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Resumo

Estudamos um problema não linear elíptico geral em RN e provamos, por meio de uma
estrutura variacional do problema, a existência de uma solução ground state (de energia
mínima), a qual é o mínimo do funcional associado ao problema restrito à variedade
de Pohozaev. Este mínimo coincide com o nível do passo da montanha uma vez que o
funcional associado possui a geometria necessária. Nós então propomos e implementamos
um algoritmo numérico para encontrar as soluções ground state para uma ampla classe
de problemas elípticos em RN , e fornecemos diversos exemplos para os quais este novo
método pode ser aplicado.



Abstract

We study a general nonlinear elliptic problem in RN and prove, by means of a
variational structure of the problem, the existence of a ground state solution (of minimal
energy), which is also the minimum of the functional associated to the problem constrained
to the Pohozaev manifold. This minimum coincides the mountain pass level since the
associated functional possesses the necessary geometry. We then propose and implement
an algorithm to find the ground state solutions for a wide class of elliptic problems in
RN , and provide several examples for which this new method can be applied.
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Introduction

The celebrated Mountain Pass Theorem of Ambrosetti and Rabinowitz [2] has been
widely used in the past forty five years for finding weak solutions of semilinear elliptic
problems as critical points of an associated functional. Solutions are found on the
mini-max levels of the functional.

A numerical approach of this theorem was first introduced by Choi and McKenna
in [10]. Their work showed that, when carefully implemented, the algorithm is globally
convergent and leads to a solution with the required mountain pass property.

Later, Chen, Ni and Zhou in [9] observed that this algorithm may converge to a
solution with morse index greater or equal to two, and not to the ground state mountain
pass level. In order to circumvent this limitation, they created a new algorithm based on
the fact that the minimum of the associated functional constrained to the Nehari manifold
is equal to the mini-max level obtained by the Mountain Pass Theorem. This equivalence
follows when the nonlinear terms in the equation are superquadratic [15, 26, 37]. For
asymptotically linear problems this is not true in general. However, more recently, the
ground state level was shown to be equal to the minimum of the functional restricted to
the Pohozaev manifold (see Jeanjean and Tanaka [18]).

This work deals with the study of these results, starting with a general nonlinear
elliptic problem in RN : 

−∆u = g(u)

u ∈ H1(RN), u ̸= 0
(1)

and then dealing with a more particular class of problems, such as


−∆u+ λu = f(u) in RN

u ∈ H1(RN), u ̸= 0,
(2)
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and using important results from Berestycki-Lions [6] and Jeanjean-Tanaka [18] to prove
some important lemmas that will help us devise a mini-max algorithm for the visualization
of ground state solutions.

We first define the problem in Chapter 1 by presenting a semilinear elliptic equation
in RN and impose a few conditions on the nonlinearity g. Then, we show our problem
can be reformulated in a variational setting, and the associated functional is of class C1.

In Chapter 2 we define what is known as the Pohozaev set and prove it is in fact a
C1 Hilbert manifold. We prove the existence of a least energy (or ground state) solution
and show that it is also the solution for which the functional attains a minimum when
constrained to the Pohozaev manifold. Furthermore, we show that the least energy level
is also the mountain pass level, since our associated functional will possess a geometry
suitable for applying the Mountain Pass Lemma of Ambrosetti-Rabinowitz [2].

In Chapter 3 we prove a few Lemmas that will help us devise the algorithm at the
end of the Chapter.

In Chapter 4, with an algorithm in hands, we show how it was implemented and
shall perform a few numerical experiments to assess if it possesses good, so to speak,
numerical properties.

Finally, in Chapter 5 we present several applications for which our algorithm can
be applied to solve problem (2). We end the Chapter and this work by making some
concluding remarks about the algorithm and how it could be extended to more general
problems.

The main idea of the algorithm is to project a nonzero function on the Pohozaev
manifold of the associated functional, rather than on the Nehari manifold. The goal is
to find a ground state solution of the problem by (constrained) minimization on this
former manifold, something which has not yet been studied numerically in the literature.
The approach of using the Nehari manifold in order to solve minimization problems
has been widely studied both analytically and numerically (see, for example, [9] and
[17]). For a given function u ̸= 0, in general there exists a t > 0 such that tu lies on
the Nehari manifold. There are several applications for which this approach is natural:
for superlinear problems, with homogeneous nonlinearities for example, projections on
Nehari are unique and hence we can guarantee results on existence and uniqueness
of solutions. However, there are cases where this condition fails to be satisfied, and
so we must consider another subset where we know its projections are always unique:
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the Pohozaev manifold. Likewise, for a given function u ̸= 0, there is a unique t > 0
such that u(·/t) lies on Pohozaev, and with this scaling, it might be appropriate to use
this manifold when handling more general problems. From this perspective, we obtain,
numerically, positive solutions for a semilinear problem and in particular, for superlinear
and asymptotically linear problems, the latter not having been studied numerically
anywhere on the literature.



Chapter 1

A semilinear elliptic problem in RN

1.1 Introduction

In this Chapter, we present a semilinear elliptic equation defined on a domain which
is the whole RN , to be solved in a suitable function space. Because of the nonlinearity
term, certain conditions must be imposed if we want to guarantee existence and desired
regularity properties for the solution: those are provided in Section 1.2. It is a fortunate
feature that nonlinear elliptic equations of such type sometimes possess a variational
structure: if we have a differential equation Lu = 0, (L is a differential operator), by
considering an associated functional ϕ : H → R in a certain space H with the property
that its derivative is equal to Lu, we may then look for points of ϕ which are points
of minimum, maximum, or saddle-like points, a.k.a. points of minimax. In Section
1.3, we show that the problem defined on Section 1.2 does indeed possess a variational
setting. From such a configuration, we then proceed to demonstrate that the associated
functional is well-defined and continuously differentiable, on Section 1.4. This is the first
condition that must be verified in order to proceed with the search for critical points of
the associated functional.

1.2 Defining the Problem

Consider the following general nonlinear elliptic problem:
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−∆u = g(u)

u ∈ H1(RN), u ̸= 0.
(1.1)

We assume the following conditions on the nonlinearity g :

(g1) g : R→ R is a continuous and odd function.

(g2) −∞ < lim inf
s→0

g(s)
s
≤ lim sup

s→0

g(s)
s

= −λ < 0 if N ≥ 3.

(g3) When N ≥ 3, lim
s→∞

|g(s)|
s

N+2
N−2

= 0.

(g4) There exists ζ > 0 such that G(ζ) =
∫ ζ

0
g(s)ds > 0.

Remark 1.1. When N = 2, other conditions must be imposed on the nonlinearity g(s)
other than (g2) and (g3). However, the results that will follow on Chapters 1 and 2 also
hold for the case N = 2. Check [6] and [18] for proofs.

When considering nonlinearities of the type g(u) = f(u)−λu, where λ > 0, in general
one has f(t) = |t|p, which is associated with the study of a light beam in what is known

as a Kerr medium [1], and if f(t) is asymptotically linear, for example f(t) = |t|3

1 + |t|2 ,
the medium is saturable and might be better fitted to model the optical phenomenon. We
will work with nonlinearities g(u) in this form. In this case, problem (1.1) is simplified
and so we consider the semilinear elliptic problem


−∆u+ λu = f(u) in RN

u ∈ H1(RN), u ̸= 0,
(1.2)

where N ≥ 3 and λ > 0, and the following conditions on the nonlinearity term f(u) :

(f1) f ∈ C1[0,+∞]

(f2) f(u) = o(u) as u→ 0.
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(f3) Either there is a positive constant a < λ such that f(u)
u
→ a as u → +∞, or

f(u)
u
→ +∞.

(f4) There exist positive constants c1, c2 such that

|f ′(u)| ≤ c1 + c2|u|p−2, (1.3)

with 2 < p < 2∗ := 2N
N − 2 , if N ≥ 3.

Remark 1.2. Condition (f1) says that f is continuously differentiable in [0,+∞].

Condition (f2) means that lim
u→0

f(u)
u

= 0. Condition (f3) states the growth conditions
imposed on the nonlinearity f.

We use the following notations for the inner product and the norm in H1(RN) :

(u, v)H1 :=
∫
RN

(∇u∇v + uv) and ∥u∥H1,λ :=
(∫

RN
(|∇u|2 + λu2)

)1/2
. (1.4)

Remark 1.3. Observe that the norm ∥u∥2
H1,λ defined in 1.4 is equivalent to the norm

∥u∥2
H1 :=

(∫
RN

(|∇u|2 + u2)
)1/2

.

1.3 Variational Formulation

In the calculus of variations, a class of nonlinear problems is said to have a variational
formulation if the nonlinear differential operator of the PDE is the "derivative" of a
certain energy functional. The energy functional is also known as the lagrangian and
the associated PDE, the Euler-Lagrange Equation [16]. This approach allows us to look
for critical points of the associated functional instead of directly solving the PDE. This
method will be made clear in the sequel.

From our semilinear elliptic problem, multiply the equation by a test function v ∈
C∞

c (RN) and integrate over RN to get:

∫
RN

(−∆u)v dx+
∫
RN
λuv dx =

∫
RN
fv dx (1.5)
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Now consider the Divergence theorem (see A.1) on a domain Ω ⊂ RN :

∫
Ω
(∆u)v dx =

∫
∂Ω

∂u

∂n
v dσ −

∫
Ω
∇u∇v dx, (1.6)

where dσ is the surface measure of ∂Ω. Then

∫
RN
∇u · ∇v dx+ λ

∫
RN
uv dx =

∫
RN
fv dx ∀v ∈ C∞

c (RN) (1.7)

If we now consider Ω = RN and consider the "boundary condition" |u(x)| → 0 as
|x| → ∞, then since Cc(RN) is dense in H1(RN), expression (1.6) also holds for all
v ∈ H1(RN).

It is known that for the case of linear elliptic equations that possess a variational
setting, i.e. equations that are the Euler-Lagrange equations of certain functionals, the
Riesz Representation theorem (see A.11) suffices for obtaining the variational formulation
of such problems. In the case of general partial differential equations in divergence form,
a more general result is needed. In the Calculus of Variations, this is known as the
Lax-Milgram Theorem, which we state below. Let us first recall the following definitions:

Definition 1.1. A bilinear form B(., .) is a function B : V × V → K that is linear in
each argument, where V is a vector space and K is a field.

Remark 1.4. For the Lax-Milgram Theorem, the bilinear form is defined on a Hilbert
Space and the field is that of the real numbers. This means one takes V = H,K = R
on the definition above. Note also that throughout this work, the Hilbert space H is
actually the function space H1(RN).

Definition 1.2. A bilinear form B(., .) is called bounded if there exists a constant α > 0
such that

|B(u, v)| ≤ α∥x∥∥y∥ ∀u, v ∈ V.

Definition 1.3. A bilinear form B(., .) is called coercive if there exists a number β > 0
such that

β∥u∥2 ≤ B(u, u) ∀u ∈ V.
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Theorem 1.5. (Lax-Milgram) Let B(., .) be a bounded, coercive bilinear form defined
on a Hilbert space H. Then for every bounded linear functional f : H → R (f ∈ H∗),
there exists a unique element u ∈ H such that

B(u, v) = ⟨f, v⟩ ∀v ∈ H.

This abstract principle is the basis for preparing the ground for the existence of a
weak solution to our original problem.

Remark 1.6. As we stated in the beggining of this section, for linear partial differential
equations, the bilinear form is symmetric, and so the Riesz Representation Theorem
(see A.11) directly applies. The Lax-Milgram Theorem is a stronger result for the more
general cases.

In our case, the bilinear form B : H1(RN) × RN → R associated to the divergence
form elliptic operator L, given by Lu = ∆u+ λu, λ > 0, is

B(u, v) :=
∫
RN
∇u · ∇v dx+ λ

∫
RN
uv dx u, v ∈ H1(RN). (1.8)

In the following two Lemmas, we shall prove that the bilinear mapping B(., .) defined
by (1.8) is bounded and coercive. After defining an appropriate bounded linear functional,
we will be ready to apply the Lax-Milgram theorem.

Lemma 1.1. There exists a constant α > 0 such that |B(u, v)| ≤ α∥u∥H1∥v∥H1 .

Proof. Note that

|B(u, v)| =
∣∣∣∣∫

RN
∇u · ∇v dx+ λ

∫
RN
uv dx

∣∣∣∣
= (u, v)H1

≤ ∥u∥H1∥v∥H1 ,

from the Cauchy-Schwarz inequality. This proves B(., .) is a bounded bilinear form.

Lemma 1.2. There exists a constant β > 0 such that β∥u∥2
H1 ≤ B(u, u).

Proof. Putting u = v in Equation (1.8), we obtain |B(u, u)| = ∥u∥H1 and so there
certainly exists β > 0 such that

β∥u∥H1 = β|B(u, u)| ≤ B(u, u).
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Any 0 < β < 1 should suffice. This proves coercivity.

Furthermore, consider the functional F : H1(RN)→ RN given by F (u) =
∫
RN
fv dx

∀u ∈ H1(RN). If we fix f ∈ L2(RN) and set ⟨f, v⟩ := (f, v)L2 =
∫
RN
fv dx. This is a

bounded linear functional defined on L2(RN), and thus on H1(RN). Also, since B(., .)
is a bounded, coercive bilinear form defined on the Hilbert space H1(RN), we are in
position to apply the Lax-Milgram Theorem. Then, there must exist a unique element
u ∈ H1(RN) such that

B(u, v) = ⟨f, v⟩ ∀v ∈ H1(RN). (1.9)

Consequently, since u satisfies (1.9), it is a weak solution of the problem.
From this weak formulation of the problem, we shall make the following definitions.
Let F (u) =

∫ u

0
f(t)dt and the functional associated to this problem in H1(RN) be

I : H1(RN)→ R,

I(u) = 1
2

∫
RN

(|∇u|2 + λu2)dx−
∫
RN
F (u)dx. (1.10)

In the next section we shall prove that the functional defined in (1.10) is well-defined
and is, in fact, of class C1. In fact, we will prove that the same statement is valid in
the more general setting when considering g(u) with conditions (g1)-(g4), that is, the
functional

I(u) = 1
2

∫
RN
|∇u|2dx−

∫
RN
G(u)dx (1.11)

is well-defined and is of class C1. After that, since I ′(u)ϕ is well-defined, we may use the
variational setting and proceed to work with the functional, as weak solutions of problem
are precisely the critical points of I, i.e. I ′(u) = 0.

1.4 The associated functional is of Class C1

We would like to prove that the functional associated to our original equation is of
class C1, that is, I : H1(RN) → R as defined in 1.10 is a continuously differentiable
functional. In order to do so, we start from the definitions of the Fréchet derivative and
the Gatêaux derivative (see A.5 and A.2), and then use a proposition due to Schwartz
(see A.12) that characterizes that a functional Φ : X → R is of class C1 if, and only if, for
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every u ∈ X the Gatêaux derivative DΦ(u) : X → R exists, is a bounded linear operator
and the differential operator DΦ : X → X ′ is continuous. Also, the Fréchet derivative
and the Gatêaux derivative coincide.

We say a functional Φ : X → R is of class C1(A,R) if and only if the Fréchet derivative
(see A.5) of Φ exists for every point of u ∈ A ⊂ X and the application Φ′ : A→ X ′ is
continuous.

Let us first consider the following auxiliary functionals Φ,Ψ : H1(RN)→ R:

Φ(u) = 1
2

∫
RN
|∇u|2dx (1.12)

Ψ(u) =
∫
RN
G(u)dx, (1.13)

and also Φ̂, Ψ̂ : H1(RN)→ R :

Φ̂(u) = 1
2

∫
RN
|∇u|2 + λu2dx (1.14)

Ψ̂(u) =
∫
RN
F (u)dx, (1.15)

We will show that these functionals are all continuously differentiable, that is, of class
C1(H1(RN),R).

Proposition 1.1. Φ : H1(RN)→ R, as defined in (1.12), is a well-defined functional of
class C1(H1(RN),R).

Proof. We would like to show that, given u, v ∈ H1(RN) and t ∈ R, the limit

lim
t→0

Φ(u+ tv)− Φ(u)
t

exists, which is the Gatêaux derivative DΦ(u). We shall also prove that the Gatêaux
derivative (see A.2) is also linear and bounded, and that the differential operator DΦ :
H1(RN) → H−1(RN) is continuous. Then, from Lemma one gets that Φ is a class
C1(H1(RN),R) functional.

Very well: let u, v ∈ RN and t ∈ R. Then
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Φ(u+ tv)− Φ(u)
t

= 1
2t

[∫
RN
|∇(u+ tv)|2dx−

∫
RN
|∇u|2

]
= 1

2t

[∫
RN
|∇+ t∇v|2dx−

∫
RN
|∇u|2

]
= 1

2t

[
⟨∇u+ t∇v,∇u+ t∇v⟩ −

∫
RN
|∇u|2

]
= 1

2t

[∫
RN
⟨∇u,∇u⟩+ 2t⟨∇u,∇v⟩ − t2⟨∇v,∇v⟩dx−

∫
RN
|∇u|2dx

]
= 1

2t

(∫
RN
|∇u|2dx−

∫
RN
|∇u|2dx

)
+ 2t

2t

∫
RN
⟨∇u,∇v⟩dx− t2

2t

∫
RN
|∇v|2dx

=
∫
RN
⟨∇u,∇v⟩dx− t

2

∫
RN
|∇v|2dx

and thus

lim
t→0

Φ(u+ tv)− Φ(u)
t

= lim
t→0

∫
RN
⟨∇u,∇v⟩dx− t

2

∫
RN
|∇v|2dx =

∫
RN
⟨∇u,∇v⟩dx. (1.16)

This means that the Gatêaux derivative DΦ(u) exists for every u ∈ H1(RN) and is
given by the limit 1.16. Also, note that given u, v ∈ H1(RN),

|DΦ(u)v| = |⟨u, v⟩H | ≤ ∥u∥∥v∥. (1.17)

Thus the Gatêaux derivative DΦ(u) : H1(RN) → RN not only exists for all u ∈
H1(RN), but it is also linear and bounded for every u ∈ H1(RN .

We now affirm that the differential operator DΦ : H1(RN )→ H−1(RN ) is continuous.
Consider a sequence (un) ⊂ H1(RN ) such that un → u in H1(RN ) as n→∞. Note that

∥DΦ(un)−DΦ(u)∥H−1 = sup
∥v∥≤1

|DΦ(un)v −DΦ(u)v|

= sup
∥v∥≤1

∣∣∣∣∫
RN
⟨∇un,∇v⟩dx−

∫
RN
⟨∇u,∇v⟩dx

∣∣∣∣
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= sup
∥v∥≤1

∣∣∣∣∫
RN
⟨∇(un − u),∇v⟩dx

∣∣∣∣
= sup

∥v∥≤1
|DΦ(un − u)v|

= sup
∥v∥≤1

∥un − u∥∥v∥.

Now, since ∥v∥ ≤ 1 and ∥un − u∥ → 0 because un → u in H1(RN), then

∥DΦ(un)−DΦ(u)∥H−1 → 0

as n→ 0. Thus DΦ(un)→ DΦ(u) in H−1 and this proves the differential operator

DΦ : H1(RN)→ H−1(RN)

is continuous. Now applying Lemma, we conclude that Φ is a class C1(H1(RN),R)
functional.

Remark 1.7. Note that, by the fact that a certain functional P is of class C1 ⇐⇒
the Fréchet derivative of P , given by P ′ exists for every point u ∈ H1(RN) and the
application P ′ : H1((RN) → R is continuous, we obtain the existence of the Fréchet
derivative for the functional Φ defined in (1.12). Also, the Fréchet derivative P ′ and the
Gatêaux derivative DP coincide.

Proposition 1.2. Ψ(u) =
∫
RN
G(u)dx, as defined in (1.13), is a well-defined functional

of class C1(H1(RN),R).

Proof. First, we will show that the functional

Ψ(u) =
∫
RN
G(u)dx

is in fact well defined. In order to show that, note that
∫
RN
G(u)dx ∈ R and thus

G(u) ∈ L1(RN ) - this is neeed if one wants the integral to make sense at all. Furthermore,
u ∈ H1(RN), and so (see A.18).

We now show that Ψ is of class C1(H1(RN ),R), and for that we will divide the proof
in two steps, on the lines of [6]:
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(i) for u, v ∈ H1(RN),
∣∣∣∣1t Ψ̂(u+ tv)− Ψ̂(u)− t

∫
RN
g(u)v

∣∣∣∣→ 0 as t→ 0, t > 0.

(ii) if un → u strongly in H1(RN), then

sup
v∈H1(RN ),∥v∥

H1(RN )≤1

∣∣∣∣∫
RN

(g(un)− g(u))vdx
∣∣∣∣→ 0 as n→∞.

For (i), note that

∣∣∣∣1tΨ(u+ tv)−Ψ(u)− t
∫
RN
g(u)v

∣∣∣∣ =
∣∣∣∣1t
∫
RN
G(u+ tv)dx−

∫
RN
G(u)dx− t

∫
RN
g(u)vdx

∣∣∣∣
≤
∫
RN
|G(u+ tv)−G(u)− tg(u)v)1

t
|dx.

