
DESIGN, DIFFUSION, AND CRYPTANALYSIS OF SYMMETRIC
PRIMITIVES

MURILO COUTINHO SILVA

TESE DE DOUTORADO EM TELECOMUNICAÇÕES E REDES DE
COMUNICAÇÃO

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASÍLIA

UNIVERSIDADE DE BRASÍLIA
FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

DESIGN, DIFFUSION, AND CRYPTANALYSIS OF SYMMETRIC
PRIMITIVES

DESENVOLVIMENTO, DIFUSÃO E CRIPTOANÁLISE DE
PRIMITIVAS CRIPTOGRÁFICAS SIMÉTRICAS

MURILO COUTINHO SILVA

ORIENTADOR: RAFAEL T. DE SOUSA JR.
COORIENTADOR: FÁBIO BORGES DE OLIVEIRA

TESE DE DOUTORADO EM
TELECOMUNICAÇÕES E REDES DE

COMUNICAÇÃO

PUBLICAÇÃO: PPGEE.TD-189/22

BRASÍLIA/DF: NOVEMBRO - 2022

UNIVERSIDADE DE BRASÍLIA
FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

DESIGN, DIFFUSION, AND CRYPTANALYSIS OF SYMMETRIC
PRIMITIVES

MURILO COUTINHO SILVA

TESE DE DOUTORADO SUBMETIDA AO DEPARTAMENTO DE ENGENHARIA ELÉTRICA
DA FACULDADE DE TECNOLOGIA DA UNIVERSIDADE DE BRASÍLIA COMO PARTE DOS
REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR.

APROVADA POR:

————————————————————————–
Prof. Rafael T. de Sousa Jr. – ENE/Universidade de Brasília
Orientador

————————————————————————–
Prof. Francisco Assis de Oliveira Nascimento – ENE/Universidade de Brasília
Membro Interno

————————————————————————–
Prof. Anderson C. A. Nascimento – Institute of Technology of the University of Washington
Membro Externo

————————————————————————–
Prof. Julio César López Henández – DTC/Unicamp
Membro Externo

BRASÍLIA, 25 DE NOVEMBRO DE 2022.

ii

FICHA CATALOGRÁFICA

COUTINHO, MURILO; DE SOUSA, RAFAEL; BORGES, FÁBIO
Design, Diffusion, and Cryptanalysis of Symmetric Primitives [Distrito Federal] 2022.
xix, 195p., 210 x 297 mm (ENE/FT/UnB, Doutor, Telecomunicações e Redes de Comuni-
cação, 2022).
Tese de doutorado – Universidade de Brasília, Faculdade de Tecnologia.
Departamento de Engenharia Elétrica
1. Criptografia, ARX, Criptoanálise, Difusão, Segurança, ChaCha, Salsa, Speck, AES 2. PRESENT
3. Forró 4. Generalizações contínuas
I. ENE/FT/UnB II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA
COUTINHO, M., DE SOUSA, R.T., BORGES, F. (2022). Design, Diffusion, and Cryp-
tanalysis of Symmetric Primitives . Tese de doutorado em Telecomunicações e Redes de
Comunicação, Publicação PPGEE.TD-189/22, Departamento de Engenharia Elétrica, Uni-
versidade de Brasília, Brasília, DF, 195p.

CESSÃO DE DIREITOS
AUTOR: Murilo Coutinho Silva
TÍTULO: Design, Diffusion, and Cryptanalysis of Symmetric Primitives .
GRAU: Doutor ANO: 2022

É concedida à Universidade de Brasília permissão para reproduzir cópias desta tese de
doutorado e para emprestar ou vender tais cópias somente para propósitos acadêmicos e
científicos. O autor reserva outros direitos de publicação e nenhuma parte dessa tese de
doutorado pode ser reproduzida sem autorização por escrito do autor.

Murilo Coutinho Silva

Departamento de Engenharia Elétrica (ENE) - FT
Universidade de Brasília (UnB)
Campus Darcy Ribeiro
CEP 70919-970 - Brasília - DF - Brasil

iii

I dedicate this work to my family.

ACKNOWLEDGMENTS

I would like to thank my supervisors for their support during the preparation of this

doctoral thesis. Additionally, I would like to thank the committee members for their

various contributions that have improved the quality of the work.

I am grateful for the technical and computational support of the Decision-Making

Technologies Laboratory - LATITUDE, of the University of Brasilia, which is sup-

ported by CNPq - Brazilian National Research Council (Grant 312180/2019-5 PQ-

2, and 465741/2014-2 INCT on Cybersecurity), by CAPES - Brazilian Higher Edu-

cation Personnel Improvement Coordination (Grant 88887.144009/2017-00 PRO-

BRAL), by FAP-DF - Brazilian Federal District Research Support Foundation

(Grant 0193.001366/2016 UIoT, and Grant 0193.001365/2016 SSDDC), by the

Brazilian Ministry of the Economy (Grant 005/2016 DIPLA, and Grant 083/2016

ENAP), by the Institutional Security Office of the Presidency of Brazil (Grant

ABIN 002/2017), by the Administrative Council for Economic Defense (Grant

CADE 08700.000047/2019-14), by the General Attorney of the Union (Grant AGU

697.935/2019), by the National Auditing Department of the Brazilian Health Sys-

tem SUS (Grant DENASUS 23106.118410/2020-85), by the General Attorney’s Of-

fice for the National Treasure (Grant PGFN 23106.148934/2019-67), and by the

University of Brasilia (Grant UnB COPEI 7129).

RESUMO

Título: Desenvolvimento, Difusão e Criptoanálise de Primitivas Criptográficas Simétricas
Autor: Murilo Coutinho Silva
Orientador: Rafael T. de Sousa Jr.
Coorientador: Fábio Borges de Oliveira
Programa de Pós-Graduação em Telecomunicações e Redes de Comunicação
Brasília, 25 de novembro de 2022

Nessa tese de doutorado, novas técnicas de criptografia, criptoanálise e de desenvolvi-
mento de algoritmos são estudadas e propostas. Resumidamente, os seguintes resultados são
alcançados:

• Uma técnica denominada Análise de Difusão Contínua (CDA) é proposta. Utilizando-
se essa técnica é possível se estudar, desenvolver e comparar algoritmos criptográficos.
Com CDA é possível generalizar tais algoritmos a partir da transformação dos bits
discretos em probabilidades, de tal forma que o algoritmo é generalizado em uma
função matemática contínua. A partir disso, propõe-se três novas métricas de difusão
a serem utilizadas nesse novo espaço contínuo, a saber: o Fator de Avalanche Contínuo
(CAF), a Métrica de Neutralidade Contínua (CNM), e o Fator de Difusão (DF). Além
disso, mostra-se que essas métricas de difusão podem ser utilizadas para avaliar e
comparar algoritmos criptográficos. Em particular, o Fator de Difusão pode ser usado
para comparar a difusão sem a necessidade de se reduzir o número de rodadas dos
algoritmos criptográficos, algo inédito até então na área de criptografia.

• Um novo método para avaliar a segurança de algoritmos criptográficos em relação à
criptoanálise diferencial, denominado ColoreD, é proposto. Com o ColoreD, ao invés
de se considerar apenas diferenças binárias (“pretas e brancas”), passa a ser possí-
vel o uso de diferenças contínuas. Isso é possível a partir do uso das generalizações
contínuas que permitem que se considere diferenças menores do que 1 bit. Adicional-
mente, com o método ColoreD, propõe-se novas ferramentas tais como a Criptoanálise
Diferencial Contínua (CDC). Esta ferramenta viabiliza a implementação de ataques de
recuperação de chave sem a necessidade de redução do número de rodadas para algo-
ritmos complexos. Para demonstrar a utilidade dessa proposta, utiliza-se o ferramental
ColoreD para estudar e comparar os algoritmos AES e PRESENT, duas cifras de bloco
bastante conhecidas. Tal análise, leva a conclusão de que o algoritmo AES é mais
seguro do que o PRESENT quando se considera a criptoanálise diferencial. Em par-
ticular, demonstra-se que o algoritmo PRESENT necessitaria de ao menos 37 rounds
para atingir a mesma margem de segurança do AES. Finalmente, aplicando-se o CDC,
é proposto um ataque capaz de recuperar chave desses algoritmos, a partir do uso de
suas generalizações contínuas e de pares de entradas com diferenças bem pequenas.

ii

• Novas técnicas de criptoanálise contra algoritmos do tipo ARX são propostas. Pri-
meiramente, uma nova forma de se gerar aproximações lineares é apresentada. Com
tal técnica, demonstra-se ser possível encontrar aproximações lineares mais eficientes
em cifras tipo ARX. Com tal técnica, propõe-se as primeiras aproximações lineares
explicitamente derivadas para 3 e 4 rounds da cifra de fluxo ChaCha. Como con-
sequência, novos ataques contra o ChaCha são apresentados, sendo possível reduzir
a complexidade dos ataques para 251 e 2224 bits de complexidade, contra 6 e 7 roda-
das da cifra ChaCha, respectivamente. Adicionalmente, propõe-se uma nova técnica
denominada Expansões Lineares Bidirecionais (BLE), capaz de aumentar a eficácia
de distinguishers do tipo linear-diferencial. Usando a BLE, apresenta-se os primeiros
distinguishers da literatura alcançando 7 e 8 rounds do algoritmo Salsa20 com com-
plexidades de 2108.98 e 2215.62, respectivamente. Finalmente, demonstra-se que usando
os novos diferenciais obtidos via BLE, é possível melhorar ataques de recuperação
de chave do tipo Probabilistic Neutral Bits (PNB) contra 7 e 8 rodadas do algoritmo
Salsa20, obtendo complexidades de 2122.63 e 2219.56, respectivamente.

• Novas cifras de fluxo são propostas. Primeiramente, demonstra-se que é possível apli-
car uma alteração bastante simples no algoritmo ChaCha, apenas pela alteração dos
parâmetros de rotações na função de quarto de round (QRF), tornando o ChaCha mais
seguro contra todos os ataques conhecidos sem perda de performance. De fato, com
tais mudanças, deixa de ser possível quebrar 7 rounds do ChaCha, restando apenas
ataques contra 6 rounds. Na sequência, a cifra Forró é proposta. Demonstra-se que
o algoritmo Forró é capaz de atingir segurança maior do que a do ChaCha mesmo
aplicando uma menor quantidade de operações matemáticas. Assim, conclui-se que 5
rounds do Forró é tão seguro quanto 7 rounds do ChaCha e que o algoritmo Forró é
mais eficiente quando implementado em diversos tipos de processadores.

Palavras-chave: Criptografia, ARX, Criptoanálise, Difusão, Segurança, ChaCha, Salsa,
Speck, AES, PRESENT, Forró, Generalizações contínuas.

ABSTRACT

Title: Design, Diffusion, and Cryptanalysis of Symmetric Primitives
Author: Murilo Coutinho Silva
Supervisor: Rafael T. de Sousa Jr.
Co-Supervisor: Fábio Borges de Oliveira
Graduate Program in Telecommunications and Communication Networks
Brasília, November 25th, 2022

In this PhD thesis, we study and propose new cryptographic techniques and algorithms.
The following results are achieved:

• We propose a new technique called Continuous Diffusion Analysis (CDA) that can be
used to study, design, and compare of cryptographic algorithms. CDA allows us to
generalize cryptographic algorithms by transforming the discrete bits into probabili-
ties such that the algorithm is generalized into a continuous mathematical function.
We propose three new metrics to measure the diffusion in this generalized continuous
space, namely the Continuous Avalanche Factor, the Continuous Neutrality Measure,
and the Diffusion Factor. In addition, we show that these measures can be used to an-
alyze the diffusion of cryptographic algorithms, in particular, the Diffusion Factor can
be used to compare the diffusion without the need of reducing the number of rounds
or considering a small subset of bits.

• We propose a new framework, named ColoreD, to evaluate security against differential
cryptanalysis. In the proposed framework, instead of considering only binary (black
and white) differences, we allow the use of Continuous Differences (ColoreD), which
is possible using of continuous generalizations of cryptographic algorithms, allowing
us to use differences smaller than one bit. ColoreD incorporates not only continuous
generalization of algorithms, but we also propose new theoretical tools such as the
Continuous Differential Cryptanalysis (CDC). This tool provides us with a theoretical
framework that allows us to mount key recovery attacks without the need of reducing
the number of rounds. To showcase the usefulness of the new framework, we use Col-

oreD to study and compare AES and PRESENT ciphers. This analysis leads to the
conclusion that AES is safer than PRESENT when considering differential cryptanal-
ysis, and that PRESENT would need at least 37 rounds to achieve the same security
margin of AES. Additionally, applying CDC to both AES and PRESENT we show that
is possible to mount a key recovery to both algorithms when considering inputs with
very small continuous differences.

• We propose new techniques to improve cryptanalysis against ARX ciphers. First, we
present a new way to generate linear approximations, which can be used to find bet-
ter linear approximations in ARX ciphers. Using this technique, we present the first

ii

explicitly derived linear approximations for 3 and 4 rounds of ChaCha and, as a con-
sequence, it enables us to improve the recent attacks against ChaCha. More precisely,
we our attacks have complexity of 251 and 2224 against 6 and 7 rounds of ChaCha,
respectively. Additionally, we propose a technique called Bidirectional Linear Expan-
sions (BLE) to improve the efficacy of differential-linear distinguishers. Using the
BLE, we propose the first differential-linear distinguishers ranging 7 and 8 rounds of
Salsa20, with time complexities of 2108.98 and 2215.62, respectively. Additionally, we
show that using the differentials obtained, it is possible to improved Probabilistic Neu-
tral Bits (PNB) key-recovery attacks against 7 and 8 rounds of Salsa20, obtaining time
complexities of 2122.63 and 2219.56, respectively.

• We propose the design of new stream ciphers. First, we show that a simple modifica-
tion in the algorithm ChaCha, namely changing the rotation distances in the Quarter
Round Function, makes it more secure against all the most effective known attacks
without any loss in performance. In fact, we show that with these changes, it is only
possible to break up to 6 rounds of ChaCha. Therefore, it would be no longer possible
to break 7 rounds of ChaCha with the best-known attacks. Finally, we propose a new
stream cipher called Forró. We show that Forró is able to achieve more security than
Salsa and ChaCha using fewer arithmetic operations. We show that the security of
5 rounds of Forró is equivalent to 7 rounds of ChaCha and that Forró is faster when
implemented in several different processors.

Keywords: Cryptography, ARX, Cryptanalysis, Diffusion, Security, ChaCha, Salsa, Speck,
AES, PRESENT, Forró, Continuous Diffusion Analysis, Continuous Differential Cryptanal-
ysis.

SUMMARY

1 INTRODUCTION . 1

I PRELIMINARIES AND PREVIOUS WORK 4

2 SYMMETRIC ENCRYPTION . 5
2.1 DEFINING SECURITY . 6
2.2 BLOCK CIPHER AND STREAM CIPHERS . 7
2.3 ALGORITHMS . 7

2.3.1 SALSA . 7
2.3.2 CHACHA . 10
2.3.3 SPECK . 13
2.3.4 AES. 13
2.3.5 PRESENT . 16

3 CRYPTANALYSIS . 18
3.1 DIFFERENTIAL CRYPTANALYSIS . 18
3.2 LINEAR CRYPTANALYSIS . 20

3.2.1 THE BASICS . 20
3.2.2 MATHEMATICAL FRAMEWORK . 22

3.2.2.1 BOOLEAN FUNCTIONS . 22
3.2.2.2 LINEAR APPROXIMATIONS . 23
3.2.2.3 FOURIER TRANSFORM . 23

3.3 DIFFERENTIAL-LINEAR CRYPTANALYSIS . 24
3.4 PROBABILISTIC NEUTRAL BITS . 26
3.5 CRYPTANALYSIS OF ARX CIPHERS . 28

3.5.1 DIFFERENTIAL CRYPTANALYSIS OF ADDITION . 28
3.5.1.1 PRELIMINARY NOTIONS . 29
3.5.1.2 ANALYZING THE ADDITION OPERATION ON EACH BIT 30
3.5.1.3 ADDITION DIFFERENTIAL PROPERTIES . 30
3.5.1.4 DIFFERENTIAL PROBABILITY OF ADDITION . 34
3.5.1.5 MAXIMIZING THE PROBABILITY FROM α AND β 38
3.5.1.6 MAXIMIZING THE PROBABILITY FROM α . 40

3.5.2 LINEAR CRYPTANALYSIS OF ADDITION . 41
3.5.2.1 LINEAR APPROXIMATION FOR ADDITION AND SUBTRACTION

AS A FUNCTION OF THE CARRY . 42

viii

SUMMARY ix

3.5.2.2 LINEAR APPROXIMATION TO THE CARRY FUNCTION 43
3.5.2.3 INTUITIVE REPRESENTATION . 46
3.5.2.4 COMPUTING CORRELATIONS . 47
3.5.2.5 USE IN PRACTICE . 49

II NEW TOOLS TO EVALUATE DIFFUSION IN SYMMETRIC PRIMITIVES 55

4 CONTINUOUS DIFFUSION ANALYSIS . 56
4.1 INTRODUCTION . 56
4.2 MEASURING THE AVALANCHE EFFECT . 57
4.3 CONTINUOUS DIFFUSION ANALYSIS . 58

4.3.1 MOTIVATION . 58
4.3.2 CONTINUOUS GENERALIZATIONS . 58
4.3.3 CONTINUOUS DIFFUSION METRICS . 68

4.4 CASE STUDY: DIFFUSION ANALYSIS OF SALSA, CHACHA, AES, AND

SPECK . 70
4.4.1 EXPLORATORY AND GRAPHICAL ANALYSIS OF CHACHA AND SALSA 71
4.4.2 CONTINUOUS DIFFUSION ANALYSIS OF SALSA, CHACHA, AES,

AND SPECK . 74
4.5 LIBRARY . 78

5 COLORED: A NEW FRAMEWORK TO EVALUATE SECURITY AGAINST
DIFFERENTIAL CRYPTANALYSIS . 79
5.1 INTRODUCTION . 79
5.2 MOTIVATION . 81

5.2.1 SIMPLIFIED PRESENT. 81
5.2.2 ANALYZING DIFFERENCES USING A CONTINUOUS GENERALIZATION 82

5.3 CONTINUOUS DIFFERENCES (ColoreD) FRAMEWORK . 84
5.3.1 CONTINUOUS DIFFERENTIAL CRYPTANALYSIS (CDC) 84
5.3.2 CONTINUOUS CHOSEN-PLAINTEXT ATTACK (CCPA) 90

5.4 CASE STUDY: USING ColoreD TO EVALUATE AES AND PRESENT 91
5.4.1 APPLYING ColoreD TO SIMPLIFIED PRESENT . 92
5.4.2 USING ColoreD TO DESIGN CRYPTOGRAPHIC PRIMITIVES 93
5.4.3 EVALUATING AES AND PRESENT . 95

III CRYPTANALYSIS OF ARX ALGORITHMS 100

6 IMPROVED DIFFERENTIAL-LINEAR CRYPTANALYSIS OF CHACHA101
6.1 INTRODUCTION .101

SUMMARY x

6.2 REVIEW OF CRYPTANALYSIS OF CHACHA .103
6.3 IMPROVED LINEAR APPROXIMATIONS FOR ARX PRIMITIVES107

6.3.1 LINEAR APPROXIMATIONS FOR QRchacha .108
6.3.2 LINEAR APPROXIMATIONS FOR MULTIPLE ROUNDS OF CHACHA112

6.4 IMPROVED DIFFERENTIAL-LINEAR ATTACKS AGAINST CHACHA114
6.4.1 NEW DIFFERENTIALS .114
6.4.2 DISTINGUISHERS .115
6.4.3 NEW ATTACK USING PROBABILISTIC NEUTRAL BITS (PNBS)115

7 BIDIRECTIONAL LINEAR EXPANSIONS TO IMPROVE DIFFERENTIAL-
LINEAR ATTACKS AGAINST SALSA20 . 116
7.1 INTRODUCTION .116
7.2 LINEAR APPROXIMATIONS FOR SALSA .117
7.3 BIDIRECTIONAL LINEAR EXPANSIONS TO DIFFERENTIAL-LINEAR AT-

TACKS .119
7.3.1 PROPOSED TECHNIQUE .119
7.3.2 PROPOSED DIFFERENTIAL FOR 5 ROUNDS OF SALSA120
7.3.3 NEW LINEAR APPROXIMATIONS FOR SALSA20 .122

7.4 RESULTS .123
7.4.1 COMPUTATIONAL RESULTS .123
7.4.2 DIFFERENTIAL-LINEAR ATTACKS .124
7.4.3 PROBABILISTIC NEUTRAL BITS ATTACK .124

IV DESIGN OF NEW STREAM CIPHERS 127

8 IMPROVING CHACHA AGAINST CRYPTANALYSIS128
8.1 INTRODUCTION .128
8.2 IMPROVING CHACHA .128

8.2.1 TESTING DIFFERENTIAL PATHS .129
8.2.2 FINDING PROBABILISTIC NEUTRAL BITS .130

8.3 SECURITY COMPARISON .132
8.3.1 ESTIMATING THE COMPLEXITY OF THE PNB ATTACK132
8.3.2 MULTI-BIT DIFFERENTIAL .132

9 A NEW ALGORITHM: FORRÓ .135
9.1 FORRÓ .135

9.1.1 POLLINATION .135
9.1.2 FORRÓ’S ROUND FUNCTION .136
9.1.3 INITIALIZATION .137

SUMMARY xi

9.1.4 ROTATIONS .138
9.1.5 CONSTANTS .139

9.2 SECURITY .148
9.2.1 LINEAR APPROXIMATIONS FOR FORRÓ .148
9.2.2 DISTINGUISHERS .153

9.2.2.1 DISTINGUISHER AGAINST 3 ROUNDS OF FORRÓ.153
9.2.2.2 DISTINGUISHER AGAINST 4 ROUNDS OF FORRÓ.154
9.2.2.3 DISTINGUISHER AGAINST 5 ROUNDS OF FORRÓ.155
9.2.2.4 DISTINGUISHER AGAINST 5.25 ROUNDS OF FORRÓ.155

9.2.3 ATTACKS USING PNBS .157
9.3 PERFORMANCE .157

10 CONCLUSIONS AND FUTURE WORKS . 164

REFERENCES . 165

A APPENDIX . 173
A.1 LIBRARY .173

A.1.1 SCOPE AND GOALS .173
A.1.2 INTERNAL FUNCTIONS .173

A.1.2.1SMALL NUMBERS ARITHMETIC .173
A.1.2.2PROBABILISTIC OPERATIONS .176

A.1.3 MAIN API .178
A.2 PROOFS .182

A.2.1 PROOFS FOR LEMMA 6.9 .182
A.2.2 PROOF OF LEMMA 6.10 .187
A.2.3 PROOF OF LEMMA 6.11 .188
A.2.4 PROOF OF LEMMA 7.4. .190
A.2.5 PROOF OF LEMMA 9.8. .192
A.2.6 PROOF OF LEMMA 9.9. .193

LIST OF FIGURES

2.1 Graphical representation of the QRF of Salsa. ... 8
2.2 Order of application of the QRF function for Salsa in each round 9
2.3 Graphical representation of the QRF of ChaCha. 11
2.4 Order of application of the QRF function for ChaCha in each round 12
2.5 Diagram of the Speck cipher. ... 14
2.6 The key schedule for AES-128. The bytes of a 4 × 4 matrix are updated

using a S-box, XOR, and rotation. ... 16
2.7 The block cipher PRESENT. .. 17
2.8 Key schedule of PRESENT. ... 17

3.1 A classical differential-linear distinguisher (on the left) and a differential-
linear distinguisher with experimental evaluation of the correlation p2 (on the
right). E denotes a cipher that may be divided into sub-ciphers E = E2 ◦E1,

orE = E3◦E2◦E1. In the differential part we may apply an input difference
ID ∆X(0) in the sub cipher E1 obtaining an output difference OD ∆X(m)

after m rounds. The next step is to apply Linear Cryptanalysis using masks
Γm and Γout. Applying this technique we can construct a differential-linear
distinguisher of the cipher E. One way to improve attacks is to explore
properties of the cipher in the first part E1 (on the right), and then apply a
differential linear attack where we divide the differential part of the attack in
two. .. 26

3.2 Transition Graph for Theorem 3.1. ... 47

4.1 Estimation of the CNM of two rounds of ChaChaC for input bit x(0)
4,0. The

colors represent the CNM metric of Definition 4.15 for each output bit indi-
vidually, organized as in Eq. (4.4). Between parenthesis, we have the CNM
metric for each integer, i.e., defining I as a set of 32 indexes. 72

4.2 Estimated Diffusion Factor obtained for each bit after 3 rounds of Salsa,
ChaCha, Salsa_pt and Salsa_qr. The colors represent the DF of each bit,
computed from Definition 4.16 and organized as in Eq. (4.4). The average
DF of each integer x(r)

i is shown between parentheses. 73

5.1 One round of SP, denoted as C = R(P,K). It is a simple SPN, where S is
defined in Table 2.2. ... 81

5.2 Continuous generalization of the round function R of the cipher SP............... 82

xii

LIST OF FIGURES xiii

5.3 Analyzing differences on SP. Here, two rounds of SP are executed. We con-
sider two different inputs for SP. On the left hand, we have a control case.
On the right hand we change the first bit of the input using the same round
keys k1 and k2. The different bits are represented using the color red. 83

5.4 Analyzing differences on SP against its continuous generalization. On the
left hand, we have the same control case of two rounds of SP, as in Figure
5.3. However, on the right hand we change the first bit of the input of the
continuous generalization from 1 to 0.9 (here we use p instead of ε) and
using the same round keys k1 and k2. After two rounds, it is possible to note
that the subciphers are very close to each other. .. 83

5.5 Analyzing differences on SP against its continuous generalization. Very sim-
ilar with the example of Figure 5.4; however, we change the first bit of the
input of the continuous generalization from 1 to 0.99. After two rounds, it is
possible to note that the subciphers are even closer than in Figure 5.4. 84

5.6 Three alternative (weaker) S-boxes for AES. In the case 5.6a, the 4-bit S-box
of PRESENT is used two times in parallel. In the case 5.6b, we have a bit
rotation and a constant addition. Case 5.6c is just the identity function. 94

5.7 Candidate differences computed using Algorithm 4 with AES and the pro-
posed variations for different bits and number of rounds. To make a good vi-
sualization the colors represent the result of the formula log10(1 + δ), where
δ is the output of Algorithm 4. Therefore, warmer colors indicate a more
secure algorithm. ... 96

5.8 Candidate differences computed using Algorithm 4 with PRESENT. To make
a good visualization the colors represent the result of the formula log10(1+δ),
where δ is the output of Algorithm 4. Therefore, warmer colors indicate a
more secure algorithm. .. 97

5.9 Data complexity for a successful key recovery attack against AES and PRESENT
b0.. 99

7.1 Differential part of the proposed attack. .. 121

8.1 The biases were obtained for 3 rounds of ChaCha using rotations r1 = r4 = 0

and varying all values for r2 and r3. The color of the figure indicates the
maximum absolute bias obtained for each combination of rotations. These
are very poor results since that all biases are close to 1. 130

8.2 The biases we obtained for 3 rounds of ChaCha using rotations r1 = 16 and
r4 = 7 and varying all values for r2 and r3. The color of the figure indicates
the maximum absolute bias obtained for each combination of rotations. The
value obtained for the original ChaCha is depicted inside a black circle.......... 131

LIST OF FIGURES xiv

9.1 The result of Algorithm 6 for each combination of rotation distances............. 140
9.2 The result of Algorithm 6 for each combination of rotation distances............. 141
9.3 The result of Algorithm 6 for each combination of rotation distances............. 142
9.4 The result of Algorithm 6 for each combination of rotation distances............. 143
9.5 The result of Algorithm 6 for each combination of rotation distances............. 144
9.6 The result of Algorithm 6 for each combination of rotation distances............. 145
9.7 The result of Algorithm 6 for each combination of rotation distances............. 146
9.8 The result of Algorithm 6 for each combination of rotation distances............. 147

LIST OF TABLES

2.1 AES S-box. The column is determined by the least significant nibble, and the
row by the most significant nibble. For example, the value 9a is converted
into b8. .. 15

2.2 PRESENT S-box. .. 16

3.1 Equations generated from S0(n, 0), S1(n, 0), S0(n, 1) e S1(n, 1).................. 52
3.2 Equations generated from S0(n, 2) = 0∗4(1+2+4+7)0∗4(1+2+4+7)0∗

or S1(n, 2) = 0∗4(1+2+4+7)0∗4(1+2+4+7)0∗4, subject to i−j > 2, j > 0. 53
3.3 Equations generated from S0(n, 2) = 0∗4(0 + 3 + 5 + 6)(1 + 2 + 4 + 7)0∗

or S1(n, 2) = 0∗4(0 + 3 + 5 + 6)(1 + 2 + 4 + 7)0∗4, subject to i > 1. 53
3.4 Equations generated from S1(n, 2) = 0∗4(1 + 2 + 4 + 7)0∗4(0 + 3 + 5 + 6),

subject to i > 2. ... 54
3.5 Equations generated from S1(n, 2) = 0∗4(0 + 3 + 5 + 6)(0 + 3 + 5 + 6),

subject to i > 2. ... 54

4.1 The Avalanche Factor, proposed by [1], for Salsa, Salsa_pt, Salsa_qr,
ChaCha, Speck, and AES. A completely random result would produce an
AF of 1. ... 75

4.2 The CAF (with λ = 10−3 and λ = 10−5) for SalsaC , Salsa_ptC , Salsa_qrC ,
ChaChaC , Speck, and AES. A completely random result would produce a
CAF of 1. ... 76

4.3 Diffusion Factor for each round of Salsa, ChaCha, Speck, and AES. 77
4.4 Performance in cycles/byte for ChaCha, Salsa, AES, and Speck with 256-bit

keys for Intel Core i7-8809G processor, for long messages and the Diffusion
Factor for all algorithms. ... 77

5.1 Best results found using Algorithm 3 against SP. For each set of parame-
ters, we used Algorithm 3 for 100 randomly selected keys. When bµ = 1,
we have classic differences, i.e., CDC reduces to differential cryptanalysis.
Conversely, when bµ < 1, we have continuous differences (ColoreD). Note
that when the number of rounds grows, we need that bµ be closer and closer
to -1 to get a successful key recovery. Additionally, the β-AD for each case
were computed for 210 keys. ... 93

xv

LIST OF TABLES xvi

5.2 Data and time complexity (in bits) for a successful key recovery attack against
PRESENT for different values of β. With these complexities, the attack cor-
rectly finds all the key bits of the last round subkey of PRESENT. The entries
with empty complexity mean that the attack did not work even when consid-
ering q = 218 ciphertexts. .. 97

5.3 Data and time complexity (in bits) for a successful key recovery attack against
AES-128 for different values of β. With these complexities, the attack cor-
rectly finds all the key bits of the last round subkey of AES-128. The entries
with empty complexity mean that the attack did not work even when consid-
ering q = 213 ciphertexts. .. 98

6.1 The best attacks against ChaCha with 256-bit key...................................... 103
6.2 New differentials after 3.5 rounds, starting from ∆X(1) in the third column

of the state matrix with i = 6 in Eq. (6.29)... 115

7.1 The best attacks against Salsa20 with 256-bit key. 117

8.1 Best attacks obtained for ChaCha and for its modified version with rotation
distances 19, 17, 25, 11, denoted here by *ChaCha. We could not find any
attacks for the modified version of ChaCha with 7 rounds. 132

8.2 The best multi-bit differentials for ChaCha and for its modified version with
rotation distances 19, 17, 25, 11, denoted here by *ChaCha. Notice that we
can reduce the bias significantly. ... 133

8.3 Attacks obtained considering the techniques presented in Section 6.2. No-
tice that the complexity of the attacks for ChaCha with rotation distances
19, 17, 25, 11, denoted here by *ChaCha, are higher, thus, the proposed mod-
ification is more secure against these attacks. ... 134

9.1 Some of the best single bit differentials for 2 rounds of Forró. 153
9.2 Typical MTU of different types of networks. .. 158
9.3 Timings of Salsa, ChaCha and Forró’s reference implementations on an x86_64.

Values are the median of 10001 measurements. And the size of the packet is
based on common network MTU sizes following Table 9.2. 159

9.4 Timings of Salsa, ChaCha and Forró’s SIMD implementations on an x86_64.
Values are the median of 10001 measurements. And the size of the packet is
based on common network MTU sizes following Table 9.2. 160

9.5 Timings of Salsa, ChaCha and Forró’s reference implementations on an ARMv7.
Values are the median of 10001 measurements. And the size of the packet is
based on common network MTU sizes following Table 9.2. 161

LIST OF TABLES xvii

9.6 Timings of ChaCha and Forró’s NEON implementations on an ARMv7. Val-
ues are the median of 10001 measurements. And the size of the packet is
based on common network MTU sizes following Table 9.2. 162

9.7 Timings of Salsa, ChaCha and Forró’s reference implementations on an ARMv8,
working with 64-bit words. Values are the median of 10001 measurements.
And the sizes are based on common network MTU sizes following Table 9.2. . 163

LIST OF ACRONYMS AND ABBREVIATIONS

ARX Addition Rotation XOR. 56

CDA Continuous Diffusion Analysis. 56

DPA Differential Probability of Addition. 56

PNB Probabilistic Neutral Bits. 56

SAC Strict Avalanche Criterion. 56
SPN Substitution Permutation Network. 56

xviii

NOTATION

X A 4× 4 state matrix of ChaCha, Salsa, or Forró.
X(0) Initial state matrix of ChaCha, Salsa, or Forró.
X(R) State matrix after application of R round functions.
Z Output of ChaCha, Salsa, or Forró, Z = X(0) +X(R).
∆X(R) XOR difference of X(R) and X ′(R). ∆X(R) = X(R) ⊕X ′(R).
∆Cx The continuous difference, ∆Cx = x⊕C x′.
∆x XOR difference of x and x′.
∆x

(R)
i Difference ∆x

(R)
i = x

(R)
i ⊕ x′

(R)
i .

∆x
(R)
i,j Difference ∆x

(R)
i,j = x

(R)
i,j ⊕ x′

(R)
i,j .

Pr(E) Probability of occurrence of an event E.
B The set {x ∈ R : −1 ≤ x ≤ 1}.
ID Input difference.
OD Output difference.
⊕C The continuous XOR function, ⊕C

∼←− ⊕, such that a ⊕C b = −ab,
where a, b ∈ B.

φ : Fn2 → Bn Defined as φ(x) = (2x0 − 1, ..., 2xn−1 − 1).
σ : Bn6=0 → Fn2 Defined as σ(y) =

(
1
2
(sgn(y0) + 1), ..., 1

2
(sgn(yn−1) + 1))

)
.

sgn(x) The sign function.
ε(x1⊕...⊕xm) Correlation of event E = {∆x1 ⊕ ...⊕∆xm = 0}.
fC

∼←− f Means the function fC is a continuous generalization of the function
f .

x≫ n Rotation of x by n bits to the left.
x≪ n Rotation of x by n bits to the left.
x⊕ y Bitwise XOR of x and y.
x+ y Addition of x and y modulo 232.
x− y Subtraction of x and y modulo 232.
x

(R)
i,j The jth bit of ith word of the state matrix X(R).
x

(R)
i The ith word of the state matrix X(R) (words arranged in row major).
x

(R)
i [j0, j1, ..., jt] The sum x

(R)
i,j0
⊕ x(R)

i,j1
⊕ · · · ⊕ x(R)

i,jt
.

xix

INTRODUCTION

Our world is revolved in information. It was Claude Shannon, an engineer, mathematician
and cryptologist, that defined the concept of information. Usually working alone in a small
room at Bell Labs, located in an old mud-brick building on Wall Street, Shannon wrote his
famous article entitled “A Mathematical Theory of Communication” [2]. In this work, Shan-
non mathematically defined information and coined the term bit as the basic and indivisible
unit of information. The bit became like the meter, the liter, the second, a fundamental unit
of measurement.

In 1949, just a year after creating Information Theory, Shannon published a work entitled
“Communication Theory of Secrecy Systems” [3], in which he brilliantly uses Information
Theory to mathematically define cryptography. Of course, before Shannon cryptography
already existed. In fact, along with the first written records of human beings, rudimentary
forms of cryptography have already begun to emerge. What Shannon did was to turn cryp-
tography into a mathematical science, in particular an information science, one that was
studied extensively in the past 4 decades.

In the modern computer, cryptography has found its true home. The information machine
is the perfect encryption machine. Thus, cryptography was disseminated to the general pub-
lic, being available to anyone who owns a computer. Today, cryptography is everywhere,
even without knowing it, the vast majority of people use it daily when accessing the internet,
sending messages to their friends or family, or carrying out electronic financial transactions.

Cryptography is an important and complex area of knowledge. In this thesis, we con-
tribute to the advancement of the area by studying symmetric encryption algorithms, that
uses the same key to encryption and decryption. Symmetric algorithms are typically fast,
constructed through simple boolean and arithmetic operations to achieve the desired secu-
rity.

A symmetric cryptographic algorithm needs to have several properties to be considered
secure. Two of the most important of such properties were named confusion and diffusion by
Claude Shannon [3] back in 1949. Shannon defined confusion as the capacity of an algorithm
to create a very complex and involved relationship between the key and the ciphertext and
diffusion as the property that the redundancy in the statistics of the plaintext is “dissipated”
into the statistics of the ciphertext. These are, however, very abstract concepts and since then
several metrics were proposed to try to measure the confusion and diffusion of algorithms
[1, 4, 5].

Cryptographic Boolean functions [6] contain important properties that can be used, at

1

1

least in theory, to access the confusion and diffusion of algorithms. In designing a crypto-
graphic algorithm, we often need functions that satisfy requirements such as balance, high
nonlinearity, high algebraic degree, and good avalanche characteristics.

Unfortunately, for modern ciphers, it is not possible to actually prove these properties for
each output bit whereas the Boolean functions generated cannot be explicitly derived. Thus,
these properties are estimated by randomly generating many inputs to the cipher and then
changing input bits to see the behavior of the output bits empirically [1, 7]. However, using
these kind of metrics is not actually useful to access the security of algorithms because even
weak and broken ciphers tend to have good results in such empirical tests.

The absence of mathematical proofs for the security of symmetric algorithms means that
cryptographers need to rely on practical evidences. More concretely, it is generally argued
that confidence in the security of a particular algorithm only comes through time, after careful
examination by several experts through the use of cryptanalytic technique.

Cryptanalysis is the art of breaking cryptography, a set of mathematical tools developed
over the years to explore vulnerabilities in cryptographic algorithms. Through the advance-
ment of cryptanalysis the quality of the algorithms have increased, as specialists learn how
to develop faster and more secure algorithms.

In this thesis, we aim to contribute to the scientific advancement of cryptography. To
do so, we divide this thesis in four parts. Part I is called preliminaries and presents an
introduction to several of the topics that are explored in subsequent chapters. In particular,
we review the cryptographic algorithms that are explored during the thesis and we present a
short and simple introduction to cryptography and cryptanalysis.

In Part II, we propose new tools to evaluate the security of cryptographic algorithms.
First, we propose a new technique, called Continuous Diffusion Analysis (CDA), which can
be used to study the diffusion of cryptographic algorithms. The main idea of CDA is to
generalize cryptographic operations allowing to express the individual bits as probabilities,
effectively creating a continuous generalization of the algorithm itself. In this way, we can
also generalize diffusion metrics and differential cryptanalysis, because we can change the
input not only by flipping bits but also by inserting very small biases in a particular contin-
uous bit. Moreover, we propose three new metrics to measure the diffusion in this general-
ized continuous space, namely the Continuous Avalanche Factor, the Continuous Neutrality
Measure, and the Diffusion Factor. In particular, for the best of our knowledge, the Diffu-
sion Factor is the first metric capable of measuring the diffusion of a modern secure cipher
without considering a reduction with fewer rounds or a sample subset of input bits.

Part III is dedicated to cryptanalysis. We focus on algorithms designed using only the
addition, XOR , and rotation operations (known as ARX ciphers). ARX-based design is
a major building block of modern ciphers due to its efficiency in software, security, and

2

simplicity of their design and implementation. ARX ciphers are heavily used in practice.
For instance, in 2005, Bernstein proposed the stream cipher Salsa20 [8] as a contender to the
eSTREAM [9], the ECRYPT Stream Cipher Project. As outlined by the author, Salsa20 is an
ARX type family of algorithms which can be ran with several number of rounds, including
the well known Salsa20/12 and Salsa20/8 versions. Latter, in 2008, Bernstein proposed some
modifications to Salsa20 in order to provide better diffusion per round and higher resistance
to cryptanalysis. These changes originated a new stream cipher, a variant which he called
ChaCha [10]. Although Salsa20 was one of the winners of the eSTREAM competition,
ChaCha has received much more attention through the years. Nowadays, we see the usage
of this cipher in several projects and applications.

ChaCha, along with Poly1305 [11], is in one of the cipher suits of the new TLS 1.3
[12], which has been used by Google on both Chrome and Android. Not only has ChaCha
been used in TLS but also in many other protocols such as SSH, Noise and S/MIME 4.0.
In addition, the RFC 7634 proposes the use of ChaCha in IKE and IPsec. ChaCha has been
used not only for encryption, but also as a pseudo-random number generator in any operating
system running Linux kernel 4.8 or newer [13, 14]. Additionally, ChaCha has been used
in several applications such as WireGuard (VPN) (see [15] for a huge list of applications,
protocols and libraries using ChaCha).

In this thesis, we significantly improve the cryptanalysis against both Salsa and ChaCha.
More precisely, we propose a new way to generate linear approximations, which can be used
to find better linear approximations in ARX ciphers. Using these ideas we were able to
improve differential-linear distinguishers and also key recovery attacks.

Finally, in Part IV, we use all the tools developed and experience gained to propose new
stream ciphers. First, we show that is possible to improve the security of ChaCha by simply
changing its rotation distances. Moreover, we propose a fundamentally new design that is
more resistant to all known attacks while being faster in constrained devices, resulting in a
new stream cipher that we named Forró.

3

Part I

Preliminaries and Previous Work

4

SYMMETRIC ENCRYPTION

In this thesis, we focus on symmetric cryptography. To understand the concept of symmetric
cryptography, it is common to image two entities, named Alice and Bob, that share a secret
key k. Alice wants to transmit a message m to Bob over a network while maintaining the
secrecy of m in the presence of an eavesdropping adversary. Besides transmitting a message
over a network, these same techniques allow Alice to store a file on a disk so that no one else
with access to the disk can read the file, but Alice herself can read the file at a later time.

The basic mechanism for encrypting a message using a shared secret key is called a cipher
(or encryption scheme). Here, we review a slightly simplified notion of a cipher, which we
call a Shannon cipher. A Shannon cipher is a pair E = (E,D) of functions.

• The function E (the encryption function) takes as input a key k and a message m (also
called a plaintext), and produces as output a ciphertext c. That is,

c = E(k,m),

and we say that c is the encryption of m under k.

• The function D (the decryption function) takes as input a key k and a ciphertext c, and
produces a message m. That is,

m = D(k, c),

and we say that m is the decryption of c under k.

• We require that decryption inverts encryption; that is, the cipher must satisfy the fol-
lowing correctness property: for all keys k and all messages m, we have

D(k,E(k,m)) = m.

More formally, we define K as the set of all keys (the key space), M as the set of all
messages (the message space), and C as the set of all ciphertexts (the ciphertext space). With
this notation, we can write:

E : K ×M→ C,

D : K × C →M

Also, we shall say that E is defined over (K,M, C).

Therefore, the idea is that Alice and Bob must somehow agree in advance on a key

5

2

k ∈ K. Then, when Alice wants to send a message m ∈M to Bob, she encrypts m under k,
obtaining the ciphertext c = E(k,m) ∈ C, and then sends c to Bob via any communication
network. Upon receiving c, Bob decrypts c under k, and the correctness property ensures
that D(k, c) is the same as Alice’s original message m.

Here, the goal is that E is secure in the sense that an adversary that obtains the ciphertext
c cannot obtain relevant information about m. Next we define the basic notions of security
in cryptography.

2.1 DEFINING SECURITY

So far, we defined what is a Shannon cipher. But it remains to understand what is a secure
cipher. In the following we define the concept of perfect security:

DEFINITION 2.1 (Perfect security). Let E = (E,D) be a Shannon cipher defined over
(K,M, C). Consider a probabilistic experiment in which the random variable k is uni-
formly distributed over K. If for all m0,m1 ∈M, and all c ∈ C, we have

Pr [E (k,m0) = c] = Pr [E (k,m1) = c] , (2.1)

then we say that E is a perfectly secure Shannon cipher.

Let’s try to understand better Definition 2.1. First, notice that we require k to be uni-
formly distributed. Intuitively this makes sense because if we have keys that appear with
higher probability than the attacker can explore this fact by testing such keys first. Addition-
ally, Definition 2.1 says that the encryption of any message has exactly the same probability.
If this is true, than given c the adversary will not find any good guess for the message m.

Definition 2.1 makes sense. However, how do we achieve such encryption scheme in
practice? Unfortunately, to achieve perfectly security we need keys that at least as big as the
message (see [16] for a proof of this claim). This turns out to be unpractical for almost all
situations. Therefore, we normally work with a weaker notion of security called semantic
security. Precisely defining semantic security is not required for this thesis, but it suffices to
say that we will no longer require Eq. (2.1) to hold. Instead, we require the probabilities to
be extremely close but not necessarily equal.

6

2.2 BLOCK CIPHER AND STREAM CIPHERS

Achieving semantic security is easier in practice as we no long require the keys to be the
same size of the message. Nevertheless, it should be infeasible to the adversary to guess the
key k. For that, keys are usually of some fixed length, for example, 32-byte (i.e., 256-bit). In
this case, we have a total of 2256 keys, a extremely big number. This avoids the possibility of
the adversary testing all possible keys (this is call an exhaustion attack).

In practice, we have two types of symmetric ciphers:

• A stream cipher expands a fixed sized key into a key-stream with size equal to the
message being encrypted. Here, messages, and ciphertexts are all L-bit strings. Also,
we have a short, `-bit key k, where ` is much smaller than L. The string k is stretched
using some efficient, deterministic algorithm G that maps `-bit strings to L-bit strings.
For k ∈ {0, 1}` and m, c ∈ {0, 1}L, encryption and decryption are defined as follows:

E(k,m) := G(k)⊕m and D(k, c) := G(k)⊕ c (2.2)

• A block cipher is a cipher E = (E,D) whose message space and ciphertext space
are the same (finite) set X . If the key space of E is K, we say that E is a block cipher
defined over (K,X). We call an element x ∈ X a data block, and refer to X as the
data block space of E . In practice, block ciphers are used together with the so called
modes of operation to encrypt messages of arbitrary length.

In the next section we review some important stream ciphers and block ciphers that are
used in practice and explored during this thesis.

2.3 ALGORITHMS

In this section, we review some important algorithms that we will be using throughout
this thesis.

2.3.1 Salsa

The stream cipher Salsa20 was proposed by Bernstein [8] to the eSTREAM competition
and consists of a series of ARX (addition, rotation, and XOR) operations on 32-bit words,
being highly efficient in software and hardware. Salsa20 operates on a state of 64 bytes,
organized as a 4 × 4 matrix with 32-bit integers, initialized with a 256-bit key k0, k1, ..., k7,
a 64-bit nonce v0, v1 and a 64-bit counter t0, t1 (we may also refer to the nonce and counter

7

Figure 2.1 – Graphical representation of the QRF of Salsa.

words as IV words), and 4 constants c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32

and c3 = 0x6b206574. For Salsa20, we have the following initial state matrix:

X(0) =

x

(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

 =

=

c0 k0 k1 k2

k3 c1 v0 v1

t0 t1 c2 k4

k5 k6 k7 c3

 . (2.3)

The state matrix is modified in each round by a Quarter Round Function (QRF), named
QR

(r)
salsa(a, b, c, d), which receives and updates 4 integers in the following way see also Figure

2.1:
x

(r)
b = x

(r−1)
b ⊕ ((x

(r−1)
a + x

(r−1)
d)≪ 7)

x
(r)
c = x

(r−1)
c ⊕ ((x

(r−1)
b + x

(r−1)
a)≪ 9)

x
(r)
d = x

(r−1)
d ⊕ ((x

(r−1)
c + x

(r−1)
b)≪ 13)

x
(r)
a = x

(r−1)
a ⊕ ((x

(r−1)
d + x

(r−1)
c)≪ 18)

(2.4)

One round of Salsa20 is defined as 4 applications of the QRF. There is a difference,

8

Figure 2.2 – Order of application of the QRF function for Salsa in each round

however, between odd and even rounds. Thus, for odd rounds, when m ∈ {1, 3, 5, 7, ...},
X(m) is defined from X(m−1), from(

x
(m)
0 , x

(m)
4 , x

(m)
8 , x

(m)
12

)
= QRsalsa

(
x

(m−1)
0 , x

(m−1)
4 , x

(m−1)
8 , x

(m−1)
12

)(
x

(m)
5 , x

(m)
9 , x

(m)
13 , x

(m)
1

)
= QRsalsa

(
x

(m−1)
5 , x

(m−1)
9 , x

(m−1)
13 , x

(m−1)
1

)(
x

(m)
10 , x

(m)
14 , x

(m)
2 , x

(m)
6

)
= QRsalsa

(
x

(m−1)
10 , x

(m−1)
14 , x

(m−1)
2 , x

(m−1)
6

)(
x

(m)
15 , x

(m)
3 , x

(m)
7 , x

(m)
11

)
= QRsalsa

(
x

(m−1)
15 , x

(m−1)
3 , x

(m−1)
7 , x

(m−1)
11

) ,

and for even rounds m ∈ {2, 4, 6, 8, ...} from(
x

(m)
0 , x

(m)
1 , x

(m)
2 , x

(m)
3

)
= QRsalsa

(
x

(m−1)
0 , x

(m−1)
1 , x

(m−1)
2 , x

(m−1)
3

)(
x

(m)
5 , x

(m)
6 , x

(m)
7 , x

(m)
4

)
= QRsalsa

(
x

(m−1)
5 , x

(m−1)
6 , x

(m−1)
7 , x

(m−1)
4

)(
x

(m)
10 , x

(m)
11 , x

(m)
8 , x

(m)
9

)
= QRsalsa

(
x

(m−1)
10 , x

(m−1)
11 , x

(m−1)
8 , x

(m−1)
9

)(
x

(m)
15 , x

(m)
12 , x

(m)
13 , x

(m)
14

)
= QRsalsa

(
x

(m−1)
15 , x

(m−1)
12 , x

(m−1)
13 , x

(m−1)
14

)

The output of Salsa20/R is then defined as the sum of the initial state with the state
obtained after R rounds of operations Z = X + X(R). One should note that is possible
to parallelize each application of the QRF on each round and that each round is reversible,
hence we can compute X(m−1) from X(m). For more information on the design of Salsa20,
we refer to [8].

The cryptanalysis of Salsa20 was introduced by Crowley [17] in 2005. Crowley de-
veloped a differential attack against Salsa20/5, namely the 5-round version of Salsa20, and
received the 1000 dolar prize offered by Bernstein for the most interesting Salsa20 crypt-
analysis in that year. In 2006, Fischer et al. [18] improved the attack against Salsa20/5
and presented their attack against Salsa20/6. Probably the most important cryptanalysis in
this regard was proposed by Aumasson et al. at FSE 2008 [19] with the introduction of
Probabilistic Neutral Bits (PNBs), showing attacks against Salsa20/7, Salsa20/8. After that,
several authors proposed small enhancements on the attack of Aumasson et al. The work by

9

Shi et al. [20] introduced the concept of Column Chaining Distinguisher (CCD) to achieve
some incremental advancements over [19] for both Salsa.

Maitra, Paul and Meier [21] studied an interesting observation regarding round reversal
of Salsa, but no significant cryptanalytic improvement could be obtained using this method.
Maitra [22] used a technique of Chosen IVs to obtain certain improvements over existing
results. Dey and Sarkar [23] showed how to choose values for the PNB to further improve the
attack. In a paper presented in FSE 2017, Choudhuri and Maitra [24] significantly improved
the attacks by considering the mathematical structure of Salsa in order to find differential
characteristics with much higher correlations.

2.3.2 ChaCha

The stream cipher Salsa20 was proposed by Bernstein [8] to the eSTREAM competition
and later Bernstein proposed ChaCha [10] as an improvement of Salsa20. ChaCha consists
of a series of ARX operations on 32-bit words, being highly efficient in software and hard-
ware. Each round of ChaCha has a total of 16 bitwise XOR, 16 addition modulo 232 and 16
constant-distance rotations.

ChaCha operates on a state of 64 bytes, organized as a 4× 4 matrix with 32-bit integers,
initialized with a 256-bit key k0, k1, ..., k7, a 64-bit nonce v0, v1 and a 64-bit counter t0, t1
(we may also refer to the nonce and counter words as IV words), and 4 constants c0 =

0x61707865, c1 = 0x3320646e, c2 = 0x79622d32 and c3 = 0x6b206574, the same as in
Salsa. For ChaCha, we have the following initial state matrix:

X(0) =

x

(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

 =

c0 c1 c2 c3

k0 k1 k2 k3

k4 k5 k6 k7

t0 t1 v0 v1

 . (2.5)

The state matrix is modified in each round by a Quarter Round Function (QRF), denoted
byQR

(
x

(r−1)
a , x

(r−1)
b , x

(r−1)
c , x

(r−1)
d

)
, which receives and updates 4 integers in the following

way:

x
(r−1)
a′ = x

(r−1)
a + x

(r−1)
b ; x

(r−1)
d′ = (x

(r−1)
d ⊕ x(r−1)

a′)≪ 16;

x
(r−1)
c′ = x

(r−1)
c + x

(r−1)
d′ ; x

(r−1)
b′ = (x

(r−1)
b ⊕ x(r−1)

c′)≪ 12;

x
(r)
a = x

(r−1)
a′ + x

(r−1)
b′ ; x

(r)
d = (x

(r−1)
d′ ⊕ x(r)

a)≪ 8;

x
(r)
c = x

(r−1)
c′ + x

(r)
d ; x

(r)
b = (x

(r−1)
b′ ⊕ x(r)

c)≪ 7;

(2.6)

Compared to Salsa, all integers are updated more often improving the diffusion. Another
important change when compared to Salsa is the order of application of the QRF, which is

10

Figure 2.3 – Graphical representation of the QRF of ChaCha.

