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ABSTRACT: This paper further develops the statistical inference procedure of the

exponentiated discrete Weibull distribution (EDW) for data with the presence of

censoring. This generalization of the discrete Weibull distribution has the advantage

of being suitable to model non-monotone failure rates, such as those with bathtub and

unimodal distributions. Inferences about EDW distribution are presented using both

frequentist and bayesian approaches. In addition, the classical Likelihood Ratio Test

and a Full Bayesian Significance Test (FBST) were performed to test the parameters of

EDW distribution. The method presented is applied to simulated data and illustrated

with a real dataset regarding patients diagnosed with head and neck cancer.
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bayesian significance test (FBST)

1 Introduction

The Weibull distribution is widely used to model survival data. This
popularity is due to its versatility and relative simplicity (RINNE, 2008). The
Weibull distribution and its generalizations have been applied over the years in
survival analysis when the data are continuous. However, in some cases the data are
discrete. This can arise, for example, when the survival time is measured in months,
cycles or counts. It is not always acceptable to use a continuous model to analyze
discrete data. To overcome this problem, Nakagawa and Osaki (1975) introduced
the discrete Weibull distribution (DW), which models discrete data with monotone
(increasing or decreasing) failure rates (more details on the discretization of Weibull
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distribution can be seen in Vila et al. (2019)). Nevertheless, the Nakagawa and
Osaki’s DW distribution does not have a reasonable parametric fit for phenomena
that present non-monotone failure rates, such as those with bathtub or unimodal
distribution.

In recent years, new families of distributions for continuous data have been
proposed based on modifications of the Weibull distribution to deal with bathtub-
shaped or unimodal failure rates. An example is the exponentiated Weibull
distribution introduced by Mudholkar and Srivastava (1993), which is part of the
family of exponentiated distributions introduced by Gupta and Kundu (2001). An
analog for discrete data of the exponentiated Weibull distribution was introduced
by Nekoukhou and Bidram (2015). However, inferences about the parameters of
the exponentiated discrete Weibull distribution (EDW) have only been presented
for uncensored data.

This paper formulates the EDW model in a context of survival analysis,
allowing the presence of censored data in the inference process. The inferences are
made according to the frequentist and bayesian approaches. The methods developed
are illustrated with simulated data and a real dataset on survival time of patients
suffering from head and neck cancer. All the simulations and estimates were carried
out using the free R software (R CORE TEAM, 2019).

2 Exponentiated discrete Weibull model

Let X be a continuous random variable. The corresponding discrete variable
is denoted by T = [X], where [X] represents “the integer part of X”.

By considering that, X ∼ Weibull(η, β) the cumulative distribution function
of the discrete Weibull distribution (DW) according to Nakagawa and Osaki (1975)
is given by:

Fdw(t) = 1− q(t+1)β , t = 0, 1, 2, . . . ,

where q = exp
{
−1
ηβ

}
, 0 < q < 1 and β > 0 is the shape parameter.

The cumulative distribution function of the exponentiated discrete Weibull
distribution (EDW) can be expressed by:

Fedw(t) = [Fdw(t)]γ

=
[
1− q(t+1)β

]γ
, t = 0, 1, 2, . . . . (1)

Here, γ > 0 is the shape parameter, which can also be called the resilience parameter
(NEKOUKHOU; BIDRAM, 2015).

Consequently, the EDW has probability distribution given by:

pedw(t) =
[
1− q(t+1)β

]γ
−
[
1− qt

β
]γ
, t = 0, 1, 2, . . . . (2)

where γ > 0, β > 0 and 0 < q < 1.
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The discrete Weibull distribution (DW), Exponentiated geometric distribution
(EG), geometric distribution (G), Exponentiated discrete Rayleigh distribution
(EDR) and discrete Rayleigh distribution (DR) are special cases of the EDW
distribution. The EDW distribution reduces to:

• DW distribution, if γ = 1;

• EG distribution, if β = 1;

• G distribution, if γ = 1 and β = 1;

• EDR distribution, if β = 2;

• DR distribution, if γ = 1 and β = 2 (NEKOUKHOU; BIDRAM, 2015).

For illustration of the special cases of EDW distribuition, Figure 1 shows the
probability distribution for different values of q, β and γ.