Now, it holds that

∣∣∣∣1t (G(u+ tv −G(u)− tg(u)v))
∣∣∣∣ ≤

(
sup

t∈[0,1]
|g(u+ tv)|+ |g(u)|

)
|v|

= (C|u|+ C|v|+ C|u|l + C|v|l)|v|,

this because g(s) ≤ C|s| + C|s|l, s ∈ R, l = 2∗ − 1 = 2N
N − 2 − 1. By putting

h = (C|u|+ C|v|+ C|u|l + C|v|l)|v|, we then get
∣∣∣∣1t (G(u+ tv −G(u)− tg(u)v))

∣∣∣∣ ≤ ∫
RN
hdx,

and note that by the Sobolev embedding H1(RN) ↪→ L2∗(RN), one gets h ∈ L1
+(RN).

For (ii), note that from the proof of (i), we have un → u in Ll+1 = L2∗ since un → u

in H1(RN) strongly and the Sobolev embedding H1(RN) ↪→ L2∗(RN). Thus, passing to
a subsequence if necessary, there exists û ∈ L2∗

+ (RN), ũ ∈ L2
+(RN) such that

|u|, |un| ≤ û almost everywhere in RN ,

|u|, |un| ≤ ũ almost everywhere in RN .
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Then, for any R > 0, one has that

sup
∥u∥

H1(RN )≤1

∣∣∣∣∣
∫

|x|≥R
(g(un)− g(u))vdx

∣∣∣∣∣ ≤ C∥ũ∥L2(|x|≥R)

 sup
∥v∥

H1(RN )≤1
∥v∥L2(|x|≥R)


+ C∥û∥l

Ll+1(|x|≥R)

 sup
∥v∥

H1(RN )≤1
∥v∥Ll+1(|x|≥R)

 .
Hence

sup
v∈H1(RN ),∥v∥

H1(RN )≤1

∣∣∣∣∣
∫

|x|≥R
(g(un)− g(u))vdx

∣∣∣∣∣ ≤ C∥ũ∥L2(|x|≥R) + C∥û∥l
Ll+1(|x|≥R).

Now, since, ũ ∈ L2(RN) and û ∈ Ll+1(RN), there exists R0 > 0 such that, given
ϵ > 0, one has

sup
v∈H1(RN ),∥v∥

H1(RN )≤1

∣∣∣∣∣
∫

|x|≥R
(g(un)− g(u))vdx

∣∣∣∣∣ ≤ ϵ,

as desired.
Thus, from (i) and (ii), we may conclude that the auxiliary functional Ψ is well-defined

and of class C1, which concludes the proof.

Remark 1.8. Since Φ and Ψ are both class C1 functionals, as seen on Propositions 1.1
and 1.2, we may then compose these auxiliary functionals to define a new functional
I : H1(RN)→ R, given by

I(u) = Φ(u)−Ψ(u),

which is precisely the associated functional of our problem. I is automatically well-defined
and of class C1.

Proposition 1.3. Φ̂ : H1(RN)→ R, as defined in (1.14), is a well-defined functional of
class C1(H1(RN),R).

Proposition 1.4. Ψ̂(u) =
∫
RN
G(u)dx, as defined in (1.15), is a well-defined functional

of class C1(H1(RN),R).
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Remark 1.9. Note that, for G(u) = F (u)− λ

2u
2, the functional

Î(u) = Φ̂(u)− Ψ̂(u)

= 1
2

∫
RN
|∇u|2 + λu2 dx−

∫
RN
F (u) dx.

is automatically well-defined and is of class C1(H1(RN ),R). This comes from the fact
that conditions (g1)-(g4) are in fact more general than conditions (f1)-(f4).

To conclude this Chapter, we recall that after having the problem defined, we
formulated it in a variational form. This translates the problem to one in critical point
theory, namely that of minimization of a certain functional. For this, we used the
Lax-Milgram theorem to show that weak solutions of our problem are critical points of
the associated functional. Now, instead of trying to solve a nonlinear PDE, which is hard
in general, we have the quest to look for minima of this functional. As we will see in the
Chapter 2, this functional is such that it is not bounded below and so instead of looking
for minima, a method of constrained minimization on an appropriate space will be key
to helping us understand what type of critical points we will find.



Chapter 2

A ground state solution

2.1 Preliminaries

In Chapter 1, we were able to successfully show that one can translate our original
semilinear elliptic problem into a variational one: the critical points of the associated
functional are precisely the weak solutions of the problem. This is a standard approach
in critical point theory, for which the natural next step is to minimize the functional on
the function space H1(RN).

In this Chapter, we will first show that our functional is neither bounded above
or below, and so direct minimization procedures fail. However, in Section 2.4 we will
provide a natural constraint known as the Pohozaev set, which will help us better look
for solutions to our problem through constrained minimization. With this approach, we
follow a result due to Berestycki and Lions [6] in Section 2.3 and prove the existence of
a non trivial solution, which is the ground state solution - it has the least energy level
among all possible solutions. . In Section 2.4, we show that our functional possesses what
is known as a mountain pass geometry. This property will allows us to minimaximize
over a suitable class of functions, and the corresponding critical level we will find is called
the mountain pass level. We also prove a result that identifies the mountain pass solution
with the ground state, that is, the least energy solution. This last result was proved by
Jeanjean and Tanaka [18], and will be the heart of the algorithm we will propose later
on.

First, consider the functional I : H1(RN)→ R given by
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I(u) = 1
2

∫
RN
|∇u|2 dx−

∫
RN
G(u) dx. (2.1)

This functional is not bounded due to the presence of the gradient term. It is
also not bounded from below, since from condition there exists v ∈ H1(RN) such that∫
RN
G(v) > 0. By the scale change one gets that

1
2

∫
RN
|∇v|2 dx−

∫
RN
G(v) dx = 1

2

(
1− N − 2

N

) ∫
RN
|∇v|2 dx = 1

N

∫
RN
|∇v|2 dx > 0,

(2.2)
thus

I(vσ) = σN−2

2

∫
RN
|∇v|2 dx− σN

∫
RN
G(v) dx. (2.3)

Since
∫
RN
G(v) dx > 0 then we conclude I(vσ)→ −∞ as σ → +∞.

2.2 Pohozaev set

In this section we define what is called the Pohozaev set. We show that it is in fact
a manifold in Lemma 2.1 and, as we will see in Lemma 2.2, it is a natural constraint
for the associated functional: every critical point of I constrained to P is also a critical
point of the unconstrained functional I. We then show the existence of a solution in
Section 2.3 via a method of constrained minimization on a suitable set of functions, and
show that it is also a least energy solution. In fact, in Lemma we show that this set has
a one-to-one correspondence to the Pohozaev manifold. With this result, we show the
minimum of the functional constrained to the Pohozaev set has the least energy level of
the associated functional among all possible solutions, in Lemma 2.3.

Definition 2.1. The Pohozaev set P is the set

P = {u ∈ H1(RN) \ 0 : J(u) = 0}, (2.4)

where the functional J : H1(RN)→ R is defined by

J(u) := (N − 2)
∫
RN
|∇u|2dx− 2N

∫
RN
G(u)dx. (2.5)
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2.2.1 A Class C1 manifold

We would now like to prove a few properties of the Pohozaev set in the next Lemma.
The definition of manifold of class C1 used in the Lemma is the following, and can be
found in Chapter 6 of reference [3]:

Definition 2.2. Let X be a Hilbert space and T a set of indices. A topological space
M is said to be a Hilbert manifold of class Ck modelled on X if there exist both
an open covering {Ui}i∈T of M and a family ψi : Ui → X of mappings such that the
following conditions hold:

• Vi = ψ(Ui) is open in X and ψi is a homeomorphism from Ui to Vi;

• ψj ◦ ψ−1
i : ψi(Ui ∩ Uj)→ ψj(Ui ∩ Uj) is of class C1(continuously differentiable).

Lemma 2.1. Let the functional J : H1(RN)→ R be defined as in (2.5). Then

(a) {u ≡ 0} is an isolated point of J−1({0}), the inverse image of the set {0} by the
functional J ;

(b) There exists σ > 0 such that ||u|| > σ, for all u ∈ P ;

(c) P = {u ∈ H1(RN) \ {0} : J(u) = 0} is closed;

(d) P is a manifold of class C1;

(e) There exist positive constants ρ and δ such that I(u) ≥ ρ and |||∇u||2 ≥ δ, for all
u ∈ P .

Proof. (a) From g(u) = f(u)− λu and G(u) =
∫ u

0
g(t)dt, we have:

G(u) =
∫ u

0
(f(t)− λt)dt

=
∫ u

0
f(t)dt−

∫ u

0
λtdt

= F (u)− F (0)− λt
2

2

∣∣∣∣∣∣
u

0

= F (u)− λ

2u
2,
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since g(0) = 0⇒ f(0) = 0⇒ F (0) = 0 and we may rewrite J(u) as

J(u) = N − 2
2

∫
RN
|∇u|2 dx−N

∫
RN

(
F (u)− λ

2u
2
)
dx

= N − 2
2

∫
RN
|∇u|2 dx−N

∫
RN
F (u) + N

2 λu
2.

But clearly N > N − 2 ⇐⇒ N

2 >
N − 2

2 , and so we get

J(u) > N − 2
2

∫
RN
|∇u|2 dx−N

∫
RN
F (u) + N − 2

2 λu2dx⇒

J(u) > N − 2
2

[∫
RN
|∇u|2 + λu2dx

]
−N

∫
RN
F (u)dx.

But ∥u∥H1,λ =
∫
RN
|∇u|2 + λu2dx, and so

J(u) ≥ N − 2
2 ∥u∥2

λ −N
∫
RN
F (u)dx. (2.6)

Now, since F (s) =
∫ s

0
f(t)dt ≥ 0 and lim

s→0

f(s)
s

= 0 (from condition (f2)), we get

lim
s→0

F (s)
s2 = 0

(by L’Hôpital’s rule), or equivalently: given ϵ > 0 there exists δ > 0 such that |s| < δ

implies

|F (s)| < ϵ

2 |s|
2 . (2.7)

Also, from condition (f3), there either exists a positive constant a > λ such that

(i) lim
s→+∞

f(s)
s

= a,

or it holds that

(ii) lim
s→+∞

f(s)
s

= +∞.
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Let us separate these two cases:

(i) In this case, let us notice that from condition (f4), upon integration we get

|f(u)| ≤ ϵ|u|+ |u|p−1, (2.8)

with p− 1 < 2∗. Then also

|F (u)| ≤ ϵ
|u|2

2 + 1
p
|u|p dx, (2.9)

after we which we can affirm there exists a constant C(p) > 0 with 2 ≤ p ≤ 2∗ such
that

|F (s)| ≤ ϵ

2 |u|
2 + C(p) |s|p . (2.10)

Now, by the Gagliardo-Nirenberg-Sobolev inequality (see A.15) and the estimates
(2.7) and (2.10), one can start back from inequality (2.6) and perform the following
further estimates:

J(u) > N − 2
2 ∥u∥2

H1,λ −N
∫
RN
F (u)dx

>
N − 2

2 ∥u∥2
H1,λ −N

∫
RN

ϵ

2 |u|
2 + C(p) |u|p dx

>
N − 2

2 ∥u∥2
H1,λ −

Nϵ

2λ dx
∫
RN
λu2dx−NC(p)

∫
RN
|u|pdx

>
N − 2

2 ∥u∥2
H1,λ −

Nϵ

2λ

∫
RN
λu2dx−NC(p)∥u∥p

p

>
N − 2

2 ∥u∥2
H1,λ −

Nϵ

2λ

∫
RN
λu2dx−NC1(p)∥∇u∥2

2

>
N − 2

2 ∥u∥2
H1,λ −

Nϵ

2λ

∫
RN

(
|∇u|2 + λu2

)
dx−NC1(p)

(∫
RN
|∇u|2 + λu2dx

)
= 1

2

(
N − 2− Nϵ

λ

)
∥u∥2

λ −NC1(p)∥u∥2
H1,λ

≥ 1
2

(
λ (N − 2)−Nϵ

λ

)
∥u∥2

λ −NC1(p)∥u∥p
H1,λ.
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First, denote C := C1(p) for simplification. Then, by taking ϵ > 0 sufficiently small
and 0 < ρ < 1 such that λ(N − 2)−Nϵ > 0 and ρp <

1
4NC

(
N − 2− Nϵ

λ

)
ρ2, one has

that ∥u∥H1,λ = ρ⇒

J(u) > 1
2

(
λ (N − 2)−Nϵ

λ

)
ρ2 −NCρp

>
1
2

(
λ (N − 2)−Nϵ

λ

)
ρ2 −NC

[ 1
4NC

(
N − 2− Nϵ

λ

)
ρ2
]

= 1
2

(
λ (N − 2)−Nϵ

λ

)
ρ2 − 1

4

(
λ(N − 2)−Nϵ

λ

)
ρ2

= 1
2

(
λ (N − 2)−Nϵ

λ

)
ρ2

> 0.

Therefore, J(u) > 0 and so u = 0 is isolated. The claim is proved for Case (i) .

(ii) For this case, note first that as in Case (i), we have the condition lim
s→0

f(s)
s

= 0

upon our nonlinearity f, which again by L’Hôpital’s rule renders lim
s→0

F (s)
s2 = 0, and so

given ϵ > 0, there exists δ > 0 such that |s| < δ ⇒
∣∣∣∣∣F (s)
s2 − 0

∣∣∣∣∣ < ϵ⇒ |F (s)| < ϵ |s|2 . (2.11)

Also, from the second condition in (f3), we have that lim
s→0

f(s)
s

= +∞ implies

(L’Hôpital’s rule) lim
s→0

F (s)
s2 = +∞, or equivalently: given ϵ > 0 there exists δ > 0 such

that |s| > δ ⇒

|s|
δ
< 1⇒

(
|s|
δ

)2

>

(
|s|
δ

)p

. (2.12)

Putting together the conditions |s| < δ and |s| > δ, we use the inequalities obtained
in (2.11) and (2.12) to get that, for all |s| > 0 :
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|F (s)| < ϵ |s|2 + 1
δp
|s|p

= ϵδ2
(
|s|
δ

)2

+ 1
δp
|s|p

< ϵ
δ2

δp
|s|p + 1

δp
|s|p

= a1(δ, ϵ) |s|p + a2(δ) |s|p

= C1(δ, ϵ) |s|p . (2.13)

Then, given ϵ > 0 and 2 ≤ p ≤ 2∗, estimate (2.13) holds true for some C(p) > 0 :

|F (s)| < C(p) |s|p . (2.14)

Now, by the Sobolev embedding H1
(
RN

)
↪→ L

2N
N−2 and the estimate (2.13), one has

that, following from (2.6):

J(u) ≥ N − 2
2 ∥u∥2

H1,λ −N
∫
RN
F (u)dx

>
N − 2

2 ∥u∥2
H1,λ −N

∫
RN
C(p) |u|p dx

= N − 2
2 ∥u∥2

H1,λ −NC(p)∥u∥p
Lp

>
N − 2

2 ∥u∥2
H1,λ −NC(p)∥∇u∥2

L2

≥ N − 2
2 ∥u∥2

H1,λ −NC(p)S
(
∥∇u∥2

L2 + λ∥u∥2
L2

)
= N − 2

2 ∥u∥2
H1,λ −NC1(p)

(∫
RN
|∇u|2 + λu2dx

)
= N − 2

2 ∥u∥2
H1,λ −NC1(p)∥u∥2

H1,λ

≥ N − 2
2 ∥u∥2

H1,λ −NC1(p)∥u∥p
H1,λ.

Before proceeding with the calculations, let us put C := C1(p) for simplification.
Then, by taking ϵ sufficiently small and 0 < ρ < 1 such that N − 2

2 > 0, which holds

trivially since N ≥ 3 ⇐⇒ N − 2
2 ≥ 1

2 > 0, and ρp <
1

4NC (N − 2)ρ2, we will have that
∥u∥H1,λ = ρ⇒
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J(u) > N − 2
2 ρ2 −NCρp

>
N − 2

2 ρ2 −NC
( 1

4NC (N − 2) ρ2
)

= N − 2
2 ρ2 − 1

4 (N − 2) ρ2

=
(1

2 −
1
4

)
(N − 2) ρ2

= 1
2
N − 2

2 ρ2

> 0.

Thus J(u) > 0. The claim is proved for Case (ii) and so {u ≡ 0} is indeed an isolated
point of J−1 ({0}).

(b) Since {u ≡ 0} is an isolated point of J−1(0), there must be a ball ||u|| ≤ σ which
does not intersect P for some σ > 0. Then, for such a σ > 0 it holds ||u|| > σ for all u ∈ P .

(c) Note that J(u) is a class C1 functional (thus continuous) and so P∪{0} = J−1({0})
is a closed subset, for it is the inverse image of a closed set by a continuous functional.
Moreover, {u ≡ 0} is an isolated point in J−1({0}) and we conclude that P is a closed
set.

(d) Let us consider the derivative of J(u) applied in u:

⟨J ′(u), u⟩ = J ′(u)u = (N − 2)
∫
RN
|∇u|2dx−N

∫
RN

(
f(u)u− λu2

)
dx (2.15)

Since u ∈ P , it follows that

(N − 2)
∫
RN
|∇u|2dx = 2N

∫
RN
G(u)dx.
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Substituting this last expression back into the first term of Equation (2.15), we have:

J ′(u)u = 2N
∫
RN
G(u)dx−N

∫
RN

(
f(u)u− λu2

)
dx

= 2N
∫
RN

(
F (u)− λ

2u
2
)
dx−N

∫
RN

(
f(u)u− λu2

)
dx

= 2N
∫
RN
F (u)dx−N

∫
RN

(f(u)u)dx−Nλ
∫
RN
u2dx+Nλ

∫
RN
u2dx

= 2N
∫
RN

(
F (u)− 1

2f(u)u
)
dx.

From condition (f5),
1
2f(u)u− F (u) > 0 ∀u ∈ R+ \ {0}, and so J ′(u)u < 0 u ∈ P .

This shows P is a class C1 manifold.

(e) Finally, we shall prove the last item. If u ∈ P , it holds

∫
RN
|∇u|2 dx = 2N

N − 2

∫
RN
G(u)dx

= 2N
N − 2

∫
RN

(
F (u)− λu

2

2

)
dx

= 2N
N − 2

∫
RN
F (u)dx− λN

N − 2

∫
RN
u2dx

= 2∗
∫
RN
F (u)dx− λN

N − 2

∫
RN
u2 dx (2.16)

From the assumptions (f1), (f2), (f4), given ϵ > 0. there exists C1 = C1(ϵ) > 0 such
that

|F (u)| ≤ ϵ

2u
2 + C1|u|p, 2 < p < 2∗. (2.17)

Using inequality (2.17) with ϵ < 1/2 and the Gagliardo-Nirenberg-Sobolev inequality
(see A.15) , we perform the following estimates in (2.16):
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∫
RN
|∇u|2 dx ≤ 2∗

∫
RN

(
ϵ

2u
2 + C1|u|p

)
dx− λN

N − 2

∫
RN
u2 dx⇒

||∇u||22 ≤ 2∗
(
ϵ

2 ||u||
2
2 + C1||u||2

∗

2∗

)
− λN

N − 2 ||u||
2
2

= 2∗λϵ∥u∥2
2 −

1
2

2N
N − 2λ∥u∥

2
2 + 2∗C1∥u∥2∗

2∗

= 2∗λϵ∥u∥2
2 − 2∗λ

2∥u∥
2
2 + 2∗C1∥u∥2∗

2∗

≤ 2∗λ
(
ϵ− 1

2

)
∥u∥2

2 + 2∗C1S
−1∥∇u∥2∗

2 ,

with S := S(2, N). Also, one certainly has
(
ϵ− 1

2

)
< 0 from our choice for ϵ, then:

||∇u||22 < 2∗C1S
−1∥∇u∥2∗

2 ⇒

||∇u||2−2∗

2 < 2∗C1S
−1 ⇒

||∇u||2 <
(
2∗C1S

−1
) 1

2−2∗
. (2.18)

Inverting inequality (2.18) and putting δ :=
(

S

2∗C1

) 1
2∗−2

, note that we get

δ < ∥∇u∥2. (2.19)

We are left to check whether the ρ given in (e) actually exists. Dividing (2.16) by 2∗

and substituting into the functional I(u) gives us:

1
2∗

∫
RN
|∇u|2 dx =

∫
RN
F (u) dx− λN

N − 2
N − 2

2N

∫
RN
u2 dx⇒

− 1
2∗

∫
RN
|∇u|2 dx = −

∫
RN
F (u) + λ

2u
2 dx,

and so
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I(u) = 1
2

∫
RN
|∇u|2 dx+ λ

2

∫
RN
u2 dx−

∫
RN
F (u) dx

= 1
2

∫
RN
|∇u|2 dx− 1

2∗

∫
RN
|∇u|2 dx

=
(1

2 −
1
2∗

) ∫
RN
|∇u|2 dx

=
(1

2 −
1
2∗

)
∥∇u∥2

2

≥
(1

2 −
1
2∗

)
δ := ρ. (2.20)

From this we conclude there exists ρ such that I(u) ≥ ρ ∀u ∈ P . This concludes the
proof of (e) and thus, of Lemma 2.1.

