projected in the perpendicular

78



0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0
1
2
3
4 ( a )

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0- 0 . 5 0

- 0 . 2 5

0 . 0 0

0 . 2 5 ( b )

Figure 38 – Rotational viscosity as functions of surfactant coverage, 𝑋, for 𝑃𝑒 = 103

(red), 𝑃𝑒 = 1 (green), and 𝑃𝑒 = 10−3 (blue) when 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+),
𝐶𝑎𝑚𝑎𝑔 = 5 (×) and 𝐶𝑎𝑚𝑎𝑔 = 10 (*). (a) and (b) correspond to perpendicular
and parallel external magnetic field, respectively.

direction to the main flow. Increasing 𝑃𝑒 positively displaces the curves of [𝜂𝑠] as 𝑋
increases. This is due to the increase of Marangoni forces that occurs near the droplet
tips, as shown in the 4.2.2 section. As these forces act in the opposite direction to the
shear flow, the greater 𝐷𝑇 and 𝜃 (which occurs when 𝐶𝑎𝑚𝑎𝑔 increases), the greater the
effect of this resistance, and therefore, the greater [𝜂𝑠]. On the other hand, the surfactant
distribution along the droplet surface has a small (or no) effect on [𝜂𝑟]. When 𝐶𝑎𝑚𝑎𝑔 = 10,
there is a small positive displacement of the [𝜂𝑟] curves, which may be related to the small
variations of the droplet shape when 𝑃𝑒 and 𝐶𝑎𝑚𝑎𝑔 are sufficiently large.

The phenomena are remarkably different when the external field is parallel. The
droplet deformation and alignment in the direction of flow causes less distortion in
streamlines as the magnetic force increases. In fact, what is observed in Figures 37(b)
and 38(b) are smaller absolutes values of [𝜂𝑠] and [𝜂𝑟] than when the magnetic field is
perpendicular. Besides, can be seen that [𝜂𝑠] decreases with the intensity of the magnetic
field, following the same trend as the reduced viscosity of the emulsion itself. This can be
explained by the decrease of capillary and Marangoni stress, as already presented in section
4.2.4. In addition, as in Figure 37(a), increasing 𝑃𝑒 also causes a positive displacement in
the curves of [𝜂𝑠]. However, this displacement is smaller than when the magnetic field is
perpendicular since the droplet shape variations are smaller.

In turn, negative values of [𝜂𝑟] indicate that the internal magnetic torque tends to
rotate the droplet along with the vorticity, becoming more pronounced as 𝑃𝑒 increases.
This increase of the absolute value of [𝜂𝑟] with 𝑃𝑒 when 𝑋 increases is a function of
the projected droplet length decrease in the perpendicular direction to the flow, which
decreases as the droplet is elongated in the flow direction.

Comparing Figures 38(a) and (b) with insets of Figures 33(a) and 34(a), respectively,
it can be seen that the results of [𝜂𝑟] and [𝜂𝑚𝑎𝑔] have the same behavior, although,
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Figure 39 – Difference between magnetic and rotational viscosities as functions of sur-
factant coverage, 𝑋, for 𝑃𝑒 = 103 (red), 𝑃𝑒 = 1 (green), and 𝑃𝑒 = 10−3

(blue) when 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+), 𝐶𝑎𝑚𝑎𝑔 = 5 (×) and 𝐶𝑎𝑚𝑎𝑔 = 10 (*).
(a) and (b) correspond to perpendicular and parallel external magnetic field,
respectively.

[𝜂𝑟] ̸= [𝜂𝑚𝑎𝑔]. Figure 39 shows [𝜂𝑚𝑎𝑔] − [𝜂𝑟] as functions of 𝑋 at the same conditions of
Figure 38. Note that the differences between magnetic and rotational viscosities are a
function of surfactant coverage and magnetic field force, being more pronounced when the
magnetic field is perpendicular to the main flow direction. Note in Figure 38, that in the
absence of a magnetic field (symbols +) the surfactant does not affect [𝜂𝑟], that as [𝜂𝑚𝑎𝑔]
(see section 4.2.4.3) is equal to zero. Under these conditions [𝜂] = [𝜂𝑠] = [𝜂𝑐] + [𝜂𝑚]. The
presence of the magnetic field invalidates this relationship, as the surfactant affects both
the antisymmetric part and the symmetric part of the tensor stress, i. e., [𝜂𝑟] ̸= [𝜂𝑚𝑎𝑔] and
[𝜂𝑠] ̸= [𝜂𝑐] + [𝜂𝑚].

Note in Figure 39 that [𝜂𝑚𝑎𝑔] − [𝜂𝑟] is not a function of 𝑃𝑒, so Marangoni stresses
have no effect on [𝜂𝑟]. This becomes clearer recalling the Figures insets 29(a) and 30(a),
where for 𝑃𝑒 = 0 the Marangoni stress and [𝜂𝑚] tend to zero. If the differences between
[𝜂𝑚𝑎𝑔] and [𝜂𝑟] were due to Marangoni stresses, the blue curves (𝑃𝑒 = 0) of Figure 39
should be coincident with the curves of 𝐶𝑎𝑚𝑎𝑔 = 0. However, there is an overlap of curves
for different 𝑃𝑒, evidencing that the surfactant effects on the antisymmetric part of the
stress tensor are due to the normal stresses at the interface.

