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Resumo

Esta dissertação apresenta um estudo detalhado do Problema de Anti-Unificação, investigado
originalmente por Plotkin, Popplestone e Reynolds no início dos anos 70. Este problema
consiste em encontrar um termo que mantém a maior estrutura comum entre dois outros
termos dados. Isto é, dados s e t, o problema consiste em encontrar um terceiro termo r, que
tem uma noção de maximalidade, tal que existam σ1 e σ2 tais que rσ1 = s e rσ2 = t. Tal
termo r é chamado de generalizador menos geral de s e t.

Neste trabalho investigaremos o Problema de Anti-Unificação Sintático, isto é, quando
consideramos a igualdade sintática entre os termos; e também dos Problemas de Anti-
Unificação módulo Comutatividade (C) e Associatividade (A), isto é, quando o problema
de anti-unificação considera as igualdades módulo C e módulo A, respectivamente. Em
todos os casos, apresentamos um algoritmo para resolução do problema além de suas
propriedades de terminação, correção e completude. A partir das propriedades de cada
algoritmo, apresentaremos então as propriedades dos conjuntos de soluções de cada problema.

Palavras Chave: Anti-Unificação, Teorias Equacionais, Associatividade, Comutatividade.





Abstract

This dissertation presents a detailed study of the Anti-Unification Problem, originally inves-
tigated by Plotkin, Popplestone and Reynolds in the early 70’s. This problem consists of
finding a term that maintains the greatest common structure between two other given terms.
That is, given s and t, the problem is to find a third term r, with a notion of maximality such
that there are substitutions σ1 and σ2 such that rσ1 = s and rσ2 = t. Such a term r is called
the least general generalizer of s and t.

In this work we will investigate the Syntactic Anti-Unification Problem, that is, when we
consider the syntactic equality between the terms; and also the Anti-Unification Problems
modulo Commutativity (C) and Associativity (A), that is, when the anti-unification problem
considers the equalities modulo C and modulo A, respectively. In all cases, we present an
algorithm for solving the problem in addition to its termination, soundness and completeness
properties. From the properties of each algorithm, we will then present the properties of the
sets of solutions for each problem.

Key Words: Anti-Unification, Equational Theory, Associativity, Commutativity.
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Introduction

Motivation and History. The Anti-Unification Problem (also, known as the Generalization
Problem), consists of finding an expression that generalizes two given expressions s and t.
Informally, it means that we are looking for an expression that keeps the most common
structure of s and t. For example, if we take s = h(a,h(a,a)) and t = h(h(b,b),b), then the
solution of the anti-unification problem for s and t is h(x,y). Notice that they have a common
function symbol h at root position and they differ in their arguments and h(x,y) express it.
The expression h(x,y) is called a generalizer of s and t. When there is no other generalizer
that maintains more structure of s and t than r, then r is the least general generalizer of
s and t.

Formally, the Anti-Unification Problem (AUP) is defined as: Given a pair of expressions
s and t, find the least general generalizer (lgg) of s and t, i.e., an expression r for which there
exists a pair of substitutions (θ1,θ2) such that rθ1 = s and rθ2 = t, that is the least with such
property. The precise notion of “least” is based on an ordering of solutions which will be
defined later on (Definition 1.8).

The notions of generalizer and least general generalizers were initially presented by
Plotkin [10], Popplestone [11] and Reynolds [12] in three different, but related, works. All
three were published the in Machine Intelligence Journal. Despite talking about the same
topic, these works had different goals. On the one hand, Reynolds was motivated by the
idea of find a solution for a dual problem of Unification ( given two expressions s and t, find
a substitution σ such that sσ = tσ ), which had been studied by Robinson [13] where he
developed a classical unification algorithm; such dual problem of Unification is the Anti-
Unification one. On the other hand, Plotkin [10] and Popplestone [11] were motivated by
a previous study using unification for the development of automatic deduction that made
them suppose that there should exist anti-unifiers that could be used for the development of
inductive methods.

Two decades later, Baader [3] proved the existence of a solution for the Syntactic Anti-
Unification Problem and also for its extensions, the Equational (E) Anti-Unification Problem
(AUPE) for the equational theories of associativity (A) and commutativity (C), namely, the



2 Introduction

Associative Anti-Unification Problem (AUPA) and Commutative Anti-Unification Problem
(AUPC). However, he did not established a way of finding such solutions.

Equational Anti-Unification. An Equational Anti-Unification Problem (AUPE) consists
of solving an anti-unification problem taking into account a fixed set of identities E (the
equational theory): Given expressions s and t, find the least expression r for which there is a
pair of substitutions σ1 and σ2 such that rσ1 ≡E s and rσ2 ≡E t. This expression r is called
a E-least general generalizer of s and t, and if r′ is a generalizer of s and t less specific than
r, it is called only E-generalizer. The AUP is the special case in which E = /0.

Notice that when an equational theory is being considered, the analysis of the E-
generalizers of s and t does not depend only in the fixed structures of the expressions s and t,
it is necessary to consider all the expressions s′ and t ′ such that s ≡E s′ and t ≡E t ′ to ensure
that the set of solutions given will be complete.

For instance, when we consider a theory A for associativity {h(h(x,y),z)≈ h(x,h(y,z))},
where h is an associative function symbol, the problem becomes Associative Anti-Unification
Problem, that is: Given expressions s and t, find an expression r such that there exists a pair
of of substitutions σ1 and σ2 such that rσ1 ≡A s and rσ2 ≡A t. In this case, taking expressions
s = h(a,h(a,a)) and t = h(h(b,b),b), it follows that s and t anti-unify with h(x,h(x,x)),
representing the common function symbols h of the structures of s and t as well as the
equality modulo associativity of its arguments.

Depending on the set E, the size of the set of a complete set of solutions for the Equational
Anti-Unification Problem varies: it could be finite (type finitary), or infinite ( type infinitary),
or empty type (nullary). The biggest issue to solve this kind of problem is to treat the
anti-unification with the properties of each theory induced by its axioms in a proper way.
Then, it is not possible to make a unique algorithm that is able to solve the Equational
Anti-Unification Problems for a general equational theory. In conclusion, each problem has
to be analyzed to obtain a specific algorithm to solve it.

In the last decade, Alpuente et. al. [1] proposed rule based anti-unification algorithms to
solve the Anti-Unification Problem for syntactic theory, and for some equational theories
including A and C.

Objective. We will present a detailed material about the Anti-Unification Problem consid-
ering the empty, commutative and associative theories. We will follow the method proposed
by Alpuente et. al. in [1], exploring the rule based algorithms described for each theory.
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Contributions. In the following we present a list summarizing the contributions of this
dissertation:

1. Detailed proofs of the main theorems related to the rule-based algorithm, AUnifE , for
solving AUPE for E = /0, C and A. More precisely, theorems related to termination,
soundness and correctness of AUnif /0, AUnifC and AUnifA.

2. We presented some new examples to illustrate the concepts and facilitate the reader’s
understanding of these topics.

3. We proposed a new definition of associative pair of positions (Definition 4.5), fixing
an imprecision in the original definition given by [1]. Furthermore, we presented
a counter example of the Lemma 19 of [1] in Remark 4.3 that was used to prove
completeness of AUnifA in [1]. We replaced this lemma by three new ones (Lemmas
4.2, 4.3 and 4.4) in order to prove that the A-anti-unification algorithm is still complete.

4. We developed a rich appendix which contains detailed proofs of the lemmas used to
prove the main theorem of each theory.

Related work. In 2020 Cerna and Kutsia [7] presented an counter example of the complete-
ness of a modular order-sorted algorithm for the theory ACU (Unit) proposed by Alpuente
at al in [1], one year later Alpuente et al. proposed a fix in [2]. However, this theory and
associated algorithm is out of the scope of this dissertation and the problems presented here
in the definition of associative pair of positions and Lemma 19 in [1] have not been fixed
in [2].

Anti-unification algorithms are widely used in software engineering, involving machine
learning, logic programming [9] and the development of inductive software for artificial
intelligence [14]. Also, Anti-unification is used to identify and avoid clone in software [14, 6]
and software misplacing [8]. In summary, these algorithms serves to reduce the time of
development and maintenance of software, prevent bugs, degradation or even disruptions of
codes. However, these applications are out of the scope of this dissertation.

Organization.

Chapter 1: In this chapter we will remember some basics notions that will be useful for the
development of all the work, such as the definitions of Σ-term and how to represent their
tree; substitutions and instances; equational theories and lexicographic and multiset
orderings. Furthermore, we establish the main notion and definitions necessary to study
the Anti-Unification Problem (Definition 1.16) for the syntactic theory, that is, the
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definitions of generalizer (Definition 1.14), least general generalizer (Definition 1.20)
and the definition of Equational Anti-Unification Problem (Definition 1.23).

Chapter 2: We will study the Syntactic Anti-Unification Problem (AUP). In Section 2.1 we
present a rule-based algorithm, AUnif, which outputs a least general generalizer for a
given AUP. We also present examples to illustrate how to apply this algorithm and state
some definitions necessary to study its properties such as termination (Theorem 2.1),
confluence (Theorem 2.2) and correctness (Theorem 2.3). In Section 2.2 we study the
properties of AUnif /0, presenting detailed proofs of them and discussing the relevance
of these properties to the solution of the problem.

Chapter 3: We will study the Commutative Anti-Unification Problem (AUPC). In Sec-
tion 3.1 we present some motivational examples that differs this problem from the
syntactic one. In Section 3.2 we present a rule-based algorithm, AUnifC, to solve
AUPC. We establish some notion that are necessary to study its main properties such as
termination (Theorem 3.1), soundness (Theorem 3.2) and correctness (Theorem 3.3).
In Section 3.3 we focus on present detailed proofs of the properties of AUnifC.

Chapter 4: We will study the Associative Anti-Unification Problem (AUPA). In Section 4.1
we present some examples of this problem, talking about the need of an specific
algorithm to solve it. In Section 4.2 we present the rule-based algorithm, AUnifA, that
solve this problem, showing how it works by the use of examples, also, we present
some notions necessaries to study the main properties of AUnifA such as termination
(Theorem 4.1), soundness (Theorem 4.2) and completeness (Theorem 4.2). Finally, in
the Section 4.3 we present detailed proofs of these properties.

Chapter 5 We conclude the dissertation with the principal consideration of the development
of this work and we also propose some possibilities for future work.



Chapter 1

Background

In this chapter we present some basic notations and definitions that are necessary to study
the Anti-Unification Problem. In Section 1.1 we introduce standard notions such as Σ-terms
and their structures; orderings and finally we define what is an Anti-Unification Problem.
In Section 1.2 we study equational theories, paying a special attention to commutative
and associative theories; then we define the Equational Anti-Unification Problem. In the
Section 1.3 we introduce the Abstract Reduction System and some important results involving
this notion that are useful for understanding the rule-based algorithms defined in the next
chapters.

1.1 Syntax

1.1.1 Σ-terms and their structures

The notions and definitions stated in this section are consistent with [4].
Fix a countable set X = {w,x,y,z, . . .} of variables and a finite signature

Σ = { f1 : m1, . . . , fk : mk}

of function symbols of arities m1, . . . ,mk, where each mi is a non-negative integer. The set
T (X ,Σ) of all Σ-terms is defined inductively as follows:

• X ⊂ T (X ,Σ) (every variable is term);

• for all n ∈ N, f : n ∈ Σ and all t1, . . . tn ∈ T (X ,Σ), we have f (t1, . . . , tn) ∈ T (X ,Σ)

(applications of function symbols to terms yields terms).
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We will call "Σ-terms" only "terms". When a term is composed only of a function symbol
of arity 0, this term is called constant function symbol. We will use a,b,c,d to denote this
kind of terms.

We will use the notation tn to represent a list t1, . . . , tn of terms. Then, the term f (t1, . . . , tn)
can be represent by f (tn).

Definition 1.1 (Set of variables of a term). Given a term t ∈ T (X ,Σ). The set of all variables
that occur in t is denoted by V(t).

Definition 1.2 (Position of a term). The set of positions of a term t ∈ T (X ,Σ), denoted by
pos(t), is a set of strings over positive integers. This set is defined inductively as follows:

• if t = x ∈ X , then pos(t) = ε , where ε denotes the empty string;

• if t = f (t1, . . . , tn), then pos(t) = {ε}∪
n⋃

i=1

{i.p | p ∈ pos(ti)}

The position ε is called root position of t and the function symbol that appear in this position
is denoted by root(t). Given p,q ∈ pos(t), we write p < q if p is above (i.e, p is a prefix
position of q, c.f. Definition 1.6) q; p = q if p and q are the same position; and p||q if both
positions are incomparable.

Definition 1.3 (Subterms). For p ∈ pos(t), the subterm s of t at position p is denoted by
t|p = s, and is defined by induction on the length of p as follows:

• t|ε = t,

• if t = f (t1, . . . , tn), then f (t1, . . . , tn)|i.q = ti|q.

Example 1.1. For a signature Σ = { f : 2,b : 0}, the term t = f ( f (b,b),x) ∈ T (X ,Σ), can
be represented as the following tree: The nodes represents the symbols in Σ and arrows
connected function symbols to their arguments. We annotate the positions of t above each
node.

f
ε

f
1

x
2

b1.1 b 1.2

Then, pos(t) = {ε,1,1.1,1.2,2}, t|ε = f ( f (b,b)x) and t|1.1 = f (b,b)|1 = b.

Definition 1.4. . For p ∈ pos(s), we denote by s[t]p the term that is obtained from s by
replacing the subterm at position p by t, i.e,
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• s[t]ε = t,

• f (s1, . . . ,sn)[t]i.q = f (s1, . . . ,si[t]q, . . . ,sn).

Definition 1.5 (Term size). The size of term is given inductively as follows:

|x|= 1, |a|= 1 and | f (s1, . . . ,sn)|=
n

∑
1
|si|+1.

Definition 1.6 (Depth, Prefix and Index of a position).

• Given a position p ∈ pos(s) the depth of p is the length of the position given induc-
tively as follows:

– depth(ε) = 0,

– depth(i.p) = 1+depth(p)

• Given a position p ∈ pos(s) with depth(p) = n, (p)k is the prefix of the position p at
depth k ≤ n, i.e:

– (p)0 = ε

– (i.p)k = i.(p)k−1, if k > 0.

• Given a position p ∈ pos(s) with depth(p) = n, (p)k is the index of p at depth k ≤ n,
i.e:

– (i.p)1 = i

– (i.p)k+1 = (p)k

Example 1.2. Consider the positions p = 1.2.1.1 and q = 1.2.3.1 of one term s. It follows
that:

• depth(p) = depth(q) = 4,

• (p)2 = (1.2.1.1)2 = 1.(2.1.1)1 = 1.2,

• (q)2 = (1.2.3.1)2 = 1.(2.3.1)1 = 1.2,

• (p)3 = (1.2.1.1)2+1 = (2.1.1)1+1 = (1.1)1 = 1,

• (q)3 = (1.2.3.1)2+1 = (2.3.1)1+1 = (3.1)1 = 3.
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ε

1

1.1 1.2 1.3

1.2.1 1.2.2 1.2.3

1.2.2.1 1.2.2.1 1.2.3.1

depth 0

depth 1

depth 2

depth 3

depth 4

Lemma 1.1. Given p = p1 . . . pn, with p1, . . . , pn ∈N, a position such that depth(p) = n > 0.
Then (p)n = p and (p)n = pn.

Proof. The proof proceeds by induction over the depth n of the position p.

Base Case: If n = 1, then p = p1. By Definition 1.6 it follows that (p)1 = (p1)
1 = p1 and

(p)1 = (p1)1 = 1.

Inductive Step: If n > 1, then p = p1, . . . , pn it follows that

(p)n = (p1 . . . pn)
n = p1.(p2 . . . pn)

n−1 (I.H.)
= p1.p2 . . . pn = p, and

(p)n = (p1 . . . pn)n = (p2 . . . pn)n−1
(I.H.)
= pn.

The next lemma relates the prefix k of a position p with the same prefix of a position that
is immediately bellow p, i.e, the prefix k of a position p.i with i = N.

Lemma 1.2. Given p ∈ pos(s). If p′ = p.i ∈ pos(s) for some i ∈ N then (p)k = (p′)k for
each 0 ≤ k ≤ depth(p).

Proof. The proof proceeds by induction over the depth n of the position p.

Base case: If n = 0 then p = ε and p′ = i. It follows by definition of prefix of a position that
(p)0 = ε = (p′)0. Then, the result follows trivially.

Inductive step If n > 0. Notice that we can write p = p1 . . . pn for p1, . . . , pn ∈ N. Then
p′ = p1 . . . pn.pn+1 with i = pn+1 a natural number. It follows that

(p)k = (p1 . . . pn)
k = p1(p2 . . . pn)

k−1

(I.H.)
= p1.(p2. . . . .pn.pn+1)

k−1 = (p1. . . . pn.pn+1)
k = (p′)k

.
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Notice that given depth(p) = n the result above cannot be extend to k = n+1 because
(p)n+1 is not defined.

Example 1.3. Take the position p = 1.2.3 and p′ = 1.2.3.4 it follows that

• (p)0 = ε = (p′)0,

• (p)1 = (1.2.3)1 = 1 = (1.2.3.4)1 = (p′)1,

• (p)2 = (1.2.3)1+1 = 1.(2.3)1 = 1.2 = 1.(2.3.4)1 = (1.2.3.4)1+1 = (p′)2,

• (p)3 = (1.2.3)2+1 = 1.(2.3)2 = 1.2.3 = 1.(2.3.4)2 = (1.2.3.4)2+1 = (p′)3, and

• (p′)4
= 1.(2.3.4)2+1 = 1.2(3.4)1+1 = 1.2.3.(4)1 = 1.2.3.4 = p′ and (p)4 is not de-

fined.

The next lemma relates the index k of a position p with the same index of a position
immediately bellow p, i.e, the index k of the position p.i for some i ∈ N.

Lemma 1.3. Given p ∈ pos(s). If p′ = p.1 ∈ pos(s) for some i ∈ N then (p)k = (p′)k for
each 0 < k ≤ depth(p).

Proof. The proof proceeds by induction over the depth n of p. When writing p = p1 . . . pn,
with p1, . . . , pn ∈ N, it follows that p′ = p1 . . . pn.pn+1 with i = n+1 a natural number.

Base Case: If n = 1, then p = p1 and p′ = p1.p2. It follows by Definition 1.6 that (p)1 =

(p1)
1 = 1 = (p1.p2)

1 = (p′)2.

Inductive Step: If n > 1, then p = p1 . . . pn and p′ = p1 . . . pn pn+1. For 0 < k ≤ depth(p)
it follows that

(p)k = (p1 . . . pn)k = (p2 . . . pn)k−1

(I.H.)
= (p2 . . . pn.pn+1)k−1 = (p1 . . . pn.pn+1)k = (p′)k.

Again, the result cannot be extended to k > depth(p) because (p)k will be not defined.

Example 1.4. Let p = 1.2.3 and p′ = 1.2.3.4 it follows that

• (p)1 = (1.2.3)1 = 1 = (1.2.3.4)1,
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• (p)2 = (1.2.3)2 = (2.3)1 = 2 = (2.3.4)1 = (1.2.3.4)2 = (p′)2,

• (p)3 = (2.3)2 = (3)1 = 3 = (3.4)1 = (2.3.4)2 = (1.2.3.4)3 = (p′)3, and

• (p′)4 = 4 while (p)4 is not defined.

Definition 1.7 (Substitution).

1. A substitution σ = {x1 7→ t1, . . . ,xn 7→ tn} is a finite mapping from variables to terms.

2. We write dom(σ) = {x ∈ X ;xσ ̸= x} to denote the domain of a substitution σ and
vran(σ) =

⋃
{V(xσ) | xσ ̸= x} to denote its set of range variables.

3. A substitution is called a variable renaming if its restriction to X is a permutation of
X .

4. The identity substitution has empty domain and this substitution is represented by id.

5. The composition of substitutions is written from left to right, thus σ1σ2 means apply
σ1 first and σ2 after.

6. To denote a n-upla of substitutions we write σ = (σ1, . . . ,σn) where

λσ = (λσ1, . . . ,λσn) and σλ = (σ1λ , . . . ,σnλ ).

The application of σ to a term t is defined as tσ = (tσ1, . . . , tσn).

Definition 1.8 (Instance). Given terms s and r, s is an instance of r iff exists a substitution θ

such that rθ = s. The notation is r ≤ s

In the illustrations we will use a vertical arrow "↓" with r in the top and s below, to mean
r < s. To denote the substitution σ such that rσ = s it appears as a label in the arrow. As is
illustrated below:

r
σ

��
s

Example 1.5. Given terms r = f (x,y), s = f (a, f (b,b)), and t = f (a, f (a,b)),

• taking the substitution θ1 = {x 7→ a,y 7→ f (b,b)} it follows that rθ1 = s. Therefore, s
is an instance of r;



1.1 Syntax 11

• taking the substitution θ2 = {x 7→ a,y 7→ f (a,b)} it follows that rθ2 = t. Therefore, t
is an instance of r.

Remark 1.1. When s < t it is also common to say "s is more general than t", or,
equivalently, "t is less general than s".

1.1.2 Orders

In this section, we introduce some order relations that will be used to prove the termination
of the rule-based algorithms defined in the next chapters.

Definition 1.9 (Lexicographic order). Given two strict orders, i.e, two transitive, asymmetric
and irreflexive orders, (A,>A) and (B,>B), the lexicographic product >A×B on (A×B) is
defined by

(x,y)>A×B (x′,y′) : iff (x >A x′)∨ (x = x′∧ y >B y′).

Example 1.6. Given the usual order > over naturals, (1,1)>N×N (0,2).

Theorem 1.1 (Theorem 2.4.2). The lexicographic product of two terminating relation is
again terminating.

Proof. To see the proof of this theorem, [4].

Definition 1.10 (Multiset). A multiset M over a set A is a function M : A −→ N. Intuitively,
M(x) is the number of copies of x ∈ A ∈ M.

Notation: We use the standard notation {{a,a,b}} as an abbreviation of the function
{a 7→ 2,b 7→ 1,c 7→ 0} over the set A.

Definition 1.11 (Finite Multiset). A multiset M is finite if there are only finitely many x such
that M(x)> 0. Let M(A) denote the set of all finite multisets over A.

In this paper we will use only finite multisets.

Definition 1.12 (Basic operations in M(A)).

Element: x ∈ M iff M(x)> 0.

Inclusion: M ⊆ N iff ∀x ∈ A.M(x)≤ N(x).

Union: (M∪N)(x) := M(x)+N(x).

Difference: (M−N)(x) := M(x)
.
−N(x), where m

.
−n is (m−n) if m ≤ n and is 0 otherwise.
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Definition 1.13 (Multiset order). Given one strict order > on a set A, we define the corre-
sponding multiset order >mul on M(A) as follows: M >mul N if, and only if, there exist
X ,Y ∈M(A) such that

• /0 ̸= X ⊆ M,

• N = (M−X)∪Y , and

• ∀y ∈ Y.∃x ∈ X .x > y.

Example 1.7. Given the standard order > over naturals, then {{0}}>mul {{0,0,0}}.

Theorem 1.2 (Theorem 2.5.5 in [4]). the multiset order >mul is terminating iff > is terminat-
ing.

Proof. To see the proof of this theorem, consult [4].

1.1.3 Anti-Unification Problem

The Definition 1.8 gives us a way to compare two terms s and t, ordering then according to
their images under substitutions. Thanks to instantiation ordering that is a partial order on
terms, it is possible to organize terms in chains, starting with more generals to least general
ones. The notions and notations in this section are consistent with [1].

Definition 1.14 (Generalizer). Given two terms s, t ∈ T (X ,Σ). A generalizer of s and t is a
term r ∈ T (X ,Σ) for which there exists a pair of substitutions θ = (θ1,θ2) such that rθ1 = s
and rθ2 = t. In other words, r is a generalizer of s and t iff both s and t are instances of r.
The set of generalizers of s and t is denoted by gen(s, t).

Example 1.8 (Continuation of Example 1.5). Given terms r = f (x,y),s = f (a, f (b,b)) and
t = f (a, f (a,a)). The Example 1.5 shows that rθ1 = s and rθ2 = t, i.e, r < s and r < t.
Therefore, r is a generalizer of s and t.

Example 1.9. Taking terms s = f ( f (x,y), f (c,z)), t = f ( f (a,b), f (c,z)) and the substitution
λ = {x 7→ a,y 7→ b} it follows sλ = t, then s < t. Notice that, taking the identity substitution
id it follows that the pair of substitutions (id,λ ) satisfies (id,λ )s = (s, t). Then, s is an
generalizer of t and itself.

Example 1.10 (The trivial generalizer). Every pair of terms s and t have a generalizer. In
fact, given s and t and taking the pair of substitution θ = (θ1,θ2) = ({x 7→ s},{x 7→ t}) for a
new variable x, it follows that xθ = (s, t). Therefore, x is a generalizer of s and t, as is nicely
illustrated below:
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x
θ1

��

θ2

��
s t

In conclusion, the generalization problem always have the variable x as a trivial solution.
Since there is no term more general than a variable, x is the most general generalizer of
any terms s and t. Therefore, a more interesting problem is looking for the least general
generalization of s and t (or the most specific generalizer). To formalize it we state the next
definition:

Definition 1.15. Let Σ be a signature and terms s and t ∈ T (X ,Σ). We define the a least
general generalization of s and t as the greatest lower bound generalizer of s and t (see
Figure 1.1). In other words:

lgg(s, t) = {r ∈ gen(s, t) | r′ ≤ r,∀r′ ∈ gen(s, t)}

x ∈ gen(s, t) generalizer

...

rk−1 ∈ gen(s, t) generalizer

rk ∈ lgg(s, t) least general generalizer

s t

Fig. 1.1 Least general generalizer of s and t

Definition 1.16 (Anti-Unification Problem — AUP). Given s, t ∈T (X ,Σ), the Anti-Unification
Problem (AUP) of s and t, denoted by A⟨s, t⟩, has as solution a term r such that r ∈ lgg(s, t).

Example 1.11 (Continuation of Example 1.8). Given s, t ∈ T (X ,Σ), where s = f (a, f (b,b))
and t = f (a, f (a,b)). The Example 1.8 and the Example 1.5 yields that x, f (x,y) ∈ gen(s, t).

Besides, as taking the term f (a, f (z,w)) and the pair of substitutions θ = (θ1,θ2)

with θ1 = {z 7→ b,w 7→ b} and θ2 = {z 7→ b,w 7→ a}, one has f (a, f (z,w))θ1 = s and
f (a, f (z,w))θ2 = t, i.e, f (a, f (z,w)) ∈ gen(s, t).
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Now, notice that f (x,y)< f (a, f (z,w)). In other words, f (a, f (z,w)) is less general than
f (x,y). In fact it is a least general generalizer of s and t, i.e. f (a, f (z,w)) ∈ lgg(s, t).

There is a chain of generalizers of s and t, organized by the instantiation order. The chain
begins with the trivial generalizer x and goes to the other generalizers, until it reaches in the
least general generalization, as bellow:x < f (x,y)< f (a, f (z,w))< s

x < f (x,y)< f (a, f (s,w))< t.

By observing the term structure of s and t and comparing it with the term structure of
f (x,y) and f (a, f (z,w)), it is easy to see the least general generalizer f (a, f (z,w)) has more
in common with s and t than the generalizer f (x,y). More precisely, f (a, f (z,w)) preserves
the common function symbol f in the root of s and t and also the common function symbols
a and f in the arguments of s and t, while f (x,y) only preserves the root symbol f .

1.2 Equational theories

An equational theory is a pair (Σ,E), where Σ is a signature and E a set of equations between
Σ-terms, denoted s ≈ t, that are axioms of the theory. Then, the syntactic theory is just a
equational theory with no axioms, i.e, E = /0. The equational theories with the commutative
and the associative properties are, respectively, defined by the following axioms:

C = {g(x,y)≈ g(y,x)}

A = {h(h(x,y),z)≈ h(x,h(y,z))}.

Let E be an equational theory, we denote by ΣE the signature for which the axioms of E
holds for every function symbol f ∈ ΣE .

We say a function symbol f is commutative (respectively, associative) to mean that the
axiom of C (respectively A) hold for this function symbol. Notation:

• Σ /0 denote the signature with only free function symbols,

• ΣA denote the signature with only associative function symbols,

• ΣC denote the signature with only commutative function symbols.

• Σ /0∪C = Σ /0 ∪ΣC. Similarly, for Σ /0∪A.
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From now on we will omit Σ to denote an equational theory (Σ,E), writing only E.
For an equational theory E, the equality induced by the axioms of E is denoted as =E .

For example, given g ∈ ΣC, f : 2,a : 0,b : 0 ∈ Σ /0 and g( f (a,b), f (a,x)) ∈ T (X ,Σ /0∪C), then
g( f (a,b), f (a,x)) =C g( f (a,x), f (a,b)). Notice that since f is not an function commutative
function symbol then g( f (a,b), f (a,x)) ̸=C g( f (b,a), f (x,a)).

Definition 1.17 (E-instantiation). Given a theory E, s is an E-instance of r iff there exists a
substitution θ such that rθ =E s, denoted as r ≤E s. When θ is not the identity substitution
we write r <E s. When the theory E is empty, we omit the parameter E and write only r ≤ s.

Example 1.12 (C-instances). Let g ∈ ΣC, s = g(a,b) ∈ Σ /0∪C. Then,

• with θ1 = {x 7→ s}, it follows that xθ1 = s, therefore x is a C-instance of s,

• with θ2 = {x1 7→ a,x2 7→ b}, it follows that g(x1,x2)θ2 = s, therefore s is a C-instance
of g(x1,x2) ,

• with θ3 = {x2 7→ b}, it follows that g(a,x2)θ3 = s, then s is a C-instance of g(a,x2),

• with θ4 = {x1 7→ b}, it follows that g(x1,a)θ4 = g(b,a) =C g(b,a) = s, therefore s is
a C-instance of g(x1,a).

Hence, s is an instance modulo C of the terms x,g(x1,x2),g(a,x2), and g(x1,a).