2.2.2 A natural constraint

This next Lemma shows that the Pohozaev manifold P is a natural constraint to
the associated functional. Since our variational method looks for critical points in order
to find solutions of the semilinear elliptic PDE, this result helps us in the sense that
constrained minimization on this subset of the function space H1(RN) will allow us to
minimaximize on the right function space, since on H1(RN ), the associated functional is
neither bounded above nor below, as we have seen previously, and so one can not proceed
with direct minimization/maximization procedures on H1(RN) .

Lemma 2.2. A function u ∈ H1(RN) \ {0} is a critical point of I ⇐⇒ u is a critical
point of I restricted to P .

Proof. Let u ∈ H1(RN )\{0} be a critical point of the functional I|P , i.e. of I restricted to
the Pohozaev manifold. By the Lagrange multiplier theorem on Banach spaces (see A.6),
let us consider I : H1(RN)→ R and J : H1(RN)→ R. I is a class C1 Fréchet differentiable
functional which has a local extremum I(u) = min{I(v) : v ∈ Br(x0), J(v) = 0} at the
regular point u, and so there must exist an element η ∈ R such that the lagrangian
functional L, given by

L(v) = I(v) + ⟨J(v), η⟩ ∀v ∈ H1(RN),
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is stationary at u, i.e.

I ′(u) + ⟨J ′(u), η⟩ = 0⇒ I ′(u) + ηJ ′(u) = 0. (2.21)

Applying u on Equation (2.21), we get:

⟨I ′(u), u⟩+ ⟨ηJ ′(u), u⟩ = 0. (2.22)

Since N ≥ 3, this is equivalent to

0 =
∫
RN
|∇u|2 + λu2 dx−

∫
RN
f(u)u dx (2.23)

+ η
(

2(N − 2)
∫
RN
|∇u|2 dx− 2N

∫
RN

(f(u)u− λu2) dx
)
. (2.24)

The expression (2.23) yields the following Euler-Lagrange equation:

−∆u+ λu− f(u) + 2η (−(N − 2)∆u+ λNu−Nf(u)) = 0,

which, after rearrangement of the terms, becomes

− (1 + 2η(N − 2))∆u+ λ(1 + 2ηN)u = (1 + 2ηN)f(u). (2.25)

Note that Equation (2.25) has the Pohozaev manifold associated with it, given by
H−1 ({0}) , where

H(u) := (1 + 2η(N − 2))(N − 2)
2

∫
RN
|∇u|2 dx−N

∫
RN

(
(1 + 2ηN)F (u)− λ(1 + 2ηN)

2 u2
)
dx.

We may then rewrite H as:

H(u) = (1 + 2η(N − 2))(N − 2)
2

∫
RN
|∇u|2dx−N(1 + 2ηN)

∫
RN

(
F (u)− λu

2

2

)
dx.

(2.26)
However, since u ∈ P , then J(u) = 0, and thus, by (2.26),



2.3 Existence of a least energy solution 28

H(u) = −2η(N − 2)
∫
RN
|∇u|2 dx .

Finally, since u is a solution of Equation (2.25) it satisfies H(u) = 0. Thus, we obtain

η(N − 2)
∫
RN
|∇u|2 dx = 0 .

To conclude, from N ≥ 3 and
∫
RN
|∇u|2dx > 0, we have η = 0. This means that

Equation (2.21) given by the Lagrange Multiplier Theorem is actually I ′(u) = 0 and
so u is a critical point of the unconstrained functional I. This finishes the proof of the
Lemma.

2.3 Existence of a least energy solution

In the present Section, we shall prove the existence of a solution to our problem 1.1.
This is done by a constrained minimization technique, rather than directly looking for
critical points of the associated energy functional I. This approach was first introduced by
Coleman, Glazer and Martin [11], the likes of which inspired the tackling of the problem
by Berestycki and Lions [6]. More precisely, we consider the constrained minimization
problem below:

minimize the setS = {∥∇u∥2
2;u ∈ H1(RN),

∫
RN
G(u) dx = 1}. (2.27)

After showing the existence of a nontrivial solution to problem 1.1, we show there
exists a bijection between this set (2.27) and the Pohozaev manifold in Lemma 2.4. Such
a Lemma will be crucial to later show in Lemma 2.2 that m = inf

u∈P
I(u) = inf

u∈S
I(u) - this

means that the least energy solution found by means of Theorem 2.1 is the minimum of
the functional constrained to the Pohozaev manifold.

Theorem 2.1. Suppose N ≥ 3 and let the nonlinearity g satisfy conditions (g1)-(g4)
defined on Chapter 1. Under these hypotheses, the constrained minimization problem
(2.27) has a solution u ∈ H1(RN). Also, there exists a Lagrange multiplier θ > 0 such
that u satisfies, at least in the distribution sense, the equation
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−∆u = θg(u) in RN . (2.28)

Then u√
θ is a solution of the original problem (1.1).

Proof. We divide our proof into 5 steps:

Step 1. S is a non-empty set

Step 2. Selection of an adequate minimizing sequence

Step 3. Estimates for un

Step 4. Passage to the limit

Step 5. Conclusion.

Step 1. S is a non-empty set.
Consider the open ball B1(0) and, for a given 0 < ϵ < 1, define Aϵ = B1+ϵ(0) \B1(0).

From hypothesis (g1) on the nonlinearity g, there exists a ζ > 0 such that G(ζ) > 0.
For R > 1, define the auxiliary function uζ, where

uζ =


ζ, x ∈ B1(0),

0, x ∈ Bc
1+ϵ(0).

(2.29)

Then uζ clearly belongs to H1(RN). Also, uζ(x) = uζ(|x|) is a continuous, non
increasing function of r = |x|. Since 0 < uζ(x) < ζ by construction, then |G(uζ(x)| < C.

Furthermore,

∫
RN
G(uζ)dx =

∫
B1+ϵ(0)

G(uζdx =
∫

B1(0)
G(uζ)dx+

∫
Aϵ

G(uζ)dx, (2.30)∫
B1(0)

G(uζ)dx = G(ζ)meas(B1(0)) > 0, and (2.31)∣∣∣∣∫
Aϵ

G(uζ)dx
∣∣∣∣ ≤ ∫

Aϵ

|G(uζ)| dx ≤ Cmeas(Aϵ) = Cϵ, (2.32)

where meas(Ω) denotes the Lebesgue measure of the set Ω.
From expression (2.32), we get that

− Cϵ ≤ −
∫

Aϵ

|G(uζ)| dx ≤
∣∣∣∣∫

Aϵ

G(uζ)dx
∣∣∣∣ . (2.33)
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Thus, going back to expression (2.30) by using expressions (2.31) and (2.33), one
gets:

∫
RN
G(uζ)dx =

∫
B2(0)

G(uζ)dx ≥ G(ζ)meas(B1(0))− Cϵ > 0. (2.34)

Note that we can similarly take the balls with increasing radii BR(0) and define the
auxiliary functions uζR

for each R > 1 :
uζR

= 
ζ, x ∈ BR(0),

0, x ∈ Bc
R+ϵ(0).

(2.35)

Thus

∫
RN
G(uζR

)dx =
∫

BR+1(0)
G(uζR

)dx

≥ G(ζ)meas(BR(0))− |BR+1(0)−BR(0)|
(

max
s∈(0,ζ]

|G(s)|
)

(2.36)

> 0. (2.37)

Hence there exist constants C,C ′
> 0 such that:

∫
RN
G(u)dx ≥ CRN − C ′

RN−1, (2.38)

and so by taking R > 0 large enough,
∫
RN
G(uζR

)dx > 0. If we rename u := uζR
and

introduce a scale change on ζR, namely ut(x) = u
(
x

t

)
, we have

∫
RN
G(ut)dx = tN

∫
RN
G(u)dx. (2.39)

Thus, for an appropriate choice of t > 0, we get
∫
RN
G(ut)dx = 1. Since this happens

for some u ∈ H1(RN), we conclude that the set S is not empty.
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Step 2. Selection of an adequate minimizing sequence
First, there exists a sequence (un) ⊂ H1(RN) such that

∫
RN
G(un)dx = 1 and

lim
n→∞

∥∇un∥2
2 = T = inf{∥∇v∥2

2; v ∈ H1(RN),
∫
RN
G(un)dx = 1} ≥ 0.

Let u∗
n denote the Schwarz spherical rearrangement of |un| (see A.3). u∗

n is also known as
the Schwarz symmetrized function of un. We will replace (un) for the Schwarz spherical
rearrangement (u∗

n) we will assume from now on that, for all n, un is nonnegative, spheri-
cally symmetric and nonincreasing with r = |x|.

Step 3. Estimates for un

We will now show that ∥un∥H1(RN ) is bounded. For s ≥ 0, define the following functions:

g1(s) = (g(s) +ms)+ = max(g(s) +ms, 0),

g2(s) = g1(s)− g(s).

The notation a+ = max(a, 0) stands for the positive part of a.
Then, extend g1 and g2 as odd functions for s ≤ 0. This gives g = g1 − g2, with

g1, g2 ≥ 0 on R+, and also

g1(s) = o(s) as s→ 0. (2.40)

lim
s→∞

g1(s)
sl

= 0, where l = N + 2
N − 2; (2.41)

g2(s) ≥ ms ∀s ≥ 0 (2.42)

Let Gi(τ) =
∫ τ

0
gi(s)ds, i = 1, 2. From (2.40), (2.41) and (2.42), we see that for a

given ϵ > 0, there exists Cϵ > 0 such that

g1(s) ≤ Cϵs
l + ϵg2(s), ∀s ≥ 0. (2.43)

Upon integration of Equation (2.43), one gets

G1(s) ≤ Cϵ|s|l+1 + ϵG2(s), ∀s ∈ R. (2.44)
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Now, since ∥∇un∥2
2 → T, then ∥∇un∥2 is bounded, which in turn implies by the

Sobolev embedding H1(RN) ↪→ L2∗(RN) A.13 that

∥un∥2∗ ≤ C, (2.45)

where 2∗ = l + 1 = 2N
N − 2 .

Thus, if we write
∫
RN
G(un) = 1 in the form

∫
RN
G1(un)dx =

∫
RN
G2(un)dx+ 1 (2.46)

and using inequalities (2.44) and (2.45), we arrive at

∫
RN
G2(un)dx+ 1 ≤ Cϵ

∫
RN
|un|l+1dx+ ϵ

∫
RN
G2(un)dx (2.47)

= Cϵ∥un∥l+1
l+1 + ϵ

∫
RN
G2(un)dx (2.48)

= CϵC + ϵ
∫
RN
G2(un)dx. (2.49)

In consequence, note that since inequality (2.44) holds for any given ϵ > 0, we may
choose ϵ = 1/2 in it, and so

∫
RN
G2(un)dx+ 1 ≤ C̄ + 1

2

∫
RN
G2(un)dx⇒

1
2

∫
RN
G2(un)dx+ 1 ≤ C̄ ⇒∫
RN
G2(un)dx ≤ C̄ − 1

2 ≤ C̄, (2.50)

where we put C̄ = CϵC.

Finally, upon integrating inequality (2.42) from 0 to τ one readily obtains

G2(τ) ≥ m

2 τ
2. (2.51)

Then, after integrating Equation (2.51) on the whole space RN and using inequality
(2.50), we arrive at
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m

2

∫
RN
u2

ndx ≤
∫
RN
G2(un)dx ≤ C̄. (2.52)

Thus ∥un∥2
2 ≤

2
m
C̄, which implies ∥un∥H1(RN ) to be bounded (recall that the bound-

edness of ∥∇un∥2 was obtained above in Step 2.) Furthermore, by making use of
Hölder’s inequality (see A.5) with conjugate exponents q = q′ = 2, we have that since
un ∈ Lq(RN) = Lq′(RN) = L2(RN), then u2

n ∈ L1(RN) and

∫
RN
|u2

n|dx ≤ ∥un∥2∥un∥2. (2.53)

Thus by the Sobolev embedding H1(RN) ↪→ Lp(RN), 2 ≤ p ≤ 2∗ (see A.13) we have
∥un∥Lp(RN ) ≤ C for any 2 ≤ p ≤ 2∗.

Step 4. Passage to the limit
First, note that un(x)→ 0 as |x| → +∞ uniformly with respect to n, because un is radial,
non decreasing and also bounded in L2(RN ), and thus |un(x)| ≤ C|x|

−N
2 , x ∈ RN , with

C independent of n. This is the Radial Lemma of Strauss (see A.17).
Now, since (un) is bounded in H1(RN), then we may extract a subsequence of (un),

namely (unk
), such that it converges weakly in H1(RN ) and almost everywhere in RN to

a function u ∈ H1(RN), that is, unk
⇀ u. For simplification purposes, this subsequence

will be renamed as un. Observe also that u ∈ H1(RN) is spherically symmetric and
increasing with r = |x|.

Let us define Q(s) = s2 + |s|2∗−1. Since g1(s) = o(s) as s→ 0 and lim
s∞

g1(s)
s2∗−1 = 0, then

note that upon integration we obtain

lim
s→0

G1(s)
s2 = 0 and lim

s→∞

G1(s)
s2 = 0.

Then, it holds that

lim
s→∞

G1(s)
Q(s) = lim

s→0

G1(s)
s2 + |s|2∗ = 0.

Also,
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sup
n

∫
RN
Q(un)dx < +∞,

G1(un)→ G1(u) as n→∞ ,

un(x)→ 0 as |x| → +∞ uniformly in n. (2.54)

Therefore, if we suppose (wn) is a sequence of functions RN → R belonging to a
bounded set of Lp(RN ) ∩ Lq(RN ), 1 < p < q < +∞, and suppose also that wn converges
strongly to some w almost everywhere in RN , and that wn as well as w satisfies (2.54).
Then by Fatou Lemma (see A.3), w ∈ Lp(RN) ∩ Lq(RN), and applying the compactness
lemma of Strauss (see A.16) with P (s) = |s|r, Q(s) = |s|p + |s|q, un = wn−w, we conclude
that wn → w, i.e. converges strongly, in Lr(RN) for all r ∈ (p, q).

Thus

∫
RN
G1(un)dx→

∫
RN
G1(u)dx as n→∞. (2.55)

Now, (G2(un)) dx is a sequence of functions in L1 that satisfy

(a) ∀n, G2(un) ≥ 0 almost everywhere

(b) sup
n

∫
RN
G2(un) <∞.

For almost all x ∈ RN we set G2(u) = lim inf G2(un), so by Fatou Lemma (A.3),
G2(u) ∈ L1 and ∫

RN
G2(u)dx ≤ lim inf

∫
RN
G2(un)dx.

Now, by writing
∫
RN
G1(un)dx =

∫
RN
G2(un)dx+ 1 and taking the limit, we have that

lim
∫
RN
G1(un)dx ≤ lim inf

∫
RN
G2(un)dx+ 1 ≤ lim

∫
RN
G2(un)dx+ 1→ (2.56)

∫
RN
G1(u)dx ≤

∫
RN
G2(u)dx+ 1. (2.57)
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Thus, from inequality (2.57) and from G(u) = G1(u)−G2(u), we have that
∫
RN
G(u)dx ≤ 1.

We also know that
∫
RN
|∇u|2 dx ≤ lim |∇un|2 = T. Suppose, by contradiction, that∫

RN
G(u)dx > 1. Then, by performing a scale change ut(x) = u

(
x

t

)
, we have

∫
RN
|∇ut|2 dx = tN−2

∫
RN
|∇u| dx ≤ tN−2T.

It also holds that
∫
RN
|∇ut|2 dx ≥ T, by the very definition of T given earlier. This

means that

T ≤
∫
RN
|∇ut|2 dx ≤ tN−2T ⇒ T = 0. (2.58)

Thus
∫
RN
|∇u| dx = 0, which in turn implies u = 0, which contradicts

∫
RN
G(u)dx > 0.

Then it must be that

∫
RN
G(u)dx = 1 and

∫
RN
|∇u|2 dx = T > 0. (2.59)

u ∈ H1(RN) is a solution of the minimization problem.

Step 5. Conclusion Note that the functionals P =
∫
RN
|∇u|2 dx and V =∫

RN
G(u)dx are both C1 functionals well-defined on H1(RN) (see Lemma of Chapter 1,

Section 4) and so there exists a Lagrange multiplier θ such that 1
2P

′(u) = θV ′(u).
We affirm that it must be θ > 0. Certainly θ ≠ 0 since θ = 0⇒ u = 0. Suppose, by

contradiction, that < 0. Note that V ′(u) ̸= 0, otherwise V ′(u) = 0 ⇐⇒ g(u) = 0 ⇐⇒
u = 0 ⇐⇒ V (u) = 0, a contradiction because V (u) = 1.

Thus, consider a function w ∈ D(RN) such that

⟨V ′(u), w⟩ =
∫
RN
g(u)wdx > 0.

Since V (u+ ϵw) ≈ V (u) + ϵ < V ′(u), w > and P (u+ ϵw) ≈ P (u) + 2ϵθ < V ′(u), w >

for ϵ → 0 and θ > 0, one can find ϵ > 0 sufficiently small such that u + ϵw satisfies
V (v) > V (u) = 1 and P (v) < P (u) = T. Again, by a scale change, there exists t0,
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0 < t0 < 1 such that V (vt0) = 1 and P (vt0) < T, which is an absurd. Hence θ > 0.

Thus u ∈ H1(RN ) satisfies the equation −∆u = θg(u) in RN , and so u
(
·√
θ

)
= u√

θ is a

solution to the problem.

Lemma 2.3. Let u denote a solution of 1.1. Then for any solution v of 1.1 one has
0 < I(u) ≤ I(v).

Proof. First, by g we mean the truncated g, that is g̃. Let u be the solution of the
constrained minimization problem obtained before in Theorem 2.6, so that∫
RN
G(u) dx = 1 and ∥u∥2

2 = min{∥∇u∥2
2;u ∈ H1(RN),

∫
RN
G(u) dx = 1}.

Then, there exists θ > 0 such that −∆u = θg(u) in RN , and u is defined by u = u√
θ.

By Pohozaev identity (see A.9) one has

N − 2
2

∫
RN
|∇u|2 dx = N

∫
RN
G(u) dx⇒

∫
RN
|∇u|2 dx = 2N

N − 2

∫
RN
G(u) dx.

From the scale change relations,
∫
RN
|∇u|2 dx = θ

N−2
2

∫
RN
|∇u|2 dx

and ∫
RN
G(u) dx = θN/2

∫
RN
G(u) dx = θN/2.

Again by Pohozaev identity, we get:

N − 2
2 θ

N−2
2

∫
RN
|∇u|2 dx = NθN/2 ⇒

N − 2
2N

∫
RN
|∇u|2 dx = θ

N
2 −(N−2

2 ) ⇒

θ = N − 2
2N

∫
RN
|∇u|2 dx.

We now affirm that the action, that is, the energy functional, of a solution to problem
1.1 has the expression I(u) = 1

N
∥∇u∥2

2. Surely, from Pohozaev identity, one has
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I(u) = 1
2∥∇u∥

2
2 −

∫
RN
G(u) dx

= 1
2∥∇u∥

2
2 −

N − 2
2N ∥∇u∥2

2

= 1
2

(
1− N − 2

N

)
∥∇u∥2

2

= 1
2

(
N − (N − 2)

N

)
∥∇u∥2

2

= 1
N
∥∇u∥2

2 > 0. (2.60)

Thus, using θ = N − 2
2N ∥∇u∥2

2, I(u) becomes:

I(u) = 1
N

(
N − 2

2N

)N−2
2

(∥∇u∥2
2)N/2. (2.61)

Now let v denote another solution to our original problem. Once more, by Pohozaev
identity:

∫
RN
|∇v|2 dx = 2N

N − 2

∫
RN
G(v) dx.

Let σ > 0 be such that
∫
RN
G(vσ) dx = 1, that is, σ =

(∫
RN
G(vσ) dx

)−1/N

, or from
Pohozaev identity,

σ =
(
N − 2

2N

)−1/N (∫
RN
G(v) dx

)−1/N

Let us express I(v) in terms of ∥∇vσ∥2
2. On the one hand, we already have expression

(2.60). On the other hand, ∥∇vσ∥2
2 = σN−2∥∇v∥2

2, so that

∥∇vσ∥2
2 =

(
N − 2

2N

)− (N−2)
N

(∥∇v∥2
2)2/N .

Hence

I(v) = 1
N
∥∇v∥2

2 = 1
N

(
N − 2

2N

) (N−2)
N (
∇vσ∥2

2

)N/2
(2.62)
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Since u solves the constrained minimization problem and
∫
RN
G(vσ) dx = 1, we have

∫
RN
G(vσ) dx ≥

∫
RN
G(u) dx.

Using this inequality together with expressions (2.61) and (2.62) we conclude I(v) ≥ I(u),
as desired.

Lemma 2.4. Consider the set S = {u ∈ H1(RN);
∫
RN
G(u)dx = 1}. There exists a

one-to-one correspondence between S and P , namely there is a map Φ : S → P given by

Φ(u)(x) = u
(
x

tu

)
, (2.63)

where tu =
√
N − 2

2N ∥∇u∥2.

Proof. First, let us show that ϕ is a function of S in P . Given u ∈ S, one has by definition
that

∫
RN
G(u)dx = 1. But then

J(ut) = N − 2
2

∫
RN

∣∣∣∣∇u( xtu
)∣∣∣∣2 dx

= N − 2
2

∫
RN
tN−2
u |∇u (x)|2 dx

= N − 2
2

((
N − 2

2N

)1/2
∥∇u∥2

)N−2

∥∇u∥2
2

= N − 2
2

(
N − 2

2N

)N−2
2
∥∇u∥N−2

2 ∥∇u∥2
2

= N − 2
2

N

N

(
N − 2

2N

)N−2
2
∥∇u∥N

2

= N
(
N − 2

2N

)N−2
2 +1

∥∇u∥N
2

= N
(
N − 2

2N

)N
2
∥∇u∥N

2 .

