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Resumo

Seja G um grupo topológico compacto com um subgrupo fechado K e medidas

de Haar normalizadas µ e ν, respectivamente. Considere o subconjunto fechado

C = {(x, y) ∈ K×G |xy = yx} de K×G e de�na a probabilidade de comutação

relativa de K em G por Pr(K,G) = (µ× ν)(C). Esse valor representa a proba-

bilidade de escolher aleatoriamente um elemento de K e um de G que comutam.

Se K = G, obtemos a probabilidade de comutação de G, uma medida de quão

abeliano o grupo é. Ao longo do tempo, estudou-se o impacto dos valores Pr(G)

e Pr(K,G) na estrutura de G. Por exemplo, um teorema de P.M. Neumann [40]

assegura que, se G é �nito e ε é um número positivo, Pr(G) ≥ ε implica que

G possui subgrupo H tal que [G : H] e |H ′| são ε-limitados. Nosso objetivo é

o de estudar propriedades similares relacionadas à probabilidade de comutação

relativa.

Em [9], Detomi e Shumyatsky obtêm resultados estruturais sobre um grupo

�nito G admitindo subgrupo K tal que Pr(K,G) ≥ ε. Eles provam que existem

subgrupos T de G e B de K tais que os índices [G : T ] e [K : B] e a ordem de

[T,B] são ε-limitados. Nós estendemos esse resultado para grupos compactos e

demonstramos alguns corolários.

Se G é um grupo topológico compacto e x ∈ G, denote por 〈x〉 o subgrupo

fechado gerado por x. Será demonstrado que, se Pr(〈x〉, G) ≥ ε para todo x em

um subgrupo fechado K de G, então existem um subgrupo aberto T de G e um

inteiro e tais que o índice [G : T ] e o número e são ε-limitados e [T,Ke] = 1.

Este resultado representa uma interpretação probabilística da noção de expoente

num grupo. Diversos corolários serão demonstrados, todos relacionados à noção

de expoente de um grupo. Por �m, consideramos a situação mais geral em

que Pr(〈x〉, G) é positivo para todo x em K ≤ G. Provaremos que G possui

subgrupo aberto T de forma que todo x ∈ K possui uma potência xl, onde l

não necessariamente é �xo, que centraliza T .

Palavras-chave: Probabilidade de comutação, medida de Haar, grupos com-

pactos, subgrupos monotéticos
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Abstract

Let G be a compact topological group with a closed subgroup K and normalized

Haar measures µ and ν, respectively. Consider the closed subset C = {(x, y) ∈
K × G |xy = yx} of K × G and de�ne the relative commuting probability of

K in G by Pr(K,G) = (µ × ν)(C). This value represents the probability of

choosing at random an element of K and one of G that commute. If K = G,

we get the commuting probability of G, a measure of how close to be abelian

the group is. For years, the in�uence of Pr(G) and Pr(K,G) on the structure

of G has been studied. For example, a theorem of P.M. Neumann [40] ensures

that, if G is �nite and ε is a positive number, Pr(G) ≥ ε implies that G has

a subgroup H such that [G : H] and |H ′| are ε-bounded. Our goal is to study

similar properties concerning relative commuting probability.

In [9], Detomi and Shumyatsky prove structural resuts about a �nite group

G having a subgroup K such that Pr(K,G) ≥ ε. They prove that there exist

subgroups T of G and B of K such that the indices [G : T ] and [K : B] and

the order of [T,B] are ε-bounded. We extend this result to compact groups and

prove corollaries of it.

If G is a topological group and x ∈ G, denote by 〈x〉 the closed subgroup

generated by x. We prove that, if Pr(〈x〉, G) ≥ ε for every x in a closed subgroup

K of G, then there are an open subgroup T of G and an integer e such that

the index [G : T ] and the number e are ε-bounded and [T,Ke] = 1. This result

represents a probabilistic interpretation of the notion of exponent in a group.

Several corollaries are proved, all related to the notion of exponent. Finally,

we consider the more general situation where Pr(〈x〉, G) is positive for all x in

K ≤ G. We prove that G has an open subgroup T in such a way that every

x ∈ K has a power xl, where l is not necessarily �xed, centralizing T .

Keywords: Commuting probability, Haar measure, compact groups, mono-

thetic subgroups.
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Chapter 1

Introduction

Let G be a �nite group. Erdös and Turán introduced the commuting probability

of G in [13] as the ratio

Pr(G) =
|{(x, y) ∈ G×G |xy = yx}|

|G|2
,

which measures the probability that two randomly chosen elements in G com-

mute. For an arbitrary x ∈ G, the number of ordered pairs (x, y) such that x

and y commute is |CG(x)|, so the numerator above can be rewritten as

Pr(G) =

∑
x∈G |CG(x)|
|G|2

=
1

|G|
∑
x∈G

1

[G : CG(x)]
. (∗)

In an analogous way, if K is a subgroup of G, the relative commuting prob-

ability of K in G was de�ned in [14] as the number

Pr(K,G) =
|{(x, y) ∈ K ×G |xy = yx}|

|K||G|
.

If we let K = G, then what we have is the commuting probability of G.

The concept of commuting probability can be extended to in�nite groups

following ideas of Gustafson [21]. Let G be a compact Hausdor� topological

group. The Borel σ-algebraM of G is the one generated by all closed subsets

of G. There is a unique measure µ that can be de�ned in the measurable space

(G,M) such that µ(G) = 1 and µ(xS) = µ(S) for every measurable subset S of

G and x ∈ G, the so-called normalized left Haar measure of G. If K is a closed

subgroup of G, consider the set C = {(x, y) ∈ K ×G |xy = yx}, which is closed

in K×G, since it is the preimage of 1 under the continuous map f(x, y) = [x, y].
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Denoting the normalized Haar measures of K and G by ν and µ, respectively,

and equipping K × G with the product measure ν × µ, the probability that a

random element of G commutes with a random element ofK is (ν×µ)(C). Since

�nite groups are compact with the discrete topology, this de�nition is indeed a

generalization of the previous one.

The notion of commuting probability has been used to derive structural

results about G, and conversely the structure of the group can also be used to

derive lower and upper bounds for its commuting probability. For example, if G

is a compact group, Gustafson [21] proves that either G is abelian or Pr(G) ≤ 5
8
.

If G is a �nite group, representation theory was used by Lescot in [34] to prove

that Pr(G) > 1
2
implies that G is nilpotent and G′ has order at most 2, and in

[35] he proved that Pr(G) > 1
12

implies that G is soluble without recurring to

the Classi�cation of Finite Simple Groups. On the other hand, R.M. Guralnick

and G. Robinson prove in [18], among several other results, that a soluble group

of derived length n has its commuting probability bounded from above by a

function depending on n only.

An arbitrary group is said to be a BFC-group if its conjugacy classes are �nite

and have bounded size. In particular, if G is �nite and all conjugacy classes of G

have at most n elements, then [G : CG(x)] ≤ n and, by (∗), Pr(G) ≥ 1
n
, proving

that BFC-groups have high commuting probability. This result also holds in

the compact case and suggests that the property of having high commuting

probability is related to having �nite conjugacy classes. Moreover, in the context

of BFC-groups, B. H. Neumann [39] proved the following result in 1954.

Theorem. If G is a BFC-group, then G′ is �nite.

We say that a quantity is �(a, b, . . . )�-bounded whenever it is possible to

bound it from above by a function of the parameters a, b . . . only. As we re-

marked before, compact BFC-groups have positive commuting probability. It

turns out that compact groups with positive commuting probability have an

open subgroup which is a BFC-group, as we will prove as a corollary of Theo-

rem A. In the context of �nite groups, this is the content of P.M. Neumann's

theorem [40].

Theorem. Let G be a �nite group such that Pr(G) ≥ ε. Then G has a subgroup

H, of ε-bounded index, such that |H ′| is also ε-bounded.

In recent years, some generalizations of B.H. Neumann's theorem were ob-

tained. For example, in [2], Acciarri and Shumyatsky prove that if G is an
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arbitrary group having a subgroup K such that every conjugacy class in G of

an element of K has size at most n, then the normal closure, that is, the small-

est normal subgroup of G containing K, has �nite commutator subgroup of

n-bounded order. Using this result in particular, Detomi and Shumyatsky [9]

obtained a generalization of P.M. Neumann's theorem for �nite groups, in the

direction of relative commuting probability, as stated below.

Theorem. Let ε > 0 and let G be a �nite group having a subgroup K such that

Pr(K,G) ≥ ε. Then there is a normal subgroup T ≤ G and a subgroup B ≤ K

such that the indices [G : T ] and [K : B] and the order of [T,B] are ε-bounded.

Here we denote by [T,B] the subgroup generated by all commutators [t, b]

with t ∈ T and b ∈ B. Our �rst main result, Theorem A, is the extension of the

above theorem to the class of compact groups. It was proved in [5].

Theorem A. Let G be a compact group having a closed subgroup K such that

Pr(K,G) ≥ ε for ε > 0. Then there is a normal closed subgroup T ≤ G and a

closed subgroup B ≤ K such that the indices [G : T ] and [K : B] and the order

of [T,B] are ε-bounded.

If we let K = γn(G), the nth term of the lower central series of G, then it

can be proved following [9] that G has an open normal subgroup of ε-bounded

index which is nilpotent of class at most n + 1. In the same direction, if we

let K = G(n), we prove in Theorem 3.3.5 that G has an open normal subgroup

which is soluble of derived length at most n + 1. If G is a pro�nite group and

K is a Sylow pro-p subgroup of G, we show in Theorem 3.3.6 that K has an

open class-2-nilpotent subgroup L such that the index [K : L] and the order of

L′ are ε-bounded. In Corollary 4.2.5 we prove that if K = G0, the connected

component of 1 in G, then there is a normal pro�nite subgroup ∆ of G such

that G = G0∆ and the centralizer of G0 in G is open.

The study of di�erent structural properties in groups requires de�ning dif-

ferent probability measures. As an example, we mention [12], where the authors

study probabilistic nilpotency in �nite groups by investigating the proportion of

ordered triples (x, y, z) of G×G×G such that [x, y, z] = 1. The commuting prob-

ability has been used to conclude, mostly, properties related to commutativity in

groups, such as nilpotency, solubility and �niteness of commutator subgroups.

Our next main result, however, concerns a probabilistic interpretation of the

exponent of a compact group.
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If S is a subset of a topological group G, then we denote by 〈S〉 the subgroup
topologically generated by S, and a monothetic subgroup of G is a topologically

1-generated subgroup. For a given ε > 0, we study a compact group G such that

Pr(〈x〉, G) ≥ ε for every monothetic subgroup 〈x〉 ≤ K, where K is a closed

subgroup of G. For example, if G has exponent e, then Pr(〈x〉, G) ≥ 1
e
for all

x ∈ G. More generally, if Ge ≤ Z(G), where Z(G) denotes the center of G, then

Pr(〈x〉, G) ≥ 1
e
for all x ∈ G. Theorem B states a partial converse of this idea.

It appeared in [5].

Theorem B. Let ε > 0 and let G be a compact group such that Pr(〈x〉, G) ≥ ε

for every x in a closed subgroup K of G. Then there is an ε-bounded number

e and an open normal subgroup T of G such that [G : T ] is ε-bounded and

[Ke, T ] = 1.

Theorem B will allow us to give probabilistic interpretations of some well-

known results in group theory. For example, we give a variation of Zelmanov's

solution of the Restricted Burnside Problem [52, 53] stating that an r-generated

�nite group of exponent e has order bounded in terms of r and e solely. We prove

in Theorem 4.3.2 that if G is an r-generated compact group and Pr(〈x〉, G) ≥ ε

for all x ∈ G, then there is an open abelian subgroup N such that [G : N ] is ε-

bounded. Moreover, if G is a pro�nite group such that Pr(〈x〉, G) ≥ ε for every

x in a Sylow pro-p subgroup, we prove in Theorem 4.3.9 that G has a series

of ε-bounded lenght where all factors are pro-p, pro-p′ or Cartesian products

of �nite simple groups of orders not divisible by p. This is analogous to Hall

and Higman's famous result [23]. Automorphisms of pro�nite groups are also

considered. Let G be a pro�nite group and A be a noncyclic �nite group of

coprime automorphisms of G of order p2, where p is a prime. Assume that

Pr(〈x〉, G) ≥ ε for every x ∈ CG(φ) and a nontrivial φ ∈ A. Then there is an

ε-bounded number e and a normal open subgroup of ε-bounded index T of G

such that [Ge, T ] = 1, as we will prove in Theorem 4.3.15. This extends the

main result of [31].

In Chapter 5 we deal with a probabilistic variation of the concept of torsion in

compact groups. We consider compact groups G having a subgroup K such that

Pr(〈x〉, G) > 0 for any x ∈ K. Note that this condition is satis�ed whenever

the subgroup K is torsion. More generally, the condition is satis�ed whenever

the image of K in G/Z(G) is torsion. Theorem C was proved in [4].

Theorem C. Let K be a subgroup of a compact group G. Then Pr(〈x〉, G) > 0

8
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for any x ∈ K if and only if G has an open normal subgroup T such that

K/CK(T ) is torsion.

In the past, compact torsion groups attracted considerable attention. Wilson

showed that any such group possesses a characteristic series of �nite length each

of whose factors either is a pro-p group for some prime p or is isomorphic to

a Cartesian product of isomorphic �nite simple groups [50]. Again, if we let

G be pro�nite and K be a Sylow pro-p subgroup, we prove in Theorem 5.2.5

that G admits a �nite-length series where factors are pro-p, pro-p′ or Cartesian

products of �nite simple groups. We prove other corollaries of Theorem C, as

well as investigate, in Section 5.3, the relation between property Pr(〈x〉, G) > 0

for every x ∈ K and Pr(〈x〉, G) ≥ ε for every x ∈ K and a positive ε. This is

related to the question whether compact torsion groups have �nite exponent.

Finally, some words on the organization of this text. Chapter 2 contains an

overview of the results that are necessary to understand our work, as well as

a brief introduction to measure theory and Haar measure on compact groups

self-contained enough to serve as a �rst reading on the topic. Chapter 3 is

where we de�ne properly the commuting and relative commuting probability in

compact groups, examples of groups with well-behaved commuting probabilities

are considered, and Theorem A is proved in Section 3.3. In Chapter 4 we prove

Theorem B and its corollaries. Theorem C is proved in Chapter 5, as well as

its consequences. An Appendix, which can be read independently, is included.

There we prove from scratch the existence and unicity of Haar measure up to a

scaling factor. In the Appendix we avoid the language and methods of functional

analysis everywhere it was possible for the bene�t of the reader.



Chapter 2

Preliminaries

In this chapter we collect some general facts from group theory, topological

groups and measure theory that are needed in the course of the text. References

for the results not proved here are provided.

2.1 Groups

Given a positive integer k, a group-word w = w(x1, x2, . . . , xk) is a nontrivial

element of the free group F on countably many free variables x1, x2, · · · . Only
reduced words are considered in the text. Given a group G, a group word can

also be regarded as a map from the direct product of k copies of G on G itself:

w :

k times︷ ︸︸ ︷
G× · · · ×G→ G

(g1, . . . , gk) 7→ w(g1, . . . , gk).

If g1, . . . , gk ∈ G, an element x of G of the form x = w(g1, . . . , gk) is called a

w-value of G. The subgroup generated by all w-values is denoted by w(G). It

is called a verbal subgroup and is characteristic in G. Let us de�ne the words,

verbal subgroups and related concepts that we need along this work.

• Given a positive integer n, consider the power word xn. The corresponding

verbal subgroup is Gn = 〈xn |x ∈ G〉. We say that G has �nite exponent

if there is an n such that Gn = 1.

• The commutator word [x1, x2] is de�ned as x−1
1 x−1

2 x1x2. The corresponding

verbal subgroup is the commutator subgroup of G. Moreover, if A and B

10



2.1. Groups 11

are arbitrary subsets of G, the subgroup [A,B] is de�ned as

[A,B] = 〈[a, b] | a ∈ A, b ∈ B〉.

• A multilinear commutator word is a word obtained by nesting commuta-

tors, but always in di�erent variables. As an example we have the word

[[x1, x2], [x3, x4]], whereas the Engel word [x, y, y] is not.

• As a particular case of the above, the lower central words are de�ned

recursively: if x1, x2, . . . , xn ∈ G de�ne [x1] = x1 and if n ≥ 2 de�ne

γn(x1, x2, . . . , xn) = [x1, . . . , xn] as [[x1, x2, . . . , xn−1], xn]. The verbal sub-

group corresponding to γn is denoted by γn(G). If γn+1(G) = 1, the group

G is said to be nilpotent of class at most n.

• The derived words δn are de�ned recursively: δ0(x1) equals x1 simply and

for n ≥ 1 we have δn = [δn−1(x1, . . . , x2n−1), δn−1(x2n−1+1, . . . , x2n)]. The

verbal subgroup corresponding to δn is called the nth derived group of G

and is denoted by G(n). If G(n) = 1 we say that G is soluble of derived

length at most n.

The weight of a commutator is de�ned recursively: x has weight 1 and if

the commutators u and v have weights n1 and n2, respectively, then [u, v] has

weight n1 + n2. The commutator [x, y, [x, y, z]], for example, has weight 5.

If x, g ∈ G, the conjugate of x by g is xg = g−1xg. The set of all conjugates

of x by elements of G is denoted xG and called the conjugacy class of x. This

notion can be extended to a subset X of G, and we denote by XG the set

XG =
⋃
x∈X

xG

of conjugates of all elements of X. The normal closure of X in G is the subgroup

〈XG〉, which is the smallest normal subgroup containing X, in the sense of

inclusion. The centralizer of x in G is the subgroup CG(x) = {g ∈ G |xg = x},
and it is a well-known result [44, Theorem 1.6.1] that |xG| = [G : CG(x)]. If K

is a subgroup of G, the centralizer of x ∈ K is CK(x) = K ∩CG(x). The center

of G can be de�ned as Z(G) =
⋂
x∈GCG(x).

Remark 2.1.1. Let x ∈ G be any element and consider xG. There is a natural

bijection between xG and the set {[x, g] | g ∈ G} given by xg 7→ x−1xg. If we
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need to count how many conjugates an element x ∈ G has, it is often useful to

count how many commutators of weight two are there which have x as an entry.

The following result will be used along the text without explicit mention.

Proposition 2.1.2. Let G be a group and K1, K2, . . . , Kn be �nite-index sub-

groups of G. Then [
G :

n⋂
i=1

Ki

]
≤

n∏
i=1

[G : Ki].

Proof. Let H =
⋂n
i=1Ki. Let X denote the set of cosets of G modulo H and

let Xi denote the set of cosets of G modulo Hi, i = 1, . . . , n. The map from

X to the cartesian product X1 × · · · × Xn sending xH to (xK1, . . . , xKn) is a

well-de�ned injection.

Recall that we use the expression �(a, b, . . . )−bounded� to mean that a

quantity is bounded from above by a function depending on the parameters

a, b, · · · only. In the previous proposition, we say that the index [G :
⋂n
i=1Ki] is

([G : K1], . . . , [G : Kn])-bounded, for example.

Let X be any group-theoretic property. We say that a group G is virtually-X
if G has a �nite-index subgroup satisfying property X . For example, a virtually

abelian group G has a �nite-index subgroup K such that [K,K] = 1.