Example 1.13 (A-instances). Given h ∈ ΣA, and Taking terms s = h( f (a,a),h(a,b)), t =
h(h( f (b,b),a)b) and r = h( f (x,x),h(a,b)) ∈ T (X ,Σ /0∪A),

• with θ1 =A {x 7→ a}, it follows that rθ1 =A h(h( f (a,a),a),b) = s, therefore s is an
A-instance of r;

• with θ2 =A {x 7→ b}, it follows that rθ2 =A h(h( f (b,b),a),b) =A h( f (b,b),h(a,b)) =A

t, therefore t is an A-instance of r.

Definition 1.18 (Equivalency induced by instantiation). The equivalence relation ≡E is
defined as s ≡E t iff s ≤E t and t ≤E s. When the theory is empty, we omit the suffix E.

Remark 1.2. When E = /0, s ≡ t means that s is equal to t, except for variable renaming.

Example 1.14. If x,y ∈ X , i.e, x and y are variables, it is easy to see x{x 7→ y} = y and
y{y 7→ x}= x. Then, x < y and y < x yields that x ≡ y.

Example 1.15.
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• Let g ∈ ΣC, it follows that g(a,x)≡C g(y,a). Because for θ1 = {x 7→ y} it follows that
g(a,x)θ1 = g(a,y) =C g(y,a) and for θ2 = {y 7→ x}, g(y,a)θ2 = g(x,a) =C g(a,x).

• Let h ∈ ΣA, it follows that h(h(a,b),h(c,c))≡A h(h(h(a,b),c),c).

In general the relations =E and ≡E does not coincide. Actually, =E⊆≡E . Notice that
if s =E t, then sid =E t and t id = s, which implies that s ≤E t and t ≤E s, therefore s ≡E t.
For instance, g(a,x) =C g(x,a) ̸=C g(y,a) but Example 1.15 yields that g(a,x)≡C g(y,a). In
this case these terms differ modulo =C by a difference of variables.

1.2.1 Equational Anti-Unification

In this section we will to extend the definition of the Anti-Unification Problem taken into a
certain equational theory E. Definitions and notations are mostly consistent with [1].

Definition 1.19. A minimal and complet set of generalizations of two terms s and t is the
set G with the following three properties:

1. Each element of G is an generalization of s and t (soundness of G).

2. For each generalization r′ of s and t, there exists r ∈ G such that r′ ≤E r, i.e, r is less
general than r′ modulo E (completeness of G).

3. No two distinct elements of G are ≤E-comparable: If r1,r2 ∈ G such that r1 ≤E r2,
then r1 ≡E r2 (minimality of G).

Definition 1.20 (Complete set of generalizers). Let s, t ∈ T (X ,ΣE), a complete set of
generalizers modulo E, denoted by genE(s, t), is defined as follows:

genE(s, t) = {r | ∃u,u′ such that s =E u, t =E u′,r ∈ lgg(u,u′)}.

Definition 1.21. Given s, t ∈ T (X ,ΣE), then all possible set of least general generalizers of
s and t is defined as follows

CGME(s, t) = G ⊆ genE(s, t)

{
G is a complete E- generalization of genE(s, t)

and E-minimal

}

Definition 1.22. Given s, t ∈ T (X ,ΣE) a set lggE(s, t) of least general generalizers of s and t
modulo E is defined by choosing G ∈ CGME(s, t).
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Definition 1.23 (Equational Anti-Unification Problem — AUPE). Given s, t ∈ T (X ,ΣE),
the Equational Anti-Unification Problem of s and t, denoted by AE⟨s, t⟩, has as a solution a
minimal and complete set of least general generalizers modulo E of s and t, i.e, lggE(s, t).
As usual, when the theory E is empty, we omit the suffix E.

Remark 1.3. The Syntactic Anti-Unification Problem presented in Section 1.1.3 is not
a different problem than what was presented here in Definition 1.16. Actually, the
Syntactic Anti-Unification Problem is just a special case of Equational Anti-Unification
obtained as take E = /0.

Example 1.16 (Set of C-least general generalizer). Let g ∈ ΣC, s = g(a,b) and t = g(c,a).
The following terms instantiates both s and t: x, g(x1,x2), g(x1,a), g(a,x2), as is illus-
trated bellow. It follows that they are in the set of C-generalizers of s and t. Notice that
g(x1,a) and g(a,x2) are maximal terms of this set, i.e, they are a complete C- generaliza-
tion of genC(s, t). However, since g(x1,a){x1 7→ x2}=C g(a,x2) and g(a,x2){x2 7→ x1}=C

g(x1,a) it follows that g(x1,a) ≡C (a,x2). In other words, g(x1,a) and g(a,x2) are in the
same equivalence class induced by the instantiation preorder. Therefore, to obtain a minimal
set of genC(s, t), one of these terms has to be chosen to represent this set. As choosing
g(x1,a), it follows that lggC(s, t) = {g(x1,a)} is a complete and minimal set of generalizers
of s and t.

x

g(x1,x2)

g(x1,a) g(a,x2)=C

g(a,b) g(c,a)

1.3 Abstract Reduction Systems

The notions, definitions and results presented here follows the approach of Baader [4].
We will use reduction as synonymous of a stepwise execution of a computation. In this

work we are interested in building some algorithms to solve the Anti-Unification problem.
Thus, reductions ao =⇒ a1 =⇒ ·· ·=⇒ an will be used to express n steps of the execution of
a procedure.
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Definition 1.24 (Abstract Reduction System). An Abstract Reduction System is a pair
(A,=⇒), where the reduction =⇒ is a binary relation on the set A, i.e., =⇒⊆ A×A. Instead
of (a,b) ∈=⇒ we write a =⇒ b.

Remark 1.4. In the literature it is common to use "−→" to denote a reduction. Nonethe-
less, to avoid confusion with the notation used in the diagrams that illustrate the
instantiating relation between terms we will use a double arrow ” =⇒ ” instead of
"−→".

Definition 1.25 (Composition of relations). Given two relations R ⊂ A×B and S ⊂ B×C,
their composition is defined by

R◦S = {(x,y) ∈ A×C | ∃y ∈ B.(x,y) ∈ R∧ (y,z) ∈ S}

Based on the composition of relation =⇒R we define:

0
=⇒ := {(x,x) | x ∈ A} identity

1
=⇒ :==⇒ one step of the reduction
i+1
=⇒ := i

=⇒◦ 1
=⇒ (i+1)-fold composition, i > 0

+
=⇒ :=

⋃
i>0

i
=⇒ transitive closure

∗
=⇒ := +

=⇒∪ 0
=⇒ reflexive transitive closure.

Sometimes it will be useful to specify in how many steps one term reduces to other. Then,
to write that a reduces to b in n steps, with n ∈ N, we write a n

=⇒ b induced by the above
definition.

Definition 1.26 (Normal form). x is in normal form iff there is no y such that x =⇒ y. Also,
y is a normal form of x iff x ∗

=⇒ y and y is in normal form.

Definition 1.27 (Termination). A reduction relation is called terminaning if there is no
infinite chain a0 =⇒ a1 =⇒ . . . .

Since we are using reduction as a synonymous of a step-wise execution of a computation,
the notion of terminating reduction is paramount for ensure that this computation ends.
On other hand, the normal forms of a reduction corresponds to elements in which this
computation stops.

When we are studying a problem that only have one solution, (as likes happens to the
Syntactic Anti-Unification problem presented in the Chapter 2,) it is interesting to analyse if
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the procedure developed to solve this problem has only one normal form. To do it, we use
the notion of confluence presented in the following.

Definition 1.28 (Confluence). A reduction relation is called confluent iff for all x such that
x ∗
=⇒ y1 and x ∗

=⇒ y2 there exists z such that y1
∗

=⇒ z and y2
∗

=⇒ z. A diagram illustrating
this property is presented in Figure 1.2.

Unfortunately is not always easy to prove that a reduction is confluent. However, when
a relation is terminating there exists an easier way to prove confluence. To present it is
necessary first present the notion of locally confluence, given bellow.

Definition 1.29 (Locally Confluent). A reduction is locally confluent iff x=⇒ y1 and x=⇒ y2

then there exist a term z such that y1
∗

=⇒ z and y2
∗

=⇒ z. An diagram illustrating this property
is presented in Figure 1.2 bellow.

x
* *

y1

*

y2

*
z

Confluent

x
1 1

y1

*

y2

*
z

Locally Confluent

Fig. 1.2

The next lemma is useful to prove confluence of terminating relations.

Lemma 1.4 (Newman’s Lemma c.f. Lemma 2.7.2 in [4]). A terminating relation is confluent
if its is locally confluent.

When a relation is not confluent then it must have more than one normal form. Sometimes
it is not easy to say how many normal forms an term could have. However, the next notions
are useful to verify if the number of normal forms is limited, even if a maximum measure to
limit this amount of normal forms is not known.

Definition 1.30 (Successors of a term). Given an abstract reduction system (A,=⇒).

1. b is a direct successor of a iff a 1
=⇒ b.

2. b is a successor of a iff a n
=⇒ b for some n ∈ N.
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Definition 1.31 (Finitely branching, globally finite).

1. A relation is finitely branching if each element has only finitely many direct succes-
sors.

2. A relation is globally finite if each element has only finitely many successors.

Lemma 1.5 (Lemma 2.2.4 in [4]). A finitely branching relation is globally finite if it is
terminating.

Therefore, if a relation is terminating and finitely branching then it must have a finite
number of normal forms, since each normal form of a term is also a successor of this term.



Chapter 2

Syntactic Anti-Unification Problem

The Anti-Unification Problem, also called generalization problem, consists in: given two
terms s and t, to find a term r such that represent as most as possible both term structure’s of
s and t. In this chapter we will follow the method proposed by Alpuente et. al. in [1] to solve
the Syntactic Anti-Unification Problem.

In Section 2.1 some notions will be initially established in order to define the rule-based
anti-unification algorithm AUnif /0, presented in Figure 2.2, introduced originally in [1]. We
will discuss each of the inference rules proposed; how to interpret normal forms of the
algorithm and computed solutions of an anti-unification problem A⟨s, t⟩; how to obtain least
general generalizers and also substitutions that maps this generalizer to s and t; and present
some examples.

In the Section 2.2 we will study the properties of AUnif /0 such as termination (Theo-
rem 2.1), confluence (Theorem 2.2) and correctness (Theorem 2.3). We will present more
detailed proofs than [1], and also a new lemma (Lemma 2.8) which shows that for the term r
outputted by AUnif /0, it can also gives a way to mapping r to s and t, as is mentioned above.

2.1 AUnif /0: a rule-based algorithm for anti-unification

In this section we will present a rule based anti-unification algorithm called AUnif /0, with
rules given in Figure 2.2. Given a pair of terms s and t, the goal of AUnif /0 is output a solution
for A⟨s, t⟩, i.e, a solution for the anti-unification problem between s and t. The idea of the
algorithm AUnif /0 is to recursively simplify the initial problem A⟨s, t⟩ by application of the
simplification rules, obtaining new anti-unification problems, until A⟨s, t⟩ being completely
solved. To describe this anti-unification algorithm precisely it is necessary to establish some
auxiliary notations.
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Definition 2.1 (Constraint). In the following, a constraint {x : s ≜ t} is composed of a pair of
terms s and t and a fresh variable x. This constraint is used to represent the anti-unification
problem A⟨s, t⟩ and the variable x represents a trivial generalizer of s and t.

Definition 2.2 (Index Variable, Set of Index Variable.). Let {x : s ≜ t} being a constraint, we
call x an index variable or a variable at the index position of the constraint. Given a set of
constraints Q; the set of index variables is defined as

Index(Q) = {x ∈ X | exists {x : s ≜ t} in Q}.

Definition 2.3 (Configurations). Configurations are triples of the form ⟨P | S | σ⟩, where P is
a set of constraints to be solved, S is a set of constraints that are solved and σ is a computed
substitution.

The anti-unification algorithm AUnif /0 will operate in configurations. A configuration of
the form ⟨{x : s ≜ t} | /0 | id⟩ is called initial configuration and a configuration of the form
⟨ /0 | S | σ⟩ is called a final configuration.

The initial configuration gives x id = x, the trivial generalizer of s and t. The goal
of AUnif /0 is to find a more specific one (least general), given by xσ , with σ being the
substitution of the final configuration and x the index variable of the initial configuration.

Idea of the algorithm: AUnif /0

Input: A /0⟨s, t⟩.

AUnif /0 − rules

��⟨{x : s ≜ t} | /0 | id⟩ +3 . . . +3 ⟨ /0 | S | σ⟩

initial state

OO

final state

OO

Output: lgg(s, t) = xσ .

Fig. 2.1 Idea of the algorithm: AUnif /0

More precisely, given A⟨s, t⟩, the anti-unification algorithm AUnif /0 starts with the initial
configuration ⟨x : s ≜ t | /0 | id⟩, applies the AUnif /0 simplification rules (in Figure 2.2) on
configurations until the rules cannot be applied anymore, obtaining a final configuration
⟨ /0 | S | σ⟩, then the algorithm output lgg(s, t) = xσ and also the pair of substitutions
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θ = (θ1,θ2), that is described in Lemma 2.8, such that xσθ = (s, t). The proof that xσ is a
lgg(s, t) is given later on, in Theorem 2.3.

In order to easier readability, fix s, t ∈ T (X ,Σ /0) and f : n ∈ Σ /0.

(Dec) : Decompose:

⟨P∪{x : f (sn)≜ f (tn)} | S | σ⟩=⇒
〈
P∪


x1 : s1 ≜ t1,
...

xn : sn ≜ tn

 | S | σ{x 7→ f (xn)}
〉

where x1, . . . ,xn are fresh variables.
(Sol): Solve: If root(s) ̸= root(t) and there is no constraint {y : s ≜ t} ∈ S

⟨P∪{x : s ≜ t} | S | σ⟩=⇒ ⟨P | S∪{x : s ≜ t} | σ⟩

(Rec): Recover: If root(s) ̸= root(t)

⟨P∪{x : s ≜ t} | S∪{y : s ≜ t} | σ⟩=⇒ ⟨P | S∪{y : s ≜ t} | σ{x 7→ y}⟩

Fig. 2.2 AUnif /0 Simplification Rules

We now describe each rule of the algorithm.

(Dec): Given a constraint {x : f (s1, . . . ,sn)≜ f (t1, . . . , tn)}, we have to compute the gener-
alization between s1 and t1, s2 and t2 and so on, until comparing all the arguments of
f (s1, . . . ,sn) and f (t1, . . . , tn). Basically, (Dec) delete the constraint

{x : f (s1, . . . ,sn)≜ f (t1, . . . , tn)}

and replace it with n new constraints {x1 : s1 ≜ t1, . . . ,xn : sn ≜ tn} and creates a new
substitution σ = {x 7→ f (x1, . . . ,xn)}, where x1, . . . ,xn are the corresponding index
variable of each new created constraint.

Calling s = f (s1, . . . ,sn) and t = f (t1, . . . , tn), notice that x is a generalizer of s and t,
but xσ = f (x1, . . . ,xn) is still a generalizer of s and t and preserve more structure of
both terms than x, i.e. x < f (x1, . . . ,xn). In conclusion, the application of Decompose
rule gives a more specific generalizer of s and t.

(Sol): Given a constraint {x : s ≜ t}, such that root(s) ̸= root(t). It is easy to see that
s and t only have the trivial generalizer. Then, (Sol) moves the constraint {x : s ≜ t}
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from the set to unsolved constraints and does not change the computed substitution,
since a substitution cannot change the head symbol of s or t.

(Rec): Given a unsolved constraint {x : s ≜ t} such that root(s) ̸= root(t), and a solved
constraint {y : s ≜ t}. Then, it is easy to see that s and t only have trivial generalizers.
As there is already a solved constraint with index variable y representing the same
anti-unification problem as {t : x ≜ s}; (Rec) delete the constraint {x : s ≜ t} of the
set of unsolved constraints, do not change the set of solved constraints and add the
substitution σ = {x 7→ y}.

Remark 2.1. Notice that we could have added a rule to simplify the computation of
trivial generalizers instead of exhaustively go through all the steps,

(Triv): Trivial: ⟨P∪{x : s ≜ s} | S | σ⟩=⇒ ⟨P | S | σ{x 7→ s}⟩.

For example, given s = f (a) = t, it is easy to see that the least general generalizer of
f (a) and f (a) is itself. The AUnif /0 will need two steps of rule application to obtain
the result, as is described below

⟨{x : f (a)≜ f (a)} | /0 | id⟩
(Dec)

⟨{y : a ≜ a} | /0 | {x 7→ f (y)}︸ ︷︷ ︸
σ1

⟩

(Dec)

⟨ /0 | /0 | σ1{y 7→ a}︸ ︷︷ ︸
σ2

⟩

on the other hand, the rule special rule (Triv) would obtain the result in just one step

⟨{x : f (a)≜ f (a)} | /0 | id⟩=⇒(Triv) {x 7→ f (a)}.

Notice that if s have more arguments, then AUnif /0 will need a bigger number of steps
for stop, while (Triv) always output the solution in just one step.
Since the approach of this work is to study one algorithm that solve the Anti-Unification
Problem, AUnif /0 simplifications rules are enough to deal this purpose. Therefore, it
is not necessary to add to AUnif /0 a especial rule to applies in initial configurations
of the form ⟨{x : s ≜ t} | /0 | id⟩ with s = t, since the algorithm will output a correct
substitution σ such that xσ = s = t.

We will now illustrate the algorithm by showing some examples.
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Example 2.1. Consider the problem A⟨s, t⟩, where s = f ( f (a,y),a) and t = f ( f (b,c),b).
The AUnif /0 computes as follows:

⟨{x : f ( f (a,y),a)≜ f ( f (b,c),b)} | /0 | id⟩,
(Dec)

initial configuration

⟨

{
x1 : f (a,y)≜ f (b,c)

x2 : a ≜ b

}
| /0 | {x 7→ f (x1,x2)}︸ ︷︷ ︸

σ1

⟩,

(Sol)

x1,x2 fresh variables

⟨{x1 : f (a,y)≜ f (b,c)} | {x2 : a ≜ b} | σ1⟩

(Dec)

⟨

{
x3 : a ≜ b

x4 : y ≜ c

}
| {x2 : a ≜ b} | σ1{x1 7→ f (x3,x4)}︸ ︷︷ ︸

σ2

⟩,

(Rec)

x2,x3 fresh variables and
σ2 = f ( f (x3, ,x4),x2)

⟨{x4 : y ≜ c} | {x2 : a ≜ b} | σ2{x3 7→ x2}︸ ︷︷ ︸
σ3

⟩,

(Dec)

σ3 = {x 7→ f ( f (x2,x4),x2)}

⟨ /0 |

{
x2 : a ≜ b

x4 : y ≜ c

}
| σ3⟩, final configuration

Therefore, AUnif /0 output xσ3 = f ( f (x2,x3),x2) that will be proven to be the least general
generalizer in Theorem 2.3. To obtain θ = (θ1,θ2) such that xσθ1 = s, and xσθ2 = t it is
enough to observe the set of solved constraints of the final configuration. The construction is
as follows.

The right side of the solved constraints gives θ1 = {x2 7→ a,x4 7→ y} and the left side
gives θ2 = {x2 7→ b,x4 7→ c}, as is shown in the figure below:

{
x2 : a ≜ b

x4 : y ≜ c

}
θ1 = {x2 7→ a,x4 7→ y}

θ2 = {x2 7→ b,x4 7→ c}
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In fact,

xσθ1 = f ( f (x2,x4),x2)θ1 = f ( f (a,y),a) = s,

xσθ2 = f ( f (x2,x4),x2)θ2 = f ( f (b,c),b) = t.

Conflict position and pair.
The concept of conflict pair, given below, is important to identify where s and t diverges

in their structures. Since lgg(s, t) is the term that have the most structure in common with
s and t, it is useful to know this concept.

Definition 2.4. Given terms s, t ∈ T (X ,Σ /0),

a) A position p ∈ pos(s)∩pos(t) is called a conflict position of s and if

root(s|p) ̸= root(t|p)

and for all q < p, root(s|q) = root(t|q);

b) The pair (u,v) is called a conflict pair of s and t if there exists at least one conflict
position p of t such that u = s|p and v = t|p.

Example 2.2. Let f1, f2 ∈ Σ /0 two binary function symbols. Take s = f1(a, f1(b,c)) and
t = f1(a, f2(a,c)), then p = 2 is the unique conflict position of s and t and

(u,v) = ( f1(b,c), f2(a,c))

is the respective conflict pair of s and t.
The conflict position identifies where s and t diverges in their structure. Note that there is

no non-trivial generalizer for u and v. Then, the bottom of the position 2 of a least general
generalizer of s and t must be a variable, as is it illustrated bellow.

s :

f1

a f1

b c

t :

f1

a f2

a c

lgg(s, t)

f1

a x

The idea to determine the lgg(s, t) is by comparing the root symbols of each pair of
subterms (s|p, t|p) of s and t, with p ∈ pos(s)∩ pos(t), going deeper in their term tree
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structure until we find a conflict pair of subterms. Moreover, (s|p, t|p) being a conflict pair
of positions means there is no reason to analyse a position q > p, since s and t structures
diverge before it. For instance, note that 2.2 ∈ pos(s)∩pos(t) and s|2.2 = t|2.2 = c, but there
is no generalizer r of s and t such that 2.2 ∈ pos(r), due to the conflict position 2 < 2.2.

The measure defined bellow it is useful to prove termination of AUnif /0 in the next section.

Definition 2.5. Given a configuration ⟨P | S | σ⟩ we define the following measure

m(⟨P | S | σ⟩) = |P|= ∑
{x:s≜t}

|s|+ |t|

where |s| denotes the size of terms s, i.e.,the number of symbols in s.

2.2 Properties of Aunif

Now, in this section we present the main properties of the AUnif /0 algorithm, such as termi-
nation (Theorem 2.1), confluence of the rules (Theorem 2.2) and correctness (Theorem 2.3).
These results were initially proven in [1], here we present more detailed versions of the proofs.
Further, let A⟨s, t⟩ being an AUP, we and extend the results of correctness and completeness
to the set of unsolved constraints S of the final configuration of AUnif /0(s, t), showing its
mapping from the computed solutions xσ to s and t. We also present some examples.

Theorem 2.1 (Termination of AUnif /0 [1]). Let A⟨s, t⟩ be an AUP. Every derivation of
AUnif /0 starting from ⟨{x : s ≜ t} | /0 | id⟩ terminates in a final configuration of the form
⟨ /0 | S | σ⟩.

Proof. Consider the measure m(⟨P | S | σ⟩) given in the Definition 2.5.We will show that if

C1 = ⟨P1 | S1 | σ1⟩=⇒AUnif /0 ⟨P2 | S1 | σ2⟩=C2,

then m(C1)> m(C2).
We proceed by analysing each rule:

Case (R) = (Dec): If the rule applied is Decompose, we have

P1 = P∪{x : f (sn)≜ f (tn)} and

P2 = P∪{x1 : s1 ≜ t1, . . . ,xn : sn ≜ tn}.

Then, m(C1) and m(C2) are as follows:
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m(C1) = |P1|
= |P|+ |{ f (s1, . . . ,sn), f (t1, . . . , tn)}|
= |P|+ | f (s1, . . . ,sn)|+ | f (t1, . . . , tn)|

= |P|+
n

∑
i=1

(|si|+ |ti|)+2

> |P|+
n

∑
i=1

(|si|+ |ti|)

= |P2|= m(C2)

Case (Sol) and (Rec) : If the rule applied is Solve or Recover we have P1 = P∪{x : s ≜ t}
and P2 = P, then the result follows immediately.

Since the AUnif /0 rules applications are non-deterministic it is necessary to prove conflu-
ence. The next lemmas are presented to easier the confluence proof easier.

Lemma 2.1 (Uniqueness of generalization variables [1]). Let A⟨s, t⟩ be an AUP. If there is
a derivation ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnif /0 ⟨P∪{y : u ≜ v} | S | σ⟩ then y does not appear in
any constraint in P or S.

Proof. The complete proof can be found in Appendix A, Lemma A.1.

Remark 2.2. The AUnif /0 algorithm is non-deterministic. Multiple rules can be applied
in a configuration in each step of computation. Notice, however, that the left-hand
sides of the rules in Figure 2.2 do not clash, that is, it is not possible to apply different
rules in the same constraint.
For example, given a configuration C = ⟨{x1 : s1 ≜ t1,x2 : s2 ≜ t2} | S | σ⟩ there are
2 different ways to apply a rule from AUnif /0 in C, one for each unsolved constraint.
That is

C
(R1) (R2)

C1 C2

where (R1) is a rule applied to contraint {x1 : s1 ≜ t1} and (R2) is a rule applied to
constraint {x1 : s2 ≜ t2}. Also, C1 = ⟨P1∪{x2 : s2 ≜ t2}⟩ and C2 = ⟨P2∪{x1 : s1 ≜ t1}⟩.
Likewise, it does not matter which rules are first applies in C, since the set of rules of
AUnif /0 is confluent, as will be proved in Theorem 2.2.
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Theorem 2.2 (Confluence of AUnif /0 [1]). Let A⟨s, t⟩ be an AUP. Then every derivation
⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnif /0 ⟨ /0 | S | σ⟩ is such that ⟨ /0 | S | σ⟩ is unique up to variable
renaming.

Proof. Given ⟨{x : s ≜ t} | /0 | id⟩=⇒∗
AUnif /0

⟨P | S | σ⟩=C. Suppose at this step we have a
bifurcation

C
(R1)

{�

(R2)

�#
C1 C2

By Newman’s Lemma, once AUnif /0 is terminating, to prove confluence is enough to prove
local confluence, i.e., it is sufficient show that exist C3 such that

C1

∗
AUnif /0 �$

C2

AUnif /0

∗

z�
C3

The proof proceeds by analysing the rule (R1) applied in C = ⟨P | S | σ⟩.

Case (R1) = (Dec):

Then P = P1 ∪{y : f (s1, . . . ,sn)≜ f (t1, . . . , tn)}. From Remark 2.2 we already notice
that if a rule (R2) can be applied in P, it is because it was applied in another constraint,
i.e., in a constraint from P1. Then (R2) is an AUnif /0’s reduction rule that acts in some
constraint from P1. It follows that

C1 = ⟨P1 ∪{y1 : s1 ≜ t1, . . . ,yn : sn ≜ tn} | S | σσ1⟩,
C2 = ⟨P′

1 ∪{y : f (s1, . . . ,sn)≜ f (t1, . . . , tn)} | S′ | σσ2⟩,

where σ1 = {y 7→ f (yn)} and σ2 is a substitution computed by (R2).

Now applying (R2) in P1 from C1 we obtain the configuration C3 given as follows:

C3 = ⟨P′
1 ∪{y1 : s1 ≜ t1, . . . ,yn : sn ≜ tn} | S′ | σσ1σ2⟩

Applying (Dec) in C2 we obtain the configuration C4 given as follows:

C4 = ⟨P′
1 ∪{y1 : s1 ≜ t1, . . . ,yn : sn ≜ tn} | S′ | σσ2σ1⟩

The Lemma 2.1 implies that the index variables y,y1, . . . ,yn does not appear in any
constraint in P1. Furthermore, Lemma 2.1 also hence that any index variables of the
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constraints in P1 appears in any constraint of s1, . . . ,sn and t1, . . . , tn. The Figure 2.2
yields that the domain and the range of variables of each substitution created by an
application of each rule of AUnif /0 depends on the constraint which this rule was
applied and the constraints which this rules created, then

(dom(σ1)∪ vran(σ1))∩ (dom(σ2)∪vran(σ2)) = /0.

Therefore, σσ1σ2 = σσ2σ1. It follows that C3 =C4.

Then:

⟨P1 ∪{y : f (sn)≜ f (tn)} | S | σ⟩

C1 = ⟨P1 ∪{y1 : s1 ≜ t1, . . . ,yn : sn ≜ tn} | S | σσ1⟩⟨P′
1 ∪{y : f (sn)≜ f (tn)} | S′ | σσ2⟩=C2

C3 = ⟨P′
1 ∪{y1 : s1 ≜ t1, . . . ,yn : sn ≜ tn} | S′ | σσ1σ2⟩=C4

(Dec)
(R2)

(R2) (Dec)

Case (R1) = (Rec):

Then P = P1 ∪{y : s ≜ t} and S = S1 ∪{z : s ≜ t}. Since the case where (Dec) applies
in C was done in the previous case, then we can suppose (R2) = (Sol) or (R2) = (Rec).
The rule (R2) will act in some constraint in the set of unsolved constraints P1 of the
configuration C1.

C1 = ⟨P1 | S1 ∪{z : s ≜ t} | σσ1⟩,
C2 = ⟨P′

1 ∪{y : s ≜ t} | S1 ∪{z : s ≜ t}∪S2 | σσ2⟩,

where σ1 = {y 7→ z} and σ2 is a variable renaming given by (R2) or the identity
substitution, depending on if (R2) is (Rec) or (Sol) and S2 is some possible constraint
added to the set of unsolved constraints by the application of rule (R2) in C.

Now, applying (R2) in C1 we obtain the configuration C3 given as follows:

C3 = ⟨P′
1 | S1 ∪S2 ∪{z : s ≜ t} | σσ1σ2⟩.

Applying (Rec) in C2 we obtain the configuration C4 given as follows:

C4 = ⟨P′
1 | S1 ∪S2 ∪{z : s ≜ t} | σσ2σ1⟩.
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If (R2) = (Sol), then σ2 = id and C3 =C4 follows immediately. If (R2) = (Rec), then
Lemma 2.1 yields σσ1σ2 = σσ2σ1, then C3 =C4. In both cases we obtain

C1 =⇒C3 ⇐=C2.

Finally,

Case (R1)= (R2) = (Sol) :

Since the cases of (Dec) and (Rec) applications were analysed, remains only the case
where C =⇒(Sol) C1 and C =⇒(Sol) C2. Since (Sol) has a condition under the set of
solved constraints, and the application of this rule changes this set, then this case is
divided in two:

1. P = P1 ∪ {y : s1 ≜ t1,z : s2 ≜ t2}. Without loss of generality, we obtain the
configurations C1 and C2 as follows:

C1 = ⟨P1 ∪{z : s2 ≜ t2} | S∪{y : s1 ≜ t1} | σ⟩,
C2 = ⟨P1 ∪{y : s1 ≜ t1} | S∪{z : s2 ≜ t2} | σ⟩.