But

tNu =
[(
N − 2

2N

1/2
∥∇u∥2

)]N

=
(
N − 2

2N

)N/2
∥∇u∥N

2 ,

and so
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N − 2
2

∫
RN

∣∣∣∣∇u( xtu
)∣∣∣∣ dx = N

(
N − 2

2N

)N/2
∥∇u∥N

2

= NtNu

= NtNu

∫
RN
G(u(x))dx

= N
∫
RN
G
(
u
(
x

tu

))
dx.

Thus u
(
x

tu

)
∈ P , since

N − 2
2

∫
RN

∣∣∣∣∇u( xtu
)∣∣∣∣ dx = N

∫
RN
G
(
u
(
x

tu

))
dx.

We now prove that Φ is onto (surjective). For that, take û(x) ∈ P . We would like to
show there exists a change of variables x = αy such that

∫
RN
G(û(αy))dy = 1, since this

would imply û(αy) ∈ S. We have û ∈ P by hypothesis, and so

∫
RN
G(û(x))dx = N − 2

2N ∥∇u∥2
2. (2.64)

Since the existence of such change of variables x = αy implies that

1 =
∫
RN
G(û(αy))dy = 1

αN
G(û(x))dx,

then by Equation (A.19) this happens if, and only if, αN = N − 2
2 ∥∇û∥2

2.

Let us then take û(αx) ∈ S, and see that we can get tu in terms of α :

tu =
√
N − 2

2N ∥∇û(α·)∥2 =
√
N − 2

2N α
2−N

2 ∥∇û(·)∥2.

Note that this gives us

α

tu
= α√

N−2
2N

α
2−N

2 ∥∇û(·)∥2
= αN/2√

N−2
2N
∥∇û(·)∥2

= αN/2

αN/2 = 1.

Thus Φ(û(αx)) = û(x), and this shows that Φ is onto.
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For the injectivity, we need to show that given u, v ∈ S with Φ(u) = Φ(v), one can
obtain u = v. By assumption, let u, v ∈ S with Φ(u) = Φ(v), and so u

(
x

tu

)
= v

(
x

tv

)
,

∀x ∈ RN . Note that

∥∇Φ(u)∥2 =
∫
RN
|∇Φ(u)|2dx

=
∫
RN

∣∣∣∣∇u( xtu
)∣∣∣∣2 dx

= tN−2
u

∫
RN
|∇u(x)|2dx

= tN−2
u ∥∇u∥2

2. (2.65)

Similarly,

∥∇Φ(v)∥2 = tN−2
v ∥v∥2

2. (2.66)

But Φ(u) = Φ(v), and so putting together (2.65) and (2.66) we get

∥∇Φ(u)∥2 = ∥∇Φ(u)∥2 ⇐⇒ tN−2
u ∥∇u∥2

2 = tN−2
v ∥∇v∥2

2

⇐⇒
[(
N − 2

2N

)1/2
∥∇u∥2

]N−2

∥∇u∥2
2 =

[(
N − 2

2N

)1/2
∥∇u∥2

]N−2

∥∇v∥2
2

⇐⇒
(
N − 2

2N

)N−2
2
∥∇u∥N−2+2

2 =
(
N − 2

2N

)N−2
2
∥∇v∥N−2+2

2

⇐⇒ ∥∇u∥N
2 = ∥∇v∥N

2

⇐⇒ ∥∇u∥2 = ∥∇v∥2. (2.67)

From Equation (2.67) one obtains that

tu =
(
N − 2

2N

)1/2
∥∇u∥2 =

(
N − 2

2N

)1/2
∥∇v∥2 = tv,

thus

u
(
x

tu

)
= v

(
x

tv

)
⇒ u

(
x

tu

)
= v

(
x

tu

)
∀x ∈ RN . (2.68)
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Putting y = x

tu
on expression (2.68), we conclude that u = v. This proves that Φ is

one-to-one.
We now have a one-to-one correspondence between the sets S and P, namely the

bijection Φ.

With Lemma 2.4 in hand, we may now prove that the infimum of the associated
functional I constrained to the Pohozaev manifold P is actually the same as the infimum
of this same functional constrained to the set S (see Theorem 2.1).

Theorem 2.2.
m = inf

u∈P
I(u) = inf

u∈S
I(u) (2.69)

Proof. First observe we have the following expressions if we start from the definition of
the scaling tu as given by Lemma 2.4:

tu =
√
N − 2

2N ∥∇u∥2 ⇒

tN−2
u =

(
N − 2

2N

)N−2
2
∥∇u∥N−2

2 ⇒

1
2t

N−2
u = (N − 2)N−2

2

2N−2
2 N

N−2
2

1
2∥∇u∥

N−2
2 ⇒

1
2t

N−2
u ∥∇u∥2

2 = (N − 2)N−2
2

2N
2 N

N
2 −1

∥∇u∥N
2

= (N − 2)N
2

2N
2 N

N
2

(N − 2)−1

N−1 ∥∇u∥N
2

=
(
N − 2

2N

)N
2 N

N − 2∥∇u∥
N
2 . (2.70)

Also, note that

tNu =
(
N − 2

2N

)N
2
∥∇u∥N

2 . (2.71)

Now, given u ∈ S, then clearly tNu
∫
RN
G(u)z, dx = tNu since

∫
RN
G(u) dx = 1, and we

have I(Φtu(u)) ∈ P . Thus, by using Equations (2.70) and (2.71), one gets
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I(Φ(u)) = 1
2t

N−2
u ∥∇u∥2

2 − tNu
∫
RN
G(u)dx

=
(
N − 2

2N

)N
2 N

N − 2∥∇u∥
N
2 −

(
N − 2

2N

)N
2
∥∇u∥2

=
(
N − 2

2N

)N
2
∥∇u∥N

2

(
N

N − 2 − 1
)

=
(
N − 2

2N

)N
2
∥∇u∥N

2

( 2
N − 2

)

= (N − 2)N
2 − 1

2N
2 −1N

N
2 − 1 + 1

∥∇u∥N
2

= 1
N

(
N − 2

2N

)N−2
2
∥∇u∥N

2 . (2.72)

From Equation (2.72), we have

inf
u∈P

I(u) = inf
u∈S

I(Φtu(u)) = inf
u∈S

1
N

(
N − 2

2N

)N−2
2
∥∇u∥N

2 . (2.73)

From Theorem 2.1, we know that inf
u∈S
∥∇u∥2

2 is actually achieved and the corresponding
ut is a least energy solution. Thus, from the one-to-one correspondence between S and
P given in Lemma 2.4, we conclude m = inf

u∈S
I(u) = inf

u∈P
I(u), as desired.

Remark 2.3. Observe that by Theorem 2.1, the infima referred to in Lemma 2.2 are
actually achieved, and so they are actually (constrained) minima.

2.4 A Mountain Pass Geometry

In this section, we shall prove that the functional possesses a mountain pass geometry
and this will render us a well-defined critical value b > 0 of the associated functional,
also known as the mountain pass value. This is done in Lemmas 2.5 and 2.6. Also, with
the levels b and m in hand, we will prove that b = m, and so the mountain pass value
gives the least energy level. This last result was first done in the work of Jeanjean and
Tanaka [18].

Our goal is to prove that our energy functional has a property known as a mountain
pass geometry. We define what this means below.
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Remark 2.4. This is an important checkpoint in this work since from this point on
we shall consider a nonlinearity of the type g(s) = f(s) − λs. We have seen earlier in
Section 1.4 that, under these conditions, I(u) is well-defined on H1(RN ) and of class C1,

since it satisfies conditions (g1)-(g4). Whenever possible, we still considered a general
nonlinearity in some parts of the proofs that will follow in the next Lemmas. Nevertheless,
from Jeanjean and Tanaka [18], one guarantees that the associated functional to problem
possesses a mountain pass geometry for any g satisfying conditions (g1)-(g4).

Definition 2.3. The functional I : H1(RN)→ R is said to possess a mountain pass
geometry if it satisfies the following three conditions:

1. I(0) = 0.

2. There exist ρ > 0 and δ > 0 such that I(u) ≥ ρ ∀∥u∥H1 = ρ.

3. There exists u0 ∈ H1(RN) such that ∥u∥H1 > ρ and I(u0) < 0.

We will need to recall the following conditions, first defined in Chapter 1. They are
conditions (f1), (f2), (g3) and (g4).

(a) f is continuously differentiable on the set [0,+∞)

(b) lim
s→0

f(s)
s

= 0

(c) lim
s→+∞

g(s)
s

N+2
N−2

= 0.

(d) There exists ζ > 0 such that G(ζ) =
∫ ζ

0
g(τ)dτ > 0.

Remark 2.5. Note that, from item (e) of Lemma 2.2, one automatically gets that the
second property of the mountain pass geometry holds for u ∈ P .

Lemma 2.5. 1. and 2. hold for the associated functional of the problem.

Proof. Let us start by proving 1.:
We have that I : H1(RN)→ RN is a functional given by

I(u) = 1
2

∫
RN
|∇u|2 −

∫
RN
G(u),
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where G(u) =
∫ u

0
g(τ)dτ. Note that

I(0) = 1
2

∫
RN
|∇(0)|2 −

∫
RN
G(0)

= 0−
∫
RN

∫ 0

0
g(τ)dτ

= 0.

This proves 1.
As for property 2., from hypothesis (a), for a given ϵ > 0, there exists δ > 0 such that

|s| < δ ⇒

|f(s)| ≤ ϵ |s| . (2.74)

Also, from hypothesis (b), for a given ϵ > 0, there exists a constant Cϵ > 0 and δ > 0
such that |s| > δ ⇒

∣∣∣∣∣ g(s)s
N+2
N−2

∣∣∣∣∣ = |f(s)− λs|
|s|

N+2
N−2

≤ |f(s)|
|s|

N+2
N−2

+ λ |s|
|s|

N+2
N−2

,

where the last inequality is the triangle inequality. Thus

|f(s)| < ϵ|s|
N+2
N−2 − λ |s| , (2.75)

and so gathering estimates (2.74) and (2.75), we first multiply both inequalities by a
−1 factor in order to reverse the inequalities and get

− |f(s)| ≥ ϵ|s|
N+2
N−2 − λ |s| − ϵ |s| , (2.76)

and thus -|f(s)| ≥ −Cϵ |s|
N+2
N−2 − (λ+ ϵ) |s| ∀s > 0, where upon integrating (2.75)

from 0 to s and recalling f is an odd function, one finds:
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∫ s

0
− |f(τ)| dτ ≥

∫ s

0
−(λ+ ϵ) |τ | dτ − Cϵ

∫ s

0
|τ |

N+2
N−2 dτ ⇒

−
∫ s

0
|f(τ)| dτ ≥ −(λ+ ϵ)τ

2

2

∣∣∣∣s
0
− Cϵ

τ
N+2
N−2 +1

N+2
N−2 + 1

∣∣∣∣∣∣
s

0

⇒

−F (s) ≥ −(λ+ ϵ)s
2

2 − Cϵ
s

2N
N−2

2N
N−2

⇒

−F (s) ≥ −(λ+ ϵ)s
2

2 − Cϵ
s2∗

2∗ ,

from where we get the estimate

− F (s) ≥ −(λ+ ϵ)s
2

2 − C
′

ϵs
2∗ ∀s > 0. (2.77)

Now we use the Gagliardo-Nirenberg-Sobolev inequality A.15 that states that if
1 ≤ p < N, then W 1,p

(
RN

)
⊂ Lp∗(RN), where 1

p∗ = 1
p
− 1
N

and there exists a constant

C = C(p,N) such that ∥u∥Lp∗ ≤ C∥∇u∥L2 ∀u ∈ H1(RN).

In our case, p = 2 and the embedding we are looking at is the continuous injection
H1(RN) ↪→ L

2N
N−2 (RN) and there exists a constant C = C(2, N) such that

∥u∥
L

2N
N−2
≤ C∥∇u∥L2 ∀u ∈ H1(RN).

Then it follows that, for a constant C ′′

ϵ > 0,

I(u) = 1
2

∫
RN
|∇u|2 dx−

∫
RN
G(u)dx

≥ 1
2

∫
RN
|∇u|2 dx+

∫
RN

(λ− ϵ) u
2

2 − C
′′

ϵ |u|
2N

N−2 dx

= 1
2

∫
RN
|∇u| dx+ (λ− ϵ)

2

∫
RN

u2

2 dx− C
′′

ϵ

∫
RN
|u|

2N
N−2 dx

≥ 1
2 min{1, (λ− ϵ)}

∫
RN
|∇u|2 + |u|2 dx− C ′′

ϵ

∫
RN
|u|

2N
N−2 dx

= 1
2 min{1, (λ− ϵ)}∥u∥2

H1 − C
′′

ϵ

∫
RN
|u|

2N
N−2 dx. (2.78)
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Let us work on the second term on the inequality given in (2.78). First, note that

∥u∥ 2N
N−2
≤ C∥u∥H1 ,

which comes from the continuous injection H1(RN) ↪→ L
2N

N−2 (RN). Then one has the
following estimates, after exchanging 2N

N − 2 for 2∗, which corresponds to the critical
exponent:

∥u∥2∗

2∗ ≤ C2∗∥∇u∥2∗

2

= C2∗
(∫

RN
|∇u|2 dx

) 1
2

2N
N−2

≤ C2∗
(∫

RN
|∇u|2 + |u|2 dx

) 1
2

2N
N−2

= C2∗∥u∥2∗

H1 ,

with C = C(2, N). Then −∥u∥2∗

2∗ ≥ −C2∗∥∇u∥2∗

2 . Going back to the inequality
obtained in (2.78), we get

I(u) ≥ 1
2 min{1, (λ− ϵ)}∥u∥2

H1 − C
′′

ϵ ∥u∥2∗

2∗

≥ 1
2 min{1, (λ− ϵ)}∥u∥2

H1 − C∥u∥2∗

H1 ∀u ∈ H1(RN),

where we have put C := C
′′

ϵ C
2∗
.

Finally, by taking ϵ sufficiently small and 0 < ρ < 1 such that λ − ϵ > 0 and
ρ2∗

<
1

4C min{1, (λ− ϵ)}, one has that ∥u∥H1 = ρ⇒

I(u) ≥ 1
2 min{1, (λ− ϵ)}ρ2 − Cρ2∗ ∀u ∈ H1(RN)

>
1
2 min{1, (λ− ϵ)}ρ2 − C 1

4C min{1, (λ− ϵ)}ρ2

= 1
4 min{1, (λ− ϵ)}ρ2.
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By taking 0 < ρ < 1 sufficiently small, we can see that I(u) ≥ δ ∀∥u∥H1 = ρ Also,
for all 0 < ∥u∥H1(RN ) ≤ ρ, it holds that I(u) > 0.

Remark 2.6. Note that properties 1 and 2 together gives us that I(0) ≥ 0 for all
0 ≤ ∥u∥H1 ≤ ρ.

Now, let us prove 3. Consider the set

Γ = {γ(t) ∈ C
(
[0, 1] , H1

(
RN

))
; γ(0) = 0, I(γ(1)) < 0}. (2.79)

This is the set of all the continuous maps [0, 1]→ H1
(
RN

)
. We already have that

I(0) = 0 and I(u) > 0 for all 0 < ∥u∥H1 ≤ ρ. If one can prove that Γ is not empty, there
exists a u0 ∈ H1(RN ) such that ∥u∥H1 > ρ and I(u) < 0 and thus condition 3 is satisfied.
After that, we are done.

Let us then prove that, in fact, Γ is not empty. We restate it in the form of the
following Lemma:

Lemma 2.6. (3. also holds for the associated functional) Under the assumptions (a),
(b), (c) and (d), there exists a path γ ∈ Γ satisfying the following properties, where ω(x)
is a given ground state/least energy solution to our original problem:

(A) ω ∈ γ ([0, 1]) .

(B) max
t∈[0,1]

I (γ (t)) = m.

Proof. We shall, by construction of a path γ ∈ Γ, first find a curve γ(t) : [0, L]→ H1
(
RN

)
such that

γ(0) = 0, I(γ(L)) < 0,

ω ∈ γ([0, L]),

max
t∈[0,L]

I(γ(t)) = m,

and after performing a scale change in t, obtain the sought path γ ∈ Γ.
With that in mind, let
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γ(t)(x) =


ω
(
x

t

)
, t > 0

0, t = 0.

From this definition, we can calculate:

∥γ(t)∥2
H1 =

∫
RN
|∇γ(t)|2 + |γ(t)|2 dx

=
∫
RN

∣∣∣∣∇ω (xt
)∣∣∣∣2 +

∣∣∣∣ω (xt
)∣∣∣∣2 dx.

We now perform a change of variables z = x

t
, and so

∥γ(t)∥2
H1 =

∫
RN

(
|∇ω(z)|2

t2
+ |ω(z)|2

)
tNdz

=
∫
RN
|∇ω(z)|2 t

N

t2
dz +

∫
RN
|ω(z)|2 tNdz

= tN−2
∫
RN
|∇ω(z)|2 dz + tN

∫
RN
|ω(z)|2 dz

= tN−2∥∇ω∥2
2 + tN∥ω∥2

2. (2.80)

Also, for the functional I, it holds that:

I(γ(t)) = 1
2

∫
RN
|∇(γ(t))|2 dx−

∫
RN
G(γ(t))dx

= 1
2

∫
RN

∣∣∣∣∇ω (xt
)∣∣∣∣2 dx− ∫

RN
G
(
ω
(
x

t

))
dx

= tN−2

2 ∥∇ω∥
2
2 − tN

∫
RN
G(ω)dx.

From Pohozaev identity, N − 2
2

∫
RN
|∇ω|2 dx = N

∫
RN
G(ω)dx, and since ∥∇ω∥2

2 > 0,

then
∫
RN
G(ω)dx > 0, and so
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d

dt
I(γ(t)) = d

dt

(
tN−2

2 ∥∇ω∥
2
2 − tN

∫
RN
G(ω)dx

)

= d

dt
(tN−2)1

2∥∇ω∥
2
2 −

d

dt
(tN)

∫
RN
G(ω)dx

= (N − 2)tN−3 1
2∥∇ω

2
2 −NtN−1

∫
RN
G(ω)dx,

and now we use Pohozaev identity on the first term of this last expression to get:

d

dt
I(γ(t)) = NtN−3

∫
RN
G(ω)dx−NtN−1

∫
RN
G(ω)dx

= NtN−1
∫
RN
G(ω)dx

(
t−2 − 1

)
. (2.81)

Then, if t ∈ (0, 1), we have t−2 − 1 = 1
t2
− 1 > 0, whereas

∫
RN
G(ω)dx > 0 implies

that NtN−1 > 0, we get from (2.81) that d

dt
(I(γ(t))) > 0.

On the other hand, if t > 1, then 1
t2
− 1 < 0 and so we can see from (2.81)

that d

dt
(I(γ(t))) < 0 in this case. This means that there exists m > 0 such that

max
t∈[0,L]

I(γ(t)) = m. Furthermore, note that

d

dt
I(γ(t)) = 0 ⇐⇒ NtN−1

∫
RN
G(ω)

(
t−2 − 1

)
dx

⇐⇒ t−2 − 1 = 0

⇐⇒ 1
t2

= 1

⇐⇒ t = 1. (2.82)

For t = 1, I(γ(t)) = tN−2

2 ∥∇ω∥
2
2 − tN

∫
RN
G(ω)dx becomes

I(γ(1)) = 1
2∥∇ω∥

2
2 −

∫
RN
G(ω)dx

= I(ω). (2.83)
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For t = 0, by definition we have γ(0) = 0, and so I(γ(0)) = I(0) = 0 as we have seen by
property 1. For a sufficiently large L > 1, note that

I(γ(L)) = LN−2

2 ∥∇ω∥2
2 − LN

∫
RN
G(ω)dx < 0, (2.84)

since the second term dominates for large L.
Therefore we have I(γ(L)) < 0 for some L>1 (sufficiently large). Thus so far, we

can guarantee the existence of a curve γ(t) : [0, L] → H1(RN) such that γ(0) = 0 and
I(γ(L)) < 0.

We shall now prove that ω ∈ γ([0, L]) and max
t∈[0,L]

I(γ(t)) = m. First, recall that d

dt
I(γ(t)) =

0 ⇐⇒ t = 1 from (2.82). This gives us max
t∈[0,L]

I(γ(t)) = I(γ(1)) = I(ω). Thus, if ω is a
least energy solution of


−∆u = g(u)

u ∈ H1(RN),

then we would like to show that ω ∈ γ([0, L]). But for t = 1, I(γ(t)) = I(γ(1)) = I(ω),
i.e. there exists a t ∈ [0, L] such that ω ∈ γ([0, L]).