If φ is an automorphism of G, the centralizer of φ in G is the subgroup

de�ned as CG(φ) = {x ∈ G |φ(x) = x}, and if A is an automorphism group of

G de�ne CG(A) =
⋂
φ∈ACG(φ). The symbol A# will be used to denote the set

of nontrivial elements of the group A. Moreover, if N is a normal A-invariant

subgroup of G, then every element of A induces an automorphism of G/N and A

can be regarded as a group of automorphisms of G/N too. If G is a �nite group,

an automorphism group A of G is said to be coprime if (|G|, |A|) = 1. The

following fact about coprime automorphisms will be needed. It is [17, Theorem

6.2.2 (iv)].

Lemma 2.1.3. Let G be a �nite group admitting a coprime group of automor-

phisms A and let N be a normal A-invariant subgroup of G. Then

CG/N(A) = CG(A)N/N.
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2.2 Topological Groups

For a more complete exposition, the reader can check [51].

De�nition 2.2.1. A topological group is a triple (G, ·, τ) where τ is a topology

on G such that the following maps are continuous with respect to the product

topology on G×G and τ on G

m : G×G → G and ι : G → G .

(x, y) 7→ x · y x 7→ x−1

It follows from De�nition 2.2.1 that all group-words are continuous maps.

In particular, the most important for us is the commutator map (x, y) 7→ [x, y].

If g ∈ G is a �xed element, the maps x 7→ xg and x 7→ gx are both home-

omorphisms. As examples of topological groups, there are �nite groups with

discrete topology and GLn(R) with the subspace topology inherited from Rn2
.

We record some useful properties of topological groups.

De�nition 2.2.2. A topological space X is compact if, for every open cover

X ⊆
⋃
λ∈Λ Oλ of X, there is a �nite subcover X ⊆

⋃n
i=1 Oi.

De�nition 2.2.3. A topological space X is locally compact if, for every element

x ∈ X, there exists an open set O and a compact set K such that x ∈ O ⊆ K.

The real line R is an example of a locally compact space that is not compact,

since every point is contained in a closed and bounded interval, but the collection

of open sets {(n, n+ 2) |n ∈ Z} covers R and does not have a �nite subcover.

The next result states some basic facts about the structure of a topological

group. It is [51, Lemma 0.3.1].

Lemma 2.2.4. Let G be a topological group.

(a) Every open subgroup of G is closed, and every closed subgroup of �nite

index is open. If G is compact then every open subgroup of G has �nite

index.

(b) If H is a subgroup of G and K is a normal subgroup of G then H is a

topological group with respect to the subgroup topology, G/K is a topological

group with respect to the quotient topology and the quotient map q from G

to G/K takes open sets to open sets.

We will also need the following fact.
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Lemma 2.2.5. Let X be a compact topological space and Y be a closed subset

of X. Then Y is also compact.

Proof. First we observe that X \ Y is open on X. If Y ⊆
⋃
λ∈ΛOλ is an open

cover of Y , then (X \ Y ) ∪
(⋃

λ∈ΛOλ

)
is an open cover of X. Extract a �nite

subcover
⋃n
i=1Oi of it. Removing X \ Y from this cover, if needed, provides a

�nite subcover of Y .

If G is a topological group and C,D ⊆ G, consider the sets

CD = {cd | c ∈ C, d ∈ D} and C−1 = {c−1 | c ∈ C}

and let bars denote topological closures. If f : X → Y is a continuous function

between topological spaces, then the inclusion f(A) ⊆ f(A) holds for any subset

A of X. Indeed, if O is an open set containing f(a) for a ∈ A, then f−1(O)

is open in X and contains a, hence there is b ∈ f−1(O) ∩ A. Furthermore

f(b) ∈ O ∩ f(A), so a belongs to the closure of f(A). If K is a subgroup of the

compact group G, the previous argument and continuity of the group operation

and inversion ensure that

K ·K−1 ⊆ K ·K−1 ⊆ K ·K−1 = K.

The closure K is then a subgroup of G, which will be compact by Lemma 2.2.5.

As in the upcoming discussion we will be interested only in compact groups and

their compact subgroups, a subgroup of G will always be considered closed from

now on, unless explicitly stated otherwise.

The well-known Baire Category Theorem [30, p. 200] is going to be needed

in the following form.

Theorem 2.2.6. Let X be a compact topological space and let {Fn |n ∈ N} be
a countable family of closed subsets of X. If X =

⋃
n Fn, there exists some n

such that Fn has nonempty interior.

Concerning separation axioms, topological groups are not Hausdor� spaces

in general, as we can always endow G with the trivial topology {∅, G}. However,
there is the following equivalence, which is [51, Lemma 0.3.1].

Proposition 2.2.7. Let G be a topological group. Then G is Hausdor� if and

only if all singletons {x} with x ∈ G are closed.

Consider the commutator map f : G×G→ G given by f(x, y) = [x, y]. The

subset {(x, y) ∈ G×G |xy = yx} is the preimage of 1 under the continuous map
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f , and will be closed in G×G if 1 is a closed subgroup of G. In what comes next

we need this set to be closed, so this fact and Proposition 2.2.7 are the reason

why all topological groups considered in this work are Hausdor�. In short, the

groups in this work satisfy the following convention.

Convention 2.2.8. A topological group G will always be compact and Haus-

dor� and a subgroup K of G will always be considered closed, unless stated

otherwise.

We also need the following fact, which is Lemma 0.1.1(a) in [51]. Topological

spaces satisfying the conclusion of Proposition 2.2.9 are called normal spaces.

Proposition 2.2.9. Let X be a compact Hausdor� space. If U and V are

disjoint closed subsets of X, there are disjoint open subsets A and B such that

U ⊆ A and V ⊆ B.

A group G is topologically generated by a subset S if the abstract subgroup

generated by S is a dense subgroup of G. We will refer to this notion simply as

being generated by S.

De�nition 2.2.10. A group G is monothetic if it is generated by a single ele-

ment.

In pro�nite groups (see Section 2.3), monothetic groups can be isomorphic

to Z/nZ for some integer n or to the p-adic integers Zp, for example. In the non-

pro�nite case we have the circle group R/Z, which is generated by the image

of any irrational number. To see this, we prove that H = Z + αZ is dense

in R for any irrational α. De�ne frac(x) = x − bxc, the factional part of x

and see that frac(x) ∈ H for every x ∈ H. Moreover, as α is irrational, if k

and m are distinct integers, then frac(mα) 6= frac(kα). Dividing [0, 1] in n

parts of equal length, the pigeonhole principle ensures that two of the numbers

0, frac(α), . . . , frac(nα) belong to the same interval, thus there are two integers

r and s such that 0 ≤ y = frac(rα) − frac(sα) ≤ 1/n. In particular, y ∈ H.

Now let ε > 0 and z ∈ R be arbitrary. There is y ∈ H with 0 ≤ y < ε, by the

previous argument, and an integer n such that ny ≤ z < (n+ 1)y. This implies

that 0 ≤ z−ny < y < ε and we conclude thatH is dense in R. The image ofH in

R/Z generates this quotient topologically, and considering suitable products of

such generators we can prove that the Cartesian products (R/Z)× · · · × (R/Z)︸ ︷︷ ︸
k

are monothetic, with k ∈ N, or even k = ℵ0.

De�nition 2.2.11. Let G be any group. The abstract subgroup consisting of

all x ∈ G such that |xG| is �nite is the FC-center of G.
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If G is a topological group, FC(G) is not necessarily a closed subgroup of

G. If H is any nonabelian �nite group and Hi is an isomorphic copy of H for

each i ∈ N, then the Cartesian product G =
∏

i∈NHi is a pro�nite group (see

Section 2.3), FC(G) consists of elements with �nite support and any element

with in�nite support is in the closure of FC(G). To see this, let x = (xi)i∈N be

an element where in�nitely many xi are nontrivial and let yn = (yni)i∈N, where

yni = xi for i ≤ n and 1 for i > n. If O is an open set containing x, it can

be proved that some open set of the form xU is contained in O, where U is

an open normal subgroup of G of the form
∏

i>mHi with m ≥ n. Notice that

xU consists entirely of elements whose m �rst entries coincide with the �rst m

entries of x and the i-th entry, with i > m, is arbitrary. Then xU contains yn

for every n ≥ m and we conclude that the closure of FC(G) is the whole G.

De�nition 2.2.12. If G is a topological group, G0 denotes the connected com-

ponent of the identity subgroup, i.e., the largest connected subgroup of G.

The Euclidean space Rn with topology induced by the Euclidean norm is

connected and a pro�nite group is always totally disconnected, i.e., the connected

subsets of it are only the singletons. Let P be a pro�nite goup, Q = R and

consider G = P × Q. If C is a connected subgroup of G, its projection on P

is also connected, so it must be trivial and C ≤ 1 × Q. Since 1 × Q itself is

connected, it must coincide with G0.

The class of compact groups such that the connected component of identity

is central admits an useful decomposition, as stated in [26, Lemma 3.5].

Proposition 2.2.13. Let G be a compact group such that G0 is central. Then

there is a pro�nite normal subgroup ∆ such that G = G0∆

We are going to need the following technical result from [5].

Lemma 2.2.14. Let G be a compact group and n a positive integer. The set

X = {x ∈ G | |xG| ≤ n} is a closed subset of G.

Proof. It is su�cient to show that if a ∈ G \X, then a is contained in an open

subset U which has empty intersection with X. Since a /∈ X, we can choose

n+ 1 elements x1, ..., xn+1 in such a way that the conjugates axi are distinct for

i = 1, . . . , n+ 1. Set

U = {u ∈ G; [u, xix
−1
j ] 6= 1 for 1 ≤ i 6= j ≤ n+ 1}.
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We observe that a ∈ U and every element in U has at least n+ 1 conjugates.

Indeed, suppose that u ∈ U . Then [u, xix
−1
j ] 6= 1 for every choice of i 6= j.

Standard commutator identities show that

[u, xix
−1
j ] = [u, x−1

j ][u, xi]
x−1
j .

Thus [u, x−1
j ] 6= [xi, u]x

−1
j , which implies that [uxj , x−1

j ] 6= [xi, u]. Now, since

[uxj , x−1
j ] = [xj, u], we conclude that [xj, u] 6= [xi, u] for every choice of di�erent

i and j. This implies that u has at least n+1 conjugates and U∩X = ∅. Further,
since the commutator map is continuous, U is open. The proof is complete.

Remark 2.2.15. If S is any subset of G, we denote by xS the set of S-conjugates

of x in G. The previous argument also proves that the set {x ∈ G | |xS| ≤ n} is
closed in G for any (not necessarily closed) subset S of G.

2.3 Pro�nite Groups

Pro�nite groups are a special class of compact groups, as we de�ne now. A topo-

logical space is totally disconnected if its only connected subsets are singletons.

De�nition 2.3.1. Let G be a topological group. If G is compact, Hausdor�

and totally disconnected, then G is called pro�nite.

There is an equivalent way of de�ning a pro�nite group, in terms of inverse

limits. If N = {N |N open and normal in G} is the set of open normal sub-

groups of G, then

C = {G/N |N ∈ N}

is an inverse system of �nite groups. The group G can be de�ned as the inverse

limit of the inverse system de�ned above: G = lim←−N∈N G/N . For more details

see [43, Section 1.1].

If the members of the inverse system are p-groups (resp. soluble), their

inverse limit is called a pro-p-group (resp. prosoluble). Moreover, as pro�nite

groups are generalizations of �nite groups, many theorems about �nite groups

have pro�nite variations. For example, if C is an inverse system of �nite groups

and p is a prime, the Sylow p-subgroups of the groups in C form an inverse

system, and its inverse limit is a Sylow pro-p subgroup of G. Sylow pro-p

subgroups exist and are conjugate in G [43, Theorem 2.3.5].
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The order of a pro�nite group is either �nite or uncountable [43, Proposition

2.3.1 (b)], but it is possible to de�ne the set of primes dividing the order of a

pro�nite group even in the in�nite case. If {Gi | i ∈ I} is the inverse system

giving rise to G, de�ne π(G) as

π(G) = {p a prime | p divides |Gi| for some i}.

If A is a group of continuous automorphisms of G, it can be proved that the

topology of G induces a topology on A under which A becomes a topological

group [43, Section 4.4]. A continuous automorphism φ of G is said to be coprime

if it has �nite order coprime to every number in π(G). The following lemma is

an extension to pro�nite groups of a well-known fact on coprime automorphisms

of �nite groups (see for instance Lemma 2.1.3).

Lemma 2.3.2. Let G be a pro�nite group admitting a coprime automorphism φ

and let N be a φ-invariant normal subgroup of G. Then CG/N(φ) = CG(φ)N/N .

2.4 The Length of a Finite Group

In this section we give some de�nitions needed in the text. For a prime number

p, a �nite group G is called a p-group if its order is a power of p, and is called a

p′-group if p does not divide the order of G. We say that G is p-soluble if G has

a normal series where all factors are p- or p′-groups. The p-length of G, denoted

by lp(G), is the smallest number of p-factors in such a series.

Every �nite group has a normal series where all factors are soluble or a direct

product of nonabelian �nite simple groups. To construct such a series, one

might consider the soluble radical S of G, i.e., the product of all soluble normal

subgroups of G, and pass to G/S. Consider the product N/S of all minimal

normal subgroups of G/S and see that N/S is a direct product of nonabelian

�nite simple groups, then pass to G/N and repeat the two steps until we get

back to G. The smallest number of non-soluble factors in such a series is the

nonsoluble length of G and is denoted by λ(G). Similarly, if p is a prime, every

�nite group has a normal series where all factors are either p-soluble or a direct

product of �nite simple groups of orders divisible by p. The non-p-soluble length

of G, denoted λp(G), is de�ned as the smallest number of non-p-soluble factors

in such a series.

Of course λ2(G) = λ(G) as all odd order groups are soluble, by the Feit-

Thompson Theorem [15]. Hall and Higman bounded the p-length of a p-soluble
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group G in terms of some identities satis�ed by the Sylow p-subgroups of G in

[23], reducing the Restricted Burnside Problem to the class of p-groups. Nonsol-

uble and non-p-soluble lengths were de�ned in [33] by Shumyatsky and Khukhro,

and the authors also bound both lengths in terms of certain identities satis�ed

by Sylow subgroups of G. Recently, Fumagalli, Leinen and Puglisi [16] bounded

λ(G) in terms of an arbitrary identity satis�ed by the 2-Sylow subgroup of a

�nite group, con�rming a conjecture posed in [33].

If G is a pro�nite group, analogues of the previous notions can be de�ned.

A pro�nite group G has �nite p-length, also denoted by lp(G), if it has a �nite

length series of closed normal subgroups where all factors are pro-p or pro-p′

groups. The minimal number of pro-p factors is lp(G). Say that G has �nite

nonprosoluble length if it has a �nite length series of closed normal subgroups

where all factors are either prosoluble or a Cartesian product of �nite simple

groups. The smallest number of nonprosoluble factors in this series is λ(G). Re-

placing �prosoluble� by �pro-p-soluble� and �simple� by �simple of order divisible

by p� we get the notion of non-pro-p-soluble length, also denoted by λp(G). In

a similar way to what Hall and Higman did in [23], Wilson proved in [50] that a

pro�nite torsion group has �nite nonprosoluble length and a prosoluble torsion

group G has �nite p-length for every p ∈ π(G). This has enabled Zelmanov [54]

to prove that compact torsion groups are locally �nite, that is, any �nite subset

in such a group generates a �nite subgroup.

2.5 Measure theory

In this section basic results related to measure theory in general measure spaces

are established. The exposition follows mainly [3].

De�nition 2.5.1. Let X be a set. A collection A of subsets of X is called a

σ-algebra if the following hold.

(i) X ∈ A,

(ii) If A ∈ A, then the complement Ac ∈ A, and

(iii) If {Ai | i ∈ N} is a countable collection of sets in A, then
⋃∞
i=1Ai ∈ A.

In this case, we say that the ordered pair (X,A) is a measurable space. If

M ∈ A, we say that M is a measurable subset of X. Moreover, see that a

σ-algebra A is closed under �nite unions and intersections. For �nite unions let
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A1, . . . , An ∈ A, let As = ∅ for s ≥ n + 1 and use property (iii), and for �nite

intersections use (ii) and de Morgan laws.

Example 2.5.2.

• Let X be a set and denote by P(X) the set of all subsets of X. Then

P(X) is a σ-algebra on X.

• Let X = {a, b, c}. Both A1 = {∅, X} and A2 = {∅, {a}, {b, c}, X} are

σ-algebras on X.

If X is a set and {Ai | i ∈ I} is a collection of σ-algebras on X, then the

intersection
⋂
i∈I Ai is also a σ-algebra on X. This idea can be used to construct

the smallest σ-algebra on X that contains a particular collection of subsets.

De�nition 2.5.3. Let X be a set and C be a collection of subsets of X. The

smallest σ-algebra that contains C is called the σ-algebra generated by C. We

denote it by σ(C).

De�nition 2.5.4. Let X be a Hausdor� topological space. The Borel σ-algebra

on X is the one generated by the open subsets of X and is denoted by B(X). A

subset belonging to B(X) is called Borel-measurable.

We observe that di�erent collections of subsets of X can generate the same

σ-algebra. In particular, B(X) can also be generated by the closed subsets of

X. Furthermore, subsets that are not open nor closed are contained in B(X),

as the next example shows.

Example 2.5.5.

• Half-open intervals belong to B(R):

(a, b] =
∞⋃
r=1

(
a, b− 1

r

)
.

• If G is a compact topological group and k is a positive integer, we know

that Gk = {x ∈ G | |xG| ≤ k} is a closed subset of G for every k, by

Lemma 2.2.14. The union FC(G) =
⋃∞
k=1Gk belongs to B(G) and is not

necessarily closed, as we remarked before.
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De�nition 2.5.6. Let (X,A) be a measurable space. A function µ : A → [0,∞]

is called a measure on A if the following hold.

(i) µ(∅) = 0, and

(ii) The function µ is countably additive: if A1, A2, . . . is a countable collection

of pairwise disjoint measurable subsets of X, then

µ

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai).

If (X,A) is a measurable space and µ is a measure on A, we call the ordered
triple (X,A, µ) a measure space. If µ(X) = 1, we call µ a probability measure

and (X,A, µ) is a probability space. If X is a topological space, then a measure

de�ned on (X,B(X)) is called a Borel measure on X. We will often say that a

measure µ is de�ned on X, rather than on (X,B(X)).

Remark 2.5.7.

• Property (ii) also holds for �nite unions of pairwise disjoint subsets, in a

similar fashion to the remark made after De�nition 2.5.1.

• Let µ be a measure on X and A,B be measurable subsets, with A ⊆ B.

Then µ(A) ≤ µ(B). Indeed, since B = A ∪ (Ac ∩ B) and Ac ∩ B is

measurable, it follows that µ(A) ≤ µ(A) + µ(Ac ∩ B) = µ(B). This

property is called monotonicity.

Example 2.5.8 (The Lebesgue measure on R). Consider the measurable space

(R,B(R)) and let a, b ∈ R. It is possible to de�ne a measure λ on R such

that, for every half-closed interval (a, b], the measure λ((a, b]) equals the length

b− a. In particular, λ((−∞, b]) and λ((a,∞)) are both∞. This is the so-called

Lebesgue measure on R, and it generalizes the notion of length to subsets of

R which are not intervals. For example, both the Cantor ternary set and the

rational numbers Q are Borel-measurable and have zero measure under λ.

