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RESUMO EXPANDIDO

Título: Localização de Controladores e Alocação de Recursos de Rádio para Comunicações D2D
em Redes Sem Fio 5G
Autor: Yarisley Peña Llerena
Orientador: Prof. Dr. Paulo Roberto de Lira Gondim, FT/UnB
Programa de Pós-Graduação em Engenharia Elétrica - PPGEE

As redes celulares de próxima geração prometem uma transmissão de dados mais rápida,
maior largura de banda e menor latência, e a tecnologia de comunicação Dispositivo-a-Dispositivo
(D2D, do inglês Device-to-Device), devido aos serviços baseados em proximidade (ProSe, do
inglês Proximity Services) dos dispositivos de comunicação, ajuda a tornar tais promessas uma
realidade. As vantagens de tal comunicação incluem maior vazão, maior taxa de transmissão de
dados, menor latência, menor consumo de energia, equidade e maior eficiência espectral.

Este trabalho possui foco na gestão das comunicações D2D em uma rede de comunicação
móvel celular, sendo tratados dois problemas: o problema de localização de controladores (CPP,
do inglês Controller Placement Problem) e o problema de alocação de recursos de rádio (RRA,
do inglês Radio Resource Allocation).

A técnica proposta para resolver o problema CPP envolve, primeiramente, a obtenção do
número de comunicações D2D a serem gerenciadas e depois o número de controladores necessários,
a sua localização física na infra-estrutura celular e a melhor atribuição de eNB (do inglês evolved
NodeB) aos controladores. O problema foi modelado como um problema de optimização e as
meta-heurísticas Colônia de Abelhas Artificiais (ABC, do inglês Artificial Bee Colony) e Sistema
de Colônia de Formigas com Memória Externa (ACS-EM, do inglês Ant Colony System with Ex-
ternal Memory) foram utilizadas para resolvê-lo. As duas meta-heurísticas foram comparadas
com as meta-heurísticas Sistema de Colônia de Formigas (ACS, do inglês Ant Colony System) e
Optimização do Enxame de Partículas (PSO, do inglês Particle Swarm Optimization). A análise
revelou que as complexidades computacionais do ABC e do PSO são inferiores às do ACS-EM
e do ACS. No entanto, ABC e ACS-EM demonstraram um melhor desempenho na resolução do
problema, com características que permitem uma exploração mais eficiente do espaço de busca,
evitando assim soluções sub-ótimas. Os melhores resultados foram obtidos com o ABC, seguido
pelo ACS-EM, depois pelo ACS e, por último, pelo PSO.

Com o fim de obter o número de comunicações D2D admitidas na rede, dois métodos foram
propostos para a solução do problema RRA. No primeiro, o problema de optimização é resolvido
pela meta-heurística Social-Aware RRA Artificial Bee Colony (SA-RRA-ABC), considerando a
relação social entre os usuários, um esquema de feedback, e a maximização do throughput do
sistema. Um esquema de feedback, chamado selected-NM Maximum Distance Ratio (MDR) q-bit
feedback, foi proposto para reduzir a sobrecarga de sinalização (overhead). Cada receptor D2D



envia à eNB apenas q-bits de informação do estado do canal de N dispositivos celulares (CUE, do
inglês Cellular User Equipment) e de M pares D2D, utilizando na seleção o maior valor da métrica
MDR. A meta-heurística SA-RRA-ABC foi validada através de simulações e comparada com os
algoritmos gulosos GRAA (do inglês Greedy Resource Allocation Algorithm) e SA-GRAA (do
inglês Social-aware Greedy Resource Allocation Algorithm). Os resultados mostraram que a
meta-heurística SA-RRA-ABC apresenta melhor desempenho que os algoritmos gulosos. Foi
também mostrado que o modelo de feedback proposto pode alcançar desempenho próximo do
modelo full CSI - Channel State Information (onde a eNB tem informação do estado de todos os
canais), com uma sobrecarga de sinalização (overhead) inferior.

O segundo método de solução do problema RRA considera o problema de optimização em
uma rede celular D2D que oferece serviços URLLC (do inglês Ultra-reliable and Low Latency
Communications), para o envio de pacotes curtos diretamente entre usuários, utilizando comuni-
cações D2D, maximizando assim a eficiência energética da rede. O problema é resolvido por três
meta-heurísticas bio-inspiradas (ABC, ACS-EM e PSO), levando em consideração a interferên-
cia quando os usuários de celulares e dispositivos D2D utilizam um mesmo recurso de rádio. As
meta-heurísticas foram comparadas com uma heurística gulosa e um algoritmo de busca exaus-
tiva. A análise revelou que a complexidade computacional da heurística gulosa é a mais baixa
e que as complexidades do ABC e do PSO são mais baixas que as do ACS-EM. Porém, o ABC
mostrou um melhor desempenho na resolução do problema, seguido pelo ACS-EM, depois pelo
PSO e, por último, pela heurística gulosa.

Palavras-chave: 5G, Dispositivo-a-Dispositivo, Localização de Controladores, Alocação de Re-
cursos, Meta-heurísticas, URLLC.



ABSTRACT

Next generation cellular networks promise faster data transmission, higher bandwidth, and
lower latency and the Device-to-Device (D2D) communication technology helps make such promises
a reality, due to Proximity Services (ProSe) of communication devices. The advantages of such
communication include higher throughput, enhanced data rate, lower latency and energy con-
sumption, fairness, and improved spectral efficiency.

This research focuses on the management of D2D communications on a cellular network. Two
problems, namely Controller Placement Problem (CPP) and Radio Resource Allocation (RRA)
were studied.

The technique proposed for solving the former involves the obtaining of number of D2D com-
munications to be managed and then number of controllers required, their physical location in
the cellular infrastructure, and the best evolved NodeB (eNB) assignment for them. The problem
was modeled as an optimization problem one and Artificial Bee Colony (ABC) and Ant Colony
System with External Memory (ACS-EM) meta-heuristics solved it. They were compared with
Ant Colony System (ACS) and Particle Swarm Optimization (PSO) algorithms, and the analysis
revealed the computational complexities of ABC and PSO are lower than of ACS-EM and ACS.
However, ABC and ACS-EM showed better performance in solving the problem, with charac-
teristics that enable a more efficient exploration of the search space, thus avoiding sub-optimal
solutions. The best results were obtained with ABC, followed by ACS-EM, then ACS, and lastly
PSO.

Regarding the RRA problem, two solution methods were proposed towards obtaining the
number of D2D connections admitted in the network. In the first RRA solution method, the op-
timization problem is solved by the Social-aware RRA Artificial Bee Colony (SA-RRA-ABC),
considering the social relationship between users, a feedback scheme, and maximization of the
system throughput. A selected-NM Maximum Distance Ratio (MDR) q-bit feedback scheme
designed reduces feedback overhead, since each D2D receiver sends only q-bit feedback Chan-
nel State Information (CSI) among N Cellular User Equipment (CUE) and M D2D pairs with
the largest MDR metric. SA-RRA-ABC was validated through simulations and compared with
Greedy Resource Allocation Algorithm (GRAA) and Social-aware Greedy Resource Allocation
Algorithm (SA-GRAA). The simulation results showed its better performance. The selected-NM
q-feedback model proposed can achieve performance close to that of the full CSI model with
lower overhead.

The second RRA solution method deals with the optimization problem in a D2D cellular
network that offers Ultra-reliable and Low Latency Communications (URLLC) services for the
sending short packets directly to their destination, thus maximizing the network energy efficiency.
The problem is solved by three bioinspired algorithms, namely ABC, ACS-EM, and PSO, which
take into account interference when cellular and D2D users use a same radio resource. The meta-



heuristics were compared with a greedy heuristic and an exhaustive search algorithm and the
analysis revealed the computational complexity of Greedy is the lowest and those of ABC and
PSO are lower than that of ACS-EM. However, ABC showed better performance in solving the
problem, followed by ACS-EM, then PSO, and lastly Greedy heuristic.
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1 INTRODUCTION

The rapid development of smart devices has led to an exponential growth in the demands for
services with high data consumption. Applications with high data transmission rate are becom-
ing increasingly prevalent, imposing a new traffic pressure on the cellular network. Furthermore,
with the advent of the Internet of Things (IoT), billions of devices will be connected to the In-
ternet, producing data to be transported. The next generation of mobile technologies is expected
to connect people, things, data, applications, transport systems, and cities in smart net worked
communication environments, as well as transport a considerable amount of data much faster,
reliably connect a huge number of devices, and process very high volumes of data with minimal
delay [1].

5th generation (5G) communications have been designed to offer both more advanced and
complex configurations aimed at better performance towards meeting the requirements of society
and a new form of thinking about the components that comprise them. Such technology will
provide unlimited access to information, as well as availability for its sharing anywhere, at any
time, by any person or thing, for the benefit of society [2].

Next generation wireless networks are characterized by numerous devices, interconnected net-
works, and by an increase in the data traffic in comparison to the current one. Other characteristics
include seamless integration of heterogeneous systems, use of femtocells, and increased capacity
and performance with reduced latency [3, 4]. Mobile networks, ultra-dense networks, Device-
to-Device (D2D) communications, ultra-reliable communications, and mass communication of
machines have also been considered.

D2D communications are defined as direct communications between two mobile devices that
do not pass through a cellular Base Station (BS) or network core [5]. They can have impor-
tant applications in 5G [6, 7], extending the coverage of mobile networks and offering multiple
services based on the proximity of the devices (e.g., local information exchange, multimedia traf-
fic in IoT systems, gaming, social applications, vehicle-to-vehicle communications in Intelligent
Traffic Systems (ITS), among others). Recent research [6] focused on the benefits of D2D com-
munications for meeting the requirements imposed by 5G networks, such as higher data rate, low
delay and energy consumption, coverage extension, reliability in communications (even in case
of network failure), traffic offloading, and possibility for instantaneous communications between
devices.

Such communications require different levels of control by the operator. Based on the business
model, they have either full or partial control over the resource allocation among source, desti-
nation, and relay devices, or no control. Below are the different types of D2D communications
defined according to the function of the cellular infrastructure [8]:

1. D2D communications with the establishment of an operator-controlled connection: source
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and destination devices talk and exchange data with no BS; however, they are served by a
BS to establish the link.

2. D2D communications with the establishment of a device-controlled connection: source and
destination devices communicate directly with each other with no operator control and must
implement methods that guarantee limited interference with other devices on both the same
layer and macrocell layer.

The D2D links use either licensed or unlicensed spectrum, in inband and outband communi-
cations. In inband D2D communication, both D2D and cellular communication links use licensed
spectrum. In this type of communication, a challenge is to handle D2D and cellular interference.
In outband D2D communication, D2D communication uses unlicensed spectrum, whereas cellu-
lar uses its own dedicated licensed spectrum. In this type of communication, no interference issue
between cellular and D2D is considered [9, 10].

D2D communications with establishing/managing connection through the cellular infrastruc-
ture were considered in this study. Among the advantages of such an approach are possible data
offloading between the mobile network and the D2D network and an efficient spectrum allocation
of the spectrum if inband D2D is used.

Other important design principles for a future wireless access is the decoupling of user data
and a functional control system. The latter includes information and necessary procedures for
the management of devices’ access to the network. Therefore, the Software Defined Networking
(SDN) paradigm can provide a better mechanism for network control, improving management
efficiency.

SDNs approach the creation of networks whose control is detached from the hardware and
given to a software application called SDN controller. An SDN network architecture promotes a
more programmable, automatable, and flexible separation of the control and data planes, and the
network is virtualized and independent of the underlying physical infrastructure.

The main advantages of SDN include: (i) an agile and flexible network that can adapt auto-
matically through the use of standard software interfaces, (ii) an easy implementation of complex
network functions through algorithms defined by users and implemented in software in the con-
troller, (iii) a rapid deployment of new network features, and (iv) manufacturer’s independence in
network devices. Since the intelligence of the network is centralized in the controller, the network
devices, which are only handlers of the data flows, can be obtained from multiple manufacturers.

Our proposal employs one or more SDN controllers in the cellular infrastructure for the man-
agement of ongoing D2D communications in the coverage area of each evolved NodeB (eNB).
Each controller maintains registrations and information on the location of users and their possi-
ble establishment of D2D communication. The information enables the controller to determine
the beginning of D2D communications and send messages to the devices involved for begin-
ning/establishing a direct connection between them and allocating network resources.
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The controller also monitors the state of the D2D communication. If the link is lost (for ex-
ample, due to a change in location), it reconfigures the User Equipment (UE) and the network
entities to return the communication to the cell infrastructure and guarantees the continuity of
the sessions. Therefore, it can implement efficient algorithms of data offloading and radio re-
source allocation on the application layer and communicate with UE, eNB, and Serving Gateway
(SGW) to define the path of the data packets by protocols, such as OpenFlow. The proposed
solution can provide support for many new application scenarios, such as smart city, Internet of
Things (IoT), Industrial Internet of Things (IIoT) applications, factory automation and control for
Factories of the Future, autonomous vehicles, smart grid automation, unmanned aerial vehicles
control information delivery, local information exchange, multimedia traffic in IoT systems, gam-
ing, social applications, vehicle-to-vehicle communications in Intelligent Traffic Systems (ITS),
among others.

Radio Resource Allocation (RRA) in cellular systems is a relevant and difficult task that must
allocate the system resources in the most efficient way while fulfilling different constraints such as
Quality of Service (QoS) [11, 12]. The optimal allocation of radio resources is one of the funda-
mental challenges for the design and operation of cellular wireless networks. Resource allocation
problems have to be solved for specific network scenarios, taking into account rapidly changing
wireless channels and QoS requirements for users. This doctoral thesis proposes two solution
methods for the RRA problem. The first deals with the intensity of social relations between users
in a socially aware radio resource allocation problem, determining the number of D2D commu-
nications allowed in the cellular network. The second addresses the resource allocation problem
in a D2D cellular network utilizing Ultra-reliable and Low Latency Communications (URLLC)
services to send short packets directly to their destination.

The widespread dissemination of social networks (such as Facebook, What’sapp, Instagram,
Twitter, among others) has required the adequate collection and processing of the demands by
each mobile telecom operator. The possibility of using control information on the usage of such
social network information enables devices of some computational capacity to identify interest-
ing or related peers for the exchange of information and context-based services, among other
options. The wide adoption of social networks has given rise to a new dimension in the design of
cellular communication systems, and the exploration of social interaction patterns is expected to
significantly improve D2D peer discovery, resource allocation, data offloading, and security [13].
Therefore, this study considers the intensity of social relations among users in a social-aware ra-
dio resource allocation solution that determines the number of D2D communications admitted to
the cellular network.

On the other hand, systems with growing demands (e.g., mobile networks) must be designed
with high scalability and reliability for avoiding problems (e.g., single point of failure). Given
the huge quantity of traffic to be treated by 5G networks and since a single centralized SDN
controller can lead to architectures with such problems, the following research questions (RQs)
have emerged:
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1. How many controllers are required to manage all D2D communications?

2. How can eNBs be assigned to the controllers?

3. What is the best location of SDN controllers within the cellular network?

The minimum number of SDN controllers required, their optimal location, and the optimal
assignment of eNBs to them must be determined so that the RQs can be answered. Therefore,
this study proposes a method that considers two stages, according to which the number of D2D
communications that maximizes throughput in the network is obtained and, based on such infor-
mation, the Controller Placement Problem (CPP) is solved.

In the first stage, a social-aware radio resource allocation solution proposed obtains the num-
ber of D2D communications that maximizes throughput on the network, since the interference
limits are respected in both cellular and D2D communications. The solution was compared with
a social-unaware solution.

In the second stage, the CPP is modeled as an optimization problem that considers the mini-
mization of the weighted sum of three metrics, namely number of SDN controllers, response time,
and eNB-controller assignment that enables an efficient management of all D2D communications
in a Long Term Evolution Advanced (LTE-A) network. The Ant Colony System (ACS) and Ant
Colony System with External Memory (ACS-EM) meta-heuristics [14, 15] were used in the CPP
solution.

Moreover, as aforementioned, the radio resource allocation problem is studied with the mod-
eling of two optimization problems. In the first, it is formulated for maximizing the overall system
throughput by enabling more D2D pairs to reuse a same resource block (RB), subject to the con-
straint of the maximum tolerable interference level at each RB. In the second, the optimization
problem aims at maximizing system energy efficiency through an efficient use of spectrum while
maintaining QoS requirements in cellular and D2D communications.

Firstly, the RRA approach investigates the resource allocation problem in which more than
one D2D pair can share a same RB with Cellular User Equipment (CUE). RBs are assigned
to CUEs and the QoS of both CUEs and D2D-capable User Equipment (DUEs) is considered.
Mutual interferences among different D2D pairs, as well as that between DUE and CUE sharing
the same RB are taken into account. Moreover, the achievement of high spectral efficiency while
ensuring no excessive interference is caused to CUEs depends on an adequate interference-aware
allocation of RBs to D2D users. In this scenario, the eNBs must have full or partial Channel State
Information (CSI) to perform an efficient resource allocation.

In the full CSI model, the eNB knows the perfect CSI of all links [16, 17, 18], whereas in
practice, it knows only the channel power gains of CUEs for eNB and D2D transmitter (dTj ) for
eNB links - a priori, it does not know the channel power gains of CUE for D2D receiver (dRj ) and
dTj for dRj links. Therefore, the CSI of such links can be obtained through feedback, which causes
high overhead [17, 18], especially when the number of CUEs and D2D pairs is large.
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In the feedback model, the D2D receiver sends information to the eNB about the interfer-
ence channel gain from the CUE to the dRj and the channel gain between D2D transmitter (dTj )
and D2D receiver (dRj ). Considering N cellular terminals and M D2D pairs, a scheme named
selected-NM Maximum Distance Ratio (MDR) q-bit feedback scheme is proposed in the ap-
proach based on partial CSI. The scheme considers the need for reducing the network overhead
generated by feedback and limits the sending of q-bits of channel information and the number of
links. Consequently, it ensures both N cellular and M D2D pair links can be possible partners
to share radio resources, guaranteeing QoS parameters based on the Maximum Distance Ratio
metrics [17]. The effect of feedback information on the performance of D2D underlaying cellular
networks is studied considering multiple D2D pairs for RB.

The second RRA deals with the resource allocation problem in a D2D cellular network that
uses URLLC services to send short packets directly to their destination. Since such packets are
essential for low latency critical mission communications, the channel coding rate is adopted as a
performance metric in D2D links in the finite packet length regime, as defined in [19]. It provides
the maximum number of data bits sent in a packet of size m and has been used as a performance
metric in systems with URLLC services [20, 21, 22, 23, 24, 25].

In URLLC communications, the decoding error probability should be lower than 10−5 and no
higher than 1 ms latency for a small packet size (e.g., 32 bytes) [26]. Ultra-high reliability and
low latency are the major technical challenges in URLLC networks [20, 21, 22, 25, 24, 23], with
a tradeoff between them. Specifically, reliability can be improved by techniques such as signaling
and relaying, which increased latency [20]. On the other hand, some wireless networks focus on
long packet transmission scenarios to maximize system throughput and favor energy efficiency.
The simultaneous assurance of high reliability and low latency is challenging, which highlights
the need for new technologies that meet URLLC service requirements.

As a traditional metric in information theory, Shannon capacity has been widely used to char-
acterize the maximum achievable transmission rate [20, 21, 22], considering channels with Ad-
ditive White Gaussian Noise (AWGN). Channel capacity bounds determine the maximum data
rates to be transmitted with low error probability, assuming no constraints on delay and encoder
and decoder complexity. However, in scenarios which require the use of short packets, the impact
of packet size and decoding error is more prominent and cannot be ignored in the aforementioned
channel capacity metric [25, 27].

This approach assigns RBs to UEs and considers the QoS of both CUE and DUE in a scenario
where CUEs use conventional network services and DUEs use URLLC ones. The formulation
involves the following constraints: two or more D2D pairs can share a same RB with cellular user;
an upper limit on the tolerable interference level must be considered in each RB; and a minimum
Signal-to-Interference-plus-Noise Ratio (SINR) must be respected for the cellular user and the
D2D pairs. Considering such constraints and two adequately defined models (system model and
interference model), the problem establishes the maximization of the network energy efficiency
(ηEE) as the objective.
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1.1 MOTIVATION

Data consumption has currently faced a growing demand in cellular networks. The dissemi-
nation of applications that require better quality of service has led to the evolution of the current
cellular networks to the next generation (5G). Some of the promises of the 5G networks include
faster data throughput, higher bandwidth, lower latency, and the assimilation and adoption of
other technologies. Such a scenario, therefore, has required studies of new technologies to that
the goals pursued in 5G become a reality.

One of such technologies is D2D communications, which enables nearby UEs to communicate
without involving an eNB in data traffic. Using a frequency band licensed for mobile devices,
two nearby users can exchange messages directly, without passing through a BS. However, the
consideration of such technology has imposed new challenges such as:

• interference control: UEs involved in a D2D communications may suffer, and generate,
interference to other UEs present in a same cell;

• delay-sensitive processing: the transference of audio, video, or online games requires real-
time processing and is delay-sensitive. Consequently, such requirements must be considered
in the search for treatments of real or near-real time traffic;

• resource allocation: D2D communications requires a certain amount of resources, such as
bandwidth and channels. However, the necessary ones must be allocated so that other cells
do not suffer interference, maintaining efficient communication.

• communication management: the availability of D2D communications supervision/man-
agement promotes, for example, an efficient search for a communicating pair, identification
of connection loss issues, efficient interference control, and allocation of resources.

Other challenges in 5G network deployment are scalability and flexibility. Future cellular net-
work infrastructures and methodologies should enable the integration of heterogeneous networks
in a big network ecosystem. Besides, a large number of users can request several services at the
same time, meaning the 5G network must support a scalable demand. Therefore, the use of tech-
nologies such as Network Function Virtualization (NFV) and SDN has been proposed for solving
those problems.

Software-defined networks have an agile network architecture that separates management
from the underlying network infrastructure and enables administrators to dynamically adjust the
flow of traffic across the network towards meeting changing needs. Moreover, it reduces the
complexity of statistically defined networks, automates network functions, accelerates the imple-
mentation of applications and services, and simplifies the implementation and administration of
network resources.

Network scalability requires scenarios where multiple SDN controllers manage communica-
tions and control functions in LTE-A networks, thus raising new questions, such as:
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• how many controllers are required to manage all D2D communications?;

• how can eNBs be assigned to the controllers?; and

• what is the best location of SDN controllers within the cellular network?.

Such challenges have motivated our proposal of a model that solves the controller placement
location issue in a scenario that considers D2D communications, the radio resource allocation, as
well as the interference between cellular and D2D communications. According to our literature
review on the SDN CPP problem for wireless networks, the treatment of D2D communications
has not been addressed, and the Artificial Bee Colony (ABC) and ACS-EM meta-heuristics have
not been applied to the problem considered here.

On the other hand, modern society is moving towards total connectivity and people’s relation-
ships in the real world has been transferred to the interconnection and exchange of information
in the virtual world. Social networking services have facilitated the active communication of bil-
lions of people and their wide adoption has broadened connections among people. In this context,
technological advancements have led researchers to find out the interaction patterns among users,
and the exploitation of these patterns can contribute to significantly improve the radio resource
allocation for D2D communications.

Social-aware D2D communications refer to the finding of interaction patterns among nearby
social network users and exploitation of such patterns for the design of efficient communication
and radio resource allocation in D2D networks. Therefore, studies of scenarios that also consider
social relationships among users communicating through a direct link (D2D) and managed by
SDN controllers in an LTE-A network have drawn the interest of researchers.

In this sense, the intensity of user’s social relationship must be considered for the determina-
tion of number of the D2D communications in an LTE-A network jointly with other aspects, such
as cellular spectrum reuse and interference thresholds. Therefore, an efficient radio resources
allocation is required so that they can be shared between D2D and cellular communications.

Due to the quantity of D2D communications, a model that obtains the minimum number of
controllers and their physical location while performing a balanced assignment of eNBs to SDN
controllers is required.

The CSI available in eNB and D2D pairs must be considered when radio resource allocation is
addressed. Since the eNB does not participate in the sending of D2D communication data, it has
no information about the gain or interference of the link between transmitter and D2D receiver.
Therefore, the receiver of the D2D communication must send such information to eNB, which
generates feedback overhead. Efficient feedback methods must be implemented for decreasing
overhead. Accordingly, we have proposed a limited feedback model with partial CSI that uses the
selected-NM method. Instead of the D2D receiver sending information from all CUEs and D2D
pairs, it sends it from a specific number of cellular users and D2D pairs that are most promising
for the shared RB.
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On the other hand, 5G cellular networks must support a number of emerging applications
with varying QoS requirements, leading to services categorized as Enhanced Mobile Broadband
(eMBB), Massive Machine Type Communication (mMTC), and URLLC [28]. 5G wireless tech-
nologies are expected to improve performance towards mission-critical applications (e.g., factory
automation and control for Factories of the Future, autonomous vehicles, smart grid automation,
unmanned aerial vehicles control information delivery, and remote surgery [29, 30]). Such ap-
plications have strict latency and reliability requirements, which can be met by URLLC services,
since they support real-time, ultra-reliable, and low latency communications [29, 28, 31].

The simultaneous assurance of high reliability and low latency is challenging, thus highlight-
ing the need for new technologies that meet URLLC service requirements. The integration of D2D
into future industrial wireless networks and next-generation manufacturing can support massive
machine-type connections. A D2D communication system can satisfy URLLC service require-
ments, as well as improve spectrum efficiency, energy efficiency, and overall network capacity,
which has motivated our study of the radio resource allocation with the use of URLLC services
by D2D communications.

1.2 OBJECTIVES

1.2.1 General Objective

The general objective of this research is to solve the Controller Placement (CPP) and the Radio
Resource Allocation (RRA) problems in a cellular network that requires D2D communications
management.

1.2.2 Specific Objectives

The specific objectives involve:

• The study and understanding of the basic concepts of D2D, radio resource allocation, inter-
ference modeling, and metaheuristics.

• The study and understanding of the basic concepts of social relationships and their influence
on the resource allocation in wireless communication networks.

• The study and understanding of the basic concepts of CSI and feedback scheme and their
influence on the resource allocation in wireless communication networks.

• The study and understanding of the basic concepts of URLLC services and their influence
on the resource allocation in wireless communication networks.

• The learning and evaluation of different Controller Placement Problem (CPP) solution pro-
posals.
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• The learning and evaluation of different RRA solution proposals.

• The understanding and evaluation of different proposals that use social networks in radio
resource allocation considering the D2D underlay model.

• The understanding and evaluation of different proposals that use URLLC services in radio
resource allocation considering the D2D underlay model.

• The proposal and evaluation of a model that enables studies of the influence of social-
aware D2D communications management on the number of SDN controllers, assignment
of eNB to controllers, and their location when interference and radio resource allocation are
considered.

• The proposal and evaluation of a model that enables studies of social-aware radio resource
allocation in a scenario of D2D communications.

• The selection, application and evaluation of bioinspired meta-heuristics for solving the con-
troller placement problem.

• The proposal and evaluation of a model that enables studies of the influence of limited feed-
back with partial CSI on the radio resource allocation considering D2D communications.

• The proposal and evaluation of a model that enables studies of the influence of URLLC
services on the radio resource allocation considering D2D communications.

• The selection, application, and evaluation of bioinspired meta-heuristics for solving the
radio resource allocation problem.

1.3 CONTRIBUTIONS

The following contributions must be highlighted:

• management of social-aware D2D communications by multiple controllers;

• solution that determines the number of D2D communications considering the social rela-
tionship among users and the interference between cellular and D2D communications;

• an integrated approach that solves the CPP problem combining D2D communications and
controllers management and considering the social-aware radio resource allocation;

• use and evaluation of the ABC metaheuristic for solving the controller placement problem;

• use and evaluation of the ant colony system with external memory (ACS-EM) metaheuristic
for solving the controller placement problem;

• a statistical evaluation of ABC and ACS-EM meta-heuristics;
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• modeling and use of the response time of a controller during D2D communications man-
agement in LTE-A cellular networks;

• design of an approach to RRA that integrates physical and social layers, partial CSI, and a
limited feedback scheme towards maximizing system throughput;

• proposal of a feedback scheme in which a D2D pair feeds back to eNB its SINR on N
subchannels, considering the interference of M D2D pairs with the largest MDR metric;

• design of an approach to RRA that integrates URLLC services, power control, and commu-
nication mode selection towards maximizing the network energy efficiency;

• modeling and use of metrics that evaluate the impact of URLLC services on network energy
efficiency, system throughput, and transmission power; and

• use and evaluation of the ABC metaheuristic in solving radio resource allocation.

• use and evaluation of the ACS-EM metaheuristic in solving radio resource allocation.

• use and evaluation of the Particle Swarm Optimization (PSO) metaheuristic in solving radio
resource allocation.

1.4 THESIS STATEMENT

Cellular networks are evolving to the 5th generation, which requires the use of new tech-
nologies that offer users higher data transfer rates and continuous connection. In this scenario,
technologies such as D2D communications will be widely used. The proposal of a method that
helps the determination of number of controllers and their location can contribute to the design
of an adequate management model in the next-generation cellular networks. New methods that
promote a better use of radio resources must also be studied, since they represent a limited and
widely demanded resource.

This thesis proposes methods that help an efficient design of the control plan in cellular net-
works. An optimization problem that leads to the smallest number of controllers that can effi-
ciently manage the network, as well as their best location in the cellular infrastructure, ensuring
QoS was modeled.

This study also analyzes methods towards improving the use of radio resources when D2D
communications are supported on cellular networks. Given a previous cellular-based resource
allocation, an allocation method is proposed for the reuse of resources by the greatest possible
number of D2D communications, without affecting cellular communications.
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1.5 METHODOLOGY

This section describes the methodology for the solution of CPP and RRA problems, according
to the steps followed for each problem.

1.5.1 Controller Placement Problem

The CPP for the management of D2D communications in an LTE-A network was approached
according to the following methodology.

Definition of the scenarios and network models of interest:

Scenario of D2D communications with licensed bandwidth sharing in underlay mode
and SDN-based network architecture subject to a high demand, requiring the use of
multiple controllers. The modeling of an optimization problem is introduced in order to
minimize an objective function that takes into account the weighted sum of the number of
controllers, the response time, the average propagation latency between the controllers
and the assigned eNBs, and a fairness parameter between the controllers’ utilization.
A set of mathematical equations representing the strength of social relationships, the
channel model, the interference model, and the queueing model for D2D controllers was
developed.

Formal definition of the controller placement problem:

A set of mathematical equations representing the behavior of SDN LTE-A networks was
developed for the definition of the CPP. Different constraints such as response time, lost
request rate, eNB-controller assignment, and controller location were considered due
to their importance for the design of LTE-A networks with multiple SDN controllers.
The model aims at minimizing the weighted sum of number of controllers, response
time, average propagation latency between the controllers and the assigned eNBs, and
justice parameter while determining both number and location of controllers and the
eNB-controller assignment.

Obtaining of number of D2D communications:

A set of mathematical equations representing interference in each eNB when CUEs and
DUEs use the same radio features was developed for calculating the number of D2D
communications allowed in the network. Different constraints such as SINR and D2D
reuse resource block quantity were considered due to their importance when the RRA
is performed in underlay mode. The goal is to obtain the number of supported D2D
communications when only interference between links is considered and social relations
between users are taken into account. Two greedy heuristics that returned the number of
D2D communications in the cellular network solved the problem.

Solution of the controller placement problem:
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The solution considered number of controllers, their location, and eNB-controller as-
signment. ABC and ACS-EM metaheuristics solved the model and they returned the
near to optimal solution in acceptable time.

Study of the results of the controller placement problem:

Four bio-inspired meta-heuristics in two scenarios solved the CPP problem and the influ-
ence of the D2D request rate on number, location, and assignment of SDN was analyzed.
The result analysis starts with a small number of control requests, which is increased for
investigations on the way the model reacts. Variations in the number of controllers nec-
essary for the management of communications in both social-unaware and social-aware
scenarios were studied.

Study of the meta-heuristics’ performances:

Statistical tests evaluated the performance of the proposed ABC and ACS-EM meta-
heuristics when paired with the ACS and PSO meta-heuristics. 32 simulations were
performed for each case and Kolmogorov-Smirnov, Kruskal-Wallis, and Wilconxon hy-
pothesis tests determined the meta-heuristic that performed best in the CPP solution.
Both computational complexity and number of computations for the four meta-heuristics
were analyzed.