11

Figure 2.4 – Order of application of the QRF function for ChaCha in each round

now applied first on the columns and then on the diagonals of the state matrix. This change
allows extra optimization on certain platforms and, as we demonstrate in this work, also
improve the diffusion of ChaCha when compared to Salsa.

One round of ChaCha is defined as 4 applications of the QRF. There is, however, a
difference between odd and even rounds. For odd rounds, i.e., r ∈ {1, 3, 5, 7, ...}, X(r) is
obtained from X(r−1) by applying(

x
(r)
0 , x

(r)
4 , x

(r)
8 , x

(r)
12

)
= QRchacha

(
x

(r−1)
0 , x

(r−1)
4 , x

(r−1)
8 , x

(r−1)
12

)(
x

(r)
1 , x

(r)
5 , x

(r)
9 , x

(r)
13

)
= QRchacha

(
x

(r−1)
1 , x

(r−1)
5 , x

(r−1)
9 , x

(r−1)
13

)(
x

(r)
2 , x

(r)
6 , x

(r)
10 , x

(r)
14

)
= QRchacha

(
x

(r−1)
2 , x

(r−1)
6 , x

(r−1)
10 , x

(r−1)
14

)(
x

(r)
3 , x

(r)
7 , x

(r)
11 , x

(r)
15

)
= QRchacha

(
x

(r−1)
3 , x

(r−1)
7 , x

(r−1)
11 , x

(r−1)
15

) .

Contrarily, for even rounds, i.e., r ∈ {2, 4, 6, 8, , ...}, X(r) is calculated from X(r−1) by
applying (

x
(r)
0 , x

(r)
5 , x

(r)
10 , x

(r)
15

)
= QRchacha

(
x

(r−1)
0 , x

(r−1)
5 , x

(r−1)
10 , x

(r−1)
15

)(
x

(r)
1 , x

(r)
6 , x

(r)
11 , x

(r)
12

)
= QRchacha

(
x

(r−1)
1 , x

(r−1)
6 , x

(r−1)
11 , x

(r−1)
12

)(
x

(r)
2 , x

(r)
7 , x

(r)
8 , x

(r)
13

)
= QRchacha

(
x

(r−1)
2 , x

(r−1)
7 , x

(r−1)
8 , x

(r−1)
13

)(
x

(r)
3 , x

(r)
4 , x

(r)
9 , x

(r)
14

)
= QRchacha

(
x

(r−1)
3 , x

(r−1)
4 , x

(r−1)
9 , x

(r−1)
14

) .

The output of ChaCha20/R is then defined as the sum of the initial state with the state
after R rounds Z = X(0) + X(R). One should note that it is possible to parallelize each
application of the QRF on each round, which are reversible. Hence, we can compute X(r−1)

from X(r). For more information on ChaCha, we refer to [10].

The cryptanalysis of ChaCha followed the techniques applied against Salsa. Aumasson
et al. at FSE 2008 [19] used PNBs to attack ChaCha20/6 and ChaCha20/7. The techniques
of Shi [20], Choudhuri and Maitra [24] also improved attacks against ChaCha.

Recently, several works presented improvements in attack against ChaCha. First, Coutinho

12

and Souza [25] proposed new multi-bit differentials using the mathematical framework of
Choudhuri and Maitra. In Crypto 2020, Beierle et al. [26] proposed improvements to the
framework of differential-linear cryptanalysis against ARX-based designs and further im-
proved the attacks against ChaCha. At Eurocrypt 2021, Coutinho and Souza [27] developed
a new technique to expand linear trails improving the attack against ChaCha even further.
However, these new techniques were not used against Salsa. Finally, at Eurocrypt 2022 Dey
et al. [28] improved the analysis of the PNB construction and key recovery attacks against
ChaCha.

2.3.3 Speck

Speck is a family of lightweight block ciphers publicly released by the National Security
Agency (NSA) [29]. Speck has been optimized for performance in software implementations
and supports a variety of block and key sizes. A block is always two words, but the words
may be 16, 24, 32, 48, or 64 bits in size. The corresponding key is 2, 3, or 4 words.

The round function F : Fk2 ×F2k
2 → F2k

2 of Speck is very simple. It takes as input a k-bit
subkey K and a cipher state consisting of two k-bit words (Li, Ri) and produces from this
the next round state (Li+1, Ri+1) as follows:

Li+1 = ((Li � α) +Ri)⊕K

Ri+1 = (Ri � β)⊕ Li+1

where α, β are constants specific to each member of the Speck cipher family (α = 7, β = 2

for Speck32/64 and α = 8, β = 3 for other variants).

The round function is applied a fixed number of times (for 22 rounds in the case of
Speck32/64) to produce from the plaintext input the ciphertext output. The subkeys for each
round are generated from a master key by a non-linear key schedule that uses as its main
building block also this round function. Some details of the key schedule differ between
different versions of Speck due to the different number of words in the master key. For more
information about Speck, we refer to [29].

In this paper we will not focus on cryptanalysis of Speck.

2.3.4 AES

AES is a variant of the Rijndael block cipher developed by two Belgian cryptographers,
Joan Daemen and Vincent Rijmen, who submitted a proposal to NIST during the AES se-
lection process. Rijndael is a family of ciphers with different key and block sizes. For AES,
NIST selected three members of the Rijndael family, each with a block size of 128 bits,

13

Figure 2.5 – Diagram of the Speck cipher.

but three different key lengths: 128, 192 and 256 bits. AES has been adopted by the U.S.
government.

AES is a substitution-permutation network and was established as a standard by the
(NIST) in 2001. AES has a fixed block size of 128 bits, and a key size of 128, 192, or
256 bits. AES operates on a 4× 4 state matrix as follows

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

.

The number of rounds of AES varies depending on the size of the key, being 10, 12 or
14 rounds for key sizes of 128, 192, or 256 bits, respectively. Each round consists of several
processing steps, using different key streams defined by the key schedule. As a high-level
description of the algorithm, we say that each round has 4 steps:

1. AddRoundKey: each byte of the state is combined with a byte of the round key using
bitwise XOR.

14

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table 2.1 – AES S-box. The column is determined by the least significant nibble, and the
row by the most significant nibble. For example, the value 9a is converted into b8.

2. SubBytes: a non-linear substitution step, where each byte is replaced with another ac-
cording to the S-box presented in Table 2.1. This operation provides the non-linearity
in the cipher. The S-box used is derived from the multiplicative inverse over GF (28),
known to have good non-linearity properties. To avoid attacks based on simple alge-
braic properties, the S-box is constructed by combining the inverse function with an
invertible affine transformation. The S-box is also chosen to avoid any fixed points and
also any opposite fixed points.

3. ShiftRows: a transposition step, where the last three rows of the state are shifted cycli-
cally a certain number of steps. More precisely, each byte of the second row is shifted
one to the left. Similarly, the third and fourth rows are shifted by offsets of two and
three respectively. In this way, each column of the output state of the ShiftRows step
is composed of bytes from each column of the input state. The importance of this
step is to avoid the columns being encrypted independently, in which case AES would
degenerate into four independent block ciphers.

4. MixColumns: a linear mixing operation that operates on the columns of the state,
combining the four bytes in each column, where each input byte affects all four output
bytes. During this operation, each column is transformed by a multiplication against a
fixed matrix, creating diffusion in the algorithm. All operations are handled inGF (28).

The key schedule of AES is quite simple and can be represented by Figure 2.6. Note that
the key schedule is invertible. For more information on AES, we refer to [30].

15

<<S

Figure 2.6 – The key schedule for AES-128. The bytes of a 4 × 4 matrix are updated using
a S-box, XOR, and rotation.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 5 6 b 9 0 A D 3 E F 8 4 7 1 2

Table 2.2 – PRESENT S-box.

2.3.5 PRESENT

PRESENT is a block cipher introduced by Bogdanov et al. [31] in 2007. It has a block
size of 64 bits, and the key size can be 80 bits or 128 bits. The non-linear layer is based on a
single 4-bit S-box (see Table 2.2), which was designed with hardware optimizations in mind.
PRESENT is intended to be used in situations where low-power consumption and high chip
efficiency is desired. PRESENT is designed as classical Substitution Permutation Network
(SPN), alternating an add round key, a S-Box, and a permutation layer, as in Figure 2.7. The
key schedule is also very simple, using the S-Box and a round counter to derive the round
keys, as in Figure 2.8. Note that knowing the full state the key schedule is invertible.

16

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

ki

ki+1

Figure 2.7 – The block cipher PRESENT.

79 39 38 33 32 19 18 15 14 0

79 76 75 61 60 20 19 15 14 0

round counterS-box

round key i

round key i+ 1

Figure 2.8 – Key schedule of PRESENT.

17

CRYPTANALYSIS

In this chapter, we review some important cryptanalysis techniques that are used in this
thesis. More precisely, in Section 3.1, we review Differential Cryptanalysis, and in Section
3.3, we review Differential-Linear Cryptanalysis. In Section 3.4, we review the technique of
Probabilistic Neutral Bits (PNBs).

3.1 DIFFERENTIAL CRYPTANALYSIS

In differential cryptanalysis [32], the attacker is interested in identifying and exploiting
non-uniformity in occurrences of plaintext and ciphertext differences. Let x and y be two
elements of a set A, then we define the difference between x and y as ∆(x, y) = x ⊗ y−1,

where y−1 is the inverse of y with respect to some operation ⊗ on the set A. Now given a
vectorial Boolean function F : Fn2 → Fm2 , we define the differential as the pair (δ,∆) of an
input difference δ ∈ Fn2 and an output difference ∆ ∈ Fm2 , i.e.,

F (x)⊗ F−1(x⊗ δ−1) = ∆.

Since δ and ∆ have a finite number of possible values, we can define the difference

distribution table of F as the matrix A = {Ai,j}, where

Ai,j = |{x ∈ Fn2 : F (x)⊗ F−1(x⊗ i−1) = j}|.

In the specific case where we use XOR as the difference, we have

Ai,j = |{x ∈ Fn2 : F (x)⊕ F (x⊕ i) = j}|. (3.1)

From the difference distribution table, we can compute the probability of the differential
(δ,∆) as

Pr[δ
F→ ∆] =

Aδ,∆
2−n

.

In general, we wish to find differentials with high probability to mount statistical attacks. To
finding these differentials is often easier to divide the cipher in multiple components or steps
(c0, c1, ..., cs) and consider the so called differential characteristics.

18

3

DEFINITION 3.1 An s-round differential characteristic is a series of differences, no-
tated as an (s + 1)−tuple (α0, ..., αs), where αi is the anticipated value of ∆ci for the
characteristic, i.e., the difference between the values of the partially encrypted messages
where α0 is the chosen value of the message difference ∆m = ∆c0.

The probability of an s-round characteristic can be computed from the conditional prob-
ability that ∆ci = αi is the observed difference after i rounds given that ∆ci−1 = αi−1 is the
difference after i− 1 rounds for 1, ..., s. More formally, the probability of a characteristic is
given by

PrM,K (∆cs = αs,∆cs−1 = αs−1, . . . ,∆c1 = α1 | ∆m = α0) ,

where the probability is taken over all choices of the plaintext and the key. This proba-
bility can be hard to calculate. However, for certain ciphers it can be calculated from the
probabilities of single-round characteristics. To do so, we note that a sequence of stochas-
tic variables v0, v1, . . . , vr is a Markov chain if Pr (vi+1 = βi+1 | vi = βi, . . . , v0 = β0) =

Pr (vi+1 = βi+1 | vi = βi) for 0 ≤ i < r − 1. If Pr (vi+1 = β | vi = α) is independent of i
for all α and β, then a Markov chain is called homogeneous.

Thus, we speak of a Markov chain if the probabilities of the individual variables are
independent of each other and of a homogeneous chain if the probability distribution is the
same for all variables. This leads to the following definition:

DEFINITION 3.2 (Markov Cipher) An iterated cipher is called a Markov cipher if there
is an operation ⊗ defining ∆ such that Pr (∆c1 = β | ∆c0 = α, c0 = γ) is independent
of γ for all α and β when the round key k is chosen uniformly at random.

Thus, for a Markov cipher with independent round keys, the probability of an s-round
characteristic is the product of the probabilities of the s one-round characteristics or, more
formally,

Pr (∆cs = αs,∆cs−1 = αs−1, . . . ,∆c1 = α1 | ∆m = α0) =∏s
i=1 Pr (∆ci = αi | ∆ci−1 = αi−1) .

Several ciphers, such as DES, PRESENT, and AES with independent subkeys are Markov
ciphers when the notion of difference is the XOR operation. For more information about
differential cryptanalysis, we refer to [32, 33, 34].

19

3.2 LINEAR CRYPTANALYSIS

3.2.1 The basics

After differential cryptanalysis, linear cryptanalysis provides the most important general
technique for analyzing symmetric primitives. The development of linear cryptanalysis and
its application to DES is due to Matsui [35]. However, linear cryptanalytic techniques had
been used earlier in an attack on FEAL-4 by Tardy-Corfdir and Gilbert [36]. Interestingly,
apart from a few enhancements linear cryptanalysis has evolved little since the early sys-
tematic treatment of Matsui. As an attack, it seems to be intrinsically less versatile than
differential cryptanalysis.

Linear cryptanalysis is a known plaintext attack in which the attacker exploits probabilis-
tic linear relations between bits of the plaintext m, the ciphertext c and the key k. Mathemat-
ically, we can write that

(m · α)⊕ (c · β) = (k · γ), (3.2)

where α, β, and γ denote linear masks applied through the dot product ·. In other words, the
masks represent the selection of particular bits of the plaintext, ciphertext, or key.

Generally, Eq. (3.2) represents and approximation, in the sense that the equality occurs
with a probability ρ. It s useful, however, to work with the correlation given by ε = 2ρ − 1

when discussing cryptanalysis.

Let us consider how to find relations for individual rounds in an iterated cipher. It is clear
that for linear and affine functions linear relations can be found that hold with probability
1 or 0. The important step in linear cryptanalysis is to establish such relations through the
non-linear components of a cipher. For SPNs, such as AES and PRESENT, it is possible
to compute so-called linear approximation tables for the different non-linear components.
For the AES and PRESENT these are the S-boxes, and such linear approximation tables
contain all possible input and output masks together with the corresponding probability that
the parity of input approximation is preserved in the output approximation. Such a table for
a function f can be presented as a matrix A = {Aα,β}, where

Aα,β = |{x ∈ Dom(f) : (x · α) = (f(x) · β)}|. |

We have that the bit x · α equals the bit f(x) · β with probability

pα,β =
Aα,β

|Dom(h)|
,

and the correlation the correlation c is given by ε = 2pα,β − 1.

It is possible to have ciphers where the range or the domain of the non-linear function

20

is too large to allow a complete linear approximation table to be constructed (for example
in ARX ciphers). In such circumstances, a cryptanalyst would likely restrict himself to
searching over some useful mask values or some other techniques.

The first stages in a linear cryptanalytic attack are used to establish linear relations for
individual components. These are then joined to form approximations to a round which, in
turn, is joined to give approximations over more rounds. Suppose ci denotes the partially
encrypted text after i rounds of encryption for i = 1 to r for an r-round block cipher. Further
suppose that the per-round relations

(ci−1 · αi−1)⊕ (ci · αi) = (ki · γi)

hold with probability pi, where the probability is taken over all possible inputs to the round
and for fixed values of the subkeys ki. By combining these relations with exclusive-or, one
obtains an expression over s rounds,

(m · α0)⊕ (cs · αs) =
s∑
i=1

(ki · γi)

that holds with some probability p when averaged over all plaintexts. The typical approach
to estimating p is to use what is often called the piling-up lemma, a technique described by
Tardy-Corfdir and Gilbert [36] and Matsui [35].

Let Zi, for 1 ≤ i ≤ m, bem independent random variables, which take the values {0, 1},
and further suppose that each random variable takes the value 0 with correlation εi. Thus,
we have that

Pr(Z1 ⊕ Z2 ⊕ ...⊕ Zm = 0) =
1

2

(
1 +

m∏
i=1

εi

)
. (3.3)

This goes some way to explaining the attractiveness of using correlations instead of proba-
bilities since correlations can simply be multiplied together.

DEFINITION 3.3 An s-round linear characteristic is a series of masks defined as an
(s + 1)-tuple (α0, α1, ..., αs−1, αs) with probability ρ, where αi is the mask used in the
i-th round. The characteristic predicts for i = 1, ..., s that the sum of certain bits of the
input to the i-th round will equal to the sum of certain bits in the outputs of the i-th round.

Most of the linear attacks reported in the literature make use of iterative characteristics.
For an iterated block cipher, an s-round iterative linear characteristic is an (s + 1)-tuple
(α0, α1, ..., αs−1, αs). Their usefulness can easily be seen when we note that an s-round
iterative linear characteristic can always be used to build a t-round characteristic for any
integer t ≥ s.

21

For a Markov, cipher we can be sure that if the cipher has independent round keys, then
the correlation of a multiple-round linear approximation, when taken over all values of the
round keys, can be calculated from the one-round correlations using the piling-up lemma.
The probability of a linear characteristic is calculated as an average over all keys. For more
information about linear cryptanalysis, we refer to [34].

3.2.2 Mathematical Framework

Behind linear cryptanalysis, there is a very rich theoretical framework that can be ex-
plored. In particular, the use of the Fast Fourier transform (FFT) is especially useful, as there
are extremely fast algorithms that use the FFT to compute the correlations of linear relation-
ships [37, 38]. In this section, we introduce this mathematical formalism that will be used in
the following sections.

3.2.2.1 Boolean Functions

The theory that we explore is mainly based on the theory of Boolean functions [6, 38].

DEFINITION 3.4 (Boolean function). A Boolean function of n variables is a function of
Fn2 in F2. The representation in real values of a Boolean function f : Fn2 → F2 is given
by f̂ : Fn2 → R, where f̂(x) = (−1)f(x).

Next, we formally define the concept of correlation, which we define informally in the
previous section.

DEFINITION 3.5 (Correlation). Let f, g : Fn2 → F2 be Boolean functions. The correla-

tion between f and g is defined by

c(f(x), g(x)) = 2 Pr(f(x) = g(x))− 1. (3.4)

Note that the correlation c(f, g) is a value in the range [−1, 1] and that c(f, g) = c(g, f).
Another way to define correlation is as follows:

c(f(x), g(x)) = 2−n
∑
x∈Fn2

(−1)f(x)+g(x) = 2−n
∑
x∈Fn2

f̂(x)ĝ(x). (3.5)

To see that the two definitions are equivalent, let us define

l = #{x ∈ Fn2 ; f(x) + g(x) = 0},

22

m = #{x ∈ Fn2 ; f(x) + g(x) = 1}.

Therefore l + m = 2n. Furthermore, we have f(x) = g(x) if and only if f(x) + g(x) = 0.
We can then use Eq. (3.5) to obtain

c(f(x), g(x)) = 2−n(l −m) = 2−n(2l − 2n) =
2l

2n
− 1 = 2 Pr(f(x) = g(x))− 1,

which is exactly the expression (3.4).

3.2.2.2 Linear approximations

Let w = (wn−1, ..., w0), x = (xn−1, ..., x0), we define w · x = xn−1wn−1 + ...+ x0w0 as
the inner product of x and w. We define the concept of linear approximation and efficiency.

DEFINITION 3.6 (Linear Approximation) Let h : Fn2 → Fm2 be a function. Denote by
u

h←− w the linear approximation of the function h such that

u · h(x) = w · x.

DEFINITION 3.7 (Efficiency) The efficiency of the linear approximation u h←− w is given
by

C(u h←− w) = c(u · h(x), w · x),

where c is the correlation presented in Definition 3.5.

3.2.2.3 Fourier Transform

Define the function δ such that δ(0) = 1 and δ(x) = 0, if x 6= 0. We define the
characteristic function and the Fourier transform.

DEFINITION 3.8 (Characteristic Function) Let h : Fn2 → Fm2 be a function. So its
characteristic function is given by

χh(x, y) = δ(h(x)⊕ y),

where x ∈ Fn2 and y ∈ Fm2 .

23

DEFINITION 3.9 (Fourier transform) We define the Fourier transform of the function
h : Fn2 → Fm2 as

F(χh)(u,w) = 2−mn
∑
x,y

χh(x, y)(−1)u·y+w·x

LEMMA 3.1 It holds that

F(χh)(u,w) = 2−mC(u h←− w).

proof.

By Definition 3.8, it is easy to see that

χh(x, y) = 1 ⇐⇒ h(x) = y,

so by Definition 3.9, it follows that

2−mn
∑
x,y

χh(x, y)(−1)u·y+w·x = 2−mn
∑
x

(−1)u·h(x)+w·x.

The proof is concluded by verifying that the right side of the equation is equal to 2−mC(u h←−
w) from Definition 3.7 and Eq. (3.5). �

The Lemma 3.1 is extremely important because it shows that we can compute the correla-
tion presented by a linear approximation from the FFT. The great advantage of this approach
is performance, since the FFT is recognized as an efficient algorithm.

3.3 DIFFERENTIAL-LINEAR CRYPTANALYSIS

In this section, we describe the technique of Differential-Linear cryptanalysis. Let E be
a cipher and suppose we can write E = E2 ◦E1, where E1 and E2 are sub ciphers, covering
m and l rounds of the main cipher, respectively. We can apply an input difference ID ∆X(0)

in the sub cipher E1 obtaining an output differenceOD ∆X(m) (see the left side of Fig. 3.1).
The next step is to apply Linear Cryptanalysis to the second sub cipher E2. Using masks Γm

and Γout, we attempt to find good linear approximations covering the remaining l rounds of
the cipher E. Applying this technique, we can construct a differential-linear distinguisher
covering all m + l rounds of the cipher E. This is the main idea in Langford and Hellman’s

24

classical approach [39].

Sometimes, however, it can be useful to divide the cipher E into three other ciphers, i.e.,
E = E3 ◦E2 ◦E1. In this scenario, we can explore properties of the cipher in the first part E1

and then apply a differential linear attack where we divide the differential part of the attack
in two (see the right side of Fig. 3.1). Here, the OD from the sub cipher E1 after r rounds,
namely ∆X(r), is the ID for the sub cipherE2, which produces an output difference ∆X(m).
For more information in this regard, see [26].

It is important to understand how to compute the complexity of a differential-linear at-
tack. We denote the differential of the state matrix as ∆X(r) = X(r) ⊕ X ′(r) and the dif-
ferential of individual words as ∆x

(r)
i = x

(r)
i ⊕ x

′(r)
i . Let x(r)

i,j denote the j-th bit of the i-th
word of the state matrix after r rounds and let J be a set of bits. Also, let σ and σ′ be linear
combinations of bits in the set J

σ =

 ⊕
(i,j)∈J

x
(r)
i,j

 , σ′ =

 ⊕
(i,j)∈J

x
′(r)
i,j

 .

Thus,

∆σ =

 ⊕
(i,j)∈J

∆x
(r)
i,j

is the linear combination of the differentials. We can write

Pr
[
∆σ = 0|∆X(0)

]
=

1

2
(1 + εd), (3.6)

where εd is the differential correlation.

Using linear cryptanalysis, it is possible to go further and find new relations between the
initial state matrix and the state matrix after R > r rounds. To do so, let L denote another
set of bits and define

ρ =

 ⊕
(i,j)∈L

x
(R)
i,j

 , ρ′ =

 ⊕
(i,j)∈L

x
′(R)
i,j

 .

Thus, as before,

∆ρ =

 ⊕
(i,j)∈L

∆x
(R)
i,j

 .

We can define Pr[σ = ρ] = 1
2
(1 + εL), where εL is the linear correlation. We want to

find γ such that Pr
[
∆ρ = 0|∆X(0)

]
= 1

2
(1 + γ).

To compute γ, we write (to simplify the notation, we make the conditional to ∆X(0)

25

E1 E1

∆X(0)

E2 E2

∆X(m)

p

Γm Γm

Γout Γout

q q

E2

E1

E2

E1

∆X(r)

E3 E3

∆X(m)

p2

Γm Γm

Γout Γout

q q

∆X(0)

p1

Figure 3.1 – A classical differential-linear distinguisher (on the left) and a differential-linear
distinguisher with experimental evaluation of the correlation p2 (on the right). E denotes
a cipher that may be divided into sub-ciphers E = E2 ◦ E1, or E = E3 ◦ E2 ◦ E1. In the
differential part we may apply an input difference ID ∆X(0) in the sub cipherE1 obtaining an
output difference OD ∆X(m) after m rounds. The next step is to apply Linear Cryptanalysis
using masks Γm and Γout. Applying this technique we can construct a differential-linear
distinguisher of the cipher E. One way to improve attacks is to explore properties of the
cipher in the first part E1 (on the right), and then apply a differential linear attack where we
divide the differential part of the attack in two.

implicit):

Pr[∆σ = ∆ρ] = Pr[σ = ρ] · Pr [σ′ = ρ′] + Pr[σ = ρ̄] · Pr
[
σ′ = ρ′

]
=

1

2

(
1 + ε2

L

)
.

Thus,

Pr[∆ρ = 0] = Pr[∆σ = 0] · Pr[∆σ = ∆ρ] + Pr[∆σ = 1] · Pr[∆σ = ∆ρ]

=
1

2

(
1 + εd · ε2

L

)
.

Therefore, the differential-linear correlation is given by γ = εd · ε2
L, which defines a dis-

tinguisher with complexity O
(

1

ε2
dε

4
L

)
. For further information on differential-linear crypt-

analysis, we refer to [40].

3.4 PROBABILISTIC NEUTRAL BITS

This section reviews the attack of Aumasson [19]. The attack first identifies good choices
of truncated differentials, then it uses probabilistic backwards computation with the notion
of Probabilistic Neutral Bits (PNB), and, finally, it estimates the complexity of the attack.

26

If ∆x
(R)
i is the difference for the ith word of state matrixX(R), thus ∆x

(R)
i = x

(R)
i ⊕x′

(R)
i ;

and if ∆x
(R)
i,j is the difference for the jth bit of the ith word, then ∆x

(R)
i,j = x

(R)
i,j ⊕x′

(R)
i,j . In [19],

the input difference ID is defined for a single-bit difference ∆x0
i,j = 1 and consider a single-

bit output differenceOD after r rounds ∆x
(r)
p,q, such differential is denoted (∆x

(r)
p,q|∆x0

i,j). For
a fixed key, the correlation εd of the OD is defined by Prv,t(∆x

(r)
p,q = 1|∆x0

i,j) = 1
2
(1 + εd),

where the probability holds over all nonces v and counters t. Furthermore, considering the
key as a random variable, we denote the median value of εd by ε?d. Hence, for half of the
keys, this differential have a correlation of at least ε?d.

Now, assume that the differential (∆x
(r)
p,q|∆x0

i,j) of correlation εd is fixed, and we observe
outputs Z and Z ′ of R = l+r rounds for nonce v, counter t and unknown key k. If we guess
the key k, we can invert l rounds of the algorithm to get X(r) and X ′(r) and compute ∆x

(r)
p,q,

let f be the function that executes this procedure. Hence f(k, v, t, Z, Z ′) = ∆x
(r)
p,q, and we

expect that

Pr(f(k̂, v, t, Z, Z ′) = 1) =

{
1
2
(1 + εd), if k̂ = k

0.5, if k̂ 6= k
,

thus, if we have several pairs of Z and Z ′, it is possible to test our guesses for k.

Thus, we can search only over a subkey of m = 256 − n bits, provided we can find a
function g that approximates f but only uses m key bits as input. Hence, let k̄ correspond
to the subkey of m bits of key k and let f to be correlated to g with correlation εa, i.e.,
Pr(f(k, v, t, Z, Z ′) = g(k̄, v, t, Z, Z ′)) = 1

2
(1 + εa).

If we denote the correlation of g by ε, i.e., Pr(g(k̄, v, t, Z, Z ′) = 1) = 1
2
(1+ε), and ε? the

median correlation of g over all keys, we can approximate ε by εdεa. The problem that re-
mains is how to efficiently find such a function g. In [19], this is done by first identifying key
bits that have little influence on the result of f(k, v, t, Z, Z ′), these are called probabilistic

neutral bits (PNBs). This is done by defining the neutrality measure γi,j of a key bit ki,j .

After computing γi,j (see [19] for a method of estimation), for all i = (0, 1, ..., 7) and
j = (0, 1, ..., 31), we can define the set of significant key bits as Ψ = {(i, j) : γi,j ≤ γ}
where γ is a threshold value, and then define our approximation g as g(kΨ, v, t, Z, Z

′) =

f(k∗, v, t, Z, Z ′) where kΨ is defined as the subkey with key bits in the set Ψ and k∗ is
computed from kΨ by setting ki,j = 0 for all (i, j) /∈ Ψ. Thus, the attack can be evaluated
with the following steps:

1. Compute a good differential for r rounds (∆x
(r)
p,q|∆x0

i,j) by estimating the correlation εd
for all single-bit ID with several random combinations of keys, nonces, and counters.

2. Empirically estimate the neutrality measure γr,s for each key bit kr,s.

3. Construct the function g by setting all key bit such that γr,s > γ to zero and estimate the
median correlation ε? by empirically measuring correlation of g using many randomly

27

chosen keys, nonces, and counters.

4. Estimate the data and time complexity of the attack.

We refer to [19] for further information about the estimation of the data and time com-
plexity of the attack and for further details on the described technique.

3.5 CRYPTANALYSIS OF ARX CIPHERS

In this thesis, we improve results of cryptanalysis against ARX ciphers. To do so, first,
we need to understand how to apply differential and linear cryptanalysis when we are faced
against the addition operation.

3.5.1 Differential cryptanalysis of Addition

Differential cryptanalysis emerged with the intention of being applied to block ciphers
that have an SPN-like structure, as can be seen in the previous sections. However, there are
several cryptographic algorithms that use only add, rotate, and XOR (ARX) operations and
do not necessarily constitute an SPN. Therefore, it is important for the cryptanalyst to know
in depth the way in which differential cryptanalysis can be applied in ARX-like algorithms.

In general, to analyze ARX-type ciphers, one can use the differential by the XOR opera-
tion or by the subtraction operation, that is, we could define the differential as

∆X = X ⊕X ′

or as
∆X = X −X ′.

Despite its possibilities for the ARX case, the present thesis continues using the differential
in relation to the XOR operation.

In the following sections, we present how to compute the differential in an ARX cipher,
starting with the simplest operations, XOR and rotation. Afterwards, we describe how to
calculate the differential for the addition operation, which consists of the nonlinear element
when considers the differential by the XOR operation. We present algorithms and the theory
heavily based on the work of Lipmaa [41], which is recommended for the reader who wants
more details on what is presented in this thesis.

28

3.5.1.1 Preliminary notions

In an ARX algorithm, when working with the differences based on the XOR operation,
we need to know how to compute and update differences for each internal operation. Doing
this for the XOR and rotation operations is trivial, but the situation gets more complex in the
case of the addition operation. The following lemmas show the reason for this fact.

LEMMA 3.2 Let Z = X ⊕ Y and Z ′ = X ′ ⊕ Y ′, where X, Y, Z ∈ Fn2 . In this case, we
have that ∆Z = ∆X ⊕∆Y .

proof.

Follows directly from:

∆Z = Z ⊕ Z ′ = X ⊕ Y ⊕X ′ ⊕ Y ′ = ∆X ⊕∆Y.

�

LEMMA 3.3 Let Z = X ≫ R and Z ′ = X ′≫ R, where X,X ′, Z, Z ′ ∈ Fn2 . There-
fore, we have that ∆Z = ∆X≫ R.

proof.

We have ∆Z = (X ≫ R) ⊕ (X ′≫ R). Since the rotation do not flip any bit, we get
∆Z = (X ⊕X ′)≫ R = ∆X≫ R. �

LEMMA 3.4 Let Z = X + Y e Z ′ = X ′ + Y ′, where X,X ′, Y, Y ′, Z, Z ′ ∈ Fn2 . In
general, we have that ∆Z 6= ∆X + ∆Y .

proof.

We have that
∆Z = Z ⊕ Z ′ = (X + Y)⊕ (X ′ + Y ′),

and
∆X + ∆Y = (X ⊕ Y) + (X ′ ⊕ Y ′).

However, in general, we have that

(X + Y)⊕ (X ′ + Y ′) 6= (X ⊕ Y) + (X ′ ⊕ Y ′).

29

�

3.5.1.2 Analyzing the addition operation on each bit

The addition operation is quite simple when thought of in integers, but when viewed
in terms of bits and Boolean functions, it can present some surprises. Consider the sum
X + Y = Z, where X, Y, Z ∈ F4

2, that is, have 4 bits and denote X = x3||x2||x1||x0, where
x0 denotes the least significant bit and x3 the most significant bit. We can then represent the
sum in the same way that we learned to add decimal numbers in elementary school, but here,
we will work on bits:

c3 c2 c1 c0

x3 x2 x1 x0

y3 y2 y1 y0

z3 z2 z1 z0

+

where c3, c2, c1 e c0 denote the carry bits. By definition, c0 = 0. Using basic addition rules,
we get that c1 = 1 if x0 = y0 = 1 and c1 = 0 otherwise. Also, c2 = 1 if at least two bits
between x1, y1 and c1 are equal to 1. Generally, it holds that:

ci+1 = MAJ(ci, xi, yi) = cixi ⊕ ciyi ⊕ xiyi. (3.7)

It is also not difficult to note (it is left as an exercise for the reader) that the following relation
is valid

zi = xi ⊕ yi ⊕ ci. (3.8)

3.5.1.3 Addition Differential Properties

Following the notation of [41], let α = ∆X , β = ∆Y and γ = ∆Z. Also, let π = ∆C =

C ⊕ C ′, where C denotes the carry of the sum X + Y and C ′ denotes the carry of the sum
X ′ + Y ′. We can represent the two sums as follows:

c3 c2 c1 c0

x3 x2 x1 x0

y3 y2 y1 y0

z3 z2 z1 z0

+

c′3 c
′
2 c
′
1 c
′
0

x′3 x
′
2 x
′
1 x
′
0

y′3 y
′
2 y
′
1 y
′
0

z′3 z
′
2 z
′
1 z
′
0

+

such that αi = xi ⊕ x′i, βi = yi ⊕ y′i, γi = zi ⊕ z′i and πi = ci ⊕ c′i.

Now, let us check some basic properties.

30

LEMMA 3.5 It holds that γi = αi ⊕ βi ⊕ πi.

proof.

It follows directly by the application of the differential rule for the XOR operation pre-
sented in the Lemma 3.2, and by Eq. (3.8). �

LEMMA 3.6 It holds that π0 = 0.

proof.

By definition, we have that, c0 = c′0 = 0, therefore π0 = c0 ⊕ c′0 = 0. �

LEMMA 3.7 It holds that α0 ⊕ β0 ⊕ γ0 = 0.

proof.

From Lemma 3.6, we have that π0 = 0, therefore, the result follows directly from Lemma
3.5. �

LEMMA 3.8 If αi = βi = γi = 0, then πi+1 = 0.

proof.

From Lemma 3.5, we have that πi = 0. Since αi = 0, we have that xi = x′i, however, we
do not know if xi = x′i = 0 or if xi = x′i = 1. In the same manner, as βi = 0, γi = 0,
and πi = 0, we have that yi = y′i, zi = z′i and ci = c′i, respectively, but we do not know
the exact value. Therefore, we have to assume all the existing possibilities. For example,
if xi = x′i = 0, yi = y′i = 0 and ci = c′i = 0 we have

ci+1 = MAJ(xi, yi, ci) = MAJ(0, 0, 0) = 0

and
c′i+1 = MAJ(x′i, y

′
i, c
′
i) = MAJ(0, 0, 0) = 0,

therefore, πi+1 = ci+1 ⊕ c′i+1 = 0. Performing this procedure for all possibilities, we
arrive at the table below, which shows that for any combination πi+1 = 0.

31

αi βi γi πi xi x′i yi y′i ci c′i ci+1 c′i+1 πi+1

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 1 1 0 0 0 0 0
0 0 1 1 1 1 0 0 0
1 1 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0
1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0

�

LEMMA 3.9 If αi = βi = γi = 1, then πi+1 = 1.

proof.

From Lemma 3.5, we have that πi = 1. Since αi = 1, we have that xi 6= x′i, however,
we do not know if xi = 0 and x′i = 1, or if xi = 1 and x′i = 0. In the same manner, as
βi = 1, γi = 1 and πi = 1, we have that yi 6= y′i, zi 6= z′i and ci 6= c′i, respectively, but we
do not know the exact value. Therefore, we have to assume all the existing possibilities.
For example, if xi = 1, x′i = 0, yi = 0, y′i = 1, ci = 0, and c′i = 1, we have that

ci+1 = MAJ(xi, yi, ci) = MAJ(1, 0, 0) = 0

and
c′i+1 = MAJ(x′i, y

′
i, c
′
i) = MAJ(0, 1, 1) = 1,

therefore, πi+1 = ci+1 ⊕ c′i+1 = 1. Performing this procedure for all possibilities, we
arrive at the table below, which shows that for any combination πi+1 = 1.

αi βi γi πi xi x′i yi y′i ci c′i ci+1 c′i+1 πi+1

1 1 1 1 1 0 1 0 1 0 1 0 1
1 0 1 0 0 1 1 0 1
1 0 0 1 1 0 1 0 1
1 0 0 1 0 1 0 1 1
0 1 1 0 1 0 1 0 1
0 1 1 0 0 1 0 1 1
0 1 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 1

32

�

LEMMA 3.10 If αi 6= βi or αi 6= γi, then Pr{πi+1 = 1} = 0.5.

proof.

In this case, we have that between αi, βi, and γi there is at least a value of 0 and a value
of 1. For example, one possibility is that (αi, βi, γi) = (0, 1, 1). Computing all the
possibilities for this case, we arrive at the table below in which it is noted that Pr{πi+1 =

1} = 0.5:

αi βi γi πi xi x′i yi y′i ci c′i ci+1 c′i+1 πi+1

0 1 1 0 1 1 1 0 1 1 1 1 0
1 1 1 0 0 0 1 0 1
1 1 0 1 1 1 1 1 0
1 1 0 1 0 0 0 1 1
0 0 1 0 1 1 1 0 1
0 0 1 0 0 0 0 0 0
0 0 0 1 1 1 0 1 1
0 0 0 1 0 0 0 0 0

By the symmetry of the MAJ function, the cases where (αi, βi, γi) = (1, 0, 1) or
(αi, βi, γi) = (1, 1, 0) are analogous to the previous one. Another possibility would be
when (αi, βi, γi) = (0, 0, 1), computing all the possibilities for this case, we arrive at the
table below in which we can see that Pr{πi+1 = 1} = 0.5:

αi βi γi πi xi x′i yi y′i ci c′i ci+1 c′i+1 πi+1

0 0 1 1 1 1 1 1 0 1 1 1 0
1 1 1 1 1 0 1 1 0
1 1 0 0 0 1 0 1 1
1 1 0 0 1 0 1 0 1
0 0 1 1 0 1 0 1 1
0 0 1 1 1 0 1 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0

By the symmetry of the MAJ function, Pr{πi+1 = 1} = 0.5. �

33

LEMMA 3.11 Given α, β, γ, and defining α−1 = β−1 = γ−1 = 0. If i such that αi−1 =

βi−1 = γi−1 6= αi ⊕ βi ⊕ γi, then it is an impossible differential.

proof.

Suppose for some index i, we have

αi−1 = βi−1 = γi−1 6= αi ⊕ βi ⊕ γi.

As we have that γi = αi ⊕ βi ⊕ πi (by Lema 3.5), then we can rewrite the previous
expression as

αi−1 = βi−1 = γi−1 6= πi.

Also by the equation of the Lemma 3.5, we can calculate πi−1, in fact we have that
πi−1 = αi−1 = βi−1 = γi−1. Now, we have two options:

1. If πi−1 = αi−1 = βi−1 = γi−1 = 0, then πi = 0 (by Lemma 3.8). Thus,

αi−1 = βi−1 = γi−1 = πi = 0,

which contradicts the initial assumption.

2. If πi−1 = αi−1 = βi−1 = γi−1 = 1, then πi = 1 (by Lemma 3.9). Thus,

αi−1 = βi−1 = γi−1 = πi = 1,

which contradicts the initial assumption.

Therefore, we have an impossible differential. �

3.5.1.4 Differential Probability of Addition

In this section, we will evaluate the Differential Probability of Addition (DPA). Let α =

∆X , β = ∆Y and γ = ∆Z, we define

DPA(α, β, γ) = Pr
x,y
{(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ|α, β}. (3.9)

In other words, DPA(α, β, γ) defines the probability of getting an output difference γ given
the input differences α and β, out of the entire space of possibilities for x and y.

The calculation of this probability is easy to understand given the knowledge of the prop-
erties presented in the previous section. Let us do this with an example. Assume the 4-bit

34

differentials α = 1000 and β = 1010. Let us represent these differentials in the traditional
view for sum that we used earlier:

1 0 0 0
1 0 1 0

π
α
β

γ

By Lemma 3.6, we know that π0 = 0, therefore, we have:

1 0 0 0
1 0 1 0

π
α
β

γ

0

Since π0 = α0 = β0 = 0, we get γ0 = 0 (by Lemma 3.5) and π1 = 0 (by Lemma 3.8).
Thus, we have

1 0 0 0
1 0 1 0

π
α
β

γ

00

0

Since π1 = α1 = 0 and β1 = 1, we have that γ1 = 1 (by Lemma 3.5), therefore, we have:

1 0 0 0
1 0 1 0

π
α
β

γ

00

01

Now, as α1 6= β1, we have an undetermined result for π2, since Pr{π2 = 1} = 0.5 (by
the Lemma 3.10). Hence, we divide the solution into two possibilities with probability 0.5,
already calculating the result of γ2:

1 0 0 0
1 0 1 0

π
α
β

γ

00

01

Probability = 1
2

π
α
β

γ

1 0 0 0
1 0 1 0

0 0

1 0

0

0

1

1

Probability = 1
2

35

On the left hand, we have that π2 = α2 = β2 = γ2 = 0, which implies that π3 = 0 (by
Lemma 3.8), so we have:

1 0 0 0
1 0 1 0

π
α
β

γ

00

01

Probability = 1
2

π
α
β

γ

1 0 0 0
1 0 1 0

0 0

1 0

0

0

1

1

Probability = 1
2

0

0

On the right hand, as α2 6= γ2, we have an undetermined result for π3, since Pr{π3 =

1} = 0.5 (by Lemma 3.10). Hence, we split the solution into two possibilities with resulting
probability 0.25, getting as the result:

1 0 0 0
1 0 1 0

π
α
β

γ

00

01

Probability = 1
4

π
α
β

γ

1 0 0 0
1 0 1 0

0 0

1 0

1

1

1

1

Probability = 1
4

0

0

0 1 00γ

β
α
π 0 0 0 0

1 0 0 0
1 0 1 0

Probability = 1
2

1

1

36

Therefore, we can summarize the probability distribution as

DPA(1000, 1010, 0000) = 0

DPA(1000, 1010, 0001) = 0

DPA(1000, 1010, 0010) = 0.5

DPA(1000, 1010, 0011) = 0

DPA(1000, 1010, 0100) = 0

DPA(1000, 1010, 0101) = 0

DPA(1000, 1010, 0110) = 0.25

DPA(1000, 1010, 0111) = 0

DPA(1000, 1010, 1000) = 0

DPA(1000, 1010, 1001) = 0

DPA(1000, 1010, 1010) = 0

DPA(1000, 1010, 1011) = 0

DPA(1000, 1010, 1100) = 0

DPA(1000, 1010, 1101) = 0

DPA(1000, 1010, 1110) = 0.25

DPA(1000, 1010, 1111) = 0

Similarly, it is possible to construct an algorithm that computes DPA(α, β, γ) from
α, β, γ. For example, let α = 1000, β = 1010, and γ = 1110. In this case, we have
that π = 1100 (by Lemma 3.5). As γ0 = α0 = β0 = 0, we have π1 = 0 with probability 1.
Next, as α1 6= β1, we have a transition with probability 0.5, and so on, from as follows:

1 0 0 0
1 0 1 0

π
α
β

γ 1 1 1 0

1 1 0 0

11
2

1
2

To compute DPA(1000, 1010, 1110), we simply multiply the probabilities. So

DPA(α, β, γ) = 1× 0.5× 0.5 = 0.25.

One more example, let α = 1000, β = 1010 and γ = 0000. In this case, we have
π = 0010 (by Lemma 3.5). However, the value of π1 is inconsistent, which implies an
impossible differential, and therefore, the probability is 0:

37

1 0 0 0
1 0 1 0

π
α
β

γ 0 0 0 0

0 0 1 0

01
21

Therefore, we get

DPA(1000, 1010, 000) = 1× 0.5× 0 = 0.

3.5.1.5 Maximizing the probability from α and β

In differential cryptanalysis, it is common for the cryptanalyst to want to obtain a dif-
ferential path with high probability. For this, it is useful to have the knowledge of how to
choose an output difference that has maximum probability given two inputs. Thus, we want
to find the value for γ that maximizes the DPA, that is:

max
γ

DPA(α, β, γ).

In the previous section, we saw how to calculate probabilities for DPA(α, β, γ). In the
presented method, we observed only three types of possible transitions during the probability
calculation:

1. Impossible transitions whose probability is 0.

2. Deterministic transitions whose probability is 1.

3. Probabilistic transitions with probability 0.5.

Now, if we want to maximize the probability, we need to maximize the number of deter-
ministic transitions. We can do that by choosing convenient values during the probabilistic
transitions. To understand this dynamic, consider α = 10001110 and β = 11000111. Re-
membering that π0 = 0, we have:

π
α
β

γ

1 0 0 0 1 1 1 0
1 1 0 0 0 1 1 1

0

Naturally, γ0 = 1, and since α0 6= β0 then the value of π1 is undetermined. In that
way, we can choose any value for π1. However, what would be the value that maximizes the

38

probability? To answer this question, we will test both hypotheses. Suppose we choose the
value π1 = 0. In this case, we have:

π
α
β

γ

1 0 0 0 1 1 1 0
1 1 0 0 0 1 1 1

0 0

0 1

1
2

1
2

this choice implies two consecutive transitions of 0.5, accumulating the probability of the
partial differential at 0.25. In the other case, if we choose π1 = 1, we get:

π
α
β

γ

1 0 0 0 1 1 1 0
1 1 0 0 0 1 1 1

1 0

1 1

1
21

in this case, as γ1 = α1 = β1 we have a transition of probability 0.5 and another of probabil-
ity 1, accumulating the probability of the partial differential in 0.5, greater than the previous
one. Therefore, the maximization algorithm (Algorithm 1) forces the transition of probabil-
ity equal to 1 as many times as possible. To prove that this is really the maximum, it would
be necessary to prove that the step-by-step maximization results in the global maximization,
as it could be the case that deciding not to optimize a step would result in a better result in
the future, but this proof is left as an exercise for the interested reader.

Algorithm 1 MaxGamma: Find γ that maximizes the DPA
1: procedure INPUT: DIFFERENCES α AND β AND THEIR LENGTH n IN BITS.
2: π0 = 0
3: for i ∈ {0, ..., n− 2} do
4: γi = αi ⊕ βi ⊕ πi
5: if αi = βi = γi then
6: πi+1 = αi
7: else
8: if αi+1 = βi+1 then
9: πi+1 = αi+1

10: else
11: πi+1 = generates 0 or 1, randomly.
12: γn−1 = αn−1 ⊕ βn−1 ⊕ πn−1

13: return γ

Continuing with this procedure:

39

π
α
β

γ

1 0 0 0 1 1 1 0
1 1 0 0 0 1 1 1

1 1 1 0

0 1 1 1

1
211

Next, we choose the zero bit since the next values of α and β are equal to zero, and so on:

π
α
β

γ

1 0 0 0 1 1 1 0
1 1 0 0 0 1 1 1

1 0 0 0 1 1 1 0

1 1 0 0 0 1 1 1

1
2111

21 11
2

Therefore,
DPA(10001110, 11000111, 11000111) =

1

8
,

where this is the highest possible probability for the differences α and β.

3.5.1.6 Maximizing the probability from α

In the previous section, we found γ that maximizes the DPA given the input differences
α and β. Another possibility is to seek to maximize the probability starting only from α, that
is, to find β such that the subsequent search for a γ by the Algorithm 1 generates the highest
possible probability. The logic here is very similar to the previous one: we want to maximize
deterministic transitions and minimize probabilistic transitions, so let us do another example,
if α = 00110110, we have:

π
α
β

γ

0 0 1 1 0 1 1 0
0

if we set β0 = 0, then we have γ0 = 0 and the transition will be deterministic. If we choose
β0 = 1 the transition will be with probability 0.5, so we set β0 = 0:

π
α
β

γ

0 0 1 1 0 1 1 0
0

0 0

0

40

now, as α1 6= π1, no matter what we choose for β1, the transition probability will be equal to
0.5. Suppose β1 = 0:

π
α
β

γ

0 0 1 1 0 1 1 0
0 0

0 0

1 0

11
2

Next, we can choose the value for π2 and for β2, which we will both choose equal to α2

since this will imply a deterministic transition:

π
α
β

γ

0 0 1 1 0 1 1 0
1 0 0

1 1 0 0

1 1 0

11
21

now, as α3 6= π3, we can choose any value for β3, suppose it is 1, we repeat these steps until
the end, which results in the Algorithm 2:

π
α
β

γ

0 0 1 1 0 1 1 0
0 0 1 1 1 1 0 0

0 1 1 1 1 1 0 0

0 1 1 1 0 1 1 0

11
211

21 11
2

Therefore,
DPA(00110110, 00111100, 01110110) =

1

8
,

and this is the highest possible probability given the input difference α.

3.5.2 Linear cryptanalysis of Addition

In this section, we will study the linear approximations for the modular addition. For
this, we will use several results presented in Section 3.2.2, following and seeking to simplify
the methodology presented in [37, 42].

As usual, we use the symbol ⊕ to denote the sum in Fn2 , � to denote the sum of integers
modulo 2n, and + denotes the sum in F2 used to simplify the notation of Boolean equations.

41

Algorithm 2 MaxBeta: Find the difference β that maximizes the DPA
1: procedure INPUT: DIFFERENCE α AND YOUR LENGTH IN BITS n.
2: π0 = 0
3: αn = 0
4: for i ∈ {0, ..., n− 1} do
5: if πi = αi then
6: βi = αi
7: else
8: βi = generates 0 or 1, randomly.
9: if αi = πi = βi then

10: πi+1 = αi
11: else
12: πi+1 = αi+1

Let carry : Fn2 × Fn2 → Fn2 be the carry function of the sum modulo 2n, set to

carry(x, y) = x⊕ y ⊕ (x� y).

3.5.2.1 Linear approximation for addition and subtraction as a function of the carry

We define the functions cls, clc, clsub, clcarrysub : (Fn2)3 → [−1, 1] for the linear cor-
relation of the sum, of the carry function, of the subtraction and the carry of the subtraction,
respectively:

cls(u, v, w) = C(u �←− v, w),

clc(u, v, w) = C(u carry←−−− v, w),

clsub(u, v, w) = C(u �←− v, w)

clcarrysub(u, v, w) = C(u carrysub←−−−−− v, w).

Hence, these four functions are closely related. In fact, you can use the linear approximation
to the carry of the sum to obtain a linear approximation to the sum, subtraction, or carry of
the subtraction. In fact, let z = x− y. By Definition 3.6, we have that

u
�←− v, w ⇒

u · (x� y) = v · x+ w · y ⇒
u · (x⊕ y ⊕ carry(x, y)) = v · x+ w · y ⇒
u · carry(x, y) = (v + u) · x+ (w + u) · y ⇒

u
carry←−−− v + u,w + u

42

u
�←− v, w ⇒

u · (x� y) = v · x+ w · y ⇒
u · z = v · (z + y) + w · y ⇒
v · (z � y) = u · z + w · y ⇒

v
�←− u,w

v
carry←−−− u+ v, w + v

u
carrysub←−−−−− v, w ⇒

u · (carrysub(x, y)) = v · x+ w · y ⇒
u · (x⊕ y ⊕ (x� y)) = v · x+ w · y ⇒
u · (x� y) = (v + u) · x+ (w + u) · y ⇒

u
�←− v + u,w + u

v + u
carry←−−− v, w

The same can be done for subtraction. Hence, we conclude that

cls(u, v, w) = clc(u, v + u,w + u), (3.10)

clsub(u, v, w) = clc(v, v + u,w + v), (3.11)

and
clcarrysub(u, v, w) = clc(u+ v, v, w). (3.12)

Therefore, it is possible to work only with the linear approximation for the carry and use
the results to compute approximations for the addition and subtraction.