Generally, [𝜂𝑟] decreases with respect to [𝜂𝑚𝑎𝑔] is the extent to which 𝑋 increases.
There is the critical 𝐶𝑎𝑚𝑎𝑔 (called 𝐶𝑎𝑚𝑎𝑔,𝑠) above which [𝜂𝑟] is always smaller than [𝜂𝑚𝑎𝑔],
and another (called 𝐶𝑎𝑚𝑎𝑔,𝑖) below which [𝜂𝑟] is always bigger than [𝜂𝑚𝑎𝑔]. Between 𝐶𝑎𝑚𝑎𝑔,𝑖
and 𝐶𝑎𝑚𝑎𝑔,𝑠, [𝜂𝑟] is greater than [𝜂𝑚𝑎𝑔] for small coverage factors and this reverses as that
𝑋 increases, indicating the existence of a critical 𝑋 when 𝐶𝑎𝑚𝑎𝑔,𝑖 < 𝐶𝑎𝑚𝑎𝑔 < 𝐶𝑎𝑚𝑎𝑔,𝑠,
where [𝜂𝑟] = [𝜂𝑚𝑎𝑔]. However, even knowing that [𝜂𝑠] + [𝜂𝑟] = [𝜂𝑚] + [𝜂𝑐] + [𝜂𝑚𝑎𝑔], the
only relationship that can be established is that [𝜂𝑚] is implicit in [𝜂𝑠]. In other cases,
the relationships between [𝜂𝑠] or [𝜂𝑟] with [𝜂𝑐] + [𝜂𝑚𝑎𝑔] are unknown and may be a good
subject for future work.
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Figure 40 – Magnetization as function of surfactant coverage, 𝑋, for 𝑃𝑒 = 103 (red),
𝑃𝑒 = 1 (green), and 𝑃𝑒 = 10−3 (blue) when 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+),
𝐶𝑎𝑚𝑎𝑔 = 5 (×) and 𝐶𝑎𝑚𝑎𝑔 = 10 (*). (a) and (b) correspond to perpendicular
and parallel external magnetic field, respectively.

4.2.5 Combined effect of surfactant and magnetic field on the emulsion
magnetization

In this section, we present a complementary analysis to the work of Cunha et al.
(2020), who performed a numerical investigation of the configuration and magnetization of
the suspended ferrofluid droplet as a function of the intensity and direction of the external
magnetic field. Here, the surfactant effects are also considered. The results are displayed
as functions of 𝑋, for 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+), 𝐶𝑎𝑚𝑎𝑔 = 5 (×) and 𝐶𝑎𝑚𝑎𝑔 = 10 (*).

Figures 40 and 41 show the magnetization and magnetic torque, respectively, when
the droplet is subjected to (a) perpendicular and (b) parallel external magnetic field. The
insets of Figure 40 show the misalignment angle between the bulk magnetization and the
external field. Note that the presence of the surfactant has a weak effect on magnetization.
The curve |M*| × 𝑋 is slightly upward, making it clear that, as shown by Cunha et al.
(2020), |M*| depends on its length projected in the direction of the external field. In
both directions of the external field, 𝐷𝑇 tends to increase while 𝜃 tends to decrease as 𝑋
increases, however, the variations are smaller than in the absence of a magnetic field. Thus,
small variations of the droplet shape over the range of 𝑋 result in small variations of |M*|.
Finally, as expected, increasing the field intensity positively displaces the curves of |M*|.

On the other hand, the internal torques do not have the same behavior. When
the magnetic field is perpendicular, Figure 41(a) shows that the increase of 𝑋 results in
an increasing magnitude of 𝜏 *

𝑚𝑎𝑔 (The negative value indicates just the torque direction,
which in this case is opposite to the shear flow). This can be explained using the inset
of Figure 41(a), where the misalignment angle between the bulk magnetization and the
vertical external field increases with 𝑋 due to the increasing of droplet deformation, which
increases the shear flow effects, tending to bend the droplet in the 𝑥-direction. Under
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Figure 41 – Magnetic torque as function of surfactant coverage, 𝑋, for 𝑃𝑒 = 103 (red),
𝑃𝑒 = 1 (green), and 𝑃𝑒 = 10−3 (blue) when 𝐸 = 0.2, 𝐶𝑎𝑚𝑎𝑔 = 0 (+), 𝐶𝑎𝑚𝑎𝑔 =
5 (×) and 𝐶𝑎𝑚𝑎𝑔 = 10 (*). (a) and (b) correspond to perpendicular and parallel
external magnetic field, respectively. The insets show the misalignment angle
as function of 𝑋.

these conditions, the internal torque, 𝜏 *
𝑚𝑎𝑔, that tends to rotate the droplet in the field

direction, has its magnitude increased as 𝑋 increases. When the magnetic field is parallel
[Figure 41(b)], both the magnetic field and the shear flow tend to align the droplet in
the flow direction, therefore, the increase of 𝑋 has a small effect on 𝜃𝑚 [inset of Figure
41(b)] and, consequently, on 𝜏 *

𝑚𝑎𝑔. In this case, the relationship between advection and
surfactant diffusion changes the pattern of the curves from 𝜏 *

𝑚𝑎𝑔 as 𝑋 increases, making
them ascend for 𝑃𝑒 ≥ 1. This can be explained by the relationship between Marangoni
forces and internal torques, because when the magnetic field is parallel to the flow, the
internal torques are small, making the Marangoni stress effects evident. On the other
hand, when the magnetic field is perpendicular, the Marangoni forces are relatively small
compared to the internal torques, so changes in 𝑃𝑒 have a small effect on 𝜏 *

𝑚𝑎𝑔.
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5 Conclusions

We presented a computational study on the combined effects of surfactant coverage,
elasticity, Péclet number, and magnetic field on the dynamics of surfactant-covered ferrofluid
droplets, the rheology of dilute emulsions in simple shear flow and the mean magnetization
of this system. The continuum model was solved by combining the level set method
to capture the evolution of the interface and the closest point method to solve the
surfactant concentration equation on the surface. We presented a formulation for the stress
tensor separating the stresslet into capillary, Marangoni, and magnetic stresses. Based on
these stress tensors, we defined the capillary, Marangoni, and magnetic viscosities, which
summed, return the convectional reduced viscosity. Finally, we explored the rheology of
this non-symmetric complex fluid in terms of the shear viscosity and rotational viscosities.