The survival function of the EDW distribution is expressed by:

Sedw(t) = 1−
[
1− q(t+1)β

]γ
, t = 0, 1, 2, . . . . (3)

Through equations (2) and (3), the failure rate function of the EDW
distribution is defined by:

hedw(t) =
pedw(t)

Sedw(t) + pedw(t)

=

[
1− q(t+1)β

]γ
−
[
1− qtβ

]γ
1−

[
1− qtβ

]γ , t = 0, 1, 2, . . . . (4)

Figure 2 presents the failure rate graph of the EDW distribution for different
values of q, β and γ.

One of the advantages of working with this generalization of the DW
distribution is the fact it provides a parametric fit that allows working with various
types of failure rates described in the literature.

Figure 2 shows that depending on the combination of parameters, the failure
rate function assumes increasing, decreasing, bathtub or unimodal behavior. Thus,
the EDW distribution is more flexible to fit data than the DW distribution, which
accommodates only monotone and constant failure rates.

An alternative way to find the EDW is first to exponentiated the continuous
Weibull distribution, obtaining the exponentiated Weibull distribution proposed
by Mudholkar and Srivastava (1993), and then to discretize the exponentiated
continuous Weibull to obtain the exponentiated discrete Weibull distribution.
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Figure 1 - Probability distribuition of the exponentiated discrete Weibull distribu-
tion for different values of q, β and γ.
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Figure 2 - Failure rate of the exponentiated discrete Weibull distribution for
different values of q, β and γ.
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3 Maximum likelihood estimators

Let t = (t1, t2, ..., tn), be a random sample observed from a population with
the probability distribution and survival function of the EDW defined in equations
(2) and (3). The vector of parameters θ is defined by θ = (q, β, γ) and δ =
(δ1, δ2, . . . , δn), where δi denotes the censoring indicator variable, which is equal to
1 if time ti is failure and 0 for right censoring according to Colosimo and Giolo
(2006). The likelihood function of the EDW is given by:

L(θ; t, δ) ∝
n∏
i=1

{[
1− q(ti+1)β

]γ
−
[
1− qt

β
i

]γ}δi {
1−

[
1− q(ti+1)β

]γ}(1−δi)
,(5)

where γ > 0, β > 0 and 0 < q < 1.
The log likelihood function is given by:

`(θ; t, δ) =

n∑
i=1

{
δi log

{[
1− q(ti+1)β

]γ
−
[
1− qt

β
i

]γ}}
+

n∑
i=1

{
(1− δi) log

{
1−

[
1− q(ti+1)β

]γ}}
+ c, (6)

where c is a constant that does not depend on θ.
Deriving (6) in relation to q, β and γ we obtain the likelihood equations

(Appendix A):

∂`(θ; t, δ)

∂q
,

∂`(θ; t, δ)

∂β
and

∂`(θ; t, δ)

∂γ
. (7)

The values of q̂, β̂ and γ̂ that satisfy equations (7) are the maximum likelikood
estimates (MLE) of the EDW distribution. Note that the solutions of equation (7)
cannot be obtained analytically. However, the MLE can be obtained numerically
through Newton-Raphson algorithm.

Since the parameters of the EDW distribution are limited in the parametric
spaces, i.e., γ > 0, β > 0 and 0 < q < 1 , it is necessary to perform a transformation
to make then unconstrained. Thus, for the parameter q we considered the log-
log transformation and for the parameters β and γ we considered the logarithmic
transformation. This causes the confidence intervals of q, β and γ to be given,
respectively, by: [

(q̂)
e
Z1−α/2

√
V̂ ar(û)

; (q̂)
e
−Z1−α/2

√
V̂ ar(û)

]
, (8)

where û = log [− log q̂],

[
β̂e−Z1−α/2

√
V̂ ar(v̂); β̂eZ1−α/2

√
V̂ ar(v̂)

]
, (9)
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where v̂ = log β̂, and[
γ̂e−Z1−α/2

√
V̂ ar(ŵ); γ̂eZ1−α/2

√
V̂ ar(ŵ)

]
, (10)

where ŵ = log γ̂ and Z1−α/2 is the quantile (1 − α/2) of a standard normal
distribution.