1.5.2 Radio Resource Allocation Problem

The RRA for D2D communications in a cellular network was approached according to the
following methodology.

Definition of the scenarios and network models of interest:

A 1st scenario of D2D communications is treated in the scope of a single cell with
channel sharing in underlay mode and partial CSI. Regarding a 2nd scenario, also in
a single cell and based on D2D communications, URLLC services are offered and the
communication mode is chosen among options such as cellular, reuse (or underlay),
and dedicated (or overlay). The modeling of an optimization problem is introduced to-
wards maximizing network throughput and evaluating the impact of social relationship
between users and the partial CSI on radio resource allocation. A set of mathematical
equations representing the strength of social relationships and the Maximum Distance
Ratio (MDR) metric was developed. MDR was considered in the proposed limited feed-
back with partial CSI scheme and an ABC-based meta-heuristic solved the problem. The
meta-heuristic returned the number of D2D communications in the cellular network and
the channel allocation performed in reuse mode.

The modeling of an optimization problem is introduced towards maximizing energy ef-
ficiency in the network and evaluating the impact of URLLC services on radio resource
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allocation. First, a set of mathematical equations representing the blocklength and de-
coding error probability was developed. The optimization problem considers communi-
cation mode selection, power control, and channel allocation.

Formal definition of the radio resource allocation problem:

A set of mathematical equations representing the social network model, the channel
model, the interference model, the CSI and Limited selected-NM Feedback model, and
the URLLC services model was developed for defining RRA. Different constraints such
as minimum SINR and maximum transmission power were considered due to their im-
portance for channel allocation. Two optimization problems - one for maximizing net-
work throughput and the other for maximizing network energy efficiency - were defined.

Solution of the radio resource allocation problem:

To solve the first RRA optimization problem, a approach based on ABC meta-heuristic
was proposed . It returned the near to optimal solution in acceptable time solved the
models. To solve the second RRA optimization problem, three meta-heuristics, namely
Artificial Bee Colony (RRA-URLLC-ABC), Ant Colony System with External Mem-
ory (RRA-URLLC-ACS-EM), and Particle Swarm Optimization (RRA-URLLC-PSO)
were proposed. They returned the communication mode, transmit power, and channel
allocation for both cellular and D2D communications, as well as the number of D2D
communications in the cellular network.

Study of the results of the radio resource allocation problem:

Bio-inspired meta-heuristics used in two scenarios solved the RRA problem. In the
first, the influence of feedback parameters on the system throughput and the feedback
overhead of the proposed scheme were analyzed and the solution was compared with
two greedy ones considering full and partial CSI. In the second, the influence of the
parameters associated with URLLC services on the throughput and the impact of varying
the number of D2D pairs on the network energy efficiency were analyzed. The solution
was compared with an exhaustive search algorithm for the validation of its effectiveness.
The computational complexity of the meta-heuristics was also investigated.

1.6 ORGANIZATION

The remainder of this thesis is organized as follows: Chapter 2 presents the state-of-the-art
of CPP and RRA solutions and their categorization and comparison; Chapter 3 focuses on the
modeling of the system and describes ABC, ACS-EM and PSO meta-heuristics.

Chapter 4 proposes a solution to CPP, describing ABC and ACS-EM meta-heuristics for CPP.
Chapter 5 addresses the proposed solutions to the RRA problem, describing Social-aware RRA
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Artificial Bee Colony (SA-RRA-ABC), RRA-URLLC-ABC, RRA-URLLC-ACS-EM and RRA-
URLLC-PSO meta-heuristics for RRA.

Chapter 6 reports on analyses of the results; finally, Chapter 7 concludes the research and
suggests some future work.
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2 RELATED WORK

In 5th generation (5G) scenarios, a considerable increase in the size and the traffic rate of
wireless systems and cellular networks is expected, leading to possible problems related to scala-
bility, reliability and latency imposed to end users. In this case, considering the use of traditional
Software Defined Networking (SDN), a single controller will most probably represent a bottle-
neck and thus not constitute a viable solution. Moreover, the inter-connection of many switches
will increase flow setup time (ts), leading to failures on systems with Quality of Service (QoS)
requirements [1]. In this sense, the control plane distributed among several SDN controllers lo-
cated in different regions of the network is being studied in the literature. There are several issues
to consider, such as the SDN controller location, the number of controllers required, and the
assignment of switches to the controllers.

For the Controller Placement Problem (CPP) solution we present an approach that integrates
radio resource allocation and Device-to-Device (D2D) communications control. Therefore, this
chapter presents the state of the art of the two main problems considered in the proposed approach,
considering D2D communications:

(i) the controller placement problem; and

(ii) radio resource allocation in cellular networks.

In D2D shared or underlay mode, an efficient use of the radio spectrum leads to efficient tech-
niques for the reuse of radio resources. D2D links must reuse the RBs assigned to CUEs, so that
interference occurs within the QoS limits accepted by the CUEs. The literature reports techniques
that minimize interference through power control and Radio Resource Allocation (RRA).

On the other hand, in recent years, the idea of convergence between D2D communications and
social networks has drawn increasing attention from the scientific community, which has started
to apply resources from social networks for improving the performance of D2D communication.
The rapid success and wide dissemination of social networks through platforms such as Twitter
and Facebook have generated large amounts of data on the structure and dynamics of social
networks, encouraging researchers from various areas to apply them to networks.

5G cellular networks are expected to support a number of emerging applications with vary-
ing QoS requirements, leading to services categorized as Enhanced Mobile Broadband (eMBB),
Massive Machine Type Communication (mMTC), and Ultra-reliable and Low Latency Commu-
nications (URLLC) [28]. A literature review on the resource allocation problem considering
URLLC services is provided at the end of this section.

Section 2.1 and 2.2 are focused on categorizing and summarizing the most pertinent literature
related to CPP and RRA problems, respectively. Section 2.1 provides, first a brief introduction to
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the CPP problem, and then summarizes related works, while Section 2.2 presents, first the cate-
gorization on the underlaying D2D radio resource allocation considering full and partial Channel
State Information (CSI), and then on the benefits of social networks for radio resources allocation.

2.1 CONTROLLER PLACEMENT PROBLEM

In large-scale cellular networks, multiple controllers need to be deployed for D2D-capable
User Equipment (DUE) to numerous reasons: latency, load capacity of controllers, scalability,
incremental deployment, and reliability. Therefore, for the design of an efficient control plan, the
Controller Placement Problem (CPP) considers mainly three issues (Figure 2.1):

• the number of controllers to be placed in a network;

• the location of these controllers; and

• the function of assigning controllers to switches.

In general, CPP is modeled as an optimization problem that considers objectives, such as
shortening latency, increasing reliability, increasing energy efficiency, and so on.

(a) Network Topology

(b) CPP solution

Figure 2.1: Example of Controller Placement Problem with three controllers.

Heller et al. [32] initiated the controller location problem and formulated it as a general facility
location problem. The authors sought for the best location of k controllers on a WAN network by
minimizing the propagation latency between the nodes and the controller. The authors evaluated
the propagation latency with the use of concepts of average-case latency and worst-case latency in
the solution of the optimization problem. The number of controllers was set in the interval [1, 5]
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and the impact of the controller location on the two metrics was evaluated independently. The
Internet2 OS3E topology was used and the analysis was expanded according to several topologies
defined in Internet Topology Zoo (a controller was usually sufficient). However, important metrics
in the evaluation of the response time for satisfying a given QoS, such as processing capacity of
the controllers and load balancing, were not considered. The authors pointed out, as an extension
of the work, the selection of the controller, which defines the switch-controller assignment.

Hu et al. [33] maximized the reliability of the network control to reach a best location for the
controllers that minimizes the loss of the control path caused by network failures. A reliability
metric represented the percentage of paths broken DUE to network failures. The problem was
defined as NP-hard with k controllers and random placement, greedy search, simulated annealing
and brute force were used to solve it. The authors evaluated the impact of the number of con-
trollers on the reliability of the network and the tradeoffs between reliability and latency. The
results showed latency increases in locations that optimize reliability; however, according to the
authors, this increase is still acceptable. Metrics related to response time and QoS assurance were
not optimized.

Sahoo et al. [34] used metaheuristics based on biologically inspired populations to solve the
CPP problem in large-scale WAN networks. They applied Particle Swarm Optimization (PSO)
and Firefly Algorithm (FA) to find the optimum location of the controllers and minimize latency
between switches and controller. They compared the two meta-heuristics in analyses with a ran-
dom localization strategy in three topologies defined on the Topology Zoo website and, according
to the results, FA achieved better performance.

The main metrics considered in the resolution of the controller location problem are propaga-
tion latency between switches and controllers, and load balancing between controllers. However,
the capacity of the controllers and the load on the network are also important metrics owing to
their direct influence on the response time of the controllers, hence, users’ quality experience.
The following articles deal the optimization of the SDN controllers assignment considering their
processing capacity.

Farshin and Sharifian [1, 35] optimized the number of SDN controllers used in a cellular net-
work. They considered the problem of dynamic allocation of controllers and proposed a frame-
work that uses a population-based metaheuristic to solve it. In [35], the authors consider cloud
data centers with one Global Controller (GC) and multiple Local Controller (LC). In [1], it is
considered an architecture called Software Defined Mobile Networking proposed by the authors
that uses cloud computing, SDN, and Network Function Virtualization (NFV). In the above arti-
cles, the controller assignment problem was modeled as an optimization problem that maximizes
the weighted sum of three utility functions that considering the response time of the controllers,
the number of controllers required, and the load balancing between controllers using the Jain’s
Fairness Index.

To solve the optimization problem in [35], the authors use the Particle Swarm Optimization
Gravitational Search Algorithm (PSOGSA) and Whale Optimization Algorithm (WOA) to imple-
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ment the Controller Provisioning Algorithm (CPA), which runs in the GC and Switch Assignment
Algorithm (SAA), which runs in each LC. The CPA assigns an integer number to each class of
service in the datacenter for the required number of controllers, and SAA finds the best switch
assignment for controllers provided to each class by CPA. In [1], it is used a chaotic population-
based meta-heuristic in the framework for solving the Dynamic Controller Assignment or Allo-
cation Problem (DCAP). However, the location of the SDN controllers in the infrastructure was
not taken into consideration.

Wang et al. [36, 37] address the DCAP as a stable matching problem with transfers. In [36],
the authors formulate the DCAP as an optimization problem aiming at minimizing the controller
response time and control traffic overhead. In [37], the problem is formulated as an online op-
timization to minimize the total cost caused by response time and maintenance on the cluster of
controllers. To solve the problem, they proposed a two-phase algorithm. First, a stable matching
is generated between switches and controllers, which guarantees the response time in the worst
case. It serves as an input to the second coalition game phase to further reduce the response
time. The second phase of the algorithm is essential for load balancing, and can increase control
traffic overhead due to the migration of the switch from one controller to another. The objective
is to decide the number of active controllers and the proper assignment between switches and
controllers.

Cello et al. [38] proposed an SDN switch migration mechanism, called Balanced Controllers
(BalCon), able to achieve load balance among SDN controllers. BalCon is a heuristic that operates
during the network runtime and can detect and solve congestion at the SDN controllers through
the SDN switch migrations. The authors consider a fixed number of controllers, which may lead
to idle controllers on the network at times of low load.

Filali et al. [39] proposed, in a data center environment, a dynamic assignment of switches to
controllers by formulating the problem as a one-to-many matching game with a minimum quota
that each controller has to achieve. This quota represents the utilization of the processing capacity
of the controller. The authors formulated the problem as an optimization problem to minimize
the total response time of the control plane. Then, to solve Controller Assignment or Allocation
Problem (CAP), a one-to-many matching game with minimum resource utilization was defined,
in which each controller must reach its minimum quota concerning the transmitted requests by the
switches. To achieve a balanced load, the authors set capacity and minimum resource utilization
constraints that controllers must approve when receiving requests from switches. The authors fix
the number of controllers, and the algorithm was centered on distributing the load among the SDN
controllers. This result may lead to the use of unnecessary controllers on the network when the
load is low, and many controllers would be operating under load, while fewer controllers could
manage all flows.

Savas et al. [40] study the CAP problem considering connectivity recovery after network fail-
ures. The authors proposed an algorithm for recovery-aware switch-controller assignment and
routing (RASCAR), which enables data-path recovery after a set of failures. They formulated the
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problem as an integer linear program and proposed a heuristic to solve large problem instances,
called Neighbor-Disjoint Path Routing. RASCAR approach determines controller assignment
and control-path routing by minimizing the number of control-path recovery stages after a fail-
ure. In [40], the processing capacity of SDN controllers is not considered, so if a more significant
amount of switches need to be assigned to a specific controller, after a failure, its capacity could
be exceeded.

Suh and Pack [41] formulated a master controller assignment problem to minimize the aver-
age flow setup latency with consideration of the number of assigned master controllers along a
path. The author first derives the load on the controller and the average flow setup latency with
consideration of the number of master controllers along a path and the flow arrival rate among
switches. After that, they formulated a problem as an Integer Non-Linear Programming (INLP)
problem and proposed a heuristic called Low Complexity Master Assignment (LCMA) to solve
the problem. In LCMA, a specific number of switches are assigned to the controllers using the
brute-force search (BFS) algorithm. In contrast, to the remaining switches, the nearest controller
is designated as their master controller.

Zhang et al. [42] presented an adaptive controller assignment (ACA) scheme for multiple
controllers that dynamically adjust the number of active controllers and the mapping relationship
among controllers and switches. The authors assume that controllers have already been deployed
to the proper locations in the network. Three algorithms were proposed. First, when some con-
trollers are overloaded, that is, the load ratio of controllers reaches a certain level, other controllers
are activated to share the load of these controllers. Two, when some controllers are lightly loaded,
these controllers are deactivated to reduce the control traffic overhead and improve controller uti-
lization. Three, to further enhance network performance, the load among controllers is balanced
after reassignment. In [42], authors formulated the Dynamic Controller Assignment or Alloca-
tion (DCA) problem as an integer linear program. The objective was to find an assignment that
minimizes the flow setup time and control traffic overhead in the network. The authors used the
random multiple-mapping matrix among controllers and switches to generate the initial assign-
ment solution. In the approach, if there are some switches not assigned to any controller, they will
be randomly connected to one of the activated controllers, but this may violate the restrictions of
controller capacity. However, the authors claim that this particular case rarely happened in their
simulations.

Hock et al. [43] modeled CPP as a multi-objective problem and proposed a framework called
Pareto-based Optimal COntroller-placement (POCO). They obtained the best location of k con-
trollers considering first all possible combinations of faults of up to k − 1 controllers and then
evaluating disruptions in the network. The metrics used were maximum node-controller latency
and controller-controller latency in scenarios with failures, and load imbalance between con-
trollers. The authors evaluated Topology Zoo topologies and the Internet2 OS3E topology, and
showed the best latency value and best resiliency or fault tolerance cannot be obtained simultane-
ously. Therefore, the metrics involved must be compensated for, depending on their importance
in the goal pursued. The authors explored the search space for a small number of controllers
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exhaustively; however, in large-scale networks, the obtain of such results in acceptable time and
with the existing computing capabilities is a difficult task.

Liao and Leung [44] also modeled CPP as a multi-objective problem. The authors proposed
Multi-Objective Genetic Algorithm (MOGA) for the solution of the CPP problem. The mutation
function is based on PSO. The authors presented optimal Pareto solutions by minimizing switch-
controller latency, controller-controller latency, and load imbalance between controllers. In the
tests performed, they defined the number of controllers and sought for the location and assignment
of the switches.

Ahmadi and Khorramizadeh [45] adapted multi-objective genetic algorithms to solve CPP
and introduced Multi-start hybrid non-dominated sorting genetic algorithm (MHNSGA). They
evaluated two approaches to the problem. The first considers the minimization of the following
metrics: inter-controller latency, link or switch failures, and load balancing between controllers
(using the load imbalance concept), whereas the second includes both load and capacity of the
controllers in the evaluation metrics as a constraint of the problem. Solutions are sought for near
the Pareto front and the trade-off between the metrics is conducted. The number of controllers
at work must be known and several topologies defined in Internet Topology Zoo are used in the
evaluation.

Bari et al. [46] presented a solution that dynamically adapts the number of controllers and
their location to the conditions of the network. They adjusted the number of active controllers and
assigned OpenFlow switches dynamically minimizing flow setup time and communication over-
head. Moreover, they considered the statistics collection cost, flow setup cost, synchronization
cost and switch reassignment cost, which represent, respectively, number of messages necessary
for the collection of network statistics, cost of the path regarding propagation latency or number
of hops, average number of flows generated by the switches, number of messages exchanged be-
tween the controllers, and cost of reassignment of a switch to a new controller. The authors used
a simple modeling of the processing capacity of the controllers, which was defined in a vector
representing the maximum number of requests each controller can manage per second.

Yuan et al. [47] formulated the SDN controller assignment problem as a minimum weight
matching of the bipartite graph. In [47], the Kuhn-Munkres algorithm based solution was used to
find optimal matching between switches and controllers. Then, a genetic algorithm was proposed
to solve the controller placement problem based on the controller assignment scheme. To define
the weights considered in the bipartite graph, the authors used the propagation delay between
controllers and switches as a metric. The proposed approach considered load balancing between
the controllers based on the total capacity of the SDN controllers. The capacity of controllers was
defined as the maximum number of switches that the controller can serve. The article [47] did not
consider network changes that lead to different request rates received by SDN controllers, neither
the flow setup time.

Rath et al. [48] proposed a solution that dynamically enables/disables controllers considering
the load on the network. According to the optimization mechanism used, each controller calcu-
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lates a payoff function and compares its own value with that of neighboring controllers. It then
makes appropriate decisions, so that new controllers are added or existing ones are deleted, or
the download is performed between the controllers dynamically. The authors considered delay
and usage constraints, such that the delay associated with the controller must be lower than a
predefined threshold value (to support QoS) and the utilization must be within the minimum and
maximum limits. Delay combines path and processing latency. The purpose of the scheme is to
minimize packet loss, latency, and deployment cost.

He et al. [49] analyzes the controller placement for dynamic traffic flows based on a com-
bined controller placement model: controller locations and switch-to-controller assignments are
simultaneously optimized for minimum average flow setup time with respect to different traffic
conditions inside the network. Linearization method is applied to transform the problem into a
Mixed Integer Programming (MIP) problem, and the Gurobi optimizer is used in the solution.
The authors present the Controller (CTR) model and the Switch (SW) model. In the CTR model,
the control domains remain unchanged, while the controller moves inside their control domains.
SW model targets the scenario that controllers stay in their places, and switches change their
assignments. In that article, the authors do not determine the number of controllers needed to
manage flows, nor do they consider load balancing between them. Therefore, the results may
contemplate the use of unneeded controllers or with a considerable difference between their load
(there may be low load controllers in the network while others have a high load).

Abdel-Rahman et al. [50] introduced a framework to solve the CPP problem in SDN cellular
networks involving the uncertainty of the geographical distribution of users. Two schemes were
proposed, of which one aims to optimize the number of controllers necessary for the management
of all evolved NodesB (eNBs) while ensuring the response time of each eNB does not exceed a
specific value with a certain probability. The other scheme aims to optimize the eNB-controller
assignment considering the variation in the eNB request rate for minimizing the response time
for several eNBs. The eNB-controller assignment adapts to fluctuations in the eNB request rates,
resulting from the variations in the cellular user locations. The authors derive an equivalent Mixed
Integer Linear Programming (MILP) formulation, and it was using CPLEX to solve the problems.
In the article, the authors do not consider load balancing between controllers.

Considering the metrics used in the literature, we investigated the CPP problem using the aver-
age response time of the SDN controllers and the eNB-controller latency within the response time.
We modeled the processing of the controllers applying the queuing theory as in [1, 50, 41, 42];
moreover, we considered the request rate received by the SDN controllers or control traffic gen-
erated by the D2D communications established in the eNB coverage area. Solving the problem,
we used the CPP Artificial Bee Colony (CPP-ABC) and CPP Ant Colony System with External
Memory (CPP-ACS-EM) metaheuristics to find an approximate solution in an acceptable time.
The path taken by ants and the bees food source contribute to the determination of controllers
number, the eNB-controller assignment, and SDN controllers location.

Table 2.1 shows a summary of the main characteristics of the studies on the CPP problem.
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Table 2.1: Strategies used in CPP.

Proposal Details Metrics Strategies
Focus on D2D
Communica-
tions

Heller et al.
[32] (2012)

best location by minimizing the
node-controller propagation la-
tency

average-case latency;
worst-case latency

minimum k- median
(local search heuristic
for k-median); mini-
mum k-center

No

Hu et al. [33]
(2013)

best location of controllers that
maximizes network reliability

reliability
random placement;
l-w-greedy; simulated
annealing; brute force

No

Sahoo et al.
[34] (2017)

best location for controllers that
optimizes latency

node-controller latency PSO; FA No

Farshin and
Sharifian
[1, 35] (2017)

dynamic calculation of number
of SDN controllers allocated con-
sidering network traffic

controller response time;
controller utilization; Jain’s
Fairness Index

Grey Wolf Optimizer
(GWO); PSOGSA;
WOA

No

Wang et al.
[36, 37]
(2016, 2017)

dynamic controller assignment,
the switches are dynamically
mapped to different controllers
when traffic varies

controller response time;
control traffic overhead

Stable matching prob-
lem with transfers;
Coalitional game the-
ory

No

Cello et al. [38]
(2017)

SDN switch migration mecha-
nism that operates during the net-
work runtime and can detect and
solve congestion at the SDN con-
trollers

load balance BalCon heuristic No

Filali et al. [39]
(2018)

dynamic assignment of switches
to controllers in a data center en-
vironment

total response time; re-
source utilization and ca-
pacity constraints

one-to-many matching
game

No

Savas et al. [40]
(2018)

assignment problem considering
connectivity recovery after net-
work failures

number of control-path re-
covery stages

Neighbor-Disjoint Path
Routing heuristic

No

Suh and Pack
[41] (2018)

SDN master controller assign-
ment problem

average flow setup latency;
controller load

INLP; heuristic No

Zhang et al.
[42] (2018)

adaptive controller assignment
scheme for multiple controllers
that dynamically adjust the num-
ber of active controllers and
the mapping relationship among
controllers and switches

flow setup time; control
traffic overhead; load bal-
ance

ACA scheme, CAP
model as knapsack
problem

No

Hock et al. [43]
(2013)

better location considering
higher resilience and fault toler-
ance

node-controller latency;
controller-controller la-
tency; load imbalance

Pareto-based optimal
placement (considering
all solution space)

No

Liao and Leung
[44] (2017)

best location and assignment of
switches minimizing latency and
load unbalance between the con-
trollers

node-controller latency;
controller-controller la-
tency; load imbalance

MOGA with a PSO-
based mutation

No
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Table 2.1: Strategies used in CPP.

Proposal Details Metrics Strategies
Focus on D2D
Communica-
tions

Ahmadi and
Khorramizadeh
[45] (2017)

better location and assignment of
nodes to controllers, minimizing
latency and load unbalance be-
tween controllers with load re-
strictions

node-controller latency;
controller-controller la-
tency; load imbalance;
capacity of controllers;
switch load

MHNSGA No

Bari et al. [46]
(2013)

number of active controllers and
assignment of switches to con-
trollers considering network fail-
ures

statistics collection cost;
flow setup cost; synchro-
nization cost; switch reas-
signment cost

a greedy approach
based on the knap-sack
problem; a simulated
annealing-based meta-
heuristic approach

No

Yuan et al. [47]
(2018)

controller placement problem
based on the controller assign-
ment scheme

propagation delay; load
balance, controller capacity

Kuhn-Munkres algo-
rithm (bipartite graph);
genetic algorithm

No

Rath et al. [48]
(2014)

best assignment and location of
controllers after increasing/de-
creasing the number of con-
trollers according to the load on
the network

latency (processing and
path delay); controller
utilization

Non-zero-sum-based
game theory

No

He et al. [49]
(2017)

controller placement for dynamic
traffic flows, controller locations
and switch-to-controller assign-
ments are simultaneously opti-
mized

end-to-end flow setup time MIP; Gurobi No

Abdel-Rahman
et al. [50]
(2017)

minimum number of SDN con-
trollers, their ideal locations and
assignment to eNBs, where the
optimization criteria are based on
the satisfaction of the eNBs delay
requirements

transmission and propaga-
tion latency; queuing la-
tency controller

Stochastic program-
ming; MILP; CPLEX

No

Our CPP pro-
posal

number of controllers, their loca-
tion and eNB-controller assign-
ment considering response time

controller response time;
eNB-controller latency;
Jain’s Fairness Index

CPP-ABC; CPP-ACS-
EM

Yes

According to our literature review on the SDN CPP problem for wireless networks, the treat-
ment of D2D communications has not been addressed, and the Artificial Bee Colony (ABC) and
Ant Colony System with External Memory (ACS-EM) meta-heuristics have not been applied
to the problem considered here. The first solution proposed considers two steps and two sub-
problems. In the first, the radio resource allocation problem is solved by a greedy approach,
according to which the number of D2D communications accepted in the network is obtained and
used as input to the CPP. In the second step, the CPP problem is solved according to the afore-
mentioned description (our CPP proposal).
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The study of radio resource management is deepened in the sequence. The next section ana-
lyzes research related to the radio resource allocation problem in 5G cellular networks.

2.2 RADIO RESOURCE ALLOCATION

Radio Resource Management (RRM) is the control of features and configurations of wireless
communication systems such as cellular networks, broadcast systems and wireless data networks.
The RRM involves from the power transmission control, channel allocation, bandwidth and error
correction schemes, to more complex operations such as planning the reuse of frequencies, and
load balancing. Of all the operations and controls considered in RRM, in this thesis we will
be studying those related to Radio Resource Allocation (RRA) such as transmit power control,
channel allocation, communication mode and resource reuse.

From the RRA perspective, D2D communication can be classified by several criteria depend-
ing on the reuse of radio resources, the used communication mode, the type of interference man-
agement, and the power control (Figure 2.2). Radio resources in mobile networks are originally
allocated for Uplink (UL) and Downlink (DL). D2D communications, depending on the commu-
nication mode, may reuse the UL, the DL, or both. The most common approach in the current
literature is to use the UL resources of cellular networks. The advantage of the UL is that this
direction is mostly underutilized compared with the DL, since most users would rather download
data from the network. In addition, the interference situation in the UL is much easier to resolve
with respect to cellular transmission because the victim of D2D interference is solely the eNB.

Figure 2.2: D2D communication from RRA perspective

The communication mode identifies whether the DUEs communicate directly with each other
or via the eNB. It distinguishes if D2D communication uses the same radio resources as the con-
ventional cellular communication or not. The literature recognizes three communication mode:

1. Cellular Mode (CM): is conventional cellular communication, the DUEs exchange data
through the eNB and no direct exchange of data between the DUEs takes place. As shown
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(a) Cellular Mode (CM) (b) Dedicated Mode (DM) (c) Reuse Mode (RM)

Figure 2.3: Examples of D2D communication modes

in the Figure 2.3(a), a free resource block (RB) is assigned to the transmitter and the receiver
of D2D communication;

2. Dedicated Mode (DM) or overlay mode: is a mode allowing two DUEs to transmit data
directly between themselves without intermediate eNB, the eNB has to dedicate radio re-
sources for the DUEs’ transmission. As shown in the Figure 2.3(b), a free RB is assigned
to D2D communication;

3. Reuse Mode (RM) or underlay mode: a same radio resources are used both for the DUEs
and for the cellular User Equipments (CUEs). As shown in the Figure 2.3(c), a RB assigned
to cellular communication is used by D2D communications.

From the spectral efficient perspective, CM has the lowest efficiency because direct commu-
nication is not used. DM has a medium efficiency, where the eNB has to dedicate radio resources
for the DUEs’ transmission and, thus, the CUEs cannot exploit the full capacity of the eNB. In
DM, the radio resources are used with a higher efficiency than in the case of the CM, since only
one transmission direction, either the DL or the UL, is used for the D2D transmission. Similarly
to the DM, the RM can use either the DL or the UL radio resources. In RM the reuse factor
is significantly higher than in the case of the CM or the DM, therefore, this mode is even more
profitable for the system.

From the interference perspective, the advantage of the DM is that the eNB does not need to
handle interference among the CUEs and the DUEs. In this mode, transmission of the CUEs and
the DUEs has assigned a non-overlapping orthogonal radio resource. In CM, the interference can
be easily managed by the eNB and no new features have to be implemented. However, in RM,
strong interference could be generated among the DUEs and the CUEs. To prevent the generation
of harmful interference, new techniques and procedures have to be introduced to the system. As
a result, the complexity of whole system is increased.

The cellular communication should not be affected by the introduction of D2D communica-
tion, which makes interference a critical problem in D2D scenario. In addition, if the D2D com-
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munication is strongly interfered by the cellular communication, its applicability and/or efficiency
is significantly reduced. The nodes that are affected by interference (eNB, CUE, DUE) depend
on D2D communication mode and on the resources used for D2D communication (UL/DL). In-
terference between the CUEs and the DUEs occurs only if the DUEs are in the RM. Furthermore,
interference between D2D pairs is introduced only if the same resources are allocated to them.

An interference classification was presented in [51], considering who is the interferer and who
is the victim of interference, as follows:

1. Interference from the D2D communication to the cellular communication: in the UL direc-
tion, the interference is caused to the eNB, which receives data from its CUEs. In the DL
direction, the CUEs are the victims of the D2D interference as they are receiving data from
the eNB at the same time as the DUEs and exchange data among themselves.

2. Interference from the cellular communication to the D2D Communication: in the UL direc-
tion the interference to the D2D communication is generated by the CUE, which transmits
to the eNB. In the DL direction, the source of interference is the eNB.

3. Interference between D2D pairs: if more than one D2D pair is reusing the same radio
resources, the additional concern is the interference generated between the DUEs.

2.2.1 Radio resource allocation problem in D2D communications.

In a D2D communication system, when D2D pairs simultaneously share the same spectral
resource with the CUE, adjacent D2D pairs and the CUE may cause interference with each
other. Therefore, interference and radio resource allocation are crucial issues addressed in re-
search worldwide.

Sun et al. [52] formulated the uplink resource allocation problem where more than one D2D
pair can share the same resource with one CUE under the constraint that the Signal-to-Interference-
plus-Noise Ratio (SINR) requirements of CUEs and admitted D2D pairs are satisfied. The mutual
interferences among different D2D pairs as well as that between DUE and CUE sharing the same
RB resource was considered by authors. The resource allocation problem was formulated to
maximize the number of admitted D2D pairs by enabling more D2D pairs to reuse the same RB
resource subject to the constraint of the maximum tolerable interference level at each RB. The
authors proposed a greedy resource allocation heuristic based on the smallest degree interference
criterion from the graph theory.

Ciou et al. [53] proposed the Greedy Throughput Maximization Plus (GTM+) algorithm to
solve the multi-sharing resource allocation problem. GTM+ exploits conflict graph and maxi-
mal weight independent set to improve system throughput while ensuring the minimum SINR
requirements of CUEs and DUEs.

Esmat et al. [54] designed two phases-based resource sharing algorithms. The initial set of
candidate channels that can be reused by each DUE is adaptively determined in the first phase.
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In the second phase, Lagrangian dual decomposition is used to determine the optimal power for
DUEs that maximizes the network sum-rate. The authors considered that multiple DUEs are
allowed to reuse the same CUE channel, each DUE can use multiple CUEs channels and adaptive
power control for DUEs.

Wang et al. [55] formulated a problem of maximization of ergodic sum rate of D2D underlay
system subject to both D2D and cellular outage constraints, based only on statistical (partial) CSI.
The authors constructed a simplified bipartite graph for resource sharing between cellular links
and D2D links.

Kai et al. [56] investigated the joint uplink and downlink resources allocation to maximize
the sum data rate for all users in a system, ensuring QoS for CUEs and DUEs. They designed
a Joint Uplink and Downlink resource allocation scheme composed of two steps. First, a power
control scheme was developed for each possible DUE-CUE pair to maximize the overall data
rate, and then, a maximum weight bipartite matching scheme was designed to assign a subcarrier
to each DUE. The authors assumed the Base Station had the perfect CSI of all links involved for
designing a centralized resource allocation scheme.