3.5.2.2 Linear approximation to the carry function

Let ci = carry(x, y)i, that is, the i-th bit of carry. It is known that carry bits can be
calculated recursively. In fact, ci+1 = 1 if at least two values among xi, yi and ci are equal
to 1. Testing all combinations for xi, yi and ci, we can show that by setting c0 = 0, or
ĉ0 = (−1)0 = 1, we can calculate ĉi from the recursive equation

ĉi+1 =
1

2
((−1)xi + (−1)yi + (−1)ci − (−1)xi+yi+ci) =

1

2
(x̂i + ŷi + ĉi − x̂iŷiĉi). (3.13)

As a result of this recursive construction, it becomes evident that the ci bit is independent
of either xj or yj , if j ≥ i. Independence implies zero correlation. Therefore, the following
proposition is valid:

43

PROPOSITION 3.1 Let ui be the i-th bit of the vector u. Let k be the largest integer such
that uk = 1, then clc(u, v, w) = 0 whenever there is vi = 1 or wi = 1 such that i ≥ k .

To calculate other possibilities for the clc function, let us first consider that u is such that
u0 = 1 and uj = 0, for all j 6= 0. In this case, we have

Ĉ0(v, w) = clc(u, v, w) = C(u carry←−−− v, w) = c(c0, v.x+ w.y) =

= 2−2n
∑
x,y

ĉ0(−1)v.x+w.y = 2−2n
∑
x,y

(−1)v.x+w.y = δ(v, w), (3.14)

where δ(0, 0) = 1 and δ(v, w) = 0 if v 6= 0 or w 6= 0.

Now, if ui+1 = 1, and uj = 0, for all i ≥ 0 and j 6= i+ 1, we might use Eq. (3.13) to get

Ĉi+1(v, w) = c(ci+1, v.x+ w.y) = 2−2n
∑
x,y

ĉi+1(−1)v.x+w.y =

= 2−2n
∑
x,y

1

2
((−1)xi+v.x+wy + (−1)yi+v.x+wy + ĉi(−1)v.x+wy − ĉi(−1)xi+yi+v.x+wy) =

=
1

2
(δ(v + ei, w) + δ(v, w + ei) + Ĉi(v, w)− Ĉi(v + ei, w + ei)), (3.15)

where ei ∈ Fn2 is the canonical vector.

LEMMA 3.12 In the expression

δ(v + ei, w) + δ(v, w + ei) + Ĉi(v, w)− Ĉi(v + ei, w + ei)

at most one of the four terms is non-zero.

proof.

The proof is simple and can be obtained by the interested reader considering the defini-
tion of the function δ and the Proposition 3.1. �

Now, we are ready to prove the following lemma:

LEMMA 3.13 The function clc(u, v, w) is given recursively as follows. First,
clc(0, v, w) = clc(e0, v, w) = δ(v, w). Second, if u /∈ {0, e0}, let k be the largest value

44

such that uk = 1 and let i ≥ k. Thus,

clc(u+ ei+1, v, w) =
1

2

{
clc(u, vēi, wēi) se vi 6= wi and
(−1)viclc(u+ ei, vēi, wēi) otherwise.

proof.

Let F̂ (v, w) = clc(u, v, w). Using Eq. (3.15) and the properties of the convolution, we
can write

clc(u+ ei, v, w) = (Ĉi+1 ∗ F̂)(v, w) =

=
1

2
(F̂ (v + ei, w) + F̂ (v, w+ ei) + (Ĉi ∗ F̂)(v, w)− (Ĉi ∗ F̂)(v + ei, w+ ei)), (3.16)

and by the Lemma 3.12, we know that at most one of these terms is nonzero. For the first
term to be different from zero, we have that (vi, wi) = (1, 0), in this case the expression
(3.16) simplifies to

clc(u+ ei, v, w) =
1

2
(clc(u, v + ei, w)).

Likewise, for the second term to be non-zero, we have that (vi, wi) = (0, 1), in this case
the expression (3.16) simplifies to

clc(u+ ei, v, w) =
1

2
(clc(u, v, w + ei)).

We can join the two expressions into one by writing

clc(u+ ei, v, w) =
1

2
(clc(u, vēi, wēi)),

since vi 6= wi.

For the third term to be different from zero, we must have that (vi, wi) = (0, 0), in
this case the expression (3.16) simplifies to

clc(u+ ei, v, w) =
1

2
(clc(u+ ei, v, w)).

Likewise, for the fourth term to be non-zero, we have that (vi, wi) = (1, 1), in this case
the expression (3.16) simplifies to

clc(u+ ei, v, w) = −1

2
(clc(u+ ei, v + ei, w + ei)).

45

We can join the two expressions into one by writing

clc(u+ ei, v, w) = (−1)viclc(u+ ei, vēi, wēi),

since vi = wi. �

The Lemma 3.13 gives us a recursive way of computing the correlation for any linear
approximation to the carry. However, there is a more elegant expression by which it is
possible to calculate the same value directly. For this, consider the linear approximation
u

carry←−−− v, w, as a word composed of octals x = xn−1...x0, where x=4ui + 2vi +wi . So, we
define the following theorem:

THEOREM 3.1 (Linear representation of clc). Let x be the octal word derived from the
linear approximation u

carry←−−− v, w. The function clc(u, v, w) can be written as follows

clc(u, v, w) = clc(x) = LAxn−1 ...Ax0C,

where L = (1, 0), C = (1, 1)t and the matrices A0, ..., A7 are given by

A0 = 1
2

(
2 0

1 0

)
A1 = 1

2

(
0 0

1 0

)
A2 = 1

2

(
0 0

1 0

)
A3 = 1

2

(
0 0

0 −1

)

A4 = 1
2

(
0 2

1 0

)
A5 = 1

2

(
0 0

0 1

)
A6 = 1

2

(
0 0

0 1

)
A7 = 1

2

(
0 0

−1 0

)

proof.

The proof of this theorem can be found in [37]. �

EXAMPLE 3.1 Consider u = 10100, v = 01110 e w = 01000, in this case we have that
x0 = 000 = 0, x1 = 010 = 2, x2 = 110 = 6, x3 = 011 = 3, and x4 = 100 = 4.
Therefore, clc(u, v, w) = LA4A3A6A2A0C = −1/8.

3.5.2.3 Intuitive Representation

It is possible to further simplify the result presented in Theorem 3.1. For that, set e0 =

(1 0) and e1 = (0 1). Then, it is easy to check that e0A0 = e0, e0A4 = e1, e0Ai = 0

for i 6= {0.4}, e1A0 = e1A5 = e1A6 = 1
2
e1, e1A1 = e1A2 = e1A4 = 1

2
e0, e1A3 = −1

2
e1

and e1A7 = −1
2
e0. Since L = e0 it follows by induction that the only possible values for

46

Figure 3.2 – Transition Graph for Theorem 3.1.

clc(w) = LA|w|−1...A0C are of the form 0, ±2−ke0 or ±2−ke1, for some 0 ≤ k < |w|.

In fact, we can represent the Theorem 3.1 by the transition graph of Figure 3.2. From
these results, it can be seen that clc is equal to zero if there is a transition 1, 2, 3, 5, 6, 7 starting
from e0. Otherwise, k is given by the number of transitions starting from e1 and the sign is
given by the number of transitions 3 or 7 starting from e1. For the case of Example 3.1, we
have that:

EXAMPLE 3.2 Consider Example 3.1. In this case, we have the following state transi-
tions:

e0
4−→ e1

3−→ e1
6−→ e1

2−→ e0
0−→ e0.

As there are 3 transitions from e1, we have k = 3. Also, since there is only one transition
3 from e1, we have a negative sign. Therefore,

clc(43620) = −2−3.

3.5.2.4 Computing correlations

In this section, we show how to calculate all possible linear approximations such that the
correlation is specific, equal to ±2−k for some k. For that, let us first define a notation to
represent sequences of transitions in the Figure 3.2, which depicts the Transition Graph.

First, a sequence of octals defines the transition sequence, starting at state e0. For exam-
ple, 43620 defines the sequence

e0
4−→ e1

3−→ e1
6−→ e1

2−→ e0
0−→ e0.

If there is more than one transition possibility at a given point, we use the notation (x0 +

x1 + ...+ xt) to represent the t transition possibilities. For example, 43(5 + 6)20 defines the

47

sequence
e0

4−→ e1
3−→ e1

6−→ e1
2−→ e0

0−→ e0

or the sequence
e0

4−→ e1
3−→ e1

5−→ e1
2−→ e0

0−→ e0.

We also define x∗ as a sequence of any length of x transitions. For example, 436∗20

defines the sequence

e0
4−→ e1

3−→ e1
6−→ e1

6−→ ...
6−→ e1

2−→ e0
0−→ e0.

Finally, we can mix up the notations. For example, 43(5 + 6)∗20 denotes the set of
sequences that repeats transitions 5 and 6 in any order, an arbitrary number of times, e.g., the
following sequence belongs to this set

e0
4−→ e1

3−→ e1
6−→ e1

6−→ e1
5−→ e1

5−→ e1
6−→ e1

2−→ e0
0−→ e0.

Using this notation, we can verify, from Figure 3.2, that clc(w) = 0 if and only if w is of
the form

w = (0 + 4(0 + 3 + 5 + 6)∗(1 + 2 + 4 + 7))∗(1 + 2 + 3 + 5 + 6 + 7)Σ∗,

where Σ = (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7).

Let S0(n, k) and S1(n, k) be the sets

S0(n, k) = {w : |w| = n, e0Awn−1...Aw0 = ±2−ke0},

S1(n, k) = {w : |w| = n, e0Awn−1...Aw0 = ±2−ke1}.

Therefore, S0(n, k) + S1(n, k) determines the set of all sequences of transitions such that
clc(w) = ±2−k. Furthermore, it is easy to see that the following recursive relations hold:

S0(n, k) = S0(n− 1, k)0 + S1(n− 1, k − 1)(1 + 2 + 4 + 7),

S1(n, k) = S0(n− 1, k)(4) + S1(n− 1, k − 1)(0 + 3 + 5 + 6).

With these results, we can define the following theorem:

THEOREM 3.2 For any non-empty octal wordw, the correlation clc(w) ∈ {0}∪{±2−k :

k ∈ {0, 1, ..., |w| − 1}}. The set of words of length n > 0 with correlations such that

48

clc(w) 6= 0 is given by S0(n, k) + S1(n, k), where S0 and S1 are defined recursively as
follows. First, set S0(1, 0) = 0 and S1(1, 0) = 4, and S0(n, k) = S1(n, k) = ∅ if k < 0

or k ≥ n. For the other values of k, the recursive relationship

S0(n, k) = S0(n− 1, k)0 + S1(n− 1, k − 1)(1 + 2 + 4 + 7),

S1(n, k) = S0(n− 1, k)(4) + S1(n− 1, k − 1)(0 + 3 + 5 + 6).

For every word w ∈ S0(n, k) + S1(n, k), clc(w) = 2−k if and only if w contains an even
number of transitions of type (3, 7) and clc(w) = −2−k, otherwise.

3.5.2.5 Use in Practice

In this section, we present the best linear approximations for carry bits (some of these
approximations are used later to improve cryptanalysis against ChaCha and Salsa). For this,
we use Theorem 3.2. To obtain the best possible correlations, we need small values for k.

49

PROPOSITION 3.2 The following transition sequences apply:

S0(1, 0) = 0

S1(1, 0) = 4

S0(n, 0) = 0∗

S1(n, 0) = 0∗4

S0(n, 1) = 0∗4(1 + 2 + 4 + 7)0∗

S1(n, 1) = [0∗4(1 + 2 + 4 + 7)0∗4] + [0∗4(0 + 3 + 5 + 6)]

S0(n, 2) = [0∗4(1 + 2 + 4 + 7)0∗4(1 + 2 + 4 + 7)0∗]+

[0∗4(0 + 3 + 5 + 6)(1 + 2 + 4 + 7)0∗]

S1(n, 2) = [0∗4(1 + 2 + 4 + 7)0∗4(1 + 2 + 4 + 7)0∗4]+

[0∗4(0 + 3 + 5 + 6)(1 + 2 + 4 + 7)0∗4]+

[0∗4(1 + 2 + 4 + 7)0∗4(0 + 3 + 5 + 6)]+

[0∗4(0 + 3 + 5 + 6)(0 + 3 + 5 + 6)]

proof.

The proof is left as an exercise for the reader. Just recursively apply the equations of the
Theorem 3.2. �

Proposition 3.2 tells us all possible sequences of transitions for k = 0, 1, 2, which corre-
sponds to biases of magnitude 1, 0.5, 0.25, respectively. From these results, we can build the
linear approximations for the carry that have greater magnitude.

(clc(w) = 1).

To obtain linear equations such that clc(w) = 1, we need that k = 0. In this case, we use
S0(n, 0) and S1(n, 0), presented in Proposition 3.2. We have

S0(n, 0) = 0∗ ⇒
u 0 ... 0

v 0 ... 0

w 0 ... 0

,

so Pr(0 = 0) = 1. Another possibility is given by

S1(n, 0) = 0∗4⇒
u 0 ... 0 1

v 0 ... 0 0

w 0 ... 0 0

,

50

therefore, Pr(c0 = 0) = 1. Both trivial equations.

(clc(w) = 1/2).

To obtain linear equations such that clc(w) = 1/2, we need that k = 1. In this case, we
use S0(n, 1) and S1(n, 1), presented in Proposition 3.2. We have

S0(n, 1) = 0∗4(1+2+4+7)0∗ ⇒
u 0 ... 0 1

v 0 ... 0 0

w 0 ... 0 0

 0 0 1 1

0 + 1 + 0 + 1

1 0 0 1

 0 ... 0

0 ... 0

0 ... 0

,

therefore, we get the following relations

Pr(ci = xi−1) = 0.75

Pr(ci = yi−1) = 0.75

Pr(ci = ci−1) = 0.75

Pr(ci = ci−1 ⊕ xi−1 ⊕ yi−1) = 0.25.

Another possibility is given by S1(n, 1) = 0∗4(1+2+4+7)0∗4, however, this case does
not generate anything new since the same previous equations are generated , adding c0 to the
expressions, but c0 = 0. Finally, we have the case where

S1(n, 1) = 0∗4(0 + 3 + 5 + 6)⇒
u 0 ... 0 1

v 0 ... 0 0

w 0 ... 0 0

 0 0 1 1

0 + 1 + 0 + 1

0 1 1 0

 ,

therefore, we get the following relations

Pr(c1 = 0) = 0.75

Pr(c1 = x0 ⊕ y0) = 0.25

Pr(c1 = c0 ⊕ x0) = 0.75

Pr(c1 = c0 ⊕ y0) = 0.75.

(clc(w) = 1/4).

To obtain linear equations such that clc(w) = 1/4, we need that k = 2. In this case,
we use S0(n, 2) and S1(n, 2), presented in Proposition 3.2. We have 6 different cases, the
accounts are similar to those presented in the previous section. We present all correlations in
Tables 3.1-3.5.

(cls).

To work with approximations for the sum, we use the relation of Eq. 3.10, by which it is
clear that it is enough to replace ci by si ⊕ xi ⊕ yi, in any one of of the equations presented

51

Equation Probability Condition
0 = 0 1 none
c0 = 0 1 none
ci = xi−1 0.75 i > 0
ci = yi−1 0.75 i > 0
ci = ci−1 0.75 i > 0

ci = xi−1 ⊕ yi−1 ⊕ ci−1 0.25 i > 0
c1 = 0 0.75 none

c1 = x0 ⊕ y0 0.25 none
c1 = x0 0.75 none
c1 = y0 0.75 none

Table 3.1 – Equations generated from S0(n, 0), S1(n, 0), S0(n, 1) e S1(n, 1).

in Tables 3.1-3.5, to obtain the desired result.

(clsub).

To work with approximations for subtraction, we use the relation of Eq. 3.11. Here the
substitution is a little more complex, but it can be done by replacing yi by y′i, xi for mi and
ci for mi ⊕ x′i ⊕ y′i, in the equations presented in the Tables 3.1-3.5.

(clcarrysub).

To work with approximations for subtraction, we use the relation of Eq. 3.12. The
equations can be obtained by replacing xi for xi⊕πi and ci for πi, in the equations presented
in Tables 3.1-3.5.

52

Equation Probability
ci ⊕ xi−1 ⊕ cj ⊕ xj−1 = 0 0.625
ci ⊕ xi−1 ⊕ cj ⊕ yj−1 = 0 0.625
ci ⊕ xi−1 ⊕ cj ⊕ cj−1 = 0 0.625

ci ⊕ xi−1 ⊕ cj ⊕ xj−1 ⊕ yj−1 ⊕ cj−1 = 0 0.325
ci ⊕ yi−1 ⊕ cj ⊕ xj−1 = 0 0.625
ci ⊕ yi−1 ⊕ cj ⊕ yj−1 = 0 0.625
ci ⊕ yi−1 ⊕ cj ⊕ cj−1 = 0 0.625

ci ⊕ yi−1 ⊕ cj ⊕ xj−1 ⊕ yj−1 ⊕ cj−1 = 0 0.325
ci ⊕ ci−1 ⊕ cj ⊕ xj−1 = 0 0.625
ci ⊕ ci−1 ⊕ cj ⊕ yj−1 = 0 0.625
ci ⊕ ci−1 ⊕ cj ⊕ cj−1 = 0 0.625

ci ⊕ ci−1 ⊕ cj ⊕ xj−1 ⊕ yj−1 ⊕ cj−1 = 0 0.325
ci ⊕ xi−1 ⊕ yi−1 ⊕ ci−1 ⊕ cj ⊕ xj−1 = 0 0.325
ci ⊕ xi−1 ⊕ yi−1 ⊕ ci−1 ⊕ cj ⊕ yj−1 = 0 0.325
ci ⊕ xi−1 ⊕ yi−1 ⊕ ci−1 ⊕ cj ⊕ cj−1 = 0 0.325

ci ⊕ xi−1 ⊕ yi−1 ⊕ ci−1 ⊕ cj ⊕ xj−1 ⊕ yj−1 ⊕ cj−1 = 0 0.625

Table 3.2 – Equations generated from S0(n, 2) = 0∗4(1 + 2 + 4 + 7)0∗4(1 + 2 + 4 + 7)0∗ or
S1(n, 2) = 0∗4(1 + 2 + 4 + 7)0∗4(1 + 2 + 4 + 7)0∗4, subject to i− j > 2, j > 0.

Equation Probability
ci ⊕ xi−2 = 0 0.625
ci ⊕ yi−2 = 0 0.625
ci ⊕ ci−2 = 0 0.625

ci ⊕ xi−2 ⊕ yi−2 ⊕ ci−2 = 0 0.325
ci ⊕ xi−1 ⊕ yi−1 ⊕ xi−2 = 0 0.325
ci ⊕ xi−1 ⊕ yi−1 ⊕ yi−2 = 0 0.325
ci ⊕ xi−1 ⊕ yi−1 ⊕ ci−2 = 0 0.325

ci ⊕ xi−1 ⊕ yi−1 ⊕ xi−2 ⊕ yi−2 ⊕ ci−2 = 0 0.625
ci ⊕ xi−1 ⊕ ci−1 ⊕ xi−2 = 0 0.625
ci ⊕ xi−1 ⊕ ci−1 ⊕ yi−2 = 0 0.625
ci ⊕ xi−1 ⊕ ci−1 ⊕ ci−2 = 0 0.625

ci ⊕ xi−1 ⊕ ci−1 ⊕ xi−2 ⊕ yi−2 ⊕ ci−2 = 0 0.325
ci ⊕ yi−1 ⊕ ci−1 ⊕ xi−2 = 0 0.625
ci ⊕ yi−1 ⊕ ci−1 ⊕ yi−2 = 0 0.625
ci ⊕ yi−1 ⊕ ci−1 ⊕ ci−2 = 0 0.625

ci ⊕ yi−1 ⊕ ci−1 ⊕ xi−2 ⊕ yi−2 ⊕ ci−2 = 0 0.325

Table 3.3 – Equations generated from S0(n, 2) = 0∗4(0 + 3 + 5 + 6)(1 + 2 + 4 + 7)0∗ or
S1(n, 2) = 0∗4(0 + 3 + 5 + 6)(1 + 2 + 4 + 7)0∗4, subject to i > 1.

53

Equation Probability
ci ⊕ xi−1 ⊕ c1 = 0 0.625

ci ⊕ xi−1 ⊕ c1 ⊕ x0 ⊕ y0=0 0.325
ci ⊕ xi−1 ⊕ c1 ⊕ x0 = 0 0.625
ci ⊕ xi−1 ⊕ c1 ⊕ y0 = 0 0.625
ci ⊕ yi−1 ⊕ c1 = 0 0.625

ci ⊕ yi−1 ⊕ c1 ⊕ x0 ⊕ y0 = 0 0.325
ci ⊕ yi−1 ⊕ c1 ⊕ x0 = 0 0.625
ci ⊕ yi−1 ⊕ c1 ⊕ y0 = 0 0.625
ci ⊕ ci−1 ⊕ c1 = 0 0.625

ci ⊕ ci−1 ⊕ c1 ⊕ x0 ⊕ y0 = 0 0.325
ci ⊕ ci−1 ⊕ c1 ⊕ x0 = 0 0.625
ci ⊕ ci−1 ⊕ c1 ⊕ y0 = 0 0.625

ci ⊕ xi−1 ⊕ yi−1 ⊕ ci−1 ⊕ c1 = 0 0.325
ci ⊕ xi−1 ⊕ yi−1 ⊕ ci−1 ⊕ c1 ⊕ x0 ⊕ y0 = 0 0.625
ci ⊕ xi−1 ⊕ yi−1 ⊕ ci−1 ⊕ c1 ⊕ x0 = 0 0.325
ci ⊕ xi−1 ⊕ yi−1 ⊕ ci−1 ⊕ c1 ⊕ y0 = 0 0.325

Table 3.4 – Equations generated from S1(n, 2) = 0∗4(1 + 2 + 4 + 7)0∗4(0 + 3 + 5 + 6),
subject to i > 2.

Equation Probability
c2 = 0 0.625

c2 ⊕ x0 ⊕ y0 = 0 0.325
c2 ⊕ x0 = 0 0.625
c2 ⊕ y0 = 0 0.625

c2 ⊕ x1 ⊕ y1 = 0 0.325
c2 ⊕ x1 ⊕ y1 ⊕ x0 ⊕ y0 = 0 0.625
c2 ⊕ x1 ⊕ y1 ⊕ x0 = 0 0.325
c2 ⊕ x1 ⊕ y1 ⊕ y0 = 0 0.325
c2 ⊕ x1 ⊕ c1 = 0 0.625

c2 ⊕ x1 ⊕ c1 ⊕ x0 ⊕ y0 = 0 0.325
c2 ⊕ x1 ⊕ c1 ⊕ x0 = 0 0.625
c2 ⊕ x1 ⊕ c1 ⊕ y0 = 0 0.625
c2 ⊕ y1 ⊕ c1 = 0 0.625

c2 ⊕ y1 ⊕ c1 ⊕ x0 ⊕ y0 = 0 0.325
c2 ⊕ y1 ⊕ c1 ⊕ x0 = 0 0.625
c2 ⊕ y1 ⊕ c1 ⊕ y0 = 0 0.625

Table 3.5 – Equations generated from S1(n, 2) = 0∗4(0 + 3 + 5 + 6)(0 + 3 + 5 + 6), subject
to i > 2.

54

Part II

New Tools to Evaluate Diffusion in
Symmetric primitives

55

CONTINUOUS DIFFUSION ANALYSIS

4.1 INTRODUCTION

A symmetric cryptographic algorithm needs to have several properties to be considered
secure. Two of the most important of such properties were named confusion and diffusion by
Claude Shannon [3] back in 1949. Shannon defined confusion as the capacity of an algorithm
to create a very complex and involved relationship between the key and the ciphertext and
diffusion as the property that the redundancy in the statistics of the plaintext is “dissipated”
into the statistics of the ciphertext. These are, however, very abstract concepts and since then
several metrics were proposed to try to measure the confusion and diffusion of algorithms
[1, 4, 5].

Cryptographic Boolean functions [6] contain important properties that can be used, at
least in theory, to access the confusion and diffusion of algorithms. In designing a crypto-
graphic algorithm, we often need functions that satisfy requirements such as balance, high
nonlinearity, high algebraic degree, and good avalanche characteristics.

In particular, the Strict Avalanche Criterion (SAC) proposed by Webster and Tavares [4]
is an important tool for studying the diffusion of algorithms. A Boolean function is said
to satisfy the SAC if complementing a single bit in its input results, then the output of the
function being complemented with a probability of a half. After its proposal, several authors
further generalized the SAC, Forrié proposed the SAC of order k [43], Preneel et al. proposed
the propagation criterion [5], among others [44], [45].

Unfortunately, for modern ciphers, it is not possible to actually prove these properties for
each output bit whereas the Boolean functions generated cannot be explicitly derived. Thus,
these properties are estimated by randomly generating many inputs to the cipher and then
changing input bits to see the behavior of the output bits empirically [1, 7]. However, using
this kind of metrics is not actually useful to access the security of algorithms because even
weak and broken ciphers tend to have good results in such empirical tests.

In this chapter, we propose a new technique, called Continuous Diffusion Analysis (CDA),
which can be used to study the diffusion of cryptographic algorithms. The main idea of CDA
is to generalize cryptographic operations allowing to express the individual bits as probabil-
ities, effectively creating a continuous generalization of the algorithm itself. In this way, we
can also generalize the SAC, because we can change the input not only by flipping bits but
also by inserting very small correlations in a particular continuous bit. Moreover, we propose

56

4

three new metrics to measure the diffusion in this generalized continuous space, namely the
Continuous Avalanche Factor, the Continuous Neutrality Measure, and the Diffusion Factor.
In particular, for the best of our knowledge, the Diffusion Factor is the first metric capable
of measuring the diffusion of a modern secure cipher without considering a reduction with
fewer rounds or a sample subset of input bits.

This chapter is organized as follows. In Section 4.2, we provide some basic definitions
and results of previous works. In Section 4.3, we present the mathematical background of
CDA and how to generalize cryptographic algorithms using continuous operations. Addi-
tionally, in Section 4.3, we propose three new diffusion metrics, namely the Continuous
Avalanche Factor, the Continuous Neutrality Measure, and the Diffusion Factor. In Sec-
tion 4.4, we present a case study of the proposed techniques and metrics by comparing the
algorithms Salsa, ChaCha, AES, and Speck.

4.2 MEASURING THE AVALANCHE EFFECT

The avalanche effect is a desirable cryptographic property in which a small change in the
input should result in big changes in the output. More precisely, for a given transformation to
exhibit the avalanche effect, an average of one half of the output bits should change whenever
a single input bit is flipped [1].

DEFINITION 4.1 (Hamming Distance) Let x ∈ Fn2 and let xi denote the i-th bit of x.
The hamming weight of x is defined as

wH(x) = |{i : xi = 1}|,

also let y ∈ Fn2 then the hamming distance between X and Y is defined as

dH(x, y) = wH(x⊕ y).

DEFINITION 4.2 (Avalanche Factor (AF)) For a function f : M → M defined on some
finite metric space (M,d), the avalanche factor of f with respect to d and an input distance
of δ ∈ R is

AF(f, d|δ) =

∑
d(x,y)=δ d(f(x), f(y))

|{(x, y)|d(x, y) = δ}|
× |M |2∑

x,y d(x, y)
.

57

If f : Fn2 → Fn2 and d(x, y) = dH(x, y), then one can show that

AF(f, dH |δ) =
2

n

∑
d(x,y)=δ d(f(x), f(y))

|{(x, y)|d(x, y) = δ}|
.

4.3 CONTINUOUS DIFFUSION ANALYSIS

The main idea behind CDA is to consider each bit in a cryptographic algorithm as a real
number. Also, we consider sets of bits, like integers, as arrays of real numbers. In this
section, we show how to generalize bitwise operations like XOR to continuous functions.
To do that, we use the laws of probabilities and derive some basic equations that allow us
to generalize several cryptographic algorithms. From that, we define metrics to measure the
diffusion in this generalized continuous space.

4.3.1 Motivation

The classical techniques for measuring diffusion have a critical limitation that they are
limited in the number of rounds. This happens because at a certain number of rounds the
output of the algorithm becomes random enough that becomes impossible to detect any kind
of improvement. Here, we want to find a way to overcome this limitation to be able to
compare different algorithms with an arbitrary number of rounds.

4.3.2 Continuous Generalizations

In this Section, we show how to generalize cryptographic operations as continuous func-
tions. Our goal is to achieve a generalization of common cryptographic boolean functions in
a way that we can work in a continuous space instead of binary boolean states. To do so, we
like to achieve the following:

1. Define the set B where the generalized bits live.

2. Define a function φ : Fn2 → Bn to transition from binary states to continuous states.

3. Define a function δ : Bm → Fm2 to transition from continuous states to binary states.

4. Mathematically define how the generalization should behave. In particular, define
the property that given binary states as input of the generalization should return only
binary states and the result should be exactly the same as of the original function.

To do so, we first define what we mean by a continuous generalization of a function.

58

DEFINITION 4.3 (Continuous Generalization of a function) Let B = {x ∈ R : −1 ≤
x ≤ 1} and φ : Fn2 → Bn be a function defined as φ(x) = (2x0− 1, ..., 2xn−1− 1) where
x ∈ Fn2 and xi is the i-th bit of x. Also, let δ : Bm → Fm2 be a function defined as

δ(y) =

(
1

2
(sgn(y0) + 1), ...,

1

2
(sgn(ym−1) + 1))

)
where y ∈ Bm, yi denote the i-th element of y, and sgn(.) is the sign function. Hence, we
call fC : Bn → Bm a Continuous Generalization of the function f : Fn2 → Fm2 , denoted
by fC

∼←− f , if for all x ∈ Fn2 , it holds that

(y0, ..., ym−1) = fC(φ(x)),

such that yi = ±1, for all i, and

f(x) = δ(fC(φ(x))).

Next, we define three important Lemmas.

LEMMA 4.1 Let x ∈ Fn2 and y ∈ Bn, and define ID : Fn2 → Fn2 as the identity function
ID(x) = x and IDC : Bn → Bn as IDC(y) = y. Then, it holds that IDC

∼←− ID.

proof.

First, IDC(φ(x)) = IDC(2x0 − 1, ..., 2xn−1 − 1) = (2x0 − 1, ..., 2xn−1 − 1). Thus, we
have 2xi − 1 = ±1, for all i. Also, whereas δ(φ(1)) = 1 and δ(φ(0)) = 0, we have that
δ(IDC(φ(x))) = δ(φ(x)) = x. Therefore, IDC

∼←− ID. �

LEMMA 4.2 Let f : Fn2 → Fm2 , fC : Bn → Bm, g : Fm2 → Fs2, and gC : Bm → Bs, such
that fC

∼←− f and gC
∼←− g, then it holds that

gC ◦ fC
∼←− g ◦ f.

proof.

It is easy to see that if we have all possible y ∈ Fm2 , then by the definition of φ, it follows
that φ(y) generates all possible arrays of size m composed of ±1 elements. From this
observation and by the definition of gC

∼←− g, we have that gC(φ(y)) produces arrays
of length s with ±1 elements whenever it receives as input any array of length m with

59

only ±1 elements. Since fC
∼←− f , by definition fC(φ(x)) only outputs arrays of size

m with ±1 elements, it holds that (z0, ..., zs−1) = gC(fC(φ(x))), such that zi = ±1, for
any x ∈ Fn2 . It remains to show that g(f(x)) = δ(gC(fC(φ(x)))). Using the fact that
f(x) = δ(fC(φ(x))) and g(x) = δ(gC(φ(x))), we can rewrite the left side of the equation
as

g(f(x)) = g(δ(fC(φ(x)))) = δ(gC(φ(δ(fC(φ(x)))))).

The proof concludes by using the fact that φ(δ(x)) = x whenever x = ±1. �

LEMMA 4.3 Let f : Fn2 → Fm2 and g : Fn+s
2 → Fm+s

2 defined as g(x, y) =

(ID(x), f(y)), where x ∈ Fs2 and y ∈ Fn2 . Also, let fC : Bn → Bm and gC : Bn+s →
Bm+s defined as gC(x̃, ỹ) = (IDC(x̃), fC(ỹ)), where x̃ ∈ Bs and ỹ ∈ Bn. Hence, gC

∼←− g

if and only if fC
∼←− f .

proof.

First, suppose that fC
∼←− f , then we have that gC(φ(x), φ(y)) = (IDC(φ(x)), fC(φ(y))),

which by definition, only produce ±1 elements. Additionally, δ(gC(φ(x), φ(y))) =

δ(IDC(φ(x)), fC(φ(y))) = (x, δ(fC(φ(y)))) = (x, f(y)), therefore, gC
∼←− g. Con-

versely, suppose that gC
∼←− g, then it must be the case that gC(φ(x), φ(y)) only out-

put arrays with ±1 elements. However, gC(φ(x), φ(y)) = (IDC(φ(x)), fC(φ(y))), thus,
fC(φ(y)) also must output arrays with±1 elements. Additionally, g(x, f(y)) = δ(gC(IDC(φ(x)),

φ(y))) = δ(φ(x), fC(φ(y))) = (x, δ(fC(φ(y)))), thus δ(fC(φ(y))) = f(y) and fC
∼←− f .

�

The majority of symmetric cryptographic algorithms only use operations like addition,
rotation, Boolean operations (XOR, AND, OR), bitwise permutations, and S-boxes. Some
examples are ARX and AND-RX algorithms like Salsa [8], ChaCha [10], Speck [29], Sparx
[46], Blake [47], SHA-1, SHA-2 [48], and SPNs like AES [30]. Any of these algorithms
can be viewed as a composition of these basic functions, therefore, Lemma 4.2 guarantees
that replacing theses operations by their continuous counterparts will generate a continuous
generalization of the algorithm itself.

To generalize cryptographic operations, we use probability theory and define each bit as
a probability. Thus, we imagine that the bits are not only zeros and ones but are some kind
of superposition of both states. More precisely, let Pr(E) be the probability of occurrence of
an event E and b ∈ F2 be a bit, then we can write

Pr(b = 1) = p =
1

2
(1 + ε). (4.1)

60

We refer to p and ε as the probability and the correlation of the bit b, respectively. We
also refer to ε as the continuous deviation of the bit b, we prefer this term since the results
of the continuous generalizations should not be understood as a probability. In fact, the
proposed technique assumes independence in situations where this hypothesis does not hold,
therefore, what we get as result is not close at all to the real probability. However, as we
shall demonstrate the proposed metrics remains useful as a diffusion measuring tool. We
say that a bit is discrete when it acts as a classical bit, i.e., when either Pr(b = 1) = 1 or
Pr(b = 1) = 0, note that in these cases, we have that ε = ±1. Conversely, we say that the
bit is continuous when −1 < ε < 1. Using probability theory, all values we can get for any
continuous bit are always between 0 and 1. Generally, we will represent continuous bits as
the continuous deviation because ε ∈ B, which will fit better with Definition 4.3.

For a moment, consider the XOR operation b3 = b1 ⊕ b2. We know that b3 is equal
to 1 either when (b1 = 0) ∧ (b2 = 1) or when (b1 = 1) ∧ (b2 = 0), therefore, if we
consider bi ∼ Bernoulli(pi) being b1 and b2 independent random variables, we get that p3 =

p1(1 − p2) + p2(1 − p1). We can also write this relationship in terms of the continuous
deviation, obtaining ε3 = −ε1ε2. Thus, we could define the function x ⊕C y = −xy, where
x, y ∈ B. One can verify that φ(x) ⊕C φ(y) = ±1 and that x ⊕ y = δ(φ(x) ⊕C φ(y)), thus
⊕C

∼←− ⊕. More generally, we can work with an arbitrary Boolean function.

LEMMA 4.4 Let f : Fn2 → F2 be a Boolean function. IfX ∈ Fn2 andX = (X0, ..., Xn−1)

such that Xi ∼ Bernoulli(pi) are independent random variables, and denote εi = 2pi− 1,
then it holds that

Pr(f(X) = 1) =
1

2n

∑
x∈Fn2

f(x)
n−1∏
i=0

(1− (−1)xiεi).

proof.

From the law of total probability, we have that

Pr(f(X) = 1) =
∑
x∈Fn2

Pr(f(x) = 1|X = x) Pr(X = x)

=
∑
x∈Fn2

f(x) Pr(X = x).

Since Xi are independent Bernoulli random variables it follows that

Pr(X = x) = Pr((Xn−1 = xn−1) ∩ ... ∩ (X0 = x0))

61

=
n−1∏
i=0

Pr(Xi = xi) =
n−1∏
i=0

pxii (1− pi)1−xi ,

therefore, we have

Pr(f(X) = 1) =
∑
x∈Fn2

f(x)
n−1∏
i=0

pxii (1− pi)1−xi

=
1

2n

∑
x∈Fn2

f(x)
n−1∏
i=0

(1− (−1)xiεi).

�

62

THEOREM 4.1 Let f : Fn2 → F2 be a Boolean function and fC : Bn → B be defined as

fC(x) =

 1

2n−1

∑
y∈Fn2

f(y)
n−1∏
i=0

(1− (−1)yixi)

− 1,

where x = (x0, ..., xn−1), then fC
∼←− f .

proof.

First, by the definition of φ, we can write

fC(φ(x))

=

 1

2n−1

∑
y∈Fn2

f(y)
n−1∏
i=0

(1− (−1)yi(2xi − 1))

− 1.

If we define εi = 2xi−1 and consider Lemma 4.4, we have that fC(φ(x)) = 2 Pr(f(Y) =

1) − 1, when Y = (Y0, ..., Yn−1) and Yi ∼ Bernoulli(xi). Like in the proof of Lemma
4.4, we can use the law of total probability and write

Pr(f(Y) = 1) =
∑
y∈Fn2

f(y) Pr(Y = y),

but since xi is either zero or one, then Pr(Y = y) is one when y = x and zero otherwise.
Therefore, Pr(f(Y) = 1) = f(x). Since f(x) is a Boolean function, it can only output
zero or one, thus, fC(φ(x)) = ±1. Finally, we get

δ(fC(φ(x))) = δ(2f(x)− 1)

= (sgn(2f(x)− 1) + 1)/2 = f(x).

�

We are now able to define several continuous generalizations.

DEFINITION 4.4 (Continuous generalization of XOR) Let x, y ∈ B, then we define the
continuous XOR function as

x⊕C y = −xy.

63

DEFINITION 4.5 (Continuous generalization of AND) Let x, y ∈ B, then we define the
continuous AND function as

x ∧C y =
xy + x+ y − 1

2
.

DEFINITION 4.6 (Continuous generalization of OR) Let x, y ∈ B, then we define the
continuous OR function as

x ∨C y =
x+ y + 1− xy

2
.

DEFINITION 4.7 (Continuous generalization of NOT) Let x ∈ B, then we define the
continuous NOT function as

¬Cx = −x.

DEFINITION 4.8 (Continuous generalization of MAJ) Let MAJ(a, b, c) = ab⊕ ac⊕ bc
with a, b, c ∈ F2, and let x, y, z ∈ B, then we define the continuous MAJ function as

MAJC(x, y, z) =
1

2
(x+ y + z − xyz) .

As a consequence of Theorem 4.1, we can write the following corollary.

COROLLARY 4.1 It holds that ⊕C
∼←− ⊕, ∧C

∼←− ∧, ∨C
∼←− ∨, ¬C

∼←− ¬, and MAJC
∼←−

MAJ.

If we consider X and Y as n-bit words, whereas the XOR, AND, OR, and NOT are
computed bit by bit, then we can use continuous operations from Definitions 4.4-4.7 for
each bit individually, under the assumption of independence between each bit pair xi and yi.

DEFINITION 4.9 (Continuous generalization of Shift and Rotation) Let x =

(x0, ..., xn−1) ∈ Bn and r ∈ Z, such that 0 ≤ r ≤ n − 1, then we define the contin-
uous shift to the left, continuous shift to the right, continuous rotation to the left and

64

continuous rotation to the right, respectively, as

(x0, ..., xn−1)�C r = (−1, ...,−1, x0, ..., xn−1−r)

(x0, ..., xn−1)�C r = (xr, ..., xn−1,−1, ...,−1)

(x0, ..., xn−1)≪C r = (xn−r, ..., xn−1, x0, ..., xn−1−r)

(x0, ..., xn−1)≫C r = (xr, ..., xn−1, x0, ..., xr−1).

PROPOSITION 4.1 It holds that�C
∼←−�,�C

∼←−�,≪C
∼←−≪, and≫C

∼←−≫.

proof.
Let x ∈ Fn2 , then φ(x)�C r only outputs ±1 values. Additionally, we have that

δ(φ(x)�C r)

= (δ(−1), ..., δ(−1), δ(φ(x0)), ..., δ(φ(xn−r−1))

= (0, ..., 0, x0, ..., xn−r−1) = x� r,

whereas δ(φ(y)) = y whether y is zero or one. Thus, �C
∼←−�. The proof for the

remaining operations is analogous. �

Next, we define the generalize addition modulo 2n.

DEFINITION 4.10 (Continuous generalization of addition modulo 2n) Let x, y ∈ Bn,
then we define the continuous addition modulo 2n function as

x�C y = (z0, ..., zn−1),

where zi is given recursively as follow

c0 = −1,

zi = xi ⊕C yi ⊕C ci,
ci+1 = MAJC(xi, yi, ci).

PROPOSITION 4.2 It holds that �C
∼←− �.

65

proof.

Let x, y, z, c ∈ Fn2 , x̃, ỹ, c̃ ∈ Bn. It is well-known that the addition between x and y can
be seen as z = x � y = x ⊕ y ⊕ c, where c denote the carry bits, also that zi can be
computed recursively as

c0 = 0,

zi = xi ⊕ yi ⊕ ci,
ci+1 = MAJ(xi, yi, ci).

Clearly, the equations from Definition 4.10 are continuous generalizations of the equa-
tions above because they apply Definitions 4.4 and 4.8 directly. The only question that
remains is if the recursion on ci destroys the properties imposed by Definition 4.3. To
see why this is not the case, define the function gi(x, y, θ) = (x, y,MAJ(xi, yi, θ)), for
i = 0, 1, ..., n− 1, then we can write

gi ◦ gi−1 ◦ · · · ◦ g0(x, y, 0) = (x, y,MAJ(xi, yi, ci))

= (x, y, ci+i).

Now, using Lemma 4.3, we get that gCi
∼←− gi, where gCi(x̃, ỹ, θ) = (x̃, ỹ,MAJC(x̃i, ỹi, θ)),

also, using Lemma 4.2, we get that

gCi ◦ gCi−1
◦ · · · ◦ gC0(x, y, 0)

∼←− gi ◦ gi−1 ◦ · · · ◦ g0(x, y, 0),

therefore, MAJC(x̃i, ỹi, c̃i)
∼←− MAJ(xi, yi, ci), for all i = 0, 1, ..., n− 1. �

DEFINITION 4.11 (Continuous generalization of bitwise permutations) Let x =

(x0, ..., xn−1) ∈ Bn and π be a permutation of n elements. Then we define the continuous
bitwise permutation as

P π
C (x) = P π

C (x0, ..., xn−1) = (xπ(0), xπ(1), ..., xπ(n−1)).

PROPOSITION 4.3 It holds that P π
C
∼←− P π, where

P π(x0, ..., xn−1) = (xπ(0), xπ(1), ..., xπ(n−1))

with x ∈ Fn2 , and P π
C is given by Definition 4.11.

proof.

66

Given x ∈ Fn2 , then we have

P π
C (φ(x)) = (2xπ(0) − 1, ..., 2xπ(n−1) − 1),

which is an array of ±1 elements. Also,

δ(P π
C (φ(x))) = (δ(φ(xπ(0))), ..., δ(φ(xπ(n−1)))).

Since δ(φ(y)) = y when y is zero or one, then we have δ(P π
C (φ(x))) = (xπ(0), ..., xπ(n−1)) =

P π(x). Therefore, P π
C
∼←− P π. �

DEFINITION 4.12 (Continuous generalization of S-boxes) Let x = (x0, x1, ..., xn−1) ∈
Bn and fiC : Bn → B for i = (0, 1, ..., n − 1), then we define a continuous S-box
SC : Bn → Bm as

SC(x) = (f0C(x), f1C(x), ..., fm−1C(x)).

PROPOSITION 4.4 For any S-box S : Fn2 → Fm2 is possible to define a function SC :

Bn → Bm of the form

SC(x) = (f0C(x), f1C(x), ..., fm−1C(x)),

where fiC : Bn → B for i = (0, 1, ...,m− 1), such that SC
∼←− S.

proof.

It is a well-known fact that any S-box S : Fn2 → Fm2 , can be represented by m Boolean
functions [49, 50]. Thus, we can write S(x) = f0(x)||...||fm−1(x). Using Theorem
4.1, we can define fiC : Bn → B, for i = (0, 1, ...,m − 1), such that fiC

∼←− fi, and
write the function SC(x) = (f0C(x), f1C(x), ..., fm−1C(x)). Now suppose that SC is not
a continuous generalization of S. Then, there must exist x such that SC(φ(x)) is not an
array of ±1 elements nor that S(x) 6= δ(SC(φ(x))). Since we can write SC(φ(x)) =

(f0C(φ(x)), ..., fm−1C(φ(x))), then it must exist at least one x ∈ Fn2 such that we have
fiC(φ(x)) 6= ±1 or fi(x) 6= δ(fiC(φ(x))) for some i, which are both contradictions.
Therefore, SC

∼←− S. �

67

4.3.3 Continuous Diffusion Metrics

At this point, the reader might be asking himself what the utility is in creating continuous
generalizations of cryptographic algorithms. As shown in the next pages, these generaliza-
tions can be very useful in measuring and comparing the diffusion of these algorithms, we
call this technique Continuous Diffusion Analysis. To this goal, in this section, we propose
new metrics for quantifying the avalanche effect and diffusion of cryptographic algorithms.
First, we define the signed distance.

DEFINITION 4.13 (Signed Distance) Let x, y ∈ Bn. Hence, we define the signed dis-
tance as

dS(x, y) =
n−1∑
i=0

| sgn(xi)− sgn(yi)|,

where sgn(x) is the sign function.

The Avalanche Factor, presented in Definition 4.2, was defined in [1] considering f as
a discrete function. However, as we showed in Section 4.3.2, we can create continuous
generalizations of these functions. Thus, we propose the continuous avalanche factor.

DEFINITION 4.14 (Continuous Avalanche Factor (CAF)) Let f : Fn2 → Fm2 , fC : Bn →
Bm such that fC

∼←− f . Let x, y ∈ Bn, such that xi, yi are independent and identically
distributed random variables. Hence, we define the CAF as

CAF(fC, dS, dE|λ)

=
Ex,y[dS(fC(x), fC(y))|dE(x, y) 6 λ]

Ex,y[dS(x, y)]
,

where dE denote the Euclidean distance and λ ∈ R is a threshold value.

When xi and yi are uniformly distributed, i.e., xi, yi ∼ U(−1, 1), and n = m, one can
show that

Ex,y[dS(x, y)]

=
1

4

n−1∑
i=0

∫ 1

−1

∫ 1

−1

| sgn(xi)− sgn(yi)|dxidyi = n,

thus, we get
CAF(fC, dS, dE|λ)

=
1

n
Ex,y[dS(fC(x), fC(y))|dE(x, y) 6 λ].

68

We define two additional metrics, but before that we present two more functions. An
important observation is that we have created the proposed continuous generalizations by
performing probability operations under the assumption of independence. However, in prac-
tice, a cryptographic algorithm mixes all input bits. Therefore, this assumption will not hold
after a certain point. Because of that, the result we get by the end is not a probability, and
the continuous bits converge to zero exponentially as we progress through the continuous
algorithm. To deal with these small numbers, we define the magnitude of a real number by
the function

Mag(x) = log2(| log10(|x|)|+ 1). (4.2)

Additionally, we define the function

ψ(x, β, j) =

{
φ(xi), i 6= j

βφ(xi), i = j.
(4.3)

The continuous generalizations can also be useful to measure the influence of a certain
bit to the output of a function. To do that, we propose the following metric.

DEFINITION 4.15 (Continuous Neutrality Measure (CNM)) Let f : Fn2 → Fm2 , fC :

Bn → Bm such that fC
∼←− f , and define I ⊂ {0, 1, 2, ...,m − 1} as a subset of output

bits indexes and β ∼ U(0, 1), a uniform random variable. We measure the influence of
an input bit j to an output set of bits I by the Continuous Neutrality Measure given by

Ψ(j, I, f |fC)

=
1

|I|2n
Eβ

∑
x∈Fn2

∑
i∈I

Mag(fCi(ψ(x, β, j)))

 ,
where fCi(.) denotes the i-th element of fCi(.).

From the CNM, we can compute the average influence of every input bit, which will
result in a new metric capable of measuring the overall diffusion of an algorithm, we call this
the Diffusion Factor of f .

DEFINITION 4.16 (Diffusion Factor (DF)) Let f : Fn2 → Fm2 , fC : Bn → Bm such that
fC

∼←− f and I = {0, 1, 2, ...,m− 1}, the set of all output bit indexes, then we define the

69

Diffusion Factor of f given the continuous generalization fC as

DF(f |fC) =
1

n

n−1∑
j=0

Ψ(j, I, f |fC).

4.4 CASE STUDY: DIFFUSION ANALYSIS OF SALSA, CHACHA, AES,
AND SPECK

In this section, we analyze the algorithms Salsa, ChaCha, AES, and Speck with CDA.
For all these algorithms, we used the version with 256-bit keys. We divided this section in
two parts: first, we show how to use the proposed techniques to compare similar algorithms
and how to use it to study small changes in the design. These ideas can be useful to design
new algorithms in the future. To this goal, we focused only on the algorithms Salsa and
ChaCha because they are very similar ciphers, and we expect to get better diffusion for
ChaCha. Second, we apply the proposed metrics to compare different algorithms, including
the algorithms Speck, and AES.

When comparing Salsa and ChaCha, from a specification perspective, there are two major
changes when comparing Salsa to ChaCha. First, the change of the QRF from QRsalsa to
QRchacha. Second, the pattern of operation: in Salsa, the function QRsalsa is applied first on
each column and then on each line of the state matrix, using the element on the diagonal as
the first input to the function. Instead, in ChaCha, the function QRchacha is applied first on
each column and then on each diagonal but using the element of the first line as the first input
to the function. To test whether these changes individually increase the diffusion, we define
SalsaC

∼←− Salsa and ChaChaC
∼←− ChaCha, as the continuous generalizations of Salsa

and ChaCha, respectively, implemented using Definitions 4.4, 4.9 and 4.10. Additionally,
we define two modified algorithms:

1. Salsa_pt: consists in the Salsa algorithm but using ChaCha’s pattern of operations,
in other words, applying QRsalsa first on each column and then on each diagonal. We
also define Salsa_ptC as its continuous generalization.

2. Salsa_qr: consists in the Salsa algorithm but using QRchacha instead of QRsalsa. We
also define Salsa_qrC as its continuous generalization.

70

4.4.1 Exploratory and Graphical Analysis of ChaCha and Salsa

As usual, we represent Salsa’s and ChaCha’s states as 4 × 4 matrices, as in Eq. (2.3).
However, as we analyze for every bit, we also represent a 32-bit integer as a 4 × 8 matrix,
leading to the following representation

X(r) =

x

(r)
0 x

(r)
1 x

(r)
2 x

(r)
3

x
(r)
4 x

(r)
5 x

(r)
6 x

(r)
7

x
(r)
8 x

(r)
9 x

(r)
10 x

(r)
11

x
(r)
12 x

(r)
13 x

(r)
14 x

(r)
15

 , (4.4)

where

x
(r)
i =

x

(r)
i,0 x

(r)
i,1 ... x

(r)
i,7

...
...

...
...

x
(r)
i,24 x

(r)
i,25 ... x

(r)
i,31

 .

We start our analysis with a simple example, using the CNM of Definition 4.15 we mea-
sured the influence of the input bit j = 129 to each output bit, individually, i.e., we computed
Ψ(129, 0, ChaCha|ChaChaC), . . . , Ψ(129, 511, ChaCha|ChaChaC). We used j = 129

because this leads to x(0)
4,0, which is the first bit of the key, but any other bit might be used.

The results are presented in Figure 4.1. As expected, x(0)
4,0 does not have any influence on

columns 2, 3, and 4 after one round, since in the first round QRchacha is applied on each
column independently. Nevertheless, we can also note some bits in the first column that are
either very little affected or not affected at all. For the second round, many more bits are
affected by x(0)

4,0, however, there are some regions that are still not very affected. For exam-
ple, the bits of integer x(2)

1 , because we have Ψ(129, I, ChaCha|ChaChaC) = 0.39, where
I = {32, 33, ..., 63}.

Certainly, we could repeat this experiment for each input bit to understand the diffusion
behavior of the algorithm. To observe an average behavior of the diffusion of the algorithm,
we can compute the Diffusion Factor. To get a visual representation, we estimated the DF for
each output bit individually, i.e., we computed DF(fi|fCi) where fi denotes the i-th bit of f ,
Fig. 4.2 presents the results. We used r = 3 because we get a better visual representation in
this case. These results seem to confirm Bernstein’s claims that ChaCha has better diffusion
than Salsa. In fact, each change in the algorithm, represented by Salsa_pt and Salsa_qr,
improves the DF individually. Also, it is interesting to note the patterns: Salsa has higher
magnitude on the diagonals and ChaCha has higher magnitude on the second line, which are
a consequence of the order of the operation.

71

(a) Initial matrix. (b) CNM after one round of ChaChaC .

(c) CNM after two rounds of ChaChaC .

Figure 4.1 – Estimation of the CNM of two rounds ofChaChaC for input bit x(0)
4,0. The colors

represent the CNM metric of Definition 4.15 for each output bit individually, organized as in
Eq. (4.4). Between parenthesis, we have the CNM metric for each integer, i.e., defining I as
a set of 32 indexes.

72

(a) DF for each bit for Salsa. (b) DF for each bit for Salsa_pt.

(c) DF for each bit for Salsa_qr. (d) DF for each bit for ChaCha.

