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Resumo

Nesta tese, estudamos as equações integrais funcionais do tipo Volterra–Stieltjes dadas

por:
$

’

’

&

’

’

%

xptq “ ϕp0q `

ż t

τ0

apt, sqfpxs, sq dgpsq, t ě t0

xt0 “ ϕ,

onde a integral no lado direito é entendida no sentido de Henstock–Kurzweil–Stieltjes.

Neste trabalho, apresentamos condições suficientes para garantir a existência, unici-

dade e prolongamento de soluções para esse tipo de equações. Provamos também corre-

spondências entre essas equações e as equações delta integrais funcionais do tipo Volterra

em escalas temporais, bem como com as equações funcionais integrais do tipo Volterra–

Stieltjes com impulsos. Apresentamos resultados de estabilidade para suas soluções, resul-

tados sobre dependência contínua com respeito aos parâmetros e garantimos a existência

de soluções periódicas para essas equações. Os resultados inéditos deste trabalho podem

ser encontrados em [31, 33, 32, 46].

Palavras-chave: Equações integrais funcionais; equações de Volterra–Stieltjes; equações

integrais com impulsos; equações ∆´integrais em escalas temporais; periodicidade; esta-

bilidade; dependência contínua.
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Abstract

In this thesis, we study the functional Volterra–Stieltjes integral equations given by:

$

’

’

&

’

’

%

xptq “ ϕp0q `

ż t

τ0

apt, sqfpxs, sq dgpsq, t ě t0

xt0 “ ϕ,

where the integral on the right–hand side is taken in the sense of Henstock–Kurzweil–

Stieltjes.

In this work, we present sufficient conditions in order to guarantee the existence,

uniqueness and prolongation of solutions for this type of equations. We also prove the

correspondence between these equations and the functional Volterra delta integral equa-

tions on time scales, as well as with the impulsive functional Volterra–Stieltjes integral

equations. We present results concerning stability, continuous dependence with respect

on parameters and periodicity. The new results can be found in [31, 33, 32, 46].

Key-words: Functional integral equations; Volterra–Stieltjes equations; impulsive

integral equations; ∆´integral equations on time scales; periodicity; stability; continuous

dependence.
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Introduction

In the decades 20–40, Vito Volterra introduced in the literature an important class of

equations given by:

xptq “ fptq `

ż t

t0

Kpt, sqxpsqds, (0.0.1)

which can encompass many types of equations. The kernel that appears in the above

equation allows us to describe many types of phenomena, specially the ones related to the

memory, as we will see in this thesis. Throughout the years, several versions of equation

(0.0.1) started to appear in the literature in order to improve the descriptions of the

phenomena, including for instance integro–differential equations.

The study of Volterra equations is an emerging area of research which possesses in-

teresting mathematical questions and applications, since it can model several natural

phenomena such as anomalous diffusion processes, heat conduction with memory and dif-

fusion of fluids in porous media, among others and, therefore, it is an important equation

to be studied as it can be verified in the literature. Some few examples can be found in

[1, 4, 7, 8, 7, 10, 17, 34].

Let us observe a model describing temperature of one–dimensional bar:
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Ttpξ, tq “ Tξξpξ, tq, ξ ą 0, t ą 0,

Tξp0, tq “ αT p0, tq ´ qptq, t ą 0,

T pξ, 0q “ 0, ξ ě 0,

lim
ξÑ8

T pξ, tq “ 0, t ě 0,

(0.0.2)

where T pξ, tq represents the temperature of one–dimensional bar for ξ ě 0 which loses

energy at a rate proportional to T p0, tq at the point ξ “ 0. Assume that an external

source generates heat proportional to the function qptq at this end of the bar, which is

insulated at all other parts, with temperature zero at time t “ 0.
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If ξ “ 0, then it is possible to obtain the solution of this problem by using the following

convolution Volterra integral equation

xptq `

ż t

0
kpt ´ sqxpsqds “ fptq, t ě 0, (0.0.3)

where

xptq “ T p0, tq, kptq “
a

?
π
t´1{2 and fptq “

1
?
π

ż t

0
pt ´ sq´1{2qpsqds.

Therefore, equation (0.0.2) is a particular case of equation (0.0.1), showing the variety

of problems that Volterra equations can encompass, including important PDEs. Indeed,

using Laplace transforms in (0.0.2), we get the following definition for T pξ, tq:

T pξ, tq “
1

?
π

ż t

0
pt ´ sq´1{2e´ξ2{p4pt´sqq

pqpsq ´ αT p0, sqq ds, t ą 0, ξ ě 0,

obtaining the formulation above. This model can be found in [34].

In this thesis, we work with a more general class of equations, called functional

Volterra–Stieltjes integral equations, that are described as follows:
$

’

’

&

’

’

%

xptq “ ϕp0q `

ż t

τ0

apt, sqfpxs, sq dgpsq, t ě t0

xt0 “ ϕ,

(0.0.4)

where 0 ď t0 ă d, r ą 0, ϕ P Gpr´r, 0s,Rnq, f : Gpr´r, 0s,Rnqˆrt0, dq Ñ Rn, a : rt0, dq2 Ñ

R and g : rt0, dq Ñ R is a nondecreasing function, where t0 ă d ď `8,

xs : r´r, 0s Ñ Rn is given by xspθq “ xps ` θq for s P rt0, dq. Here, rt0, dq2 denotes

the set rt0, dq ˆ rt0, dq.

The formulation (0.0.4) is even more general than the one first described by Volterra

and as we will see here in this work, it can encompass many types of equations. This fact

motivated us to investigate this type of problem. Depending on the definition of a, g and

r, equation (0.0.4) may encompass a huge variety of problems, as we describe below:

i) By choosing apt, sq “ 1, gpsq “ s, r “ 0 and ϕ ” x0, we obtain the standard

formulation of ODEs:
$

’

&

’

%

yptq “ x0 `

ż t

t0

fpypsq, sqds, t ě t0,

ypt0q “ x0.
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ii) If we choose apt, sq “ 1 and gpsq “ s, we obtain the classical functional differential

equations:
$

’

&

’

%

yptq “ ϕp0q `

ż t

t0

fpys, sqds, t ě t0,

yt0 “ ϕ.

iii) If apt, sq “ pt ´ sqα´1{Γpαq, gpsq “ s, r “ 0 and ϕ ” x0, then we are discussing the

standard Caputo fractional differential equations (see [17])
$

’

&

’

%

yptq “ x0 `
1

Γpαq

ż t

t0

pt ´ sqα´1fpypsq, sqds, t ě t0,

ypt0q “ x0.

The reader will see in later chapters that the functional Volterra–Stieltjes integral

equations encompass also integral equations with impulses. We will show how to make a

correspondence between the solutions (0.0.4) and the solutions of
$

’

’

’

’

&

’

’

’

’

%

xpvq ´ xpuq “

ż v

t0

apv, sqfpxs, sqdgpsq ´

ż u

t0

apu, sqfpxs, sqdgpsq for u, v P Jk, k P N

∆`xptkq “ Ikpxptkqq, k “ 1, . . . ,m

xt0 “ ϕ,

(0.0.5)

where J0 “ rt0, t1s, Jk “ ptk, tk`1s, for k “ 1, . . . ,m ´ 1, Jm “ ptm, dq and ttkumk“1 are

the pre-fixed moments of impulses, where each tk P rt0, dq and d ď 8. This fact allows

us to investigate impulsive equations “implicitly”, by only studying Volterra–Stieltjes

integral equations. We will also show in this work that the impulsive fractional differential

equations can also be regarded as Volterra–Stieltjes integral equations, even in the case

that the order of the derivative α is between 1 and 2, as well as between 0 and 1.

We will also describe a correspondence between the solutions of (0.0.4) and the solu-

tions of the functional Volterra ∆´integrals on time scales:
$

’

&

’

%

xptq “ xpt0q `

ż t

t0

apt, sqfpx˚
s , sq∆s, t P rt0, dqT,

xptq “ ϕptq, t P rt0 ´ r, t0sT,

(0.0.6)

where T is an arbitrary time scale, d P TYt8u, ϕ P Gprt0 ´r, t0sT,Rnq, f : Gpr´r, 0s,Rnqˆ

rt0, dqT Ñ Rn and rt0 ´ r, t0sT, rt0, dqT are time scales intervals. These equations play

an important role for applications, since the theory of times scales can unify discrete,
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continuous and “in between” cases (see [13]). To motivate the study of Volterra ∆-

integral on time scales, we also present here a version of the famous model in economics

that is know as Keynesian-Cross model with “lagged” income, that can be described by a

Volterra ∆-integral on time scales, showing the importance of this type of equations. For

more details, see Chapter 2.

Moreover, the class of neutral functional differential equations (neutral FDEs, for

short) can also be regarded as functional Volterra–Stieltjes integral equations. Indeed,

neutral FDEs are usually described by:

9xptq “ Lxt, (0.0.7)

where L is a continuous linear map from Cpr´r, 0s,Rnq into Rn. Using Riesz Representa-

tion Theorem, we can rewrite (0.0.7) as follows:

9x “

ż h

0
dξpθqxpt ´ θq. (0.0.8)

Using the initial condition given by xpθq “ φpθq for ´h ď θ ď 0, we get
$

’

&

’

%

9xptq “

ż t

0
ξpθq 9xpt ´ σqdθ ` gptq

xp0q “ φp0q,

(0.0.9)

where gptq “ ξptqφp0q `
şh

t
dξpθqφpt ´ θq.

Integrating (0.0.9), we have

xptq ´ φp0q “

ż t

0
ξpθqrxpt ´ θq ´ xp0qsdθ `

ż t

0
gpsqds, (0.0.10)

which implies x “ x ˚ ξ ` f, where

fptq “ φp0q `

ż t

0
gpsqds ´

ż t

0
ξpθqdθφp0q.

Equation (0.0.10) is a type of Volterra integral equations, which shows us that it is

possible to rewrite the neutral equation given by (0.0.7) as a Volterra integral equation.

Therefore, it is clear how equation given by (0.0.4) can be general, since it encompasses

many type of equations.

Also, in this thesis, we employ the so–called Henstock–Kurzweil–Stieltjes integral,

which is more general than the Lebesgue–Stieltjes integral. Therefore, all the results
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obtained here are valid for a more general class of functions than the Lebesgue integrable

functions, which allows an oscillating behavior.

This new integral was first defined by the mathematicians Jaroslav Kurzweil [45] in

1957 and Ralph Henstock [39] in 1961, who, independently, formulated an equivalent in-

tegral, capable of integrating functions that not even the Lebesgue integral could. The

motivation behind the Henstock–Kurzweil integral is the Kapitza pendulum, studied at

first by Andrew Stephenson [66]. This pendulum had a mass moving around a certain

support, like an ordinary pendulum, but also the support itself oscillated at a very high

frequency ω. An unusual consequence of this oscillation was the fact that a stable equi-

librium position for the mass was exactly above the support, as it can be viewed in the

following picture.

Figure 1: Kapitza’s Pendulum

(obtained from Wikipedia website)

In 1951, the physicist Pyotr Kapitza [42, 41] was able to obtain a model that described

the movement of this pendulum:

:θ “
g

L
sinpθq ´

aω2 sinpωtq

L
sinpθq, (0.0.11)

where g ą 0 is the acceleration of gravity, L ą 0 is the length of the pendulum, a ą 0

is the amplitude of the support’s vibration and θ : R Ñ R is the angle made by the

pendulum with the vertical when the mass is placed upwards. However, because of the

high frequency ω, the Lebesgue integral could not be used to find the solution for the

aforementioned equation.
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The Henstock–Kurweil integral does not only integrate more functions than the

Lebesgue integral, but its definition is also simpler. This is very similar to the defini-

tion of the Riemann integral, with the difference that instead of asking the partitions to

be smaller than a certain constant, it is used a certain function, called gauge, which is

simply a positive function, to control the size of subintervals of the partitions (for a more

complete description of this integral, the reader may refer to [11, 53] and Chapter 1.2 of

this thesis).

On the other hand, since (0.0.4) encompasses (0.0.6), we will also present the basis of

the theory of time scales. It was in 1988 when Stefan Hilger introduced the concept of a

time scale in his PhD thesis [40]. He defined a time scale as any nonempty closed subset

of R. Hence, both R and Z are examples of time scales, but we have more sophisticated

examples of time scales such as the Cantor set and the quantum scale, among others.

Studying and solving problems for an arbitrary time scale would give us, as a con-

sequence, solutions for both the discrete and continuous cases, but not only that, since

one can construct sets that are not completely continuous nor discrete, but hybrid. In

this sense, Hilger ended up unifying the discrete and continuous analysis in a certain way.

Therefore, working in an arbitrary time scale, one can understand a great class of different

sets and instead of proving the same result for many different cases, one can prove it just

once and encompass all those cases. This theory is well described in [13, 14]. Much work

has being done concerning the theory of time scales, see for instance [5, 24, 47, 56, 65]

and the references therein.

In this work, we investigate deeply the solutions of (0.0.4), its properties and sufficient

conditions to ensure its existence, uniqueness, prolongation and boundary value problems.

Also, sufficient conditions to ensure its stability are provided via Lyapunov functionals

and continuous dependence with respect to the parameters and the correspondence be-

tween the solution of (0.0.4) and its analogue in the time scale setting and also, scope of

functional Volterra–Stieltjes integral equations with impulses.

The chapters of this thesis are defined in the following manner: in Chapter 1, we give

an overview of the theory of regulated functions, the Henstock–Kurzweil–Stieltjes integral

and time scale theory. We also present some important definitions and results that will

be essential to our purposes. The main references here are [11, 53, 60].
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In Chapter 2, we present the correspondences between functional Volterra–Stieltjes in-

tegral equations, impulsive functional Volterra–Stieltjes integral equations and functional

Volterra ∆-integral equations on time scales that will be used throughout this thesis to

ensure that our results proved for functional Volterra–Stieltjes integral equations are also

true for impulsive functional Volterra–Stieltjes integral equations and functional Volterra

∆-integral equations on time scales. Also, we present several examples and models that

can be described using Volterra–Stieltjes integral equations, illustrating their importance.

Further, we justify the generality of our conditions with an example.

In Chapter 3, we present the Volterra–Stieltjes integral equation that will be inves-

tigated here, give conditions to guarantee the existence of a unique solution to equation

(0.0.4) and prove versions for impulsive functional Volterra–Stieltjes integral equations

and functional Volterra ∆´integral equations on time scales. Also, we investigate the

existence and uniqueness of maximal solutions to all these equations.

In Chapter 4, we prove results concerning stability, asymptotic stability, uniform sta-

bility and exponential stability using Lyapunov functionals for equation (0.0.4). The

results presented here generalize the ones found in the literature for measure equations,

presenting more general conditions and considering the presence of the delays and ker-

nel in the equation, which turns the techniques more sophisticated to work. In Chapter

5, we present a periodic boundary value problem with respect to (0.0.4) and we prove

their analogues for the time scales and impulsive cases. Finally, in Chapter 6, we present

some results concerning continuous dependence with respect to the parameters of equation

(0.0.4), as well as their analogues to time scales and impulsive cases. The results presented

in Chapters 2, 3, 4, 5 and 6 are new and are presented in the papers [31, 33, 32, 46].



Chapter 1

Preliminaries

This chapter is divided in 3 sections. In the first section, we give some basic definitions

and results concerning the theory of regulated functions. In the second one, we present

some initial concepts and essential results about the Henstock–Kurzweil-Stieltjes integra-

tion theory. In the third section, we explore the theory of time scales, presenting the

most fundamental definitions and recalling some important concepts and theorems about

differentiation and integration on time scales. The main references to this chapter are

[11, 26, 53, 60].

The definitions and results presented in this chapter will be very important to prove

the main results of this work.

1.1 Regulated functions

We start by recalling the reader about some properties and basic definitions of regulated

functions. These properties will be essential to our work, since most of the functions

involved in our study are regulated.

Definition 1.1.1 ([26]). A function φ : rα, βs Ñ Rn is called regulated, if the lateral limits

φpt´q “ lim
sÑt´

φpsq, t P pα, βs and φpt`q “ lim
sÑt`

φpsq, t P rα, βq

exist. The space of all regulated functions φ : rα, βs Ñ Rn will be denoted byGprα, βs,Rnq.

8
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It is a known fact that Gprα, βs,Rnq endowed with the usual supremum norm

}φ}8 “ sup
sPrα,βs

}φpsq}

is a Banach space (see [26]). Let I Ă R be an interval. We denote by GpI,Rnq the space

of all locally regulated functions x : I Ñ Rn, that is, for each compact interval rα, βs Ă I,

the restriction of x to rα, βs belongs to the space Gprα, βs,Rnq.

Remark 1.1.2. If x P GpI,Rnq and rα, βs Ă I, we will use the notation

}x}8,rα,βs :“ sup
sPrα,βs

}xpsq}

to denote the norm of the function x restricted to the interval rα, βs.

Let g : rα, βs Ñ Rn be a regulated function. We will denote by ∆`gptq and ∆´gptq

the jumps to the right gpt`q ´ gptq and the jumps to the left gptq ´ gpt´q, respectively.

Let us also define the variation of a function f : rα, βs Ñ X, where X is a Banach

space, over rα, βs. By } ¨ }X , we denote the norm in X . A set D “ tα0, α1, . . . , α|D|u is

defined to be a partition of rα, βs if α “ α0 ă α1 ă . . . ă α|D|“β. The set of all partitions

of rα, βs will be denoted by Drα, βs.

Definition 1.1.3. We define the variation of f over rα, βs as

varβαpfq “ sup
DPDrα,βs

|D|
ÿ

j“1
}fpαjq ´ fpαj´1q}X .

If varβαpfq ă 8, then f is said to be a function of bounded variation on rα, βs. We will

denote the set of all the functions f : rα, βs Ñ X of bounded variaton by BV prα, βs, Xq.

We recall that BV prα, β,Xsq Ă Gprα, βs, Xq (see [61]).

The next result gives us an equivalence for the concept of regulated function which

comes directly from the definition. With this equivalence in hands, it will become easier

to prove some results in the next chapters.

Theorem 1.1.4 (Hönig’s Theorem, [53, Theorem 4.15]). The following statements are

equivalent:

(i) f P Gprα, βs,Rnq;
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(ii) for every ε ą 0, there is a division of the interval rα, βs, α “ s0 ă s1 ă . . . ă sn “ β,

such that for every i P t1, . . . , nu and all t, r P psi´1, siq, we have }fptq ´ fprq} ă ε.

With the purpose of presenting an analogue of Arzelà–Ascoli Theorem for regulated

functions, we give a definition of an equiregulated set and then, an equivalence for this

definition.

Definition 1.1.5 ([26, Definition 1.3]). A set A Ă Gprα, βs,Rnq is called equiregulated, if

for every ε ą 0 and t0 P rα, βs, there exists a δ ą 0 such that:

(1) if x P A, s P rα, βs and t0 ´ δ ă s ă t0, then }xpt´0 q ´ xpsq} ă ε;

(2) if x P A, s P rα, βs and t0 ă s ă t0 ` δ, then }xpt`0 q ´ xpsq} ă ε.

Lemma 1.1.6 ([53, Lemma 4.3.4]). The following statements are equivalent.

(1) A Ă Gprα, βs,Rnq is equiregulated.

(2) For every ε ą 0, there is a division α “ s0 ă s1 ă . . . ă sn “ β such that for all

y P A, all i P t1, . . . , nu and all t, s P psi´1, siq, we have }yptq ´ ypsq} ă ε.

We now are ready to present an Arzelà–Ascoli type theorem for the case of regulated

functions. See [53, Theorem 4.3.5] for its proof.

Theorem 1.1.7. A set A Ă Gprα, βs,Rnq is relatively compact if, and only if, it is

uniformly bounded and equiregulated.

This type of result will be very important to prove results related to existence and

prolongation of solutions. We also point out that there are more general versions of

this theorem in the literature, for example, for functions taking value in a Banach space

(see [27]), but for our purposes here, it is enough to work with the version presented in

Theorem 1.1.7.

1.2 Henstock–Kurzweil–Stieltjes integration

We begin this section with some definitions that are needed for the comprehension of the

Henstock–Kurzweil–Stieltjes integral. We also present some classical results in order to
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give the reader a clearer understanding of this type of integral. For more details, the

reader can consult [11, 53, 60].

We also point out that the use of the Henstock–Kurzweil–Stieltjes integral allows us

to work with a more general set of functions. This fact occurs because every Lebesgue

integrable function is also Henstock–Kurzweil integrable, but the reciprocal is not true,

except for positive functions, since a function f is Lebesgue integrable if and only if both

f and its absolute value }f} are Henstock–Kurzweil integrable (see [11]).

To define the Henstock–Kurzweil–Stieltjes integral, we begin by letting rα, βs Ă R,

α ă β, be a compact interval. We say that a tagged partition of rα, βs is a set D of

ordered pairs pτi, rsi´1, sisq, where α “ s0 ă s1 ă . . . ă s|D| “ β is a partition of rα, βs

and τi P rsi´1, sis, i “ 1, 2, . . . , |D|, where |D| denotes the cardinality of the set D. We

denote the tagged partition just by D “ pτi, rsi´1, sisq.

Given a set B Ď rα, βs, we define a gauge on B as any function δ : B Ñ p0,8q. Given

a gauge δ on rα, βs, we say that a tagged partition D “ pτi, rsi´1, sisq is δ–fine if for every

i P t1, 2, . . . , |D|u, we have

rsi´1, sis Ă pτi ´ δpτiq, τi ` δpτiqq.

Definition 1.2.1. A function f : rα, βs Ñ Rn is Henstock–Kurzweil–Stieltjes integrable

on rα, βs with respect to a function g : rα, βs Ñ R, if there is an element I P Rn such that

for every ε ą 0, there is a gauge δ : rα, βs Ñ p0,8q such that
›

›

›

›

›

|D|
ÿ

i“1
fpτiq pgpsiq ´ gpsi´1qq ´ I

›

›

›

›

›

ă ε

for all δ–fine tagged partition of rα, βs. In this case, I is called the Henstock–Kurzweil–

Stieltjes integral of f with respect to g over rα, βs and it will be denoted by
şβ

α
fpsq dgpsq,

or just by
şβ

α
f dg.

Note that when g is the identity function, that is, gpsq “ s, we have the classical

Henstock–Kurzweil integral.

Lemma 1.2.2 (Cousin’s Lemma). If I :“ ra, bs is a nondegenerate compact interval in

R and δ is a gauge on I, then there exists a partition of I that is δ-fine.
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A proof of the above result can be found in [11] and it is very important since it

ensures that this integral is well–defined.

The classical properties of linearity, additivity with respect to adjacent intervals and

integrability on subintervals are all valid for the Henstock–Kurzweil–Stieltjes integral.

(see [60] and the references therein).

The following result ensures that the class of regulated functions is Henstock–Kurzweil–

Stieltjes integrable with respect to a nondecreasing function. It also gives us an upper

bound for the absolute value of the definite integral in an interval.

Theorem 1.2.3 ([60, Corollary 1.34]). Let f : rα, βs Ñ Rn be a regulated function and

g : rα, βs Ñ R be a nondecreasing function. Then, the following conditions hold:

(i) the integral
ż β

α

fpsqdgpsq exists;

(ii)
›

›

›

›

ż β

α

fpsqdgpsq

›

›

›

›

ď

ż β

α

}fpsq} dgpsq ď }f}
8

pgpβq ´ gpαqq.

The next inequalities can be easily obtained from the definition of the Henstock–

Kurzweil–Stieltjes integral. A version of it for the case of Riemann–Stieltjes integral can

be found in [9, Theorem 7.20] and its proof is very similar to the result we present here.

Theorem 1.2.4. Let f1, f2 : rα, βs Ñ R be Henstock–Kurzweil–Stieltjes integrable func-

tions on the interval rα, βs with respect to a nondecreasing function g : rα, βs Ñ R and

such that f1ptq ď f2ptq, for t P rα, βs. Then
ż β

α

f1psqdgpsq ď

ż β

α

f2psqdgpsq.

Corollary 1.2.5. Let f : rα, βs Ñ R be a Henstock–Kurzweil–Stieltjes integrable function

on the interval rα, βs with respect to a nondecreasing function g : rα, βs Ñ R and such

that fptq ě 0 for t P rα, βs. Then

(i)
ż β

α

fpsqdgpsq ě 0.

(ii) The function rα, βs Q t ÞÑ
şt

α
fpsqdgpsq is nondecreasing.

The following theorem gives us information about the indefinite Henstock–Kurzweil–

Stieltjes integral. It is a special case of [60, Theorem 1.16].
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Theorem 1.2.6. Let f : rα, βs Ñ Rn and g : rα, βs Ñ R be a pair of functions such that

g is regulated and
şβ

α
fpsqdgpsq exists. Then the function

hptq “

ż t

α

fpsqdgpsq, t P rα, βs

is regulated on rα, βs and satisfies

hpt`q “ hptq ` fptq∆`gptq, t P rα, βq,

hpt´q “ hptq ´ fptq∆´gptq, t P pα, βs.

Theorem 1.2.7 ([54, Theorem 2.2]). Let g, gn P Gprα, βs,Rnq, f, fn P BV prα, βs, LpRnqq

for n P N. Assume that

lim
nÑ8

}gn ´ g}8 “ 0, lim
nÑ8

}fn ´ f}8 “ 0 and φ˚ : “ sup
nPN

varbafn ă 8.

Then

lim
nÑ8

˜

sup
tPrα,βs

›

›

›

›

ż t

a

drfnsgn ´

ż t

a

drf sg

›

›

›

›

¸

“ 0.

The following lemma will be crucial to prove that an impulsive Volterra integral equa-

tion can always be transformed to a Volterra integral equation without impulses. This

result can be found in [25, Lemma 2.4].

Lemma 1.2.8. Let m P N, α ď t1 ă t2 ă ¨ ¨ ¨ ă tm ď β. Consider a pair of functions

f : rα, βs Ñ Rn and g : rα, βs Ñ R, where g is regulated, left–continuous on ra, bs, and

continuous at t1, . . . , tm. Let f̃ : rα, βs Ñ Rn and g̃ : rα, βs Ñ R be such that f̃ptq “ fptq

for every t P rα, βsztt1, . . . , tmu and g̃ ´ g is constant on each of the intervals rα, t1s,

pt1, t2s, . . . , ptm´1, tms, ptm, βs. Then the integral
şβ

α
f̃ dg̃ exists if and only if the integral

şβ

α
f dg exists; in that case, we have

ż β

α

f̃psq dg̃psq “

ż β

α

fpsq dgpsq `
ÿ

kPt1,...,mu,
tkăβ

f̃ptkq∆`g̃ptkq.

We end this section by presenting a Substitution–type Theorem for the Henstock–

Kurzweil–Stieltjes integral, as well as analogous versions of Gronwall Inequality and Dom-

inated Convergence Theorem for this integral. We also present a way of interchanging

the order of integrals.
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Theorem 1.2.9 ([53, Theorem 6.55]). Assume that the function h : rα, βs Ñ R is bounded

and that the integral
şβ

α
fpsqdgpsq exists. If one of the integrals

β
ż

α

hptqd

¨

˝

t
ż

α

fpξqdgpξq

˛

‚,

β
ż

α

hptqfptqdgptq,

exists, then the other one exists as well, in which case the equality below holds

β
ż

α

hptqd

¨

˝

t
ż

α

fpξqdgpξq

˛

‚“

β
ż

α

hptqfptqdgptq.

Lemma 1.2.10 (Gronwall Inequality [60, Corollary 1.43]). Let g : rα, βs Ñ r0,8q be a

nondecreasing and left–continuous function, k ą 0 and l ě 0. Assume that ψ : rα, βs Ñ

r0,8q is bounded and satisfies

ψpξq ď k ` l

ż ξ

α

ψpsqdgpsq, ξ P rα, βs.

Then ψpξq ď kelpgpξq´gpαqq for all ξ P rα, βs.

Theorem 1.2.11 (Dominated Convergence Theorem [60, Corollary 1.32]). Let g : rα, βs Ñ

R be a nondecreasing function. Assume that the functions φn : rα, βs Ñ R are such that

the integral
şβ

α
φnpsq dgpsq exists for all n P N. Suppose that

lim
nÑ8

φnpsq “ φpsq for s P rα, βs

and the inequalities

κpsq ď φnpsq ď ωpsq for n P N, s P rα, βs

hold, where ω, κ : rα, βs Ñ R are such that the integrals
şα

β
κpsq dgpsq and

şβ

α
ωpsq dgpsq

exist. Then the integral
şβ

α
φpsq dgpsq exists and

lim
nÑ8

ż β

α

φnpsq dgpsq “

ż β

α

φpsq dgpsq.

We finish this section with a result that allows us to interchange the order of integrals.

It is interesting to note that since our integral is not necessarily continuous, when we

interchange the order of the integrals, it appears a sum with the jumps of the functions

related to the Stieltjes integral. This fact brings several complications, turning it much

more difficult, when one need to deal with these types of integrals.
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Lemma 1.2.12 ([64, Corollary 2.5]). If g, h : rα, βs Ñ R are of bounded variation,

f : rα, βs ˆ rα, βs is Borel measurable and bounded, then
ż β

α

ˆ
ż x

α

fpx, yqdhpyq

˙

dgpxq

“

ż β

α

ˆ
ż b

y

fpx, yqdgpxq

˙

dhpyq `
ÿ

yPpα,βs

fpy, yq∆´gpyq∆hpyq ´
ÿ

xPrα,βq

fpx, xq∆`hpxq∆gpxq,

with the convention that ∆gpαq “ ∆`gpαq and ∆hpbq “ ∆´hpbq.

1.3 Time Scales Theory

In this section, we begin by giving the definition of a time scale and describing important

operators related to a given time scale. Then, we present fundamental results to the theory

of time scales. All the results and definitions presented here can be found in [13, 14, 65].

In 1988, in his PhD thesis ([40]), Stefan Hilger introduced the theory of time scales with

the aim of unifying discrete and continuous analysis. The intention behind the concept of

time scales is that one can obtain results to functions whose domain is an arbitrary time

scale, and so the result can be applied to the continuous case, the discrete case and even

hybrid cases, depending on how we choose the time scale. This allows us to prove results

to a very general class of functions and sets.

1.3.1 Definitions and basic properties

We define a time scale as any closed nonempty subset of R and usually denote an arbitrary

time scale by the symbol T. Given α, β P T, we use the notation rα, βsT to denote the set

tt P T : α ď t ď βu, which is called a closed interval in T. Similarly, we define open and

half-open intervals in a time scale T.

The next three definitions can be found in [13].

Definition 1.3.1. Given a time scale T, we define the forward jump operator σ : T Ñ T

by

σptq “ infts P T : s ą tu

and we define the backward jump operator ρ : T Ñ T by

ρptq “ supts P T : s ă tu.
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In this definition, we put inf ∅ “ supT and sup∅ “ inf T. This means that σptq “ t,

if T has a maximum t and ρpsq “ s, if T has a minimum s.

Definition 1.3.2. Let T be a time scale and σ and ρ be the forward and backward jump

operators, respectively, as defined above.

• If σptq ą t, we say that t is right-scattered.

• If ρptq ă t, we say that t is left-scattered.

• If t ă supT and σptq “ t, we say that t is right–dense.

• If t ą inf T and ρptq “ t, we say that t is left–dense.

If a point t is right-scattered and left-scattered at the same time, we say that t is isolated,

and if a point t is right–dense and left–dense at the same time, we say that t is dense.

Definition 1.3.3. We define the graininess function µ : T Ñ r0,8q by

µptq “ σptq ´ t.

Now, define the set Tκ as follows

Tκ “

$

&

%

T, if supT “ 8,

TzpρpsupTq, supTs, if supT ă 8.
(1.3.1)

In other words, if T has left-scattered maximum m, then Tκ “ Tztmu. Otherwise, Tκ “ T.

In the sequel, we present several definitions related to the extension of an arbitrary

time scale T.

Given a time scale T and a real number t ď supT, we define t˚ :“ infts P T : s ě tu.

This operator was introduced for the first time by Antonín Slavík in [65]. We call the

reader’s attention to the fact that t˚ and σptq are not necessarily equal, since depending

on the chosen time scale, we can have σptq ‰ t˚. Also, since T is closed, we get that

t˚ P T. Now, we define the set T˚ as an extension of T in the following way:

T˚
“

$

’

&

’

%

p´8,8q, if supT “ 8,

p´8, supTs, if supT ă 8.
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Given a function f : T Ñ Rn, we can extend it to the set T˚ by defining the function

f˚ : T˚ Ñ Rn by

f˚
ptq “ fpt˚q. (1.3.2)

Similarly, given a set B Ă Rn and a function f : B ˆ T Ñ Rn, we define f˚px, tq “

fpx, t˚q for all x P B and t P T˚.

Also, given a function a : T ˆ T Ñ Rn, we consider a˚˚ : T˚ ˆ T˚ Ñ Rn given by

a˚˚
pt, sq :“ apt˚, s˚

q, pt, sq P T˚
ˆ T˚.

Lemma 1.3.4 ([21, Lemma 5.1]). Let rα, βsT be a time scale interval. Let g : rα, βs Ñ R

be given by gptq “ t˚ for all t P rα, βs. Then g satisfies the following conditions:

(i) g is a nondecreasing function;

(ii) g is left–continuous on pα, βs.

1.3.2 Delta derivatives

Definition 1.3.5 ([13, Definition 1.10]). Let f : T Ñ Rn be a function and let t P Tκ.