Furthermore, since the critical points of I are precisely the solutions of the problem,
we have from (2.82) that I(γ(t)) takes its maximum value at t = 1, and so

max
t∈[0,L]

I(γ(t)) = I(ω) = m. (2.85)

Now let us perform a scale change, that is, consider the map α : [0, 1] → [0, L],
s → α(s) = sL. First, compose the paths α and γ by constructing this new path
γ ◦ α : [0, 1]→ H1(RN). This new path γ

′ : γ ◦ α is such that γ′(t) = γ(α(s)). Then we
proceed with the following calculations:



2.4 A Mountain Pass Geometry 51

I(γ(α(s))) = 1
2

∫
RN

∣∣∣∣∣∇ω
(

x

α(s)

)∣∣∣∣∣
2

dx−
∫
RN
G

(
ω

(
x

α(s)

))
dx

= 1
2

∫
RN

∣∣∣∣∇ω ( x

sL

)∣∣∣∣2 dx− ∫
RN
G
(
ω
(
x

sL

))
dx

= (sL)N−2

2 ∥∇ω∥2
2 − (sL)N

∫
RN
G (ω) dx

= LN−2 s
N−2

2 ∥∇ω∥2
2 − LNsN

∫
RN
G(ω)dx.

Also, we get

d

ds
I(γ(α(s))) = LN−2

2 ∥ω∥2
2(N − 2)sN−3 −NLNsN−1

∫
RN
G(ω)dx. (2.86)

From Pohozaev identity, N − 2
2 ∥∇ω∥2

2 = N
∫
RN
G(ω)dx, then

d

ds
I(γ′(α(s))) = N − 2

2 ∥∇u∥2
2L

N−2sN−3 −NLNsN−1
∫
RN
G(ω)dx

= N
∫
RN
G(ω)LN−2sN−3 −NLNsN−1

∫
RN
G(ω)dx

= NLNsN−1
∫
G(ω)

(
L−2s−2 − 1

)
dx,

from where

d

ds
I(γ′(s)) = 0 ⇐⇒ NLNsN−1

∫
G(ω)

(
L−2s−2 − 1

)
dx = 0

⇐⇒ L−2s−2 − 1 = 0

⇐⇒ (Ls)2 = 1

⇐⇒ Ls = 1

⇐⇒ s = 1
L
,

which is a critical point.
If s ∈

[
0, 1
L

)
, then d

ds
I(γ′(s)) > 0 because L−2s−2 − 1 ⇒ s2L2 <

1
L2L

2 = 1 ⇒
1

s2L2 > 1 =⇒ L−2s−2 − 1 > 0.
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Also, if s ∈
( 1
L
, 1
]
, then d

ds
I(γ′(s)) < 0 because s2L2 >

( 1
L

)2
L2 = 1, and so

s2L2 > 1⇒ 1
s2L2 < 1⇒ L−2s−2 − 1 < 0.

It is important to see that, for s = 1
L
, we get

I(γ′
( 1
L

)
) = LN−2

(
1
L

)N−2

2 ∥∇ω∥2
2 − LN

( 1
L

)N ∫
RN
G(ω)dx

= LN−2/LN−2

2 ∥∇ω∥2
2 −

LN

LN

∫
RN
G(ω)dx

= 1
2∥∇ω∥

2
2 −

∫
RN
G(ω)dx

= I(ω).

Then we have found a path γ′ ∈ Γ such that ω ∈ γ′([0, 1]) and max
s∈[0,1]

I(γ′(s)) = I(ω),
where after renaming, is the path desired in the Lemma.

Finally, this means that Γ is not empty, and so the functional I possesses the mountain
pass geometry and the Lemma is proved.

2.5 The mountain pass level is the least energy level

Remark 2.7. From this result, this means that the mountain pass value

b = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) (2.87)

is well defined and b > 0 is a critical value of I.

We now prove the following Lemma:

Lemma 2.7. γ([0, 1]) ∩ P ̸= ∅ for all γ ∈ Γ.

Proof: Let

J(u) = N − 2
2 ∥∇u∥2

2 −N
∫
RN
G(u)dx

= NI(u)− ∥∇u∥2
2.



2.5 The mountain pass level is the least energy level 53

We saw that there exists ρ > 0 such that

0 < ∥u∥H1 ≤ ρ⇒ J(u) > 0.

For any γ ∈ Γ we have γ(0) = 0 and J(γ(1)) ≤ NI(γ(1)) < 0.
Thus there exists t0 ∈ (0, 1) such that

∥γ(t0)H1∥ > ρ,

J(γ(t0) = 0.

Since γ(t0) ∈ γ([0, 1])∩P we conclude γ([0, 1])∩P ̸= ∅. □

Lemma 2.8. m ≥ b.

Proof. Recall that the mountain pass value

b = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) (2.88)

is well defined and b > 0 is a critical value of I. Also, if m = inf{I(u) : u ∈
H1(RN) \ {0}} is the least energy level, the corresponding solution v is such that there
exists a path γ, as we have shown, satisfying max

t∈[0,1]
I(γ(t)) = I(v) = m. From the very

definition of b, one gets

m = I(v) ≥ inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) = b ≥ δ > 0.

Thus m ≥ b.

Lemma 2.9. m ≤ b.

Proof. From Lemma 2.7 and since m = inf
u∈P

I(u) = min
u∈P

I(u),

m ≤ I(γ(tγ)) ≤ inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) = b ≤ max
t∈[0,1]

I(γ(t)),

and so m ≤ b.
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Remark 2.8. From Lemmas 2.8 and 2.9, one concludes that b = m. This means that
the mountain pass level b gives the least energy level m of the corresponding least energy
solution v.

inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) = inf
u∈P

I(u). (2.89)

This next Lemma will prove to be essential in the construction of the algorithm
in Chapter 3. It shows that, under the condition

∫
RN
G(u) > 0, any function u ∈

H1(RN) \ {0} can be projected on the Pohozaev manifold, and such a projection is
actually unique.

Lemma 2.10. For each u ∈ H1(RN) \ {0} with
∫
RN
G(u) > 0 there exists a unique real

number t0 > 0 such that u
( ·
t0

)
∈ P and I

(
u
( ·
t0

))
is the maximum of the function

t→ I
(
u
( ·
t

))
, t > 0.

Proof. We first define the auxiliary function h : (0,∞)→ R, t→ h(t) := I
(
u
( ·
t

))
.

We have seen previously that

I
(
u
( ·
t

))
= tN−2

2

∫
RN
|∇u|2 + λtN

2

∫
RN
u2 − tN

∫
RN
F (u).

Thus, for N ≥ 3 which is our case, we have that h′(t) = 0 ⇐⇒

tN−3
(

(N − 2)
∫
RN
|∇u|2 + 2Nt2

∫
RN

[
λ

2u
2 − F (u)

])
= 0.

Therefore we have either that t = 0 or

t2 =
(N − 2)

∫
RN
|∇u|2

2N
∫
RN

[
−λ
2 u2 + F (u)

] =
(N − 2)

∫
RN
|∇u|2

2N
∫
RN
G(u)

. (2.90)

Then the Lemma is proved.

We may now conclude this Chapter. We found there exists a nontrivial solution via
constrained minimization on a set S which is in bijection with the Pohozaev manifold
P. We then proved that this solution is such that its energy functional is the minimum
constrained to P, which is attained. Finally, this minimum is the same as the critical
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level obtained from the Mountain Pass Lemma of Ambrosetti and Rabinowitz [2], also
known as the mountain pass level.



Chapter 3

A mini-max algorithm

3.1 Preliminaries

In this Chapter we prove some results that will help us devise an algorithm which
will converge to the ground state solution. The algorithm is at the end of this Chapter.

In Section 3.2 we define the direction of gradient descent and translate finding this
function to solving a linear Poisson equation. In Section 3.3 we show that our minimizing
sequence is bounded in H1(RN). In Section 3.4 we show that a Palais-Smale sequence
going to the mountain pass level for our associated functional I constrained to the
Pohozaev manifold is also a Palais-Smale sequence for I in the space H1(RN).

3.2 The Steepest Descent direction

The steepest descent direction at w1 ∈ H1(RN) corresponds to finding v̂ ∈ H1(RN)
with ∥v̂∥ = 1 such that

I(w1 + εv̂)− I(w1)
ε

(3.1)

is as negative as possible as ε → 0. This is equivalent to finding the minimum of the
Fréchet derivative at w1 on v̂, i.e. I ′(w1)v̂, subject to the constraint ∥v̂∥ = 1.

The device for solving numerically the steepest descent direction can be found by
means of a linear equation detailed by J. Horák in [17]. For the sake of completeness
we recall it here. Introducing the Lagrange Multiplier µ, we therefore look for the
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unconstrained minimum of the functional L : H1(RN)→ R, defined by

L(v̂) := I ′(w1)v̂ + µ
∫
RN
∇v̂ · ∇v̂ + v̂ · v̂ dx,

or, equivalently,

L(v̂) :=
∫
RN
∇w1 · ∇v̂ + λw1v̂ − f(w1)v̂ + µ(|∇v̂|2 + |v̂|2) dx.

The Fréchet derivative of L exists and is given by

L′(v̂)ϕ =
∫
RN
∇w1 · ∇ϕ+ λw1ϕ− f(w1)ϕ+ 2µ(∇v̂ · ∇ϕ+ v̂ϕ) dx,

for any ϕ ∈ H1(RN). Hence, L′(v̂) = 0 corresponds to a weak solution v̂ ∈ H1(RN) of
the linear equation:

2µ(∆v̂ − v̂) = −∆w1 + λw1 − f(w1) . (3.2)

Note that, despite the fact that the Lagrange multiplier µ is not known, we can still
find a solution for (3.2). If we set ṽ := 2µv̂, equation (3.2) can be written in terms of ṽ
as:

(∆ṽ − ṽ) = −∆w1 + λw1 − f(w1), (3.3)

which can be readily solved for ṽ. Now, if the condition ∥v̂∥ = 1 is to be satisfied, we
must have:

([∫
RN
|∇v̂|2 + |v̂|2

]1/2
)2

=
∫
RN

∣∣∣∣∇
(
ṽ

2µ

)∣∣∣∣2 +
∣∣∣∣ ṽ2µ

∣∣∣∣2 = 1, (3.4)

which renders

µ = ∥ṽ∥2 . (3.5)

Thus, by taking µ as in (3.5), we are able to determine v̂ from ṽ.
This next Lemma will help us, in a sense, descend on the topology of the functional

in Step 4 of the algorithm.



3.2 The Steepest Descent direction 58

Lemma 3.1. Let v and w in H1(RN) \ {0} and α ∈ R such that
∫
RN
G(w + αv) > 0,

Φ(α) := I(w+αv), γ(α) := (w+αv)
(
·

t(α)

)
∈ P and Ψ(α) := I(γ(α)). If t(α) is bounded

from below by a positive constant, then lim
α→±∞

I(γ(α)) = +∞ and min I(γ(α)) = I(γ(α̂))
is attained for some α̂ ∈ R. Otherwise, if lim

αj→+∞
t(αj) = 0 on a subsequence (αj)j∈N and

there exists δ > 0 such that Φ′(α) < 0, for 0 < α < δ, then either:

(i) there is α̂ > 0 which is a point of local minimum of I(γ(α)) or

(ii) I(w + αv) ≤ I

(
(w + αv)

(
·

t(α)

))
< I(w) for α > 0.

Proof. First, let us note that, by Lemma 2.10, γ(α) is well-defined in an open subset of
R. It holds that

J(u) = (N − 2)
∫
RN
|∇u|2 dx− 2N

∫
RN
G(u) dx

= 2N
(
I(u)− 1

N
∥∇u∥2

2

)
.

If u ∈ P , then
∥∇u∥2

2 = NI(u). (3.6)

Putting u = γ(α) and assuming α ranges on an unbounded subset of R, we have two
possibilities, either tα ≥ t̄ > 0, for some positive constant t̄, hence

∥∥∥∥∇(w + αv)
( ·
tα

)∥∥∥∥2

2
=

tN−2
α ||∇(w + αv)||22 → +∞ as α→ ±∞, and so, by (3.6) it follows that lim

α→±∞
I(γ(α)) =

+∞. The minimum is attained because I and γ(α) are continuous.
Otherwise, up to a subsequence, tα → 0 as α → +∞ or α → −∞. By assumption

the first case holds and also Φ′(α) < 0, so that I(w + αv) < I(w), for 0 < α < δ.
Since I ∈ C1(H1(RN),R), γ ∈ C1(R) and Φ′(α) = I ′(w + αv)v < 0, then Ψ′(α) =
I ′(γ(α))γ′(α) < 0, for α positive and sufficiently small, because ||(w + αv)− γ(α)|| → 0
as α → 0. If Ψ′ changes sign, then there is α̂ such that I(γ(α̂)) is a local minimum.
However, if Ψ′(α) does not change sign for α > 0, then by Lemma 2.10, Ψ′(α) < 0 and
Ψ(0) = I(w) we obtain

I(w + αv) ≤ I
(
w + αv

( ·
tα

))
< I(w). (3.7)



3.3 A bounded minimizing sequence 59

Remark 3.1. Note that in case tα → 0 as α→ −∞, one may repeat the previous proof
exchanging v for −v and α for −α.

We antecipate that this previous lemma is going to be applied choosing v = −∇I(w),
the steepest descent direction of I at w (see Section 3).

3.3 A bounded minimizing sequence

Notice that by case (ii) of Lemma 3.1, Ψ(α) = I(γ(α)) > mP for all α > 0, and
Ψ′(α) < 0, which lead to I(γ(α))→ b ≥ mP as α→ +∞. Before proceeding to the next
section, we shall investigate more deeply what happens in this case. For this purpose, we
prove the boundedness of the minimizing sequence (uk) ⊂ P .

Lemma 3.2. If (uk) ⊂ P , k ∈ N, and I(uk)→ b, then (uk) is bounded in H1(RN).

Proof. By hypothesis, uk ∈ P and I(uk) → b. By Lemma 2.5, there exist positive
constants ρ and δ such that I(u) ≥ ρ and ∥∇u∥2 ≥ δ for all u ∈ P . Better yet, from the
proof of Lemma 2.5, one gets

c+ 1 ≥ I(uk) ≥
(1

2 −
1
2∗

)
∥∇uk∥2 ≥

(1
2 −

1
2∗

)
δ ≥ ρ,

hence

C1 < ∥∇uk∥2 < C2, (3.8)

with C1, C2 > 0.
Now, from conditions (f1), (f2), (f3) we have that, given ϵ > 0, there exists C3 =

C3(ϵ) > 0 such that

|F (u)| ≤ ϵ

2u
2 + C3|u|p, 2 < p < 2∗. (3.9)

Also, since uk ∈ P , then

∫
RN
|∇uk|2dx = 2∗

∫
RN
F (uk)dx− λN

N − 2

∫
RN
u2

kdx. (3.10)

By rearranging Equation (3.10), we obtain
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∫
RN
|∇uk|2dx = 2N

N − 2

∫
RN
F (uk)dx− λN

N − 2

∫
RN
u2

kdx⇒∫
RN
|∇uk|2dx = 2N

N − 2

(∫
RN
F (uk)dx− λ

2

∫
RN
u2

kdx

)
⇒

N − 2
2N

∫
RN
|∇uk|2dx =

∫
RN
F (uk)dx− λ

2u
2
kdx⇒

λ

2∥uk∥2
2 =

∫
RN
F (uk)dx− N − 2

2N ∥∇uk∥2
2. (3.11)

Now, using inequality (3.9) on Equation (3.11):

λ

2∥uk∥2
2 =

∫
RN
F (uk)dx− N − 2

2N ∥∇uk∥2
2 ⇒

≤ ϵ

2

∫
RN
u2

kdx+ C1

∫
RN
|uk|p −

N − 2
2N ∥∇uk∥2

2

= ϵ

2∥uk∥2
2 + C1∥uk∥p

p −
N − 2

2N ∥∇uk∥2
2. (3.12)

Let us estimate the term ∥uk∥p
p on Equation (3.12) by using an interpolation inequality

between Lp spaces. Note that 2 ≤ p ≤ 2∗, so that

1
p

= θ

2 + (1− θ)
2∗

for some 0 < θ < 1.
It is easy to see that for θ = 0, one gets p = 2∗, and for θ = 1, one gets p = 2.
Since uk ∈ L2(RN) ∩ L2∗(RN), then

∥uk∥p
p =

∫
RN
|uk|pdx

=
∫
RN
|uk|2θ|uk|(1−θ)2∗

dx. (3.13)

From Holder’s inequality (see A.5) with conjugate exponents θ and 1− θ, we get from
Equation (3.13):
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≤
(∫

RN
|uk|2θ 1

θ

)θ 2
2
(∫

RN
|uk|2

∗(1−θ) 1
1−θ

)(1−θ) 2∗
2∗

= ∥uk∥2θ
2 ∥uk∥2∗(1−θ)

2∗ . (3.14)

We now estimate expression (3.14) by using Young inequality (A.19) with p = 1
θ
,

q = 1
1− θ and putting a = ∥uk∥2θ

2 , b = ∥uk∥2∗(1−θ)
2∗ , where ab ≤ ap

p
+ bq

q
thus becomes

∥uk∥2θ
2 ∥uk∥2∗(1−θ)

2∗ ≤ ∥uk∥2θp
2

p
+ ∥uk∥2∗(1−θ)

2∗ q

q

= ∥uk∥
2θ 1

θ
2

1
θ

+ ∥uk∥
2∗(1−θ) 1

1−θ

2∗

1
1−θ

= θ∥uk∥2
2 + (1− θ)∥uk∥2∗

2∗

≤ ∥uk∥2
2 + ∥uk∥2∗

2∗ (3.15)

where the last inequality comes from the fact that θ + (1− θ) = 1 and 0 ≤ θ ≤ 1.
The estimate for ∥u∥p

p then finally comes from putting together expressions (3.13),
(3.14) and (3.15):

∥uk∥p
p ≤ ∥uk∥2

2 + ∥uk∥2∗

2∗ . (3.16)

We now use the Gagliardo-Nirenberg-Sobolev inequality (A.15) to estimate the term
∥uk∥2∗

2∗ :

∥uk∥2∗
2∗ ≤ C4∥∇uk∥2∗

p , 1 ≤ p < N. (3.17)

In particular, this holds for p = 2 because N ≥ 3.
We may now finally go back to expression (3.12) and use the estimate for ∥uk∥p

p (given
in (3.12)):

ϵ

2∥uk∥2
2 +C1∥uk∥p

p−
N − 2

2N ∥uk∥2
2 ≤

ϵ

2∥uk∥2
2 +C1(∥uk∥2

2 +∥uk∥2∗

2∗)−N − 2
2N ∥∇uk∥2

2 (3.18)

Using estimate (3.17):
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ϵ

2∥uk∥2
2 + C1(∥uk∥2

2 + ∥uk∥2∗

2∗)− N − 2
2N ∥uk∥2∗

2∗

≤ ϵ

2∥uk∥2
2 + C1(∥uk∥2

2 + C4∥uk∥2∗

2∗)− N − 2
2N ∥uk∥2∗

2∗ (3.19)

From the bound (3.8), one gets

0 < C2∗

1 < ∥∇uk∥2∗

2 < C2∗

2 (3.20)

and

0 < C2
1 < ∥∇uk∥2

2 < C2
2 . (3.21)

Using bounds (3.20) and (3.21) for ∥uk∥2∗

2 and ∥∇∥2
2 back on expression (3.19), we

obtain:

≤ ϵ

2∥uk∥2
2 + C1(∥uk∥2

2 + C4C
2∗

2 )− N − 2
2N ∥∇uk∥2

2

=
(
ϵ

2 + C1

)
∥uk∥2

2 + C1C4C
2∗

2 −
N − 2

2N C2
2

= Cϵ∥uk∥2
2 + C5 − C6. (3.22)

Thus, from estimate (3.22), one finally obtains that

λ

2∥uk∥2
2 ≤ Cϵ + C5 + C6 ⇒(

λ

2 − Cϵ

)
∥uk∥2

2 ≤ C5 − C6 ⇒

∥uk∥2
2 ≤

C5 − C6
λ
2 − Cϵ

, (3.23)

and so by putting M = C5 − C6
λ
2 − Cϵ

on inequality (3.23), we arrive at

∥uk∥2
2 ≤M, ∀k ≥ 1. (3.24)
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This estimate (3.24) shows that (uk) is bounded in L2(RN). Also, from (3.8) , we
have that (∇uk) is bounded in L2(RN). Then (uk) is a bounded sequence in H1(RN).
This concludes the proof.

3.4 A weakly convergent Palais-Smale sequence

We now show that if one now has a Palais-Smale sequence A.5, which must be a
bounded minimizing sequence (uk) ⊂ P by Lemma 3.2, it is also a Palais-Smale sequence
for the functional I in H1(RN).

Lemma 3.3. Let (uk) ⊂ P be a (PS)b sequence for I constrained to P with b = mP ,
then (uk) is a (PS)b sequence for I (free).

Proof. Note that (uk) is a minimizing sequence of I on P, i. e. I(uk) → mP and
I ′|P(uk) → 0 as k → ∞. By Lemma 6, (uk) is bounded. Let us now prove that
I ′(uk)→ 0, as k →∞. Suppose by contradiction that this is not the case. Then, there
exists σ > 0 and a subsequence

(
ukj

)
with

∥I ′(ukj
)∥ > σ, for all j ≥ 1 large.