Applying (Sol) in C1 and C2, both reduces to the configuration given as follows:

⟨P1 | {y : s1 ≜ t1,z : s2 ≜ t2} | σ⟩

and the results follows.

2. P = P1 ∪{y : s ≜ t;z : s ≜ t}. Without loss of generality, we obtain the configura-
tions C1 and C2 as follows:

C1 = ⟨P1 ∪{z : s ≜ t} | {y : s ≜ t} | σ⟩,
C2 = ⟨P1 ∪{y : s ≜ t} | {z : s ≜ t} | σ⟩.

Now, applying (Rec) in C1 we obtain the configuration C3 given as follows:

C3 = ⟨P′ | S∪{y : s ≜ t} | σσ1⟩.

Applying (Rec) in C2 we obtain the configuration C4 given as follows:

C4 = ⟨P′ | S∪{z : s ≜ t} | σσ2⟩,
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where σ1 = {z 7→ y} and σ2 = {y 7→ z}. Therefore C3 = C4 up to variable
renaming.

Now we will analyse the completeness property of the algorithm AUnif /0. For that we
will present some lemmas to simplify the proof of Theorem 2.3 for correctness.

Lemma 2.2 (Range of Substitutions [1]). Given terms s, t ∈ T (X ,Σ /0) and a fresh variable
x such that ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnif /0 ⟨P | S | σ⟩. Then, Index(P∪S)⊆ vran(σ)∪{x}
and vran(σ)⊆ V(xσ).

Proof. The complete proof can be found in Appendix A, Lemma A.2.

Lemmas 2.3 and 2.4 below, establish auxiliary properties that are useful to understand the
definition of conflict pair. Given the problem A⟨s, t⟩, these lemmas relate the set of unsolved
constraints and also the set of solved constraints of each configuration obtained during a
derivation of AUnif /0.

Lemma 2.3 (Lemma 3 in [1]). Let A⟨s, t⟩ be an AUP. There is a derivation of the form
⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnif /0 ⟨{y : u ≜ v}∪P | S | σ⟩ if, and only if, there exists a position
p ∈ pos(s)∩ pos(t) such that s|p = u, t|p = v, and for all position p′ < p, root(s|p′) =
root(t|p′).

Proof. The complete proof can be found in Appendix A, Lemma A.3

Remark 2.3. Notice that the constraints {x : s ≜ t} and {x : t ≜ s} represent the same
problem A⟨s, t⟩. However, the initial configuration ⟨{x : s ≜ t} | /0 | id⟩ fixes the sides
of the subterms of s and t in each constraint produced by the application of algorithm’s
rules, i.e, the left side of each constraint will be a subterm of s and the right side of
each constraint will be a subterm of t, as it was proved by Lemma 2.3. If the sides
of subterms are changed during the algorithm application, then the computed pair of
substitutions θ that should map xσ to s and t may be such that xσ θ ̸= (s, t), i.e, the
mapping does not produce a generalizer. Then, the order which each term appear in a
constraint matters.

The Lemma bellow uses the definition of conflict position and pair given in Definition 2.4.

Lemma 2.4 (Lemma 4 in [1]). Let A⟨s, t⟩ be an AUP. There is a derivation of the form
⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnif /0 ⟨P | {y : u ≜ v}∪S | σ⟩ if, and only if, there exists a conflict
position p of s and t such that s|p = u and t|p = v.
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Proof. The complete proof can be found in Appendix A, Lemma A.4

Example 2.3. As taking { f3 : 3, f2 : 2, f1 : 1} ⊆ Σ /0 and terms s = f3( f1(a), f2(c,a),a) and
t = f3(a, f2(c, f1(b)),a), therefore there are two conflict positions in s and t:

1. p1 = 1, and its respective conflict pair of subterms is ( f1(a),a), and

2. p2 = 2.2, and its respective conflict pair of subterms is (a, f1(b)).

Then by Lemma 2.4 there exists a derivation ⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P | S | σ⟩

and fresh variables x1,y2 such that {x1 : f1 ≜ a, y2 : a ≜ f1(b)} ∈ S. In other words, the
Lemma 2.4 says that for each conflict pair of s and t there exists a reduction of AUnif /0 such
that the constraint representing the Anti-Unification Problem between the subterms of s and t
given by this conflict pair is already solved, as is showed in the figure bellow.

s :
f3

ε

f1
1

f2
2

a
3

a
1.1

c
2.1

a
2.2

t :
f1

ε

a
1

f2
2

a
3

c
2.1

f1
2.2

b
2.2.1

{x1 : f1(a)≜ a}
{y2 : a ≜ f1(b)}

∈ S

In fact, applying (Dec) in the initial configuration, ⟨{x : s ≜ t} | /0 | id⟩, we obtain the
configuration C given as follows:

C = ⟨


x1 : f1(a)≜ a,

x2 : f2(c,a)≜ f2(c, f1(b)),

x3 : a ≜ a

 | /0 | {x 7→ f3(x1,x2,x3)}︸ ︷︷ ︸
σ

⟩

After that we apply (Sol) in the constraint with index variable x1, solving it to the set
of solved constraints. By applying (Dec) in the constraint with index variable x2, we
obtain the constraints with index variables y1 and y2 given below. Therefore, it follows that
C 2
=⇒AUnif /0 C1, where:

C1 = ⟨


y1 : c ≜ c,

y2 : a ≜ f1(b),

x3 : a ≜ a

 | {x1 : f1(a)≜ a} | σ{x2 7→ f2(y1,y2)}︸ ︷︷ ︸
σ1

⟩
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Then applying (Sol) in the constraint with index y2, solving it to the set of solved constraints,
we obtain that C1 =⇒(Sol) C2, given as follows:

C2 = ⟨

{
y1 : c ≜ c,

x2 : a ≜ a

}
|

{
x1 : f1(a)≜ a,

y2 : a ≜ f1(b)

}
| σ1⟩

Therefore, ⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 C2 and the set of solved constraints of C2 is of

the form that the Lemma 2.4 claims that should exist in the derivation tree of AUnif /0(s, t).

The Lemma 2.5 presented next was not stated in [1]. However, it is necessary prove it
in order to easy the proofs of the lemmas used to prove the main theorem of this section,
Theorem 2.3, which states the correctness of AUnif /0 and was originally presented in [1].

Lemma 2.5. Given terms s, t ∈ T (X ,Σ /0). If there exists a derivation

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨{y : u ≜ v}∪P | S | σ⟩

then there exists a position p ∈ pos(s)∩pos(t) such that

(xσ |p) = y, s|p = (xσ)|p{y 7→ u}= u, t|p = (xσ)|p{y 7→ v}= v.

Proof. The complete proof can be found in Appendix A, Lemma A.5.

Given A⟨s, t⟩ the Lemma 2.5 relates the structures of s and t with each output term xσ

obtained by an application of a rule of Figure 2.2.
Since Lemma 5 of [1] has two items and their proofs are huge, we decided to split this

result in two, to ease readability. Then Lemma 2.6 and Lemma 2.7 given as follows are
versions of Lemma 5 in [1].

The next lemma says that given A⟨s, t⟩, each step of application of AUnif /0 gives a
generalizer of s and t.

Lemma 2.6. Let s, t ∈ T (X ,Σ /0). If ⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P | S | σ⟩ then xσ ∈

gen(s, t).

Proof. By induction on the length n of the reduction ⟨{x : s ≜ t} | /0 | id⟩ n
=⇒AUnif /0 ⟨P | S | σ⟩.

We will present one interesting case of the inductive step; the basic case which n = 0 and
the other cases of its inductive step can be found in Appendix A, Lemma A.6.

Inductive Step: Supposing that

⟨{x : s ≜ t} | /0 | id⟩ n
=⇒AUnif /0 ⟨P

′ | S′ | σ
′⟩=⇒(R) ⟨P | S | σ⟩



2.2 Properties of Aunif 35

We want to show that xσ ∈ gen(s, t). Notice that σ = σ
′
δ for some δ that will obtained

in the last step. The proof proceeds by analysing the rule (R) applied in this last step.

Case (R) = (Dec):
Then the reduction is of the form

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P1 ∪{y : f (um)≜ f (vm)} | S | σ

′⟩

=⇒(Dec) ⟨P1 ∪{y1 : u1 ≜ v1, . . . ,ym : um ≜ vm}} | S | σ
′{z 7→ f (ym)}⟩,

where,

P′ = P1 ∪{y : f (um)≜ f (vm))},P = P1 ∪{y1 : u1 ≜ v1, . . . ,ym : um ≜ vm},
S = S′ and σ = σ

′{y 7→ f (ym)}.

Let δ = {y 7→ f (ym)}. Then σ = σ
′
δ .

The definition of (Dec) in Figure 2.2 yields that y1, . . . ,ym are fresh variables.
Hence, y1, . . . ,ym ̸∈ dom(σ ′). Besides, Lemma 2.2 yields that y is in the range of
variables of σ

′, i.e, y ∈ vran(σ ′), and Lemma 2.1 yields that y does not appears
in any constraint of P1 ∪S. Then y ̸∈ dom(σ ′). By Lemma 2.5, there is a position
p ∈ pos(s)∩pos(t) such that s|p = f (um), t|p = f (vm) and xσ

′|p = y. It follows
that xσ |p = f (ym).

By the induction hypotheses it follows that xσ
′ ∈ gen(s, t), hence there exists a

pair of substitutions θ = (θ1,θ2) such that xθ1 = s and xθ2 = t. Then,

xσ
′
θ1|p = f (sm), xσ

′
θ2|p = f (tm).

Since xσ
′|p = y, it follows that yθ1 = f (sm) and yθ2 = f (tm).

Notice that y ∈ dom(σ) and root(yσ) = root(yσθ1) = root(yσθ2). Since
y1, . . . ,y2 are fresh variables we can suppose without lost of generality that
y1, . . . ,ym ̸∈ dom(θ1)∪dom(θ2), then constructing the substitutions τ1 and τ2 as
follows:

τ1 =

{
x 7→ xθ1,y ̸= x ∈ dom(θ)

yi 7→ ui

}
and τ2 =

{
x 7→ xθ2,y ̸= x ∈ dom(θ)

yi 7→ vi

}

with i = 1, . . . ,m, then the pair of substitutions τ = (τ1,τ2) is such that

xστ = xσ
′
θ = (s, t).
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Therefore, xσ ∈ gen(s, t).

The next lemma uses the notion of equivalence "≡" between terms given by the instantia-
tion ordering > (cf. Definition 1.17). From Remark 1.2 it follows that s ≡ t iff s is equal to t
with exception for variable renaming.

Lemma 2.7. Let s, t ∈ T (X ,Σ /0). If u ∈ gen(s, t) then there exists a derivation

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P | S | σ⟩

such that u ≡ xσ

Proof. By induction on the structure of u. We will present just one interesting case of the
inductive step; the basic step of the induction which u is a variable and the other cases of the
inductive step can be found in Appendix A, Lemma A.7.

Inductive Step: Let u = f (u1, . . . ,un), for an n-ary free function symbol f . Suppose that
the result follows for generalizers ui of si and ti with structure simpler than u.

Since u ∈ gen(s, t) it follows that there exists a pair of substitutions θ = (θ1,θ2) such
that uθ = (s, t). Then both s and t have as root symbol the n-ary function symbol f .
Which follows that s = f (s1, . . . ,sn) and t = f (t1, . . . , tn) for some si, ti ∈ T (X ,Σ /0),
with i = 1, . . . ,n. Therefore, the initial configuration is

⟨{x : s ≜ t} | /0 | id⟩= ⟨{x : f (sn)≜ f (tn)} | /0 | id⟩.

We want to show that exists a derivation

⟨{x : f (sn)≜ f (tn)} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P | S | σ⟩ (1)

such that xσ ≡ u = f (u1, . . . ,un). We will show the existence of this derivation
constructing it.

Notice, (Dec) apply in the initial configuration. Therefore, the first step of the deriva-
tion (1) is of the form:

⟨{x : s ≜ t} | /0 | id⟩=⇒ ⟨{x1 : s1 ≜ t1, . . . ,xn : sn ≜ tn} | /0 | {x 7→ f (x1, . . . ,xn)}︸ ︷︷ ︸
σ0

⟩ (2)
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To obtain the next steps it is necessary use the induction hypotheses. First, let’s prove
the claim bellow.

Claim: ui ∈ gen(si, ti), for all 1 ≤ i ≤ n.

In fact, is enough note that

uθ1 = f (u1θ1, . . . ,unθ1) = f (s1, . . . ,sn),

uθ2 = f (u1θ2, . . . ,unθ2) = f (t1, . . . , tn).

Hence, uiθ1 = si and uiθ2 = ti. Then, ui is a generalizer of si and ti for every
1 ≤ i ≤ n.

Therefore, the induction hypotheses implies that for each i = 1, . . . ,n there exists a
derivation Ri composed of the rules AUnif /0 given in Figure 2.2 such that

⟨xi : si ≜ ti | /0 | id⟩ ∗
=⇒Ri ⟨Ci | Si | σi⟩ (3)

such that ui ≡ xiσi.

The idea of this proof is after applies (Dec) in the initial configuration, as is shown in
(2), and after sequentially apply each of the derivations chains given in (3), in order to
obtain a configuration ⟨P | S | σ⟩ with σ = σ0σ1 . . .σn, such that

xσ = xσ0 . . .σn

= (xσ0)σ1 . . .σn

= f (x1, . . . ,xn)σ1 . . .σn

= f (x1σ1, . . . ,xnσn)≡ f (u1, . . . ,un)

However, it is necessary to ensure that this combination of derivations will be done
in a way that each substitution σk obtained from the derivation Rk dos not change
the value of the term x jσ j ≡ u j obtained by the derivation R j, i.e, it is necessary to
ensure that f (x1, . . . ,xn)σ1 . . .σn = f (x1σ1, . . . ,xnσn). Notice that dom(σi) = {xi} and
by Lemma 2.2 it follows that vran(σi) ⊆ V(xσi). Then, it is enough to compare
the variables of each u j and uk for every k ̸= j. This analyse of variables is also
important to ensure that the rules of Figure 2.2 were applied correctly as combine
the derivations of (3), because just joint these rules without some adaptations could
generates a application of (Sol) in a constraint in which (Rec) should apply instead.
There are two cases of variables to analyse, studied in the following.



38 Syntactic Anti-Unification Problem

Case 1: If V(u j)∩V(uk) = /0 for every j ̸= k.

Since {xk : s j ≜ t j} and {xk : sk ≜ tk} were obtained by an application of (Dec) in
⟨{x : f (sn)≜ f (tn)} | /0 | id⟩, it follows that x j ̸= xk.By Lemma 2.2 it follows that

vran(σ j)⊆ V(x jσ j)∪{x j}, vran(σk)⊆ V(xkσk)∪{xk}.

Hence, vran(σ j)∩ vran(σk) = /0. It follows that (xkσk)σ j ≡ ukσ j = uk and
(x jσ j)σk ≡ u jσk = u j.

Then, the result follows as recursively applies each derivation Ri in (3), in they
respective constraint {xi : si ≜ ti}, for all i = 1, . . . ,n as is shown bellow:

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨{x1 : s1 ≜ t1}∪P1 | /0 | σ0⟩
∗

=⇒(R1) ⟨{x2 : s2 ≜ t2}∪P2 ∪C1 | S1 | σ0σ1⟩
∗

=⇒(R2)

=⇒ . . .

∗
=⇒(Ri) ⟨Pi ∪C1 ∪·· ·∪Ci | S1 ∪ . . .Si | σ0 . . .σi⟩
∗

=⇒ . . .

∗
=⇒(Rn−1) ⟨{xn : sn ≜ tn}∪C1 ∪·· ·∪Cn−1 | S1 ∪·· ·∪Sn−1 | σ0 . . .σn−1⟩

∗
=⇒(Rn) ⟨

n⋃
i=1

Ci |
n⋃

i=1

Si | σ0 . . .σn ⟩

where Pi = {x1 : s1 ≜ t1, . . . ,xn : sn ≜ tn}/(
n⋃

i=1

{xi : si ≜ ti}). Then, the result

follows as taking P =
n⋃

i=1

Ci, S =
n⋃

i=1

Si and σ = σ0 . . .σn.

Let A⟨s, t⟩ be an AUP. It is easy to see that each step n of AUnif /0 compute a substitution
σn that is the composition of σn−1, the substitution computed in the previous (n−1)-step,
with another substitution δ , i.e, σn = σn−1δ . By Lemma 2.1 and Lemma 2.2 it follows that
this composition of substitutions is such that xσn−1 ≤ xσn. Then, it is natural to conclude that
the normal form of AUnif /0 (⟨ /0 | S | σ⟩ ), must return a least general generalizer of s and t.
The next theorem will formalize this intuitive idea.

Theorem 2.3 (Correctness of AUnif /0 [1].). Let s, t ∈ T (X ,Σ /0). Then, u ∈ lgg(s, t) if, and
only if, there exists a derivation ⟨{x : s ≜ t} | /0 | id⟩=⇒∗

AUnif /0
⟨ /0 | S | σ⟩ and u ≡ xσ .
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Proof. Consider the normalizing derivation

⟨{x : s ≜ t} | /0 | id⟩=⇒∗
AUnif /0

⟨ /0 | S | σ⟩

Then Lemma 2.6 yields that xσ ∈ gen(s, t) up to variable renaming. Suppose by contradiction
that xσ is not a least general generalizer of s and t, i.e, xσ ̸∈ lgg(s, t). Then, xσ is more
general than a term that is a least general generalizer of s and t, i.e, there exists a substitution
δ , that is not a variable renaming such that (xσ)δ ′ ∈ lgg(s, t).

Lemma 2.2 yields that vran(σ)⊆V(xσ). Notice that if there exists a variable w∈ dom(δ )

such that w ̸∈ V(xσ), wδ actually does not matter because we are applying δ in xσ . Therefore,
suppose that dom(δ )⊆ V(xσ). Since δ is not a variable renaming, there are two possibilities
on how δ acts in xσ .

Case 1: There are distinct variables y,y′ ∈ V(xσ) and a variable z such that yδ = y′δ = z:

Suppose xσ |p = y, xσ |p′ = y′ then there are constraints in S such that y,y′ ∈ Index(S)
and Lemma 2.4 yields that p and p′ are two conflicting positions. Since

(xσ)δ |p = z = (xσ)δ |p′

and (xσ)δ ∈ lgg(s, t) it follows that s|p = s|p′ and t|p = t|p′ . Then the constraints in
S with indexes y,y′ represents the same Anti-Unification Problem A⟨s|p, t|p⟩. Since
{y : s|p ≜ t|p,y′ : s|p′ ≜ t|p′} ∈ S it means that each one of these constrains that are a
step of AUnif /0 were (Sol) applied in it. What is a contradiction of definition of (Sol)
rule in Figure 2.2, which yields that AUnif /0 was applied erroneously because (Rec)
should have being applied in one of these constraints instead of (Sol). Therefore, there
are no distinct variables y,y′ ∈ V(xσ) such that yδ = y′δ .

Case 2: There is a variable y ∈ V(xσ) and a non variable term v such that yδ = v:

Then, there exist a position p such that xσ |p = y and constraint C in S with Index(C)=

y, therefore Lemma 2.4 implies that (s|p, t|p) is a conflict pair of s and t. Since
(xσ)δ ∈ lgg(s, t) it follows that (xσ)δ |p = v which implies that

root(s|p) = root(t|p) = root(v)

what is a contradiction because the Definition 2.4 says that every conflict pair (s, t)
must be such that root(s) ̸= root(t).
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Now, we will show that given A⟨s, t⟩ a Anti-Unification Problem, the final configuration
⟨ /0 | S | σ⟩ gives a map to how send the least general generalizer xσ into s and t. First, it is
necessary to do a remark.

Remark 2.4. Notice that Lemma 2.3 says that for every conflict pair of subterms (u,v)
there exist a reduction such that ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnif /0 ⟨P∪{y : u ≜ v} | S | σ⟩.
In [1] there is a claim that says that this result follows by an sequence of applications of
(Dec). It is easy to see that this claim is true, since the only rule in Figure 2.2 that create
constraints is (Dec) and for each conflict pair of subterms (u,v) of s and t there exists
a position p ∈ pos(s)∪ pos(t) such that for every p′ < p, root(s|p′) = root(t|p′).
Then, there exists a derivation such that

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P∪{y : u ≜ v} | /0 | σ⟩.

Lemma 2.8. Let A /0⟨s, t⟩ be an AUP. If there exists a derivation of the form

⟨{x : s ≜ t} | /0 | id⟩=⇒∗
AUnif /0

⟨ /0 | S | σ⟩

with S = {y1 : u1 ≜ v1;y2 : u2 ≜ v2, . . . ,yn : un ≜ vn}, then the pair of substitution (θ1,θ2)

given forθ1 = {y1 7→ u1, . . . ,yn 7→ un} and θ2 = {y1 7→ v1, . . . ,yn 7→ vn} is such that

(xσ)θ1 = s and (xσ)θ2 = t.

Proof. The proof proceeds by analyse of the conflict pairs of s and t.

Case 1: s and t do not have any conflict pair:

Then by Lemma 2.4, S = /0 and it follows that θ = (θ1,θ2) = (id, id).

Notice that s = t. In fact, if there exists a p ∈ pos(s) such that s|p ̸= t|p then would
exist a conflict position q of s and t such that q ≤ p, which contradicts the hypotheses
of this case.

Thus, by Theorem 2.3 it follows that xσ = s = t. Therefore, (xσ)θ = (s, t).

Case 2: s and t have conflict positions.

This case is analysed in Appendix A, Lemma A.8.

Corollary 2.1. Given a derivation ⟨{x : s≜ t} | /0 | id⟩=⇒∗
AUnif /0

⟨ /0 | S |σ⟩ then xσ ∈ lgg(s, t)
and exists a pair of substitutions (θ1,θ2), give by S, such that (xσ)θ1 ≡ s and (xσ)θ2 ≡ t.
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Proof. Straightforward from Lemma 2.8 and Theorem 2.3.

Input: A⟨s, t⟩

⟨{x : s ≜ t} | /0 | id⟩

AUnif /0∗

⟨P′ | S′ | σ
′⟩

AUnif /0
∗

⟨ /0 | S | σ⟩

Output: xσ

x

xσ
′

xσ

s t

trivial generalizer

∈ gen(s, t)

∈ lgg(s, t)

θ1 θ2

Given an Anti-Unification Problem A⟨s, t⟩, AUnif /0 output a term r that is the least general
generalizer of s and t and also output a pair of substitutions θ such that θr = (s, t), as was
shown in the figure in above. Therefore, AUnif /0 solve the Anti-Unification Problem.

Moreover, Theorem 2.3 says that u is a solution of the Anti-Unification Problem A⟨s, t⟩
iff and only if there is a normal form ⟨ /0 | S | σ⟩ given by AUnif /0 such that the term xσ is
equal to u except by variable renaming. Since Theorem 2.2 yields that AUnif /0 is confluent it
follows that the solution of A⟨s, t⟩ is unique except by variable renaming.





Chapter 3

Commutative Anti-Unification Problem

In this chapter we will show that in the case of Commutative Anti-Unification (for short
AUPC), if we use AUnif /0 it may output a generalizer that is not a least general one. This
happens because AUnif /0 rules does not treat the properties of this theory properly. Then, it is
necessary to adapt the previous inference rules and build a new algorithm called AUnifC that
is able to handle commutativity. This adaptation takes place as adding a new rule (C-Dec)
called Commutative-Decompose and keeping the syntactic inference rules of AUnif /0 with
some restrictions as is shown in Figure 3.1. Then, we will study the Commutative Anti-
Unification closely and verify the main properties of AUnifC: termination (Theorem 3.1),
soundness (3.2) and completeness (Theorem 3.3).

3.1 Motivating Examples

In this section we will illustrate the Anti-Unification Problem when commutative function
symbols are considered, i.e, the AC⟨s, t⟩ problem for s, t ∈ T (X ,Σ /0∪C), introduced in subsec-
tion 1.2.1. Also, we will show why AUnif /0 is not enough to solve AC⟨s, t⟩. The purpose of
this subsection is to make the reader more familiar with the problem.

Example 3.1 (Applying AUnif /0 to solve AC⟨s, t⟩). Let g ∈ ΣC, then s = g(a,b) and t =
g(b,c) are terms in T (X ,Σ /0∪C). If we try to solve the AUPC AC⟨s, t⟩ using the AUnif /0

simplification rules, the following derivation is possible

⟨{x : g(a,b)≜ g(b,c)} | /0 | id⟩
(C-Dec)

⟨{x1 : a ≜ b,x2 : b ≜ c} | /0 | {x 7→ g(x1,x2)}︸ ︷︷ ︸
σ

⟩
(C-Dec)

⟨ /0 | {x1 : a ≜ b,x2 : b ≜ c} | σ⟩.
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Thus, AUnif /0 returns xσ = g(x1,x2) as generalizer for s and t. It is easy to see that g(x1,x2)∈
genA(s, t), but note that it is not the least general generalizer modulo C of s and t. In fact,
g(b,x2) ∈ genC(s, t) is also a generalizer modulo C of s and t, i.e, g(b,x2) ∈ genC(s, t).
Moreover, it is less general modulo C than g(x1,x2), i.e. g(x1,x2)≤C g(b,x2), as is it nicely
illustrated in the figure below:

x Trivial solution

g(x1,x2) AUnif /0’s output

g(b,x2) lggC(s, t)

g(a,b) g(b,c))

Then, the AUnif /0 still outputs generalizers, but not necessarily least general ones. To
solve AUPC, it is necessary to modify AUnif /0 algorithm by adding new rules and adapt some
of its current rules. The next section will focus in this procedure.

Example 3.2 (The set lggC(s, t) is not unitary). Let g ∈ ΣC, then s = g(g(a,b),b) and
t = g(a,g(b,a)) are terms in T (X ,Σ /0∪C). It follows that

r1 = g(g(y1,x2),x2) ∈ genC(s, t) and r2 = g(g(a,b),x2) ∈ genC(s, t).

Notice that r2 ̸≤C r1. In fact, if r2 ≤C r1 then there would exist a substitution θ such
that r2θ =C r1. However, g(g(a,b)),x2)θ ̸=C g(g(y1,x2),x2) for any substitution θ , because
substitutions do not change constant function symbols.

Similarly, r1 ̸≤C r2. In fact, if r1 ≤C r2 then there would exist θ
′ such that r1θ

′ =C r2,
i.e., g(g(y1,x2),x2)θ

′ =C g(g(a,b),x2). Then, we would have

g(g(y1,θ
′,x2θ

′),x2θ
′) =C g(g(a,b),x2),

thus this substitution θ
′ must send x2 into a or b, but if θ

′ is a substitution such that

• x2θ
′ = a, then θ

′r1 = g(g(y1,a),a) ̸=C r2, or

• x2θ
′ = b, then θ

′r1 = g(g(y1,b,),b) ̸=C r2.

Then r1 and r2 are incomparable by ≡C. Hence, r1 and r2 are both maximal elements
of genC(s, t). In conclusion, the set of least general generalizations of s and t modulo
commutativity is not unitary.
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3.2 Solving the Commutative Anti-Unification Problem

In this section, we present the approach taken by Alpuente et. al. [1] for solving the
Commutative Anti-Unification Problem (AUPC). The proposal is to adapt the syntactic
algorithm Anti-Unification AUnif /0 to handle the commutative property, obtaining a C-anti-
unification algorithm called AUnifC, which rules are shown in Figure 3.1 below.

(Dec) : Decompose
( f : n ∈ Σ /0 ∪X )

⟨P∪{x : f (sn)≜ f (tn)} | S | σ
′⟩=⇒

〈
P∪


x1 : s1 ≜ t1,
...

xn : sn ≜ tn

 | S | σ{x 7→ f (xn)}
〉

where x1, . . . ,xn are fresh variables.

(Sol): Solve:
If root(s) ̸= root(t) and there is no constraint {y : s ≜ t} ∈ S

⟨P∪{x : s ≜ t} | S | σ⟩=⇒ ⟨P | S∪{x : s ≜ t} | σ⟩

(Rec): Recover:
If root(s) ̸= root(t)

⟨P∪{x : s ≜ t} | S∪{y : s ≜ t} | σ⟩=⇒ ⟨P | S∪{y : s ≜ t} | σ{x 7→ y}⟩

(C-Dec) : Commutative Decompose
(g ∈ ΣC)

⟨{x : g(s1,s2)≜ g(t1, t2)} | S | σ⟩

⟨

{
x1 : s1 ≜ t1
x2 : s2 ≜ t2

}
| S | σ{x 7→ g(x1,x2)}⟩ ⟨

{
x1 : s1 ≜ t2
x2 : s2 ≜ t1

}
| S | σ{x 7→ g(x1,x2)}⟩

where x1,x2 are fresh variables.

Fig. 3.1 AUnifC Simplification Rules.
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The rule (Dec) is the same as AUnif /0 just now restricted to free function symbols f ∈ Σ /0

and variables. The opaque rules (in gray) are those that have not changed. In the following,
we described the rule Commutative-Decompose.

(C-Dec) In the case {x : g(s1,s2)≜ g(t1, t2)} is a constraint, where g ∈ ΣC. We can commute
the arguments of g in two different ways; thus, this rule branches.

For instance, we can compare s1 with t1 and s2 with t2, obtaining two new constraints
{x1 : s1 ≜ t2,x2 : s2 ≜ t2}. But g is a commutative function symbol, thus we could have
chosen commute: comparing s1 with t2 and s2 with t1, obtaining two new constraints
{x1 : s1 ≜ t2,x2 : s2 ≜ t1}. For each choice, we delete the constraint {x : g(s1,s2) ≜

g(t1, t2)} and replace it with the two different constraints obtained; both cases create
a new substitution σ = {x 7→ g(x1,x2)}, where x1,x2 are the corresponding index
variables of each new constraint created.