Then we define f∆ptq to be the vector (if it exists) with the property that given any ε ą 0,

there is a neighborhood U of t (i.e., U “ pt ´ δ, t ` δq X T for some δ ą 0) such that

}rfpσptqq ´ fpsqs ´ f∆
ptqrσptq ´ ss} ď ε|σptq ´ s| for all s P U. (1.3.3)

We call f∆ptq the delta (or Hilger) derivative of f at t.

We say that f is delta differentiable on Tκ provided that f∆ptq exists for all t P Tκ.

The function f∆ : Tκ Ñ Rn is called the delta derivative of f on Tκ.

The next theorem gives us some useful ways of finding the delta derivative of a function.

Theorem 1.3.6 ([13, Theorem 1.16]). Assume that f : T Ñ R is a function and let t P Tκ.

Then we have the following statements:

1. if f is delta differentiable at t, then f is continuous at t;

2. if f is continuous at t and t is right-scattered, then f is differentiable at t with

f∆
ptq “

fpσptqq ´ fptq

µptq
;
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3. if t is right–dense, then f is delta differentiable at t if, and only if, the limit

lim
sÑt

fptq ´ fpsq

t ´ s

exists as a finite number. In this case,

f∆
ptq “ lim

sÑt

fptq ´ fpsq

t ´ s
.

Now, we state some properties about sum, product and quotient of delta differentiable

functions. This theorem and its proof can be found in [13, Theorem 1.20].

Theorem 1.3.7. Assume f, g : T Ñ R are delta differentiable functions at t P Tκ. Then:

1. The sum f ` g : T Ñ R is delta differentiable at t with

pf ` gq
∆

ptq “ f∆
ptq ` g∆

ptq.

2. For any constant α, αf : T Ñ R is delta differentiable at t with

pαfq
∆

ptq “ αf∆
ptq.

3. The product fg : T Ñ R is delta differentiable at t with

pfgq
∆

ptq “ f∆
ptqgptq ` fpσptqqg∆

ptq “ fptqg∆
ptq ` f∆

ptqgpσptqq.

4. If gptqgpσptqq ‰ 0, then f
g

is delta differentiable at t with
ˆ

f

g

˙∆

ptq “
f∆ptqgptq ´ fptqg∆ptq

gptqgpσptqq
.

1.3.3 Delta integrals

We begin this section recalling some concepts that are needed to introduce the definition

of delta integrable functions in the sense of Henstock–Kurzweil. For more details, see [56].

Definition 1.3.8 ([13, Definition 1.57]). A function f : T Ñ Rn is called regulated pro-

vided its right-sided limits exist (finite) at all right–dense points in T and its left–sided

limits exist (finite) at all left–dense points in T.

Given a set B Ă Rn, the symbol Gprα, βsT, Bq will be used to denote the set of all

regulated functions f : rα, βsT Ñ B.
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Definition 1.3.9 ([13, Definition 1.58]). A function f : T Ñ Rn is called rd-continuous

provided it is continuous at right–dense points in T and its left–sided limits exist (finite)

at left–dense points in T. The set of all rd-continuous functions from T to Rn will be

denoted in this work by

Crd “ CrdpTq “ CrdpT,Rn
q.

Let δ “ pδL, δRq be a pair of nonnegative functions defined on rα, βsT. We say that

δ is a ∆´gauge for rα, βsT provided δLptq ą 0 on pα, βsT, δRptq ą 0 on rα, βqT, and

δRptq ě µptq for all t P rα, βqT.

A tagged partition of rα, βsT consists of division points s0, . . . , sm P rα, βsT such that

α “ s0 ă s1 ă ¨ ¨ ¨ ă sm “ β, and tags τ1, . . . , τm P rα, βsT such that τi P rsi´1, sisT for

every i P t1, . . . ,mu. Such a partition is called δ-fine if

τi ´ δLpτiq ď si´1 ă si ď τi ` δRpτiq, i P t1, . . . ,mu.

A function f : rα, βsT Ñ Rn is called Henstock–Kurzweil ∆–integrable, if there exists

a vector I P Rn such that for every ε ą 0, there is a ∆–gauge δ on rα, βsT such that
›

›

›

›

›

m
ÿ

i“1
fpτiqpsi ´ si´1q ´ I

›

›

›

›

›

ă ε

for every δ–fine tagged partition of rα, βsT. In this case, I is called the Henstock–Kurzweil

∆–integral of f over rα, βsT and it will be denoted by
şβ

α
fptq∆t.

Next, we present a class of functions that are Henstock–Kurzweil ∆–integrable on

rα, βsT.

Theorem 1.3.10 ([56, Corollary 2.7]). Every regulated function f in rα, βsT is Henstock–

Kurzweil ∆–integrable on rα, βsT.

The next results are very important for the development of our theory, since with

them one can see that it is possible to carry the Henstock–Kurzweil–Stieltjes integral of a

function f to its time scale version and also the reciprocal. These results will be essential

to us, when proving the correspondence between our main problem and its analogue in

the theory of time scales.
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Theorem 1.3.11 ([25, Theorem 4.2]). Let rα, βsT be a time scale interval and f : rα, βsT Ñ

Rn be an arbitrary function. Define gpτq “ τ˚ for every τ P rα, βs. Then the Henstock–

Kurzweil ∆–integral
şβ

α
fpsq∆s exists, if and only if, the Henstock–Kurzweil–Stieltjes in-

tegral
şβ

α
f˚psq dgpsq exists; in this case, both integrals have the same value.

Lemma 1.3.12 ([25, Lemma 4.4]). Let T be a time scale such that α, β P T and gptq “ t˚

for every t P rα, βs. If f : rα, βs Ñ Rn is such that the Henstock–Kurzweil–Stieltjes integral
şd

c
fptqdgptq exists for every c, d P rα, βs, then

ż d

c

fptqdgptq “

ż d˚

c˚

fptqdgptq,

for every α ď c ă d ă β.

Theorem 1.3.13 ([24, Theorem 4.1]). Let f : T Ñ Rn be a function such that the

Henstock–Kurzweil ∆–integral
şβ

α
fpsq∆s exists for every α, β P T, α ă β. Choose an

arbitrary γ P T and define

F1ptq “

ż t

γ

fpsq∆s, t P T,

F2ptq “

ż t

γ

f˚
psq dgpsq, t P T˚,

where gpsq “ s˚ for every s P T˚. Then F2 “ F ˚
1 .

Theorem 1.3.14 ([24, Theorem 4.2]). Let T be a time scale, gpsq “ s˚ for every s P T˚,

rα, βs Ă T˚. Consider a pair of functions f1, f2 : rα, βs Ñ Rn such that f1psq “ f2psq

for every s P rα, βsT. If
şβ

α
f1psq dgpsq exists, then

şβ

α
f2psq dgpsq exists as well and both

integrals have the same value.



Chapter 2

Correspondences among equations

This chapter provides an important motivation to consider Volterra–Stieltjes types of

equations, since we will show here that many other types of equations can be regarded as

a special case of them.

Before presenting the correspondence, we will present the classes of equations that will

be explored in this chapter.

The first type of equation that we will present here is the most important one, that

is, the functional Volterra–Stieltjes integral equations. These equations play an important

role here and they will be the main object of study in this thesis:
$

’

’

&

’

’

%

xptq “ ϕp0q `

ż t

τ0

apt, sqfpxs, sq dgpsq, t ě τ0

xτ0 “ ϕ,

(2.0.1)

where 0 ď t0 ď τ0 ă d, r ą 0, ϕ P Gpr´r, 0s,Rnq, f : Gpr´r, 0s,Rnq ˆ rt0, dq Ñ Rn,

a : rt0, dq2 Ñ R and g : rt0, dq Ñ R is a nondecreasing and left–continuous function, where

t0 ă d ď `8, xs : r´r, 0s Ñ Rn is given by xspθq “ xps ` θq for s P rt0, dq. Here, rt0, dq2

denotes the set rt0, dq ˆ rt0, dq.

As we already described in the introduction, there are several equations that can be

viewed as a particular case of (2.0.1) such as fractional differential equations, functional

differential equations, ordinary differential equations, depending on the definitions of a, f

and g. Also, as we mentioned int the introduction, there are other types of equations that

can also be described as a particular case of these equations, but for that, it is necessary

to present a more sophisticated correspondence which is not only given by a very sim-

21
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ple definition of a, f and g but requires more elements to describe these correspondences

in a precise way. The equations that can be corresponded in this form are the impul-

sive functional Volterra–Stieltjes integral equations and functional Volterra delta integral

equations on time scales.

Let us describe these two equations in the sequel.

We start by introducing the impulsive functional Volterra–Stieltjes integral equations:

$

’

’

’

&

’

’

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqfpxs, sq dgpsq `
ÿ

kPt1,...,mu
t0ătkăt

apt, tkqIkpxptkqq

xt0 “ ϕ,

(2.0.2)

where 0 ď t0 ď τ0 ă d, r ą 0, ϕ P Gpr´r, 0s,Rnq, f : Gpr´r, 0s,Rnq ˆ rt0, dq Ñ Rn,

a : rt0, dq2 Ñ R and g : rt0, dq Ñ R is a nondecreasing function, where t0 ă d ď `8,

xs : r´r, 0s Ñ Rn is given by xspθq “ xps ` θq for s P rt0, dq. Here, rt0, dq2 denotes the

set rt0, dq ˆ rt0, dq and Ik : Rn Ñ Rn, k P N, is the impulse operator and ttkumk“1 are the

moments of impulse.

The other equation that will be investigated here is the functional Volterra ∆-integral

equation on time scales given by

$

’

&

’

%

xptq “ xpt0q `

ż t

t0

apt, sqfpx˚
s , sq∆s, t P rt0, dqT,

xptq “ ϕptq, t P rt0 ´ r, t0sT,

(2.0.3)

where 0 ď t0 ď τ0 ă d ď 8, r ą 0, ϕ P Gpr´r, 0sT,Rnq, f : Gpr´r, 0s,Rnq ˆ rt0, dqT Ñ Rn,

a : rt0, dq2
T Ñ R, xs : r´r, 0s Ñ Rn is given by xspθq “ xps ` θq for s P rt0, dq. Moreover, T

is a time scale such that supT “ `8 and t0 ´ r, t0 P T.

Our goal in this chapter is to obtain correspondences between the solutions of these

three types of equations. To achieve this, we will divide this chapter into two sections. In

the first one, we will describe the correspondence between the solutions of (2.0.1) and the

solutions of (2.0.2) and in the second one, we will describe the correspondence between

the solutions of (2.0.1) and the solutions of (2.0.3).

This correspondence will be of great use in the following chapters, since it will allow

us to encompass these three types of equations in our results, although proving them just

once, for the functional Volterra–Stieltjes integral equations.
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We begin by giving below the definition of a solution of equation (2.0.1).

Definition 2.0.1. A function x : rτ0 ´ r, γs Ñ Rn, τ0 ă γ ă d, is called a solution of the

equation (2.0.1) on rτ0 ´ r, γs if the following conditions are satisfied:

(i) For every τ0 ď t ď γ, the equality

xptq “ ϕp0q `

ż t

τ0

apt, sqfpxs, sq dgpsq

holds.

(ii) xpτ0 ` θq “ ϕpθq for all θ P r´r, 0s, i.e. xτ0 “ ϕ.

Remark 2.0.2. At this point, it is important to remark that our initial condition xτ0 “ ϕ

yields that xpsq “ ϕps´τ0q for all s P rτ0´r, τ0s. Indeed, the equation xτ0 “ ϕ is equivalent

to xpτ0 ` sq “ ϕpsq for all s P r´r, 0s. Thus, in our problem, the initial condition gives us

the behaviour of the solution not only in a single point, but in all the interval rτ0 ´ r, τ0s.

´r t0 ´ r t00

ϕ

´r t0 ´ r t00

xt0

Remark 2.0.3. We define the norm } ¨ }8 of a bounded function x : X Ñ Rn, where X

is a Banach space as }x}8 :“ supt}xpaq} : a P Xu. When restricting the function x to a

subset A of X, we will write }x}8,A :“ suptxpaq : a P Au.

For more details about functional differential equations, please consult [37, 38].

We emphasize here that the initial condition of our problem describes the behaviour

of the solution in a interval. Saying that xτ0 “ ϕ means that the function x behaves in

rτ0 ´ r, τ0s as the function ϕ behaves in r´r, 0s.

Definition 2.0.4. A function x : rτ0 ´ r, βq Ñ Rn, τ0 ă β ď d, is called a solution of the

equation (2.0.1) on rτ0 ´ r, βq if, for each τ0 ă α ă β, the restriction of x to rτ0 ´ r, αs is

a solution of the equation (2.0.1).
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The results obtained in this chapter are new and are contained in [32]. They will be

very useful throughout this work. Using the correspondences here described, we will be

able to “transport” the results obtained for functional Volterra–Stieltjes integral equations

to the impulsive and time scales cases.

2.1 Impulsive functional Volterra–Stieltjes integral equa-

tions

In this section, our goal is to investigate a class of equations called impulsive functional

Volterra–Stieltjes integral equations and to show that this class of equations represents a

special case of the functional Volterra–Stieltjes integral equations. In order to establish

this fact, we follow some ideas from [6, 25].

Our attention will be focused on the case of pre–assigned moments of impulses. The

case of state-dependent impulses is more complicated and will not be treated here. How-

ever, as far as we know, it is still an open question how to relate these equations with

other types of equations and it is a very interesting question to answer.

Thus, let us assume that ttkumk“1 are moments of impulses and each tk P rt0, dq, for

d ď 8. Suppose also that the condition ∆`xptkq “ Ikpxptkqq, where Ik : Rn Ñ Rn is the

impulse operator, is satisfied for each k “ 1, . . . ,m. Therefore, consider the following

equation

xpvq ´ xpuq “

ż v

t0

apv, sqfpxs, sq dgpsq ´

ż u

t0

apu, sqfpxs, sq dgpsq, for u, v P Jk, k P N,

∆`xptkq “ Ikpxptkqq, k “ 1, . . . ,m,

xt0 “ ϕ,

where J0 “ rt0, t1s, Jk “ ptk, tk`1s for k “ 1, . . . ,m, and Jm “ ptm, dq. Notice that the

value of both integrals
ż v

t0

apv, sqfpxs, sq dgpsq and
ż u

t0

apu, sqfpxs, sq dgpsq,

where u, v P Jk, do not change if we replace g by a function g̃ such that g´ g̃ is a constant

function on Jk (see [25]). Moreover, assume the following conditions:
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(A1) The function g : rt0, dq Ñ R is nondecreasing and left–continuous on pt0, dq.

(A2) The function a : rt0, dq2 Ñ R is nondecreasing with respect to the first variable and

regulated with respect to the second variable.

(A3) The Henstock–Kurzweil–Stieltjes integral
şτ2
τ1
apt, sqfpxs, sqdgpsq exists for each com-

pact interval rτ0, τ0 ` σs Ă rt0, dq, all x P Gprτ0 ´ r, τ0 ` σs,Rnq, t P rt0, dq and all

τ0 ď τ1 ď τ2 ď τ0 ` σ.

(A4) There exists a locally Henstock–Kurzweil–Stieltjes integrable function M : rt0, dq Ñ

R` with respect to g such that for each compact interval rτ0, τ0 ` σs Ă rt0, dq, we

have
›

›

›

›

›

›

τ2
ż

τ1

pc2apτ2, sq ` c1apτ1, sqq fpxs, sqdgpsq

›

›

›

›

›

›

ď

τ2
ż

τ1

|c2apτ2, sq ` c1apτ1, sq|Mpsqdgpsq,

for all x P Gprτ0 ´ r, τ0 ` σs,Rnq, all c1, c2 P R and all τ0 ď τ1 ď τ2 ď τ0 ` σ.

(A5) There exists a locally regulated function L : rt0, dq Ñ R` such that for each compact

interval rτ0, τ0 ` σs Ă rt0, dq, we have
›

›

›

›

›

›

τ2
ż

τ1

apτ2, sqrfpxs, sq ´ fpzs, sqsdgpsq

›

›

›

›

›

›

ď

τ2
ż

τ1

|apτ2, sq|Lpsq }xs ´ zs}8
dgpsq,

for all x, z P Gprτ0 ´ r, τ0 ` σs,Rnq, and all τ0 ď τ1 ď τ2 ď τ0 ` σ.

Assume also that a is continuous with respect to the first variable at ttkumk“1 and that g

is continuous on the moments of impulse tk for k “ 1, 2, . . . ,m. Under these assumptions,

our problem can be rewritten as
$

’

’

’

&

’

’

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqfpxs, sq dgpsq `
ÿ

kPt1,...,mu
t0ătkăt

apt, tkqIkpxptkqq

xt0 “ ϕ.

(2.1.1)

Since g is continuous at tk for each k “ 1, . . . ,m and a is continuous with respect to the

first variable at tk, k “ 1, . . . ,m, by the same arguments that will be used in the proof of

Lemma 3.2.5, we obtain that the function

t ÞÑ

ż t

t0

apt, sqfpxs, sq dgpsq
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is continuous at t1, . . . , tm and, therefore, ∆`xptkq “ Ikpxptkqq for every k P t1, . . . ,mu. It

will be very important to obtain the analogue results for impulsive functional Volterra–

Stieltjes integral equations just knowing the results for functional Volterra–Stieltjes inte-

gral equations.

In the next result, we describe how we can transfer the conditions on impulsive

functional Volterra–Stieltjes integral equation to the conditions on functional Volterra–

Stieltjes integral equation.

Lemma 2.1.1. Let m P N, t0 ď t1 ă ¨ ¨ ¨ ă tm ă d, I1, . . . , Im : Rn Ñ Rn, a : rt0, dq2 Ñ R

is nondecreasing with respect to the first variable, regulated with respect to the second

variable and locally bounded on rt0, dq2. Assume that g : rt0, dq Ñ R is a left–continuous

and nondecreasing function. Let f : Gpr´r, 0s,Rnqˆrt0, dq Ñ Rn be an arbitrary function.

Define f̃ : Gpr´r, 0s,Rnq ˆ rt0, dq Ñ Rn by

f̃py, τq “

$

’

&

’

%

fpy, τq, τ P rt0, dqztt1, . . . , tmu,

Ikpyp0qq, τ “ tk, k P t1, . . . ,mu,

and define g̃ : rt0, dq Ñ R by

g̃pτq “

$

’

’

’

’

’

&

’

’

’

’

’

%

gpτq, τ P rt0, t1s,

gpτq ` k, τ P ptk, tk`1s, k P t1, . . . ,m ´ 1u,

gpτq ` m, τ P ptm, dq.

Then the following statements hold.

1. The function g̃ is nondecreasing and left–continuous.

2. If the Henstock–Kurzweil–Stieltjes integral
ż u2

u1

apt, sqfpxs, sqdgpsq

exists for each compact interval rτ0, τ0 ` σs Ă rt0, dq, all x P Gprτ0 ´ r, τ0 ` σs,Rnq,

t P rt0, dq and τ0 ď u1 ď u2 ď τ0 ` σ. Then the Henstock–Kurzweil–Stieltjes integral
ż u2

u1

apt, sqf̃pxs, sqdg̃psq

exists for each compact interval rτ0, τ0 ` σs Ă rt0, dq, all x P Gprτ0 ´ r, τ0 ` σs,Rnq,

t P rt0, dq and τ0 ď u1 ď u2 ď τ0 ` σ.
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3. If there exists a locally Henstock–Kurzweil–Stieltjes integrable function M1 : rt0, dq Ñ

R` with respect to g such that for each compact interval rτ0, τ0 ` σs Ă rt0, dq, we

have
›

›

›

›

›

›

u2
ż

u1

bpu2, sqfpxs, sqdgpsq

›

›

›

›

›

›

ď

u2
ż

u1

M1psq |bpu2, sq| dgpsq,

for all x P Gprτ0 ´ r, τ0 ` σs,Rnq, b P G2prτ0, τ0 ` σs2,Rq and t0 ď u1 ď u2 ď τ0 ` σ,

and there exists a constant M2 ą 0 such that

}Ikpxq} ď M2

for every k P t1, . . . ,mu and x P Rn. Then there exists a locally Henstock–Kurzweil–

Stieltjes integrable function M : rt0, dq Ñ R` with respect to g̃ such that for each

compact interval rτ0, τ0 ` σs Ă rt0, dq, we have
›

›

›

›

›

›

u2
ż

u1

bpu2, sqf̃pxs, sqdg̃psq

›

›

›

›

›

›

ď

u2
ż

u1

Mpsq |bpu2, sq| dg̃psq,

for all x P Gprτ0 ´ r, τ0 ` σs,Rnq, b P G2prτ0, τ0 ` σs2,Rq and t0 ď u1 ď u2 ď τ0 ` σ.

4. If there exists a regulated function L1 : rt0, dq Ñ R` such that
›

›

›

›

›

›

u2
ż

u1

apu2, sqrfpxs, sq ´ fpzs, sqsdgpsq

›

›

›

›

›

›

ď

u2
ż

u1

L1psq |apu2, sq| }xs ´ zs}8dgpsq,

for all x, z P Gprτ0 ´ r, τ0 ` σs,Rnq and t0 ď u1 ď u2 ď τ0 ` σ and there exists a

constant L2 ą 0 such that

}Ikpxq ´ Ikpzq} ď L2 }x ´ z}

for every k P t1, . . . ,mu and x, z P Rn. Then there exists a locally regulated function

L : rt0, dq Ñ R` such that for each compact interval rτ0, τ0 ` σs Ă rt0, dq, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u2
ż

u1

apu2, sqrf̃pxs, sq ´ f̃pzs, sqsdg̃psq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

u2
ż

u1

Lpsq |apu2, sq| }xs ´ zs}8dg̃psq,

for all x, z P Gprτ0 ´ r, τ0 ` σs,Rnq and t0 ď u1 ď u2 ď τ0 ` σ.

Proof. The first statement is an immediate consequence from the definition of g. Also,

g̃pvq ´ g̃puq ě gpvq ´ gpuq (2.1.2)
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whenever t0 ď u ď v ă d. Notice that the second statement follows by combining item 1

and the hypotheses from f̃ and a together with Lemma 1.2.8.

In order to prove the third statement, let rτ0, τ0`σs Ă rt0, dq, x P Gprτ0´r, τ0`σs,Rnq,

b P G2prτ0, τ0 ` σs2,Rq and t0 ď u1 ď u2 ď τ0 ` σ. From Lemma 1.2.8, we obtain
ż u2

u1

bpu2, sqf̃pxs, sq dg̃psq “

ż u2

u1

bpu2, sqfpxs, sq dgpsq `
ÿ

kPt1,...,mu,
u1ďtkău2

bpu2, tkqf̃pxtk , tkq∆`g̃ptkq

“

ż u2

u1

bpu2, sqfpxs, sq dgpsq `
ÿ

kPt1,...,mu,
u1ďtkău2

bpu2, tkqIkpxptkqq∆`g̃ptkq

and, therefore,
›

›

›

›

ż u2

u1

bpu2, sqf̃pxs, sq dg̃psq

›

›

›

›

ď

u2
ż

u1

M1psq |bpu2, sq| dgpsq `
ÿ

kPt1,...,mu,
u1ďtkău2

M2 |bpu2, tkq| ∆`g̃ptkq.

(2.1.3)

Using (2.1.2) and the definition of the Henstock–Kurzweil–Stieltjes integral, we have
u2
ż

u1

M1psq |bpu2, sq| dgpsq ď

u2
ż

u1

M1psq |bpu2, sq| dg̃psq ď

u2
ż

u1

Mpsq |bpu2, sq| dg̃psq,

where Mpsq :“ 1 ` M2 ` M1psq for all s P rt0, t0 ` σs. In particular
u2
ż

u1

M1psq |bpu2, sq| dgpsq ď

u2
ż

u1

Mpsq |bpu2, sq| dg̃psq. (2.1.4)

On the other hand, we observe that the function

hptq :“
ż t

t0

Mpsq |bpu2, sq| dg̃psq, t P rτ0, τ0 ` σs,

is nondecreasing and ∆`hptkq “ Mptkq |bpu2, tkq| ∆`g̃ptkq for k P t1, . . . ,mu . Hence

ÿ

kPt1,...,mu,
u1ďtkău2

M2 |bpu2, tkq| ∆`g̃ptkq ď
ÿ

kPt1,...,mu,
u1ďtkău2

Mptkq |bpu2, tkq| ∆`g̃ptkq

“
ÿ

kPt1,...,mu,
u1ďtkău2

∆`hptkq ď hpu2q ´ hpu1q “

ż u2

u1

Mpsq |bpu2, sq| dg̃psq. (2.1.5)

Now, by (2.1.3), (2.1.4) and (2.1.5), we get
›

›

›

›

ż u2

u1

bpu2, sqf̃pxs, sq dg̃psq

›

›

›

›

ď 2
ż u2

u1

Mpsq |bpu2, sq| dg̃psq, (2.1.6)
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proving Condition 3.

To prove the fourth statement, let t0 ď u1 ď u2 ď t0 ` σ. Using Lemma 1.2.8 again,

we obtain
›

›

›

›

ż u2

u1

apu2, sq
`

f̃pxs, sq ´ f̃pzs, sq
˘

dg̃psq

›

›

›

›

ď

u2
ż

u1

L1psq |apu2, sq| }xs ´ zs}8dgpsq `
ÿ

kPt1,...,mu,
u1ďtkău2

L2 |apu2, tkq| }xptkq ´ zptkq} ∆`g̃ptkq.

(2.1.7)

Using (2.1.2) and the definition of the Henstock–Kurzweil–Stieltjes integral, we see that
u2
ż

u1

L1psq |apu2, sq| }xs ´ zs}8dgpsq ď

u2
ż

u1

L1psq |apu2, sq| }xs ´ zs}8dg̃psq

ď

u2
ż

u1

Lpsq |apu2, sq| }xs ´ zs}8dg̃psq, (2.1.8)

where Lpsq :“ 1 ` L2 ` L1psq for all s P rt0, t0 ` σs.

Next, we observe that the function

γptq :“
ż t

t0

Lpsq |apu2, sq| }xs ´ zs}8 dg̃psq t P rτ0, τ0 ` σs,

is nondecreasing and ∆`γptkq “ Lptkq |apu2, tkq| }xtk ´ ztk}8∆`g̃ptkq,for k P t1, . . . ,mu.

Therefore

ÿ

kPt1,...,mu,
u1ďtkău2

L2 |apu2, tkq|}xtk ´ ztk}8∆`g̃ptkq ď
ÿ

kPt1,...,mu,
u1ďtkău2

∆`γptkq

ď γpu2q ´ γpu1q

“

ż u2

u1

Lpsq |apu2, sq| }xs ´ zs}8 dg̃psq

(2.1.9)

and it follows from (2.1.7) and (2.1.9) that
›

›

›

ż u2

u1

apu2, sq
`

f̃pxs, sq ´ f̃pzs, sq
˘

dg̃psq
›

›

›
ď 2

ż u2

u1

Lpsq |apu2, sq| }xs ´ zs}8 dg̃psq,

proving the result.
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The following theorem describes a strong relation existent between impulsive Volterra–

Stieltjes integral equations and Volterra–Stieltjes integral equations without impulses. It

follows some ideas from [6].

Theorem 2.1.2. Let m P N, t0 ď t1 ă ¨ ¨ ¨ ă tm ă d, I1, . . . , Im : Rn Ñ Rn and

f : Gpr´r, 0s,Rnq ˆ rt0, dq Ñ Rn. Assume that g : rt0, dq Ñ R is a regulated and left–

continuous function which is continuous at t1, . . . , tm, a : rt0, dq2 Ñ R is nondecreasing

with respect to the first variable, regulated with respect to the second variable, locally

bounded on rt0, dq2 and, continuous with respect to first variable at t1, . . . , tm. Define

f̃ : Gpr´r, 0s,Rnq ˆ rt0, dq Ñ Rn by

f̃py, τq “

$

’

&

’

%

fpy, τq, τ P rt0, dqztt1, . . . , tmu,

Ikpyp0qq, τ “ tk, k P t1, . . . ,mu,

and g̃ : rt0, dq Ñ R by

g̃pτq “

$

’

’

’

’

’

&

’

’

’

’

’

%

gpτq, τ P rt0, t1s,

gpτq ` k, τ P ptk, tk`1s, k P t1, . . . ,m ´ 1u,

gpτq ` m, τ P ptm, dq.

Then x : rt0 ´ r, t0 ` σs Ñ Rn, rt0, t0 ` σs Ă rt0, dq, is a solution of
$

’

’

’

&

’

’

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqfpxs, sq dgpsq `
ÿ

kPt1,...,mu,
tkăt

apt, tkqIkpxptkqq

xt0 “ ϕ

(2.1.10)

if, and only if, x : rt0 ´ r, t0 ` σs Ñ Rn is a solution of
$

’

&

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqf̃pxs, sqdg̃psq

xt0 “ ϕ.

(2.1.11)

Proof. It is clear from the definition of g̃ that ∆`g̃ptkq “ 1 for every k P t1, . . . ,mu. Also

by hypotheses, the integral
şt

t0
apt, sqfpxs, sq dgpsq exists for all t P rt0, t0 `σs and for every

x P Gprt0 ´ r, t0 ` σs,Rnq. This implies by the definition of f̃ and g̃, that the functions

f̃ and g̃ inherit the conditions from f and g (see Lemma 2.1.1). Therefore, the integral
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şt

t0
apt, sqf̃pxs, sq dg̃psq exists. According to Lemma 1.2.8 and by the definition of a, f̃ and

g̃, we have
ż t

t0

apt, sqf̃pxs, sq dg̃psq “

ż t

t0

apt, sqfpxs, sq dgpsq `
ÿ

kPt1,...,mu,
tkăt

apt, tkqf̃pxtk , tkq∆`g̃ptkq

“

ż t

t0

apt, sqfpxs, sq dgpsq `
ÿ

kPt1,...,mu,
tkăt

apt, tkqIkpxptkqq,

i.e. the right–hand sides of (2.1.11) and (2.1.10) are indeed identical.

We will present some examples to illustrate the impulsive functional Volterra–Stieltjes

integral equations. They are inspired in the ones found in [35].

Example 2.1.3. Let M be a constant and y, z P Gpr´r, 0s,Rnq. Then the IVP:
$

’

’

’

’

’

&

’

’

’

’

’

%

x1 ` Mx “ yt, t ‰ tk, k “ 1, . . . ,m

∆`x|t“tk “ Ikpzptkqq, k “ 1, . . . ,m

x0 “ ϕ

(2.1.12)

has a unique solution given by

xptq “ ϕp0qe´Mt
`

ż t

0
e´Mpt´sqys `

ÿ

0ătkăt

e´Mpt´tkqIkpzptkqq. (2.1.13)

Indeed, suppose that (2.1.13) is satisfied. Then, clearly x0 “ ϕ and

∆`xptkq “ xpt`k q ´ xptkq “ e´Mptk´tkqIkpzptkqq “ Ikpzptkqq.

Also, by (2.1.13), we have:

xptqeMt
“ ϕp0q `

ż t

0
eMsysds `

ÿ

0ătkăt

eMtkIkpzptkqq.

Therefore, differentiating, we get for t ‰ tk that px1ptq ` MxptqqeMt “ eMtyptq, which

implies that x satisfies (2.1.12).

Example 2.1.4. Now, let us consider the following IVP:
$

’

’

’

’

’

&

’

’

’

’

’

%

x1 “ fpt, ztq ´ Mpx ´ zq, t “‰ tk

∆x|t“tk “ Ikpzptkqq

x0 “ ϕ.

(2.1.14)
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Statement: The solution of (2.1.14) can be rewritten as the following Volterra–

Stieltjes functional integral equations:

xptq “ ϕp0qe´Mt
`

ż t

0
e´Mpt´sq

rfps, zsq ` Mzpsqsds `
ÿ

0ďtkăt

e´Mpt´tkqIkpzptkqq.

Define x “ Bz. Then, we get:

Bzptq “ ϕp0qe´Mt
`

ż t

0
e´Mpt´sq

rfps, zsq ` Mzpsqsds `
ÿ

0ătlăt

e´Mpt´tkqIkpzptkqq.

Using the same ideas as before, it is possible to show that x is a solution of the IVP

below:
$

’

’

’

’

’

&

’

’

’

’

’

%

x1 “ fpt, xtq, t ‰ tk

∆`x|t“tk “ Ikpxptkqq

x0 “ ϕ

(2.1.15)

if and only if x “ Bz “ z, that is, x is a solution of

xptq “ ϕp0qe´Mt
`

ż t

0
e´Mpt´sq

rfps, xsq ` Mxpsqsds `
ÿ

0ătkăt

e´Mpt´tkqIkpxptkqq.

With this, we conclude the statement.

The fact that functional Volterra–Stieltjes integral equations encompass impulsive

functional Volterra–Stieltjes integral equations implies that these first equations also en-

compass the impulsive fractional functional differential equations.

Indeed, consider the following fractional functional differential equation with impulses:

$

’

’

’

’

’

&

’

’

’

’

’

%

CD0,txptq :“ CDα
t xptq “ fpt, xtq, t P J 1 :“ Jztt1, . . . , tmu, J :“ r0, T s

∆`xptkq “ Ikpxptkqq, k “ 1, . . . ,m

x|r´r,0s “ ϕ,

(2.1.16)

where CDα
t is the Caputo derivative, 0 “ t0 ă t1 ă . . . ă tm ă tm`1 “ T , f : J ˆ

Gpr´r, 0sq Ñ Rn, Ik : Rn Ñ Rn.

In [36], the authors showed that if 0 ă α ă 1, then a solution of (2.1.16) satisfies the
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following integral form:

xptq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

φptq, t P r´r, 0s

φp0q ` 1
Γpαq

şt

0pt ´ sqα´1fps, xsqds, t P r0, t1s

φp0q ` I1pxpt´1 qq`q ` 1
Γpαq

şt

0pt ´ sqα´1fps, xsqds, t P pt1, t2s

...