Ali et al. [57] proposed the Termed Threshold Controlled Access algorithm for uplink resource
allocation based on battery status and related application’s power profile that eventually leads to
required QoS metric. Initially, the algorithm selects the number of carriers to be allocated to a
certain device for the better lifetime of low power devices. Then, a threshold is obtained based on
the QoS metric for the selection of sub-carriers for less powered devices, such as small e-health
sensors. The results show that this approach achieves a great performance.

Dominic and Jacob [58] proposed an interference-aware admission and pricing-based power
control tools to ensure CUEs data rate above a minimum and interference below a limit respect
to the D2D pairs. The algorithm maximizes the sum rate of the D2D tier while meeting QoS
constraints of the CUEs and the D2D pairs. As a differential, the authors introduce an interference
limit as a constraint for the D2D pairs.

Gao et al. [59] presented a cooperative model and then consider the total performance problem
for the entire network with the premise of guaranteeing the quality of the CUEs communication.
The authors implemented the quantum coral reefs optimization algorithm for the joint allocation
of resources and the problem of power control in heterogeneous D2D networks, whose objective
is to maximize the overall performance.

Lee et al. [60] give a different approach to the resource allocation problem. The authors
introduce a Machine Leaning (ML) technique rather than formulate the problem as mixed integer
nonlinear programming. The main idea is to learn a prune policy to enhance the branch-and-
bound algorithm. Finally, the problem is modeled as a binary classification problem and solved
by the training of a support vector machine model.

Gorantla and Mehta [16] studied sub-channel allocation to D2D pairs in the underlay mode in
a multi-cell scenario with multiple uplink sub-channels and limited CSI. They proposed a q-bit
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quantized feedback scheme in which a D2D pair feeds back its

Kwon and Kim [61] presented a three-dimensional channel assignment with pairs of (CUE,
DUE, channel) considering a system whose channel bandwidth is not fixed, but adaptively de-
termined to according to triple CU, DU, channel. They proposed a sub-optimal algorithm that
calculates power in a closed form using Lagrangian relaxation and a sub-gradient-based iterative
algorithm. The CSI of all possible combinations of links was assumed available at the BS, which
might require indispensable CSI feedback.

2.2.2 Social-aware radio resource allocation in D2D communications.

Social networking concepts can help find solutions and enhancements for D2D communica-
tions in both physical domain, where devices can help or be assisted before accessing a network
or initiating D2D communication, and social domain, where devices can create a social network
governed by social relationships and events. Considering such two main domains, we used in-
formation of social interaction between D2D users in the radio resource allocation, where D2D
communications employ the same spectrum resource as cellular communications.

The topic of resource allocation has also been analyzed since the beginning of the social
awareness approach. Below are studies that use information of social relations among users in the
radio resources allocation problem.

Wang et al. [62] modelled the sociality of D2D transmission links in terms of contact time
as complementary indicator of the link strength and formulated both sociality-non-aware and
sociality-aware optimisation problems for the resource allocation in D2D-assisted cellular net-
works. The research focused on the maximization of resource utilisation and network utility
but satisfying congestion constraints. The authors demonstrated that the sociality-aware resource
allocation can achieve higher performance than that of the sociality-non-aware approach.

Feng et al. [63] considered the similar and in common characteristics of people in small social
communities and exploit them to optimize the resource allocation in the communities region.
The RAA is solved by finding the optimal graph matching which derived via bipartite graph
matching. Finally, the authors developed a low-complexity small social community resource
allocation algorithm to solve the problem.

Deng et al. [64] optimized the resource allocation of D2D communication by utilizing the
social relations embedded in the communication devices. The authors used the call records to
quantify the social strength by the application of the auto-regressive integrated moving average
model. Then, users maximize its social-community utility considering the other social related
D2D users. Using potential game it is solved the social-community utility maximization problem
of resource allocation for D2D communication and a social-aware distributed resource allocation
algorithm is proposed.

Huynh et al. [65] proposed another social-aware and energy efficiency optimization solution
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for D2D communications in 5G networks. First its is analyzed and evaluated the influence of
social factors on the performance of D2D communications. Moreover, the authors define and
solve an energy efficiency optimization problem considering both the social relationships and
physical interference between all the User Equipments (UEs). The problem considers an optimal
channel mode selection and optimal transmission powers allocated to each UE, maximizing the
energy efficiency, by utilizing adaptive genetic algorithm.

Yang et al. [66] designed a QoS-driven social-aware network model to integrate social in-
formation into cognitive D2D-based Internet of Things (IoT) networks. The authors modeled
a social-aware energy-efficient resource management optimization problem as a multiagent re-
inforcement learning formulation and developed a coordinated multiagent deep reinforcement
learning (DRL)-prioritized experience replay (PER)-based resource management approach to op-
timize both joint radio block assignment and transmission power control strategy.

Our first RRA proposal allocates radio resources aware of the intensity of social relations be-
tween users. CUEs use orthogonal channels, so that interference between them is not considered.
The conflict graph is used for each CUEs for the modeling of interference between D2D pairs that
can use the same RB assigned to a CUE. The greedy heuristic (Social-aware Greedy Resource
Allocation Algorithm (SA-GRAA)) solved the problem selecting the D2D pairs with the highest
social relationship. The proposed solution verifies if the QoS parameters of both CUEs and DUEs
complain of all validity interference criteria.

The resource allocation problem in which more than one D2D pair can share a same RB with
a piece of CUE is investigated. RBs are assigned to CUEs and the QoS of both CUEs and DUEs
is considered. Mutual interferences among different D2D pairs, as well as that between DUE and
CUE sharing the same RB are taken into account. Moreover, the achievement of high spectral
efficiency while ensuring no excessive interference is caused to CUEs depends on an adequate
interference-aware allocation of sub-channels to D2D users. In this scenario, eNB must have full
or partial CSI to perform an efficient resource allocation.

The full CSI model was considered and, according it, eNB knows the perfect CSI of all links
[16, 17, 18], whereas in practice, it knows only the channel power gains of CUEs for eNB and
D2D transmitter (dTj ) for eNB links - a priori, it does not know the channel power gains of CUE
for D2D receiver (dRj ) and dTj for dRj links. Therefore, the CSI of such links can be obtained
through feedback, which causes high overhead [17, 18], especially when the number of CUEs
and D2D pairs is large.

In the feedback model, the D2D receiver sends eNB information to the CUE for dRj and dTj
for dRj channel gains. Therefore, in the second RRA solution, we propose the selected-NM Max-
imum Distance Ratio (MDR) q-bit feedback scheme which, considering the increase in network
overhead generated by feedback, limits the sending of q-bits of channel information, as well as
the number of links. Our second RRA proposal also allocates radio resources aware of the inten-
sity of social relations between users and a conflict graph. However, it considers partial CSI and
an ABC meta-heuristic solves the radio resource allocation problem that maximizes the network

29



throughput.

The use of social relations as a parameter for the selection of D2D links is expected to increase
the throughput on the network, since users with similar social interests can consult the same
content on social networks (e.g., videos, images, among others). Therefore, if a D2D device has
already consumed a content, it can distribute it to another D2D device near it. For example, if two
users are fans of the same football team, they are expected to watch the same videos of their team,
published on social networks, such as Twitter. If one of them has already watched the video, he
can transmit it to a nearby D2D device and share the same social interest.

Table 2.2 shows a summary of the main characteristics of the studies on the D2D RRA prob-
lem.

Table 2.2: Strategies used for the solution of the D2D RRA problem.

Proposal
Reused
Resources

Interference
Model

Target Metrics Solution and Tool
Social-
aware

Sun et al.
[52]
(2013)

Uplink
Conflict
Graph

maximize the number
of admitted D2D pairs

degree interference
and SINR

Greedy heuristic Re-
source Allocation Al-
gorithm (GRA)

No

Ciou
et al. [53]
(2015)

Uplink
Conflict
Graph

improve system
throughput

SINR
Greedy Throughput
Maximization Plus
(GTM+)

No

Esmat
et al. [54]
(2016)

Uplink

Array with
maximum
interference
limit for each
CUE

maximize the overall
UL network throughput

SINR and transmit
power

Adaptive Resource
Sharing Algorithm

No

Wang
et al. [55]
(2017)

Uplink
statistical
model

Maximization of the er-
godic sum rate of the
system under outage
constraints

CSI, outage prob-
ability, SINR and
data rate

Weight bipartite graph
and the Hungarian al-
gorithm

No

Kai et al.
[56]
(2018)

Uplink and
Downlink

Not explained
Maximization of the
data rate of the overall
system

SINR and transmis-
sion power

Mixed integer non-
linear programming
problem (MINLP)
and weight bipartite
matching

No

Ali et al.
[57]
(2019)

Uplink Not explained
Improve energy con-
sumption

SINR and transmit
power

Termed Threshold
Controlled Access
algorithm

No

Dominic
and Ja-
cob [58]
(2019)

Downlink SINR
Maximizes the sum rate
of the D2D tier

transmit power and
degree of intimacy

Game theory and
Stochastic Learning
Algorithm

No

Gao
et al. [59]
(2019)

Downlink

Array with
interference
between
CUEs and
DUEs

Maximize the total
throughput, optimizing
resource allocation and
power control scheme

SINR
Quantum coral reefs
optimization algorithm

No
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Table 2.2: Strategies used for the solution of the D2D RRA problem.

Proposal
Reused
Resources

Interference
Model

Target Metrics Solution and Tool
Social-
aware

Deng
et al. [64]
(2018)

Uplink

Conflict
Graph and
Aggregated
Interference
Function

Maximize the social-
community utility

transmit power and
degree of intimacy

Social-aware potential
game approach

Yes

Lee et al.
[60]
(2019)

Uplink
Boolean
{0,1} for link
reuse

Maximize the spectrum
use efficiency

Transmission
power and SINR

Support vector ma-
chines and Branch and
bound algorithm

No

Gorantla
and
Mehta
[16]
(2019)

Uplink
statistical
model

Maximization of
the sum of the D2D
throughputs

SINR and CSI

cardinality-constrained
subchannel assignment
algorithm (CCSAA)
and Cardinality-
Constrained locally
greedy algorithm
(LGA) (CCLGA)

No

Kwon and
Kim [61]
(2020)

Uplink Not explained
Minimization of the to-
tal channel bandwidth

SINR, data rate and
transmission power

sub-optimal algorithm
by using Lagrangian re-
laxation and a sub-
gradient-based iterative
algorithm

No

Wang
et al. [62]
(2015)

Downlink

Modelled as
a constraint
which con-
sidered an
equation sim-
ilar to SINR

Maximize resource uti-
lization and network
utility

Transmission
power and Socially
strength given time
of a D2D commu-
nication

CPLEX Both

Feng
et al. [63]
(2017)

Uplink
Boolean
{0,1} for link
reuse

Optimize the overall
throughput of the com-
munities

Throughput and so-
cial relationship de-
gree

Small social commu-
nity resource allocation
algorithm

Yes

Deng
et al. [64]
(2018)

Uplink

Conflict
Graph and
Aggregated
Interference
Function

Maximization of
social-community util-
ity

Transmission
power and degree
of intimacy

Social-aware potential
game approach

Yes

Huynh
et al. [65]
(2018)

Not speci-
fied

Matrix for in-
terference be-
tween entities

Maximize the energy
efficiency

Transmission
power, SINR and
social strength

Adaptive genetic algo-
rithm

Yes

Yang
et al. [66]
(2020)

Uplink Not explained

Maximization of the ra-
tio of the sum data
rate and the sum energy
consumption

SINR, data rate and
transmission power

Deep Reinforcement
Learning-PER-based
resource management

Yes

Greedy
RRA
proposal

Uplink
Conflict
Graph

Maximize social rela-
tionship

SINR and strength
of social relation-
ships

SA-GRAA Yes

Our first
RRA
proposal

Uplink
Conflict
Graph

Maximization of
weighted system
throughput

SINR and strength
of social relation-
ships

Social-aware RRA
Artificial Bee Colony
(SA-RRA-ABC)

Yes
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2.2.3 Radio resource allocation problem in wireless communication system for URLLC
services.

The achievement of Ultra-reliable and Low Latency Communications (URLLC) requirements
is a great challenge for 5G networks and will demand system design modifications to the current
telecommunications infrastructure. In cellular networks, the efficient allocation of resources is
one of the main problems to be approached; therefore, researchers have been interested in study-
ing RRA considering URLLC services.

The block length of the channel codes in URLLC services must be short towards reductions in
the transmission delay; the communication is no longer arbitrarily reliable and the decoding error
probability should not be negligible. Shannon’s capacity is not applicable for the characterization
of the maximum achievable rate of short URLLC packets, as shown by Y. Polyanskiy et al. [19],
who derived a fundamental relationship among achievable rate, decoding error probability, and
packet length. Their results have been widely used in such a characterization for solving the
resource allocation problem [25, 27, 67, 23, 68, 21, 30].

Singh et al. [69] considered a multi-cell, multi- user cellular-D2D communication network
for URLLC services and presented two schemes, namely (1) fast allocation and (2) URLLC op-
timized allocation. In the former, the spectrum resource is shared between cellular and D2D
communications according to the proportion of traffic load, whereas the latter considers the target
rate maximization, i.e., the rate available for 99.999% of the locations, and the allocation can be
directed to the ultra-low capacity region.

Ghanem et al. [25] considered a multi-user URLLC-OFDMA (orthogonal frequency-division
multiple access) system and proposed a sub-optimal algorithm that performs resource allocation
on the downlink for maximizing the system throughput subject to QoS constraints for all URLLC
users. The algorithm obtains a local optimal solution based on successive convex approxima-
tions. The same authors in [27] presented a joint uplink-downlink resource allocation algorithm
designed for multi-user URLLC-OFDMA Mobile Edge Computing (MEC) systems. The ob-
jective of the optimization problem was to minimize the total weighted power consumed by the
Base Station (BS) and the users. The authors applied the branch- and-bound algorithm to find
the global optimal solution by successively partitioning the non-convex feasible region and using
bounds in the objective function to discard inferior partition elements.

Singh et al. [24] studied the resource allocation problem in multi-user multicarrier amplify-
and-forward relay networks considering URLLC services. The objective was to maximize the
energy efficiency in the network under the constraints of the decoding error probability. The
authors designed an iterative algorithm to solve the modeled optimization problem, thus obtaining
a near optimal solution.

Jayaweera et al. [67] considered an Elevated LiDAR system with URLLC communications
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and formulated the resource allocation problem to minimize the maximum decoding error prob-
ability. In a second step, they reformulated the problem towards minimizing the total energy
consumption while achieving the targeted decoder error probability. The algorithm is iterative,
with outputs which are optimal user-specific powers and corresponding block lengths for each
user.

Nasir et al. [68] studied three different optimization problems. The first deals with joint power
and bandwidth allocation considering a communication network where a single antenna node
communicates with multiple end devices; the second performs beamforming design in a multiple-
input-single-output (MISO) system, and the third treats power allocation under regularized zero-
forcing beamforming in a multi-user MISO system.

Considering a mission-critical IoT scenario, Ren et al. in [30] formulated the resource alloca-
tion problem as an optimization one. The aim was to minimize the decoding error probability for
the actuator while guaranteeing the decoding error probability for the robot, taking into account
power and blocklength constraints. The problem jointly optimized blocklength and transmis-
sion power considering four transmission schemes, namely orthogonal multiple acces (OMA),
on-orthogonal multiple access (NOMA), relay-assisted transmission, and C-NOMA (cooperative
NOMA) transmission.

Librino and Santi [70] proposed a methodology for resource allocation based on graph theory
in a dense smart factory scenario. The authors assumed no information on the channel state
was available, so that the resource allocation was based on topology and the channel statistics.
The Graph-Based Allocation Algorithm (GBA) proposed enabled resource allocation considering
channel diversity in terms of interference level and balancing the resources among the devices.
The authors added a resource sharing scheme to the allocation algorithm based on successive
interference cancellations.

Librino and Santi [71] extended their previous research modifying the GBA resource allo-
cation algorithm towards including an in-band pilot transmission of the devices and providing
a channel estimation at an access point. They analyzed the trade-off between the channel state
information (CSI) update frequency and the overall system performance in terms of traffic served
in a dense network scenario.

Dong et al. [21] proposed a deep learning neural network to solve the resource allocation
problem in 5G systems for minimizing the transmit power of a base station with multiple anten-
nas. They considered three types of services, namely URLLC, delay-tolerant, and delay-sensitive
and developed an optimization algorithm to solve the Mixed Integer Non-Linear Programming
(MINLP) problem and obtain the training samples. Deep transfer learning tuned the pre-trained
Neural Networks (NNs).
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2.2.3.1 Radio resource allocation problem in D2D communications for URLLC services.

The focus of this sub-section involves the RRA problem in a scenario that considers URLLC
services with the use of D2D communications, which might improve spectral utilization enabling
direct communications between devices. D2D communications represent a promising technology
for the achievement of high data rates and limited delay, and D2D networks reduce latency while
ensuring data rate, helping to guarantee requirements of URLLC services.

Chu et al. [20] considered a cellular network where D2D communications use URLLC ser-
vices and reuse the cellular link in the transmission of short packets. The authors formulated the
allocation problem towards maximizing the achievable rate of a D2D pair subject to a received-
power outage constraint at the cellular BS and the imperfect CSI between the D2D user and the
cellular BS. They adopted the successive convex approximation method to linearize the objective
function and then solve the problem with an iterative algorithm.

Yang et al. [22] derived the lower bound of the tradeoff among spectral efficiency, transmission
latency, and reliability according to the finite block length theory. Based on the worst-case lower
bounds, the authors studied the optimal frame design towards minimizing the transmission latency
while ensuring the amount of transmission information for each V2V (vehicular to vehicular) pair
and the

Sanusi et al. [28] jointly considered admission and power control to determine the feasible
sets of CUE-DUE pairs that could meet the minimum QoS requirements for an industrial factory
scenario. The authors proposed a strategy to mitigate co-channel interference from CUEs and
DUEs based on distance so that user terminals which produce large interference are avoided.
First, the set of power pairs that satisfied the distance metric for potential reuse partners was
obtained. The set of power pairs that guaranteed the reliability requirement of DUEs was then
acquired, and finally, the optimal power assignment that maximized the sum of the CUE and
DUE output was achieved. A matching game solution that used the price-DA algorithm with an
incentive- based stability to improve resource sharing was proposed for solving the problem.

I. O. Sanusi, K. M. Nasr, and K. Moessner [29] presented an optimization scheme for a cellular
network with D2D in an Industrial Internet of Things (IIoT) environment which maximized the
throughput of the supported D2D links without compromising the QoS of the network users. They
adopted an optimization approach to solve the allocation problem.

Considering D2D vehicular networks, Yang et al. [72] introduced a joint mode selection, a
resource block (RB) assignment, and a transmission power control scheme. The objective of
the modeled optimization problem was to maximize the overall network capacity. The decision-
making problem was formulated as a decentralized Reinforcement Learning (RL) framework. In
[31], the authors presented an Energy Efficiency (EE) resource management in a heterogeneous
radio frequency (RF)/visible light communication industrial network architecture, guaranteeing
the requirements (high reliability, low latency, and high data rate) of IIoT and IoT devices. They
proposed a deep post-decision state (PDS)-based experience replay and transfer (PDS-ERT) RL
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algorithm for the problem resolution towards maximizing the network EE.

Wu et al. [73] studied a contention-based access scheme to deal with sporadic packet arrival
generated by D2D communications. They modeled an optimization problem to perform radio
resource management in D2D communications considering URLLC services. The problem was
transformed into a mixed strategy non-cooperative game towards the distributed allocation of
RBs, maximizing the sum of Successful Transmission Probability (STP) of all D2D pairs.

Our second RRA proposal considers a D2D cellular network for an industrial factory scenario
where D2D communications use URLLC services and assumes D2D pairs can reuse cellular links
if channels are not available. Therefore, different communication modes for D2D pairs were con-
sidered for the study of the resource allocation problem, formulated as an optimization problem
for maximizing the energy efficiency subject to the SINR and maximum power constraints of
CUEs and D2D pairs. Three bio-inspired ABC-based, ACS-EM-based, and PSO-based meta-
heuristics were proposed for the obtaining of near-optimal solutions.

Table 2.3 shows a summary of the main characteristics of the studies on RRA problem in
wireless communication systems for URLLC services.

Table 2.3: Strategies used in wireless communication system for URLLC services.

Proposal Focus Objective Techniques / Algorithms D2D Scenario

Singh et al.
[69] (2017)

Uplink
and
Downlink

Maximization of the mini-
mum achievable rates

Estimation of transmission rates
and protocol for channel alloca-
tion based on the estimated val-
ues

Yes
Industrial (Fac-
tory)

Ghanem et al.
[25] (2019)

Downlink
Maximization of the system
throughput

big-M formulation, Integer re-
laxation and Difference of con-
vex programming

No Cellular network

Ghanem et al.
[27] (2020)

Uplink
and
Downlink

Minimization of the total
weighted power consumed
by both BS and users

Branch-and-bound Algorithm No
Cellular network
and Mobile Edge
Computing

Singh et al.
[24] (2020)

Not speci-
fied

Maximization of the energy
efficiency

Mixed-integer non-convex pro-
gramming, Dinkelbach method,
and Iterative Algorithm

No

Multi-user
multicarrier
amplify-and-
forward networks

Jayaweera
et al. [67]
(2020)

Downlink

Minimization of both maxi-
mum decoding error proba-
bility and total energy con-
sumption

Symbol Sharing Algorithm No
Factory floor en-
vironment

Nasir et al.
[68] (2021)

Downlink
Maximization of the mini-
mum rate among UEs

Path-following Algorithm No
Wireless commu-
nication network

Ren et al. [30]
(2020)

Downlink
Minimization of the decod-
ing error probability

Bisection search method, one-
dimensional line search method,
and Lagrangian dual decompo-
sition method

No
Industrial (Fac-
tory)
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Table 2.3: Strategies used in wireless communication system for URLLC services.

Proposal Focus Objective Techniques / Algorithms D2D Scenario

Librino and
Santi [70, 71]
(2020, 2021)

Uplink

Allocation of as many de-
vices as possible, consider-
ing those that provide the
desired reliability with the
least amount of resources

Graph-Based Allocation Algo-
rithm (bipartite graph) and Hun-
garian algorithm

No
Industrial (Fac-
tory)

Dong et al.
[21] (2021)

Downlink
Minimization of the total
power consumption of a BS

Artificial Neural Network
(ANN) and MINLP

No
Wireless commu-
nication network

Chu et al. [20]
(2019)

Not speci-
fied

Maximization of the achiev-
able rate of the D2D pair

Difference of convex program-
ming, First-order Taylor ap-
proximation, and Iterative suc-
cessive convex approximation
method

Yes Cellular network

Yang et al.
[22] (2020)

Uplink

Minimization of transmis-
sion latency and Maximiza-
tion of the minimum amount
of transmission information
between all V2V pairs

Binary search and Newton’s
method, Epigraph Form, Stan-
dard geometric programming,
and Interior-point methods

Yes
Vehicular Net-
works

Sanusi et al.
[28] (2021)

Uplink
Maximization of the overall
system throughput

MINLP and Stable Matching
Problem, game theoretical ap-
proach

Yes
Industrial (Fac-
tory)

I. O. Sanusi,
K. M. Nasr,
and K.
Moessner
[29] (2019)

Uplink
Maximization of the overall
system throughput

Not specified Yes
Wireless IoT in-
dustrial environ-
ment.

Yang et al.
[31] (2020)

Uplink
and
Downlink

Maximization of the energy-
efficiency

Deep post-decision state (PDS)-
based experience replay and
transfer (PDS-ERT) RL algo-
rithm

Yes
Industrial net-
works

Yang et al.
[72] (2019)

Uplink
Maximization of the
throughput of admitted D2D
links

Reinforcement learning frame-
work

Yes
Internet of Vehi-
cles communica-
tion networks

Wu et al. [73]
(2020)

Not speci-
fied

Maximization of the sum
STP of all D2D pairs

Game Theory, sequential spatial
adaptive play

Yes
Wireless commu-
nication network

Our second
RRA pro-
posal

Uplink
Maximization of energy ef-
ficiency

Artificial Bee Colony (RRA-
URLLC-ABC), Ant Colony
System with External Memory
(RRA-URLLC-ACS-EM) and
Particle Swarm Optimization
(RRA-URLLC-PSO)

Yes
Cellular network
for an industrial
factory scenario
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2.3 FINAL CONSIDERATIONS

This section presented the state-of-the-art of the CPP and RRA problems in cellular networks,
considering the management of D2D communications. Since the treatment of D2D communica-
tions was not focused on solving the SDN CPP problem, we proposed an approach to the problem,
which considers two sub-problems. In RRA is solved by a greedy heuristic, obtaining the number
of D2D communications accepted in the network. The result was used as input for CPP, which
was solved by two meta-heuristics based on ABC and ACS-EM meta-heuristics.

Publications on the RRA problem were reviewed considering different approaches such as
D2D communications management and interference, social-aware solutions, and systems for
URLLC services. According to the literature review, taking into account the social relation-
ship between users helps the selection of D2D communications that will have assigned resources.
Therefore, a social-aware approach has been proposed to solve the RRA problem that considers
full and partial CSI models. The partial one includes a feedback model that decreases the network
overhead caused by the full CSI model.

In addition, the importance of studying systems for URLLC services and their use with D2D
communications were addressed. The literature on URLLC systems was analyzed and the need
for studies on algorithms that obtain optimal or near-optimal solutions in considerably low times
for not losing the current state of the network was identified. Three bio-inspired ABC-based,
ACS-EM-based, and PSO-based meta-heuristics have been proposed for solving the problem.
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3 SYSTEM MODELING AND METAHEURISTIC-BASED
ALGORITHMS

In this chapter, we present initially a system model and a set of models in order to treat some
important parts of the network system. Such set is composed by:

• a social network model;

• a URLLC services model;

• a channel model;

• an interference model;

• a queueing model for SDN controllers; and

• a CSI and Limited selected-NM Feedback model.

At the end of the chapter, we present a generic description of the metaheuristics used as a
basis for solving the optimization problems discussed in this thesis:

• Artificial Bee Colony (ABC);

• Ant Colony System with External Memory (ACS-EM); and

• Particle Swarm Optimization (PSO).

3.1 SYSTEM MODEL

A cellular network formed by one Packet Data Network Gateway (PGW), a group of Serving
Gateways (SGWs) defined as a set S = {si} = {s1, s2, . . . , ss}, 1 ≤ i ≤ s, a group of eNBs
defined as a set B = {bk} = {b1, b2, . . . , bb}, 1 ≤ k ≤ b, and a group of SDN controllers defined
as a set C = {cj} = {c1, c2, . . . , cc}, 1 ≤ j ≤ c was considered. The SDN controllers can be
located in any entity in the cellular network (PGW, SGW or eNB). Figure 3.1 shows a simplified
representation of our topology for s = 2, b = 4, and c = 2. SGWs are connected to PGW and
can communicate via a wired link and eNBs are evenly distributed among the SGWs and can
communicate with each other through a wired link.

The system involves multiple D2D pairs and cellular users, as shown in Figure 3.2. User
Equipment (UE) is classified as either Cellular User Equipment (CUE), or D2D-capable User
Equipment (DUE), according to the type of communication it establishes. If it communicates
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Figure 3.1: SDN Cellular Network for the control of D2D communications.

directly with the eNB, it is classified as CUE, and if it establishes a direct link with another UE, a
D2D communication occurs and both UEs are classified as DUEs. Therefore, we define a cellular
scenario where cellular and D2D connections coexist in the same cell and transmit over the same
bandwidth. The eNB is located in the cell center and the UEs are uniformly random distributed
in the cell.

Figure 3.2: D2D and cellular concurrent users inside an SDN Controller domain.

Physical domain assumes a typical Long Term Evolution (LTE) system and the time division
duplex (TDD) technique, in which each frame consists of a number of DL, Uplink (UL), and
special subframes according to the uplink-to-downlink configuration type. The resources in the

39



UL subframe are organized into resource blocks (RBs) in the frequency domain, and slots in the
time domain [74]. We selected the underlay mode, as in [75, 76, 77, 78, 79], which assumes D2D
pairs share the subchannels with CUEs operating in the uplink mode. UL spectrum sharing is
considered, since it is under-utilized in comparison to that of DL in cellular systems. Similarly to
[80, 81], the network uses the orthogonal frequency-division multiple access (OFDMA) technique
to provide communication services, with orthogonal uplink subchannels.

The group of CUEs is defined as a set U = {ui} = {u1, u2, . . . , uu}, 1 ≤ i ≤ u and the group
of D2D pairs is considered D = {dj} = {d1, d2, . . . , dd}, 1 ≤ j ≤ d. In a D2D communication,
the DUE transmitter is denoted by dTj and the receiver is represented by dRj . Cellular commu-
nications are considered primary and radio resources are pre-assigned to CUEs before sharing
a RB with D2D communications. CUEs are assumed to occupy orthogonal channels so that no
interference occurs.

Each D2D pair can select one of the following communication modes: (i) RM - the D2D pair
shares the channel with either a cellular communication, or another D2D communication; (ii)
DM or overlay mode, when the cellular network allocates a fraction of the available resources
for the exclusive use of D2D devices (the pair uses a free channel); and (iii) CM - the pair uses
the conventional transmission mode by sending data through the eNB (2 uplink channels are
allocated). The cellular communication mode is used by the D2D link only if the pair cannot
communicate directly, either because the transmitter and receiver are far apart, or because of
channel conditions. In this case, as in [72], the eNB is assumed to allocate its resources for
guaranteeing the QoS requirements on the downlink.

The bandwidth on UL is divided into orthogonal RBs of equal size; a set NRB = {rbk} =

{rb1, rb2, . . . , rbn}, 1 ≤ k ≤ n, with n = u + Nu RBs is defined, where Nu is the number of
unused RBs. When all channels are busy, D2D communications consider the inband underlay
mode, as in [78], where D2D pairs reuse the same communication channels - in particular, the
same RB - used by CUEs in the licensed frequency bands. Available RBs can be used by D2D
communications to complete their transmission.

Let us consider ψ[ui, dj] an indicator expressing the reuse of spectral resources, and xdj indi-
cator denoting the communication mode used by D2D communications, expressed by

ψ[ui, dj] =

1, if ui and dj share the same RB,

0, otherwise,
(3.1)

xdj = {xDM
dj

, xRM
dj

, xCM
dj
}, j = 1, 2, . . . , d, (3.2)

where xDM
dj

, xRM
dj

and xCM
dj

are equal to 1 when D2D link dj uses DM, RM or CM, respectively,
and equal to 0 otherwise.

Moreover, we assumed all instantaneous channel power gains of CUEs - eNB and dTj - eNB
links were available at the eNB. In practice, such CSIs can be aware of eNB, since it acts as
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their receiver, and the CSI of D2D links can be obtained when a D2D connection request is sent.
Traditional channel measurement schemes are not applicable to the CSI of CUEs - dRj and dTj -
dRj links, since eNB does not participate directly in communication [17]. We assumed only eNB
had their location information, which would be used for a partial CSI evaluation.

3.2 SOCIAL NETWORK MODEL

Each user equipment has two roles, i.e., a physical node in the Long Term Evolution Advanced
(LTE-A) network, and a user in the virtual social network. The UEs are uniformly distributed in
the coverage area of each eNB and can be CUEs or DUEs. Fig. 3.3 shows a two-domain system
model composed of physical and social domains. The former considers the processing of SDN
controllers and physical links between users. The latter quantifies the social relations between
mobile users.

Figure 3.3: SDN Cellular Network for the control of social-aware D2D communications.

Social networks provide relevant information about some patterns of contacts or interactions
and common friends, so that the intensity of their social relationships can be determined. We
define ω1

dj
as the common features index and ω2

dj
as the common friends index to represent the in-

teractivity factor [82]. Features refer to the content type that users access, for example, education,
sports, movies, art, among others.

ω1
dj

measures the strength of the social tie based on the user’s common features (content type
that both users access) as the ratio between the number of in-common features of a dj pair users
in relation to the total number of features of dTj and dRj , and it is given by
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ω1
dj

=
|ω1

dTj
∩ ω1

dRj
|

|ω1
dTj
∪ ω1

dRj
|

, (3.3)

where |·| is the cardinality of set, ω1
dTj

and ω1
dRj

stand for the features set of dTj and dRj , respectively.