For s = g(s1,s2) and t = g(t1, t2), notice that x is a generalizer of s and t, but xσ =

g(x1,x2) is a C-generalizer of s and t that preserves more structure of both terms than
x, i.e., x < g(x1,x2). Therefore, the application of (C-Dec) rule gives a more specific
C-generalizer of s and t.

Example 3.3 (How to apply AUnifC). Let s = g(a,b) and t = g(b,c) be T (X ,Σ /0∪C) terms
where g ∈ ΣC. Then, AUnifC(s, t) derivation tree is of the form given below:

⟨{x : g(a,b)≜ g(b,c)} | /0 | id⟩

(C-Dec) (C-Dec)

⟨{x1 : a ≜ b,x2 : b ≜ c} | /0 | {x 7→ g(x1,x2)}︸ ︷︷ ︸
σ

⟩

AUnifC ∗

⟨{x1 : a ≜ c,x2 : b ≜ b} | /0 | σ⟩

AUnifC ∗

⟨ /0 | {x1 : a ≜ b,x2 : b ≜ c} | σ⟩ ⟨ /0 | {x1 : a ≜ b} | σ{x2 7→ b}︸ ︷︷ ︸
σ1

⟩

Therefore AUnifC output xσ = g(x1,x2) and xσ1 = g(x1,b) and g(x1,x2) <C g(x1,b),
hence only g(x1,b) ∈ lggC(s, t).

The next example shows that AUnifC is not confluent, differently of the syntactic
anti-unification algorithm AUnif /0. However, lggC(s, t) is not unitary, AUnifC being non-
confluent is convenient since the algorithm AUnifC when applied to a problem AC⟨s, t⟩
returns normal forms that will generate a complete set of generalizers of s and t; conse-
quently, a complete set of least general generalizers for s and t modulo C
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Example 3.4 (AUnifC is not confluent). Given s = g(g(a,b),b) and t = g(a,g(b,a)), with
g ∈ ΣC, it follows that:

⟨{x : g(g(a,b),b)≜ g(a,g(b,a))} | /0 | id⟩
(C−Dec) (C−Dec)

⟨

{
x1 : g(a,b)≜ a,

x2 : b ≜ g(b,a)

}
| /0{x 7→ g(x1,x2)}︸ ︷︷ ︸

σ1

⟩

AUnifC

⟨

{
x1 : g(a,b)≜ g(b,a),

x2 : b ≜ a

}
| /0{x 7→ g(x1,x2)}︸ ︷︷ ︸

σ1

⟩

(Sol)

⟨ /0 |

{
x1 : g(a,b)≜ a,

x2 : b ≜ g(b,a)

}
| σ1⟩

⟨{x1 : g(a,b)≜ g(b,a)} | {x2 : b ≜ a}︸ ︷︷ ︸
S

| σ1⟩

(C-Dec) (C-Dec)

⟨

{
y1 : a ≜ b,

y2 : b ≜ a

}
| S | σ1{x1 7→ g(y1,y2)}︸ ︷︷ ︸

σ ′
2

⟩

(Sol)

⟨

{
y1 : a ≜ a,

y2 : b ≜ b

}
| S | σ1⟩

(Dec)

⟨{y2 : b ≜ a} | S∪{y1 : a ≜ b} | σ
′
2⟩

(Rec)

⟨{y2 : b ≜ b} | S | σ1{y1 7→ a}︸ ︷︷ ︸
σ ′

3

⟩
(Dec)

⟨ /0 | S∪{y1 : a ≜ b} | σ
′
2{y2 7→ x2}︸ ︷︷ ︸

σ2

⟩ ⟨ /0 | S | σ
′
3{y2 7→ b}︸ ︷︷ ︸

σ3

⟩

Therefore AUnifC output xσ1 = g(x1,x2), xσ2 = g(g(y1,x2),x2) and xσ3 = g(g(a,b),x2).
By definition, xσ1 <C xσ2 and xσ1 <C xσ3. Moreover, xσ2 and xσ3 are incomparable by the
instantiation ordering, as it was shown in Example 3.2. Therefore, xσ2,xσ3 ∈ lgg(s, t).

Furthermore, the set of unsolved constraints of each final configuration gives a respective
mapping from xσ1, xσ2 and xσ3 to s and t. More precisely,

1. The final configuration ⟨ /0 | {x1 : g(a,b)≜ a,x2 : b ≜ g(b,a)} | σ1⟩ is such that the left
side of the solved constraints gives λ1 = {x1 7→ g(a,b),x2 7→ b} and the right side gives
λ2 = {x1 7→ a,x2 7→ g(b,a)}. Notice that (xσ1)(λ1,λ2) = g(x1,x2)(λ1,λ2) =C (s, t).

2. The final configuration ⟨ /0 | {x2 : b ≜ a,y1 : a ≜ b} | σ2⟩ is such that the left side of the
solved constraints gives the substitution θ1 = {x2 7→ b,y1 7→ a}, while the right side
gives θ2 = {x2 7→ a,y1 7→ b}. Notice that (xσ2)(θ1,θ2) = g(g(y1,x2),x2)(θ1,θ2) =C

(s, t).

3. The final configuration ⟨ /0 | {x2 : b ≜ a} | σ3⟩ is such that the left side of the solved
constraints gives θ

′
1 = {x2 7→ b} and the right side of gives θ

′
2 = {x2 7→ a}. Notice that

(xσ)(θ ′
1,θ

′
2) = g(g(a,b),x2)(θ

′
1θ

′
2) =C (s, t).
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The figure bellow illustrate the mapping presented above for the least general generalizers,
modulo C, of s and t.

g(g(y1,x2),x2)

θ1

θ2

g(g(a,b),x2)
θ ′

1

θ ′
2

g(g(a,b),b) g(a,g(b,a))

̸≡C

Commutative pair and commutative conflict pair of subterms.
The next definitions use the notions of prefix and index of a position, as given in Defini-

tion 1.6. Let AC⟨s, t⟩ be a AUPC, the definition of commutative pair of subterms that will be
presented in the following is important to identify common structures in the term threes of
s and t.

Fig. 3.2 Commutative pair of subterms.

Definition 3.1 (Commutative pair of subterms). Given terms s, t ∈ T (X ,Σ /0∪C), the pair
(u,v) of terms is called a commutative pair of subterms of s and t if and only if there are
positions p ∈ pos(s) and p′ ∈ pos(t) such that the following hold;

1. s|p = u, t|p′ = v and depth(p) = depth(p′);

2. for each 0 ≤ i < depth(p), s and t have the same i prefix root(s|(p)i) = root(t|(p′)i) ;
and

3. for each 0 < j ≤ depth(p) :

• if root(s|
(p) j−1) = f ∈ Σ /0 then (p) j = (p′) j, i.e. if the root of the subterm of s

at prefix position (p) j−1 is a free function symbol f ∈ Σ, then p and p′ have the
same index at depth j;
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• root(s|
(p) j−1) = g ∈ ΣC then (p) j = (p′) j or (p) j = ((p) j mod 2)+1, i.e. if the

the root of the subterm at the prefix position (p) j−1 is a commutative function
symbol g ∈ ΣC, then p and p′ have the same index at depth j or p at depth j is
equal to the index of p′ at depth of j modulo 2 plus 1.

This conditions are nicely illustrated in Figure 3.2.

Example 3.5. Let f : 1 ∈ Σ /0 and g ∈ ΣC. Then s = g(a, f (g(b,c))) and t = g( f (g(d,e)),a)
are terms in T (X ,Σ /0∪C). The pair (b,e) is a commutative pair or subterms of s and t, as is
illustrated bellow.

Depth 0

Depth 1

Depth 2

Depth 3

s:

g
ε

a
1

f
2

g 2.1

b
2.1.1

c
2.1.2

t:

g
ε

f
1

a
2

g 1.1

d
1.1.1

e
1.1.2

In fact, the positions 2.1.1 ∈ pos(s) and 1.1.2 ∈ pos(t) are such that

1. s|2.1.1 = b, t|1.1.2 = e and depth(2.1.1) = depth(1.1.2) = 3. Therefore, the first
condition of Definition 3.1 holds.

2. For each i = 0,1,2 it follows, respectively, that

root(s|
(2.1.1)0) = root(s) = g = root(t) = root(t|

(1.1.2)0),

root(s|
(2.1.1)1) = root( f (g(b,c))) = f = root( f (g(d,e))) = root(t|

(1.1.2)1),

root(s|
(2.1.1)2) = root(g(b,c)) = g = root(g(d,e)) = root(t|

(1.1.2)2).

Therefore, the second condition of Definition 3.1 holds.

3. For each j = 1,2,3 the root symbol each of s|
(2.1.1) j−1 are, respectively,

root(s|
(2.1.1)1−1) = g, root(s|

(2.1.1)2−1) = f , root(s|
(2.1.1)3−1) = g.

The index 1,2,3 of the positions p = 2.1.1 and p′ = 1.1.2 are such that

(2.1.1)1 = 2 = (1 mod 2)+1 = ((1.1.2)1 mod 2)+1,
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(2.1.1)2 = 1 = (1.1.2)2,

(2.1.1)3 = 1 = (2 mod 2))+1 = ((1.1.2)3 mod 2)+1,

Therefore, the Definition 3.1 is satisfied for each index. Thus, (b,e) is a commutative
pair of subterms of s and t.

Definition 3.2. Given terms s, t ∈ T (X ,Σ /0∪C), the pair (u,v) is called a commutative conflict
pair if, and only if, (u,v) is one commutative pair of subterms such that root(u) ̸= root(t).

Example 3.6 (Continuation of Example 3.5). Given f : 1 ∈ Σ /0,g ∈ ΣC, and taking terms
s = g(a, f (g(b,c))) and t = g( f (g(d,e)),a). By Example 3.5, (b,e) is a commutative pair of
subterms of s and t. Notice that root(b) ̸= root(e), then (b,e) is one commutative conflict
pair of s and t.

3.3 Properties

In this section, we present the main properties of AUnifC, such as termination (Theorem 3.1),
soundness (Theorem 3.2) and completeness (Theorem 3.3). These results were initially
proven in [1], here we present more detailed versions of their proofs.

Theorem 3.1 (Termination of AUnifC [1]). Let AC⟨s, t⟩ be a AUPC. Every derivation of
AUnifC starting from ⟨{x : s ≜ t} | /0 | id⟩ terminates in a final configuration of the form
⟨ /0 | S | σ⟩.

Proof. To deal with the branches from the application of ( C-Dec) rule we will assign a
measure to each configuration in AUnifC, denoted as follows: For a reduction step where the
(C-Dec) rule was applied, we have the following shape:

C = ⟨P | S | σ⟩

qy %-
C1 = ⟨P1 | S1 | σ1⟩ ⟨P2 | S2 | σ2⟩=C2.

And for the others rules, the shape is C = ⟨P | S | σ⟩=⇒(R) ⟨P1 | S1 | σ1⟩=C1.
To represent the branches obtained from (C-Dec) application, we will consider a more

general form of configuration: {{C}}=⇒(C-Dec) {{C1,C2}}. And for the others rules, simply
{{C}}=⇒(R) {{C1}}. Where {{C}} denotes the multiset containing C.

Now, to prove that AUnifC terminates we will show that there is no infinite sequence
of derivations obtained by application of derivation rules of Figure 3.1. In fact, for each
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step M1 =⇒(Rec) M2, where M1 and M2 denotes the multisets of configurations, it holds
that M1 >mul M2, where >mul is the multiset ordering induced by the ordering defined in
Definition 2.5. The proof proceed by analysis each rule of Figure 3.1. The cases for (Dec),
(Sol) and (Red) where analysed during the proof of Theorem 2.1, therefore to complete the
proof it remains to analyse the (C-Dec) case.

(C-Dec): It follows that C = ⟨{y : g(s1,s2)≜ g(t1, t2)}∪P′ | S | σ⟩ and

C1 = ⟨

{
x1 : s1 ≜ t1

x2 : s2 ≜ t2

}
| S | σ{y 7→ g(y1,y2)}⟩,

C2 = ⟨

{
x1 : s1 ≜ t2

x2 : s2 ≜ t1

}
| S | σ{y 7→ g(y1,y2)}⟩.

Thus, the reduction of the extended configuration is {{C}} =⇒(C-Dec) {{C1,C2}}. To
verify that {{C}} >mul {{C1,C2}}, we need to show that m(C) > m(C1) and m(C) >

m(C2). In fact,

m(C) = |P′|+ |g(s1,s2)|+ |g(t1, t2)|
= |P′|+ |s1|+ |s2|+ |t1|+ |t2|+2

> |P′|+ |s1|+ |s2|+ |t1|+ |t2|= m(Ci),

for i = 1,2 and the result follows.

Lemma 3.1 ( cf. Lemmas 12 and 13 in [1]). Let AC⟨s, t⟩ be a AUPC. If

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨P | S | σ⟩,

then

1. if P = P′∪{y : u ≜ v}, y does not appear in any constraint in P or S,

2. Index(S∪P)⊆ vran(σ)∪{x}, and vran(σ)⊆ V(xσ)

Proof. The complete proof is in Appendix B, Lemmas B.1 and B.2.

Let AC⟨s, t⟩ be a AUPC The next lemma establishes the relation between the commutative
pair of subterms of s and t and the derivations of AUnifC.



52 Commutative Anti-Unification Problem

Lemma 3.2 (Lemma 14 in [1]). Let AC⟨s, t⟩ be an AUPC. There is a sequence of the form
⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifC ⟨{y : u ≜ v}∪P | S | σ⟩ if, and only if, (u,v) is a commutative
pair of subterms of s and t.

Proof. The complete proof is in Appendix B, Lemma B.3

The following lemma establishes the relation between the commutative conflict pairs of
subterms of s and t and the derivations of AUnifC

Lemma 3.3 (Lemma 15 in [1]). Let AC⟨s, t⟩ be a AUPC. There is a derivation of the form
⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifC ⟨P | {u ≜ v}∪ S | σ⟩ if, and only if, (u,v) is a commutative
conflict pair of s and t.

Proof. The complet proof is in Appendix B, Lemma B.4.

The next lemma is used to prove the correctness of AUnifC. Given AC⟨s, t⟩ an AUPC,
it establishes the relation between the positions of s and t and the positions of each term
xσ given by a configuration ⟨P | S | σ⟩ obtained from the applications of AUnifC rules in a
derivation starting from a configuration ⟨{x : s ≜ t} | /0 | id⟩.

Lemma 3.4. Let AC⟨s, t⟩ be an AUPC. If there exists a derivation of the form

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨{y : u ≜ v}∪P | S | σ⟩

then there exist positions p ∈ pos(s), and p′ ∈ pos(t) such that

(xσ)|p = y, s|p = (xσ)|p{y 7→ u}= u and t|p′ = (xσ)|p{y 7→ v}= v,

Proof. The complete proof can be found in Appendix B, Lemma B.5

Theorem 3.2 (Soundness of AUnifC [1]). Let AC⟨s, t⟩ be an AUPC. If there exists a deriva-
tion such that ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifC ⟨P | S | σ⟩, then xσ ∈ genC(s, t).

Proof. By induction on the length n of the reduction ⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨P | S | σ⟩.

Base Case: If n = 0, then ⟨P | S | σ⟩= ⟨{x : s ≜ t} | /0 | id⟩ and x id = x ∈ genC(s, t) and x
is the trivial generalizer of s and t.

Inductive Step: Suppose the result holds for derivations of length n−1. We will show that
the result follows for derivations of length n, i.e, derivation of the form,

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnifC ⟨P′ | S′ | σ

′⟩=⇒(R) ⟨P | S | σ⟩
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That is, xσ ∈ genC(s, t), where that σ = σ
′
δ , for some δ .

The proof proceeds by analysis the rule (R) applied in the least step. The cases in
which (R) is (Dec), (Sol) or (Rec) the prove were already verified in the prove of
Lemma 2.6. It remains to verify the case which (R) is (C-Dec). There is,

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnifC ⟨P′ | S′ | σ

′⟩=⇒(C-Dec) ⟨P | S | σ⟩

The analysis depends on how (C-Dec) was applied in the last step.

1. Suppose the reduction is of the form

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnifC ⟨{y : g(u1,u2)≜ g(v1,v2)}∪P′ | S′ | σ

′⟩

=⇒(C-Dec) ⟨{y1 : u1 ≜ v2,y2 : u2 ≜ v1} | S′ | σ
′
δ︸︷︷︸

σ

⟩.

where δ = {y 7→ g(y1,y2)}, with y1,y2 as fresh variables.

By Lemma 3.4 in the n− 1 step of the reduction it follows that there are po-
sitions p ∈ pos(s) and p′ ∈ pos(t) such that (xσ

′)|p = y, s|p = (xσ
′)|p{y 7→

g(u1,u2)} and t|p′ = (xσ
′){y 7→ g(v1,v2)}. Furthermore, Lemma 3.2 yields that

(g(u1,u2),g(v1,v2)) is a commutative pair of subterms. Then,

(xσ) = (xσ
′)δ = g(y1,y2).

The induction hypothesis yields that xσ
′ ∈ genC(s, t). Then, there exists a pair of

substitutions θ = (θ1,θ2) such that (xσ
′)θ = ((xσ

′)θ1,(xσ
′)θ2)≡C (s, t).

In particular, yθ
′
1 = g(u1,v1). Then, taking θ

′
1 as θ1 with domain restricted

to (X −{y}), it follows that the substitution θ can be unfolded as θ1 = {y 7→
g(u1,u2)}θ

′
1. Thus,

(xσ
′)θ1 = (xσ

′){y 7→ g(u1,u2)}θ
′
1

= (xσ
′){y 7→ g(y1,y2)}{y1 7→ u1,y2 7→ u2}θ

′
1

= (xσ)δ{y1 7→ u1,y2 7→ u2}θ
′
1,

similarly, (xσ)θ2 ≡C xσδ{y1 7→ v1,y2 7→ v2}θ
′
2.

Taking the pair of substitutions τ = (τ1,τ2) given as follows:
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τ1 =


x 7→ xθ

′
1, if x ∈ dom(θ ′

1),

y1 7→ u1,

y2 7→ u2

, τ2 =


x 7→ xθ

′
2, if x ∈ dom(θ ′

2),

y1 7→ v2,

y2 7→ v1


Notice that from the freshness of y1,y2 it follows that y1,y2 ̸∈ dom(θ ′

1)∪dom(θ ′
2)

and y1,y2 ̸∈ V(θ ′
1)∪V(θ2). Hence,

τ = (τ1,τ2) = ({y1 7→ u1,y2 7→ u2}θ
′
1,{y1 7→ v1,y2 7→ v2}θ

′
2).

Thus, (xσ)τ = (xσ
′
δ )τ = (xσ

′)δτ = (xσ
′)θ = (s, t), and it follows that xσ ∈

genC(s, t).

2. This case is analogous to the previous.

Notice that Examples 3.3 and 3.4 both have final configurations that gives general-
izers which are not least general ones. Therefore, this result cannot imply that the final
configuration ⟨ /0 | S | σ⟩ of AUnifC, will be such that xσ ∈ lggC(s, t).

The next result (Lemma 3.5) is used to prove Completeness of AUnifC.

Lemma 3.5 (Lemma 16 in [1]). Given terms s, t ∈ T (X ,Σ /0∪C), if u ∈ genC(s, t) then there
is a derivation ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifC ⟨P | S | σ⟩ such that u ≡C xσ .

Proof. The complete proof can be found in Appendix B, Lemma B.6.

The next theorem estates that given AUnifC a AUPC, then every C-generalizer of s and t
can be obtained modulo ≡C by a derivation starting by AUnifC(s, t).

Theorem 3.3 (Completeness of AUnifC [1]). Let s, t ∈ T (X ,Σ /0∪C). If r ∈ lggC(s, t), then
there exists a derivation ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifC ⟨ /0 | S | σ⟩ such that r ≡C xσ .

Proof. If r ∈ lggC(s, t) it is clear that r ∈ genC(s, t), and then Lemma 3.5 yields that there
exists a derivation ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifC ⟨P | S | σ⟩ such that xσ ≡C r.
Suppose by contradiction that P = {y : u ≜ v}∪P′, i.e, P is not the empty set. Then we

have to analyse the following cases.

Case 1: If root(u) ̸= root(v).

There are two cases, depending on S.
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1. If does not exist z such that {z : u ≜ v} ∈ S.

Then it follows that ⟨P′∪{y : u ≜ v}∪ | S | σ⟩=⇒(Sol) ⟨P′ | S∪{y : u ≜ v} | σ⟩.
Then σ is not modified and xσ stills the same.

2. If exists z such that {z : u ≜ v} ∈ S.

Thus, ⟨P′∪{y : u ≜ v} | S | σ⟩=⇒(Rec) ⟨P′ | S | σ{y 7→ z}⟩. And it is easy to see
that r′ = xσσ

′ is less general than r = xσ , i.e r <C r′, which is a contradiction
since r is in lggC(s, t).

Case 2: If root(u) = root(v) = f ∈ Σ /0.

Thus, u = f (un) and v = f (vn). It follows that,

⟨P′∪{y : f (un)≜ f (vn)} | S | σ⟩=⇒(Dec) ⟨P′′ | S′ | σσ
′⟩

where P′′ = P1 ∪{y1 : u1 ≜ v1, . . . ,yn : un ≜ vn} and σ
′ = {y 7→ f (yn)}. By the same

argument used above, r = xσ <C xσσ
′ = r′, we obtain a contradiction.

Case 3: If root(u) = root(v) = g ∈ ΣC.

Thus, u = g(u1,u2) and v = g(v1,v2), hence

⟨P′∪{y : u ≜ v} | S | σ⟩=⇒(C-Dec) ⟨P′′ | S | σ
′⟩

where P′′ = P′∪{y1 : u1 ≜ v1,y2 : u2 ≜ v2} or P′′ = P′∪{y1 : u1 ≜ v2,y2 : u2 ≜ v1},
depending on how (C-Dec) was applied. In both cases σ

′ = σ{y 7→ g(y1,y2)} and
r = xσ <C xσσ

′ = r, and the result follows.

Therefore, the only possible case is Case 1. If there where several constraints in P′ we
should repeat the process and obtain ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifC ⟨ /0 | S | σ⟩ satisfying the
theorem.

A note on the finiteness of lggC(s, t).
Notice that given an AUPC, AC⟨s, t⟩, each step of AUnifC(s, t) occurs by an application

of a rule of Figure 3.1 in a (non)-solved constraint. Also by Remark 2.2, just one rule
can be applied in each step. Therefore, it follows that given a derivation of the form
⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifC ⟨P | S | σ⟩,

• if (Dec), (Sol) or (Rec) applies in ⟨P | S | σ⟩ then this configuration will have just one
direct successor,
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• if (C-Dec) applies in ⟨P | S | σ⟩ then it will have exactly two direct successors.

Therefore, AUnifC is finitely branching. Since the Theorem 3.1 yields that AUnifC always
terminates, then by Lemma 1.5 it follows that AUnifC(s, t) is globally finite, i.e, it contains a
finite number of direct successors.

Thus, the initial configuration of AUnifC will have a finite number of successors which
are the normal forms w.r.t. =⇒AUnifC . By Theorem 3.2 these solutions will be enough to
build a complete and minimal set of C-least general generalizers, lggC(s, t). For s and t this
construction is not done immediately by the C-anti-unification algorithm AUnifC because it
may return repeated generalizers and also generalizers that are not least general ones.



Chapter 4

Associative Anti-Unification Problem

In this chapter we present a study of the the case of Associative Anti-Unification Problem.
Similarly as Chapter 3, it is necessary to adapt the rules for AUnif /0, this time for handle
the associativity. This adaptation takes place as adding two rules to AUnif /0 for Associative-
Decompose (A-Dec), that are presented in Figure 4.1 and restrings the usual (Dec) as was
done in Figure 3.1 of the previous chapter.

We will study the main properties of AUnifA, that are termination (Theorem 4.1), sound-
ness (Theorem 4.2) and completeness (Theorem 4.3 ). Nonetheless, the proof of Theorem 3.3
presented in this chapter is different from that proposed by [1], since we had to fix an
imprecision in the proof present in the paper that will be discussed later on.

In this chapter, the notions and notations established in Section 1.1.3 of Chapter 1 will be
necessary.

It is important to say that we will consider only the case which there exists a unique
associative function symbol, i.e., the case which ΣA is unitary.

4.1 Motivating examples

As for commutativity, the algorithm to AUnif /0 that solves the Syntactic Anti-Unification
Problem is not able to handle terms which are built with associative function symbols, i.e,
terms in T (X ,Σ /0∪A).

Example 4.1 (Applying AUnif /0 for solve AA⟨s, t⟩.). Let h ∈ ΣA. Taking terms in T (X ,Σ /0∪A)

given as follows: s = h(h(a,a), f (b,c)) and t = h( f (b,c),h(a,b)) and trying to solve the
anti-unification problem AA⟨s, t⟩ with AUnif /0 it gives
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⟨{x : h(h(a,a), f (b,c))≜ h( f (b,c),h(a,b))} | /0 | id⟩
(Dec)

⟨{x1 : h(a,a)≜ f (b,c),x2 : f (b,c)≜ h(a,b)} | /0 | x 7→ h(x1,x2)︸ ︷︷ ︸
σ

⟩
(Sol)∗

⟨ /0 | {x1 : h(a,a)≜ f (b,c),x2 : f (b,c)≜ h(a,b)} | σ⟩

then AUnif /0 outputs xσ = h(x1,x2) as the least general generalizer of s and t. But, s and t
have associative function symbols, i.e. s, t ∈ T (X ,ΣA) which implies that h(x1,h(a,y)) ∈
genA(s, t). Since h(x1,h(a,y)) <E h(x1,x2), it follows xσ ̸∈ lggA(s, t). As is illustrated
below

x Trivial solution

h(x1,x2) AUnif /0’s output

h(x1,h(a,y)) lggA(s, t)

h(h(a,a), f (b,c)) h( f (b,c),h(a,b))

Example 4.2 (The set of lggA is not unitary.). Let h ∈ ΣA, then s = h(h(a,b),h(b,c)) and
t = h(h(b,b),c) are terms in T (X ,Σ /0∪A). It follows that

r1 = h(x1,h(x1,x4)) and r2 = h(x1,h(b,c))) ∈ genA

Notice that r2 ̸≤A r1. In fact, if r2 ≤A r1 then there would exist a substitution λ such
that r2λ = r1. However, r2λ = h(x1λ ,h(b,c)) ̸≡A h(x1,h(x1,x4)) = r1 for any λ because
substitutions do not change constant function symbols.

Similarly, r1 ̸≤A r2. In fact, if r1 ≤A r2 then would exist a substitution λ
′ such that

r1λ
′ = h(x1λ

′,h(x1λ
′,x4)λ

′)) ≡A h(x1,h(b,c)). Then, λ
′ must send x1 into b, but if a

substitution λ
′ is such that x1λ

′ = b, then r1λ
′ = h(b,h(b,x4λ

′)) ̸≡A r2.
Then, r1 and r2 are incomparable by ≡A. Hence r1 and r2 are both maximal elements of

genA, and the set of least general generalizations modulo A is not unitary.

4.2 Solving the Associative Anti-Unification Problem

This section is based on the approach proposed by Alpuente et. al. in [1] for solving an
Associative Anti-Unification Problem (for short AUPA). The idea consists in adapting the
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syntactic algorithm AUnif /0 to handle the associative axiom, adding Associative-Decompose
rules (A-Dec), creating a new rule-based algorithm, AUnifA for solving the AUPA.

The associative property allows us to analyse terms in a more practical way, discarding
repeated applications of associative functions.This is done through a process called flattening
as follows:

Definition 4.1 (Flattened term). Given h an associative function symbol with n≤ 2 arguments,
flattened terms are canonical forms w.r.t. the set of rules given by the following rule schema

h(x1, . . . ,h(t1, . . . , tm), . . . ,xn)−→ h(x1, . . . , t1, . . . , tm, . . . ,xn)

For instance, h(h(t1, t2), t3) can be flattened to the term h(t1, t2, t3). Notice that

h(t1,h(t2, t3))≡A h(h(t1, t2), t3)

is also flattened to the same term.
In the following we will assume that h is an associative function symbol.

Remark 4.1. Note that given a flattened term h(a,b,c,d,e) it does not mean the arity
of h is 5. Since h is one associative function symbol its arity is 2, does not matter how
many arguments this function symbol has in this flattened form the arity of h is still
the same. The notation h(a,b,c,d,e) represents all the following terms:

h(h(a,b),h(c,d)),h(a,h(h(b,c),d)),h(a,h(b,h(c,d))),

h(h(h(a,b),c),d),h(h(a,h(b,c)),d),

which are equivalent modulo associativity.

Given AA⟨s, t⟩, we will use flatted versions of terms s and t in the initial configuration
given as input to AUnifA.

The rules for AUnifA are in Figure 4.1. The "old" rules inherited from AUnif /0 are opaque
(in gray) and we emphasize the Associative-Decompose rules (A-Dec) which contains a rule
for left-associativity (A-Left) and a rule for right associativity (A-Right).

Basically, AUnifA adapts the rules in AUnifA and adds a new rule to handle with associa-
tive function symbols, namely Associative-Decompose and represented by (A-Dec).
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(Dec) : Decompose
( f ∈ Σ

n
/0 ∪X )

⟨P∪{x : f (sn)≜ f (tn)} | S | σ
′⟩=⇒

〈
P∪


x1 : s1 ≜ t1,
...

xn : sn ≜ tn

 | S | σ{x 7→ f (xn)}
〉

where x1, . . . ,xn are fresh variables.

(Sol): Solve:
If root(s) ̸= root(t) and there is no constraint {y : s ≜ t} ∈ S

⟨P∪{x : s ≜ t} | S | σ⟩=⇒ ⟨P | S∪{x : s ≜ t} | σ⟩

(Rec): Recover:
If root(s) ̸= root(t)

⟨P∪{x : s ≜ t} | S∪{y : s ≜ t} | σ⟩=⇒ ⟨P | S∪{y : s ≜ t} | σ{x 7→ y}⟩

(A-Dec): Associative-Decompose Rules

(A-Left): If h ∈ ΣA, then

⟨P∪{x : h(sn)≜ h(tm)} | S | σ⟩=⇒ ⟨P∪

{
x1 : h(s1, . . . ,sk)≜ t1

x2 : h(sk+1, . . . ,sn)≜ h(t2, . . . , tm)

}
| S | σσ ′⟩

with σ
′ = {x 7→ h(x1,x2)} and 1 ≤ k ≤ n−1, where x1,x2 are fresh variables.