φp0q `
řm
k“1 Ikpxpt´k qq`q ` 1

Γpαq

şt

0pt ´ sqα´1fps, xsqds, t P ptm, T s

(2.1.17)

A careful examination shows that (2.1.17) is a special case of impulsive functional

Volterra–Stieltjes integral equations.

On the other hand, notice that even in the case that 1 ă α ă 2, these Volterra–

Stieltjes integral equations can encompass such equations. Indeed, consider the following

fractional impulsive equation (without delays):
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

CDα
t uptq “ fpt, uptqq, t P J 1 “ Jztt1, . . . , tmu

∆uptkq “ yk, k “ 1, . . . ,m

∆u1ptkq “ yk, k “ 1, . . . ,m

up0q “ 0, u1p1q “ 0,

(2.1.18)

where 1 ă α ă 2.

In [68], the authors prove that (2.1.18) is equivalent to the following integral formula-

tion:

uptq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

1
Γpαq

şt

0pt ´ sqα´1fps, upsqqds

´

´

1
Γpα´1q

ş1
0p1 ´ sqα´2fps, upsqqds `

řm
k“1 yk

¯

t, t P r0, t1q

1
Γpαq

şt

0pt ´ sqα´1fps, upsqqds ` y1pt ´ t1q ` y1

´

´

1
Γpα´1q

ş1
0p1 ´ sqα´2fps, upsqqds `

řm
k“1 yk

¯

t, t P pt1, t2s

...

1
Γpαq

şt

0pt ´ sqα´1fps, upsqqds `
řm
k“1 yipt ´ tiq `

řk
i“1 yi

´

´

1
Γpα´1q

ş1
0p1 ´ sqα´2fps, upsqqds `

řm
k“1 yk

¯

t, t P ptk, tk`1s, k “ 1, . . . ,m

Therefore, we can see that it is a type of Volterra–Stieltjes integral equation with

impulses, motivating our study of these equations.
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2.2 Functional Volterra delta integral equations on

time scales

In this section, our goal is to investigate functional Volterra ∆–integral equations on time

scales, providing results concerning existence and uniqueness of solutions and existence

of maximal solutions for these equations. Also, our goal is to show a relation between

the functional Volterra–Stieltjes integral equations and functional Volterra delta integral

equations on time scales. Regarding the notation and previous results used in this section,

the reader may want to consult Section 1.3 and the references mentioned there.

Let T be a time scale such that supT “ `8 and t0 ´ r, t0 P T. In this section, we

consider the functional Volterra ∆–integral equation on time scales given by
$

’

&

’

%

xptq “ xpt0q `

ż t

t0

apt, sqfpx˚
s , sq∆s, t P rt0, dqT,

xptq “ ϕptq, t P rt0 ´ r, t0sT,

(2.2.1)

where d P T Y t8u, ϕ P Gprt0 ´ r, t0sT,Rnq, f : Gpr´r, 0s,Rnq ˆ rt0, dqT Ñ Rn.

To motivate the investigations of equation (2.2.1), let us consider a simple model from

economics in the time scale setting that is known as Keynesian–Cross model with “lagged”

income. See [67] for more details.

Let us consider a simple closed economy. Also, consider the following notation:

D: aggregate demand;

y: aggregate income;

C: aggregate consumption;

I: aggregate investment;

G: government spending.

With these variables in hands, consider the following model given by the equations

below:

Dptq “ Cptq ` I ` G (2.2.2)

Cptq “ C0 ` cyptq (2.2.3)

y∆
“ δrDσ

´ ys, t ě t0, (2.2.4)

where δ ă 1 is a positive constant interpreted as the “speed of adjustment term”, C0 and
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C are non-negative constants and t0 ě 0. Let us assume for simplicity that G and I are

constants and the current consumption depends on current income.

This model is a generalization for time scales of the classical Keynesian–Cross model

for the discrete case.

Combining (2.2.2) and (2.2.3) in (2.2.4), we get:

y∆
“ δrC0 ` cyσ ` I ` G ´ ys :“ hpt, y, yσq.

Using the simple useful formula yσ “ y ` µy∆ and assuming 1 ´ δcµptq ‰ 0, we get

y∆
“ δrC0 ` cpy ` µy∆

q ` I ` G ´ ys

ùñ y∆
´ δcµy∆

“ δC0 ` cyδ ` Iδ ` Gδ ´ yδ

ùñ y∆
p1 ´ δcµq “ δC0 ` cyδ ` Iδ ` Gδ ´ yδ.

Therefore,

y∆
“
δypc ´ 1q

1 ´ δcµ
`
δpC0 ` I ` Gq

1 ´ δcµ
.

It can be rewritten as follows:

y∆
“ fptqy ` gptq.

Using the Variation Constant Formula, we get:

yptq “ ef pt, aq

„

ypt0q `

ż t

t0

gpsq

ef pσpsq, t0q
∆s

ȷ

, t ě t0 (2.2.5)

whenever f is a regressive function. Therefore, a careful examination shows that (2.2.5)

is a type of Volterra delta integral of the form:

yptq “ hptq `

ż t

t0

apt, sqgpsq∆s,

showing the generality of this kind of equation, as well as motivating its study, since it is

possible to use them to investigate many types of problems, including important models.

In the next result, we establish a relationship between the solutions of the functional

Volterra ∆–integral equation on time scales and the solutions of functional Volterra–

Stieltjes integral equation. We follow some ideas from [24].
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Theorem 2.2.1. Let rt0 ´r, t0 `ηsT be a time scale interval, t0 P T, rt0, t0 `ηsT Ă rt0, dqT,

a : rt0, dq2
T Ñ R and f : Gpr´r, 0s,Rnq ˆ rt0, dqT Ñ Rn. Define g : rt0, dq Ñ R by gpsq “ s˚,

for every s P rt0, dq. If x : rt0 ´ r, t0 ` ηsT Ñ Rn is a solution of the functional Volterra

∆–integral equation on time scales
$

’

&

’

%

xptq “ xpt0q `

ż t

t0

apt, sqfpx˚
s , sq∆s, t P rt0, t0 ` ηsT,

xptq “ ϕptq, t P rt0 ´ r, t0sT,

(2.2.6)

Then x˚ : rt0 ´ r, t0 ` ηs Ñ Rn is a solution of the functional Volterra–Stieltjes integral

equation
$

’

&

’

%

xptq “ xpt0q `

ż t

t0

a˚˚
pt, sqf˚

pxs, sq dgpsq

xt0 “ ϕ˚
t0 .

(2.2.7)

Conversely, if y : rt0 ´ r, t0 ` ηs Ñ Rn satisfies the equation (2.2.7), then it must have the

form y “ x˚, where x : rt0 ´ r, t0 ` ηsT Ñ Rn is a solution of the equation (2.2.6).

Proof. Suppose that x : rt0 ´ r, t0 ` ηsT Ñ Rn satisfies equation (2.2.6). Then

xptq “ xpt0q `

ż t

t0

apt, sqfpx˚
s , sq∆s, t P rt0, t0 ` ηsT.

Proceeding as in [25], we have

x˚
ptq “ x˚

pt0q `

ż t

t0

a˚˚
pt, sqf˚

px˚
s , sqdgpsq,

which proves the first part.

Conversely, assume that y satisfies (2.2.7). If t P rt0, t0 ` ηszT, then g is constant on

rt, t˚s and, therefore, yptq “ ypt˚q. It follows that y “ x˚, where x : rt0 ´ r, t0 ` ηsT Ñ Rn

is the restriction of y to rt0 ´ r, t0 `ηsT. By reversing our previous reasoning, we conclude

that x is a solution of (2.2.6).

From now on, we will assume the following conditions concerning the functions

f : Gpr´r, 0s,Rnq ˆ rt0, dqT Ñ Rn and a : rt0, dq2
T Ñ R.

(C1) The function a : rt0, dq2
T Ñ R is nondecreasing with respect to the first variable,

regulated with respect to the second variable and rd–continuous with respect to the

first variable.
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(C2) The Henstock–Kurzweil ∆–integral
ż s2

s1

apτ, sqfpxs, sq∆s

exists for each time scale interval rs0, s0 ` δsT Ă rt0, dqT, x P Gprs0 ´ r, s0 ` δs,Rnq,

τ P rs0, s0 ` δsT and s1, s2 P rs0, s0 ` δsT, s1 ď s2.

(C3) There exists a locally Henstock–Kurzweil ∆–integrable function M1 : rt0, dqT Ñ R`

such that for each time scale interval rs0, s0 ` δsT Ă rt0, dqT, we have
›

›

›

›

›

›

s2
ż

s1

pc1aps2, sq ` c2aps1, sqqfpxs, sq∆s

›

›

›

›

›

›

ď

s2
ż

s1

M1psq |c1aps2, sq ` c2aps1, sq| ∆s,

for all x P Gprs0 ´ r, s0 ` δs,Rnq, c1, c2 P R and s1, s2 P rs0, s0 ` δsT, s1 ď s2.

(C4) There exists a locally regulated function L1 : rt0, dqT Ñ R` such that for each time

scale interval rs0, s0 ` δsT Ă rt0, dqT, we have
›

›

›

›

›

›

s2
ż

s1

aps2, sqrfpxs, sq ´ fpzs, sqs∆s

›

›

›

›

›

›

ď

s2
ż

s1

L1psq |aps2, sq| }xs ´ zs}8
∆s,

for all x, z P Gprs0 ´ r, s0 ` δs,Rnq and s1, s2 P rs0, s0 ` δsT, s1 ď s2.

The next result will show how to transfer the conditions on functional Volterra ∆-

integral equations to functional Volterra–Stieltjes integral equations.

Lemma 2.2.2. Assume that t0, d P T, and that d is left dense. Moreover, let f : Gpr´r, 0s,Rnqˆ

rt0, dqT Ñ Rn and a : rt0, dq2
T Ñ R be arbitrary functions. Define the functions gpsq :“ s˚

for s P rt0, dq, f˚pψ, sq :“ fpψ, s˚q for s P rt0, dq and ψ P Gpr´r, 0s,Rnq and a˚˚pt, sq :“

apt˚, s˚q for t, s P rt0, dq. Then the following statements hold.

1. If a : rt0, dq2
T Ñ R satisfies condition (C1), then the function a˚˚ : rt0, dq2 Ñ R is

nondecreasing with respect to the first variable, regulated with respect to the second

variable and locally bounded on rt0, dq2.

2. If f : Gpr´r, 0s,Rnq ˆ rt0, dqT Ñ Rn satisfies condition (C2), then the Henstock–

Kurzweil–Stieltjes integral
ż u2

u1

a˚˚
pt, sqf˚

pxs, sqdgpsq
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exists for each compact interval rτ0, τ0 ` ηs Ă rt0, dq, x P Gprτ0 ´ r, τ0 ` ηs,Rnq,

t P rτ0, τ0 ` ηs and τ0 ď u1 ď u2 ď τ0 ` η.

3. If f : Gpr´r, 0s,Rnqˆrt0, dqT Ñ Rn satisfies condition (C3), then f˚ : Gpr´r, 0s,Rnqˆ

rt0, dq Ñ Rn satisfies the condition
›

›

›

›

›

›

u2
ż

u1

pc1a
˚˚

pu2, sq ` c2a
˚˚

pu1, sqqf˚
pxs, sqdgpsq

›

›

›

›

›

›

espacooooooooooo

espacoooooooo ď

u2
ż

u1

M˚
1 psq |c1a

˚˚
pu2, sq ` c2a

˚˚
pu1, sq| dgpsq,

for each compact interval rτ0, τ0 ` ηs Ă rt0, dq, x P Gprτ0 ´ r, τ0 ` ηs,Rnq, τ0 ď u1 ď

u2 ď τ0 ` η and c1, c2 P R.

4. If f : Gpr´r, 0s,Rnqˆrt0, dqT Ñ Rn satisfies condition (C4), then f˚ : Gpr´r, 0s,Rnqˆ

rt0, dq Ñ Rn satisfies the condition
›

›

›

›

›

›

u2
ż

u1

a˚˚
pu2, sqrf˚

pxs, sq ´ f˚
pzs, sqsdgpsq

›

›

›

›

›

›

ď

u2
ż

u1

L˚
1psq |a˚˚

pu2, sq| }xs ´ zs}8
dgpsq,

for each compact interval rτ0, τ0 ` ηs Ă rt0, dq, x, z P Gprτ0 ´ r, τ0 ` ηs,Rnq and

τ0 ď u1 ď u2 ď τ0 ` η.

Proof. It is clear from the definition of a˚˚ that it is nondecreasing with respect to the

first variable if a is nondecreasing with respect to the first variable.

On the other hand, it is easy to check that a˚˚ is locally bounded on rt0, dq2, since a

is locally bounded on rt0, dq2
T.

Now, we show that a˚˚ is regulated with respect to the second variable. In fact, let

t P rt0, dq be arbitrary, let us show that a˚˚pt, ¨q is regulated on each compact interval

rα, βs Ă rt0, dq. Indeed, let s0 P pα, βs and consider two cases: s0 P T and otherwise.

If s0 P T is such that it is left–dense, then

R Q lim
sÑs´

0

apt˚, sq “ lim
sÑs´

0

apt˚, s˚
q “ lim

sÑs´
0

a˚˚
pt, sq.

If s0 P T is such that it is left–scattered, then

R Q apt˚, s0q “ lim
sÑs´

0

apt˚, s˚
q “ lim

sÑs´
0

a˚˚
pt, sq.
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Finally, if s0 R T, then

R Q apt˚, s˚
0q “ lim

sÑs´
0

apt˚, s˚
q “ lim

sÑs´
0

a˚˚
pt, sq.

Hence, lim
sÑs´

0

a˚˚pt, sq exists for all s0 P pα, βs. Analogously, we can prove that lim
sÑs`

0

a˚˚pt, sq

exists for all s0 P rα, βq, proving item 1.

To prove the second statement, consider an arbitrary compact interval rτ0, τ0 ` ηs Ă

rt0, dq, x P Gprτ0 ´ r, τ0 ` ηs,Rnq and t P rτ0, τ0 ` ηs. Let u1, u2 P rτ0, τ0 ` ηs be given

with u1 ď u2. Then t˚, u˚
1 , u

˚
2 P rτ˚

0 , pτ0 `ηq˚s. Therefore, by hypothesis (C2), the integral
ż u˚

2

u˚
1

apt˚, sqfpxs, sq∆s exists. Then, by Theorems 1.3.11, 1.3.14 and Lemma 1.3.12, we

have
ż u˚

2

u˚
1

apt˚, sqfpxs, sq∆s “

ż u˚
2

u˚
1

apt˚, s˚
qfpxs˚ , s˚

qdgpsq “

ż u˚
2

u˚
1

a˚˚
pt, sqfpxs˚ , s˚

qdgpsq.

(2.2.8)

Since a˚˚pt, sqfpxs˚ , s˚q “ a˚˚pt, sqfpxs, s
˚q, for all s P ru˚

1 , u
˚
2sT , by Theorem 1.3.14 and

Lemma 1.3.12, we get
ż u˚

2

u˚
1

a˚˚
pt, sqfpxs˚ , s˚

qdgpsq “

ż u˚
2

u˚
1

a˚˚
pt, sqfpxs, s

˚
qdgpsq “

ż u2

u1

a˚˚
pt, sqf˚

pxs, sqdgpsq.

(2.2.9)

Now, according to (2.2.8) and (2.2.9), we obtain that the last integral exists and, in this

case,
ż u2

u1

a˚˚
pt, sqf˚

pxs, sqdgpsq “

ż u˚
2

u˚
1

apt˚, sqfpxs, sq∆s. (2.2.10)

Now, let us prove the third statement. Indeed, let x P Gprτ0 ´ r, τ0 ` ηs,Rnq, c1, c2 P R

and u1, u2 P rτ0, τ0 ` ηs with u1 ď u2. Then, by (2.2.10), (C3), Theorems 1.3.11, 1.3.14

and Lemma 1.3.12, we have
›

›

›

›

›

›

u2
ż

u1

pc1a
˚˚

pu2, sq ` c2a
˚˚

pu1, sqqf˚
pxs, sqdgpsq

›

›

›

›

›

›

“

›

›

›

›

›

ż u˚
2

u˚
1

pc1apu˚
2 , sq ` c2apu˚

1 , sqqfpxs, sq∆s
›

›

›

›

›

ď

u˚
2

ż

u˚
1

M1ps˚
q |c1apu˚

2 , s
˚
q ` c2apu˚

1 , s
˚
q| dgpsq “

u2
ż

u1

M˚
1 psq |c1a

˚˚
pu2, sq ` c2a

˚˚
pu1, sq| dgpsq,

obtaining the desired result.
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Finally, for the fourth statement, let t0 ď u1 ď u2 ď t0 ` η, then using (2.2.10), (C4),

Theorems 1.3.11, 1.3.14 and Lemma 1.3.12, we get
›

›

›

›

›

›

u2
ż

u1

a˚˚
pu2, sqrf˚

pxs, sq ´ f˚
pzs, sqsdgpsq

›

›

›

›

›

›

“

›

›

›

›

›

ż u˚
2

u˚
1

apu˚
2 , sqrfpxs, sq ´ fpzs, sqs∆s

›

›

›

›

›

ď

u˚
2

ż

u˚
1

L1ps˚
q |apu˚

2 , s
˚
q| }xs˚ ´ zs˚}

8
dgpsq “

u2
ż

u1

L˚
1psq |a˚˚

pu2, sq| }xs ´ zs}8
dgpsq,

for all x, z P Gprt0 ´ r, t0 ` ηs,Rnq, proving the result.

We want to point out that Volterra integral on time scales play an important role for

applications, being used to describe several phenomena, specially when one considers the

discrete time scales such as T “ Z or T “ hZ. Many authors have investigated this type

of equations proving several properties for their solutions such as existence, uniqueness,

stability, asymptotic behavior of the solutions, among others (see [3, 30, 43, 52, 57, 59,

58, 62, 63, 18] and the references therein).

However, all the results presented here for these equations are more general, since we

require less regularity for the involved functions a and f in our equation. Also, in the

chapter about stability, the conditions on the Lyapunov functionals are more general than

the classical ones found in the literature.

This fact motivates us to consider this type of correspondence between functional

Volterra–Stieltjes integral equations and functional Volterra–Stieltjes delta integral equa-

tions on time scales, since the results that are obtained from the application of this

correspondence are usually more general and allow us to describe important models in a

precise way.



Chapter 3

Existence, uniqueness and

continuation of solutions

In this chapter, we prove results concerning existence and uniqueness of solutions for the

following functional Volterra–Stieltjes integral equation:
$

’

’

&

’

’

%

xptq “ ϕp0q `

ż t

τ0

apt, sqfpxs, sq dgpsq, t ě τ0

xτ0 “ ϕ.

(3.0.1)

Also, we prove results concerning continuation of solutions of (3.0.1). These results

are crucial to investigate the asymptotic behavior of the solutions, such as stability.

Note that this equation encompasses many other types of equations depending on how

we choose our functions a, f and g and if we take r “ 0 or r ą 0, as explained in the

introduction, and also in Chapter 2.

The results presented here are fundamental to prove the results of the next chapters,

since we will be investigating the properties of the solutions of these equations. All the

results of this chapter are new and are contained in [32].

We divide this chapter in 4 sections. In the first one, we prove the existence and

uniqueness of solutions of our integral equation. In the second section, we show that our

equation admits a unique maximal solution and give sufficient conditions under which the

interval of existence of the solution is unbounded. In the third one, we prove the analogue

results for impulsive functional Volterra–Stieltjes integral equations. In the fourth section,

we prove analogue results for functional Volterra–Stieltjes ∆-integral equations on time

41
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scales.

3.1 Existence and uniqueness of solutions

In this section, our goal is to prove local existence and uniqueness of solutions of the

following type of integral equation:
$

’

’

&

’

’

%

xptq “ ϕp0q `

ż t

τ0

apt, sqfpxs, sq dgpsq, t ě τ0

xτ0 “ ϕ,

(3.1.1)

where 0 ď t0 ď τ0 ă d, r ą 0, ϕ P Gpr´r, 0s,Rnq, f : Gpr´r, 0s,Rnq ˆ rt0, dq Ñ Rn,

a : rt0, dq2 Ñ R and g : rt0, dq Ñ R is a nondecreasing function, where t0 ă d ď `8,

xs : r´r, 0s Ñ Rn is given by xspθq “ xps` θq for s P rt0, dq. Here, rt0, dq2 denotes the set

rt0, dq ˆ rt0, dq.

Throughout this text, we will assume that the integral in the right–hand side exists in

the sense of Henstock–Kurzweil–Stieltjes with respect to g, and thus, the integral equation

given by (3.1.1) makes sense and is well–defined.

Let t0 P R and r ą 0. Given x P Gprt0 ´ r,`8q,Rnq and t ě t0, let xt : r´r, 0s Ñ Rn

be defined as usual by

xtpθq :“ xpt ` θq,

for all θ P r´r, 0s . See [38] for details.

The following result ensures that if x P Gprt0 ´ r,`8q,Rnq, then xt P Gpr´r, 0s,Rnq

for all t ě t0. This property will be very important to our purposes.

Lemma 3.1.1. Let x P Gprt0 ´r,`8q,Rnq and t ě t0 be given. Then xt P Gpr´r, 0s,Rnq.

Proof. Let τ P p´r, 0s be fixed. We will show that lim
sÑτ´

xtpsq exists. Indeed, since

t0 ´ r ă t` τ and x P Gprt0 ´ r,`8q,Rnq, the limit L :“ lim
ξÑpt`τq´

xpξq exists. Thus, given

ε ą 0, there exists δ ą 0 (we can take ´r ă τ ´ δ) such that

}xpξq ´ L} ă ε, for all ξ P pt ` τ ´ δ, t ` τq.

This implies that

}xps ` tq ´ L} ă ε, for all s P pτ ´ δ, τq.
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Consequently,

}xtpsq ´ L} ă ε, for all s P pτ ´ δ, τq,

obtaining the desired result. The existence of lim
sÑτ`

xtpsq for τ P r´r, 0q can be proved

similarly.

As a consequence, we obtain immeadiately the next result.

Corollary 3.1.2. If x P Gprt0 ´ r,`8q,Rnq, then for each compact interval rα, βs Ă

rt0,`8q, the function s ÞÑ }xs}8,rα,βs
is regulated on rα, βs.

Throughout this thesis, we will use the symbol G2prt0, dq2,Rq to denote the set of all

functions b : rt0, dq2 Ñ R that are regulated with respect to the second variable, that is,

for any fixed t P rt0, dq, the function

bpt, ¨q : s P rt0, dq ÞÝÑ bpt, sq P R

is regulated.

From Definitions 2.0.1 or 2.0.4, it is not possible to infer much information about the

properties of the function x : rτ0 ´ r, αs Ñ Rn which is a solution of (3.1.1). Nevertheless,

we assume the following conditions for which it is possible to get more specific information

about the solutions of equation (3.1.1), and it will allow us to ensure its existence and

uniqueness:

(A1) The function g : rt0, dq Ñ R is nondecreasing and left–continuous on pt0, dq.

(A2) The function a : rt0, dq2 Ñ R is nondecreasing with respect to the first variable and

regulated with respect to the second variable.

(A3) The Henstock–Kurzweil–Stieltjes integral
şτ2
τ1
apt, sqfpxs, sqdgpsq exists for each com-

pact interval rτ0, τ0 ` σs Ă rt0, dq, all x P Gprτ0 ´ r, τ0 ` σs,Rnq, t P rt0, dq and all

τ0 ď τ1 ď τ2 ď τ0 ` σ.

(A4) There exists a locally Henstock–Kurzweil–Stieltjes integrable function M : rt0, dq Ñ

R` with respect to g such that for each compact interval rτ0, τ0 ` σs Ă rt0, dq, we

have
›

›

›

›

›

›

τ2
ż

τ1

pc2apτ2, sq ` c1apτ1, sqq fpxs, sqdgpsq

›

›

›

›

›

›

ď

τ2
ż

τ1

|c2apτ2, sq ` c1apτ1, sq|Mpsqdgpsq,



44

for all x P Gprτ0 ´ r, τ0 ` σs,Rnq, all c1, c2 P R and all τ0 ď τ1 ď τ2 ď τ0 ` σ.

(A5) There exists a locally regulated function L : rt0, dq Ñ R` such that for each compact

interval rτ0, τ0 ` σs Ă rt0, dq, we have
›

›

›

›

›

›

τ2
ż

τ1

apτ2, sqrfpxs, sq ´ fpzs, sqsdgpsq

›

›

›

›

›

›

ď

τ2
ż

τ1

|apτ2, sq|Lpsq }xs ´ zs}8
dgpsq,

for all x, z P Gprτ0 ´ r, τ0 ` σs,Rnq, and all τ0 ď τ1 ď τ2 ď τ0 ` σ.

Remark 3.1.3. Notice that both the integrals
ż τ2

τ1

|apτ2, sq|Lpsq}xs ´ zs}8dgpsq and
ż τ2

τ1

|bpτ2, sq|Mpsqdgpsq

exist. Indeed, by Corollary 3.1.2, s ÞÑ }xs ´ zs}8
is regulated on rτ1, τ2s. On the other

hand, since s ÞÑ |apτ2, sq| and s ÞÑ Lpsq are regulated on rτ1, τ2s, we have that the

function s ÞÑ |apτ2, sq|Lpsq }xs ´ zs}8
is regulated on rτ1, τ2s. Hence, by the properties of

this integral, it follows that
ż τ2

τ1

|apτ2, sq|Lpsq}xs ´ zs}8dgpsq

exists. For the second integral, note that the function rτ1, τ2s Q s ÞÑ |bpτ2, sq| is bounded

and that rτ1, τ2s Q t ÞÑ
şt

τ1
Mpsqdgpsq is a nondecreasing function. Then, similarly, the

integral
τ2
ş

τ1

|bpτ2, sq| d
ˆ

s
ş

τ1

Mpξqdgpξq

˙

exists and, therefore, by Theorem 1.2.9, the integral
τ2
ş

τ1

|bpτ2, sq|Mpsqdgpsq exists.

Remark 3.1.4. We point out that in condition (A4), it is necessary to consider a general

kernel b P G2prτ0, τ0 ` σs2,Rq. It is not enough to have this condition only for the kernel

a P G2prτ0, τ0 ` σs2,Rq, since we will need to estimate linear combinations of the kernel a

applied to different values on rτ0, τ0 ` σs2. However, this condition is adequated and it is

expected when we are dealing with Volterra–Stieltjes integral equations.

Remark 3.1.5. A first look at the conditions (A1)–(A5) seems to be very general and with

no motivation behind, however the next example shows a reason to require Carathéodory-

type conditions on the indefinite integral instead of simply imposing conditions to the

integrand. This example can be found in [15].
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Example 3.1.6. Consider the functions φ, λ : r0, 1s Ñ R defined by:

φptq “

$

’

&

’

%

p´1qk`12k
k

, if t P rdk´1, dkq, k P N

0, if t “ 1,

and

λptq “

$

’

&

’

%

2k
k
, if t P rdk´1, dkq, k P N

0, if t “ 1,

where dk “ 1 ´ 1
2k , k P N. Since the alternating harmonic series

ř8

k“1
p´1qk`1

k
converges, it

follows that φ is Riemann improper integrable function over r0, 1s.

Indeed, let us prove this fact. For it, we present the proof found in [11, Example 2.7].

Let
ř8

k“1 ak be any convergent series in R and let A be its limit. Let cn :“ 1´ 1
2n , n P N0

so that c0 “ 0, c1 “ 1
2 , c2 “ 3

4 , c3 “ 7
8 , . . .. We define the function h : r0, 1s Ñ R by:

hptq “

$

’

&

’

%

2kak, if t P rck´1, , ckq, k P N

0, if t “ 1.

Let us prove that h is Riemann improper integrable function over r0, 1s and that
ş1

0 hdt “ A “
ř8

k“1 ak. With this in hands, we will show the previous statement.

We start by remarking that the length of the interval rck´1, cks is 1
2k . It implies that

if the integral exists, then
8
ÿ

k“1
2kak

1
2k “

8
ÿ

k“1
ak “ A.

In order to prove the integrability of h on r0, 1s with integral A, we need to choose an

appropriate gauge.

As explained previously, the main advantage of this integral is the fact that we can

“caliber” the gauge in an appropriate way in order to avoid the discontinuities and the

points that our function does not behave well. Therefore, here in this case, using this

fact, we need to choose a gauge that forces the points 1 and ck for sufficiently small k P N

to be tags, since these points are the ones for which the function jumps.

We start by taking M ě supt|ak| : k P Nu and M ě 1. Given ε ą 0 with ε ď 1, let

mpεq P N be such that if m ě mpεq, then

|am| ď ε and
ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“m

ak

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε.
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This fact follows from the convergence of the series. Now, define E :“ tck : k P NuYt1u

and define the gauge δε on r0, 1s by

δε “

$

’

’

’

’

’

&

’

’

’

’

’

%

1
2distpt, Eq, for t P r0, 1szE

ε

4k`1M
, for t “ ck, k P N

1
2mpεq, for t “ 1.

Consider that P “ tpti, rxi´1, xisquni“1 is a δε´fine partition of r0, 1s. We can also

suppose that c1 “ 1
2 ď xn´1 ă 1. Therefore, it follows from these facts that the point

t “ 1 is the tag for the final subinterval rxn´1, 1s in P .

Let µ “ inftk P N : xn´1 ď cku be such that ck ă xn´1 for k “ 0, 1, . . . , µ ´ 1. The

fact the P is δε´fine implies that

1 ´
1

2mpεq
“ 1 ´ δεp1q ď xn´1 ď cµ “ 1 ´

1
2µ ,

whence we have mpεq ď µ.

By the properties of δε, each ck in r0, xn´1s Ă r0, cµs is a tag for any subinterval in P

that contains this point. Also, it is possible to assume that each such point ck is a tag for

two consecutive subintervals in P . Therefore, we have two cases to consider.

• Case 1: xn´1 “ cµ

For each k “ 1, . . . , µ, we let the contribution Tk to Sph; Pq corresponding to the

subintervals rck´1, xrs, . . . rxs, cks. The last of these subintervals has tag at ck, where

hpckq “ 2k`1ak`1. All the other tags tr, . . . , ts´1 satisfy hptiq “ 2kak. It implies that:

Tk “ 2kakpxs ´ ck´1q ` 2k`1ak`1pck ´ xsq.

On the other hand,

xs ´ ck´1 “ pxs ´ ckq ` pck ´ ck´1q “ pxs ´ ckq `
1
2k .

It implies that:

Tk “ 2kak
1
2k ` p2k`1ak`1 ´ 2kakqpck ´ xsq.

Therefore,

|Tk ´ ak| ď 2k3M ε

4k`1M
ď

ε

2k .
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Considering the fact that the contribution to Sph; Pq due to rxn´1, 1s is hp1qp1 ´

xn´1q “ 0, it follows that Sph; Pq “
řµ
k“1 Tk.

Thus,

|Sph; Pq ´ A| ď

ˇ

ˇ

ˇ

ˇ

ˇ

µ
ÿ

k“1
Tk ´

µ
ÿ

k“1
ak

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

µ
ÿ

k“1
ak

ˇ

ˇ

ˇ

ˇ

ˇ

ď

µ
ÿ

k“1
|Tk ´ ak| ` ε ď

µ
ÿ

k“1

ε

2k ` ε ď 2ε.

This implies that if P is δε´fine and if xn´1 “ cµ “ 1
2µ , then |Sph; Pq ´ A| ď 2ε,

and we have the desired result for this case.

• Case 2: xn´1 ă cµ

In this case, note that the subintervals in P immediately preceding rxn´1, 1s have

the form: rcµ´1, xrs, . . . , rxn´2, xn´1s and the value of h at all of the tags for this

intervals is 2µaµ. From this, we get that the contribution Tµ to Sph; Pq from these

intervals is:

Tµ “ 2µaµpxn´1 ´ cµ´1q.

On the other hand, we have cµ´1 ă xn´1 ă cµ. This implies that 0 ă xn´1 ´ cµ´1 ă

cµ ´ cµ´1 “ 1
2µ , so that

Tµ ď 2µ|aµ|
1
2µ .

Thus,

Sph; Pq “

µ´1
ÿ

k“1
Tk ` Tµ ` 0,

which implies that

|Sph; Pq ´ A| ď

ˇ

ˇ

ˇ

ˇ

ˇ

µ´1
ÿ

k“1
Tk ´

µ´1
ÿ

k“1
ak

ˇ

ˇ

ˇ

ˇ

ˇ

` |Tµ| `

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“µ

ak

ˇ

ˇ

ˇ

ˇ

ˇ

ď 3ε,

getting the desired result for this case.

Therefore, we have that the statement is proved.

From this fact, we get that φ is Riemann improper integrable over r0, 1s and
ż 1

0
φpsqds “

8
ÿ

k“1

p´1qk`1

k
.

On the other hand, the integral of λ over r0, 1s is not finite. This means that it is not

Henstock–Kurzweil integrable over r0, 1s and hence, neither Lebesgue integrable. Since
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λptq “ |φptq| for every t P r0, 1s, it implies that φ is not Lebesgue integrable, due to the

fact that it is not absolutely integrable.