In the absence of a magnetic field, our results indicate that droplet shape is more
affected by the elasticity and coverage than by the Péclet number. On the other hand, the
Péclet number is decisive for the rheology in such a manner that emulsions of droplets
of the same shape present remarkably distinct reduced viscosity. The definition of the
capillary and Marangoni viscosity helped us understand the mechanisms in the droplet
scale responsible for the bulk viscosity variations, under surfactant related parameter
changes. An increase of 𝐸 or 𝑋 leads to higher deformation, regardless of the 𝑃𝑒, as a
consequence of the reduction of the surface tension. However, the reduced viscosity can
either increase or decrease as a function of 𝐸 and 𝑋, depending on 𝑃𝑒, due to the more
complex relation between the Marangoni and capillary viscosity, under different elasticity
and coverage. Our results also indicate that, for dilute emulsions, the surfactant cannot
change the signal of the first normal stress difference.

The presence of the magnetic field has a direct effect on the observations in
the previous paragraph. Its action directly affects the surfactant accumulation regions,
sweeping it to a posterior or anterior region to the droplet tips, respectively, when the
field is perpendicular or parallel. These effects are more evident when the magnetic field is
perpendicular, where the Marangoni force peaks increase with 𝐶𝑎𝑚𝑎𝑔, opposite to when
the magnetic field is parallel. The increase in the intensity of the external field increases
the strain, and decreases or increases the droplet inclination, respectively, when applied in
the direction parallel or perpendicular to the main flow, but does not change the behavior
of these quantities with relation to 𝑋. As a general rule, the droplet shape is a stronger
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function of 𝐶𝑎𝑚𝑎𝑔 than of 𝑋 and 𝐸.

For 𝑃𝑒 ≥ 1 [𝜂𝑚] increases with 𝑋 and decreases with 𝐶𝑎𝑚𝑎𝑔 when the field is
parallel and increases with 𝑋 and 𝐶𝑎𝑚𝑎𝑔 when the magnetic field is perpendicular. In this
latter, the droplet surface locations where F𝑚 · t̂ > 0 are in a flow region in which the local
shear rate is greater than those locations in which the parallel magnetic field moves these
regions. Since F𝑚 · t̂ > 0 acts to resist yielding, 𝜂𝑚 increases. The behavior is opposite
when 𝐶𝑎𝑚𝑎𝑔 increases under perpendicular and parallel fields. On the other hand, when
𝑃𝑒 ≪ 1, the surfactant tends to be uniformly distributed, and the Marangoni viscosity
always tends to zero. Thus, we can conclude that the Marangoni viscosity is a stronger
function of 𝑃𝑒 than of 𝐶𝑎𝑚𝑎𝑔, 𝑋, or 𝐸.

The capillary viscosity is a function of the competition between surfactant advection
and droplet deformation (or 𝜎 and 𝜅). A greater amount of surfactant is swept near the
droplet tips as 𝑃𝑒 increases, reducing |F𝑐 · n̂| in these regions. In turn, the magnetic field
action increases the droplet deformation, reducing and increasing 𝜅, in regions of lower and
higher surfactant concentration, respectively. Under a perpendicular field, it is possible
to divide the droplet into two regions as 𝐶𝑎𝑚𝑎𝑔 increases: one in which the local shear
rate is smaller, 𝜅 decreases (longer droplet portion) and 𝜎 increases (due to the surfactant
being swept to the droplet tips); and another in which the local shear rate is higher, 𝜅
increases (droplet tips) and 𝜎 decreases by surfactant accumulation. The balance of this
antagonistic behavior is what determines [𝜂𝑐]. If the magnetic field is parallel, the local
shear rate is not enough to cause the same variations in the surfactant concentration and,
consequently, in the surface tension coefficient, even if the advective effects are large. Thus,
|F𝑐 · n̂| becomes a stronger function of curvature than of 𝜎. In turn, the magnetic viscosity
contributes to decreasing or increasing the emulsion reduced viscosity when the magnetic
field is parallel or perpendicular, respectively. The magnetic viscosity is independent of
the surfactant distribution on the droplet surface, being the quasi-exclusive function of
𝐷𝑇 . Thus, the reduced viscosity [𝜂] can be defined as the sum of [𝜂𝑐], [𝜂𝑚], and [𝜂𝑚𝑎𝑔]. So,
its variations can be analyzed in terms of these components.