We claim that there exists a positive constant C such that

|I ′(ukj
)(φ)−I ′(v)(φ)| ≤ C∥ukj

−v∥∥φ∥, for all j ≥ 1 and any v, φ ∈ H1(RN). (3.25)

Indeed, first note that, for every w,φ, ψ ∈ H1(RN), we have

I ′′(w)(φ, ψ) =
∫
∇φ∇ψ + λ

∫
φψ −

∫
f ′(w)φψ. (3.26)

Also, by the Mean Value Theorem, for any u, v ∈ H1(RN ) and φ ∈ H1(RN ), there exists
ξ ∈ (0, 1) with

I ′(v)(φ)− I ′(u)(φ) = I ′′(u+ ξ(v − u))(φ, v − u).
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Therefore, for all j ≥ 1 we find ξj ∈ (0, 1) such that from formula (3.26) we obtain by
taking into account hypothesis (f4) and using Hölder inequality (A.5)

I ′(ukj
)(φ)− I ′(v)(φ) = I ′′(ukj

+ ξj(v − ukj
))(φ, v − ukj

)

=
∫
∇φ∇(v − ukj

) + λ
∫
φ(vj − uj)

−
∫
f ′(ukj

+ ξj(v − ukj
))φ(v − ukj

)

≤ C∥φ∥∥v − ukj
∥+

∫ ∣∣∣∣a1 + a2|ukj
+ ξj(v − ukj

)|p−2
∣∣∣∣|φ||v − ukj

|

≤ C∥φ∥∥v − ukj
∥.

In turn, taking the supremum over the φ ∈ H1(RN) with ∥φ∥ ≤ 1, we get

∥I ′(v)− I ′(ukj
)∥H−1 ≤ C∥v − ukj

∥,

for all j ≥ 1 and any v ∈ H1(RN ), which concludes the verification of the claim. Therefore,
if ∥ukj

− v∥ < δ̃/C := 2δ, then we have ∥I ′(ukj
) − I ′(v)∥ < δ̃, for all v ∈ H1(RN) and

j ≥ 1. This yields, σ− δ̃ < ∥I ′(ukj
)∥− δ̃ < ∥I ′(v)∥, for all j ≥ 1 large. For δ̃ ∈ (0, σ), we

have σ̃ := σ − δ̃ > 0 and

∀v ∈ H1(RN) : v ∈ B2δ(ukj
) =⇒ ∥I ′(v)∥ > σ̃.

Let us now set ε := min{p/2, σ̃δ/8} and S := {u(kj)}. Then, by virtue of [37, Lemma
2.3], there is a deformation η : [0, 1]×H1(RN)→ H1(RN) at the level b, such that

η(1, Ib+ε ∩ P) ⊂ Ib−ε, I(η(1, u)) ≤ I(u), for all u ∈ H1(RN).

For j large enough, since ukj
is minimizing for b, we have

max
t>0

I(ukj
(·/t)) = I(ukj

) < b+ ε. (3.27)

Then, by the properties of the deformation η we can infer that

max
t>0

I(η(1, ukj
(·/t)) < b− ε.
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On the other hand, for j and L fixed large, γ(t) := η(1, ukj
(·/Lt)) is a path in Γ since

I(γ(1)) = I(η(1, ukj
(·/L))) ≤ I(ukj

(·/L)) = LN−2

2

∫
RN
|(∇ukj

|2 − LN
∫
RN

(
F (ukj

)− λ
u2

kj

2

)
= LN−2

2

∫
RN
|∇ukj

|2 − LN
∫
RN
G(ukj

) < 0, for L→∞.

Hence, we deduce that

c ≤ max
t∈[0,1]

I(η(1, ukj
(·/Lt)) = max

t>0
I(η(1, ukj

(·/t)) < b− ε < b,

contradicting that fact that b = mP = c. The lemma is then proved.

3.5 A strongly convergent Palais-Smale sequence

A (PS)b sequence for I is bounded, therefore converges weakly in the Hilbert space,
but it is not strongly convergent in general unless there is more information about
compactness for the functional. This can be obtained, for instance, if the function space
has some symmetry properties, as it is going to be seen in the next lemma.

Lemma 3.4. Let the functional I : H1
rad(RN) → R and (uk) ⊂ P ⊂ H1

rad(RN) be a
(PS)b sequence for I with b = mP . Then, up to a subsequence, uk → u ∈ P , strongly in
H1(RN).

Proof. Since (uk) ⊂ P is a (PS)b sequence for I, then I(uk) → b and I ′(uk) → 0 in
H−1

rad(RN ). By Lemma 3.2, (uk) is bounded, hence using the Sobolev compact embeddings
of H1

rad(RN) into Lp(RN), 2 < p < 2∗, it follows that up to subsequences,

i) uk converges weakly to ū,

ii) uk converges to ū in Lp(RN), 2 < p < 2∗,

iii) uk(x) converges to ū(x), pointwise, a. e. in RN .

Now it is standard to show that uk → u, strongly in H1(RN). Observe that

∥uk − ū∥2 = ⟨I ′(uk)− I ′(ū), uk − ū⟩+
∫
RN

(f(uk)− f(ū))(uk − ū).
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By Lemma 3.3, I ′(uk)→ 0, (uk) is bounded and (i), it clearly follows that

⟨I ′(uk)− I ′(ū), uk − ū⟩ → 0.

On the other hand, (ii), (iii) and the hypotheses (f2) and (f4) on f, as in [33] (Theorem
5), imply that f(uk)→ f(ū) strongly in Lp′(RN), for p−1 + p′−1 = 1, yielding

∣∣∣∣∫
RN

(f(uk)− f(ū))(uk − ū)
∣∣∣∣→ 0 , k →∞.

This completes the proof of the lemma.

3.6 A constructive algorithm

The general approach in solving numerically the proposed problem is the following: we
restate the problem in a variational formulation on a Hilbert space with a constraint that
defines the Pohozaev manifold P and then use the steepest descent method allied with
projections on P to find minima of the functional I constrained to the direction found
by the former. By iterating such a process, we arrive at the minimum of I constrained
to P, which is the ground state solution obtained by the Mountain Pass Lemma [2].
The formulated algorithm is derived from the rigorous theoretical results aforementioned
and it converges to the positive ground state solution of problem (1.1). The main idea
is to descend along paths projected on the Pohozaev manifold P, which are precisely
γ(t) = u

( ·
t

)
constructed from Lemma 2.10.

In the work of Choi and McKenna [10], a constructive form of the Mountain Pass
Lemma of Ambrosetti and Rabinowitz [2], first formulated by Aubin and Ekeland [5],
was implemented numerically by allying the finite element method with a method of
steepest descent. This was done by starting with a local minimum and connecting it with
a path to a point e with I(e) ≤ 0 of lower altitude (Theorem A.8), finding the maximum
of I along this path, then deforming it in such a way as to make the maximum along
the path decrease as fast as possible and, finally, if that maximum turns out to have
been a critical point, they stop, or else, repeat this process. They apply the algorithm
in a rectangle to a homogeneous superlinear nonlinearity of type up, 1 < p < 2∗, but
this algorithm has been applied to problems with no symmetry assumptions, even on
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unbounded domains. A few years later, Ding, Costa and Chen [13] devised an algorithm
for finding sign-changing solutions by constructing a link from a given critical point
which would then lead to a new one, and they compute these solutions for bounded
domains both with and without symmetry, for odd nonlinearities. Theoretical studies
by Ding and Ni [15], a couple of years after [5], showed that a solution to the more
general problem 1.1 with the nonlinearity obeying a monotonicity condition on a bounded
domain (but also in RN) exists by a constrained minimization argument on the so called
Nehari manifold. Then, Chen, Ni and Zhou [9] used this approach to adapt the preceding
algorithms and solve for more general bounded domains with projections on Nehari
manifold. However, the limitation of this idea is that a unique projection is required in
order to apply the constrained minimization problem successfully which, in turn, depends
on the monotonicity assumption. We weaken this condition by, rather than constraining
the problem to the Nehari manifold, following with the clever idea of projections on the
Pohozaev manifold since, for problem (1.2) with the imposed conditions (f1)-(f4) and
(g1), they are guaranteed to be unique. This extends our framework to more general
problems, including nonhomogeneous superlinear problems in unbounded domains, as
well as nonhomogeneous asymptotically linear problems.

Subsequently, Horák in [17] exploited numerical minimization under a general con-
straint and applied his algorithm of the Constrained Steepest Descent Method (CSDM)
to find Mountain Pass solutions via constrained minimization on the Nehari manifold.
Moreover, a second algorithm called Constrained Mountain Pass Algorithm (CMPA)
is presented in [17], which enables to obtain critical points on the Nehari manifold of
higher energy levels. In our work, the proposed algorithm is in analogy with CSDM for
ground state solutions, applied here to the Pohozaev manifold, with one main difference:
in [17] the orthogonal projection of the gradient to the tangent space to the manifold is
used, whereas here a different kind of projection is employed (Lemma 3.1), as we always
reproject on P as we descend along the steepest descent direction. Furthermore, our
scheme is convenient since it repeatedly depends on taking a function w ∈ H1(RN ) such
that

∫
RN
G(w) dx > 0 and finding the maximum of the associated functional restricted

to P by means of a direct formula using the parameter t in Lemma 2.10, and hence this
approach is expected to lighten the computational cost at this step. Finally, by virtue of
Theorem 2.2 the ground state solution corresponds to the minimum on the Pohozaev
manifold, and so our algorithm shows to be fitted in finding this minimal action solution
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since it converges to the unique positive ground state solution starting from a non-zero
initial guess w0 ∈ H1(RN) satisfying

∫
RN
G(w0) > 0.

The general idea of the new algorithm is made clear in the sequel:

Step 1. Take an initial guess w0 ∈ H1(RN) such that w0 ̸= 0 and
∫
RN
G(w0) > 0,

under the assumption that 0 is a local minimum of I, since I has the Mountain Pass
geometry;

Step 2. Find t∗ > 0 by means of Equation 2.90 such that

I
(
w0

(
.

t∗

))
= max

t>0
I
(
w0

(
.

t

))
, (3.28)

and set w1 = w0

(
.

t∗

)
. This is possible because

∫
RN
G(w0) > 0 and hence one can use

Lemma 2.10;

Step 3. Find the steepest descent direction v̂ ∈ H1(RN ) at w1 ∈ H1(RN ), from (3.3)
and (3.5), obtaining ṽ = −∇I(w1) . If ∥ṽ∥ < ε, then output and stop.

Step 4. For 0 < α0 small, there exists t(α0) such that (w1 + α0v̂)
(
·

t(α0)

)
∈ P . Fix

a large K ∈ N and iterate αk := kα0, for k ∈ N and (w1 + αkv̂)
(
·

t(αk)

)
∈ P, that is,

we descend along the steepest descent direction. In view of Lemma 3.1, we can either
find αk0 for k = k0 ≤ K such that

I

(
(w1 + αk0 v̂)

(
·

t(αk0)

))
= min

αk
I

(
(w1 + αkv̂)

(
·

t(αk)

))

or such a minimum is not attained after K iterations and

I(w1 + αkv̂) ≤ I

(
w1 + αkv̂

(
·

t(αk)

))
< I(w1).

In the latter case, let 1 ≤ k0 ≤ K be the largest k such that
∫
RN
G(w1 + k0α0v̂) > 0. In

either case, proceed to Step 5.
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Step 5. Redefine w0 := w1 + k0α0v̂. Go to Step 2.

It is important to point out that the repetition of Step 2 in the algorithm produces a
sequence (w1j) such that I ′|P(w1j)→ 0 as j → +∞ by the steepest descent argument.
If I(w1j) → b = mP , when working in the space of radial functions H1

rad(RN) for the
applications in Chapter 5, by Lemmas 3.3 and 3.4 the algorithm will extract a strongly
convergent subsequence, which converges to a positive ground state solution. Considering
nonlinearities g(u) := f(u)− λu which satisfy, for instance, the assumptions by Serrin
and Tang [29] (Theorem 1), that if, for some β > 0,

(i) g is continuous on [0,+∞), with g(u) ≤ 0 in [0, β) and g(u) > 0 for u > β;
(ii) g ∈ C1(β,+∞), with ug′(u)/g(u) nonincreasing on (β,+∞),

it is known that the radial positive ground state is unique. Hence, the aforementioned
subsequence (w1j) would converge to the positive ground state solution and the algorithm
will terminate successfully. On the other hand, if Step 2 results in a constrained (PS)b

sequence at a higher energy level b > mP , then in some iteration the sequence would
start to present a sign-changing function w1j̄. At this point, one should go back to Step
1 and take another initial guess w0, but now satisfying I(w0) < I(w1j̄). Nevertheless, we
emphasize the fact that, at least for the applications presented on Chapter 5, this second
case did not occur in our simulations.



Chapter 4

Implementation and Numerical
experiments

4.1 Preliminaries

From the algorithm 3.6, one has to be careful in the implementation of the new
method. This Chapter deals with this assessment (Section 4.3) and with numerical
experiments necessary to validate our new algorithm (Section 4.4 ) and guarantee its
convergence and robustness (Section 4.5).

4.2 Radial symmetry

The algorithm presented in the previous section is applicable for general nonlinearities,
which satisfy the hypotheses stated in the introduction and can be applied to problems
with no symmetry assumptions, provided one works in a scenario to regain compactness
in RN. However, for the sake of simplicity, we are going to implement for nonlinearities
which satisfy conditions that imply that the ground state solution is radially symmetric.

4.2.1 Radial symmetry

Since f ∈ C1(R) is odd and f satisfies (f1) - (f4), a classical result of Berestycki
and Lions [6] establishes the existence of a ground state solution ω ∈ C2(RN) to the
problem (1.2), which is positive, radially symmetric and decreasing in the radial direction
(see Theorem 1 in [6]). In fact, by a result from Li and Ni [20], if g′(0) ≤ 0 then any
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positive solution of (1.1) is, up to a translation, radially symmetric (see Theorem 1
in [20]). Moreover, this radial positive solution is unique when extra hypotheses are
satisfied (see Serrin and Tang [29]). Therefore, we are going to restrict ourselves to the
H1

rad(RN), the subspace of radial functions of H1(RN), without loss of generality. Since
the functions are all radially symmetric, the integrals are calculated in the real line by
a change from cartesian to spherical variables, with u(r, θ, ϕ) = u(r). Moreover, all the
partial differential equations involved are transformed into ordinary differential equations
in the radius variable. Since we are working on R3, the problem is reduced to:



−u′′(r)− 2
r
u′(r) + λu(r) = f(u(r)), r > 0,

u(r)→ 0, r → +∞,

u′(0) = 0.

(4.1)

Moreover, our functional I, projected on P depends on:

h(t) := I
(
u
(
.

t

))
= 4π

(
t2

2

∫ +∞

0
|u′|2r2dr + λt3

2

∫ +∞

0
|u|2r2dr − t3

∫ +∞

0
F (u)r2dr

)

and its derivative is given by:

h′(t) := I ′
(
u
(
.

t

))
= 4π

(
t
∫ +∞

0
|u′|2r2dr + 3λt

2

2

∫ +∞

0
|u|2r2dr − 3t2

∫ +∞

0
F (u)r2dr

)
.

Therefore, the value of t that projects u on P is directly given by h′(t) = 0:

t2 =

∫ +∞

0
|u′|2r2dr

6
∫ +∞

0

[
−λ2 |u|

2 + F (u)
]
r2dr

=

∫ +∞

0
|u′|2r2dr

6
∫ +∞

0
G(u)r2dr

· (4.2)

4.3 Numerical Implementation

4.3.1 Discretisation and numerical methods

We start by noting that the algorithm presented in Section 3.6 does not involve solving
directly (4.1) and, therefore, it does not need to be discretised or treated numerically
otherwise. The parts of the algorithm that need to be treated numerically are the
calculations of the functional I(u) and of the projection parameter t, which involve the
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calculation of integrals, and the calculation of the steepest descent direction, which is
given by the Poisson problem in equation (3.2). We will describe briefly below how these
were implemented.

The steepest descent direction, given by the solution of (3.2), can be found by first
solving for ṽ in (3.3), which can be written in terms of a radially symmetric problem,
that is:

− ṽ′′(r)− 2
r
ṽ′(r) + ṽ(r) = w′′

1(r) + 2
r
w′

1(r)− λw1(r) + f(w1), (4.3)

with w1 given from Step 2, and with boundary conditions given by

ṽ(r)→ 0, r → +∞, and ṽ′(0) = 0. (4.4)

We use second order centered finite differences (see [7] and [4]) to discretise (4.3) on
the interval Ω = [0, R∗]. We define the mesh M = {r0, r1, . . . , rM} as the set of the
M + 1 points ri ∈ Ω that are used in the discretisation of the interval Ω. These points
are defined as ri = i∆r, i = 0, 1, . . . ,M , where ∆r = R∗/M is the space step. Defining
ṽi = ṽ(ri), and similarly with w1, we obtain the discretised version of (4.3) as:

αṽi+1 + βṽi + γṽi−1 = α′w1i+1 + β′w1i + γ′w1i−1 + f(w1i), (4.5)

with
α = 1

∆r2 + 1
ri∆r

, β = −
( 2

∆r2 + 1
)
, γ = 1

∆r2 −
1

ri∆r
(4.6)

and
α′ = −α, β′ = 2

∆r2 + λ, γ′ = −γ. (4.7)

We now observe that (4.5) is a linear system of M + 1 equations in terms of the
steepest descent function ṽi, which is solved by an SOR method [38] with relaxation
parameter chosen as 1.9.

Note that the boundary conditions of (4.3), given in (4.4), also have to be discretised.
The first boundary condition in (4.4) is taken to be ṽM = 0, where ṽM = ṽ(R∗), with
R∗ large enough so that ṽM = 0 is a good approximation of ṽ(r)→ 0 as r → +∞. We
discuss the influence of the choices of R∗ in Subsection 4.5.2. The second boundary
condition in (4.4) is discretised using a second order forward finite difference, which gives
ṽ0 = 4v1 − v2

3 .
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The integrals involved in the algorithm 3.6 were evaluated using a standard trapezoidal
rule, ∫ R∗

0
h(r)dr =

(
h(0) + h(R∗)

2 +
M−1∑
i=1

h(ri)
)

∆r + O(∆r3), (4.8)

for a function h(r). Note that the truncation error in this approximation is O(∆r3).
Finally, we note from Section 3.2 that the steepest descent function ṽ has to be

normalised in order to obtain v̂ , and therefore the solution obtained in (4.5) has to be
divided by 2µ, as detailed in (3.5) and mentioned in Step 3, so that we can control with
αk how much we descend along the steepest descent direction. However, we must keep
track of the actual value of the norm of the steepest descent function found, since we
need it to assess the convergence of the algorithm, as stated on the Step 3 in Section 3.6.

4.3.2 Pohozaev projection step

Given an initial guess w0 ∈ H1
rad, one can verify that

∫
RN
G(w0) > 0, which is done by

calculating this integral using the trapezoidal rule on the interval Ω. First, by Lemma 2.10,
we calculate t∗ by solving for t in (4.2). Then, we need to construct the function w1 from
the relation w1(·) = w0

( ·
t∗

)
. However, we note that w1 is calculated from w0 evaluated at

rescaled points which, unless t∗ = 1, are not the ones available in the mesh M. We could
estimate the value of w0 at the rescaled points via an interpolation procedure, but this
would be an unnecessary source of error to the numerical algorithm. Instead, we choose
to rescale the mesh M by rescaling all its points, i.e., M = {r̃0, r̃1, . . . , r̃M}, with r̃i given
by r̃i = rit∗. The function w1 can now be simply constructed by setting w1(r̃i) = w0(ri)
for i = 0, 1, . . . ,M . Note that, although this procedure does not introduce the additional
error of interpolation procedures to the numerical algorithm, the interval Ω, the mesh
M and the space step ∆r have to be recalculated at each projection step.

Moreover, in Step 4, projections of the line w1 + αkv̂ with varying αk are calculated
for t(αk) by, again, solving for t in (4.2). Note that this is done in the same setting as
Step 2.

4.3.3 Descending on Pohozaev manifold

First, evaluate the functional I on w1 ∈ P. We consider a given α0 (typically we

choose α0 = 10−1) and we evaluate I
(

(w1 + αkv̂)
(
·

t(αk)

))
, for increasing integers k,
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until we find k = k̄ such that

I

(
(w1 + αk̄v̂)

(
·

t(αk̄)

))
> I

(
w1 + αk̄−1v̂)

(
·

t(αk̄−1)

))
. (4.9)

When this k̄ is found, we redefine wnew
1 := w1 + αk̄−1v̂ and project it on P. We then

take α0 ← α0/10 and repeat the procedure until, with the desired accuracy, we reach
the minimum of I along the steepest descent direction v̂. Typically, this is done until
α0 = αmin = 10−10. It should be noted that, depending on the local topology of I(u),
the algorithm might identify a local minimum for which, after the refinement of α0 takes
place, we have both

I

(
(w1 + αkv̂)

(
·

t(αk)

))
> I

(
(w1 + αk−1v̂)

(
·

t(αk−1)

))
(4.10)

and
I

(
(w1 + αkv̂)

(
·

t(αk)

))
> I

(
w1 + αk+1v̂)

(
·

t(αk+1)

))
. (4.11)

In fact, the algorithm has found a local maximum instead. The strategy in this case is
to choose the function that gives the minimum on the right hand side of equations (4.10)
and (4.11), and set it as wnew

1 . The descent procedure would then carry on as described
in (4.9).