Now, let us define f : Gpr´r, 0s,Rq ˆ r0, 1s Ñ R by fpξ, sq “ φpsq for every pξ, sq P

Gpr´r, 0s,Rq ˆ r0, 1s, where φ is given by

φptq “

$

’

&

’

%

p´1qk`12k
k

, if t P rdk´1, dkq, k P N

0, if t “ 1,

and r ą 0. Also, suppose that apt, sq ” 1 for all t, s P r0, 1s. Define gpsq “ s. Thus, by the

definition, we get that f is independent of the first variable. By the previous statement, for

every x P Gpr´r, 1s,Rq, the mapping s ÞÑ fpxs, sq “ φpsq is Henstock–Kurzweil–Stieltjes

integrable with respect to g over r0, 1s and
ˇ

ˇ

ˇ

ˇ

ż 1

0
fpxs, sqds

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 1

0
φpsqds

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“1

p´1qk´1

k

ˇ

ˇ

ˇ

ˇ

ˇ

ă

ż 1

0
Mpsqds “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“1

p´1qk`1

k

ˇ

ˇ

ˇ

ˇ

ˇ

` 1, (3.1.2)

where Mpsq “

ˇ

ˇ

ˇ

ř8

k“1
p´1qk`1

k

ˇ

ˇ

ˇ
` 1 for every s P r0, 1s. On the other hand, we point out

that (3.1.2) does not imply that

|fpxs, sq| ď Mpsq “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“1

p´1qk`1

k

ˇ

ˇ

ˇ

ˇ

ˇ

` 1

for every s P r0, 1s and x P Gpr´r, 1s,Rq. Otherwise, we would have:

|φpsq| “ |fpxs, sq| ď

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“1

p´1qk`1

k

ˇ

ˇ

ˇ

ˇ

ˇ

` 1

for every s P r0, 1s. This fact would imply that φ is a Lebesgue integrable function, which

is a contradiction.

Therefore, this example motivates us to consider more general conditions to our func-

tions such as the conditions presented by (A1)–(A5). Notice also that these types of

assumptions allow that the involved functions a, f and g do not behave suitable, being

appropriate to describe important phenomena in a more precise way.

When the right–hand side of (3.1.1) satisfies the above mentioned conditions, the

solution x : rτ0 ´ r, t0 ` σs Ñ Rn of (3.1.1) is a regulated function on rτ0 ´ r, t0 ` σs, as it

will be proved in the next lemma.
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Lemma 3.1.7. Assume f : Gpr´r, 0s,Rnq ˆ rt0, dq Ñ Rn satisfies conditions (A3) and

(A4), a : rt0, dq2 Ñ R satisfies condition (A2) and g : rt0, dq Ñ R satisfies condition (A1).

If x : rt0 ´ r, t0 ` σs Ñ Rn, t0 ` σ ă d, is a solution of the equation (3.1.1), then x is a

regulated function on rt0 ´ r, t0 ` σs.

Proof. Suppose that x : rt0 ´ r, αs Ñ Rn is a solution of equation (3.1.1). Let us prove

that x is regulated on rt0 ´ r, αs.

Step 1. x|rt0´r,t0s is a regulated function.

Indeed, let τ P pt0 ´ r, t0s. Then τ ´ t0 P p´r, 0s. Since ϕ P Gpr´r, 0s,Rnq, lim
θÑpτ´t0q´

ϕpθq

exists and is given by

lim
θÑpτ´t0q´

ϕpθq “ lim
θÑpτ´t0q´

ϕpθ ` t0 ´ t0q “ lim
sÑτ´

ϕps ´ t0q “ lim
sÑτ´

xt0ps ´ t0q “ lim
sÑτ´

xpsq,

which implies that lim
sÑτ´

xpsq exists for τ P pt0 ´ r, t0s. Similarly, we can prove that

lim
sÑτ`

xpsq exists for τ P rt0 ´ r, t0q.

Step 2. x|rt0,t0`σs is a regulated function.

In fact, for t0 ď τ1 ď τ2 ď t0 ` σ, by conditions (A2), (A3), (A4), we have

}xpτ2q ´ xpτ1q} “

›

›

›

ż τ2

t0

apτ2, sqfpxs, sq dgpsq ´

ż τ1

t0

apτ1, sqfpxs, sq dgpsq
›

›

›

ď

›

›

›

ż τ2

τ1

apτ2, sqfpxs, sq dgpsq
›

›

›
`

›

›

›

ż τ1

t0

´

apτ2, sq ´ apτ1, sq
¯

fpxs, sq dgpsq
›

›

›

ď

ż τ2

τ1

|apτ2, sq|Mpsq dgpsq `

ż τ1

t0

|apτ2, sq ´ apτ1, sq|Mpsq dgpsq. (3.1.3)

By (A2), a is nondecreasing with respect to the first variable and there exists c :“

sup
pt,sqPrt0,t0`σs2

|apt, sq|. Thus, |apτ2, sq| ď c, for s P rt0, t0 ` σs . Using this fact, we have

ż τ2

τ1

|apτ2, sq|Mpsq dgpsq `

ż τ1

t0

|apτ2, sq ´ apτ1, sq|Mpsq dgpsq

ď

ż τ2

τ1

cMpsq dgpsq `

ż τ1

t0

papτ2, sq ´ apτ1, sqqMpsq dgpsq
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ď

ż τ2

τ1

cMpsq dgpsq `

ż t0`σ

t0

papτ2, sq ´ apτ1, sqqMpsq dgpsq. (3.1.4)

Combining (3.1.3) and (3.1.4), we get

}xpτ2q ´ xpτ1q} ď

ż τ2

τ1

cMpsq dgpsq `

ż t0`σ

t0

papτ2, sq ´ apτ1, sqqMpsq dgpsq. (3.1.5)

Define h : rt0, t0 ` σs Ñ R by

hptq :“
ż t

t0

cMpsq dgpsq `

ż t0`σ

t0

apt, sqMpsq dgpsq, (3.1.6)

for every t P rt0, t0 ` σs. Since M is a Henstock–Kurzweil–Stieltjes integrable function

with respect to g on rt0, t0 ` σs,
şt

t0
cMpsq dgpsq exists for all t P rt0, t0 ` σs. On the other

hand, similarly as in Remark 3.1.3, we can prove that
şt0`σ

t0
apt, sqMpsq dgpsq exists for

all t P rt0, t0 ` σs. Then, h is well–defined and is a nondecreasing function. Also, using

(3.1.5) and (3.1.6), we have

}xpτ2q ´ xpτ1q} ď hpτ2q ´ hpτ1q, (3.1.7)

for all t0 ď τ1 ď τ2 ď t0 ` σ. Now, by (3.1.7) and by the fact that h is a nondecreasing

function, the lateral limits

lim
sÑτ`

xpsq for τ P rt0, t0 ` σq

and

lim
sÑτ´

xpsq for τ P pt0, t0 ` σs

exist. This implies that x|rt0,t0`σs is regulated, proving the result.

In the sequel, we recall the classic Schauder Fixed–Point Theorem, which will be

important to our purposes.

Theorem 3.1.8 ([38, Lemma 2.4]). (Schauder Fixed–Point Theorem) Let pE, } ¨ }q be a

normed vector space, S a nonempty convex and closed subset of E. Assume that T : S Ñ S

is a continuous function such that T pSq is relatively compact. Then T has a fixed point

in S.

Now, we state the main theorem of this section, which gives us sufficient conditions in

order to guarantee the existence and uniqueness of a local solution of (3.1.1). The proof
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of this result is similar to the one found in [6] with the necessary adaptations, but we will

write it here for the reader’s convenience. We call the reader’s attention that in [6], the

result was proved for the case without delays.

Theorem 3.1.9. Assume f : Gpr´r, 0s,Rnq ˆ rt0, dq Ñ Rn satisfies conditions (A3), (A4)

and (A5), a : rt0, dq2 Ñ R satisfies condition (A2) and g : rt0, dq Ñ R satisfies condition

(A1). Then for all τ0 P rt0, dq and all ϕ P Gpr´r, 0s,Rnq, there exists a σ ą 0 and a

unique solution x : rτ0 ´ r, τ0 ` σs Ñ Rn of the initial value problem:
$

’

&

’

%

xptq “ ϕp0q `

ż t

τ0

apt, sqfpxs, sqdgpsq

xτ0 “ ϕ.

(3.1.8)

Proof. Let us start by proving the existence.

Existence. Consider the set

Hϕ :“ tφ P Gprτ0 ´ r, τ0 ` σs,Rn
q : φτ0 “ ϕu.

The idea now is to construct an operator T : Hϕ Ñ Hϕ that satisfies all hypotheses of

Schauder’s Fixed Point Theorem and with it, to obtain that equation (3.1.8) possesses a

solution.

Assertion 1. The set Hϕ is nonempty.

In fact, define Γ: rτ0 ´ r, τ0 ` σs Ñ Rn by

Γptq :“

$

’

&

’

%

ϕpt ´ τ0q, t P rτ0 ´ r, τ0s

ϕp0q, t P rτ0, τ0 ` σs.

Let τ P rτ0 ´ r, τ0 ` σq and consider two cases: τ P rτ0, τ0 ` σq and otherwise.

If τ P rτ0, τ0 ` σq, then lim
sÑτ`

Γpsq exists, since Γ|rτ0,τ0`σq is a constant function.

If τ P rτ0 ´ r, τ0q, then τ ´ τ0 P r´r, 0q. Now, since ϕ P Gpr´r, 0s,Rnq, the limit

lim
ηÑpτ´τ0q`

ϕpηq exists and

lim
ηÑpτ´τ0q`

ϕpηq “ lim
ηÑpτ´τ0q`

ϕpη ` τ0 ´ τ0q “ lim
sÑτ`

ϕps ´ τ0q “ lim
sÑτ`

Γpsq,

proving that the last limit exists. Analogously, we can show that lim
sÑτ´

Γpsq exists for

τ P pτ0 ´ r, τ0 ` σs. This implies that Γ P Gprτ0 ´ r, τ0 ` σs,Rnq. On the other hand, given

θ P r´r, 0s, we have θ ` τ0 P rτ0 ´ r, τ0s. Also, for θ P r´r, 0s, it follows

Γτ0pθq :“ Γpθ ` τ0q “ ϕpθ ` τ0 ´ τ0q “ ϕpθq,
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which implies that Γτ0 “ ϕ and, therefore, Γ P Hϕ, proving Assertion 1.

Now, define the operator T : Hϕ Ñ Hϕ by

pTxqptq “

$

’

’

&

’

’

%

ϕpt ´ τ0q, t P rτ0 ´ r, τ0s

ϕp0q `

ż t

τ0

apt, sqfpxs, sqdgpsq, t P rτ0, τ0 ` σs.
(3.1.9)

Assertion 2. T is well–defined.

In order to show it, let us prove that T pHϕq Ď Hϕ. Let x P Hϕ be fixed. Using the

same arguments from the proof of Lemma 3.1.7, we can show that Tx is regulated on

rτ0 ´ r, τ0 ` σs. Thus, for θ P r´r, 0s, we have:

pTxqτ0pθq :“ pTxqpθ ` τ0q “ ϕpθ ` τ0 ´ τ0q “ ϕpθq,

which implies pTxqτ0 “ ϕ. Hence Tx P Hϕ.

Assertion 3. Hϕ is a convex and closed set.

Let ψ, φ P Hϕ be given. Then for ξ P r0, 1s, it follows from the properties of regulated

functions that p1 ´ ξqψ ` ξφ P Gprτ0 ´ r, τ0 ` σsq and for θ P r´r, 0s, we get

p1 ´ ξqψτ0pθq ` ξφτ0pθq “ p1 ´ ξqϕpθq ` ξϕpθq “ ϕpθq,

which implies that H is convex.

Now, let us prove that Hϕ is closed. Assume that φk P Hϕ, k P N, is a sequence which

converges in Gprτ0 ´ r, τ0 ` σs,Rnq to a certain function φ. Given θ P r´r, 0s, we have

φτ0pθq “ φpτ0 ` θq “ lim
kÑ8

φkpτ0 ` θq “ lim
kÑ8

pφkqτ0pθq “ ϕpθq,

that is, φτ0 “ ϕ, proving the assertion.

Assertion 4. A :“ T pHϕq “ tTx : x P Hϕu is relatively compact.

We will show that A is uniformly bounded and equiregulated. Indeed, let y P A be

arbitrary, then there exists x P Hϕ such that y “ Tx. Let t P rτ0 ´ r, τ0s, then

}pTxqptq} “ }ϕpt ´ τ0q} ď sup
θPr´r,0s

}ϕpθq} “ }ϕ}8. (3.1.10)
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On the other hand, for t P rτ0, τ0 `σs, by condition (A4), Theorem 1.2.4 and Corollary

1.2.5, we obtain

}pTxqptq} ď }ϕp0q} `

›

›

›

›

ż t

τ0

apt, sqfpxs, sq dgpsq

›

›

›

›

ď }ϕ}8 `

ż t

τ0

|apt, sq|Mpsq dgpsq

ď }ϕ}8 `

ż t

τ0

cMpsq dgpsq

ď }ϕ}8 `

ż τ0`σ

τ0

cMpsq dgpsq “ }ϕ}8 ` β, (3.1.11)

where β “
şτ0`σ

τ0
cMpsq dgpsq ă 8 in view of condition (A4).

Combining (3.1.10) and (3.1.11), we conclude that

}y}8 “ }Tx}8 ď K,

where K :“ }ϕ}8 ` β does not depend on y P A. Thus, the set A is uniformly bounded.

Next we show that A is equiregulated. In fact, let an arbitrary ε ą 0 be given. Since

the function rτ0 ´ r, τ0s Q t ÞÑ ϕpt´ τ0q belongs to the set Gprτ0 ´ r, τ0s,Rnq, by Höning’s

Theorem (Theorem 1.1.4), there is a division of rτ0 ´ r, τ0s given by τ0 ´ r “ α0 ă α1 ă

. . . ă αk “ τ0 such that

}yptq ´ ypsq} “ }pTxqptq ´ pTxqpsq} “ }ϕpt ´ τ0q ´ ϕps ´ τ0q} ă ε,

for all t, s P pαi´1, αiq, i P t1, . . . , ku. On the other hand, by conditions (A2), (A3), (A4),

Theorem 1.2.4, Corollary 1.2.5 and using the same arguments as in Step 2 of the proof of

Lemma 3.1.7, we can prove that, for τ0 ď τ1 ď τ2 ď τ0 ` σ,

}ypτ2q ´ ypτ1q} “ }pTxqpτ2q ´ pTxqpτ1q}

“

›

›

›

ż τ2

τ0

apτ2, sqfpxs, sq dgpsq ´

ż τ1

τ0

apτ1, sqfpxs, sq dgpsq
›

›

›

ď

ż τ2

τ1

cMpsq dgpsq `

ż τ0`σ

τ0

papτ2, sq ´ apτ1, sqqMpsq dgpsq.

This gives

}ypτ2q ´ ypτ1q} ď |hpτ2q ´ hpτ1q|, (3.1.12)

for all y P A and all τ2, τ1 P rτ0, τ0 ` σs, where h : rτ0, τ0 ` σs Ñ R is given by

hptq :“
ż t

τ0

cMpsq dgpsq `

ż τ0`σ

τ0

apt, sqMpsq dgpsq, (3.1.13)
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for every t P rτ0, τ0 ` σs.

Since h clearly is a nondecreasing function on rτ0, τ0`σs (and, therefore, h P Gprτ0, τ0`

σs,Rq), then again by Höning’s Theorem (Theorem 1.1.4), there is a division of rτ0, τ0 `σs

given by τ0 “ ξ0 ă ξ1 ă . . . ă ξm “ τ0 ` σ such that

|hptq ´ hpsq| ă ε,

for all t, s P pξi´1, ξiq and i P t1, . . . ,mu. Using this fact together with (3.1.12), we have

}yptq ´ ypsq} ă ε,

for all y P A, t, s P pξi´1, ξiq and i P t1, . . . ,mu. Now, define

γi “

$

’

&

’

%

αi, i P t0, . . . , ku

ξi´k, i P tk ` 1, k ` 2, . . . , k ` mu.

Obviously, τ0 ´ r “ γ0 ă γ1 ă . . . ă γk`m “ τ0 ` σ is a division of rτ0 ´ r, τ0 ` σs and

}yptq ´ ypsq} ă ε,

for arbitrary y P A, t, s P pγi´1, γiq and i P t1, . . . , k ` mu. Hence by Lemma 1.1.6, A is

equiregulated. Therefore, by Theorem 1.1.7, A is relatively compact, proving the asser-

tion.

Assertion 5. T is continuous.

Let x, z P Hϕ be given. Then, for t P rτ0 ´ r, τ0s, we have

}pTxqptq ´ pTzqptq} “ }ϕpt ´ τ0q ´ ϕpt ´ τ0q} “ 0.

On the other hand, for t P rτ0, τ0 ` σs, by condition (A5), Theorem 1.2.4 and Corollary

1.2.5, we get

}pTxqptq ´ pTzqptq} “

›

›

›

ż t

τ0

apt, sqfpxs, sq dgpsq ´

ż t

τ0

apt, sqfpzs, sq dgpsq
›

›

›

“

›

›

›

ż t

τ0

apt, sqpfpxs, sq ´ fpzs, sqq dgpsq
›

›

›

ď

ż t

τ0

|apt, sq|Lpsq}xs ´ zs}8 dgpsq
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ď

ż t

τ0

}xs ´ zs}8cLpsq dgpsq

ď

ż τ0`σ

τ0

}xs ´ zs}8cLpsq dgpsq

ď }x ´ z}
8

ˆ
ż t0`σ

τ0

cLpsq dgpsq

˙

,

since }xs ´ zs}8 ď }x ´ z}8 for τ0 ď t ď τ0 ` σ. These arguments together with the fact

that, by condition (A5),
şt0`σ

τ0
cLpsq dgpsq :“ γ ă 8, imply that T is continuous.

Finally, all the hypotheses from Schauder Fixed–Point Theorem (Theorem 3.1.8) are

satisfied. Then, we have that T has a fixed point in Hϕ. By the definition of the operator

T given by (3.1.9), we conclude that (3.1.8) has a solution x : rτ0 ´ r, τ0 ` σs Ñ Rn.

It remains to ensure the uniqueness of the solution.

Uniqueness. Assume that x, z : rτ0´r, τ0`σs Ñ Rn are two solutions of equation (3.1.8).

It is clear that xptq “ zptq “ ϕpt ´ τ0q for all t P rτ0 ´ r, τ0s. Keeping in mind condition

(A5) and Theorem 1.2.4, we have for t P rτ0, τ0 ` σs

}xptq ´ zptq} “

›

›

›

ż t

τ0

apt, sqfpxs, sq dgpsq ´

ż t

τ0

apt, sqfpzs, sq dgpsq
›

›

›

“

›

›

›

ż t

τ0

apt, sqpfpxs, sq ´ fpzs, sqq dgpsq
›

›

›

ď

ż t

τ0

|apt, sq|Lpsq}xs ´ zs}8 dgpsq

ď c }L}
8,rτ0,τ0`σs

ż t

τ0

}xs ´ zs}8 dgpsq.

Using the fact that

}xs ´ zs}8 “ sup
θPr´r,0s

}xps ` θq ´ zps ` θq} “ sup
ηPrs´r,ss

}xpηq ´ zpηq} ,

we get

}xptq ´ zptq} ď c }L}
8,rτ0,τ0`σs

ż t

τ0

sup
ηPrs´r,ss

}xpηq ´ zpηq} dgpsq. (3.1.14)

Since the right–hand side of (3.1.14) is nondecreasing, we have

sup
τPrt´r,ts

}xpτq ´ zpτq} ď c }L}
8,rτ0,τ0`σs

ż t

τ0

sup
ηPrs´r,ss

}xpηq ´ zpηq} dgpsq,
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and, therefore,

sup
τPrt´r,ts

}xpτq ´ zpτq} ď ε ` c }L}
8,rτ0,τ0`σs

ż t

τ0

sup
ηPrs´r,ss

}xpηq ´ zpηq} dgpsq,

for every ε ą 0. Then, by the Gronwall’s inequality for the Henstock–Kurzweil–Stieltjes

integral (Theorem 1.2.10), we obtain

sup
τPrt´r,ts

}xpτq ´ zpτq} ď εec}L}8,rτ0,τ0`σspgptq´gpτ0qq.

Since }xptq ´ zptq} ď sup
τPrt´r,ts

}xpτq ´ zpτq}, we have

}xptq ´ zptq} ď εec}L}8,rτ0,τ0`σspgptq´gpτ0qq.

Now, since ε ą 0 is arbitrary, it follows that xptq “ zptq for all t P rτ0, τ0 ` σs. Hence

x “ z, proving the uniqueness of the solution.

Remark 3.1.10. If apt, sq ” 1, then equation (3.1.8) reduces to the usual measure func-

tional differential equation given by:
$

’

&

’

%

xptq “ ϕp0q `

ż t

τ0

fpxs, sqdgpsq

xτ0 “ ϕ

(3.1.15)

Results concerning existence and uniqueness for this type of equations were obtained

in [24], using the correspondence between (3.1.15) and generalized ODEs. Also, the

conditions presented in [24] are stronger than the ones presented here for the function f ,

allowing us to get a more general result. A careful examination at the conditions assumed

by function f shows that it is required that f be bounded by a constant instead of its

integral be bounded by as a function as we require here.

On the other hand, considering apt, sq “ kpt ´ sq for every pt, sq P Dompaq and gptq “ t

for every t P rt0, dq, equation (3.1.8) reduces to the usual functional Volterra integral

equations of convolution type given by
$

’

&

’

%

xptq “ ϕp0q `

ż t

τ0

kpt ´ sqfpxs, sqds

xτ0 “ ϕ.

(3.1.16)

The results presented here are more general than the ones found in the literature for

this type of equation (see [34]). The same applies for more general kernels, such as

kpt ´ sq “ pt ´ sqα´1{Γpαq, which transforms equation (3.1.16) in a fractional functional

differential equation.
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Remark 3.1.11. Notice that if
ż t0`σ

t0

cLpsqdgpsq ă 1,

then it is possible to show the existence and uniqueness of solutions using Banach’s Fixed

Point Theorem, since in this case, one can show that the operator T defined previously

is a contraction.

Now, we present a concrete example of our main result considering as external non-

linear force the function fpψ, sq “ e´γse´ sinψp´1q, as well as the coupling of the Maxwell

and power type materials in the kernel kptq “ tα´1

Γpαq
e´δt for the case 1 ă α ă 2 and δ “ 0.

We were inspired by the example found in [8].

Example 3.1.12. We consider the following integral equation
$

’

&

’

%

xptq “ ϕp0q `

ż t

τ0

pt ´ sqα´1

Γpαq
e´γse´ sinxps´1qdgpsq, t ě τ0

xτ0 “ ϕ,

(3.1.17)

where γ ą 0, 1 ă α ă 2, ϕ P Gpr´r, 0s,Rq, g : rt0,`8q Ñ R is a nondecreasing and

left–continuous function and Γ is the gamma function. Taking a : rt0,`8q2 Ñ R and

f : Gpr´r, 0s,Rq ˆ rt0,`8q Ñ R given, respectively, by

apt, sq :“

$

’

’

&

’

’

%

pt ´ sqα´1

Γpαq
, if s ď t

0, if t ă s

and

fpψ, sq :“ e´γse´ sinψp´1q, pψ, sq P Gpr´r, 0s,Rq ˆ rt0,`8q,

we have that (3.1.17) is in the form of (3.1.8) with d “ `8. Observe that, since xsp´1q “

xps ´ 1q, we get fpxs, sq “ e´γse´ sinxps´1q.

Let us show that conditions (A1)–(A5) are all satisfied. It is clear that g satisfies

condition (A1) by definition.

Note that for any t P rt0,`8q, the function s ÞÑ apt, sq is regulated on rα, βs , for each

compact interval rα, βs Ă rt0,`8q. On the other hand, given s P rt0,`8q fixed, we shall

prove that ap¨, sq is nondecreasing. For it, we will consider three cases.
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Case 1. Let t1, t2 P rt0,`8q be such that s ď t1 ă t2. Then

apt1, sq “
pt1 ´ sqα´1

Γpαq
ď

pt2 ´ sqα´1

Γpαq
“ apt2, sq.

Case 2. Let t1, t2 P rt0,`8q be such that t1 ă t2 ă s. Then apt1, sq “ apt2, sq “ 0.

Case 3. Let t1, t2 P rt0,`8q be such that t1 ă s ă t2. Then

apt1, sq “ 0 ď
pt2 ´ sqα´1

Γpαq
“ apt2, sq.

In any case, we have that if t1, t2 P rt0,`8q are such that t1 ă t2, then apt1, sq ď apt2, sq.

Also, clearly, a is bounded on any compact rectangle rτ0, τ0 ` σs2 Ă rt0,`8q2.

Note that if rτ0, τ0 ` σs Ă rt0,`8q, x P Gprτ0 ´ r, τ0 ` σs,Rq, t P rt0,`8q and

τ0 ď τ1 ď τ2 ď τ0 ` σ, then it follows that rτ1, τ2s Q s ÞÑ apt, sqfpxs, sq is a regulated

function on rτ1, τ2s. This implies the existence of
şτ2
τ1
apt, sqfpxs, sqdgpsq, proving that

condition (A3) is satisfied.

Now, let us prove that (A4) is satisfied. Define M : rt0,`8q Ñ R` by Mpsq “ e1´γs,

for s P rt0,`8q. Observe that M is a locally Henstock–Kurzweil–Stieltjes integrable

function with respect to g and
ˇ

ˇ

ˇ

ˇ

ż τ2

τ1

c1apτ2, sq ` c2apτ1, sqfpxs, sqdgpsq

ˇ

ˇ

ˇ

ˇ

T hm 1.2.3
Ó

ď

ż τ2

τ1

|c1apτ2, sq ` c2apτ1, sq| |fpxs, sq| dgpsq

“

ż τ2

τ1

|c1apτ2, sq ` c2apτ1, sq|
ˇ

ˇe´γse´ sinxps´1q
ˇ

ˇ dgpsq

ď

ż τ2

τ1

|c1apτ2, sq ` c2apτ1, sq| e´γs e dgpsq

“

ż τ2

τ1

|c1apτ2, sq ` c2apτ1, sq|Mpsqdgpsq,

for x P Gprτ0 ´ r, τ0 ` σs,Rq, τ0 ď τ1 ď τ2 ď τ0 ` σ and c1, c2 P R, getting (A4).

Finally, let us show that (A5) is also satisfied. Define L : rt0,`8q Ñ R` by Lpsq “

e1´γs, for s P rt0,`8q. It is clear that L is a locally regulated function and for x, y P

Gprτ0 ´ r, τ0 ` σs,Rq and τ0 ď τ1 ď τ2 ď τ0 ` σ, we get
ˇ

ˇ

ˇ

ˇ

ż τ2

τ1

apτ2, sq rfpxs, sq ´ fpys, sqs dgpsq

ˇ

ˇ

ˇ

ˇ

T hm 1.2.3
Ó

ď

ż τ2

τ1

|apτ2, sq| |fpxs, sq ´ fpys, sq| dgpsq

“

ż τ2

τ1

|apτ2, sq|
ˇ

ˇe´γs
`

e´ sinxsp´1q
´ e´ sin ysp´1q

˘
ˇ

ˇ dgpsq
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ď

ż τ2

τ1

|apτ2, sq| e´γse |xsp´1q ´ ysp´1q| dgpsq

ď

ż τ2

τ1

|apτ2, sq|Lpsq |xs ´ ys|8
dgpsq,

giving us condition (A5), where the third inequality follows from the estimates given by

the Mean Value Theorem.

Therefore, f, a and g satisfy all the hypotheses of Theorem 3.1.9. Thus, there exists

a σ ą 0 such that equation (3.1.17) has a unique solution on rτ0 ´ r, τ0 ` σs.

We finish this section with another example, which is completely new in the literature.

Example 3.1.13. Consider the following integral equation

$

’

&

’

%

xptq “ ϕp0q `

ż t

τ0

βptqηpsqeαseγ cospxspθqqdgpsq, t ě τ0

xτ0 “ ϕ,

(3.1.18)

where

gpsq “

$

&

%

s, s P r0, 1s,

s ` 1, s P p1, dq, d ą 1,

η : rt0, dq Ñ R` is a regulated function, β : rt0, dq Ñ R is a nondecreasing function, γ ą 0

and α ă 0. Define the following functions

apt, sq : rt0, dq ˆ rt0, dq Ñ R

pt, sq ÞÑ βptqeαs,

and for θ P r´r, 0s,

fpψ, sq : Gpr´r, 0s,Rq ˆ rt0, dq Ñ R

pψ, sq ÞÑ ηpsqe´γ cospψpθqq.

By definition, it is clear that g satisfies (A1) and a satisfies (A2).

Since βptqηpsqeαse´γ cospxps`θqq is regulated for all x P Gprτ0´r, τ0`σs,Rq, t P rt0, dq, rτ0, τ0`

σs Ă rt0, dq, the integral
ż τ2

τ1

eαpt´sqηpsqeγ cospxspθqqdgpsq
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exists in the sense of Henstock–Kurzweil–Stieltjes for all τ0 ď τ1 ď τ2 ď τ0 ` σ, getting

(A3).

To show (A4), notice that 0 ď ηpsqe´γ cospxspθqq ď ηpsqeγ. Defining Mpsq :“ ηpsqeγ for

s P rt0, dq, we have that M is Henstock–Kurzweil–Stieltjes integrable with respect to g

and
ˇ

ˇ

ˇ

ˇ

ż τ2

τ1

c1apτ2, sq ` c2apτ1, sqfpxs, sqdgpsq

ˇ

ˇ

ˇ

ˇ

ď

ż τ2

τ1

|c1apτ2, sq ` c2apτ1, sq|Mpsqdgpsq,

for x P Gprτ0 ´ r, τ0 ` σs,Rq, c1, c2 P R and τ0 ď τ1 ď τ2 ď τ0 ` σ, proving (A4).

Let L : rt0, dq Ñ R` be defined as Lpsq “ γeγηpsq. Notice that by the Mean Value

Theorem, |e´γ cospuq ´ e´γ cospvq| ď γeγ|u ´ v|. Hence
ˇ

ˇ

ˇ

ˇ

ż τ2

τ1

apτ2, sqrfpxs, sq ´ fpzs, sqsdgpsq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż τ2

τ1

apτ2, sqηpsqre´γ cospxspθqq
´ e´γ cospzspθqq

sdgpsq

ˇ

ˇ

ˇ

ˇ

ď

ż τ2

τ1

|apτ2, sq|ηpsqeγγ|xs ´ zs|8dgpsq

“

ż τ2

τ1

|apτ2, sq|Lpsq|xs ´ zs|8dgpsq,

proving condition (A5). Therefore, all the hypotheses of Theorem 3.1.9 are satisfied, then

there exists a σ ą 0 such that equation (3.1.18) has a unique solution on rτ0 ´ r, τ0 ` σs.

3.2 Existence and uniqueness of maximal solutions

In this section, we are interested to investigate under which conditions we can ensure the

existence and uniqueness of maximal solutions of the following equation:
$

’

&

’

%

xptq “ ϕp0q `

ż t

τ0

apt, sqfpxs, sqdgpsq, t ě τ0,

xτ0 “ ϕ,

(3.2.1)

where τ0 ě t0, ϕ P Gpr´r, 0s,Rnq, f : Gpr´r, 0s,Rnq ˆ rt0,`8q Ñ Rn, a : rt0,`8q2 Ñ R

and g : rt0,`8q Ñ R is a nondecreasing function and the integral in the right–hand side

is understood in the sense of Henstock–Kurzweil–Stieltjes.
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We are now interested about maximal solutions since we intend to investigate the

asymptotic behaviour of the solutions of (3.2.1), such as stability results. From now on,

we assume the conditions (A1)–(A5) for the case d “ `8, which can be read as follows:

(B1) The function g : rt0,`8q Ñ R is nondecreasing and left–continuous on pt0,`8q.

(B2) The function a : rt0,`8q2 Ñ R is nondecreasing with respect to the first variable,

regulated with respect to the second variable and, locally bounded on rt0,`8q2.

(B3) The Henstock–Kurzweil–Stieltjes integral
ż τ2

τ1

apt, sqfpxs, sqdgpsq

exists, for each compact interval rτ0, τ0 ` σs Ă rt0,`8q, all x P Gprτ0 ´ r, τ0 `

σs,Rnq, t P rt0,`8q and all τ0 ď τ1 ď τ2 ď τ0 ` σ.

(B4) There exists a locally Henstock–Kurzweil–Stieltjes integrable functionM : rt0,`8q Ñ

R` with respect to g such that for each compact interval rτ0, τ0 ` σs Ă rt0,`8q, we

have
›

›

›

›

›

›

τ2
ż

τ1

bpτ2, sqfpxs, sqdgpsq

›

›

›

›

›

›

ď

τ2
ż

τ1

|bpτ2, sq|Mpsqdgpsq,

for all x P Gprτ0 ´ r, τ0 ` σs,Rnq, all b P G2prτ0, τ0 ` σs2,Rq and all τ0 ď τ1 ď τ2 ď

τ0 ` σ.

(B5) There exists a locally regulated function L : rt0,`8q Ñ R` such that for each

compact interval rτ0, τ0 ` σs Ă rt0,`8q, we have
›

›

›

›

›

›

τ2
ż

τ1

apτ2, sqrfpxs, sq ´ fpzs, sqsdgpsq

›

›

›

›

›

›

ď

τ2
ż

τ1

|apτ2, sq|Lpsq}xs ´ zs}8dgpsq,

for all x, z P Gprτ0 ´ r, τ0 ` σs,Rnq and all τ0 ď τ1 ď τ2 ď τ0 ` σ.

Definition 3.2.1. (Prolongation to the right) Let τ0 ě t0, ϕ P Gpr´r, 0s,Rnq and x : J Ñ

Rn, J Ă rt0 ´ r,`8q, be a solution of (3.2.1) on the interval J with τ0 ´ r “ min J.