(A-Right): If h ∈ ΣA, then

⟨P∪{x : h(sn)≜ h(tm)} | S | σ⟩=⇒ ⟨P∪

{
x1 : s1 ≜ h(t1, . . . , tk)

x2 : h(s2, . . . ,sn)≜ h(tk+1, . . . , tm)

}
| S | σσ ′⟩

with σ
′ = {x 7→ h(x1,x2)} and 1 < k ≤ m−1, where x1,x2 are fresh variables.

Fig. 4.1 AUnifA simplification rules
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Now, we will describe the Associative Decompose rules (A-Dec).

(A-Left) In the case {x : h(s1,s2, . . . ,sn) ≜ h(t1, t2, . . . , tm)} is a constraint, where h ∈ ΣA

and m and n are positive integers not necessarily equal, we associate the arguments of
h to the left in several ways, until we cover all the possibilities, thus this rule branches.
In fact, we could compare s1 with t1 and h(s2, . . . ,sn) with h(t2, . . . , tm), obtaining two
new constraints {x1 : s1 ≜ t1,x2 : h(s2, . . . ,sn)≜ h(t2, . . . , tm)}, and a new substitution
σ = {x 7→ h(x1,x2)}. But we could have chosen to associate differently, as h(s1,s2)

with t1 and h(s3, . . . ,sn) with h(t2, . . . , tm), or h(s1,s2,s3) with t1 and h(s4, . . . ,sn) with
h(t2, . . . , tm), and so on. For each choice, we generate two different constraints and the
substitution σ = {x 7→ h(x1,x2)}, where the variable x1 and x2 are the index variables
of the constraints created.

(A-Right) This rule is similar to the rule (A-Left), but now arguments of h are associ-
ated to the right. For instance, we can compare s1 with h(t1, t2) and h(s2, . . . ,sn)

with h(t3, . . . , tm) obtaining new constraints {x1 : s1 ≜ h(t1, t2),x2 : h(s2, . . . ,sn) ≜

h(t3, . . . , tm)}, and a new substitution σ = {x 7→ h(x1,x2)}. But we could have chosen
to associate differently, as s1 with h(t1, t2, t3) and h(s2, . . . ,sn) with h(t4, . . . , tm), and
so on.

Notice that in rules (A-Left) and (A-Right), for k = 1, h(t1) or h(s1) denote t1 and s1

respectively.

Example 4.3 (How to apply (A-Dec)). Given flattened terms h(s1,s2,s3) and h(t1, t2, t3, t4).
We will apply AUnifA in the initial configuration ⟨{x : h(s1,s2,s3)≜ h(t1, t2, t3, t4)} | /0 | id⟩
that will produce configurations C1 = ⟨P1 | /0 | {x 7→ h(x1,x2)}⟩, C2 = ⟨P2 | /0 | {x 7→ h(x1,x2)}⟩,
C3 = ⟨P3 | /0 | {x 7→ h(x1,x2)}⟩ and C4 = ⟨P4 | /0 | {x 7→ h(x1,x2)}⟩that differ only in their set
of unsolved-constraints. Thus, we will show only the set of unsolved constraint of each
configuration.

⟨{x : h(s1,s2,s3)≜ h(t1, t2, t3, t4)} | /0 | id⟩

(A-Left) (A-Left) (A-Right) (A-Right)

{
x1 : s1 ≜ t1,

x2 : h(s2,s3)≜ h(t2, t3)

}
︸ ︷︷ ︸

P1

{
x1 : h(s1,s2)≜ t1,

x2 : s3 ≜ h(t2, t3)

}
︸ ︷︷ ︸

P2

{
x1 : s1 ≜ h(t1, t2),

x2 : h(s2,s3)≜ h(t3, t4)

}
︸ ︷︷ ︸

P3

{
x1 : s1 ≜ h(t1, t2, t3),

x2 : h(s2,s3)≜ t4

}
︸ ︷︷ ︸

P4
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Notice that in the example above, we had applied (A-A) in just one constraint of the initial
configuration, creating four different configurations. It is easy to see AUnifA reduction tree
grows very fast, since each application of (A-A) add new branches to it.

In the following, to easy readability in this section we will only show convenient reduc-
tions related to (A-Dec), omitting the others. This convenient branches are that which normal
forms are not give repeated generalizers.

Remark 4.2. The original definition of (A-Right) in [1] does not restrict to k > 1.
However, if k = 1, the application of both (A-Left) and (Right-Dec) rules will create
repeated configurations:

⟨{x : h(sn)≜ h(tm)} | S | σ⟩
(A-Left)k=1 (A-Right)k=1

⟨

{
y1 : s1 ≜ t1

y2 : h(s2 . . . ,sn)≜ h(t2, . . . , tm)

}
| S | σ

′⟩ ⟨

{
y1 : s1 ≜ t1

y2 : h(s2, . . . ,sn)≜ h(t2, . . . , tm)

}
| S | σ

′⟩

To avoid this we will estrict (A-Right) to 1 < k ≤ m−1, as have written in Figure 4.1.

Example 4.4 (Applying AUnifA.). Given h ∈ ΣA, taking terms s = h(a,h(b,b)) and t =
h(h(a,c),c), we will apply AUnifA rules to resolve AA. First, it is necessary to put s and t in
their respective flattened forms: h(a,b,b) and h(a,c,c). Second, we apply AUnifA rules in
the initial constraint ⟨{x : s ≜ t} | /0 | id⟩. Hence in the first step of AUnifA application of (A-
Dec) rules makes the reduction branches to the configurations C1 = ⟨P1 | /0 | {x 7→ h(x1,x2)}⟩,
C2 = ⟨P2 | /0 | {x 7→ h(x1,x2)}⟩ and C3 = ⟨P3 | /0 | {x 7→ h(x1,x2)}⟩ that differ only in their set
of unsolved-constraints, see figure below.

⟨x : h(a,b,b)≜ h(a,c,c) | /0 | id⟩

(A-Left)
(A-Left)

(A-Right)

{
x1 : a ≜ a

x2 : h(b,b)≜ h(c,c)

}
︸ ︷︷ ︸

P1

{
x1 : h(a,b)≜ a

x2 : b ≜ h(c,c)

}
︸ ︷︷ ︸

P2

{
x1 : a ≜ h(a,c)

x2 : h(b,b)≜ c

}
︸ ︷︷ ︸

P3
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If we continue the derivation, we obtain the following derivation tree:

⟨x : h(a,b,b)≜ h(a,c,c) | /0 | id⟩
(A-Left)

(A-Right) (A-Right)

C1

AUnifA ∗
C2

AUnifA ∗
C3

AUnifA ∗

⟨ /0 | {y : b ≜ c} | σ1⟩ ⟨ /0 | P2 | σ2⟩ ⟨ /0 | P3 | σ2⟩

Where σ1 = {x 7→ h(a,h(y,y))} and σ2 = {x 7→ h(x1,x2)}. Hence, AUnifA(s, t) output
two different substitutions σ1 and σ2 that produce two different terms, xσ1 = h(a,h(y,y))
and xσ2 = h(x1,x2). It is easy to see that h(a,h(y,y)) is less general than h(x1,x2). Therefore
we can conclude that

1. AUnifA can output terms that are not least general generalizers,

2. =⇒AUnifA is not confluent because C1aAUnifA ⇐= ⟨{x : s ≜ t} | /0 | id⟩ =⇒AUnifA C2

and there is no configuration C such that C1
∗

=⇒AUnifA CaAUnifA
∗⇐=C2.

For the next results it is necessary to recall the notions and notations established in
Definition 1.6 such as (p)k for the prefix of p at depth k and (p)k for the index of p at depth
k.

Associative pair and associative conflict pair of subterms.
In the following we will introduce some notions in order to formally define associative

pair of subterms and associative conflict pair of subterms. The goal of associative pairs is
to capture exactly the pair of subterms (u,v) of s and t which should being considering to
solve the AUPA for s and t, AA⟨s, t⟩. While the goal of the definition of conflict associative
pair of subterms is identify when the procedure of comparing these subterms must stop by
identifying the point where the term tree of s and t diverges.

For instance, let f1 : 2, f2 : 1 ∈ Σ /0 and h ∈ ΣA. Taking the flattened terms

s = f1(h(a,b,c), f2(x)) and t = f1(h(d,e), f2(a))

and considering the AUPA AA⟨s, t⟩. The rules of AUnifA yields the following derivation:

⟨{y : f1(h(a,b,c), f2(x))≜ f1(h(d,e), f2(a))} | /0 | id⟩
(Dec)

⟨{y1 : h(a,b,c)≜ h(b,c),y2 : f2(x)≜ f2(a)} | /0 | {y 7→ f1(y1,y2)}⟩.
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That splits AA⟨s, t⟩ in two new problems: AA⟨h(a,b,c),h(d,e)⟩ and AA( f2(x), f2(a)). How-
ever, that are two possible ways to express AA⟨h(a,b,c),h(d,e)⟩ in unflattened terms, that
are AA(h(h(a,b),c),h(d,e)) and AA(h(a,h(b,c)),h(d,e)).

Notice that for any possibility to organize the associative function symbols of h(a,b,c)
and h(d,e), there is no way to compare a with e, or h(a,b) with e. Thus, (a,e) and (h(a,b),e)
should not being associative pair of subterms of s and t. Similarly, (b,c), (b,d), (d,c) and
(h(b,c),d) should not being associative pairs of subterms either.

Therefore, the definition of associative pair of subterms must work to delete these kind
of pair of subterms of s and t that are not necessary to analyse to solve the main problem
AA⟨s, t⟩.

To define associative pair of subterms Alpuente et. al. [1] uses an auxiliary definition,
that is stated in the box below. However, this definition has a lack of conditions that ends up
naming some pairs (u,v) as associative pairs subterms of s and t when they should not being
considered to solve AA⟨s, t⟩. In the following, we will discuss this lack of conditions and
propose a new auxiliary definition that avoids this mistake.

Definition 4.2 (Associative pair of positions proposed in [1].). Given flattened versions
of terms s, t ∈ T (X ,Σ /0∪A), and positions p ∈ pos(s), and p′ ∈ pos(t), the pair (p, p′)
of positions is called associative pair of positions of s and t iff

1. depth(p) = depth(p′),

2. for each 0 ≤ i < depth(p),root(s|(p)i) = root(t|(p′)i), and

3. for each 0 < j ≤ depth(p):

a. if root(s|
(p) j−1) = f ∈ Σ /0 then (p) j = (p′) j; i.e, if the root of the subterm

of s at prefix position (p) j−1 is a free function symbol f ∈Σ /0, then p and p′

have the same index at depth j.

b. if root(s|
(p) j−1) = h ∈ ΣA, then no restriction on (p) j and (p′) j; i.e, if the

root of the subterm of s at prefix position (p) j−1 is an associative function
symbol h ∈ ΣA, then there is no condition over the indexes of p and p′ at
depth p

Example 4.5. Taking the terms s = f1(h(a,b,c), f2(x)) and t = f1(h(d,e), f2(a)), with re-
spective positions illustrated bellow. It follows that the Definition 4.2 yields that (p, p′) =
(1.2,1.2) is an associative pair of positions.
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Depth 0

Depth 1

Depth 2

s :

f1
ε

h
1

f2
2

a
1.1

b
1.3
c

1.2
x

2.1

t :

f1
ε

h
1

f2
2

d
1.1

e
1.2

a
2.1

In fact,

1. depth(p) = 2 = depth(p′), then the condition 1 holds.

2. Notice that (p)0 = (p′)0
= ε and root(s|ε) = f1 = root(t|ε).

Also, (p)1 = 1 = (p′)1
= 1 and root(s|1) = h = root(t|1). Thus, the condition 2

holds.

3. For i = 1, we have that (p)1−1 = ε . Since root(s|ε) = f ∈ Σ /0, we have to verify the
condition on the index "(p)i", with i = 1, (condition 3.a. of Definition 4.5)

(p)1 = (1.2)1 = 2 = (p′)1.

Similarly for i = 2, it follows (p)i−1 = 1. Since root(s|1) = h ∈ ΣA, there is no
condition for the indexes of p and p′ at depth 2.

Therefore, (p, p′) = (1.2,1.2) is an associative pair of positions of s and t.

Definition 4.3 (Associative Pair of Subterms). Let s, t ∈ T (X ,Σ /0∪A) be terms in flattened
form. The pair of terms (u,v) is called an associative pair of subterms of s and t iff

1. (Regular Subterms) For each pair of positions p ∈ pos(s) and p′ ∈ pos(t) such that
s|p = u, t|p′ = v and (p, p′) is an associative pair of positions of s and t. Or:

2. (Associative pair of subterms) There are positions p ∈ pos(s), and p′ ∈ pos(t) such
that the following conditions are satisfied:

a. (p, p′) is an associative pair of positions of s and t;

b. u = h(u1, . . . ,unu) and v = h(v1, . . . ,vnv), with nu,nv ≥ 1, h ∈ ΣA;

c. s|p and t|p′ are of the form

s|p = h(s1, . . . ,sk1,u1, . . . ,unu,sk2, . . . ,snp)
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t|p′ = h(t1, . . . , tk′1,v1, . . . ,vnv , tk′2, . . . , tnp′ ),

with np,np′ ≥ 2, and

– {s1, . . . ,sk1}= /0 (no arguments before u1) iff {t1, . . . , tk′1}= /0 (no arguments
before v1),

– {sk2, . . . ,sn}= /0 (no arguments after unu) iff {tk′2,...,tm} (no arguments after
vnv).

The following example will show how Definition 4.2 trigger a mistake in Definition 4.3.

Example 4.6 (Cont. Example 4.5). Taking s= f1(h(a,b,c), f2(x)) and t = f1(h(d,e), f2(a)),
since (s|1.2, t|1.2) = (b,e) and the Definition 4.2 yields that (1.2,1.2) is an associative pair of
subterms, it follows that (b,e) is an associative pair of positions.

However, as previously discussed, this pair of subterms should not being consider to
solve the AUPA AA⟨s, t⟩, then the conclusion of Example 4.6 is wrong.

It happens because the Definition 4.2 does not put any condition for the indexes of a pair
of position deeper than a position headed with an associative function symbol h ∈ ΣA.

Then, the Condition 1. of Definition 4.3 "if (p, p) is an associative pair of positions, then
(s|p, t|p′) is an associative pair of subterms" implies that some associative pair of subterms
are associative whereas they should not be. It is interesting since the Condition 2.c of
Definition 4.3 tries to exactly avoid this kind of mistake, but it ends up failing. Therefore, it is
necessary to pay more attention in the positions under positions whose buttons are associative
function symbols.

In following we will presenting the definition of associative pair of positions that will be
used in this dissertation. First, we state the notion of the number of immediate arguments of
an associative function symbol.

Definition 4.4. Let h ∈ ΣA, then given a flattened term s = h(s1, . . . ,sn) the number of
immediate arguments of s is denoted by arg(s) = n.

For instance, for s = h(a,b,c) and t = h(d,e), we have arg(s) = 3 and arg(t) = 2.

Definition 4.5 (Associative pair of positions). Given flattened versions of terms s, t ∈
T (X ,Σ /0∪A), and positions p ∈ pos(s), and p′ ∈ pos(t), the pair (p, p′) of positions is called
associative pair of positions of s and t iff the following conditions are satisfied

1. depth(p) = depth(p′); and

2. for each 0 ≤ i < depth(p), root(s|(p)i) = root(t|(p′)i), i.e, s|p and t|p′ have the same
root as prefix i; and
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3. for each 0 < j ≤ depth(p):

a. if root(s|
(p) j−1) = f ∈ Σ /0 then (p) j = (p′) j, i.e, if the root of the subterm of s at

prefix position (p) j−1 is a free function symbol f ∈ Σ /0, then p and p′ have the
same index at depth j,

b. if root(s|
(p) j−1) = h ∈ ΣA, then

– (p) j = 1 iff (p′) j = 1, i.e, the subterm s|(p) j is the first argument of s|
(p) j−1

iff t|(p) j is the fist argument of t|
(p) j−1 .

– (p) j = arg(s|
(p) j−1) iff (p′) j = arg(t|

(p′) j−1), i.e, the subterm s|(p) j is the
last argument of s|

(p) j−1 iff t|(p′) j is the last argument of t|
(p′) j−1 .

– 1 < (p) j < arg(s|
(p) j−1) iff 1 < (p′) j < arg(t|

(p′) j−1), i.e., the position p ∈
pos(s) has an intermediary index (not the first or the last) at depth j iff the
position p′ ∈ pos(t) have an intermediary index at depth j too.

The condition 3 is illustrated in Figure 4.2.

Fig. 4.2 Conditions 3.a (at left) and 3.b. (at right) of Definition 4.5, where n = arg(s|
(p) j−1)

and m = arg(t|
(p′) j−1).

Example 4.7. Taking terms s = f1(h(a,b,c), f2(a)) and t = f1(h(a,e), f2(y)), we will show
that (b,e) is not an associative pair of subterms.

1. First, notice that the (p, p′) = (1.2,1.2) is not an associative pair of positions.

In fact, for i = 1 it follows that root(s|
(p)2−1) = h ∈ ΣA, then by the condition 2.b

of Definition 4.5 it is necessary to analyse the indexes of the 1.2 at depth 2. Since
arg(s|

(p)2−1) = arg(h(a,b,c)) = 3 and arg(t|
(p′)2−1) = arg(h(c,d)) = 2 it follows

that (p)2 = 2 < arg(s|
(p)2−1) and (p′)2 = 2 = arg(t|

(p′)2−1). Thus, (p, p′) = (1.2,1.2)
is not an associative pair of positions of s and t and since (s|p, t|p′) = (b,e), it follows
that (b,e) does not satisfies the condition 1. of Definition 4.3.
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2. Thus, to show that (b,e) is not an associative pair of positions it remains to show that
it does not satisfies the Condition 2 of Definition 4.3. We have that s and t are such
that s|ε = h(a,b,c), t|ε = h(d,e) thus there exists the argument c after b in s|ε , while
there is no argument after e in t|ε . Thus, (b,e) does not satisfies the Condition 2 of
Definition 4.3.

Therefore, (b,e) is not an associative pair of subterms of s and t.

In the next example we will still studying the terms s = h(a,b,c) and t = h(b,c), showing
their associative pair of subterms.

Example 4.8 (Cont. of Example 4.7). Consider the terms s = f1(h(a,b,c), f2(x)) and
t = f1(h(d,e), f2(a)).

For (q,q′) = (1.1,1.1), the analysis of the conditions 1, 2 and 3.a of Definition 4.5 is
analogously as the previously did in Example 4.7. We have that root(s|2−1) = h ∈ ΣA, then
it is necessary to analyse the index of q and q′ at depth 2 as required by the condition 3.c
of Definition 4.5; since (q)2 = 1 = (q′)2, (q,q′) satisfies it. Thus (1.1,1.1) is an associative
pair of positions of s and t.

Similarly, (ε,ε), (1,1), (2,2), (1.3,1.2) and (2.1,2.1) are associative pairs of positions
of s and t too.

The regular associative pair of subterms of s and t are given by the associative pair of
positions, as is shown in the table below.

Associative pair of positions Associative pair of subterms
(ε) (s, t)
(1,1) (h(a,b,c),h(d,e))
(2,2) ( f2(x), f2(a))

(1.1,1.1) (a,d)
(1.3,1.2) (c,e)
(2.1,2.1) (x,a)

The associative pair (h(a,b,c),h(d,e)) is such that h(a,b,c) is flattened and it will be
necessary to move it back to the unflattened form in order to obtain the pairs of subterms
of s and t that should being compared to solve AA⟨h(a,b,c),h(d,e)⟩ depending on the ways
that h(a,b,c) becomes unflattened. We have already seen that there are multiple ways of
doing that, and the Condition 2. of Definition 4.3 capture these ways by establishing how to
group the arguments of flattened associative pairs. Thus, by this condition, it follows that
(h(a,b),d) and (h(b,c),e) are also associative pairs of subterms of s and t.
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On other hand, the Condition 2.c of Definition 4.3 implies that (h(a,b),e) and (h(b,c),d)
are not associative pair of subterms.

Definition 4.6 (Associative Conflict Pair). Given terms s, t ∈ T (X ,Σ /0∪A), the pair (u,v) is
called an associative conflict pair of s and t if and only if root(u) ̸= root(v) and (u,v) is
an associative pair of subterms.

Example 4.9 (Cont. of Example 4.8). We have that (a,d) is one associative pair of
f1(h(a,b,c), f2(x)) and f1(h(d,e), f1(a)), and since root(a) ̸= root(e) it follows (a,d)
is one associative conflict pair.

If u is a subterm of s and v is a subterm of t, the (u,v) being an associative pair of
subterms of s and t means that to solve the AUPA for s and t it is necessary solve the AUPA

for u and v, and so on, going deeper in the comparisons of s and t terms trees, until reach in a
associative conflict pair (u′,v′) which only has trivial generalizations. For more details, see
Lemma 4.2, 4.3, 4.4 and Lemma 4.5.

Definition 4.7. Given one configuration ⟨P | S | σ⟩ with P = P′∪{x : s ≜ t}, where s and t
are flattened terms we define the following measure: m(⟨P | S | σ⟩) = (n1,n2), where

• n1(P) is the number of non-associative symbol occurrences in P.

• n2(P) is the number of arguments under the associative function symbol in the root
position of a constraint, i.e:

– if both root(s) and root(t) are non-associative function symbols then n2(P) =
n2(P′)+0,

– if s = h(s1, . . . ,sn) where h is one associative function symbol and root(t) = f ∈
Σ /0 then n2(P) = n2(P′)+n ( similarly if t = h(t1, . . . , tn) and root(s) = f ∈ Σ /0),

– if s = h1(s1, . . . ,sn) and t = h2(t1, . . . , tm) with h1,h2 ∈ ΣA then n2(P) = n2(P′)+

n+m

4.3 Properties

In this section we present the main properties of the AUnifA algorithm, such as termination
(Theorem 4.1), soundness (Theorem 4.2) and completeness (Theorem 4.3). This results were
initially proven in [1], here we present more detailed versions of the proofs adapting them to
handle with the new definitions and also fixing an inaccuracy in the proof of completeness.
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Theorem 4.1 (Termination of AUnifA [1]). Let AA⟨s, t⟩ be AUPA. Every derivation of
AUnifA starting from ⟨{x : s ≜ t} | /0 | id⟩ terminates in a final configuration of the form
⟨ /0 | S | σ⟩.

Proof. For a reduction step in which (A-Dec) rules were applied, we have the following
shape

C = ⟨{x : s ≜ t} | /0 | id⟩

⟨P1 | S1 | σ1⟩︸ ︷︷ ︸
C1

⟨P2 | S2 | σ2⟩︸ ︷︷ ︸
C2

. . .
⟨Pl−1 | Sl−1 | σl−1⟩︸ ︷︷ ︸

Cl−1

⟨Pl | Sl | σl.⟩︸ ︷︷ ︸
Cl

And, for the other rules, the shape is C = ⟨P | S | σ⟩=⇒(R) ⟨P1 | S1 | σ1⟩=C1. To deal with
the branches obtained from (A-Dec) rules application, we will consider a more general form
of configuration {{C}}=⇒(A-Dec) {{C1, . . . ,Cl}}, where {{}} denotes a multiset. And for other
the rules, simply {{C}}=⇒(R) {{C1}}.

Now, to prove that AUnifA terminates we will show that for each step M1 =⇒(R) M2,
where M1 and M2 denotes the the mulstiset of configurations presented above, it holds that
M1 >mul M2, where >mul is the multiset order induced by the lexicographic product >N ×>N

of the standard order > (over naturals) on pairs (n1(P),n2(P)) ∈ N×N from m(⟨P | S | σ⟩)
as given in Definition 4.7.

The proof proceed for analysis of each inference rule (R) of Figure 4.1.

Case (R) = (Dec):

The reduction {{C}}=⇒(Dec) {{C1}} is such that

C = ⟨P′∪{y : f (sn)≜ f (tn)} | S | σ
′⟩,

C1 = ⟨P′∪{y1 : s1 ≜ t1, . . . ,sn ≜ tn} | S1 | σ1⟩.

where P = P′ ∪{y : f (sn) ≜ f (tn)} and P1 = P′ ∪{y1 : s1 ≜ t1, . . . ,sn ≜ tn}. Then,
n1(P)= n1(P′)+r+2 and n1(P1)= n1(P′)+r, where r is the number of non-associative
functions symbols in s1, . . . ,sn, t1, . . . , tn. Hence n1(P) > n1(P1), which implies that
m(C)>lex m(C1). Therefore, M1 = {{C}}>mul {{C1}}= M2.

Case (R) = (Sol):

Then, {{C}}= {{⟨P2∪{y : u≜ v} | S |σ⟩}}=⇒(R) {{⟨P2 | S∪{y : u≜ v} |σ⟩}}= {{C1}}
where P1 = P2 ∪{y : u ≜ v}. By Definition 4.7, it follows that n1(P1) = n1(P2)+ r,
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where r is the number of occurrences of non-associative function symbols in u and v.
Thus, n1(P1) = n1(P2 ∪{y : u ≜ v})> n1(P2). Therefore, m(C)>lex m(C1) yields that
M1 = {{C}}>mul {{C1}}= M2.

Case (R) = (Rec):

Then, {{C}}= {{⟨P2∪{y : u ≜ v} | S | σ⟩}}=⇒(R) {{⟨P2 | S | σ1⟩}}= {{C1}} where the
constraint {y : u ≜ v} is in S, and P1 = P2 ∪{y : u ≜ v}. By Definition 4.7, it follows
that n1(P1)> n1(P2) by the same argument used in the case above.

Case (R) = (A-Left):

Then,

C =⇒(A−Le f t) ⟨P′∪

{
x1 : h(s1, . . . ,sk)≜ t1,

x2 : h(sk+1, . . . ,sn)≜ h(t2, . . . , tm)

}
| Sk | σk⟩=Ck

with 1 ≤ k ≤ n− 1. Therefore, the reduction branches and M1 = {{C}} and M2 =

{{C1, . . . .Cn−1}}

Let

P = P′∪{x : h(s1, . . . ,sn)≜ h(t1, . . . , tm)}, and

Pk = P′∪{x1 : h(s1, . . . , tk)≜ sk,x2 : h(sk+1, . . . ,sn)≜ h(t2, . . . , tm)}.

Thus by Definition 4.7 it follows that n1(P) = n1(P′)+ r = n1(Pk), where r is the
number of occurrences of non-associative function symbols in s1, . . . ,sn, t1, . . . , tm.

Then, is necessary to show that n2(P)> n2(P1) to obtain m(C)>lex m(Ck). By Defini-
tion 4.7, we have that n2(P) = n2(P′)+n+m. On the other hand, the value of n2(Pk)

depends on k,

• if k = 1 then n2(P1) = n2(P′)+(n−1)+(m−1)< n2(P),

• if 1 < k < n−1 then n2(Pk) = n2(P′)+n+(m−1)< n2(P),

• if k = n−1 then n2(Pn−1) = n2(P′)+(n−1)+(m−1)< n2(P).

Therefore, m(C)>lex m(Ck) for every 1 ≤ k ≤ n−1, which implies that M1 >mul M2.

Case (R) = (A-Right):

This case is analogous as the case above.
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Lemma 4.1 (Lemmas 17 and 18 in [1].). Let AA⟨s, t⟩ be an AUPA. If

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifA ⟨P | S | σ⟩

then

1. if P = P′∪{y : u ≜ v}, then y does not appear in any constraint in P or S,

2. Index(P∪S)⊆ vran(σ)∪{x} and vran(σ) = V(xσ).

Proof. The complete proof is in Appendix C, Lemmas C.1 and C.2

The next results: Lemma 4.2, Lemma 4.3 and Lemma 4.4 are used to adapt the Lemma
19 of [1].

Remark 4.3 (Counter example of Lemma 19 of [1].). In [1], the Lemma 19 says:
"Given flattened terms t and t ′ such that every symbol in t and t ′ is either free or
associative, and a fresh variable x, then there is a sequence

⟨{x : t ≜ t ′} | /0 | id⟩ ∗
=⇒AUnifA ⟨P∪{y : u ≜ v} | S | σ⟩

such that there is no variable z such that {z : u ≜ v} ∈ S if and only if (u,v) is an
associative pair of subterms of t and t ′."
Notice that for t = h(a,b,c,d) and t ′ = h(a′,b′,c′,d′), it follows (h(a,b),h(a′,b′)) is
an associative pair of positions of t and t ′, but using the rules in Figure 4.1 there is no
sequence starting from ⟨{y : t ≜ t ′} | /0 | id⟩ such that the configuration

⟨P∪{y : h(a,b)≜ h(a′,b′)} | S | σ⟩

appears. This contradicts this lemma. For more details about this example, see
Section C.2.1 where we give a full derivation for AUnifA(s, t).
In [1], this claim is used to prove completeness. Since it does not hold, it trigger
mistakes in the proof of completeness presented there. To prove the completeness of
AUnifA, we propose a correction where Lemma 19 of [1] is replaced for Lemmas 4.2,
4.3 and 4.4.

The next Lemma established that for every regular pair of subterms of s and t, i.e, for
every associative pair of subterms (u,v) according with the Condition 1 of Definition 4.3,
there exists a sequence ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifA ⟨P∪{y : u ≜ v} | S | σ⟩.
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Lemma 4.2. Let AA⟨s, t⟩ a AUPA. If (p, p′) is an associative pair of positions of s and t,
then there exists a derivation of the form ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifA ⟨{y : u ≜ v} | S | σ⟩
with (s|p, t|p′) = (u,v).

Proof. Notice that since (p, p′) is an associative pair of subterms then depth(p) = depth(p′)
by definition. The proof follows by induction over the depth d of p.