The estimates of the variances, V̂ ar(û), V̂ ar(v̂) and V̂ ar(ŵ), can be obtained
numerically by the delta method (CASELLA; BERGER, 2002).

4 Bayesian inference

In considering the likelihood function (5) and θ = (q, β, γ), since β > 0, γ > 0
and 0 < q < 1, we considered the following prior distributions for the parameters:
β ∼ Gamma(a1, b1), γ ∼ Gamma(a2, b2) and q ∼ Beta(a3, b3), where a1, a2, a3,
b1, b2 and b3 are known positive hyperparameters. Assuming independence of the
prior parameters, the joint posterior distribution of θ = (q, β, γ) is proportional to:

π(θ|t, δ) ∝ π(θ)L(θ; t, δ)

∝ βa1−1e−b1βγa2−1e−b2γqa3−1(1− q)b3−1
n∏
i=1

{[
1− q(ti+1)β

]γ
−
[
1− qt

β
i

]γ}δi {
1−

[
1− q(ti+1)β

]γ}(1−δi)
(11)

and the posterior conditional distributions are given by:

π(β|γ, q, t, δ) ∝ βa1−1e−b1β
n∏
i=1

{[
1−q(ti+1)β

]γ
−
[
1−qt

β
i

]γ}δi{
1−
[
1−q(ti+1)β

]γ}(1−δi)
,

π(γ|β, q, t, δ) ∝ γa2−1e−b2γ
n∏
i=1

{[
1−q(ti+1)β

]γ
−
[
1−qt

β
i

]γ}δi{
1−
[
1−q(ti+1)β

]γ}(1−δi)

and

π(q|γ, β, t, δ) ∝ qa3−1(1− q)b3−1
n∏
i=1

{[
1−q(ti+1)β

]γ
−
[
1−qt

β
i

]γ}δi{
1−
[
1−q(ti+1)β

]γ}(1−δi)
.

The posterior distribution (11) cannot be obtained analytically, but samples
from it can be obtained numerically through MCMC (Markov Chain Monte Carlo)
methods by applying steps of the Metropolis-Hastings algorithm (METROPOLIS
et al., 1953; HASTINGS, 1970).

The point and interval estimates of the parameters were obtained from the
posterior mean and its respective highest posterior density (HPD) interval. The
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predictive values of the survival function of the EDW distribution are given by:

Ŝ(t) =

∫ ∞
0

∫ ∞
0

∫ 1

0

P [T > t,θ|t, δ]dqdβdγ

=

∫ ∞
0

∫ ∞
0

∫ 1

0

(
1−

[
1− q(t+1)β

]γ)
π(θ|t, δ)dqdβdγ

= Eθ|t,δ

[
1−

[
1− q(t+1)β

]γ]
, t = 0, 1, 2, . . . , (12)

where θ = (q, β, γ) and π(θ|t, δ) is the posterior distribution given by (11).
Note that the expectancy in (12) can be easily obtained from the values

generated by the posterior distribution (11).
We performed hypothesis testing of the parameters of the EDW model by the

full bayesian significance test (FBST), which is based on the e-value (evidence of
the null hypothesis). To describe the FBST, the interest is to test a null hypothesis
H0 : θ ∈ Θ0, where Θ0 ⊂ Θ. Let Θ be the parametric space and θ = (q, β, γ) the
vector of parameters of the EDW distribution. The set tangent to H0 is:

TH0 = {θ ∈ Θ : π(θ|t, δ) > π(θ∗H0
|t, δ)},

where θ∗H0
is the vector of parameters that maximizes the posterior density,

π(θ|t, δ), under the null hypothesis H0. Hence, the proposed evidence measure
(the e-value) is defined by:

e-value(H0) = 1− P (θ ∈ TH0 |t, δ).

The e-value is the volume (probability) of the posterior density in the set of the
parametric spaces that consists of the points with posterior density smaller than the
maximum point of the density under the hypothesis (De BRAGANÇA PEREIRA
and STERN, 1999). More details about the FBST can be found in De Bragança
Pereira and Stern (1999) and Madruga et al. (2001).