The solution y : pJ Ñ Rn, pJ Ă rt0 ´ r,`8q with τ0 ´ r “ min pJ, of (3.2.1) is called a

prolongation to the right of x, if J Ă pJ and xptq “ yptq for all t P J. If J Ĺ pJ, then y is

called a proper prolongation of x to the right.
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Definition 3.2.2. (Maximal solution) Let τ0 ě t0, ϕ P Gpr´r, 0s,Rnq. A solution y : I Ñ

Rn, I Ă rt0 ´ r,`8q and I is such that τ0 ´ r “ min I, of the equation (3.2.1), is called

maximal, if there is no proper prolongation of y to the right. In this case, I is called the

maximal interval of existence of y.

The proof of the next result is very similar to the proof of the uniqueness of solution

(see Theorem 3.1.9) and thus, we will omit it here.

Lemma 3.2.3. Assume f : Gpr´r, 0s,Rnq ˆ rt0,`8q Ñ Rn satisfies the conditions (B3),

(B4) and (B5), a : rt0,`8q2 Ñ R satisfies condition (B2) and g : rt0,`8q Ñ R satisfies

condition (B1). Let τ0 ě t0, ϕ P Gpr´r, 0s,Rnq and consider the equation (3.2.1). If

x : Jx Ñ Rn and y : Jy Ñ Rn are solutions of (3.2.1), where Jx and Jy are intervals such

that τ0 ´ r “ min Jx “ min Jy, then xptq “ yptq for all t P Jx X Jy.

Next, we present the main theorem of this section.

Theorem 3.2.4. Suppose f : Gpr´r, 0s,Rnq ˆ rt0,`8q Ñ Rn satisfies conditions (B3),

(B4) and (B5), a : rt0,`8q2 Ñ R satisfies condition (B2) and g : rt0,`8q Ñ R satisfies

condition (B1). Then, for every τ0 ě t0 and ϕ P Gpr´r, 0s,Rnq, there exists a unique

maximal solution x : I Ñ Rn of the equation (3.2.1), where I is a nondegenerate interval

with τ0 ´ r “ min I. Also, I “ rτ0 ´ r, ωq, with ω ď `8.

Proof. Let τ0 ě t0 and ϕ P Gpr´r, 0s,Rnq be fixed. Firstly, we will show the existence of

a maximal solution.

Existence. Consider the set

S :“ tx : Jx Ñ Rn : Jx is an interval such that τ0 ´ r “ min Jx and

x is a solution of the equation (3.2.1)u

The set S is nonempty by the local existence and uniqueness of solution given in Theorem

3.1.9.

Define I :“
Ť

yPS

Jy and x : I Ñ Rn by the relation xptq “ yptq, where y P S and t P Jy.

Note that if y and z belong to S, then ypsq “ zpsq, for all s P Jy X Jz, by Lemma 3.2.3.

Thus, we conclude that x is well–defined. Note that I is an interval with τ0 ´ r “ min I
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(since I is union connected with a common point) and x is a maximal solution of the

equation (3.2.1), proving the existence of a maximal solution.

It remains to ensure the uniqueness of the maximal solution.

Uniqueness. Assume x1 : I1 Ñ Rn and x2 : I2 Ñ Rn are two maximal solutions of the

equation (3.2.1), where I1, I2 are intervals such that τ0 ´ r “ min I1 “ min I2. Hence, by

Lemma 3.2.3, we have

x1ptq “ x2ptq, for all t P I1 X I2. (3.2.2)

Since τ0 ´ r “ min I1 “ min I2, we have only one of the following possibilities:

1) I1 Ĺ I2

2) I2 Ĺ I1

3) I1 “ I2.

We will show that the only possibility is (3). Any other ones lead a contradiction. Indeed,

without loss generality, we assume that I1 Ĺ I2, then I1XI2 “ I1 and, therefore, by (3.2.2),

we have x1ptq “ x2ptq for all t P I1. It implies that x2|I1 “ x1 and I1 Ĺ I2, i.e., x2 is a

proper prolongation of x1, that is assumed to be maximal, which is a contradiction. Hence

I2 “ I1 and x1ptq “ x2ptq, for all t P I1, that is, x1 “ x2.

Finally, let us prove that the interval of existence of the maximal solution must be

right–open.

Let φmax : I Ñ Rn be the maximal solution of
$

’

&

’

%

xptq “ ϕp0q `

ż t

τ0

apt, sqfpxs, sqdgpsq, t ě τ0,

xτ0 “ ϕ,

(3.2.3)

where I is an interval with τ0 P I and min I “ τ0 ´ r.

It is clear that I Ă rt0 ´ r,`8q. Define ω :“ sup I. Hence ω ď `8. If ω “ `8, the

result follows immediately. Suppose that ω ă `8.

Assertion 1. ω R I.

Let us assume that ω P I, that is, I “ rτ0, ωs. Define γ : rt0,`8q Ñ Rn by

γptq :“ ϕp0q `

ż ω

τ0

apt, sqfpφmaxs , sqdgpsq. (3.2.4)
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Notice that by definition γpωq “ φmaxpωq. On the other hand, consider the following

problem
$

’

&

’

%

yptq “ γptq `

ż t

ω

apt, sqfpys, sqdgpsq, t ě ω,

yω “ φmaxω .

(3.2.5)

Assertion 2. There exists a local solution y : rω ´ r, ω ` ηs Ñ Rn of (3.2.5).

Indeed, let η ą 0. Consider the set

H :“ tψ P Gprω ´ r, ω ` ηs,Rn
q : ψω “ φmaxω u.

Clearly H is nonempty, closed and convex. Now, define the operator T : H Ñ H by

pTxqptq “

$

’

&

’

%

φmaxω pt ´ ωq, t P rω ´ r, ωs

γptq `

ż t

ω

apt, sqfpxs, sqdgpsq, t P rω, ω ` ηs,
(3.2.6)

where γptq is the function defined by (3.2.4).

Assertion 3. T is well–defined.

Let x P H be fixed. We need to prove that T pHq Ă H. Therefore, we start by proving

that Tx is regulated on rω´r, ω`ηs. In order to do this, we divide the proof in two steps.

Step 1. The restriction of Tx to rω ´ r, ωs is regulated.

Indeed, let τ P pω ´ r, ωs, then τ ´ ω P p´r, 0s. Now, since φmaxω P Gpr´r, 0s,Rnq,

lim
θÑpτ´ωq´

φmaxω pθq exists and

lim
θÑpτ´ωq´

φmaxω pθq “ lim
θÑpτ´ωq´

φmaxω pθ ` ω ´ ωq “ lim
sÑτ´

φmaxω ps ´ ωq “ lim
sÑτ´

pTxqpsq,

which implies that lim
sÑτ´

pTxqpsq exists for τ P pω ´ r, ωs. Similarly, we can prove that

lim
sÑτ`

pTxqpsq exists for τ P rω ´ r, ωq.

Step 2. The restriction of Tx to rω, ω ` ηs is regulated.

In fact, for ω ď τ1 ď τ2 ď ω`η, by conditions (B2), (B3), (B4), Theorem 1.2.4, Corollary

1.2.5 and the definition of γ (given by (3.2.4)), we have

}pTxqpτ2q ´ pTxqpτ1q}

“

›

›

›
γpτ2q ´ γpτ1q `

ż τ2

ω

apτ2, sqfpxs, sq dgpsq ´

ż τ1

ω

apτ1, sqfpxs, sq dgpsq
›

›

›

ď }γpτ2q ´ γpτ1q} `

›

›

›

ż τ2

ω

apτ2, sqfpxs, sq dgpsq ´

ż τ1

ω

apτ1, sqfpxs, sq dgpsq
›

›

›
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ď

›

›

›

ż ω

τ0

´

apτ2, sq ´ apτ1, sq
¯

fpφmaxs , sq dgpsq
›

›

›

`

›

›

›

ż τ1

ω

apτ2, sqfpxs, sq dgpsq `

ż τ2

τ1

apτ2, sqfpxs, sq dgpsq ´

ż τ1

ω

apτ1, sqfpxs, sq dgpsq
›

›

›

ď

ż ω

τ0

|apτ2, sq ´ apτ1, sq|Mpsq dgpsq

`

›

›

›

ż τ2

τ1

apτ2, sqfpxs, sq dgpsq
›

›

›
`

›

›

›

ż τ1

ω

´

apτ2, sq ´ apτ1, sq
¯

fpxs, sq dgpsq
›

›

›

ď

ż ω

τ0

|apτ2, sq ´ apτ1, sq|Mpsq dgpsq `

ż τ2

τ1

|apτ2, sq|Mpsq dgpsq

`

ż τ1

ω

|apτ2, sq ´ apτ1, sq|Mpsq dgpsq

“

ż τ2

τ1

|apτ2, sq|Mpsq dgpsq `

ż τ1

τ0

|apτ2, sq ´ apτ1, sq|Mpsq dgpsq.

By condition (B2), a is nondecreasing with respect to the first variable, and there exists

c :“ sup
pt,sqPrω,ω`ηs2

|apt, sq|. Hence

ż τ2

τ1

|apτ2, sq|Mpsq dgpsq `

ż τ1

τ0

|apτ2, sq ´ apτ1, sq|Mpsq dgpsq

ď

ż τ2

τ1

cMpsq dgpsq `

ż τ1

τ0

papτ2, sq ´ apτ1, sqqMpsq dgpsq

ď

ż τ2

τ1

cMpsq dgpsq `

ż ω`η

τ0

papτ2, sq ´ apτ1, sqqMpsq dgpsq,

that is,

}Txpτ2q ´ Txpτ1q} ď

ż τ2

τ1

cMpsq dgpsq `

ż ω`η

τ0

papτ2, sq ´ apτ1, sqqMpsq dgpsq. (3.2.7)

Define h : rω, ω ` ηs Ñ R by

hptq :“
ż t

τ0

cMpsq dgpsq `

ż ω`η

τ0

apt, sqMpsq dgpsq, (3.2.8)

for every t P rω, ω ` ηs. In view of the Henstock–Kurzweil–Stieltjes integrability of the

function M with respect to the function g on rτ0, ω`ηs, the integral
şt

τ0
cMpsq dgpsq exists

for all t P rω, ω ` ηs. In a similar way, we can prove that
şω`η

τ0
apt, sqMpsq dgpsq exists for

all t P rω, ω ` ηs. Thus, h is well–defined and is a nondecreasing function. Also, using

(3.2.7) and (3.2.8), we have

}pTxqpτ2q ´ pTxqpτ1q} ď hpτ2q ´ hpτ1q, (3.2.9)
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for all ω ď τ1 ď τ2 ď ω ` η. Now, by (3.2.9) and by the fact that h is a nondecreasing

function, both the lateral limits

lim
sÑτ`

pTxqpsq for τ P rω, ω ` ηq and lim
sÑτ´

pTxqpsq for τ P pω, ω ` ηs

exist. This implies that the restriction of Tx to rω, ω ` ηs is regulated, proving Step 2.

Also, notice that for θ P r´r, 0s, we have θ ` ω P rω ´ r, ωs and, therefore,

pTxqωpθq “ pTxqpθ ` ωq “ φmaxω pθ ` ω ´ ωq “ φmaxω pθq,

which implies pTxqω “ φmaxω . Hence Tx P H, proving the Assertion 3.

Assertion 4. A :“ T pHq “ tTx : x P Hu is relatively compact.

We will show that A is uniformly bounded and equiregulated. Indeed, let y P A be

arbitrary, then there exists x P H such that y “ Tx. Let t P rω ´ r, ωs, then

}pTxqptq} “ }φmaxω pt ´ ωq} ď sup
θPr´r,0s

}φmaxω pθq} “ }φmaxω }8. (3.2.10)

On the other hand, for t P rω, ω` ηs, by condition (A4), Theorem 1.2.4 and Corollary

1.2.5, we obtain

}pTxqptq} ď }γptq} `

›

›

›

›

ż t

ω

apt, sqfpxs, sq dgpsq

›

›

›

›

“

›

›

›

›

ϕp0q `

ż ω

τ0

apt, sqfpφmaxs , sqdgpsq

›

›

›

›

`

›

›

›

›

ż t

ω

apt, sqfpxs, sq dgpsq

›

›

›

›

ď }ϕp0q} `

ż ω

τ0

|apt, sq|Mpsqdgpsq `

ż t

ω

|apt, sq|Mpsq dgpsq

ď }ϕ}8 `

ż ω

τ0

cMpsq dgpsq `

ż t

ω

cMpsq dgpsq

“ }ϕ}8 `

ż t

τ0

cMpsq dgpsq

ď }ϕ}8 `

ż ω`η

τ0

cMpsq dgpsq. (3.2.11)

Combining (3.2.10) and (3.2.11), we conclude that

}y}8 “ }Tx}8 ď K,

where K :“ max
!

}φmaxω }8, }ϕ}8 `
şω`η

τ0
cMpsq dgpsq

)

does not depend on y P A. Thus,

the set A is uniformly bounded.
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Next, we show that A is equiregulated. In fact, let an arbitrary ε ą 0 be given. Since

the function rω ´ r, ωs Q t ÞÑ φmaxω pt ´ ωq belongs to the set Gprω ´ r, ωs,Rnq, we can

use Höning’s Theorem to guarantee the existence of a division of the rω ´ r, ωs given by

ω ´ r “ α0 ă α1 ă . . . ă αk “ ω such that

}yptq ´ ypsq} “ }pTxqptq ´ pTxqpsq} “ }φmaxω pt ´ ωq ´ φmaxω ps ´ ωq} ă ε,

for all t, s P pαi´1, αiq, i P t1, . . . , ku. On the other hand, by conditions (B2), (B3), (B4),

Theorem 1.2.4 and Corollary 1.2.5, we can prove that for ω ď τ1 ď τ2 ď ω ` η,

}ypτ2q ´ ypτ1q} “ }pTxqpτ2q ´ pTxqpτ1q}

“

›

›

›
γpτ2q ´ γpτ1q `

ż τ2

ω

apτ2, sqfpxs, sq dgpsq ´

ż τ1

ω

apτ1, sqfpxs, sq dgpsq
›

›

›

“

›

›

›

›

ż ω

τ0

papτ2, sq ´ apτ1, sqqfpφmaxs , sqdgpsq

›

›

›

›

`

›

›

›

›

ż τ1

ω

papτ2, sq ´ apτ1, sqqfpxs, sqdgpsq

›

›

›

›

`

›

›

›

›

ż τ2

τ1

apτ2, sqfpxs, sqdgpsq

›

›

›

›

ď

ż τ1

τ0

papτ2, sq ´ apτ1, sqqMpsqdgpsq `

ż τ2

τ1

cMpsqdgpsq

ď

ż τ2

τ1

cMpsq dgpsq `

ż ω`η

τ0

papτ2, sq ´ apτ1, sqqMpsq dgpsq.

This gives

}ypτ2q ´ ypτ1q} ď |hpτ2q ´ hpτ1q|, (3.2.12)

for all y P A and all τ2, τ1 P rω, ω ` ηs, where h : rω, ω ` ηs Ñ R is given by

hptq :“
ż t

τ0

cMpsq dgpsq `

ż ω`η

τ0

apt, sqMpsq dgpsq, (3.2.13)

for every t P rω, ω ` ηs, which is a nondecreasing function on rω, ω ` ηs (and, therefore,

h P Gprω, ω ` ηs,Rq), then again by Höning’s Theorem, there is a division of rω, ω ` ηs

given by ω “ ξ0 ă ξ1 ă . . . ă ξm “ ω` η such that |hptq ´hpsq| ă ε, for all t, s P pξi´1, ξiq

and i P t1, . . . ,mu. Using this fact together with (3.2.12), we have }yptq ´ ypsq} ă ε, for

all y P A, t, s P pξi´1, ξiq and i P t1, . . . ,mu. Now, define

γi “

$

’

&

’

%

αi, i P t0, . . . , ku

ξi´k, i P tk ` 1, k ` 2, . . . , k ` mu.
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Obviously, ω ´ r “ γ0 ă γ1 ă . . . ă γk`m “ ω ` η is a division of rω ´ r, ω ` ηs and

}yptq ´ ypsq} ă ε,

for arbitrary y P A, t, s P pγi´1, γiq and i P t1, . . . , k ` mu. Hence by Lemma 1.1.6, A is

equiregulated. Therefore, A is relatively compact, proving the assertion.

Assertion 5. T is continuous.

Let x, z P H be given. Then, for t P rω ´ r, ωs, we have

}pTxqptq ´ pTzqptq} “ }φmaxω pt ´ ωq ´ φmaxω pt ´ ωq} “ 0.

On the other hand, for t P rω, ω ` ηs, by condition (B5), Theorem 1.2.4 and Corollary

1.2.5, we get

}pTxqptq ´ pTzqptq} “

›

›

›

ż t

ω

apt, sqfpxs, sq dgpsq ´

ż t

ω

apt, sqfpzs, sq dgpsq
›

›

›

“

›

›

›

ż t

ω

apt, sqpfpxs, sq ´ fpzs, sqq dgpsq
›

›

›

ď

ż t

ω

|apt, sq|Lpsq}xs ´ zs}8 dgpsq

ď

ż t

ω

}xs ´ zs}8cLpsq dgpsq

ď

ż ω`η

ω

}xs ´ zs}8cLpsq dgpsq

ď }x ´ z}
8

ˆ
ż ω`η

ω

cLpsq dgpsq

˙

,

since }xs ´ zs}8 ď }x ´ z}8 for ω ď s ď ω ` η. These arguments imply that T is

continuous.

Since all the hypotheses of Schauder Fixed–Point Theorem (Theorem 3.1.8) are satis-

fied, we have that T has a fixed point in H. By the definition of the operator T given by

(3.2.6), we conclude that the equation (3.2.5) possesses a solution y : rω´ r, ω` ηs Ñ Rn.

Thus, the assertion is true.

Now, define u : rτ0 ´ r, ω ` ηs Ñ Rn by

uptq “

$

’

&

’

%

φmaxptq, t P rτ0 ´ r, ωs

yptq, t P pω, ω ` ηs.
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Note that, for θ P r´r, 0s, we have θ ` τ0 P rτ0 ´ r, τ0s Ă rτ0 ´ r, ωs and, therefore,

uτ0pθq “ upθ ` τ0q “ φmaxpθ ` τ0q “ φmaxτ0 pθq “ ϕpθq,

that is, uτ0 “ ϕ. If t P pω, ω ` ηs, we have

uptq “ yptq

“ γptq `

ż t

ω

apt, sqfpys, sqdgpsq

“ ϕp0q `

ż ω

τ0

apt, sqfpφmaxs , sqdgpsq `

ż t

ω

apt, sqfpys, sqdgpsq. (3.2.14)

Note that for θ P r´r, 0s and s P rτ0, ωs, we get θ ` s P rτ0 ´ r, ωs and, therefore,

φmaxs pθq “ φmaxpθ ` sq “ upθ ` sq “ uspθq,

that is, φmaxs “ us for all s P rτ0, ωs. From this, we get
ż ω

τ0

apt, sqfpφmaxs , sqdgpsq “

ż ω

τ0

apt, sqfpus, sqdgpsq. (3.2.15)

On the other hand, since y is a solution of the IVP (3.2.5), we have yω “ φmaxω , that is,

ypθ ` ωq “ φmaxpθ ` ωq for all θ P r´r, 0s, which implies

ypξq “ φmaxpξq for all ξ P rω ´ r, ωs. (3.2.16)

Now, for θ P r´r, 0s, s P rω, ts and t P pω, ω ` ηs, we get ω ´ r ď θ ` s ď t ď ω ` η. In

particular, θ ` s P rω ´ r, ω ` ηs “ rω ´ r, ωs Y pω, ω ` ηs. Now, consider two cases:

(i) If θ`s P rω´r, ωs, then by (3.2.16), ypθ`sq “ φmaxpθ`sq “ upθ`sq and, therefore,

ys “ us.

(ii) If θ ` s P pω, ω ` ηs, then according to the definition of u, ypθ ` sq “ upθ ` sq and,

therefore, ys “ us.

Hence, ys “ us for all s P rω, ts and all t P pω, ω ` ηs. From this, we get
ż t

ω

apt, sqfpys, sqdgpsq “

ż t

ω

apt, sqfpus, sqdgpsq. (3.2.17)

Thus, by (3.2.14), (3.2.15) and (3.2.17), we have

uptq “ ϕp0q `

ż ω

τ0

apt, sqfpus, sqdgpsq `

ż t

ω

apt, sqfpus, sqdgpsq (3.2.18)
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“ ϕp0q `

ż t

τ0

apt, sqfpus, sqdgpsq (3.2.19)

for all t P pω, ω ` ηs. This implies that u is a solution of (3.2.1). It is easy to see that u

is a proper prolongation of φmax, which is assumed to be maximal. Therefore, we have a

contradiction. Hence ω R I and I “ rτ0 ´ r, ωq, getting the desired result.

The following result will be crucial to prove that the maximal solution is defined on

rτ0 ´ r,`8q.

Lemma 3.2.5. Assume f : Gpr´r, 0s,Rnq ˆ rt0,`8q Ñ Rn satisfies the conditions (B3)

and (B4), a : rt0,`8q2 Ñ R satisfies condition (B2) and g : rt0,`8q Ñ R satisfies

condition (B1). If a is left–continuous with respect to the first variable, then for each

x P Gprτ0 ´ r, βs,Rnq, t0 ď τ0 ă β, the function

rτ0, βs Q t ÞÑ

ż t

τ0

apt, sqfpxs, sqdgpsq

is left–continuous on pτ0, βs, that is,

lim
tÑη´

ż t

τ0

apt, sqfpxs, sq dgpsq “

ż η

τ0

apη, sqfpxs, sq dgpsq, η P pτ0, βs.

Proof. Suppose that f, g and a satisfy the assumptions above. Using the same arguments

as Step 2 of the proof of Lemma 3.1.7, we can prove that
›

›

›

›

ż t

τ0

apt, sqfpxs, sq dgpsq ´

ż τ

τ0

apτ, sqfpxs, sq dgpsq

›

›

›

›

ď |hptq ´ hpτq| , (3.2.20)

for all t, τ P rτ0, βs, where h is given by

hptq :“
ż t

τ0

cMpsq dgpsq `

ż β

τ0

apt, sqMpsq dgpsq, t P rτ0, βs.

Here c :“ sup
pt,sqPrτ0,βs2

|apt, sq|. Notice that every point in pτ0 ´ r, βs at which the function h

is left–continuous is a left–continuity point of the function t ÞÑ
şt

τ0
apt, sqfpxs, sq dgpsq.

In order to prove that h is left–continuous on pτ0 ´ r, βs, we will prove two statements.

Statement 1. h1ptq :“
şt

τ0
cMpsq dgpsq, t P rt0, t0 ` σs, is left–continuous on pτ0 ´ r, βs.

Indeed, since g is left–continuous pτ0 ´ r, βs, by Lemma 1.2.6, h1ptq :“
şt

τ0
cMpsq dgpsq is

left–continuous pτ0 ´ r, βs, proving statement 1.

Statement 2. h2ptq :“
şβ

τ0
apt, sqMpsq dgpsq, t P rτ0, βs, is left–continuous on pτ0 ´ r, βs.
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Let η P pτ0 ´ r, βs and pτnqnPN Ă pτ0, ηs such that τn nÑ8
Ñ η. Define the sequence of

functions

φnpsq :“ apτn, sqMpsq, s P rτ0, βs, (3.2.21)

and φ : rτ0, βs Ñ R by

φpsq :“ apη, sqMpsq, s P rτ0, βs.

Since ap¨, sq is left–continuous at η and pτnqnPN Ă pτ0, ηs is such that τn nÑ8
Ñ η, we have

lim
nÑ8

apτn, sq “ apη, sq and, therefore,

lim
nÑ8

φnpsq “ lim
nÑ8

apτn, sqMpsq “ apη, sqMpsq “ φpsq,

that is,

lim
nÑ8

φnpsq “ φpsq, s P rτ0, βs.

According to condition (B3),
şβ

τ0
apτn, sqMpsq dgpsq exists for all n P N. Using this fact

together with the (3.2.21), we get
ż β

τ0

φnpsq dgpsq exists for all n P N.

On the other hand, for all t P rτ0, βs, we have

|φnptq| “ |apτn, tqMptq| ď c |Mptq| “ cMptq, for all n P N.

This implies that κptq ď φnptq ď ωptq, t P rτ0, βs, where ωptq :“ cMptq and κptq “ ´cMptq.

Also, observe that the integrals
şβ

τ0
κpsq dgpsq and

şβ

τ0
ωpsq dgpsq exist, since M is a locally

Henstock–Kurzweil–Stieltjes integrable function. Since all the hypotheses of Theorem

1.2.11 are satisfied, we obtain

lim
nÑ8

ż β

τ0

φnpsq dgpsq “

ż β

t0

φpsq dgpsq,

that is,

lim
nÑ8

h2pτnq “ h2pηq.

Hence, the function h2 is left–continuous at η, for each η P pτ0, βs, obtaining Statement 2.

Now, by Statements 1, 2 and the fact that hptq “ h1ptq ` h2ptq, it follow that h is

left–continuous on pτ0, βs. Using this fact together with (3.2.20), we have that the function

rτ0 ´ r, βs Q t ÞÑ
şt

τ0
apt, sqfpxs, sqdgpsq is left–continuous on pτ0 ´ r, βs.
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The next result provides conditions in order to ensure that the maximal solution is

defined on rτ0 ´ r,`8q.

Theorem 3.2.6. Assume f : Gpr´r, 0s,Rnqˆrt0,`8q Ñ Rn satisfies the conditions (B3),

(B4) and (B5), a : rt0,`8q2 Ñ R satisfies condition (B2) and g : rt0,`8q Ñ R satisfies

condition (B1). Suppose τ0 ě t0, ϕ P Gpr´r, 0s,Rnq and x : rτ0´r, ωq Ñ Rn is the maximal

solution of the equation (3.2.1). If a is left–continuous with respect to the first variable,

then ω “ `8.

Proof. Suppose that the conclusion of the theorem is not true, i.e., ω ă `8.

Assertion 1. The limit lim
tÑω´

xptq exists.

By conditions (B2), (B3), (B4), Theorem 1.2.4, Corollary 1.2.5 and using the same argu-

ments as in Step 2 of the proof of Lemma 3.1.7, we can prove that, for any τ0 ď u ď t ă ω,

we have

}xptq ´ xpuq} “

›

›

›

ż t

τ0

apt, sqfpxs, sq dgpsq ´

ż u

τ0

apu, sqfpxs, sq dgpsq
›

›

›

ď

›

›

›

ż t

u

apt, sqfpxs, sq dgpsq
›

›

›
`

›

›

›

ż u

τ0

´

apt, sq ´ apu, sq
¯

fpxs, sq dgpsq
›

›

›

ď

ż t

u

cMpsq dgpsq `

ż u

τ0

papt, sq ´ apu, sqqMpsq dgpsq

ď

ż t

u

cMpsq dgpsq `

ż ω

τ0

papt, sq ´ apu, sqqMpsq dgpsq.

It implies that

}xptq ´ xpuq} ď |hptq ´ hpuq|, for all t, u P rτ0, ωq, (3.2.22)

where h : rτ0,`8q Ñ R is given by

hpξq :“
ż ξ

τ0

cMpsq dgpsq `

ż ω

τ0

apξ, sqMpsq dgpsq, (3.2.23)

for all ξ P rτ0,`8q. Taking into account that M is a locally Henstock–Kurzweil–Stieltjes

integrable function and using the same arguments as in the Remark 3.1.3, we infer that

the integrals on the right–hand side of (3.2.23) are well–defined. Now, since ω P pτ0,`8q

and h is a nondecreasing function (which follows from definition), lim
tÑω´

hptq exists. Thus,

given ε ą 0, by the Cauchy Condition, there exists δ ą 0 (we can take τ0 ă ω ´ δ) such

that

|hptq ´ hpsq| ă ε, for all t, s P pω ´ δ, ωq. (3.2.24)
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Then, by (3.2.22) and (3.2.24), the following inequality holds

}xptq ´ xpuq} ď |hptq ´ hpuq| ă ε,

for every t, u P pω ´ δ, ωq. Then, again by the Cauchy Condition, lim
tÑω´

xptq exists. Define

y : rτ0 ´ r, ωs Ñ Rn by

ypτq “

$

’

&

’

%

xpτq, τ P rτ0 ´ r, ωq

lim
tÑω´

xptq, τ “ ω.
(3.2.25)

Obviously, y P Gprτ0 ´ r, ωs,Rnq. By Lemma 3.2.5, we have

lim
tÑω´

ż t

τ0

apt, sqfpys, sq dgpsq “

ż ω

τ0

apω, sqfpys, sq dgpsq. (3.2.26)

Therefore, we get

xptq “ ϕp0q `

ż t

τ0

apt, sqfpxs, sqdgpsq

“ ϕp0q `

ż t

τ0

apt, sqfpys, sqdgpsq, t P rτ0, ωq,

then

lim
tÑω´

xptq “ ϕp0q ` lim
tÑω´

ż t

τ0

apt, sqfpys, sqdgpsq.

Hence, by (3.2.25) and (3.2.26), we obtain

ypωq “ ϕp0q `

ż ω

τ0

apω, sqfpys, sqdgpsq.

Thus y is a solution of the equation (3.2.1) and also, it is a proper prolongation of x, which

is assumed to be maximal. Therefore, we have a contradiction. Hence ω “ `8.

3.3 Existence and uniqueness of solutions of impul-

sive equations

In this section, we use the previous results to ensure the existence and uniqueness of

solutions for impulsive functional Volterra–Stieltjes integral equations, using the corre-

spondence presented in Chapter 2.
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Theorem 3.3.1. Let m P N and t0 ď t1 ă ¨ ¨ ¨ ă tm ă d. Assume that g : rt0, dq Ñ R is

a regulated left–continuous function which is continuous at t1, . . . , tm, a : rt0, dq2 Ñ R is

nondecreasing with respect to the first variable, regulated with respect to the second vari-

able, locally bounded on rt0, dq2 and, continuous with respect to first variable at t1, . . . , tm.

Also, suppose that I1, . . . , Im : Rn Ñ Rn and f : Gpr´r, 0s,Rnq ˆ rt0, dq Ñ Rn satisfy the

following conditions:

1. The integral
şu2
u1
apt, sqfpxs, sqdgpsq exists in the sense of Henstock–Kurzweil–Stieltjes,

for each compact interval rτ0, τ0 `σs Ă rt0, dq, all x P Gprτ0 ´r, τ0 `σs,Rnq, t P rt0, dq

and t0 ď u1 ď u2 ď τ0 ` σ.

2. There exists a locally Henstock–Kurzweil–Stieltjes integrable function M1 : rt0, dq Ñ

R` with respect to g such that for each compact interval rτ0, τ0 ` σs Ă rt0, dq, we

have
›

›

›

›

›

›

u2
ż

u1

bpu2, sqfpxs, sqdgpsq

›

›

›

›

›

›

ď

u2
ż

u1

M1psq |bpu2, sq| dgpsq,

for all x P Gprτ0 ´ r, τ0 ` σs,Rnq, b P G2prτ0, τ0 ` σs2,Rq and t0 ď u1 ď u2 ď τ0 ` σ,

and there exists a constant M2 ą 0 such that

}Ikpxq} ď M2

for every k P t1, . . . ,mu and x P Rn.

3. There exists a regulated function L1 : rt0, dq Ñ R` such that
›

›

›

›

›

›

u2
ż

u1

apu2, sqrfpxs, sq ´ fpzs, sqsdgpsq

›

›

›

›

›

›

ď

u2
ż

u1

L1psq |apu2, sq| }xs ´ zs}8dgpsq,

for all x, z P Gprτ0 ´ r, τ0 ` σs,Rnq and t0 ď u1 ď u2 ď τ0 ` σ and there exists a

constant L2 ą 0 such that

}Ikpxq ´ Ikpyq} ď L2 |x ´ y|

for every k P t1, . . . ,mu and x, y P Rn.
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Then for all ϕ P Gpr´r, 0s,Rnq there exist a σ ą 0 and a unique solution x : rt0´r, t0`σs Ñ

Rn of the initial value problem:
$

’

’

’

&

’

’

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqfpxs, sq dgpsq `
ÿ

kPt1,...,mu,
tkăt

apt, tkqIkpxptkqq

xt0 “ ϕ.

(3.3.1)

Proof. Let ϕ P Gpr´r, 0s,Rnq be given. Define f̃ : Gpr´r, 0s,Rnq ˆ rt0, dq Ñ Rn by

f̃py, τq “

$

’

&

’

%

fpy, τq, τ P rt0, dqztt1, . . . , tmu,

Ikpyp0qq, τ “ tk, k P t1, . . . ,mu,

and g̃ : rt0, dq Ñ R by

g̃pτq “

$

’

’

’

’

’

&

’

’

’

’

’

%

gpτq, τ P rt0, t1s,

gpτq ` k, τ P ptk, tk`1s, k P t1, . . . ,m ´ 1u,

gpτq ` m, τ P ptm, dq.

According to Lemma 2.1.1, we see that the functions f̃ , g̃, and a satisfy all the hypothe-

ses of Theorem 3.1.9. Hence, there exist σ ą 0 and a unique solution x : rt0´r, t0`σs Ñ Rn

of the functional Volterra–Stieltjes integral equation
$

’

&

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqf̃pxs, sqdg̃psq

xt0 “ ϕ.