Figure 4.2 – Estimated Diffusion Factor obtained for each bit after 3 rounds of Salsa,
ChaCha, Salsa_pt and Salsa_qr. The colors represent the DF of each bit, computed from
Definition 4.16 and organized as in Eq. (4.4). The average DF of each integer x(r)

i is shown
between parentheses.

73

4.4.2 Continuous Diffusion Analysis of Salsa, ChaCha, AES, and Speck

In this section, we present the CDA of Salsa, ChaCha, AES, and Speck, using our new
metrics. To obtain a comparison of the new metrics of Section 4.3.3 with other diffusion
metrics, we use the Avalanche Factor proposed by [1], which we describe in Section 4.2.
Table 4.1 shows the results of the AF, from Definition 4.2. In addition, Table 4.2 shows the
results of the CAF, from Definition 4.14. The new metrics have several advantages. First,
notice that the AF provides useful information only for 3 rounds of Salsa or ChaCha, in
contrast, the CAF can provide results for several rounds. Moreover, it is possible to balance
this behavior by changing the value of the threshold λ. This trend reveals the usefulness
of the CAF because decreasing the value of λ, we can go further into the rounds of each
algorithm. When comparing these metrics, we also note that the AF cannot distinguish
between all algorithms clearly, for instance, it is not clear whether ChaCha is better than
Salsa_qr. Contrarily, the CAF results suggests very clearly that when comparing Salsa and
ChaCha, we have

SalsaC < Salsa_ptC < Salsa_qrC < ChaChaC,

i.e., ChaCha’s diffusion is higher than Salsa’s, and the most important change from Salsa to
ChaCha is the new QRF, although the pattern of operation also improve diffusion.

The DF further confirms this hypothesis. Table 4.3 shows the DF for each round of
both Salsa and ChaCha, again ChaCha has better performance under this metric. It is in-
teresting to note that the DF for 6 rounds of ChaCha is approximately the DF for 7 rounds
of Salsa. Also, the DF for 7 rounds of ChaCha is approximately the DF for 8 rounds of
Salsa. This suggests that ChaCha20/6 and ChaCha20/7 have approximately the same secu-
rity of Salsa20/7, and Salsa20/8, respectively. This hypothesis is actually confirmed by the
best attacks from the literature that show a security of order 2102.2, 2231.9, 2137, and 2244.9

for ChaCha20/6, ChaCha20/7, Salsa20/7, and Salsa20/8, respectively (see [24] and [25] for
these attack). Therefore, we could extrapolate and say that, based on Table 4.3, ChaCha20/17
is as secure as Salsa20.

When comparing the diffusion factor for different algorithms, we should not compare
the algorithms directly by rounds, because the number of operations in each round is usu-
ally different for each algorithm. Therefore, we should not try to find only the highest
diffusion, but also define which algorithm has the faster diffusion. To that, we could di-
vide the diffusion factor by the performance in cycles per encrypted byte, obtaining a met-
ric that can be interpreted as how much diffusion we get for each byte per computer cy-
cle. To make this comparison, we used data from the SUPERCOP benchmark [51] (<https:
//bench.cr.yp.to/supercop.html>). In the SUPERCOP page, we can find the performance of
ChaCha, Salsa, Speck, and AES for several different processors. As an example, we used the

74

https://bench.cr.yp.to/supercop.html
https://bench.cr.yp.to/supercop.html

Rounds Salsa Salsa_pt Salsa_qr ChaCha Speck AES
1 0.064 0.063 0.101 0.102 0.066 0.063
2 0.436 0.441 0.725 0.714 0.182 0.250
3 0.919 0.955 0.999 0.998 0.326 ≈ 1
4 ≈ 1 ≈ 1 ≈ 1 ≈ 1 0.547 ≈ 1
5 ≈ 1 ≈ 1 ≈ 1 ≈ 1 0.686 ≈ 1
6 ≈ 1 ≈ 1 ≈ 1 ≈ 1 0.888 ≈ 1
7 ≈ 1 ≈ 1 ≈ 1 ≈ 1 0.973 ≈ 1
8 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1

Table 4.1 – The Avalanche Factor, proposed by [1], for Salsa, Salsa_pt, Salsa_qr,
ChaCha, Speck, and AES. A completely random result would produce an AF of 1.

data available for Intel Core i7-8809G. The results are presented in Table 4.4, where we can
see that ChaCha seems to be the best option when balancing for diffusion and performance,
for this particular Intel i7 processor.

75

R
ou

nd
s

CA
F

(λ
=

10
−

3
)

CA
F

(λ
=

10
−

5
)

S
a
l.
C

S
a
l.

_p
t C

S
a
l.

_q
r C

C
h
a
C
h
a
C

Sp
ec

k
A

E
S

S
a
l.
C

S
a
l.

_p
t C

S
a
l.

_q
r C

C
h
a
C
h
a
C

Sp
ec

k
A

E
S

1
≈

0
≈

0
≈

0
≈

0
≈

0
≈

0
≈

0
≈

0
≈

0
≈

0
≈

0
≈

0
2

≈
0

≈
0

≈
0

≈
0

≈
0

≈
0

≈
0

≈
0

≈
0

≈
0

≈
0

≈
0

3
≈

0
≈

0
0.

00
12

0.
00

70
≈

0
≈

0
≈

0
≈

0
≈

0
≈

0
≈

0
≈

0
4

0.
13

2
0.

19
3

0.
32

7
0.

53
1

≈
0

0.
00

5
≈

0
≈

0
≈

0
0.

00
2

≈
0

≈
0

5
0.

75
9

0.
82

5
0.

93
7

0.
98

5
≈

0
0.

73
4

0.
08

0
0.

11
1

0.
19

0
0.

44
6

≈
0

≈
0

6
0.

99
1

0.
99

5
≈

1
≈

1
≈

0
0.

98
1

0.
66

5
0.

76
0.

89
5

0.
97

6
≈

0
0.

47
9

7
≈

1
≈

1
≈

1
≈

1
≈

0
≈

1
0.

98
9

0.
99

1
0.

99
7

≈
1

≈
0

0.
95

9
8

≈
1

≈
1

≈
1

≈
1

0.
01

8
≈

1
0.

99
8

0.
99

7
≈

1
≈

1
≈

0
≈

1
9

≈
1

≈
1

≈
1

≈
1

0.
10

3
≈

1
≈

1
≈

1
≈

1
≈

1
≈

0
≈

1
10

≈
1

≈
1

≈
1

≈
1

0.
38

4
≈

1
≈

1
≈

1
≈

1
≈

1
≈

0
≈

1
11

≈
1

≈
1

≈
1

≈
1

0.
72

2
≈

1
≈

1
≈

1
≈

1
≈

1
0.

00
6
≈

1
12

≈
1

≈
1

≈
1

≈
1

0.
92

3
≈

1
≈

1
≈

1
≈

1
≈

1
0.

08
5
≈

1
13

≈
1

≈
1

≈
1

≈
1

0.
97

9
≈

1
≈

1
≈

1
≈

1
≈

1
0.

34
8
≈

1
14

≈
1

≈
1

≈
1

≈
1

0.
99

5
≈

1
≈

1
≈

1
≈

1
≈

1
0.

69
7
≈

1
15

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

0.
91

5
≈

1
16

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

0.
98

4
≈

1
17

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

≈
1

Ta
bl

e
4.

2
–

T
he

C
A

F
(w

ith
λ

=
10
−

3
an

d
λ

=
10
−

5
)f

or
S
a
ls
a
C,
S
a
ls
a

_p
t C

,S
a
ls
a

_q
r C

,C
h
a
C
h
a
C,

Sp
ec

k,
an

d
A

E
S.

A
co

m
pl

et
el

y
ra

nd
om

re
su

lt
w

ou
ld

pr
od

uc
e

a
C

A
F

of
1.

76

Rounds Salsa Salsa_pt Salsa_qr ChaCha Speck AES
1 0.02 0.02 0.04 0.04 0.02 0.01
2 0.37 0.40 0.82 0.88 0.06 0.19
3 2.21 2.43 3.75 4.20 0.20 1.46
4 5.54 5.86 7.39 8.08 0.54 3.76
5 9.00 9.43 11.31 12.24 1.19 6.44
6 12.56 12.97 14.94 15.98 2.23 9.33
7 15.77 16.26 18.45 19.72 3.60 12.57
8 19.00 19.50 21.94 23.42 5.15 15.39
9 22.17 22.75 25.51 27.17 6.73 18.19

10 25.37 25.98 28.99 30.89 8.26 20.93
11 28.54 29.23 32.53 34.60 9.88 23.74
12 31.74 32.46 36.07 38.31 11.50 26.63
13 34.90 35.72 39.56 42.02 12.96 29.45
14 38.10 38.99 43.09 45.75 14.37 32.22
15 41.27 42.24 46.59 49.46 15.77 -
16 44.46 45.45 50.11 53.19 17.17 -
17 47.65 48.68 53.63 56.89 18.58 -
18 50.84 51.92 57.14 60.62 19.99 -
19 54.05 55.20 60.66 64.34 21.37 -
20 57.20 58.45 64.20 68.09 22.74 -
21 - - - - 24.15 -
22 - - - - 25.54 -
23 - - - - 26.93 -
24 - - - - 28.30 -
25 - - - - 29.70 -
26 - - - - 31.09 -
27 - - - - 32.48 -
28 - - - - 33.86 -
29 - - - - 35.26 -
30 - - - - 36.65 -
31 - - - - 38.04 -
32 - - - - 39.43 -
33 - - - - 40.81 -
34 - - - - 42.21 -

Table 4.3 – Diffusion Factor for each round of Salsa, ChaCha, Speck, and AES.

Salsa ChaCha Speck AES
Performance 1.33 1.16 1.30 0.94

DF 57.20 68.09 42.21 32.22
DF/Performance 43.01 58.70 32.47 34.27

Table 4.4 – Performance in cycles/byte for ChaCha, Salsa, AES, and Speck with 256-bit
keys for Intel Core i7-8809G processor, for long messages and the Diffusion Factor for all
algorithms.

77

4.5 LIBRARY

We developed an open source library , called libfpco that implements continuous
generalizations (available at <https://github.com/MurCoutinho/pda>). See Appendix A.1
for more details.

78

https://github.com/MurCoutinho/pda

COLORED: A NEW FRAMEWORK TO
EVALUATE SECURITY AGAINST
DIFFERENTIAL CRYPTANALYSIS

5.1 INTRODUCTION

Differential cryptanalysis (DC) is one of the most powerful attacks available in the realm
of cryptanalysis. It was Invented by Biham and Shamir [32] as a method to attack the block
cipher Data Encryption Standard (DES). Later, in 1994, Don Coppersmith, a member of the
team that designed DES, published a paper stating that differential cryptanalysis was known
to IBM as early as 1974, and that defending against differential cryptanalysis had been a
design goal of DES [52]. As the time passed, it became clear that differential cryptanalysis
was extremely important, being applied to attack and design many different cryptographic
primitives such as block ciphers [30], stream ciphers [24], and hash functions [53].

Since its invention of differential cryptanalysis, tweaks and generalizations have been
proposed. In 1994, Lai introduced the concept of high order differential [54] and Knudsen
proposed new applications to this technique [55]. Still in [55], Knudsen proposed so-called
truncated differentials attacks, which can be used to analyze and make predictions of a subset
of bits instead of the full block of a cipher. Another variant of differential cryptanalysis is
called impossible differential cryptanalysis, which was proposed independently by Knudsen
[56] and Biham [57] and uses differentials with probability zero. In 1999, Wagner intro-
duced the boomerang attack [58], which allows to concatenate any two, not necessarily co-
inciding, differentials over parts of a cipher. Wagner used the boomerang attack to break the
cipher COCONUT98. Later, the boomerang attack itself has been generalized to amplified
boomerang attack [59], the rectangle attack [60], and the retracing boomerang attack [61].
Additionally, differential cryptanalysis was combined with linear cryptanalysis to produce
so-called differential-linear attacks [39, 40, 27].

Great progress has been made in designing and analyzing block ciphers, especially with
the introduction of the AES, but also more recently with many block ciphers appearing in
the area of lightweight cryptography. However, there is still research on fundamental aspects
of these ciphers going on and important questions are still not understood. For example, we
are not able to prove the security of a block cipher in a general way, but only test its security
against known attacks.

To evaluate the security of a block cipher against differential cryptanalysis, there are

79

5

usually two approaches. One is to calculate the minimum number of differentially active
S-boxes to obtain an upper bound of the maximum probability of possible differential trails.
The other approach is to search for the best differential characteristics to calculate the maxi-
mum probability. For some block ciphers, e.g., for block ciphers with large block sizes, this
needs a huge workload and is likely to be impossible to be accomplished in a reasonable
time.

In particular, it is difficult to compare different algorithms to decide which one is safer
because the attacks are effective only when considering simplifications of these algorithms,
such as reducing the number of rounds. We also encounter such difficulties when trying to
solve other problems, such as measuring the diffusion of cryptographic algorithms. Nev-
ertheless, the previous chapter, we propose a new technique called Continuous Diffusion
Analysis (CDA) that can be used to study, design, and compare cryptographic algorithms
without the need of reducing the number of rounds. CDA allows us to generalize crypto-
graphic algorithms by transforming the discrete bits into probabilities such that the algorithm
is generalized into a continuous mathematical function. One interesting feature of CDA is
that it allows to make tiny changes to the input of an algorithm, in the form of continuous
perturbations. Thus, it is possible to change “less” than one bit and to consider bits that are
in some kind of superposition of the states 0 and 1.

Considering these concepts, in this chapter, we propose ColoreD, a new framework to
study the security against differential cryptanalysis that allows us to consider Continuous
Differences (ColoreD), instead of just binary (black and white) differences. More precisely,
we propose a theoretical attack model in which is possible to compare pairs of ciphertexts
generated by a cipher and its continuous generalization in such a way that we can mount a
key recovery attack by exploring statistical properties of the differences of resulting cipher-
texts. In this chapter, using the concept of continuous generalizations from [62], we propose
a technique called Continuous Differential Cryptanalysis (CDC), which allows us to mount
attacks using continuous differences, instead of discrete differences. This technique enables
us to observe new statistical properties when comparing to standard differential cryptanaly-
sis. Moreover, we propose a theoretical attack applying CDC that can recover the key of full
AES and PRESENT.

The rest of this chapter is organized as follows: in Section 5.2, we present a simple
motivational example to introduce the reader to the topic of continuous generalizations and
continuous differences. In Section 5.3, we present the framework ColoreD, including the
idea of CDC. In Section 5.4, we study AES and PRESENT using the framework ColoreD.

80

S S

c0 c1 c2 c3 c4 c5 c6 c7

k0 k1 k2 k3 k4 k5 k6 k7

p0 p1 p2 p3 p4 p5 p6 p7

Figure 5.1 – One round of SP, denoted as C = R(P,K). It is a simple SPN, where S is
defined in Table 2.2.

5.2 MOTIVATION

In this section, we present a simple example to introduce the notion of studying resistance
against differential cryptanalysis through the use of continuous generalizations. To do that,
we divide this section in two parts: in Subsection 5.2.1, we propose a toy cipher called
Simplified PRESENT, and in Subsection 5.2.2, we present the referred example.

5.2.1 Simplified PRESENT

In this section, we propose a toy cipher, which we call Simplified PRESENT (SP). In each
round, SP updates an 8-bit block by applying a simple SPN that uses PRESENT’s S-box and
the following permutation:

i 0 1 2 3 4 5 6 7

P (i) 0 2 4 6 1 3 5 7

SP also uses PRESENT’s key schedule; however, it only uses the first 8 bits of each round
key. Figure 5.1 summarizes this description and presents the permutation layer. To simplify
the notation, we define one round of SP as the function R : F8 × F8 → F8.

Next, using the theory presented in Section 4.3.2, we define a continuous generaliza-
tion for SP. Notice that SP only uses 3 operations: XOR, bitwise permutations, and sub-
stitutions via a single S-Box. Then, we can create a continuous generalization simply
by applying Definitions 4.4, 4.11 and 4.12. For the S-Box, we need to write S(x) =

(f0(x), f1(x), f2(x), f3(x)), where x = (x0, x1, x2, x3) ∈ B4. To compute fi : F4
2 → F2,

we wrote the truth table for each bit from the S-Box and then compute the algebraic normal
form using SAGE. For completeness, we list the functions explicitly:

f0(x) = x0 + x1x2 + x2 + x3,

f1(x) = x0x1x2 + x0x1x3 + x0x2x3 + x1x3 + x1 + x2x3 + x3,

f2(x) = x0x1x3 + x0x1 + x0x2x3 + x0x3 + x1x3 + x2 + x3 + 1,

f3(x) = x0x1x2 + x0x1x3 + x0x2x3 + x0 + x1x2 + x1 + x3 + 1.

81

SC SC

c0 c1 c2 c3 c4 c5 c6 c7

k0 k1 k2 k3 k4 k5 k6 k7

p0 p1 p2 p3 p4 p5 p6 p7

C C C C C C C C

Figure 5.2 – Continuous generalization of the round function R of the cipher SP.

Thus, we can generate a continuous generalization for the round function R, i.e., we define
RC : B8 × B8 → B8 such that RC

∼←− R. We represent RC in Figure 5.2.

5.2.2 Analyzing differences using a continuous generalization

In differential cryptanalysis, we exploit the high probability of certain occurrences of
plaintext differences and differences into the last round of the cipher. For example, consider
two inputs to our toy cipher SP be P and P ′. Then, after each round r, we get corresponding
subciphers Cr and C ′r, respectively. The input difference is given by ∆P = P ⊕ P ′, and the
difference for each round is defined as ∆Cr = Cr⊕C ′r. In an ideally randomizing cipher, the
probability that a particular output difference ∆C occurs given a particular input difference
∆P is 2−n where n is the number of bits of P .

In the majority of cases, differential cryptanalysis is most effective when the input differ-
ence affects few bits. In other words, we try to understand and find statistical behaviors of
the cipher when changing the input just a little bit. However, modern ciphers are designed
so that small changes leads to big changes after a few rounds, behaving as an ideal cipher.
For instance, consider the example of Figure 5.3. In this case, we change only one bit of the
input of the proposed toy cipher SP and after 2 rounds many bits are already changed.

Would not it be nice if it was possible to apply a change smaller than one bit? This
is exactly the idea behind continuous generalizations proposed in [62]. Therefore, now we
consider the example of Figure 5.4. Here, we compare differences between SP and its contin-
uous generalization. Notice that unlike the example of 5.3, the subcipher C ′2 is very similar
to the control case.

The advantage of this approach is that we can go further into the cipher, allowing com-
parisons of the full cipher, instead of reducing the number of rounds. This is possible because
we are working with real numbers, and we can use an arbitrarily small difference to the input.
For example, Figure 5.5 shows that making the input difference closer to 1 leads to an output
difference also closer to 1 to every bit. The next question is if we can study these differences
to propose some kind of differential analysis.

82

R

11100011

k1 = 00110011

00000111

Rk2 = 10011001

01101111

R

01100011

k1

10101111

Rk2

00011001

P ′ =P =

C ′1 =C1 =

C ′2 =C2 =

Figure 5.3 – Analyzing differences on SP. Here, two rounds of SP are executed. We consider
two different inputs for SP. On the left hand, we have a control case. On the right hand we
change the first bit of the input using the same round keys k1 and k2. The different bits are
represented using the color red.

R

11100011

k1 = 00110011

00000111

Rk2 = 10011001

01101111

RCk1

RCk2

0.9 1 1 0 0 0 1 1

0.1 0 0.1 0 0.1 1 1 1

0.18 0.9 0.99 0.1 0.91 0.9 0.81 1

P ′ =P =

C ′1 =C1 =

C ′2 =C2 =

Figure 5.4 – Analyzing differences on SP against its continuous generalization. On the left
hand, we have the same control case of two rounds of SP, as in Figure 5.3. However, on the
right hand we change the first bit of the input of the continuous generalization from 1 to 0.9
(here we use p instead of ε) and using the same round keys k1 and k2. After two rounds, it is
possible to note that the subciphers are very close to each other.

83

R

11100011

k1 = 00110011

00000111

Rk2 = 10011001

01101111

RCk1

RCk2

0.99 1 1 0 0 0 1 1

0.01 0 0.01 0 0.01 1 1 1

0.02 0.99 ≈ 1 0.01 0.99 0.99 0.98 1

P ′ =P =

C ′1 =C1 =

C ′2 =C2 =

Figure 5.5 – Analyzing differences on SP against its continuous generalization. Very similar
with the example of Figure 5.4; however, we change the first bit of the input of the continuous
generalization from 1 to 0.99. After two rounds, it is possible to note that the subciphers are
even closer than in Figure 5.4.

5.3 CONTINUOUS DIFFERENCES (COLORED) FRAMEWORK

In this section, we propose the framework ColoreD. The main idea in ColoreD is, as in
Section 5.2, to use a continuous generalization to analyze small differences in cryptographic
algorithms. More precisely, we propose a theoretical attack model in which is possible to
compare pairs of ciphertexts generated by a cipher and its continuous generalization in such
a way that we can mount a key recovery attack by exploring statistical properties of the
differences of resulting ciphertexts. Thus, we divided this section in two parts: in subsection
5.3.1, we propose the technique of Continuous Differential Cryptanalysis, and in subsection
5.3.2, we propose a new mode of attack called Continuous Chosen-Plaintext Attack.

5.3.1 Continuous Differential Cryptanalysis (CDC)

In this section, we combine the theories of Differential Cryptanalysis (Section 3.1) and
Continuous Generalizations of Cryptographic Algorithms (Section 4.3.2). From now on,
we denote the differentials of standard differential cryptanalysis as classic differential. Let
x, y ∈ B, then we define the difference between x and y as ∆C(x, y) = x ⊕C y, where ⊕C
is given by Definition 4.4. Now let F : Fn2 → Fm2 be a vectorial Boolean function, and let
FC : Bn → Bm such that FC

∼←− F . Then, define:

DEFINITION 5.1 (Continuous differential) A continuous differential is the pair (β, γ) of
an input difference β ∈ Bn and an output difference γ ∈ Bm, i.e.,

FC(φ(x))⊕C FC(φ(x)⊕C β) = γ,

84

where x ∈ Fn2 .

DEFINITION 5.2 (Discretized output difference) Let (β, γ) be a continuous differential,
then we call ∆ = σ(γ) the discretized output difference of (β, γ).

Note that continuous differentials are a generalization of classic differentials because if
β is discrete, then the resulting differential is equal to a classic differential. In other words,
classic differentials can be viewed as a subset of the set of continuous differentials. To prove
this statement, we propose the following couple of lemmas and a theorem.

LEMMA 5.1 Let x, y ∈ Bn, such that x, y 6= 0. Then, it holds that σ(x⊕C y) = σ(x)⊕
σ(y).

proof.

From the definitions, both σ(.) and ⊕C , operate on each entry of the vectors x and y

independently. Thus, we just need to show that σ(xi ⊕C yi) = σ(xi)⊕C σ(yi). From the
definitions of σ(.) and ⊕C , we get

σ(xi ⊕C yi) = σ(−xiyi) =
1

2
(sgn(−xiyi) + 1) =

1

2
(− sgn(xi) sgn(yi) + 1)

and
σ(xi)⊕ σ(yi) =

[
1

2
(sgn(xi) + 1)

]
⊕
[

1

2
(sgn(yi) + 1)

]
.

Since xi, yi 6= 0, we only have 4 possibilities (sgn(xi), sgn(yi)) = {(1, 1), (1,−1), (−1, 1), (−1,−1)},
for each case is straightforward to see that we achieve the same result using both equa-
tions. �

LEMMA 5.2 Let x ∈ Fn2 and y ∈ Bn, such that y is discrete, i.e., yi = ±1, i =

(0, 1, ..., n− 1). Then it holds that φ(x)⊕C y = φ(x⊕ σ(y)).

proof.

From the definitions, σ(.), φ(.) and ⊕C operate on each entry of the vectors x and y

independently. Thus, we just need to show that φ(xi) ⊕C yi = φ(xi ⊕ σ(yi)). From the

85

definitions, we must have

φ(xi)⊕C yi = −(2xi − 1)yi

and
φ(xi ⊕ σ(yi)) = 2(xi ⊕ ((sgn(yi) + 1)/2)))− 1.

Now, we only have 4 possibilities (xi, yi) = {(1, 1), (1,−1), (0, 1), (0,−1)}, for each
case is easy to see that we get the same result using both equations. �

THEOREM 5.1 Let F : Fn2 → Fm2 be a vectorial Boolean function, and let FC : Bn →
Bm such that FC

∼←− F . Also, let (β, γ) be a continuous differential for FC and (δ,∆)

be a classic differential for F such that δ = σ(β). If β is discrete, then the discrete
output difference of (β, γ) is ∆, i.e., the continuous differential is identical to the classic
differential.

proof.

The discrete output difference of (β, γ) is given by σ(γ). Using Definition 5.1, we find
that

σ(γ) = σ(FC(φ(x))⊕C FC(φ(x)⊕C β)).

Note that by Definition 4.3, we must have F (x) = σ(FC(φ(x))), therefore, from the
definition of σ(.), we must have that FC(φ(x)) 6= 0, for all x ∈ Fn2 . Additionally, it is
easy to see that if we have all possible x ∈ Fn2 , then by the definition of φ, it follows that
φ(x) generates all possible arrays of size n composed of ±1 elements, in other words
φ : Fn2 → {−1, 1}n can be viewed as a bijection. Thus, since β is discrete, i.e., βi = ±1

or β ∈ {−1, 1}n, then by the definition of ⊕C is easy to see that φ(x) ⊕C β defines a
permutation on the set {−1, 1}n. Hence, as before, from the definition of σ(.), we must
have that FC(φ(x)⊕C β) 6= 0. Now we can use Lemma 5.1 to get

σ(γ) = σ(FC(φ(x)))⊕ σ(FC(φ(x)⊕C β)),

and using Lemma 5.2 on the second term of the equation, we get

σ(γ) = σ(FC(φ(x)))⊕ σ(FC(φ(x⊕ σ(β))).

Finally, replacing σ(β) by δ and using Definition 4.3, we get σ(γ) = F (x)⊕F (x⊕ δ) =

∆. �

86

One very common property explored in differential cryptanalysis is that when using it
to attack ciphers in which the key is applied only via a XOR operation, the key bits can
generally be ignored when finding a differential because if we have w = x ⊕ k and w′ =

x′ ⊕ k, then we get ∆w = x ⊕ k ⊕ x′ ⊕ k = ∆x. In the same way, when applying CDC to
these ciphers, the key can be ignored, we formalize this concept in the following lemma:

LEMMA 5.3 Let w,w′, x, x′ ∈ B and k ∈ F2 such that w = x ⊕C φ(k) and w′ =

x′ ⊕C φ(k), then we can write ∆Cw = ∆Cx.

proof.

This result is straightforward since using Definition 4.4, we have

∆Cw = w ⊕C w′ = −ww′ = −(x⊕C φ(k))(x′ ⊕C φ(k))

= −(−xφ(k))(−x′φ(k)) = −xx′φ2(k) = −xx′

= ∆Cx.

�

In Section 3.1, we explained the concept of difference distribution tables. Unfortunately,
since the input difference β is continuous, when working with continuous differentials we
do not have such a table because there are an infinite number of differentials. However, for a
fixed β, we can compute an array of differentials.

DEFINITION 5.3 (β-difference distribution array) We define the β-difference distribu-
tion array as A(β) = {A(β)

i }, where

A
(β)
i = |{x ∈ Fn2 : σ(FC(φ(x))⊕C FC(φ(x)⊕C β)) = i}|.

In standard differential cryptanalysis, if we divide the cipher in multiple components
(c0, c1, ..., cs), we can define the continuous differential characteristic, a series of differences,
notated as an (s + 1)−tuple (β0, ..., βs), where βi ∈ Bn. In each step we have ∆Cci =

φ(ci)⊕C c̃i, where ci ∈ Fn2 =M and c̃i = φ(ci)⊕C βi. We can also compute the probability
of occurrence of the characteristic

PrM,K (∆Ccs = βs,∆Ccs−1 = βs−1, . . . ,∆Cc1 = β1 | ∆Cm = β0) ,

where the probability is taken over all choices of the plaintext and the key.

Next, we show that we can derive a generalization of the concept of Markov ciphers.

87

DEFINITION 5.4 (Continuous Markov Cipher) A continuous generaliza-
tion of an iterated cipher is called a Continuous Markov Cipher (CMC) if
Pr (∆Cc1 = γ | ∆Cc0 = β, c0 = m) is independent of m ∈ Fn2 = M for all γ, β ∈ Bn

when the round key k is chosen uniformly at random from the set K.

THEOREM 5.2 If an r-round continuous generalization of an iterated cipher is a CMC
and the r round keys are independent and uniformly random, then the sequence of con-
tinuous differences ∆Cc0,∆Cc1, ...,∆Ccr is a homogeneous Markov chain.

proof.

First, we show that the sequence ∆Cc0,∆Cc1, ...,∆Ccr is a Markov chain. To do that, it
is sufficient to show for the second round that

Pr(∆Cc2 = β2|∆Cc1 = β1,∆Cc0 = β0) = Pr(∆Cc2 = β2|∆Cc1 = β1).

To show this, we use the law of total probability and the Bayes theorem to write

Pr(∆Cc2 = β2|∆Cc1 = β1,∆Cc0 = β0) =∑
x Pr(c1 = x,∆Cc2 = β2|∆Cc1 = β1,∆Cc0 = β0) =∑
x Pr(c1 = x|∆Cc1 = β1,∆Cc0 = β0) Pr(∆Cc2 = β2|c1 = x,∆Cc1 = β1,∆Cc0 = β0) =∑
x Pr(c1 = x|∆Cc1 = β1,∆Cc0 = β0) Pr(∆Cc2 = β2|c1 = x,∆Cc1 = β1) =

Pr(∆Cc2 = β2|∆Cc1 = β1),

where the third equality comes from the fact that given c1 and ∆Cc1, we can compute c̃1,
c2 and c̃2, therefore, ∆Cc2 has no further dependence on ∆Cc0. Also, the fourth equality
follows from Definition 5.4. Finally, since the same round function is used in each round,
this Markov chain is homogeneous. �

Thus, for a CMC with independent round keys, the probability of a s-round continuous
characteristic is the product of the probabilities of the s one-round continuous characteristics
or, more formally,

Pr (∆Ccs = βs,∆Ccs−1 = βs−1, . . . ,∆Cc1 = β1 | ∆Cm = β0) =∏s
i=1 Pr (∆Cci = βi | ∆Cci−1 = βi−1) .

The following theorem creates a relationship between Markov Ciphers and CMCs.

88

THEOREM 5.3 Let E be a r-round iterated cipher such that each round is computed via
a round function R : Fn2 ×K → Fn2 , which receives as input the state at a particular round
and an independent and uniformly random round key. Also, let EC

∼←− E such that each
round of the continuous cipher EC is computed via a round function RC : Bn ×K → Bn

and RC
∼←− R. If EC is a CMC, then E is a Markov cipher.

proof.

Since EC is a CMC, it follows that

Pr(∆Cc1 = γ|∆Cc0 = β, c0) = Pr(∆Cc1 = γ|∆Cc0 = β).

We have that c̃0 = φ(c0)⊕C β, and we can write c1 and c̃1 in terms of the round function
RC , given the round key k:

Pr(RC(φ(c0), φ(k))⊕RC(φ(c0)⊕C β, φ(k)) = γ|∆Cc0 = β, c0) =

Pr(RC(φ(c0), φ(k))⊕C RC(φ(c0)⊕C β, φ(k)) = γ|∆Cc0 = β).

Clearly, from the previous equation, we conclude that expression RC(φ(c0), φ(k)) ⊕C
RC(φ(c0)⊕C β, φ(k)) does not actually depend on c0 when k is uniformly random, thus,
we can write FKC(β) = RC(φ(c0), φ(k))⊕C RC(φ(c0)⊕C β, φ(k)). Now, considering E
and R, we can write

Pr(∆c1 = α|∆c0 = δ, c0) = Pr(R(c0, k)⊕R(c0 ⊕ δ, k) = α|∆c0 = δ, c0).

However, due to Lemma 4.2, we know it must be the case that FKC
∼←− FK. Since FKC

does not depend on c0 and it is a generalization of FK, then FK does not depend on c0,
and we can write

Pr(∆c1 = α|∆c0 = δ, c0) = Pr(FK(δ) = α|∆c0 = δ, c0) =

Pr(FK(δ) = α|∆c0 = δ) = Pr(∆c1 = α|∆c0 = δ).

Thus, E is a Markov cipher. �

Since we are working with real numbers, we can evaluate the average behavior of the
continuous differential given a fixed input difference β. As we will see later in Section 5.4.3,
this concept is very useful when we need to define an initial value for β such that we are able
to apply CDC.

89

DEFINITION 5.5 (β-average differential) Let F : Fn2 → Fm2 be a vectorial Boolean
function, and let FC : Bn → Bm such that FC

∼←− F . Given a fixed input difference
β ∈ Bn, then we define the β-average differential (β-AD) θ ∈ B as the average of the
output difference computed from all possible values of x ∈ Fn2 , i.e.,

θ =
1

m2n

m−1∑
i=0

∑
x∈Fn2

FiC(φ(x))⊕C FiC(φ(x)⊕C β). (5.1)

5.3.2 Continuous Chosen-Plaintext Attack (CCPA)

In this section, we propose a key-recovery attack using CDC. We consider an attack
model similar to a chosen-plaintext attack (CPA) with the difference that the attacker may
query a continuous generalization of the algorithm. We formalize this notion in the following
definition.

DEFINITION 5.6 (CCPA). Let E : Fn2 × Fm2 → Fn2 , be an encryption algorithm and
EC : Bn × Bm → Bn such that EC

∼←− E. Let C = E(P,K), where C,P ∈ Fn2 and
K ∈ Fm2 define the ciphertext, the plaintext and the key, respectively. In a Continu-
ous Chosen-Plaintext Attack (CCPA) against algorithm E, an attacker is able to make
q queries to E and EC , giving as input plaintexts P0, ..., Pq−1 ∈ Fn2 and arbitrary val-
ues β0, β1, ..., βq−1 ∈ Bn, obtaining q pairs of ciphertexts (C0, C̃0), ..., (Cq−1, C̃q−1) ∈
Fn2 × Fn2 , where Ci = E(Pi, K) and C̃i = σ(EC(φ(Pi)⊕C βi, φ(K))). From P0, ..., Pq−1

and (C0, C̃0), ..., (Cq−1, C̃q−1) the attacker objective is to devise an algorithmA to recover
the key K.

Note from Definition 5.6 that although the continuous generalization is being used to
compute the ciphertexts, the attacker does not observe any continuous bits under a CCPA,
i.e., like in a CPA the attacker only observes discrete 0 or 1 bits. Additionally, note that CPA
is a sub-case of CCPA, we formalize this fact in the following proposition.

PROPOSITION 5.1 If βi = (−1,−1, ...,−1) for all i = (0, 1, ..., q − 1), then the CCPA
simplifies to a standard CPA.

proof.

90

When βi = (−1,−1, ...,−1), we have φ(Pi)⊕C βi = φ(Pi). Therefore, we get

C̃i = σ(EC(φ(Pi), φ(K))),

and by Definition 4.3, we have C̃i = E(Pi, K) = Ci. �

Thus, our aim is to choose βi such that we can observe statistical patterns and mount
a key recovery algorithm. In the following sections, we show how to choose a useful β
experimentally, such that βi = β for i ∈ [0, 1, ..., q − 1]. Right now, we focus only on
the key recovery algorithm presented in Algorithm 3, where wh : Fn2 → Z is the hamming
weight function. The idea behind this algorithm is that if we choose a small enough β, than
the probability that the differences observed in the last round is zero is higher. Therefore,
we hope that, when decrypting with an incorrect last round subkey, we will not observe the
property mentioned above, and when decrypting with the correct last round subkey k, we
will have a low hamming weight for the difference δ = ∆cr−1. To conclude our discussion,
note that in the case of SPNs like AES and PRESENT the decryption of the last round can be
divided in independent parts for each S-Box. Therefore, we can use Algorithm 3 considering
independent blocks of bits.

Algorithm 3 Key recovery

1: INPUT: ciphertexts pairs (C0, C̃0), ..., (Cq−1, C̃q−1), a round function R : Fn2 ×K → Fn2 .
2: OUTPUT: the subkey for the last round
3: k∗ = 0
4: M = nq
5: for k ∈ K do
6: w = 0
7: for i ∈ {0, 1, ..., q − 1} do
8: δ = R−1(Ci, k)⊕R−1(C̃i, k)
9: w = w + wh(δ)

10: if w < M then
11: M = w
12: k∗ = k
13: return k∗

5.4 CASE STUDY: USING COLORED TO EVALUATE AES AND PRESENT

In this section, we use the framework ColoreD, presented in Section 5.3, to evaluate
and to compare AES and PRESENT. To do so, in Section 5.4.1 we apply ColoreD to our
toy cipher SP to demonstrate the use of the framework. Then, in Section 5.4.2 show how
ColoreD can be useful when designing new cryptographic primitives. To do that, we propose

91

3 weaker variations of AES, and we apply the framework to each one of them. Finally, in
Section 5.4.3, we compare AES and PRESENT with ColoreD, including a key recovery
attack using CDC.

5.4.1 Applying ColoreD to Simplified PRESENT

Our goal is to apply ColoreD to evaluated AES and PRESENT. To make our explanation
clearer, we first consider our toy cipher SP, defined in Section 5.2.1. Thus, let SP : F8

2×F8
2 →

F8
2 be the encryption function for SP, such thatC = SP (P,K) where P,C,K ∈ F8

2 represent
the plaintext, ciphertext, and key, respectively. Also, let SPC : B8 × B8 → B8 such that
SPC

∼←− SP . Then, to apply Algorithm 3 under a CCPA, by Definition 5.6 we need to define
plaintexts Pi and parameters βi for i ∈ {0, 1, ..., q − 1} to receive back, ciphertext pairs
(C0, C̃0), ..., (Cq−1, C̃q−1). For SP, we will consider all possible values for Pi and we define
β such that βi = β for all i.

We started by applying differential cryptanalysis to SP using Algorithm 3. In this case,
given an unknown key K ∈ F8

2, we have that Ci = SP (Pi, K) and C̃i = SP (Pi ⊕ ∆, K)

where ∆ = (δ0, δ1, ...δ7) is a single bit difference, i.e., there is µ ∈ {0, 1, ..., 7} such that
δj = 1 when j = µ and δj = 0 otherwise. Equivalently, we can define that Ci = SP (Pi, K)

and C̃i = σ(SPC(Pi ⊕C β, φ(K))), where β = (b0, b1, ..., b7) such that bj = 1 when j = µ

and bj = −1 otherwise, because, in this case, σ(SPC(Pi ⊕C β, φ(K))) = SP (Pi ⊕ ∆, K).
Experimentally, we verified that this attack was successful against 3 rounds of SP, recovering
all bits of 100 randomly generated keys when µ ∈ {0, 1, 2, 5, 6}.

Next, we applied ColoreD to extend the numbers of rounds in SP. To do that, we defined
a single bit continuous difference β = (b0, b1, ..., b7) such that bj > −1 when j = µ and
bj = −1 otherwise. We tested for all possible values of µ ∈ {0, 1, ..., 7} and for a predefined
set

bµ ∈ {0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25,

0.2, 0.15, 0.1, 0.05, 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55,

0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.97, 0.99, 0.995, 0.997, 0.999}.

For a total of 100 randomly generated keys (enough to get an average behavior), we were
able to recover the entire key in almost all cases for several combinations of parameters.
Table 5.1 summarizes the results.

The most important takeaway of Table 5.1 is that when the number of rounds grows (in
other words when the cipher gets stronger and more secure), we need bµ to be closer to−1 to
get a successful key recovery. For these cases, we also computed the β-AD (see Definition
5.5) using 210 keys and all possible plaintexts.

92

µ bµ rounds Number of fully recovered keys Avg error (in bits) β-AD
0 1 3 100 0.00 -0.015
1 1 3 100 0.00 -0.001
2 1 3 100 0.00 0.086
5 1 3 100 0.00 0.047
6 1 3 100 0.00 0.149
0 0.100 4 100 0.00 -0.091
3 0.100 4 100 0.00 -0.062
1 -0.250 5 100 0.00 -0.057
3 -0.550 6 99 0.04 -0.023
3 -0.750 7 97 0.06 -0.014
1 -0.850 8 99 0.02 -0.011
6 -0.950 9 98 0.08 -0.016
2 -0.970 10 92 0.20 -0.008
0 -0.990 11 96 0.10 -0.011
5 -0.997 12 96 0.12 -0.021
4 -0.999 13 97 0.12 -0.026

Table 5.1 – Best results found using Algorithm 3 against SP. For each set of parameters, we
used Algorithm 3 for 100 randomly selected keys. When bµ = 1, we have classic differences,
i.e., CDC reduces to differential cryptanalysis. Conversely, when bµ < 1, we have continuous
differences (ColoreD). Note that when the number of rounds grows, we need that bµ be closer
and closer to -1 to get a successful key recovery. Additionally, the β-AD for each case were
computed for 210 keys.

Furthermore, note from Table 5.1 that in general the β-AD is between −0.1 and −0.01.
In practice, we noticed that this is a very useful result, because it is very hard to test many
input differences since generating the inputs and executing Algorithm 3 is computationally
intensive. Conversely, estimating the β-AD is cheaper, thus, we can test many input differ-
ences until we find one that generates a β-AD between the desired intervals. We call this a
candidate difference, and to find it, we propose Algorithm 4.

5.4.2 Using ColoreD to Design Cryptographic Primitives

In this section, we show how our proposed framework can be useful when designing
cryptographic primitives. To do that, we will compare 4 different versions of AES using
ColoreD to understand which is stronger. First, we define these versions:

• Va - The S-box of AES is replaced by S-box (a) of Figure 5.6.

• Vb - The S-box of AES is replaced by S-box (b) of Figure 5.6.

• Vc - The S-box of AES is replaced by S-box (c) of Figure 5.6.

• Vd - The original AES.

93

Algorithm 4 Finding a candidate difference to apply CDC

1: INPUT: a position i, a function β(δ, i) that computes the β-AD given i and a difference
δ.

2: maxD = 1, minD = −1, δ = −0.1
3: θ = β(δ, i)
4: if β > −0.01 then
5: maxD = δ
6: δ = (δ +minD)/2
7: Go to line 3.
8: else if β < −0.1 then
9: minD = δ

10: δ = (δ +maxD)/2
11: Go to line 3.
12: else
13: return δ

S SSAES

(a)

SAES +163

(b)

SAES

(c)

Figure 5.6 – Three alternative (weaker) S-boxes for AES. In the case 5.6a, the 4-bit S-box
of PRESENT is used two times in parallel. In the case 5.6b, we have a bit rotation and a
constant addition. Case 5.6c is just the identity function.

Clearly, from these four versions, Vc is weaker because it is just the identity function,
not providing any diffusion or confusion. Also, Vd is stronger because the S-box of AES has
very good properties. In between, we have Va and Vb

We will compare these ciphers by computing the β-AD and applying Algorithm 4. We
considered all possible bit positions i = (0, 1, 2, ..., 127) and different number of rounds.
In these cases, the resulting difference δ of Algorithm 4 is very close to −1, therefore, to
make the comparison easier to visualize, we use the formula log10(δ + 1). The results are
presented in Figure 5.7. As expected, Figure 5.7 shows that Vc is the weakest version and Vd
is the strongest. Additionally, we can see that Va is stronger than Vb, thus, using PRESENT’s
S-box is better than combining a rotation and a constant addition.

Also, in Figure 5.7 is possible to note that removing the S-box of AES (Vc) is worse than
reducing the number of rounds to 5 in the original AES (Vd). Similarly, according to this

94

metric, changing the S-box of AES to use the S-box of PRESENT is equivalent to reducing
the number of rounds to 8, in terms of security. Clearly, these kinds of comparisons provided
by the framework ColoreD can be really useful when designing new algorithms, helping the
designer to choose new layers or increase the number of rounds of the algorithm.

5.4.3 Evaluating AES and PRESENT

We start by using Algorithm 4 to compute a candidate difference to PRESENT. We con-
sidered all possible bit positions i = (0, 1, 2, ..., 63). Additionally, we executed Algorithm 4
when considering PRESENT with reduced and extended number of rounds. More precisely,
we considered 10 up to 37 rounds of PRESENT. The results are presented in Figure 5.8.
Comparing to Figure 5.7d, these results suggests that PRESENT needs 37 rounds to achieve
the same security as AES.

Next, we applied CDC to AES and PRESENT. Notice from Figures 5.7d and 5.8 that the
candidate differences do not change significantly when varying the bit position. Therefore,
we defined a continuous difference only at the first bit, i.e., we defined β = (b0,−1,−1,

...,−1) such that b0 6= −1. For PRESENT, using Algorithm 4, we obtained a value of
b0 ≈ −0.9999999997 that lead to a β-average differential of −0.015. From that, we exe-
cuted the attack of Algorithm 3 considering q = 25 as an initial value, and then increasing q
until we were able to recover the entire subkey of the last round. We executed this procedure
for different values of b0 and the results are listed in Table 5.2. We should note that a con-
tinuous generalization is way slower than the original algorithm. In the case of PRESENT,
the continuous generalization is 27 times slower. Therefore, we need to add 4.8 to the time
complexity when compared to data complexity.

In the case of AES-128, we also defined a continuous difference at the first bit, i.e., we
defined β = (b0,−1,−1, ...,−1) such that b0 6= −1. Using Algorithm 4, we get the value of
b0 ≈ −0.99999999999, which have β-average differential of −0.0138, then we executed the
attack. We present the results for AES-128 in Table 5.3. In the case of AES, the continuous
generalization is 5743 times slower. Therefore, we need to add 12.5 to the time complexity
when compared to data complexity.

As stated, the proposed attack recovers the last subkey from both AES and PRESENT.
Is straightforward to recover the original key in the case of AES because, as presented in
Section 2.3.4, the key schedule is invertible. For PRESENT, we are missing 15 bits from
the key schedule internal state. Therefore, to find the original key, we just need to perform
an exhaustive search, inverting the key schedule to a testable initial key. Using plaintext-
ciphertext pairs is easy to find the correct key. Thus, the time complexity of the attack
increases by 15 bits in Table 5.2.

Figure 5.9 compares the attacks against AES and PRESENT. We note that the values of

95

(a) Va: Using PRESENT S-box.

(b) Vb: Using rotation S-box.

(c) Vc: Using identity S-box.

(d) Vd: AES.

Figure 5.7 – Candidate differences computed using Algorithm 4 with AES and the proposed
variations for different bits and number of rounds. To make a good visualization the col-
ors represent the result of the formula log10(1 + δ), where δ is the output of Algorithm 4.
Therefore, warmer colors indicate a more secure algorithm.

96

Figure 5.8 – Candidate differences computed using Algorithm 4 with PRESENT. To make a
good visualization the colors represent the result of the formula log10(1 + δ), where δ is the
output of Algorithm 4. Therefore, warmer colors indicate a more secure algorithm.

Time complexity Data complexity b0 β-AD
- - -0.9999999999 -0.112000

14.8 10 -0.9999999997 -0.016809
15.8 11 -0.9999999995 -0.005666
17.8 13 -0.9999999993 -0.002699
17.8 13 -0.9999999991 -0.001870
18.8 14 -0.9999999989 -0.000901
18.8 14 -0.9999999987 -0.000892
20.8 16 -0.9999999985 -0.000652
20.8 16 -0.9999999983 -0.000470
21.8 17 -0.9999999981 -0.000306
22.8 18 -0.9999999979 -0.000298
22.8 18 -0.9999999977 -0.000267

- - -0.9999999975 -0.000181

Table 5.2 – Data and time complexity (in bits) for a successful key recovery attack against
PRESENT for different values of β. With these complexities, the attack correctly finds all
the key bits of the last round subkey of PRESENT. The entries with empty complexity mean
that the attack did not work even when considering q = 218 ciphertexts.

97

Time complexity Data complexity b0 β-AD
24.5 12 -0.999999999997 -0.146465
21.5 9 -0.999999999990 -0.015860
21.5 9 -0.999999999983 -0.005361
21.5 9 -0.999999999976 -0.002031
22.5 10 -0.999999999969 -0.000854
22.5 10 -0.999999999962 -0.000532
22.5 10 -0.999999999955 -0.000266
22.5 10 -0.999999999948 -0.000136
22.5 10 -0.999999999941 -0.000096
24.5 12 -0.999999999934 -0.000063
24.5 12 -0.999999999927 -0.000057
23.5 11 -0.999999999920 -0.000029
24.5 12 -0.999999999913 -0.000022
24.5 12 -0.999999999906 -0.000025
25.5 13 -0.999999999899 -0.000012
25.5 13 -0.999999999892 -0.000006

- - -0.999999999885 -0.000002

Table 5.3 – Data and time complexity (in bits) for a successful key recovery attack against
AES-128 for different values of β. With these complexities, the attack correctly finds all the
key bits of the last round subkey of AES-128. The entries with empty complexity mean that
the attack did not work even when considering q = 213 ciphertexts.

b0 are closer to −1 for AES for attacks with the same data complexity. We could interpret
this fact by saying that to attack AES with CDC, we need smaller differences to make the
attack work; therefore, we can say that AES is stronger than PRESENT.

98

−11.5 −11.0 −10.5 −10.0 −9.5 −9.0

10
12

14
16

18

log10(1 + b0)

D
at

a
co

m
pl

ex
ity

 in
 b

its

AES

PRESENT

PRESENT

AES

Figure 5.9 – Data complexity for a successful key recovery attack against AES and
PRESENT b0.

99

Part III

Cryptanalysis of ARX Algorithms

100

IMPROVED DIFFERENTIAL-LINEAR
CRYPTANALYSIS OF CHACHA

6.1 INTRODUCTION

Symmetric cryptographic primitives are heavily used in a variety of contexts. In partic-
ular, ARX-based design is a major building block of modern ciphers due to its efficiency in
software. ARX stands for addition, word-wise rotation, and XOR. Indeed, ciphers follow-
ing this framework are composed of those operations and avoid the computation of smaller
S-boxes through look-up tables. The ARX-based design approach is used to design stream
ciphers (e.g., Salsa20 [8] and ChaCha [10]), efficient block ciphers (e.g., Sparx [46]), cryp-
tographic permutations (e.g., Sparkle [63]) and hash functions (e.g., Blake [47]).

ARX-based designs are not only efficient but provide good security properties. The al-
gebraic degree of ARX ciphers is usually high after only a very few rounds as the carry bit
within one modular addition already reaches almost maximal degree. For differential and
linear attacks, ARX-based designs show weaknesses for a small number of rounds. How-
ever, after some rounds the differential and linear probabilities decrease rapidly. Thus, the
probabilities of differentials and the absolute correlations of linear approximations decrease
very quickly as we increase the number of rounds. In fact, this property led to the long-trail
strategy for designing ARX-based ciphers [46].

Ciphers and primitives based on Salsa20 and ChaCha families are heavily used in prac-
tice. In 2005, Bernstein proposed the stream cipher Salsa20 [8] as a contender to the eS-
TREAM [9], the ECRYPT Stream Cipher Project. As outlined by the author, Salsa20 is an
ARX type family of algorithms which can be ran with several number of rounds, including
the well-known Salsa20/12 and Salsa20/8 versions. Later, in 2008, Bernstein proposed some
modifications to Salsa20 to provide better diffusion per round and higher resistance to crypt-
analysis. These changes originated a new stream cipher, a variant which he called ChaCha
[10]. Although Salsa20 was one of the winners of the eSTREAM competition, ChaCha has
received much more attention through the years. Nowadays, we see the usage of this cipher
in several projects and applications.

ChaCha, along with Poly1305 [11], is in one of the cipher suits of the new TLS 1.3
[12], which has been used by Google on both Chrome and Android. Not only has ChaCha
been used in TLS but also in many other protocols such as SSH, Noise, and S/MIME 4.0.
In addition, the RFC 7634 proposes the use of ChaCha in IKE and IPsec. ChaCha has been
used not only for encryption, but also as a pseudo-random number generator in any operating

101

6

system running Linux kernel 4.8 or newer [13, 14]. Additionally, ChaCha has been used
in several applications such as WireGuard (VPN) (see [15] for a huge list of applications,
protocols and libraries using ChaCha).

Related Work. Since ChaCha is so heavily used, it is very important to understand its
security. Indeed, the cryptanalysis of ChaCha is well understood and several authors studied
its security [19, 24, 17, 64, 23, 65, 18, 66, 67, 21, 22, 68, 20, 69], which show weaknesses in
the reduced round versions of the cipher.

The cryptanalysis of Salsa20 was introduced by Crowley [17] in 2005. Crowley de-
veloped a differential attack against Salsa20/5, namely the 5-round version of Salsa20, and
received the $1000 prize offered by Bernstein for the most interesting Salsa20 cryptanalysis
in that year. In 2006, Fischer et al. [18] improved the attack against Salsa20/5 and presented
their attack against Salsa20/6.

One of the most important cryptanalyses in this regard was proposed by Aumasson et
al. at FSE 2008 [19] with the introduction of Probabilistic Neutral Bits (PNBs), showing
attacks against Salsa20/7, Salsa20/8, ChaCha20/6 and ChaCha20/7. After that, several au-
thors proposed small enhancements on the attack of Aumasson et al. The work by Shi et
al. [20] introduced the concept of Column Chaining Distinguisher (CCD) to achieve some
incremental advancements over [19] for both Salsa and ChaCha.