Example 2.5.9.

• Let X be a countable set and A = P(X). If µ is the function that as-

sociates to each subset A of X its cardinality, then µ is a measure. It is

called the counting measure.
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• Consider (X,P(X), µ) where X is �nite and µ(A) = |A|/|X|. Then µ is

called the discrete uniform probability on X. See that µ(X) = 1.

We are also going to need the following. It is [3, Theorem 1.2.7(b)].

Lemma 2.5.10. Let (X,A, µ) be a probability space. If A1, A2, . . . is a countable

family of measurable subsets of X such that An ⊇ An+1 for every n, then

µ

(
∞⋂
n=1

An

)
= lim

n→∞
µ(An).

One of the applications of measures is the possibility to develop a stronger

notion of integral than the usual Riemann integral. We begin with some more

de�nitions.

De�nition 2.5.11. Let (X,A) and (Y,B) be measurable spaces. A function

f : X → Y is measurable with respect to A and B if f−1(B) ∈ A for every

B ∈ B. If X and Y are Hausdor� topological spaces, a function f : X → Y is

said to be Borel-measurable if f is measurable with respect to B(X) and B(Y ).

Example 2.5.12.

• If X and Y are topological spaces, then every continuous map f : X → Y

is Borel measurable.

• Let (X,A) be a measurable space and let A be any subset of X. De�ne

the indicator of A as the map χA : X → R, assuming the value 1 in A and

0 in Ac. Then χA is Borel-measurable if and only if A is Borel-measurable.

• If f, g : X → R are measurable, then f + g, f − g, f · g and f/g (provided
g 6= 0) are also measurable.

De�nition 2.5.13. Let (X,A, µ) be a measure space. Let f : X → R be a

Borel-measurable function. We say that a f is simple if it takes only �nitely

many values. In particular, there exist measurable subsets A1, . . . , An of X and

real numbers c1, . . . , cn such that f =
∑n

i=1 ciχAi
, where χAi

is the characteristic

function of Ai.

Now let (X,A, µ) be a measure space and f be a Borel-measurable simple

function. If f =
∑n

i=1 ciχAi
, we de�ne the integral of f with respect to µ as

∫
X

f(x)dµ(x) =
n∑
i=1

ciµ(Ai).
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A general non-negative function can be approximated by simple functions,

as the next result states. It is [3, Theorem 1.5.5 (a)].

Proposition 2.5.14. Let (X,A) be a measurable space and f : X → R be a non-

negative Borel-measurable function. Then there exists an increasing sequence of

Borel-measurable simple functions (fi) converging pointwise from below to f .

If (X,A, µ) is a measure space and f is a non-negative Borel-measurable

function, we de�ne the integral of f with respect to µ as

∫
X

f(x)dµ(x) = sup


∫
X

φ(x)dµ(x) | 0 ≤ φ ≤ f and φ is simple

 .

Moreover, if f is an arbitrary Borel-measurable function, the positive part

of f is f+ = max{f, 0} and the negative part of f is f− = max{−f, 0}, both
non-negative. Then f = f+ − f− and the integral

∫
X

f(x)dµ(x) is

∫
X

f(x)dµ(x) =

∫
X

f+(x)dµ(x)−
∫
X

f−(x)dµ(x),

provided this di�erence is well de�ned. We say that f is µ-integrable if the

integral
∫
X
f(X)dµ(x) is �nite.

Remark 2.5.15.

• If µ is a measure on X and A is a measurable subset of X, the measure of

A can be calculated as the integral∫
X

χA(x)dµ(x) = 1 · µ(A) + 0 · µ(Ac) = µ(A).

• Consider the measure space (R,B(R), λ), where λ is the Lebesgue measure

on R. The indicator of rational numbers, χQ, is an example of function

which is not Riemann-integral, as χQ is discontinuous in every point. How-

ever, since Q is Borel-measurable, this function is Lebesgue-integrable and∫
R

χQ(x)dλ(x) = λ(Q) = 0.

If A is a measurable subset of X and f : X → R is a measurable function,
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de�ne the integral of f over A as∫
A

f(x)dµ(x) =

∫
X

f(x) · χA(x)dµ(x).

See that the integrand is measurable because A is measurable. The Lebesgue

integral has the following properties.

Proposition 2.5.16. Let (X,A, µ) be a measure space and let f : X → R be a

measurable function. Then

(i) If f(x) ≤ g(x) for every x ∈ X, then
∫
X
f(x)dµ(x) ≤

∫
X
g(x)dµ(x).

(ii) If A ⊆ B are measurable sets and f is non-negative, then∫
A

f(x)dµ(x) ≤
∫
B

f(x)dµ(x).

Proof. For (i), if f, g are non-negative it su�ces to see that every simple function

φ such that φ ≤ f also satis�es φ ≤ g. In general, f ≤ g implies that f+ ≤ g+

and f− ≥ g− so the result follows from the de�nition of integral. For (ii), see

that f(x)χA(x) ≤ f(x)χB(x) and apply (i).

We consider one last construction related to Lebesgue integral. Let (X,AX , µX)

and (Y,AY , µY ) be measure spaces. We can form a measure space (X×Y,A, µ),

called product space, such that the σ-algebraA contains all sets of the form A×B
and µ(A× B) = µX(A)µY (B) whenever A ∈ AX and B ∈ AY . The details can
be veri�ed in [3, Section 2.6].

Now let f : X × Y → R be a Borel-measurable function. For each x ∈ X,

y ∈ Y and C ∈ A, de�ne Cx = {y ∈ Y | (x, y) ∈ C}, the �slice� of Y having x

as �rst coordinate, and analogously Cy = {x ∈ X | (x, y) ∈ C}. It is possible

to prove that Cx is AY -measurable and Cy is AX-measurable for every x ∈ X
and y ∈ Y . Moreover, the map x 7→ µY (Cx) is AX-measurable, and the map

y 7→ µX(Cy) is AY -measurable. Then we have

Theorem 2.5.17. With the notation introduced before, let C ∈ A. Then

µ(C) =

∫
X×Y

χC(x, y)dµX(x)dµY (y) =

∫
X

µY (Cx)dµX(x) =

∫
Y

µX(Cy)dµY (y).
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This is a weaker version of the classical Fubini Theorem [3, Theorem 2.6.6].

See that the integrands are indeed measurable functions on the appropriate

measure spaces.

2.6 The Haar measure

In this section we state existence and unicity of a Haar measure on locally com-

pact groups, together with some useful results. We also stress out that a proof

of both existence and unicity of Haar measure in locally compact groups is pre-

sented in the Appendix for the bene�t of the reader who might not be acquainted

with the subject. We avoided the language and machinery of functional analysis

everywhere where it was possible in the Appendix to make it rely only on group

theory and topology.

De�nition 2.6.1. Let G be a Hausdor� locally compact topological group and

B(G) be its Borel σ-algebra. A left Haar measure µ on (G,B(G)) is a nonzero

measure with the following properties:

(H1) If x ∈ G and S ∈ B(G), then µ(xS) = µ(S).

(H2) The measure µ is �nite on every compact subset K ⊆ G.

(H3) The measure µ is outer regular on Borel sets: if S ⊆ G is measurable, then

µ(S) = inf{µ(U) |S ⊆ U, U is open}.

(H4) The measure µ is inner regular on open sets: if U ⊆ G is open in G, then

µ(U) = sup{µ(K) |K ⊆ U, K is compact}.

If we replace xS by Sx on (H1), we get a right Haar measure. The existence

of a measure satisfying (H1)-(H4) was �rst proved for locally compact groups

by A. Haar [22] in 1933, although his proof only worked for separable groups.

The existence was proved in full generality �rst by A. Weil [48] and later by

H. Cartan [7] and J. von Neumann [46], and unicity, up to a scaling factor,

was proved by several mathematicians including J. von Neumann [47] and S.

Kakutani [28]. We can resume their results in the following theorem.
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Theorem 2.6.2. Let G be a Hausdor� locally compact topological group. Then

there exists a nonzero left Haar measure µ on (G,B(G)). If ν is another nonzero

left Haar measure on (G,B(G)), there is a positive real number k such that

µ(S) = kν(S) for every Borel set S.

The Haar measure on the real line consists on Lebesgue measure and its scalar

multiples. It is translation-invariant with respect to measure of sets and, more

generally, with respect to integration: if f is any Lebesgue-integrable function,

then ∫
R

f(x+ a)dx =

∫
R

f(x)dx,

for every a ∈ R, provided this integral is well-de�ned.

Property (H2) in De�nition 2.6.1 ensures that, if G is a compact group with

Haar measure µ, then µ(G) is �nite. It turns out that the converse is also true.

Proposition 2.6.3. Let G be a locally compact group and µ be a left Haar

measure on G. Then µ(G) is �nite if and only if G is compact.

Proof. Suppose that G is compact. As we remarked before, property (H2) en-

sures that every compact subset of G has �nite measure, so µ(G) must be �nite.

Assume now that µ(G) <∞ and let V be a compact neighbourhood of the iden-

tity of positive measure. Such a compact set must exist, combining (H3) and

(H4) in De�nition 2.6.1 and the fact that µ is nonzero. Let X be the collection

of all �nite subsets {x1, . . . , xn} of G such that xiV ∩ xjV = ∅. Then

nµ(V ) = µ (x1V ∪ · · · ∪ xnV ) ≤ µ(G).

and it follows that n ≤ µ(G)
µ(V )

. Therefore, we can choose a maximal element

{y1, . . . , yn} in X, in the sense of inclusion. For each y ∈ G, it follows that

yV ∩ yiV 6= ∅ for some i, thus y ∈ yiV V −1. Continuity of the group operation

implies that V V −1 is compact, and as G =
⋃n
i=1 yiV V

−1, we conclude that G is

compact.

We are concerned with probability measures, so µ(G) will always be 1 in the

text. This is the reason why we consider compact rather than locally compact

groups. Moreover, we say that a left Haar measure µ on a compact group G is

normalized provided µ(G) = 1.

Let G be a compact Hausdor� group andN ≤ G be a closed normal subgroup

of G. The topology of G naturally induces one on G/N by declaring as open on
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G/N the images of open subsets of G, and analogously the σ-algebra of Borel

subsets of G/N will coincide with the σ-algebra induced by B(G). The quotient

G/N is again compact and Hausdor�, since N is closed. Finally, if π : G→ G/N

is the natural projection and S is a measurable subset of G/N , we can de�ne a

Haar measure µ̄ on G/N by

µ̄(S) = µ(π−1(S)).

It follows directly that µ(S) ≤ µ̄(π(S)).

The following three Lemmas are going to be useful in the sequence. In all of

them we consider a compact group G equipped with the normalized measure µ.

Lemma 2.6.4. Let G be a compact group and let K be a subgroup of G. Then

either µ(K) = 0 or µ(K) > 0 and K is open on G. Furthermore, in the latter

case, µ(K) = [G : K]−1.

Proof. Assume µ(K) > 0, let n be the smallest integer such that µ(K) ≥ 1
n

and assume that [G : K] is in�nite. Then there exist x1, . . . , xn+1 such that the

cosets xiK are all di�erent, i = 1, . . . , n+ 1. It follows that

µ(G) ≥ µ

(
n+1⋃
i=1

xiK

)
= (n+ 1)

1

n
> 1,

a contradiction. Thus K has �nite index on G and is open. Moreover, we have

µ(K) = [G : K]−1 by property (H1).

It follows that µ(H) = [G : H]−1 even if H has in�nite index, interpreting
′′ 1
∞
′′
as zero. If G is a compact group, then compactness and Lemma 2.6.4 can

be used to argue that left and right Haar measures coincide. Next we use the

Haar measure to estimate the index of a subgroup.

Lemma 2.6.5. Let G be a compact group, and let K and H be subgroups of G

with K ≤ H. Assume further that µ(K) ≥ εµ(H) > 0 for some positive ε. Then

[H : K] ≤ ε−1.

Proof. Since µ(K), µ(H) > 0, the previous lemma implies that both subgroups

are of �nite index and µ(K) = [G : K]−1 and µ(H) = [G : H]−1. Hence the

result.

We say that a subset X of a group G is symmetric provided X = X−1.

Moreover, for a positive integer s, let Xs be the set of products of at most s

elements from X. The next lemma is essentially Lemma 2.1 in [11].
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Lemma 2.6.6. Let G be a compact group with normalized Haar measure µ and

let r ≥ 1. Suppose that X is a closed symmetric subset of G containing the

identity. If µ(X) > 1
r+1

, then 〈X〉 = X3r.

Proof. Suppose xi ∈ X3i+1 \ X3i for i = 0, . . . , r. Then for each i, as long as

X3i+1 \X3i is nonempty, we have

xiX ⊆ X3i+2 \X3i−1.

So, assume that the sets X3i+1 \ X3i are nonempty for i = 0, . . . , r. Then

x0X, . . . , xrX are disjoint subsets of G, each of measure µ(X), and

µ

(
r⋃
i=0

xiX

)
= (r + 1)µ(X) > 1.

Therefore X3i+1 = X3i for some i ≤ r. In particular, X3r = 〈X〉.

Example 2.6.7. Let G = GLn(R) and consider (G,B(G), µ) where µ is the

normalized Haar measure on G. If f : G→ R is a continuous function, there is

a relation between Riemann and Lebesgue integrals of f :∫
G

f(x)dµ(x) =

∫
G

f(x) · 1

|det(x)|n
dx.

As another example of a well-behaved integral consider G = (0,∞), the mul-

tiplicative group of positive real numbers. Then, for every continuous function

f : G→ R we have ∫
G

f(x)dµ(x) =

∫
G

f(x) · 1

x
dx.

For example, the measure of (a, b) is log(b/a).

2.6.1 Why Haar measure?

There are some reasons why normalized Haar measure is a suitable idea to

de�ne probability in a compact group. If G is an in�nite compact group, the

probability of randomly choosing a single element must be zero, but if H is an

open subgroup of G it makes sense that the probability of choosing an element

from H randomly is [G : H]−1, as stated in Lemma 2.6.4. Moreover, if G is a

pro�nite group with normalized Haar measure µ, then µ induces the uniform
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discrete probability on the �nite quotients of G: if N is a normal open subgroup

of G, the induced measure µN on G/N satis�es µN(N/N) = µ(N) = [G : N ]−1.

On the other hand, let C = {Gi | i ∈ I} be the inverse system of �nite groups

whose inverse limit is G and let µi be the discrete measure on Gi. It is possible

to de�ne a measure on G which is an inverse limit for the discrete probability

measures of each Gi, and this inverse limit coincides with the normalized Haar

measure on G [6, Chapter 7, Paragraph 6]. As another illustration of the con-

nection of such measures, we have the following result. We provide a proof of it

in the special case where G admits a countable family of subgroups with trivial

intersection.

Proposition 2.6.8. Let G, C, µ and µN be as de�ned before. If S is any

measurable subset of G, then µ(S) ≤ infN µN(SN/N), with equality when S is

closed.

Proof. The de�nition of µN ensures that µ(S) ≤ µN(SN/N), thus it follows

that µ(S) ≤ infN µN(SN/N). Now assume S is closed on G and letM be any

collection of closed subsets of G such that, for every S1, S2 ∈M there is S3 ∈M
with S3 ⊆ S1 ∩ S2. Proposition 2.1.4(a) in [43] states that

⋂
M∈M

MC =

( ⋂
M∈M

M

)
C

for every closed subset C of G. In particular, if {Ni | i = 1, 2, . . . } is a countable
family of nested neighbourhoods of identity with trivial intersection, we conclude

that
⋂∞
i=1 SNi = S and, by Lemma 2.5.10, µ(S) = limi→∞ µ(SNi). Denoting by

πi the projection of G onto G/Ni, then

µ(SNi) = µ(π−1
i (SNi/Ni)) = µNi

(SNi/Ni),

so we conclude that µ(S) = infi µNi
(SNi/Ni). The measure µ(S) is a lower

bound for {µN(SN/N) |N ∈ C}, by the �rst part of the proof. However, for any

ε > 0, there exists an i such that µ(S) ≤ µNi
(SNi/Ni) < µ(S) + ε, so it follows

that µ(S) = infN µN(SN/N), as we wanted.

This inequality can be strict. Let H be a countable residually �nite group,

let G be its pro�nite completion and µ the normalized Haar measure of G. As

singletons are measurable subsets of G, then H can be regarded as a measurable

subgroup of G. Moreover, the measure of a singleton is zero unless G is �nite, so

µ(H) = 0 whereas µ(G) = infN µN(G/N) = µN(HN/N) = 1, since H projects

surjectively on all �nite images of G.



Chapter 3

The commuting probability in

groups

3.1 De�nitions and Historical Remarks

The de�nition of commuting probability in groups dates back to Erdös and Turán

[13]. If G is a �nite group, we can de�ne the probability that two elements of G

commute as

Pr(G) =
|{(x, y) ∈ G×G |xy = yx}|

|G|2
,

which we call the commuting probability of G. Fixing x ∈ G, the number of

ordered pairs (x, y) where y commutes with x is |CG(x)|, so we can rewrite the

above probability as

Pr(G) =

∑
x∈G |CG(x)|
|G|2

=
1

|G|
∑
x∈G

1

[G : CG(x)]
.

Now, [G : CG(x)] = [G : CG(y)] for every y ∈ xG. IfG has k(G) conjugacy classes

and x1, . . . , xk(G) are conjugacy class representatives of G, the summation can

be written as

1

|G|
∑
x∈G

1

[G : CG(x)]
=

1

|G|

k(G)∑
i=1

|xGi |
1

[G : CG(xi)]
=
k(G)

|G|
.

This direct method can be used to compute commuting probabilty for �nite

groups and to prove, for example, that Pr(G×H) = Pr(G)× Pr(H). We also

conclude that nonabelian groups can have arbitrarily small commuting probabili-

30
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ties: ifG is a �nite group such that Pr(G) < 1, then Pr(G× · · · ×G︸ ︷︷ ︸
m times

) = Pr(G)m

is arbitrarily small for large m.

Following Gustafson [21], it is also possible to de�ne commuting probability

in in�nite compact groups. Let G be a compact Hausdor� group and consider

the map f : G × G → G taking (x, y) to the commutator [x, y]. Then f is

continuous and, since 1 is a closed subgroup of G, the preimage f−1(1) is a

closed subset of G×G. This preimage is the set

C = {(x, y) ∈ G×G |xy = yx},

which is closed in G×G, thus measurable. If µ is the normalized Haar measure

on G, we equip G×G with the product measure µ×µ and de�ne the commuting

probability of G as the value

(µ× µ)(C) =

∫
G×G

χC(x, y)d(µ(x)× µ(y)),

where χC is the characteristic function of C. As it was de�ned in the end of

section 2.5, the set Cx is

Cx = {y ∈ G | (x, y) ∈ C} = {y ∈ G |xy = yx} = CG(x).

Now, using Theorem 2.5.17, we can rewrite the above integral as∫
G×G

χC(x, y)d(µ(x)× µ(y)) =

∫
G

µ(Cx)dµ(x) =

∫
G

µ(CG(x))dµ(x).

Recall that if CG(x) has in�nite index on G, we interpret [G : CG(x)]−1 as zero.

Then, by Lemma 2.6.4, we have

Pr(G) =

∫
G

µ(CG(x))dµ(x) =

∫
G

1

[G : CG(x)]
dµ(x). (∗∗)

Commuting probability has been used, among other applications, to derive

structural results about groups. The intuition behind some problems is: if

Pr(G) is su�ciently high, is it true that G will be �close� to being abelian in

some sense? For example, Gustafson proved in [21] that, if Pr(G) ≈ 1, then

Pr(G) = 1 already: every nonabeilan compact group G satis�es Pr(G) ≤ 5
8
.