ω2
dj

measures the strength of social tie based on friends information as the ratio between the
number of in-common friends of dj users regarding the total number of friends of dTj and dRj , and
it is given by

ω2
dj

=
|ω2

dTj
∩ ω2

dRj
|

|ω2
dTj
∪ ω2

dRj
|

, (3.4)

where ω2
dTj

and ω2
dRj

stand for the friends set of dTj and dRj , respectively.

Another factor for the determination of degree of relationship between D2D users is reci-
procity, measured according to a reciprocity index between users dTj and dRj , and expressed as

ω3
dj

=
ωr
dTj -> dRj

+ ωr
dRj -> dTj

2
, (3.5)

where ωr
dTj -> dRj

= 1 if user dTj follows user dRj , or zero, otherwise. The combination of the inter-
activity factor with the information of reciprocity between two users enables the representation
of the strength of social relationships ωdj as

ωdj =
1

3
· ω1

dj
+

1

3
· ω2

dj
+

1

3
· ω3

dj
, (3.6)

where ωdj ∈ [0, 1], and ωdj = 1 (or = 0) denotes the strongest (or weakest) relations between
D2D users dTj and dRj .

3.3 URLLC SERVICES MODEL

D2D communications are assumed to use URLLC services, where users are expected to trans-
mit short packets to ensure low latency requirements. Therefore, the maximum number of bits
rdj carried in a packet of m symbols with decoding error probability ϵ becomes a more accurate
performance metric for D2D communications and is given by [25, 27, 19]:

rdj = log2(1 + SINRdj)−
√
V

m
Q−1(ϵ) [bps/Hz], (3.7)

whereQ−1(·) denotes the inverse of Gaussian Q-function,m represents the number of transmitted
symbols, and V is the channel dispersion expressed as
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V =
(
1− 1

(1 + SINRdj)
2

)
· (log2 e)2. (3.8)

3.4 CHANNEL MODEL

Channel power gain considers distance-determined path-loss, fast fading due to multi-path
propagation, and slow fading due to shadowing. Therefore, such gain between CUE ui and eNB
bk can be expressed as

gui,bx = βui,bkζui,bkLui,bk , (3.9)

where βui,bk is the fast fading gain with exponential distribution (Rayleigh fading) with unit mean,
ζui,bk is the slow fading gain with log-normal distribution, Lui,bk = 128.1 + 37.6log10(l[Km]) is
the path-loss model for cellular link, and l is the distance between CUE ui and eNB bk in Km.
Similarly, the channel gain of D2D pair can be expressed by

gdTj ,dRj
= βdTj ,dRj

ζdTj ,dRj
LdTj ,dRj

, (3.10a)

where LdTj ,dRj
is given by

LdTj ,dRj
= 148 + 40log10(l[Km]). (3.10b)

The interference channel gains from dTj to eNB bk, from CUE ui to dRj , and from d′ (transmitter
of other D2D pair) to dRj are denoted by I△ui,bk , Iui,dRj

, and Id′,dRj , respectively.

3.5 INTERFERENCE MODEL

In the following, first a description of cellular communications is presented, where the inter-
ference generated by D2D communications in reuse mode is considered. Next, a description of
the model adopted in D2D communications in each communication mode considered is given.

3.5.1 Cellular Communications

A RB used by a CUE can be shared with a D2D pair in reuse mode. This case increases the
capacity of the network [83, 84]; however, it also leads to higher interference between entities that
use the same RBs for transmission. Therefore, the control of the interference level is essential
for an efficient use of D2D in this mode. Based on the interference model described in [85],
we considered the interference between cellular and D2D communications in the radio resource
allocation process (Figure 3.4).

Therefore, the minimum interference requirements on cellular communication should be con-
sidered for the reuse RBs. Consequently, the eNB in radio resource allocation enables the reuse
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Figure 3.4: Reuse Mode Interference.

of a RB if the SINR requirements of the cellular communication have been satisfied - the SINRui

received must be greater than the defined SINR threshold, as shown in equation

SINRui
=

Pui
gui,bk

I∆ui,bk + σ2
≥ SINRt

u, (3.11)

where bk and ui denote eNB bk and CUE ui, respectively, Pui
is the transmit power of cellular

user ui, gui,bx is the channel gain from transmitter ui to receiver eNB bk, I△ui,bk is the interference
received at eNB bk from D2D pair transmitters using the RB assigned to ui, and σ2 = N0W

[86, 87] is the noise variance assumed the same for eNB and all D2D receivers, N0 is single-sided
noise power spectral density and W is system bandwidth.

Interference (I△ui,bk) received at the eNB bk associated with ui, must be lower than or equal
to Imax

ui
defined by SINRt

u and given by

I∆ui,bk =
∑

dTj ∈∆ui

PdjgdTj ,bk
≤ Imax

ui
, (3.12a)

Imax
ui

=
Pui

gui,bk

SINRt
u

− σ2 , (3.12b)

where ∆ui is the set of D2D pairs that reuse the RBs allocated for ui, gdTj ,bk
is the channel gain

from transmitter dTj to receiver eNB bk, and Pdj is the transmitted power of D2D pair dj .

Furthermore, when an RB used by a CUE is not reused by any D2D pair, it does not suffer
interference from D2D pairs. In this case, the Signal-to-Noise Ratio (SNR) received at the eNB
for CUE ui can be given by

SNRui
=
Pui

gui,bk

σ2
, (3.13)
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Based on the interference model, we can derive the maximum number of bits transmitted on
cellular links, defined by

rui
=

log2(1 + SNRui
), if

∑d
j=1 ψui,dj = 0,

log2(1 + SINRui
), otherwise.

(3.14)

3.5.2 D2D Communications

Three modes of communication for D2D pairs, in which interference is generated differently,
were considered. In what follows is a description of the model adopted in each case.

Reuse Mode (RM)

In RM, D2D communications consider the underlay inband mode, as in [78], where D2D
links reuse the same communication channels - in particular, the same RB - that use a CUE of
the cellular network in licensed frequency bands. The minimum SINR requirements for D2D
communications must be considered - a D2D pair dj can reuse a given RB if SINRRM

dj
is greater

than the SINR threshold, defined as

SINRRM
dj

=
PdjgdTj ,dRj

Iui,dRj
+ Id′,dRj + σ2

≥ SINRt
d, (3.15)

where gdTj ,dRj
is the channel gain from transmitter dTj to receiver dRj ; Iui,dRj

is the interference
received at dRj from ui, and Id′,dRj is the interference received at dRj from D2D pair transmitters
using a same RBs as dj . The above interference can be expressed as

Iui,dRj
= Pui

gui,dRj
, (3.16a)

Id′,dRj =
∑

d′∈∆ui−dTj

P ′dgd′,dRj ≤ Imax
dj

, (3.16b)

Imax
dj

=
PdjgdTj ,dRj

SINRt
d

− σ2 . (3.16c)

Therefore, if two users are in the LTE Direct coverage area, they can initiate a direct link
between them whenever the SINR limits have been met. Based on the interference model, we
can derive the maximum number of bits transmitted on D2D links when D2D pair is in RM,
expressed as

rRM
dj

= log2(1 + SINRd
RM
j )−

√
V

m
.Q−1(ϵ) [bps/Hz]. (3.17)
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D2D communications are assumed to use URLLC services and cellular communications use
traditional services, which commonly do not require short packets.

Dedicated Mode (DM)

In DM, the D2D pairs use a empty RB. RBs are allocated orthogonally between UEs, and
no interference occurs among such UEs. Consequently, the SNR is the metric considered in this
mode expressed by

SNRDM
dj

=
PdjgdTj ,dRj

σ2
, (3.18)

where SNRDM
dj

is the SNR of D2D communications in DM. Therefore, the maximum number of
bits transmitted by D2D users is given by

rDM
dj

= log2(1 + SNRDM
dj

)−
√
V

m
Q−1(ϵ). (3.19)

Cellular Mode (CM)

In CM, the D2D pair uses the conventional transmission mode by sending data through the
eNB (two uplink channels are allocated). The mode can be used by the D2D link if the pair
cannot communicate directly, either because the transmitter and receiver are far apart, or because
of channel conditions. As in [72], the eNB is assumed to allocate its resources for guaranteeing
the QoS requirements on the downlink.

A D2D communication can use the CM if there are at least two unused RBs. Therefore, no
interference is generated with other cellular or D2D communications. The metric considered in
this mode is SNR, given by

SNRCM
dTj

=
PdTj

gdTj ,bk

σ2
, (3.20a)

SNRCM
dRj

=
PdRj

gdRj ,bk

σ2
, (3.20b)

where PdTj
and PdRj

are the transmit power of transmitter and receiver of D2D link dj , respectively,
and gdTj ,bk

and gdRj ,bk
are the gain of the channels between eNB and DUEs in CM. Therefore, the

maximum number of bits transmitted is given by

rCM
dj

= rCM
dTj

+ rCM
dRj

, (3.21a)

rCM
dTj

= log2(1 + SNRCM
dTj

)−
√
V

m
Q−1(ϵ), (3.21b)
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rCM
dRj

= log2(1 + SNRCM
dRj

)−
√
V

m
Q−1(ϵ). (3.21c)

Considering all communications in the network, the system throughput and the total transmis-
sion power consumption are expressed as

RT =
u∑

i=1

rui
+

d∑
j=1

xRM
dj

rRM
dj

+
d∑

j=1

xDM
dj

rDM
dj

+
d∑

j=1

xCM
dj

rCM
dj

[bps/Hz], (3.22)

PT =
u∑

i=1

Pui
+

d∑
j=1

xRM
dj

Pdj +
d∑

j=1

xDM
dj

Pdj +
d∑

j=1

xCM
dj

(PdTj
+ PdRj

) [Watt]. (3.23)

3.6 QUEUEING MODEL

The SDN controller is treated here as a Markovian model M/ M/mc/K, with a single queue
of limited capacity, where mc is the number of cores of each controller. Such modeling has been
used by other authors such as Gurusamy et al. [88], Panev and Latkoski [89], and Li et al. [90].
We suppose the SDN controllers, used in the cellular network, are running VMs with four Central
Process Unit (CPU) cores. Their limit is set by the K parameter and follows a First In First Out
(FIFO) discipline.

Let us consider:

• λc: average request rate received in the SDN controller;

• λeff : effective request rate in the SDN controller;

• λlost: lost requests rate in the SDN controller;

• µ: processing rate of each core, which follows an exponential distribution;

• mc: number of controller cores (mc = 4); and

• mcµ : processing rate of the SDN controller.

When the system is full, the new requests are discarded, hence, λeff = 0 for nq ≥ K, where
nq is the request number received by the controller, and λeff = λc - λlost and λlost = λc · pK , where
pK is the probability of K requests in the system.

The controller utilization rate ρ is given by [91]
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ρ =
λeff
mcµ

. (3.24)

The probability (p0) of no requests in the controller depending on the utilization rate is given
by

p0 =



{
mc−1∑
nq=0

(λc/µ)nq

nq !
+ (λc/µ)mc

mc!
·
[
1−(λc/mcµ)(K−mc+1)

1−(λc/mcµ)

]}−1
, if λc

mcµ
̸= 1 ,

{
mc−1∑
nq=0

(λc/µ)nq

nq !
+

[
(λc/µ)mc

mc!
· (K −mc + 1)

]}−1
, if λc

mcµ
= 1 .

(3.25)

The average queue length (Lq) is given by

Lq =


p0(λc/µ)mc ·(λc/mcµ)
mc!·(1−(λc/mcµ))2

·
[
1−

(
λc

mcµ

)K−mc − (K −mc) ·
(

λc

mcµ

)K−mc · (1− λc

mcµ
)

]
, if λc

mcµ
̸= 1 ,

(λc/µ)mc (K−mc)(K−mc+1)
2mc!

· p0, if λc

mcµ
= 1 .

(3.26)

The probability (pK) of K requests in the controller as a function of the utilization rate is
given by

pK =
(λc/µ)

K

mc! ·mc
(K−mc)

· p0 . (3.27)

Finally, the average response time of each SDN controller (tcj ) is the time spent by the packet
in the queue plus the processing time, obtained as

tc =
Lq

λeff
+

1

µ
. (3.28)

3.7 CHANNEL STATE INFORMATION AND LIMITED SELECTED-NM FEEDBACK
MODEL

The Channel State Information (CSI) available at eNB and D2D pairs is different:

At eNB: eNB knows gui,bk and IdTj ,bk
, dTj ∈ dj , ∀ui ∈ U , ∀d′T ∈ D. eNB is the receiver in

those links and can estimate them using the reference signals transmitted by users.

At D2D Pairs: The dRj of D2D pair dj knows gdTj ,dRj
, Iui,dRj

and Id′T ,dRj
, ∀dj ∈ D, ∀ui ∈ U . It

is the receiver in those links and can estimate them using, for example, probing reference signals.
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Two approaches, namely full CSI and limited feedback with partial CSI are considered for
CSI. The former is applied when an eNB knows the status of all channels on the network, whereas
partial CSI considers the sending of limited feedback in bits and number of both CUEs and D2D
pairs, so that eNB has partial information from CSI.

In the full CSI approach, the channel sum rate can be achieved if all cellular users and D2D
pairs are considered together by Equation 3.22. The feedback overhead can also be accounted as

overhead = d ∗ q ∗ [u+ (d− 1)], (3.29)

where q is the number of bits sent by each D2D pair receiver to eNB containing its quantized CSI
information (2q quantization levels). eNB has the SINR of all links, considering the interference
of CUE and D2D pairs sharing a same channel, which is equivalent to setting q to∞ [16].

The selected-NM method is applied to the approach with limited q-feedback, where all D2D
pairs use RM and its transmission power is the same. Instead of dRj sending information from all
CUEs and D2D pairs, it sends information from N ∈ U cellular users and M ∈ D D2D pairs. N
is the most promising CUE for the reuse of its channel and M denotes the D2D pairs with which
it can share the same channel simultaneously. Therefore, the feedback overhead can be accounted
as

overhead = d ∗ q ∗ [N +M ], (3.30)

where N ≤ |U | and M ≤ |D|. Up to M D2D pairs are allowed on each channel whenever QoS
parameters have been met for both cellular and D2D communications in RM. The channel rate of
rbn is calculated as

RRM
rbn = rui

+
M∑
j=1

ψui,djr
RM
dj

. (3.31)

The key is to find the N most potential reuse partner CUEs and M more potential shared
partner D2D pairs. An intuitive method is to choose the N farthest CUEs and the M farthest D2D
pairs of longest distance from dRj . However, in some cases, it may not work, since other factors,
such as QoS requirements also affect the interference of D2D pairs.

Inspired in [17, 18], we have derived a minimum distance metric, lmin, to evaluate the access
ability for a D2D pair. The metric for a dj ∈ D, D2D pair sharing resources with a CUE ui ∈ U ,
lmin
ui,dj

, can be expressed as

lmin
ui,dj
≥ 10−(148−X)/40 [Km], (3.32a)
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X =



Puigui,bkgdTj ,dR
j
−SINRt

uσ
2

(
g
dT
j
,dR

j
+SINRt

dgdT
j
,bk

)
β
ui,d

R
j
ζ
ui,d

R
j
PuiSINRt

uSINRt
dgdT

j
,bk

if
Puigui,bk

Pdj
g
dT
j
,bk

+σ2 ≤ SINRt
u,

Pdj
gui,bkgdTj ,dR

j
−SINRt

dgui,bkσ
2

β
ui,d

R
j
ζ
ui,d

R
j

SINRt
uSINRt

d

(
Pdj

g
dT
j
,bk

+σ2

) if
Puigui,bk

Pdj
g
dT
j
,bk

+σ2 > SINRt
u.

(3.32b)

The minimum distance metric enables eNB to easily decide whether D2D pair dj ∈ D can
share the resource with CUE ui ∈ U . However, the metric depends on fading components βui,dRj

,
ζui,dRj

and the power channel gain of D2D pair gdTj ,dRj
, which are not known at the eNB. As in

[17, 18], we derived a modified distance metric, l̂min
ui,dj

, which is the minimum distance between
CUE ui and the receiver of D2D pair dj that satisfies all QoS parameters without considering (i)
the fading effect of ui on dRj link by setting βui,dRj

= 1, ζui,dRj
= 1 and (ii) the power channel gain

of dTj to dRj link by setting gdTj ,dRj
= 1. The modified metric can be expressed as

l̂min
ui,dj
≥ 10−(148−X̂)/40 [Km], (3.33a)

X̂ =


Puigui,bk−SINRt

uσ
2

(
1+SINRt

dgdT
j
,bk

)
PuiSINRt

uSINRt
dgdT

j
,bk

if
Puigui,bk

Pdj
g
dT
j
,bk

+σ2 ≤ SINRt
u,

Pdj
gui,bk−SINRt

dgui,bkσ
2

SINRt
uSINRt

d

(
Pdj

g
dT
j
,bk

+σ2

) if
Puigui,bk

Pdj
g
dT
j
,bk

+σ2 > SINRt
u,

(3.33b)

eNB then selects the N most potential partner CUEs with the N largest lui,dRj
/l̂min

ui,dj
for a D2D

pair dj . The maximum-distance ratio, lui,dRj
/l̂min

ui,dj
, was chosen as the user selecting metric for the

following reasons:

1. the bigger the ratio, the longer the distance between CUE and the D2D pair receiver, and
the more ability to counteract the fading;

2. a lower l̂min
ui,dj

implies CUE can tolerate more D2D interference and obtain higher D2D
throughput if CUE is selected.

Similarly, the minimum distance metric for the evaluation of the access ability for a D2D pair
dj1 ∈ D sharing resources with another D2D pair dj2 ∈ D, lmin

dj1 ,dj2
, can be expressed as

lmin
dj1 ,dj2

≥ 10−(148−Y )/40 [Km], (3.34a)

Y = min



Pdj
g
dT
j1

,dR
j1

−SINRt
dσ

2

βdTj2
,dRj1

ζdTj2 ,dRj1
Pdj

SINRt
d
,

Pdj
g
dT
j2

,dR
j2

−SINRt
dσ

2

βdTj1
,dRj2

ζdTj1 ,dRj2
Pdj

SINRt
d
.

(3.34b)
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The QoS parameters must be satisfied for both pairs for the evaluation of multiple D2D pairs
that share a same channel; therefore, the most restricted value of Equation 3.34b is considered
for the obtaining of Y . The minimum distance metric enables eNB to easily decide whether D2D
pair dj1 ∈ D can share the resource with D2D pair dj2 ∈ D. However, it depends on fading
components βdTj2 ,dRj1 , ζdTj2 ,dRj1 ,βdTj1 ,dRj2 , ζdTj1 ,dRj2 , and the power channel gain of D2D pairs, gdTj1 ,dRj1 ,

gdTj2 ,d
R
j2

, which are not known at the eNB. Therefore, a modified distance metric, l̂min
dj1 ,dj2

, is derived
for satisfying the QoS parameters without considering:

• the fading effect of dTj2 on dRj1 link by setting βdTj2 ,dRj1 = 1 and ζdTj2 ,dRj1 = 1;

• the fading effect of dTj2 on dRj1 link by setting βdTj1 ,dRj2 = 1 and ζdTj1 ,dRj2 = 1;

• the power channel gain of dTj1 on dRj1 link by setting gdTj1 ,dR = 1; and

• the power channel gain of dTj2 on dRj2 link by setting gdTj2 ,dRj2 = 1.

The modified metric can be expressed as

l̂min
dj1 ,dj2

≥ 10−(148−Ŷ )/40 [Km], (3.35a)

Ŷ =
Pdj − SINRt

dσ
2

PdjSINRt
d

. (3.35b)

eNB then selects the M most potential partner D2D pairs with the M largest ldj1 ,dj2/l̂
min
dj1 ,dj2

D2D

pairs dj1 and dj2 . Similarly to the CUEs selection, maximum-distance ratio, ldj1 ,dj2/l̂
min
dj1 ,dj2

was
chosen and, towards guaranteeing the QoS parameters of the D2D pairs, ldTj1 ,dRj2 must be

ldj1 ,dj2 = min

(
ldTj2 ,d

R
j1

l̂min
dj1 ,dj2

,
ldTj1 ,d

R
j2

l̂min
dj1 ,dj2

)
. (3.36)

After the user selection procedure is finished, each D2D pair can trace and report the CSI
of the respective N selected CUEs and M selected D2D pairs. When CSI is available at eNB,
the radio resource allocation and metaheuristic-based solution can be used. Therefore, dRj sends
q-bits feedback γdj to each selected CUE and D2D pairs to eNB by quantizing SINRdj . Feedback
γdj is given by

γdj = i, if SINRi ≤ SINRdj < SINRi+1, (3.37)

where 0 ≤ i ≤ 2q − 1 and SINR0 = 0 < SINR1 < · · · < SINR2q−1 <∞ are the 2q quantization
thresholds. Given γdj , eNB only knows SINRdj exceeds SINRγd . Therefore, using Shannon’s
formula, eNB assigns the rate of log2(1 + SINRγd) to D2D pair d, considering the interference of
M D2D pairs selected.
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3.8 BIOINSPIRED COMPUTING AND OPTIMIZATION PROBLEMS

Optimization problems consist in finding the best combination of a set of variables to maxi-
mize or minimize a function, usually called the objective function. These problems can be divided
into three categories: those whose variables assume real (or continuous) values, those whose vari-
ables assume discrete (or integer) values and those where there are integer and continuous vari-
ables, classified as Continuous Optimization, Combinatorial or Discrete Optimization and Mixed
Optimization problems, respectively. In this thesis we study the CPP and RRA problems, which
are Combinatorial Optimization problems.

Combinatorial optimization problems can be minimization or maximization problems. In
both cases, we have a function applied to a finite domain, which is usually enumerable. Despite
being finite, the domain of the function is usually large and algorithms that check each element
of this domain become impractical. Thus, the need arises to use more elaborate techniques to
find optimal value solutions, which can be of minimum value, if the problem is minimization, or
maximum value, if the problem is maximization.

Combinatorial optimization aims to find the best configuration for a project with the most
efficiency and the lowest operational cost. Each of the numerous existing optimization methods
can achieve better results depending on the type of problem to which they are applied. The choice
of method depends on a series of characteristics of the problem to be optimized, mainly the
behavior of the objective function. Regarding the relationship between the decision variables in
the objective function and the constraints, such methods can be classified into linear programming
and non-linear programming methods. Non-linear methods can be divided into deterministic
methods and heuristic (stochastic) methods.

Deterministic methods are based on the calculation of derivatives, or approximations thereof,
and require information about the gradient vector, either by looking for the point where it cancels
out or by using the direction in which it points. These methods produce better results for con-
tinuous, convex, and unimodal functions (functions that have only one minimum or maximum
point).

Heuristic methods use only the information of the function to be optimized, which can be
difficult to represent, non-linear, discontinuous, non-differentiable, multimodal (it has many min-
imum or maximum points). These methods search for the optimal solution through probability
rules operating in a "random oriented" way.

A heuristic aims at obtaining good solutions (approximate solutions), but at an acceptable
computational cost (often based on simple and intuitive procedures). In this case, it offers no
guarantees of optimality, nor of admissibility, and eventually, it cannot guarantee quality infor-
mation about a given solution. Therefore, the heuristic method aims to find a feasible solution
(within the space of solutions) to a problem with a high degree of complexity - such as, for exam-
ple, those of the NP-complete or NP-hard class - in a plausible computational time. In order to
deepen the search in heuristic methods, making it possible to find better solutions, the technique
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known as meta-heuristics was originated.

Meta-heuristics use learning tactics that contain mechanisms to avoid confinement to specific
parts of the search space in order to identify a solution that is close to the global optimum solution.
In this way, the meta-heuristic reduces the search space towards the global optimum, making
computational time feasible.

CPP and RRA problems are NP-hard problems, which cannot be solved using traditional de-
terministic algorithms when the number of network entities increases. Therefore, meta-heuristic
methods have been confirmed to be excellent methods for solving these complex optimization
problems, and have been applied to solve many such problems belonging to different domains.

A class of meta-heuristics that has received a lot of attention in recent times consists of bio-
inspired computing or biology-inspired computing tools. Bio-inspired computing is the line of
research that employs metaphors and models of biological systems in the design of computa-
tional tools for solving complex problems. Bio-inspired meta-heuristics have been widely used to
discover the best solutions to various optimization problems that are not solved by conventional
methods. The main advantage of these meta-heuristics is that they perform iterative searches effi-
ciently by utilizing their exploration and exploitation features, i.e., investigating the entire search
space and intensifying the search for an optimum in a specific region, respectively.

Bio-inspired meta-heuristics can be widely divided into three groups: evolutionary, swarm
intelligence-based, and ecologically inspired [92]. Evolutionary meta-heuristics are inspired by
biological evolution in nature. They define a set of optimization techniques that simulate the
natural biological evolution and social behavior of living species.

Ecological-inspired meta-heuristic is an assessment to practice the interactions among the
species of ecosystem to design and develop cooperative and intelligence algorithms, it depends
on populations of individuals and each population develops according to a particular search strat-
egy. In a way, that the individuals of each population are modified according to the mechanisms
of diversification, intensification and the initial parameters of the search strategy. The ecolog-
ical inspiration stems from the use of some ecological concepts, such as: habitats, ecological
relationships and ecological successions.

Swarm intelligence is the field of studying and designing well-organized computational in-
telligent interactive multi-agent systems that cooperate to gather to achieve a specific goal and
to solving complex optimizations problems by using the behavior of real living swarms such as
birds, fish, bees, and ants. It is a part of Artificial Intelligence introduced by Wang and Beni in
1989 in the global optimization framework as a collection of algorithms for controlling robotic
swarms [93].

As swarm intelligence meta-heuristics possess features of self-organization, parallel opera-
tions, distributive operations, flexibility, and robustness, they have been gradually very widespread
and are utilized in many events. The emergence of these meta-heuristics has provided fast and re-
liable methods for obtaining solutions to different complex optimization problems. They include
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Figure 3.5: Taxonomy of Combinatorial Optimization Methods (based on [95, 92]).

ABC, Ant Colony Optimization (ACO), PSO, Artificial Fish Swarm (AFS), Bacterial Foraging
Optimization (BFO), and other meta-heuristics, and reflect their ability to solve non-linear design
problems in real-world applications thinking in almost all areas of science, engineering, and in-
dustry. These applications include, for example, those related to transportation problems (such as
those related to unmanned aerial vehicles), network routing, route planning, robotic systems for
scheduling problems, power systems, fault diagnosis, parameter optimization, system identifica-
tion, cluster analysis, data mining, image processing, layout optimization, and signal processing
[94].

According to the literature review conducted by Tang et al. in 2021 in article [94], the swarm
intelligence solutions with the highest number of publications until 2020 are PSO, ACO, and
ABC, which were the ones used in this study to solve CPP and RRA problems. Figure 3.5
presents a taxonomy of Combinatorial Optimization methods, refining the areas of interest for
this study [95, 92].

In this thesis, a study of three well-known meta-heuristic techniques is conducted to examine
their suitability for the problems under consideration. This study of meta-heuristic performance
is necessary since, according to the no-free-lunch (NFL) theorem [96, 97], there is no a priori
superior meta-heuristic technique for dealing with a specific optimization problem.

3.9 ARTIFICIAL BEE COLONY (ABC) ALGORITHM

Karaboga [98, 99] introduced a bee swarm algorithm, known as ABC method, to solve nu-
merical and combinatorial optimization problems. Inspired by the biological behavior of bee
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colonies in their search for food, it consists of three essential components, namely positions of
food sources, quantities of nectar and different types of bees. Each food source position represents
a feasible solution to the problem, and the amount of nectar denotes the quality of the solution
or fitness. Each bee class represents a particular operation for the generation of new positions of
food sources (new solutions).

Each solution within the search space includes a set of parameters that represent the positions
of the food sources. The "affinity" value, provided by the objective function, refers to the quality
of the food source. In general, the optimization process mimics the search of bees for important
food sources, thus, resulting in a process analogous to finding optimal solutions.

The ABC meta-heuristic classifies the foraging artificial bees into three groups, namely, em-
ployed bees, onlookers and scouts. A bee currently exploiting a food source is called an employed
bee, whereas a bee waiting in the hive for deciding on the choice of a food source is called an
onlooker. A bee randomly searching for a new food source is called a scout.

ABC shows a food source associated with each employed bee. Artificial onlooker bees choose
sources according to the aptitudes of the solutions (sources) pointed out by the employed bees.
The artificial scout bees randomly generate a new candidate solution.

A search requires the exploration and intensification phases to be robust. In ABC, the inten-
sification stage is performed by the employed and onlookers bees, whereas the exploration phase
is conducted by the scout bees.

The parameters of the basic ABC meta-heuristic are the number of food sources (SN ), which
is equal to the number of the employed bees or looker bees, number of trials after which a food
source is assumed to be abandoned (limit), and a termination criterion. The number of employed
bees or onlookers is set equal to the number of food sources in the population.

ABC starts with a population of randomly generated feasible solutions or food sources. Next,
the following three steps are repeated until a termination criterion has been met: (i) sending of
employed bees to the food sources and measurement of their nectar amounts; (ii) selection of food
sources by onlookers after the information from employed bees has been shared and the nectar
amount of the food sources has been determined; and (iii) determination of scout bees and their
sending to possible food sources.

In Algorithm 1, the ABC workflow (i.e., pseudo-code) with its respective characteristics is
represented. The initialization stage of the solutions of random mode is conducted in line 2. The
bees phase is, then, carried out: (i) employed bee phase; (ii) onlooker bee phase; and (iii) scout
bee phase. Below is the description of each phase.

During the evolution process, an operator from NL is removed and used to generate a new
food source for an employed bee or onlooker. If the new food source successfully replaces the
current one, the approach enters a winning neighboring list (WNL). Once the NL is empty, it
is refilled as follows: 75% are refilled from the WNL list, and the remaining 25% are refilled
by a random selection from four different approaches. See [100] for details of the self-adaptive
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Algorithm 1 Artificial Bee Colony (ABC)
Input: SN, limit,NLsize, nro_it

1: AllSolutions[SN ]← InitPopulation()

2: for i = 0 to nro_it do
3: for s = 0 to SN do ▷ ***Employed bee phase***
4: if OperatorNeighborList == 0 then
5: GenerateOperatorNeighborList(NLsize)

6: end if
7: solution← AllSolutions[s]

8: newSolution← GetFeasibleNeighbor()

9: Fitnes_newSolution← CalculateOF (newSolution)

10: if Fitnes_newSolution ≥ Fitness[solution] then
11: AllSolutions[s]← newSolution

12: Fitness[s]← Fitnes_newSolution

13: WNL← OperatorNeighborList.F irst

14: Limit[solution]← 0

15: else
16: Limit[solution]← Limit[solution] + 1

17: end if
18: RemoveOperatorNeighborList.F irst

19: end for
20: for s = 0 to SN do ▷ ***Onlooker bee phase***
21: solution← ProbabilisticRouletteOperator(Fitness[SN ]))

22: if OperatorNeighborList == 0 then
23: GenerateOperatorNeighborList(NLsize)

24: end if
25: newSolution← GetFeasibleNeighbor()

26: Fitnes_newSolution← CalculateOF (newSolution)

27: if Fitnes_newSolution ≥ Fitness[solution] then
28: Solutions[solution]← newSolution

29: Fitness[solution]← Fitnes_newSolution

30: WNL← OperatorNeighborList.F irst

31: Limit[solution]← 0

32: else
33: Limit[solution]← Limit[solution] + 1

34: end if
35: RemoveOperatorNeighborList.F irst

36:
37: LocalBestSolution← GetBestSolution(AllSolutions[SN ])

38: LocalBestF itness← GetBestF itness(Fitness[SN ])

39: if LocalBestF itness > GlobalBestF itness then
40: GlobalBestSolution← LocalBestSolution

41: GlobalBestF itness← LocalBestF itness

42: end if
43: end for
44: higherLimitSolution← GetHigherLimitSolution() ▷ ***Scout bee phase***
45: AllSolutions[higherLimitSolution]← GetRandomFeasibleSolution()

46: solution← AllSolutions[higherLimitSolution]

47: Fitness[solution]← CalculateOF (solution)

48: Limit[solution]← 0

49: for s = 0 to SN do
50: if Limit[s] ≥ limit then
51: solution← GetRandomFeasibleSolution()

52: AllSolutions[s]← solution

53: Fitness[s]← CalculateOF (solution)

54: Limit[s]← 0

55: end if
56: end for
57: end for
Output: GlobalBestSolution
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strategy.