Another way of defining viscosity is the sum of [𝜂𝑠] and [𝜂𝑟]. These viscosities parcels
are functions of the symmetric and antisymmetric parts of the stress tensor, respectively.
In general, we find that [𝜂𝑠] is a stronger function of [𝜂𝑐] and [𝜂𝑚], regardless of the
direction and magnetic field intensity. In the absence of a magnetic field (𝐶𝑎𝑚𝑎𝑔 = 0),
the surfactant does not affect 𝜂𝑟, which is equal to [𝜂𝑚𝑎𝑔 = 0]. The magnetic field action
"set" the surfactant effects on [𝜂𝑟]. However [𝜂𝑟] is not a function of 𝑃𝑒, that is, [𝜂𝑚] is
implicit in [𝜂𝑠], indicating that the surfactant effects on [𝜂𝑟] are due to the normal stresses.
Finally, it should be noted that although they have the same pattern, [𝜂𝑟] ̸= [𝜂𝑚] and
[𝜂𝑠] ̸= [𝜂𝑚𝑎𝑔] + [𝜂𝑚].

Regarding the system mean magnetization, |M*| is a stronger function of the length
projected in the direction of the external field, where the variations along of 𝑋 range are
due to the droplet shape. The magnitude of the magnetic torque increases with 𝑋 when

84



the magnetic field is perpendicular due to the increase of misalignment angle, increasing
the shear flow effects. When the field is parallel, both the magnetic field and the shear
flow tend to align the droplet in the direction of the flow, and therefore, 𝑋 has a small
effect on 𝜃𝑚 and 𝜏 *

𝑚𝑎𝑔.

The present work showed innovative contributions to the understanding of the
effects of surfactant and magnetic field in the rheology of ferrofluid droplet emulsions in
shear flows. In addition, the new methodology presented was efficient for simulating the
dynamics of surfactant-covered ferrofluid droplets under shear flow.
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A - Suggestion to future work:
magnetic vesicles

Vesicle problems require the same numerical tools as the surfactant-covered droplets.
However, it is necessary to use a projection method at the interface to determine the surface
tension. From this point of view, as it is simpler, the methodology behind the simulations
performed in this work is an ideal starting point for the development of a consistent
methodology for the study of magnetic vesicle dynamics. The main advantage is that the
numerical tools were extensively tested in this work, showing excellent performance.

In this appendix, the mathematical formulation suggested to the physics behind
a magnetic vesicle under shear flow and an external magnetic field is presented. The
problem statement is detailed, defining all relevant aspects and variables involved. Then
the incompressible Navier-Stokes equations with additional terms that take into account
the influence of the inextensible membrane and the magnetic field, are presented. It is
necessary to compute the surface tension at the interface necessary to guarantee the
membrane’s inextensibility. Following, the governing equations are non-dimensionalized
and a brief discussion about the influence of vesicles on the viscosity of diluted suspensions
is presented. Finally, we present the numerical methodology suggested for the projection
method with an additional step to compute the surface tension coefficient needed to ensure
membrane inextensibility.

This problem is similar to that presented in the section 2.1 exchanging the droplet
for a vesicle, as shown in Figure 42. The vesicle is confined in the region Ω2 and the
continuous phase occupies the region Ω1, separated by an inextensible membrane Γ. The
continuous phase has viscosity 𝜂, and magnetic permeability 𝜇0, which is assumed to
be equal to the magnetic permeability of the free space (𝜇0 = 4𝜋 × 10−7H/m), while
the vesicle, which is placed at the center of the channel, has viscosity 𝜆𝜂 and magnetic
permeability 𝜁𝜇0, where 𝜁 is the permeability ratio between the dispersed and continuous
phases. Both phases are assumed to be Newtonian and incompressible and the two-phase
fluid can be seen as a diluted suspension of fluids vesicles of the same density 𝜌, ensuring
that the drop remains in the center of the channel. The system is subjected to the same
conditions set out in the section 2.1 in addition to an external uniform magnetic field H0,
which is applied either parallel or perpendicular to the plates.
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Figure 42 – Schematic illustration of a magnetic vesicle under simple shear flow. Ω2
corresponds to the vesicle region and Ω1 corresponds the continuous phase, Γ
is the inextensible membrane, 𝜂 is the continuous phase viscosity, 𝜆𝜂 is the
vesicle viscosity, 𝜇0 is the continuous phase magnetic permeability, 𝜁𝜇0 is the
vesicle magnetic permeability, 𝜌 is the vesicle and continuous phase density, �̇�
is the shear rate �̇�, 𝑈𝑛 = �̇�𝐻𝑝/2 = −𝑈𝑠 is the canal walls velocity, H0 is the
external uniform magnetic field, 𝐻𝑝 is the distance between the channel walls
and 𝐿 is the length of the channel walls.

A.1 Physics formulation

As for surfactant-covered droplets, the governing equations are also the Eqs. (2.2)
and (2.3). The difference is the term F𝑠, which must take into account the membrane
inextensibility. Depending on the temperature, and the chemical nature of the surfactants,
the molecular organization of the membrane can be of the liquid type, corresponding to a
crystal, or even form a gel-like structure. At a mesoscopic scale, the mechanical properties
of the membrane can vary from a two-dimensional liquid to an elastic solid (BEAUCOURT
et al., 2004). In these conditions, the membrane extensibility is very low and is generally
assumed to be inextensible, this assumption is used here.

The response of the vesicle to the external flow will depend on the various forces
acting on the vesicle membrane. These forces can be determined by examining the free
energy of the closed membrane (HELFRICH, 1973). As described by Salac and Miksis
(2011), for the systems of interest, there is not enough energy in the system to change the
number of lipids in the membrane or the closed volume, that is, these two quantities are
considered fixed for a given vesicle. Thus, starting from the simplest model suggested by
Helfrich (1973) since the vesicle is not subjected to topological changes, like budding, the
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membrane energy can be modeled by

𝐸𝐻 = 𝑏𝑛
2

∫︁
𝑆
𝜅2𝑑𝑆 (A.1)

where, 𝑏𝑛 is the bending rigidity.