Maitra, Paul, and Meier [21] studied an interesting observation regarding reversal round
of Salsa, but no significant cryptanalytic improvement could be obtained using this method.
Maitra [22] used a technique of Chosen IVs to obtain certain improvements over existing
results. Dey and Sarkar [23] showed how to choose values for the PNB to further improve
the attack.

In a paper presented in FSE 2017, Choudhuri and Maitra [24] significantly improved
the attacks by considering the mathematical structure of both Salsa and ChaCha to find dif-
ferential characteristics with much higher correlations. Recently, Coutinho and Souza [70]
proposed new multi-bit differentials using the mathematical framework of Choudhuri and
Maitra. In Crypto 2020, Beierle et al. [26] proposed improvements to the framework of
differential-linear cryptanalysis against ARX-based designs and further improved the attacks
against ChaCha.

Our Contribution. In this chapter, we provide a new framework to find linear approx-
imations for ARX ciphers. Using this framework, we provide the first explicitly derived
linear approximations for 3 and 4 rounds of ChaCha. Exploring these linear approxima-
tions, we can improve the attacks for 6 and 7 rounds of ChaCha. Additionally, we present
new differentials for 3 and 3.5 rounds of ChaCha. We summarize our findings along with
other significant attacks for comparison in Table 6.1. Also, we verified all theoretical results
with random experiments. We provide the source code to reproduce this work in Github

102

Rounds Time Complexity Data Complexity Reference
4 26 26 [24]

4.5 212 212 [24]
5 216 216 [24]

2139 230 [19]
2136 228 [20]
2130 235 [24]

6 2127.5 237.5 [24]
2116 2116 [24]

2102.2 256 [70]
277.4 258 [26]
275 275 [70]
251 251 This work
2248 227 [19]

2246.5 227 [20]
7 2238.9 296 [22]

2237.7 296 [24]
2231.9 250 [70]
2230.86 248.8 [26]
2224 2224 This work

Table 6.1 – The best attacks against ChaCha with 256-bit key.

<https://github.com/MurCoutinho/cryptanalysisChaCha.git>, which is, for the best of our
knowledge, the first implementation of cryptanalysis against ChaCha available to the public.
We should note that it is possible to find attacks with less complexity for related key attacks
or related cipher attacks, but we do not consider them in this work.

6.2 REVIEW OF CRYPTANALYSIS OF CHACHA

In this section, we review the work presented in [24] and in [70]. In these works, the au-
thors developed the theory for selecting specific combination of bits to give high correlations
for ChaCha. To do that, in both papers the authors analyzed the QRF directly, representing
each equation in its bit level. In the following, we change the original notation of the referred
papers to create a notation that will be better for the purposes of this work.

Thus, let Θ(x, y) = x ⊕ y ⊕ (x + y) be the carry function of the sum x + y. Define
Θi(x, y) as the i-th bit of Θ(x, y). By definition, we have Θ0(x, y) = 0. We can write the

103

https://github.com/MurCoutinho/cryptanalysisChaCha.git

QRF equations of ChaCha (Eq. 2.6) as

x
′(m−1)
a,i = x

(m−1)
a,i ⊕ x(m−1)

b,i ⊕Θi(x
(m−1)
a , x

(m−1)
b)

x
′(m−1)
d,i+16 = x

(m−1)
d,i ⊕ x′(m−1)

a,i

x
′(m−1)
c,i = x

(m−1)
c,i ⊕ x′(m−1)

d,i ⊕Θi(x
(m−1)
c , x

′(m−1)
d)

x
′(m−1)
b,i+12 = x

(m−1)
b,i ⊕ x′(m−1)

c,i

x
(m)
a,i = x

′(m−1)
a,i ⊕ x′(m−1)

b,i ⊕Θi(x
′(m−1)
a , x

′(m−1)
b)

x
(m)
d,i+8 = x

′(m−1)
d,i ⊕ x(m)

a,i

x
(m)
c,i = x

′(m−1)
c,i ⊕ x(m)

d,i ⊕Θi(x
′(m−1)
c , x

(m)
d)

x
(m)
b,i+7 = x

′(m−1)
b,i ⊕ x(m)

c,i

(6.1)

Inverting these equations, we get

x
′(m−1)
b,i = x

(m)
b,i+7 ⊕ x

(m)
c,i (6.2)

x
′(m−1)
c,i = x

(m)
c,i ⊕ x

(m)
d,i ⊕Θi(x

′(m−1)
c , x

(m)
d) (6.3)

x
′(m−1)
d,i = x

(m)
a,i ⊕ x

(m)
d,i+8 (6.4)

x
′(m−1)
a,i = x

(m)
a,i ⊕ x

(m)
b,i+7 ⊕ x

(m)
c,i ⊕Θi(x

′(m−1)
a , x

′(m−1)
b) (6.5)

x
(m−1)
b,i = L(m)

b,i ⊕Θi(x
′(m−1)
c , x

(m)
d) (6.6)

x
(m−1)
c,i = L(m)

c,i ⊕Θi(x
′(m−1)
c , x

(m)
d)⊕Θi(x

(m−1)
c , x

′(m−1)
d) (6.7)

x
(m−1)
d,i = L(m)

d,i ⊕Θi(x
′(m−1)
a , x

′(m−1)
b) (6.8)

x
(m−1)
a,i = L(m)

a,i ⊕Θi(x
′(m−1)
a , x

′(m−1)
b)⊕

Θi(x
′(m−1)
c , x

(m)
d)⊕Θi(x

(m−1)
a , x

(m−1)
b),

(6.9)

where

L(m)
a,i = x

(m)
a,i ⊕ x

(m)
b,i+7 ⊕ x

(m)
b,i+19 ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i (6.10)

L(m)
b,i = x

(m)
b,i+19 ⊕ x

(m)
c,i ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i (6.11)

L(m)
c,i = x

(m)
a,i ⊕ x

(m)
c,i ⊕ x

(m)
d,i ⊕ x

(m)
d,i+8 (6.12)

L(m)
d,i = x

(m)
a,i ⊕ x

(m)
a,i+16 ⊕ x

(m)
b,i+7 ⊕ x

(m)
c,i ⊕ x

(m)
d,i+24 (6.13)

LEMMA 6.1 It holds that x(m−1)
l,0 = L(m)

l,0 , for l ∈ {a, b, c, d}.

proof.

This result follows directly from Eqs. (6.6)-(6.9) by using the fact that Θ0(x, y) = 0. �

From these equations, we can derive the following lemma:

104

LEMMA 6.2 (Lemma 3 of [24]) Let

∆A(m) = ∆x
(m)
α,0 ⊕∆x

(m)
β,7 ⊕∆x

(m)
β,19 ⊕∆x

(m)
γ,12 ⊕∆x

(m)
δ,0

∆B(m) = ∆x
(m)
β,19 ⊕∆x

(m)
γ,0 ⊕∆x

(m)
γ,12 ⊕∆x

(m)
δ,0

∆C(m) = ∆x
(m)
δ,0 ⊕∆x

(m)
γ,0 ⊕∆x

(m)
δ,8 ⊕∆x

(m)
α,0

∆D(m) = ∆x
(m)
δ,24 ⊕∆x

(m)
α,16 ⊕∆x

(m)
α,0 ⊕∆x

(m)
γ,0 ⊕∆x

(m)
β,7

After m rounds of ChaCha, the following holds:

∣∣ε(A(m))

∣∣ =

∣∣∣∣ε(x(m−1)
α,0

)∣∣∣∣ , ∣∣∣ε(B(m))

∣∣∣ =

∣∣∣∣ε(x(m−1)
β,0

)∣∣∣∣
and ∣∣∣ε(C(m))

∣∣∣ =

∣∣∣∣ε(x(m−1)
γ,0

)∣∣∣∣ , ∣∣∣ε(D(m))

∣∣∣ =

∣∣∣∣ε(x(m−1)
δ,0

)∣∣∣∣ .
The tuples (α, β, γ, δ) vary depending on whether m is odd or even.

• Case I. m is odd:

(α, β, γ, δ) ∈ {(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)}.

• Case II. m is even:

(α, β, γ, δ) ∈ {(0, 5, 10, 15), (1, 6, 11, 12), (2, 7, 8, 13), (3, 4, 9, 14)}.

proof.
See [24]. �

LEMMA 6.3 (Lemma 9 of [24]) For one active input bit in round m − 1 and multiple
active output bits in round m, the following holds for i > 0.

x
(m−1)
b,i = L(m)

b,i ⊕ x
(m)
d,i−1, w.p. 1

2

(
1 + 1

2

)
x

(m−1)
a,i = L(m)

a,i ⊕ x
(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−2 ⊕ x

(m)
d,i+6, w.p. 1

2

(
1 + 1

24

)
x

(m−1)
c,i = L(m)

c,i ⊕ x
(m)
a,i−1 ⊕ x

(m)
d,i+7 ⊕ x

(m)
d,i−1, w.p. 1

2

(
1 + 1

22

)
x

(m−1)
d,i = L(m)

d,i ⊕ x
(m)
c,i−1 ⊕ x

(m)
b,i+6, w.p. 1

2

(
1 + 1

2

)
proof.

105

See [24]. �

Finally, using Lemma 6.2 and Lemma 6.3, it is possible to find linear approximations for
two rounds of ChaCha.

LEMMA 6.4 (Lemma 10 of [24]) The following holds with probability 1
2

(
1 + 1

2

)
x

(3)
11,0 = x

(5)
0 [0, 8, 16, 24]⊕ x(5)

1,0 ⊕ x
(5)
3,0 ⊕ x

(5)
4,7 ⊕ x

(5)
4 [14, 15]⊕ x(5)

5 [7, 19]⊕
x

(5)
8 [0, 7, 8]⊕ x(5)

9,12 ⊕ x
(5)
11,0 ⊕ x

(5)
12 [0, 24]⊕ x(5)

13,0 ⊕ x
(5)
15 [0, 8].

proof.

See [24]. �

Recently, Coutinho and Souza [70] found linear approximations with fewer terms using
the same techniques.

LEMMA 6.5 (Lemma 5 of [70]) When m is odd, each of the following also holds with
probability 1

2
(1 + 1

2
)

x
(m−2)
0,0 ⊕ x(m−2)

5,0 = x
(m)
0,0 ⊕ x

(m)
2,0 ⊕ x

(m)
4,7 ⊕ x

(m)
4,19 ⊕ x

(m)
5,26 ⊕ x

(m)
8,12 ⊕ x

(m)
9,7 ⊕

x
(m)
9,19 ⊕ x

(m)
10,0 ⊕ x

(m)
12,0 ⊕ x

(m)
13,6 ⊕ x

(m)
13,7 ⊕ x

(m)
14,0 ⊕ x

(m)
14,8

x
(m−2)
1,0 ⊕ x(m−2)

6,0 = x
(m)
1,0 ⊕ x

(m)
3,0 ⊕ x

(m)
5,7 ⊕ x

(m)
5,19 ⊕ x

(m)
6,26 ⊕ x

(m)
9,12 ⊕ x

(m)
10,7⊕

x
(m)
10,19 ⊕ x

(m)
11,0 ⊕ x

(m)
13,0 ⊕ x

(m)
14,6 ⊕ x

(m)
14,7 ⊕ x

(m)
15,0 ⊕ x

(m)
15,8

x
(m−2)
2,0 ⊕ x(m−2)

7,0 = x
(m)
0,0 ⊕ x

(m)
2,0 ⊕ x

(m)
6,7 ⊕ x

(m)
6,19 ⊕ x

(m)
7,26 ⊕ x

(m)
8,0 ⊕ x

(m)
10,12⊕

x
(m)
11,7 ⊕ x

(m)
11,19 ⊕ x

(m)
12,0 ⊕ x

(m)
12,8 ⊕ x

(m)
14,0 ⊕ x

(m)
15,6 ⊕ x

(m)
15,7

x
(m−2)
3,0 ⊕ x(m−2)

4,0 = x
(m)
1,0 ⊕ x

(m)
3,0 ⊕ x

(m)
4,26 ⊕ x

(m)
7,7 ⊕ x

(m)
7,19 ⊕ x

(m)
8,7 ⊕ x

(m)
8,19⊕

x
(m)
9,0 ⊕ x

(m)
11,12 ⊕ x

(m)
12,6 ⊕ x

(m)
12,7 ⊕ x

(m)
13,0 ⊕ x

(m)
13,8 ⊕ x

(m)
15,0

proof.

See [70]. �

In [24], the authors showed that using as ID a single bit at x(0)
13,13 and OD at x(3)

11,0, it
is possible to obtain εd = −0.0272 ≈ − 1

25.2
, experimentally. And from Lemma 6.2 it is

possible to extend to a 4-round differential-linear correlation with εL = 1 when the OD is
x

(4)
1,0 ⊕ x

(4)
11,0 ⊕ x

(4)
12,8 ⊕ x

(4)
12,0. Further, it is possible to extend to a 5-round differential-linear

106

correlation using the last equation from Lemma 6.4 with probability 1
2

(
1 + 1

2

)
. This gives a

total differential-linear 5th round correlation of εd · ε2
L ≈ −0.0068 = − 1

27.2
. This leads to a 5

round distinguisher with complexity approximately 216.

Extending the linear approximation for 3 rounds comes at a cost. As discussed prior to
the above lemma, for ChaCha, setting i = 0 in Lemma 6.2 allows linear approximation of
probability 1 for LSB variables. The cost is thus determined by the non-LSB variables. A
simple count of the non-LSB variables in the form (Variable Type, # non-LSB occurrence)
gives (xa, 3) , (xb, 5) , (xc, 3) , and (xd, 2) . Now, using the probabilities of Lemma 6.3 and
Lemma 6.4, the linear correlation is εL = 1/21+3·4+5·1+3·2+2·1 = 2−26. This leads to a 6-
round correlation of ε2

Lεd ≈ 1
257.2

. The distinguisher for this correlation has a complexity of
2116.

In [70], the authors used Lemma 6.5 to derive a distinguisher for 6 rounds. To do that,
they found a differential with correlation εd = 0.00048 for (a, b) = (3, 4) when the input
difference is given by ∆x

(0)
14,6 = 1, and 0 for all remaining bits. Therefore, expanding for 6

rounds from Lemma 6.5 with weights 4, 1, 2, 1 for xa, xb, xc and xd, respectively, they got
εL = 1/21+0·4+3·1+3·2+3·1 = 2−13. Then we have εdε2

L ≈ 2−37.02, which leads to an attack
against 6 rounds of ChaCha with complexity 275. This is the currently best known 6-round
attack on ChaCha.

6.3 IMPROVED LINEAR APPROXIMATIONS FOR ARX PRIMITIVES

The challenge of finding good linear approximations in ARX-based designs comes from
the addition operation, which is responsible for the non-linearity of the design. In 2003,
Wallén [42] published a very important paper where a mathematical framework for finding
linear approximations of addition modulo 2n was developed. Since then, several authors
used this technique to find linear approximations in ARX-based designs [24].

Therefore, as before, let Θ(x, y) = x ⊕ y ⊕ (x + y) be the carry function of the sum
x + y. Define Θi(x, y) as the i-th bit of Θ(x, y). By definition, we have Θ0(x, y) = 0.
Using Theorem 3 of [42], we can generate all possible linear approximations with a given
correlation. In particular, we will use the following linear approximations:

Pr(Θi(x, y) = yi−1) =
1

2

(
1 +

1

2

)
, i > 0 (6.14)

and
Pr(Θi(x, y)⊕Θi−1(x, y) = 0) =

1

2

(
1 +

1

2

)
, i > 0. (6.15)

In previous works of cryptanalysis of ARX ciphers, authors concentrated in finding ap-

107

proximations for particular bits in one round and then repeating the same equations to expand
the linear approximation to further rounds (see [24] and [70] for some examples). However,
by combining Eqs. 6.14 and 6.15 when attacking ARX ciphers, we can create a strategy to
improve linear approximations when considering more rounds. The main idea is that when
using Eq. 6.14 in one round, we will create consecutive terms that can be expanded together
using Eq. 6.15.

For example, consider the sum z = x + y. If we want a linear approximation for the bit
z7, we can use Eq. 6.14 to obtain z7 = x7 ⊕ y7 ⊕ Θ7(x, y) = x7 ⊕ y7 ⊕ y6 with probability
0.75. Since the XOR operation will not change the indexes and the rotation will probably
keep y6 and y7 adjacent, we can use Eq. 6.15 in the subsequent round to cancel out the non-
linear terms rather than expanding them, leading to a linear equation with higher correlation
and fewer terms to be expanded further. Next, we will use this technique to find new linear
approximations for ChaCha.

6.3.1 Linear Approximations for QRchacha

The first step is to find linear approximations for the QRF of ChaCha. Of course, we
already know some of them from previous work (Section 6.2). However, here, we consider
adjacent bits and several other combinations that cancel out non-linear terms or use Eq.
(6.15). At first glance, these results may seem innocuous, but they prove themselves useful
when deriving linear approximations for multiple rounds of ChaCha.

We start with a better linear approximation for x(m−1)
a,i .

LEMMA 6.6 The following holds for i > 0

x
(m−1)
a,i = L(m)

a,i ⊕ x
(m)
b,i+6 ⊕ x

(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−1, w.p. 1

2

(
1 + 1

23

)
.

proof.

From Eq. (6.9) we have

x
(m−1)
a,i = L(m)

a,i ⊕Θi(x
′(m−1)
a , x

′(m−1)
b)⊕Θi(x

′(m−1)
c , x

(m)
d)⊕Θi(x

(m−1)
a , x

(m−1)
b).

Using Eq. (6.14) and the Piling-up Lemma, we can write

x
(m−1)
a,i = L(m)

a,i ⊕ x
′(m−1)
b,i−1 ⊕Θi(x

′(m−1)
c , x

(m)
d)⊕ x(m−1)

b,i−1 ,

108

with probability 1
2

(
1 + 1

22

)
. Using Eq. (6.6), we get

x
(m−1)
a,i = L(m)

a,i ⊕ x
′(m−1)
b,i−1 ⊕Θi(x

′(m−1)
c , x

(m)
d)⊕ L(m)

b,i−1 ⊕Θi−1(x′(m−1)
c , x

(m)
d).

Using the approximation of Eq. (6.15) and the Piling-up Lemma, we can write

x
(m−1)
a,i = L(m)

a,i ⊕ x
′(m−1)
b,i−1 ⊕ L

(m)
b,i−1,

with probability 1
2

(
1 + 1

23

)
. Finally, using Eqs. (6.2) and (6.11), we get

x
(m−1)
a,i = L(m)

a,i ⊕ x
(m)
b,i+6 ⊕ x

(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−1,

which completes the proof. �

LEMMA 6.7 For two active input bits in round m − 1 and multiple active output bits in
round m, the following holds for i > 0

x
(m−1)
λ,i ⊕ x(m−1)

λ,i−1 = L(m)
λ,i ⊕ L

(m)
λ,i−1, w.p.

1

2

(
1 +

1

2σ

)
,

where (λ, σ) ∈ {(a, 3), (b, 1), (c, 2), (d, 1)}.

proof.

This proof follows directly from Eqs. (6.6)-(6.9) using the approximation of Eq. (6.15)
and the Piling-up Lemma. �

LEMMA 6.8 Suppose that (λ, σ) ∈ {(i, i−2), (i−1, i−1)}, i > 1. Then for three active
input bits in round m− 1 and multiple active output bits in round m, the following holds

x
(m−1)
b,λ ⊕ x(m−1)

c,i ⊕ x(m−1)
c,i−1 = L(m)

b,i−1 ⊕ L
(m)
c,i ⊕ L

(m)
c,i−1 ⊕ x

(m)
d,σ , w.p.

1

2

(
1 +

1

22

)
.

proof.

Using Eq. (6.6) and Eq. (6.7), we get

x
(m−1)
b,λ ⊕ x(m−1)

c,i ⊕ x(m−1)
c,i−1 = L(m)

b,λ ⊕ L
(m)
c,i ⊕ L

(m)
c,i−1 ⊕Θλ(x

′(m−1)
c , x

(m)
d)⊕

Θi(x
′(m−1)
c , x

(m)
d)⊕Θi(x

(m−1)
c , x

′(m−1)
d)⊕

Θi−1(x
′(m−1)
c , x

(m)
d)⊕Θi−1(x

(m−1)
c , x

′(m−1)
d).

109

Canceling out common factors and using the approximation of Eq. (6.15), we can write

x
(m−1)
b,λ ⊕ x(m−1)

c,i ⊕ x(m−1)
c,i−1 = L(m)

b,i ⊕ L
(m)
c,i ⊕ L

(m)
c,i−1 ⊕Θσ+1(x

′(m−1)
c , x

(m)
d).

with probability 1
2

(
1 + 1

2

)
. Using Eq. (6.14), we get

x
(m−1)
b,λ ⊕ x(m−1)

c,i ⊕ x(m−1)
c,i−1 = L(m)

b,i ⊕ L
(m)
c,i ⊕ L

(m)
c,i−1 ⊕ x

(m)
d,σ ,

with probability 1
2

(
1 + 1

22

)
. �

LEMMA 6.9 For multiple active input bits in round m − 1 and multiple active output
bits in round m, the following linear approximations hold for ChaCha with probability

110

1
2

(
1 + 1

2k

)
:

x
(m−1)
b,i ⊕ x(m−1)

c,i = L(m)
b,i ⊕ L

(m)
c,i ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7 k = 1, i > 0 (6.16)

x
(m−1)
a,i ⊕ x(m−1)

b,i =
L(m)
a,i ⊕ L

(m)
b,i−1 ⊕ L

(m)
b,i ⊕

x
(m)
b,i+6 ⊕ x

(m)
c,i−1 ⊕ x

(m)
d,i−2

k = 3, i > 1 (6.17)

x
(m−1)
a,1 ⊕ x(m−1)

b,1 = L(m)
a,1 ⊕ L

(m)
b,0 ⊕ L

(m)
b,1 ⊕ x

(m)
b,7 ⊕ x

(m)
c,0 k = 2 (6.18)

x
(m−1)
a,i ⊕ x(m−1)

c,i =
L(m)
a,i ⊕ L

(m)
b,i−1 ⊕ L

(m)
c,i ⊕ x

(m)
a,i−1⊕

x
(m)
b,i+6 ⊕ x

(m)
c,i−1 ⊕ x

(m)
d,i−2 ⊕ x

(m)
d,i+7

k = 4, i > 1 (6.19)

x
(m−1)
a,1 ⊕ x(m−1)

c,1 =
L(m)
a,1 ⊕ L

(m)
b,0 ⊕ L

(m)
c,1 ⊕ x

(m)
a,0 ⊕

x
(m)
b,7 ⊕ x

(m)
c,0 ⊕ x

(m)
d,8

k = 3 (6.20)

x
(m−1)
a,i ⊕ x(m−1)

d,i = L(m)
a,i ⊕ L

(m)
d,i ⊕ L

(m)
b,i−1 k = 2, i > 1 (6.21)

x
(m−1)
a,i−1 ⊕

x
(m−1)
a,i ⊕ x(m−1)

c,i

=
L(m)
a,i−1 ⊕ L

(m)
a,i ⊕ L

(m)
c,i ⊕

x
(m)
d,i−2 ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7

k = 4, i > 1 (6.22)

x
(m−1)
a,i ⊕

x
(m−1)
a,i−1 ⊕ x

(m−1)
b,i

= L(m)
a,i ⊕ L

(m)
a,i−1 ⊕ L

(m)
b,i ⊕ x

(m)
d,i−2, k = 3, i > 1 (6.23)

x
(m−1)
b,i−1 ⊕

x
(m−1)
a,i ⊕ x(m−1)

d,i

= L(m)
a,i ⊕ L

(m)
d,i ⊕ x

(m)
d,i−1, k = 2, i > 1 (6.24)

x
(m−1)
b,i−1 ⊕ x

(m−1)
b,i ⊕

x
(m−1)
c,i−1 ⊕ x

(m−1)
c,i

=
L(m)
b,i−1 ⊕ L

(m)
b,i ⊕

L(m)
c,i−1 ⊕ L

(m)
c,i ,

k = 1, i > 1 (6.25)

x
(m−1)
a,i ⊕ x(m−1)

a,i−1 ⊕
x

(m−1)
b,i ⊕ x(m−1)

c,i−1

=
L(m)
a,i ⊕ L

(m)
a,i−1 ⊕ L

(m)
b,i ⊕

L(m)
c,i−1 ⊕ x

(m)
a,i−2 ⊕ x

(m)
d,i+6,

k = 3, i > 1 (6.26)

x
(m−1)
a,i ⊕ x(m−1)

a,i−1 ⊕
x

(m−1)
c,i−1 ⊕ x

(m−1)
d,i ⊕

x
(m−1)
d,i−1

=

L(m)
a,i−1 ⊕ L

(m)
a,i ⊕ L

(m)
c,i−1⊕

L(m)
d,i−1 ⊕ L

(m)
d,i ⊕ x

(m)
d,i−1⊕

x
(m)
a,i−2 ⊕ x

(m)
d,i+6,

k = 3, i > 2 (6.27)

proof.

The proof for each equation follows the same basic steps: (1) cancel common factors;
(2) cancel adjacent non-linear terms using Eq. (6.15), updating the probability using
the Piling-Up Lemma; (3) substitute the remaining non-linear terms using Eq. (6.14),
updating the probability using the Piling-Up Lemma. For completeness, we list all proofs
in Appendix A.2. �

111

6.3.2 Linear Approximations for Multiple Rounds of ChaCha

In this section, we use the proposed technique to construct several new linear approxima-
tions for the stream cipher ChaCha, which are useful to construct better distinguishers. We
developed a program (available in <https://github.com/MurCoutinho/cryptanalysisChaCha.
git>) that makes the process of finding linear approximations partly automatic. Our pro-
gram is capable of expanding the equations, and after statistically verifying the correlation,
it outputs the resulting linear approximation in LATEXcode.

We start using the result of Coutinho and Souza [70]. We only consider the equation for
x

(3)
3,0 ⊕ x

(3)
4,0 of Lemma 6.5, but the same reasoning could be applied to any other equation in

that lemma. Then, we have

x
(3)
3,0 ⊕ x

(3)
4,0 = x

(5)
1,0 ⊕ x

(5)
3,0 ⊕ x

(5)
4,26 ⊕ x

(5)
7,7 ⊕ x

(5)
7,19 ⊕ x

(5)
8,7 ⊕ x

(5)
8,19⊕

x
(5)
9,0 ⊕ x

(5)
11,12 ⊕ x

(5)
12,6 ⊕ x

(5)
12,7 ⊕ x

(5)
13,0 ⊕ x

(5)
13,8 ⊕ x

(5)
15,0

(6.28)

with probability 1
2

(
1 + 1

2

)
.

As presented in Section 6.2, to expand the equation to the 6th round, we could use only
Lemma 6.3 as proposed in [24]. In this case, we have weights 4, 1, 2, 1 for xa, xb, xc, and xd,
respectively, and a count of (xa, 0), (xb, 3), (xc, 3), and (xd, 3). Thus, the linear correlation
is εL = 1/21+0·4+3·1+3·2+3·1 = 2−13. However, we can do better with the new technique
proposed in Section 6.3. This leads us to the following lemma

LEMMA 6.10 The following linear approximation holds with probability 1
2

(
1 + 1

28

)
x

(3)
3,0 ⊕ x

(3)
4,0 = x

(6)
0 [0, 16]⊕ x(6)

1 [0, 6, 7, 11, 12, 22, 23]⊕ x(6)
2 [0, 6, 7, 8, 16, 18,

19, 24]⊕ x(6)
4 [7, 13, 19]⊕ x(6)

5 [7]⊕ x(6)
6 [7, 13, 14, 19]⊕

x
(6)
7 [6, 7, 14, 15, 26]⊕ x(6)

8 [0, 7, 8, 19, 31]⊕ x(6)
9 [0, 6, 12, 26]⊕

x
(6)
10 [0]⊕ x(6)

11 [6, 7]⊕ x(6)
12 [0, 11, 12, 19, 20, 30, 31]⊕

x
(6)
13 [0, 14, 15, 24, 26, 27]⊕ x(6)

14 [8, 25, 26]⊕ x(6)
15 [24].

proof.

See Appendix A.2. �

COMPUTATIONAL RESULT 6.1 The linear approximation of Lemma 6.10 holds com-
putationally with εL0 = 0.006942 ≈ 2−7.17. This correlation was verified using 238

random samples.

In [24], the authors remarked that an expansion of this method to 7 rounds would be

112

https://github.com/MurCoutinho/cryptanalysisChaCha.git
https://github.com/MurCoutinho/cryptanalysisChaCha.git

unlikely to be useful. Indeed, if we only apply Lemma 6.3 (which are the linear approxima-
tions proposed by Choudhuri and Maitra), we would have (xa, 14), (xb, 13), (xc, 9), (xd, 15).
Therefore, the aggregated correlation would be εL = 1/27+14·4+13·1+9·2+15·1 = 2−109. Thus,
using this linear expansion in a differential-linear attack would lead to a distinguisher with
complexity no less than 2436. However, using our new linear approximations, we can get a
much better result.

LEMMA 6.11 The following linear approximation holds with probability 1
2

(
1 + 1

255

)
x

(3)
3,0 ⊕ x

(3)
4,0 = x

(7)
0 [0, 3, 4, 7, 8, 11, 12, 14, 15, 18, 20, 27, 28]⊕ x(7)

1 [0, 5, 7, 8, 10,

11, 14, 15, 16, 22, 23, 24, 25, 27, 30, 31]⊕ x(7)
2 [6, 7, 9, 10, 16, 18, 19,

25, 26]⊕ x(7)
3 [6, 7, 8, 24]⊕ x(7)

4 [0, 2, 3, 5, 18, 22, 23, 27]⊕ x(7)
5 [1, 2,

9, 10, 13, 14, 18, 21, 22, 25, 29, 30]⊕ x(7)
6 [2, 3, 5, 7, 10, 11, 13, 14, 19,

22, 23, 27, 30, 31]⊕ x(7)
7 [1, 2, 13, 25, 26, 30, 31]⊕ x(7)

8 [8, 11, 13, 20,

25, 27, 28, 30, 31]⊕ x(7)
9 [2, 3, 6, 7, 14, 15, 18, 27]⊕ x(7)

10 [0, 3, 4, 8, 12,

13, 14, 18, 20, 27, 28, 30]⊕ x(7)
11 [6, 14, 15, 18, 19, 23, 24, 27]⊕

x
(7)
12 [3, 4, 6, 11, 13, 22, 23, 24, 26, 27, 30, 31]⊕ x(7)

13 [1, 2, 6, 7, 8, 10,

11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26]⊕ x(7)
14 [0, 6, 13, 14, 15, 16,

23, 24]⊕ x(7)
15 [16, 25, 26].

proof.

See Appendix A.2. �

COMPUTATIONAL RESULT 6.2 The linear approximation of Eq. (A.1) holds computa-
tionally with εL1 = 0.000301 ≈ 2−11.70. This correlation was verified using 242 random
samples.

COMPUTATIONAL RESULT 6.3 The linear approximation of Eq. (A.2) holds computa-
tionally with εL2 = 0.000100 ≈ 2−13.29. This correlation was verified using 242 random
samples.

COMPUTATIONAL RESULT 6.4 The linear approximation of Eq. (A.3) holds computa-
tionally with εL3 = 0.000051 ≈ 2−14.26. This correlation was verified using 242 random
samples.

113

COMPUTATIONAL RESULT 6.5 The linear approximation of Eq. (A.4) holds compu-
tationally with εL4 = 0.0625 ≈ 2−4. This correlation was verified using 238 random
samples.

6.4 IMPROVED DIFFERENTIAL-LINEAR ATTACKS AGAINST CHACHA

6.4.1 New Differentials

In this section, we present new differentials for 3.5 rounds of ChaCha. As in previous
works, these differential correlations were found experimentally. To find these correlations
we used the technique proposed by Beierle et al. at Crypto 2020 [26], and described in
Section 3.3. Here, the cipher is divided into the sub ciphers E1 covering 1 round and E2

covering 2.5 rounds to find a differential path for 3.5 rounds. Thus we want a particular
differential characteristic of the form

∆X(0) 1 round−−−−−→ ∆X(1) 2.5 rounds−−−−−−−→ ∆X(3.5).

The idea is to generate consistent ∆X(1) whose Hamming weight is minimized. In [26], the
authors showed that the following differential characteristic occurs with probability 2−5 on
average for the QRF of ChaCha

∆X(0) = (([]), ([]), ([]), ([i]))→ ∆X(1) = (([i+ 28]), ([i+ 31, i+ 23, i+ 11,

i+ 3]), ([i+ 24, i+ 16, i+ 4]),

([i+ 24, i+ 4])).

(6.29)

From there we computed ∆X(3.5) by generating random states X(1) and X ′(1) and sta-
tistically testing for correlations in particular bits of ∆X(3.5). We note that this procedure
is computationally intensive as some of the correlations are very small. For some bits, we
executed this procedure up to 250 pairs of random states in the first round. To achieve this
amount of computation we used 8 NVIDIA GPUs (RTX 2080ti). As in the referred paper,
we used i = 6. Also, we fixed the differential of Eq. (6.29) in the third column of the state
matrix. Table 6.2 shows the results1.

1Since the first version of this paper was published, several independent researches reviewed our results and
code. We would like to thank Juan C. G. Vásquez (juan.grados@tii.ae) for identifying an error in the code we
made publicly available. That error affected the results of this table in the first version of the paper. Dey et
al. [??] independently noticed that the results reported were not accurate and computed an alternative version
of this table. However, we were only able to reproduce the results reported for ∆x

(3.5)
0,0 and ∆x

(3.5)
13,0 . More

precisely, it seems that Dey et al. had inaccuracies of their own, caused by a small number of samples (237)
which is not enough to compute the true correlation for these bits. After correcting the code, we could not find

114

OD |εd|
∆x

(3.5)
0,0 0.00002797

∆x
(3.5)
13,0 0.000003032

Table 6.2 – New differentials after 3.5 rounds, starting from ∆X(1) in the third column of
the state matrix with i = 6 in Eq. (6.29).

6.4.2 Distinguishers

Using the linear approximations of Lemma 6.10 and Lemma 6.11, the differential corre-
lation εd = 0.00048 for (a, b) = (3, 4) described in [70], and the estimated correlations from
the Computational Results 6.1-6.5, we get εdε2

L0
≈ 2−25.37 which gives us a distinguisher for

6 rounds of ChaCha with complexity less than 251. Also, we get εd(εL0εL1εL2εL3εL4)
2 ≈

2−111.86 which gives us a distinguisher for 7 rounds of ChaCha with complexity less than
2224.

6.4.3 New Attack using Probabilistic Neutral Bits (PNBs)

We can implement new attacks for 7 rounds of ChaCha using the PNB technique by
considering the new differential correlation for ∆

(3.5)
13,0 presented in Table 6.2. Using Eq. (6.4)

it is easy to see that we have x(3.5)
13,0 = x

(4)
2,0 ⊕ x

(4)
13,8. Therefore, we consider ID given by

Eq. (6.29) with i = 6 and OD x
(4)
2,0 ⊕ x

(4)
13,8. Using γ = 0.35 we found 83 PNBs, and we

obtained εa = 0.000509. From that, we get an attack with data complexity of 264.59 and
time complexity 2237.59. As in [26], we have to repeat this attack 25 times on average. Thus,
the final attack has data complexity of 269.58 and time complexity, which does not improve
previous results. Bellow we list all PNBs:

PNB = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 20, 21, 31, 32, 33, 34, 35, 36, 39, 43, 47, 48,

49, 53, 54, 55, 59, 63, 67, 68, 69, 70, 71, 72, 73, 89, 90, 95, 99, 100, 103,

104, 105, 123, 124, 125, 126, 127, 128, 129, 130, 140, 141, 142, 152, 153, 154,

155, 156, 157, 158, 159, 168, 169, 170, 174, 175, 176, 184, 185, 186, 187, 188,

189, 190, 191, 192, 193, 210, 223, 248, 255).

significant results for ∆x
(3.5)
1,0 , ∆x

(3.5)
12,0 and ∆x

(3.5)
5,0 as previously reported, even considering 252 samples.

115

BIDIRECTIONAL LINEAR EXPANSIONS
TO IMPROVE DIFFERENTIAL-LINEAR
ATTACKS AGAINST SALSA20

7.1 INTRODUCTION

In this chapter, we propose a technique called Bidirectional Linear Expansions (BLE),
which can be used to improve attacks against Salsa20. More specifically, previous work
focused in finding significant differential correlations computationally by leveraging single
bit differentials and then expanding it forward using linear approximations. Instead, BLE can
be used to expand a single bit in both forward and backward directions. Because of that, in
the differential part, we need to find a correlation for a combination of bits instead of just one.
As we show, by applying the techniques proposed in Chapter 6 (also see [27]), we can make
the forward linear approximations very efficient, allowing us to present the first differential-
linear distinguisher against Salsa20/7 and Salsa20/8. Additionally, the differentials obtained
using BLE can be leveraged to improve key recovery attacks using PNB.

Using these techniques, we propose new key recovery attacks against Salsa20/7 and
Salsa20/8 (see Table 7.1) which significantly improve time complexity to 2122.63 (from 2137)
and 2219.56 (from 2243.93), respectively. Additionally, we propose the first differential linear
distinguisher for Salsa20/7 and Salsa20/8 with time and data complexity of 2108.98 and 2215.62,
respectively. We summarize our findings along with other significant attacks for comparison
in Table 7.1.

Organization of the chapter. This chapter is divided as follows: in Section 7.2, we
present a review of previous attacks against Salsa. In Section 7.3, we propose new differen-
tials and linear approximations for Salsa20. In Section 7.4, we present new attacks against
Salsa20, using Probabilistic Neutral Bits and differential-linear cryptanalysis.

116

7

Type Rounds Time Complexity Data Complexity Reference
2151 226 [19]
2148 224 [20]

PNB 7 2139 232 [24]
2137 261 [24]

2122.63 2103.61 Proposed
2251 231 [19]
2250 227 [20]

PNB 8 2244.9 296 [24]
2243.93 230.86 [23]
2219.56 2115.52 Proposed

Diff-lin Distinguisher 5 28 28 [24]
Diff-lin Distinguisher 6 232 232 [24]
Diff-lin Distinguisher 7 2108.98 2108.98 Proposed
Diff-lin Distinguisher 8 2215.62 2215.62 Proposed

Table 7.1 – The best attacks against Salsa20 with 256-bit key.

7.2 LINEAR APPROXIMATIONS FOR SALSA

In the following, we review the work of [24] using the notation of Coutinho and Souza
[27]. Let Θ(x, y) = x⊕y⊕(x+y) be the carry function of the sum x+y. Define Θi(x, y) as
the i-th bit of Θ(x, y). By definition, we have Θ0(x, y) = 0. We can write the QRF equations
of Salsa20 (Eq. 2.4) as

x
(m)
b,i = x

(m−1)
b,i ⊕ x(m−1)

a,i−7 ⊕ x
(m−1)
d,i−7 ⊕

Θi−7(x
(m−1)
d , x(m−1)

a)

(7.1)

x
(m)
c,i = x

(m−1)
c,i ⊕ x(m)

b,i−9 ⊕ x
(m−1)
a,i−9 ⊕

Θi−9(x(m−1)
a , x

(m)
b)

(7.2)

x
(m)
d,i = x

(m−1)
d,i ⊕ x(m)

c,i−13 ⊕ x
(m)
b,i−13⊕

Θi−13(x(m)
c , x

(m)
b)

(7.3)

x
(m)
a,i = x

(m−1)
a,i ⊕ x(m)

d,i−18 ⊕ x
(m)
c,i−18⊕

Θi−18(x
(m)
d , x(m)

c)

(7.4)

117

Inverting these equations and changing to positive indexes, we get:

x
(m−1)
a,i = L(m)

a,i ⊕Θi+14(x
(m)
d , x(m)

c) (7.5)

x
(m−1)
d,i = L(m)

d,i ⊕Θi+19(x(m)
c , x

(m)
b) (7.6)

x
(m−1)
c,i = L(m)

c,i ⊕Θi+23(x(m−1)
a , x

(m)
b)⊕

Θi+5(x
(m)
d , x(m)

c)

(7.7)

x
(m−1)
b,i = L(m)

b,i ⊕Θi+25(x
(m−1)
d , x(m−1)

a)⊕

Θi+7(x
(m)
d , x(m)

c)⊕Θi+12(x(m)
c , x

(m)
b),

(7.8)

where

L(m)
a,i = x

(m)
a,i ⊕ x

(m)
d,i+14 ⊕ x

(m)
c,i+14 (7.9)

L(m)
b,i = x

(m)
b,i ⊕ x

(m)
a,i+25 ⊕ x

(m)
d,i+7 ⊕ x

(m)
c,i+7⊕

x
(m)
d,i+25 ⊕ x

(m)
c,i+12 ⊕ x

(m)
b,i+12

(7.10)

L(m)
c,i = x

(m)
c,i ⊕ x

(m)
b,i+23 ⊕ x

(m)
a,i+23 ⊕ x

(m)
d,i+5 ⊕ x

(m)
c,i+5 (7.11)

L(m)
d,i = x

(m)
d,i ⊕ x

(m)
c,i+19 ⊕ x

(m)
b,i+19. (7.12)

From these equations, it is possible to derive the following result:

LEMMA 7.1 For Salsa20 QRF, the following linear approximations hold

Equation Probability Condition

x
(m−1)
a,18 = L(m)

a,18 1 -
x

(m−1)
a,i = L(m)

a,i ⊕ xc,i+13
1
2
(1 + 1

2
) i 6= 18

x
(m−1)
d,13 = L(m)

d,13 1 -
x

(m−1)
d,i = L(m)

d,i ⊕ xb,i+18
1
2
(1 + 1

2
) i 6= 13

x
(m−1)
c,9 = L(m)

c,9 ⊕ x
(m)
c,13

1
2
(1 + 1

2
) -

x
(m−1)
c,27 = L(m)

c,27 ⊕ x
(m)
b,17

1
2
(1 + 1

2
) -

x
(m−1)
c,i = L(m)

c,i ⊕ x
(m)
a,i+22

1
2
(1− 1

4
) i 6= 9, 27

x
(m−1)
b,7 = L(m)

b,7 ⊕ x
(m)
c,13⊕ 1

2
(1 + 1

4
) -

x
(m)
b,18

x
(m−1)
b,20 = L(m)

b,20 ⊕ x
(m)
a,12

1
2
(1− 1

4
) -

x
(m−1)
b,25 = L(m)

b,25 ⊕ x
(m)
d,17

1
2
(1− 1

4
) -

x
(m−1)
b,i = L(m)

b,i ⊕ x
(m)
a,i+24

1
2
(1− 1

8
) i 6= 7,

⊕x(m)
b,i+11 20, 25

proof.

118

See Lemmas 2 and 7 of [24]. �

7.3 BIDIRECTIONAL LINEAR EXPANSIONS TO DIFFERENTIAL-
LINEAR ATTACKS

In this section, we propose new differentials and linear approximations for Salsa20. As
we see in Section 7.4, combining these results, we can improve attacks against Salsa20.
This section is divided in three parts: in subsection 7.3.1, we propose a new technique to
construct differential-linear distinguishers for ARX ciphers, in subsection 7.3.2, we propose
a new differential reaching 5 rounds of Salsa, and in subsection 7.3.3, we propose new linear
approximations for Salsa.

7.3.1 Proposed technique

Previous work on the cryptanalysis of Salsa and ChaCha used a computational approach
to find significant correlations on the differential part of the attacks. To do so, authors con-
sidered an input differential ∆X(0) and used several random simulations to estimate a corre-
lation for a single bit ∆x

(m)
i,j . From this point, this single bit was expanded into several bits

using linear approximations, like in the following diagram:

∆X(0) ∆x
(m)
i,j

∆x
(m+1)
i1,j1

∆x
(m+1)
i2,j2

. . .

∆x
(m+1)
ip,jp

In this work, we propose a different approach. More precisely, we expand a single bit
in both forward and backward directions. Therefore, in the differential part, we need to find
a correlation for a combination of bits instead of just one. This approach leads to worst
differential correlations; however, it improves the linear correlations. Since the linear part
has a higher weight on the complexity of the attack, the proposed technique leads to better
results overall. We illustrate the proposed technique in the following diagram:

119

∆X(0) ∆x
(m+1)
i,j

∆x
(m+2)
i1,j1

∆x
(m+2)
i2,j2

. . .

∆x
(m+2)
ip,jp

∆x
(m)
r1,s1

∆x
(m)
r2,s2

. . .

∆x
(m)
rp,sp

7.3.2 Proposed differential for 5 rounds of Salsa

In this section, we present a new single bit differential correlation for 5 rounds of Salsa,
constructed by applying the technique proposed in the previous section. To do so, first, notice
from Eq. (7.1) that we can write

x
(5)
b,7 = x

(4)
b,7 ⊕ x

(4)
a,0 ⊕ x

(4)
d,0, (7.13)

with probability 1, where (a, b, d) ∈ {(0, 4, 12), (5, 13, 1), (10, 2, 6), (15, 7, 11)}. Using this
relationship, we find a correlation for a bit in the fifth round x(5)

b,7 by combining the correlation
of three other bits in the fourth round.

To achieve this result, we start from the single bit ID of ∆x
(0)
7,31 = 1, i.e.,

∆X(0) =

0 0 0 0

0 0 0 0x80000000

0 0 0 0

0 0 0 0

 ,

proposed by Aumasson et al. [19], which is the one that provides the highest correlations
presented in the literature. However, instead of relying on computational results only, we
expanded the first round theoretically and used the techniques proposed by Beierle et al. [26]
(see Section 3.3) to find differentials with amplified probabilities. To do so, note that when
dealing with differentials in an ARX cipher, we must consider three different operations. For
the XOR, the analysis is simple, since if Z = X ⊕ Y and Z ′ = X ′ ⊕ Y ′ then, ∆Z = ∆X ⊕
∆Y. Also, for the Rotation, if Z = X ≫ R and Z ′ = X ′≫ R then ∆Z = ∆X ≫ R.
For the Addition, however, things are trickier because it is a non-linear operation in the bits
of the arguments.

In this work, we solve this problem by applying the techniques proposed by Lipmaa and
Moriai on efficient algorithms for computing differential properties of addition [41]. In the
referred work, the authors define the Differential Probability of Addition (DPA) modulo 2n as
a triplet of two input and one output differences, denoted as (α, β → γ), where α, β, γ ∈ Fn2 ,

120

and is defined as

DP+(δ) = DP+(α, β → γ) :=

Pr
x,y

[(x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ].
(7.14)

One important question is how to find γ such that DP+(δ) is maximum given α and
β. In other words, we want to find DP+

max(α, β) := maxγ DP+(α, β → γ). In [41], the
authors provide two important algorithms to compute DP+

max(α, β). Specifically, Algorithm
3 of [41] returns all (α, β)-optimal output differences γ, and Algorithm 4 of [41] finds an
(α, β)-optimal γ in log-time.

Thus, starting from the ID given by ∆X(0), we propagated the differential using the
algorithms from [41] and chose the one that minimized the hamming weight, from this we
get:

Ψ = ∆X(1) =

0 0 0 0x00000000

0 0 0 0x80000000

0 0 0 0x00001000

0 0 0 0x40020000

 .

The probability that ∆X(0) leads to ∆X(1) is 2−1. To compute this probability, we used
Algorithm 2 of [41]. At this point, we used the strategy of Beierle et al. [26] (see Section
3.3) to find differentials with amplified probabilities. We may apply this technique because,
as with ChaCha, the QRF of Salsa is independently applied to each column in the first round.
Therefore, when the output difference of one QRF is restricted, the input of other three QR
functions are trivially independent of the output difference. It implies that we have 96 inde-
pendent bits, and we can easily amplify the probability of the differential-linear distinguisher.

We summarize the differential part of the proposed attacks in the diagram of Figure
7.1. In the next section, we present the linear expansion for the bit x(5)

b,7 to complete the
differential-linear distinguisher.

∆X(0) Ψ ∆x
(5)
b,7

∆x
(m)
b,7

∆x
(m)
a,0

∆x
(m)
d,0

Figure 7.1 – Differential part of the proposed attack.

121

7.3.3 New linear approximations for Salsa20

In this section, we develop new linear approximations for Salsa. Here we use Eqs. (6.14)
and (6.15) defined in the previous chapter.

Then we propose the following Lemma:

LEMMA 7.2 For two active input bits in round m − 1 and multiple active output bits in
round m of Salsa20, the following holds for i /∈ I

x
(m−1)
λ,i ⊕ x(m−1)

λ,i−1 = L(m)
λ,i ⊕ L

(m)
λ,i−1, w.p.

1

2

(
1 +

1

2σ

)
,

where (λ, σ, I) ∈ {(a, 1, {18}), (b, 3, {7, 20, 25}), (c, 2, {9, 27}), (d, 1, {13})}.

proof.

This proof follows from Eqs. (7.5)-(7.8) by noting that always, we have pair with the
form Θi(x) ⊕ Θi−1(x). When i > 1, we apply the approximation of Eq. (6.15) to get
Θi(x) ⊕ Θi−1(x) = 0 with probability 1

2
(1 + 1

2
). When i = 1, we apply Eq. (6.15)

to get Θ1(x) ⊕ Θ0(x) = Θ1(x) = 0 again with probability 1
2
(1 + 1

2
). When i = 0,

Θi(x)⊕Θi−1(x) 6= 0, thus we exclude these indexes. All that is left is to use the Piling-
Up Lemma to combine the probabilities. �

Next, we consider new linear approximations to the bit x(5)
4,7.

LEMMA 7.3 The following linear approximation holds with probability 1
2

(
1− 1

26

)
x

(5)
4,7 = x

(7)
0 [0]⊕ x(7)

2 [12, 13]⊕ x(7)
3 [17]⊕

x
(7)
4 [7, 18, 19]⊕ x(7)

6 [25, 26]⊕ x(7)
7 [26, 31]⊕

x
(7)
8 [13, 14, 19]⊕ x(7)

11 [31]⊕
x

(7)
12 [0, 14]⊕ x(7)

14 [12, 13]⊕ x(7)
15 [16, 17].

proof.

From x
(5)
4,7, we use the expansion for xd,i of Lemma 7.1 to get x(5)

4,7 = x
(6)
4,7⊕x

(6)
6,25⊕x

(6)
6,26⊕

x
(6)
7,26, with probability 1

2

(
1 + 1

2

)
. Then, we use the expansion for xb,7 and xc,i of Lemma

7.1 to get x(6)
4,7 = L(m)

4,7 ⊕x
(m)
8,13⊕x

(m)
4,18 with probability 1

2

(
1 + 1

4

)
, and x(6)

7,26 = L(m)
7,26⊕x

(m)
15,16

with probability 1
2

(
1− 1

4

)
. Additionally, using Lemma 7.2 we get x(6)

6,25⊕x
(6)
6,26 = L(7)

6,25⊕
L(7)

6,26, with probability 1
2

(
1 + 1

2

)
. Finally, using the Piling-Up Lemma to combine the

probabilities completes the proof. �

122

LEMMA 7.4 The following linear approximation holds with probability 1
2

(
1 + 1

234

)
x

(5)
4,7 = x

(8)
0 [0, 3, 4]⊕ x(8)

2 [4, 12, 14, 17, 18]⊕
x

(8)
3 [14, 18]⊕ x(8)

4 [0, 1, 4, 7, 31]⊕
x

(8)
5 [16, 17, 18, 19, 21, 22]⊕ x(8)

6 [17, 22]⊕
x

(8)
7 [0, 1, 4]⊕ x(8)

8 [6, 11, 13, 14, 18, 24]⊕
x

(8)
9 [6, 18, 19]⊕ x(8)

10 [4, 5, 9, 10, 23, 24]⊕
x

(8)
11 [4, 5, 11, 31]⊕
x

(8)
12 [11, 12, 14, 25, 26, 30, 31]⊕
x

(8)
13 [0, 7, 12, 21, 26, 30]⊕
x

(8)
14 [12, 13, 21, 25, 30, 31]⊕
x

(8)
15 [6, 7, 16, 17, 24, 25].

proof.
See Appendix A.2. �

7.4 RESULTS

Next, we use the techniques proposed in Section 7.3 to improve the attacks against
Salsa20. This section is divided in three parts: in Section 7.4.1, we present some compu-
tational results validating the theory developed in Section 7.3. In Section 7.4.2, we present
new differential-linear attacks against 7 and 8 rounds of Salsa. Finally, in Section 7.4.3, we
use the techniques from Aumasson et al. [19] to derive new key-recovery attacks using PNB.

7.4.1 Computational results

Considering Figure 7.1, we need to estimate the transition probability from Ψ to ∆x
(5)
b,7 .

We performed this task computationally, and we achieve the best results when considering
b = 4. Thus, consider the following computational result:

COMPUTATIONAL RESULT 7.1 The following differentials were found computation-
ally using 245 random samples.

ID OD Correlation

∆X(1) = Ψ ∆x
(4)
0,0 −0.000001515

∆X(1) = Ψ ∆x
(4)
4,7 −0.00085

∆X(1) = Ψ ∆x
(4)
12,0 0.000167

123

From this result, we can use the Piling-Up Lemma to reach a differential correlation from
round 1 to round 5 of Salsa. More precisely, we can write

Pr(∆x
(5)
4,7 = 0|∆X(1) = Ψ) =

1

2
(1 + εd), (7.15)

where εd ≈ −2−42.01.

Additionally, we verified the theoretical results of Lemma 7.3, and Equations (A.5)-(A.8)
experimentally:

COMPUTATIONAL RESULT 7.2 The linear approximation of Lemma 7.3 holds com-
putationally with εL0 = −0.015627 ≈ −2−5.999. This correlation was verified using 238

random samples.