Remark 4.1. We recall here that our algorithm is not exempt from finding solutions
other than the ground state. If the second case in Step 4 leads to a sequence of functions
for which the associated energy functional I asymptotes a constant value, then Step 3
may give a steepest descent direction for which its norm goes to zero, and so we may find
a critical point wc. Radially symmetric critical points of higher energy levels do exist
(see [34], [6]). In our applications where the ground state is positive radially symmetric
(and unique), it suffices to check if wc changes sign or not. At this point, we check if wc

is a positive function and, in case it is not, we then return to Step 1 by taking an initial
guess w0 such that I(w0) < I(wc) in order to proceed with the search for the ground
state solution.
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4.4 Validation

In order to verify that the implementation of our new algorithm is correct, we compare
the result with the solution found via a different method (the midpoint method with
Richardson extrapolation implemented in Maple 2018). The singularity of the equation
is dealt with by assuming that the boundary conditions are defined as u = ε1 at r = 100,
at which point we expect that u is sufficiently close to zero, and u′(ε2) = ε3, where
ε1 = ε2 = ε3 = 10−35. The results are plotted in Figure 4.1. We observe a very good
agreement with the result obtained by the aforementioned method.
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Figure 4.1 Comparison between the results given by the mini-max algorithm (heavy line) and
Maple (circles) for f(u) = u3 and λ = 1.0, with standard set of parameters.

4.5 Convergence, dependence on the initial guess
and other numerical experiments

4.5.1 Convergence

We now assess the influence of the discretisation size ∆r on the results. Figure 4.2
shows a comparison of the solution given by the algorithm presented in Section 3.6 for
several values of ∆r. On Figure 4.2 (left), we plot the solution obtained for different
mesh sizes, corresponding to ∆r ranging from 0.02 to 0.0004, and we observe that no
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significant differences on the profile of the solution can be noticed. However, we do note
that there is a difference on the tail of the solution when ∆r changes. Nevertheless, the
differences are minor and due to the fact that the final length of Ω is actually calculated
by the algorithm during the projection step, and will change depending on M and on
the initial value of R∗. This will be discussed further on Section 4.5.2. Figure 4.2 (right)
indicates that this phenomenon does not compromise significantly the value of I(u) for
sufficiently large M . For M > 400, the differences among the solutions are negligible and
the differences between consecutive curves and the values of I(u) become smaller and
smaller as M grows.

4.5.2 Initial size of the domain

The point where the boundary condition at infinity is imposed at the beginning of the
simulations defines the size R∗ of the domain Ω in which we define w0. We have to choose
R∗ sufficiently large, so that the numerical boundary condition is as realistic as possible,
since we are looking for solution in H1

rad(RN ). The effects of the choice of R∗ on the final
results is assessed by measuring ||ṽ|| at the end of the simulations for different values
of R∗. The results, shown in Figure (4.3), indicate that the smaller R∗, the larger the
final ||ṽ|| will be. As R∗ increases, we observe that ||ṽ|| decays as R∗−2 until it reaches a
plateau at around R∗ = 10. For larger values of R∗, there is no significant change on the
final value of ||ṽ||. This indicates that, for each choice of ∆r, there is a minimum critical
value of R∗ that must be chosen in order to achieve the best possible value of ||ṽ|| in the
end of the simulations. Even further, for two different choices of ∆r, as R∗ increases, we
observe that the plateau is reached for the same R∗.

4.5.3 Robustness

Finally, we compare the results obtained by the standard choice of numerical parame-
ters of our algorithm with a coarser mesh in which we have also reduced the values of
αmin to 10−2 and the tolerance for the SOR algorithm tolSOR to the determination of the
steepest descent direction also to 10−2. We observe very good agreement between the
results, that is, the overall profile of the solution in the coarser approximation reproduces
the shape of the refined solution, with the exception of the values close to r = 0. In
fact, the value of the functional I(u) is only overestimated by around 0.1% when the
solution found by using the coarser parameters is used. This indicates that the algorithm
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Figure 4.2 Comparison of the solution obtained by MMAP for different values of M (top) and
the values of I(u) (bottom).

is very robust and converges to the desired function even with very limited computational
resources.

Remark 4.2. Solving the Poisson equation (4.3) is expected to be the most compu-
tationally expensive part of our algorithm and so, a parameter which must be given a
good amount of significance is the tolerance for the convergence of the SOR. Since we
are unaware of the local topology of the functional I, our initial guess w0 from Step 1
might have high energy or be far from P. Being so, at first, the tolerance tolSOR on
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the calculation of the steepest descent direction might be relaxed but, once we get close
enough to the sought mini-max solution, this parameter must be refined.

Remark 4.3. For the choice of the initial guess w0 in Step 1, by the fact that in order to
project w0 on the Pohozaev manifold it is sufficient that the restriction

∫
RN
G(w0) dx > 0

is satisfied, such a condition is mild compared to the initial guesses in the other algorithms
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in the literature since, according to Lemma 2.10, any suitable w0 ∈ H1(RN)\{0} can be
chosen.

Also, if one takes a function with exponential decay and calibrates the gradient term
and the nonlinearity term to construct an initial that has a high enough energy functional
level, this means the algorithm can ’descend’ the initial guess along the iterations to
converge to the ground state solution. In contrast, choosing a suitable initial guess, but
that has low energy, the algorithm is likely to search forever in lower levels.

Remark 4.4. We note that Step 4, which involves the reprojection to P of the functions
obtained during the descent stage of the algorithm, can be relaxed to a less computa-
tionally intensive version if we choose to perform the reprojections every Nr steps. In
fact, we have run several tests for Nr ranging from 2 to 100 and no noticeable changes
were observed neither on the shape of the solution nor on the value of I(u) for the case
f(u) = u3, λ = 1.0 with the standard set of parameters.



Chapter 5

Applications

5.1 Preliminaries

The aim of this Chapter is to provide the reader with examples of nonlinearities
f such that the problem 1.2 can be tackled numerically by the algorithm proposed in
Section 3.6.

In Section 5.2 we use the algorithm to solve problem 1.2 for the case where f is
superlinear. In Section 5.3 we deal with an asymptotically linear f and in Section 5.4 we
consider the case where I(tu) has two maxima for t > 0, and so previous algorithms in
the literature could not find a solution due to the lack of a unique projection.

5.2 Superlinear Problems

5.2.1 The case f(u) = u3 in R3

For superlinear nonlinearities |u|p, 1 < p < 2∗ − 1, the algorithms proposed prior to
this work were able to tackle problem (1.2), which can also be managed by our algorithm.
We can, apart from the validations performed in the previous section, assess its precision
in calculating the maximum of the solution, which is attained in the origin, by recalling
that the positive solution is radially symmetric and decreasing in the radial direction.
Simple calculations show that

uλ(r) = λ
1

p−1u1(
√
λ r), (5.1)
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is the positive solution of problem (1.2), with f(u) = u3, where u1 is the positive solution
with λ = 1.0.

In Table 5.1 we present the maximum heights u(0) for several values of λ, obtained
by our algorithm. On the other hand, assuming that the height of u1 is given by our
algorithm, that is, u1(0) = 4.33691, we calculate uλ(0) for λ = 0.1, 0.5, 2.0, 3.0 using
(5.1). The comparison of the heights u(0) obtained numerically and the height uλ(0)
obtained by (5.1) gives an error that is less than 0.1%. Figure 5.1 shows the profiles of
the solutions of problem 1.2 obtained by the algorithm for those values of λ.

Table 5.1 Results for u(0) for the case f(u) = u3 obtained for different values of λ. In this table,
we present the value of the norm of the steepest descent ||v|| at the end of the calculations, of
I(u) for the solution and the relative error of u(0) with respect to the theoretical value uλ(0)
in (5.1).

λ u(0) ||v|| I(u) error
0.1 1.37148 5.6 · 10−4 5.97615 < 0.1%
0.5 3.06678 4.0 · 10−4 13.36246 < 0.1%
1.0 4.33691 6.0 · 10−4 18.89734 –
2.0 6.13321 7.7 · 10−4 26.72488 < 0.1%
3.0 7.51153 9.3 · 10−4 32.73110 < 0.1%

5.3 Aymptotically linear Problems with a monotonic-
ity condition

5.3.1 The case f(u) = u3

1 + su2 in R3

The asymptotically linear problems |u|p

1 + s|u|p−1 , 1 < p < 2∗ − 1, 0 < λs < 1, satisfy

the monotonicity condition f(u)/u increasing for u > 0 and so, could be handled by
the algorithms in [9] - since projections on the Nehari manifold rely on this hypothesis -
but were not attempted. Using the devised algorithm, we have found the ground state
solution in the case f(u) = u3

1 + su2 . Figure 5.2 shows the solution for this nonlinearity
with λ = 1.0 and s = 0.5. For reference purposes, we include on Table 5.2 the values
of u(0) for the positive solution u. Also, Figure 5.3 shows the descending energy of
the functional from the initial guess w0, here chosen as 100 e−10 r2 , to the solution. For
the other values of λ and s, the initial guesses we chose were similar, and of the form
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Figure 5.1 Profile of solutions for f(u) = u3 for different values of λ.

a exp(−br2), with a ranging from 4.5 to 100.0 and b ranging from 2 to 10. For validation
purposes, we present on Table 5.3 a list of values of the solution found for λ = 1.0 and
s = 0.5.

5.4 Other examples

The real improvements of our algorithm compared to others in the literature are
presented in the next two examples. In order to obtain the positive ground state solution
of (1.2), if the nonlinear term f(u) satisfies conditions (f1)-(f4) our algorithm is applicable
and gives the correct solution, whereas other existing algorithms cannot be applied
either because it requires unique projections on the Nehari manifold [9] or because
superquadratic conditions on the nonlinearity f are assumed [10].
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Table 5.2 Values of u(0) obtained for the case f(u) = u3

1 + su2 for several combinations of λ

and s. Note that we can only obtain solutions when λs < 1. M = 3501.

λ

s

0.1 0.3 0.5 0.7 1.0 5.0
0.1 1.33183 2.23513 2.84300 3.34310 3.99690 12.61528
0.3 1.29034 2.18677 2.87000 3.51098 4.50062 –
0.5 1.27125 2.22308 3.05319 3.94794 5.64139 –
0.7 1.26344 2.29849 3.33592 4.65516 8.08286 –
1.0 1.26374 2.46503 3.98912 6.76196 – –
5.0 1.78424 – – – – –

Table 5.3 Values of u(r) for f(u) = u3

1 + su2 for several r with λ = 1.0, s = 0.5.

r u(r) r u(r) r u(r) r u(r)
0.000 5.64139 2.004 2.99197 5.005 0.11309 8.007 1.86676 ×10−3

0.100 5.63348 2.205 2.58907 5.207 8.88979 8.208 8.34267 ×10−4

0.201 5.60837 2.608 1.84032 5.601 5.56388 ×10−2 8.300 3.91292 ×10−4

0.302 5.56672 3.002 1.23610 6.003 3.45536 ×10−2 8.351 1.55421 ×10−4

0.402 5.50879 3.203 0.98899 6.204 2.72241 ×10−2 8.376 3.87317 ×10−5

0.604 5.34578 3.605 0.61708 6.607 1.68230 ×10−2 8.384 0.000000
1.006 4.84857 4.007 0.37890 7.000 1.03282 ×10−2

1.199 4.54191 4.201 0.29952 7.202 7.93701 ×10−3

1.601 3.80120 4.603 0.18367 7.604 4.38170 ×10−3
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Figure 5.2 Surface plot of solution for f(u) = u3

1 + su2 with λ = 1.0, s = 0.5. u(0) = 5.64139,

I(u) = 161.92929, ||v|| = 2.5× 10−4.

5.4.1 Example where I(tu) has two maxima for t > 0

This example illustrates a situation where the functional I evaluated in the direction
tu, for t ∈ R, has at least two maximum values at t1 and t2, for instance, and hence
the algorithm MPA developed by Chen, Ni and Zhou in [9], which takes the unique
projection on the Nehari manifold on the direction of the vector u (Step 3 ), does not
work.

Choosing F (u) = Bu3 − Cu4 +Du5 in (1.10), and so

f(u) = 3Bu2 − 4Cu3 + 5Du4, (5.2)
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with λ = 1, and taking

u(r) =


1√
4π

, |r| ≤ R

1√
4π

e−|R−r|, |r| ≥ R

with R ≈ 3.075, A = ||u||
2

2 and positive constants B,C and D such that

I(tu) = t2
||u||

2 −
∫
F (tu)

= t2A−Bt3
∫
u3 + Ct4

∫
u4 −Dt5

∫
u5

= −t5 + (5 +
√

5)t4 − 2(4 +
√

5)t3 + 4(1 +
√

5)t2
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gives rise to an example for I(tu) having two maxima. Figure 5.4 shows u(r) and I(tu).
Those two maxima are given by I(r1) = I(r2) = 128

25
√

5
. The profile of the solution for

problem 1.2 with f(u) as in (5.2), with λ = 3.0 solved by our mini-max algorilthm is
shown in Figure 5.5.
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Figure 5.4 An example of function u (left) for which I(tu) has two maxima (right), with f(u)
as in (5.2).
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5.5 Concluding remarks

The algorithm presented in this paper is based in a novel approach of finding a
critical point of a functional associated to the Euler equation, which may model Physical
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problems, by constrained minimization method in the appropriate Pohozaev manifold.
The main advantage is that it can tackle asymptotically linear as well as superlinear
problems with no assumption of monotonicity on f(u)/u. This improves previous results
by solving for those problems already studied and complementing with new problems
which could not be treated by the preceding algorithms in the literature.

Remark 5.1. It is important to observe that the algorithm can be applied to general
nonlinearities g(u) as long as it satisfies the conditions (g1)-(g4) and provided the
associated functional possesses a mountain pass geometry, hence one can hope to visualize
ground state solutions for a wide class of elliptic problems in RN .

Remark 5.2. The example

f(u) =
u7 − 5

2u
5 + 2u3

1 + u6 , (5.3)

shown in Figure 5.6 (left), does not satisfy the monotonicity condition of f(u)/u, shown
in Figure 5.6 (right), increasing in the variable u, for u > 0. However, taking 0 < λ < 1,
projections on the Pohozaev manifold can be performed, hence algorithm 3.6 can be
applied.
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Figure 5.6 Example of a nonlinearity for which the monotonicity condition does not hold. f(u)
(left) and f(u)/u (right).

Remark 5.3. This algorithm can also be extended to tackle numerically weakly coupled
elliptic systems, such as


−∆u+ u = |u|2q−2u+ b|v|q|u|q−2v in RN

−∆v + ω2v = |v|2q−2v + b|u|q|v|q−2v in RN

u(x)→ 0, v(x)→ 0 as |x| → ∞,

(5.4)
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where ω, b > 0 are constants and q is such that 2 < q < 2∗ = 2N
N − 2 if N = 3, and

2∗ = +∞ if N = 1, 2. This problem was studied by Maia-Montefusco-Pellacci in [21].
When q = 2, the system becomes


−∆u+ u = |u|2u+ b|v|2u in RN

−∆v + ω2v = |v|2v + b|u|2v in RN

u(x)→ 0, v(x)→ 0 as |x| → ∞,

(5.5)

In Figure 5.7 (left), one has fixed b = 30 with varying ω. In Figure 5.7 (right), one
has fixed ω = 2 with varying b.

Figure 5.7 The ground state solutions (u,v) for a few pairs of the (b, ω) parameters.

Remark 5.4. Finally, the theoretical backing of the algorithm 3.6 is the variational
method where the associated functional I is defined on the Hilbert space H1(RN ), which
is continuously embedded in L2∗(RN). Hence, critical and supercritical nonlinear terms,
lim

u→+∞
f(u)/up = +∞, with p ≥ 2∗ − 1, cannot be accessed.
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Appendix A

Auxiliary results

A.1 Divergence theorem

A reference can be found in [16].

Theorem A.1. Consider U a bounded open subset of RN and with boundary ∂U of
class C1.

We have

∫
U
div u dx =

∫
∂U
u · ν dS (A.1)

for each vector field u ∈ C1(U,RN).

A.2 Dual Space of H1

A reference can be found in [16] (Section 5.9.)

Definition A.1. We denote by H−1(RN) the dual space to H1(RN). f belongs to
H−1(RN) if f is a bounded linear functional on H1(RN).

A.3 Ekeland Variational Principle

A reference can be found in [34] (Chapter 1, Section 5).

Theorem A.2. Let M be a complete metric space endowed with a metric d and let
E : M → R

⋃
+∞ be lower semicontinuous, bounded from below, and not equal to ∞.
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Then for any ϵ, δ > 0 and any u ∈M with

E(u) ≤ inf
M
E + ϵ,

there is an element v ∈M strictly minimizing the functional

E(w) + ϵ

δ
d(v, w).

Moreover, one has that
E(u) ≤ E(v), d(u, v) ≤ δ.

A.4 Fatou Lemma

See [16] for a reference.

Theorem A.3. Let Ω ⊂ RN be a Lebesgue-measurable set and (fn) a sequence of
Lebesgue-measurable, non-negative functions defined on Ω. Then

∫
Ω

lim inf
n→∞

fn dx ≤ lim inf
n→∞

∫
Ω
fn dx.

A.5 Hölder Inequality

See [16] for a reference.

Theorem A.4. Given 1 ≤ p ≤ +∞, let u ∈ Lp(Ω) and v ∈ Lp′
, where p′ is the conjugate

exponent of p, i.e. it is such that 1
p

+ 1
p′ = 1 (and we set p′ = +∞ when p = 1.) Then

uv ∈ L1(Ω) and ∫
Ω
|uv| dx ≤ ∥u∥Lp(Ω)∥v∥Lp(Ω),

A.6 Fréchet differentiability

A reference can be found in [3].

Theorem A.5. Consider X, Y Banach Spaces and let L(X, Y ) denote the space of linear
continuous maps from X to Y.
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We say that f : U → Y is Fréchet differentiable at u ∈ U ⊂ X with derivative
f ′ ∈ L(X, Y ) if f(u+ h) = f(u) + ⟨f ′(u), h⟩+ o(∥h∥), as h→ 0.

Furthermore, f is said Fréchet differentiable on U if it is Fréchet differentiable at
every point u ∈ U.

The limit
lim
ϵ→0

f(u+ ϵh)− f(u)
ϵ

. = . ⟨f ′(u), h⟩

is the Fréchet derivative of f at u ∈ X.

A.7 Gatêaux differentiability

See [36] for a reference.

Definition A.2. Let X be a Banach space and considrer a functional Phi : X → R. We
say Φ is Gatêaux differentiable at a point u ∈ X when there exists a linear functional
T0 such that

lim
t→0

Φ(u+ tv)− Φ(u)− T0v

t
∀ v ∈ X. (A.2)

When such a linear functional exists, it is unique and T0 is called the Gatêaux
derivative of Φ at point u ∈ X. We denote it by DΦ(u).

A.8 Lagrange Multiplier Theorem on Banach Spaces

See [12] for a reference.

Theorem A.6. Consider Z a Banach space and X∗ its dual. If the continuously
differentiable functional f has a local extremum under the constraint H(x) = θ at the
regular point x0, then there exists an element z∗

0 ∈ Z∗ such that the Lagrangian functional

L(x) = f(x) + ⟨H(x), z∗
o⟩

is such that
f ′(x) + ⟨z∗

0 , H
′(x0)⟩ = θ.
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A.9 Lebesgue Dominated Convergence Theorem

A reference can be found in [27].

Theorem A.7. Let Ω ⊂ RN a Lebsegue-measurable set and (fn) a sequence of Lebesgue-
measurable, integrable functions defined on Ω. Suppose there exists a Lebesgue-measurable
function f : Ω→ R such that

fn(x)→ f(x), a.e. in Ω,

and suppose there exists an integrable function g : Ω→ R such that

|fn| ≤ g, a.e. in Ω,∀n ∈ N.

Then f is integrable and ∫
Ω
f dx = lim

n→∞

∫
Ω
fn dx.

A.10 Mountain Pass Lemma of Ambrosetti-Rabinowitz

A reference can be found in [16], [22] and [2].

Theorem A.8. Assume I ∈ C1(H1(RN),R) such that, I(0) = 0 and

(I1) there exist constants ρ, α > 0 such that I|∂Bρ(0) ≥ α, and

(I2) there exists an e ∈ H1(RN) \Bρ(0) and I(e) ≤ 0. Define

c := inf
γ∈Γ

max
u∈γ([0,1])

I(u), (A.3)

where
Γ = {γ ∈ C([0, 1], H1(RN))|γ(0) = 0, γ(1) = e}.

Then, if I satisfies (PS)c, the level c is a critical level of I, i.e, there exists u ∈ H1(RN)
such that I(u) = c and I ′(u) = 0.
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A.11 Pohozaev identity

A proof of the following result can be found in many references, such as [6] and [25].
Nevertheless, we prove it here in a detailed manner.

Theorem A.9. Suppose g : R→ R is a continuous function such that g(0) = 0, and let

G(t) =
∫ t

0
g(s) ds.

Let u satisfy


−∆u = g(u)

u ∈ H1(RN)
(A.4)

Assume furthermore that u ∈ L∞
loc(RN), ∇u ∈ L2(RN) and G(u) ∈ L1(RN).