To minimize energy, the restriction of local inextensibility of the membrane is
considered using the surface tension, 𝜎, which acts as a Lagrange’s multiplier to enforce
the membrane inextensibility, as follows:

𝐸 = 𝑏𝑛
2

∫︁
𝑆
𝜅2𝑑𝑆 +

∫︁
𝑆
𝜎(𝑆)𝑑𝑆, (A.2)

it is important to note that the first term corresponds to the Helfrich theory and the
second term expresses the constraint of fixed area, that is, the absence of local dilatation
of the membrane.

Therefore, the response of the fluid in each domain is coupled by conditions imposed
on the membrane. Assume continuity of the velocity field and a jump in the hydrodynamic
stress, the force per unit area on the membrane can be calculated by taking the variational
derivative to the surface energy with respect to a membrane displacement, Eq. (A.2). This
procedure is detailed by (KAOUI et al., 2008). Thus, using the Dirac-delta function to
enforce these contributions around the interface and level set method leads to

F𝑠 = 𝛿𝜀(𝜑)|∇𝜑|
[︂
𝑏𝑛

(︂
∇2
𝑠𝜅+ 1

2𝜅
3
)︂

n + (∇𝑠𝜎 − 𝜅𝜎n)
]︂
, (A.3)

or

F𝑠 = F𝑏 + F𝜎, (A.4)

where F𝑏 is the bending force term from the membrane bending rigidity and F𝜎 is the
bending force by removing the portion of the surface force term from the normal and
tangential stress jump.

Eq. (A.3) is composed of a normal as well as a tangential contribution. If 𝜎 is
constant, the tension force associated with 𝜎 is tangential to the curve and has the same
magnitude at both ends of an arc element 𝑑Γ, presented in Figure 2. Thus, the sum of the
two forces is directed in the normal direction. If 𝜎 is not constant so the two values at the
ends of 𝑑Γ are different, and the force has, in addition to a normal part, a tangential one,
which is given by ∇𝑠𝜎. On the other hand, the bending energy depends on the curvature,
which is a geometric quantity. Logically, the only force that can change the shape of a
geometrical surface must be normal to the surface. Finally, the term −𝜅𝜎n has the same
structure as the force due to the surface tension of a drop. However, for a drop 𝜎 is an
intrinsic quantity that represents the cost in energy for moving a molecule from the bulk to
the surface. For vesicles, 𝜎 is a Lagrange multiplier that must be determined by requiring
a constant local area.
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In general, Eq. (A.3) has implicit numerical challenges: the surface Laplacian of
curvature, which is a fourth-order derivative on the surface; curvature the third power,
which is a non-linear and rapidly changing term in space; and the surface tension term,
which, unlike the surfactant problem where the surface tension is a function of the surfactant
concentration, given by a state equation, in the case of vesicles this surface tension needs
to be calculated to enforce surface incompressibility, modulating it according to the local
area restriction, that is, imposing that the time rate of change of a material surface element
is 0. Thus, using Eq. (2.19), it is concluded that the velocity at the interface must also be
surface-divergence-free,

∇𝑠 · u = 0. (A.5)

Therefore, replacing Eqs. (A.3), (2.5) in Eq. (2.3), the fluid motion equation is:

𝜌
𝐷u
𝐷𝑡

= −∇𝑝+ ∇ · [𝜆(x)𝜂(∇u + ∇u𝑇 )] + 𝛿𝜀(𝜑)|∇𝜑|(∇𝑠𝜎 − 𝜅𝜎n)

+𝛿𝜀(𝜑)|∇𝜑|
[︂
𝑏𝑛

(︂
∇2
𝑠𝜅+ 1

2𝜅
3
)︂

n
]︂

+ 𝜇0 (𝜁𝜀(𝜑) − 1) H · ∇H
(A.6)

A.2 Vesicles equations normalization

Consider now a three-dimensional vesicle of enclosed volume 𝑉 which has a mem-
brane area 𝐴𝑚 and the characteristic length defined as 𝑅0 =

√︁
𝐴/(4𝜋). This vesicle is

characterized by a reduced volume parameter, 𝜈 = 𝑉/(4𝜋𝑅3
0/3), which relates the encap-

sulated volume of a vesicle to that of a sphere with the same membrane area. For a sphere
𝑅0 = 𝑎 and 𝜈 = 1. The following dimensionless variables are used: 𝑡* = 𝑡�̇�, x* = x/𝑅0,
u* = u/(�̇�𝑅0), 𝑝* = 𝑝/(𝜌𝑅2

0�̇�
2), H* = H/ |H|0 and 𝜎* = 𝜎/𝜎0, where 𝜎0 = 𝜌𝑅3

0�̇�
2. For

convenience, the superscript * is also omitted here. Thus, the dimensionless form of Eqs.
(2.2), (A.5) and (A.6) became, respectively,

∇ · u = 0, (A.7)

∇𝑠 · u = 0, (A.8)

𝐷u
𝐷𝑡

= −∇𝑝+ 1
𝑅𝑒

∇ · [𝜆(x)(∇u + ∇u𝑇 )] + 𝛿𝜀(𝜑)|∇𝜑|(∇𝑠𝜎 − 𝜅𝜎n)

+ 1
𝐶𝑎𝑏𝑛𝑅𝑒

𝛿𝜀(𝜑)|∇𝜑|
(︂

∇2
𝑠𝜅+ 1

2𝜅
3
)︂

n + 𝐶𝑎𝑏𝑚𝑎𝑔
𝐶𝑎𝑏𝑛𝑅𝑒

(𝜁𝜀(𝜑) − 1) H · ∇H,
(A.9)
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in which the dimensionless groups are:

𝑅𝑒 = 𝜌�̇�𝑅2
0

𝜂
, 𝐶𝑎𝑏𝑛 = 𝜂�̇�𝑅3

0
𝑏𝑛

and 𝐶𝑎𝑏𝑚𝑎𝑔 = 𝜇0𝑅
3
0|H0|2

𝑏𝑛
.

where the capillary bending number, 𝐶𝑎𝑏𝑛 , expresses the intensity of the flow compared
to the bending forces on the membrane and the magnetic capillary bending number,
𝐶𝑎𝑏𝑚𝑎𝑔, expresses the ratio between magnetic and bending forces. The latter differs from
the magnetic capillary number presented by Cunha et al. (2018), which corresponds to
the ratio between magnetic and capillary forces and is used to study magnetic droplet
problems.

A.3 Projection method for magnetic vesicles

For the problem involving magnetic vesicles, an additional step must be added
to the projection method to conserve the surface area of the vesicle, determining the
surface tension at each time step necessary to impose the area restriction. The general
idea of the method is similar to that presented previously, however, there is an additional
complication, which is the membrane incompressibility.

As previously mentioned, a major difficulty in solving the Navier-Stokes equations
is the application of conditions free of divergences, which in this case are two conditions,
Eqs. (A.7), (A.8). As the surfactant problem, in the first step, the trial velocity field, u*,
is computed using the non-linear viscous portion and the contribution from the bending
of the membrane to the motion equation, Eq. (A.9), as follows:

u* − u𝑛

Δ𝑡 = −[(u · ∇)u]𝑛+1/2 + 1
𝑅𝑒

∇ · [𝜆𝜀(𝜑)(∇u + ∇u𝑇 )]𝑛+1/2

+ �̄�

2𝑅𝑒∇2u* − �̄�

2𝑅𝑒∇2ũ𝑛+1 + 𝐶𝑎𝑏𝑚𝑎𝑔
𝐶𝑎𝑏𝑛𝑅𝑒

[(𝜁𝜀(𝜑) − 1) H · ∇H]𝑛+1/2

+ 1
𝐶𝑎𝑏𝑛𝑅𝑒

[︂
𝛿𝜀(𝜑)∇𝜑

(︂
∇2
𝑠𝜅+ 1

2𝜅
3
)︂]︂𝑛+1/2

.

(A.10)

where,

u𝑛+1 − u*

Δ𝑡 = −∇𝜒𝑛+1 + [𝛿𝜀(𝜑) (|∇𝜑|∇𝑠𝜎 − 𝜅𝜎∇𝜑)]𝑛+1 (A.11)

or, according to the Eq. (A.3), in which F𝜎 = 𝛿𝜀(𝜑) (|∇𝜑|∇𝑠𝜎 − 𝜅𝜎∇𝜑),

u𝑛+1 − u*

Δ𝑡 = −∇𝜒𝑛+1 + F𝑛+1
𝜎 . (A.12)
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The second step is the standard trial pressure-projection step to enforce the
incompressibility of the velocity field, thus applying the divergent operator on the left and
right sides of Eq. (A.12). Respecting the condition ∇ · u𝑛+1 = 0, it is obtained that

∇2𝜒
𝑛+1 = ∇ · F𝑛+1

𝜎 + ∇ · u*

Δ𝑡 . (A.13)

Eq. (A.13) is used to compute 𝜒𝑛+1.

In the third step, the Eq. (A.11) is placed into the Eq. (A.10), obtaining the
pressure field

𝑝𝑛+1/2 = 𝜒𝑛+1 − 1
2𝑅𝑒∇ · u* (A.14)

In addition, the velocity field u𝑛+1, is computed by Eq. (A.12).

The fourth step is the surface area conserving step of the projection method. Thus,
the surface divergent operator is applied on the left and right sides of Eq. (A.12), respecting
the condition imposed by Eq. (A.8), as follows:

∇𝑠 · F𝑛+1
𝜎 = ∇𝑠 · ∇𝜒𝑛+1 − ∇𝑠 · u*

Δ𝑡 . (A.15)

Assuming that the level set field is maintained as a signed distance function, thus
|∇𝜑| = 1, Eq. (A.15) is simplified by obtaining an equation that determines the surface
tension following the membrane’s inextensibility restrictions,

∇2
𝑠𝜎

𝑛+1 − 𝜅2𝜎𝑛+1 = 1
𝛿(0)∇𝑠 ·

(︂
∇𝜒𝑛+1 − u*

Δ𝑡

)︂
. (A.16)

This equation is only valid on the interface and therefore must be solved using the closest
point method to discretize it, and the Bi-conjugate gradient stabilized method to solve
the linear system.

Therefore, the flow governing equations are solved in the following order:

• Eq. (A.10) to compute the trial velocity field, u*;

• Eq. (A.13) to compute the trial pressure field, 𝜒𝑛+1, and Eq. (A.16) to compute 𝜎𝑛+1

on the surface. This equations are directly linked, because Eq. (A.16) is function of
𝜎𝑛+1 and Eq. (A.13) is function of 𝜒𝑛+1. Thus, this equations are solved iteratively
until the residual of both equation are less than 10−9 in the same iteration;

• Eq. (A.12) to compute velocity field, u𝑛+1;

• Eq. (A.14) to compute pressure field, 𝑝𝑛+1/2.
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A.4 Implementation difficulties/suggestions

The described methodology was implemented and tested, however, the initial tests
showed problems related to the membrane length conservation, which starts to increase
after a certain point (depending on the parameters tested). Although the governing
equations have been successfully solved, the condition ∇𝑠 · u = 0 has not been satisfied.
This is somewhat intriguing, since Eqs. (A.13) and (A.16) are resolved interactively.