Base Case: If depth(p) = 0, then p = p′ = ε , (u,v) = (s, t) and the result follows trivially
for the initial configuration ⟨{x : s ≜ t} | /0 | id⟩.

Inductive Step: If depth(p) = d +1, then p and p′ are immediately under some positions
q ∈ pos(s) and q′ ∈ pos(t), such that p = q.i and p′ = q′. j, for some natural numbers
i and j. Notice that (p, p′) being an associative pair of positions of s and t yields that
(q,q′) is an associative pair of positions too. On the other hand, depth(q) = d. And,
the induction hypothesis implies that there exists a derivation such that

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifA ⟨P′∪{z : s|q ≜ t|q′} | S′ | σ

′⟩. (1)

The proof follows by analysis root(s|q) and root(t|q′). Notice that (p, p′) being an
associative pair of positions implies that root(s|q) = root(t|q′).

Case 1: root(s|q) = root(t|q′) = f ∈ Σ /0.

The proof is analogously to the proof of Lemma 2.3.

Case 2: root(s|q) = root(t|q′) = h ∈ Σh.

Then, s|q = h(un) and t|q′ = h(vm). It follows that (1) is of the form

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifA ⟨P1 ∪{z : h(un)≜ h(vm)} | S′ | σ

′⟩. (2)

Since, p = q.i and p′ = q′. j it follows that u = ui and v = v j, i.e, u is the i-th
argument of h(um) and v is the j-th argument of h(vm). We want to show that
exists a derivation of the form

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifA ⟨P∪{y : u ≜ v} | S | σ⟩,

For that we need to apply conveniently (A-Dec)-rules in (2). Notice that the
definition of index of a position yields that (p)d+1 = i and (p′)d+1 = j. Thus, the
proof proceeds by analysing of the index of p at depth d +1.
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1. (p)d+1 = 1.
Then, by Definition 4.5 it follows that (p′)d+1 = 1. Hence, u = u1 and v = v1

and the result follows by an application of (A-Left) in (2), as is showed
below

⟨P1 ∪{z : h(un)≜ h(um)} | S′ | σ ′⟩

((A-Left)) ��

⟨P1 ∪

{
y1 : u1 ≜ t1,

y2 : h(u2, . . . ,un)≜ h(v2, . . . ,vm)

}
| S | σ⟩

with P = P1 ∪ {y2 : h(u2, . . . ,un) ≜ h(v2, . . . ,vn)}, S = S′, σ = σ
′{z 7→

g(y1,y2)} and y = y1.

2. 1 < (p)d+1 < n.
Thus, by Definition 4.5 it follows that 1 < (p′)d+1 < m. Hence, applying
(A-Dec) rules as follows

⟨P1 ∪{z : h(un)≜ vm} | S′ | σ
′⟩

(A-Left)

⟨P1 ∪

{
z1 : h(u1, . . . ,ui−2)≜ v1,

z2 : h(ui−1,ui, . . . ,un)≜ h(v2, . . . ,vm)

}
| S′ | σ

′{z 7→ h(z1,z2)}︸ ︷︷ ︸
σ ′′

⟩

(A-Right)

⟨P2 ∪

{
z3 : ui−1 ≜ h(v2, . . . ,v j−1),

z4 : h(ui, . . . ,un)≜ h(v j, . . . ,vm)

}
| S′ | σ

′′{z2 7→ h(z1,z4)}︸ ︷︷ ︸
σ ′′′

⟩

(A-Left)

⟨P3 ∪

{
w1 : ui ≜ v j,

w2 : h(si+1, . . . ,sn)≜ h(t j+1, . . . , tm)

}
| S′ | σ

′′′{z4 7→ h(w1,w2)}⟩

where

P2 = P1 ∪{z1 : h(u1, . . . ,ui−2)≜ v1} and P3 = P2 ∪{z3 : ui−1 ≜ h(v2, . . . ,v j−1)},

then result follows by taking P=P3∪{w2 : h(si+1, . . . ,sn)≜ h(t j+1, . . . , tm)},
S = S′, σ = σ

′′′{z4 7→ h(w1,w2)} and y = w1.

3. (p)d+1 = n.
Notice that n = arg(h(un)) = arg(s|

(p)d), then the Definition 4.5 implies
that (p′)d+1 = m = arg(h(vm)) = arg(t|

(p′)d). Thus, u = un and v = vm and
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the result follows by two applications of (A-Dec) rules in (2) as is showed
below

⟨P1 ∪{z : h(un)≜ h(vm)} | S′ | σ ′⟩

(A-Left) ��

⟨P1 ∪

{
z1 : h(u1, . . . ,un−2)≜ v1,

z2 : h(un−1,un)≜ h(v2, . . . ,vm)

}
| S′ | σ ′ {z 7→ h(z1,z2)}︸ ︷︷ ︸

σ ′′

⟩

(A-Right)
��

⟨P1 ∪


z1 : h(u1, . . . ,un−2)≜ v1,

w1 : un−1 ≜ h(v2, . . . ,vm−1)

w2 : un ≜ vm,

 | S′ | σ ′′{z2 7→ h(w1,w2)}⟩

with P=P1∪{z1 : h(u1, . . . ,un−2)≜ v1,w2 : un−1 ≜ h(v2, . . . ,vm−1)}, S= S′,
σ = σ

′′{z2 7→ h(w1,w2)} and y = w2.

Let AA⟨s, t⟩, the following lemma establishes the relation between AUnifA(s, t) and the
associative pairs of positions given by the Condition 2 of Definition 4.3.

Lemma 4.3. Let AA⟨s, t⟩ be an AUPA and (p, p′) an associative pair of positions of s and t,
such that

s|p = h(s1, . . . ,sk,u1, . . . ,un,sk+1 . . . ,sq),

t|p′ = h(t1, . . . ,sk′,v1, . . . ,vm, tk′+1, . . . ,sq′).

If (u,v) = (h(un),h(vm)) is an associative pair of subterms, then there exists derivations such
that

1. ⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifA ⟨P∪{y : h(u1, . . . ,ui)≜ v1} | S | σ⟩ with 1 ≤ i ≤ n−1,

and

2. ⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifA ⟨P∪{y : u1 ≜ h(v1, . . . ,v j)} | S | σ⟩ with 1 < j ≤ m−1.

Proof. The Lemma 4.3 implies that there exists a sequence such that

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifA ⟨P′∪{z : s|p ≜ t|p′} | S | σ

′⟩
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First we apply (A-Dec) rules as follows:

⟨P′∪{y : s|p ≜ t|p′} | S | σ
′⟩

(A-Right)

⟨P′∪

{
z1 : s1 ≜ h(t1, . . . , tk′−1),

z2 : h(s2, . . . ,sq)≜ h(tk′,v1, . . . ,vm, tk′+1, . . . , tq′)

}
| S | σ

′{z 7→ h(z1,z2)}︸ ︷︷ ︸
σ ′′

⟩

(A-Left)

C = ⟨P′∪


z1 : s1 ≜ h(t1, . . . , tk′−1),

z3 : h(s2, . . . ,sk)≜ tk′,

z4 : h(u1, . . . ,un,sk+1, . . . ,sq)≜ h(v1, . . . ,vm, tk′+1, . . . tq′)

 | S | σ1⟩

where σ1 = σ
′′{z2 7→ h(z3,z4)}. Taking P1 = {z1 : s1 ≜ h(t1, . . . , tk−1),z3 : h(s2, . . . ,sk)≜ tk′},

it follows that

C = ⟨P1 ∪{z4 : h(u1, . . . ,un,sk+1, . . . ,sq)≜ h(v1, . . . ,vm, tk′+1, . . . tq′)} | S | σ1⟩

1. by one application of (A-Left) in the configuration C, we obtain

C =⇒(A-Left) ⟨P1 ∪

{
y1 : h(u1, . . . ,ui)≜ v1,

y2 : h(ui+1, . . . ,un,sk+1, . . . ,sq)≜ h(v2, . . . ,vm, tk′+1, . . . , tq′)

}
| S | σ

′⟩

with 1 ≤ i ≤ n−1 depending on how (A-Left) was applied. Thus, the result follows
when taking P = P1 ∪{y2 : h(ui+1, . . . ,un,sk+1, . . . ,sq) ≜ h(v2, . . . ,vm, tk′+1, . . . , tq′)},
σ = σ1{z4 7→ h(y1,y2)}= σ

′ and y = y1.

2. by one application of (A-Right) rule in the configuration C, we obtain that

C =⇒(A-Right) ⟨P1 ∪

{
y1 : u1 ≜ h(v1, . . . ,vi),

y2 : h(u2, . . . ,un,sk+1, . . . ,sq)≜ h(vi+1, . . . ,vm, tk′+1, . . . , tq′)

}
| S | σ

′⟩

with 1 < j ≤ m−1, depending on how (A-Right) was applied. Thus, the result follows
when taking P = P1 ∪{y2 : h(u2, . . . ,un,sk+1, . . . ,sq) ≜ h(vi+1, . . . ,vm, tk′+1, . . . , tq′)},
σ = σ1{z4 7→ h(y1,y2)}= σ

′ and y = y1.



4.3 Properties 77

Let AA⟨s, t⟩ be an AUPA, the next lemma states that every constraint {y : u ≜ v} produced
by one step of application of the rules in Figure 4.1 from ⟨{x : s ≜ t} | /0 | id⟩ is such that
(u,v) is an associative pair of subterms of s and t.

Lemma 4.4. Let AA⟨s, t⟩ be an AUPA. If there exists a sequence of the form

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifA ⟨P∪{y : u ≜ v} | S | σ⟩

then (u,v) is an associative pair of subterms of s and t.

Proof. The proof is by induction on the length n of the reduction

⟨{x : s ≜ t} | /0 | id⟩ n
=⇒AUnifA ⟨{y : u ≜ v}∪P | S | σ⟩

Base Case: If n = 0 then ⟨P∪{y : u ≜ v} | S | σ⟩ = ⟨{x : s ≜ t} | /0 | id⟩ and the result
follows trivially.

Inductive Step: If n > 0, then the derivation unfolds as

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnifA ⟨P′ | S′ | σ

′⟩=⇒(R) ⟨{y : u ≜ v}∪P | S | σ⟩

The proof proceeds by analysis of each inference rule of AUnifA, denoted by (R), used
in n-th of the derivation. The cases which (R) is (Dec), (Sol) of (Rec) were already
verified in the proof of Lemma 2.3. Thus, it remains verify the cases which (R) is
(A-Left) or (A-Right).

Case (R) = (A-Left):
Thus, the n-th step of the reduction if as follows, for some s(s1, . . . ,sn) and
t(t1, . . . , tn).

⟨P1 ∪{z : h(un)≜ h(tm)} | S | σ ′⟩

((A-Left)) ��

⟨P1 ∪

{
y1 : h(u1, . . . ,uk)≜ v1

y2 : h(uk+1, . . . ,un)≜ h(t2, . . . ,vm)

}
| S | σ⟩

Case 1: if y ̸= y1,y2, then {y : u ≜ v} ∈ P1 and the result follows by the induction
hypothesis,

Case 2: if y = y1, then {y : u ≜ v}= {y1 : h(s1, . . . ,sk)≜ t1}, with 1 ≤ k ≤ n−1.
By induction hypothesis in the configuration it follows that (h(un),h(vm)) is
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an associative pair of subterms of s and t. There are two cases, depending
on what condition this pair of subterms attend in Definition 4.3.

1. If (h(un),h(vm)) is an associative pair of subterms according to Con-
dition 1 of Definition 4.3, i.e, if there are positions p ∈ pos(s) and
p ∈ pos(t) such that s|p = h(un) and t|p′ = h(vm). Then, (u,v) =
(h(u1, . . . ,uk),v1) is an associative pair of subterms of s and t by Condi-
tion 2 of Definition 4.3.

2. If (u,v) is an associative pair of subterms according to Condition 2 of
Definition 4.3, i.e, if there exists positions p ∈ pos(s) and p′ ∈ pos(t)
such that

s|p = h(s1, . . . ,sl,u1, . . . ,un,s|l+1 . . . ,s|q)

t|p = h(t1, . . . , t|l′,v1, . . . ,vm, t|l′+1, . . . , t|q′)

then, (u,v) = (h(u1, . . . ,uk),v1) is an associative pair of subterms for
every 1 ≤ k ≤ n.

Case 3: If y= y2, then {y : u≜ v}= {y2 : h(uk+1, . . . ,un)≜ h(v2, . . . ,vm)}. Then
it is necessary to show that (h(uk+1, . . . ,un)h(v2, . . . ,vm)). The argument is
similar to the previous case.

Case (R) = (A-Right):

The proof is analogous as the case above.

Let AUnifA be an AUPA AA⟨s, t⟩. Notice that the (A-Dec) rules will produce substitutions
σ such that xσ will be in non-flatted form. However, each argument of the flatted subterm
that should being compared to solve AA⟨s, t⟩ is obtained from the derivation of AUnifA(s, t)
as it was shown in Lemma 4.2. On the other hand Lemma 4.3 show how to obtain these
non-flattened forms as we apply AUnifA rules in the initial configuration ⟨{x : s ≜ t} | /0 | id⟩.

Lemma 4.5 (Lemma 20 in [1]). Given flattened terms s, t of terms in T (X ,Σ /0∪A) then there
exists a sequence ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifA ⟨P | {y : u ≜ v}∪S | σ⟩ if, and only if (u,v)
is an associative conflict pair of s and t.

Proof. The complete proof can be found in Appendix C, Lemma C.3.

As previous mentioned, (A-Dec) rules will produce substitutions σ such that xσ will be
in non-flattened form. In fact, let AA⟨s, t⟩ be an AUPA, as we apply the rules of Figure 4.1
in the initial configuration ⟨{x : s ≜ t} | /0 | id⟩ we will obtain substitutions σ1, . . . ,σn such
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Fig. 4.3 xσi are becoming less flattened as the value of i grows.

that the terms (xσ1), . . . ,(xσn) will become closer to the non-flattened form, as it is shown in
Figure 4.3. The following lemma establishes the relation between the non flattened terms
s and t and the terms xσ given by some configuration ⟨P | S | σ⟩ obtained by AUnifA(s, t).
To prove it, we will use the notion of replacing a subterm of a term by another term in a given
position p; such notion was established in Definition 1.4.

Lemma 4.6. Let AA⟨s, t⟩ be an AUPA and s′ and t ′ be terms such that s and t are their
respective flattened forms. If there exists a derivation of the form

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifA ⟨P∪{x : u ≜ v} | S | σ⟩,

then there exist non-flattened terms s′′ ≡A s′ and t ′′ ≡A t ′ for which there exist positions
p ∈ pos(s′′) and p′ ∈ pos(t ′′) such that

(xσ)|p = y, s′′|p = (xσ)|p{y 7→ u′}= u′ and t ′′|p′ = (xσ)|p{y 7→ v′}= v′

where u′ and v′ are unflattened versions of u and v respectively.

Proof. By induction on the lenght n of the reduction

⟨{x : s ≜ t} | /0 | id⟩ n
=⇒AUnifA ⟨P∪{y : u ≜ v} | S | σ⟩.

Induction Base: If n = 0 then ⟨x : s ≜ t | /0 | id⟩ = ⟨P∪{y : u ≜ v} | S | σ⟩, P = /0, u = s,
v = t and σ = id. Since s′ and t ′ are the unflattened versions of s and t, thus the
result follows by taking p = p′ = ε , obtaining that (xid)|ε = x, s|ε = x{x 7→ s} and
t|ε = x{x 7→ t}.

Inductive Step: Suppose that n > 0 and consider the reduction

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnifA ⟨P′ | S′ | σ

′⟩=⇒(R) ⟨P∪{y : u ≜ v} | S | σ⟩.
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We want to show that there exist non-flattened terms s′′ and t ′′ such that s′′ ≡A s′ and
t ′′ ≡A t ′, positions p ∈ pos(s′′) and p′ ∈ pos(t ′′) such that

(xσ)|p = y, s′′|p = (xσ)|p{y 7→ u′}= u′ and t ′′|p′ = (xσ)|p{y 7→ v′}= v′,

where u′ and v′ are unflattened versions of u and v respectively.

The proof follows by analysis of what rule (R) of Figure 4.1 was applied in the n-th
step of the derivation. The cases where (R) is (Dec), (Rec) or (Sol) were already
analysed during the proof of Lemma 2.5. Thus, it remains to analyzing the cases where
(R) is one of the (A-Dec) rules, i.e, the cases where (R) = (A-Left) or (R) = (A-Right).

Case (R)=(A-Left):
Thus, the reduction is of the form

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnifA⟨P1 ∪{z : h(un)≜ h(vm)} | S | σ

′⟩

=⇒(A-Left)⟨P1 ∪

{
y1 : h(u1, . . . ,uk)≜ v1

y2 : h(uk+1, . . . ,un)≜ h(v2, . . . ,vm)

}
| S | σ⟩.

Where

P′ = P1 ∪{z : h(un)≜ h(vm)},
P = P1 ∪{y1 : h(u1, . . . ,uk)≜ v1,y2 : h(uk+1, . . . ,un)≜ h(v2, . . . ,vm)},
S = S′ and σ = σ

′{z 7→ h(y1,y2)}.

There are three cases to be analysed, depending on the form of y.

1. If y ̸= y1,y2.
Then, {y : u ≜ v} ∈ P1 and the result follows by induction hypothesis.

2. If y = y1.
Then, {y : u ≜ v}= {y1 : h(u1, . . . ,uk)≜ v1}. By induction hypothesis in the
(n−1)-th step of the reduction, it follows that there exist terms s1 and t1 such
that s1 ≡A s′ and t1 ≡A t ′ and positions q ∈ pos(s1) and q′ ∈ pos(t2) such
that (xσ)|p = z, s1|q = u′′ is a unflattened version of h(un), and t1|q′ = v′′ is
a unflattened version of h(vm). Thus,

u′′ ≡A h(h(u1,h(u2, . . .h(uk−2,h(uk−1,uk)) . . .),h(uk+1,h(. . . ,h(un−1,un) . . .))),

v′′ ≡A h(v1,h(v2,h(. . . ,h(vm−1,vm)) . . .)
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Taking s′′ = s1[u′′]q and t ′′ = t1[v′′]q′ , it follows that s′′ ≡A s1 and t ′′ ≡A t1.
Therefore, s′ ≡A s′′ and t ′ ≡A t ′′. Furthermore, by taking

u′ = u′′|1 = h(u1,h(u2, . . .h(uk−2,h(uk−1,uk)) . . .) = u1, and

v′ = v′′|1 = v1

we have that the positions p = q.1 ∈ pos(s′′) and q = q′.1 ∈ pos(t ′′) are
such that s′′|p = u′′|1 = u′ and t ′′|p′ = v′′|1 = v′ are unflattened versions of
u = h(un) and v = v1 respectively.

3. if y = y2.
Then, {y : u ≜ v}= {y2 : h(uk+1, . . . ,un)≜ h(v2, . . . ,vm)}. The result by an
analogously argument, just taking p= q.2∈ pos(s′′) and p′ = q′.2∈ pos(t ′′).

Case (R) = (A-Right):
The proof is analogously as the previous case.

In the following we will show that AUnifA is sound, i.e., that every step of a derivation
⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifA ⟨P | S | σ⟩ gives a term xσ that is a generalizer of s and t.

Theorem 4.2 ( Soundness of AUnifA [1]). Let AA⟨s, t⟩ be an AUPA. If there exists a
derivation of the form ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifA,⟨P | S | σ⟩ then xσ ∈ genA(s, t).

Proof. By induction on the length n of the reduction ⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifA ⟨P | S | σ⟩.

Base Case: If n = 0, then ⟨P | S | σ⟩= ⟨{x : s ≜ t} | /0 | id⟩ and xid = x ∈ genA(s, t) and x
is the trivial generalizer of s and t modulo A.

Inductive Step: Suppose the result holds for derivations of length n− 1, i.e, derivations
of the form, ⟨{x : s ≜ t} | /0 | id⟩ n−1

=⇒AUnifA ⟨P′ | S′ | σ
′⟩ =⇒ ⟨P | S | σ⟩. That is,

xσ
′ ∈ genA(s, t), where σ = σ

′
δ for some δ .

The proof proceeds by analysis the rule (R) applied in the n-th step of the derivation.
The cases in which (R) is (Dec), (Sol) or (Rec) were already verified in the proof of
Lemma 2.6. It remains to verify the case in which (R) is (A-Left) or (A-Right).

Case (R) = (A-Left): Thus, the reduction is of the form:

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnifA ⟨P1 ∪{y : h(un)≜ h(vm)} | S′ | σ

′⟩

=⇒(A-Left) ⟨P1 ∪

{
y1 : h(u1, . . . ,uk)≜ v1,

y2 : h(uk+1, . . . ,un)≜ h(v2, . . . ,vm)

}
| S | σ⟩.
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From now, take

P′ = P1 ∪{y : h(un)≜ h(vm)}
P = P1 ∪{y1 : h(u1, . . . ,uk)≜ v1,y2 : h(uk+1, . . . ,un)≜ h(v2, . . . ,vm)},

with 1 ≤ k ≤ n−1. In any case, S = S′ and σ = σ
′{y 7→ h(y1,y2)}= σ

′
δ .

We we will show that xσ generalizers an unfllatened version of s and t, which
will imply that xσ ∈ genA(s, t) by Remark 4.1.

By Lemma 4.6, it follows that are s′′ and t ′′ that there are unflattened versions
of s and t for such that there are positions p ∈ pos(s′′), p′ ∈ pos(t ′′) such that
(xσ)|p = y, s′′|p = y{y 7→ u′} = u′ is an unflatenned version of u and t ′′|p′ =
y{y 7→ v′}= v′ is an unflattened version of v.

By the proof of Lemma 4.6, u′ is such that u′|1 = u′1 is an unflateened version
of h(uk) and u′|2 = u′2 is an unflattened version of h(uk+1, . . . ,un). Similarly,
v′|1 = v′1 and v′|2 = v′2 are unflattened versions v1 and h(v2, . . . ,vm) respectively.

By induction hypothesis it follows that (xσ
′) ∈ genA(s, t). Then, there exists

a pair of substitutions θ = (θ1,θ2) such that (xσ
′)θ1 ≡A s′′ and (xσ

′)θ2 ≡A t ′′.
Therefore, yθ1 = h(u′1,u

′
2) and yθ2 = h(v′1,v

′
2).

Thus, taking θ
′
1 as the substitution θ1 with domain restricted to (X −{y}), it

follows that the substitution θ1 can be unfolded as

(xσ
′)θ1 = (xσ

′){y 7→ h(u′1,u
′
2)}θ1

= (xσ
′){y 7→ h(y1,y2)}{y1 7→ u′1,y2 7→ u′2}θ

′
1

= (xσ)δ{y1 7→ u′1,y2 7→ u′2}θ
′
1.

Similarly, (xσ
′)θ2 = (xσ)δ{y1 7→ v′1,y2 7→ v′2}θ

′
2, where θ

′
2 is the substitution θ2

with domain restricted to the domain restricted to (X −{y}).
Taking the pair of substitutions τ = (τ1,τ2) given as follows:

τ1 =


x 7→ xθ

′
1, if x ∈ dom(θ ′

1),

y1 7→ u′1,

y2 7→ u′2

, τ2 =


x 7→ xθ

′
2, if x ∈ dom(θ ′

2),

y1 7→ v′2,

y2 7→ v′1


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Notice that for the freshness of y1,y2 it follows that y1,y2 ̸∈ dom(θ ′
1)∪dom(θ ′

2)

and y1,y2 ̸∈ V(θ ′
1)∪V(θ ′

2). Hence,

θ = (θ1,θ2) = ({y1 7→ u′1,y2 7→ u′2}θ
′
1,{y1 7→ v′1,y2 7→ v′2}θ

′
2).

Thus, (xσ)τ =(xσ
′)δτ = xσθ =(s′′, t ′′). Then, (xσ) is a generalizer of s′′ and t ′′,

that are terms which s and t are their flattened forms. Therefore, xσ ∈ genA(s, t).

The following lemma is an auxiliary result to show that AUnifA is complete. This
lemma relates each generalizer of s and t with an expression xσ given by some derivation
⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifA ⟨P | S | σ⟩ of AUnifA(s, t).

Lemma 4.7 (Lemma 21 in [1]). Let AA⟨s, t⟩ be AUPA. If u ∈ genA(s, t) then there exist a
sequence ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifA ⟨P | S | σ⟩ such that u ≡A xσ .

Proof. The complete proof can be found in Appendix C, Lemma C.4.

Theorem 4.3 (Completeness of AUnifA [1]). Let AA⟨s, t⟩ a AUPA. If r ∈ lggA(s, t) then
there exists a derivation of the form ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifA ⟨P | S | σ⟩ such that
r ≡A xσ .

Proof. If r ∈ lggC(s, t) it is clear that r ∈ genC(s, t), and then Lemma 4.7 yields that there
exists a derivation ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifA ⟨P | S | σ
′⟩ such that r ≡A xσ .

Suppose by contradiction that P = P1 ∪{y : u ≜ v}, i.e, P ̸= /0.
The cases where root(u) ̸= root(v) and root(u) = root(v) = f ∈ Σ were already

analysed in the prove of Theorem 3.3. Then, only the case which root(u) = root(v) = h ∈
ΣA remains to be analysed.

Case: root(u) = root(v) = h is an associative function symbol remains to be analysed.

Thus, u = h(s1, . . . ,un) and v = h(v1, . . . ,vm), hence

⟨P′∪{y : h(un)≜ h(vm)} | S | σ
′⟩

(A-Left)

(A-Right)

⟨

{
y1 : h(u1, . . . ,uk)≜ v1,

y2 : h(uk+1, . . . ,un)≜ h(v2, . . . ,vm)

}
| S | σ⟩

⟨

{
y1 : u1 ≜ h(v1, . . . ,vk′),

y2 : h(u2, . . . ,un)≜ h(vk′+1, . . . ,vm)

}
| S | σ⟩
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with 1 ≤ k < n and 1 < k′ < m. In every case, σ = {y 7→ h(y1,y2)} and r = xσ
′ <A xσ ,

and the result follows.

A note on the finiteness of lggA(s, t).
Given an AUPA, AA⟨s, t⟩, each step of AUnifA occurs by an application of a rule of

Figure 4.1 in a unsolved constraint. Also, by Remark 2.2, just one rule can be applied in each
step. Therefore, it follows that given a derivation of the form ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifA

⟨P | S | σ⟩,

• if (Dec),(Sol) or (Rec) applies in ⟨P | S | σ⟩ then this configuration will have just one
direct successor;

• if the (A-Dec) applies in a constraint {y : h(un) ≜ h(vm)} ∈ P, then (A-Left) will
produce n−1 directly successors and (A-Right) m−2 ones. Thus, in this case ⟨P | S |σ⟩
will have (n+m)−3 directly successors;

Therefore, AUnifA is finitely branching. Since the Theorem 4.1 yields that AUnifA always
terminates, then by Lemma 1.5 it follows that AUnifA is globally finite, i.e, each configuration
⟨P | S | σ⟩ contains a finite number of successors.

Thus, the initial configuration of AUnifA will have a finite number of successors which
are the normal forms w.r.t =⇒AUnifA . By Theorem 4.2 will be enough to build a finite,
complete and minimal set of A-least general generalizers, lggA(s, t).

However, this construction is not immediately by the A-anti-unification algorithm AUnifA

because it may return normal forms that are repeated generalizers equal modulo associativity.



Chapter 5

Conclusion and Future Work

In this dissertation we have presented a detailed study of the Syntactic Anti-Unification
Problem (AUP) and the Equational Anti-Unification Problems AUPC and AUPA.

First, we presented a rule-based algorithm for the Syntactic Anti-Unification Problem
as in [1], called AUnif /0, and verified its main properties, such as termination, confluence
and correctness. From correctness we could explore the set of solutions of the problem,
concluding that the AUP always have a solution and it is unique except for variable renaming.

Second, we have presented an extension of the AUnif /0 to solve the AUPC as in [1],
obtaining the algorithm AUnifC, as well as detailed proofs of its main properties, such as,
termination, soundness and completeness. From completeness we verified that AUPC is
finitary, i.e, it always have a finite and minimal set of solutions. However, the AUnifC is only
able to give complete set of C-generalizers but not minimal ones.

Third, similarly as C, we have presented an extension of the AUnif /0 to solve the AUPA,
obtaining the algorithm AUnifA, we verified its main properties, such as, termination, sound-
ness and completeness. In special, we have fixed inaccuracies on the proof of completeness
in [1] by replacing the Lemma 19 in [1] for three new lemmas that were used to proved the
property. Again, from the completeness we verified that AUPA is finitary. However, as the
commutative case, the AUnifA is only able to give complete set of A-generalizers but not
minimal ones.

In the following, we listed the two main lines of research that we plan to follow as future
work.

1. Since AUnifC and AUnifA have a finite number of normal forms and we have not
presented a bound of these number, we want to obtain measure that gives a maximal
bound of the number of normal forms obtained by =⇒AUnifC and =⇒AUnifA .



86 Conclusion and Future Work

2. To extend the study of AUPC and AUPA in languages with binders such as in the
Nominal framework. More precisely, our goal is to extend the algorithm proposed in
[5] to Nominal Syntax when Associative or Commutative theories are involved, like
we had extended AUnif /0 to deal with AUPA and AUPC in this dissertation.
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Appendix A

Appendix of Chapter 2

A.1 Proofs of Section 2.2

Lemma A.1 (Uniqueness of generalization variables [1]). Let A⟨s, t⟩ be an AUP. If there
is a ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnif /0 ⟨P∪{y : u ≜ v} | S | σ⟩ then y does not appear in any
constraint in P or S.

Proof. By induction on the length n of the derivation

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P∪{y : u ≜ v} | S | σ⟩

Base case: If n > 0 then P = {x : s ≜ t} and S = /0 and the conclusion follows trivially.

Inductive Step: If n > 0 then the derivation unfolds as

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnif /0 ⟨P

′ | S | σ⟩=⇒(R) ⟨P | S | σ⟩

The proof follows by analyses of the inference rule (R) applied in the n-th step of the
reduction.