5 Simulation study

This section presents the computational simulations and their results, which
were obtained with the R software. The objective of the simulations is to generate
survival times of the EDW distribution by the inversion method, considering a
random right censoring mechanism. In the same way as Brunello and Nakano
(2015), the censoring was incorporated in the samples independently of the survival
time by the censoring indicator variable generated by a Bernoulli distribution, with
the censoring percentages specified below.

We considered different scenarios for the simulation, considering the behavior
of the failure rate in the distribution under analysis, as depicted in Figure 2. Table
1 describes the scenarios chosen for the simulations.
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Table 1 - Scenarios used in the simulations
Scenario q β γ Failure rate

1 0.80 1.5 2.5 Increasing
2 0.90 0.5 0.8 Decreasing
3 0.99 2.0 0.3 Bathtub
4 0.50 0.5 6.0 Unimodal

The bias and mean square error (MSE) of the estimators of the exponentiated
discrete Weibull model were calculated from 10,000 Monte Carlo replicates
considering sample sizes of n = 30, 80, 100, 200 and 500 and censoring percentages
of 0%, 10% and 20%. Table 2 presents the estimated bias and MSE values for
each parameter according to Scenario 1, for different sample sizes and censoring
percentages.

Table 2 - Estimates of bias and MSE for Scenario 1

n Parameters

Scenario 1
q = 0.80, β = 1.5, γ = 2.5

Censoring Percentages
0% 10% 20%

Bias MSE Bias MSE Bias MSE

30
q -0.0041 0.0017 -0.0004 0.0022 0.0035 0.0028
β 0.0206 0.0284 -0.0218 0.0338 -0.0643 0.0441
γ 0.1303 0.0877 0.1419 0.0782 0.1529 0.0695

80
q -0.0048 0.0007 -0.0043 0.0012 -0.0021 0.0016
β 0.0003 0.0104 -0.0501 0.0157 -0.0971 0.0272
γ 0.0959 0.0545 0.1354 0.0739 0.1647 0.0599

100
q -0.0055 0.0007 -0.0049 0.0010 -0.0031 0.0014
β -0.0037 0.0806 -0.0531 0.0141 -0.1009 0.0252
γ 0.0925 0.0573 0.1317 0.0648 0.1659 0.0538

200
q -0.0049 0.0004 -0.0064 0.0008 -0.0046 0.0011
β -0.0060 0.0051 -0.0616 0.0106 -0.1076 0.0221
γ 0.0692 0.0461 0.1309 0.0780 0.1770 0.0655

500
q -0.0046 0.0004 -0.0071 0.0006 -0.0058 0.0008
β -0.0076 0.0032 -0.0666 0.0083 -0.1143 0.0197
γ 0.0541 0.0428 0.1246 0.0729 0.1751 0.0627

The results reported in Table 2 show the accuracy of the proposed model, since
the estimates of bias and MSE are small, even for relatively small samples (n = 30),
and the bias estimates tend to values near zero when the sample size increases.

Table 3 presents the estimated bias and MSE values for each parameter in
Scenario 2 for different sample sizes and censoring percentages
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Table 3 - Estimates of bias and MSE for Scenario 2

n Parameters

Scenario 2
q = 0.90, β = 0.5, γ = 0.8

Censoring Percentages
0% 10% 20%

Bias MSE Bias MSE Bias MSE

30
q -0.0042 0.0011 0.0052 0.0009 0.0149 0.0011
β 0.0092 0.0035 0.0079 0.0039 0.0072 0.0047
γ 0.0289 0.0157 0.0394 0.0107 0.0461 0.0094

80
q -0.0043 0.0005 0.0037 0.0005 0.0129 0.0007
β 0.0001 0.0013 -0.0032 0.0015 -0.0052 0.0019
γ 0.0246 0.0096 0.0389 0.0095 0.0479 0.0079

100
q -0.0045 0.0005 0.0030 0.0005 0.0127 0.0006
β -0.0014 0.0011 -0.0046 0.0014 -0.0065 0.0017
γ 0.0241 0.0095 0.0388 0.0102 0.0472 0.0083

200
q -0.0041 0.0004 0.0034 0.0005 0.0129 0.0005
β -0.0025 0.0008 -0.0059 0.0010 -0.0082 0.0011
γ 0.0184 0.0070 0.0363 0.0095 0.0483 0.0085

500
q -0.0035 0.0002 0.0041 0.0003 0.0134 0.0004
β -0.0031 0.0005 -0.0061 0.0007 -0.0084 0.0007
γ 0.0141 0.0042 0.0331 0.0059 0.0472 0.0053

It can be seen in Table 3 that the bias and MSE estimates are larger when
the sample is small and gradually decline as the sample increases, attesting to the
accuracy of the EDW model.