The re-initialization process has contributed to the membrane length increase,
being directly affected by the number of re-initialization steps. We are still not sure how
this has happened, but we believe that since 𝜑 directly affects the closest point chosen
in the linear system solution, this has cumulatively affected our results since the errors
become more evident as where time increases. For this, we suggest using a more elaborate
method for determining the closest point, which uses the current method as "kick" to
determine it more precisely.

In addition, we found that rising the numerical width of the interface from 3/2ℎ to
3ℎ makes a significant difference in the area (length) conservation. It seems that having
more points in the normal direction of the surface improves the numerical results. We also
observed that when our vesicles reach a stationary shape (in tank treading), the area and
length start to increase faster, another indication that the re-initialization has failed.

It is already known that in the absence of a magnetic field and viscosity ratio 𝜆 > 1,
the vesicle begins to tip end to end in a rigid manner, following the tumbling motion
pattern, with the inclination angle suffering periodic repetitions of 0 to 180∘. By solving
the aforementioned problems, it is expected that as the magnetic field force is increased,
the vesicle fails to follow the tumbling pattern, reaching a balance in the inclination angle
of the tank-treading regime. For this, it is also necessary to evaluate the variation of the
angle of equilibrium of the vesicle in relation to the time. If it remains constant over time,
it means that the movement will occur in the tank-treading pattern and it will be possible
to control the pattern of movement of the vesicle.

As the rheology of a vesicle suspension is directly influenced by the vesicle motion
pattern (GHIGLIOTTI; BIBEN; MISBAH, 2010), it is expected that under the action of
a magnetic field, it is possible to control the suspension rheology. For example, considering
a vesicles suspension in which the tumbling motion pattern is observed, it is expected
that the sudden application of a magnetic field (parallel or perpendicular to the main flow
direction) will result in the abrupt change in the vesicles motion pattern, tumbling to
tank-treading, also changing the rheological properties of the suspension.
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A - Direct solution via Fourier
Analysis

For brevity, only a two-dimensional deduction from the solver is presented here,
where 𝑖 is reserved to represent the imaginary unit. A more detailed approach can be found
in the work of (ABICALIL, 2021). Thus, a general linear system of equations, arising
from a finite difference discretization of the 2D governing equations, can be written in a
stenciled form as:

𝑎𝑝,𝑞𝑢𝑝−1,𝑞 + 𝑏𝑝,𝑞𝑢𝑝,𝑞−1 + 𝑐𝑝,𝑞𝑢𝑝,𝑞 + 𝑑𝑝,𝑞𝑢𝑝+1,𝑞 + 𝑒𝑝,𝑞𝑢𝑝,𝑞+1 − 𝑓𝑝,𝑞 = 0, (A.1)

for 𝑝 = [1, 𝑃 ], 𝑞 = [1, 𝑄], where the discrete inverse Fourier transform, in one direction, is
defined as

𝑢𝑝 = 1
𝑀

𝑀−1∑︁
𝑚=0

�̂�𝑚𝑒
𝑖 2𝜋

𝑀
𝑚𝑝, (A.2)

with 𝑀 = 𝑃 .

Applying the inverse Fourier transform in the 𝑥 direction to Eq. (A.1), and assuming
that all coefficients (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) are constant in the transformation direction, we have

1
𝑀

𝑀−1∑︁
𝑚=0

(︁
𝑎𝑞�̂�𝑚,𝑞𝑒

𝑖 2𝜋
𝑀
𝑚(𝑝−1) + 𝑏𝑞�̂�𝑚,𝑞−1𝑒

𝑖 2𝜋
𝑀
𝑚𝑝 + 𝑐𝑞�̂�𝑚,𝑞𝑒

𝑖 2𝜋
𝑀
𝑚𝑝

+ 𝑑𝑞�̂�𝑚,𝑞𝑒
𝑖 2𝜋

𝑀
𝑚(𝑝+1) + 𝑒𝑞�̂�𝑚,𝑞+1𝑒

𝑖 2𝜋
𝑀
𝑚𝑝 − 𝑓𝑚,𝑞𝑒

𝑖 2𝜋
𝑀
𝑚𝑝
)︁

= 0.
(A.3)

Thus, for 𝑚 = [0,𝑀 − 1], 𝑞 = [1, 𝑄]

𝑎𝑞�̂�𝑚,𝑞𝑒
𝑖 2𝜋

𝑀
𝑚(𝑝−1) + 𝑏𝑞�̂�𝑚,𝑞−1𝑒

𝑖 2𝜋
𝑀
𝑚𝑝 + 𝑐𝑞�̂�𝑚,𝑞𝑒

𝑖 2𝜋
𝑀
𝑚𝑝

+ 𝑑𝑞�̂�𝑚,𝑞𝑒
𝑖 2𝜋

𝑀
𝑚(𝑝+1) + 𝑒𝑞�̂�𝑚,𝑞+1𝑒

𝑖 2𝜋
𝑀
𝑚𝑝 = 𝑓𝑚,𝑞𝑒

𝑖 2𝜋
𝑀
𝑚𝑝

(A.4)

Splitting the exponential functions in the terms containing 𝑎𝑞 and 𝑑𝑞, respectively,

𝑒𝑖
2𝜋
𝑀
𝑚(𝑝−1) = 𝑒𝑖

2𝜋
𝑀
𝑚𝑝𝑒−𝑖 2𝜋

𝑀
𝑚,

𝑒𝑖
2𝜋
𝑀
𝑚(𝑝+1) = 𝑒𝑖

2𝜋
𝑀
𝑚𝑝𝑒𝑖

2𝜋
𝑀
𝑚.