Representation theory tools have been used by Lescott [34] to prove that, if G is
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�nite and Pr(G) > 1
2
, then G is nilpotent. Not relying on the Classi�cation of

Finite Simple Groups, Lescott [35] and Dixon (see Can. Math. Bul., 16 (1973)

p. 302) independently proved that if Pr(G) > 1
12
, then G is soluble. Both

bounds are sharp, since the symmetric group S3 of degree 3 satis�es Pr(S3) = 1
2

and the alternating group of degree 5, A5, satis�es Pr(A5) = 1
12
.

We say that G is a BFC-group when there is a positive integer n such that

for every x ∈ G we have |xG| ≤ n. This is equivalent to saying that 1
[G:CG(x)]

≥ 1
n
.

In particular, if G is a compact group such that |xG| ≤ n for all x ∈ G, then
Pr(G) ≥ 1

n
, by equation (∗∗). A well-known theorem due to B. H. Neumann

states that in a BFC-group the derived group G′ is �nite [39]. In particular, if

|xG| ≤ n for all x ∈ G, the order of G′ is n-bounded. J. Wiegold [49] found the

�rst explicit bound for the order of G′, and the best known bound was found in

[19]. To prove some of our results we are going to use tools developed in recent

generalizations of B. H. Neumann's result [2, 8, 10].

P.M. Neumann [40] proved one of the �rst structure theorems on commuting

probability for �nite groups, which in particular follows from Theorem A. The

theorem of P.M. Neumann is as follows.

Theorem 3.1.1. Let ε be positive and G be a �nite group such that Pr(G) ≥ ε.

Then G has a subgroup H such that [G : H] and |H ′| are ε-bounded.

Considering a similar problem on relative commuting probability, Detomi

and Shumyatsky [9] proved the following theorem.

Theorem 3.1.2. Let ε > 0 and let G be a �nite group having a subgroup K such

that Pr(K,G) ≥ ε. Then there is a normal subgroup T ≤ G and a subgroup

B ≤ K such that the indices [G : T ] and [K : B] and the order of [T,B] are

ε-bounded.

In particular, if one considers K = G, what we get is Theorem 3.1.1. Our

�rst main result, Theorem A, is an extension of Theorem 3.1.2 to the class of

compact groups. In particular, our proof follows closely ideas from [9]. All the

corollaries present in [9] can also be extended suitably to compact groups using

Theorem A, which we restate here.

Theorem A. Let G be a compact group having a closed subgroup K such that

Pr(K,G) ≥ ε for ε > 0. Then there is a normal closed subgroup T ≤ G and a

closed subgroup B ≤ K such that the indices [G : T ] and [K : B] and the order

of [T,B] are ε-bounded.
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Theorem A will be proved in Section 3.3. We �nish this introduction shedding

light in the intuition behind some theorems we prove. Suppose that G is a

compact group such that Pr(G) ≥ ε. Theorem A implies that G has a subgroup

H of ε-bounded index such that H ′ is �nite of ε-bounded order, so we conclude

that G has a large abelian section, namely H/H ′. We can also prove that G is

virtually abelian. Indeed, since H ′ is �nite, there exists an open subgroup L of

H avoiding all nontrivial elements of H ′, so L is open in G and must be virtually

abelian.

3.2 Relative Commuting Probability

The notion of commuting probability can be generalized in the following way:

let G be a compact group and K be a subgroup of G. Consider the set of

commuting pairs C = {(x, y) ∈ K × G |xy = yx}. This is closed in K × G

since it is the preimage of 1 under the continuous map f : K ×G→ G given by

f(x, y) = [x, y]. Denoting the normalized Haar measures of K and G by ν and

µ, respectively, the probability that a random element from K commutes with

a random element from G is de�ned as Pr(K,G) = (ν×µ)(C) and is called the

relative commuting probability of K in G. This notion has received increasing

attention in recent years and basic properties about it can be found in [14].

We dedicate this section to record the results on relative commuting proba-

bility that are needed to prove Theorem A. The �rst result states that, roughly

saying, it is easier to commute elements chosen in smaller subgroups.

Lemma 3.2.1. Let H and K be subgroups of a compact group G, with H ≤ K.

Then

Pr(K,G) ≤ Pr(H,G) ≤ Pr(H,K).

In particular, Pr(G,G) ≤ Pr(K,G) ≤ Pr(K,K).

Proof. Let µ, ν and λ be the normalized Haar measures of G, K and H, respec-

tively. Given x ∈ G, the map α : {hCH(x) |h ∈ H} → {kCK(x) | k ∈ K} taking
hCH(x) to hCK(x) is injective. We deduce that [H : CH(x)] ≤ [K : CK(x)] and

ν(CK(x)) ≤ λ(CH(x)) by Lemma 2.6.4. We have

Pr(H,G) =

∫
G

λ(CH(x))dµ(x) ≥
∫
G

ν(CK(x))dµ(x) = Pr(K,G).

The other inequality is proved in an analogous way.
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In the case of �nite groups Lemma 3.2.5 was established in [9] and once again

there is some intuition behind it: if N is a normal subgroup of G, Lemma 3.2.5

states that commutation is easier in the quotient group G/N than on G itself.

To prove it we need some preliminary results, the �rst one being the extended

Weil formula ([41, p.88]).

Lemma 3.2.2. Let G be a compact group and H be a (closed) normal subgroup

of G. If f is a measurable function and µ, ν and λ are the Haar measures on

G, H and G/H respectively, then

∫
G/H

∫
H

f(xh)dν(h)

 dλ(xH) =

∫
G

f(x)dµ(x).

If φ : G→ H is a continuous isomorphism between compact groups, there is

a natural way to relate the integral of a function f over G with an integral over

H. This is Corollary 2.5 in [42].

Lemma 3.2.3. Let G and H be compact groups with normalized Haar measures

µG and µH . If φ : G → H is a topological isomorphism and f : H → R is a

measurable function, then∫
G

f(φ(x))dµG(x) =

∫
H

f(x)dµH(x).

The following is an identity used in the proof of Lemma 3.2.5.

Lemma 3.2.4. Let G be a compact group with normal subgroup N and let µG

and µN be the normalized Haar measures of G and N , respectively. If x ∈ G is

an FC-element, then

µG(CG(x)N)µN(CN(x)) = µG(CG(x)).

Proof. We have that

µG(CG(x)N) = [G : CG(x)N ]−1 =
[CG(x)N : CG(x)]

[G : CG(x)N ][CG(x)N : CG(x)]
,

which equals [CG(x)N : CG(x)]µG(CG(x)). Since

[CG(x)N : CG(x)] = [N : CN(x)],

it follows that µG(CG(x)N)µN(CN(x)) = µG(CG(x)).
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Now we proceed to the proof of Lemma 3.2.5. The proof is technical and

requires integrals of several functions. It is possible to prove that the integrands

are indeed measurable with respect to the suitable σ-algebra considered on each

step.

Lemma 3.2.5. Let G be a compact group and let N be a normal subgroup of G.

For any subgroup K of G, we have

Pr(K,G) ≤ Pr(KN/N,G/N)Pr(K ∩N,N).

Proof. If X is a compact group, we denote by µX the normalized Haar measure

of X. Let FC(K) be the abstract subgroup of K consisting of elements having

�nite conjugacy class in G and recall FC(K) is a measurable subgroup of G.

Applying Lemma 3.2.4 we have∫
K

µG(CG(x))dµK(x) =

∫
FC(K)

µG(CG(x))dµK(x)

=

∫
FC(K)

µG(CG(x)N)µN(CN(x))dµK(x)

≤
∫
K

µG(CG(x)N)µN(CN(x))dµK(x),

where the last inequality follows from Proposition 2.5.16(ii). We now apply the

extended Weil formula 3.2.2 to the last integral and obtain

Pr(K,G) ≤∫
K

K∩N

 ∫
K∩N

µG(CG(xk)N)µN(CN(xk))dµK∩N(k)

 dµ K
K∩N

(x(K ∩N))

≤
∫
K

K∩N

 ∫
K∩N

µG
N

(CG
N

(xN))µN(CN(xk))dµK∩N(k)

 dµ K
K∩N

(x(K ∩N))

=

∫
K

K∩N

µG
N

(CG
N

(xN))

 ∫
K∩N

µN(CN(xk))dµK∩N(k)

 dµ K
K∩N

(x(K ∩N)). (1)
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If x is any element of K, de�ne the set

Ax = {(k, n) ∈ (K ∩N)×N | [xk, n] = 1}

= {(k, n) ∈ (K ∩N)×N |xk ∈ CG(n) ∩ x(K ∩N)}.

If CG(n)∩x(K∩N) is nonempty, then it equals tCK∩N(n) for some t ∈ x(K∩N).

Thus,

Ax = {(k, n) ∈ (K ∩N)×N |xk ∈ tCK∩N(n)}

= {(k, n) ∈ (K ∩N)×N | k ∈ x−1tCK∩N(n)}.

We use the Fubini Theorem 2.5.17 to give an estimate for the expression in

parenthesis in (1):∫
K∩N

µN(CN(xk))dµK∩N(k) =

∫
(K∩N)×N

χAx(k, n)d(µK∩N × µN)(k, n)

≤
∫
N

µK∩N(x−1tCK∩N(n))dµN(n)

=

∫
N

µK∩N(CK∩N(n))dµN(n)

= Pr(K ∩N,N).

Replacing this back in (1) we have

Pr(K,G) ≤
∫
K

K∩N

µG
N

(CG
N

(xN))

 ∫
K∩N

µN(CN(xk))dµK∩N(k)

 dµ K
K∩N

(x(K ∩N))

≤Pr(K ∩N,N)

∫
K

K∩N

µG
N

(CG
N

(xN))dµ K
K∩N

(x(K ∩N)).

Finally, since K/K ∩N and KN/N are isomorphic, we can apply Lemma 3.2.3

with respect to the last integral above to conclude that∫
K

K∩N

µG
N

(CG
N

(xN))dµ K
K∩N

(x(K ∩N)) =

∫
KN
N

µG
N

(CG
N

(xN))dµKN
N

(xN)

=Pr(KN/N,G/N).

The lemma follows.
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Using Lemma 3.2.5, if G is compact and Pr(K,G) ≥ ε, then this property is

inherited by all homomorphic images of G, since Pr(K,G) ≤ Pr(KN/N,G/N)

for any normal subgroup N of G.

3.2.1 Examples

Here we collect some examples of groups having well-behaved commuting prob-

ability, to illustrate the methods that can be used to calculate it.

Example 3.2.6. [27, Lemma 5.1] Let G =
∏∞

i=1 Hi be the Cartesian product

of the �nite groups Hi. Then

Pr(G) = lim
n→∞

Pr(H1)Pr(H2) · · ·Pr(Hn),

in case it exists.

See that the sequence whose general term is Pr(H1)Pr(H2) . . . P r(Hn) is

non-increasing and bounded, so it must converge to its in�mum.

Proof. Let µ be the product measure on G×G. If H is a compact group, denote

by C(H) the set {(x, y) ∈ H ×H | [x, y] = 1}. De�ne the sets

Cn = C(H1)× · · · × C(Hn)×Hn+1 ×Hn+1 × · · · ⊆ G×G.

Then µ(Cn) = Pr(H1) · · ·Pr(Hn). Identifying
∏∞

i=1 Hi ×Hi with G × G, then⋂∞
i=1Cn = C(G). We have that µ(

⋂∞
i=1 Cn) = limn→∞ µ(Cn) by Lemma 2.5.10,

as we wanted to prove. Moreover, it is clear that Pr(G) > 0 if and only if

all but �nitely many of the Hn are abelian, as nonabelian �nite groups have

commutativity degree ≤ 5
8
and this product converges if and only if Pr(Hn)→

1.

Still in the context of pro�nite groups we consider the problem to calculate

Pr(G) when G is the pro�nite completion of a given residually �nite group.

Example 3.2.7. [6, Chapter 7, Paragraph 6] LetG be a pro�nite group equipped

with normalized Haar measure µ. Consider C = {(x, y) ∈ G×G | [x, y] = 1} and
let µ × µ be the product measure in G × G. If N is an open normal subgroup

of G, let µN be the discrete probability measure in G/N , which is induced by

µ. The subset C is closed in G, so µ(C) = inf{µN(CN/N)} by Proposition

2.6.8, and as CN/N equals the set of commuting pairs of G/N , it follows that

Pr(G) = inf{Pr(G/N) |N normal open in G}.
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Now consider D = 〈a, b | ab = a−1, b2 = 1〉, the in�nite dihedral group, and

let G be its pro�nite completion. The nonabelian �nite images of D are all the

�nite dihedral groups Dn = 〈a, b | ab = a−1, an = b2 = 1〉, where |Dn| = 2n. Let

k(H) denote the class number of a �nite group H and recall that Pr(H) = k(H)
|H| .

In particular, k(Dn) equals n+3
2

if n is odd and n+6
2

if n is even, so we deduce

that Pr(Dn) equals n+3
4n

or n+6
4n

as n is odd or even, respectively. By the previous

paragraph, Pr(G) can be calculated taking the in�mum of Pr(G/N) only with

respect to nonabelian quotients. We conclude that

Pr(G) = inf
n
Pr(Dn) =

1

4
.

The group G, as de�ned before, is also suitable to calculate an explicit ex-

ample of relative commuting probability.

Example 3.2.8. We consider G as the pro�nite completion of the in�nite dihe-

dral group again. Now, recall that G = ẐoC2, where C2 is cyclic of order 2 and

acts by inversion on Ẑ, the pro�nite completion of the integers. Let H be the

subgroup of G isomorphic to Ẑ, and let µ and ν be the normalized Haar measures

on G and H, respectively. Then Pr(H,G) = 1
2
: if x ∈ H, then CG(x) = H, so

Pr(H,G) =

∫
H

µ(CG(x))dν(x) =

∫
H

[G : H]−1dνH(x) =
1

2
.

In the next example we consider the problem whether nonmeasurable subsets

of a compact group exist.

Example 3.2.9. In�nite pro�nite groups have nonmeasurable subsets. Let G

be an in�nite pro�nite group. Then G has a countable abstract subgroup H.

If we let T be a left transversal for H in G, then G =
⋃
h∈H hT . Assuming

T is measurable, we get 1 =
∑

h∈H µ(hT ) and, since µ is translation-invariant,

1 =
∑

h∈H µ(T ), which is impossible. Thus T is nonmeasurable. See that the

existence of T is guaranteed, but one needs Axiom of Choice to actually construct

T .

3.3 Proof of Theorem A

In this section we prove our �rst main theorem, which we restate here one more

time for the bene�t of the reader.
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Theorem A. Let ε > 0 and let G be a compact group having a subgroup K such

that Pr(K,G) ≥ ε. Then there is a normal subgroup T ≤ G and a subgroup

B ≤ K such that the indices [G : T ] and [K : B] and the order of [T,B] are

ε-bounded.

If A and B are normal subgroups of an arbitrary group G such that the

indexes [A : CA(B)] ≤ m and [B : CB(A)] ≤ m, then [A,B] has m-bounded

order. This result is due to Baer, cf. [44, 14.5.2]. We need a variation of it,

which is Lemma 2.1 in [9].

Lemma 3.3.1. Let m ≥ 1 and let G be a group containing a normal subgroup

A and a subgroup B such that [A : CA(y)] ≤ m and [B : CB(x)] ≤ m for all

x ∈ A, y ∈ B. Assume further that 〈BG〉 is abelian. Then [A,B] has �nite

m-bounded order.

The next theorem holds in any group and plays a key role in the proof of

Theorem A. It is Theorem 1.1 in [2] and generalizes B.M. Neumann's result [39]

on �niteness of the commutator subgroup of a BFC-group.

Theorem 3.3.2. Let m be a positive integer, let G be a group having a subgroup

K such that |xG| ≤ m for each x ∈ K, and let H = 〈KG〉. Then the order of

the commutator subgroup [H,H] is �nite and m-bounded.

Proof of Theorem A. Let µ and ν be the normalized Haar measures of G and

K, respectively. Set

X = {x ∈ K | |xG| ≤ 2/ε}.

Note that X is measurable, by Lemma 2.2.14: it is the intersection of K and

the closed set {x ∈ G | |xG| ≤ 2/ε}. We have

K \X = {x ∈ K | |xG| > 2/ε}.

Since µ(CG(x)) < ε/2 for all x ∈ K \X, it follows that

ε ≤ Pr(K,G) =

∫
K

µ(CG(x))dν(x)

=

∫
X

µ(CG(x))dν(x) +

∫
K\X

µ(CG(x))dν(x)

≤
∫
X

dν(x) +

∫
K\X

ε

2
dν(x)

=ν(X) +
ε

2
(1− ν(X)) ≤ ν(X) +

ε

2
.
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This implies that ε/2 ≤ ν(X). Let B be the subgroup generated by X. Then,

by Lemma 2.6.6, every element of B is a product of at most 6/ε elements of X.

Clearly, ν(B) ≥ ν(X) ≥ ε/2, so the index of B in K is at most 2/ε, by Lemma

2.6.5. Furthermore, |bG| ≤ (2/ε)6/ε for every b ∈ B.
Let L = 〈BG〉. Theorem 3.3.2 tells us that the commutator subgroup [L,L]

has �nite ε-bounded order. Let us use the bar notation for images of subgroups

of G in G/[L,L]. By Lemma 3.2.5, Pr(K,G) ≥ Pr(K,G) ≥ ε. Moreover,

[K : B] ≤ [K : B] ≤ ε/2 and |bG| ≤ |bG| ≤ (2/ε)6/ε for any b ∈ B. Thus we can
pass to the quotient over [L,L] and assume that L is abelian.

Now we set

Y = {y ∈ G | |yK | ≤ 2/ε}.

Note that Y is closed, by Remark 2.2.15. Arguing as before, as ν(CK(y)) < ε/2

for all y ∈ G \ Y , we have

ε ≤ Pr(K,G) =

∫
G

ν(CK(y))dµ(y)

=

∫
Y

ν(CK(y))dµ(y) +

∫
G\Y

ν(CK(y))dµ(y)

≤
∫
Y

dµ(y) +

∫
G\Y

ε/2dµ(y)

=µ(Y ) + ε/2(1− µ(Y )) ≤ µ(Y ) + ε/2.

Therefore, µ(Y ) ≥ ε/2. Let E be the subgroup generated by Y . Lemma 2.6.6

ensures that every element of E is a product of at most 6/ε elements of Y . Also,

we have µ(E) ≥ µ(Y ) ≥ ε/2, so the index of E in G is at most 2/ε, by Lemma

2.6.5. Since |yK | ≤ 2/ε for every y ∈ Y , it follows that |gK | ≤ (2/ε)6/ε for every

g ∈ E. Let T be the maximal normal subgroup of G contained in E. Then

the index [G : T ] is ε-bounded. Moreover, |bG| ≤ (2/ε)6/ε for every b ∈ B and

|gK | ≤ (2/ε)6/ε for every g ∈ T . As L is abelian, we can apply Lemma 3.3.1 and

deduce that [T,B] has �nite ε-bounded order. The theorem follows.