COMPUTATIONAL RESULT 7.3 The linear approximations of Eqs. (A.5)-(A.8) hold
computationally with εL1 = 0.083980 ≈ 2−3.57, εL2 = 0.007814 ≈ 2−6.99, εL3 =

0.006368 ≈ 2−7.29, εL4 = 0.002234 ≈ 2−8.81, respectively. These correlations were
verified using 238 random samples.

7.4.2 Differential-Linear Attacks

Using the linear approximations of Lemma 7.3 and Lemma 7.4, the differential correla-
tion εd ≈ −2−42.01 given in Eq. (7.15), and the estimated correlations from the Computa-
tional Results 7.2 and 7.3, we get εd(εL0)

2 ≈ 2−53.99 and εd(εL0εL1εL2εL3εL4)
2 ≈ 2−107.31

which gives us a distinguisher for 7 and 8 rounds of Salsa20 with complexity less than
2−107.98 and 2−214.62, respectively. As in [26], we have to repeat this attack 2 times on aver-
age because of the transition probability from ∆X(0) to ∆X(1) = Ψ. Therefore, we have a
distinguisher with data and time complexity of 2108.98 for Salsa20/7 and 2215.62 for Salsa20/8.

7.4.3 Probabilistic Neutral Bits Attack

It is straightforward to combine the new differential for 5 rounds presented in Eq. 7.15
with the technique of PNB presented in Section 3.4. More precisely, to use the differential
correlation for ∆x

(5)
4,7, we used the variation of PNB attack described by Beierle in [26]. Thus,

consider (
x

(5)
4,7|∆X(1) = Ψ

)
.

To attack 7 rounds, we need to go back 2 rounds to reach the desired differential. In this
case, using γ = 0.3 we found 237 PNBs, which we list in Eq. (7.16), and we obtained εa =

0.027053. From that, we get an attack with data complexity of 2102.61 and time complexity

124

2121.63. As in [26], we have to repeat this attack 2 times on average because of the transition
probability from ∆X(0) to ∆X(1) = Ψ. Thus, the final attack has data complexity of 2103.61

and time complexity 2122.63.

PNB7 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 46, 47, 48, 49, 50, 51,

52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,

68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 81, 82, 83, 84, 85, 86,

87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 103,

104, 105, 106, 107, 108, 109, 110, 111, 112, 115, 116, 117,

118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,

130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,

142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,

154, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,

170, 171, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183,

184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,

196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207,

208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219,

220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231,

232, 233, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246,

247, 248, 249, 250, 251, 252, 253, 254, 255}.

(7.16)

To attack 8 rounds, we need to go back 3 rounds to reach the desired differential. In
this case, using γ = 0.3 we found 152 PNBs, which we list in Eq. (7.17), and we obtained
εa = 0.000275. From that, (already adding 1 on the exponent), we get an attack with data

125

complexity of 2115.52 and time complexity 2219.56.

PNB8 = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

36, 37, 38, 39, 40, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,

60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,

75, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,

100, 103, 104, 105, 106, 107, 108, 109, 110, 115, 116, 117,

118, 119, 120, 121, 122, 128, 129, 139, 140, 141, 142, 143,

144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 159, 160,

161, 162, 163, 164, 165, 166, 167, 168, 174, 175, 176, 177,

178, 179, 180, 181, 186, 187, 192, 193, 194, 195, 199, 200,

204, 205, 206, 207, 208, 213, 218, 224, 225, 231, 232, 237,

238, 239, 240, 245, 249, 250, 255}.

(7.17)

126

Part IV

Design of New Stream Ciphers

127

IMPROVING CHACHA AGAINST
CRYPTANALYSIS

8.1 INTRODUCTION

In this chapter, we study the most important attacks against ChaCha and show that it
is possible to improve its security by changing the rotation distances in the Quarter Round
Function (QRF). In fact, to this day, the best attack against ChaCha works on only 7 rounds
of the 20 provided by the algorithm. However, using the proposed modification, we show
that the security is enhanced, limiting the best attack to succeed on only 6 rounds.

This chapter is organized as follows: in Section 8.2, we provide an intensive analysis
of the security of the algorithm for all combinations of rotation distances showing that it is
possible to improve the security of ChaCha. In Section 8.3, we provide a security comparison
of the original ChaCha, and its new proposed version.

8.2 IMPROVING CHACHA

In [10], Bernstein justify the choice of the rotation distances 16, 12, 8, 7 with the argu-
ment:

“The above code also shows a much less important difference between ChaCha
and Salsa20: I changed the rotation distances 7, 9, 13, 18 to 16, 12, 8, 7. The
difference in security appears to be negligible: 7, 9, 13, 18 appears marginally
better in some diffusion measures, and 16, 12, 8, 7 appears marginally better in
others, but the margins are tiny, far smaller than the presumed inaccuracy of the
diffusion measures as predictors of security. The change boosts speed slightly
on some platforms while making no difference on other platforms”.

Naturally, the attacks against ChaCha were unknown by the time of its publication.
Therefore, one might expect that there could exist a distinct set of rotation distances such
that ChaCha has better security against differential and linear cryptanalysis. Thus, our ap-
proach to improve the security of ChaCha consists in testing all combination of rotation
distances to find if there is a set that is more secure.

128

8

8.2.1 Testing Differential Paths

In [19], the authors presented attacks for 6 and 7 rounds of ChaCha, however, both at-
tacks use differential paths for r = 3 rounds. Leveraging this fact, our first test consists in
computing the best differential path for 3 rounds of ChaCha considering all single-bit input
differentials and all output bits. In other words, we estimated the bias εd for all combinations
of differentials (∆r

p,q|∆0
i,j) for each combination of rotations distances. Since each rotation

have 32 values and since we have 128 input differentials and 512 output bits, we conclude
that we computed 128× 512× 324 = 236 different biases.

More specifically, we used Algorithm 5 to compute the highest bias for all combinations
of rotations distances. Unfortunately, since we are performing an empirical estimation, we
need to execute the same procedure several times for each input differential. To reduce
the number of necessary computations, we used the same key, nonce, and counter for all
output bits simultaneously. To test all combinations of rotation distances, we must execute
Algorithm 5 220 times. In addition, we defined the number of keys tested Nk = 32 and the
number of tests per key Nt = 1024. Therefore, we have 243 computations in total for 3
rounds of ChaCha. To achieve this amount of computation, we implemented Algorithm 5 in
CUDA and executed it on a NVIDIA Quadro 4000 GPU, which required approximately 6
days of computation.

Algorithm 5 Differential Path Computation
1: procedure INPUT: A SET OF ROTATION DISTANCES r1, r2, r3 AND r4, THE NUMBER

OF KEYS TESTED Nk , THE NUMBER OF TESTS PER KEY Nt

2: εd = 0
3: for each input differential ∆0

i,j do
4: S = 0
5: for a from 1 to Nk do
6: Generate random key k
7: for b from 1 to Nt do
8: Generate random nonce v
9: Generate random counter t

10: Initialize X(0) from k, v, t
11: Compute X(3) from X(0)

12: Compute X ′(0) from X(0) by flipping the bit x(0)
i,j

13: Compute X ′(3) from X ′(0)

14: W = X(3) ⊕X ′(3)

15: Convert W into a array of bits B
16: S = S +B

17: m = max(|2× S/(NtNk)− 1|)
18: if m > εd then
19: εd = m

20: return εd

129

The results revealed that the bias of the differential path varies significantly for each
combination of rotation distances. For example, if we set r1 = 0 and r4 = 0 (in other words,
remove these rotations), we get the biases presented in Figure 8.1, which are all equal, or
very close to one. In comparison, if we set r1 = 16 and r4 = 7, we get much better results
(see Figure 8.2) although there are still some very high biases for certain values of r2 and
r3. Notice in Figure 8.2 that the maximum bias found for ChaCha with the original rotation
distances 16, 12, 8, 7 is not the best choice, since there are several combinations with smaller
biases.

Figure 8.1 – The biases were obtained for 3 rounds of ChaCha using rotations r1 = r4 = 0
and varying all values for r2 and r3. The color of the figure indicates the maximum absolute
bias obtained for each combination of rotations. These are very poor results since that all
biases are close to 1.

8.2.2 Finding Probabilistic Neutral Bits

From the results described in the previous section, we reduced the number of rotation
distances under analysis by selecting the minimum bias available in the data and all the
remaining biases that were statistically close to this minimum value. In total, remained 3162
combinations of rotation distances and the original set of rotation distances of ChaCha was
not among these selected values. With the reduced set, we repeated the test of differential
paths of the previous section but now with an increased value of Nk = 256, to achieve better
precision.

The complexity of the attack depends not only on the bias of the differential path but also

130

Figure 8.2 – The biases we obtained for 3 rounds of ChaCha using rotations r1 = 16 and
r4 = 7 and varying all values for r2 and r3. The color of the figure indicates the maximum
absolute bias obtained for each combination of rotations. The value obtained for the original
ChaCha is depicted inside a black circle.

on the number of PNB. Thus, we performed another test to gather data about the behavior of
PNB for each combination of rotation distances. It turns out that the computation necessary
for this test increases significantly because we must test not only for each pair of input-
output bits but also for each key bit individually. Fortunately, we empirically verified that,
for ChaCha, the set of neutral bits are roughly the same for a particular output bit for any
input bit. Thus, we can drastically reduce the necessary computation by randomly choosing
the single-bit input differential. We computed the average neutrality for each output bit by
performing 216 iterations for each key bit, obtaining an array of 512 values. Our final statistic
is defined as the maximum value in this array. We performed this test considering 7 rounds
of ChaCha.

After these tests, we chose our set rotation distances as r1 = 19, r2 = 17, r3 = 25

and r4 = 11, which are the values that minimize the product between both statistics. In
particular, for this combination of rotation distances, we obtained 0.01497 for the bias of the
differential path and 0.221 for the worst average neutrality. In the next section, we show that
this choice does improve the security of ChaCha against known attacks.

131

8.3 SECURITY COMPARISON

8.3.1 Estimating the Complexity of the PNB Attack

In [19], the authors reported an attack on 256-bit ChaCha20/6 and ChaCha20/7. For
ChaCha20/6, they used the differential (∆3

11,0|∆0
13,13) with |ε?d| = 0.026. TheOD is observed

after working 3 rounds backward from a 6-round keystream block. For the threshold γ = 0.6

they found a set of 147 non-significant key bits, with |ε| = 0.00048. This results in an
attack in time 2139 and data 230. For ChaCha20/7, they used the same differential. The
OD is observed after working 4 rounds backward from a 7-round keystream block. For the
threshold γ = 0.5, they found a set of 35 non-significant key bits with |ε| = 0.00059. This
results an attack in time 2248 and data 227.

We ran the attacks for ChaCha again, obtaining very similar complexity results. Using the
same program, we ran the attack for ChaCha with rotation distances 19, 17, 25, 11, showing
that we get a stronger cipher. In fact, for 7 rounds, we did not find any attack with time
< 2256, see Table 8.1 for the results.

Algorithm ID OD ε∗d γ n ε∗ Data Time
ChaCha20/6 ∆

(0)
12,21 ∆

(3)
2,0 -0.1973 0.6 134 -0.0039 223.9 2145.9

ChaCha20/7 ∆
(0)
12,21 ∆

(3)
2,0 -0.1977 0.4 20 -0.0097 217.8 2254

*ChaCha20/6 ∆
(0)
14,17 ∆

(3)
1,0 -0.0059 0.8 111 -0.0019 225.6 2170.6

*ChaCha20/7 – – – – – – – –

Table 8.1 – Best attacks obtained for ChaCha and for its modified version with rotation
distances 19, 17, 25, 11, denoted here by *ChaCha. We could not find any attacks for the
modified version of ChaCha with 7 rounds.

8.3.2 Multi-bit differential

In [24], the authors provide several different attacks for ChaCha20/4, ChaCha20/5, ChaCha20/6,
and ChaCha20/7. Considering the first row of Table 8.2, we note a bias εd = 0.1984 and
thus 1

ε2d/2
< 51. That is, with 26 samples it is enough to distinguish 4-round ChaCha from

a uniform random source. However, when changing the rotation distances, the best bias we
get is εd = −0.009179 and thus 1

ε2d/2
< 23738. That is, with 215 samples it is enough to

distinguish 4-round ChaCha with rotation distances 19, 17, 25, 11 from a uniform random
source.

For ChaCha20/5, if we define ID at ∆x0
13,13 andOD at ∆x3

11,0, we obtain εd = −0.0272.
By Lemma 6.2, we can extend this bias to 4 rounds, and by Lemma 10 of [24], we can
further extend this bias to 5 rounds with probability 3/4, or εL = 1/2. This gives a total

132

differential-linear 5-th round bias of ε = εdε
2
L = −0.0068 thus 1

ε2/2
< 43253. That is,

with 216 samples it is enough to distinguish 5-round ChaCha from a uniform random source.
However, changing the rotation distances and if we define ID at ∆0

14,12 and OD at ∆3
8,0, we

obtain εd = −0.000915, and from Lemmas 6.2 and 10 of [24], we get a total differential-
linear 5-th round bias of ε = εdε

2
L = −0.00022875 thus 1

ε2/2
< 38221506. That is, with

226 samples it is enough to distinguish 5-round ChaCha with rotation distances 19, 17, 25, 11

from a uniform random source.

Algorithm ID OD Bias
ChaCha ∆x

(0)
12,20 ∆x

(4)
2,0 ⊕∆x

(4)
7,7 ⊕∆x

(4)
7,19 ⊕∆x

(4)
8,12 ⊕∆x

(4)
13,0 0.1984

ChaCha ∆x
(0)
14,20 ∆x

(4)
0,0 ⊕∆x

(4)
5,7 ⊕∆x

(4)
5,19 ⊕∆x

(4)
10,12 ⊕∆x

(4)
15,0 0.1979

ChaCha ∆x
(0)
15,20 ∆x

(4)
1,0 ⊕∆x

(4)
6,7 ⊕∆x

(4)
6,19 ⊕∆x

(4)
11,12 ⊕∆x

(4)
12,0 0.1973

ChaCha ∆x
(0)
13,20 ∆x

(4)
3,0 ⊕∆x

(4)
4,7 ⊕∆x

(4)
4,19 ⊕∆x

(4)
9,12 ⊕∆x

(4)
14,0 0.1972

*ChaCha ∆x
(0)
14,1 ∆x

(4)
0,0 ⊕∆x

(4)
5,11 ⊕∆x

(4)
5,28 ⊕∆x

(4)
10,17 ⊕∆x

(4)
15,0 −0.009179

*ChaCha ∆x
(0)
15,16 ∆x

(4)
0,0 ⊕∆x

(4)
5,11 ⊕∆x

(4)
5,28 ⊕∆x

(4)
10,17 ⊕∆x

(4)
15,0 −0.009133

*ChaCha ∆x
(0)
15,1 ∆x

(4)
1,0 ⊕∆x

(4)
6,11 ⊕∆x

(4)
6,28 ⊕∆x

(4)
11,17 ⊕∆x

(4)
12,0 −0.009122

*ChaCha ∆x
(0)
14,16 ∆x

(4)
3,0 ⊕∆x

(4)
4,11 ⊕∆x

(4)
4,28 ⊕∆x

(4)
9,17 ⊕∆x

(4)
14,0 −0.009099

Table 8.2 – The best multi-bit differentials for ChaCha and for its modified version with
rotation distances 19, 17, 25, 11, denoted here by *ChaCha. Notice that we can reduce the
bias significantly.

Extending the linear approximation for 3 rounds comes at a cost. As discussed in [24],
for 6 rounds, the linear bias after expanding any equation from Lemma 10 of [24] is εL =

1/(2 · 1 + 3 · 4 + 5 · 1 + 3 · 2 + 2 · 1) = 1/226. To use this extension, we searched for the input
differential that maximizes the differential bias for ∆x

(3)
8,0,∆x

(3)
9,0,∆x

(3)
10,0 or ∆x

(3)
11,0, which

leads to the differential pair (∆x
(3)
9,0|∆x

(0)
15,12) with εd = 0.000792. This leads to a 6-round

bias of ε2
Lεd ≈ 1

262.3
and a distinguisher with complexity of 2125.

For a key recovery attack against 6 rounds of ChaCha, we must use PNB. The best attack
we obtained when considering the proposed rotation distances uses 5 rounds forward and
then 1 round backward. For this the ID is ∆

(0)
12,12 and the OD in the third round is ∆

(3)
10,0,

thus, using the third equation of Lemma 10 of [24], we can mount an attack. We got 157

PNBs using γ = 0.6 from which we estimated ε = −0.000024, ε? = −0.000023 leading
to an attack with data complexity 238.7 and time complexity 2137.7. For 7 rounds of ChaCha
with the proposed rotation distances, we did not find any significant attacks. Also, we could
not use the equations from Lemma 6.5 since we could not find any significant bias for a
double output differential bias. Table 8.3 summarizes our findings1.

1Important: this chapter was compiled from the results of the paper "Improving the Security of ChaCha
against Differential-Linear Cryptanalysis" written in the beginning of 2020. For this reason, the results of the
cryptanalysis of the proposed version of ChaCha do not considered some results and techniques that appeared
later in [26] and [27]

133

Algorithm Rounds Data Time Type Reference

ChaCha

4 26 26 Distinguisher [24]
5 216 216 Distinguisher [24]
6 251 251 Distinguisher This work
6 258 277.4 Key recovery [26]
7 2224 2224 Distinguisher This work
7 248.8 2230.86 Key recovery [26]

*ChaCha

4 215 215 Distinguisher This work
5 226 226 Distinguisher This work
6 2125 2125 Distinguisher This work
6 238.7 2137.7 Key recovery This work
7 – – – –

Table 8.3 – Attacks obtained considering the techniques presented in Section 6.2. Notice
that the complexity of the attacks for ChaCha with rotation distances 19, 17, 25, 11, denoted
here by *ChaCha, are higher, thus, the proposed modification is more secure against these
attacks.

134

A NEW ALGORITHM: FORRÓ

In this chapter, we conclude the thesis with the proposition of a new stream cipher named
Forró. After improving attacks of ARX algorithms, in particular, of the Salsa and ChaCha
family, we decided to research for new ways to improve the security of these algorithms
against known attacks. This chapter is divided into the following way: in Section 9.1, we
present the algorithm Forró. In Section 9.2, we apply all know techniques to evaluate security
of Forró. Finally, in Section 9.3, we compare the performance of Forró with ChaCha and
Salsa.

9.1 FORRÓ

Although they have very similar structure, the literature suggests that ChaCha is safer
than Salsa. Therefore, a natural question that arises is if we can do better with fewer opera-
tions, it turns out the answers is yes. To do that, first, we will introduce a new concept that
we call Pollination. Then, we discuss how to change ChaCha to achieve it, leading to a new
algorithm.

9.1.1 Pollination

In this section, we propose a new technique that we call Pollination. We chose this name
as an analogy to the real Pollination in nature: when a bee collects nectar and pollen from
the flower of a plant sticks to the hairs of her body. When she visits the next flower, some of
this pollen is rubbed off onto the stigma, making fertilization possible. Here, our idea is to
use the element that is likely to maximize confusion and diffusion (we call this best element
pollen) to bring non-linearity and confusion to other elements in the state matrix.

Actually, one of the reasons behind the improved diffusion of ChaCha when compared
to Salsa is, in fact, pollination. Since the QRF function updates one element after the other,
using the previously updated element as input, then it is a natural consequence that the el-
ement updated last (x

(r)
b) has higher diffusion. In ChaCha, the pattern of application of the

QRF actually makes that the elements in the second row (which are the parameter x(r)
b for

each QRF application), is used to update the first element in the next round. Salsa does not
have such a property, hence the improved diffusion of ChaCha.

ChaCha achieves pollination from one round to another, however, it fails to do so within
each round because the QRF is applied independently in each column or diagonal. Thus, it is

135

9

possible to have more diffusion in fewer operations if we create a chain of pollination from
one application of the QRF to the other. It can be argued that we lose parallelism in each
round, however, as we show later, the improved diffusion allow, the same security in fewer
rounds. Also, in Section 9.3, we show that the parallelism is not actually lost, since we can
apply it in another way.

9.1.2 Forró’s Round Function

To create pollination from one round to the others, we propose to include an extra pa-
rameter into the QRF. Nevertheless, we want to maintain (or to decrease) the number of
arithmetic operations to achieve competitive performance. Notice that each rotation in Eq.
(2.6) actually make the same element be updated twice in a row thus, we could update more
elements if we had fewer rotations.

Actually, in [8], Bernstein asked the question of whether there should be fewer rotations
in the QRF, because rotations account for about 1/3 of the integer operations in Salsa (and
also in ChaCha), he wrote:

“If rotations are simulated by shift-shift-xor (as they are on the UltraSPARC and
with XMM instructions), then they account for about 1/2 of the integer opera-
tions in Salsa20. Replacing some of the rotations with a comparable number of
additions might achieve comparable diffusion in less time.”

With those ideas in mind, we defineQRforro

(
x

(r−1)
a , x

(r−1)
b , x

(r−1)
c , x

(r−1)
d , x

(r−1)
e

)
as the

following set of operations

x
′(m−1)
d = x

(m−1)
d + x

(m−1)
e

x
′(m−1)
c = x

(m−1)
c ⊕ x′(m−1)

d

x
′(m−1)
b =

(
x

(m−1)
b + x

′(m−1)
c

)
≪ r1

x
′(m−1)
a = x

(m−1)
a + x

′(m−1)
b

x
(m)
e = x

(m−1)
e ⊕ x′(m−1)

a

x
(m)
d =

(
x
′(m−1)
d + x

(m)
e

)
≪ r2

x
(m)
c = x

′(m−1)
c + x

(m)
d

x
(m)
b = x

′(m−1)
b ⊕ x(m)

c

x
(m)
a =

(
x
′(m−1)
a + x

(m)
b

)
≪ r3

(9.1)

where r1 = 10, r2 = 27 and r3 = 8.

Notice that QRforro has a total of 12 operations, just like QRChaCha, but fewer rotations.
Also, notice that QRforro is asymmetric in the sense that of all elements there is one, namely
x

(r)
e that is updated less frequently than the others. However, this behavior is actually accept-

136

able since x(r)
e is the element used for pollination. Thus, its job is to provide non-linearity

and confusion and not to gain more necessarily. In addition, if this is not the first use of
QRforro in the algorithm, this element was updated recently in the last iteration of the func-
tion QRforro. Finally, notice that as the element x(r)

a is the last to be updated, then it likely
has the more complex Boolean functions in comparison to x(r)

b , x
(r)
c , x

(r)
d and x(r)

e , therefore
x

(r)
a will become the pollen for the next application ofQRforro. Then, in an odd round, when
r ∈ {1, 3, 5, 7, ...}, X(r) is defined from X(r−1) in the following manner(

x
(r−1)
0∗ , x

(r)
4 , x

(r)
8 , x

(r)
12 , x

(r−1)
3∗

)
= QRforro

(
x

(r−1)
0 , x

(r−1)
4 , x

(r−1)
8 , x

(r−1)
12 , x

(r−1)
3

)(
x

(r−1)
1∗ , x

(r)
5 , x

(r)
9 , x

(r)
13 , x

(r)
0

)
= QRforro

(
x

(r−1)
1 , x

(r−1)
5 , x

(r−1)
9 , x

(r−1)
13 , x

(r−1)
0∗

)(
x

(r−1)
2∗ , x

(r)
6 , x

(r)
10 , x

(r)
14 , x

(r)
1

)
= QRforro

(
x

(r−1)
2 , x

(r−1)
6 , x

(r−1)
10 , x

(r−1)
14 , x

(r−1)
1∗

)(
x

(r)
3 , x

(r)
7 , x

(r)
11 , x

(r)
15 , x

(r)
2

)
= QRforro

(
x

(r−1)
3∗ , x

(r−1)
7 , x

(r−1)
11 , x

(r−1)
15 , x

(r−1)
2∗

)
(9.2)

and for even rounds r ∈ {2, 4, 6, 8, , ...} from(
x

(r−1)
0∗ , x

(r)
5 , x

(r)
10 , x

(r)
15 , x

(r−1)
3∗

)
= QRforro

(
x

(r−1)
0 , x

(r−1)
5 , x

(r−1)
10 , x

(r−1)
15 , x

(r−1)
3

)(
x

(r−1)
1∗ , x

(r)
6 , x

(r)
11 , x

(r)
12 , x

(r)
0

)
= QRforro

(
x

(r−1)
1 , x

(r−1)
6 , x

(r−1)
11 , x

(r−1)
12 , x

(r−1)
0∗

)(
x

(r−1)
2∗ , x

(r)
7 , x

(r)
8 , x

(r)
13 , x

(r)
1

)
= QRforro

(
x

(r−1)
2 , x

(r−1)
7 , x

(r−1)
8 , x

(r−1)
13 , x

(r−1)
1∗

)(
x

(r)
3 , x

(r)
4 , x

(r)
9 , x

(r)
14 , x

(r)
2

)
= QRforro

(
x

(r−1)
3∗ , x

(r−1)
4 , x

(r−1)
9 , x

(r−1)
14 , x

(r−1)
2∗

)
.

(9.3)

9.1.3 Initialization

To initialize the state matrix we have 16 integers available, being 8 key words, 2 nonce
words, 2 counter words and 4 constants. All positions in the state matrix are different in terms
of diffusion and whether it is used sooner or later. Forró’s initialization matrix is defined by

X(0) =

x

(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

 =

k0 k1 k2 k3

t0 t1 c0 c1

k4 k5 k6 k7

v0 v1 c2 c3

 . (9.4)

When comparing Eqs. (2.5) and (9.4), one can notice that Forró’s initialization is dif-
ferent than ChaCha’s. In differential cryptanalysis usually the attacker is allowed to chose
arbitrary values to t0, t1, v0 and v1, thus it is a good idea to update this values as soon as
possible allowing the differential to be propagated faster decreasing the probability of a dif-
ferential characteristic. Thus, we defined the initialization in such a way that t0, t1, v0 and v1

are used in the first two columns.

137

9.1.4 Rotations

The rotation distances for Forró are set as r1 = 10, r2 = 27 and r3 = 8. Most authors
of ARX algorithms in the literature do not justify the choice of the rotation distances with a
numerical argument. It is generally argued that it is difficult to find bad rotation distances for
ARX. Therefore, authors tend to choose aligned rotation distances (multiple of 8) since these
are much faster than unaligned rotation counts on many non-64-bit architectures. For exam-
ple, many 8-bit microcontrollers have only 1-bit shifts of bytes, so rotation by (e.g.) 3 bits is
particularly expensive. Even 64-bit systems can benefit from alignment, for example, when
a sequence of shift-shift-xor can be replaced by SSSE3’s pshufb byte-shuffling instruction
[71].

On the other hand, it may be possible to improve the security of the algorithm by care-
fully studying the behavior of the cipher when each combination of rotation distances are
evaluated. This approach could allow for a reduced number of rounds to achieve the desired
security. Hence, this approach could also improve performance. For example, in Chapter 8
(also see [72]) we showed that changing the rotation distances of ChaCha to (19, 17, 25, 11)

improved the resistance of ChaCha against known attacks.

Here, the rotation distances were defined following a similar approach as proposed in
Chapter 8, with some adaptations. First, we define R as the set of all combinations of
rotation distances (note that |R| = 323). Next, we define Algorithm 6, which returns the
maximum observed differential correlation among all single bit differentials (ID,OD) for
a given combination of rotation distances r = (r1, r2, r3) ∈ R when considering N random
trials. Then, to define the optimal rotation distances we executed the following steps:

Algorithm 6 Returns the maximum observed differential correlation for all possible single
bit differentials.

1: INPUT: rotation distances (r1, r2, r3), the number of trials N .
2: Setup Forró with rotation distances (r1, r2, r3).
3: for each single bit input difference ID do
4: for i ∈ {1, 2, ..., N} do
5: Generate random key k, nonce v, and counter t.
6: Initialize Forró’s state matrix X .
7: Execute 2 rounds of Forró from X , obtaining Y .
8: Compute X ′ = ID ⊕X .
9: Execute 2 rounds of Forró from X ′, obtaining Y ′.

10: Compute OD = Y ⊕ Y ′.
11: Update the differential correlation δID,j for each bit of OD, where j ∈
{0, 1, ..., 512}.

12: return max(|δID,j|)

1. Execute Algorithm 6 for all ri ∈ R, obtaining a list L = {δri}.

138

2. Compute δmin = min(L).

3. For each δri ∈ L, test the hypothesis Hi : δri = δmin. More precisely, we used
the standard statistical test to compare two proportions by converting the correlation
to a probability pri = (δri + 1)/2. In addition, since we are dealing with multiple
hypotheses tests, we used the Family-Wise Error Rate (FWER) technique to guard
against type-I errors.

4. Discard all rotations distances ri ∈ R that lead to the hypothesis Hi being rejected.
Thus, we are left with a subset of rotation distancesR∗ ⊂ R.

5. For each rj ∈ R∗, compute the average neutrality measure γ̄rj using Algorithm 1 of
[19]. In this case, we considered a encryption with 5 rounds of Forró and 3 rounds
executed backwards.

6. For each rj ∈ R∗, define the metric µrj = δrj × γ̄rj .

7. Define the rotation distances for Forró as arg minrj{µrj}.

We executed these steps using a cluster of 24 NVIDIA GPUs RTX 2080ti. This setup
allowed us to run Algorithm 6 with N = 24×220, for all r ∈ R, in two days of computation.
This led to δmin = 0.003056 when ri = (24, 28, 13). The results are very interesting as some
patterns can be observed, as illustrated in Figures 9.1-9.8.

Then, after hypothesis testing, we were left with 51 rotation distances, i.e., |R∗| = 51

(these rotations distances are marked in purple in Figures 9.1-9.8). Note that this step means
that from all 323 possible rotation distances, this group of 51 were statistically better in
terms of security against differential cryptanalysis. From these, we defined Forró’s rota-
tion distances as (10, 27, 8) = arg minrj{µrj}, where δ(10,27,8) = 0.003773 and γ̄(10,27,8) =

0.058866. Luckily enough, we also have one aligned rotation distance (r3 = 8), which will
help performance further.

9.1.5 Constants

Since the choice of the constants do not impact security or performance, we decided to go
through a cultural route: the constants correspond to the ASCII string “voltadaasabranca”,
little-endian encoded. “A volta da asa branca” is the name of a song of the brazilian singer
Luiz Gonzaga. It is a continuation of the song “asa branca”, one of the greatest classics
of Brazilian music, composed more than 70 years ago. In “asa branca”, Luiz Gonzaga and
Humberto Teixeira tell us the story of a man who lost everything due to the drought in the
Brazilian northeast region and had to leave his home in search of better living conditions. In
“a volta da asa branca”, he returns to his home and is reunited with his love with whom he
intends to marry.

139

(a) Correlations for r1 = 0. (b) Correlations for r1 = 1.

(c) Correlations for r1 = 2. (d) Correlations for r1 = 3.

Figure 9.1 – The result of Algorithm 6 for each combination of rotation distances.

140

(a) Correlations for r1 = 4. (b) Correlations for r1 = 5.

(c) Correlations for r1 = 6. (d) Correlations for r1 = 7.

Figure 9.2 – The result of Algorithm 6 for each combination of rotation distances.

141

(a) Correlations for r1 = 8. (b) Correlations for r1 = 9.

(c) Correlations for r1 = 10. (d) Correlations for r1 = 11.

Figure 9.3 – The result of Algorithm 6 for each combination of rotation distances.

142

(a) Correlations for r1 = 12. (b) Correlations for r1 = 13.

(c) Correlations for r1 = 14. (d) Correlations for r1 = 15.

Figure 9.4 – The result of Algorithm 6 for each combination of rotation distances.

143

(a) Correlations for r1 = 16. (b) Correlations for r1 = 17.

(c) Correlations for r1 = 18. (d) Correlations for r1 = 19.

Figure 9.5 – The result of Algorithm 6 for each combination of rotation distances.

144

(a) Correlations for r1 = 20. (b) Correlations for r1 = 21.

(c) Correlations for r1 = 22. (d) Correlations for r1 = 23.

Figure 9.6 – The result of Algorithm 6 for each combination of rotation distances.

145

(a) Correlations for r1 = 24. (b) Correlations for r1 = 25.

(c) Correlations for r1 = 26. (d) Correlations for r1 = 27.

Figure 9.7 – The result of Algorithm 6 for each combination of rotation distances.

146

(a) Correlations for r1 = 28. (b) Correlations for r1 = 29.

(c) Correlations for r1 = 30. (d) Correlations for r1 = 31.

Figure 9.8 – The result of Algorithm 6 for each combination of rotation distances.

147

9.2 SECURITY

Here, we analyze the security of Forró by first replicating and checking the results of
the attack of Aumasson [19] and of Choudhuri [24] for both and Salsa and ChaCha and
then applying the technique against Forró. We chose these attacks since they are the most
important works on the cryptanalysis of Salsa and ChaCha to this day.

In this section, we define the subround of Forró as a single application of the QRforro.
Therefore, we can say that Forró has 12 rounds or 48 subrounds. As we will see, the subround
view of Forró is better to understand its cryptanalysis. Hence, we adapt the notation of the
state X(m) as X [s], where m denote the number of complete rounds and s the number of
subrounds. For example, we have that X(4) = X [16].

9.2.1 Linear approximations for Forró

In this section, we use the techniques introduced in Chapter 6 to construct linear relations
between distinct subrounds of Forró, and use them to construct multi-bit differentials that can
be use to construct distinguishers to round reduced Forró. We can write the QRF equations
of Forró (Eq. (9.1)) as

x
′[s−1]
d,i = x

[s−1]
d,i ⊕ x

[s−1]
e,i ⊕Θi(x

[s−1]
d , x

[s−1]
e)

x
′[s−1]
c,i = x

[s−1]
c,i ⊕ x′[s−1]

d,i

x
′[s−1]
b,i+10 = x

[s−1]
b,i ⊕ x′[s−1]

c,i ⊕Θi(x
[s−1]
b , x

′[s−1]
c)

x
′[s−1]
a,i = x

[s−1]
a,i ⊕ x

′[s−1]
b,i ⊕Θi(x

[s−1]
a , x

′[s−1]
b)

x
[s]
e,i = x

[s−1]
e,i ⊕ x

′[s−1]
a,i

x
[s]
d,i+27 = x

′[s−1]
d,i ⊕ x[s]

e,i ⊕Θi(x
′[s−1]
d , x

[s]
e)

x
[s]
c,i = x

′[s−1]
c,i ⊕ x[s]

d,i ⊕Θi(x
′[s−1]
c , x

[s]
d)

x
[s]
b,i = x

′[s−1]
b,i ⊕ x[s]

c,i

x
[s]
a,i+8 = x

′[s−1]
a,i ⊕ x[s]

b,i ⊕Θi(x
′[s−1]
a , x

[s]
b)

(9.5)

148

Inverting these equations, we get:

x
′[s−1]
a,i = x

[s]
a,i+8 ⊕ x

[s]
b,i ⊕Θi(x

′[s−1]
a , x

[s]
b) (9.6)

x
′[s−1]
b,i = x

[s]
b,i ⊕ x

[s]
c,i (9.7)

x
′[s−1]
c,i = x

[s]
c,i ⊕ x

[s]
d,i ⊕Θi(x

′[s−1]
c , x

[s]
d) (9.8)

x
′[s−1]
d,i = x

[s]
d,i+27 ⊕ x

[s]
e,i ⊕Θi(x

′[s−1]
d , x[s]

e) (9.9)

x
[s−1]
e,i = L[s]

e,i ⊕Θi(x
′[s−1]
a , x

[s]
b) (9.10)

x
[s−1]
a,i = L[s]

a,i ⊕Θi(x
′[s−1]
a , x

[s]
b)⊕Θi(x

[s−1]
a , x

′[s−1]
b) (9.11)

x
[s−1]
b,i = L[s]

b,i ⊕Θi(x
′[s−1]
c , x

[s]
d)⊕Θi(x

[s−1]
b , x′[s−1]

c) (9.12)

x
[s−1]
c,i = L[s]

c,i ⊕Θi(x
′[s−1]
c , x

[s]
d)⊕Θi(x

′[s−1]
d , x[s]

e) (9.13)

x
[s−1]
d,i = L[s]

d,i ⊕Θi(x
′[s−1]
d , x[s]

e)⊕Θi(x
′[s−1]
a , x

[s]
b)⊕Θi(x

[s−1]
d , x[s−1]

e) (9.14)

where

L[s]
a,i = x

[s]
a,i+8 ⊕ x

[s]
c,i (9.15)

L[s]
b,i = x

[s]
b,i+10 ⊕ x

[s]
c,i+10 ⊕ x

[s]
c,i ⊕ x

[s]
d,i (9.16)

L[s]
c,i = x

[s]
c,i ⊕ x

[s]
d,i ⊕ x

[s]
d,i+27 ⊕ x

[s]
e,i (9.17)

L[s]
d,i = x

[s]
d,i+27 ⊕ x

[s]
a,i+8 ⊕ x

[s]
b,i (9.18)

L[s]
e,i = x

[s]
e,i ⊕ x

[s]
a,i+8 ⊕ x

[s]
b,i (9.19)

We start with simple linear approximations for x[s−1]
a,i to x[s−1]

e,i .

LEMMA 9.1 It holds that x[s−1]
l,0 = L[s]

l,0, for l ∈ {a, b, c, d, e}.

proof.

This result follows directly from Eqs. (9.10)-(9.14) by using the fact that Θ0(x, y) = 0.
�

149

LEMMA 9.2 The following holds for i > 0

x
[s−1]
e,i =L[s]

e,i ⊕ x
[s]
b,i−1, w.p.

1

2

(
1 +

1

2

)
, (9.20)

x
[s−1]
a,i =L[s]

a,i ⊕ x
[s]
c,i−1, w.p.

1

2

(
1 +

1

22

)
, (9.21)

x
[s−1]
b,i =L[s]

b,i ⊕ x
[s]
c,i−1 ⊕ x

[s]
d,i−1, w.p.

1

2

(
1 +

1

22

)
, (9.22)

x
[s−1]
c,i =L[s]

c,i ⊕ x
[s]
d,i−1 ⊕ x

[s]
e,i−1, w.p.

1

2

(
1 +

1

22

)
, (9.23)

x
[s−1]
d,i =L[s]

d,i ⊕ L
[s]
e,i−1 ⊕ x

[s]
e,i−1, w.p.

1

2

(
1 +

1

23

)
. (9.24)

proof.

For x[s−1]
a,i , x

[s−1]
c,i and x[s−1]

e,i , this result follows directly from Eq. (6.14) and the Piling-up
Lemma. For x[s−1]

b,i , from Eq. (9.12) and using Eq. (6.14) on the last term we get

x
[s−1]
b,i = L[s]

b,i ⊕Θi(x
′[s−1]
c , x

[s]
d)⊕ x′[s−1]

c,i−1

with probability 1
2

(
1 + 1

2

)
. Using Eq. (9.8)

x
[s−1]
b,i = L[s]

b,i ⊕Θi(x
′[s−1]
c , x

[s]
d)⊕ x[s]

c,i−1 ⊕ x
[s]
d,i−1 ⊕Θi−1(x′[s−1]

c , x
[s]
d).

Finally, using Eq. (6.15) and the Piling-up Lemma we get

x
[s−1]
b,i = L[s]

b,i ⊕ x
[s]
c,i−1 ⊕ x

[s]
d,i−1,

with probability 1
2

(
1 + 1

22

)
. Next, for x[s−1]

d,i , from Eq. (9.14) and using Eq. (6.14) to
replace Θi(x

′[s−1]
d , x

[s]
e) and Θi(x

[s−1]
d , x

[s−1]
e) we get

x
[s−1]
d,i = L[s]

d,i ⊕ x
[s]
e,i−1 ⊕Θi(x

′[s−1]
a , x

[s]
b)⊕ x[s−1]

e,i−1.

Then, using Eq. (9.10) we get

x
[s−1]
d,i = L[s]

d,i ⊕ x
[s]
e,i−1 ⊕Θi(x

′[s−1]
a , x

[s]
b)⊕ L[s]

e,i−1 ⊕Θi−1(x′[s−1]
a , x

[s]
b).

Finally, using Eq. (6.15) and the Piling-up Lemma we get

x
[s−1]
d,i = L[s]

d,i ⊕ x
[s]
e,i−1 ⊕ L

[s]
e,i−1,

with probability 1
2

(
1 + 1

23

)
. �

150

LEMMA 9.3 For two active input bits in subround s − 1 and multiple active output bits
in subround s, the following holds for i > 1

x
[s−1]
λ,i ⊕ x

[s−1]
λ,i−1 = L[s]

λ,i ⊕ L
[s]
λ,i−1, w.p.

1

2

(
1 +

1

2σ

)
,

where (λ, σ) ∈ {(a, 2), (b, 2), (c, 2), (d, 3), (e, 1)}.

proof.

This proof follows directly from Eqs. (9.10)-(9.14) using the approximation of Eq. (6.15)
and the Piling-up Lemma. �

We also derive some additional lemmas to deal with special cases:

LEMMA 9.4 For two active input bits in subround s − 1 and multiple active output bits
in subround s, the following holds for i > 0

x
[s−1]
e,i ⊕ x

[s−1]
a,i = L[s]

e,i ⊕ L
[s]
a,i ⊕ x

[s]
b,i−1 ⊕ x

[s]
c,i−1, w.p.

1

2

(
1 +

1

2

)
.

proof.

This proof follows directly from Eqs. (9.10) and (9.11) canceling out the term Θi(x
′[s−1]
a , x

[s]
b),

using the approximation of Eq. (6.14) and the Piling-up Lemma. �

LEMMA 9.5 For three active input bits in subround s− 1 and multiple active output bits
in subround s, the following holds for i > 1

x
[s−1]
e,i ⊕ x

[s−1]
e,i−1 ⊕ x

[s−1]
d,i = L[s]

e,i ⊕ L
[s]
d,i ⊕ x

[s]
e,i−1, w.p.

1

2

(
1 +

1

22

)
.

proof.

From Eq. (9.14) notice that using Eq. (6.14) we can write

x
[s−1]
d,i = L[s]

d,i ⊕Θi(x
′[s−1]
d , x

[s]
e)⊕Θi(x

′[s−1]
a , x

[s]
b)⊕Θi(x

[s−1]
d , x

[s−1]
e) =

L[s]
d,i ⊕Θi(x

′[s−1]
d , x

[s]
e)⊕Θi(x

′[s−1]
a , x

[s]
b)⊕ x[s−1]

e,i−1, w.p. 1
2

(
1 + 1

2

)
.

151

Thus, we have

x
[s−1]
e,i ⊕ x

[s−1]
e,i−1 ⊕ x

[s−1]
d,i = x

[s−1]
e,i ⊕ L

[s]
d,i ⊕Θi(x

′[s−1]
d , x[s]

e)⊕Θi(x
′[s−1]
a , x

[s]
b).

Next, using Eq. (9.10) and canceling out equal terms, we get

x
[s−1]
e,i ⊕ x

[s−1]
e,i−1 ⊕ x

[s−1]
d,i = L[s]

e,i ⊕ L
[s]
d,i ⊕Θi(x

′[s−1]
d , x[s]

e).

Finally, using Eq. (6.14) and the Piling-up Lemma, completes the proof. �

LEMMA 9.6 For three active input bits in subround s− 1 and multiple active output bits
in subround s, the following holds for i > 1

x
[s−1]
e,i ⊕ x

[s−1]
d,i ⊕ x

[s−1]
d,i±1 = L[s]

e,i ⊕ L
[s]
d,i ⊕ L

[s]
d,i±1 ⊕ x

[s]
b,i−1±1, w.p.

1

2

(
1 +

1

23

)
.

proof.

From Eqs. (9.10) and (9.14) we can cancel out the term Θi(x
′[s−1]
a , x

[s]
b) and get

x
[s−1]
e,i ⊕ x

[s−1]
d,i ⊕ x

[s−1]
d,i±1 = L[s]

e,i ⊕ L
[s]
d,i ⊕Θi(x

′[s−1]
d , x

[s]
e)⊕Θi(x

[s−1]
d , x

[s−1]
e)⊕

L[s]
d,i±1 ⊕Θi±1(x

′[s−1]
d , x

[s]
e)⊕Θi±1(x

′[s−1]
a , x

[s]
b)⊕Θi±1(x

[s−1]
d , x

[s−1]
e).

Using Eq. (6.15) to approximate Θi(x
′[s−1]
d , x

[s]
e)⊕Θi±1(x

′[s−1]
d , x

[s]
e) and Θi(x

[s−1]
d , x

[s−1]
e)⊕

Θi±1(x
[s−1]
d , x

[s−1]
e), Eq. (6.14) to approximate Θi±1(x

′[s−1]
a , x

[s]
b), and the Piling-up Lemma

completes the proof. �

LEMMA 9.7 For four active input bits in subround s− 1 and multiple active output bits
in subround s, the following holds for i > 1

x
[s−1]
b,i ⊕ x[s−1]

c,i ⊕ x[s−1]
b,i−1 ⊕ x

[s−1]
c,i−1 = L[s]

b,i ⊕ L
[s]
c,i ⊕ L

[s]
b,i−1 ⊕ L

[s]
c,i−1, w.p.

1

2

(
1 +

1

22

)
.

proof.

From Eqs. (9.12) and (9.13) we can cancel out the terms Θi(x
′[s−1]
c , x

[s]
d) and Θi−1(x

′[s−1]
c , x

[s]
d).

152

ID OD Correlation
∆X

(0)
5 = 218 ∆X

(2)
15 = 27 −0.00379

∆X
(0)
5 = 218 ∆X

(2)
10 = 27 −0.00221

∆X
(0)
5 = 211 ∆X

(2)
15 = 1 −0.00139

∆X
(0)
5 = 211 ∆X

(2)
10 = 1 −0.00053

Table 9.1 – Some of the best single bit differentials for 2 rounds of Forró.

Thus, we get

x
[s−1]
b,i ⊕ x[s−1]

c,i ⊕ x[s−1]
b,i−1 ⊕ x

[s−1]
c,i−1 = L[s]

b,i ⊕Θi(x
[s−1]
b , x

′[s−1]
c)⊕ L[s]

c,i⊕
Θi(x

′[s−1]
d , x

[s]
e)⊕ L[s]

b,i−1 ⊕Θi−1(x
[s−1]
b , x

′[s−1]
c)⊕ L[s]

c,i−1 ⊕Θi−1(x
′[s−1]
d , x

[s]
e).

Applying Eq. (6.15) and the Piling-up Lemma completes the proof.

�

9.2.2 Distinguishers

We constructed distinguishers for Forró by following the best techniques used against
ChaCha in the literature [24, 72]. More precisely, we looked for single bit differentials rang-
ing 2 and 3 rounds of Forró. To do so, we tested all possible single bit input differences
(128 possibilities) combined with every possible single bit output difference (512 possibili-
ties). Hence, we tested a total of 215 differentials. In each case, we estimated the correlation
experimentally with a total of 234 random samples. We present some examples in Table 9.1.

Next, we implemented a program capable of expanding the linear equations of Forró au-
tomatically using Lemmas 9.1, 9.2 and 9.3. With this program we constructed distinguishers
against Forró for every single differential that had a statistically significant correlation. Of
this study, we concluded in the best distinguisher for 3, 4, 5 and 5.25 rounds of Forró. We
could not find any distinguishers against 5.5 rounds of Forró or more. In the following, we
theoretically demonstrate these distinguishers.

9.2.2.1 Distinguisher against 3 rounds of Forró.

In this case, consider that single bit differential with OD = ∆X
(2)
15 = 1 presented in

Table 9.1. Thus, we have εd = 0.00139. For the linear part, we have to expand the bit

153

x
(2)
15,0 = x

[8]
15,0. Note, from Eqs (9.2) and (9.3) that we have

(a, b, c, d, e) =

(0, 4, 8, 12, 3), s = 1, 9, 17, ...

(1, 5, 9, 13, 0), s = 2, 10, 18, ...

(2, 6, 10, 14, 1), s = 3, 11, 19, ...

(3, 7, 11, 15, 2), s = 4, 12, 20, ...

(0, 5, 10, 15, 3), s = 5, 13, 21, ...

(1, 6, 11, 12, 0), s = 6, 14, 22, ...

(2, 7, 8, 13, 1), s = 7, 15, 23, ...

(3, 4, 9, 14, 2), s = 8, 16, 24, ...

(9.25)

Therefore, considering that for subrounds 9, 10 and 11 we do not update the word X15, we
have

x
[8]
15,0 = x

[9]
15,0 = x

[10]
15,0 = x

[11]
15,0.

Then, in subround 12, we have that (a, b, c, d, e) = (3, 7, 11, 15, 2). Thus, X15 is of type Xd

and using Lemma 9.1 we have x[11]
15,0 = x

[12]
15,27 ⊕ x

[12]
3,8 ⊕ x

[12]
7,0 , with probability 1. Clearly,

εL = 1, then the complexity of the differential-linear distinguisher for 3 rounds of Forró is
1
ε2d
≈ 218.9814.

9.2.2.2 Distinguisher against 4 rounds of Forró.

In this case, consider that single bit differential with OD = ∆X
(2)
10 = 1 presented in

Table 9.1. Thus, we have εd = 0.00053. For the linear part, we have to expand the bit
x

(2)
10,0 = x

[8]
10,0, which results in the following Lemma:

LEMMA 9.8 The following linear approximation holds with probability 1
2

(
1 + 1

25

)
x

[8]
10,0 = x

[16]
1 [8]⊕ x[16]

2 [16]⊕ x[16]
3 [2, 3, 24]⊕ x[16]

4 [0, 15, 16, 26, 27]⊕
x

[16]
7 [7, 8]⊕ x[16]

9 [0]⊕ x[16]
10 [0]⊕ x[16]

11 [0]⊕ x[16]
14 [22, 27]⊕ x[16]

15 [0, 27].

proof.
See Appendix A.2. �

COMPUTATIONAL RESULT 9.1 The linear approximation of Lemma 9.8 holds compu-
tationally with εL0 = 0.0476 ≈ 2−4.39. This correlation was verified using 238 random
samples.

We conclude that the complexity of the differential-linear distinguisher for 4 rounds of

154

Forró is 1
ε2dε

4
L0

≈ 236.55.

9.2.2.3 Distinguisher against 5 rounds of Forró.

For 5 rounds, we keep expanding the final equation of Lemma 9.8, which results in the
following Lemma:

LEMMA 9.9 The following linear approximation holds with probability 1
2

(
1 + 1

233

)
x

[8]
10,0 = x

[20]
0 [10, 11]⊕ x[20]

1 [0, 8, 16, 18, 19]⊕ x[20]
2 [0, 2, 3, 16, 26, 27, 29, 30]⊕

x
[20]
3 [0, 5, 6, 8, 24]⊕ x[20]

4 [2, 3, 4, 5, 10, 23, 24, 25, 26]⊕ x[20]
5 [0, 10, 11]⊕

x
[20]
6 [7, 8, 15, 16, 18, 19, 21, 22, 26, 27]⊕ x[20]

7 [0, 2, 3, 15, 16, 17, 18, 29, 30]⊕
x

[20]
8 [0, 4, 5, 10, 15, 16, 25, 27]⊕ x[20]

9 [0, 7, 8]⊕ x[20]
10 [0, 15, 16]⊕

x
[20]
11 [0, 2, 3, 7, 8, 17, 18, 23, 24]⊕ x[20]

12 [0, 15, 16, 26, 27]⊕ x[20]
13 [0, 27]⊕

x
[20]
14 [0, 17, 22, 27]⊕ x[20]

15 [0, 7, 8, 22]

proof.

See Appendix A.2. �

COMPUTATIONAL RESULT 9.2 The linear approximations of Eqs. (A.9)-(A.12) hold
computationally with εL1 = 0.0278, εL2 = 0.1667, εL3 = 0.0046 and εL4 = 0.0046,
respectively. This correlation was verified using 238 random samples.

We conclude that the complexity of the differential-linear distinguisher for 5 rounds of
Forró is 1

ε2d(εL0
εL1

εL2
εL3

εL4
)4
≈ 2129.68.

9.2.2.4 Distinguisher against 5.25 rounds of Forró.

For 5.25 rounds, we expand the final equation of Lemma 9.9, which results in the follow-
ing Lemma:

155

LEMMA 9.10 The following linear approximation holds with probability 1
2

(
1 + 1

247

)
x

[8]
10,0 = x

[21]
0 [0, 13, 14, 15, 18, 19, 29, 30]⊕ x[21]

1 [0, 8, 16, 18, 19]⊕
x

[21]
2 [0, 2, 3, 16, 26, 27, 29, 30]⊕ x[21]

3 [5, 6, 8, 15, 16, 24]⊕
x

[21]
4 [2, 3, 4, 5, 10, 23, 24, 25, 26]⊕ x[21]

5 [5, 7, 10, 20, 22, 23, 24]⊕
x

[21]
6 [7, 8, 15, 16, 18, 19, 21, 22, 26, 27]⊕ x[21]

7 [0, 2, 3, 15, 16, 17, 18, 29, 30]⊕
x

[21]
8 [0, 4, 5, 10, 15, 16, 25, 27]⊕ x[21]

9 [0, 7, 8]⊕ x[21]
10 [10, 15, 16, 20, 21]⊕

x
[21]
11 [0, 2, 3, 7, 8, 17, 18, 23, 24]⊕ x[21]

12 [0, 15, 16, 26, 27]⊕ x[21]
13 [0, 27]⊕

x
[21]
14 [0, 17, 22, 27]⊕ x[21]

15 [2, 3, 15, 16, 17]

proof.