Table 4 refers to the estimated bias and MSE values for each parameter in
Scenario 3 for different sample sizes and censoring percentages.

Scenario 3 considers a bathtub-shaped failure rate. The estimated bias and
MSE values presented in Table 4 are very near zero irrespective of the sample size,
indicating the accuracy of the EDW model for this scenario.
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Table 4 - Estimates of bias and MSE for Scenario 3

n Parameters

Scenario 3
q = 0.99, β = 2.0, γ = 0.3

Censoring Percentages
0% 10% 20%

Bias MSE Bias MSE Bias MSE

30
q 0.0002 1× 10−5 0.0010 1× 10−5 0.0019 1× 10−5

β 0.0571 0.0079 0.0357 0.0047 0.0195 0.0029
γ 0.0157 0.0059 0.0377 0.0087 0.0615 0.0127

80
q 0.0006 2× 10−6 0.0014 5× 10−6 0.0026 1× 10−5

β 0.0378 0.0041 0.0184 0.0015 0.0126 0.0011
γ 0.0029 0.0019 0.0205 0.0029 0.0397 0.0047

100
q 0.0006 2× 10−6 0.0014 4× 10−6 0.0027 1× 10−5

β 0.0337 0.0034 0.01482 0.0011 0.0111 0.0008
γ 0.0015 0.0016 0.0187 0.0023 0.0366 0.0038

200
q 0.0005 1× 10−6 0.0014 3× 10−6 0.0028 9× 10−6

β 0.0244 0.0017 0.0071 0.0004 0.0089 0.0006
γ -0.0007 0.0008 0.0169 0.0013 0.0317 0.0023

500
q 0.0004 7× 10−7 0.0015 2× 10−6 0.0029 9× 10−6

β 0.0161 0.0008 0.0039 0.0001 0.0088 0.0005
γ -0.0018 0.0004 0.0152 0.0006 0.02787 0.0013

Table 5 contains the estimated bias and MSE values for each parameter in
Scenario 4 for different sample sizes and censoring percentages.

The estimated bias and MSE values presented in Table 5 are relatively small
and tend to decrease as the sample size increases, again confirming the accuracy of
the model.
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Table 5 - Estimates of bias and MSE for Scenario 4

n Parameters

Scenario 4
q = 0.50, β = 0.5, γ = 6.0

Censoring Percentages
0% 10% 20%

Bias MSE Bias MSE Bias MSE

30
q 0.0019 0.0042 0.0068 0.0046 0.0102 0.0051
β 0.0134 0.0053 -0.0002 0.0055 -0.0159 0.0061
γ 0.2590 0.1357 0.3222 0.1746 0.3836 0.2173

80
q -0.0049 0.0015 -0.0033 0.0016 -0.0017 0.0019
β 0.0016 0.0018 -0.0139 0.0021 -0.0302 0.0029
γ 0.2339 0.1020 0.3188 0.1562 0.4172 0.2273

100
q -0.0063 0.0012 -0.0051 0.0013 -0.0039 0.0015
β -0.0002 0.0014 -0.0156 0.0018 -0.0324 0.0027
γ 0.2314 0.1014 0.3179 0.1557 0.4257 0.2300

200
q -0.0074 0.0007 -0.0082 0.0007 -0.0082 0.0009
β -0.0023 0.0007 -0.0193 0.0011 -0.0365 0.0022
γ 0.2021 0.0937 0.3304 0.1667 0.4711 0.2594

500
q -0.0075 0.0004 -0.0105 0.0005 -0.0119 0.0006
β -0.0033 0.0003 -0.0216 0.0008 -0.0394 0.0019
γ 0.1608 0.0889 0.3589 0.1926 0.5293 0.3113