Then

∫
RN
|∇u|2 dx = 2N

N − 2

∫
RN
G (u) dx. (A.5)

Proof. First, because u ∈ L∞
loc(RN), from the partial differential equation −∆u = g(u)

we get u ∈ Lp
loc(RN ). Since the laplacian belongs to Lp

loc(RN ), then u ∈ W 2,p
loc (RN ) for any

1 ≤ p <∞.
Now multiply (A.4) by x · ∇u and compute

0 = (−∆u+ g (u)) (x · ∇u) (A.6)

By Green’s Formula, if Ω ⊂ RN is an open, bounded, smooth set and u ∈ C2(Ω),
v ∈ C1(Ω), then

∫
Ω

(∆u) · vdx =
∫

∂Ω

∂u

∂ν
νdσ −

∫
Ω
∇u · ∇vdx, (A.7)

where ν = ν(x) is the outward vector normal to ∂Ω at x, ∂u
∂ν

(x) = ∇u(x) · ν(x) and
σ is the surface measure on ∂Ω. Applying Green’s Formula to (A.6), we get

−
∫

Ω
(∆u) (x · ∇u) dx =

∫
Ω
∇u · ∇ (x · ∇u) dx−

∫
Ω

∂u

∂ν
(x · ∇u) dσ (A.8)
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As for the other term in (A.6), we may treat it in an easier manner :

g (u) (x · ∇u) = x · ∇ (G (u)) = ∇
(1

2 |x|
2
)
· ∇ (G (u)) ,

where we apply Green’s Formula:

∫
Ω
g (u) (x · ∇u) dx =

∫
Ω
∇
(1

2 |x|
2
)
· ∇ (G (u)) dx (A.9)

=
∫

∂Ω
G (u) ∂

∂ν

(1
2 |x|

2
)
dσ −N

∫
Ω
G (u) dx (A.10)

Since G(u(x)) = G(0) = 0 in ∂Ω,

∫
Ω
g (u) (x · ∇u) dx = −N

∫
Ω
G (u) dx. (A.11)

Now, we shall treat the Equation (A.8) to better understand its terms:

∂

∂xj

(x · ∇u) = ∂

∂xj

(
N∑

i=1
xi
∂u

∂xi

)
=

N∑
i=1

(
∂xi

∂xj

∂u

∂xi

+ xi
∂2u

∂xj∂xi

)

=
N∑

i=1

(
δij

∂u

∂xi

+ xi
∂2u

∂xj∂xi

)

=
N∑

i=1

(
∂2u

∂xj∂xi

xi + ∂u

∂xj

)

(A.12)

We can use this expression to compute ∇u · ∇ (x · ∇u):

∇u · ∇ (x · ∇u) =
(
∂u

∂x1
, . . . ,

∂u

∂xN

)
·
[(

∂

∂x1
, . . . ,

∂

∂xN

)(
N∑

i=1
xi
∂u

∂xi

)]

=
(
∂u

∂x1
, . . . ,

∂u

∂xN

)
·
[
∂

∂x1

(
N∑

i=1
xi
∂u

∂xi

)
, . . . ,

∂

∂xN

(
N∑

i=1
xi
∂u

∂xi

)]
,

where we use (A.12) to get:
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∇u · ∇ (x · ∇u) =
(
∂u

∂x1
, . . . ,

∂u

∂xN

)
·
[

N∑
i=1

(
∂2u

∂xi∂x1
x1 + ∂u

∂x1

)
, . . . ,

∑(
∂2u

∂xi∂xN

xN + ∂u

∂xN

)]

= ∂u

∂x1

N∑
i=1

(
∂2u

∂xi∂x1
x1 + ∂u

∂x1

)
+ . . .+ ∂u

∂xN

N∑
i=1

(
∂2u

∂xi∂xN

xN + ∂u

∂xN

)

=
N∑

j=1

∂u

∂xj

N∑
i=1

(
∂2u

∂xi∂xj

xi + ∂u

∂xj

)

=
N∑

j=1

∂u

∂xj

N∑
i=1

∂2u

∂xi∂xj

xi +
N∑

j=1

∂u

∂xj

N∑
i=1

∂u

∂xj

=
N∑

i=1

∂

∂xi

1
2

N∑
j=1

(
∂u

∂xj

)2
xi +

N∑
j=1

∂u

∂xj

∂u

∂xj

,

where on the first term of this last expression we used the identity

∂

∂xi

1
2

N∑
j=1

(
∂u

∂xj

)2
 = 21

2
∂

∂xi

(
∂u

∂xj

)
= ∂2u

∂xi∂xj

.

As for the second term, we simply use that

N∑
j=1

∂u

∂xj

∂u

∂xj

= |∇u|2 ,

and so we get

∇u · ∇ (x · ∇u) = 1
2

N∑
i=1

∂

∂xi

 N∑
j=1

(
∂u

∂xj

)2
xi + |∇u|2

= 1
2x · ∇

(
|∇u|2

)
+ |∇u|2 .

Then, by using the identity x = ∇
(1

2 |x|
2
)

, we are then left with:

∇u · ∇ (x · ∇u) = 1
2∇

(1
2 |x|

2
)
· ∇

(
|∇u|2

)
+ |∇u|2 . (A.13)

Now, following from (A.8), by putting u = 1
2 |x|

2, v = |∇u|2 and integrating Equation
(A.13) we will have:
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∫
Ω
∇u · ∇ (∇u · x) dx =

∫
Ω
|∇u|2 dx+ 1

2

∫
Ω
∇
(1

2 |x|
2
)
· ∇

(
|∇u|2

)
dx (A.14)

=
∫

Ω
|∇u|2 dx+ 1

2

(∫
∂Ω

∂

∂v

(1
2 |x|

2
)
|∇u|2 dσ −

∫
Ω

∆
(1

2 |x|
2
)
|∇u|2 dx

)

But

∆
(1

2 |x|
2
)

= ∇ · ∇
(1

2 |x|
2
)

= ∇ · ∇
(1

2⟨x, x⟩
2
)

= ∇ ·
(

2 · 12∇ (⟨x, x⟩)
)

= N,

and

∂

∂ν

(1
2 |x|

2
)

= ∂

∂ν

(1
2 (⟨x, x⟩)2

)
= ∂

∂ν
(⟨x, x⟩) = ⟨∂x

∂ν
,
∂x

∂ν
⟩ = ν (x) · x,

and so

∫
Ω
∇u · ∇ (∇u · x) dx =

∫
Ω
|∇u|2 dx+ 1

2

∫
∂Ω

∂

∂ν

(1
2 |x|

2
)
|∇u|2 dσ − N

2

∫
Ω
|∇u|2dx

⇒
∫

Ω
∇u · ∇ (∇u · x) dx = 2−N

2

∫
Ω
|∇u|2 dx+ 1

2

∫
∂Ω

∂

∂ν

(1
2 |x|

2
)
|∇u|2 dσ. (A.15)

Finally, substituting (A.15) in (A.8) gives:

−
∫

Ω
∆u (x · ∇u) dx = 2−N

2

∫
Ω
|∇u|2 dx+1

2

∫
∂Ω

∂

∂ν

(1
2 |x|

2
)
|∇u|2 dσ−

∫
∂Ω

∂u

∂ν
u (x · ∇u) dσ

(A.16)
In order to deal with the boundary terms, we note that u = 0 on ∂Ω, and then we

have ∇u(x) = ∂u(x)
∂ν

ν(x) for every x ∈ ∂Ω, so that |∇u| =
∣∣∣∣∣∂u∂ν

∣∣∣∣∣ and ∇u · x = ∂u

∂ν
ν(x) · x

on ∂Ω. With this information, we may simplify this last expression to:
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−
∫

Ω
∆u (x · ∇u) dx = 2−N

2

∫
Ω
|∇u|2 dx+1

2

∫
∂Ω

∂

∂ν

(1
2 |x|

2
)
|∇u|2 dσ−

∫
∂Ω

∂u

∂ν

(
∂u

∂ν
ν (x) · x

)
dσ

(A.17)

2−N
2

∫
Ω
|∇u|2 dσ1

2

∫
∂Ω
ν (x) · x

∣∣∣∣∣∂u∂ν
∣∣∣∣∣
2

dσ =
∫

∂Ω

∂u

∂ν
(∇u (x) · x) dσ

⇒ 2−N
2

∫
Ω
|∇u|2 dσ1

2

∫
∂Ω
ν (x) · x

∣∣∣∣∣∂u∂ν
∣∣∣∣∣
2

dσ =
∫

∂Ω

∂u

∂ν

(
∂u

∂ν
ν (x) · x

)
dσ

⇒ 2−N
2

∫
Ω
|∇u|2 dσ = 1

2

∫
∂Ω
ν (x) · x

∣∣∣∣∣∂u∂ν
∣∣∣∣∣
2

dσ

−
∫

Ω
∆u (x · ∇u) dx = 2−N

2

∫
Ω
|∇u|2 dx− 1

2

∫
∂Ω
ν (x) · x

∣∣∣∣∣∂u∂ν
∣∣∣∣∣
2

dσ. (A.18)

Finally, putting (A.18) and (A.11) together:

∫
Ω

∆u (x · ∇u) dx−
∫

Ω
g (u) (x · ∇u) dx = 2−N

2

∫
Ω
|∇u|2 dx+N

∫
Ω
G (u) dx−1

2

∫
∂Ω
ν (x)·x

∣∣∣∣∣∂ν∂v
∣∣∣∣∣
2

dσ

⇒
∫

Ω
(−∆u− g (u)) (x · ∇u) dx = 2−N

2

∫
Ω
|∇u|2 dx+N

∫
Ω
G (u) dx−1

2

∫
∂Ω
ν (x)·x

∣∣∣∣∣∂ν∂v
∣∣∣∣∣
2

dσ

⇒ N − 2
2

∫
Ω
|∇u|2 dx−N

∫
Ω
G (u) = −1

2

∫
∂Ω
ν (x) · x

∣∣∣∣∣∂u∂ν
∣∣∣∣∣
2

dσ, (A.19)

which is Pohozaev identity (for a bounded domain). We can then proceed with the
calculations to obtain the Pohozaev identity in the case where the domain is actually
the whole RN . For this, consider the bounded domain to be the open ball with radius R
centered at the origin, that is, Ω = BR(0). We then rewrite (A.19):
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Figure A.1 The inner product of the position and the normal vector on the open ball BR(0).

N − 2
2

∫
BR(0)

|∇u|2 dx−N
∫

BR(0)
G (u) = −1

2

∫
∂BR(0)

ν (x) · x
∣∣∣∣∣∂u∂ν

∣∣∣∣∣
2

dσ (A.20)

Now, note that on the open ball BR(0), we have that x · ν(x) = |x| = R, which can
be easily seen from the schematics in Figure A.1.

With this in mind, we substitute this back on our calculations on Equation (A.20):

N − 2
2

∫
BR(0)

|∇u|2 dx−N
∫

BR(0)
G (u) dx = −1

2R
∫

∂BR(0)

∣∣∣∣∣∂u∂ν
∣∣∣∣∣
2

dσ

⇒
∫

BR(0)
|∇u|2 dx− 2N

N − 2

∫
BR(0)

G (u) dx = −1
2

2R
N − 2

∫
∂BR(0)

∣∣∣∣∣∂u∂ν
∣∣∣∣∣
2

dσ

⇒
∫

BR(0)
|∇u|2 dx− 2N

N − 2

∫
BR(0)

G (u) dx = − 2R
N − 2

1
2

∫
∂BR(0)

∣∣∣∣∣∂u∂ν
∣∣∣∣∣
2

dσ

 . (A.21)

From here, since we know |∇u| =
(
∂u

∂v

)
, then we may rewrite the identity (A.21):

∫
BR(0)

|∇u|2dx− 2N
N − 2

∫
BR(0)

G(u)dx = −2R
N − 2

(
1
2

∫
∂BR(0)

|∇u|2dσ +
∫

∂BR(0)
G(u)dσ

)
(A.22)

We will now show that, at least for one suitably chosen sequence Rn → +∞, the
right hand side of the Equation (A.22) above converges to zero. In order to do so, let us
note that since |∇u| ∈ L2(RN), we have
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∫
RN
|∇u|2 dx =

∫ +∞

0

∫
∂BR(0)

|∇u (r, θ)|2 dSrr
N−1dr

=
∫ +∞

0
rN−2r

∫
∂BR(0)

|∇u (r, θ)|2 dSrdr

=
∫ +∞

0
rN−2

∫
∂BR(0)

|∇u (r, θ)|2 rdSrdr

=
∫ +∞

0
rN−2

∫
∂BR(0)

|∇u (r, θ) |2x · ηdSrdr <∞.

Now, we will suppose that there does not exist a sequence rn →∞ such that

rn

∫
∂BR(0)

1
2 |∇u (r, θ)|2 dSr → 0.

Then it must hold

lim inf
r→∞

∫
∂BR(0)

1
2 |∇u (r, θ)|2 dSr = k > 0.

By putting

ζ (r) = r
∫

∂BR(0)

1
2 |∇u (r, θ)|2 dSr > 0,

we have

∫ +∞

0
rN−2ζ (r) dr >

∫ +∞

R0
rN−2ζ (r) dr > k

∫ +∞

R0
rN−2dr = +∞,

a contradiction, since |∇u| ∈ L2(RN). Then there exists a sequence rn → ∞ such
that

rn

∫
∂BR(0)

1
2 |∇u (r, θ)|2 dSr → 0.

In a similar manner, since we have

∫
Rn

1
2 |∇u|

2 +G (u) dx =
∫ +∞

0

(∫
∂BR(0)

1
2 |∇u|

2 +G (u) ds
)
dr < +∞,

then there exists a sequence rn →∞ as n→∞ such that

rn

∫
∂BR(0)

1
2 |∇u (r, θ)|2 +G (u (r, θ)) dSr → 0,
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because if

lim inf
r→+∞

r
∫

∂BR(0)
|∇u (r, θ)|2 +G (u (r, θ)) dSr = α

were true, then it would be that

∫
∂BR(0)

1
2 |∇u|

2 +G (u) dS /∈ L1 (0,+∞) ,

a contradiction.
Thus, there exists a sequence rn →∞ as n→ +∞ such that the right hand side of

(A.22) converges to zero.
Then, from the fact that

∫
BR(0)

|∇u|2 dx→
∫
RN
|∇u|2 dx

and

∫
BR(0)

G(u)dx→
∫
RN
G(u)dx,

by putting R = rn and rn →∞, we derive the Pohozaev identity for the case where
the domain is RN :

∫
RN
|∇u|2 dx = 2N

N − 2

∫
RN
G (u) dx. (A.23)

To conclude, note that in our calculations we proved the Pohozaev identity for the
case of a bounded domain Ω, where we then took in particular the open ball centered at
the origin with radius R, i.e. Ω = BR(0). By using an argument of growing the radii Rn

of these balls, after showing that the boundary terms go to zero when Rn → +∞, we
can pass to the limit and find the identity for the case where Ω = RN .

This concludes the proof.

A.12 Principle of Symmetric Criticality

It is due to Palais. One can find a rerefence on Ambrosetti, Malchiodi [3].
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Theorem A.10. Suppose that the topological group G acts on a Hilbert space X

through isometries and let Φ ∈ C1(x,R) be G−invariant ⇒ any critical point of Φ on
Fix(G) = {u ∈ X : gu = u,∀g ∈ G|u is a critical point ofJ } on X.

Remark: in our case, the topological group G is the rotation group SO(N), where
N is the dimension. Our solutions u ∈ H1(RN) are invariant under the action of this
group.

A.13 Riesz Representation Theorem

One can find a reference for this important theorem in [16].
Let H be a Hilbert space endowed with inner product (., .)H . Let H∗ denote its dual

space, that is, the collection of all bounded linear functionals f : H → R on H. If u ∈ H,
f ∈ H∗, we denote ⟨f, u⟩ for the real number f(u).

Theorem A.11. For each f ∈ H∗ there exists a unique element v ∈ H such that

⟨f, v⟩ = (u, v)H ∀f ∈ H∗.

A.14 Schwartz Lemma

See [28] for a reference.

Theorem A.12. Let X be a Banach space. A functional Φ : X → R is of class C1 if,
and only if, the following two conditions hold:

1. for all u ∈ X, the Gatêaux derivative DΦ(u);X → R exists and is a bounded linear
operator;

2. the differential operator DΦ : X → X∗ is continuous.

Here, X∗ is the dual space of X. Also, the Gatêaux and the Fréchet derivative coincide.
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A.15 Schwarz symmetrization

A reference can be found in [6].

Definition A.3. Consider f ∈ L1(RN ). Then f ∗, the Schwarz symmetrized function
of f, is a radial, nonincreasing (in r) and measurable function such that, given α > 0,

m{f ∗ ≥ α} = m{|f | ≥ α},

where m denotes the Lebesgue measure.
One has that ∫

RN
F (f) dx =

∫
RN
F (f∗) dx

for every continuous function F such that F (f) is integrable.

A.16 Sobolev embeddings

References can all be found in [16].
If W and V are normed spaces such that W ⊂ V , we say that W is continuously

embedded in V when the inclusion application i : W → V , given by i(x) = x, is
continuous. If this application is also compact, we say that W is compactly embedded in
V .

A.16.1 Continuous embedding theorems

Theorem A.13. Let Ω ⊂ RN be an open set with smooth boundary. Then the following
embeddings are continuous:

1. H1(Ω) ↪→ Lp(Ω) for N ≥ 3 and 2 ≤ p ≤ 2∗ = 2N
N − 2

2. H1(Ω) ↪→ Lp(Ω) for N = 1, 2 and 2 ≤ p <∞.

A.16.2 Compact embedding theorems

Theorem A.14. Let Ω ⊂ RN be an open and bounded subset with smooth boundary.
Then the following embeddings are compact:
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1. H1(Ω) ↪→ Lp(Ω) for N ≥ 3 and 2 ≤ p < 2∗ = 2N
N − 2

2. H1(Ω) ↪→ Lp(Ω) for N = 1, 2 and 2 ≤ p <∞.

Thus one can see that the for N ≥ 3, the continuous embedding H1(Ω) ↪→ Lp(Ω)
with p = 2∗ is not compact, and for N = 1, 2 one has that all the continuous embeddings
H1(Ω) ↪→ Lp(Ω) for 2 ≤ p <∞ are compact.

A.16.3 Gagliardo-Nirenberg-Sobolev inequality

Theorem A.15. If 1 ≤ p < N. Then there exists a constant C, depending only on p

and N, such that

∥u∥Lp∗ (RN ) ≤ C∥∇u∥Lp(RN ) ∀u ∈ C1
c (RN), (A.24)

where N is the dimension, and p∗ is the Sobolev conjugate of p, that is,

1
p∗ = 1

p
− 1
N
, p > p∗.

A.16.4 Palais-Smale Compactness Condition

A reference can be found in [16].

Definition A.4. A functional I ∈ C1(H;R), where H is a Hilbert space, is said to
satisfy the Palais-Smale compactness condition if each sequence (uk)∞

k=1 ⊂ H such that

• (I(uk)k=1∞ is bounded and

• I ′(uk)→ 0 in H

is precompact in H.

Definition A.5. The sequence (uk)∞
k=1 ⊂ H is called a Palais-Smale sequence
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A.17 Strauss Compactness Lemma

A reference can be found in [6] and [33].

Theorem A.16. Consider P,Q : R→ R be two continuous functions satisfying

P (s)
Q(s) → 0 as |s| → +∞.

Let (un) be a sequence of measurable functions mapping RN to R such that

sup
n

∫
RN
|Q(un(x))| dx < +∞

and
P (un(x))→ v(x) a.e. inRN , as n→ +∞.

Then for any bounded Borel set B one has
∫

B
|P (un(x))− v(x)| dx→ 0 as n→ +∞.

If one further assumes that

P (s)
Q(s) → 0 as s→ 0,

and also assume that un(x)→ 0 as |x| → +∞, uniformly with respect to n, then P (un)
converges to v in L1(RN) as n→ +∞.

A.18 Strauss Radial Lemma

A reference can also be found in [6] and [33]. This next Lemma the uniform decay at
infinity some radial functions present.

Theorem A.17. Consider N ≥ 2. Every radial function u ∈ H1(RN) is almost
everywhere equal to a function U(x), continuous for x ̸= 0 and such that

|U(x)| ≤ CN |x|(1−N)/2∥u∥H1(RN ) for |x| ≥ αN ,

where the constants CN and αN depend only on the dimension.
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A.19 Vainberg Theorem

The following result can be found in [6] and [8].

Theorem A.18. Let Ω ⊂ RN be a Lebesgue-measurable set, (fn) a sequence of functions
such that fn ∈ Lp(Ω)∀n ∈ N and f ∈ Lp(Ω) such that ∥fn − f∥Lp(Ω) → 0 as n → ∞.
Then there exist a function h ∈ Lp(Ω) and a subsequence (fnk

) such that

1. fnk
(x)→ f(x) a.e. in Ω.

2. |fnk
(x)| ≤ h(x) a.e. in Ω for all k ∈ N.

A.20 Young Inequality

See [16] for a reference.

Theorem A.19. Let 1 < p, q <∞, 1
p

+ 1
q

= 1. Then

ab ≤ ap

p
+ bq

q
,

for a, b > 0.
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