In subround 21, we have (a, b, c, d, e) = (0, 5, 10, 15, 3). Thus, from Eq. (A.12) we
have to expand the terms x[20]

0 [10, 11], x[20]
3 [0, 5, 6, 8, 24], x[20]

5 [0, 10, 11], x[20]
10 [0, 15, 16]

and x
[20]
15 [0, 7, 8, 22]. Here, we use Lemma 9.1 to expand x

[20]
3,0 , x[20]

5,0 , x[20]
10,0 and x

[20]
15,0

with probability 1. Then, we use Lemma 9.6 to expand x[20]
15 [7, 8] ⊕ x

[20]
3,8 with proba-

bility 1
2

(
1 + 1

23

)
. Next, using Lemma 9.3 we can expand x[20]

0 [10, 11], x[20]
5 [10, 11] and

x
[20]
10 [15, 16] with probabilities 1

2

(
1 + 1

22

)
, and x[20]

3 [5, 6] with probability 1
2

(
1 + 1

2

)
. Ad-

ditionally, with Lemma 9.2 we can expand x[20]
3,24 and x[20]

15,22 with probabilities 1
2

(
1 + 1

2

)
and 1

2

(
1 + 1

23

)
, respectively. Thus, using the Piling-up Lemma we have that

x
[20]
0 [10, 11]⊕ x[20]

1 [0, 8, 16, 18, 19]⊕ x[20]
2 [0, 2, 3, 16, 26, 27, 29, 30]⊕ x[20]

3 [0, 5, 6,

8, 24]⊕ x[20]
4 [2, 3, 4, 5, 10, 23, 24, 25, 26]⊕ x[20]

5 [0, 10, 11]⊕ x[20]
6 [7, 8, 15, 16, 18,

19, 21, 22, 26, 27]⊕ x[20]
7 [0, 2, 3, 15, 16, 17, 18, 29, 30]⊕ x[20]

8 [0, 4, 5, 10, 15, 16, 25,

27]⊕ x[20]
9 [0, 7, 8]⊕ x[20]

10 [0, 15, 16]⊕ x[20]
11 [0, 2, 3, 7, 8, 17, 18, 23, 24]⊕ x[20]

12 [0, 15,

16, 26, 27]⊕ x[20]
13 [0, 27]⊕ x[20]

14 [0, 17, 22, 27]⊕ x[20]
15 [0, 7, 8, 22] = x

[21]
0 [0, 13, 14,

15, 18, 19, 29, 30]⊕ x[21]
1 [0, 8, 16, 18, 19]⊕ x[21]

2 [0, 2, 3, 16, 26, 27, 29, 30]⊕
x

[21]
3 [5, 6, 8, 15, 16, 24]⊕ x[21]

4 [2, 3, 4, 5, 10, 23, 24, 25, 26]⊕ x[21]
5 [5, 7, 10, 20, 22,

23, 24]⊕ x[21]
6 [7, 8, 15, 16, 18, 19, 21, 22, 26, 27]⊕ x[21]

7 [0, 2, 3, 15, 16, 17, 18,

29, 30]⊕ x[21]
8 [0, 4, 5, 10, 15, 16, 25, 27]⊕ x[21]

9 [0, 7, 8]⊕ x[21]
10 [10, 15, 16, 20, 21]⊕

x
[21]
11 [0, 2, 3, 7, 8, 17, 18, 23, 24]⊕ x[21]

12 [0, 15, 16, 26, 27]⊕ x[21]
13 [0, 27]⊕

x
[21]
14 [0, 17, 22, 27]⊕ x[21]

15 [2, 3, 15, 16, 17]
(9.26)

with probability 1
2

(
1 + 1

214

)
.

�

156

COMPUTATIONAL RESULT 9.3 The linear approximations of Eq. (9.26) hold compu-
tationally with εL5 = 0.000284. This correlation was verified using 238 random samples.

Using Computational Result 9.3 we can estimate the complexity of the differential-linear
distinguisher for 5.25 rounds of Forró as 1

ε2d(εL0
εL1

εL2
εL3

εL4
εL5

)4
≈ 2176.81. We also expanded

the linear approximation to subround 22 but it did not lead to a significant attack, more
precisely, the attack for 5.5 rounds would have complexity of 2296.

9.2.3 Attacks Using PNBs

In this section we use the techniques developed by [19] and later improved by [24] to
attack Forró. We tested several different attacks for different values of γ for all differentials
presented in Table 9.1. With this approach, the best attack we found against 5 rounds of Forró
uses 2 rounds forward and 3 rounds backwards. The attack uses the differential (∆

(2)
10,0|∆

(0)
5,11),

thus, from Table 9.1 we get εd = −0.00053. Using γ = 0.25 we get a total of 155 PNBs.
From that, we estimated εa = 0.000068 which leads to an attack with data complexity of 257

and time complexity of 2158.

9.3 PERFORMANCE

Forró by design has less operations than ChaCha, the implication being that on embed-
ded devices with limited concurrency capabilities, such as ARM processors, Forró naturally
has better performance1. In more advanced processors with speculative execution and out-
of-order execution, such as modern x86, ChaCha has the advantage that all quarter round
operations in a round are independent, while Forró, because of the Pollination, has a serial
dependency between the quarter round functions. In order to work around this apparent
limitation on concurrency, a few points need to be explained.

In order to pipeline instructions, the processor detects (or speculates) instructions that
don’t have dependencies on each others output and are nearby to anticipate them, so while
one executes, the other can be fetching, for example. In ChaCha, the QRF is applied indepen-
dently inside a round, and pipelining occurs without much impediment. In Forro, because of
Pollination, every operation in a round has a dependency on the previous output, causing a
serial data dependency. Meaning that the processor can’t detect independent instructions to
pipeline, or if it guesses the instructions are likely to not retire.

1The results presented in this section were achieved with the contribution of my friend Iago Passos

157

Network MTU (bytes)
16 Mbps Token Ring 17914
4 Mbps Token Ring 4464
FDDI 4352
Ethernet 1500
IEEE 802.3/802.2 1492
PPPoE (WAN Miniport) 1480
X.25 576

Table 9.2 – Typical MTU of different types of networks.

However, just like ChaCha, in order to get the next 512 bits of keystream, the algo-
rithm needs to be executed from the start with an increment on the counter. This execution
is completely independent of the previous one. Unfortunately, the processor doesn’t have
the foresight to anticipate that, since the code for it is far into the future, but that can be
bypassed.

To take full advantage of pipelining, whenever possible, we implement it so that 2 execu-
tions of Forró are in the same loop, which we refer as the parallel version of the implementa-
tion . This strategy prevents us from losing too much performance in modern architectures,
and still be able to leverage the fact we have less instructions in order to beat ChaCha’s
performance.

In the following tables we compare the performance of Forro against ChaCha and Salsa.
From the tables we can see that Forro is faster in constrained devices such as ARM-v7, being
a good choice for IOT devices. We note that for these results all other processes from the
machine were turn off to not affect the results.

158

576 bytes 1480 bytes 1492 bytes 1500 bytes
Algorithm Cycles µs Cycles µs Cycles µs Cycles µs

Salsa 2948 0 8018 1 7878 1 7856 1
ChaCha12 1910 0 5238 1 5132 1 5144 1
ChaCha20 2878 0 7850 1 7680 1 7720 1
ChaCha20 (Parallel) 3034 0 7430 1 7586 1 7282 1
Forro10 3522 0 9640 1 9642 1 9438 1
Forro12 4174 0 11406 2 11398 2 11178 2
Forro14 4818 0 13172 2 13176 2 12894 2
Forro10 (Parallel) 2360 0 5754 1 5872 1 5642 1
Forro12 (Parallel) 2756 0 6734 1 6874 1 6600 1
Forro14 (Parallel) 3190 0 7778 1 7950 1 7624 1

4096 bytes 4352 bytes 4464 bytes 17914 bytes
Algorithm Cycles µs Cycles µs Cycles µs Cycles µs

Salsa 20542 4 23142 4 23382 4 91556 18
ChaCha12 13462 2 15134 3 15306 3 59992 12
ChaCha20 20118 4 21890 4 23078 4 92084 18
ChaCha20 (Parallel) 19362 3 21006 4 22172 4 88136 17
Forro10 25134 5 26698 5 28110 5 114610 23
Forro12 29756 6 32994 6 33280 6 132970 27
Forro14 34472 7 36588 7 39310 8 153938 31
Forro10 (Parallel) 15326 3 16280 3 16842 3 65482 13
Forro12 (Parallel) 17536 3 18988 3 20082 4 76578 15
Forro14 (Parallel) 20748 4 22062 4 23194 4 90766 18

Table 9.3 – Timings of Salsa, ChaCha and Forró’s reference implementations on an x86_64.
Values are the median of 10001 measurements. And the size of the packet is based on
common network MTU sizes following Table 9.2.

159

576 bytes 1480 bytes 1492 bytes 1500 bytes
Algorithm Cycles µs Cycles µs Cycles µs Cycles µs

Salsa 850 0 2814 0 2814 0 2808 0
ChaCha12 494 0 1644 0 1644 0 1656 0
ChaCha20 752 0 2522 0 2526 0 2536 0
ChaCha20 (Parallel) 1326 0 2538 0 2544 0 2548 0
Forro10 1010 0 3258 0 3256 0 3260 0
Forro12 1188 0 3856 0 3866 0 3870 0
Forro14 1396 0 4522 0 4524 0 4522 0
Forro10 (Parallel) 1246 0 2718 0 2718 0 2728 0
Forro12 (Parallel) 1472 0 3186 0 3192 0 3198 0
Forro14 (Parallel) 1676 0 3644 0 3644 0 3648 0

4096 bytes 4352 bytes 4464 bytes 17914 bytes
Algorithm Cycles µs Cycles µs Cycles µs Cycles µs

Salsa 4418 0 4940 1 5772 1 20740 4
ChaCha12 2688 0 2956 0 3480 0 12150 2
ChaCha20 3934 0 4434 0 5264 1 18100 3
ChaCha20 (Parallel) 4480 0 5002 1 5868 1 20302 4
Forro10 4548 0 5058 1 6178 1 21230 4
Forro12 5406 1 6032 1 7244 1 25294 5
Forro14 6244 1 6966 1 8422 1 29366 5
Forro10 (Parallel) 3558 0 4090 0 5164 1 17098 3
Forro12 (Parallel) 4142 0 4782 0 6054 1 19586 3
Forro14 (Parallel) 4826 0 5568 1 6928 1 22790 4

Table 9.4 – Timings of Salsa, ChaCha and Forró’s SIMD implementations on an x86_64.
Values are the median of 10001 measurements. And the size of the packet is based on
common network MTU sizes following Table 9.2.

160

576 bytes 1480 bytes 1492 bytes 1500 bytes
Algorithm Cycles µs Cycles µs Cycles µs Cycles µs

Salsa 12540 19 31714 48 31808 48 31824 48
ChaCha12 10011 15 24850 38 24970 38 24964 38
ChaCha20 13424 20 33972 52 34030 52 34050 52
ChaCha20 (Parallel) 22042 33 52336 80 52340 80 52258 80
Forro10 9181 14 22709 34 22810 35 22778 35
Forro12 10212 15 25474 39 25547 39 25554 39
Forro14 11082 17 27798 42 27886 42 27889 42
Forro10 (Parallel) 10252 15 24373 37 24167 37 23870 36
Forro12 (Parallel) 11150 17 26250 40 25988 39 25755 39
Forro14 (Parallel) 12194 18 28836 44 28970 44 28332 80

4096 bytes 4352 bytes 4464 bytes 17914 bytes
Algorithm Cycles µs Cycles µs Cycles µs Cycles µs

Salsa 83689 128 89108 137 91369 140 364660 560
ChaCha12 65263 100 69333 106 71337 109 283103 435
ChaCha20 89495 137 95363 146 97854 150 388863 598
ChaCha20 (Parallel) 138284 212 147484 226 151109 232 605445 931
Forro10 59816 92 63308 97 65075 100 257782 396
Forro12 67098 103 71102 109 73100 112 290095 446
Forro14 73230 112 77833 119 79928 122 317966 489
Forro10 (Parallel) 62365 95 66096 101 69852 107 277038 426
Forro12 (Parallel) 69317 106 73383 112 74569 114 297071 456
Forro14 (Parallel) 76236 117 80906 124 83172 127 330549 509

Table 9.5 – Timings of Salsa, ChaCha and Forró’s reference implementations on an ARMv7.
Values are the median of 10001 measurements. And the size of the packet is based on
common network MTU sizes following Table 9.2.

161

576 bytes 1480 bytes 1492 bytes 1500 bytes
Algorithm Cycles µs Cycles µs Cycles µs Cycles µs
ChaCha12 6269 9 15278 23 15358 23 15368 23
ChaCha20 8637 13 21925 33 21996 33 22020 33
Forro10 6580 10 16154 24 16187 24 16186 24
Forro12 7311 11 18113 27 18208 28 18220 28
Forro14 8118 12 20321 31 20380 31 20417 31

4096 bytes 4352 bytes 4464 bytes 17914 bytes
Algorithm Cycles µs Cycles µs Cycles µs Cycles µs
ChaCha12 35652 54 37803 58 39651 60 154255 237
ChaCha20 51914 79 55108 84 57738 88 226416 348
Forro10 38409 59 40747 62 42498 65 166003 255
Forro12 43589 67 46292 71 48226 74 189334 291
Forro14 49575 76 52658 81 54764 84 215532 331

Table 9.6 – Timings of ChaCha and Forró’s NEON implementations on an ARMv7. Values
are the median of 10001 measurements. And the size of the packet is based on common
network MTU sizes following Table 9.2.

162

576 bytes 1480 bytes 1492 bytes 1500 bytes
Algorithm Cycles µs Cycles µs Cycles µs Cycles µs

Salsa 3542 1 9285 5 9290 5 9293 5
ChaCha12 3279 1 8617 4 8638 4 8627 4
ChaCha20 5011 2 13211 7 13219 7 13221 7
ChaCha20 (Parallel) 5703 3 13627 7 13635 7 13637 7
Forro10 4915 2 12949 7 12876 7 12961 7
Forro12 5742 3 15252 8 15214 8 15216 8
Forro14 6630 3 17544 9 17566 9 17569 9
Forro10 (Parallel) 3588 1 8562 4 8559 4 8584 4
Forro12 (Parallel) 4179 2 9967 5 9975 5 9977 5
Forro14 (Parallel) 4708 2 11216 6 11227 6 11259 6

4096 bytes 4352 bytes 4464 bytes 17914 bytes
Algorithm Cycles µs Cycles µs Cycles µs Cycles µs

Salsa 24622 13 26156 14 26928 14 108281 60
ChaCha12 22844 12 24268 13 24984 13 100300 55
ChaCha20 35100 19 37289 20 38386 21 153589 85
ChaCha20 (Parallel) 36214 20 147484 21 39599 21 159359 88
Forro10 34411 19 36330 20 37635 20 150649 83
Forro12 40561 22 43091 23 44355 24 176641 98
Forro14 46700 25 49614 27 51075 28 204260 113
Forro10 (Parallel) 22677 12 24086 13 24794 13 99525 55
Forro12 (Parallel) 26454 14 28102 15 28924 16 115610 64
Forro14 (Parallel) 29804 16 31666 17 32530 18 130157 72

Table 9.7 – Timings of Salsa, ChaCha and Forró’s reference implementations on an ARMv8,
working with 64-bit words. Values are the median of 10001 measurements. And the sizes
are based on common network MTU sizes following Table 9.2.

163

CONCLUSIONS AND FUTURE WORKS

In this thesis, we proposed several contributions to symmetric cryptography. First, we devel-
oped novel techniques to measure the diffusion of cryptographic algorithms. We presented a
framework to compute continuous generalizations of cryptographic algorithms. In addition,
we present new metrics to measure the avalanche effect, the diffusion, and the influence of
input bits to sections of the output. In particular, the Diffusion Factor can be used to compare
the diffusion of secure algorithms without the need of reducing the number of rounds or even
consider small subset of bits.

Then, we proposed a new framework, named ColoreD, useful to design and to com-
pare the security of cryptographic algorithms against differential cryptanalysis. We showed
that ColoreD allows us to consider continuous differences, instead of just binary (black
and white) differences. The framework includes the Continuous Differential Cryptanaly-
sis (CDC), a new theoretical type of attacks in which we are able to consider statistical
properties generated by very small continuous differences. Additionally, we provided some
examples of how to use ColoreD and a full analysis and comparison of AES and PRESENT,
leading to one interesting conclusion that PRESENT would need at least 37 rounds to be as
secure as AES by these metrics.

This thesis also provide several new advances to the cryptanalysis of ARX ciphers. In
particular, we provided a new way to derive linear approximations for ChaCha, and described
the first differential-linear distinguisher against ChaCha with complexity 2214. In addition,
using the proposed BLE, we improved attacks against Salsa. More precisely, we presented
the first distinguishers against 7 and 8 rounds of Salsa with complexities 2109 and 2216, and
improved key recovery attacks achieving a complexity of 2212 for 8 rounds when the best
know attack so far had complexity of 2244.9.

Using the knowledge gained in cryptanalysis of ARX, we proposed a new stream cipher
called Forró. We showed that Forró can achieve the same security of ChaCha with fewer
operations. Because of that, Forró can achieve faster performance in certain platforms, spe-
cially in constrained devices.

Last but not least, another important result from this thesis is the introduction of three
new open-source solutions encompassing more than 30 thousand lines of code. The solutions
are:

1. Cryptdances, a tool to perform cryptanalysis of ChaCha, Salsa and Forro in high per-
formance environments. Available in <https://github.com/MurCoutinho/cryptDances>.

2. The Fundamental Probabilistic Cryptographic Operations (FPCO) library, which can

164

10

https://github.com/MurCoutinho/cryptDances

be used to implement a wide range of cryptographic algorithms, in particular ARX
or AND-RX algorithms, with continuous probabilistic operations. Using the FPCO
library is possible to study the confusion and diffusion of cryptographic algorithms or
implement metrics such as the Continuous Avalanche Factor (CAF) and the Magnitude
Factor (MF), useful to measure the avalanche effect. Available at <https://github.com/
MurCoutinho/pda>.

3. Reference implementation for Forró and benchmarks for performance against ChaCha
and Salsa. Available at <https://github.com/MurCoutinho/forro_cipher>.

For future works, it would be interesting to use CDA in a broader range of algorithms
to better understand and compare their diffusion properties. Moreover, the use of contin-
uous generalizations in cryptanalysis could be further investigated, in particular, using the
CNM for identifying neutral bits or probabilistic neutral bits. Another idea would be to com-
bine CDC with differential attacks based on neural networks [73]. In the theoretical side, it
might be interesting to study the mathematical behavior of the continuous generalizations, in
particular the curvature of the final function.

Also, the techniques developed in this paper may be used to improve cryptanalysis
against other ARX primitives, such as Chaskey or the hash function Blake. Also, the se-
curity of Forro should be analyzed further, specially against other types of attacks, such as
rotational cryptanalysis. Finally, the tool CryptDances can be used by researches to try to
improve further attacks against Salsa, ChaCha, and Forró.

165

https://github.com/MurCoutinho/pda
https://github.com/MurCoutinho/pda
https://github.com/MurCoutinho/forro_cipher

BIBLIOGRAPHY

1 DAUM, M. Cryptanalysis of Hash functions of the MD4-family. Tese (Doutorado) —
Ruhr University Bochum, 2005. Disponível em: <http://www-brs.ub.ruhr-uni-bochum.de/
netahtml/HSS/Diss/DaumMagnus/>.

2 SHANNON, C. E. A mathematical theory of communication. The Bell system technical
journal, Nokia Bell Labs, v. 27, n. 3, p. 379–423, 1948.

3 SHANNON, C. E. Communication theory of secrecy systems. Bell Syst. Tech. J., v. 28,
n. 4, p. 656–715, 1949. Disponível em: <https://doi.org/10.1002/j.1538-7305.1949.tb00928.
x>.

4 WEBSTER, A. F.; TAVARES, S. E. On the design of s-boxes. In: WILLIAMS, H. C.
(Ed.). Advances in Cryptology - CRYPTO ’85, Santa Barbara, California, USA, August
18-22, 1985, Proceedings. Springer, 1985. (Lecture Notes in Computer Science, v. 218), p.
523–534. Disponível em: <https://doi.org/10.1007/3-540-39799-X_41>.

5 PRENEEL, B.; GOVAERTS, R.; VANDEWALLE, J. Boolean functions satisfying higher
order propagation criteria. In: DAVIES, D. W. (Ed.). Advances in Cryptology - EUROCRYPT
’91, Workshop on the Theory and Application of of Cryptographic Techniques, Brighton,
UK, April 8-11, 1991, Proceedings. Springer, 1991. (Lecture Notes in Computer Science,
v. 547), p. 141–152. Disponível em: <https://doi.org/10.1007/3-540-46416-6_12>.

6 CUSICK, T. W.; STANICA, P. Cryptographic Boolean functions and applications. [S.l.]:
Academic Press, 2017.

7 SRINIVASAN, C.; LAKSHMY, K.; SETHUMADHAVAN, M. Measuring diffusion
in stream ciphers using statistical testing methods. Defence Science Journal, Defence
Scientific Information & Documentation Centre, v. 62, n. 1, p. 6, 2012.

8 BERNSTEIN, D. J. The salsa20 family of stream ciphers. In: ROBSHAW, M.
J. B.; BILLET, O. (Ed.). New Stream Cipher Designs - The eSTREAM Finalists.
Springer, 2008, (Lecture Notes in Computer Science, v. 4986). p. 84–97. Disponível em:
<https://doi.org/10.1007/978-3-540-68351-3_8>.

9 ROBSHAW, M. J. B.; BILLET, O. (Ed.). New Stream Cipher Designs - The eSTREAM
Finalists. Springer, 2008. v. 4986. (Lecture Notes in Computer Science, v. 4986). ISBN
978-3-540-68350-6. Disponível em: <https://doi.org/10.1007/978-3-540-68351-3>.

10 BERNSTEIN, D. J. Chacha, a variant of salsa20. In: Workshop Record of SASC. [S.l.:
s.n.], 2008. v. 8, p. 3–5.

11 BERNSTEIN, D. J. The poly1305-aes message-authentication code. In: GILBERT,
H.; HANDSCHUH, H. (Ed.). Fast Software Encryption: 12th International Workshop,
FSE 2005, Paris, France, February 21-23, 2005, Revised Selected Papers. Springer,
2005. (Lecture Notes in Computer Science, v. 3557), p. 32–49. Disponível em:
<https://doi.org/10.1007/11502760_3>.

12 LANGLEY, A. et al. Chacha20-poly1305 cipher suites for transport layer security
(TLS). RFC, v. 7905, p. 1–8, 2016. Disponível em: <https://doi.org/10.17487/RFC7905>.

166

http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/DaumMagnus/
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/DaumMagnus/
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1007/3-540-39799-X_41
https://doi.org/10.1007/3-540-46416-6_12
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-540-68351-3
https://doi.org/10.1007/11502760_3
https://doi.org/10.17487/RFC7905

13 MULLER, S. Documentation and Analysis of the Linux Random Number
Generator - Federal Office for Information Security (Germany’s). 2019. <https:
//www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/
LinuxRNG_EN.pdf;jsessionid=6B0F8D7795B80F5EADA3DB3DB3E4043B.1_cid360?__
blob=publicationFile&v=19>.

14 TORVALDS, L. Linux kernel source tree. 2016. <https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=818e607b57c94ade9824dad63a96c2ea6b21baf3>.

15 IANIX. ChaCha Usage & Deployment. 2020. <https://ianix.com/pub/
chacha-deployment.html>. Accessed: 2020-01-13.

16 BONEH, D.; SHOUP, V. A graduate course in applied cryptography. Draft 0.5, 2020.

17 CROWLEY, P. Truncated differential cryptanalysis of five rounds of salsa20. IACR
Cryptol. ePrint Arch., v. 2005, p. 375, 2005. Disponível em: <http://eprint.iacr.org/2005/
375>.

18 FISCHER, S. et al. Non-randomness in estream candidates salsa20 and TSC-4.
In: BARUA, R.; LANGE, T. (Ed.). Progress in Cryptology - INDOCRYPT 2006, 7th
International Conference on Cryptology in India, Kolkata, India, December 11-13, 2006,
Proceedings. Springer, 2006. (Lecture Notes in Computer Science, v. 4329), p. 2–16.
Disponível em: <https://doi.org/10.1007/11941378_2>.

19 AUMASSON, J. et al. New features of latin dances: Analysis of salsa, chacha, and
rumba. In: NYBERG, K. (Ed.). Fast Software Encryption, 15th International Workshop,
FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers.
Springer, 2008. (Lecture Notes in Computer Science, v. 5086), p. 470–488. Disponível em:
<https://doi.org/10.1007/978-3-540-71039-4_30>.

20 SHI, Z. et al. Improved key recovery attacks on reduced-round salsa20 and chacha.
In: KWON, T.; LEE, M.; KWON, D. (Ed.). Information Security and Cryptology - ICISC
2012 - 15th International Conference, Seoul, Korea, November 28-30, 2012, Revised
Selected Papers. Springer, 2012. (Lecture Notes in Computer Science, v. 7839), p. 337–351.
Disponível em: <https://doi.org/10.1007/978-3-642-37682-5_24>.

21 MAITRA, S.; PAUL, G.; MEIER, W. Salsa20 cryptanalysis: New moves and
revisiting old styles. IACR Cryptol. ePrint Arch., v. 2015, p. 217, 2015. Disponível em:
<http://eprint.iacr.org/2015/217>.

22 MAITRA, S. Chosen IV cryptanalysis on reduced round chacha and salsa. Discret. Appl.
Math., v. 208, p. 88–97, 2016. Disponível em: <https://doi.org/10.1016/j.dam.2016.02.020>.

23 DEY, S.; SARKAR, S. Improved analysis for reduced round salsa and chacha. Discret.
Appl. Math., v. 227, p. 58–69, 2017. Disponível em: <https://doi.org/10.1016/j.dam.2017.
04.034>.

24 CHOUDHURI, A. R.; MAITRA, S. Significantly improved multi-bit differentials for
reduced round salsa and chacha. IACR Trans. Symmetric Cryptol., v. 2016, n. 2, p. 261–287,
2016. Disponível em: <https://doi.org/10.13154/tosc.v2016.i2.261-287>.

167

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf;jsessionid=6B0F8D7795B80F5EADA3DB3DB3E4043B.1_cid360?__blob=publicationFile&v=19
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf;jsessionid=6B0F8D7795B80F5EADA3DB3DB3E4043B.1_cid360?__blob=publicationFile&v=19
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf;jsessionid=6B0F8D7795B80F5EADA3DB3DB3E4043B.1_cid360?__blob=publicationFile&v=19
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf;jsessionid=6B0F8D7795B80F5EADA3DB3DB3E4043B.1_cid360?__blob=publicationFile&v=19
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=818e607b57c94ade9824dad63a96c2ea6b21baf3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=818e607b57c94ade9824dad63a96c2ea6b21baf3
https://ianix.com/pub/chacha-deployment.html
https://ianix.com/pub/chacha-deployment.html
http://eprint.iacr.org/2005/375
http://eprint.iacr.org/2005/375
https://doi.org/10.1007/11941378_2
https://doi.org/10.1007/978-3-540-71039-4_30
https://doi.org/10.1007/978-3-642-37682-5_24
http://eprint.iacr.org/2015/217
https://doi.org/10.1016/j.dam.2016.02.020
https://doi.org/10.1016/j.dam.2017.04.034
https://doi.org/10.1016/j.dam.2017.04.034
https://doi.org/10.13154/tosc.v2016.i2.261-287

25 COUTINHO, M.; NETO, T. C. S. New multi-bit differentials to improve attacks
against chacha. IACR Cryptol. ePrint Arch., v. 2020, p. 350, 2020. Disponível em:
<https://eprint.iacr.org/2020/350>.

26 BEIERLE, C.; LEANDER, G.; TODO, Y. Improved differential-linear attacks with
applications to ARX ciphers. In: MICCIANCIO, D.; RISTENPART, T. (Ed.). Advances
in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference,
CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III.
Springer, 2020. (Lecture Notes in Computer Science, v. 12172), p. 329–358. Disponível em:
<https://doi.org/10.1007/978-3-030-56877-1_12>.

27 COUTINHO, M.; NETO, T. C. S. Improved linear approximations to ARX ciphers and
attacks against chacha. IACR Cryptol. ePrint Arch., v. 2021, p. 224, 2021. Disponível em:
<https://eprint.iacr.org/2021/224>.

28 DEY, S. et al. Revamped differential-linear cryptanalysis on reduced round chacha. In:
Eurocrypt. [S.l.]: Springer-Verlag, 2022.

29 BEAULIEU, R. et al. The SIMON and SPECK lightweight block ciphers. In:
Proceedings of the 52nd Annual Design Automation Conference, San Francisco,
CA, USA, June 7-11, 2015. ACM, 2015. p. 175:1–175:6. Disponível em: <https:
//doi.org/10.1145/2744769.2747946>.

30 DAEMEN, J.; RIJMEN, V. The Design of Rijndael - The Advanced Encryption
Standard (AES), Second Edition. Springer, 2020. (Information Security and Cryptography).
ISBN 978-3-662-60768-8. Disponível em: <https://doi.org/10.1007/978-3-662-60769-5>.

31 BOGDANOV, A. et al. PRESENT: an ultra-lightweight block cipher. In: PAILLIER,
P.; VERBAUWHEDE, I. (Ed.). Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007, Proceedings.
Springer, 2007. (Lecture Notes in Computer Science, v. 4727), p. 450–466. Disponível em:
<https://doi.org/10.1007/978-3-540-74735-2_31>.

32 BIHAM, E.; SHAMIR, A. Differential cryptanalysis of des-like cryptosystems. J.
Cryptol., v. 4, n. 1, p. 3–72, 1991. Disponível em: <https://doi.org/10.1007/BF00630563>.

33 LAI, X.; MASSEY, J. L.; MURPHY, S. Markov ciphers and differential cryptanalysis.
In: DAVIES, D. W. (Ed.). Advances in Cryptology - EUROCRYPT ’91, Workshop on the
Theory and Application of of Cryptographic Techniques, Brighton, UK, April 8-11, 1991,
Proceedings. Springer, 1991. (Lecture Notes in Computer Science, v. 547), p. 17–38.
Disponível em: <https://doi.org/10.1007/3-540-46416-6_2>.

34 KNUDSEN, L. R.; ROBSHAW, M. The Block Cipher Companion. Springer, 2011.
(Information Security and Cryptography). ISBN 978-3-642-17341-7. Disponível em:
<https://doi.org/10.1007/978-3-642-17342-4>.

35 MATSUI, M. Linear cryptanalysis method for DES cipher. In: HELLESETH, T. (Ed.).
Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory and Application
of of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings.
Springer, 1993. (Lecture Notes in Computer Science, v. 765), p. 386–397. Disponível em:
<https://doi.org/10.1007/3-540-48285-7_33>.

168

https://eprint.iacr.org/2020/350
https://doi.org/10.1007/978-3-030-56877-1_12
https://eprint.iacr.org/2021/224
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1007/978-3-662-60769-5
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/978-3-642-17342-4
https://doi.org/10.1007/3-540-48285-7_33

36 TARDY-CORFDIR, A.; GILBERT, H. A known plaintext attack of FEAL-4 and
FEAL-6. In: FEIGENBAUM, J. (Ed.). Advances in Cryptology - CRYPTO ’91, 11th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1991,
Proceedings. Springer, 1991. (Lecture Notes in Computer Science, v. 576), p. 172–181.
Disponível em: <https://doi.org/10.1007/3-540-46766-1_12>.

37 WALLÉN, J. On the differential and linear properties of addition. Master’s thesis,
Helsinki University of Technology, Laboratory for Theoretical Computer Science, 2003.

38 CANTEAUT, A. Lecture notes on cryptographic boolean functions. Inria, Paris,
France, 2016.

39 LANGFORD, S. K.; HELLMAN, M. E. Differential-linear cryptanalysis. In:
DESMEDT, Y. (Ed.). Advances in Cryptology - CRYPTO ’94, 14th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 21-25, 1994, Proceedings.
Springer, 1994. (Lecture Notes in Computer Science, v. 839), p. 17–25. Disponível em:
<https://doi.org/10.1007/3-540-48658-5_3>.

40 BLONDEAU, C.; LEANDER, G.; NYBERG, K. Differential-linear cryptanalysis
revisited. J. Cryptol., v. 30, n. 3, p. 859–888, 2017. Disponível em: <https://doi.org/10.
1007/s00145-016-9237-5>.

41 LIPMAA, H.; MORIAI, S. Efficient algorithms for computing differential properties
of addition. In: MATSUI, M. (Ed.). Fast Software Encryption, 8th International
Workshop, FSE 2001 Yokohama, Japan, April 2-4, 2001, Revised Papers. Springer,
2001. (Lecture Notes in Computer Science, v. 2355), p. 336–350. Disponível em:
<https://doi.org/10.1007/3-540-45473-X_28>.

42 WALLÉN, J. Linear approximations of addition modulo 2n. In: JOHANSSON, T.
(Ed.). Fast Software Encryption, 10th International Workshop, FSE 2003, Lund, Sweden,
February 24-26, 2003, Revised Papers. Springer, 2003. (Lecture Notes in Computer Science,
v. 2887), p. 261–273. Disponível em: <https://doi.org/10.1007/978-3-540-39887-5_20>.

43 FORRÉ, R. The strict avalanche criterion: Spectral properties of boolean functions and
an extended definition. In: GOLDWASSER, S. (Ed.). Advances in Cryptology - CRYPTO
’88, 8th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 21-25, 1988, Proceedings. Springer, 1988. (Lecture Notes in Computer Science,
v. 403), p. 450–468. Disponível em: <https://doi.org/10.1007/0-387-34799-2_31>.

44 ZHANG, X.-M.; ZHENG, Y. Gac—the criterion for global avalanche characteristics
of cryptographic functions. In: J. UCS The Journal of Universal Computer Science. [S.l.]:
Springer, 1996. p. 320–337.

45 DAWSON, E.; GUSTAFSON, H.; PETTITT, A. N. Strict key avalanche
criterion. Australas. J Comb., v. 6, p. 147–154, 1992. Disponível em: <http:
//ajc.maths.uq.edu.au/pdf/6/ocr-ajc-v6-p147.pdf>.

46 DINU, D. et al. Design strategies for ARX with provable bounds: Sparx and LAX.
In: CHEON, J. H.; TAKAGI, T. (Ed.). Advances in Cryptology - ASIACRYPT 2016
- 22nd International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I. [s.n.],

169

https://doi.org/10.1007/3-540-46766-1_12
https://doi.org/10.1007/3-540-48658-5_3
https://doi.org/10.1007/s00145-016-9237-5
https://doi.org/10.1007/s00145-016-9237-5
https://doi.org/10.1007/3-540-45473-X_28
https://doi.org/10.1007/978-3-540-39887-5_20
https://doi.org/10.1007/0-387-34799-2_31
http://ajc.maths.uq.edu.au/pdf/6/ocr-ajc-v6-p147.pdf
http://ajc.maths.uq.edu.au/pdf/6/ocr-ajc-v6-p147.pdf

2016. (Lecture Notes in Computer Science, v. 10031), p. 484–513. Disponível em:
<https://doi.org/10.1007/978-3-662-53887-6_18>.

47 AUMASSON, J.-P. et al. Sha-3 proposal blake. Submission to NIST, v. 92, 2008.

48 FIPS, N. 180-2: Secure hash standard (shs). US Department of Commerce, National
Institute of Standards and Technology (NIST), 2012.

49 ADAMS, C. M.; TAVARES, S. E. The structured design of cryptographically
good s-boxes. J. Cryptol., v. 3, n. 1, p. 27–41, 1990. Disponível em: <https:
//doi.org/10.1007/BF00203967>.

50 WU, C. K.; FENG, D. Boolean Functions and Their Applications in Cryptography.
Springer, 2016. (Advances in Computer Science and Technology). ISBN 978-3-662-48863-
8. Disponível em: <https://doi.org/10.1007/978-3-662-48865-2>.

51 BERNSTEIN, D.; LANGE, T. Ecrypt benchmarking of cryptographic systems. In:
CHES 2009 WORKSHOP BENCHMARKING CRYPTOGRAPHIC HARDWARE. [S.l.],
2009.

52 COPPERSMITH, D. The data encryption standard (DES) and its strength
against attacks. IBM J. Res. Dev., v. 38, n. 3, p. 243–250, 1994. Disponível em:
<https://doi.org/10.1147/rd.383.0243>.

53 PRENEEL, B.; GOVAERTS, R.; VANDEWALLE, J. Differential cryptanalysis of
hash functions based on block ciphers. In: DENNING, D. E. et al. (Ed.). CCS ’93,
Proceedings of the 1st ACM Conference on Computer and Communications Security,
Fairfax, Virginia, USA, November 3-5, 1993. ACM, 1993. p. 183–188. Disponível em:
<https://doi.org/10.1145/168588.168611>.

54 LAI, X. Higher order derivatives and differential cryptanalysis. In: Communications
and cryptography. [S.l.]: Springer, 1994. p. 227–233.

55 KNUDSEN, L. R. Truncated and higher order differentials. In: PRENEEL, B. (Ed.).
Fast Software Encryption: Second International Workshop. Leuven, Belgium, 14-16
December 1994, Proceedings. Springer, 1994. (Lecture Notes in Computer Science,
v. 1008), p. 196–211. Disponível em: <https://doi.org/10.1007/3-540-60590-8_16>.

56 KNUDSEN, L. DEAL-a 128-bit block cipher. complexity, Citeseer, v. 258, n. 2, p. 216,
1998.

57 BIHAM, E.; BIRYUKOV, A.; SHAMIR, A. Cryptanalysis of skipjack reduced to
31 rounds using impossible differentials. In: STERN, J. (Ed.). Advances in Cryptology
- EUROCRYPT ’99, International Conference on the Theory and Application of
Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding.
Springer, 1999. (Lecture Notes in Computer Science, v. 1592), p. 12–23. Disponível em:
<https://doi.org/10.1007/3-540-48910-X_2>.

58 WAGNER, D. A. The boomerang attack. In: KNUDSEN, L. R. (Ed.). Fast Software
Encryption, 6th International Workshop, FSE ’99, Rome, Italy, March 24-26, 1999,
Proceedings. Springer, 1999. (Lecture Notes in Computer Science, v. 1636), p. 156–170.
Disponível em: <https://doi.org/10.1007/3-540-48519-8_12>.

170

https://doi.org/10.1007/978-3-662-53887-6_18
https://doi.org/10.1007/BF00203967
https://doi.org/10.1007/BF00203967
https://doi.org/10.1007/978-3-662-48865-2
https://doi.org/10.1147/rd.383.0243
https://doi.org/10.1145/168588.168611
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48519-8_12

59 KELSEY, J.; KOHNO, T.; SCHNEIER, B. Amplified boomerang attacks against
reduced-round MARS and serpent. In: SCHNEIER, B. (Ed.). Fast Software Encryption, 7th
International Workshop, FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings.
Springer, 2000. (Lecture Notes in Computer Science, v. 1978), p. 75–93. Disponível em:
<https://doi.org/10.1007/3-540-44706-7_6>.

60 BIHAM, E.; DUNKELMAN, O.; KELLER, N. The rectangle attack - rectangling
the serpent. In: PFITZMANN, B. (Ed.). Advances in Cryptology - EUROCRYPT
2001, International Conference on the Theory and Application of Cryptographic
Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding. Springer, 2001.
(Lecture Notes in Computer Science, v. 2045), p. 340–357. Disponível em: <https:
//doi.org/10.1007/3-540-44987-6_21>.

61 DUNKELMAN, O. et al. The retracing boomerang attack. In: CANTEAUT, A.;
ISHAI, Y. (Ed.). Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
May 10-14, 2020, Proceedings, Part I. Springer, 2020. (Lecture Notes in Computer Science,
v. 12105), p. 280–309. Disponível em: <https://doi.org/10.1007/978-3-030-45721-1_11>.

62 COUTINHO, M.; JÚNIOR, R. T. de S.; BORGES, F. Continuous diffusion
analysis. IEEE Access, v. 8, p. 123735–123745, 2020. Disponível em: <https:
//doi.org/10.1109/ACCESS.2020.3005504>.

63 BEIERLE, C. et al. Schwaemm and Esch: lightweight authenticated encryption and
hashing using the Sparkle permutation family. NIST, 2019.

64 DEY, S.; ROY, T.; SARKAR, S. Revisiting design principles of salsa and
chacha. Adv. Math. Commun., v. 13, n. 4, p. 689–704, 2019. Disponível em:
<https://doi.org/10.3934/amc.2019041>.

65 DING, L. Improved related-cipher attack on salsa20 stream cipher. IEEE Access, v. 7,
p. 30197–30202, 2019. Disponível em: <https://doi.org/10.1109/ACCESS.2019.2892647>.

66 CASTRO, J. C. H.; ESTÉVEZ-TAPIADOR, J. M.; QUISQUATER, J. On the salsa20
core function. In: NYBERG, K. (Ed.). Fast Software Encryption, 15th International
Workshop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected
Papers. Springer, 2008. (Lecture Notes in Computer Science, v. 5086), p. 462–469.
Disponível em: <https://doi.org/10.1007/978-3-540-71039-4_29>.

67 ISHIGURO, T.; KIYOMOTO, S.; MIYAKE, Y. Latin dances revisited: New analytic
results of salsa20 and chacha. In: QING, S. et al. (Ed.). Information and Communications
Security - 13th International Conference, ICICS 2011, Beijing, China, November 23-26,
2011. Proceedings. Springer, 2011. (Lecture Notes in Computer Science, v. 7043), p.
255–266. Disponível em: <https://doi.org/10.1007/978-3-642-25243-3_21>.

68 MOUHA, N.; PRENEEL, B. A proof that the ARX cipher salsa20 is secure against
differential cryptanalysis. IACR Cryptol. ePrint Arch., v. 2013, p. 328, 2013. Disponível em:
<http://eprint.iacr.org/2013/328>.

69 TSUNOO, Y. et al. Differential cryptanalysis of Salsa20/8. In: Workshop Record of
SASC. [S.l.: s.n.], 2007. v. 28.

171

https://doi.org/10.1007/3-540-44706-7_6
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/978-3-030-45721-1_11
https://doi.org/10.1109/ACCESS.2020.3005504
https://doi.org/10.1109/ACCESS.2020.3005504
https://doi.org/10.3934/amc.2019041
https://doi.org/10.1109/ACCESS.2019.2892647
https://doi.org/10.1007/978-3-540-71039-4_29
https://doi.org/10.1007/978-3-642-25243-3_21
http://eprint.iacr.org/2013/328

70 COUTINHO, M.; NETO, T. S. New multi-bit differentials to improve attacks against
ChaCha. IACR Cryptol. ePrint Arch., v. 2020, p. 350, 2020.

71 AUMASSON, J.; BERNSTEIN, D. J. Siphash: A fast short-input PRF. In:
GALBRAITH, S. D.; NANDI, M. (Ed.). Progress in Cryptology - INDOCRYPT 2012, 13th
International Conference on Cryptology in India, Kolkata, India, December 9-12, 2012.
Proceedings. Springer, 2012. (Lecture Notes in Computer Science, v. 7668), p. 489–508.
Disponível em: <https://doi.org/10.1007/978-3-642-34931-7_28>.

72 COUTINHO, M. et al. Improving the security of chacha against differential-linear
cryptanalysis. 2020.

73 GOHR, A. Improving attacks on round-reduced speck32/64 using deep learning. In:
BOLDYREVA, A.; MICCIANCIO, D. (Ed.). Advances in Cryptology - CRYPTO 2019 -
39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2019, Proceedings, Part II. Springer, 2019. (Lecture Notes in Computer Science, v. 11693),
p. 150–179. Disponível em: <https://doi.org/10.1007/978-3-030-26951-7_6>.

74 ARANHA, D. F.; GOUVêA, C. P. L. RELIC is an Efficient LIbrary for Cryptography.
2013. <https://github.com/relic-toolkit/relic>.

172

https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1007/978-3-030-26951-7_6
https://github.com/relic-toolkit/relic

APPENDIX

A.1 LIBRARY

Is this section , we briefly describe our library called libfpco that implements contin-
uous generalizations (available at <https://github.com/MurCoutinho/pda>).

A.1.1 Scope and goals

The goal of the proposed library is to implement all continuous generalizations developed
in this thesis. Furthermore, the library should provide an easy API such that a programmer
can implement a generalization of common symmetric cryptographic algorithms.

The API follows the convention that the name of the generalized operation will be:

"fpco_" + name of the function

For example, the continuous generalization of the XOR function is denoted fpco_xor.

To implement this API we require several internal functions. In particular, we require
the implementation of the probabilistic operations and a set of structures and methods im-
plementing a small number arithmetic. In the following sections, we present all theses in
greater details.

A.1.2 Internal functions

A.1.2.1 Small numbers arithmetic

When executing a cryptographic algorithm using continuous generalizations the contin-
uous deviation computed tends to get really small. This happens because the continuous
operations are based on probability theory, therefore when a continuous deviation different
than -1 and than 1 is defined as input it makes that uncertainty about each bit increases fol-
lowing the confusion and diffusion of the algorithm, i.e., the continuous generalization gets
closer and closer to zero.

Hence, we need a way to work with very small numbers. For example, a double in C
language may not have the necessary precision converging to zero as the number of rounds
progresses. To do so, in libfpco we created a structure defining a small number:

t y p e d e f s t r u c t {
do ub l e m a n t i s s a ;

173

A

https://github.com/MurCoutinho/pda

bn_ t e x p o n e n t ;
} s n _ s t ;

Here, a small number is a number in the form m ∗ 10−y, where m is the mantissa and y the
exponent. Also, −1 < mantissa < 1 and exponent is represented as a big number. The
purpose of sn_st is to create the possibility of tracking a number that is rapidly approaching
zero. It is not the purpose of sn_st to be a double with more precision or decimal places.

There are a series of functions to work with a small number. Bellow we list all of them:

• sn_print: Prints a small number.

• sn_print_array: Prints a small number array.

• sn_new: Creates a new small number.

• sn_new_array: Creates a new small number array.

• sn_free: Frees the memory and destroy a small number.

• sn_free_array: Frees a small number array.

• sn_cpy: Copies small number.

• sn_cpy_array: Copies small number array.

• sn_cmp: Returns the result of a signed comparison between two small numbers.

• sn_cmp_array: Compares two small number arrays.

• sn_cmp_magnitude: Returns the result of a comparison between the magnitude or
scale of two small number.

• sn_cmp_magnitude_array: Returns the result of a comparison between the mag-
nitude or scale of two small number arrays.

• sn_update_range: Updates the range of the small number in such a way that sets
-1<mantissa<1.

• sn_rand: Generates a random small number.

• sn_rand_array: Generates a random small number array.

• sn_to_double: Converts a small number to a double.

• sn_to_double_array: Converts a small number array to a double array.

• double_to_sn: Converts a double to a small number.

174

• double_to_sn_array: Converts a double array to a small number array.

• sn_mul: Multiplies two small numbers.

• sn_add: Adds two small numbers.

• sn_abs: Absolute value of small number.

• sn_abs_array: Absolute value of small number array.

It is important to note that the exponent is a big number that we implemented using the
RELIC toolkit [74]. For example, below we present the code for the function sn_add:

vo id sn_add (s n _ t c , s n _ t a , s n _ t b)
{

s n _ s t **max , ** min ;
s n _ t aux ;
i f (a−> m a n t i s s a == 0)
{

sn_cpy (c , b) ;
r e t u r n ;

}
i f (b−> m a n t i s s a == 0)
{

sn_cpy (c , a) ;
r e t u r n ;

}
i f (bn_cmp (a−> exponent , b−> e x p o n e n t) ==CMP_GT)
{

max = &a ;
min = &b ;

}
e l s e
{

max = &b ;
min = &a ;

}
sn_new (aux) ;
bn_sub (aux −> exponent , (* max) −> exponent , (* min) −> e x p o n e n t) ;
i f (bn_cmp (aux −> exponent , f i f t e e n) != CMP_GT)
{

sn_cpy (aux , (* min)) ;
w h i l e (bn_cmp ((* max) −> exponent , aux −> e x p o n e n t) ==CMP_GT)
{

aux −> m a n t i s s a *= 0 . 1 ;
bn_add (aux −> exponent , aux −> exponent , one) ;

}
aux −> m a n t i s s a += (* max) −> m a n t i s s a ;

175

sn_cpy (c , aux) ;
}
e l s e
{

sn_cpy (c , (* max)) ;
}
s n _ f r e e (aux) ;

}

A.1.2.2 Probabilistic operations

Using the small number arithmetic of the previous section, we implemented some useful
functions to work with continuous deviations. In the library we implemented these opera-
tions with the alias correlation, thus here, we consider correlation as a synonym of the
continuous deviation. In the following, we list such functions:

• correlation_rand: Generates a random correlation.

• correlation_rand_array: Generates a random correlation array.

• correlation_rand_max: Generates a random maximum correlation (1 or -1).

• correlation_rand_max_array: Generates a random maximum correlation ar-
ray (1 or -1).

• correlation_correct_boundaries: Corrects the correlation to be between
-1 and 1.

• correlation_max: Computes the max, in absolute terms, of two correlations.

• prob_to_correlation: Computes converts a probability (double) to a correla-
tion (sn).

• prob_to_correlation_array: Computes converts a probability array (double)
to a correlation array (sn).

• correlation_to_prob: Computes converts a correlation (sn) a probability (dou-
ble).

• correlation_to_prob_array: Computes converts a correlation array (sn) a
probability array (double).

• prob_mult_through_correlation: Multiply two probabilities represented as
correlation.

176

• prob_sum_through_correlation: Adds two probabilities represented as cor-
relation.

• prob_complement_through_correlation: Complements a probability rep-
resented as correlation.

• correlation_array_to_u{8 or 16 or 32 or 64}: Converts a integer
(u8, u16, u32 or u64) to a correlation array.

• u{8 or 16 or 32 or 64}_to_correlation_array: Converts correlation
array to a integer (u8, u16, u32 or u64).

In particular, we should explain the behaviors of the functions:

• prob_mult_through_correlation

• prob_sum_through_correlation

• prob_complement_through_correlation

First, let us look at the source code:

vo id p r o b _ m u l t _ t h r o u g h _ c o r r e l a t i o n (s n _ t c , s n _ t a , s n _ t b)
{

s n _ t aux ;

sn_new (aux) ;

sn_mul (aux , a , b) ;
sn_add (aux , aux , a) ;
sn_add (aux , aux , b) ;
sn_mul (aux , aux , h a l f) ;
sn_add (aux , aux , mhal f) ;

sn_cpy (c , aux) ;
c o r r e l a t i o n _ c o r r e c t _ b o u n d a r i e s (c) ;

s n _ f r e e (aux) ;
}

vo id p r o b _ s u m _ t h r o u g h _ c o r r e l a t i o n (s n _ t c , s n _ t a , s n _ t b)
{

sn_add (c , a , b) ;
sn_add (c , c , snone) ;
c o r r e l a t i o n _ c o r r e c t _ b o u n d a r i e s (c) ;

}

177

vo id p r o b _ c o m p l e m e n t _ t h r o u g h _ c o r r e l a t i o n (s n _ t c , s n _ t a)
{

sn_cpy (c , a) ;
c−> m a n t i s s a = −c−> m a n t i s s a ;

}

These functions denote operations that are being performed thinking about probabilities,
however, computing mathematically through the correlations. More concretely, let pi be a
probability and εi be its correlation, i.e., pi = (εi + 1)/2 for i = 1, 2, 3. If we want to obtain
the correlation ε3 resulting from the multiplication p3 = p1p2, but we are given ε1 and ε2,
then we can do it directly by applying the formula:

ε3 =
ε1ε2 + ε1 + ε2

2
− 1

2
.

This result is easy to verify by simply converting the equation p3 = p1p2 in terms of
the correlations. This is the equation being computed inside of prob_mult_through_
correlation.

Similarly, prob_sum_through_correlation is derived from the equation p3 =

p1 + p2, and prob_complement_through_correlation is derived from the equa-
tion p3 = 1− p1.

A.1.3 Main API

Finally, the main API is given by the generalization of all mathematical operations pre-
sented in Section 4.3. In libfpco, we call these Fundamental Probabilistic Cryptographic
Operations (FPCO). More precisely, we have the following functions.

• fpco_core_init: Initializes the use of the fpco operations.

• fpco_core_finalize: Finalizes the use of the fpco operations.

• fpco_rot_right: Computes the continuous generalization of Rotate right (see
Definition 4.9).

• fpco_rot_left: Computes the continuous generalization of Rotate left (see Defi-
nition 4.9).

• fpco_shift_right: Computes the continuous generalization of Shift right (see
Definition 4.9).

178

• fpco_shift_left: Computes the continuous generalization of Shift left (see Def-
inition 4.9).

• fpco_xor: Computes the continuous generalization of XOR (see Definition 4.4).

• fpco_and: Computes the continuous generalization of AND (see Definition 4.5).

• fpco_or: Computes the continuous generalization of OR (see Definition 4.6).

• fpco_not: Computes the continuous generalization of NOT (see Definition 4.7).

• fpco_add: Computes the continuous generalization of addition (see Definition 4.10).

• fpco_sub: Computes the continuous generalization of subtraction (see Definition
4.10).

• fpco_boolean_function: Computes the continuous generalization of a generic
Boolean function (see Theorem (4.1)).

• fpco_sbox: Computes the continuous generalization of a SBOX (see Definition
4.12).