(A.5)
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By imposing that 𝑎𝑞 = 𝑑𝑞, we have

𝑎𝑞�̂�𝑚,𝑞𝑒
𝑖 2𝜋

𝑀
𝑚(𝑝−1) + 𝑑𝑞�̂�𝑚,𝑞𝑒

𝑖 2𝜋
𝑀
𝑚(𝑝+1) = 𝑎𝑞�̂�𝑚,𝑞𝑒

𝑖 2𝜋
𝑀
𝑚𝑝
(︁
𝑒−𝑖 2𝜋

𝑀
𝑚 + 𝑒𝑖

2𝜋
𝑀
𝑚
)︁
. (A.6)

Finally, using Euler’s equation and recalling that cosines and sines are even and
odd functions, respectively, we find

𝑒−𝑖 2𝜋
𝑀
𝑚 + 𝑒𝑖

2𝜋
𝑀
𝑚 = 2 cos

(︂2𝜋
𝑀
𝑚
)︂
. (A.7)

Substituting Eq. (A.7) in Eq. (A.6),

𝑎𝑞�̂�𝑚,𝑞𝑒
𝑖 2𝜋

𝑀
𝑚(𝑝−1) + 𝑑𝑞�̂�𝑚,𝑞𝑒

𝑖 2𝜋
𝑀
𝑚(𝑝+1) = 2𝑎𝑞 cos

(︂2𝜋
𝑀
𝑚
)︂
�̂�𝑚,𝑞𝑒

𝑖 2𝜋
𝑀
𝑚𝑝. (A.8)

Now, substituting this result in Eq. (A.4), we find that

𝑒𝑖
2𝜋
𝑀
𝑚
(︂

2𝑎𝑞 cos
(︂2𝜋
𝑀
𝑚
)︂
�̂�𝑚,𝑞 + 𝑏𝑞�̂�𝑚,𝑞−1 + 𝑐𝑞�̂�𝑚,𝑞 + 𝑒𝑞�̂�𝑚,𝑞+1

)︂
= 𝑓𝑚,𝑞𝑒

𝑖 2𝜋
𝑀
𝑚𝑝 (A.9)

Therefore, the original system of equations is reduced to the following set of
tridiagonal systems of equations:

𝑏𝑞�̂�𝑚,𝑞−1 +
(︂

2𝑎𝑞 cos
(︂2𝜋
𝑀
𝑚
)︂

+ 𝑐𝑞

)︂
�̂�𝑚,𝑞 + 𝑒𝑞�̂�𝑚,𝑞+1 = 𝑓𝑚,𝑞. (A.10)

In order to solve the above tridiagonal system of equations, we use the following
methods (ABICALIL, 2021):

1. Apply a Fourier transform in the y direction, in a similar way to what was previously
described, with similar restrictions to the coefficients. This reduces the problem to a
set of diagonal systems of equations, with trivial solutions;

2. Solve the system by using Thomas’ algorithm for tridiagonal matrices, which is
a simplified form of Gaussian elimination. This alternative is more efficient than
employing an additional Fourier transform and doesn’t impose such strict restrictions
on the coefficients of the linear system.

As such, the solution process of the method described above is:

1. Apply a Fourier transform in the 𝑥 direction to the right-hand side of Eq. (A.1);

2. Solve the 𝑀 tridiagonal systems described in Eq. (A.10), in order to determine the
values of �̂�;

3. Apply an inverse Fourier transform in the 𝑥 direction to �̂�, in order to determine
the values of the original unknowns 𝑢.
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B - Biconjugate gradient method

The Biconjugate Gradient Stabilized method was developed to solve non-symmetric
linear systems, avoiding the often irregular convergence patterns of the conjugate gradient
squared method (VORST, 1992). Thus, a linear system 𝐴x = b is solved by the steps
presented in Algorithm 1.

Algorithm 1 : Biconjugate Gradient Stabilized method
1 : Compute r0 = b − 𝐴x0, choose r′

0 such that r0 · r′
0 ̸= 0

2 : Set p0 = r0
3 : for 𝑗 = 0, 1, ... do
4 : 𝛼𝑗 = (r𝑗 · r′

0)/((𝐴p𝑗) · r′
0)

5 : s𝑗 = r𝑗 − 𝛼𝑗𝐴p𝑗
6 : 𝜔𝑗 = ((𝐴s𝑗) · s𝑗)/((𝐴s𝑗) · (𝐴s𝑗))
7 : x𝑗+1 = x𝑗 + 𝛼𝑗p𝑗 + 𝜔𝑗s𝑗
8 : r𝑗+1 = s𝑗 − 𝜔𝑗𝐴s𝑗
9 : if ||r𝑗+1|| < 𝜀0 then
10: Break;
11: end if
12: 𝛽𝑗 = (𝛼𝑗/𝜔𝑗) × (r𝑗+1 · r′

0)/(r𝑗 · r′
0)

13: p𝑗+1 = r𝑗+1 + 𝛽𝑗(p𝑗 − 𝜔𝑗𝐴p𝑗)
14: end for
15: Set x = x𝑗+1
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