In general, the estimated bias and MSE values decline with increasing sample
size in the situation without censoring, since the likelihood function only relies on
the probability distribution. With censoring, bias will always exist, because the
“true” values of the parameters do not consider censoring, so it is expected for
bias to appear. It is natural for the estimates of bias and MSE to increase when
the censoring percentage is higher since these estimates are naturally biased by the
fact the fact that the likelihood function in the presence of censoring counts on the
contribution of the survival function. The accuracy of the EDW was demonstrated
in all the scenarios. Therefore, the model can be used when the failure rate is
increasing (Scenario 1) and decreasing (Scenario 2). Besides this, another advantage
is that the model can be used when the risk function has a bathtub (Scenario 3) or
unimodal (Scenario 4) distribution.

We also performed a sensitivity study of the choice of hyperparameters of the
prior distribution of γ, where γ ∼ Gamma(a2, b2). We chose γ because the main
inferences in this work are focused on this parameter. We kept the values of the
hyperparameters of the prior of β (a1 and b1) constant and equal to 0.001 and the
values of the hyperparameters of the prior of q (a3 and b3) constant and equal to 1.
In other words, we considered non-informative (diffuse) priors for the parameters β
and q. This sensitivity study considered Scenario 1 (q = 0.8, β = 1.5, γ= 2.5). The
estimates were based on a chain with size 10,000, considering a burn-in of 1,000.
The convergence of marginal posteriors was verified by Geweke Diagnostic. Table
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6 presents the results of a sensitivity study of the choice of hyperparameters of the
prior distribution of γ with the point estimates of the (posterior mean) of the EDW
model, the respective 95% HPD credible intervals and the e-value of the FBST for
hypothesis H01 : γ = 1 of Scenario 1, considering n = 200 and 0% censoring. Here
we decided to use a sample without censoring to allow better control of the true
value of the parameters in the samples.

Table 6 - Influence of the choice of hyperparameters a2 and b2 of the prior of γ on
the inference of the parameters of the EDW distribution for Scenario 1

a2 b2 Parameters Estimates
HPD Interval

95%
e-value

H01 : γ = 1

0.001 0.001
q 0.7271 [0.6291; 0.8176]

0.0274β 1.3971 [1.1965; 1.5808]
γ 3.1249 [2.1831; 4.1952]

0.01 0.01
q 0.7303 [0.6352; 0.8177]

0.0314β 1.4036 [1.2242; 1.6048]
γ 3.0869 [2.2014; 4.1546]

1 1
q 0.7435 [0.6535; 0.8282]

0.0677β 1.4303 [1.2360; 1.6050]
γ 2.9467 [2.1469; 3.9197]

1 2
q 0.7595 [0.6668; 0.8385]

0.1442β 1.4649 [1.2583; 1.6461]
γ 2.7866 [1.9944; 3.7073]

1 3
q 0.7752 [0.6952; 0.8495]

0.2115β 1.5002 [1.3026; 1.6839]
γ 2.6279 [1.9229; 3.3796]

3 1
q 0.7296 [0.6363; 0.8209]

0.0099β 1.4020 [1.2080; 1.5929]
γ 3.0963 [2.1644; 4.1045]

5 1
q 0.7156 [0.6200; 0.8089]

0.0002β 1.3739 [1.1869; 1.5578]
γ 3.2418 [2.2769; 4.3217]

Table 6 shows that the inference is robust when the prior variance is not
small. Note that the estimates of the parameters and their HPD intervals do not
vary greatly when the prior variance of γ is larger than 1, even when varying the
values of the prior mean. Recall that if γ ∼ Gamma(a2, b2), then the mean and
variance of γ are, respectively, a2/b2 and a2/b

2
2 (according to the parameterization

adopted here). However, in cases when the prior variance is small (informative
priors), and hence the prior mean is smaller than 1, the values of the posterior
mean of γ are smaller. In these cases it is possible to note the influence of the priors
on the posterior estimates of the parameters.