Now, by Theorem 2.1.2, the function x is also a unique solution of the impulsive functional

Volterra–Stieltjes integral equation
$

’

’

’

&

’

’

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqfpxs, sq dgpsq `
ÿ

kPt1,...,mu,
tkăt

apt, tkqIkpxptkqq

xt0 “ ϕ

proving the desired result.

The next result gives us sufficient conditions to ensure the existence and uniqueness

of maximal solution of impulsive functional Volterra–Stieltjes integral equation.
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Theorem 3.3.2. Let ttku8
k“1 be the moments of impulses in rt0,8q, such that tk ă tk`1 for

all k P N and limkÑ8 tk “ 8. Assume that g : rt0,8q Ñ R is a regulated left–continuous

function which is continuous at ttku8
k“1, a : rt0,8q2 Ñ R is nondecreasing with respect to

the first variable, regulated with respect to the second variable, locally bounded on rt0,8q2

and, continuous with respect to first variable at ttku8
k“1. Also, suppose that Ik : Rn Ñ Rn,

k P N, and f : Gpr´r, 0s,Rnq ˆ rt0,8q Ñ Rn satisfy the following conditions:

1. The integral
şu2
u1
apt, sqfpxs, sqdgpsq exists in the sense of Henstock–Kurzweil–Stieltjes

for each compact interval rτ0, τ0 ` σs Ă rt0,8q, all x P Gprτ0 ´ r, τ0 ` σs,Rnq,

t P rt0,8q and t0 ď u1 ď u2 ď τ0 ` σ.

2. There exists a locally Henstock–Kurzweil–Stieltjes integrable function M1 : rt0,8q Ñ

R` with respect to g such that for each compact interval rτ0, τ0 ` σs Ă rt0,8q, we

have
›

›

›

›

›

›

u2
ż

u1

bpu2, sqfpxs, sqdgpsq

›

›

›

›

›

›

ď

u2
ż

u1

M1psq |bpu2, sq| dgpsq,

for all x P Gprτ0 ´ r, τ0 ` σs,Rnq, b P G2prτ0, τ0 ` σs2,Rq and t0 ď u1 ď u2 ď τ0 ` σ,

and there exists a constant M2 ą 0 such that

}Ikpxq} ď M2

for every k P N and x P Rn.

3. There exists a regulated function L1 : rt0,8q Ñ R` such that
›

›

›

›

›

›

u2
ż

u1

apu2, sqrfpxs, sq ´ fpzs, sqsdgpsq

›

›

›

›

›

›

ď

u2
ż

u1

L1psq |apu2, sq| }xs ´ zs}8dgpsq,

for all x, z P Gprτ0 ´ r, τ0 ` σs,Rnq and t0 ď u1 ď u2 ď τ0 ` σ and there exists a

constant L2 ą 0 such that

}Ikpxq ´ Ikpyq} ď L2 }x ´ y}

for every k P N and x, y P Rn.
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Then for all ϕ P Gpr´r, 0s,Rnq there exists a unique maximal solution x : I Ñ Rn of the

initial value problem:
$

’

’

’

&

’

’

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqfpxs, sq dgpsq `
ÿ

kPt1,...,mu,
tkăt

apt, tkqIkpxptkqq, t ě t0

xt0 “ ϕ,

(3.3.2)

where I “ rt0 ´ r, ωq, ω ď 8.

Proof. Let ϕ P Gpr´r, 0s,Rnq be given. Define f̃ : Gpr´r, 0s,Rnq ˆ rt0,8q Ñ Rn by

f̃py, τq “

$

’

&

’

%

fpy, τq, τ P rt0,8qzttku8
k“1,

Ikpyp0qq, τ “ tk, k P N,

and g̃ : rt0,8q Ñ R by

g̃pτq “

$

’

&

’

%

gpτq, τ P rt0, t1s,

gpτq ` k, τ P ptk, tk`1s, k P N.

According to Lemma 2.1.1, we see that the functions f̃ , g̃, and a satisfy all the hy-

potheses of Theorem 3.2.4. Therefore, there exists a unique maximal solution x : I Ñ Rn,

I “ rt0 ´ r, ωq, of the functional Volterra–Stieltjes integral equation
$

’

&

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqf̃pxs, sqdg̃psq

xt0 “ ϕ.

(3.3.3)

Now, by Theorem 2.1.2, the function x is also a unique solution of the impulsive functional

Volterra–Stieltjes integral equation
$

’

’

&

’

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqfpxs, sq dgpsq `
ÿ

kPN;tkăt

apt, tkqIkpxptkqq

xt0 “ ϕ.

(3.3.4)

It is clear that x is a maximal solution of (3.3.4), otherwise there would be y : J Ñ Rn,

I Ĺ J , such that y is a solution of (3.3.4). However, Theorem 2.1.2 would imply that y is

a solution of (3.3.3), contradicting the maximality of x.
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3.4 Existence and uniqueness of solutions ∆-integral

equations on time scales

In this section, we use the previous results to ensure the existence and uniqueness of

solutions for functional Volterra ∆-integral equations on time scales. We begin by recalling

the assumed conditions on Section 2.2.

(C1) The function a : rt0, dq2
T Ñ R is nondecreasing with respect to the first variable,

regulated with respect to the second variable and rd–continuous with respect to the

first variable.

(C2) The Henstock–Kurzweil ∆–integral
ż s2

s1

apτ, sqfpxs, sq∆s

exists for each time scale interval rs0, s0 ` δsT Ă rt0, dqT, x P Gprs0 ´ r, s0 ` δs,Rnq,

τ P rs0, s0 ` δsT and s1, s2 P rs0, s0 ` δsT, s1 ď s2.

(C3) There exists a locally Henstock–Kurzweil ∆–integrable function M1 : rt0, dqT Ñ R`

such that for each time scale interval rs0, s0 ` δsT Ă rt0, dqT, we have
›

›

›

›

›

›

s2
ż

s1

pc1aps2, sq ` c2aps1, sqqfpxs, sq∆s

›

›

›

›

›

›

ď

s2
ż

s1

M1psq |c1aps2, sq ` c2aps1, sq| ∆s,

for all x P Gprs0 ´ r, s0 ` δs,Rnq, c1, c2 P R and s1, s2 P rs0, s0 ` δsT, s1 ď s2.

(C4) There exists a locally regulated function L1 : rt0, dqT Ñ R` such that for each time

scale interval rs0, s0 ` δsT Ă rt0, dqT, we have
›

›

›

›

›

›

s2
ż

s1

aps2, sqrfpxs, sq ´ fpzs, sqs∆s

›

›

›

›

›

›

ď

s2
ż

s1

L1psq |aps2, sq| }xs ´ zs}8
∆s,

for all x, z P Gprs0 ´ r, s0 ` δs,Rnq and s1, s2 P rs0, s0 ` δsT, s1 ď s2.

The next result gives sufficient conditions to ensure the existence and uniqueness of

solutions of functional Volterra ∆-integral equations on time scales.
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Theorem 3.4.1. Let rt0 ´r, t0sT be a time scale interval and let d P T be a left dense point

such that d ą t0. Assume a : rt0, dq2
T Ñ R satisfies condition (C1), and f : Gpr´r, 0s,Rnqˆ

rt0, dqT Ñ Rn satisfies conditions (C2)–(C4). Then, for all ϕ P Gprt0 ´ r, t0sT ,Rnq there

exists η ą 0 such that η ě µpt0q and t0 ` η P T, and a function x : rt0 ´ r, t0 ` ηsT Ñ Rn

which is a unique solution of the functional Volterra ∆–integral equation on time scales

given by
$

’

&

’

%

xptq “ xpt0q `

ż t

t0

apt, sqfpx˚
s , sq∆s, t P rt0, t0 ` ηsT,

xptq “ ϕptq, t P rt0 ´ r, t0sT.

(3.4.1)

Proof. Define the functions gpsq “ s˚ for s P rt0, dq, f˚pψ, sq “ fpψ, s˚q for s P rt0, dq

and ψ P Gpr´r, 0s,Rnq and a˚˚pt, sq “ apt˚, s˚q for t, s P rt0, dq. Using the hypotheses

and Lemma 2.2.2, we get that f˚, a˚˚, ϕ˚
t0 and g satisfy all conditions of Theorem 3.9.

Hence, there exists β ą 0 and a unique solution y : rt0 ´ r, t0 ` βs Ñ Rn of the functional

Volterra–Stieltjes integral equation
$

’

&

’

%

yptq “ ypt0q `

ż t

t0

a˚˚
pt, sqf˚

pys, sq dgpsq

yt0 “ ϕ˚
t0 .

(3.4.2)

If t0 is right–dense, then there exists τ P T such that t0 ă τ ă t0 ` β. Define η :“ τ ´ t0.

Notice that η ą 0 and t0 ` η “ τ P T. Since rt0 ´ r, t0 ` ηs Ă rt0 ´ r, t0 ` βs, y|rt0´r,t0`ηs is

also a solution of (3.4.2) (on rt0 ´ r, t0 ` ηs). Then, by Theorem 2.2.1, y|rt0´r,t0`ηs “ x˚,

where x : rt0 ´ r, t0 ` ηsT Ñ Rn is a solution of the equation (3.4.1). Again by Theorem

2.2.1, we conclude that x is the unique solution of the functional Volterra ∆–integral

equation on time scales (3.4.1).

If t0 is right–scattered, then without loss of generality, we can assume that η ě µpt0q;

otherwise, let ypσpt0qq “ ϕpt0q ` fpϕ˚
t0 , t0qµpt0q to obtain a solution defined on rt0 ´ r, t0 `

µpt0qsT. Then, as the same way as before, by Theorem 2.2.1, y|rt0´r,t0`ηs “ x˚, where

x : rt0 ´ r, t0 ` ηsT Ñ Rn is a solution of Equation (3.4.1). Again by Theorem 2.2.1, we

conclude that x is the unique solution of the functional Volterra ∆–integral equation on

time scales (3.4.1).

The next result ensures that there exists a unique maximal solution of the functional

Volterra ∆-integral equation on time scales.
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Theorem 3.4.2. Let T be a time scale such that supT “ 8 and t0 ´ r, t0 P T. Let

rt0 ´ r, t0sT be a time scale interval. Assume a : rt0,8q2
T Ñ R satisfies condition (C1),

where d “ 8, and f : Gpr´r, 0s,Rnqˆrt0,8qT Ñ Rn satisfies conditions (C2)–(C4), where

d “ 8. Then, for all ϕ P Gprt0 ´ r, t0sT ,Rnq there exists a function x : rt0 ´ r, ωqT Ñ Rn,

ω ď 8, which is a unique maximal solution of the functional Volterra ∆–integral equation

on time scales given by
$

’

&

’

%

xptq “ xpt0q `

ż t

t0

apt, sqfpx˚
s , sq∆s, t P rt0, t0 ` ω˚

qT,

xptq “ ϕptq, t P rt0 ´ r, t0sT.

(3.4.3)

Also, if ω ă 8, then ω P T and ω is left-dense.

Proof. Define the functions gpsq “ s˚ for s P rt0,8q, f˚pψ, sq “ fpψ, s˚q for s P rt0,8q

and ψ P Gpr´r, 0s,Rnq and a˚˚pt, sq “ apt˚, s˚q for t, s P rt0,8q. Using the hypotheses

and Lemma 2.2.2, we get that f˚, a˚˚, ϕ˚
t0 and g satisfy all conditions of Theorem 3.2.4.

Hence, there exists ω ď 8 and a unique solution y : rt0 ´ r, ωq Ñ Rn of the functional

Volterra–Stieltjes integral equation
$

’

&

’

%

yptq “ ypt0q `

ż t

t0

a˚˚
pt, sqf˚

pys, sq dgpsq

yt0 “ ϕ˚
t0 .

(3.4.4)

Let us consider two cases:

Case 1: ω “ 8

By Theorem 2.2.1, y : rt0 ´ r, ωq Ñ Rn must have the form y ´ x˚, where x : rt0 ´

r,8qT Ñ Rn is a solution of the functional Volterra ∆´integral equation on time scales

(3.4.3). Clearly, x is a maximal solution of the functional Volterra ∆´integral equation

on time scales (3.4.3).

Case 2: ω ă 8

Assertion 1: ω P T

Suppose that ω R T and define B :“ ts P T : s ă ωu. Clearly, B is nonempty, since

t0 P B. Since ω R T, B “ T X p´8, ωs and thus, this implies that B is a closed subset of

R.

Denote β :“ supB. Since B is closed, β P B. By the definition of B, β ď ω, but since

ω R T, we have that β ă ω.
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By the definition of g, it follows that g is constant on pβ, ωs and, therefore,
ż t

s

apt, sqfpys, sqdgpsq “ 0

for all t, s P pβ, ωs.

Let σ P pβ, ωq be fixed and define a function u : rt0 ´ r, ωq Ñ Rn by

uptq “

$

’

’

’

’

’

&

’

’

’

’

’

%

ϕptq, t P rt0 ´ r, t0s

yptq, t P rt0, ωq

ypσq, t “ ω.

(3.4.5)

Note that u is well-defined and u|rt0,ωq “ y.

Assertion 1.1: The function u defined by (3.4.5) is a solution of the functional Volterra–

Stieltjes integral equation (3.4.4) on rt0 ´ r, ωs.

Clearly, u satisfies the initial condition of (3.4.4) by definition.

Now, let s1, s2 P rt0, ωs be such that s1 P rt0, ωq and s2 “ ω. Then,

ups2q ´ ups1q “ ypσq ´ yps1q

“

ż σ

s1

a˚˚
pt, sqf˚

pys, sqdgpsq

“

ż σ

s1

a˚˚
pt, sqf˚

pys, sqdgpsq `

ż ω

σ

a˚˚
pt, sqf˚

pys, sqdgpsq

“

ż ω

s1

a˚˚
pt, sqf˚

pys, sqdgpsq

“

ż s2

s1

a˚˚
pt, sqf˚

pus, sqdgpsq,

(3.4.6)

which implies that:

ups2q ´ ups1q “

ż s2

s1

a˚˚
pt, sqf˚

pus, sqdgpsq

for all s1, s2 P rt0, ωs such that s1 P rt0, ωq and s2 “ ω.

It remains to check only the case where s1, s2 P rt0, ωq. This follows immediately from

the definition of u and from the fact the y is a solution of (3.4.4).

Then, u is a solution of (3.4.4) on rt0 ´ r, ωs. Therefore, it implies that u is a proper

prolongation of y : rt0 ´ r, ωq Ñ Rn to the right, which contradicts the fact that y is the

maximal solution of the functional Volterra–Stieltjes integral equation (3.4.4).
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From this, we conclude that ω P T and we prove the Assertion 1.

Assertion 2: ω is left-dense

Suppose the contrary, that is, ρpωq “ supts P T : s ă ωu ă ω.

By the definition of g, we get that g is constant on pρpωq, ωs. Hence, arguing the same

way as in the proof of Assertion 1, taking β “ ρqpωq, we can prove that there exists a

proper prolongation of y : rt0 ´ r, ωq Ñ Rn to the right, which contradicts the fact that y

is the maximal solution of (3.4.4). Thus, we have that ω is left-dense.

Now, note that by Theorem 2.2.1, y : rt0 ´ r, ωq Ñ Rn must have the form y “ x˚

where x : rt0 ´ r, ωqT Ñ Rn is a solution of the functional Volterra ∆-integral equation on

time scales (3.4.3).

Assertion 3: x : rt0 ´ r, ωqT Ñ Rn is a maximal solution of (3.4.3).

Suppose the contrary, that is, let z : JT Ñ Rn be a proper prolongation of x : rt0 ´

r, ωqT Ñ Rn to the right. Then, without loss of generality, consider JT “ rt0 ´ r, ωsT.

Since z : rt0 ´ r, ωsT Ñ Rn is a solution of (3.4.3), Theorem 2.2.1 implies that z˚ : rt0 ´

r, ωs Ñ Rn is a solution of functional Volterra–Stieltjes integral equation (3.4.4). On the

other hand, notice that z˚|rt0´r,ωq “ y. It implies that z˚ : rt0 ´ r, ωs Ñ Rn is a proper

prolongation of y : rt0 ´ r, ωq Ñ Rn, which contradicts the fact that y is the maximal

solution of the functional Volterra–Stieltjes integral equation (3.4.4). Hence, it follows

that x : rt0 ´ r, ωqT Ñ Rn is a maximal solution of functional Volterra ∆-integral on time

scales (3.4.3), proving the Assertion 3.

Now, it remains to prove the uniqueness of the maximal solution x. Suppose that

v : LT Ñ Rn is also a maximal solution of (3.4.3).

Assertion 4: xptq “ vptq for all t P rt0 ´ r, ωqT X LT.

Indeed, by Theorem 2.2.1, v˚ : L Ñ Rn is a solution of the functional Volterra–Stieltjes

integral equation (3.4.4). On the other hand, y : rt0 ´ r, ωq Ñ Rn is the maximal solution

of (3.4.4). It implies that yptq “ v˚ptq for every t P rt0 ´ r, ωq X L.

In particular, since rt0 ´ r, ωqT X LT “ rt0 ´ r, ωq X L X T Ă rt0 ´ r, ωq X L, we have

that yptq “ v˚ptq for all rt0 ´ r, ωqT X LT, which implies that, for t P rt0 ´ r, ωqT X LT,

xptq “ xpt˚q “ x˚
ptq “ yptq “ v˚

ptq “ vpt˚q “ vptq,

that is, xptq “ vptq for all t P rt0 ´ r, ωqT X LT.
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This concludes the proof of Assertion 4.

Now, define λ : ET Ñ Rn, E “ rt0 ´ r, ωq Y L, by:

λptq “

$

’

&

’

%

xptq, t P rt0 ´ r, ωqT

vptq, t P LT.

(3.4.7)

By Assertion 4, λ is well defined. Clearly, λ is a solution of (3.4.4) and the time scales

intervals rt0 ´ r, ωqT and LT are contained in ET. Also:
$

’

&

’

%

λ|rt0´r,ωqT “ x

λ|LT “ v.

(3.4.8)

Since x and v are maximal solutions of (3.4.3), it follows that ET “ rt0 ´ r, ωqT “ LT

and λptq “ xptq “ vptq for all t P ET, that is, xptq “ vptq for all t P ET “ rt0 ´ r, ωqT “ LT,

proving the uniqueness of x.

As an immediate consequence, we obtain the following corollary:

Corollary 3.4.3. Let T be a time scale such that supT “ 8. Let rt0 ´ r, t0sT be a

time scale interval. Assume a : rt0,8q2 Ñ R satisfies condition (C1), where d “ 8

and f : Gpr´r, 0s,Rnq ˆ rt0,8qT Ñ Rn satisfies conditions (C2)–(C4), where d “ 8. Let

x : rt0 ´r, ωqT Ñ Rn be the maximal solution of the functional Volterra ∆-integral equation

o time scales (3.4.3) (ensured by Theorem 3.4.2). If each point of T is left scattered, then

ω “ 8.

Proof. Suppose the contrary, that is, ω ă 8. Then, Theorem 3.4.2 implies that ω P T and

ω is left-dense, which contradicts the hypothesis that each point of T is left-scattered.



Chapter 4

Stability of solutions

We begin this chapter by considering our usual functional Volterra–Stieltjes integral equa-

tion:
$

’

&

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqfpxs, sqdgpsq, t ě t0

xt0 “ ϕ,

(4.0.1)

where r ě 0, t0 ă d ď 8, f : Gpr´r, 0s,Rnq ˆ rt0, dq Ñ Rn is regulated, g : rt0, dq Ñ

R is nondecreasing and left–continuous, a : rt0, dq2 Ñ R is nondecreasing with respect

to the first variable and left–continuous with respect to the second variable and ϕ P

Gpr´r, 0s,Rnq. To ensure that the problem (4.0.1) makes sense, we assume that the

Henstock–Kurzweil–Stieltjes integral, which appears in the right–hand side,
şτ2
τ1
apt, sqfpxs, sqdgpsq exists for each compact interval rτ1, τ2s Ă rt0, dq, for all x P Gprt0 ´

r, dq,Rnq, t P rt0, dq and all t0 ď τ1 ď τ2 ă d.

In this chapter, we will investigate four types of stability for our equation: stability,

asymptotic stability, uniform stability and exponential stability. We will use Lyapunov

functionals to study these types of stability. In what follows, we will adopt the notation

Bp0, ξq to denote the set tx P Rn : }x} ă ξu for some positive real number ξ.

Now, we present the definitions of stability, asymptotic stability, uniform stability and

uniform asymptotic stability for equation (4.0.1). We will denote by xptq “ xpt, t0, ϕq,

t P rt0 ´ r,`8q, the unique solution of (4.0.1) and xt by xtpt0, ϕq. The existence of the

solution is guaranteed by Theorem 3.2.4.

Definition 4.0.1. The trivial solution x ” 0 of (4.0.1) is said to be:

84
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• stable if for every ε ą 0, there exists δ “ δpε, t0q ą 0, such that for all ϕ P Bp0, δq Ă

Gpr´r, 0s,Rnq, xtpt0, ϕq P Bp0, εq Ă Gpr´r, 0s,Rnq for all t ě t0.

• asymptotically stable if it is stable and there exists η ą 0, such that if ϕ P Bp0, ηq Ă

Gpr´r, 0s,Rnq, then xpt0, ϕqptq Ñ 0 when t Ñ 8.

• uniformly stable if it is stable with δ ą 0 independent of t0.

• uniformly asymptotically stable if there exists δ0 ą 0 and for every ε ą 0, there

exists T “ T pεq ě 0 such that if t0 ě 0 and ϕ P Bp0, δ0q Ă Gpr´r, 0s,Rnq, then

xtpt0, ϕq P Bp0, εq Ă Gpr´r, 0s,Rnq for all t P rt0, wpt0, ϕqs X rt0 ` T,8q.

In order to Definition 4.0.1 to make sense, we assume that fp0, tq ” 0. With these

assumptions, x ” 0 is a solution of (4.0.1).

The investigations made by A. M. Lyapunov more than a hundred years ago are still

very important and relevant in many different problems. The first publication of Lyapunov

concerning stability of motion of systems with a finite number of degrees of freedom were

in 1888. Four years later, Lyapunov presented a rigorous definition of stability, which was

part of his PhD thesis entitled “The General Problem of Stability of Motion”.

Until nowadays, the work of many mathematicians receives his influence and to un-

derstand the stability of solutions of certain equation is among the most studied topics in

the last years, and his techniques are applied in most of cases.

On the other hand, the investigations concerning stability for Stieltjes integral equa-

tions type are very recent. First, because these equations started to be studied in the last

few years and the second reason for that comes from the fact that it is not easy to deal

with Stieltjes integral equations, since their solutions are not continuous in most of the

cases. Therefore, the discontinuities which appear can complicate a lot the study of the

dynamic of the solution. Also, since the solution of a Stieltjes integral equation does not

need to be differentiable, this turns the problem even more complicated.

However, although the difficulties behind such problem, some authors investigated

the classical concepts of stability for these equations by using Lyapunov functionals (see

[22, 28]). As a consequence, they obtained more general results than the ones found in

the literature, that could allow that the Lyapunov functional to be very general.
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All the results presented here, even the ones that employ Lyapunov functionals, are

more general than the ones presented previously in the literature. It follows directly from

the generality of the equation that we are considering.

We divide this Chapter into two sections. The results of the first section investigate

many types of stability using Lyapunov functionals. They are inspired by the results of

[28] and can be found in [33, 46]. In the second section, we show that the theorem present

in the first section are also valid when dealing with impulsive functional Volterra–Stieltjes

integral equations.

4.1 Lyapunov’s Second Method

Here, we consider the particular case of (4.0.1) given by
$

’

&

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqfpxs, sqdgpsq, t ě t0

xt0 “ ϕ,

(4.1.1)

where r ě 0, f : Gpr´r, 0s,Rnq ˆ rt0,8q Ñ Rn is such that fp0, tq ” 0 for all t P rt0,8q,

a : rt0,8q ˆ rt0,8q Ñ R is regulated with respect to the second variable, g : R Ñ R

is a nondecreasing left–continuous function, ϕ P Gpr´r, 0s,Rnq and the integral in the

right–hand side is understood on the sense of Henstock–Kurzweil–Stieltjes.

Below, we recall important definitions.

Definition 4.1.1. We say that V : rt0,8qˆBρ Ñ R is a Lyapunov functional with respect

to (4.1.1), where Bρ “ ty P Gpr´r, 0s,Rnq : }y} ď ρu, ρ ą 0, if the following conditions

are satisfied:

(V1) For every solution x of (4.1.1), the function from rt0,8q to R defined by t ÞÑ V pt, xtq

is continuous;

(V2) For every pt0, ϕq P R ˆ Bρ, the function defined by t ÞÑ V pt, xtpt0, ϕqq is nonin-

creasing, where x is the unique maximal solution of (4.1.1) with initial condition

xt0 “ ϕ.

With these definitions in hands, we are ready to state and prove our first result of

stability, which ensures that the trivial solution of (4.1.1) is stable.
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Theorem 4.1.2. Let t0 P R and suppose that there exists a Lyapunov functional V : rt0,8qˆ

Bρ Ñ R, Bρ “ ty P Gpr´r, 0s,Rnq : }y} ď ρu, ρ ą 0, with respect to (4.1.1) such that

1. V pt, 0q “ 0 for all t P rt0,8q;

2. If x : rt0 ´ r,8q Ñ Rn is a solution of (4.1.1), then αp}xt}q ď V pt, xtq for all

t P rt0,8q, where α : r0,8q Ñ r0,8q is an increasing function such that αp0q “ 0

and limsÑ8 αpsq “ 8.

Then the trivial solution x ” 0 of (4.1.1) is stable.

Proof. Let ε ą 0. We want to show that there exists δ ą 0 such that if ϕ P Bp0, δq, then

the solution x of (4.1.1) exists for all t ě t0 and xtpt0, ϕq P Bp0, εq for all t ě t0. The

existence is ensured by Condition 2 and the properties of the Lyapunov functional.

According to item (V1) from the Definition 4.1.1 and by hypothesis, given αpεq ą 0,

there exists δ :“ δpt0, εq ą 0 such that if }x}8 ă δ, then

V pt0, xt0q ă αpεq. (4.1.2)

Let ϕ P Bp0, δq Ă Gpr´r, 0s,Rnq. By hypothesis and (4.1.2), for all t P rt0,8q, we

have

αp}xtpt0, ϕq}q ď V pt, xtq ď V pt0, xt0q “ V pt0, ϕq ă αpεq, (4.1.3)

where the second inequality follows from the fact that t ÞÑ V pt, xtq is nonincreasing.

Since α is an increasing function, }xtpt0, ϕq} ă ε for all t ě t0, as desired, and the result

follows.

The next result gives sufficient conditions to ensure that the trivial solution of (4.1.1)

is asymptotically stable.

Theorem 4.1.3. Let t0 P R and suppose there exists a Lyapunov functional V : rt0,8q ˆ

Bρ Ñ R with respect to (4.1.1) and a function α : r0,8q Ñ r0,8q that satisfy all the

conditions of Theorem 4.1.2. Suppose also that, for all nonextendable solution x : rt0 ´

r,8q Ñ Rn of (4.1.1), we have

V pt, xtq ´ V ps, xsq ď ´

ż t

s

rαpV pξ, xξqqdγpξq (4.1.4)
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for all t, s P rt0,8q with t ě s, where γ : rt0,8q Ñ R is a nondecreasing function such

that lim
tÑ8

γptq “ 8 and rα : rt0,8q Ñ rt0,8q is an increasing function such that rαp0q “ 0

and limsÑ8 rαpsq “ 8. Then the trivial solution x ” 0 of (4.1.1) is asymptotically stable.

Proof. Since all the hypotheses of Theorem 4.1.2 are satisfied, it follows that x ” 0 is

stable. Thus there exists η ą 0 satisfying Definition 4.0.1 such that }ϕ} ă η and let

xt :“ xtpt0, ϕq.

Notice that for t P rt0,8q, the function t Ñ V pt, xtq is nonincreasing and since x is a

solution of (4.1.1), αp}xt}q ď V pt, xtq for all t P rt0,8q, which implies that V pt, xtq ě 0.

Therefore, there exists z ě 0 such that lim
tÑ8

V pt, xtq “ z. If z ą 0, then, by (4.1.4), we get

0 ď V pt, xtq ď V pt0, xt0q ´

ż t

t0

rαpV ps, xsqqdγpsq

ď V pt0, xt0q ´

ż t

t0

rαpzqdγpsq

“ V pt0, xt0q ´ rαpzqrγptq ´ γpt0qs. (4.1.5)

For sufficiently large t, the right–hand side of (4.1.5) is negative, leading us to a

contradiction. Hence, we conclude that z “ 0.

Thus, since 0 ď αp}xt}q ď V pt, xtq, we have lim
tÑ8

αp}xt}q “ 0, which implies lim
tÑ8

xptq “

0, by the property of α, proving the theorem.

The next result provides sufficient conditions to ensure that the trivial solution of

(4.1.1) is uniformly stable.

Theorem 4.1.4. Let V : rt0,8qˆBρ Ñ Rn, 0 ă ρ ă c, be a Lyapunov functional. Assume

also that V satisfies the following condition:

(H) There exist two continuous increasing functions α, β : r0,8q Ñ r0,8q satisfying

αp0q “ 0 “ βp0q such that for every solution x : rt0 ´r,8q Ñ Bρ of equation (4.1.1),

we have

βp}xt}8q ď V pt, xtq ď αp}xt}8q, (4.1.6)

for all t ě t0.

Then the trivial solution x ” 0 of the equation (4.1.1) is uniformly stable.
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Proof. Let t0 ě 0 and ε ě 0. Since αp0q “ 0, α is increasing and α|r0,εs is uniformly

continuous, there exists δ “ δpεq, 0 ă δ ă ε such that αpδq ă βpεq.

Suppose ϕ P Bρ and the maximal solution of x of (4.1.4) satisfies }ϕ}8 ă δ. We need

to show that }xt}8 ă ε for all t P rt0, ωq. Since V is a Lyapunov functional, then

V pt, xtq ď V pt0, xt0q

for all t P rt0, ωq.

Hence, by hypotheses, for every t P rt0, ωq, we get

βp}xt}8q ď V pt, xtq ď V pt0, xt0q ď αp}xt0}8q ď αpδq ď βpεq.

Since β is an increasing function, we get }xt}8 ă ε for all t P rt0, ωq, getting the desired

result.

Now, let us define exponential stability of the trivial solution of (4.1.1).

Definition 4.1.5. We say that the trivial solution of (4.1.1) is exponentially stable if

there exist constants ρ, a, b ą 0 such that if t ě t0 and }ϕ}8 P Bp0, ρq Ă Gpr´r, 0s,Rnq,

then

}xtpt0, ϕq}8 ă a}ϕ}8e
´bpt´t0q (4.1.7)

for all t ě t0.

The next result gives us conditions that will ensure that the trivial solution of (4.1.1)

is exponentially stable.

Theorem 4.1.6. Suppose that there exist positive constants σ, β, α, k and a Lyapunov

functional V : rt0,8q ˆ Bρ Ñ R with respect to equation (4.1.1) such that

1. σ}ϕ}k8 ď V pt, ϕq ď β}ϕ}k8 for all ϕ P Bρ and t ě t0.

2. For every maximal solution xptq “ xpt, s0, ψq with ps0, ψq P Ω of (4.1.1), we have

V pt, xtq ´ V ps, xsq ď ´α

ż t

s

V pξ, xξqdξ

for all t, s P rs0,8q with t ď s.

Then the trivial solution y ” 0 of (4.1.1) is exponentially stable.
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Proof. Let V : rt0,8q ˆ Bρ Ñ R be a Lyapunov functional satisfying Conditions 1 and 2

of Theorem 4.1.6. Note that if x : rt0,8q Ñ Rn is a solution of (4.1.1), we have

σ}xt}
k
8 ď V pt, xtq ď β}xt}

k
8 @ t ě t0,

which implies that Conditions 1 and 2 of Theorem 4.1.2 are fulfilled. Thus, the trivial

solution x ” 0 is stable.

Let s0 ě t0, ϕ P Bδ, where 0 ă δ ă ρ is chosen by the stability of x, and let xp¨q “

xp¨, s0, ϕq be the maximal solution of (4.1.1) defined on rs0,8q.

Combining the second condition of this theorem with the fact that t ÞÑ V pt, xtq is a

nonincreasing function, for every s0 ď θ1 ď θ2 ă 8, we estimate

V pθ1, xθ1q ´ V pθ2, xθ2q ě α

ż θ2

θ1

V pξ, xξqdξ ě α

ż θ2

θ1

V pθ2, xθ2qdξ “ αV pθ2, xθ2qpθ2 ´ θ1q

From this, we get

V pθ1, xθ1q ě p1 ` αpθ2 ´ θ1qqV pθ2, xθ2q (4.1.8)

for all s0 ď θ1 ď θ2 ă 8.

On the other hand, we claim that

V ps ` s0, xs`s0q ă e´αsV ps0, ϕq (4.1.9)

for all s P r0,8q.

In fact, let s P r0,8q be given and let n be an arbitrary fixed natural number. Define

τi :“ is

n
` s0 for all i P t1, 2, . . . , nu.

Note that

s0 “ τ0 ă τ1 ă ¨ ¨ ¨ ă τn “ s ` s0 and τi ´ τi´1 “
s

n
.