Case (R) = (Dec):
Then the derivation is of the form

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P1 ∪{z : f (um)≜ f (vm)} | S | σ

′⟩

=⇒(Dec) ⟨P1 ∪{y1 : u1 ≜ v1, . . . ,yn : un ≜ vn} | S | σ
′{z 7→ f (ym)}⟩

where,
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P′ = P1 ∪{z : f (um)≜ f (vm)}, P = P1 ∪{y1 : u1 ≜ v1, . . . ,yn : un ≜ vn},
S = S′ and σ = σ

′{z 7→ f (ym)}

Notice that if y ̸= y j for all j = 1, . . . ,m, then {y : u ≜ v} ∈ P1 and the result
follows immediately by induction hypothesis. Otherwise, if y = y j for some
j = 1, . . . ,m, then the Definition of Decompose rule hence that y is a fresh
variable. Therefore, y does not appear in any constraint of S∪P1.

Case (R) = (Sol):

Then P′ = P∪{y : u ≜ v}, S = S′∪{y : u ≜ v} and σ = σ
′. Therefore, the result

follows by the induction hypothesis.

Case (R) = (Rec):

Then there is nothing to prove since P′ = P∪{y : u ≜ v} and S = S1 ∪{z : u ≜

v}= S′.

Lemma A.2 (Range of Substitutions [1]). Given terms s, t ∈ T (X ,Σ /0) and a fresh variable
x such that ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnif /0 ⟨P | S | σ⟩. Then, Index(P∪S)⊆ vran(σ)∪{x}
and vran(σ)⊆ V(xσ).

Proof. By induction over the length n of the reduction

⟨{x : s ≜ t} | /0 | id⟩ n
=⇒AUnif /0 ⟨P | S | σ⟩.

Base Case: If n = 0 then P = {x : s ≜ t}, S = /0 and σ = id. Hence the definition of the set of
index variable (Definition 2.2) and the definition of range of variables (Definition 1.7)
implies that

Index(P) = {x} and vran(σ) = /0.

Then, it is easy to see that Index(P)⊆ vran(σ)∪{x}. Furthermore, for Definition 1.1
it follows that V(xσ) = V(x) = {x}, then vran(σ)⊆ V(xσ).

Inductive Step: If n > 0 then we split the derivation as

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnif /0 ⟨P

′ | S′ | σ
′⟩=⇒(R) ⟨P | S | σ⟩.
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By induction hypothesis it follows that

Index(P′∪S′)⊆ vran(σ ′)∪{x} and vran(σ ′)⊆ V(xσ
′).

The proof follows by analysing each rule (R) of Figure 2.2 that could have been applied
in the n-th step of the derivation:

Case (R) = (Dec):

Then,

P′ = P1 ∪{y : f (sm)≜ f (tm)}, P = P1 ∪{y1 : s1 ≜ t1, . . . ,ym : sm ≜ tm},
S′ = S and σ

′{y 7→ f (ym)}= σ .

Notice that the Lemma 2.1 implies that y does not appear in any constraint of
P1 ∪S. Then, {y} ̸⊆ Index(P1 ∪S). Hence, by Definition 2.2 and Definition 1.7,
it follows that

Index(P∪S) = Index(P1 ∪S)∪{ym}∪{x}. (A.1)

Since Index(P′) = {y} ∪ Index(P1), by induction hypothesis it follows that
y ∈ vran(xσ

′), but the composition of substitutions σ = σ
′{y 7→ f (ym)} and the

freshness of each variable y1, . . . ,yn implies that y ̸∈ vran(xσ). Then,

vran(σ ′)⊆ vran(σ)∪{y}. (A.2)

Now, notice that Index(P1 ∪S)⊆ vran(σ ′)∪{x} by induction hypothesis. And
by Definition 1.7 it follows that {ym} ∈ vran(σ). Hence (A.1) and (A.2) implies
that Index(P∪S)⊆ vran(σ)∪{x}∪{y}.
Further, since y does not appear in any constraint of P1 and S, we obtain the first
result required: Index(P∪S)⊆ vran(σ)∪{x}. Besides, by Definition 1.1 and
Lemma 2.1 it follows that vran(σ)∪{y}= vran(σ ′)∪{ym}.
Hence, the induction hypothesis implies that vran(σ)∪{y} ⊆ V(xσ

′)∪{ym}.
Since σ = σ

′{y 7→ f (ym)}, it is easy to see that V(xσ) = (V(xσ
′)∪{ym})/{y}.

Then we obtain that vran(σ)⊆ V(xσ).

Case (R)= (Sol):
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Then P′ = P∪{y : s1 ≜ t1},S = S∪S′ and σ
′ = σ . It follows that Index(P∪S) =

Index(P′∪S′) and vran(σ) = vran(σ ′). Then the result follows directly from
the induction hypothesis.

Case (R) = (Rec):
Then, P′ = P∪{y : s1 ≜ s2}, S′ = S1 ∪{z : s1 ≜ t1} = S, and σ

′{y 7→ z} = σ .

It follows that Index(P∪S)⊆ Index(P′∪S′) and vran(σ)⊆ vran(σ ′). Then,
Index(P∪S)∪{x} ⊆ vran(σ), follows by induction hypothesis. Furthermore,
the proof that vran(σ) = V(xσ) is similar what was done in (Dec) case.

Lemma A.3 (Lemma 3 in [1]). Let A⟨s, t⟩ be an AUP. There is a derivation of the form
⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnif /0 ⟨{y : u ≜ v}∪P | S | σ⟩ if, and only if, there exists a position
p ∈ pos(s)∩ pos(t) such that s|p = u, t|p = v, and for all position p′ < p, root(s|p′) =
root(t|p′).

Proof.

(=⇒) Suppose there is a sequence ⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P∪{y : u ≜ v} | S | σ⟩.

We want to prove that there exists a position p ∈ pos(s)∩pos(t), such that s|p = u,
t|p = v, and for all p′ < p, root(s|p′) = root(t|p′). The proof is by induction in the
length n of the reduction ⟨{x : s ≜ t} | /0 | id⟩ n

=⇒AUnif /0 ⟨P∪{y : u ≜ v} | S | σ⟩.

Base Case: If n = 0 then ⟨{x : s ≜ t} | /0 | id⟩= ⟨P∪{y : u ≜ v} | S | σ⟩, i.e,

P = /0, {y : u ≜ v}= {x : s ≜ t}, S = /0, σ = id.

Then, the result follows trivially by taken p = ε .

Inductive Step: If n > 0 the reduction unfolds as

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnif /0 ⟨P

′ | S′ | σ
′⟩=⇒(R) ⟨P∪{y : u ≜ v} | S | σ⟩.

The proof proceeds by analysing of each rule (R) of Figure 2.2 applied in the last step.

Case (R) = (Dec):
Then, the reduction is of the form

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P1 ∪{w : f (um)≜ f (vm)}︸ ︷︷ ︸

P′
2

| S | σ
′⟩

=⇒(Dec) ⟨P1 ∪{y1 : u1 ≜ v1, . . . ,ym : um ≜ vm} | S | σ{w 7→ f (ym)}︸ ︷︷ ︸
P2

.⟩
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where, P′ = P1 ∪P′
2, P = P1 ∪P2, S = S′ and σ = σ

′{w 7→ f (ym)}.

There are two cases to consider.

1. If {y : u ≜ v} ≠ {y j : u j ≜ v j}, for all j = 1, . . . ,m, then {y1 : u ≜ v} ∈ P1

and by induction hypothesis it follows that exists p ∈ pos(s)∩pos(t) such
that s|p = u, t|p = v and for all p′ < p, root(s|p′) = root(t|p′).

2. If {y : u≜ v}= {y j : u j ≜ v j}, for some j = 1, . . . ,n. Then this constraint was
created from an application of (Dec) in {w : f (um) ≜ f (vm)} ∈ P′, which
induction hypothesis yields that exist a position q∈ pos(s)∩pos(t) such that
root(s|q) = f (um) and root(t|q) = f (vm). Since u j and v j are respectively
the j-th arguments of f (um) and f (vm), taking p = q. j, it follows that

s|p = s|q. j = f (um)| j = u j = u and t|p = t|q. j = f (vm)| j = v j = v.

Furthermore, if p′ < p = q. j, then p′ = q or p′ < q. On one hand it
follows that the induction hypothesis implies that for all p′ < q, holds
that root(s|p′) = root(t|p′). On the other hand, for p′ = q, it is easy to
see that root(s|q) = root(t|q) = f . Therefore, for every position p′ < p,
root(s|p′) = root(t|p′).

Case (R) = (Sol):
Then, the reduction is of the form

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P∪{z : s1 ≜ s2}︸ ︷︷ ︸

P1

| S′ | σ⟩=⇒(Sol) ⟨P | S∪{z : s1 ≜ s2}︸ ︷︷ ︸
P1

| σ .⟩

where, P′ = P∪P1, S = S′ ∪P1 and σ
′ = σ . Then, {y : u ≜ v} ∈ P and by

induction hypothesis it follows that exists p ∈ pos(s)∩pos(t) such that s|p = u,
t|p = v and for all p′ < p, root(s|p′) = root(t|p′).

Case (R) = (Rec):

The argument is similar to that used in the Case (R) = (Sol).

(⇐=) Suppose that p ∈ pos(s)∩pos(t) is such that root(s|p) = u, root(t|p) = v and for all
p′ < p, root(s|p′) = root(t|p′). We want to prove that exists a derivation

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P∪{y : u ≜ v} | S | σ⟩.

The proof is by induction over the size p.
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Base Case: If p = ε , then s|p = s and t|p = v. Then, taking S = /0, P = /0, σ = i f and
{y : u ≜ v}= {x : s ≜ t} it follows that ⟨P∪{y : u ≜ v} | S | σ⟩= ⟨{x : s ≜ t} | /0 | id⟩
and the result follows trivially.

Inductive Step: If p > 0, then it follows that p = q. j with j being a natural number. Since
p ∈ pos(s)∩ pos(t), then q ∈ pos(s)∩ pos(t). Therefore there exist terms sq and
tq such that s|q = sq and t|q = tq. Notice that s|p = s|q. j = u and t|p = t|q. j = v are
subterms of sq and tq, it follows that the root symbol of sq and tq must be both of
functional type with arities bigger or equal to j. It is easy to see that q < p. Hence,
the induction hypothesis can applies in q, which implies that root(s|q) = root(t|q).
Therefore, we can suppose without loss of generality that exist a function symbol
f : m ∈ Σ /0 such that sq = f (um) and tq = f (vm), with u = u j and v = v j for some
j ≤ m.

By induction hypothesis there exists a configuration C such that

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P1 ∪{z : f (um)≜ f (vm)} | S | σ

′⟩

. Then, applying (Dec) in C it follows by the transitivity of ∗
=⇒AUnif /0 that

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P1 ∪{y1 : u1 ≜ v1, . . . ,ym : um ≜ vm} | S | σ

′{z 7→ f (ym)}⟩.

Then, taking P = P1 ∪ ((
m⋃

i=1

{yi : ui ≜ vi})/{y j : u ≜ v}), σ = σ
′{z 7→ f (ym)} and

y j = j the result follows.

Lemma A.4 (Lemma 4 in [1]). Let A⟨s, t⟩ be an AUP. There is a derivation of the form
⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnif /0 ⟨P | {y : u ≜ v}∪S | σ⟩ if, and only if, there exists a conflict
position p of s and t such that s|p = u and t|p = v.

Proof.

(=⇒) Suppose that ⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P | {y : u ≜ v}∪S | σ⟩. Since {y : u ≜ v}

is in the set of solved constraints S, then there is a step in this reduction such that rule
(Sol) was applied. Then, it is possible unfold the derivation as

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifA ⟨{y : u ≜ v}∪P1 | S1 | σ1⟩ (1)

=⇒(Sol) ⟨P1 | {y : u ≜ v}∪S1 | σ1⟩
∗

=⇒AUnif /0 ⟨P | {y : u ≜ v}∪S | σ⟩
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Notice that we can apply Lemma 2.3 in (1) which implies that there exists p ∈ pos(s)∪
pos(t) such that s|p = u and t|p = v, and for all position q< p, root(s|q) = root(p|q).
Since (Sol) was applied in {y : u ≜ v} then root(u) ̸= root(v). Therefore, p is a
conflict position and (u,v) is a conflict pair.

(⇐=) Suppose that p∈ pos(s)∩pos(t) is a conflict position and (u,v)= (s|p, t|p) is a conflict
pair. We want to show that exists a reduction

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P | S∪{y : u ≜ v} | S | σ⟩=C1.

Lemma 2.3 implies that exist a reduction such that

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P

′∪{z : u ≜ v} | S′ | σ
′⟩

There are two cases:

1. If there is no variable z such that {z : u ≜ v} ∈ S′. Then, the result follow as apply
(Sol) in the last constraint, as is shown bellow

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P

′∪{z : u ≜ v} | S′ | σ
′⟩

=⇒(Sol) ⟨P′ | S′∪{z : u ≜ v} | σ⟩,

and as take y = z, P′ = P, S = S′∪{y : u ≜ v} and σ = σ
′.

2. If already exists a variable y such that {y : u ≜ v} ∈ S′. Then the result follows
immediately as take S = S′, P = P′ and σ = σ

′.

Lemma A.5. Given terms s, t ∈ T (X ,Σ /0). If there exists a derivation

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨{y : u ≜ v}∪P | S | σ⟩

then there exists a position p ∈ pos(s)∩pos(t) such that

(xσ |p) = y, s|p = (xσ)|p{y 7→ u}= u, t|p = (xσ)|p{y 7→ v}= v.

Proof. By induction on the length n of the reduction

⟨{x : s ≜ t} | /0 | id⟩ n
=⇒AUnif /0 ⟨{y : u ≜ v}∪P | S | σ⟩
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Induction base: If n = 0 then ⟨{x : s ≜ t} | /0 | id⟩= ⟨P∪{y : u ≜ v} | S | σ⟩. Taking p = ε ,
it follows that (xid)|ε = x, s|ε = (xid)|ε{x 7→ s}= s and t|ε = (xid)|ε{x 7→ t}= t.

Inductive step: Suppose that n > 0 and consider the reduction

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnif /0 ⟨P

′ | S′ | σ
′⟩=⇒(R) ⟨P∪{y : u ≜ v} | S | σ⟩

The proof proceeds by analysing of each inference rule (R) of Figure 2.2 applied in
the last n-th step.

Case (R) = (Dec):
Then, the reduction is of the form

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P1 ∪{z : f (um)≜ vm} | S | σ

′⟩

=⇒(Dec) ⟨P1 ∪{y1 : u1 ≜ v1, . . . ,ym : um ≜ vm}} | S | σ
′{z 7→ f (um)}.⟩

Where P′ = P1 ∪{z : f (um) ≜ vm}, P = P1 ∪{y1 : u1 ≜ v1, . . . ,ym : um ≜ vm},
S = S′ and σ = σ

′{z 7→ f (ym)}.
There are two cases to consider.

1. If y ̸= y j for all j = 1, . . . ,m then {y : u ≜ v} ∈ P1 and the result follows by
induction hypothesis.

2. If y = y j for some j = 1, . . . ,m, then u = u j and v = v j, i.e., u is the j-th
argument of f (um) and v is the j-th argument of f (vm). Since

{z : f (um)≜ f (vm)} ∈ P′,

the induction hypothesis applies to this constraints. Which implies that exist
a position q ∈ pos(s)∩pos(t) such that s|q = f (um), t|q = f (vm). Therefore,
taking p = q. j, it follows that

s|p = s|q. j = (s|q)| j
I.H.
= f (um)| j = u j = u,

t|p = t|q. j = (t|q)| j
I.H
= f (vm)| j = v j = v.

The induction hypothesis implies that xσ
′|q = z, then xσ

′ = xσ
′[z]q = z.

The freshness of z in ⟨P′ | S′ | σ
′⟩ implies that the unique occurrence of z in

xσ
′ is in the position q. Then, as applying xσ

′{z 7→ f (ym)} the substitution
{z 7→ f (ym)} will changes the term xσ

′ only in position q. It follows that
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xσ = xσ
′[ f (ym)]q. Therefore,

(xσ)|p = (xσ)|q. j
= (xσ

′[ f (ym)]q)|q. j
= ((xσ

′[ f (ym)]q)|q)| j

= f (ym)| j

= y j = y.

Finally, we obtain that

(xσ){y 7→ u}|p = y{y 7→ u}= u = s|p

(xσ){y 7→ v}|p = y{y 7→ v}= v = t|p.

Case (R) = (Sol) or (R) = (Rec):

Then P⊂P′ and since {u : u≜ v}∈P, the result follows immediately by induction
hypothesis.

Lemma A.6. Let s, t ∈ T (X ,Σ /0). If ⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P | S | σ⟩ then xσ ∈

gen(s, t).

Proof. By induction on the length n of the reduction ⟨{x : s ≜ t} | /0 | id⟩ n
=⇒AUnif /0 ⟨P | S | σ⟩.

Base Case: If n = 0 then ⟨{x : s ≜ t} | /0 | id⟩= ⟨P | S | σ⟩ which gives (xid) = x, the trivial
generalizer of s and t.

Inductive Step: Supposing that

⟨{x : s ≜ t} | /0 | id⟩ n
=⇒AUnif /0 ⟨P

′ | S′ | σ
′⟩=⇒(R) ⟨P | S | σ⟩

We want to show that xσ ∈ gen(s, t). Note that σ = σ
′
δ for some δ that will obtained

in the last step. The proof proceed analysing the rule (R) applied in this least step.

Case (R) = (Sol):

Then δ = id and the result follows by the induction hypothesis (xσ
′) = (xσ

′)id ∈
gen(s, t).
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Case (R) = (Rec):
Then, P′ = P∪{y : u ≜ v}, S = S1 ∪{z : u ≜ v} = S′ and σ = σ

′{y 7→ z}. It
follows that exists a step n−m, for some 1 < m < n such that (Sol) was applied
in a constraint {z : u ≜ v}. Thus, calling δ = {y 7→ z}, the reduction is of the
form:

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨{z : u ≜ v}∪P′′ | S′′ | σ

′′⟩=C1

=⇒(Sol) ⟨P′′ | S′′∪{z : u ≜ v} | σ
′′⟩=C2

∗
=⇒AUnif /0 ⟨{y : u ≜ v}∪P | {z : u ≜ v}∪S1 | σ

′⟩=C3

=⇒(Rec) ⟨P | {z : u ≜ v}∪S1 | σ
′
δ︸︷︷︸

σ

⟩=C4

Hence, the Lemma 2.5 in C1 implies that exists a position q ∈ pos(s)∩pos(t)
such that s|q = u, t|q = v and xσ

′′|q = z. And the Lemma 2.3 in C1 yields that
for every position q′ such that q′ < q, then root(s|q′) = root(t|q′). Similarly,
Lemma 2.5 in C3 implies that exists a position p ∈ pos(s)∩ pos(t) such that
s|p = u, t|p = v and xσ

′|p = y. Furthermore, the Lemma 2.3 in C3 implies that for
every position p′ such that p′ < p, then root(s|p′) = root(t|p′). Hence, since
root(s|p) ̸= root(t|p), it follows that p and q must to be parallel positions.

Notice that Lemma 2.1 implies that the unique constraint which z appear is the
constraint {z : u ≜ v} ∈ S. Since {z : u ≜ v} is solved in C2 then it will be in the
set of solved constraint for all configurations obtained from C2. Since there is no
rule in Figure 2.2 that can compute a substitution which will change the value of
z, it follows that z ̸∈ dom(σ ′) because the unique rule in Figure 2.2 that change
the domain of the substitution computed is (Dec) and this rule never was applies
in {z : u ≜ v}. Therefore, xσ |q = z.

Consequently, for every position r ̸= p, xσ
′|r = xσ |r. On the other hand xσ

′|p = y,
while xσ |p = y{y 7→ z}= yδ = z.

By the induction hypothesis in C3 it follows that xσ
′ ∈ gen(s, t). Then, there is a

pair of substitutions θ = (θ1,θ2), such that xθ1 = s and xθ2 = t. Hence,

xσ
′
θ1|p = s|p = u, xσ

′
θ2|p = t|p = v,

xσ
′
θ1|q = s|q = u, xσ

′
θ2|q = t|q = v.

It follows that θ1 changes the subterms of xσ
′ at position p and q, i.e., θ1y = u

and θ1z = u. Constructing a substitution θ
′
1 such that wθ

′
1 = wθ for every variable

w ̸= y,z and such that y,z ̸∈ dom(θ ′
1), i.e, θ

′ is equal to θ with y and z taken out
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of its domain.

θ1 = {y 7→ u,z 7→ u}θ
′
1

= {y 7→ u}{z 7→ u}θ
′
1

= δ{z 7→ u}θ
′
1.

By an analogous argument it follows that there exists a substitution θ
′
2 such that

θ2 = δ{z 7→ v}θ
′
2.

Then, taking the pair of substitutions θ ′ = ({z 7→ u}θ
′
1,{z 7→ v}θ

′
2) it follows that

xσθ ′ = xσ
′
δθ ′ = (s, t).

Therefore, xσ ∈ gen(s, t).

Lemma A.7. Let s, t ∈ T (X ,Σ /0). If u ∈ gen(s, t) then there exists derivation

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P | S | σ⟩

such that u ≡ xσ

Proof. By induction on the structure of u.

Base Case: If u ∈ X , i.e, if u is a variable. The result follows if ones takes

⟨{x : s ≜ t} | /0 | id⟩= ⟨P | S | σ⟩,

which implies that σ = id and, consequently, xid = x ≡ u.

Inductive Step: If u = f (u1, . . . ,un), for an n-ary free function symbol f . Suppose that the
result follows for generalizers ui of s and t with structure simpler than u.

Since u ∈ gen(s, t) it follows there exists a pair of substitutions θ = (θ1,θ2) such
that uθ = (s, t). Then both s and t have as root symbol the n-ary function symbol f .
Which follows that s = f (s1, . . . ,sn) and t = f (t1, . . . , tn) for some si, ti ∈ T (X ,Σ /0),
with i = 1, . . . ,n. Therefore, the initial configuration is

⟨{x : s ≜ t} | /0 | id⟩= ⟨{x : f (sn)≜ f (tn)} | /0 | id⟩.
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We want to show that exists a derivation

⟨{x : f (sn)≜ f (tn)} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P | S | σ⟩ (1)

such that xσ ≡ u = f (u1, . . . ,un). We will show the existence of this derivation
constructing it.

Notice that (Dec) apply in the initial configuration. Therefore, the first step of the
derivation (1) is of the form:

⟨{x : s ≜ t} | /0 | id⟩=⇒ ⟨{x1 : s1 ≜ t1, . . . ,xn : sn ≜ tn} | /0 | {x 7→ f (x1, . . . ,xn)}︸ ︷︷ ︸
σ0

⟩ (2)

To obtain the next steps it is necessary to use the induction hypothesis. First, let’s
prove the claim bellow.

Claim: ui ∈ gen(si, ti), for all 1 ≤ i ≤ n.

In fact, it is enough to notice that

uθ1 = f (u1θ1, . . . ,unθ1) = f (s1, . . . ,sn),

uθ2 = f (u1θ2, . . . ,unθ2) = f (t1, . . . , tn).

Hence, uiθ1 = si and uiθ2 = ti. Then, ui is a generalizer of si and ti for every
1 ≤ i ≤ n.

Therefore, the induction hypothesis implies that for each i = 1, . . . ,n there exists a
derivation Ri composed of the rules AUnif /0 given in Figure 2.2 such that

⟨xi : si ≜ ti | /0 | id⟩ ∗
=⇒Ri ⟨Ci | Si | σi⟩ (3)

such that ui ≡ xiσi.

The idea of this proof is after apply (Dec) in the initial configuration, as is shown in
(2), and after sequentially apply each of the derivations chains given in (3), in order to
obtain a configuration ⟨P | S | σ⟩ with σ = σ0σ1 . . .σn, such that
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xσ = xσ0 . . .σn

= (xσ0)σ1 . . .σn

= f (x1, . . . ,xn)σ1 . . .σn

= f (x1σ1, . . . ,xnσn)≡ f (u1, . . . ,un)

However, it is necessary ensure that this combination of derivations will be done
in a way that each substitution σk obtained from the derivation Rk dos not change
the value of the term x jσ j ≡ u j obtained by the derivation R j, i.e, it is necessary to
ensure that f (x1, . . . ,xn)σ1 . . .σn = f (x1σ1, . . . ,xnσn). Notice that dom(σi) = xi and
by Lemma 2.2 it follows that vran(σi) ⊆ V(xσi). Then, it is enough compare the
variables of each u j and uk for every k ̸= j. This analyses of variables is also important
to ensure that the rules of Figure 2.2 were applied correctly as combine the derivations
of (3), because just join these rules could generates a application of (Sol) in a constraint
which (Rec) should apply instead. There are two cases of variables analysing, studied
in the following.

• Case 1: If V(u j)∩V(uk) = /0 for every j ̸= k.

This case was analysed in 2, Lemma 2.7.

• Case 2: If V(u j)∩V(uk) = y, for some j,k = 1, . . . ,n.

It follows that the variable y is a subterm of u j and also a subterm of uk.
Thus, there are positions p ∈ pos(u j) and q ∈ pos(uk) such that y = u j|p =

u| jp, and y = uk|q = u|kq. Notice that, since ui is a generalizer of s j and t j then y
is a generalizer of a pair subterms of s j and t j. Similarly, since uk is a general-
izer of sk and tk, then y is a generalizer of a pair of subterms of sk and tk. More
precisely, there exist terms v1 and v2 such that

s| jp = t| jp = v1 and s|kq = t|kq = v2.

By Lemma 2.3 there exists constraints {z j : v1 ≜ v2} in the set of unsolved
constraint of some configuration obtained by the derivations R j, and a non-solved
constraint {zk : v1 ≜ v2} in some configuration obtained by the derivation Rk.
Therefore, we can unfold these derivations as follows

⟨xl : sl ≜ tl | /0 | id⟩ ∗
=⇒R′

l
⟨C′

l | S′l{zl : v1 ≜ v2} | σ
′
l ⟩

∗
=⇒R′′

l
⟨Cl | Sl | σl⟩
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with l = i, j. The proof follows by analysing of v1 and v2:

1. If v1 = v2 = y: Then the occurrence of y in xσ j and in xσk was given by the
respective application of (Dec) in {z j : v1 ≜ v2} and in {zk : v1 ≜ v2}. Then,
the result follows just collect all reductions Ri given by (3), with i = 1, . . . ,n,
in the same way as we did in the case 1.

2. root(v1) ̸= root(v2): Then z j = zk = y. It follows that (v1,v2) is a conflict
pair of subterms of s j and t j with respect to the conflict position p∈ pos(s j)∩
pos(t j). Then, we can split the reduction R j as

⟨x j : s j ≜ t j | /0 | id⟩ ∗
=⇒R′

j
⟨C′

j | S′j{y : v1 ≜ v2} | σ
′
j⟩

∗
=⇒R′′

j
⟨C j | S j | σ j⟩

Similarly, (v1,v2) is a conflict pair of subterms of sk and tk with respective
conflict position q ∈ pos(uk)∩pos(vk). Then we can split the reduction Rk

as

⟨xk : sk ≜ tk | /0 | id⟩ ∗
=⇒(R′

k)
⟨C′

k ∪{y : v1 ≜ v2} | S′k | σ
′
k⟩

=⇒(Sol) ⟨C′
k | S′k ∪{y : v1 ≜ v2} | σ

′
k⟩

∗
=⇒(R′′

k )
⟨Ck | Sk | σk.⟩

Then (Sol) was applied in the constraint {y : v1 ≜ v2} in some step of R j

and also applied in the same constraint in some step of Rk. Since there is no
rule in Figure 2.2 that changes the set of solved constraints, it follows that
{y : v1 ≜ v2} ∈ S j ∩Sk. Therefore, we cannot just join all the reductions of
the derivations given by (3) as was did in the previous case. Otherwise, we
would obtain two applications of (Sol) in constraints representing the same
anti-unification problem A⟨v1,v2⟩, what is not allowed by definition of (Sol)
in Figure 2.2.
Then, it is necessary to do a variable renaming in all configurations of the
derivation ⟨{xk : sk ≜ tk} | /0 | id⟩ ∗

=⇒R′
k
⟨C′

k∪{y : v1 ≜ v2}⟩, substituting every
occurrence of y by a fresh variable z. Suppose without loss of generality
that j < k. The results follows as join all derivations in (3), just making the
small change described in the following: Apply all the rules starting from R1

until R′
k. To avoid the second application of (Sol) in the reduction obtained,

we apply (Rec) instead of (Sol). Finally, we apply all the remaining rules
R′′

k ,Rk+1, . . . ,Rn in the reduction. Therefore the reduction is of the form
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showed below:

⟨{x : s ≜ t} | /0 | id⟩

(R1),...,(Ri),...,(R′
k)*

⟨{z : v1 ≜ v2}∪Pk ∪C1 ∪ . . .Ck−1 | S1 ∪·· ·∪S′k | σ0 . . .σk−1σ
′
k⟩,

{y : v1 ≜ v2} ∈ Si

(Rec)*
⟨Pk ∪C1 ∪·· ·∪Ck−1 | S1 . . .Sk | σ0 . . .σk−1σ

′
k{z 7→ y}⟩

(R′′
k ),...,(Rn)*

⟨
n⋃

i=1

Ci |
n⋃

i=1

Si | σ0 . . .σk−1σ
′
k{z 7→ y}σ

′′
k . . .σn︸ ︷︷ ︸

σ ′

⟩

where Pi = {x1 : s1 ≜ t1, . . . ,xn : sn ≜ tn}/
n⋃

i=1

{xi : si ≜ ti}. Finally, notice

that xσk = σk′{z 7→ y}σk′′ . Then, xσ
′ = xσ ≡ f (u1, . . . ,un). Therefore, the

result holds.