After the application of the self-adaptive strategy to the current solution, a new solution and
a new fitness are generated. The fitness value of the new solution and the fitness value of the old
solution are then compared. If the new fitness is better than the old fitness solution, the old one is
replaced by the new solution, and the old fitness is replaced by the new fitness. This information
is inserted into the population.

If the old solution contains a better fitness value in relation to the new solution, its limit value
must be incremented, so that the evolution of that solution is represented.

In onlooker bee phase, in each iteration, an onlooker bee selects a food source using a selection
operator based on probabilistic roulette, represented in Equation 3.38. This roulette, measures the
fitness quality of each population solution and generates a probabilistic value for each solution.

pi =
Fitnessi∑SN
i=1 Fitnessi

(3.38)

where Fitnessi is the value of the objective function (Equation 4.7) for solution i. After proba-
bility values pi have been generated, a random value is generated within the intervals of pi values,
and tends to move to the position of pi, which has the best fitness value. However, the choice of
the value of highest fitness is not guaranteed. According to this probabilistic choice, a population
solution is chosen for the application of the self-adaptive strategy, as used by the employed bee
to produce a new neighboring solution. If the new food source obtained is better than or equal to
the current one, the new food source replaces the current one and becomes a new member in the
population.

In scout bee phase, the limiti values are analyzed and the limit that has reached the threshold
value of a non-evolving solution attempts will be chosen. The limiti solution is abandoned and
a new solution is generated and allocated in its place in the population of bees. As in the basic
ABC algorithm, at most one food source is generated by a scout bee in each iteration.

3.10 ANT COLONY ALGORITHM WITH EXTERNAL MEMORY (ACS-EM)

In optimization meta-heuristics based on ant colonies (Ant Colony Optimization (ACO))
[101], artificial ants build a solution to a combinatorial problem by walking through a graph
called "construction graph", GC(Vtx,Λ) that consists of a set of vertices Vtx and a set of arcs Λ.
Ants move from one vertex to another along the arc of the graph, incrementally constructing a
partial solution, and deposit a certain amount of pheromone ∆τ in the components, i.e, in the
arches they cross. The amount depends on the quality of the solution found. Ants use pheromone
information as a guide to travel through the most promising regions of the search space.

ACO meta-heuristics generate candidate solutions for an optimization problem by a construc-
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tion mechanism, by which the choice of a solution component to be added at each stage. The
following rule is used in the intensification of solutions: by construction it is probabilistically
influenced by pheromone traces and heuristic information [101]. This study analyzes the possi-
bility of alternating the way solution components are chosen, introducing an external memory as
an auxiliary mechanism for making decisions at each stage of the construction of a solution.

The memory structures used allow ants, on certain occasions, not to make decisions ran-
domly, but to make a choice of components of solutions deterministically, influenced by the val-
ues recorded in the said memory. Because this memory stores specific search history information
from the beginning of the algorithm, it allows to effectively focus on regions of the unvisited
search space or, on the contrary, focus on regions already visited and promising. These uses of
memory reflect the mechanisms of intensification and diversification.

A frequency-based memory [102], which stores components of the solutions most frequently
chosen, was used. It “prohibits” an ant from choosing a solution component, because it is often
chosen in the solutions. It is sought through the “prohibition” for generating solutions that effec-
tively differ from those already generated, thus, expanding the exploration of the search space.
On the other hand, this information can be used to “promote” a choice because it is considered
attractive. Most ants choose it as part of their solutions and, therefore, it should be considered
part of a new solution.

During the construction of a solution, ants apply a choice of the action rule similar to that used
in the Ant Colony System (ACS) [101]. A parameter q0 ∈ [0, 1] is introduced and promotes the
choice of a solution component that favors intensification or diversification in the search for solu-
tions. When an ant chooses a component from a solution, it first generates a uniformly distributed
random number in the [0, 1] range. If the number is lower than the value of the q0 parameter,
a component is chosen to perform a local search. If the generated number is greater than the
q0 parameter, the component is chosen favoring the search for new solutions. Each of such op-
tions includes a decision on traces of pheromones or external memory. Therefore, a vertex vtxj is
chosen from a vertex vtxi according to the following rule

vtxj =

RI , if rndq < q0 (Intensification),

RD, if rndq ≥ q0 (Diversification).
(3.39)

With a fixed probability q0, the ant chooses the “best possible element” according to the ac-
quired knowledge. It can be based on either external memory, or traces of pheromone, whereas
with probability (1 − q0), it performs a controlled exploration of new solutions, where rndq is a
uniformly distributed random variable in the [0, 1] range.

The following rule is used in the intensification of solutions:

RI =

arg máxj∈Nk
i
{memory_frec[j]}, if rndr < r0,

arg máxj∈Nk
i
{τij · ηβij}, if rndr ≥ r0,

(3.40)
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where Nk
i is the neighborhood reachable by ant i when it lies in node vtxi, τij is the amount of

pheromone between nodes vtxi and vtxj , ηij is the heuristic or desirability information between
nodes vtxi and vtxj and β is a parameter that defines the relative importance of heuristic informa-
tion. A fixed probability r0 (0 ≤ r0 ≤ 1) chooses the element most often selected from the current
location, whereas with probability (1− r0), the most desirable element is chosen according to the
pheromone stroke. rndr is a uniformly distributed random variable in the [0, 1] range.

The following rule is used in the exploration of new solutions (diversification):

RD =

arg mínj∈Nk
i
{memory_frec[j]}, if rndz < z0,

Z, if rndz ≥ z0.
(3.41)

A fixed probability z0 (0 ≤ z0 ≤ 1) enables the selection of the least frequently chosen
element from the current location, whereas probability (1−z0) promotes the choice of element Z
according to the basic selection rule, as in the ACS [101]. rndz is a uniformly distributed random
variable in the [0, 1] range. Z is selected by the roulette method, according to the probability
distribution pz similarly to the ant system meta-heuristic [101]:

pz(i, j) =


ταij ·η

β
ij∑

j′∈Nk
i

τα
ij′ ·η

β

ij′
, if j ∈ Nk

i ,

0, otherwise,

(3.42)

where α is the parameter that establishes the relative importance of pheromone tracks. The
pheromone tracks are updated in two steps: (i) each time an ant traverses an arc, called a lo-
cal update, and (ii) at the end of each iteration, called global update.

The online or local pheromone update rule is applied by all ants whenever they cross an arc
(vtxi, vtxj) during the solution construction, calculated as

τij = (1− δ) · τij + δ · τ0, (3.43)

where τ0 is the initial pheromone value and δ ∈ (0, 1) is the pheromone evaporation coefficient.

The step-by-step update rule includes both pheromone evaporation and pheromone deposi-
tion. Since the pheromone deposited is very small, the application of this rule causes traces of
pheromones between the paths traveled by ants to decrease, which leads to an additional explo-
ration technique of the algorithm. The paths traversed by a large number of ants become less
attractive to the other ants that cross them in the current iteration. Consequently, they may not
follow the same path.

In the global update of pheromone tracks, only the path taken by the ant with the best solution
(the best-so-far ant) is updated after each iteration by
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τij =

(1− δ)τij + δ∆τ bsij , if j ∈ Ω,

(1− δ)τij, if j /∈ Ω,
(3.44)

where Ω = {1, 2, . . . , J} is the set of nodes that belong to the path traveled by the best-so-far ant
and ∆τ bsij is the increment in the pheromone tracks expressed as:

∆τ bsij =
1

OF bs
, (3.45)

where OF bs is the value of the objective function of the best iteration solution.

The pseudo-code of the Ant Colony System with External Memory (ACS-EM) is shown in
Algorithm 2.

3.11 PARTICLE SWARM OPTIMIZATION (PSO)

PSO is a bio-inspired meta-heuristic based on animal families such as birds and fishes, which
move in complex trajectories in a dynamic, organized, and coordinated way, only understanding
and knowing the position and speed of their companions. The algorithm, proposed by Kennedy
and Eberhart [103], mimics birds social behavior, optimizing surviving advantages when solving
the problem of finding a safe point to land.

The goal of the classical PSO is to find a variable vector P = {pj} = [p1, p2, . . . , pp], 1 ≤ j ≤
p that minimizes or maximizes an objective or fitness functionOF (P ). P represents birds landing
positions and OF (P ) assesses how good or bad a landing position P = {pj} = [p1, p2, . . . , pp]

is.

Given a swarm of f particles, with 1 ≤ i ≤ f , vector P i = {pij} =
(
pi1, p

i
2, · · · , pip

)
, and

vector Υi = {υij} =
(
υi1, υ

i
2, · · · , υip

)
denotes the position and velocity of particle i and p =

u + d represents the number of variables to be determined in the RRA-URLLC problem. Set P
represents the RBs assigned (or not) to cellular and D2D links. Therefore, each position accounts
for a problem solution.

At each iteration, velocity and position are updated according to equations 3.46a and 3.46b.

Υi
j = ωΥi

j + c1 ∗ rnd1(pbestij − P i
j ) + c2 ∗ rnd2(gbestj − P i

j ), (3.46a)

P i+1
j = P i

j +Υi
j. (3.46b)

The first term of Equation 3.46a is a product between parameter ω (inertia) and particle’s
previous velocity. If ω = 1, the particle goes in the same direction of the previous motion,
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Algorithm 2 Ant Colony System with External Memory (ACS-EM)
Input: ant_quantity, α, β, q0, τ0, σ, nro_it, GC(Vtx,Λ)

1: τ [·]← InitPheromone(τ0)

2: memory[·]← InitMemory()

3: for i = 0 to nro_it do
4: for each a ∈ ant_quantity do
5: currentPosition← RootNode

6: TourList← currentPosition

7: while currentPosition.Children ̸= 0 do
8: η[·]← CalculateChildrenHeuristic()

9: rndq ← RandomDouble()

10: if rndq < q0 then
11: rndr ← RandomDouble()

12: if rndr < r0 then
13: nextPosition← arg_max{memory[i, :]}
14: else
15: nextPosition← arg_max{τij ∗ ηβij}
16: end if
17: else
18: rndz ← RandomDouble()

19: if rndz < z0 then
20: nextPosition← arg_min{memory[i, :]}
21: else
22: pz [·]← CalculateChildrenProbability(α, β, τ, σ)

23: nextPosition← Get_Z(pz)

24: end if
25: end if
26: TourList.Add(nextPosition)

27: SelectRandomPowerV alue(nextPosition)

28: SelectCommunicationMode(nextPosition)

29: V alidateFeasibleSolution(TourList, n)

30: τij = (1− δ) · τij + δ · τ0
31: currentPosition← nextPosition

32: end while
33: TourList_OF ← CalculateOF (TourList)

34: if TourList_OF > BestTour_OF then
35: BestTour ← TourList

36: BetsTourOF ← TourList_OF

37: end if
38: end for

39: τij =

(1− δ)τij + δ∆τbsij , if j ∈ Ω

(1− δ)τij , if j /∈ Ω

40:
41: memory[·] = UpdateMemory(BestTour)
42: if BestTour_OF > GlobalBestTour_OF then
43: GlobalBestTour ← BestTour

44: GlobalBestTour_OF ← BestTour_OF

45: end if
46: end for
Output: GlobalBestTour
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whereas if 0 ≤ ω < 1, it goes to other regions in the search domain. Therefore, the inertia
parameter controls the exploratory characteristics of the swarm.

The second term considers the difference between the i particle’s best position (pbestij) and its
current position (P i

j ) for attracting the particle to its best known position. c1 is a positive constant
defined as an individual-cognition parameter to represent the importance of the particle’s own
previous experiences. rnd1 is a random value between [0, 1] that avoids premature convergences.

The third term represents social learning so that the particles share information on the best
point achieved (gbestj). Similarly to the second term, it attracts the particles to the best solution
found until actual iteration. c2 behaves as a social learning parameter and rnd2 plays the same
role as rnd1.

As addressed elsewhere, CPP and RRA are discrete optimization problems; therefore, a dis-
cretized PSO was considered. Following the proposal of Chen et al. [104], positions and velocities
are represented as crisp sets and the set with possibilities, respectively.

Equation 3.47 defines the set with possibilities Ap for crisp set E, where each element e ∈ E
has a possibility p(e) ∈ [0, 1] in Ap.

Ap = {e/p(e)|e ∈ E}. (3.47)

The approach also considers equations 3.46a and 3.46b, but redefining the terms’ operators as
described in what follows. The multiplication of a coefficient and velocity turns into a multipli-
cation of a coefficient and a set with possibilities, as defined in equations 3.48a and 3.48b.

ac Ap = {e/p′(e)|e ∈ E}, (3.48a)

p′(e) =

1, ac p(e) > 1,

ac p(e), otherwise,
(3.48b)

where ac ≥ 0 is a given coefficient.

The difference between two positions turns into the substraction of two crisp setsAp1 andAp2 ,
as defined in equation 3.49.

Ap1 − Ap2 = {e|e ∈ Ap1 , e /∈ Ap2}. (3.49)

Equations 3.50a and 3.50b redefine the multiplication of a coefficient and a position (crisp
set).

acE
′ = {e/p′(e)|e ∈ E}, (3.50a)
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p′(e) =


1, e ∈ E ′, ac > 1,

ac, e ∈ E ′, ac ∈ [0, 1],

0, otherwise.

(3.50b)

Finally, the addition of two velocities turns into an addition of two sets of possibilities Υ1 =

{e/p1(e)|e ∈ E}, and Υ2 = {e/p2(e)|e ∈ E}, as defined by equation

Υ1 +Υ2 = {e/max(p1(e), p2(e)|e ∈ E)}. (3.51)

The pseudo-code of the PSO is shown in Algorithm 3.

3.12 FINAL CONSIDERATIONS

This chapter described the system model and the suite of network and communication models
important in the study of the CPP and RRA optimization problems, to be presented in the follow-
ing chapters. 6 (six) specific models were discussed: a social network model, a URLLC services
model, a channel model, an interference model, a queueing model for SDN controllers, and a CSI
and Limited selected-NM Feedback model.

Additionally, 3 (three) bio-inspired meta-heuristics that solved the optimization problems un-
der study were described, with their respective pseudocodes.
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Algorithm 3 Particle Swarm Optimization (PSO)
Input: particle_quantity, ω, c1, c2, nro_it
1: InitVelocity()
2: InitPosition()
3: for k = 0 to nro_it do
4: for each i ∈ particle_quantity do
5:
6: ***Velocity Updating***
7: rnd1 ← RandomV alue()

8: rnd2 ← RandomV alue()

9: pbest← Substract(BestSoFarPosition, currentPosition)

10: gbest← Substract(GlobalBestPosition, currentPosition)

11: for each pj ∈ P do
12: υ1 ←Multiply(c1 ∗ rnd1, pbest[pj ])
13: υ2 ←Multiply(c2 ∗ rnd2, gbest[pj ])
14: υ3 ←Multiply(ω, currentPosition[pj ])

15: υi
j ← Sum(υ1, υ2, υ3)

16: end for
17:
18: ***Position Updating***
19: rnd3 ← RandomNumber()

20: for each υi
j ∈ Υi do

21: cut(υi
j)← {e|ejp(e) ∈ Υi

j and p(e) ≥ rnd3}
22: end for
23: new_P i ← ∅
24: for each υi

j ∈ Υi do
25: Cand_Setij ← {e|e ∈ cut(Υi

j)) and e satisfies constrains}
26: while construction of new_P i and Cand_Setij ̸= ∅ do
27: new_P i ← SelectRandomElement(Cand_Setij)
28: Update(Cand_Setij)
29: end while
30: if construction of new_P i is not finished then
31: Cand_Setij ← {e|e ∈ P i

j and e satisfies constrains}
32: while construction of new_P i and Cand_Setij ̸= ∅ do
33: new_P i ← SelectElement(Cand_Setij)
34: Update(Cand_Setij)
35: end while
36: end if
37: if construction of new_P i is not finished then
38: Cand_Setij ← {e|e ∈ Ej and e satisfies constrains}
39: new_P i ← SelectBestElement(Cand_Setij)
40: end if
41: end for
42: V alidateFeasibleSolution(new_P i, n)

43: P i ← new_P i

44: BestSoFar_OF ← CalculateOF (P i)

45: if BestSoFar_OF > GlobalBestPosition_OF then
46: GlobalBestPosition← BestSoFar

47: GlobalBestPosition_OF ← BestSoFar_OF

48: end if
49: end for
Output: GlobalBestPosition
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4 CONTROLLER PLACEMENT PROBLEM

This chapter addresses the formulation and solution of the Controller Placement Problem
(CPP) for (i) determining the number of controllers, (ii) determining the locations of controllers,
and (iii) performing the eNB-controller assignment. The problem is treated as a discrete opti-
mization problem which is solved by ABC and ACS-EM meta-heuristics.

4.1 OPTIMIZATION PROBLEM

An optimization problem has the form (f(x), Π, Φ), where

• f(x) is the objective function that must be minimized or maximized along with the decision
variables;

• Π is the input to the problem that defines the search space; and

• Φ is a set of constraints that involves the decision variables which, in turn, affects the size
of the search space.

Objective Function - f(x)
This work aims to find the minimum number of required Software Defined Networking (SDN)
controllers, their optimal location and assignment to eNBs. The optimality criterion is based on
the satisfaction of a response time lower than or equal to a specific QoS time, at a lost requests
rate in the SDN controller lower than a value λthresholdlost . trcj was defined as the average request
response time of a SDN controller cj and tQoS was the QoS time considered.

trcj depends on the average response time of the SDN controller (tcj ) and propagation latency
in packet delivery, as follows:

trcj = tcj + tbkcj . (4.1)

The propagation latency tbkcj , between the eNB bk and the SDNcontroller cj , is obtained as
the sum of the number of hops between controller location and eNB, multiplied by the weight
associated with each link on the path (without loss of generality, all links were considered equal).

After the average request response time (trcj ) has been calculated, the cost function that checks
whether the time constraint has been satisfied must be defined and should grow rapidly when the
response time starts to be higher than tQoS . Therefore, an exponential function was applied to
characterize this behavior, similarly to the approach adopted in Farshin and Sharifian [1]; when
the time was higher than tQoS , a constant ξ was used and increased the cost function at a high
rate. The cost function (Figure 4.1) can be calculated as
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Figure 4.1: Example of average request response time function.

Tr(trcj ) =

e
(trcj−tQoS), trcj ≤ tQoS,

eξ(trcj−tQoS), trcj > tQoS,
(4.2)

where ξ denotes a constant factor that specifies the increase/decrease rate of the cost function,
defined as ξ = 2tQoS . The total average request response time (Tr) is defined as the average
request response time of each controller as

Tr =
1

c

c∑
j=1

Tr(trcj ); c = number of controllers, and c ≥ 1. (4.3)

In the controller location problem, the metric most commonly used is the latency between the
switches (eNBs) and the controller [34]. It is defined as the average propagation latency between
the location of the controller and the location of the eNBs assigned to it [32, 43, 105, 106, 45, 44,
34], and can be obtained as

πavglat(Θ) =
1

b

b∑
k=1

min
θi∈Θ

tbkθi , (4.4)

where the set Θ = {θi} = {θ1, θ2, . . . , θθ}, 1 ≤ i ≤ θ, (Θ = PGW ∪ S ∪ B), was defined as the
possible locations of the controllers, i.e., the controller can be located in any network entity and
tbkθi is the propagation latency between eNB bk and the controller located in θi. The objective is
to minimize the average propagation latency given by

πavglat
C =

1

c

c∑
j=1

(
1

b

b∑
k=1

(
min
θi,j∈Θ

tbkθi,j
))
, (4.5)
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such that a given controller cannot be placed in multiple locations and each eNB will be managed
only by a controller cj .

Another important factor in the assignment of eNBs to SDN controllers is the fair distribution
of eNBs among controllers, which results in load balancing among them. Jain’s Fairness Index
(jf ) [107] measures fairness in the allocation of controllers and guarantees that condition. We
assumed the average load of the controllers could be calculated as ρc = λc

mcµ
[108], and the Jain’s

index could be obtained by

jf =

(
c∑

j=1

ρcj

)2

c ·
c∑

j=1

ρ2cj

. (4.6)

Since our interest was to minimize the lack of fairness among SDN controllers, we consider
Jf = 1−jf a factor to be minimized. It must be noted that the fairness objective involves a search
for a balanced distribution of loads among the set of controllers, and does not involve, necessarily,
the load balance of the quantity of D2D pairs attended in each cell.

A function that provides the number of controllers used is required; it must increase, as the
number of controllers increases, and be between [0, 1]. Therefore, we defined Cc = 1 − 1/c,
c ≥ 1, where c is the number of controllers.

Finally, the objective function (Eq. 4.7) considered the weighted sum of the number of con-
trollers, the normalized response time (Eq. 4.3), the normalized average propagation latency be-
tween the controllers and the assigned eNBs (Eq. 4.5), and justice parameter (Jf ), such that

OF = f(x) = γc · Cc + γT · Tr + γπ · πavglat
C + γF · Jf , (4.7)

where γc, γT , γπ, and γF are the weights of each cost function.

The Controller Placement Problem can be modelled as

Minimize (γc · Cc + γT · Tr + γπ · πavglat
C + γF · Jf ). (4.8)

Decision Variables
Decision variables describe the quantities that the decision makers would like to determine. Find-
ing the optimal values of the decision variables is the goal of solving an optimization model. In
the CPP optimization model addressed in this research, decision variables are:

• cardinality of set C - c;

• the assignment of eNBs and SDN controllers - M(b, c); and

• the SDN controller location - M(c, θ).
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The assignment of eNBs and SDN controllers is denoted by the b x c matrix M(b, c). Binary
value of M(bk, cj) denotes whether eNB bk is assigned to SDN controller cj , where M(bk, cj)

= 1 means yes and 0 otherwise.

The location of SDN controllers is denoted by the c x θ matrix M(c, θ). Binary value of
M(cj, θi) denotes whether SDN controller cj is located in network entity θi, where M(cj, θi) = 1

means yes and 0 otherwise.

Input Parameters - Π
In order to formulate the mathematical model, we assume the following information is known:

• network topology (number and location of all network entities (eNB, SGW, and PGW), the
location of UEs);

• the average control requests rate generated by each D2D pair - λ;

• the number of D2D pairs allowed in each eNB - CD2D;

• queueing parameters;

• the maximum response time allowed in the network - tQoS; and

• the maximum lost request rate allowed for the SDN controller - λthresholdlost .

Constraints - Φ

• Guarantee that the average request response time of SDN controller is lower than or equal
to a specific QoS time

trcj ≤ tQoS. (4.9)

• Ensure that the lost requests rate in the SDN controller is lower than a threshold value

λlost ≤ λthresholdlost . (4.10)

• Guarantees that each eNB will be managed only by a SDN controller

c∑
j=1

M(bk, cj) = 1 ∀bk ∈ B. (4.11)

• Guarantees that a given controller cannot be placed in multiple locations

θ∑
i=1

M(cj, θi) = 1 ∀cj ∈ C. (4.12)

• Numerical constraints

M(bk, cj) ∈ {0, 1}, M(cj, θi) ∈ {0, 1} ∀bk ∈ B, ∀cj ∈ C, ∀θi ∈ Θ. (4.13)
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4.2 OVERVIEW OF THE PROPOSED SOLUTION

To solve the CPP we present a solution that integrates radio resource allocation and D2D
communications control. Our approach considers two steps as shown in Figure 4.2:

• 1st step: the network topology considering an LTE-A network, the physical layer parameters
and a conflict graph (to represent the interference between cellular and D2D communica-
tions), were defined; two greedy heuristics are used for radio resources allocation to obtain
the set of D2D pairs admitted by eNB; and

• 2nd step: the network topology, considering an LTE-A network, the queue parameters (re-
lated to the modeling of the SDN controllers), and the set of D2D pairs admitted to the
network, were defined; two bio-inspired meta-heuristics are used to solve the CPP and we
obtain the number of SDN controllers, the eNB-controller assignment and the location of
the controllers on a cellular network.

Figure 4.2: Steps involved in CPP solution.

4.3 FIRST STEP: DETERMINATION OF CD2D

In the first step, the number CD2D of simultaneous D2D communications that can be estab-
lished in each cell is calculated. To obtain CD2D, the resource allocation problem is formulated
to maximize the number of admitted D2D pairs in the network, subject to the constraints of the
maximum tolerable interference level for both eNB and DUE.

When D2D links are added to the network, two main levels of interference can be found. One
interference is caused by the cellular network (i.e. from CUEs to D2D receivers) and the other
one is caused by D2D network (i.e from D2D transmitter to the eNBs and from D2D transmitter
to D2D receivers of other links). Therefore, the constraints can be summarized as follows:
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• SINRui
≥ SINRt

u ∀ui ∈ U (Equation 3.11);

• SINRdj ≥ SINRt
d ∀dj ∈ D (Equation 3.15) and

• each D2D pair can only reuse one CUE’s resource block.

The serving eNB is assumed to obtain the channel state information for all links and to know
the SINR threshold of all user equipment. The purpose is to allow multiple D2D pairs to reuse
the same RBs that have been pre-assigned to CUEs, whenever QoS requirements are met. To face
this issue, we used a conflict graph [109] to model the network interference.

Let U = {ui} = {u1, u2, . . . , uu} denotes the CUEs, and lui,bk denote the distance between
CUE ui and evolved NodeB bk. In the eNB area, a cellular link established between CUE ui
and eNB is defined as lkCi

, where 1 ≤ i ≤ u, as show in Figure 4.3. A D2D link is defined as
lkDj

= dj , where 1 ≤ j ≤ d. In Conflict Graph (CG), each link lk is taken as a vertex, and two
vertices are connected with an edge if the corresponding links cannot be used for simultaneous
transmission.

In the wireless network, CG can be constructed among links sharing the same resources, e.g.,
RBs in the LTE-A. For a better understanding in Figure 4.3, we show on the left the existing
interference in an LTE-A network and on the right the generated CG from it. In CG there is an
edge between the vertices lkD1 and lkD2 because they may not be active simultaneously. An edge
is draw if any of the following is true: ldTj2 ,dRj1 ≤ IRdRj1

or ldTj1 ,dRj2 ≤ IRdRj2
, where l denotes the

distance between transmitter and receiver and IR denotes the interference range. In the example
shown in Figure 4.3, ldTj1 ,dRj2 ≤ IRdRj2

for this, an edge exists between the vertices lkD1 and lkD2.
The model encompasses the case where a conflict arises because links lkD1 and lkD2 have a UE
in common (i.e., dTj1 == dTj2 or dTj1 == dRj2 or dRj1 == dTj2 or dRj1 == dRj2).

Figure 4.3: Example of the general conflict graph built from an LTE-A network.

In our proposal, a conflict graph is constructed for each CUE, where it is considered the set
of D2D links that can share the same resources, that is, RBs. In the CG, each vertex indicates
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a D2D communication link, and each edge represents the unacceptable interference between the
vertices to which it connects [77, 110]. Thus, in each conflict graph, the vertices represent the
D2D links that do not conflict with the CUE that uses this RB, and the edges represent the mutual
interference between the D2D links. Figure 4.4 shows an example of the CG of 4 CUEs. In
CUE1−CG the D2D links lkD2, lkD3, and lkD4 can share a same RB as CUE u1. However, links
lkD3 and lkD4 cannot share a same RB. Therefore, a RB assigned to CUE u1 can be used at the
same time by links lkD2 and lkD3 or lkD2 and lkD4.

Figure 4.4: Example of the CUEs conflict graph built from an LTE-A network.

To solve the problem presented in the first part of our proposal, we used two greedy heuristics.
One was based on the Greedy Resource Allocation Algorithm (GRAA), proposed in [75]. The
other was an update of this heuristic considering the social relationship between users, called
social-aware GRAA.

In the heuristics, a sequential resource allocation mode was considered, where eNB deter-
mines the admitted D2D pairs according to the RB index. Conflict graphs are updated whenever
a D2D pair is selected to use a resource block and tolerable interference values are evaluated by
both eNB and DUE that have already been admitted. The above procedures are implemented
sequentially in each RB and the D2D pairs.

In GRAA, D2D pairs are selected based on the degree of interference. Then, the D2D pairs
with the least degree of interference are chosen first. This greedy solution maximizes the total
admitted D2D pairs, but does not consider the system throughput. Therefore, we realized a variant
of the heuristic that allows achieving a content delivery with high user satisfaction, employing
social-aware D2D techniques and, at the same time, maximizing the transmission rate of D2D
links, named SA-GRAA.

In the SA-GRAA, D2D pairs are selected based on the intensity of the social relationships
(ωdj ) between DUEs. Therefore, the D2D pairs with the highest intensity of social interaction are
selected first. The problem involves the social layer and the physical layer, where the transmission
rate is formulated as a weighted channel rate, i.e., the rate weighted by the intensity of the social
relationship, as in [111]. For each D2D pairs, the transmission rate (rdj ) is obtained by Shannon’s
theorem as

rdj = WRB log2(1 + SINRdj), (4.14)

where WRB is the system bandwidth per RB, and the weighted throughput (Rw
dj

) of the link be-

71



tween DUE transmitter dTj and DUE receiver dRj when reusing resource block rbk can be obtained
by [111]

Rw
dj

= ωdj rdj

= ωdj WRB log2

(
1 +

Pdj gdTj ,dRj

Iui,dRj
+ Id′,dRj + σ2

)
.

(4.15)

The meta-heuristics runs on each eNB and the set of admitted D2D pairs in each eNB is
returned.

The obtained CD2D values are used as input parameters in the second step of the proposed
solution. They are used to define the average control requests rate received by SDN controllers as

λc =

bci∑
k=1

CD2Dk
∗ λk. (4.16)

where λk is the average control requests rate generated by each D2D pair (λk = λ, in the evalua-
tion), bci is the number of eNBs managed by controller ci and CD2Dk

is the number of D2D com-
munications established in eNB bk. The set of requests sent to a controller involves types such as
D2D service registration setup, resource allocation, offloading, connection release, among others.
Moreover, CD2Dk

will depend on the geographical location of the users and the radio resources
allocation on the LTE-A network.

4.4 SECOND STEP: CPP SOLUTION

In the second step, the CPP problem is solved aiming to minimize the response time in the
control of D2D communications, while attending the mentioned constraints in Section 4.1. This
time considers the average response time of each SDN controller obtained using the queuing
model described in the previous section (Equation 3.28). Therefore, the set of pairs D2D admitted
in each cell is an input parameter of the second step and included in the response time.

Some optimization problems have been considered "NP-hard" (as channel assignments, cel-
lular network planning), and the use of bio-inspired meta-heuristics has been considered for pro-
viding optimal or near-optimal solutions, in an acceptable computation time. Considering the
modeling previously presented, the problem to be solved can be formulated as discussed in Sec-
tion 4.1:

Given: network topology, λ, CD2D, queueing parameters, tQoS and λthresholdlost

Problem: Minimize (γc · Cc + γT · Tr + γπ · πavglat
C + γF · Jf )
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Subject to:

C1 : trcj ≤ tQoS ∀cj ∈ C;

C2 : λlost ≤ λthresholdlost ;

C3 :
c∑

j=1

M(bk, cj) = 1; ∀bk ∈ B;

C4 :
θ∑

i=1

M(cj, θi) = 1; ∀cj ∈ C;

C5 : M(bk, cj) ∈ {0, 1}; ∀bk ∈ B, ∀cj ∈ C;
C6 : M(cj, θi) ∈ {0, 1}; ∀cj ∈ C, ∀θi ∈ Θ.

Output: c; M(b, c); M(c, θ)

Two meta-heuristics have been implemented for the solution of CPP:

• the CPP-ABC meta-heuristic and

• the CPP-ACS-EM meta-heuristic.

4.4.1 CPP Artificial Bee Colony (CPP-ABC) Algorithm

The modeling of the solution to the problem under study is defined in ABC. The solution to
the CPP problem would be a list with the sequences of the eNB-controller assignments (bkcj)
followed by the location of each controller (cjθi). In Figure 4.5, the modeling adopted is illus-
trated and it also represents a possible solution used to solve the CPP problem under study. The
sequence of nodes modeled in Figure 4.5 represents in ABC a food source or a possible solution
to the problem. At the end of each iteration the controllers that did not have assigned eNBs are
eliminated from the solution.