In particular, Theorem A implies that if G is a compact group then either

Pr(G) = 0 or G is virtually a BFC-group. Indeed, if we suppose that Pr(G) > 0,

applying Theorem A we conclude that there is an open subgroup H of G such

that H ′ is �nite, and this condition is equivalent to H being a BFC-group, by

B. H. Neumann's result [39].
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Before we proceed to the applications of Theorem A, we need to make a

few remarks. First we state a criterion for an element x ∈ G to have a �nite

conjugacy class.

Remark 3.3.3. Let G be a group and K ≤ G with [G : K] = m �nite. If

|xK | = n is �nite, then |xG| ≤ mn.

Proof. To see this, just note that the index [K : CK(x)] equals n, so

[G : CG(x)] ≤ [G : CK(x)] = [G : K][K : CK(x)] = mn.

Following notation of Theorem A, the second remark concerns �niteness of

the normal closure of [T,B].

Remark 3.3.4. Under the Hypothesis of Theorem A, the subgroup 〈[T,B]G〉
has �nite ε-bounded order.

Proof. Observe that [t1, b]
t2 = [t1t2, b][t2, b]

−1 for any t1, t2 ∈ T and b ∈ B. So

[T,B] is normal in T and the normalizer of [T,B] is open of ε-bounded index,

proving that [T,B] has boundedly many conjugates. Normality of T implies

that all conjugates of [T,B] normalize each other. Since 〈[T,B]G〉 equals the

product of those subgroups, the result follows.

Theorem A allows us to derive di�erent structural properties depending on

the subgroup K considered. In [9], for example, the authors study the case

where K = γi(G), that is, Pr(γi(G), G) ≥ ε. They prove that G has a nilpotent

normal subgroup R of of class at most i+ 1 such that the index [G : R] and the

order of γi+1(R) are ε-bounded. We consider a variation of this result.

Theorem 3.3.5. Let G be a compact group, let K = G(i) and assume that

Pr(K,G) ≥ ε. Then G has an open normal subgroup R, soluble of derived

length at most i + 2, such that the index [G : R] and the order of R(i+1) are ε-

bounded. Moreover, G has a soluble open subgroup M of derived length at most

i+ 1.

Proof. By Theorem A, there is a normal subgroup T of G and a subgroup B

of K such that [G : T ], [K : B] and the order of [T,B] are ε-bounded. Since

T (i) ≤ K we know that [T (i), B] has ε-bounded order, so |xB| is bounded for

every x ∈ T (i) and |xK | has bounded size by Remark 3.3.3. In particular, T (i) is
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a BFC-group with ε-bounded BFC-number so T (i+1) = [T (i), T (i)] must be �nite

of ε-bounded order. Let R = CT (T (i+1)). Then R is open in G, the index [G : R]

and the order of R(i+1) are ε-bounded and R is soluble of derived length at most

i+ 2.

Now let M be an open subgroup of R avoiding all nontrivial elements of

R(i+1) and see thatM (i+1) = 1. AsM is open in G and soluble of derived length

at most i+ 1, the proof is complete.

In [9] the authors consider the case where G is a �nite group such that

Pr(P,G) ≥ ε for a Sylow p-subgroup P of G. They conclude that G has a class-

2-nilpotent normal p-subgroup L such that both the index [P : L] and the order

of [L,L] are ε-bounded. We consider a pro�nite variant of this result. Here, if

G is any group, we denote by Zi(G) the i-th term of the upper central series of

G, that is,

Zi(G) = {x ∈ G | [x, g1, . . . , gi] = 1},

which is a characteristic subgroup of G.

Theorem 3.3.6. Let p be a prime and let G be a pro�nite group with a Sylow

pro-p subgroup P such that Pr(P,G) ≥ ε. Then G has a normal p-subgroup L,

nilpotent of class at most 2, such that the index [P : L] and the order of [L,L]

are ε-bounded. Moreover, P is virtually abelian.

Proof. Applying Theorem A, we have a normal subgroup T of G and a subgroup

B of P such that the indexes [G : T ] and [P : B] and the order of [T,B] are

ε-bounded. By Remark 3.3.4 the subgroup N = 〈[T,B]G〉 has �nite ε-bounded
order, and C = CT (N) has ε-bounded index in G. Set B0 = B ∩C and see that

[C,B0] ≤ Z(C). It follows that B0 ≤ Z2(C) and all conjugates of B0 lie within

Z2(C). Moreover, since B0 is a pro-p subgroup of Z2(C), it is contained in some

Sylow pro-p subgroup B1 of Z2(C). The subgroup Z2(C) is nilpotent, thus B1 is

normal in G and we conclude that B0 is contained in all Sylow pro-p subgroups

of G. Let L = 〈BG
0 〉. It is clear that L is contained in P as a subgroup of

ε-bounded index. Moreover, [L,L] ≤ N , so the order of [L,L] is �nite. The �rst

part of the theorem is proved.

Now, since [L,L] is �nite and L is pro�nite, there exists an open normal

subgroup M of L avoiding all nontrivial elements from [L,L]. It follows that M

is abelian and open in P . The proof is complete.

The following is an upper bound for Pr(H) whenever H is a nonabelian

pro-p group. It is Lemma 3.4 in [42].
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Lemma 3.3.7. Let p be a prime and let H be a nonabelian pro-p group. Then

Pr(H) ≤ p2 + p− 1

p3
.

In Theorem 3.3.6 we assumed that Pr(P,G) ≥ ε for a Sylow p-subgroup P

of G for a �xed prime p. However, if we assume that for all prime numbers a

Sylow pro-p subgroup of G satis�es Pr(P,G) ≥ ε, then a stronger result holds.

Theorem 3.3.8. Let G be a pro�nite group such that Pr(P,G) ≥ ε whenever

P is a Sylow subgroup. Then G has a nilpotent normal subgroup R, of class

at most 2, such that the index [G : R] and the order of [R,R] are ε-bounded.

Moreover, G is virtually abelian.

Proof. For each prime number p we �x a Sylow pro-p subgroup Sp ofG. Applying

Theorem 3.3.6, for each p there is a normal class-2-nilpotent subgroup Lp of G

such that the index [Sp : Lp] and the order of [Lp, Lp] are ε-bounded. Moreover,

using Lemma 3.2.1, it follows that Pr(Sp) ≥ Pr(Sp, G) ≥ ε. Using Lemma 3.3.7,

whenever Sp is nonabelian we have

Pr(Sp) ≤
p2 + p− 1

p3
.

Since Pr(Sp) ≥ ε and taking the limit of the above fraction in p, we see that

there exists a constant C depending only on ε such that p ≥ C implies that Sp

is abelian. In particular, if p ≥ C, then Lp = Sp. Set

R =
∏

p a prime

Lp.

See that G/R has boundedly many nontrivial Sylow subgroups, all of which

have ε-bounded order, thus we conclude that R has �nite ε-bounded index in G.

Furthermore, as

[R,R] =
∏

p a prime

[Lp, Lp],

it follows that the order of [R,R] is �nite and ε-bounded. Note that R is also

nilpotent of class 2.

Now, letM be an open normal subgroup of R avoiding all nontrivial elements

of [R,R]. It follows that M is abelian and open in G.

We �nish this section proving a converse for Theorem A.
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Proposition 3.3.9. Let G be a compact group with a subgroup K, let T be an

open subgroup of G, let B be an open subgroup of K and suppose that [T,B]

has �nite order. Then Pr(K,G) is bounded away from zero in terms of [G : T ],

[K : B] and the order of [T,B].

Proof. Let [G : T ] = l, [K : B] = m and |[T,B]| = n. As we did before,

it su�ces to prove that for every x ∈ K the size of the conjugacy class xG is

(l,m, n)-bounded, and we do so by counting how may weight 2 commutators

there are with x as an entry, by Remark 2.1.1. Fix a right transversal for T in

G and one for B in K and let x ∈ K and g ∈ G be arbitrary. Write x = ba and

g = ts, where b ∈ B, t ∈ T , a is a coset representative of K modulo B and s is

a coset representative of G modulo T . Using commutator identities, we have

[x, g] = [ba, ts] = [b, s]a[b, t]sa[a, s][a, t]s.

Remark 2.1.1 ensures that |tB| ≤ n, so it follows that |tK | ≤ mn by Remark

3.3.3. In the same way we prove that |bG| ≤ ln. We conclude that there are at

most lmn possibilities for the �rst and last commutators in the product above.

There are also at most lmn possibilities for the second and lm for the third.

Thus |xG| ≤ l4m4n3.



Chapter 4

A probabilistic notion of exponent

Results in this chapter concern a probabilistic generalization of the notion of

exponent in a group. Let G be a compact group and recall that we denote by

〈x〉 the subgroup topologically generated by x ∈ G. If ε > 0 is given and K is a

subgroup of G, we impose the condition that Pr(〈x〉, G) ≥ ε for every x ∈ K and

study the consequences of this condition on the structure of G. In this chapter

we prove Theorem B, which we restate here for the reader's convenience:

Theorem B. Let ε > 0 and let G be a compact group such that Pr(〈x〉, G) ≥ ε

for every x in a closed subgroup K of G. Then there is an ε-bounded number

e and an open normal subgroup T of G such that [G : T ] is ε-bounded and

[Ke, T ] = 1.

We also give some applications of the above theorem on the context of �nite

groups. The corollaries are related to structural results on the exponent of a

group and, unless stated otherwise, all results presented here come from [5].

4.1 Preliminaries

In this and the next sections, G will be an arbitrary compact group. Let ε > 0

be given. As it was mentioned, we consider a group G with a subgroup K such

that Pr(〈x〉, G) ≥ ε for all monothetic subgroups of K. When this is the case,

we say that K has high commuting probability on monothetic subgroups.

Observe that if G has �nite exponent e then |〈x〉| ≤ e and Pr(〈x〉, G) ≥ 1
e

for all x ∈ G. Indeed, if µ and ν denote normalized Haar measures in G and

45
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〈x〉, respectively, then

Pr(〈x〉, G) =

∫
G

ν(C〈x〉(y))dµ(y) =

∫
G

[〈x〉 : C〈x〉(y)]−1dµ(y) ≥
∫
G

1

e
dµ(y) =

1

e
.

More generally, if Ge ≤ Z(G), then Pr(〈x〉, G) ≥ 1
e
for all x ∈ G. This ex-

plains that high commuting probability on monothetic subgroups is, in some

sense, a generalization of having �nite exponent. The concept was developed to

treat probabilistically some �niteness conditions that are related to having �nite

exponent or related properties.

The condition Pr(〈x〉, G) ≥ ε for all x ∈ K is strictly weaker than the

condition in Theorem A. If Pr(K,G) ≥ ε, then Pr(〈x〉, G) ≥ ε for all x ∈ K,

by Lemma 3.2.1, but the converse is not true. To see this, let G =
∏

i∈I Si be

the Cartesian product of in�nitely many copies of the same nonabelian �nite

simple group S, of exponent e. Then Pr(〈x〉, G) ≥ 1
e
, but Pr(G) = 0. If Pr(G)

was positive, G would admit a normal open subgroup T such that T ′ is �nite.

However, we know that T must contain a subgroup of the form
∏

j∈J Si, where

I\J is �nite, and T coincides with T ′ and is in�nite. In Corollary 4.2.5 we

explore a situation where both conditions are equivalent.

Let us recall the result on Lemma 3.2.4. Let G be a compact group with a

normal subgroup N , and let µG and µN be the normalized Haar measures of G

and N , respectively. It is true that, for every g ∈ G, the following equality holds

µG(CG(g)N)µN(CN(g)) = µG(CG(g)).

Using Lemma 3.2.4 we can derive an easy criterion to verify whether a subgroup

K of G has high commuting probability on monothetic subgroups.

Lemma 4.1.1. Let l, n be positive integers. Let K be a subgroup of G such that

any conjugacy class containing an lth power of an element x ∈ K is of size at

most n. Then Pr(〈x〉, G) ≥ 1
ln

for every x ∈ K.

Proof. Note that 〈xl〉 is normal in 〈x〉. Using Lemma 3.2.4, we have

Pr(〈x〉, G) =

∫
G

µ〈x〉(C〈x〉(g))dµG(g) =

∫
G

µ〈x〉(C〈x〉(g)〈xl〉)µ〈xl〉(C〈xl〉(g))dµG(g)

≥
∫
G

1

l
µ〈xl〉(C〈xl〉(g))dµG(g)

=
1

l
· Pr(〈xl〉, G) ≥ 1

ln
.
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We end this introduction with the remark that Theorem B admits a converse.

The hypothesis are a little more general here.

Proposition 4.1.2. Let s, e,m be positive integers. Assume that G is a compact

group with a normal open subgroup T of index at most s and a subgroup K such

that [Ke, T ] is �nite of order at most m. Then there is 0 < ε ≤ 1 depending only

on s, e,m such that Pr(〈x〉, G) ≥ ε for every x ∈ K.

To see this simply note that if K is as above, then [G : CG(xe)] ≤ ms for

every g ∈ K and use Lemma 4.1.1.

4.2 Proof of Theorem B

First of all, observe that Lemma 4.1.1 admits a converse.

Lemma 4.2.1. Let ε > 0 and let G be a compact group such that Pr(〈x〉, G) ≥ ε

for every x in a closed subgroup K of G. Then there exist ε-bounded integers l

and n with the property that [G : CG(xl)] ≤ n for all x ∈ K.

Proof. Let x ∈ K. Since Pr(〈x〉, G) ≥ ε, in view of Theorem A there is a

normal subgroup T of G and a subgroup B of 〈x〉 such that the indices [G : T ]

and [〈x〉 : B] and the order of [T,B] are ε-bounded. Hence, as required, there

are ε-bounded numbers l and n such that [G : CG(xl)] ≤ n for all x ∈ K.

Taking this into consideration, Theorem B will follow from the next propo-

sition.

Proposition B′. Let G be a compact group and let l, n be positive integers.

Suppose that there is a subgroup K of G such that [G : CG(xl)] ≤ n for every

x ∈ K. Then there exist a positive integer e and a normal subgroup T of G such

that [Ke, T ] = 1 and both e and the index [G : T ] are (l, n)-bounded.

We need to make some considerations before we proceed to the proof of

Proposition B′. Let G be a topological group generated by a symmetric set X,

that is, X = X−1 = {x−1 |x ∈ X}. If it is possible to write g ∈ G as a product

of �nitely many elements from X, we denote by w(g) the shortest length of such

an expression. If g cannot be written as a product of �nitely many elements of

X, we simply say that w(g) is in�nite. The next result is Lemma 2.1 in [10].

Lemma 4.2.2. Let G be a group generated by a symmetric set X and let D be

a subgroup of index m in G. Then every coset Db contains an element such that

w(g) ≤ m− 1.
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We remark that Lemma 4.2.2 holds for topological groups and their closed

(open) subgroups of �nite index. Indeed, for an integer r ≥ 0 let Dr be the union

of the cosets of D containing some element g with w(g) ≤ r. Then Dr ⊆ Dr+1

and DrX ⊆ Dr+1 for all r. Let R be the minimal integer such that DR+1 = DR.

Then DR is a closed set containing the group generated by X, so DR = G. Since

D has m cosets and D0 = D, it follows that R < m.

Now we are able to embark on the proof of Proposition B′, which follows

ideas from [2] and [10]. Also, we observe that some auxiliary lemmas will be

proved within the main demonstration.

Proof of Proposition B′. Let G be a compact group and let n, l be positive in-

tegers. Assume that [G : CG(xl)] ≤ n for every x in a closed subgroup K of

G. Let X be the union of the conjugacy classes of G containing an lth power of

an element of K and let H be the subgroup generated by X. De�ne m as the

maximum of the indices of CH(x) in H, where x ∈ X. Obviously, m ≤ n.

Lemma 4.2.3. For any x ∈ X the order of the subgroup [H, x] is m-bounded.

Proof. Since the index of CH(x) in H is at most m, Lemma 4.2.2 guarantees

that there are elements y1, . . . , ym in H such that each yi is a product of at most

m− 1 elements of X and the subgroup [H, x] is generated by the commutators

[yi, x], for i = 1, . . . ,m. For any such i write yi = yi1 . . . yi(m−1), where yij

belongs to X. Using the standard commutator identities, we can rewrite [yi, x]

as a product of conjugates in H of the commutators [yij, x]. Let {h1, . . . , hs} be
the set of conjugates in H of all elements from the set {x, yij | 1 ≤ i, j ≤ m− 1}.
Note that the number s here is m-bounded. This follows from the fact that

CH(x) has index at most m in H for every x ∈ X. Let D be the subgroup of H

generated by h1, . . . , hs. Since [H, x] is contained in the commutator subgroup

D′, it su�ces to show that D′ has �nite m-bounded order. Observe that the

center Z(D) has index at most ms in D, since the index of CH(hi) is at most

m for every hi. Thus, by Schur's theorem [44, 10.1.4], we conclude that D′ has

�nite m-bounded order.

We now argue by induction on m. If [H : CH(gl)] ≤ m − 1 for all g ∈ K,

then by induction the result follows. We therefore assume that there is d ∈ K
such that [H : CH(dl)] = m. Set a = dl and choose b1, . . . , bm in H such that

aH = {abi | i = 1, . . . ,m} and w(bi) ≤ m − 1 (the existence of the elements bi

is guaranteed by Lemma 4.2.2). Moreover, observe that [H : CH(a)] ≤ m. If
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c ∈ H, we can rewrite the conjugate ac as

ac = (dl)c = (dc)l = (dbi)l = (dl)bi = abi

for some i. We conclude that the set {(al)bi | i = 1, . . . ,m} contains the conju-

gacy class of dl, possibly with repetitions. Set U = CG(〈b1, . . . , bm〉). Note that
the index of U in G is n-bounded. Indeed, since w(bi) ≤ m − 1 we can write

bi = bi1 . . . bi(m−1), where bij ∈ X and i = 1, . . . ,m. By the hypothesis, the index

of CG(bij) in G is at most n for any such element bij. Thus, [G : U ] ≤ n(m−1)m.

Lemma 4.2.4. Suppose that u ∈ U and ua ∈ X. Then [H, u] ≤ [H, a].

Proof. For each i = 1, . . . ,m we have (ua)bi = uabi , since u belongs to U . By

hypothesis, ua ∈ X. Hence, taking into account the assumption on the size of

the conjugacy class of ua in H, we deduce that (ua)H consists exactly of the

elements (ua)bi , for i = 1, . . . ,m. Therefore, given an arbitrary element h ∈ H,

there exists b ∈ {b1, . . . , bm} such that (ua)h = (ua)b and so uhah = uab. It

follows that [u, h] = aba−h ∈ [H, a], and the lemma holds.

Let R be the normal closure in G of the subgroup [H, a], that is, R =

[H, ab1 ] . . . [H, abn ], where abi are all the conjugates of a in G (if |aG| ≤ n − 1,

then not all the ab1 , . . . , abn are pairwise distinct). By Lemma 4.2.3, each of the

subgroups [H, abi ] has n-bounded order. Thus, the order of R is n-bounded as

well.

Let Y1 = Xa−l ∩ U and Y2 = Xa−1 ∩ U . Note that for any y ∈ Y1, the

product yal belongs to X. So, by Lemma 4.2.4 applied with al in place of a and

y in place of u, the subgroup [H, y] is contained in [H, al], which is contained

in R. Similarly, for any y ∈ Y2, we have [H, y] ≤ R. Set Y = Y1 ∪ Y2. Thus,

[H,Y ] ≤ R.