We performed the FBST for each pair of hyperparameters in Table 6,
considering the limit of 0.05 for the e-value. Note that in Scenario 1, the true value of
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the parameter adopted in the simulations (γ=2.5) is different than 1. Therefore, for
diffuse priors (priors with large variance), the inference is dominated by the sample,
and consequently hypothesis H01 : γ = 1 is rejected (e-value smaller than 0.05).
Besides this, as a2 increases (the prior mean of γ increases), the posterior mean
of γ tends to rise. Consequently, the e-value gradually declines, providing further
evidence to reject H01. In counterpart, when the prior distribution is informative
(small variance) and is centered in values smaller than 1, the estimate of γ tends to
decrease (more closely approaches H01), strengthening the evidence that hypothesis
H01 can be true.

6 Application to real data

Here we illustrate application of the EDW model with data from Efron (1988),
a study of 51 patients with head and neck cancer conducted by the Northern
California Oncology Group. The survival times were initially recorded in days,
but like in Efron (1988), we transformed the data in days into months, considering
1 month = 30.438 days. Therefore, the response variable T is the time in complete
months from the start of the study until the death of the patient or censoring. Here
T = 0 indicates the patient died within a month of the positive diagnosis. The
sample is composed of 51 observations, of which 9 (18%) are censored (Table 7).

Table 7 - Survival times in months of patients with head and neck cancer
Survival times in months

0, 1, 1, 2, 2, 2+, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6+, 7, 7, 7, 8,
8, 9, 9+, 9, 10+, 13, 13, 13, 14, 17, 17+, 19, 19, 36, 36+, 37, 40+, 44+, 46+, 46

Note: “+” indicates a censored observation.

Source: data from Efron (1988)

Table 8 presents the point and interval estimates of the parameters of the EDW
model for the data in Table 7 according to the classic and bayesian approaches.
In the bayesian analysis, we adopted diffuse priors for the parameters, i.e., q ∼
Beta(1, 1), γ ∼ Gamma(0.001, 0.001) and β ∼ Gamma(0.001, 0.001). The bayesian
estimates were obtained through the empirical posterior distribution obtained via
MCMC, considering a chain size of 10,000 with burn-in of 1,000.

Table 8 - Estimates of the parameters of the EDW distribution for the data in Table
7

Parameters Frequentist Bayesian
MLE CI 95% Estimate HPD 95%

q 0.1647 (0.1375; 0.1942) 0.1935 (0.1579; 0.2452)
β 0.2893 (0.2519; 0.3321) 0.3485 (0.2888; 0.3542)
γ 18.813 (14.229; 24.873) 17.425 (13.142; 19.997)
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The point estimates (posterior means) of the parameters according to the
bayesian approach are near the MLE. However, the interval estimates obtained by
the bayesian approach (HPD interval) for the parameters β and γ have smaller
amplitude than the classic confidence intervals.

We calculated the estimates of the survival function according to the EDW,
DW, exponentiated geometric (EG) and geometric (G) distributions. These
functions were estimated by two approaches, frequentist and bayesian. Figure 3
shows the bayesian fit of these distributions to the data in Table 7. The results
according to the frequentist approach were similar.

(a) EDW distribuition (b) DW distribuition

(c) EG distribuition (d) G distribuition

Figure 3 - Bayesian fit of the EDW, DW, EG and G distributions for the survival
times (in months) of patients with head and neck cancer.
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It can be seen that the EDW distribution produces estimates nearest to the
Kaplan-Meier (K-M) estimates, indicating this model best fits the dataset. The
estimates obtained by the DW, EG and G distributions present larger deviations
in relation to the K-M estimate, suggesting they do not adequately fit this dataset
(Figure 3).

To check whether a simpler distribution (with fewer parameters) than the
EDW can be used, we tested the following hypotheses:

• H01: γ = 1: The DW distribution is adequate;

• H02: β = 1: The EG distribution is adequate; and

• H03: γ = 1 and β = 1: The G distribution is adequate.

We tested these hypotheses by the likelihood ratio test (LRT), considering 5%
significance, and by the FBST, considering a cutoff point of 5% for the e-value. The
results are reported in Table 9.