Using this fact together with (4.1.8), we have

V pτi´1, xτi´1q ě p1 ` αpτi ´ τi´1qqV pτi, xτi
q “

´

1 `
αs

n

¯

V pτi, xτi
q

for all i P t1, 2, . . . , nu. Hence, using a recursive argument, we obtain

V pτ0, xτ0q ě

´

1 `
αs

n

¯n

V pτn, xτnq. (4.1.10)
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Since V pτ0, xτ0q “ V ps0, ϕq and V pτn, xτnq “ V ps ` s0, xs`s0q, we conclude that

V ps0, ϕq ě
`

1 ` αs
n

˘n
V ps` s0, xs`s0q for all s ě 0 and all n P N. Therefore, as n tends to

8, we obtain that V ps0, ϕq ě eαsV ps ` s0, xs`s0q, getting the claim, which implies that

V pt, xtq ď e´αpt´s0qV ps0, ϕq for all t P rs0,8q.

According to Condition 1 of this Theorem,

σ}xt}
k
8 ď V pt, xtq and V ps0, ϕq ď β}ϕ}

k
8.

Therefore, we get that

σ}xt}
k
8 ď V pt, xtq ď e´αpt´s0qV ps0, ϕq ď e´αpt´s0qβ}ϕ}

k
8

}xt}
k
8 ď

ˆ

β

σ

˙

}ϕ}
k
8e

´αpt´s0q,

which leads to

}xt}8 ď

ˆ

β

σ

˙
1
k

}ϕ}8e
´α
k

pt´s0q, (4.1.11)

proving that the trivial solution is indeed exponentially stable.

To finish this section, we present an example to illustrate Theorem 4.1.6. This example

was inspired by [28].

Example 4.1.7. Let ttku8
k“1 be moments of impulses such that tk ă tk`1 for k P N.

Consider the following Volterra–Stieltjes integral equation:

xptq “ xp0q `

ż t

0
apt, sqfpxs, sqdgpsq, (4.1.12)

where gptq “ gp0q ` t`
ř8

j“1 χptj ,8qptq, t P r0,8q and χ is the characteristic function. The

function f : Gpr´r, 0s, r1,8qq ˆ r0,8q Ñ R is given by:

fpxt, tq “

$

’

&

’

%

psinplnpt ` 1qq ´ 2qxt, if t ‰ tk

xtp0q, if t “ tk;

the function a : r0,8q ˆ r0,8q Ñ R is given by

apt, sq “

$

’

&

’

%

e´α, if t ‰ tk

e´βpt´tk´1qγk, if t “ tk,
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where α, β ą 0 and ´1 ď γk ď 0.

Thus by Theorem 2.1.2, our Volterra–Stieltjes integral equation (4.1.12) can be rewrit-

ten as an impulsive Volterra equation given by:
$

’

&

’

%

xptq “ xp0q `

ż t

0
e´αpt´sq

psinplnps ` 1qq ´ 2qxsds, t ‰ tk

∆`xptq “ eβpt´tk´1qγkxptq, t “ tk.

(4.1.13)

Assuming that x is differentiable a.e., the integral equation above can be rewritten as

the following impulsive differential equation a.e.:
$

’

&

’

%

x1ptq “ e´αpt´sqpsinplnps ` 1qq ´ 2qxsds, t ‰ tk

∆`xptq “ e´βpt´tk´1qγkxptq, t “ tk.

(4.1.14)

Defining V pt, xtq “
pxtp0qq2

2 “
pxptqq2

2 , we have that

dV
dt “ xx1

“ xpsinplnpt ` 1qq ´ 2qxt ď ´1 ă 0.

For t “ tk, we get

V ptk, xtkq “
pxpt`k qq2

2 “
pxptkq ` Ikpxptkqqq2

2

“
pxptkq ` e´βptk´tk´1qγkxptkqq2

2

“
pp1 ` e´βptk´tk´1qγkqxptkqq2

2
ď p1 ` e´βptk´tk´1qγkq

2V ptk, xptkqq ď V ptk, xptkqq,

since γk ă 0.

Therefore, all the assumptions of Theorem 4.1.6 are satisfied, which implies that the

trivial solution x ” 0 of (4.1.12) is exponentially stable.

4.2 Lyapunov’s Second Method for impulsive func-

tional Volterra–Stieltjes integral equations

In this section we will use the correspondence between the functional Volterra–Stieltjes

integral equations and the impulsive functional Volterra Stieltjes integral equations to

obtain the results about stability for the impulsive case.
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Throughout this section, assume that ttku8
k“1 are the moments of impulses in rt0,8q

such that tk ă tk`1 for all k P N and limkÑ8 tk “ 8. Let us recall the definitions of the

functions f̃ and g̃:

Define f̃ : Gpr´r, 0s,Rnq ˆ rt0,8q Ñ Rn by

f̃py, τq “

$

’

&

’

%

fpy, τq, τ P rt0, dqzttku8
k“1,

Ikpyp0qq, τ “ tk, k P N,

and g̃ : rt0,8q Ñ R by

g̃pτq “

$

’

&

’

%

gpτq, τ P rt0, t1s,

gpτq ` k, τ P ptk, tk`1s, k P N.

Consider here the following functional Volterra–Stieltjes integral equations with im-

pulses
$

’

’

&

’

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqfpxs, sq dgpsq `
ÿ

kPN
t0ătkăt

apt, tkqIkpxptkqq

xt0 “ ϕ,

(4.2.1)

and assume that Ikp0q “ 0 for each k P N.

Theorem 4.2.1. Let t0 P R and suppose that there exists a Lyapunov functional V : rt0,8qˆ

Bρ Ñ R, Bρ “ ty P Gpr´r, 0s,Rnq : }y} ď ρu, ρ ą 0, with respect to (4.2.1) such that

1. V pt, 0q “ 0 for all t P rt0,8q;

2. If x : rt0 ´ r,8q Ñ Rn is a solution of (4.2.1), then αp}xt}q ď V pt, xtq for all

t P rt0,8q, where α : r0,8q Ñ r0,8q is an increasing function such that αp0q “ 0

and limsÑ8 αpsq “ 8.

Then the trivial solution x ” 0 of (4.2.1) is stable.

Proof. By Theorem 2.1.2, (4.2.1) has a solution if, and only if,
$

’

&

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqf̃pxs, sqdg̃psq

xt0 “ ϕ

(4.2.2)

has a solution and, in this case, the solutions are the same.
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By Theorem 4.1.2, the trivial solution of (4.2.2) is stable, that is, for every ε ą 0,

there exists δ “ δpε, t0q ą 0, such that for all ϕ P Bp0, δq Ă Gpr´r, 0s,Rnq, the solution x

exists for every t ě t0 and xtpt0, ϕq P Bp0, εq Ă Gpr´r, 0s,Rnq for all t ě t0.

Since the solutions of (4.2.2) and (4.2.1) are equal for all t P rt0,8q, it follows they

have the same properties, which means the trivial solution of (4.2.1) is stable.

The proof of the following theorems are very similar to the proof of Theorem 4.2.1,

since the same argument is used in all of them, that is, the correspondence between the

equations and the known results for functional Volterra–Stieltjes integral equations. In

order not to tire the reader, we will omit them.

Theorem 4.2.2. Let t0 P R and suppose there exists a Lyapunov functional V : rt0,8q ˆ

Bρ Ñ R with respect to (4.2.1) and a function α : r0,8q Ñ r0,8q that satisfy all the

conditions of Theorem 4.1.2. Suppose also that, for all nonextendable solution x : rt0 ´

r,8q Ñ Rn of (4.2.1), we have

V pt, xtq ´ V ps, xsq ď ´

ż t

s

rαpV pξ, xξqqdγpξq (4.2.3)

for all t, s P rt0,8q with t ě s, where γ : rt0,8q Ñ R is a nondecreasing function such

that lim
tÑ8

γptq “ 8 and rα : rt0,8q Ñ rt0,8q is an increasing function such that rαp0q “ 0

and limsÑ8 rαpsq “ 8.

Then the trivial solution x ” 0 of (4.2.1) is asymptotically stable.

Theorem 4.2.3. Let V : rt0,8qˆBρ Ñ Rn, 0 ă ρ ă c, be a Lyapunov functional. Assume

also that V satisfies the following condition:

(H) There exist two continuous increasing functions α, β : r0,8q Ñ r0,8q satisfying

αp0q “ 0 “ βp0q such that for every solution x : rt0 ´r,8q Ñ Bρ of equation (4.2.1),

we have

βp}xt}8q ď V pt, xtq ď αp}xt}8q, (4.2.4)

for all t ě t0.

Then the trivial solution x ” 0 of the equation (4.2.1) is uniformly stable.

Theorem 4.2.4. Suppose that there exist positive constants σ, β, α, k and a Lyapunov

functional V : rt0,8q ˆ Bρ Ñ R with respect to equation (4.2.1) such that
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1. σ}ϕ}k8 ď V pt, ϕq ď β}ϕ}k8 for all ϕ P Bρ and t ě t0.

2. For every maximal solution xptq “ xpt, s0, ψq with ps0, ψq P Ω of (4.2.1), we have

V pt, xtq ´ V ps, xsq ď ´α

ż t

s

V pξ, xξqdξ

for all t, s P rs0,8q with t ď s.

Then the trivial solution y ” 0 of (4.2.1) is exponentially stable.

Remark 4.2.5. It is also possible to translate all the results to their analogues in the

time scale case.



Chapter 5

Periodic boundary value problem

In this chapter, we consider the following periodic boundary value problem:
$

’

’

’

’

’

&

’

’

’

’

’

%

xptq “ ϕp0q `

ż t

0
apt, sqfpxs, sq dgpsq, t P r0, ωs

x0 “ ϕ,

xp0q “ xpωq

(5.0.1)

where ϕ P Gpr´r, 0s,Rnq, f : Gpr´r, 0s,Rnq ˆ r0, ωs Ñ Rn, a : r0, ωs2 Ñ R and g : r0, ωs Ñ

R is nondecreasing and left continuous on r0, ωs. Here, r0, ωs2 denotes the set r0, ωsˆr0, ωs.

The goal of this chapter is to seek solutions for this problem. We investigate sufficient

conditions on the functions a, f and g in order to guarantee the existence of a solution

of this type of problem. All the results of this chapter are new and can be found in

[31]. We divide this chapter in three sections. In the first section, we study the existence

of solutions of the periodic boundary value problem (5.0.1). In the second section, we

present a correspondence between (5.0.1) and its analogue with impulses. In the third

section, we prove the analogue results to ∆-integral equations on time scales.

The motivation to investigate this kind of problems for Volterra–Stieltjes equations

came initially from [23]. In this paper, the authors study the existence of periodic solutions

for generalized ordinary differential equations (GODEs for short) and they apply their

results to other types of equations such as measure equation without delays.

It is important to emphasize that that are other papers in this direction such as

[16, 48, 49, 50, 51], and this type of problem has been attracting the attention by several

researchers, since periodicity appears quite natural in most of phenomena.

96
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5.1 Solutions for periodic boundary value problems

We begin this section by assuming the following conditions:

(H1) The function g : r0, ωs Ñ R is nondecreasing and left–continuous on p0, ωs.

(H2) The function a : r0, ωs2 Ñ R is nondecreasing with respect to the first variable and

regulated with respect to the second variable.

(H3) The Henstock–Kurzweil–Stieltjes integral
ż τ2

τ1

apt, sqfpxs, sqdgpsq

exists, for all x P Gpr´r, ωs,Rnq, all t P r0, ωs and all 0 ď τ1 ď τ2 ď ω.

(H4) There exists a Henstock–Kurzweil–Stieltjes integrable function M : r0, ωs Ñ R`

with respect to g such that
›

›

›

›

›

›

τ2
ż

τ1

pβ2apτ2, sq ` β1apτ1, sqq fpxs, sqdgpsq

›

›

›

›

›

›

ď

τ2
ż

τ1

|β2apτ2, sq ` β1apτ1, sq|Mpsqdgpsq,

for all x P Gpr´r, ωs,Rnq, all β1, β2 P R and all 0 ď τ1 ď τ2 ď ω.

(H5) There exists a regulated function L : r0, ωs Ñ R` with respect to g such that
›

›

›

›

›

›

τ2
ż

τ1

apτ2, sqrfpxs, sq ´ fpzs, sqsdgpsq

›

›

›

›

›

›

ď

τ2
ż

τ1

|apτ2, sq|Lpsq}xs ´ zs}8dgpsq,

for all x, z P Gpr´r, ωs,Rnq and all 0 ď τ1 ď τ2 ď ω.

Remark 5.1.1. It is easy to check that if a satisfies condition (H2), then a is bounded

in r0, ωs2.

For further purposes, let us define the following constant:

η :“ sup
pt,sqPr0,ωs2

|apt, sq| , (5.1.1)

which is well–defined by Remark 5.1.1.

The next result can be found in [44] and will be essential to prove the existence of

solutions for the main problem of this section.
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Theorem 5.1.2 (Krasnosel’skĭı Fixed Point Theorem). Let X be a Banach space and

Y be a nonempty convex and closed subset of X. Let G1,G2 : Y Ñ X be two operators

satisfying

(i) if u, v P Y, then G1u ` G2v P Y .

(ii) G1 is a contraction on Y .

(iii) G2 is compact and continuous on Y .

Then, there exists z P Y such that G1z ` G2z “ z.

The following corollary is a consequence of the previous theorem with Y “ X.

Corollary 5.1.3. Let X be a Banach space. Let G1,G2 : X Ñ X be two operators such

that G1 satisfies condition (ii) of Theorem 5.1.2 and G2 satisfies condition (iii) of Theorem

5.1.2. Then, there exists x P X such that G1x ` G2x “ x.

Next, we exhibit the main result of this section. By using Theorem 5.1.2 (Krasnosel’skĭı

Fixed Point Theorem), we obtain a criterion to guarantee the existence of at least one

solution for the periodic boundary value problem (5.0.1). In order to use Theorem 5.1.2,

we will consider Y “ X “ Rn ˆ Gpr´r, ωs,Rnq.

Theorem 5.1.4. Consider the periodic boundary value problem:
$

’

’

’

’

’

&

’

’

’

’

’

%

xptq “ ϕp0q `

ż t

0
apt, sqfpxs, sq dgpsq, t P r0, ωs

x0 “ ϕ

xp0q “ xpωq

(5.1.2)

and assume that conditions (H1)–(H5) are satisfied. Moreover, suppose that the following

condition holds

η }L}
8

pgpωq ´ gp0qq ă 1,

where η is given by (5.1.1) and L is given in (H5). Then the periodic boundary value

problem (5.1.2) has at least one solution.

Proof. Let us consider the Banach space Rn ˆ Gpr´r, ωs,Rnq endowed with the norm

}pβ, xq}Rn,8 “ }β} ` }x}
8
, for pβ, xq P Rn

ˆ G pr0, ωs,Rn
q ,
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where } ¨ } is any norm in Rn and } ¨ }
8

is given by }x}8 “ suptPr´r,ωs }xptq}.

Consider operators W : RnˆGpr´r, ωs,Rnq Ñ Rn and Q : Gpr´r, ωs,Rnq Ñ Gpr´r, ωs,Rnq

defined by

Wpβ, xq :“ β `

ż ω

0
apω, sqfpxs, sq dgpsq

and

Qpxqptq “

$

’

&

’

%

ϕptq, t P r´r, 0s

ϕp0q `

ż t

0
apt, sqfpxs, sqdgpsq, t P r0, ωs,

for all x P Gpr´r, ωs,Rnq, all t P r´r, ωs and all β P Rn.

By condition (H3), the integral
şω

0 apω, sqfpxs, sq dgpsq exists in the sense of Henstock–

Kurzweil–Stieltjes. Thus, Wpβ, xq P Rn. On the other hand, using the same arguments

as in Lemma 3.1.7, we can prove that the function Qpxq is regulated on r´r, ωs, that is,

Qpxq P Gpr´r, ωs,Rnq.

Now, consider the operators G1,G2 : Rn ˆ Gpr´r, ωs,Rnq ÝÑ Rn ˆ Gpr´r, ωs,Rnq de-

fined for pβ, xq P Rn ˆ Gpr´r, ωs,Rnq by

G1pβ, xq “ p0Rn ,Qpxqq and G2pβ, xq “ pWpβ, xq, 0Gq,

where 0Rn :“ p0, . . . , 0q and 0G : r´r, ωs Ñ Rn is given by 0Gptq “ 0Rn for t P r´r, ωs.

Statement 1. If pβ, xq is a fixed point of the operator G1 ` G2, then x is a solution

of the periodic boundary value problem (5.1.2).

Suppose that pG1 ` G2qpβ, xq “ pβ, xq. Thus,
ż ω

0
apω, sqfpxs, sq dgpsq “ 0 (5.1.3)

and, for all t P r´r, ωs, we obtain

xptq “

$

’

&

’

%

ϕptq, t P r´r, 0s

ϕp0q `

ż t

0
apt, sqfpxs, sqdgpsq, t P r0, ωs.

(5.1.4)

In view of (5.1.4), x is a solution of the functional Volterra–Stieltjes integral equation
$

’

&

’

%

xptq “ ϕp0q `

ż t

0
apt, sqfpxs, sq dgpsq, t P r0, ωs

x0 “ ϕ.
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On the other hand, taking t “ ω in (5.1.4) and using (5.1.3), we get xp0q “ xpωq, proving

Statement 1.

Statement 2. G1 is a contraction.

Initially, note that

}G1pβ, xq ´ G1pα, zq}Rn,8 “ }p0Rn ,Qpxq ´ Qpzqq}Rn,8 “ sup
tPr´r,ωs

}Qpxqptq ´ Qpzqptq} .

Let x, z P Gpr´r, ωs,Rnq be given. Then, for t P r´r, 0s, we get

}Qpxqptq ´ Qpzqptq} “ }ϕp0q ´ ϕp0q} “ 0,

and for t P r0, ωs, by (H5), (5.1.1), Theorem 1.2.4 and Corollary 1.2.5, we have

}pQpxqptq ´ Qpzqptq} “

›

›

›

›

ż t

0
apt, sqpfpxs, sq ´ fpzs, sqq dgpsq

›

›

›

›

ď

ż t

0
|apt, sq|Lpsq}xs ´ zs}8 dgpsq

ď

ż t

0
η }L}

8
}xs ´ zs}8 dgpsq

ď

ż ω

0
η }L}

8
}xs ´ zs}8 dgpsq

ď η }L}
8

pgpωq ´ gp0qq }x ´ z}
8
. (5.1.5)

Since by hypothesis η }L}
8

pgpωq ´ gp0qq ă 1, we have that G1 is a contraction. Notice

that for s P r0, ωs, we obtain

}xs ´ zs}8 “ sup
θPr´r,0s

}xps ` θq ´ zps ` θq}

“ sup
ξPrs´r,ss

}xpξq ´ zpξq}

ď sup
ξPr´r,ωs

}xpξq ´ zpξq}

“ }x ´ z}8,

which shows the inequality (5.1.5).

Statement 3. G2 is continuous.

Note that, for x, z P Gpr´r, ωs,Rnq and α, β P Rn, we have

}G2pβ, xq ´ G2pα, zq}Rn,8 “ } pWpβ, xq ´ Wpα, zq, 0Gq }Rn,8
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“ }Wpβ, xq ´ Wpα, zq} .

Hence, by (H5), Theorem 1.2.4 and the fact that }xs ´ zs}8
ď }x ´ z}

8
, we obtain

}Wpβ, xq ´ Wpα, zq} “

›

›

›

›

β ´ α `

ż ω

0
apω, sq pfpxs, sq ´ fpzs, sqq dgpsq

›

›

›

›

ď }β ´ α} `

ż ω

0
|apω, sq|Lpsq }xs ´ zs}8

dgpsq

ď }β ´ α} `

ˆ
ż ω

0
|apω, sq|Lpsq dgpsq

˙

}x ´ z}
8

ď

ˆ

1 `

ż ω

0
|apω, sq|Lpsq dgpsq

˙

}pβ, xq ´ pα, zq}Rn,8 .

The last inequality follows from the fact that

}β ´ α} ď }pβ, xq ´ pα, zq}Rn,8 and }x ´ z}
8

ď }pβ, xq ´ pα, zq}Rn,8 .

From this estimate, we get that G2 is continuous.

Statement 4. G2 is compact.

Let B “ B1 ˆB2 Ă Rn ˆGpr´r, ωs,Rnq be bounded. Then, there exist constants C1 ą 0

and C2 ą 0 such that }β} ď C1, for all β P B1 and }x}8 ď C2, for every x P B2.

The goal is to show that G2pBq is relatively compact in Rn ˆ Gpr´r, ωs,Rnq. In fact,

notice that

G2pBq “ tpWpβ, xq, 0Gq : β P B1, x P B2u “ WpBq ˆ t0Gu .

Since t0Gu is relatively compact in Gpr´r, ωs,Rnq, it is sufficient to prove that WpBq is

relatively compact in Rn.

Let pβ, xq P B. Then, by (H4), we get

}Wpβ, xq} “

›

›

›

›

β `

ż ω

0
apω, sqfpxs, sq dgpsq

›

›

›

›

ď }β} `

ż ω

0
|apω, sq|Mpsq dgpsq

ď C1 `

ż ω

0
|apω, sq|Mpsq dgpsq.

Thus, WpBq is bounded, which implies that WpBq is also bounded. Now, since WpBq is

bounded and closed in Rn, we conclude that WpBq is compact on Rn.

Since all hypotheses of Krasnosel’skĭı Fixed Point Theorem (Theorem 5.1.2) are sat-

isfied, we conclude that G1 ` G2 has a fixed point pβ, xq P Rn ˆ Gpr´r, ωs,Rnq.
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Therefore, by Statement 1, x : r´r, ωs Ñ Rn is a solution of the periodic boundary

value problem (5.1.2) and this completes the proof.

5.2 Periodic impulsive boundary value problems

In this section, our goal is to translate Theorem 5.1.4 to impulsive functional Volterra–

Stieltjes integral equations. At first, we start by describing the correspondence between

the two boundary value problems. Then, using this correspondence and the proved result,

we get our result to impulsive functional Volterra–Stieltjes integral equations. Clearly,

it will follow very similar to the proof presented in Section 2.1 with obvious adaptations

that we will describe here.

We start by considering the periodic impulsive boundary value problem below:

xpvq ´ xpuq “

ż v

0
apv, sqfpxs, sq dgpsq ´

ż u

0
apu, sqfpxs, sq dgpsq, for u, v P Jk, k P N,

∆`xptkq “ Ikpxptkqq, k “ 1, . . . ,m,

x0 “ ϕ

xp0q “ xpωq,

where J0 “ r0, t1s, Jk “ ptk, tk`1s for k “ 1, . . . ,m, and Jm “ ptm, ωs. The same as it was

remarked before, the value of both integrals
ż v

0
apv, sqfpxs, sq dgpsq and

ż u

0
apu, sqfpxs, sq dgpsq,

where u, v P Jk, do not change if we replace g by a function g̃ such that g´ g̃ is a constant

function on Jk (see [25]). Rewriting the above equations as
$

’

’

’

’

’

&

’

’

’

’

’

%

xptq “ ϕp0q `

ż t

0
apt, sqfpxs, sq dgpsq `

ÿ

kPt1,...,mu
0ătkăt

apt, tkqIkpxptkqq, t P r0, ωs

x0 “ ϕ

xp0q “ xpωq.

(5.2.1)

Now, we define the functions f̃ and g̃ the same way as in Section 2.1, that is: f̃ : Gpr´r, 0s,Rnqˆ

r0, ωs Ñ Rn is defined by

f̃py, τq “

$

’

&

’

%

fpy, τq, τ P r0, ωsztt1, . . . , tmu,

Ikpyp0qq, τ “ tk, k P t1, . . . ,mu,
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and g̃ : r0, ωs Ñ R is defined by

g̃pτq “

$

’

’

’

’

’

&

’

’

’

’

’

%

gpτq, τ P r0, t1s,

gpτq ` k, τ P ptk, tk`1s, k P t1, . . . ,m ´ 1u,

gpτq ` m, τ P ptm, ωs.

Theorem 5.2.1. Let m P N, 0 ď t1 ă ¨ ¨ ¨ ă tm ă d, I1, . . . , Im : Rn Ñ Rn and

f : Gpr´r, 0s,Rnq ˆ r0, ωs Ñ Rn. Assume that g : r0, ωs Ñ R is a nondecrasing left–

continuous function which is continuous at t1, . . . , tm, a : r0, ωs2 Ñ R is nondecreasing

with respect to the first variable, regulated with respect to the second variable and continu-

ous with respect to first variable at t1, . . . , tm and that conditions (H3)–(H5) are satisfied.

Assume also that the function L : r0, ωs Ñ R` in Lemma 2.1.1 is such that

η̃ }L}
8

pg̃pωq ´ g̃p0qq ă 1,

where η is given by (5.1.1). Then, equation (5.2.1) has a solution on r0, ωs.

Proof. By Theorem 2.1.2, equation (5.2.1) has a solution on r0, ωs if, and only if, equation
$

’

’

’

’

’

&

’

’

’

’

’

%

xptq “ ϕp0q `

ż t

0
apt, sqf̃pxs, sqdg̃psq

xt0 “ ϕ

xp0q “ xpωq

(5.2.2)

has a solution, and, in this case, the solution is the same for both equations.

By Lemma 2.1.1, we know that the functions g̃, a and f̃ satisfy conditions (H1)–(H5)

and we have that η }L}
8

pg̃pωq ´ g̃p0qq ă 1, thus the solution of (5.2.2) is guaranteed by

Theorem 5.1.4. Therefore, the result follows.

5.3 Periodic boundary value problem on time scales

In this section, our goal is to prove the analogue of Theorem 5.1.4 for the following periodic

boundary value problem on time scale:
$

’

’

’

’

’

&

’

’

’

’

’

%

xptq “ xp0q `

ż t

0
apt, sqfpxs, sq∆s

xt0 “ ϕpt0q

xp0q “ xpωq,

(5.3.1)
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where T is a ω´periodic time scale, that is, t P T implies t ˘ ω P T. Also, 0 P T.

We point out that there are many different concepts of periodicity on time scales,

but here we will consider the classical one, that is, the one which requires the additive

property of the time scale. In a certain way, it excludes interesting time scales such

as quantum scales, some hybrid ones, but on the other hand, there are several time

scales that satisfy this property and it is interesting to consider these cases such as T “

Z, hZ,R,
Ť8

k“1rak, bks, among others.

Now, consider the main theorem of this section.

Theorem 5.3.1. Let r´r, ωsT be a time scale interval such that 0 P T. Consider the

periodic boundary value problem:
$

’

’

’

’

’

&

’

’

’

’

’

%

xptq “ xp0q `

ż t

0
apt, sqfpx˚

s , sq∆s

xt0 “ ϕpt0q

xp0q “ xpωq,

(5.3.2)

where T is a ω´periodic time scale, that is, t P T implies t`ω P T. Assume also that the

following conditions hold.

(C1) The function a : r0, ωs2
T Ñ R is nondecreasing with respect to the first variable,

regulated with respect to the second variable and rd–continuous with respect to the

first variable.

(C2) The Henstock–Kurzweil ∆–integral
ż s2

s1

apτ, sqfpxs, sq∆s

exists for x P Gpr0, ωs,Rnq, τ P r0, ωsT and s1, s2 P r0, ωsT, s1 ď s2.

(C3) There exists a locally Henstock–Kurzweil ∆–integrable function M1 : r0, ωsT Ñ R`

such that
›

›

›

›

›

›

s2
ż

s1

pc1aps2, sq ` c2aps1, sqqfpxs, sq∆s

›

›

›

›

›

›

ď

s2
ż

s1

M1psq |c1aps2, sq ` c2aps1, sq| ∆s,

for all x P Gpr0, ωs,Rnq, c1, c2 P R and s1, s2 P r0, ωsT, s1 ď s2.
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(C4) There exists a locally regulated function L1 : r0, ωsT Ñ R` such that
›

›

›

›

›

›

s2
ż

s1

aps2, sqrfpxs, sq ´ fpzs, sqs∆s

›

›

›

›

›

›

ď

s2
ż

s1

L1psq |aps2, sq| }xs ´ zs}8
∆s,

for all x, z P Gpr0, ωs,Rnq and s1, s2 P r0, ωsT, s1 ď s2.

Moreover, suppose that

η }L˚
1}

8
ω ă 1,

where η :“ supt,sPr0,ωs a
˚˚pt, sq and L1 is given in (C4). Then the periodic boundary value

problem (5.1.2) has at least one solution.

Proof. Let g : r0, ωs Ñ R be defined as gpsq “ s˚. Notice that, since 0, ω P T, gp0q “ 0˚ “

0 and gpωq “ ω˚ “ ω, hence gpωq ´ gp0q “ ω. This fact together with Lemma 2.2.2 and

the Conditions (C1)–(C4) imply that the functions a˚˚ and f˚ satisfy the Conditions of

Theorem 5.1.4. Thus, the equation
$

’

’

’

’

’

&

’

’

’

’

’

%

xptq “ xp0q `

ż t

0
a˚˚

pt, sqf˚
pxs, sqdgpsq

xt0 “ ϕ˚
t0

xp0q “ xpωq,

(5.3.3)

has a solution y : r´r, ωs Ñ Rn. Using Theorem 2.2.1, we get that y must be of the form

y “ x˚, where x : r´r, ωsT Ñ Rn is a solution of (5.3.2), as we desired.



Chapter 6

Continuous dependence with respect

to parameters

In this chapter, our goal is to investigate under which conditions the solutions of a sequence

of equations
$

’

&

’

%

xptq “ ϕnp0q `

ż t

t0

anpt, sqfnpxs, sqdgnpsq, t ě t0

xt0 “ ϕn,

(6.0.1)

n P N, converge to a solution of the equation
$

’

&

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqfpxs, sqdgpsq, t ě t0

xt0 “ ϕ,

(6.0.2)

where ϕn, ϕ P Gpr´r, 0s,Rnq, an, a : rt0, t0 `σs2 Ñ R, σ ą 0, f, fn : Gpr´r, 0s,Rnqˆrt0, t0 `

σs Ñ Rn and gn, g : rt0, t0 ` σs Ñ R. Also, using the correspondence between functional

Volterra–Stieltjes integral equations and impulsive functional Volterra–Stieltjes integral

equations as well as the correspondence between the first one and the functional Volterra

delta integral equations on time scales, we prove the analogue results for these types of

equations.

Results concerning convergence of a sequence of problems was already investigated by

several researchers, specially the ones related to time scales theory. In 2004, the article

[19] considered families of dynamic equations on time scales given by:

x∆
“ fpt, xq

106
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subject to the initial condition xpt0q “ x0 over different time scales. The main goal

of this paper was to investigate the behavior of the solutions with the same initial value

problems over different time scales in order to understand phenomena such as bifurcations

and the asymptotic behavior for variable time scales. Also, they proved that the limit

of the solutions over convergent sequences of time scales converges to a solution over the

limiting time scale.

In [29], Garay and Hilger discussed the continuous dependence of solutions of a dy-

namic equation in its integral form given by:

yptq “ ypt0q `

ż t

t0

fps, ypsqq∆Tpsq,

investigating this equation in “the space of graphs”. In other words, they replaced an

analytical concept (the distance of functions) by a geometric concept (the distance of

curves), bringing several interesting results.

On the other hand, in 2008, Adamec [2] investigated the same type of problem con-

sidering the usual “distance of functions”. To prove his results, he employed the method

of Euler polygons, having a good approach.

In 2009, Esty and Hilger [20] investigated about the convergence of solutions of dy-

namic equations on time scales considering the Fell topology instead of Hausdorff topology,

bringing interesting remarks and results about that, and also justifying the use of this

topology in the framework of time scales.

In 2013, Bohner, Federson and Mesquita [12] extended these results for a more general

class of functions, called measure functional differential equations and using the relation

between them and impulsive measure functional differential equations and impulsive func-

tional dynamic equations on time scales, they proved results concerning the convergence

of the solutions of a sequence of equations to the solution of the limiting problem for all

these equations.

In this work, we consider a more general equation, the so-called functional Volterra–

Stieltjes integral equations, which has a kernel in its formulation. Also, the conditions

that appear in our results are more general than the ones assumed in [12], even in the case

that the kernel a ” 1, allowing that the involved functions have many discontinuities.

Results concerning the convergence of solutions as the one presented here are very
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important to researchers that work with numerical analysis and numerical simulations,

since we translate the results for equations on time scales and it is very useful to employ

discrete equations defined on hZ, h P N, to investigate the approximations of solutions of

continuous equations defined on R.

All the results in this chapter are new and can be found in [33].

Throughout this chapter, we also assume the following conditions on functions a, an, f, fn, g

and gn, n P N:

(B1) The functions f, fn : Gpr´r, 0s,Rnq ˆ rt0, t0 ` σs Ñ Rn are regulated with respect to

the second variable, for σ ą 0.

(B2) The functions g, gn : rt0, t0 ` σs Ñ R are nondecreasing and left–continuous on

pt0, t0 ` σs, σ ą 0.

(B3) The functions a, an : rt0, t0 ` σs2 Ñ R are nondecreasing with respect to the first

variable and regulated with respect to the second variable, σ ą 0.

(B4) The Henstock–Kurzweil–Stieltjes integrals
ż τ2

τ1

apt, sqfpys, sqdgpsq and
ż τ2

τ1

anpt, sqfnpys, sqdgnpsq

exist for all y P Gprt0´r, t0`σs,Rnq, t P rt0, t0`σs, n P N and all t0 ď τ1 ď τ2 ď t0`σ.

(B5) For each n P N, there exist regulated functions M,Mn : rt0, t0 ` σs Ñ R such that
›

›

›

›

›

›

τ2
ż

τ1

pc1apτ2, sq ` c2apτ1, sqqfpys, sqdgpsq

›

›

›

›

›

›

ď

τ2
ż

τ1

pc1apτ2, sq ` c2apτ1, sqqMpsqdgpsq

and
›

›

›

›

›

›

τ2
ż

τ1

pc1nanpτ2, sq ` c2nanpτ1, sqqfnpys, sqdgnpsq

›

›

›

›

›

›

ď

τ2
ż

τ1

pc1nanpτ2, sq`c2nanpτ1, sqqMnpsqdgnpsq,

for all y P Gprt0 ´ r, t0 ` σs,Rnq, all c1, c2, c1n , c2n P R and all t0 ď τ1 ď τ2 ď t0 ` σ.