Let U0 be the maximal normal subgroup of G contained in U . Observe that

the index of U0 in G is n-bounded. Observe further that for any u ∈ U0 the

commutators [u, a−l] and [u, a−1] lie in Y . Since [U0, a
−1] = [U0, a], we deduce

that

[H, [U0, a]] ≤ R.

Let K0 = K ∩ U0. We remark that (ua)l(al)−1 ∈ Y whenever u ∈ K0. We pass

to the quotient G = G/R and use the bar notation to denote images in G. We

know that Y is central in H. We also deduce that [U0, a] ≤ Z(H).
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Since (ua)l(al)−1 ∈ Y whenever u ∈ K0 and since Y ≤ Z(H), it follows that

in the quotient G/Z(H) the element a commutes with U0 and (ua)l(a)−l = 1

for every u ∈ K0. This implies that K0 has exponent dividing l modulo Z(H).

It follows that K
l

0 is abelian and every element of K0
l2

is again an lth power of

an element in K0. We therefore deduce that

Pr(K
l2

0 , G) ≥ 1

n
.

By Theorem A there is a normal subgroup T in G and a subgroup V in K
l2

0

such that the indices [G : T ] and [K
l2

0 : V ] and the order of [T , V ] are (n, l)-

bounded. Let T be the inverse image of T in G and V the inverse image of V

in K l2

0 . Bearing in mind that the order of R is n-bounded, we conclude that the

indices [G : T ] and [K l2

0 : V ] are (n, l)-bounded, as also is the order of [T, V ].

As the index of V in K l2

0 is bounded, there is a positive (n, l)-bounded integer e

such that Ke ≤ V . So far we have proved that [Ke, T ] has �nite (n, l)-bounded

order, where the integer e and the index [G : T ] are (n, l)-bounded.

Assume that |[Ke, T ]| = d, let k ∈ K, t ∈ T and consider the commutators

[kei, t] for i = 0, 1, . . . , d. The pigeonhole principle ensures that there are two

integers u ≥ v such that [xeu, t] = [xev, t], which in turn implies that xe(u−v)

centralizes t. Now, as 1 ≤ u − v ≤ d, it follows that [xd!e, t] = 1 for arbitrary

x ∈ K and t ∈ T . De�ning f = d!e, it follows that [Kf , T ] = 1. This completes

the proof of the proposition.

Theorem B has di�erent consequences according to the choice of K. For

example, if K = G0, then Pr(G0, G) ≥ ε is equivalent to Pr(〈x〉, G) ≥ ε for

every x ∈ G0.

Corollary 4.2.5. Let G be a compact group and let G0 be the connected com-

ponent of the identity in G. Then, the following are equivalent

(i) The probability Pr(G0, G) is positive;

(ii) The centralizer CG(G0) is open in G;

(iii) There exists ε > 0 such that Pr(〈x〉, G) ≥ ε for any x ∈ G0.

Proof. Suppose �rst that Pr(G0, G) > 0. Then there are subgroups of �nite

index T of G and B of G0 such that [T,B] is �nite, by Theorem A. Since G0 is

divisible [37], the only �nite index subgroup of G0 is G0 itself. Therefore [T,G0]
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is a �nite connected subgroup of G, what implies that [T,G0] = 1. We conclude

that T ≤ CG(G0), so (i) implies (ii).

Now, assume that CG(G0) is open in G, let x ∈ G0 and let µ and µ0 be

the normalized Haar measures of G and 〈x〉, respectively. For any y ∈ G0, the

inclusion CG(G0) ≤ CG(y) holds, thus µ(CG(G0)) ≤ µ(CG(y)). We have

Pr(〈x〉, G) =

∫
〈x〉

µ(CG(y))dµ0(y) ≥ µ(CG(G0)) > 0.

We conclude that Pr(〈x〉, G) ≥ ε where ε = [G : CG(G0)]−1, and so (ii) implies

(iii).

Now we assume the validity of (iii) and prove that (i) holds. By Theorem

B, there are a �nite index subgroup T of G and a natural number e such that

[Ge
0, T ] = 1. Since G0 is divisible, G0 = Ge

0 and so T centralizes G0 and T ≤
CG(x) for any x ∈ G0. Writing µ and µ0 for the normalized Haar measures of

G and G0, respectively, we have

Pr(G0, G) =

∫
G0

µ(CG(x))dµ0(x) ≥ µ(T ) > 0.

4.3 Applications of Theorem B

We say that a group G is torsion if every element of G has �nite order. It was

proved in [25, p.69] that a compact torsion group must be pro�nite. In particular,

concerning groups with �nite exponent, the Restricted Burnside Problem was

whether the order of an r-generated �nite group of exponent e is bounded in

terms of e and r alone, and it was famously solved in the a�rmative by Zelmanov

[52, 53]. Thus we have the following result.

Theorem 4.3.1. Let G be a compact group of exponent e, (topologically) gen-

erated by r elements. Then G is �nite of (e, r)-bounded order.

The �rst application of Theorem B is a probabilistic generalization of the

theorem above.

Theorem 4.3.2. Let G be an r-generated compact group where Pr(〈x〉, G) ≥ ε

for all x ∈ G. Then G has a normal abelian subgroup N such that the index

[G : N ] is (r, ε)-bounded.
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Proof. By Theorem B there is an ε-bounded number e and a normal subgroup

T ≤ G such that the index [G : T ] is ε-bounded and [Ge, T ] = 1. Theorem

4.3.1 implies that the index [G : Ge] is (e, r)-bounded. Therefore the subgroup

N = Ge ∩ T has the required properties.

In [36], Mann proves the following result. Here, G does not need to be a

compact group.

Theorem 4.3.3. Let G be a group such that G/Z(G) is locally �nite of exponent

e. Then the commutator subgroup [G,G] has �nite e-bounded exponent.

Using Theorem 4.3.3 we can derive further structural properties of a compact

group G where all monothetic subgroups have high commuting probability.

Theorem 4.3.4. Let G be a compact group such that Pr(〈x〉, G) ≥ ε for all

x ∈ G. Then there is an open normal subgroup T of G such that the index

[G : T ] and the exponent of [T, T ] are ε-bounded.

Proof. Theorem B implies there is an ε-bounded number e and a normal sub-

group T such that the index [G : T ] is ε-bounded and [Ge, T ] = 1. It is clear

that all eth powers of elements of G centralize T . In particular, T/Z(T ) has

exponent e, and Theorem 4.3.1 ensures that T/Z(T ) is locally �nite. Theorem

4.3.3 can then be used to deduce that [T, T ] has �nite e-bounded exponent.

We now turn to structural results on pro�nite groups. J. S. Wilson, in [50,

Lemma 2], considered the following result.

Lemma 4.3.5. Let X1, . . . ,Xn be classes of �nite groups closed with respect to

taking normal subgroups and subdirect products and let X be the class of groups

H having a series

1 = H0 ≤ H1 ≤ · · · ≤ Hn = H

with Hi/Hi−1 ∈ Xi for each i. Then every pro-X group has a series of closed

characteristic subgroups

1 = G0 ≤ G1 ≤ · · · ≤ Gn

such that Gi/Gi−1 is a pro-Xi group for each i.

Furthermore, Lemma 3.2.5 allows us to make the following consideration.
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Remark 4.3.6. Let G be a pro�nite group with a subgroup K and let N be an

open normal subgroup of G. If we suppose that K has high commuting proba-

bility on monothetic subgroups, then Lemma 3.2.5 ensures that this property is

inherited by the image KN/N of K in G/N .

Using Lemma 4.3.5 and Remark 4.3.6 we are able to apply the usual inverse

limit argument to reduce the next two applications of Theorem B to the class

of �nite groups. Both of them concern the existence of a �nite length series in

a pro�nite group G with some prescribed properties. This is the reason why we

turn our attention to �nite groups now.

An important part of the eventual solution of the restricted Burnside problem

was developed by Hall and Higman in their paper [23]. They proved the following

theorem.

Theorem 4.3.7. Let p be a prime and G a �nite group with Sylow p-subgroups

of exponent ps. Then G has a normal series all of whose factors are p-groups,

p′-groups or direct products of nonabelian simple groups of order divisible by p

and whose length is s-bounded.

We remark that every �nite group G has a series as stated in Theorem 4.3.7.

The important conclusion of the theorem is that the length of this series is

s-bounded. We establish the following result.

Theorem 4.3.8. Let p be a prime and G a �nite group such that Pr(〈x〉, G) ≥ ε

for x in a Sylow p-subgroup. Then G has a normal series of ε-bounded length all

of whose factors are p-groups, p′-groups or direct products of nonabelian simple

groups of order divisible by p.

Proof. Let P be a Sylow p-subgroup of G. By Theorem B there is an ε-bounded

positive integer e and a normal subgroup T ≤ G such that the index [G : T ] is

ε-bounded and [P e, T ] = 1. Since T has ε-bounded index on G, it is su�cient

to show that T has a normal series with the required properties. Let Z be the

center of T and consider the normal series of T given by 1 ≤ Z ≤ T. The Sylow

p-subgroup Z ∩P of Z is normal in G and the quotient Z/(Z ∩P ) is a p′-group.

Furthermore, since [P e, T ] = 1, we deduce that T/Z has Sylow p-subgroups of

exponent dividing e. According to the Hall-Higman Theorem 4.3.7, T/Z has a

normal series of ε-bounded length with the required properties. Thus, the result

follows.

Theorem 4.3.8 can be extended to pro�nite groups, as we remarked before.

The previous discussion yields the following result.
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Theorem 4.3.9. Let G be a pro�nite group such that Pr(〈x〉, G) ≥ ε for x in

a Sylow pro-p subgroup P of G. Then G has a series of ε-bounded length of

closed normal subgroups whose factors are pro-p, pro-p′ or Cartesian products

of nonabelian �nite simple groups of order divisible by p.

Let G be a �nite group. A group-word w is said to be a law in G if w(G) = 1.

In view of Theorem B, if Pr(〈x〉, G) ≥ ε for every x in w(G), then a law of (ε, w)-

bounded length holds in the group G. Indeed, there is an ε-bounded number

e and an normal subgroup T of G such that the index [G : T ] is ε-bounded

and [w(G)e, T ] = 1. There exists an ε-bounded integer f such that Gf ≤ T ,

so the word [we, xf ] is a law on G. This simple observation provides a tool for

obtaining extensions of results about �nite groups satisfying certain laws. We

will illustrate this with a theorem bounding the nonsoluble length of a �nite

group. The following is the main result of [16].

Theorem 4.3.10. Let G be a �nite group, P be a Sylow 2-subgroup of G and

let w be a group-word. If w is a law on P , then the nonsoluble length λ(G) is

bounded in terms of w only.

This result can be extended as follows.

Theorem 4.3.11. Let w be a group-word and P a Sylow 2-subgroup of a �nite

group G such that Pr(〈x〉, G) ≥ ε for every x ∈ w(P ). Then the nonsoluble

length λ(G) is (ε, w)-bounded.

Proof. By Theorem B, there is a normal subgroup T of G and a positive integer

e such that the index [G : T ] and e are ε-bounded and [w(P )e, T ] = 1. Let

[G : T ] = f . Then [w(P )e, Gf ] = 1 and, in particular, [w(P )e, P f ] = 1. We

conclude that P satis�es an identity of (ε, w)-bounded length and, by Theorem

4.3.10, λ(G) is (ε, w)-bounded.

We have thus proved

Theorem 4.3.12. Let G be a pro�nite group and let P be a Sylow pro-2 subgroup

of G. If Pr(〈x〉, G) ≥ ε for every x ∈ w(P ), then the nonsoluble length λ(G) is

�nite and (ε, w)-bounded.

The next two applications of Theorem B concern automorphisms of pro�nite

groups. Recall that A# represents the set of nontrivial elements in the group A.

The main result of [31] states the following.
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Theorem 4.3.13. Let G be a �nite group admitting an elementary abelian co-

prime group of automorphisms A of order p2. Suppose further that CG(φ) has

exponent dividing d for each φ ∈ A#. Then the exponent of G is (d, p)-bounded.

Using Lemma 2.3.2, Theorem 4.3.13 can be extended in the following way.

Theorem 4.3.14. Let G be a pro�nite group admitting a noncyclic group of

coprime automorphisms of order p2. If CG(φ) has exponent dividing d for each

φ ∈ A#, then G has (d, p)-bounded exponent.

We can now consider a probabilistic variant of the above result.

Theorem 4.3.15. Let ε > 0 and let G be a pro�nite group admitting an ele-

mentary abelian coprime group of automorphisms A of order p2. Suppose that

Pr(〈x〉, G) ≥ ε for every x ∈ CG(φ) and for each φ ∈ A#. Then there is a

(p, ε)-bounded number e and an A-invariant normal subgroup T such that the

index [G : T ] is (p, ε)-bounded and [Ge, T ] = 1.

Proof. Let A1, . . . , Ap+1 be the subgroups of order p in A and set Gi = CG(Ai)

for i = 1, . . . , p + 1. According to Theorem B there is an ε-bounded number

d and, for i = 1, . . . , p + 1, there are subgroups Hi ≤ G such that the index

[G : Hi] is ε-bounded and [Gd
i , Hi] = 1. If φ ∈ A, let Hφ

i be the image of Hi

under φ. Replace Hi with Ti =
⋂
φ∈AH

φ
i and note that Ti is A-invariant, the

index [G : Ti] is (p, ε)-bounded and [Gd
i , Ti] = 1.

Now, let T =
⋂
Ti and observe that T also is A-invariant, the index [G : T ]

is (p, ε)-bounded and [Gd
i , T ] = 1 for every i = 1, . . . , p+ 1. If C = CG(T ), then

the subgroup C is A-invariant and Gd
i ≤ C for i = 1, . . . , p+1. Hence, CG/C(Ai)

has exponent dividing d for each i = 1, . . . , p + 1, by Lemma 2.3.2. Theorem

4.3.14 says that the exponent of G/C is (d, p)-bounded. Therefore there exists a

(p, ε)-bounded number e such that Ge ≤ C, that is, [Ge, T ] = 1. This completes

the proof.

The situation considered in Theorem 4.3.15 has the following stronger impli-

cation.

Corollary 4.3.16. Let ε > 0 and let G be a pro�nite group admitting an ele-

mentary abelian coprime group of automorphisms A of order p2. Suppose that

Pr(〈x〉, G) ≥ ε for every x ∈ CG(φ) and for each φ ∈ A#. Then there exists a

number ε0 > 0 depending only on ε and p such that Pr(〈x〉, G) ≥ ε0 for every

x ∈ G.
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Proof. By Theorem 4.3.15, there is a (p, ε)-bounded number e and a normal

subgroup T such that the index [G : T ] is (p, ε)-bounded and [Ge, T ] = 1. Then

we can apply Proposition 4.1.2 to obtain the desired conclusion.

In the spirit of the work [20] we record the following theorem.

Theorem 4.3.17. Let G be a �nite group admitting an elementary abelian co-

prime group of automorphisms A of order p3 such that the exponent commutator

subgroup of CG(φ) divides d for every φ ∈ A#. Then there is a (d, p)-bounded

number e such that [G,G]e = 1.

Once again, Lemma 2.3.2 allows us to derive the next theorem.

Theorem 4.3.18. Let G be a pro�nite group admitting an elementary abelian

coprime group of automorphisms A of rank three such that the commutator sub-

group of CG(φ) has exponent dividing d for every φ ∈ A#. Then there is a

(d, p)-bounded number e such that [G,G]e = 1.

This result also admits a probabilistic version.

Theorem 4.3.19. Let ε > 0 and let G be a �nite group admitting an ele-

mentary abelian coprime group of automorphisms A of order p3. Suppose that

Pr(〈x〉, G) ≥ ε for every x ∈ CG(φ)′ and for each φ ∈ A#. Then there is a

(p, ε)-bounded number e and an A-invariant normal subgroup T such that the

index [G : T ] is (p, ε)-bounded and [[G,G]e, T ] = 1.

Proof. Let A1, . . . , As be the subgroups of order p of A and let Di denote the

commutator subgroup of CG(Ai) for i = 1, . . . , s. According to Theorem B there

is an ε-bounded number d and, for i = 1, . . . , s, normal open subgroups Hi ≤ G

such that the index [G : Hi] is ε-bounded and [Dd
i , Ti] = 1. Set Ti =

⋂
φ∈AH

φ
i

and observe that Ti is A-invariant and [G : Ti] is (p, ε)-bounded.

Now let T =
⋂
Ti and see that [G : T ] is (p, ε)-bounded and [Gd

i , T ] = 1

for i = 1, . . . , p + 1. Denote by C the centralizer CG(T ), which is A-invariant

and contains Dd
i for i = 1, . . . , s. Hence, CG/C(Ai) has commutator subgroup

of exponent dividing d for each i = 1, . . . , s, by Lemma 2.3.2. Theorem 4.3.18

says that the exponent of the commutator subgroup of G/C is (d, p)-bounded.

Therefore there exists a (p, ε)-bounded number e such that [G,G]e ≤ C, that is,

[[G,G]e, T ] = 1. This completes the proof.



Chapter 5

Positive commuting probability of

monothetic subgroups

This chapter deals with a non-quantitative version of Theorem B, so this dis-

cussion would not be interesting for �nite groups, for example, and G always

denotes a compact group here. We treat groups G having a subgroup K such

that Pr(〈x〉, G) > 0 for any x ∈ K. Note that this condition is satis�ed when-

ever the subgroup K is torsion, and, more generally, whenever the image of K

in G/Z(G) is torsion. Theorem C shows that an �almost converse" to the latter

statement also holds:

Theorem C. Let K be a subgroup of a compact group G. Then Pr(〈x〉, G) > 0

for any x ∈ K if and only if G has an open normal subgroup T such that

K/CK(T ) is torsion.

The techniques employed in the proof of Theorem C are di�erent from the

ones in the previous chapter. This was published in [4].

5.1 Proof of Theorem C

Recall that FC(G) denotes the set of all elements x of a group G such that

CG(x) has �nite index. Note that in general FC(G) is an abstract subgroup

which is not necessarily closed in G. If an element x belongs to FC(G) we call

x an FC-element, and a subgroup of FC(G) is an FC-subgroup of G. We need

the following theorem, which is [44, Theorem 14.5.9]. Here, G does not need to

be compact.

Theorem 5.1.1. If G is an FC-group, then G′ is torsion.

57
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Let G be a group and let x ∈ G. If Pr(〈x〉, G) > 0, then, by Theorem A,

some power xe of x is an FC-element of G. Indeed, Theorem A tells us that

there exist open subgroups T of G and B of 〈x〉 such that [T,B] is �nite. In

particular, B contains xe for some positive integer e, and xe is an FC-element

of G. It turns out that, under the same hypothesis, a stronger result holds.

Lemma 5.1.2. Let G be a compact group and x ∈ G an element such that

Pr(〈x〉, G) > 0. Then there is a positive integer e such that xe is contained in

an abstract torsion-free abelian normal subgroup N of G such that N ⊆ FC(G).