Figure 4.5: Modeling the solution for the CPP problem.

In the employed bee phase, each solution is updated by a neighborhood structure compose by
operators of permutation. In this operation with a fixed probability n0 (0 ≤ n0 ≤ 1) a new eNB-
controller assignment is performed; while with probability (1−n0), the location of a controller is
changed. The partial clone and random operators are defined by performing a new assignment of
eNB bi. The insert, swap, and random operators are defined by placing a controller in a different
position in the network.

In the partial clone operator, two positions are randomly chosen. After the two positions of the
solution vector have been defined, the content of the first position defined (relative to a controller)
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is copied for the content of the second position. Figure 4.6 shows an example of the partial clone
operator applied to the eNB-controller assignment.

Figure 4.6: Example of a partial clone neighborhood structure.

On the other hand, a position in the solution vector is randomly chosen in the random operator,
and the eNB of that position is assigned to another randomly chosen SDN controller, as shown in
Figure 4.7.

Figure 4.7: Example of a random neighborhood structure.

The insert operator is defined by placing a controller in a different position in the network. In
the insert method two positions are chosen randomly. In Figure 4.8, indices 9 and 12 are chosen
for this example. In this method the content of the smaller index is moved to the position of the
(larger index + 1), in other words, the content of the smaller index is inserted in the position next
to that of the larger index. With the application of the insert method, in Figure 4.8 it is possible to
observe in the final solution the aforementioned displacement and with a darker color the nodes
that had to be shifted so that the insert rule was performed in the correct way .

Figure 4.8: Application example of the INSERT neighborhood structure.

In the swap method two positions are chosen randomly analogous to the insert method. In this
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method with the two positions of the vector defined, the next action is to exchange the content of
the first position defined with the content of the second position. To facilitate the understanding
of this process in Figure 4.9 there is an example of the swap method applied to the CPP problem.

Figure 4.9: Application example of the SWAP neighborhood structure.

Both employed and onlookers bees apply a self-adaptive strategy to find nearby food sources.
At first, an initial operator neighbor list (NL) of a specified length (NLsize) is generated by
randomly populating the list with the neighboring selection approaches, according to the part of
the solution considers, as follows:

• for eNB-controller assignment:

1. performing a partial clone operator for a solution;

2. performing a random operator for a solution;

3. performing two partial clone operators for a solution;

4. performing two random operators for a solution.

• for SDN controller location:

1. performing a insert operator for a solution;

2. performing a swap operator for a solution;

3. performing a random operator for a solution;

4. performing two insert operators for a solution;

5. performing two swap operators for a solution;

6. performing two random operators for a solution.

After the application of the self-adaptive strategy to the current solution, a new solution and
a new fitness are generated. The fitness value of the new solution and the fitness value of the old
solution are then compared. If the new fitness is better than the old fitness solution, the old one is
replaced by the new solution, and the old fitness is replaced by the new fitness. This information
is inserted into the population.

If the old solution contains a better fitness value in relation to the new solution, its limit value
must be incremented, so that the evolution of that solution is represented.

75



4.4.2 CPP Ant Colony System with External Memory (CPP-ACS-EM) Algorithm

In this study, the construction graph was divided into two parts for troubleshooting the CPP.
The first part assigns eNBs to controllers and vertex subset Vbk,cj = {b1c1, · · · , b1cc, bbc1, · · · , bbcc}
represents all possible pairs of eNB-controller that exist in the scenario considered. In the second
part, controllers are located in the cellular infrastructure. Vertex subset Vcj ,θi = {c1θ1, · · · , c1θθ, ccθ1,
· · · , ccθθ} represents all possible controller-location pairs, as shown in Figure 4.10.

Figure 4.10: Construction graph to CPP.

To obtain the number of SDN controllers used, the graph is constructed assuming an SDN
controller is necessary for managing the traffic of each eNB (c = b). When the ants reach the end
of the path, SDN controllers that have not assigned eNB are eliminated from the solution, and the
number of controllers actually used is obtained.

Frequency-based memory stores the number of times the eNB bk was assigned or the cj con-
troller. So, this memory allows ants to make decisions taking into account the eNBs that are most
often assigned to a given SDN controller, because they have associated a high frequency of as-
signment; or, conversely, to make decisions taking into account the eNBs are less often assigned
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to a given SDN controller, because they associated a low frequency of assignment.

The meta-heuristic has a frequency array of size [b, c], calledmemory_frec, associated. Posi-
tion memory_frec[bk, cj] stores the number of times eNB bk was assigned to controller cj during
the execution. It represents the vertices chosen by ants in the construction of the solution and is
used in the construction of solutions in two possible ways, i.e., intensification, by the choice of
a node that matches as an eNB-controller which was most often selected from the current loca-
tion, and diversification, by the choice of a node less frequently chosen from the current location.
External memory values are updated at the end of each iteration considering the value of the best
solution.

The following rule is used in the intensification of solutions:

RI =

arg máxj∈Nk
i
{memory_frec[bk, cj]}, if rndr < r0,

arg máxj∈Nk
i
{τij · ηβij}, if rndr ≥ r0.

(4.17)

The following rule is used in the exploration of new solutions (diversification):

RD =

arg mínj∈Nk
i
{memory_frec[bk, cj]}, if rndz < z0,

Z, if rndz ≥ z0.
(4.18)

The ηcj heuristic is obtained from the controller utilization rate, ρcj (equation 3.24), consid-
ering the eNB assignments already performed on the components of the path traveled. Thus,
controllers with a lower value of ρ will have a greater desirability, such as the equation:

ηcj =

1− ρcj , if ρcj < 1,

0, otherwise.
(4.19)

4.5 FINAL CONSIDERATIONS

This chapter presented the formulation of the CPP problem as an optimization problem that
minimizes an objective function, which considers the weighted sum of the number of controllers,
response time, average propagation latency between the controllers and the assigned eNBs, and
justice parameter. The result is: the number of SDN controllers needed, the assignment of eNBs
and SDN controllers, and the location of SDN controllers.

The proposed solution approach for the CPP problem is also described. It includes two steps,
with the result of the first step being one of the inputs needed in the second step. The first step
solves the RRA problem and determines the number of D2D communications accepted in the
network, with this it is possible to specify the average control requests rate received by SDN
controllers. The second step solves the CPP problem aiming to minimize the response time in the
control of D2D communications.
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Finally, the modeling of the meta-heuristics for the CPP problem is described. The meta-
heuristics CPP-ABC and CPP-ACS-EM were used to solve the problem.
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5 RADIO RESOURCE ALLOCATION PROBLEM

This chapter presents a study of the radio resource allocation problem modeled as an opti-
mization problem according to two approaches. In the first, the objective is to obtain the number
of communications admitted in the network that maximizes the system throughput. The solution
involves physical and social layers, considering partial CSI and the limited selected-NM feedback
model described in Section 3.7 in the physical layer. The second approach aims at obtaining the
number of communications D2D admitted in the network that maximizes its energy efficiency
(ηEE). URLLC services are used in D2D communications and power control and radio resource
allocation are performed for both cellular and D2D communications. Two meta-heuristics based
on ABC, called SA-RRA-ABC (based on Social Awareness) and RRA-URLLC-ABC solved the
optimization problems. Moreover, the RRA-URLLC-ACS-EM and RRA-URLLC-PSO meta-
heuristics were used in the second proposed approach.

5.1 FIRST RRA OPTIMIZATION PROBLEM: MAXIMIZING THE WEIGHTED SYS-
TEM THROUGHPUT

The goal is to obtain the number of D2D communications admitted in an LTE-A network that
maximizes the system throughput at high QoS. The resource allocation problem was formulated
towards maximizing the weighted system throughput in the network, subject to the constraints of
the maximum tolerable interference level for eNB and DUE.

The optimization problem considered involved both social and physical layers and the ob-
jective function was formulated as a weighted system throughput (Rw

T ) based on the weighted
channel rate. The rate was defined in [111] as the channel rate (rdj ) weighted by the intensity of
the social relationship between DUE dTj and DUE dRj , expressed by

Rw
dj

= ωdj rdj ; [bit/(s ∗Hz)]. (5.1)

Therefore, the weighted throughput of D2D link dj reusing rbk was obtained by

Rw
dj

= ωdjWrbk log2

(
1 +

PdjgdT
j ,dR

j

Iui,dR
j
+ Id′,dR

j
+ σ2

)
; [bit/s], (5.2)

whereWrbk is the system bandwidth per RB. Similarly, the throughput of the cellular link between
cellular user ui and the respective eNB is given by

Rui
= Wrbkrui = Wrbk log2

(
1 +

Puigui,bk

I△ui,bk + σ2

)
; [bit/s]. (5.3)
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Both throughput of cellular links and weighted throughput of D2D links were considered for
the maximization of the weighted system throughput. The optimization problem was formulated
as

max Rw
T =

u∑
i=1

(
Rui

+
d∑

j=1

ψ[ui, dj] R
w
dj

)
s.t. C1: SINRui

≥ SINRt
u ∀ui ∈ U ;

C2: SINRdj ≥ SINRt
d ∀dj ∈ D;

C3:
u∑

i=1

ψ[ui, dj] = 1, ∀dj ∈ D;

C4: ψ[ui, dj] ∈ {0, 1}, ∀dj ∈ D, ∀ui ∈ U ;
C5: ωdj ∈ [0, 1], ∀dj ∈ D.

(5.4)

Constraints C1 and C2 guarantee the QoS requirements of cellular links and D2D links, re-
spectively. C3 ensures each D2D pair can reuse only one CUE’s resource block. C4 and C5 are
numerical constraints.

An ABC approach, called SA-RRA-ABC, solved the problem. A sequential resource allo-
cation mode was considered and eNB determined the admitted D2D pairs according to the RB
index. Conflict graphs are updated whenever a D2D pair has been selected to use a RB and tol-
erable interference values are evaluated by both eNB and other DUEs admitted. SA-RRA-ABC
runs on each eNB and the set of admitted D2D links is returned.

5.1.1 Social-aware RRA Artificial Bee Colony (SA-RRA-ABC) Algorithm

The modeling of the solution to the problem under study is firstly defined in ABC. The solution
to the social-aware RRA problem would be an array with the RB used by D2D links, where index
represents all existing D2D links and the value is the index of RB used by the D2D link. −1
indicates no RB has been assigned to the link, therefore, no D2D communication can occur.
Figure 5.1 shows the model adopted, which represents a possible solution to the RRA problem
under study, and the sequence of nodes modeled denotes a food source in ABC, or a possible
solution.

Figure 5.1: Modeling the solution for the social-aware RRA problem.

At the beginning, SN solutions are randomly generated according to the function shown in
Algorithm 4 (used in Algorithm 1 - line 2), in which a RB is randomly selected for each D2D
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pair (Algorithm 4 - lines 3-5) and follows a uniform distribution. The set N ′RB = NRB ∪ {−1} =
{−1, rb1, rb2, . . . , rbn}, where n = u and {−1} denotes no RB has been assigned to the D2D
communication. The meta-heuristic checks if the generated solution is feasible according to the
constraints defined in Equation 5.4. The SINR values are then checked for both cellular and D2D
pairs allocated for a same RB in the solution (Algorithm 4 - lines 6-10).

When the feedback model is considered, a solution is feasible if eNB has received the CSI
feedback from the D2D communication receiver, considering the interference from the CUE and
other D2D pairs allocated in the same RB. Otherwise, the solution is not feasible and a new
one must be generated. eNB makes a request for CSI to the receiver of D2D communication,
considering the distance metrics established in subsection 3.7 (Equations 3.33 and 3.35) to define
parameters N and M of the feedback model.

Algorithm 4 - InitPopulation()
1: Input: SN
2: for s = 0 to SN do
3: for each dlink ∈ D2DLinks do
4: foodSource[dlink] = Select_Random_RB(N ′

RB)

5: end for
6: for i = 0 to foodSource do
7: dlink ← i

8: rb← foodSource[i]

9: Check_SINR_Constraints(dlink, rb)

10: end for
11: Solution[s].Add(foodSource)

12: end for
Output: Solution[·] =0

In the bee phase employed, each solution is updated by a neighborhood structure composed
of operators of permutation. Clone, insert, swap, and random operators are defined through the
selection of a RB to be reused by each D2D link. After an operator has found a neighboring
solution, the new solution is validated if it is a feasible one.

Two positions are randomly chosen in the clone operator. After the two positions of the
solution vector have been defined, the content of the first (relative to RB) is copied for the content
of the second. Figure 5.2 shows a clone operator applied to the D2D communication RRA.

On the other hand, a position in the solution vector is randomly chosen in the random operator
and the RB of that position is assigned to another randomly chosen D2D link, as shown in Figure
5.3.

Two positions are randomly chosen in the insert method. Indices 3 and 6 in Figure 5.4 were
chosen as an example. The content of the smaller index is moved to the position of (larger index
+1), i.e., the content of the smaller index is inserted in the position next to that of the larger index.
Figure 5.4 displays the final solution of the aforementioned displacement and the nodes shifted
(dark color) for a correct application of the rule.
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Figure 5.2: Example of a clone neighborhood structure.

Figure 5.3: Example of a random neighborhood structure.

Similarly to the insert method, two positions are randomly chosen in the swap one. The next
action is the exchange of the content of the first defined position with the content of the second
one. Figure 5.5 shows an example of the swap method applied to the RRA problem.

Both employed and onlooker bees apply a self-adaptive strategy to find nearby food sources.
An initial operator neighbor list (NL) of a specified length (NLsize) is generated by randomly
populating the list with the neighboring selection approaches, as follows:

• performing a clone operator for a solution;

• performing a random operator for a solution;

• performing an insert operator for a solution;

Figure 5.4: Example of an INSERT neighborhood structure.
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Figure 5.5: Example of a SWAP neighborhood structure.

• performing a swap operator for a solution;

• performing two clone operators for a solution;

• performing two random operators for a solution;

• performing two insert operators for a solution;

• performing two swap operators for a solution.

The computational complexity of SA-RRA-ABC for allocating D2D pairs isO(iteration_max∗
SN ∗ (du+ d2)); since u < d, it is therefore O(iteration_max ∗ SN ∗ d2).

5.2 SECOND RRA OPTIMIZATION PROBLEM: MAXIMIZING THE ENERGY EFFI-
CIENCY

This section is devoted to the formulation of the radio resource allocation problem for the
obtaining of number of D2D communications admitted in a cellular network and maximizing the
energy efficiency in the network (ηEE) defined as [24]

ηEE =
RT

PT

[bps/Hz/J ], (5.5)

where PT is the total power consumption in the network (Equation 3.23). A high ηEE is obtained
with a high flow rate consuming low power. Furthermore, according to the tradeoff between flow
rate and power consumption, the system performance metric is specified as

ηEE(r, P ) =α1

u∑
i=1

rui
+ α2

d∑
j=1

rdj

− α3

u∑
i=1

Pui
− α4

d∑
j=1

Pdj ,

(5.6)
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where α1, α2, α3, and α4 are weighted parameters for the tradeoff. Two or more D2D pairs
can share a same RB; an upper bound of the tolerable interference level must be considered in
each RB and a minimum SINR value must be respected for cellular and D2D communications.
Therefore, the optimization problem was formulated as

max ηEE(r, P )

s.t. C1: SINRui
≥ SINRt

ui
, ∀ui ∈ U ;

C2: SINRdj ≥ SINRt
dj
, ∀dj ∈ D;

C3: xDM
dj

+ xRM
dj

+ xCM
dj
≤ 1, ∀dj ∈ D;

C5: Pui
≤ Pmax

U , ∀ui ∈ U ;
C6: (xDM

dj
+ xRM

dj
+ xCM

dj
)Pdj ≤ Pmax

D , ∀dj ∈ D;

C7:
d∑

j=1

xDM
dj

+
d∑

j=1

xCM
dj
≤ Nu;

C8:
u∑

i=1

ψ[ui, dj] = 1, ∀dj ∈ D;

C9: ψ[ui, dj] ∈ {0, 1}, ∀dj ∈ D, ∀ui ∈ U ;
C10: xui

∈ {0, 1}, ∀ui ∈ U ;
C11: xdj ∈ {0, 1}, ∀dj ∈ D.

(5.7)

Constraints C1 and C2 guarantee the QoS requirements of cellular and D2D links, respec-
tively, and C3 ensures each D2D selects at most one communication mode, if admitted to the
network. C5 and C6 guarantee the maximum transmission power requirements for cellular and
D2D links, respectively. C7 ensures the RBs used by D2D communications in dedicated and
cellular modes do not exceed the number of unused RBs, C8 guarantees each D2D pair can reuse
only one RB, and C9, C10, and C11 are numerical constraints.

The eNB is assumed to know the CSI for possible link combinations, used in the centralized
resource allocation process. Three bioinspired meta-heuristics, namely (i) RRA-URLLC-ABC,
(ii) RRA-URLLC-ACS-EM, and (iii) RRA-URLLC-PSO solved the RRA problem.

The solution to the RRA-URLLC problem was designed as a class consisting of 6 vectors
(A1, A2, A3, A4, A5, and A6), where the index of each vector represents a cellular or D2D
link. The values of A1[1 . . . u] denote the RB assigned to the cellular links. A2[1 . . . d] can
take values {0, 1, . . . , n, n + 1, . . . , n′}, where 0 represents a D2D link with no RB assigned,
{1, . . . , n} denotes an RB assigned to the D2D link in DM or RM communication modes, and
{n + 1, . . . , n′} denotes two RBs assigned in CM. The values of A3[1 . . . u] denotes if a CUE
is sharing the RB with any D2D pair or not, with a value of 1 indicating sharing. The values
of A4[1 . . . d] denote the selected communication mode and those of A5[1 . . . u] and A6[1 . . . d]
denote the transmission power value set for each communication. Figure 5.6 shows an example
of a solution to the problem considering two CUEs, four D2D links, and five RBs.
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Figure 5.6: Example of a solution for the RRA-URLLC problem.

Figure 5.7: Example of a random neighborhood structure.

5.2.1 Artificial Bee Colony (RRA-URLLC-ABC) Algorithm

RRA-URLLC-ABC performs the sequential allocation of resources considering the RB index
and, at each step, determines the CUE and the D2D pairs admitted to use the RB, according to
one of three transmission power values (Pmin, Pmean and Pmax), and defines the communication
mode of each D2D link. Whenever a channel has been assigned, the constraints are evaluated
according to the QoS requirements of cellular communications and other admitted D2D pairs.
RRA-URLLC-ABC is run on the eNB, returning the channel assigned to cellular communica-
tions, the set of admitted D2D pairs with their assigned channels, the communication mode, and
the transmission power.

In the employed bees phase, each solution is updated by a neighborhood structure composed
of permutation operators (random and swap). In the random operator (Figure 5.7), two positions
in the solution vector are randomly chosen and the value of the first is copied into the second. In
the swap operator (Figure 5.8), two positions are also randomly chosen, and the content of the
first is swapped with that of the second, as in the operator used in [100]. The random operator is
applied to A2, A5, and A6. It cannot be applied to A1, since two mobiles cannot use the same
channel (problem constraint). The swap operator is applied to A1, A2, A5, and A6, and A3 and
A4 are updated in function of the RB assignment defined in A1 and A2.

5.2.2 Ant Colony System with External Memory (RRA-URLLC-ACS-EM) Algorithm

In this study, the construction graph assigns an RB to cellular and D2D pair communications.
Vertex set Vtx represents all possible pairs <link, RB> that exist in the scenario considered, as
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Figure 5.8: Example of a swap neighborhood structure.

shown in Figure 5.9, whereas vertex subsets are given by all elements of V u and V d matrices
expressed in Equations 5.8 and 5.11a, respectively.

V u represents all possible pairs of <CUE, RB>, with the rows denoting cellular links and the
columns representing RBs.

vui,k =

1, if rbk is allocated to ui,

0, otherwise.
(5.8)

V d represents all possible RBs assigned (or not) to D2D links; rows correspond to D2D links
and columns represent possible assignments. Note that differently to V u, the column index starts
at 0, indicating no RB was assigned to D2D communication. Therefore, vdd0 = 1 indicates D2D
pairs dj is not admitted in the network; otherwise, vdd0 = 0. Columns 1 to n represent the assign-
ment of one RB in RM and DM communication modes, where

vdj,k =

1, if rbk is allocated to dj,

0, otherwise.
(5.9)

Columns n+ 1 to n′ denote two RBs allocations in CM, where

vdj,n′ =

1, if rbk and rbk−1 are allocated to dj,

0, otherwise,
(5.10)
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Figure 5.9: Graph for solution of RRA-URLLC problem.

V d =


0 1 · · · n · · · n′

1 vd10 vd11 · · · vd1n · · · vd1n′

2 vd20 vd21 · · · vd2n · · · vd2n′

...
...

... . . . ... . . . ...
d vdd0 vdd1 · · · vddn · · · vddn′

, (5.11a)

n′ = n+
n(n− 1)

2
. (5.11b)

5.2.3 RRA-URLLC-PSO Algorithm

Crisp set E is formed by elements of V u and V d matrices. The set with possibilities Ap

represents a row in V u or V d, depending on the link being evaluated at each step of the solution
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construction.

Similarly to ACS-EM algorithm, when the particle position is updated, a transmission power
value is randomly selected between Pmin and Pmax. At each new position, the communication
mode is updated. A solution such as the one shown in Figure 5.6 is associated with each par-
ticle; velocities and positions selected by the particles are updated according to the pseudocode
presented in Algorithm 3.

5.3 FINAL CONSIDERATIONS

This chapter discussed the two proposed approaches to the RRA problem. The first formulates
the RRA problem as an optimization problem that maximizes the weighted system throughput.
The aim is to obtain the number of D2D communications admitted into an network. The objective
function considers both the social and physical layers, where D2D communications with higher
intensity of social relationship between transmitter and receiver are more probable to be accepted
in the network. D2D and cellular communications share resources using reuse mode and interfer-
ence is managed. The problem is solved by the SA-RRA-ABC meta-heuristic and its modeling
considered a partial CSI model with limited feedback.

The second approach formulates the RRA problem as an optimization problem that maximizes
the energy efficiency of the network. The chapter presents the formulation of the problem to
obtain the RBs assignment to cellular and D2D communications, the transmission power of the
cellular and D2D links, and the communication mode of each D2D link (three communication
modes DM, RM and CM are considered). A description of the three meta-heuristics, used to
solve the problem, are presented at the end of the chapter. They were RRA-URLLC-ABC, RRA-
URLLC-ACS-EM, and RRA-URLLC-PSO.
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6 EVALUATION AND DISCUSSION

This chapter provides the results of the approaches proposed in this research to CPP and RRA.
The meta-heuristics used to solve the problems are compared and the stopping criterion used in
all experiments is the number of iterations. The chapter is divided into three sections.

In the first section, we present the evaluation of the proposed solution to the CPP and the two
meta-heuristics proposed for the solution of the CPP problem are compared.

In the second section, we present the evaluation of the first proposed RRA optimization prob-
lem by comparing the proposed SA-RRA-ABC solution with the greedy solutions used in the first
step of the proposed CPP solution. In this session the impact of the feedback model parameters
on the weighted system throughput and access rate is evaluated.

In the third section, we present the evaluation of the second proposed RRA optimization prob-
lem and study the impact of the parameters associated with the services URLLC (blocklength and
decoding error probability) on the system throughput. Moreover, the impact of the objective func-
tion weights on the various metrics (number of D2D admitted to the network, system throughput,
power consumption, and network energy efficiency) is evaluated and the three meta-heuristics
proposed for the solution to the RRA-URLLC problem are compared.

6.1 CPP EVALUATION

This section provides the results of the approach proposed in this research to CPP, considering
D2D communications, that take place in an LTE-A network. In the first step, two greedy heuristics
are used to obtain the number of D2D communications allowed in the network (CD2D). One
algorithm is social-unaware, considering the communications that generate less interference, and
the other is social-aware, considering the intensity of the social relationship between users.

In the second step, the ABC, ACS-EM, ACS [101] and Particle Swarm Optimization (PSO)
[112] meta-heuristics are applied to solve CPP. The goal to find the number and respective loca-
tion of SDN controllers, necessary for the management of D2D communications occurring in an
LTE-A cellular network, as well as the eNB-controller assignment.

An LTE-A network with 1 PGW, 2 SGW and 8 eNBs was considered for the evaluation of the
influence of D2D communications on the location and number of controllers. Table 6.1 shows the
parameters of the System Model.

Some adjustments were also made in the simulation environment for the definition of the
values of the ABC and the ACS-EM meta-heuristics parameters. The best values were:

(i) for ABC: SN = 100; n0 = 0.5; limit = 5 and NLsize = 5; and
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(ii) for ACS-EM: ant_quantity = 100; q0 = 0.2; r0 = 0.2; z0 = 0.2; α = 0.1; β = 0.9;
τ0 = 0.05 and δ = 0.1.

The meta-heuristics were applied 32 times with the same parameters and 450 iterations were
considered.

Table 6.1: Simulation parameters

Parameter Value

Carrier frequency 2 GHz [28, 75]

system bandwidth - W 1 MHz

Number of CUEs 10 user per eNB

DUE density 10−3user/Km2

CUE transmitted power 23 dBm [75]

DUE transmitted power 20 dBm [75]

eNB coverage radius 500 m [75]

Distance between D2D pair Uniformly distributed in [0,20]m

tQoS 4 ms

D2D request rate - λ 0.1 req/ms

core processing rate - µ 50 req/ms

number of controller cores - m 4

SDN controller capacity - K 4µ

λthreshold
lost 5% of c · λc

Path loss model for cellular link 128.1 + 37.6log10(d[Km]) [75]

Path loss model for D2D pair 148 + 40log10(d[Km]) [75]

Shadow fading standard deviation 10 dB for cellular link,
12 dB for D2D pair

Small-scale fading i.i.d complex Gaussian distributed with zero mean and unit variance

Antenna gain 14 dBi for eNB [75]
0 dBi for UE [75]

single-sided noise power spectral density - N0 -174 dBm/Hz [28, 75]

SINRt
u 10 dB

SINRt
d 10 dB [75]

number of iterations 450

γc 0.4

γπ 0.1

γT 0.3

γF 0.2

Different values of λ were used for the evaluation of the effect of an increase/decrease of
control traffic related to D2D communications. In Table 6.2 we present the results obtained in the
social-unaware scenario when the ACS-EM is used. In Table 6.3 we present the results obtained
in the social-aware scenario when the ABC is used. The following metrics were obtained: number
of controllers, response time, use of average controllers, assignment of eNB-controllers, location
of controllers in the cellular network, and lost request rate in the SDN controller.

According to Tables 6.2 and 6.3, the number of controllers required increases only when the
constraints are not satisfied. As an illustrative example, in Table 6.2 two controllers are used for
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λ = 0.4 req/ms; however, the controller load is ≃ 100%, and the loss rate begins to increase.
When λ increases to 0.5 req/ms, more controllers are used not to exceed the threshold set for
lost requests rate and satisfy all constraints of the problem.

Table 6.2: Simulation Results of social-unaware scenario using ACS-EM algorithm

λ (req/ms) Nro Controller Tr Controller Utilization eNB-Controller Controller Location λlost(req/ms)

0.1 1 1.525 54.78 % b0c0, b1c0, b2c0, b3c0,

b4c0, b5c0, b6c0, b7c0
c0 − SGW0 0

0.2 2 0.9594 54.78 % b0c0, b4c0, b6c0

b1c1, b2c1, b3c1, b5c1, b7c1

c0 − eNB0

c1 − SGW1

0

0.3 2 1.2132 81.84 % b3c0, b5c0, b7c0

b0c1, b1c1, b2c1, b4c1, b6c1

c0 − eNB5

c1 − eNB4

0.5813

0.4 2 2.1907 100 % b0c0, b2c0, b6c0, b7c0

b1c1, b3c1, b4c1, b5c1

c0 − eNB0

c1 − eNB5

17.2

0.5 3 1.1061 90.79 %
b0c0, b2c0, b7c0

b1c1, b3c1, b5c1

b4c2, b6c2

c0 − eNB0

c1 − eNB5

c2 − eNB6

0.9102

0.6 4 0.5432 82.17 %
b3c0, b5c0

b2c1, b4c1

b0c2, b6c2

b1c3, b7c3

c0 − eNB3

c1 − eNB2

c2 − eNB0

c3 − eNB1

0

0.7 4 0.7518 95.73 %
b3c0, b5c0

b2c1, b4c1

b1c2, b7c2

b0c3, b6c3

c0 − eNB3

c1 − eNB4

c2 − eNB1

c3 − eNB6

0.2344

0.8 4 1.2379 98.67 %
b1c0, b3c0

b2c1, b6c1

b5c2, b7c2

b0c3, b4c3

c0 − eNB1

c1 − eNB2

c2 − eNB5

c3 − eNB0

19.6003

0.9 6 0.4007 79.07 %

b7c0

b6c1

b4c2

b5c3

b1c4, b3c4

b0c5, b2c5

c0 − eNB7

c1 − eNB6

c2 − eNB4

c3 − eNB5

c4 − eNB3

c5 − eNB0

5.5821

1 7 0.2384 76.9 %

b7c0

b3c1

b0c2, b2c2

b1c3

b4c4

b6c5

b5c6

c0 − eNB7

c1 − eNB3

c2 − eNB0

c3 − eNB1

c4 − eNB4

c5 − eNB6

c6 − eNB5

2.4286

As shown in Figure 6.1, the increase in the rate of requests generated by D2D communica-
tions increases the number of required SDN controllers. It is also shown that in the social-aware
scenario, a smaller number of controllers is needed. This result is obtained since the social-aware
heuristic makes the greedy choice based on the intensity of the social relationship between D2D
pairs, resulting in a smaller number of D2D communications admitted in eNBs. In the heuristic
(social-unaware), the greedy choice is considering the D2D pairs with the least interference factor
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Table 6.3: Simulation Results of social-aware scenario using ABC algorithm

λ (req/ms) Nro Controller Tr Controller Utilization eNB-Controller Controller Location λlost(req/ms)

0.1 1 1.5223 21.89 % b0c0, b1c0, b2c0, b3c0,

b4c0, b5c0, b6c0, b7c0
c0 − SGW0 0

0.2 1 1.5234 43.78 % b0c0, b1c0, b2c0, b3c0,

b4c0, b5c0, b6c0, b7c0
c0 − SGW0 0

0.3 1 1.5281 65.67 % b0c0, b1c0, b2c0, b3c0,

b4c0, b5c0, b6c0, b7c0
c0 − SGW0 0

0.4 1 1.5552 87.56 % b0c0, b1c0, b2c0, b3c0,

b4c0, b5c0, b6c0, b7c0
c0 − SGW1 0

0.5 2 0.9583 54.72 % b3c0, b5c0, b7c0

b0c1, b1c1, b2c1, b4c1, b6c1

c0 − eNB7

c1 − eNB6

0

0.6 2 0.9614 65.67 % b3c0, b5c0, b7c0

b0c1, b1c1, b2c1, b4c1, b6c1

c0 − eNB3

c1 − eNB2

0

0.7 2 0.9683 76.61 % b0c0, b1c0, b2c0, b4c0, b6c0

b3c1, b5c1, b7c1

c0 − eNB6

c1 − eNB3

0

0.8 2 0.9886 87.56 % b0c0, b1c0, b2c0, b4c0, b6c0

b3c1, b5c1, b7c1

c0 − eNB6

c1 − eNB5

0

0.9 2 1.247 98.37 % b0c0, b1c0, b2c0, b4c0, b6c0

b3c1, b5c1, b7c1

c0 − eNB6

c1 − eNB3

0.2275

1 2 1.8743 100 % b3c0, b5c0, b7c0

b0c1, b1c1, b2c1, b4c1, b6c1

c0 − eNB5

c1 − SGW0

17

resulting in a higher number of D2D communications admitted in the eNBs.

The results also show when more than one controller is used, their best location is in the
access network, near D2D communications, since eNBs represent the first hop, which reduces
both propagation latency and total response time. However, when only one controller is used, it
must be placed in the core of the network, in the SGW entity, which increases the response time
of each eNB for the controller. Regarding the entire network, the average value of the response
time provides a better result without exceeding the QoS value considered.