(B6) There exist regulated functions L,Ln : rt0, t0 ` σs Ñ R` such that

›

›

›

›

›

›

τ2
ż

τ1

apτ2, sqrfpys, sq ´ fpzs, sqsdgpsq

›

›

›

›

›

›

ď

τ2
ż

τ1

|apτ2, sq|Lpsq }ys ´ zs}8
dgpsq
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and
›

›

›

›

›

›

τ2
ż

τ1

anpτ2, sqrfnpys, sq ´ fnpzs, sqsdgnpsq

›

›

›

›

›

›

ď

τ2
ż

τ1

|apτ2, sq|Lnpsq }ys ´ zs}8
dgnpsq,

for all y, z P Gprt0 ´ r, t0 ` σs,Rnq, and all t0 ď τ1 ď τ2 ď t0 ` σ.

The next theorem gives us conditions in order to guarantee that the solutions of a

sequence of IVPs converges to the solution of the limiting IVP. We follow some ideas from

[60, Theorem 8.2].

Theorem 6.0.1. For each n P N, let r ą 0 and ϕn P Gpr´r, 0s,Rnq. Consider the

following sequence of equations
$

’

&

’

%

xptq “ ϕnp0q `

ż t

t0

anpt, sqfnpxs, sqdgnpsq, t ě t0

xt0 “ ϕn,

(6.0.3)

where σ ą 0, fn : Gpr´r, 0s,Rnq ˆ rt0, t0 ` σs Ñ Rn, an : rt0, t0 ` σs ˆ rt0, t0 ` σs Ñ

R, gn : rt0, t0 ` σs Ñ R.

Moreover, assume that

lim
nÑ8

anpt, sq “ apt, sq uniformly on rt0, t0 ` σs
2,

lim
nÑ8

fnpxs, sq “ fpxs, sq uniformly on Gpr´r, 0s,Rn
q ˆ rt0, t0 ` σs,

lim
nÑ8

gnpsq “ gpsq uniformly on rt0, t0 ` σs,

lim
nÑ8

ϕnptq “ ϕptq uniformly on r´r, 0s,

where fn, f : Gpr´r, 0s,Rnq ˆ rt0, t0 ` σs Ñ Rn, an, a : rt0, t0 ` σs ˆ rt0, t0 ` σs Ñ R,

gn, g : rt0, t0 ` σs Ñ R and ϕn, ϕ : r´r, 0s Ñ Rn. Assume also that the functions ϕ and ϕn
are regulated and a, f, g, an, fn and gn satisfy the conditions (B1)–(B6) for each n P N, and

that the sequences tanpt, squnPN, tMnpsqunPN and tLpsqunPN are, each of them, uniformly

bounded by the positve constants Ã, M̃ and L̃, respectively, for t, s P rt0, t0 ` σs.

Let xn : rt0 ´ r, t0 ` σs Ñ Rn be the unique solution of (6.0.3) and assume that

lim
nÑ8

xnptq “ xptq, t P rt0 ´ r, t0 ` σs.

Then x : rt0 ´ r, t0 ` σs Ñ Rn is the unique solution of
$

’

&

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqfpxs, sqdgpsq, t ě t0

xt0 “ ϕ.

(6.0.4)
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Proof. Notice that, if t P rt0 ´ r, t0s, then xnptq “ ϕnpt ´ t0q. By hypothesis, ϕnpt ´ t0q

converges uniformly to ϕpt´t0q on rt0 ´r, t0s and xnptq converges to xptq on rt0 ´r, t0 `σs.

By the uniqueness of the limit, we get that xptq “ ϕpt ´ t0q, and hence xt0 “ ϕ.

Since gnpsq Ñ gpsq uniformly on rt0, t0 ` σs, it follows that g Ñ gn pointwisely on

rt0, t0 ` σs. This fact implies that gnpt0q Ñ gpt0q and gnpt0 ` σq Ñ gpt0 ` σq. As a

consequence, the sequences tgnpt0qu8
n“1 and tgnpt0 ` σqqu8

n“1 are bounded. Hence, the

function gn is of bounded variation on rt0, t0 ` σs. More precisely, there exists a constant

G ě 0 such that V t0`σ
t0 pgnq “ gnpt0 ` σq ´ gnpt0q ď G for all n P N, where V b

a pgq denotes

the total variation of a function g on the interval ra, bs.

Therefore, this fact implies that the integral
ż t0`σ

t0

apt, sqfpxs, sqdpgn ´ gqpsq

exists in the sense of Henstock–Kurzweil-Stieltjes, since s ÞÑ fpxs, sq and s ÞÑ apt, sq are

regulated and gn ´ g is BV . Thus, by Theorem 1.2.7, we have that

lim
nÑ8

ż t

t0

apt, sqfpxs, sqdpgn ´ gqpsq “ 0

uniformly with respect to t P rt0, t0 `σs. Hence, for an arbitrary ε ą 0, there exists n P N

such that
›

›

›

›

ż t

t0

apt, sqfpxs, sqdpgn ´ gqpsq

›

›

›

›

ď ε, for all n ě n and t P rt0, t0 ` σs.

Assume now that t P rt0, t0 ` σs and fix ε ą 0. By the uniform convergence, there

exists ñ sufficiently large such that for n ą ñ, we have:

|anpt, sq ´ apt, sq| ă ε, pt, sq P rt0, t0 ` σs
2 (6.0.5)

}fnpxs, sq ´ fpxs, sq} ă ε, px, sq P Gprt0 ´ r, t0 ` σs,Rn
q ˆ rt0, t0 ` σs (6.0.6)

|gnpsq ´ gpsq| ă ε, s P rt0, t0 ` σs (6.0.7)

}ϕnpsq ´ ϕpsq} ă ε. s P rt0, t0 ` σs. (6.0.8)

Suppose y : rt0, t0 ` σs Ñ Rn is a solution of (6.0.4), we shall prove that y “ x.

For t P rt0, t0 ` σs, we have

xnptq “ ϕnp0q `

ż t

t0

anpt, sqfnpxs, sqdgnpsq
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and

yptq “ ϕp0q `

ż t

t0

apt, sqfpys, sqdgpsq.

Therefore, for t P rt0, t0 ` σs and n ą maxtn, ñu, we have

}xnptq ´ yptq} “

›

›

›

›

ϕnp0q `

ż t

t0

anpt, sqfnppxnqs, sqdgnpsq ´ ϕp0q ´

ż t

t0

apt, sqfpys, sqdgpsq

›

›

›

›

(6.0.8)
ď ε `

›

›

›

›

ż t

t0

anpt, sqfnppxnqs, sqdgnpsq ´

ż t

t0

anpt, sqfnpys, sqdgnpsq

›

›

›

›

`

›

›

›

›

ż t

t0

anpt, sqfnpys, sqdgnpsq ´

ż t

t0

apt, sqfnpys, sqdgnpsq

›

›

›

›

`

›

›

›

›

ż t

t0

apt, sqfnpys, sqdgnpsq ´

ż t

t0

apt, sqfpys, sqdgnpsq

›

›

›

›

`

›

›

›

›

ż t

t0

apt, sqfpys, sqdgnpsq ´

ż t

t0

apt, sqfpys, sqdgpsq

›

›

›

›

.

Using conditions (B5) and (B6), the estimates (6.0.5), (6.0.6) and Theorem 1.2.7, we

obtain, for n ą maxtn, ñu and t P rt0, t0 ` σs,

}xnptq ´ yptq}

ď

ż t

t0

|anpt, sq|Lnpsq}xns ´ ys}8dgnpsq ` ε

ż t

t0

Mnpsqdgnpsq ` ε

›

›

›

›

ż t

t0

apt, sqdgnpsq

›

›

›

›

` 2ε

ď

ż t

t0

|anpt, sq|Lnpsq}xns ´ ys}8dgnpsq ` εpM̃G ` ÃG ` 2q.

Therefore,

}xnptq ´ yptq} ď

ż t

t0

|anpt, sq|Lnpsq sup
θPr´r,0s

}xnps ` θq ´ yps ` θq}dgnpsq

alguemmeajudaeuvoumorreeeealoubrasilsos ` εpM̃G ` ÃG ` 2q

“

ż t

t0

|anpt, sq|Lnpsq sup
θPrs´r,ss

}xnpθq ´ ypθq}dgnpsq ` εpM̃G ` ÃG ` 2q

ď ÃL̃

ż t

t0

sup
θPrs´r,ss

}xnpsq ´ ypsq}dgnpsq ` εpM̃G ` ÃG ` 2q.

(6.0.9)

Since the right–hand side of (6.0.9) is nondecreasing, we have



112

sup
ηPrt´r,ts

}xnpηq ´ ypηq} ď ÃL̃

ż t

t0

sup
θPrs´r,ss

}xnpsq ´ ypsq}dgnpsq ` εpM̃G` ÃG` 2q (6.0.10)

Using Gronwall Inequality for Stieltjes integrals (Lemma 1.2.10), we obtain

}xnptq ´ yptq} ď εpM̃G ` ÃG ` 2qeÃL̃G, (6.0.11)

and the result follows.

In the sequel, we state the well-known Helly’s First Choice Theorem. It will be im-

portant to prove our next result.

Theorem 6.0.2 ([55, Helly’s First Choice Theorem]). Let an infinite family of functions

F “ tfpxqu be defined on the segment ra, bs. If all functions of the family and the total

variation of all functions of the family are bounded by a single number

}fpxq} ď K, varbapfq ď K,

then there exists a sequence tfnpxqu in the family F which converges at every point of

ra, bs to some function ϕpxq of finite variation.

The next result on continuous dependence allows us to construct a sequence of func-

tions formed by solutions of a sequence of problems that converges to our solution of a

limiting problem. It is a type of “inverse” problem. This result is very useful to prove

nonperiodic averaging principles, since we need to deal with some convergences and con-

tinuous dependence results to get those results (see [60]). The proof of the next result is

inspired by [60, Theorem 8.6].

Theorem 6.0.3. For each n P N, let r ą 0, ϕn P Gpr´r, 0s,Rnq and consider the sequence

of problems:
$

’

&

’

%

xptq “ ϕnp0q `

ż t

t0

anpt, sqfnpxs, sqdgpsq, t ě t0

xt0 “ ϕn

(6.0.12)

where σ ą 0, fn : Gpr´r, 0s,Rnq ˆ rt0, t0 ` σs Ñ Rn, an : rt0, t0 ` σs ˆ rt0, t0 ` σs Ñ

R, g : rt0, t0 ` σs Ñ R satisfy conditions (B1)–(B6), with Mnptq “ Mptq, Lnptq “ Lptq

for all n P N and t P rt0, t0 ` σs.
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Let us also assume that tanu8
n“1 is uniformly bounded in compact sets and that there

exist functions a : rt0, t0 ` σs ˆ rt0, t0 ` σs Ñ R and f : Gpr´r, 0s,Rnq ˆ rt0, t0 ` σs Ñ Rn

satisfying conditions (B1)–(B6) such that:

lim
nÑ8

ϕn “ ϕ uniformly on r´r, 0s,

lim
nÑ8

anpt, sq “ apt, sq uniformly on rt0, t0 ` σs
2,

lim
nÑ8

fnpxs, sq “ fpxs, sq uniformly on Gpr´r, 0s,Rn
q ˆ rt0, t0 ` σs,

for every x P Gprt0 ´ r, t0 ` σs,Rnq, t, s P rt0, t0 ` σs.

Let x0 : rt0 ´ r, t0 ` σs Ñ Rn be the unique solution of
$

’

&

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqfpxs, sqdgpsq, t ě t0

xt0 “ ϕ.

(6.0.13)

Then there exists a sequence of solutions xn : rt0 ´ r, t0 ` σs Ñ Rn of (6.0.12) such that

xn Ñ x as n Ñ 8.

Proof. The existence of solutions of (6.0.12) is guaranteed by Theorem 3.1.9, since all

hypotheses are satisfied. Thus, it remains to prove that the sequence of solutions txnu8
n“1

of (6.0.12) converges to x0.

Since tanu8
n“1 is uniformly bounded in compact sets, there exists a regulated function

â : rt0, t0 `σs ˆ rt0, t0 `σs Ñ R, nondecreasing with respect to the first variable such that

âpt, sq ě anpt, sq for every pt, sq P rt0, t0 ` σs ˆ rt0, t0 ` σs and n P N.

Define the function h : rt0, t0 ` σs Ñ R by

hptq : “

ż t

t0

cMpsqdgpsq `

ż t0`σ

t0

âpt, sqMpsqdgpsq. (6.0.14)

The function h is nondecreasing, since g is nondecreasing and for s, t P rt0, t0 `σs, s ą t

}xnpsq ´ xnptq} ď hpsq ´ hptq by assumptions (B1)–(B6) and using the fact that xn is a

solution of (6.0.12). Therefore, it follows that xn is of bounded variation and the total

variation of xn, V t0`σ
t0 pxnq, satisfies V t0`σ

t0 pxnq ď hpt0 ` σq ´ hpt0q for all n P N.

Since ϕn Ñ ϕ uniformly and, for each n P N, ϕn is a regulated function, it follows that

ϕ is also regulated (because it is the uniform limit of regulated functions). Hence, there

exists a positive constant K such that }ϕnptq} ď K and }ϕptq} ď K for all t P r´r, 0s and

n P N. Therefore, for t ě t0
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}xnptq} “ }ϕnp0q} `

›

›

›

›

ż t

t0

anpt, sqfnpxns , sqdgpsq

›

›

›

›

ď K `

ż t

t0

AMpsqdgpsq

ď K `

ż t0

t0

`σAMpsqdgpsq,

where A is a uniform bound of tanu8
n“1.

Notice also that if t P rt0 ´ r, t0s, we can write t “ t0 ` θ, where θ P r´r, 0s. Hence, in

this case, }xnptq} “ }xnpt0 ` θq} “ }pxnqt0pθq} “ }ϕnpθq} ď K, θ P r´r, 0s

Since the function M is regulated, it is also integrable in the sense of Henstock–

Kurzweil–Stieltjes, then, for each n P N, the functions txnu8
n“1 is uniformly bounded

on rt0, t0 ` σs. Hence, by Helly’s First Choice Theorem (Theorem 6.0.2), txnu8
n“1 has a

subsequence that converges to a function y. By Theorem 6.0.1 and from the uniqueness

of solutions, we have that y must be x0, and we finish the proof of this Theorem.

6.1 Continuous dependence on impulsive equations

In this section, we will show that we can use the correspondence obtained in Section

2.1 to obtain the analogues of Theorem 6.0.1 and Theorem 6.0.3 also hold for impulsive

functional Volterra–Stieltjes integral equations.

In this section, let the functions f, fn, a, an, g and gn be defined as in the first part of

this chapter. Also, let us assume that conditions (B1)–(B6) are satisfied. We will also

consider the functions f̃ , f̃n, g̃ and g̃n which will be defined in the same manner that it

was done in Section 2.1, that is:

• f̃ : Gpr´r, 0s,Rnq ˆ rt0, t0 ` σs Ñ Rn by

f̃py, τq “

$

’

&

’

%

fpy, τq, τ P rt0, t0 ` σqztt1, . . . , tmu,

Ikpyp0qq, τ “ tk, k P t1, . . . ,mu,
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• g̃ : rt0, t0 ` σs Ñ R be given by

g̃pτq “

$

’

’

’

’

’

&

’

’

’

’

’

%

gpτq, τ P rt0, t1s,

gpτq ` k, τ P ptk, tk`1s, k P t1, . . . ,m ´ 1u,

gpτq ` m, τ P ptm, t0 ` σs.

The functions f̃n and g̃n are defined analogously. The next theorem shows that we can

obtain the analogous result as in Theorem 6.0.1 to impulsive functional Volterra–Stieltjes

integral equations.

Theorem 6.1.1. For each n P N, let r ą 0 and ϕn P Gpr´r, 0s,Rnq. Consider the

following sequence of equations
$

’

’

’

&

’

’

’

%

xptq “ ϕnp0q `

ż t

t0

anpt, sqfnpxs, sqdgnpsq `
ÿ

kPt1,...,mu
t0ătkăt

anpt, tkqIkpxptkqq, t ě t0

xt0 “ ϕn,

(6.1.1)

where ttkumk“1 are the moments of impulses and each tk P rt0, t0 ` σs.

Moreover, assume that

lim
nÑ8

anpt, sq “ apt, sq uniformly on rt0, t0 ` σs
2,

lim
nÑ8

fnpxs, sq “ fpxs, sq uniformly on Gpr´r, 0s,Rn
q ˆ rt0, t0 ` σs,

lim
nÑ8

gnpsq “ gpsq uniformly on rt0, t0 ` σs,

lim
nÑ8

ϕnptq “ ϕptq uniformly on r´r, 0s,

where fn, f : Gpr´r, 0s,Rnq ˆ rt0, t0 ` σs Ñ Rn, an, a : rt0, t0 ` σs ˆ rt0, t0 ` σs Ñ R,

gn, g : rt0, t0 ` σs Ñ R and ϕn, ϕ : r´r, 0s Ñ Rn. Assume also that the functions ϕ and ϕn
are regulated and a, f, g, an, fn and gn satisfy the conditions (B1)–(B6) for each n P N, and

that the sequences tanpt, squnPN, tMnpsqunPN and tLpsqunPN are, each of them, uniformly

bounded by constants Ã, M̃ and L̃, respectively, for t, s P rt0, t0 ` σs.

Let xn : rt0 ´ r, t0 ` σs Ñ Rn be the unique solution of (6.1.1) and assume that

lim
nÑ8

xnptq “ xptq, t P rt0 ´ r, t0 ` σs.
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Then x : rt0 ´ r, t0 ` σs Ñ Rn is the unique solution of
$

’

’

’

&

’

’

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqfpxs, sqdgpsq `
ÿ

kPt1,...,mu
t0ătkăt

apt, tkqIkpxptkqq, t ě t0

xt0 “ ϕ.

(6.1.2)

Proof. Using Theorem 2.1.2 and by hypotheses, we know that xn is also the unique

solution of
$

’

&

’

%

xptq “ ϕnp0q `

ż t

t0

anpt, sqf̃npxs, sqdg̃npsq, t ě t0

xt0 “ ϕn,

(6.1.3)

for each n P N.

In view of the definitions of an, f̃n and g̃n, it is clear that these functions converge to

a, f̃ and g̃, respectively, uniformly. Therefore, we can use Theorem 6.0.1 to obtain that x

is the solution of
$

’

&

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqf̃pxs, sqdg̃psq, t ě t0

xt0 “ ϕ,

(6.1.4)

since limnÑ8 xnptq “ xptq, t P rt0 ´ r, t0 ` σs.

Using Theorem 2.1.2 once again, we conclude that x is the unique solution of
$

’

’

’

&

’

’

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqfpxs, sqdgpsq `
ÿ

kPt1,...,mu
t0ătkăt

apt, tkqIkpxptkqq, t ě t0

xt0 “ ϕ,

(6.1.5)

as desired.

Proceeding in a similar manner as in the previous theorem, we can also obtain an

analogue result to Theorem 6.0.3 for the corresponding equations in the impulsive case.

Theorem 6.1.2. For each n P N, let r ą 0, ϕn P Gpr´r, 0s,Rnq and consider the sequence

of problems:
$

’

’

’

&

’

’

’

%

xptq “ ϕnp0q `

ż t

t0

anpt, sqfnpxs, sqdgpsq `
ÿ

kPt1,...,mu
t0ătkăt

anpt, tkqIkpxptkqq, t ě t0

xt0 “ ϕn

(6.1.6)
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where ttkumk“1 are the moments of impulses and each tk P rt0, t0`σs. Also, fn : Gpr´r, 0s,Rnqˆ

rt0, t0 ` σs Ñ Rn, an : rt0, t0 ` σs ˆ rt0, t0 ` σs Ñ R, g : rt0, t0 ` σs Ñ R satisfy conditions

(B1)–(B6), with Mnptq “ Mptq, Lnptq “ Lptq for all n P N and t P rt0, t0 ` σs. Let us

also assume that tanu8
n“1 is uniformly bounded in compact sets and that there exist func-

tions a : rt0, t0 ` σs ˆ rt0, t0 ` σs Ñ R and f : Gpr´r, 0s,Rnq ˆ rt0, t0 ` σs Ñ Rn satisfying

conditions (B1)–(B6) such that:

lim
nÑ8

ϕn “ ϕ uniformly on r´r, 0s,

lim
nÑ8

anpt, sq “ apt, sq uniformly on rt0, t0 ` σs
2,

lim
nÑ8

fnpxs, sq “ fpxs, sq uniformly on Gpr´r, 0s,Rn
q ˆ rt0, t0 ` σs,

for every x P Gprt0 ´ r, t0 ` σs,Rnq, t, s P rt0, t0 ` σs.

Let x0 : rt0 ´ r, t0 ` σs Ñ Rn be the unique solution of
$

’

’

’

&

’

’

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqfpxs, sqdgpsq `
ÿ

kPt1,...,mu
t0ătkăt

apt, tkqIkpxptkqq, t ě t0

xt0 “ ϕ.

(6.1.7)

Then there exists a sequence of solutions xn : rt0 ´ r, t0 ` σs Ñ Rn of (6.1.6) such that

xn Ñ x0 as n Ñ 8.

Proof. By Theorem 2.1.2 and by hypotheses, x0 is also the unique solution of
$

’

&

’

%

xptq “ ϕp0q `

ż t

t0

apt, sqf̃pxs, sqdg̃psq, t ě t0

xt0 “ ϕ.

(6.1.8)

By hypothesis and the definitions of a, an, f̃ , f̃n, g̃ and g̃n, it follows that an Ñ a,

f̃n Ñ f̃ and g̃n Ñ g̃ uniformly.

Hence, by Theorem 6.0.3, there exists a sequence of solutions xn : rt0 ´ r, t0 `σs Ñ Rn

of

$

’

&

’

%

xptq “ ϕnp0q `

ż t

t0

anpt, sqf̃npxs, sqdg̃psq, t ě t0

xt0 “ ϕn

(6.1.9)

such that xn Ñ x0. By Theorem 2.1.2, once again, xn, for each n P N, is also a solution

of the equation (6.1.6), which concludes the proof.
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6.2 Continuous dependence on time scales

In this section, we want to prove analogues results for a sequence of functional Volterra–

Stieltjes ∆- integral equations on time scales.

Assume the following conditions concerning the functions f : Gpr´r, 0sT,Rnqˆrt0, t0 `

σsT Ñ Rn and a : rt0, t0 ` σs2
T Ñ R.

(C1) The function a : rt0, t0 `σs2
T Ñ R is nondecreasing with respect to the first variable,

regulated with respect to the second variable and rd–continuous.

(C2) The Henstock–Kurzweil ∆–integral
ż s2

s1

apτ, sqfpxs, sq∆s

exists for each time scale interval rs1, s2sT Ă rt0, t0 `σsT, x P Gprt0 ´ r, t0 `σsT,Rnq,

τ P rt0, t0 ` σsT.

(C3) There exists a Henstock–Kurzweil ∆-integrable function M1 : rt0, t0 ` σsT Ñ R`

such that
›

›

›

›

›

›

s2
ż

s1

pc1aps2, sq ` c2aps1, sqqfpxs, sq∆s

›

›

›

›

›

›

ď

s2
ż

s1

M1psq |c1aps2, sq ` c2aps1, sq| ∆s,

for all x P Gprt0 ´ r, t0 ` σsT,Rnq, c1, c2 P R and s1, s2 P rt0, t0 ` σsT, s1 ď s2.

(C4) There exists a regulated function L1 : rt0, t0 ` σsT Ñ R` such that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s2
ż

s1

aps2, sqrfpxs, sq ´ fpzs, sqs∆s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

s2
ż

s1

L1psq |aps2, sq| }xs ´ zs}8∆s,

for all x, z P Gprt0 ´ r, t0 ` σsT,Rnq and s1, s2 P rt0, t0 ` σsT, s1 ď s2.

Theorem 6.2.1. Let Tn be a sequence of time scales. For some σ ą 0 and each n P N,

assume that t0, t0 ` σ P T. Consider the following sequence of equations:
$

’

&

’

%

xptq “ ϕp0q `

ż t

t0

anpt, sqfnpx˚
s , sq∆s, t P rt0, t0 ` σsTn

xptq “ ϕptq, t P rt0 ´ r, t0sTn ,

(6.2.1)

where ϕn P Gprt0 ´r, t0sTn ,Rnq, fn : Gpr´r, 0sTn ,Rnqˆrt0, t0 `σsTn Ñ Rn and an : rt0, t0 `

σsTn ˆ rt0, t0 ` σsTn Ñ R. Also define the functions gn : rt0, t0 ` σs Ñ Tn by gnpsq “ s˚

and g : rt0, t0 ` σs Ñ T by gpsq “ s˚.
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Moreover, assume that

lim
nÑ8

ϕ˚
nptq “ ϕ˚

ptq uniformly on rt0 ´ r, t0s, (6.2.2)

lim
nÑ8

a˚˚
n pt, sq “ a˚˚

pt, sq uniformly on rt0, t0 ` σs, (6.2.3)

lim
nÑ8

f˚
n pxs, sq “ f˚

pxs, sq uniformly on Gpr´r, 0s,Rn
q ˆ rt0, t0 ` σs, (6.2.4)

lim
nÑ8

gnpsq “ gpsq uniformly on rt0, t0 ` σs (6.2.5)

where f : Gpr´r, 0sT,Rnqˆrt0, t0 `σsT Ñ Rn, a : rt0, t0 `σsTˆrt0, t0 `σsT Ñ R, g : rt0, t0 `

σsT Ñ T and the functions a, f, an and fn satisfy the conditions (C1)–(C4) for each n P N.

Let xn : rt0 ´ r, t0 ` σsTn Ñ Rn be the solution of
$

’

&

’

%

xptq “ ϕnp0q `

ż t

t0

anpt, sqfnpx˚
s , sq∆s t P rt0, t0 ` σsTn

xptq “ ϕnptq, t P rt0 ´ r, t0sTn

(6.2.6)

and assume that

lim
nÑ8

xnptq “ xptq. (6.2.7)

Then x : rt0 ´ r, t0 ` σsT Ñ Rn is the solution of
$

’

&

’

%

xptq “ ϕp0q `

ż t

0
apt, sqfpx˚

s , sq∆s t P rt0, t0 ` σsT

xptq “ ϕptq, t P rt0 ´ r, t0sT.

(6.2.8)

Proof. First, we call the reader’s attention to the fact that ϕ˚
nptq “ ϕnpt˚q, where t˚ “

inftξ P Tn : ξ ě tu, whereas ϕ˚ptq “ ϕpt˚q, where t˚ “ inftξ P T : ξ ě tu. Analogously, we

define the functions a˚˚, a˚˚
n , f

˚, and f˚
n .

Notice that, by Theorem 2.2.1, x˚
n is a solution of

$

’

&

’

%

xptq “ xpt0q `

ż t

t0

a˚˚
n pt, sqf˚

n pxs, sq dgnpsq t P rt0, t0 ` σs

xt0 “ pϕ˚
nqt0 .

(6.2.9)

Since for all t P rt0 ´ r, t0 ` σsT, limnÑ8 xnptq “ xptq, it follows that

lim
nÑ8

x˚
nptq “ x˚

ptq,

where x˚ : rt0 ´ r, t0 ` σs Ñ Rn and x˚
n : rt0 ´ r, t0 ` σs Ñ Rn. Hence, by Theorem 6.0.1,

we obtain that x˚ is a solution of
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$

’

&

’

%

xptq “ xpt0q `

ż t

t0

a˚˚
pt, sqf˚

px˚
s , sqdgpsq, t P rt0, t0 ` σs

xt0 “ pϕ˚qt0 .

(6.2.10)

Using Theorem 2.2.1 again, we obtain that x : rt0 ´ r, t0 ` σsT Ñ Rn is a solution of
$

’

&

’

%

xptq “ xpt0q `

ż t

t0

apt, sqfpx˚
s , sq∆s, t P rt0, t0 ` σsT,

xptq “ ϕptq, t P rt0 ´ r, t0sT,

(6.2.11)

as desired, proving the result.

Theorem 6.2.2. Let T be a time scale and let Tn be a sequence of time scales such that

t0, t0 ` σ P T and t0, t0 ` σ P Tn. For each n P N, consider the following sequence of

equations:
$

’

&

’

%

xptq “ ϕnp0q `

ż t

t0

anpt, sqfnpx˚
s , sq∆s, t P rt0, t0 ` σsTn

xptq “ ϕnptq, t P rt0 ´ r, t0sTn ,

(6.2.12)

where ϕn P Gprt0 ´ r, t0s,Rnq, fn : Gpr´r, 0sTn ,Rnq ˆ rt0, t0 ` σsTn Ñ Rn and an : rt0, t0 `

σs2
Tn

Ñ R. Also define the functions gn : rt0, t0`σs Ñ Tn by gnpsq “ s˚ and g : rt0, t0`σs Ñ

T by gpsq “ s˚.

Moreover, assume that, for t, s P T

lim
nÑ8

ϕ˚
nptq “ ϕ˚

ptq uniformly on rt0 ´ r, t0s, (6.2.13)

lim
nÑ8

a˚˚
n pt, sq “ a˚˚

pt, sq uniformly on rt0, t0 ` σs
2, (6.2.14)

lim
nÑ8

f˚
n pxs, sq “ f˚

pxs, sq uniformly on Gpr´r, 0s,Rn
q ˆ rt0, t0 ` σs, (6.2.15)

lim
nÑ8

gnpsq “ gpsq uniformly on rt0, t0 ` σs, (6.2.16)

where f : Gpr´r, 0s,Rnq ˆ rt0, t0 ` σsT Ñ Rn, a : rt0, t0 ` σs2
T Ñ R, g : rt0, t0 ` σs Ñ T.

Assume also that the functions a, f, an and fn satisfy the conditions (C1)–(C4) for each

n P N and that there exists a nondecreasing left continuous function ĝ : R Ñ R, such that

the conditions (B5) and (B6) can be rewritten as:

(B5) For each n P N, there exist regulated functions M,Mn : rt0, t0 ` σs Ñ R such that
›

›

›

›

›

›

τ2
ż

τ1

pc1apτ2, sq ` c2apτ1, sqqfpys, sqdgpsq

›

›

›

›

›

›

ď

τ2
ż

τ1

pc1apτ2, sq ` c2apτ1, sqqMpsqdgpsq
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and
›

›

›

›

›

›

τ2
ż

τ1

pc1nanpτ2, sq ` c2nanpτ1, sqqfnpys, sqdgnpsq

›

›

›

›

›

›

ď

τ2
ż

τ1

pc1nanpτ2, sq`c2nanpτ1, sqqMnpsqdĝpsq,

for all y P Gprt0 ´ r, t0 ` σs,Rnq, all c1, c2, c1n , c2n P R and all t0 ď τ1 ď τ2 ď t0 ` σ.

(B6) There exist regulated functions L,Ln : rt0, t0 ` σs Ñ R` such that

›

›

›

›

›

›

τ2
ż

τ1

apτ2, sqrfpys, sq ´ fpzs, sqsdgpsq

›

›

›

›

›

›

ď

τ2
ż

τ1

|apτ2, sq|Lpsq }ys ´ zs}8
dgpsq

and
›

›

›

›

›

›

τ2
ż

τ1

anpτ2, sqrfnpys, sq ´ fnpzs, sqsdgnpsq

›

›

›

›

›

›

ď

τ2
ż

τ1

|apτ2, sq|Lnpsq }ys ´ zs}8
dĝpsq,

for all y, z P Gprt0 ´ r, t0 ` σs,Rnq, and all t0 ď τ1 ď τ2 ď t0 ` σ.

In this case, let x : rt0, t0 ` σsT Ñ Rn be the solution of
$

’

&

’

%

xptq “ ϕp0q `

ż t

0
apt, sqfpx˚

s , sq∆s t P rt0, t0 ` σsT

xptq “ ϕptq, t P rt0 ´ r, t0sT.

(6.2.17)

Then there exists a sequence of solutions xn : rt0 ´ r, t0 ` σsTn Ñ Rn of (6.2.12) such that

xn Ñ x as n Ñ 8.

Proof. Notice that, by Theorem 2.2.1, x˚ : rt0 ´ r, t0 ` σs Ñ Rn is a solution of
$

’

&

’

%

xptq “ xpt0q `

ż t

t0

a˚˚
pt, sqf˚

pxs, sq dgpsq, t P rt0, t0 ` σs

xt0 “ ϕ˚
t0 .

(6.2.18)

Consider the following sequence of problems:
$

’

&

’

%

x˚ptq “ x˚pt0q `

ż t

t0

a˚˚
n pt, sqf˚

n px˚
s , sq dgnpsq, t P rt0, t0 ` σs

x˚
t0 “ pϕ˚

nqt0 .

(6.2.19)

By Theorem 6.0.3, the uniform limits and considering the function h defined by

hptq : “

ż t

t0

cMpsqdĝpsq `

ż t0`σ

t0

âpt, sqMpsqdĝpsq, (6.2.20)
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we conclude that the sequence of solutions of (6.2.19) converges to the solution of (6.2.18).

Now, using Theorem 2.2.1 once again to go back to the original sequence of problems

on time scales, we obtain that the sequence of solutions of (6.2.12) converges to the

solution of (6.2.17), proving the desired result.
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