Proof. Since Pr(〈x〉, G) > 0, an application of Theorem A gives that xe1 has

�nitely many conjugates, for some positive integer e1. Let {y1, y2, . . . , yk} be

the conjugacy class of xe1 and let L be the abstract subgroup generated by

y1, y2, . . . , yk. Since [G : CG(yi)] = k for i = 1, 2, . . . , k, it follows that the

intersection
⋂k
i=1CL(yi) = Z(L) has index at most kk in L. Set e2 = kk and note

that the power xe1e2 belongs to Z(L). LetM be the abstract subgroup generated

by ye21 , y
e2
2 , . . . , y

e2
k . Obviously, M is a �nitely generated abelian group. Thus,

we conclude that the torsion part of M is �nite and denote by e3 the exponent

of the torsion subgroup of M . Write e = e1e2e3 and observe that the minimal

abstract normal subgroup N containing xe is torsion-free, abelian, and normal.

Since N is generated by �nitely many FC-elements, it follows that N ⊆ FC(G).

The proof is complete.

We will now prove Theorem C, which we restate here for the reader's conve-

nience.

Theorem C. Let K be a subgroup of a compact group G. Then Pr(〈x〉, G) > 0

for any x ∈ K if and only if G has an open normal subgroup T such that

K/CK(T ) is torsion.

Proof of Theorem C. Suppose �rst that G has an open normal subgroup T , say

of index i, such that K/CK(T ) is torsion. Choose x ∈ K and note that the

probability that a random element of 〈x〉 centralizes T is at most 1
j
, where j is the

order of the image of 〈x〉 in K/CK(T ). On the other hand, the probability that

a random element of G belongs to T is 1
i
and so we deduce that Pr(〈x〉, G) ≥ 1

ij
.

In particular, Pr(〈x〉, G) > 0 for every x ∈ K.

We now need to prove the other part of the theorem, that is, assuming that

G is a compact group having a subgroup K such that Pr(〈x〉, G) > 0 for every

x ∈ K we need to show that G has an open normal subgroup T such that

K/CK(T ) is torsion.
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For an element x ∈ K write e(x) to denote the least positive integer e

satisfying the conclusion of Lemma 5.1.2. Also, de�neAx as the minimal abstract

normal subgroup containing xe(x). Thus, Ax is torsion-free and abelian.

Let x and y be arbitrary elements of K. The product AxAy is an abstract

FC-subgroup of G, and by Theorem 5.1.1 the commutator subgroup of AxAy is

torsion. On the other hand, the commutator subgroup of AxAy is contained in

the intersection Ax ∩ Ay, which is torsion-free. It follows that AxAy is abelian.

Since this happens for any x, y ∈ K, we conclude that the product
∏

x∈K Ax is

abelian.

Let N be the topological closure of the abstract subgroup
∏

x∈K Ax. We

see that N is an abelian normal subgroup of G and KN/N is torsion. Set

M = N ∩K and, for positive integers k, s, de�ne

Mk,s = {x ∈M |xk has at most s conjugates in G}.

Lemma 5.1.2 shows that the sets Mk,s cover M . We also note that the sets Mk,s

are closed. The Baire Category Theorem, Theorem 2.2.6, ensures that at least

one of the above sets has non-empty interior. Therefore, for some positive inte-

gers k, s, there is an open subset V of M such that xk has at most s conjugates

for every x ∈ V . As M is compact, there is a �nite subcover M =
⋃n
i=1 xiV of

the coverM =
⋃
x∈M xV . Moreover, by Theorem A, for each i = 1, 2, . . . , n there

exist positive integers li and mi such that [G : CG(xlii )] = mi. Let l = kl1l2 · · · ln
and m = max{m1,m2 . . . ,mn}. Taking into account that M is abelian we

deduce that any element of M l has at most ms conjugates in G. Therefore

Pr(M l, G) ≥ 1
ms

and, by Theorem A, there is an open normal subgroup T ≤ G

and an open subgroup B ≤M l such that [T,B] is �nite.

Suppose that the order of [T,B] is f , let t ∈ T , b ∈ B and consider the

commutators [t, br] for r = 0, 1, . . . , f . The pigeonhole principle ensures that for

two exponents u > v the commutators must coincide, and this implies that bu−v

centralizes t. Since 1 ≤ u − v ≤ f , we deduce that Bf ! centralizes T . In the

series

K ≥M ≥ B ≥ Bf ! ≥ 1

the quotients,K/M ,M/B andB/Bf ! are torsion. We conclude that the quotient

K/Bf ! is torsion so the proof is complete.
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5.2 Applications of Theorem C

Here we collect corollaries of Theorem C. Some of them can be regarded as

non-quantitative versions of the corollaries of Theorem B, roughly saying.

5.2.1 General Corollaries

An immediate corollary of Theorem C is the following.

Corollary 5.2.1. If G is a compact group such that Pr(〈x〉, G) > 0 for any

x ∈ G, then G is virtually central-by-torsion, that is, there is an open normal

subgroup T of G such that T/Z(T ) is torsion.

Recall that G0 stands for the connected component of identity of G, i.e., the

largest connected subgroup of G.

Corollary 5.2.2. Let G be a compact group such that Pr(〈x〉, G) > 0 for every

x ∈ G0. Then G has a normal pro�nite subgroup ∆ such that G0∆ is open in G

and G0 ≤ Z(G0∆).

Proof. By Theorem C, the group G has an open normal subgroup T such that

G0/CG0(T ) is torsion. Since G0 is connected and divisible, we deduce that

G0 ≤ Z(T ). The structure of compact groups in which the identity component

is central is determined in Proposition 2.2.13. Therefore T = G0D, where D is

a pro�nite subgroup that is normal in T . Set ∆ =
∏

x∈GD
x and observe that

G0∆ = T is open in G and G0 ≤ Z(G0∆). The proof is complete.

5.2.2 On the p-structure of a pro�nite group

In this subsection G denotes a pro�nite group. Let w be a multilinear commu-

tator word. Recall that we denote by Gw the set of all values of w on elements

of G and by w(G) = 〈Gw〉 the corresponding (closed) verbal subgroup. Let P

be a subgroup of G. Following [32] we denote by WG(P ) the subgroup of P

generated by all elements of P that are conjugate in G to w-values on elements

of P , that is, WG(P ) = 〈PG
w ∩P 〉. When it causes no confusion, we write W (P )

in place of WG(P ). We need the following results from [32].

Lemma 5.2.3. Let G be a pro�nite group and let P be a Sylow p-subgroup of

G such that WG(P ) is torsion. It follows that

1. The non-p-soluble length λp(G) is �nite;

2. If G is pro-p-soluble, then the p-length lp(G) is �nite.
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In the case where w = x and p is odd the above results were obtained in

Wilson [50]. Furthermore, we also need the following lemma from [32].

Lemma 5.2.4. Let w be a multilinear commutator, p a prime, and P a Sylow

p-subgroup of a pro�nite group G.

1. If G1 ≤ G and P1 ≤ P , then WG1(P1) ≤ WG(P );

2. If N is a normal subgroup of G, then WG/N(PN/N) = WG(P )N/N .

We can now establish the following theorem.

Theorem 5.2.5. Let w be a multilinear commutator, p a prime, and P a Sylow

p-subgroup of a pro�nite group G such that Pr(〈x〉, G) > 0 for every x ∈ WG(P ).

Then λp(G) <∞. If G is pro-p-soluble, then lp(G) <∞.

Proof. Set K = WG(P ). By Theorem C the group G contains an open normal

subgroup T such that K/CK(T ) is torsion. Let Z = Z(T ). Obviously, the image

of K in G/Z is torsion. In view of Lemma 5.2.4 the aforementioned results from

[32] imply that

1. λp(G/Z) is �nite;

2. If G/Z is pro-p-soluble, then lp(G/Z) is �nite.

Since the subgroup Z is abelian, the theorem follows.

5.2.3 Centralizers of coprime automorphisms of pro�nite

groups

Recall that A# stands for the set of nontrivial elements of a group A. We �rst

restate Theorems 4.3.14 and 4.3.18.

Remark 5.2.6. Let G be a pro�nite group admitting an elementary abelian

coprime group of automorphisms A.

• Theorem 4.3.14: Suppose that A has order p2. If CG(φ) has exponent

dividing d for each φ ∈ A#, then the exponent of G is (d, p)-bounded.

• Theorem 4.3.18: Suppose that A has order p3. If the commutator sub-

group of CG(φ) has exponent dividing d for each φ ∈ A#, then the exponent

of [G,G] is (d, p)-bounded.
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Theorems 4.3.14 and 4.3.18 have non-quantitative pro�nite variations, that

were obtained in [45] and [1], respectively.

Theorem 5.2.7. Let p be a prime and G a pro-p′ group admitting an elementary

abelian p-group of automorphisms A.

1. If A is noncyclic and CG(φ) is torsion for all φ ∈ A#, then G is torsion.

2. If A is of rank at least three and the commutator subgroup CG(φ)′ is torsion

for all φ ∈ A#, then G′ is torsion.

Now we are able to supply probabilistic variants:

Theorem 5.2.8. Let p be a prime and G a pro-p′ group admitting an elementary

abelian p-group of automorphisms A.

1. If A is noncyclic and Pr(〈x〉, G) > 0 for every x ∈ CG(φ) and φ ∈ A#,

then G is virtually central-by-torsion.

2. If A is of rank at least three and Pr(〈x〉, G) > 0 for every x ∈ CG(φ)′ and

φ ∈ A#, then G′ is virtually central-by-torsion.

Proof. We prove part (1). Assume that A is of rank 2 and Pr(〈x〉, G) > 0 for

every x ∈ CG(φ) and φ ∈ A#. Let A1, . . . , Ap+1 be the maximal subgroups

of A and write Ki for CG(Ai). Applying Theorem C conclude that there are

open normal subgroups T1, . . . , Tp+1, such that Ki/CKi
(Ti) is torsion for every

i = 1, . . . , p + 1. Let T =
⋂p+1
i=1 Ti and Z = Z(T ). Then, by Lemma 2.3.2, the

centralizers CG/Z(Ai) are torsion. In view of Theorem 5.2.7 (1) we conclude that

G/Z is torsion, as required.

The proof of Part (2) is similar to the above. Assume that the rank of A is at

least 3 and write Ki for for the commutator subgroup CG(Ai)
′, where A1, . . . , As

are the maximal subgroups of A. Then proceed as above and use Theorem 5.2.7

(2) in place of Theorem 5.2.7 (1).

5.3 Connection with high commuting probability

of monothetics

It is natural to ask what is the connection between the properties Pr(〈x〉, G) > 0

for all x ∈ G and Pr(〈x〉, G) ≥ ε for a �xed ε > 0 and all x ∈ G, since clearly

the latter implies the former. However, this connection is related to a nonsolved
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problem in Group Theory: the problem whether compact torsion groups have

�nite exponent, which remains open for many years (cf [25, p. 70]). We remark

that if indeed compact torsion groups have �nite exponent, then under the

hypotheses of Theorem C there is ε > 0 such that Pr(〈x〉, G) ≥ ε for any x ∈ K
and so there is a number e such that [Ke, T ] = 1.

Proposition 5.3.1. The following statements are equivalent.

(i) Any compact torsion group has �nite exponent.

(ii) If G is a compact group such that Pr(〈x〉, G) > 0 for every x ∈ G, then
Pr(〈x〉, G) ≥ ε for some ε > 0.

Proof. Assume that (i) is true, let G be a compact group and suppose that

Pr(〈x〉, G) > 0 for every x ∈ G. There exists an open normal subgroup T of

G such that G/CG(T ) is torsion. Since (i) is true, then G/CG(T ) has �nite

exponent, say e, what in turn implies that [Ge, T ] = 1. Applying the converse of

Theorem B, Proposition 4.1.2, we get that Pr(〈x〉, G) ≥ ε for ε = ([G : T ]e)−1.

Conversely, assume (ii) to be true, let G be a compact torsion group and

see that Pr(〈x〉, G) > 0 for every x ∈ G. Then, since (ii) is true, there exists

a positive ε such that Pr(〈x〉, G) ≥ ε. By Theorem B, there is some positive

integer e and an open subgroup T of G such that [Ge, T ] = 1. Let f be a positive

integer such that Gf ≤ Ge ∩ T and observe that Gf is abelian. Considering the

series

1 ≤ Gf ≤ G,

the factor G/Gf has �nite exponent and Gf has �nite exponent. Indeed, if

Tn = {x ∈ Gf |xn = 1}, then Tn is closed and
⋃
n Tn covers Gf , which is

compact. Baire Category Theorem 2.2.6 ensures that there is some open coset

xU contained in Tk for some k, and in particular xk = 1. Suppose that the index

[Gf : U ] is s. Then gsf ∈ U for every g ∈ G, thus (xgsf )k = 1 and gsfk = 1

as Gf is abelian. This amounts to G having �nite exponent, as we wanted to

prove.

In some very particular cases, the equivalence between Pr(〈x〉, G) ≥ ε and

property Pr(〈x〉, G) > 0 for all x ∈ G holds, as we prove next.
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Corollary 5.3.2. Let G be a compact group such that Pr(〈x〉, G) > 0 for every

x ∈ G. Assume further that G is �nitely generated. Then there exists a positive

ε such that Pr(〈x〉, G) ≥ ε for every x ∈ G.

Proof. By Theorem C, there is an open normal subgroup T of G such that

G/CG(T ) is torsion. Being G �nitely generated, we can apply Theorem 4.3.1

to deduce that CG(T ) must be open in G. Observe that [CG(T ), T ] = 1, where

both CG(T ) and T are open in G. The converse of Theorem B, Proposition 4.1.2,

implies that there is some ε > 0 such that Pr(〈x〉, G) ≥ ε for every x ∈ G.

Moreover, if we assume that Pr(〈x〉, G) > 0 for every x in the connected

component of identity G0 of G, then it is true that G0 has high commuting

probability on monothetic subgroups.

Corollary 5.3.3. Whenever G is a compact group such that Pr(〈x〉, G) > 0 for

every x ∈ G0, there is ε > 0 with the property that Pr(〈x〉, G) ≥ ε for every

x ∈ G0.

Proof. Theorem C implies that there exists an open normal subgroup T such

that G0/CG0(T ) is torsion. However, G0 is divisible [37] and G0/CG0(T ) must

be trivial. It follows that the open subgroup T centralizes G0 and the result

follows from Corollary 4.2.5 (ii).



Chapter 6

Appendix: Existence of Haar

measure

In this chapter we give a proof of the existence of a translation-invariant regular

measure in locally compact groups. The one we give here di�ers from the average

proof found in textbooks like [24, 38] since it avoids formally functional analysis

and its terminology.

6.1 Preliminaries

First we need to record some topological and measure-theoretic preliminaries,

the �rst one being Tychono�'s Theorem [30, p. 143]. It is important to remark

that Tychono�'s theorem is equivalent to the Axiom of Choice, as it is stated

in [29]. A constructive proof of existence of Haar measure that does not rely on

the Axiom of Choice can be found in [7].

Theorem 6.1.1. Let I be any set and Ki be a compact topological space for

every i ∈ I. Then the product
∏

i∈I Ki is compact under the product topology.

Next we de�ne an important property in the context of compact topological

spaces.

De�nition 6.1.2 (Finite Intersection Property). Let X be any set and let C be
a collection of subsets of X. We say that C has the �nite intersection property

if every �nite subcolletion of C has nonempty intersection.

Compact topological spaces also have a characterization in terms of the �nite

intersection property, as it is stated in the next result.

65
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Proposition 6.1.3. Let X be a topological space. Then X is compact if and only

if every collection of closed subsets of X having the �nite intersection property

has nonempty intersection.

We need a further topological result. Here we do not need G to be locally

compact, but we need the group to be Hausdor�.

Lemma 6.1.4. Let G be a Hausdor� topological group and let K1 and K2 be dis-

joint compact subsets of G. Then there exists an open neighbourhood of identity

O such that K1O
−1 ∩K2O

−1 = ∅.

Proof. Continuity of the group operation and inversion imply that the setK−1
1 K2

is compact, and since G is Hausdor�, it follows that K−1
1 K2 is closed in G. The

subset U = G\K−1
1 K2 is open in G and contains 1, since K1 and K2 are disjoint.

Again, continuity of the group operation and inversion imply that there is an

open neighbourhood O of 1 such that O = O−1 and OO ⊆ U . We claim

that K1O
−1 ∩ K2O

−1 = ∅. To see this, assume that K1O
−1 ∩ K2O

−1 6= ∅ or,
equivalently, that K1 ∩K2O

−1O 6= ∅. There exist k1 ∈ K1, k2 ∈ K2 and v1, v2 ∈
O such that k1 = k2v

−1
1 v2, and it follows that k−1

1 k2 = v−1
2 v1. This element lies

simultaneously in K−1
1 K2 and OO, which is contained in U , a contradiction.

Recall that P(X) denotes the collection of all subsets of a set X. Next we

de�ne a set function that generalizes the notion of a measure.

De�nition 6.1.5. Let X be a set. An outer measure on X is a set function

µ∗ : P(X)→ [0,∞] such that the following hold.

(i) µ∗(∅) = 0 and µ∗(A) ≥ 0 for every A ⊆ X,

(ii) If A ⊆ B ⊆ X, then µ∗(A) ≤ µ∗(B), and

(iii) If {Ai}∞i=1 is a countable collection of subsets of X, then

µ∗

(
∞⋃
i=1

Ai

)
≤

∞∑
i=1

µ∗(Ai).

Property (iii) is called countable subadditivity. If one chooses on X a σ-

algebra that is di�erent from the set of all subsets of X, a measure will fail to

be an outer measure, and an outer measure can fail to be countably additive

and hence fail to be a measure. Furthermore, it is natural to pass from an outer

measure to a measure. To do so, it su�ces to restrict the outer measure to a

speci�c σ-algebra consisting of sets having the following property.
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De�nition 6.1.6. Let X be a set and µ∗ be an outer measure on X. A subset

B of X is said to be µ∗-measurable if, for every A ⊆ X, we have

µ∗(A) = µ∗(A ∩B) + µ∗(A ∩Bc)

Since the inequality µ∗(A) ≤ µ∗(A ∩ B) + µ∗(A ∩ Bc) always holds, as µ∗

is a subadditive set function, to prove that a set B is µ∗-measurable, it su�ces

to prove the reverse inequality. As it was said before, there is a natural way of

passing from an outer measure to a measure, as it is stated in the next result.

It is [3, Theorem 1.3.5].

Proposition 6.1.7. Let X be a set, let µ∗ be an outer measure on it and let M

be the collection of all µ∗-measurable subsets of X. Then

(i) M is a σ-algebra on X, and

(ii) The restriction of µ∗ to M is a measure on M .

6.2 Existence of Haar measure

Let G be a locally compact topological group, �xed for the rest of the section,

with Borel σ-algebra B(G). We want to de�ne a nonzero measure µ on B(G)

satisfying the following properties:

(H1) µ(S) = µ(xS) for every x ∈ G and S ∈ B(G);

(H2) µ(K) is �nite if K is compact;

(H3) µ(S) = inf{µ(U) |S ⊆ U, U is open} for evey S ∈ B(G);

(H4) µ(U) = sup{µ(K) |K ⊆ U, K compact} for every open subset U of G.

We �x more notation. Let C be the set of all compact subsets of G and

U be the collection of all open neighbourhoods of identity. Also �x a compact

subset K0 of G having nonempty interior. Such a subset exists since G is locally

compact and every point x is contained in an open set which, in turn, is contained

in a compact set.

If K is a compact subset of G and U is a set with nonempty interior, let

(K : U) denote the smallest n such that there exist x1, x2, . . . , xn ∈ G with

K ⊆
⋃n
i=1 xiU . We call (K : U) the index of U in K. Note that (K : U) is

always �nite since K is compact and U has nonempty interior, and (K : U) = 0



6.2. Existence of Haar measure 68

if and only if K = ∅. The index (K : U) has the following properties.