Table 9 - Hypothesis tests of the parameters of the EDW distribution
Hypothesis LRT FBST

χ2(df) p-value e-value
H01 : γ = 1 10.395 (1) 0.0013 0.0208
H02 : β = 1 10.997(1) 0.0009 0.0178
H03 : γ = 1 and β = 1 10.575(2) 0.0051 0.0178

Table 9 shows that hypotheses H01, H02 e H03 are rejected in the two
approaches (frequentist and bayesian). This indicates that the simpler distributions,
such as the DW and EG, which accommodate monotone failures, and the G
distribution, which accommodates constant failures, are not adequate for this
dataset.

Figure 4 presents the K-M estimate of the survival function and the point and
interval estimates of the survival function of the EDW distribution for the data
in Table 7. The classical confidence interval of the EDW distribution’s survival
function was obtained by the delta method and the bayesian credible interval was
obtained by the predictive distribution (12).

Figure 5 presents the estimate of the failure rate according to the EDW model
for the data on patients with head and neck cancer. Note that the failure rate has
unimodal behavior, which is in accordance with rejection of the adjustment of the
GE, DW and G distributions, which only accommodate monotone failure rates.
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(a) Frequentist (b) Bayesian

Figure 4 - Point and interval estimates of the survival function of the EDW
distribution for the data in Table 7, according to the frequentist and
bayesian approaches.

(a) Frequentist (b) Bayesian

Figure 5 - Estimates of the failure rate function of the EDW distribution for the
data in Table 7, according to the frequentist and bayesian approaches.
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Conclusions

The EDW distribution is very versatile, since it accommodates constant,
monotone (increasing and decreasing) and non-monotone (bathtub and unimodal)
failure rates. In this paper, the EDW distribution was formulated from
exponentialization (GUPTA; KUNDU, 2001) of the DW distribution of Nakagawa
and Osaki (1975). However, this distribution can also be characterized by
discretization of the exponentiated continuous Weibull distribution, presented by
Mudholkar and Srivastava (1993). Both procedures result in the same probability
distribution.

The EDW distribution reduces to the exponentiated geometric, discrete
Weibull, geometric, exponentiated discrete Rayleigh and discrete Rayleigh
distributions for determined fixed shape parameter values. This fact permitted
applying hypothesis testing of the shape parameters of the EDW distribution as a
model selection procedure. We considered the likelihood ratio test (LRT) and the
full bayesian significance test (FBST). Both these tests were useful to decide on the
simplest model to be used to fit the data.

The application of the EDW distribution was illustrated with a real dataset
on survival of patients with head and neck cancer. The distribution proved to be a
good option in this case, where the risk function presented non-monotone behavior.
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RESUMO: Este trabalho faz um estudo inferencial da distribuição Weibull Discreta

Exponenciada (WDE) para dados com presença de censura. Esta generalização da

distribuição Weibull Discreta tem a vantagem de ser adequada para modelar taxa de

falhas não-monótona como taxas de falha em forma de banheira e unimodal. Inferências

sobre a distribuição WDE foram realizadas segundo as abordagens frequentista e

bayesiana. Ademais, o Teste de Razão de Verossimilhanças e um Teste de Significância

Genuinamente Bayesiano (FBST) foram realizados para testar os parâmetros da

distribuição WDE. A metodologia apresentada foi aplicada em dados simulados e

ilustrada com um conjunto de dados reais de pacientes diagnosticados com câncer de

pescoço e cabeça.

PALAVRAS-CHAVE: Análise de sobrevivência; distribuições discretas; distribuições

exponenciadas; teste de significância genuinamente bayesiano.
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Appendix

A Likelihood Equations of the EDW

∂`(θ; t, δ)

∂q
=

n∑
i=1

δi

[
γ
(

1− q(ti+1)β
)γ−1

(ti + 1)βq(ti+1)β−1
]

[
1− q(ti+1)β

]γ − [1− qtβi ]γ

+
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δi

−
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γ
(

1− qt
β
i

)γ−1
tβi q

tβi −1
]
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−γ
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1−
[
1− q(ti+1)β

]γ

 ;

∂`(θ; t, δ)

∂β
=

n∑
i=1

δi

[
γ
(

1− q(ti+1)β
)γ−1

(ti + 1)β log (ti + 1)q(ti+1)β log (q)

]
[
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γ
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β
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]
[
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+
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i=1
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−γ
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and

∂`(θ; t, δ)

∂γ
=
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