The fairness in the allocation of the control for the eNB is also among the objectives. As
shown in Tables 6.2 and 6.3, the assignment was balanced between the controllers; therefore, the
results from ABC and ACS-EM are consistent with the expected solutions.

ABC and ACS-EM were compared with the ACS [101] and the PSO [112], for the evaluation
of its effectiveness. ACS was applied with the following parameters: ant_quantity = 100;
q0 = 0.2; β = 2; τ0 = 0.05 and δ = 0.1.

In PSO [112], the particles cooperate to search for the global optimum in the n-dimensional
search space. The ith particle maintains both position and velocity. In each iteration, each particle
uses its own search experience (self-cognitive) and the whole swarm’s search experience (social-
influence) to update velocity, and flies to a new position. Therefore, c1 and c2 are two parameters
that weight the importance of self-cognitive and social-influence, respectively. A scheme that
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(a) ABC Algorithm

(b) ACS-EM Algorithm

Figure 6.1: Effect of λ on the number of required SDN controllers.
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linearly decrements inertia weight w between wmax and wmin is used in [112] to update the ve-
locity. The discrete PSO modeling presented in [112] was applied with the following parameters:
particle_quantity = 100; wmax = 0.9; wmin = 0.4; c1 = 2; c2 = 2.

Figure 6.2 shows the average of the objective function value obtained in the 32 observations.
The standard deviation of the results for ABC, ACS-EM and ACS is small, whereas the results
for PSO show a higher dispersion. Since ABC achieved a lower average in most instances, we
inferred its performance was probably better than that of ACS-EM, ACS and PSO meta-heuristics.
However, statistical tests were applied for theoretically supporting the previous statement.

(a) social-unaware scenario

(b) social-aware scenario

Figure 6.2: Algorithms Comparison - Average Objective Function.

First, the nature of the samples was tested for checking their distribution (normal or not). If
the results followed a normal distribution, parametric hypothesis tests were applied for finding
the one of better performance. Otherwise, non-parametric hypothesis tests were applied. A 95%
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confidence level was used for all tests.

The experiments were conducted according to the following methodology:

1. search the results for ABC, ACS-EM, ACS and PSO using the system model defined at the
beginning of this section; 32 simulations (observations) were performed for each case;

2. generate the three samples with the best results for each case (32 observations);

3. verify if the results of each meta-heuristic follow a normal distribution using the Kolmogorov-
Smirnov test [113];

4. apply the Kruskal-Wallis test [114] among the meta-heuristics samples to assess whether or
not their population medians differ (whether three independent samples had been selected
from populations with an identical distribution).

5. apply Wilconxon test [113, 114] among the meta-heuristic of best median and all others to
find the best.

As shown in Tables 6.4 and 6.5, the results of the Kolmogorov-Smirnov test for the three
meta-heuristics were h = 1, which rejects the null hypotheses. Therefore, the samples obtained
do not follow a normal distribution, and non-parametric tests must be used.

Kruskal-Wallis test was applied to determine whether at least one meta-heuristic showed a
different median and also whether a performance comparison could be made between them. The
null hypothesis (Ho) assumes independent samples from two or more groups provide distributions
with equal medians. If h = 1, the null hypothesis is rejected. Therefore, the meta-heuristic of
lowest median should be compared with the others by Wilcoxon test for proving its best perfor-
mance in solving the CPP problem.

Wilcoxon Rank Sum was applied to find the meta-heuristic of best performance. The null
hypothesis (Ho) assumes the two independent samples derive from distributions with equal me-
dians. If h = 1, the null hypothesis is rejected. Therefore, the meta-heuristic of lower median
shows better performance. Otherwise, no conclusion can be drawn.

The Wilcoxon test result was h = 1 for eight instances of the problem, and ABC showed a
lower median, which indicates better performance (see Tables 6.4 and 6.5). No conclusions could
be drawn between the ABC and ACS-EM meta-heuristics for some values of λ, as for example
in the social-unaware scenario for the values λ = 0.7 and λ = 0.9 (see Table 6.5), which means
that they perform similarly in these cases. However, since ABC performed better than PSO for
all instances and better than the ACS-EM and ACS meta-heuristics in most instances, we can
conclude its performance is higher in solving the SDN controller placement problem in D2D
communications management for the investigated scenario.

The computational complexities of the four meta-heuristics were analyzed (more details are
shown in Appendix A), and are expressed as
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Table 6.4: Hypothesis Test Results social-aware scenario

λ (req/ms) Algorithm Kolmogorov-Smirnov
Test (h)

Wilcoxon Rank Sum
Test (h)

Median

0.1

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.0876

ACS-EM 1.0 0.0876

ACS 1.0 0.0876

PSO 1.0 0.3995

0.2

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.0876

ACS-EM 1.0 0.0876

ACS 1.0 0.0876

PSO 1.0 0.4182

0.3

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.0877

ACS-EM 1.0 0.0877

ACS 1.0 0.0877

PSO 1.0 0.3958

0.4

ABC 1.0

ABC - ACS-EM => 0.0
ABC - ACS => 0.0
ABC - PSO => 1.0

0.0880

ACS-EM 1.0 0.0880

ACS 1.0 0.0880

PSO 1.0 0.3981

0.5

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.3074

ACS-EM 1.0 0.3260

ACS 1.0 0.3311

PSO 1.0 0.4075

0.6

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.3074

ACS-EM 1.0 0.3256

ACS 1.0 0.3299

PSO 1.0 0.4173

0.7

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.3075

ACS-EM 1.0 0.3279

ACS 1.0 0.3311

PSO 1.0 0.4070

0.8

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.3076

ACS-EM 1.0 0.3255

ACS 1.0 0.3315

PSO 1.0 0.4112

0.9

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.3100

ACS-EM 1.0 0.3377

ACS 1.0 0.3383

PSO 1.0 0.4030

1.0

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.3186

ACS-EM 1.0 0.3464

ACS 1.0 0.3464

PSO 1.0 0.407896



Table 6.5: Hypothesis Test Results social-unaware scenario

λ (req/ms) Algorithm Kolmogorov-Smirnov
Test (h)

Wilcoxon Rank Sum
Test (h)

Median

0.1

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.0876

ACS-EM 1.0 0.0876

ACS 1.0 0.0876

PSO 1.0 0.3924

0.2

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.2935

ACS-EM 1.0 0.3226

ACS 1.0 0.3338

PSO 1.0 0.4122

0.3

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.2936

ACS-EM 1.0 0.3226

ACS 1.0 0.3334

PSO 1.0 0.4103

0.4

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.3371

ACS-EM 1.0 0.3876

ACS 1.0 0.4034

PSO 1.0 0.4083

0.5

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.3879

ACS-EM 1.0 0.3902

ACS 1.0 0.3942

PSO 1.0 0.4065

0.6

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.4062

ACS-EM 1.0 0.4127

ACS 1.0 0.4277

PSO 1.0 0.4343

0.7

ABC 1.0

ABC - ACS-EM => 0.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.4079

ACS-EM 1.0 0.4085

ACS 1.0 0.4100

PSO 1.0 0.4372

0.8

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.4102

ACS-EM 1.0 0.4110

ACS 1.0 0.4229

PSO 1.0 0.4304

0.9

ABC 1.0

ABC - ACS-EM => 0.0
ABC - ACS => 0.0
ABC - PSO => 1.0

0.4417

ACS-EM 1.0 0.4417

ACS 1.0 0.4417

PSO 1.0 0.4499

1.0

ABC 1.0

ABC - ACS-EM => 1.0
ABC - ACS => 1.0
ABC - PSO => 1.0

0.4219

ACS-EM 1.0 0.4442

ACS 1.0 0.4442

PSO 1.0 0.457897



ABC => O(iteration_max ∗ [SN ∗ (SNlogSN + θ)]), (6.1a)

ACS-EM => O(iteration_max ∗ [ant_quantity ∗ bθ + cθ2]), (6.1b)

ACS => O(iteration_max ∗ [ant_quantity ∗ bθ + cθ2]), (6.1c)

PSO => O(iteration_max ∗ particle_quantity ∗ cθ). (6.1d)

Figure 6.3 displays the number of computations in respect to the agents quantity. In ACS-EM
and ACS, the agents (ants) need to go through each node of the graph in each iteration to build
a new solution. Differently in ABC, the agents (bees) use a neighborhood structure where some
nodes are selected to explore neighbor solutions, with a smaller number of operations for the
exploring of a new solution. Similar to ABC, the agents (particles) in PSO explore new solutions
by changing the position and speed of the particles without having to go through all the nodes
considered in a feasible solution. So, the number of operations performed by the agents in ABC
and PSO is less than the operations performed by the agents of the ACS-EM and ACS that need
to go through all nodes. As a consequence, the increase in the number of agents in ACS-EM and
ACS causes a rapid growth in the number of computations while this increase is smaller in ABC
and PSO. Therefore, we can conclude that the ABC and PSO meta-heuristics deliver solutions in
less time and with lower computational cost.

Figure 6.3: Computational complexity versus numbers of agents.

Figure 6.4 displays the computational complexity (number of operations performed in the
execution of the meta-heuristics) in respect to the eNBs quantity. We can observe that as the
size of the network increases, the computational complexity of the meta-heuristics increases.
This increase is polynomial in ACS-EM and ACS, a result consistent with the computational
complexity calculated in the equations 6.1b and 6.1c where the number of operations is affected
by the square of the set Θ (CPP - set of possible locations of the controllers). The results show that
PSO has the lowest computational complexity and its increase is less significant when the number
of eNBs increases. In the sequence, the ABC showed less computational complexity compared
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to ACS-EM and ACS, presenting a logarithmic growth with an increase in the number of eNBs,
a result consistent with the formulation presented in the equation 6.1a.

Figure 6.4: Computational complexity versus number of eNBs.

The analysis revealed the computational complexity of ABC and PSO are lower than that
of ACS-EM and ACS. However, ABC and ACS-EM showed better performance in solving the
problem, according to statistical tests, with characteristics that enable a more efficient exploration
of the search space, thus, avoiding sub-optimal solutions.

Due to the focus of external memory addressed in ACS-EM, in certain cases, ants do not
make random decisions, and choose solution components influenced by the values recorded in
that memory. Since it stores information specific to the search history from the beginning of the
algorithm, it effectively focuses on regions of the search space not visited (not recorded in mem-
ory and with values reflecting this), or, instead, on those already visited and that are promising
(also recorded in memory and with values that reflect it). Such uses of memory reflect the inten-
sification and diversification mechanisms that avoid premature convergence and achieve higher
performance [14] against optimization problems of particular characteristics, such as the one dis-
cussed in this article.

Similarly happens with ABC that favors searches in neighborhoods of known solutions using
self-adaptive strategy. Similarly with the memory-enabled ants, the worker bees memorize a food
source and explore its neighborhood, maintaining a list of winning approaches. Using the win-
ning operators it is possible to find neighbors who improve the food source more often, reducing
exploration operations. In this sense, ABC intensification is more favored than would be desired,
having a greater influence when the cardinality of the set of feasible solutions increases, since the
degree of exploration of the ABC decrease. This effect can be seen in Figure 6.2(b) where for
values of λ ≤ 0.4 req/ms the meta-heuristics ACS and ACS-EM manage to deliver better results
of the objective function.

According to the results, ABC and ACS-EM perform better in the CPP solution, and in most
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scenarios considered, the ABC meta-heuristic performed better than the ACS-EM. Also, the com-
putational complexity of ABC is lower, which makes the meta-heuristic more attractive in time
sensitive scenarios, such as dynamic scenarios. Therefore, the ABC is better than the other meta-
heuristics evaluated in the CPP solution, for the investigated scenarios.

6.2 FIRST RRA OPTIMIZATION PROBLEM

This section provides the results of the approach for the social-aware RRA problem, which
considers D2D communications established in an LTE-A network. A cellular LTE-A network is
simulated with 1 PGW, 1 SGW, and 1 eNB, and a Twitter dataset [115] is used for the deter-
mination of the social relationships between DUEs devices. Simulation results characterize the
cell throughput with partial CSI and gain of quantitative insights into its behavior. The numerical
results are averaged over 100 user drops. In each drop, U CUEs and the dRj of D D2D pairs are
randomly located with uniform probability in a cell of 500m radius. The location of dTj is chosen
for the modeling of different dTj - dRj distances, so that it lies randomly with uniform probability
within a circle of 50m radius around dRj . Table 6.6 shows the parameters of the System Model.

Table 6.6: Simulation parameters

Parameter Value

Carrier frequency 2 GHz [75]

Bandwidth of component carrier 1.4 MHz per subchannel @ 6 RBs (72 subcarriers)

CUE transmitted power 10 dBm

DUE transmitted power -10 dBm

eNB coverage radius 500 m

Distance between D2D pairs Uniformly distributed in [0,50]m

Path loss model for cellular link 128.1 + 37.6log10(l[Km])

Path loss model for D2D pairs 148 + 40log10(l[Km])

lognormal shadowing fading standard
deviation

10 dB for cellular link; 12 dB for D2D pair link

Small-scale fading Rayleigh model

Antenna gain 14 dBi for eNB; 0 dBi for UE

single-sided noise power spectral den-
sity - N0

-174 dBm/Hz

SINRt
u 10 dB

SINRt
d 10 dB

number of iterations 250
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The simulation environment involves programs written in C# for the definition of the values of
the Social-aware RRA Artificial Bee Colony (SA-RRA-ABC) parameters. The values considered
were SN = 25, limit = 5, and NLsize = 10.

The performance of SA-RRA-ABC was benchmarked with the following schemes:

• Exhaustive Search (ES): all possible assignments of D2D pairs to subchannels were searched
towards finding the optimal solution, which is computationally infeasible, except for small
values of u and d.

• GRAA, proposed in [75]: greedy heuristics consider a sequential resource allocation mode,
where eNB determines the admitted D2D pairs and allocates resources based on the sequen-
tial indexing of RB. Conflict graphs are updated whenever a D2D pair has been selected to
use a resource block, and tolerable interference values are evaluated by both eNB and other
DUEs admitted. In GRAA algorithm, D2D pairs are selected according to the degree of
interference. Therefore, the D2D pairs of lowest degree are chosen first. Such a greedy
solution aims to maximize the total admitted D2D pairs; however, it does not consider the
system throughput.

• SA-GRAA: an update of GRAA, it considers the social relationship between users in the
greedy D2D link selection.

In SA-GRAA, the selection of D2D pairs is based on the intensity of the social relationships
(ωdj ) between DUEs. Therefore, D2D pairs of higher intensity are selected first. SA-GRAA, SA-
GRAA and GRAA were benchmarked with ES for different n, M , and q feedback parameters.
For q ≥ 4, it becomes computationally cumbersome to numerically optimize L = 2q threshold
levels; therefore, the threshold values shown in Table 6.7 were used as system parameters. They
start at 10 dB, which is the SINR threshold for UEs and has 5 dB increments in the quantization
scheme.

Table 6.7: D2D SINR Quantization for Different q

q D2D SINR in dB (SINRi)

0 SINR0 = 10 dB

1 SINR0 = 10 dB, SINR1 = 15 dB

2 SINR0 = 10 dB, SINR1 = 15 dB, SINR2 = 20 dB, SINR3 = 25 dB

3
SINR0 = 10 dB, SINR1 = 15 dB, SINR2 = 20 dB, SINR3 = 25 dB, SINR4 = 30 dB, SINR5 = 35 dB, SINR6 = 40

dB, SINR7 = 45 dB

4

SINR0 = 10 dB, SINR1 = 15 dB, SINR2 = 20 dB, SINR3 = 25 dB, SINR4 = 30 dB, SINR5 = 35 dB, SINR6 = 40

dB, SINR7 = 45 dB

SINR8 = 50 dB, SINR9 = 55 dB, SINR10 = 60 dB, SINR11 = 65 dB, SINR12 = 70 dB, SINR13 = 75 dB,
SINR14 = 80 dB, SINR15 = 85 dB

101



Since ES has O(du) computational complexity when full CSI and O(MN) ) are considered
for the feedback model, it requires considerable computational effort for high values of N ≤ u

and M ≤ d. Therefore, the evaluation involved a small scenario with u = 5 and d = 10 pairs
towards results with reasonable effort.

The following two metrics were used for the performance evaluation: D2D access rate, de-
fined as the ratio of number of accessed D2D pairs and total D2D pairs, and weighted system
throughput, which is the sum of the throughput of each CUE and the D2D pairs weighted by the
intensity of the social relationship between them. In weighted system throughput, D2D pairs with
stronger social relationship have higher throughput. Both weighted system throughput and access
rate are constant when full CSI is considered and represent the upper limit of comparison. In this
scenario, eNB always knows the instantaneous CSI for all links, and, consequently, a change in
the feedback parameters does not affect the result.

Figure 6.5 shows a comparison of the weighted system throughput and access rate of SA-
RRA-ABC, SA-GRAA, GRAA and ES when the number of potential sub-channels, N , varies in
the feedback scheme. SA-RRA-ABC can find the optimal solution achieving the same results of
ES, while greedy solutions show lower performance. Greedy solutions provided similar results,
therefore, no considerable gain was obtained in SA-GRAA – the greedy choice was changed
towards selecting D2D pairs with greater strength of social relationships.

According to Figures 6.5(a) and 6.5(b), as N increases, more D2D communications are al-
lowed in the system, thus, increasing throughput. When eNB receives information from CSI
through several cellular channels, a better mapping of D2D pairs can be performed with the cel-
lular channels of lowest mutual interference, and a larger number of D2D pairs can be allocated
on the same channel.

Figure 6.6 shows a comparison of the algorithms with varying feedback on the most promising
D2D pairs for sharing the same channel. The performance of SA-RRA-ABC was similar to that
of ES and the meta-heuristic could find the optimal solution. According to Figure 6.6(a), the
gain in throughput is almost constant for small values of M < 5, i.e., eNB neither has enough
information on the interference between D2D pairs, nor admits more than one D2D pair to reuse
the same channel. Therefore, the access rate is constant (Figure 6.6(b)) and the number of D2D
pairs admitted in the network is lower than or equal to the number of available channels. As eNB
receives information on the interference between D2D pairs, a more efficient resource allocation
can be performed and more than one D2D pair can use the same channel simultaneously, thus,
increasing the system throughput.

Figure 6.7 displays a comparison of the algorithms with varying control bits sent with infor-
mation on CSI. According to Figure 6.7(b), an increase in q does not significantly affect the rate
of access of D2D pairs to the system. However, in relation to throughput, it increases granularity
and provides eNB with feedback closer to the real value of the channel state of each D2D com-
munication. As shown in Figure 6.7(a), the throughput significantly increases with the increase
in q, thus, promoting a more efficient allocation of resources.

102



(a) RT - Weighted System Throughput (Mbps)

(b) Access Rate

Figure 6.5: Comparison of Algorithms varying the N feedback parameters (u = 5 and d = 10).
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(a) RT - Weighted System Throughput (Mbps)

(b) Access Rate

Figure 6.6: Comparison of Algorithms varying the M feedback parameters (u = 5 and d = 10).
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(a) RT - Weighted System Throughput (Mbps)

(b) Access Rate

Figure 6.7: Comparison of Algorithms varying the q feedback parameters (u = 5 and d = 10).
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A more realistic scenario with u = 10 subchannels and d = 20 D2D pairs is displayed in
Figure 6.8, and trends are similar to those in Figure 6.5. Both weighted system throughput and
access rate increase as eNB receives feedback from more potential reuse partners. SA-RRA-
ABC showed better performance in the allocation of resources, maximizing the throughput of the
system. As shown in Figure 6.8(a), for N ≥ 7, the throughput gain is not significant and remains
practically constant; therefore, eNB does not need information from CSI considering all potential
reuse cellular partners for performing an efficient resource allocation.

Figure 6.9 displays the influence of increasing M in the most realistic scenario. According to
Figures 6.9(a) and 6.9(b), more information on CSI is sent to eNB considering a higher number
of potential shared D2D pairs, and a better mapping of number of D2D allocated in the same
channel can be performed. The increase occurs because a D2D pair can be present in feasible
D2D sets of more subchannels as M increases, implying its better chance of being assigned to
a subchannel with high throughput. In the scenario under evaluation, for example, with N = 7,
M = 18, and q = 4, the access rate achieved by SA-RRA-ABC was very close to that of the full
CSI model, which represents the upper limit (Figure 6.9(b)). Therefore, a complete CSI is not
necessary for the achievement of an efficient allocation, which reduces feedback overhead.

The trends in Figure 6.10 are similar to those in Figure 6.7, where the gain in granularity exerts
no significant impact on the access rate. However, the weighted system throughput increases as q
increases due to a better resolution of the feedback. As shown in Figure 6.10(b), an increase in the
feedback resolution can decrease the access rate, since SA-RRA-ABC prioritizes D2D pairs with
higher intensity in their social relationship. Therefore, a smaller number of D2D pairs admitted
to the network may also represent an increase in throughput.

According to Figures 6.5, 6.6, 6.7, 6.8 and 6.9, SA-RRA-ABC achieved higher weighted
system throughput and a higher number of D2D pairs was admitted in the network, thus, enabling
a better use of the radio spectrum. SA-RRA-ABC maximized the weighted system throughput
and used radio resources more efficiently. As a result, a larger number of pairs D2D reused
the RBs assigned to CUE, which shows better performance of the meta-heuristic in solving the
social-aware RRA problem.

Figures 6.11, 6.12, and 6.13 show the result of increasing each parameter of the feedback
model in the signaling overhead. In Figure 6.11, the slope of the lines is not accentuated, which
shows N has a marginal contribution to the overhead increase; however, an increase in M and q
significantly increases the overhead, and a two-fold increase in q is very representative.

Figure 6.12 displays a similar trend, i.e., and increase in M does not contribute to overhead
significantly. However, feedback overhead grows linearly with the number of users. According
to Figure 6.13, q is the parameter of major contribution to overhead and the most significant in
throughput for the definition of feedback resolution.

The feedback overhead increases linearly with increasingN , M , and q parameters. Therefore,
the feedback parameters must be defined in the design of the system according to their cost/benefit
ratio.
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(a) RT - Weighted System Throughput (Mbps)

(b) Access Rate

Figure 6.8: Comparison of Algorithms varying the N feedback parameters (u = 10 and d = 20).
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(a) RT - Weighted System Throughput (Mbps)

(b) Access Rate

Figure 6.9: Comparison of Algorithms varying the M feedback parameters (u = 10 and d = 20).
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(a) RT - Weighted System Throughput (Mbps)

(b) Access Rate

Figure 6.10: Comparison of Algorithms varying the q feedback parameters (u = 10 and d = 20).
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(a) scenario u = 5 and d = 10. (b) scenario u = 10 and d = 20.

Figure 6.11: Feedback overhead varying the N feedback parameters.

(a) scenario u = 5 and d = 10. (b) scenario u = 10 and d = 20.

Figure 6.12: Feedback overhead varying the M feedback parameters.

(a) scenario u = 5 and d = 10. (b) scenario u = 10 and d = 20.

Figure 6.13: Feedback overhead varying the q feedback parameters.
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Table 6.8: Simulation Parameters

Parameter Value

system bandwidth - W 1 MHz

Number of CUEs and DUE pairs {0,2,4} CUEs, 8 DUE pairs

N and Nu 4 RBs, {4,2,0} RBs

Maximum transmission power CUE
and DUE

21 dBm, 10dBm

eNB Coverage Radio 500 m

Distance between D2D transmitter and
receiver

Uniformly distributed among [0,20]m

Path loss model for cellular link 128.1 + 37.6 log10(d[Km])

Path loss model for D2D pairs 148 + 40 log10(d[Km])

Antenna gain 14 dBi for eNB; 0 dBi for UE

single-sided noise power spectral den-
sity - N0

-174 dBm/Hz

SINRt 10 dB

number of iterations 75

6.3 SECOND RRA OPTIMIZATION PROBLEM

A cellular network was considered for establishing D2D communications with URLLC ser-
vices, with ϵ = 10−5 and m = 500 symbols (Table 6.8 shows the defined parameters).

The simulation environment involved programs written in C# for the definition of the values of
ABC, ACS-EM, and PSO meta-heuristics. The parameters for ABC were SN = 15, limit = 5,
and NLsize = 5. ACS-EM was applied with the following ones: ant_quantity = 15; q0 = 0.2;
r0 = 0.4; z0 = 0.6; α = 0.1; β = 0.9; τ0 = 0.05, and δ = 0.1, and PSO was applied with
particle_quantity = 15; w = 0.1; c1 = 2, and c2 = 2.

The meta-heuristics were compared with a greedy heuristic and an ES algorithm that uses the
Backtracking technique to validate its efficiency in solving the problem in question.

Greedy heuristic is based on the proposal in [75], which considers a sequential resource al-
location scheme running at the eNB; it defines the D2D pairs admission and allocates resources
according to the sequential indexing of RB. Conflict graphs are updated whenever a D2D pair has
been selected to use a resource block in RM, and tolerable interference values are evaluated by
both eNB and other DUE admitted.

The following three scenarios were considered in the evaluation: (i) Nu = 0 and u = 4, where
all RBs were allocated for one CUE and only the reuse mode was possible for D2D communi-
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cations, (ii) Nu = 2 and u = 2, where the network has two CUE and two unused RBs, and (iii)
Nu = 4 and u = 0, where the network has no CUE and 4 unused RBs. Unused RBs can be
assigned to D2D communications in either dedicated or cellular communication modes. The eNB
is located in the cell center and the UEs are uniformly distributed in the cell.

The following four sets of weights were considered for evaluations of their effects on the
quality of solutions (α1, α2, α3, and α4 - equation 5.6):

• Set 1: α1 = 0.5, α2 = 0.5, α3 = 0, and α4 = 0, representing an extreme case whose aim is
to maximize the network energy efficiency by maximizing the data rate;

• Set 2: α1 = 0, α2 = 0, α3 = 0.5, and α4 = 0.5, representing an extreme case whose aim is
to maximize the network energy efficiency by minimizing the transmission power;

• Set 3: α1 = 0.25, α2 = 0.25, α3 = 0.25, and α4 = 0.25, whose aim is to balance the
weights and maximize the network energy efficiency considering equal measure data rate
and transmission power; and

• Set 4: α1 = 0.3, α2 = 0.5, α3 = 0.1, and α4 = 0.1, whose aim is to maximize the network
energy efficiency by providing more weight to the maximization of the data rate - especially
of theD2D communications – but still performing a power control.

The impact of the weights on different metrics was studied and the metrics considered were
number of D2D admitted to the network, system throughput, power consumption, and network
energy efficiency.

Figure 6.14 shows the number of D2D communications admitted in the network when the
number of D2D pairs increases in the three scenarios. The four sets considered were evaluated,
and Set 2 and Set 3 led to a smaller number of D2D communications. In the scenario where
all RBs are used by cellular communications (Nu = 0), those sets (2 and 3) do not admitD2D
communications, due to the values of weights α3 and α4. According to the results, the admission
of D2D communications in the network negatively impacts power consumption, thus, decreasing
the network energy efficiency. Therefore, they do not represent good solutions to be chosen - the
higher the values of α3 and α4, the stronger the impact of power consumption on the value of
the objective function. The previous result led the meta-heuristics to choose solutions with lower
power consumption in the network, even if D2D communications were not established.

Figures 6.15 and 6.17 display the average throughput and average power consumption when
the number of D2D communications, respectively, is varied. According to Figure 6.15, Sets 1 and
4 achieved the highest network throughput values. The previous result was conditioned by the
values of α1 and α2, which increase the importance of throughput in the objective function. As
a result, larger values of α1 and α2 represent solutions in which the maximization of throughput
exerts a greater impact; they are considered better solutions. However, as shown in Figures 6.16
and 6.17, they have lower values of network energy efficiency and higher power consumption in
most scenarios, highlighting the tradeoff between throughput and power.
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Figure 6.14: Number of admitted D2D pairs considering different weight sets.

Figure 6.15: RT - Throughput (bps/Hz) considering different weight sets.
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Figure 6.16 shows the network energy efficiency for a varied number of D2D communications.
According to Figures 6.16(a) and 6.16(b), Sets 2 and 3 achieved the highest ηEE values. As
explained elsewhere, in scenarios that require resource sharing, those solutions do not admit D2D
communications in the network; therefore, Sets 1 and 4 are more attractive, since they admit
a larger number of D2D communications in all scenarios. As shown in Figure 6.16(b), higher
energy efficiency is achieved when Set 4 is used, in comparison to Set 1. The previous result
shows the non adoption of power parameters in the objective function (α3 = 0 and α4 = 0)
negatively impacts the energy efficiency of the network, despite a maximization of the throughput
(Figure 6.15).

One of the aims of the present study is to admit the largest number of D2D communications in
the network. Therefore, the parameter values must be chosen according to the tradeoff between
throughput and power consumption and the need for admitting D2D communications. Sets 2
and 3 are not good choices, since they do not admit D2D communications in resource sharing
scenarios, whereas Sets 1 and 4 represent better solutions, since they admit a higher number of
D2D communications in all scenarios.

Set 4 is more appropriate than Set 1, since higher network energy efficiency is obtained (Figure
6.16(b)), thus, admitting D2D communications in the network with acceptable throughput values
(Figure 6.15) and lower power consumption (Figure 6.17(b)) in most scenarios studied.

Figure 6.18 displays the objective function value (Equation 5.6) of the five algorithms studied
when the D2D pair number was varied. Greedy heuristic shows the smallest value, therefore, its
solutions are not good. ABC, ACS-EM, and PSO obtained better solutions to the RRA-URLLC
problem, representing, in some cases, optimal or near optimal solutions. ABC achieved the same
objective function value as ES in most scenarios evaluated, showing the best meta-heuristic for
solving the problem.

Figure 6.19 depicts the number of D2D communications admitted in the network when the
number of D2D pairs increases in the three scenarios. In all cases, ABC and ACS-EM assigned
a channel to each D2D pair similarly to the ES algorithm, showing its effectiveness in the three
scenarios.

Figure 6.20 displays the number of D2D communications admitted in each communication
mode when the D2D pair number increases for the three scenarios studied. Figure 6.20(a) shows
scenario (i), where all RBs are used by cellular communications (Nu = 0) and all admitted D2D
communications use RM mode, as long as the QoS parameters are respected. Figure 6.20(b)
depicts scenario (ii), where half of the RBs are unused (Nu = 2) and the best solutions choose
CM and RM modes, admitting all D2D pairs in the network. Figure 6.20(c) shows scenario (iii),
where all RBs are unused (Nu = 4) and the best solutions choose CM mode, since they achieve
higher throughput values by using two RBs. ABC showed the same communication mode choices
of ES and its effectiveness.

Figure 6.21(a) shows an increase in energy efficiency as the number of D2D pairs increases in
all scenarios, due to the contribution of each D2D communication to the system throughput (Fig-
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(a)

(b)

Figure 6.16: Comparison of the Network Energy Efficiency - ηEE considering different weight sets.
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(a)

(b)

Figure 6.17: Comparison of the average transmission power (dBm) considering different weight sets.
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Figure 6.18: Comparison of the algorithms with a varied number of D2D pairs.

Figure 6.19: Number of admitted D2D pairs with a varied number of D2D pairs.
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(a) No unused RB - Nu = 0 (b) Half of the unused RBs - Nu = 2

(c) All RBs unused (no cellular users) - Nu = 4

Figure 6.20: Comparison of the communication mode selection with a varied number of D2D pairs.
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(a) Network Energy Efficiency - ηEE (b) RT - Throughput (bps/Hz)

(c) Average transmission power (dBm)

Figure 6.21: Comparison of the algorithms with a varied number of D2D pairs.

ure 6.21(b)) and the decrease in the average transmission power of the network (Figure 6.21(c)).
However, in the scenario with Nu = 4, lower values of ηEE and the system throughput were
obtained because of the co-channel interference generated by cellular and D2D communications
in the reuse mode while sharing the same RB (Figures 6.21(a) and 6.21(b)). According to Figure
6.21(c), a successful communication requires transmission with higher power. Therefore, in the
reuse mode and use of URLLC services, D2D communications increase the transmission power
and decrease both throughput and energy efficiency in the system.