Proposition 6.2.1. Let K0 be as before, K,K1, K2 ∈ C and let U be a �xed set

with nonempty interior. Then

(i) 0 ≤ (K : U) ≤ (K : K0) · (K0 : U);

(ii) (xK : U) = (K : U) for every x ∈ G;

(iii) If K1 ⊆ K2, then (K1 : U) ≤ (K2 : U);

(iv) (K1 ∪K2 : U) ≤ (K1 : U) + (K2 : U);

(v) If K1U
−1 ∩K2U

−1 = ∅, then (K1 ∪K2 : U) = (K1 : U) + (K2 : U).

Proof.

(i) Let n = (K : K0), m = (K0 : U) and suppose that K ⊆
⋃n
i=1 xiK0 and

K0 ⊆
⋃m
j=1 yjU. Conclude that K ⊆

⋃n
i=1

⋃m
j=1 xiyjU and (K : U) ≤ mn.

(ii) See that K ⊆
⋃n
i=1 xiU if and only if xK ⊆

⋃n
i=1 xxiU .

(iii) Observe that every cover ofK2 by left-translates of U also coversK1, hence

the result.

(iv) If K1 ⊆
⋃m
i=1 xiU and K2 ⊆

⋃n
j=1 yjU , then K1 ∪ K2 is contained in

(
⋃m
i=1 xiU) ∪

(⋃n
j=1 yiU

)
.

(v) Let x ∈ G be arbitrary. Observe that if xU ∩K1 6= ∅ and xU ∩K2 6= ∅,
then there exist u1, u2 ∈ U , k1 ∈ K1 and k2 ∈ K2 such that xu1 = k1 and

xu2 = k2. It follows that x = k1u
−1
1 = k2u

−1
2 belongs to K1U

−1 ∩K2U
−1,

a contradiction. Then every left translate xU of U must intercept at most

one of the subsets K1 or K2, and the result follows.

Now, for every U ∈ U , we de�ne hU : C → [0,∞) as

hU(K) =
(K : U)

(K0 : U)
.

Proposition 6.2.1 implies that hU has the following properties.
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Proposition 6.2.2. Let K,K1, K2 ∈ C and K0 as before. Then

(i) 0 ≤ hU(K) ≤ (K : K0) and hU(K0) = 1;

(ii) hU(xK) = hU(K) for every x ∈ G;

(iii) If K1 ⊆ K2, then hU(K1) ≤ hU(K2);

(iv) hU(K1 ∪K2) ≤ hU(K1) + hU(K2);

(v) If K1U
−1 ∩K2U

−1 = ∅, then hU(K1 ∪K2) = hU(K1) + hU(K2).

Next, for every K ∈ C, consider the compact interval [0, (K : K0)] ⊆ R and

let

X =
∏
K∈C

[0, (K : K0)].

Here, X can be seen as a space of functions from C to R, where for each function

f ∈ X and K ∈ C we have f(K) ≤ (K : K0). Applying Theorem 6.1.1 we

deduce that X is compact under the product topology. Furthermore, for every

U ∈ U , we have that hU belongs to X.

For each open neighbourhood U of unit, de�ne the set TU = {hV |V ⊆ U}
and let V (U) be the closure of TU on X. If U1, U2, . . . , Un ∈ U , let V =

⋂n
i=1 Ui

and see that hV ∈ TUi
for i = 1, 2, . . . , n. We deduce that the collection of

sets {V (U) |U ∈ U} has the �nite intersection property and thus has nonempty

intersection by Proposition 6.1.3. Let h be an element in this intersection. Before

we pass to the properties of h we state two results.

Lemma 6.2.3. Let K be a �xed compact subset of G and let φ : X → R be

φ(f) = f(K). Then φ is continuous.

Proof. See that f(K) ≤ (K : K0). For a given ε > 0, the interval

SK = (f(K)− ε, f(K) + ε) ∩ [0, (K : K0)]

is an open subset of [0, (K : K0)]. Consider Y =
∏

K∈C SK where

SK′ = [0, (K ′ : K0)]

for K ′ 6= K and SK is as above. Then Y is open on X and every function g of

Y satis�es |φ(g)− φ(f)| < ε.

Now we can derive a criterion for a subset of X to contain h.
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Lemma 6.2.4. Let C be a closed subset of X containing TU for some U ∈ U .
Then C contains h.

Proof. Since C is closed and contains TU , it also contains the closure V (U). The

function h belongs to the intersection of all V (U), so in particular h ∈ C.

The function h : C → [0,∞) has the following properties.

Proposition 6.2.5. Let K,K1, K2 ∈ C and K0 as before. Then

(i) h(K) is �nite and non-negative, h(∅) = 0 and h(K0) = 1;

(ii) h(xK) = h(K) for every x ∈ G;

(iii) If K1 ⊆ K2, then h(K1) ≤ h(K2);

(iv) h(K1 ∪K2) ≤ h(K1) + hU(K2);

(v) If K1 and K2 are disjoint compact sets, then h(K1∪K2) = h(K1)+h(K2).

Proof. We prove (i) �rst. To prove that h(K) ≤ (K : K0), consider the subset

A = {f ∈ X | f(K) ≤ (K : K0)} of X and see that A is closed, by Lemma

6.2.3. Note that, for every U ∈ U , the function hU belongs to A. It folows

that TU is contained in A for every U so Lemma 6.2.4 implies that h ∈ A. To

verify that h is nonnegative, mimic the argument with respect to the subset

{f ∈ X | f(K) ≥ 0} of X. Furthermore, the properties that h(∅) = 0 and

h(K0) = 1 follow from the same argument, applied with respect to the closed

subsets {f ∈ X | f(∅) = 0} and {f ∈ X | f(K0) = 1} of X.

The same arguments used to prove (i) can be used to prove (ii), (iii) and

(iv). It su�ces to mimic the proof of (i) with respect to the following subsets of

X, respectively:

(ii) {f ∈ X | f(K)− f(xK) = 0};

(iii) {f ∈ X | f(K2)− f(K1) ≥ 0}, and;

(iv) {f ∈ X | f(K1) + f(K2)− f(K1 ∪K2) ≥ 0}.

Now we proceed to the proof of (v). Let K1 and K2 be disjoint compact

subsets of G. We need to prove that h(K1 ∪ K2) = h(K1) + h(K2). Let O

be a neighbourhood of 1 such that K1O
−1 ∩K2O

−1 = ∅, by Proposition 6.1.4,

and observe that, if U ⊆ O is another open neighbourhood of 1, it follows that
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K1U
−1 ∩K2U

−1 = ∅. Using Lemma 6.2.5(v), we deduce that TO is contained in

the closed subset of X given by

C = {f ∈ X | f(K1 ∪K2)− f(K1)− f(K2) = 0}.

Thus h ∈ C, by Lemma 6.2.4. The proof is complete.

We now are able to de�ne an outer measure µ∗ on G in terms of h. Let U

be any open subset of G and de�ne

µ∗(U) = sup{h(K) |K ⊆ U andK ∈ C}.

We extend this map to all subsets of A of G by

µ∗(A) = inf

{
∞∑
n=1

µ ∗ (An) |A ⊆
∞⋃
i=1

An and An is open, n = 1, 2, . . .

}

We verify that µ∗ indeed satis�es De�nition 6.1.5.

Proposition 6.2.6. The set function µ∗ : P(G) → [0,∞] is a translation-

invariant nonzero outer measure on G.

Proof. First of all, since h is non-negative and h(K0) = 1 we conclude that µ∗

is non-negative and nonzero. Also, as h(∅) = 0, the de�nition of µ∗ implies that

µ∗(∅) = 0, and if A ⊆ B are arbitrary subsets of G, the inequality µ∗(A) ≤ µ∗(B)

and the fact that µ∗ is translation-invariant both follow from the de�nition of

µ∗. It remains to prove countable subadditivity.

For this reason, let A1, A2, . . . be subsets of G. We need to prove that

µ∗

(
∞⋃
i=1

Ai

)
≤

∞∑
i=1

µ∗(Ai).

De�ne A =
⋃∞
i=1Ai and see that, if µ∗(Ai) = ∞ for any i, monotonicity of µ∗

implies that µ∗(A) = ∞ also. Hence we may assume that µ∗(Ai) is �nite for

every i. Let ε > 0. The de�nition of µ∗(Ai) implies that, for each i there exists

an open cover
⋃∞
n=1Bin ⊇ Ai such that

µ∗(Ai) ≤
∞∑
n=1

µ∗(Bin) < µ∗(Ai) +
ε

2i
.
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Now, see that the union
⋃∞
i=1

⋃∞
n=1 Bin is a countable cover of A. The de�nition

of µ∗ implies that

µ ∗ (A) ≤
∞∑
i=1

(
∞∑
n=1

µ∗(Bin)

)
≤

∞∑
i=1

µ∗(Ai) +
ε

2i
≤

∞∑
i=1

µ∗(Ai) + ε.

As ε is arbitrary, we proved that µ∗(A) ≤
∑∞

i=1 µ
∗(Ai).

Let A ⊆ G be any subset. We de�ned µ∗(A) in terms of open covers of A,

but there is an equivalent de�nition in terms of open sets containing A. This is

the content of the next result.

Proposition 6.2.7. For any subset A of G, we have

µ∗(A) = inf{µ∗(U) |U ⊇ A and U is open}.

Proof. Let µop(A) = inf{µ∗(U) |U ⊇ A and U is open}. Monotonicity of µ∗

implies that µ∗(A) ≤ µ∗(U) for every open subset U of G containing A, so

µ∗(A) ≤ µop(A). For the reverse inequality, let ε > 0. By de�nition of µ∗(A),

there is an open cover
⋃∞
n=1An of A such that

µ∗(A) ≤
∞∑
n=1

µ∗(An) < µ∗(A) + ε.

Observe that
⋃∞
n=1 is an open set containing A. Then

µop(A) ≤ µ∗

(
∞⋃
n=1

An

)
≤

∞∑
n=1

µ∗(An),

by subadditivity of µ∗. It follows that µop(A) ≤ µ∗(A) + ε and, as ε is arbitrary,

we conclude that µop(A) ≤ µ∗(A).

The collection of µ∗-measurable subsets of G forms a σ-algebra and B(G) is

the smallest σ-algebra containing the open subsets of G. Then, to prove that

B(G) consists on µ∗-measurable sets, it su�ces to verify this property for the

topology of G. To do so, we �rst need the following lemma.

Lemma 6.2.8. Let U and V be open subsets of G. Then

µ∗(V ) = µ∗(V ∩ U) + µ∗(V ∩ U c).

.
Proof. Let ε > 0 and choose a compact subset K of V ∩ U such that

h(K) > µ∗(V ∩ U)− ε.
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Also, choose a compact subset L of V ∩Kc such that

h(L) > µ∗(V ∩Kc)− ε.

ThenK and L are disjoint. Moreover, since V ∩U c ⊆ V ∩Kc and h is monotonic,

it follows that h(L) > µ∗(V ∩ U c)− ε. We conclude that

h(K ∪ L) = h(K) + h(L) ≥ µ∗(V ∩ U) + µ∗(V ∩ U c)− 2ε.

Now, as h(K ∪ L) ≤ µ∗(V ) and taking the limit with ε → 0, we conclude

that µ∗(V ) ≥ µ∗(V ∩ U) + µ∗(V ∩ U c). The reverse inequality follows from

monotonicity of µ∗.

With the aid of Lemma 6.2.8 we can prove that all open subset of G are

µ∗-measurable.

Proposition 6.2.9. Let U be an open subset of G and let A ⊆ G be arbitrary.

Then µ∗(A) ≥ µ∗(A ∩ U) + µ∗(A ∩ U c).

Proof. Let V be an open subset if G containing A. Then

µ∗(V ) ≥ µ∗(V ∩ U) + µ∗(V ∩ U c) ≥ µ∗(A ∩ U) + µ∗(A ∩ U c).

We conclude that µ∗(A ∩ U) + µ∗(A ∩ U c) is a lower bound for the set

{µ∗(V ) |V ⊇ A, V ∈ U}.

De�nition of µ∗(A) implies that µ∗(A) ≥ µ ∗ (A ∩ U) + µ∗(A ∩ U c), as we

wanted.

Proposition 6.2.9 implies that the restriction µ of µ∗ to B(G) is a measure.

We claim that µ is the desired Haar measure. Left-invariance of µ∗ implies that

µ itself is left-invariant, and properties (H3) and (H4) follow from the de�nition

of µ∗. It remains to prove that µ(K) is �nite for every compact subset K of G.

To see this, let U be an open subset containing K whose closure U is compact.

The existence of U is guaranteed because K is compact. Then µ(K) ≤ µ(U)

by monotonicity, and if L is any compact subset of U , then h(L) ≤ h(U). By

property (H4) we have µ(U) ≤ h(U), which is �nite. We conclude that µ(K) is

�nite, as we wanted to prove.
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6.3 Unicity of Haar measure

In this section we reproduce Kakutani's proof [28] of the following result.

Theorem 6.3.1. Let G be a locally compact topological group and let µ and ν

be Haar measures de�ned on G. Then there is a positive constant c such that

µ(S) = cν(S) for every Borel set S of G.

To prove Theorem 6.3.1 it su�ces to prove that

µ(K)ν(K ′) = µ(K ′)ν(K) (?)

for compacts K and K ′. Indeed, if ν(K ′) is nonzero, then µ(K) = µ(K′)
ν(K′)

ν(K)

for every pair of compact sets. Making c = µ(K′)
ν(K′)

for a �xed subset K ′ of G, we

deduce that µ(K) = cν(K) for every compact set K ⊆ G. By property (H4),

the measure of open subsets of G can be deduced from the measure of compact

ones, and it follows from property (H3) that the measure of any Borel set can

be calculated in terms of measures of open sets. We therefore conclude that

µ(S) = cν(S) for every measurable subset S of G.

Let A and B be measurable subsets of G, equip G×G with the product mea-

sure µ×ν and recall that (µ×ν)(A×B) = µ(A)ν(B). Also, recall that χA denotes

the characteristic function of A. Moreover, note χA×B(x, y) = χA(x)χB(y). We

deduce equation (?) as a consequence of an inequality, which is proved in the

next lemma.

Lemma 6.3.2. Let K and K ′ be compact subsets of G and let O be an open

subset of G. Then µ(K)ν(K ′) ≤ µ(K ′O−1)ν(KO).

Proof. First of all, see that

µ(K)ν(O) =

∫∫
G×G

χK(x)χO(y)dµ(x)dν(y)

=

∫∫
G×G

χK(x)χO(x−1y)dµ(x)dν(y),

since ν is left-invariant. Now observe that χK(x)χO(x−1y) = 1 implies that

x−1y ∈ O and y ∈ KO. Moreover, we remark that χO(x−1y) = χO−1(y−1x).
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Following the calculations above, we have∫∫
G×G

χK(x)χO(x−1y)dµ(x)dν(y) ≤
∫∫
G×G

χKO(y)χO(x−1y)dµ(x)dν(y)

=

∫∫
G×G

χKO(y)χO−1(y−1x)dµ(x)dν(y)

=

∫∫
G×G

χKO(y)χO−1(x)dµ(x)dν(y) (left-invariance)

=µ(O−1)ν(KO).

So far, we have proved the following inequality

µ(K)ν(O) ≤ µ(O−1)ν(KO). (1)

Replacing µ, ν, K and O above by ν, µ, K ′ and O−1, respectively, we obtain

ν(K ′)µ(O−1) ≤ µ(K ′O−1)ν(O), (2)

where K ′ is an arbitrary compact set. If µ is nonzero, the measure µ(O) of an

open set can never be zero, by (H3) and (H4). Hence, multiplying inequalities

(1) and (2) we obtain

µ(K)ν(K ′) ≤ µ(K ′O−1)ν(KO) (3)

for any compact sets K and K ′ and open subset O.

To �nish the proof we need one further lemma.

Lemma 6.3.3. Let K and K ′ be compact subsets of G and let U and U ′ be open

sets such that U ⊇ K and U ′ ⊇ K ′. Then there is an open neighbourhood of

identity O such that KO ⊆ U and K ′O−1 ⊆ U ′.

Proof. Let x ∈ K be arbitrary. Since x = x ·1, continuity of the group operation

ensures that there exist neighbourhoods Ux of x and Vx of 1 such that UxVx ⊆ U .

Then
⋃
x∈K Ux is an open cover of K, from which we extract the �nite subcover⋃n

i=1 Uxi . Let V =
⋂n
i=1 Vxi and see that V is nonempty. Then

KV ⊆

(
n⋃
i=1

Uxi

)
· V ⊆

n⋂
i=1

Uxi · Vxi ⊆ U.
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Mimic the above argument withK ′ in place ofK and conclude that there is some

open neighbourhood V ′ of 1 such that K ′V ′ ⊆ U ′. Let O = V ∩V −1∩V ′∩(V ′)−1

and observe that O = O−1. Then O is a symmetric neighbourhood of identity

satisfying the conditions of the statement.

We can now conclude the proof of equation (?).

Proof of (?). Let K and K ′ be compact subsets of G and let ε > 0. By (H4),

there are open sets U ⊇ K and U ′ ⊇ K ′ such that ν(U) < ν(K) + ε and

µ(U ′) < µ(K ′) + ε. Let further O be an open neighbourhood of 1 such that

KO ⊆ U and K ′O−1 ⊆ U ′, whose existence is ensured by Lemma 6.3.3. Then

Lemma 6.3.2 implies

µ(K)ν(K ′) < (µ(K ′) + ε)(ν(K) + ε).

Taking the limit with ε → 0, we get µ(K)ν(K ′) ≤ µ(K ′)ν(K). The reverse

inequality follows from the same argument, swapping K and K ′.
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Index of Notations

Symbol Meaning

| | order of a �nite set or group

[G : H] the index of H in G

CG(x) the centralizer of x in G

Gn the closed subgroup of G generated by nth powers

[x, y] the commutator of x and y; x−1y−1xy

[A,B] the closed subgroup generated by [a, b], a ∈ A, b ∈ B
G′ the derived group of G

xg the conjugate of x by g; g−1xg

XG the set of conjugates of all x ∈ X
〈XG〉 the normal closure of X in G

γn(G) nth term of lower central series of G

Zn(G) nth term of upper central series of G

G(n) nth term of derived series of G

〈S〉 the closed subgroup generated by S ⊆ G

FC(G) the FC-center of G

G0 the connected component of G

φ a continuous automorphism of a pro�nite group

A# the set of nontrivial elements in the group A

CG(φ) the centralizer of φ in G

lp(G) the p-length of a pro�nite group G

λ(G) the nonsoluble length of a pro�nite group G

λp(G) the non-p-soluble length of a pro�nite group G

B(X) the Borel σ-algebra on a set X

µ, ν measures

µ× ν the product measure on a product space

χA the characteristic function of a set A

Xr set of products of at most r elements from the set X

Pr(G) the commuting probability of G

Pr(K,G) the relative commuting probability of K in G
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Ẑ the pro�nite completion of the integers∏
i∈I Gi the Cartesian product of the groups Gi, i ∈ I

w(x1, . . . , xk) a group word

w(G) the verbal subgroup determined by w

Gw the set of w-values of G

WG(P ) the subgroup of P de�ned by 〈PG
w ∩ P 〉

µ∗ an outer measure

(K : K0) the index of K0 in K