In the following, we present the implementation of fpco_add, fpco_sbox and fpco_boolean_function
as examples.

i n t fpco_add (s n _ t *c , s n _ t *a , s n _ t *b , i n t s i z e)
{

i f (s i z e > g l o b a l _ m a x _ s i z e _ o f _ b i a s _ a r r a y s)
r e t u r n 1 ;

i f (g l o b a l _ m a x _ s i z e _ o f _ b i a s _ a r r a y s <7)
r e t u r n −1;

/ / aux [0] − used f o r t h e c a r r y b i t
/ / aux [1] − r e t a i n s t h e r e s u l t i n g b i t
/ / aux [2] − used f o r i n t e r m e d i a r y v a l u e s
sn_cpy (aux [0] , snminusone) ;

f o r (i n t i = 0 ; i < s i z e ; i ++)
{

sn_mul (aux [1] , a [i] , b [i]) ;
sn_mul (aux [1] , aux [1] , aux [0]) ;

p r o b _ c o m p l e m e n t _ t h r o u g h _ b i a s (aux [5] , aux [1]) ;
sn_cpy (aux [4] , aux [0]) ;
sn_cpy (aux [3] , a [i]) ;
sn_cpy (aux [2] , b [i]) ;
s o r t _ f o r _ s e c u r e _ s u m () ;

179

sn_add (aux [2] , aux [2] , aux [3]) ;
sn_add (aux [2] , aux [2] , aux [4]) ;
sn_add (aux [2] , aux [2] , aux [5]) ;

sn_mul (aux [2] , aux [2] , h a l f) ;

b i a s _ c o r r e c t _ b o u n d a r i e s (aux [2]) ;
b i a s _ c o r r e c t _ b o u n d a r i e s (aux [1]) ;

sn_cpy (c [i] , aux [1]) ; / / t o a l l o w c as t h e same p o i n t e r o f a o r b
sn_cpy (aux [0] , aux [2]) ;

}
r e t u r n 0 ;

}

i n t f p c o _ b o o l e a n _ f u n c t i o n (s n _ t out , s n _ t * in , u n s i g n e d c h a r * t r u t h _ t a b l e ,
i n t n b i t s)

{
u n s i g n e d c h a r f l a g ;
out −> m a n t i s s a = 0 ;
f o r (i n t x =0; x<pow (2 , n b i t s) ; x ++)
{

f l a g = 0 ;
i f (t r u t h _ t a b l e [x])
{

aux [0] − > m a n t i s s a = 1 ;
f o r (i n t i =0 ; i < n b i t s ; i ++)
{

i f ((x>> i) &1)
{

i f (i n [i]−> m a n t i s s a == −1)
{

f l a g = 1 ;
b r e a k ;

}
aux [1] − > m a n t i s s a = 1 + i n [i]−> m a n t i s s a ;

}
e l s e
{

i f (i n [i]−> m a n t i s s a == 1)
{

f l a g = 1 ;
b r e a k ;

}
aux [1] − > m a n t i s s a = 1 − i n [i]−> m a n t i s s a ;

}
sn_mul (aux [0] , aux [0] , aux [1]) ;

180

}
i f (f l a g)

c o n t i n u e ;
out −> m a n t i s s a += aux [0] − > m a n t i s s a ;

}
}
out −> m a n t i s s a = out −> m a n t i s s a *pow (2 , −(n b i t s −1)) −1;
r e t u r n 0 ;

}

i n t fpco_sbox (s n _ t * out , s n _ t * in , i n t * sbox , i n t n b i t s)
{

u n s i g n e d c h a r * t r u t h _ t a b l e = NULL;
t r u t h _ t a b l e = (u n s i g n e d c h a r *) ma l lo c (s i z e o f (u n s i g n e d c h a r) * pow (2 ,

n b i t s)) ;

i f (n b i t s > g l o b a l _ m a x _ s i z e _ o f _ b i a s _ a r r a y s −2)
r e t u r n 1 ;

s n _ c p y _ a r r a y (&aux [2] , in , n b i t s) ;
f o r (i n t i =0 ; i < n b i t s ; i ++)
{

f o r (i n t j =0 ; j <pow (2 , n b i t s) ; j ++)
t r u t h _ t a b l e [j] = (sbox [j]>> i) &1;

f p c o _ b o o l e a n _ f u n c t i o n (o u t [i] , &aux [2] , t r u t h _ t a b l e , n b i t s) ;
}

f r e e (t r u t h _ t a b l e) ;
r e t u r n 0 ;

}

\ s u b s e c t i o n { C h a l l e n g e s }

\ r r {}{ The i m p l e m e n t a t i o n o f t h e l i b r a r y was n o t a lways s t r a i g h t f o r w a r d .
Tha t i s b e c a u s e we have some a p p r o x i m a t i o n prob lems when d e a l i n g wi th
t h e s e s m a l l numbers . For example , when comput ing t h e d i f f u s i o n f a c t o r ,

t h e v a l u e s c o n v e r g e ve ry f a s t t o z e r o . In such case , i t might happen
t h a t a v a l u e e q u a l t o 1 o r −1 a l s o c o n v e r g e s t o z e r o . But i n t h i s c a s e

t h e s e b i t s s h o u l d behave as d i s c r e t e b i t s . To a v o i d such c a s e s we our
code p r e s e n t some i m p l e m e n t a t i o n s t h a t a r e n o t n e c e s s a r i l y t r i v i a l . } {

Comenta r io do J u l i o p a r a que se a p r e s e n t a s s e as d i f i c u l d a d e
e n f r e n t a d a s na implemen tacao }

181

A.2 PROOFS

For completeness, in this section, we prove several Lemmas from this thesis.

A.2.1 Proofs for Lemma 6.9

Eq. (6.16)

proof.

Using Eqs. (6.6) and (6.7), we can write

x
(m−1)
b,i ⊕ x(m−1)

c,i = L(m)
b,i ⊕Θi(x

′(m−1)
c , x

(m)
d)⊕

L(m)
c,i ⊕Θi(x

′(m−1)
c , x

(m)
d)⊕Θi(x

(m−1)
c , x

′(m−1)
d).

Using the approximation of Eq. (6.14), we can write Θi(x
(m−1)
c , x

′(m−1)
d) = x

′(m−1)
d,i−1 with

probability 1
2

(
1 + 1

2

)
. Thus, using Eq. (6.4) and canceling out common factors we get

x
(m−1)
b,i ⊕ x(m−1)

c,i = L(m)
b,i ⊕ L

(m)
c,i ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7,

with probability 1
2

(
1 + 1

2

)
, which concludes the proof. �

Eqs. (6.17) and (6.18)

proof.

Using Eqs. (6.6) and (6.9), we can write

x
(m−1)
a,i ⊕ x(m−1)

b,i = L(m)
a,i ⊕ L

(m)
b,i ⊕Θi(x

′(m−1)
c , x

(m)
d)⊕Θi(x

′(m−1)
c , x

(m)
d)⊕

Θi(x
′(m−1)
a , x

′(m−1)
b)⊕Θi(x

(m−1)
a , x

(m−1)
b).

Cancelling out common factors, using the approximation of Eq. (6.14) and the Piling-up
Lemma we can write

x
(m−1)
a,i ⊕ x(m−1)

b,i = L(m)
a,i ⊕ L

(m)
b,i ⊕ x

′(m−1)
b,i−1 ⊕ x

(m−1)
b,i−1

with probability 1
2

(
1 + 1

22

)
. Now, we can replace x′(m−1)

b,i−1 using Eq. (6.2) and x(m−1)
b,i−1

using Lemma 6.3, which leads to

x
(m−1)
a,i ⊕ x(m−1)

b,i = L(m)
a,i ⊕ L

(m)
b,i ⊕ x

(m)
b,i+6 ⊕ x

(m)
c,i−1 ⊕ L

(m)
b,i−1 ⊕ x

(m)
d,i−2,

with probability 1
2

(
1 + 1

23

)
by the Piling-up Lemma. We can also use Lemma 6.1 to

182

obtain

x
(m−1)
a,1 ⊕ x(m−1)

b,1 = L(m)
a,1 ⊕ L

(m)
b,1 ⊕ x

(m)
b,7 ⊕ x

(m)
c,0 ⊕ L

(m)
b,0 ,

with probability 1
2

(
1 + 1

22

)
. �

Eqs. (6.19) and (6.20)

proof.

Combining Eq. (6.7) and Eq. (6.9), we have

x
(m−1)
a,i ⊕ x(m−1)

c,i = L(m)
a,i ⊕ L

(m)
c,i ⊕Θi(x

(m−1)
c , x

′(m−1)
d)⊕

Θi(x
′(m−1)
a , x

′(m−1)
b)⊕Θi(x

(m−1)
a , x

(m−1)
b).

Using the approximation of Eq. (6.14) and the Piling-up Lemma, we can write

x
(m−1)
a,i ⊕ x(m−1)

c,i = L(m)
a,i ⊕ L

(m)
c,i ⊕ x

′(m−1)
d,i−1 ⊕ x

′(m−1)
b,i−1 ⊕ x

(m−1)
b,i−1

with probability 1
2

(
1 + 1

23

)
. Now, we can replace x′(m−1)

d,i−1 using Eq. (6.4), x′(m−1)
b,i−1 using

Eq. (6.2) and x(m−1)
b,i−1 using Lemma 6.3 if i > 1 or 6.1 if i = 1, which leads to

x
(m−1)
a,i ⊕ x(m−1)

c,i = L(m)
a,i ⊕ L

(m)
c,i ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7 ⊕ x

(m)
b,i+6

⊕x(m)
c,i−1 ⊕ L

(m)
b,i−1 ⊕ x

(m)
d,i−2,

with probability 1
2

(
1 + 1

24

)
by the Piling-up Lemma or

x
(m−1)
a,1 ⊕ x(m−1)

c,1 = L(m)
a,1 ⊕ L

(m)
c,1 ⊕ x

(m)
a,0 ⊕ x

(m)
d,8 ⊕ x

(m)
b,7

⊕x(m)
c,0 ⊕ L

(m)
b,0 ,

with probability 1
2

(
1 + 1

23

)
. �

Eq. (6.21)

proof.

Using Eq. (6.8) and Eq. (6.9), we can write

x
(m−1)
a,i ⊕ x(m−1)

d,i = L(m)
a,i ⊕ L

(m)
d,i ⊕Θi(x

′(m−1)
c , x

(m)
d)⊕Θi(x

(m−1)
a , x

(m−1)
b).

Using Eq. (6.14), we get

x
(m−1)
a,i ⊕ x(m−1)

d,i = L(m)
a,i ⊕ L

(m)
d,i ⊕Θi(x

′(m−1)
c , x

(m)
d)⊕ x(m−1)

b,i−1 ,

183

and from Eq. (6.6)

x
(m−1)
a,i ⊕ x(m−1)

d,i = L(m)
a,i ⊕ L

(m)
d,i ⊕Θi(x

′(m−1)
c , x

(m)
d)⊕

L(m)
b,i−1 ⊕Θi−1(x

′(m−1)
c , x

(m)
d),

with probability 1
2

(
1 + 1

2

)
. Thus, using the approximation of Eq. (6.15) and the Piling-

up Lemma, we can write

x
(m−1)
a,i ⊕ x(m−1)

d,i = L(m)
a,i ⊕ L

(m)
d,i ⊕ L

(m)
b,i−1,

with probability 1
2

(
1 + 1

22

)
. �

Eq. (6.22)

proof.

Using Eq. (6.9) and Eq. (6.7), and canceling out common factors we get

x
(m−1)
a,i−1 ⊕ x

(m−1)
a,i ⊕ x(m−1)

c,i = L(m)
a,i−1 ⊕ L

(m)
a,i ⊕ L

(m)
c,i ⊕

Θi−1(x
′(m−1)
a , x

′(m−1)
b)⊕Θi−1(x

′(m−1)
c , x

(m)
d)⊕

Θi−1(x
(m−1)
a , x

(m−1)
b)⊕Θi(x

′(m−1)
a , x

′(m−1)
b)⊕

Θi(x
(m−1)
a , x

(m−1)
b)⊕Θi(x

(m−1)
c , x

′(m−1)
d)

Using the approximation of Eq. (6.15) and the Piling-up Lemma we obtain

x
(m−1)
a,i−1 ⊕ x

(m−1)
a,i ⊕ x(m−1)

c,i = L(m)
a,i−1 ⊕ L

(m)
a,i ⊕ L

(m)
c,i ⊕

Θi−1(x
′(m−1)
c , x

(m)
d)⊕Θi(x

(m−1)
c , x

′(m−1)
d)

with probability 1
2

(
1 + 1

22

)
. Using Eq. (6.14) and Eq. (6.4) we get

x
(m−1)
a,i−1 ⊕ x

(m−1)
a,i ⊕ x(m−1)

c,i = L(m)
a,i−1 ⊕ L

(m)
a,i ⊕ L

(m)
c,i ⊕

x
(m)
d,i−2 ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7

with probability 1
2

(
1 + 1

24

)
. �

Eq. (6.23)

proof.

184

Using Eq. (6.6) and Eq. (6.9), and canceling out common factors we can write

x
(m−1)
a,i ⊕ x(m−1)

a,i−1 ⊕ x
(m−1)
b,i = L(m)

a,i ⊕ L
(m)
a,i−1 ⊕ L

(m)
b,i ⊕

Θi−1(x
′(m−1)
a , x

′(m−1)
b)⊕Θi−1(x

′(m−1)
c , x

(m)
d)⊕Θi−1(x

(m−1)
a , x

(m−1)
b)⊕

Θi(x
′(m−1)
a , x

′(m−1)
b)⊕Θi(x

(m−1)
a , x

(m−1)
b).

Using the approximation of Eq. (6.15) and the Piling-up Lemma, we can write

x
(m−1)
a,i ⊕ x(m−1)

a,i−1 ⊕ x
(m−1)
b,i = L(m)

a,i ⊕ L
(m)
a,i−1

⊕L(m)
b,i ⊕Θi−1(x

′(m−1)
c , x

(m)
d).

with probability 1
2

(
1 + 1

22

)
. Using the approximation of Eq. (6.14) we get

x
(m−1)
a,i ⊕ x(m−1)

a,i−1 ⊕ x
(m−1)
b,i = L(m)

a,i ⊕ L
(m)
a,i−1 ⊕ L

(m)
b,i ⊕ x

(m)
d,i−2.

with probability 1
2

(
1 + 1

23

)
. �

Eq. (6.24)

proof.

Using Eq. (6.8) and Eq. (6.9), and canceling out common factors we have

x
(m−1)
b,i−1 ⊕ x

(m−1)
a,i ⊕ x(m−1)

d,i = x
(m−1)
b,i−1 ⊕ L

(m)
a,i ⊕Θi(x

′(m−1)
c , x

(m)
d)⊕

Θi(x
(m−1)
a , x

(m−1)
b)⊕ L(m)

d,i .

Using the approximation of Eq. (6.14), we have Θi(x
(m−1)
a , x

(m−1)
b) = x

(m−1)
b,i−1 occurring

with probability 1
2

(
1 + 1

22

)
. Thus,

x
(m−1)
b,i−1 ⊕ x

(m−1)
a,i ⊕ x(m−1)

d,i = L(m)
a,i ⊕ L

(m)
d,i ⊕Θi(x

′(m−1)
c , x

(m)
d).

with probability 1
2

(
1 + 1

2

)
. Finally, using the approximation of Eq. (6.14) and the Piling-

up Lemma, we get

x
(m−1)
b,i−1 ⊕ x

(m−1)
a,i ⊕ x(m−1)

d,i = L(m)
a,i ⊕ L

(m)
d,i ⊕ x

(m)
d,i−1.

with probability 1
2

(
1 + 1

22

)
. �

Eq. (6.25)

proof.

185

Using Eq. (6.6) and Eq. (6.7), we can write

x
(m−1)
b,i−1 ⊕ x

(m−1)
b,i ⊕ x(m−1)

c,i−1 ⊕ x
(m−1)
c,i = L(m)

b,i−1 ⊕Θi−1(x
′(m−1)
c , x

(m)
d)⊕ L(m)

b,i ⊕
Θi(x

′(m−1)
c , x

(m)
d)⊕ L(m)

c,i−1 ⊕Θi−1(x
′(m−1)
c , x

(m)
d)⊕Θi−1(x

(m−1)
c , x

′(m−1)
d)⊕

L(m)
c,i ⊕Θi(x

′(m−1)
c , x

(m)
d)⊕Θi(x

(m−1)
c , x

′(m−1)
d).

Canceling out common factors we get

x
(m−1)
b,i−1 ⊕ x

(m−1)
b,i ⊕ x(m−1)

c,i−1 ⊕ x
(m−1)
c,i = L(m)

b,i−1 ⊕ L
(m)
b,i ⊕ L

(m)
c,i−1 ⊕ L

(m)
c,i ⊕

Θi−1(x
(m−1)
c , x

′(m−1)
d)⊕

Θi(x
(m−1)
c , x

′(m−1)
d).

Thus, using the approximation of Eq. (6.15) we get

x
(m−1)
b,i−1 ⊕ x

(m−1)
b,i ⊕ x(m−1)

c,i−1 ⊕ x
(m−1)
c,i = L(m)

b,i−1 ⊕ L
(m)
b,i ⊕ L

(m)
c,i−1 ⊕ L

(m)
c,i .

with probability 1
2

(
1 + 1

2

)
. �

Eq. (6.26)

proof.
Using equations (6.6), (6.7), and (6.9)

x
(m−1)
a,i ⊕ x(m−1)

a,i−1 ⊕ x
(m−1)
b,i ⊕ x(m−1)

c,i−1 = L(m)
a,i ⊕ L

(m)
a,i−1 ⊕ L

(m)
b,i ⊕ L

(m)
c,i−1⊕

Θi(x
′(m−1)
a , x

′(m−1)
b)⊕Θi(x

(m−1)
a , x

(m−1)
b)⊕Θi−1(x

′(m−1)
a , x

′(m−1)
b)⊕

Θi−1(x
(m−1)
a , x

(m−1)
b)⊕Θi−1(x

(m−1)
c , x

′(m−1)
d).

Using the approximation of Eq. (6.15) and the Piling-up Lemma, we can write

x
(m−1)
a,i ⊕ x(m−1)

a,i−1 ⊕ x
(m−1)
b,i ⊕ x(m−1)

c,i−1 = L(m)
a,i ⊕ L

(m)
a,i−1 ⊕ L

(m)
b,i ⊕ L

(m)
c,i−1⊕

Θi−1(x
(m−1)
c , x

′(m−1)
d).

with probability 1
2

(
1 + 1

22

)
. Therefore, equations (6.14) and (6.4) give us

x
(m−1)
a,i ⊕ x(m−1)

a,i−1 ⊕ x
(m−1)
b,i ⊕ x(m−1)

c,i−1 = L(m)
a,i ⊕ L

(m)
a,i−1 ⊕ L

(m)
b,i ⊕ L

(m)
c,i−1⊕

x
(m)
a,i−2 ⊕ x

(m)
d,i+6.

with probability 1
2

(
1 + 1

23

)
. �

Eq. (6.27)

proof.

186

Using equations (6.7), (6.8), and (6.9), we can write

x
(m−1)
a,i ⊕ x(m−1)

a,i−1 ⊕ x
(m−1)
c,i−1 ⊕ x

(m−1)
d,i ⊕ x(m−1)

d,i−1 = L(m)
a,i−1 ⊕ L

(m)
a,i ⊕ L

(m)
c,i−1⊕

L(m)
d,i−1 ⊕ L

(m)
d,i ⊕Θi−1(x

(m−1)
a , x

(m−1)
b)⊕Θi(x

′(m−1)
c , x

(m)
d)⊕

Θi(x
(m−1)
a , x

(m−1)
b)⊕Θi−1(x

(m−1)
c , x

′(m−1)
d).

Using the approximation of Eq. (6.15), we have

x
(m−1)
a,i ⊕ x(m−1)

a,i−1 ⊕ x
(m−1)
c,i−1 ⊕ x

(m−1)
d,i ⊕ x(m−1)

d,i−1 = L(m)
a,i−1 ⊕ L

(m)
a,i ⊕ L

(m)
c,i−1⊕

L(m)
d,i−1 ⊕ L

(m)
d,i ⊕Θi(x

′(m−1)
c , x

(m)
d)⊕Θi−1(x

(m−1)
c , x

′(m−1)
d)

with probability 1
2

(
1 + 1

2

)
. Finally, by the Piling-up Lemma and using the approximation

of Eq. (6.14) and Eq. (6.4), we get

x
(m−1)
a,i ⊕ x(m−1)

a,i−1 ⊕ x
(m−1)
c,i−1 ⊕ x

(m−1)
d,i ⊕ x(m−1)

d,i−1 = L(m)
a,i−1 ⊕ L

(m)
a,i ⊕ L

(m)
c,i−1⊕

L(m)
d,i−1 ⊕ L

(m)
d,i ⊕ x

(m)
d,i−1 ⊕ x

(m)
a,i−2 ⊕ x

(m)
d,i+6

with probability 1
2

(
1 + 1

23

)
. �

A.2.2 Proof of Lemma 6.10

proof.

First, from Eq. (6.28), we can use Lemma 6.1 to replace x(5)
1,0, x(5)

3,0, x(5)
9,0, x(5)

13,0, x(5)
15,0 by

L(6)
1,0, L(6)

3,0, L(6)
9,0, L(6)

13,0, L(6)
15,0 with probability 1. Next, note that, since we are transitioning

from round 5 to 6, we have

(a, b, c, d) ∈ {(0, 5, 10, 15), (1, 6, 11, 12), (2, 7, 8, 13), (3, 4, 9, 14)}.

We have already considered the case (a, b, c, d) = (0, 5, 10, 15). Then we still have 3
cases left to consider.

• Case 1: When (a, b, c, d) = (1, 6, 11, 12), we have the factors x(5)
11,12, x(5)

12,6, x(5)
12,7.

Then we can use Lemma 6.3 and Lemma 6.7 to get

Pr
(
x

(5)
11,12 = L(6)

11,12 ⊕ x
(6)
1,11 ⊕ x

(6)
12,19 ⊕ x

(6)
12,11

)
=

1

2

(
1 +

1

22

)
and

Pr
(
x

(5)
12,7 ⊕ x

(5)
12,6 = L(6)

12,7 ⊕ L
(6)
12,6

)
=

1

2

(
1 +

1

2

)
.

187

• Case 2: If (a, b, c, d) = (2, 7, 8, 13), we have the factors x(5)
7,7, x(5)

7,19, x(5)
8,7, x(5)

8,19,
x

(5)
13,8 and we can use Lemma 6.3 and Eq. (6.16) of Lemma 6.9 to get

Pr
(
x

(5)
13,8 = L(6)

13,8 ⊕ x
(6)
8,7 ⊕ x

(6)
7,14

)
=

1

2

(
1 +

1

2

)
,

Pr
(
x

(5)
7,7 ⊕ x

(5)
8,7 = L(6)

7,7 ⊕ L
(6)
8,7 ⊕ x

(6)
2,6 ⊕ x

(6)
13,14

)
=

1

2

(
1 +

1

2

)
,

Pr
(
x

(5)
7,19 ⊕ x

(5)
8,19 = L(6)

7,19 ⊕ L
(6)
8,19 ⊕ x

(6)
2,18 ⊕ x

(6)
13,26

)
=

1

2

(
1 +

1

2

)
.

• Case 3: When considering (a, b, c, d) = (3, 4, 9, 14), we have x(5)
4,26, and we can

use Lemma 6.3 to obtain

Pr
(
x

(5)
4,26 = L(6)

4,26 ⊕ x
(6)
14,26

)
=

1

2

(
1 +

1

2

)
.

By the Piling-up Lemma, we have that all these changes result in a probability of
1
2

(
1 + 1

28

)
. Expanding the linear terms using Eqs. (6.10)-(6.13) and canceling out

common factors completes the proof.

�

A.2.3 Proof of Lemma 6.11

proof.

If we start from Lemma 6.10, then we want to expand the equation one more round. To
do so, first note that since we are transitioning from round 6 to 7, we have (a, b, c, d) ∈
{(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)}. Therefore, we can divide the fac-
tors of the equation in 4 distinct groups:

• Group I - x(6)
0 [0, 16], x

(6)
4 [7, 13, 19], x

(6)
8 [0, 7, 8, 19, 31], x

(6)
12 [0, 11, 12, 19, 20,

30, 31].

• Group II - x(6)
1 [0, 6, 7, 11, 12, 22, 23], x

(6)
5 [7], x

(6)
9 [0, 6, 12, 26], x

(6)
13 [0, 14, 15,

24, 26, 27].

• Group III - x(6)
2 [0, 6, 7, 8, 16, 18, 19, 24], x

(6)
6 [7, 13, 14, 19], x

(6)
10 [0], x

(6)
14 [8, 25,

26].

• Group IV - x(6)
7 [6, 7, 14, 15, 26], x

(6)
11 [6, 7], x

(6)
15 [24].

188

The procedure to expand and compute the correlation is similar to that in the proof of
Lemma 6.10. To simplify the notation we will compute the probability given by the
Piling-up Lemma by summing values k where the probability of a particular linear equa-
tion will be given by 1

2

(
1 + 1

2k

)
.

In Group I, the factors x(6)
0,0, x

(6)
8,0, x

(6)
12,0 can be expanded using Lemma 6.1 with prob-

ability 1. Next, we can combine the following factors: x(6)
4,7, x

(6)
8,7, x

(6)
8,8 using Lemma 6.8

(k = 2); x(6)
4,19, x

(6)
8,19 using Eq. (6.16) of Lemma 6.9 (k = 1); x(6)

12,11, x
(6)
12,12 using Lemma

6.7 with (k = 1); x(6)
12,19, x

(6)
12,20 using Lemma 6.7 with (k = 1); x(6)

12,30, x
(6)
12,31 using Lemma

6.7 with (k = 1). Finally, it remains some single terms to be expanded: x(6)
0,16 using

Lemma 6.6 (k = 3); x(6)
4,13 using Lemma 6.3 (k = 1); x(6)

8,31 using Lemma 6.3 (k = 2). By
the Piling-up Lemma, we can combine these linear relations to obtain

x
(6)
0 [0, 16]⊕ x(6)

4 [7, 13, 19]⊕ x(6)
8 [0, 7, 8, 19, 31]⊕ x(6)

12 [0, 11, 12, 19, 20, 30, 31] =

x
(7)
0 [0, 3, 4, 7, 8, 11, 12, 14, 15, 18, 20, 27, 28]⊕ x(7)

4 [0, 2, 3, 5, 18, 22, 23, 27]⊕
x

(7)
8 [8, 11, 13, 20, 25, 27, 28, 30, 31]⊕ x(7)

12 [3, 4, 6, 11, 13, 22, 23, 24, 26, 27, 30, 31]
(A.1)

with probability 1
2

(
1 + 1

212

)
.

In Group II, the factors x(6)
1,0, x

(6)
9,0, x

(6)
13,0 can be expanded using Lemma 6.1 with prob-

ability 1. Next, we can combine the following factors: x
(6)
1,6, x

(6)
1,7, x

(6)
5,7, x

(6)
9,6 using Eq.

(6.26) of Lemma 6.9 (k = 3); x(6)
1,11, x

(6)
1,12, x

(6)
9,12 using Eq. (6.22) of Lemma 6.9 (k =

4); x(6)
1,22, x

(6)
1,23 using Lemma 6.7 (k = 3); x(6)

13,14, x
(6)
13,15 using Lemma 6.7 (k = 1);

x
(6)
13,26, x

(6)
13,27 using Lemma 6.7 (k = 1). Finally, it remains some single terms to be

expanded: x(6)
9,26 using Lemma 6.3 (k = 2); x(6)

13,24 using Lemma 6.3 (k = 1). By the
Piling-up Lemma, we can combine these linear relations to obtain

x
(6)
1 [0, 6, 7, 11, 12, 22, 23]⊕ x(6)

5 [7]⊕ x(6)
9 [0, 6, 12, 26]⊕ x(6)

13 [0, 14, 15, 24, 26,

27] = x
(7)
1 [0, 5, 7, 8, 10, 11, 14, 15, 16, 22, 23, 24, 25, 27, 30, 31]⊕ x(7)

5 [1, 2, 9, 10,

13, 14, 18, 21, 22, 25, 29, 30]⊕ x(7)
9 [2, 3, 6, 7, 14, 15, 18, 27]⊕ x(7)

13 [1, 2, 6, 7, 8, 10,

11, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26]
(A.2)

with probability 1
2

(
1 + 1

215

)
.

In Group III, the factors x(6)
2,0 and x(6)

10,0 can be expanded using Lemma 6.1 with prob-
ability 1. Next, we can combine the following factors: x

(6)
2,6, x

(6)
2,7 using Lemma 6.7

(k = 3); x(6)
6,13, x

(6)
6,14 using Lemma 6.7 (k = 1); x(6)

14,25, x
(6)
14,26 using Lemma 6.7 (k = 1);

x
(6)
2,18, x

(6)
2,19, x

(6)
6,19 using Eq. (6.23) of Lemma 6.9 (k = 3); x(6)

2,8, x
(6)
6,7, x

(6)
14,8 using Eq. (6.24)

of Lemma 6.9 (k = 2). Finally, it remains some single terms to be expanded: x(6)
2,16 using

Lemma 6.6 (k = 3); x(6)
2,24 using Lemma 6.6 (k = 3). By the Piling-up Lemma, we can

189

combine these linear relations to obtain

x
(6)
2 [0, 6, 7, 8, 16, 18, 19, 24]⊕ x(6)

6 [7, 13, 14, 19]⊕ x(6)
10 [0]⊕ x(6)

14 [8, 25, 26] =

x
(7)
2 [6, 7, 9, 10, 16, 18, 19, 25, 26]⊕ x(7)

6 [2, 3, 5, 7, 10, 11, 13, 14, 19, 22, 23, 27, 30,

31]⊕ x(7)
10 [0, 3, 4, 8, 12, 13, 14, 18, 20, 27, 28, 30]⊕ x(7)

14 [0, 6, 13, 14, 15, 16, 23, 24]
(A.3)

with probability 1
2

(
1 + 1

216

)
.

In Group IV, we can combine the following factors: x(6)
7,14, x

(6)
7,15 using Lemma 6.7

(k = 1); x(6)
7,6, x

(6)
7,7, x

(6)
11,6, x

(6)
11,7 using Eq. (6.25) of Lemma 6.9 (k = 1). It remains some

single terms to be expanded: x(6)
7,26 using Lemma 6.3 (k = 1); x(6)

15,24 using Lemma 6.3
(k = 1). By the Piling-up Lemma, we can combine these linear relations to obtain

x
(6)
7 [6, 7, 14, 15, 26]⊕ x(6)

11 [6, 7]⊕ x(6)
15 [24] = x

(7)
3 [6, 7, 8, 24]⊕ x(7)

7 [1, 2,

13, 25, 26, 30, 31]⊕ x(7)
11 [6, 14, 15, 18, 19, 23, 24, 27]⊕ x(7)

15 [16, 25, 26]
(A.4)

with probability 1
2

(
1 + 1

24

)
.

Finally, using the Piling-up Lemma, we can combine the results from Lemma 6.10
and Eqs. (A.1)-(A.4), which leads to a correlation of εL = 1/28+12+15+16+4 = 2−55. �

�

A.2.4 Proof of Lemma 7.4

proof.

If we start from Lemma 7.3, then we want to expand the equation one more round. To
do so, first note that since we are transitioning from round 7 to 8, we have (a, b, c, d) ∈
{(0, 1, 2, 3), (5, 6, 7, 4), (10, 11, 8, 9), (15, 12, 13, 14)}. Therefore, we can divide the fac-
tors of the equation in 4 distinct groups:

• Group I - x(7)
0 [0]⊕ x(7)

2 [12, 13]⊕ x(7)
3 [17].

• Group II - x(7)
4 [7, 18, 19]⊕ x(7)

6 [25, 26]⊕ x(7)
7 [26, 31].

• Group III - x(7)
8 [13, 14, 19]⊕ x(7)

11 [31].

• Group IV - x(7)
12 [0, 14]⊕ x(7)

14 [12, 13]⊕ x(7)
15 [16, 17].

The procedure to expand and compute the correlation is similar to that in the proof of
Lemma 7.3, expanding adjacent pairs with Lemma 7.2 and the rest individually with
Lemma 7.1. To simplify the notation, we compute the probability given by the Piling-

190

up Lemma by summing values k where the probability of a particular linear equation is
given by 1

2

(
1± 1

2k

)
.

For Group I, we expand x(7)
2,12⊕ x

(7)
2,13 using Lemma 7.2 (k = 2), x(7)

0,0 using the expan-
sion for x(m−1)

a,i (k = 1), and x(7)
3,17 using the expansion for x(m−1)

d,i (k = 1). Therefore, we
get

x
(7)
0 [0]⊕ x(7)

2 [12, 13]⊕ x(7)
3 [17] = x

(8)
0 [0, 3, 4]⊕

x
(8)
2 [4, 12, 14, 17, 18]⊕ x(8)

3 [14, 18],
(A.5)

with probability 1
2
(1 + 1

24
).

For Group II, we expand x(7)
4,18 ⊕ x

(7)
4,19 and x(7)

6,25 ⊕ x
(7)
6,26 using Lemma 7.2 (k = 1 and

k = 3, respectively), x(7)
4,7 using the expansion for x(m−1)

d,i (k = 1), x(7)
7,26 using the expan-

sion for x(m−1)
c,i (k = 2) and x(7)

7,31 using the expansion for x(m−1)
c,i (k = 2). Therefore, we

get
x

(7)
4 [7, 18, 19]⊕ x(7)

6 [25, 26]⊕ x(7)
7 [26, 31] =

x
(8)
4 [0, 1, 4, 7, 31]⊕

x
(8)
5 [16, 17, 18, 19, 21, 22]⊕
x

(8)
6 [17, 22]⊕ x(8)

7 [0, 1, 4],

(A.6)

with probability 1
2
(1 + 1

29
).

For Group III, we expand x(7)
8,13 ⊕ x

(7)
8,14 using Lemma 7.2 (k = 2), x(7)

8,19 using the ex-
pansion for x(m−1)

c,i (k = 2), and x(7)
11,31 using the expansion for x(m−1)

b,i (k = 3). Therefore,
we get

x
(7)
8 [13, 14, 19]⊕ x(7)

11 [31] =

x
(8)
8 [6, 11, 13, 14, 18, 24]⊕ x(8)

9 [6, 18, 19]⊕
x

(8)
10 [4, 5, 9, 10, 23, 24]⊕ x(8)

11 [4, 5, 11, 31],

(A.7)

with probability 1
2
(1 + 1

27
).

For Group IV, we expand x(7)
15,16 ⊕ x

(7)
15,17 using Lemma 7.2 (k = 1), x(7)

12,0 using the
expansion for x(m−1)

b,i (k = 3), x(7)
12,14 using the expansion for x(m−1)

b,i (k = 3), x(7)
14,12 using

the expansion for x(m−1)
d,i (k = 1), and x(7)

14,13 using the expansion for x(m−1)
d,13 (k = 0).

Therefore, we get

x
(7)
12 [0, 14]⊕ x(7)

14 [12, 13]⊕ x(7)
15 [16, 17] =

x
(8)
12 [11, 12, 14, 25, 26, 30, 31]⊕
x

(8)
13 [0, 7, 12, 21, 26, 30]⊕

x
(8)
14 [12, 13, 21, 25, 30, 31]⊕
x

(8)
15 [6, 7, 16, 17, 24, 25],

(A.8)

with probability 1
2
(1 + 1

28
). Finally, using the Piling-up Lemma, we can combine the

results from Lemma 7.3 and Eqs. (A.5)-(A.8), which leads to a correlation of εL =

191

1/26+4+9+7+8 = 2−34. �

A.2.5 Proof of Lemma 9.8

proof.

From Eq. (9.25), we have that for subrounds 9 and 10 we do not update the word X10,
then we get x[8]

10,0 = x
[9]
10,0 = x

[10]
10,0. Now, in subround 11, we have that (a, b, c, d, e) =

(2, 6, 10, 14, 1). Thus, X10 is of type Xc and using Lemma 9.1 we have x[10]
10,0 = x

[11]
1,0 ⊕

x
[11]
10,0 ⊕ x

[11]
14,0 ⊕ x

[11]
14,27, with probability 1.

In subround 12, words X1, X10 and X14 are not expanded. Thus, we get

x
[11]
1,0 ⊕ x

[11]
10,0 ⊕ x

[11]
14,0 ⊕ x

[11]
14,27 = x

[12]
1,0 ⊕ x

[12]
10,0 ⊕ x

[12]
14,0 ⊕ x

[12]
14,27.

In subround 13, we have (a, b, c, d, e) = (0, 5, 10, 15, 3), and X10 is of type Xc.
Again, using Lemma 9.1 we have

x
[12]
1,0 ⊕ x

[12]
10,0 ⊕ x

[12]
14,0 ⊕ x

[12]
14,27 =

x
[13]
1,0 ⊕ x

[13]
3,0 ⊕ x

[13]
10,0 ⊕ x

[13]
14,0 ⊕ x

[13]
14,27 ⊕ x

[13]
15,0 ⊕ x

[13]
15,27,

with probability 1.

In subround 14, we have (a, b, c, d, e) = (1, 6, 11, 12, 0), and X1 is of type Xa. Using
Lemma 9.1 we have

x
[13]
1,0 ⊕ x

[13]
3,0 ⊕ x

[13]
10,0 ⊕ x

[13]
14,0 ⊕ x

[13]
14,27 ⊕ x

[13]
15,0 ⊕ x

[13]
15,27 =

x
[14]
1,8 ⊕ x

[14]
3,0 ⊕ x

[14]
10,0 ⊕ x

[14]
11,0 ⊕ x

[14]
14,0 ⊕ x

[14]
14,27 ⊕ x

[14]
15,0 ⊕ x

[14]
15,27

with probability 1.

In subround 15, we have (a, b, c, d, e) = (2, 7, 8, 13, 1), and X1 is of type Xe. Using
Lemma 9.2 we have

x
[14]
1,8 ⊕ x

[14]
3,0 ⊕ x

[14]
10,0 ⊕ x

[14]
11,0 ⊕ x

[14]
14,0 ⊕ x

[14]
14,27 ⊕ x

[14]
15,0 ⊕ x

[14]
15,27 = x

[15]
1,8 ⊕

x
[15]
2,16 ⊕ x

[15]
3,0 ⊕ x

[15]
7,7 ⊕ x

[15]
7,8 ⊕ x

[15]
10,0 ⊕ x

[15]
11,0 ⊕ x

[15]
14,0 ⊕ x

[15]
14,27 ⊕ x

[15]
15,0 ⊕ x

[15]
15,27,

with probability 1
2

(
1 + 1

2

)
.

Finally, in subround 16, we have (a, b, c, d, e) = (3, 4, 9, 14, 2). Then, we have to
expand the terms x[15]

2,16, x
[15]
3,0 , x

[15]
14,0 and x

[15]
14,27. Using Lemma 9.1 we can expand x

[15]
3,0

and x[15]
14,0 with probability 1, and using Lemma 9.2 we can expand x[15]

2,16 and x[15]
14,27 with

probabilities 1
2

(
1 + 1

2

)
and 1

2

(
1 + 1

23

)
, respectively. Therefore, by the Piling-up Lemma,

192

we have

x
[15]
1 [8]⊕ x[15]

2 [16]⊕ x[15]
3 [0]⊕ x[15]

7 [7, 8]⊕ x[15]
10 [0]⊕ x[15]

11 [0]⊕ x[15]
14 [0, 27]⊕

x
[15]
15 [0, 27] = x

[16]
1 [8]⊕ x[16]

2 [16]⊕ x[16]
3 [2, 3, 24]⊕ x[16]

4 [0, 15, 16, 26, 27]⊕
x

[16]
7 [7, 8]⊕ x[16]

9 [0]⊕ x[16]
10 [0]⊕ x[16]

11 [0]⊕ x[16]
14 [22, 27]⊕ x[16]

15 [0, 27]

with probability 1
2

(
1 + 1

24

)
. Aggregating the correlation with the Piling-up Lemma com-

pletes the proof. �

A.2.6 Proof of Lemma 9.9

proof.

In subround 17, we have (a, b, c, d, e) = (0, 4, 8, 12, 3). Thus, we have to expand the
terms x[16]

3 [2, 3, 24] and x[16]
4 [0, 15, 16, 26, 27]. Here, we use Lemma 9.1 to expand x[16]

4,0

with probability 1, and Lemma 9.3 to expand pairs x[16]
3 [2, 3], x[16]

4 [15, 16] and x[16]
4 [26, 27],

with probabilities 1
2

(
1 + 1

2

)
, 1

2

(
1 + 1

22

)
and 1

2

(
1 + 1

22

)
, respectively. Additionally, with

Lemma 9.2 we can expand x[16]
3,24 with probability 1

2

(
1 + 1

2

)
. Thus, from the Piling-up

Lemma we have that

x
[16]
1 [8]⊕ x[16]

2 [16]⊕ x[16]
3 [2, 3, 24]⊕ x[16]

4 [0, 15, 16, 26, 27]⊕ x[16]
7 [7, 8]⊕

x
[16]
9 [0]⊕ x[16]

10 [0]⊕ x[16]
11 [0]⊕ x[16]

14 [22, 27]⊕ x[16]
15 [0, 27] = x

[17]
0 [0, 10, 11]⊕

x
[17]
1 [8]⊕ x[17]

2 [16]⊕ x[17]
3 [2, 3, 24]⊕ x[17]

4 [2, 3, 4, 5, 10, 23, 24, 25, 26]⊕
x

[17]
7 [7, 8]⊕ x[17]

8 [0, 4, 5, 10, 15, 16, 25, 27]⊕ x[17]
9 [0]⊕ x[17]

10 [0]⊕ x[17]
11 [0]⊕

x
[17]
12 [0, 15, 16, 26, 27]⊕ x[17]

14 [22, 27]⊕ x[17]
15 [0, 27],

(A.9)

with probability 1
2

(
1 + 1

26

)
.

In subround 18, we have (a, b, c, d, e) = (1, 5, 9, 13, 0). Thus, we have to expand
the terms x[17]

0 [0, 10, 11], x[17]
1,8 and x[17]

9,0 . Here, we use Lemma 9.1 to expand x[17]
0,0 and

x
[17]
9,0 with probability 1, and Lemma 9.3 to expand the pair x[17]

0 [10, 11] with proba-
bility 1

2

(
1 + 1

2

)
. Additionally, with Lemma 9.2 we can expand x

[17]
1,8 with probability

1
2

(
1 + 1

22

)
. Thus, from the Piling-up Lemma we have that

x
[17]
0 [0, 10, 11]⊕ x[17]

1 [8]⊕ x[17]
2 [16]⊕ x[17]

3 [2, 3, 24]⊕ x[17]
4 [2, 3, 4, 5, 10,

23, 24, 25, 26]⊕ x[17]
7 [7, 8]⊕ x[17]

8 [0, 4, 5, 10, 15, 16, 25, 27]⊕ x[17]
9 [0]⊕

x
[17]
10 [0]⊕ x[17]

11 [0]⊕ x[17]
12 [0, 15, 16, 26, 27]⊕ x[17]

14 [22, 27]⊕ x[17]
15 [0, 27] =

x
[18]
0 [10, 11]⊕ x[18]

1 [8, 16, 18, 19]⊕ x[18]
2 [16]⊕ x[18]

3 [2, 3, 24]⊕ x[18]
4 [2, 3, 4,

5, 10, 23, 24, 25, 26]⊕ x[18]
5 [0, 10, 11]⊕ x[18]

7 [7, 8]⊕ x[18]
8 [0, 4, 5, 10, 15, 16,

25, 27]⊕ x[18]
9 [0, 7, 8]⊕ x[18]

10 [0]⊕ x[18]
11 [0]⊕ x[18]

12 [0, 15, 16, 26, 27]⊕
x

[18]
13 [0, 27]⊕ x[18]

14 [22, 27]⊕ x[18]
15 [0, 27]

(A.10)

193

with probability 1
2

(
1 + 1

23

)
.

Next, in subround 19, we have (a, b, c, d, e) = (2, 6, 10, 14, 1). Thus, we have to ex-
pand the terms x[18]

1 [8, 16, 18, 19], x[18]
2 [16], x[18]

10 [0] and x[18]
14 [22, 27]. Here, we use Lemma

9.1 to expand x[18]
10,0 with probability 1. Then, we use Lemma 9.4 to expand x[18]

1,16 ⊕ x
[18]
2,16

with probability 1
2

(
1 + 1

2

)
. Using Lemma 9.3 to expand x[18]

1 [18, 19] with probability
1
2

(
1 + 1

2

)
. Additionally, with Lemma 9.2 we can expand x[18]

1,8 with probability 1
2

(
1 + 1

2

)
,

and x[18]
14,22 and x[18]

14,23 with probability 1
2

(
1 + 1

23

)
. Thus, using the Piling-up Lemma we

have that

x
[18]
0 [10, 11]⊕ x[18]

1 [8, 16, 18, 19]⊕ x[18]
2 [16]⊕ x[18]

3 [2, 3, 24]⊕ x[18]
4 [2, 3, 4, 5, 10, 23,

24, 25, 26]⊕ x[18]
5 [0, 10, 11]⊕ x[18]

7 [7, 8]⊕ x[18]
8 [0, 4, 5, 10, 15, 16, 25, 27]⊕

x
[18]
9 [0, 7, 8]⊕ x[18]

10 [0]⊕ x[18]
11 [0]⊕ x[18]

12 [0, 15, 16, 26, 27]⊕ x[18]
13 [0, 27]⊕

x
[18]
14 [22, 27]⊕ x[18]

15 [0, 27] = x
[19]
0 [10, 11]⊕ x[19]

1 [0, 8, 16, 18, 19]⊕ x[19]
2 [2, 3, 16,

26, 27, 29, 30]⊕ x[19]
3 [2, 3, 24]⊕ x[19]

4 [2, 3, 4, 5, 10, 23, 24, 25, 26]⊕ x[19]
5 [0, 10, 11]⊕

x
[19]
6 [7, 8, 15, 16, 18, 19, 21, 22, 26, 27]⊕ x[19]

7 [7, 8]⊕ x[19]
8 [0, 4, 5, 10, 15, 16,

25, 27]⊕ x[19]
9 [0, 7, 8]⊕ x[19]

10 [0, 15, 16]⊕ x[19]
11 [0]⊕ x[19]

12 [0, 15, 16, 26, 27]⊕
x

[19]
13 [0, 27]⊕ x[19]

14 [0, 17, 22, 27]⊕ x[19]
15 [0, 27]

(A.11)
with probability 1

2

(
1 + 1

29

)
.

Finally, in subround 20, we have (a, b, c, d, e) = (3, 7, 11, 15, 2). Thus, we have to ex-
pand the terms x[19]

2 [2, 3, 16, 26, 27, 29, 30], x[19]
3 [2, 3, 24], x[19]

7 [7, 8], x[19]
11 [0] and x[19]

15 [0, 27].
Here, we use Lemma 9.1 to expand x

[19]
11,0 and x

[19]
15,0 with probability 1. Then, we use

Lemma 9.5 to expand x[19]
2 [26, 27] ⊕ x

[19]
15,27 with probability 1

2

(
1 + 1

22

)
. Next, we use

Lemma 9.4 to expand x[19]
2 [2, 3] ⊕ x[19]

3 [2, 3] with probability 1
2

(
1 + 1

22

)
. Using Lemma

9.3 we can expand x[19]
2 [29, 30] and x[19]

7 [7, 8] with probabilities 1
2

(
1 + 1

2

)
and 1

2

(
1 + 1

22

)
,

respectively. Additionally, with Lemma 9.2 we can expand x
[19]
2 [16] with probability

1
2

(
1 + 1

2

)
, and x[19]

3 [24] with probability 1
2

(
1 + 1

22

)
. Thus, using the Piling-up Lemma

194

we have that

x
[19]
0 [10, 11]⊕ x[19]

1 [0, 8, 16, 18, 19]⊕ x[19]
2 [2, 3, 16, 26, 27, 29, 30]⊕ x[19]

3 [2, 3, 24]⊕
x

[19]
4 [2, 3, 4, 5, 10, 23, 24, 25, 26]⊕ x[19]

5 [0, 10, 11]⊕ x[19]
6 [7, 8, 15, 16, 18, 19, 21, 22,

26, 27]⊕ x[19]
7 [7, 8]⊕ x[19]

8 [0, 4, 5, 10, 15, 16, 25, 27]⊕ x[19]
9 [0, 7, 8]⊕

x
[19]
10 [0, 15, 16]⊕ x[19]

11 [0]⊕ x[19]
12 [0, 15, 16, 26, 27]⊕ x[19]

13 [0, 27]⊕ x[19]
14 [0, 17,

22, 27]⊕ x[19]
15 [0, 27] = x

[20]
0 [10, 11]⊕ x[20]

1 [0, 8, 16, 18, 19]⊕ x[20]
2 [0, 2, 3, 16, 26,

27, 29, 30]⊕ x[20]
3 [0, 5, 6, 8, 24]⊕ x[20]

4 [2, 3, 4, 5, 10, 23, 24, 25, 26]⊕
x

[20]
5 [0, 10, 11]⊕ x[20]

6 [7, 8, 15, 16, 18, 19, 21, 22, 26, 27]⊕ x[20]
7 [0, 2, 3, 15, 16, 17,

18, 29, 30]⊕ x[20]
8 [0, 4, 5, 10, 15, 16, 25, 27]⊕ x[20]

9 [0, 7, 8]⊕ x[20]
10 [0, 15, 16]⊕

x
[20]
11 [0, 2, 3, 7, 8, 17, 18, 23, 24]⊕ x[20]

12 [0, 15, 16, 26, 27]⊕ x[20]
13 [0, 27]⊕

x
[20]
14 [0, 17, 22, 27]⊕ x[20]

15 [0, 7, 8, 22]
(A.12)

with probability 1
2

(
1 + 1

210

)
.

To conclude, we compute the correlation by using the Piling-up Lemma and aggregat-
ing the correlations of Lemma 9.8 and Eqs. (A.9)-(A.12), thus we get εL = 1

25+6+3+9+10 .
�

195

	Introduction
	I Preliminaries and Previous Work
	Symmetric encryption
	Defining security
	Block cipher and stream ciphers
	Algorithms
	Salsa
	ChaCha
	Speck
	AES
	PRESENT

	Cryptanalysis
	Differential Cryptanalysis
	Linear Cryptanalysis
	The basics
	Mathematical Framework
	Boolean Functions
	Linear approximations
	Fourier Transform

	Differential-Linear Cryptanalysis
	Probabilistic Neutral Bits
	Cryptanalysis of ARX ciphers
	Differential cryptanalysis of Addition
	Preliminary notions
	Analyzing the addition operation on each bit
	Addition Differential Properties
	Differential Probability of Addition
	Maximizing the probability from and
	Maximizing the probability from

	Linear cryptanalysis of Addition
	Linear approximation for addition and subtraction as a function of the carry
	Linear approximation to the carry function
	Intuitive Representation
	Computing correlations
	Use in Practice

	II New Tools to Evaluate Diffusion in Symmetric primitives
	Continuous Diffusion Analysis
	Introduction
	Measuring the Avalanche Effect
	Continuous Diffusion Analysis
	Motivation
	Continuous Generalizations
	Continuous Diffusion Metrics

	Case study: Diffusion Analysis of Salsa, ChaCha, AES, and Speck
	Exploratory and Graphical Analysis of ChaCha and Salsa
	Continuous Diffusion Analysis of Salsa, ChaCha, AES, and Speck

	Library

	ColoreD: A New Framework to Evaluate Security against Differential Cryptanalysis
	Introduction
	Motivation
	Simplified PRESENT
	Analyzing differences using a continuous generalization

	Continuous Differences (ColoreD) Framework
	Continuous Differential Cryptanalysis (CDC)
	Continuous Chosen-Plaintext Attack (CCPA)

	Case study: Using ColoreD to evaluate AES and PRESENT
	Applying ColoreD to Simplified PRESENT
	Using ColoreD to Design Cryptographic Primitives
	Evaluating AES and PRESENT

	III Cryptanalysis of ARX Algorithms
	Improved Differential-Linear cryptanalysis of ChaCha
	Introduction
	Review of cryptanalysis of ChaCha
	Improved Linear Approximations for ARX Primitives
	Linear Approximations for QRchacha
	Linear Approximations for Multiple Rounds of ChaCha

	Improved Differential-Linear Attacks Against ChaCha
	New Differentials
	Distinguishers
	New Attack using Probabilistic Neutral Bits (PNBs)

	Bidirectional Linear Expansions to improve Differential-Linear Attacks Against Salsa20
	Introduction
	Linear Approximations for Salsa
	Bidirectional Linear Expansions to Differential-Linear Attacks
	Proposed technique
	Proposed differential for 5 rounds of Salsa
	New linear approximations for Salsa20

	Results
	Computational results
	Differential-Linear Attacks
	Probabilistic Neutral Bits Attack

	IV Design of New Stream Ciphers
	Improving ChaCha against cryptanalysis
	Introduction
	Improving ChaCha
	Testing Differential Paths
	Finding Probabilistic Neutral Bits

	Security comparison
	Estimating the Complexity of the PNB Attack
	Multi-bit differential

	A new algorithm: Forró
	Forró
	Pollination
	Forró's Round Function
	Initialization
	Rotations
	Constants

	Security
	Linear approximations for Forró
	Distinguishers
	Distinguisher against 3 rounds of Forró.
	Distinguisher against 4 rounds of Forró.
	Distinguisher against 5 rounds of Forró.
	Distinguisher against 5.25 rounds of Forró.

	Attacks Using PNBs

	Performance

	Conclusions and Future works
	REFERENCES
	Appendix
	Library
	Scope and goals
	Internal functions
	Small numbers arithmetic
	Probabilistic operations

	Main API

	Proofs
	Proofs for Lemma 6.9
	Proof of Lemma 6.10
	Proof of Lemma 6.11
	Proof of Lemma 7.4
	Proof of Lemma 9.8
	Proof of Lemma 9.9