Figure 6.22(a) shows the throughput versus packet size (m) obtained by ABC and exhaustive
search resource allocation schemes. First, the system throughput increases monotonically with
increasing packet size and becomes linear in the region where the packet size is larger than 500
symbols, showing D2D communications with the use of URLLC services (small packet size <
500 symbols) negatively impact the system efficiency.

Figure 6.22(b) displays the impact of the decoding error probability on the system through-
put - in scenarios with URLLC services, which require high reliability (ϵ < 10−5), the system
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throughput decreases. The previous results are associated with the maximum number of bits to
be sent in a finite size packet and obtained basically as a calculated expression, thus, incurring a
penalty on ergodic capacity. The penalty is inversely proportional to m and directly proportional
to ϵ. Therefore, when m and ϵ become larger, the penalty added to the maximum achievable rate
in the finite packet size regime is gradually reduced.

The computational complexities of the five algorithms were analyzed (more details are shown
in Appendix B) and are expressed as

Greedy => O
(
ud+ d+ n

)
,

ABC => O
(

nro_it ∗ SN ∗ [SN + u+ d+ n]
)
,

PSO => O
(
nro_it ∗ particle_quantity ∗ ((u+ d) ∗ n′ + n))

)
,

ACS-EM => O
(
nro_it ∗ ant_quantity ∗ (n′)2(u+ d)2)

)
,

ES => O
(
un ∗ dn

′)
.

According to the computational complexity of ES, the computational effort increases expo-
nentially with respect to the amount of RBs, CUEs, and D2D communications, making such a
solution infeasible for sufficiently large u, d, and n. On the other hand, the complexity of Greedy,
ABC, ACS-EM, and PSO is a polynomial function that provides good solutions with lower com-
putational efforts, which makes the meta-heuristics good choices in scenarios with many D2D
communications.

The analysis revealed the computational complexity of Greedy is lowest and those of ABC
and PSO are lower than that of ACS-EM. However, ABC showed better performance in solving
the problem, with characteristics that enable a more efficient exploration of the search space, thus,
avoiding sub-optimal solutions.

Finally, the convergence curves in Figure 6.23 show how the meta-heuristics reduce Mean
Squared Error (MSE) values throughout iterations and improve the best solution. In a small
number of iterations, ABC and ACS-EM reduce the MSE value efficiently. PSO does not reduce
the MSE value with the same efficiency, and in the scenario with Nu = 0, it does not reach the
desired value (MSE = 0), with solutions farthest from the optimal one. In this study, the maximum
iteration number was 200.

6.4 FINAL CONSIDERATIONS

This chapter presented an evaluation of the proposed solutions to the CPP and RRA problems.
Simulation results for the CPP problem were shown considering social-unaware and social-aware
scenarios. The results show that when more than one controller is used, its best location is in
the access network, at eNBs, and thus, near D2D communications, since eNBs represent the first
hop, which reduces both propagation latency and total response time. CPP-ABC and CPP-ACS-
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(a) Impact of blocklength on system throughput

(b) Impact of decoding error probability on system throughput

Figure 6.22: Comparison of algorithms varying m and ϵ parameters associated with URLLC services.
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Figure 6.23: MSE convergence curves of the meta-heuristics.

EM were compared with CPP Ant Colony System (CPP-ACS) and Particle Swarm Optimization
(CPP-PSO). The analysis revealed that the computational complexity of the CPP-ABC and CPP-
PSO meta-heuristics is lower than that of the CPP-ACS-EM and CPP-ACS meta-heuristics. How-
ever, CPP-ABC and CPP-ACS-EM showed better performance in solving the problem according
to statistical tests.

Regarding the RRA problem, two approaches were considered. The first aims to maximize
the weighted system throughput considering the social relationship among users and a partial CSI
model with limited feedback, while the second aims to maximize the network energy efficiency
considering URLLC services. In evaluating the first proposed approach for solving the RRA
problem, two metrics were used: D2D access rate and system weighted throughput. The results
were presented in graphs varying the N and M parameters of the selection model used in the
proposed feedback scheme. The SA-RRA-ABC meta-heuristic was compared with an exhaustive
search algorithm, the GRAA and the SA-GRAA. According to the results obtained the SA-RRA-
ABC achieved a higher weighted throughput of the system and a larger number of D2D pairs
were admitted to the network, thus, allowing a better utilization of the radio spectrum. Also the
feedback overhead was evaluated, where the results showed that it increases linearly with the
increment of the N , M and q parameters.

In the last section the results of the second proposed approach to solving the RRA problem
were presented. Three scenarios were considered in the evaluation and the RRA-URLLC-ABC,
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RRA-URLLC-ACS-EM and RRA-URLLC-PSO meta-heuristics were compared with an exhaus-
tive search algorithm and a Greedy algorithm. First, the impact of four sets of objective function
weights on the metrics, number of D2D admitted to the network, system throughput, power con-
sumption, and network energy efficiency was studied. The results show the non adoption of
power parameters in the objective function negatively impact network energy efficiency, despite
a maximization of throughput. Therefore, the weights should be chosen according to the tradeoff
between throughput and power consumption.

The impact of blocklength and decoding error probability on system throughput, in scenarios
with URLLC services, was also evaluated. The results show that D2D communications using
URLLC services have a negative impact on system efficiency. Additionally, the meta-heuristics
were compared and the results showed that the computational complexity of Greedy is lower and
those of RRA-URLLC-ABC and RRA-URLLC-PSO are lower than those of RRA-URLLC-ACS-
EM. However, RRA-URLLC-ABC showed better performance in solving the problem.

Finally we can observe that the ABC meta-heuristic showed better results in solving the two
problems CPP and RRA, which is due to a more efficient exploration of the search space, thus,
avoiding sub-optimal solutions, while presenting reasonable computational complexity.
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7 CONCLUSIONS AND FUTURE WORK

This study has addressed, initially, bioinspired-based optimization meta-heuristics for the con-
troller placement problem in an LTE-A architecture with SDN-based social-aware D2D commu-
nications management. Simulations enabled analyses of the effect of social relationships on the
number of SDN controllers. Social relationships between users can optimize the number of active
SDN controllers on the cellular network, and the proposed meta-heuristic can perform a balanced
assignment of the eNBs to the controllers, thus, guaranteeing a response time lower than or equal
to a tQoS predefined. ABC provided acceptable and accurate results in the scenario evaluated, in
comparison to a discrete version of PSO, and found the global minimum in all simulations.

Moreover, the controller placement problem was analyzed for an LTE-A architecture with
SDN-based D2D communications management, and two models were used to evaluate the effect
of D2D communications management on the number of SDN controllers used in a cellular net-
work. An interference model was used to obtain the maximum number of D2D communications
allowed in the network, considering radio resource allocation. A model based on the queueing
theory was used for SDN controllers to obtain their average response time.

The solution of the CPP was then divided into two steps. In the first, two greedy heuristics
are used to solve the resource allocation problem. In the second, we have proposed an approach
for the artificial bee colony and an approach for the ant colony system with external memory
meta-heuristics for the evaluation of CPP.

The objective was to minimize the response time considering the SDN controller average
response time and propagation latency among the eNB and the controllers, with some interference
constrains. C# simulations checked the effect of D2D communications on the number, location
and assignment of SDN controllers. The ABC and ACS-EM yielded acceptable and accurate
results in the different scenarios evaluated, in comparison to ACS and a discrete version of PSO
meta-heuristics. However, the ABC presented less computational complexity, which makes it a
more attractive solution in time sensitive scenarios.

On the other hand, two optimization problems related to radio resource allocation (RRA) in
LTE-A and 5G networks have been addressed. The first considered the social-aware resource
allocation problem for D2D communication underlaying fully loaded cellular system with uplink
spectrum reuse. Information on both social and physical layers was exploited in the optimization
problem. The social relationship between two users was modeled according to their common
features and friendship. A SA-RRA-ABC developed maximized the weighted system through-
put while guaranteeing the QoS requirements of both cellular and D2D links simultaneously.
Towards decreasing the feedback overhead, a selected-NM q-feedback model was designed to
allocate several D2D pairs in the same channel, thus, increasing the weighted system throughput.
The meta-heuristic was validated through simulations and compared with two greedy heuristics,
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namely GRAA and SA-GRAA. Simulation results showed its better performance. The selected-
NM q-feedback model proposed can achieve performance close to that of the full CSI model with
lower overhead. Furthermore, SA-RRA-ABC enables the admission of a higher number of D2D
pairs in the network, increasing the reuse factor of RBs and using the spectrum more efficiently.

The second problem introduced three approaches based on a bioinspired meta-heuristic, called
RRA-URLLC-ABC, RRA-URLLC-ACS-EM, and RRA-URLLC-PSO for solving the radio re-
source allocation problem in a D2D-enabled cellular network targeting wireless industrial appli-
cations in factories of the future and using URLLC services. RRA-URLLC problem was modeled
as an optimization problem towards maximizing the network transmission power efficiency and
meeting the QoS constraints imposed by cellular and D2D communications. The schemes were
compared with a greedy heuristic and an exhaustive search algorithm and the performance of ABC
was similar to that of ES, achieving near optimal solutions. Simulations validated the approaches
and the impact of D2D communications using URLLC services on the system throughput was
analyzed.

Our results for CPP have been published in two articles - one entitled "Alocação de contro-
ladores SDN para gerenciamento de comunicações D2D" and published at the SBrT2019 sym-
posium (the initial page of the manuscript is shown in Appendix C), and another published in the
IEEE Access journal (it was entitled "SDN-Controller Placement for D2D Communications" and
its initial page is attached to Appendix D).

Part of our results for RRA have been published in Computer Networks journal (Elsevier), in
an article entitled "Social-aware spectrum sharing for D2D communication by artificial bee colony
optimization", attached to Appendix E (initial page of the article). A second article, entitled "Re-
source allocation based on bio-inspired algorithms for D2D cellular networks with URLLC ser-
vices", has been submitted to Special Issue in Recent Advances in the Design and Management of
Reliable Communication Networks of the IEEE Transactions on Network and Service Manage-
ment journal (its initial page is shown in Appendix F) and is under review. A third article, entitled
“Energy-efficient optimization for URLLC services in D2D cellular networks”, whose initial page
and acceptance letter are attached to Appendix G, has been accepted for presentation to the event
“2023 26th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN)”.

As future work, we intend to solve the CPP considering other metrics, such as reliability and
distance between controllers, and use of network emulators (e.g., Mininet) to evaluate the effec-
tiveness of the proposed system. The influence of different radio resource allocation methods on
CPP and aspects related to traffic differentiation for multimedia applications will also be evalu-
ated. The effect of users’ mobility on D2D communications and its influence on SDN controllers
will be considered.

The design of social-aware resource allocation problem for D2D communication by incorpo-
rating other meta-heuristics based on populations, such as AFS, BFO, Firefly Algorithm (FA) and
Whale Optimization Algorithm (WOA), an evaluation of the dynamic radio resources allocation
considering metrics, such as user mobility, and the implementation of social IoT solutions for
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D2D communications are also aimed at.

Scenarios with D2D clusters, where bio-inspired meta-heuristics can be used for solving prob-
lems such as resource allocation and interference mitigation will be considered, and Machine
Leaning (ML) solutions will be employed towards solving the resource allocation problem in
wireless industrial networks.

A multi-objective version of ABC will also be considered in order to further study the two
optimization problems (CPP and RRA). Other non-parametric statistical significance tests will be
performed to compare the results of the meta-heuristics used to solve the problems (for example
Friedman’s test).
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This appendix presents a detailed discussion about the computational complexity of the ABC, ACS-EM, ACS and PSO 

algorithms applied to CPP problem. We have defined the following sets for a better understanding of such complexity: 

𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑠} of SGW (Serving Gateway) 

𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑏} of eNBs (evolved NodeB) 

𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑐} of controllers that can be in any entity in the cellular network (PGW, SGW or eNB) 

Θ = 𝑃𝐺𝑊 ∪ {𝑠1, 𝑠2, . . . , 𝑠𝑠}⏟        
𝑆𝐺𝑊

∪ {𝑏1, 𝑏2, . . . , 𝑏𝑏}⏟         = 
𝑒𝑁𝐵

{𝜃1, 𝜃2, . . . , 𝜃𝜃} was defined as the possible locations of the controllers. 

 

  

Below is the discussion about the computational complexity of the four algorithms. 

First, we calculated the computational complexity of the main functions used in the Ant Colony System with External 

Memory (ACS-EM) and Ant Colony System (ACS) algorithms. 

 

 

𝑉𝑏𝑘𝑐𝑗 = [
𝑏1𝑐1 … 𝑏1𝑐𝑐
⋮ ⋮ ⋮

𝑏𝑏𝑐1 ⋯ 𝑏𝑏𝑐𝑐

] => 𝑏𝑐  

 

𝑉𝑐𝑗𝜃𝑖 = [
𝑐1𝜃1 … 𝑐1𝜃𝜃
⋮ ⋮ ⋮

𝑐𝑐𝜃1 ⋯ 𝑐𝑐𝜃𝜃

] => 𝑐𝜃 

 

→ 𝑶ሺ𝒃𝒄ሻ 
→ 𝑶ሺ𝒄ሻ 

→ 𝑶ሺ𝒄𝜽ሻ 
→ 𝑶ሺ𝜽ሻ 

→ 𝑶ሺ𝒃𝒄𝟐ሻ 

→ 𝑶ሺ𝒄𝜽𝟐ሻ 

→ 𝑶ሺ𝒃𝒄𝟐ሻ + 𝑶ሺ𝒄𝜽𝟐ሻ = 𝑶ሺ𝒄𝜽𝟐ሻ 𝒔𝒊𝒏𝒄𝒆 𝜽 > 𝒃 ≥ 𝒄 

 

A - COMPUTATIONAL COMPLEXITY OF THE METAHEURISTICS (CPP
PROBLEM).



 

 

 

 

 

 

 

 

→ 𝑶ሺ𝒃𝒄ሻ 

→ 𝑶ሺ𝒄𝜽ሻ 
→ 𝑶ሺ𝒃𝒄ሻ + 𝑶ሺ𝒄𝜽ሻ = 𝑶ሺ𝒄𝜽ሻ 𝒔𝒊𝒏𝒄𝒆 𝜽 > 𝒃 ≥ 𝒄  

 

→ 𝑶ሺ𝒄ሻ 

→ 𝑶ሺ𝜽ሻ 

→ 𝑶ሺ𝒄ሻ + 𝑶ሺ𝜽ሻ = 𝑶ሺ𝜽ሻ 𝒔𝒊𝒏𝒄𝒆 𝜽 > 𝒄 

 

→ 𝑶ሺ𝒄ሻ 

→ 𝑶ሺ𝜽ሻ 

→ 𝑶ሺ𝒄ሻ + 𝑶ሺ𝜽ሻ = 𝑶ሺ𝜽ሻ 𝒔𝒊𝒏𝒄𝒆 𝜽 > 𝒄  

 

→ 𝑶ሺ𝒃𝒄ሻ 

→ 𝑶ሺ𝒄ሻ 

→ 𝑶ሺ𝒄𝜽ሻ 

→ 𝑶ሺ𝜽ሻ 

→ 𝑶ሺ𝒃𝒄𝟐ሻ 

→ 𝑶ሺ𝒄𝜽𝟐ሻ 

→ 𝑶ሺ𝒃𝒄𝟐ሻ + 𝑶ሺ𝒄𝜽𝟐ሻ = 𝑶ሺ𝒄𝜽𝟐ሻ 𝒔𝒊𝒏𝒄𝒆 𝜽 > 𝒃 ≥ 𝒄  

 

→ 𝑶ሺ𝒃 + 𝒄ሻ = 𝑶ሺ𝒃ሻ 𝒔𝒊𝒏𝒄𝒆 𝒃 ≥ 𝒄 



 

Therefore, the computational complexity of ACS-EM algorithm is: 

𝑶(𝒄𝜽𝟐) + 𝑶ሺ𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏_𝒎𝒂𝒙ሻ ∗ [𝑶ሺ𝒂𝒏𝒕_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚ሻ ∗ 𝑶ሺ𝒃𝜽ሻ + 𝑶ሺ𝒄𝜽𝟐ሻ] 

= 𝑶ሺ𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏_𝒎𝒂𝒙ሻ ∗ [𝑶ሺ𝒂𝒏𝒕_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚ሻ  ∗ 𝑶ሺ𝒃𝜽ሻ + 𝑶ሺ𝒄𝜽𝟐ሻ] 

= 𝑶ሺ𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏_𝒎𝒂𝒙 ∗ [𝒂𝒏𝒕_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚 ∗ 𝒃𝜽 + 𝒄𝜽𝟐]ሻ 

 

 

 

 

→ 𝑶ሺ𝒄𝜽𝟐ሻ 

→ 𝑶ሺ𝒃 + 𝒄ሻ = 𝑶ሺ𝒃ሻ 𝒔𝒊𝒏𝒄𝒆 𝒃 ≥ 𝒄 

→ 𝑶ሺ𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏_𝒎𝒂𝒙ሻ 

→ 𝑶ሺ𝒄𝜽𝟐ሻ + 𝑶ሺ𝒄𝜽ሻ = 𝑶ሺ𝒄𝜽𝟐ሻ 
→ 𝑶ሺ𝒄𝜽ሻ 

→ 𝑶ሺ𝒂𝒏𝒕_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝟏ሻ 
→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝜽ሻ 

→ 𝑶ሺ𝒄ሻ ⋁ 𝑶ሺ𝜽ሻ  → 𝑶ሺ𝜽ሻ 

→ 𝑶ሺ𝒄ሻ ⋁ 𝑶ሺ𝜽ሻ  → 𝑶ሺ𝜽ሻ 

→ 𝑶ሺ𝟏ሻ

 
→ 𝑶ሺ𝒄ሻ ⋁ 𝑶ሺ𝜽ሻ  → 𝑶ሺ𝜽ሻ 

→ 𝑶ሺ𝒄ሻ ⋁ 𝑶ሺ𝜽ሻ  → 𝑶ሺ𝜽ሻ 
→ 𝑶ሺ𝜽ሻ 

→ 𝑶ሺ𝒃 + 𝒄ሻ = 𝑶ሺ𝒃ሻ 𝒔𝒊𝒏𝒄𝒆 𝒃 ≥ 𝒄 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝜽ሻ 
→ 𝑶ሺ𝒃ሻ ∗ [𝑶ሺ𝜽ሻ + 𝑶ሺ𝜽ሻ + 𝑶ሺ𝒃ሻ]

= 𝑶ሺ𝒃ሻ ∗ 𝑶ሺ𝜽ሻ
= 𝑶ሺ𝒃𝜽ሻ 

 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝒄𝜽𝟐ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝒃ሻ 
→ 𝑶ሺ𝒄𝜽𝟐ሻ + 𝑶ሺ𝒃ሻ = 𝑶ሺ𝒄𝜽𝟐ሻ 



 

The computational complexity of ACS is 

𝑶(𝒄𝜽𝟐) + 𝑶ሺ𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏_𝒎𝒂𝒙ሻ ∗ [𝑶ሺ𝒂𝒏𝒕_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚ሻ ∗ 𝑶ሺ𝒃𝜽ሻ + 𝑶ሺ𝒄𝜽𝟐ሻ] 

= 𝑶ሺ𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏_𝒎𝒂𝒙ሻ ∗ [𝑶ሺ𝒂𝒏𝒕_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚ሻ  ∗ 𝑶ሺ𝒃𝜽ሻ + 𝑶ሺ𝒄𝜽𝟐ሻ] 

= 𝑶ሺ𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏_𝒎𝒂𝒙 ∗ [𝒂𝒏𝒕_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚 ∗ 𝒃𝜽 + 𝒄𝜽𝟐]ሻ 

 

Finally, is the calculation of the computational complexity of the main functions used in PSO. 

 

 

→ 𝑶ሺ𝒄𝜽𝟐ሻ 

→ 𝑶ሺ𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏_𝒎𝒂𝒙ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝒂𝒏𝒕_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝒃 + 𝒄ሻ = 𝑶ሺ𝒃ሻ 𝒔𝒊𝒏𝒄𝒆 𝒃 ≥ 𝒄 

→ 𝑶ሺ𝜽ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝒄ሻ ⋁ 𝑶ሺ𝜽ሻ  → 𝑶ሺ𝜽ሻ 

→ 𝑶ሺ𝜽ሻ 

→ 𝑶ሺ𝒄ሻ ⋁ 𝑶ሺ𝜽ሻ  → 𝑶ሺ𝜽ሻ 

→ 𝑶ሺ𝒃 + 𝒄ሻ = 𝑶ሺ𝒃ሻ 𝒔𝒊𝒏𝒄𝒆 𝒃 ≥ 𝒄 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝒄𝜽𝟐ሻ 

→ 𝑶ሺ𝜽ሻ 
→ 𝑶ሺ𝒃ሻ
∗ [𝑶ሺ𝜽ሻ + 𝑶ሺ𝜽ሻ + 𝑶ሺ𝒃ሻ]
= 𝑶ሺ𝒃ሻ ∗ 𝑶ሺ𝜽ሻ = 𝑶ሺ𝒃𝜽ሻ 

→ 𝑶ሺ𝒃𝒄ሻ 

→ 𝑶ሺ𝒄𝜽ሻ 

→ 𝑶ሺ𝒃𝒄ሻ + 𝑶ሺ𝒄𝜽ሻ = 𝑶ሺ𝒄𝜽ሻ 

→ 𝑶ሺ𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚ሻ 
→ 𝑶ሺ𝒃ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝒄ሻ 
→ 𝑶ሺ𝒃ሻ + 𝑶ሺ𝒄ሻ = 𝑶ሺ𝒃ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚 ∗ 𝒃ሻ 



 

 

 
 

Therefore, the computational complexity of PSO is: 

𝑶ሺ𝒄𝜽ሻ + 𝑶ሺ𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚 ∗ 𝒃ሻ + 𝑶ሺ𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏_𝒎𝒂𝒙ሻ ∗ 𝑶ሺ𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚ሻ ∗ 𝑶ሺ𝒄𝜽ሻ 
= 𝑶ሺ𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏_𝒎𝒂𝒙ሻ ∗ 𝑶ሺ𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚ሻ ∗ 𝑶ሺ𝒄𝜽ሻ 

 

 

→ 𝑶ሺ𝒃ሻ 

→ 𝑶ሺ𝒃 + 𝒄ሻ = 𝑶ሺ𝒃ሻ 
→ 𝑶ሺ𝟏ሻ 
→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝒃 + 𝒄ሻ = 𝑶ሺ𝒃ሻ 

→ 𝑶ሺ𝟏ሻ 
→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝟏ሻ 
→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝟏ሻ 
→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝟏ሻ 
→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝒄ሻ 

→ 𝑶ሺ𝒃ሻ → 𝑶ሺ𝒃ሻ 

→ 𝑶ሺ𝒄ሻ 

→ 𝑶ሺ𝒄ሻ 

→ 𝑶ሺ𝒄ሻ 
→ 𝑶ሺ𝒃ሻ 

→ 𝑶ሺ𝜽ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝒃𝒄ሻ 

→ 𝑶ሺ𝒄𝜽ሻ 

→ 𝑶ሺ𝒄𝜽ሻ 𝒔𝒊𝒏𝒄𝒆 𝜽 > 𝒃 ≥ 𝒄 

→ 𝑶ሺ𝒄𝜽ሻ 

→ 𝑶ሺ𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚ሻ 

→ 𝑶ሺ𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚 ∗ 𝒃ሻ 
→ 𝑶ሺ𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏_𝒎𝒂𝒙ሻ 

→ 𝑶ሺ𝒃ሻ 
→ 𝑶ሺ𝒄𝜽ሻ 
→ 𝑶ሺ𝒃 + 𝒄ሻ = 𝑶ሺ𝒃ሻ 
→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝟏ሻ 

→ 𝑶ሺ𝒄𝜽ሻ + 𝑶ሺ𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚 ∗ 𝒃ሻ 

→ 𝑶ሺ𝒄𝜽ሻ 

→ 𝑶ሺ𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏_𝒎𝒂𝒙ሻ ∗ 𝑶ሺ𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚ሻ ∗ 𝑶ሺ𝒄𝜽ሻ 



 

 

 

This appendix presents a detailed discussion about computational complexity of the ABC, ACS-EM, and PSO algorithms 

applied to RRA problem.  

 

   

 

In what follows is a discussion on the computational complexity of the three optimization solutions. 

𝑉𝑢 => 𝑢 ∗ 𝑛  

 

𝑉𝑑 => 𝑑 ∗ 𝑛′ => 𝑛′ = 𝑛 +
𝑛(𝑛−1)

2
  

 

 

 

B - COMPUTATIONAL COMPLEXITY OF THE METAHEURISTICS (RRA
PROBLEM).



The computational complexity of ABC is 𝑶(𝒏𝒓𝒐_𝒊𝒕 ∗ 𝑺𝑵 ∗ (𝑺𝑵 + 𝒖 + 𝒅 + 𝒏)) 

 

 

 

 

𝑶(𝑺𝑵 ∗ (𝒖 + 𝒅 + 𝒏)) 

𝑶(𝒖) 

→ 𝑶(𝒏) 

 

 

 

𝑶(𝒖 + 𝒅 + 𝒏) 

→ 𝑶(𝒅) 
→ 𝑶(𝒖) 

𝑶(𝒅) 

→ 𝑶(𝑺𝑵 ∗ (𝒖 + 𝒅 + 𝒏)) 

→ 𝑶(𝒏) 
→ 𝑶(𝒖 + 𝒅) 

→ 𝑶(𝒖 + 𝒅) 

→ 𝑶(𝒖 + 𝒅) 

→ 𝑶(𝒖 + 𝒅) 

→ 𝑶(𝒖 + 𝒅 + 𝒏) 

→ 𝑶(𝒖 + 𝒅) 
𝑶(𝑺𝑵 ∗ (𝒖 + 𝒅 + 𝒏)) 

→ 𝑶(𝒏) 
→ 𝑶(𝟏) 𝑶(𝒏) 

→ 𝑶(𝒏) 

𝑶(𝑺𝑵 ∗ (𝑺𝑵 +  𝒖 + 𝒅 + 𝒏)) 

→ 𝑶(𝒖 + 𝒅 + 𝒏) 𝑶(𝑺𝑵 ∗ (𝒖 + 𝒅 + 𝒏)) 

𝑶(𝒏𝒓𝒐_𝒊𝒕 ∗ 𝑺𝑵

∗ (𝑺𝑵 + 𝒖 + 𝒅 + 𝒏)) 

→ 𝑶(𝑺𝑵) 

→ 𝑶(𝑺𝑵) 
→ 𝑶(𝑺𝑵) 

→ 𝑶(𝑺𝑵) 
→ 𝑶(𝒖 + 𝒅 + 𝒏) 



 

 

 

The computational complexity of ACS-EM is 𝑶(𝒏𝒓𝒐_𝒊𝒕 ∗ 𝒂𝒏𝒕_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚 ∗ (𝑛′)𝟐(𝒖 + 𝒅)𝟐) 

 

 

 

𝑶(𝒅) 

𝑶(𝒖) 

𝑶(𝒖 + 𝒅) 

𝑶(𝒏) 

→ 𝑶(𝒖𝒏) 
→ 𝑶(𝒏) 

→ 𝑶(𝒅𝒏′) 
→ 𝑶(𝒏′) 

→ 𝑶(𝒖𝒏𝟐) 

→ 𝑶(𝒅(𝒏′)𝟐) 
→ 𝑶(𝒖𝒏𝟐) + 𝑶(𝒅(𝒏′)𝟐) = 𝑶((𝒏′)𝟐(𝒖 + 𝒅)) 𝒔𝒊𝒏𝒄𝒆 𝒏′ > 𝒏  
 

 

→ 𝑶((𝒏′)𝟐(𝒖 + 𝒅))  
 

 

→ 𝑶(𝒍(𝒖 + 𝒅))  

 

→ 𝑶(𝑛′) 

 

→ 𝑶(𝑛′) 

 

→ 𝑶(𝒖 + 𝒅) 

→ 𝑶(𝒏) 

→ 𝑶((𝒏′)𝟐(𝒖 + 𝒅)) 

→ 𝑶((𝒏′)𝟐(𝒖 + 𝒅)) 

→ 𝑶(𝒖 + 𝒅) 

→ 𝑶 ((𝒖 + 𝒅)(𝒏′ + 𝒏

+ (𝒏′)𝟐(𝒖 + 𝒅)))

= 𝑶((𝒏′)𝟐(𝒖 + 𝒅)𝟐) 

 

→ 𝑶(𝒏′) 

 → 𝑶(𝒏′) 

 

→ 𝑶(𝒏′) 

 
→ 𝑶(𝒏′) 

 → 𝑶(𝒏𝒓𝒐_𝒊𝒕
∗ 𝒂𝒏𝒕_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚 ∗ 

((𝒏′)𝟐(𝒖 + 𝒅)𝟐)) 

 

→ 𝑶(𝒏𝒓𝒐_𝒊𝒕
∗ 𝒂𝒏𝒕_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚 ∗ 

(𝒏′)𝟐(𝒖 + 𝒅)𝟐) 

 



 

 

 

 

 

  

→ 𝑶(𝒖𝒏) 

→ 𝑶(𝒅𝒏′) → 𝑶(𝒖𝒏) + 𝑶(𝒅𝒏′) = 𝑶(𝒏′(𝒖 + 𝒅)) 𝒔𝒊𝒏𝒄𝒆 𝒏′ > 𝒏 

 

→ 𝑶(𝒏) 

→ 𝑶(𝒏′) 

→ 𝑶(𝒏) + 𝑶(𝒏′) = 𝑶(𝒏′) 𝒔𝒊𝒏𝒄𝒆 𝒏′ > 𝒏  

 

→ 𝑶(𝒖𝒏) 
→ 𝑶(𝒏) 

→ 𝑶(𝒅𝒏′) 
→ 𝑶(𝒏′) 

→ 𝑶(𝒖𝒏𝟐) 

→ 𝑶(𝒅(𝑛′)𝟐) 

→ 𝑶(𝒖𝒏𝟐) + 𝑶(𝒅(𝒏′)𝟐) = 𝑶((𝒏′)𝟐(𝒖 + 𝒅)) 𝒔𝒊𝒏𝒄𝒆 𝒏′ > 𝒏   

 

→ 𝑶(𝒖 + 𝒅) 

→ 𝑶(𝒏) 

→ 𝑶(𝒏′) 

→ 𝑶(𝒏) + 𝑶(𝒏′) = 𝑶(𝒏′) 𝒔𝒊𝒏𝒄𝒆 𝒏′ > 𝒏 

 



The computational complexity of PSO is 𝑶(𝒏𝒓𝒐_𝒊𝒕 ∗ 𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚((𝒖 + 𝒅) ∗ 𝒏′ + 𝒏)) 

 

 

 

 

→ 𝑶(𝒖𝒏) 

→ 𝑶(𝒅𝒏′) → 𝑶(𝒖𝒏) + 𝑶(𝒅𝒏′) = 𝑶(𝒏′(𝒖 + 𝒅)) 𝒔𝒊𝒏𝒄𝒆 𝒏′ > 𝒏 

→ 𝑶(𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚) 
→ 𝑶(𝒖) 

→ 𝑶(𝒅) 
→ 𝑶(𝒖) + 𝑶(𝒅) → 𝑶(𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚 ∗ (𝒖 + 𝒅)) 

→ 𝑶(𝑛′(𝒖 + 𝒅)) 
→ 𝑶(𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚 ∗ (𝒖 + 𝒅)) 

→ 𝑶(𝒖 + 𝒅) 
→ 𝑶(𝒖 + 𝒅) 

→ 𝑶(𝒖) 

→ 𝑶(𝒅) 

→ 𝑶(𝒏) 

→ 𝑶(𝒖 + 𝒅) 

→ 𝑶(𝒍) → 𝑶((𝒖 + 𝒅) ∗ 𝒏′) 

→ 𝑶(𝒖 + 𝒅) 

→ 𝑶(𝒏′) 

→ 𝑶(𝒖 + 𝒅) 

→ 𝑶((𝒖 + 𝒅) ∗ 𝒏′) 

→ 𝑶(𝒏𝒓𝒐_𝒊𝒕
∗ 𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚
∗ ((𝒖 + 𝒅) ∗ 𝒏′ + 𝒏)) 

→ 𝑶(𝒏𝒓𝒐_𝒊𝒕
∗ 𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆_𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚
∗ ((𝒖 + 𝒅) ∗ 𝒏′ + 𝒏)) 
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