3. If v1 ̸= v2 and root(v1) = root(v2): This case does not need be anal-
ysed because there is no clash of variables with these conditions. In fact,
(Dec) will apply in both {z j : v1 ≜ v2} and {zk : v1 ≜ v2} in each re-
spective reduction chain. We can suppose without loss of generality that
root(v1) = root(v1) = f : n ∈ Σ, then each application of decompose will
create constraints with index variables y1, . . . ,yn constraints comparing the
arguments of v1 and v2 and add a substitution {zl 7→ f (ym)}. Then, v1 and
v2 had disappears of xσ without produces a clash of variables. The same
happens if v1 = v2 ̸= y.

Lemma A.8. Let A /0⟨s, t⟩ be an AUP. If there exists a derivation of the form

⟨{x : s ≜ t} | /0 | id⟩=⇒∗
AUnif /0

⟨ /0 | S | σ⟩

with S = {y1 : u1 ≜ v1;y2 : u2 ≜ v2, . . . ,yn : un ≜ vn}, then the pair of substitution (θ1,θ2)

given forθ1 = {y1 7→ u1, . . . ,yn 7→ un} and θ2 = {y1 7→ v1, . . . ,yn 7→ vn} is such that

xσθ1 = s and xσθ2 = t.
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Proof. The proof proceeds by analyses of the conflict pairs of s and t.

Case 1: s and t do not have any conflict pair:

This case was analysed in Chapter 2, Lemma 2.8.

Case 2: s and t have conflict positions.

Suppose that p1, . . . , pn are all the conflict positions of s and t, with respective conflict
pair of subterms (u1,v1), . . . ,(un,vn). Given two different conflict positions pl and pk,
by Definition 2.4, p.l is such that for every p′ such that p′ < pl or p′ < pk, it holds
root(s|p′) = root(t|p′). On other hand, by Definition 2.4, root(s|pl) ̸= root(t|pl)

and root(s|pk) ̸= root(t|pk). Then, p j and pk are parallel positions.

Then, by p||q and Remark 2.4 it follows that exist a derivation such that every constraint
{yi : ui ≜ vi}, with i = 1, . . . ,n, appears in the set of unsolved constraint, i.e, there
exists a derivation as is show bellow:

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P∪{y1 : u1 ≜ v1, . . . ,yn : un ≜ vn} | /0 | σ

′⟩ (1)

There are to cases:

1. If (ul,vl) ̸= (uk,vk) for every l ̸= k, i.e, for each conflict position its respective
conflict pair of subterms is unique. Then each constraint {yi : ui ≜ vi} represents
a different anti-unification problem A⟨ui,vi⟩. Applying (Sol) in each of these
constraints in (3), we obtain the derivation

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P | {y1 : u1 ≜ v1, . . . ,yn : un ≜ vn} | σ

′⟩

Lemma 2.4 yields that any new constraint will be add in this set of solved
constraints, because it already have every constraints representing a conflict
pair of s and t. By the confluence property of the rules of AUnif /0 proved in
Theorem 2.2, it follows that the final configuration ⟨ /0 | S | σ⟩ of its derivation is
such that S = {y1 : u1 ≜ v1, . . . ,yn : un ≜ vn}. Therefore,

θ1 = {y1 7→ u1, . . . ,yn 7→ un} and θ2 = {y1 7→ v1, . . . ,yn 7→ vn}.

Theorem 2.3 implies that xσ ∈ lgg(s, t). It means that xσ express more as
possible both term structures of s and t. Formally, if a position q∈ pos(s)∩pos(t)
is such that s|q = t|q, then xσ |p = s|q = t|q.
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In the other hand for every position p such that the terms structures of s and t
starts to diverges, this position generates a conflict pair of subterms of s and t,
which is composed of subterms of s and t which roots symbols are different of
each other. Then, xσ |p must be a variable. By Lemma 2.5 it follows that for each
conflict position pi, with i = 1, . . . ,n,

xσ |pi{yi 7→ ui}= yi{yi 7→ ui}= ui = s|pi,

xσ |pi{yi 7→ vi}= yi{yi 7→ vi}= vi = t|pi.

It follows that xσθ1 = s and xσθ2 = t.

2. If (ul,vl) ̸= (uk,vk) for some different l,k ∈ {1, . . . ,n}, i.e, there are two different
conflict positions that generates the same conflict pair of subterms. In this
case, {yl : ul ≜ vl} represents the same anti-unification problem as the constraint
{yk : uk ≜ vk}. To solve this constraint, we apply a sequence of (Sol) in (3) and
after it we apply a (Rec) rule, as follows

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnif /0 ⟨P∪{y1 : u1 ≜ v1, . . . ,yn : un ≜ vn} | /0 | σ

′⟩
∗

=⇒(Sol) ⟨P∪{yk : uk ≜ vk} | S′∪{yk : vl ≜ yl} | σ
′⟩

∗
=⇒(Rec) ⟨P | {yk : uk ≜ vk} | S′∪{yk : vl ≜ yl} | σ

′{yk 7→ yl}⟩

where S′ = (
n⋃

i=1

{yi : ui ≜ vi})/{yl : ul ≜ vl,yk : uk ≜ vk}.

Hence, by Lemma 2.4, (Sol) will not being applied in any constraint obtained
from P. Theorem 2.3 implies that the final configuration ⟨ /0 | S | σ⟩ is such that
S = S′∪{yl : ul ≜ vl}. It follows that

θ1 = {y1 7→ u1, . . . ,yk−1 7→ uk−1,yk+1 7→ uk+1, . . . ,yn 7→ un}

θ2 = {y1 7→ v1, . . . ,yk−1 7→ vk−1,yk+1 7→ vk+1, . . . ,yn 7→ vn}.

where yk ̸∈ dom(θ1)∪dom(θ2).

Lemma 2.1 hence each constraint created from P have index variable different
of y1, . . . ,yn. Then, the substitution σ is such that xσ |pi = xσ

′{yk 7→ yl}|pi , for
every i = 1, . . . ,n. Therefore, Lemma 2.5 implies that

xσ |p j{y j 7→ u j}= y j{y j 7→ u j}= u j = s j,

xσ |p j{y j 7→ v j}= y j{y j 7→ v j}= v j = t j,
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for every j = 1, . . . ,k−1,k+1, . . . ,n. Meanwhile, for pk it follows that

xσ |pk{yl 7→ ul}= yl{yl 7→ ul}= ul = uk = s|p.k,

xσ |pk{yl 7→ vl}= yl{yl 7→ vl}= vl = vk = t|p.k.

By Theorem 2.3 it follows that xσ already have more structure in common with
s and t as possible. And the definition os conflit pair hence that for each conflict
position its the respective conflict pair of subterms is composed for the diverging
subterms of s and t. Then, xσθ1 = s and xσθ2 = t.
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Appendix of Chapter 3

B.1 Proofs of Chapter 3

Lemma B.1 (Uniqueness of generalization variables cf. Lemma 12 in [1]). Let AC⟨s, t⟩ be
an AUPC. If ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifC ⟨P∪{y : u ≜ v} | S | σ⟩ then y does not appear in
any constraint in P or S.

Proof. The proof is by induction on the length n of the derivation

⟨{x : s ≜ t} | /0 | id⟩ n
=⇒AUnifC ⟨P∪{y : u ≜ v} | S | σ⟩.

Base Case: If n = 0 then ⟨{x : s ≜ t} | /0 | id⟩ = ⟨P | S | σ⟩, i.e, P = /0, S = /0 and σ = id.
Therefore, x does not appear in any other constraint of P∪S = /0.

Inductive step: If n > 0 then we split the derivation in

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnifC ⟨P′ | S′ | σ

′⟩=⇒(R) ⟨P∪{y : u ≜ v} | S | σ⟩. (B.1)

The proof follows by analyses of each inference rule (R) of Figure 3.1 applied in the
n-th of the derivation. For rules (Dec), (Sol) and (Rec) the proof it was already done
in Lemma 2.1. Therefore only (C-Dec) case remains to be verified.

Case (R) = (C-Dec):
Then P′ = P1 ∪{y : g(s1,s2)≜ g(t1, t2)}, and the reduction is of the form

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnifC ⟨P1 ∪{y : g(s1,s2)≜ g(t1, t2)} | S′ | σ

′⟩

=⇒(C-Dec) ⟨P1 ∪

{
{y1 : s1 ≜ t1,y2 : s2 ≜ t2}

{y1 : s1 ≜ t2,y2 : s2 ≜ t1}

}
| S | σ

′{y 7→ g(y1,y2)}⟩
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Then, there are two possibilities for ⟨P∪{y : u ≜ v} | S | σ⟩, i.e,

⟨P∪{y : u ≜ v} | S | σ⟩= ⟨P1 ∪{y1 : s1 ≜ t1,y2 : s2 ≜ t2} | S | σ⟩, or

⟨P∪{y : u ≜ v} | S | σ⟩= ⟨P1 ∪{y1 : s1 ≜ t2,y2 : s2 ≜ t1} | S | σ⟩

In any case S = S′ and σ = σ
′{y 7→ g(y1,y2)}.

1. ⟨P∪{y : u ≜ v} | S | σ⟩= ⟨P1 ∪{y1 : s1 ≜ t1,y2 : s2 ≜ t2} | S | σ⟩ .There are
to cases to be considered depending on how constraint of P have y as index
variable.

(a) If y = y1 or y2. Then {y : u ≜ v} was created by application of (C-Dec)
in the n-th step of the reduction. By definition of (C-Dec) rule it follows
that y1,y2 are fresh variables. Hence, y1 and y2 do not occur P1 ∪S.

(b) If y ̸= y1,y2. Then {y : u ≜ v} ∈ P1 and the result follows by induction
hypothesis.

2. ⟨P∪ {y : u ≜ v} | S | σ⟩ = ⟨P1 ∪ {y1 : s1 ≜ t2,y2 : s2 ≜ t1} | S | σ⟩. The
argument since the variables still the same in any part of the configuration.

Lemma B.2 (Range of substitutions cf. Lemma 13 in [1]). Let AC⟨s, t⟩ be an AUPC. If

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨P | S | σ⟩,

then Index(S∪P)⊆ vran(σ)∪{x}, and vran(σ)⊆ V(xσ).

Proof. By induction over length n of the reduction ⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨P | S | σ⟩.

Base Case: If n = 0 then ⟨{x : s ≜ t} | /0 | id⟩ = ⟨P | S | σ⟩, then P = {x : s ≜ t}, S = /0
and σ = id. Hence, the definition of index variables (c.f. Definition 2.2) implies
that Index(P) = {x}, and the definition of range of variables (c.f. Definition 1.7)
implies that and vran(σ) = /0. Then, it is easy to see that Index(P)⊆ vran(σ)∪{x}.
Furthermore, by Definition 1.1 it follows that V(xσ) = {x}, then vran(σ)⊆ V(xσ).

Inductive Step: If n > 0, the reduction unfolds as

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnifC ⟨P′ | S′ | σ

′⟩=⇒(R) ⟨P | S | σ⟩.

The proof follows by analyses of each inference rule (R) of Figure 3.1, where the cases
which (R) is (Dec), (Sol) and (Rec) was already done during the proof of Lemma 2.2.
Therefore remains only (C-Dec) case.
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Case (R) = (C-Dec):
Then, the reduction is of the form:

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnifC ⟨P1 ∪{y : g(s1,s2)≜ g(t1, t2)} | S′ | σ

′⟩

=⇒(C-Dec) ⟨P1 ∪

{
{y1 : s1 ≜ t1,y2 : s2 ≜ t2}

{y1 : s1 ≜ t2,y2 : s2 ≜ t1}

}
| S | σ

′{y 7→ g(y1,y2)}⟩

With P′ = P1 ∪{y : g(s1,s2)≜ g(t1, t2)}. Notice that are two possibilities for P,
depending on how (C-Dec) was applied in the n-th step, i.e,

P = P1 ∪{y1 : s1 ≜ t1,y2 : s2 ≜ t2} or P = P1 ∪{y1 : s1 ≜ t2,y2 : s2 ≜ t1}

In any case S = S′ and σ = σ
′{y 7→ g(y1,y2)}.

By induction hypothesis, it follows that Index(P′ ∪ S′) ⊆ vran(σ ′)∪{x} and
vran(σ ′)⊆ V(xσ).

1. P = P1 ∪{y1 : s1 ≜ t1,y2 : s2 ≜ t2}.
By Definition 2.2 it follows that

Index(P∪S)⊆ Index(P1 ∪S)∪{y1,y2}∪{x}

Since σ = σ
′{y 7→ g(y1,y2)}, by Definition 1.7 it follows that vran(σ ′)⊆

vran(σ)∪{y} and also that {y1,y2} ⊆ vran(xσ). On the other hand, the
induction hypothesis implies that Index(P1 ∪ S) ⊆ vran(σ)∪{x}. Then,
holds that Index(P∪S)⊆ vran(σ ′)∪{x}∪{y}. However, by Lemma 3.1,
y does not appear in any constraint of P1 ∪ S. Hence, Index(P ∪ S) ⊆
vran(σ)∪{x}.
By Definition 1.7 it follows that vran(σ)∪{y}= vran(σ ′)∪{y1,y2}. Hence,
the induction hypothesis implies that vran(σ)∪{y} ⊆ V(xσ

′)∪{y1,y2}.
However, V(xσ) = (V(xσ

′)∪{y1,y2})/y because σ = σ
′{y 7→ g(y1,y2)}.

Therefore, vran(σ)∪V(xσ).

2. P = P1 ∪{y1 : s1 ≜ t2,y2 : s2 ≜ t1}.
The argument is the same since Index(P∪S),vran(σ) and V(xσ) did not
changed.

Lemma B.3 (Lemma 14 in [1]). Let AC⟨s, t⟩ be an AUPC. There is a sequence of the form
⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifC ⟨{y : u ≜ v}∪P | S | σ⟩ if, and only if, (u,v) is a commutative
pair of subterms of s and t.
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Proof.

(=⇒) Suppose there exist a sequence ⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨P∪{y : u ≜ v} | S | σ⟩.

We want to show that (u,v) is a commutative pair of subterms.

The proof is by induction in the length n of the reduction

⟨{x : s ≜ t} | /0 | id⟩ n
=⇒AUnifC ⟨P∪{y : u ≜ v} | S | σ⟩.

Base Case: If n = 0 then ⟨{x : s ≜ t} | /0 | id⟩= ⟨P∪{y : u ≜ v} | S | σ⟩, then S = /0, σ = id,
s = u and t = v and (s, t) is trivially a commutative pair of subterms of s and t.

Induction step: If n > 0 the derivation unfolds as

⟨{x : s ≜ t} | /0 | id⟩ n
=⇒AUnifC ⟨P′ | S′ | σ

′⟩=⇒(R) ⟨P∪{y : u ≜ v} | S | σ⟩

The proof proceeds by analysing of each reduction rule (R) of AUnifC using in the last
step of the derivation. The cases were (R) is (Dec), (Sol) or (Rec) was already verified
in the proof of Lemma 2.3. Then, only the case where (R) is the (C-Dec) remains to
be checked.

Case (R) = (C-Dec):
Then the derivation is of the form

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnifC ⟨P1 ∪{y : g(u1,u2)≜ g(v1,v2)} | S′ | σ

′⟩

=⇒(C-Dec) ⟨P1 ∪

{
{y1 : u1 ≜ v1,y2 : u2 ≜ v2}

{y1 : u1 ≜ v2,y2 : u2 ≜ v1}

}
| S | σ

′{y 7→ g(y1,y2)}⟩

where P′ = P1 ∪{y : g(u1,u2)≜ g(v1,v2)}. Notice that are two possibilities of
⟨P∪{y : u ≜ v} | S | σ⟩, that are

⟨P∪{y : u ≜ v} | S | σ⟩= ⟨P1 ∪{y1 : u1 ≜ v1,y2 : u2 ≜ v2} | S | σ⟩,
⟨P∪{y : u ≜ v} | S | σ⟩= ⟨P1 ∪{y1 : u1 ≜ v2,y2 : u2 ≜ v1} | S | σ⟩.

In any case S = S′ and σ = σ
′{y 7→ g(y1,y2)}, thus they differs only in the set of

unsolved constraints P∪{y : u ≜ v}.

1. If P∪{y : u ≜ v}= P1 ∪{y1 : u1 ≜ v1,y2 : u2 ≜ v2}.

(a) If y ̸= y1,y2, then {y : u ≜ v} ∈ P1 and the result follows by induction
hypothesis.
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(b) If y = y1 then {y : u ≜ v}= {y1 : u1 ≜ v1}. Therefore, it is necessary to
show that (u1,v1) is a commutative pair of subterms.
The induction hypothesis applies in {y : g(u1,u2) ≜ g(v1,v2)} ∈ P′,
which implies that (g(u1,u2),g(v1,v2)) is a commutative pair of sub-
terms of s and t. Therefore, by Definition 3.1 it follows that exist
positions q ∈ pos(s) and q′ ∈ pos(t) such that s|p′ = g(u1,u2) and
t|q′ = g(v1,v2). As taking p = q.1 and p′ = q′.1 it follows that

s|p = s|q.1 = g(u1,u2)|1 = u1 and t|p′ = t|q′.1 = g(v1,v2)|1 = v1.

Claim 1: depth(p) = root(p′).

Since the induction hypothesis implies that depth(q) = depth(q′), it
follows that

depth(p) = 1+depth(q)
(I.H.)
= 1+depth(q′) = depth(p′).

Then, Claim 1 is true.

Claim 2: For each 0 ≤ i < depth(p), root(s|(p)i) = root(t|(p′)i).

Since (s|q, t|q′) = (g(u1,u2),g(v1,v2)) is a commutative pair of sub-
terms of s and t, the induction hypothesis implies that for each 0 ≤ i <
depth(q), root(s|(q)i) = root(t|(q′)i).

The Lemma 1.2 yields that for each 0 ≤ i < depth(q) it holds that
(q)i = (p)i. Hence, it follows that

root(s|(p)i) = root(s|(q)i), and root(t|(p′)i) = root(t|(q′)i).

Therefore, for each 0 ≤ i < depth(q) it holds that

root(s|(p)i) = root(s|(q)i) = root(t|(q′)i) = root(t|(p′)i).

Then, it remains shows that Claim 2 holds for for i = depth(q) since
depth(p) = depth(q)+1.

• If depth(q) = 0.
Then, s = g(u1,u2) and t = g(v1,v2). Therefore,

root(s|
(p)0) = g = root(t|

(p′)0)

follows by definition of prefix of a position.
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• If depth(q)> 0.
It follows by Lemma 1.1 that (q)i = q and (q′)i

= q′. Hence, Lemma 1.2
implies that

root(s|(p)i) = root(s|(q)i)

= root(g(u1,u2))

= root(g(v1,v2))

= root(t|(q′)i) = root(t|(p′)i).

Thus, Claim 2 is true.

Claim 3: For each 0 < i ≤ depth(p),

i) if root(s|
(p)i−1) = f ∈ Σ /0, then (p)i = (p′)i, or

ii) if root(s|
(p)i−1) = g ∈ ΣC, then (p)i = ((p′)i mod 2)+1.

• If depth(q) = 0.
Then s = g(u1,u2), t = (v1,v2) and depth(p) = 1. Then, by defini-
tion of prefix of a position, root(s|

(p)1−1) = root((p)0) = g and by
definition of index of a position (p)1 = 1 = (p′)1

• If depth(q)> 0.
Then, the Lemma 1.3 yields that for each 1 < i ≤ depth(q) holds that
(p)i = (p′)1 and (p′)i

= (q′)i. Therefore, by Lemma 1.2 and induction
hypothesis it follows that

i) if root(s|
(p)i−1) = root(s|

(q)i−1) = f ∈ Σ /0, then

(p)i = (q)i
(I.H)
= (q′)i = (p′)i,

ii) if root(s|
(p)i−1) = root(s|

(q)i−1) = g ∈ ΣC,then

(p)i = (q)i (I.H.)
= ((q′)i mod 2)+1 = ((p′)i mod 2)+1.

By the previous case, for i = depth(p),

root(s|
(p)i−1)= root(s|

(q)i−1)= root(s|q)= root(g(u1,u2))= g∈ΣC.

The Lemma 1.1 also implies that

(p)i = (q.1)i = 1 = (q′.1)i = (p′.1)i.
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In conclusion, Claim 1, Claim 2 and Claim 3 implies that (u1,v1) is a
commutative pair of subterms of s and t.

(c) If y = y2. Then, {y : u ≜ v}= {y2 : u2 ≜ v2}. Therefore, it is necessary
shows that (u1,v2) is a commutative pair of subterms of s and t. The
argument is the same just taking p = q.2 and p′ = q′.2.

2. If P∪{y : u ≜ v}= P1 ∪{y1 : u1 ≜ v2,y2 : u2 ≜ v1}.

(a) If y ̸= y1,y2 then {y : u ≜ v} ∈ P1 and the result follows by induction
hypothesis.

(b) If y = y1, then {y : u ≜ v}= {y1 : u1 ≜ v2}. Therefore, it is necessary to
show that (u1,v2) is a commutative pair of subterm.
By the previous case, there are positions q ∈ pos(s) and q′ ∈ pos(t) such
that q′ = g(u1,u2) and t|q′ = g(v1,v2). As taking p = q.1 and p′ = q.2.
The analyses of the root of the subterms of prefix positions p of s and p′

of t is the same as did in the Claim 2 of the previous case because the
prefix of a position analyses the terms trees of s and t in positions above
p and p′. And, the analyses of index variables did in Claim 3 is the
same as the previous case to i = 0 until i = depth(q), for i = depth(p)
it follows, by Lemma 1.1 and Lemma 1.3, that

(p)i = (q.1)i = 1

= (2 mod 2)+1

= ((q′.1)i mod 2)+1

= ((p′)i mod 2)+1

Therefore p and p′ still satisfies the conditions of Definition 3.1 because
root(s|(p)i−1) = g ∈ ΣC.

(c) If y = y2 then {y : u ≜ v}= {y2 : u2 ≜ v1}. Then it is necessary to show
that (u2,v1) is a commutative pair of subterms. To do it, the argument is
analogous as the did above, just taking p = q.2 and p′ = q′.1.

(⇐=) Suppose that (u,v) is an commutative pair of subterms of s and t. We want to show
that exists a derivation such that

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨P∪{y : u ≜ v} | S | σ⟩
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The definition of commutative pair of subterms given in Definition 3.1 says that
exist positions p ∈ pos(s) and p′ ∈ pos(t) such that s|p = u, tp′ = v and depth(p) =
depth(p′). Then proof follows by induction over the depth of p.

Base Case: If depth(p) = 0, then p = ε and since depth(p) = depth(p′) it follows that
p′ = ε too. Therefore, s = s|ε = u and t = t|ε = v. Hence the result follows for
P = S = /0 and σ = id, i.e, ⟨{x : s ≜ t} | /0 | id⟩= ⟨P∪{y : u ≜ v} | S | σ⟩.

Inductive Step: Suppose that depth(p) = n+1 and (s|p, tp′) = (u,v) is a commutative pair
of subterms.

Notice that exists positions q ∈ pos(s) and q′ ∈ pos(t) such that p = q.i, p′ = q′. j, for
i, j ∈N, and depth(q)= depth(q′)= n. Since (u,v) is a commutative pair of subterms,
the Definition 3.1 yields that (s|q, t|q′) it is also a commutative pair of subterms. Then,
the induction hypothesis implies that exists a derivation of the form

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨P1 ∪{z : s|q ≜ t|q′} | S | σ

′⟩.

We will show that exists a derivation of the form

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨P∪{y : u ≜ v} | S | σ⟩.

Since (u,v) is a commutative pair of subterms it follows by definition that

root(s|
(p)n+1) = root(s|q) = root(t|q′) = root(t|

(p′)n+1).

then root(s|q) = root(t|q′). There are two cases to analysing depending on if
root(s|q) = root(t|q′) is an free function symbol f ∈ Σ /0 or an commutative function
symbol g ∈ ΣC.

1. If root(s|q) = root(t|q′) = f ∈ Σ.

Then, s|q = f (un) and t|q′ = f (vn), where u = s|p.i is the i-th argument of f (un)

and v = t|q′. j is the j-th argument of f (vn), i.e, u = u j and v = v j.

Hence, the induction hypothesis implies that

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨P1 ∪{z : f (um)≜ f (vm)} | S | σ

′⟩ (1)
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By Definition 3.1 it follows that the index of p and p′ must be equals at depth n,
in other words, (p′)n = (p′)n. On the other hand, by Lemma 1.1 it follows that
(p)n = (q.i)n = i and (p′)n = (q′. j)n = j. Then, i = j and (u,v) = (ui,vi).

As applying (Dec) in (1) we obtain the following derivation

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨P∪{y : ui ≜ vi} | S | σ⟩,

where P = P1 ∪ (
n⋃

k=1

yk : uk ≜ vk)/{yi : ui ≜ vi}, σ = σ
′{y 7→ f (ym)} and y = yi.

2. If root(s|q) = root(t|q′) = g ∈ ΣC.

Then s|q = g(u1,u2) and t|q = g(v1,v2). Where u = ui, with i = 1,2 and v = v j

with j = 1,2. By the induction hypothesis it follows that exists a derivation such
that

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨P1 ∪{y : g(u1,u2)≜ g(v1,v2)} | S | σ

′⟩

there are two cases to analysing.

a. If i = (p)n = (p′)n = j, it follows that u = ui and v = ui, with i = 1,2, in
other worlds: (u,v) = (u1,v1) or (u,v) = (u2,v2). In both cases, applying
(C-Dec) in the least configuration of the derivation we obtain that

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnify ⟨P∪{y : u ≜ v} | S | σ⟩,

where P = P1 ∪{y j : u j ≜ v j}, σ = σ
′{y 7→ g(y1,y2)} and y = yi.

b. If i = (p)n = ((p′)n mod 2)+1 = ( j mod 2)+1, it follows that u = ui and
v = v(i mod 2)+1, in other worlds: (u,v) = (u1,v2) or (u,v) = (u2,v1). In both
cases, applying (C-Dec) in the last configuration we obtain that

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨P∪{y : u ≜ v} | S | σ⟩

where P = P1 ∪{y j : u j ≜ vi}, σ = σ
′{y 7→ g(y1,y2)} and y = yi.

Lemma B.4 (Lemma 15 in [1]). Let AC⟨s, t⟩ be an AUPC. There is a derivation of the form
⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifC ⟨P | {u ≜ v}∪ S | σ⟩ if, and only if, (u,v) is a commutative
conflict pair of s and t.

Proof.
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(=⇒) Suppose that ⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨P | {y : u ≜ v}∪S | σ⟩ then the Solve rule

was applied in some step in the constraint {y : u ≜ v}. Then, it is possible unfolds the
derivation as:

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨{y : u ≜ v}∪P′ | S′ | σ

′⟩
=⇒(Sol) ⟨P′ | {y : u ≜ v}∪S′ | σ

′⟩
∗

=⇒AUnifC ⟨P | {y : u ≜ v}∪S | σ⟩

Thus, by Lemma 3.2, (u,v) is an commutative pair of subterms of s and t by Def-
inition 3.1. Besides, since Solve rule was applied in {y : u ≜ v} it follows that
root(u) ̸= root(v), therefore (u,v) is one commutative conflict pair of subterms
of s and t by Definition 3.2.

(⇐=) If (u,v) is one commutative conflict pair of s and t then by definition (u,v) is also one
commutative pair of subterms of s and t, therefore Lemma 3.2 hence there exists a
derivation of the form ⟨{x : s ≜ t} | /0 | id⟩=⇒ ⟨{y : u ≜ v}∪P | S | σ⟩. There are two
cases, depending on the constraints of S.

1. If there is no constraint {z : u ≜ s} ∈ S, then the result follows by application of
(Sol).

2. If there exists a constraint {z : u ≜ v} ∈ S, then (Sol) was applied in a previous
step of the derivation. Then the result follows immediately.

Lemma B.5. Let AC⟨s, t⟩ be an AUPC. If exists a derivation of the form

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨{y : u ≜ v}∪P | S | σ⟩

then there exist positions p ∈ pos(s), p′ ∈ pos(t) such that

(xσ)|p = y, s|p = (xσ)|p{y 7→ u}= u, t|p′ = (xσ)|p{y 7→ v}= v,

Proof. By induction on the length of n.

Base Case: if n = 0 then ⟨P | S | σ⟩ = ⟨{x : s ≜ t} | /0 | id⟩. Then, taking p = p′ = ε , it
follows that s|ε = (xid){x 7→ s}= s, t|ε = (xid){x 7→ t}= t and (xid)|ε = x.
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Inductive Step: Suppose that n > 0 and consider the reduction

⟨{x : s ≜ t} | /0 | id⟩ n
=⇒AUnifC ⟨P′ | S′ | σ

′⟩=⇒(R) ⟨{y : u ≜ v}∪P | S | σ⟩.

We want to show that exist positions p ∈ pos(s), p′ ∈ pos(t) such that (xσ)|p = y,
s|p = (xσ)|p{y 7→ u}= u and t|p′ = (xσ)|p{y 7→ v}= v.

The proof proceeds by analysing of each inference rule of Figure 3.1. The cases for
(Dec), (Sol) and (Rec) are similar to the proof of Lemma 2.5, therefore to complete
the proof only remains the case for (C-Dec).

Case (R) = (C-Dec) :
Then, the reduction is of the form

⟨{x : s ≜ t} | /0 | id⟩
AUnifC ∗

⟨P1 ∪{z : g(u1,u2)≜ g(v1,v2)} | S | σ
′⟩

(C-Dec) (C-Dec)

⟨P1 ∪{z1 : s1 ≜ t1,z2 : s2 ≜ t2} | S | σ⟩ ⟨P1 ∪{z1 : s1 ≜ t2,z2 : s2 ≜ t1} | S | σ⟩,

where, P′ = P1 ∪{z : g(u1,u2) ≜ g(v1,v2)}, S = S′ and σ = σ
′{z 7→ g(z1,z2)}.

There are two cases for P, depending on how (C-Dec) was applied.

• Case 1: If P = P1 ∪{z1 : u1 ≜ v1,z2 : u2 ≜ v2}.
There are two cases to consider:

1. If y ̸= z1,z2 then y, then z : u ≜ v ∈ P′ and the result follows by induction
hypothesis.

2. If y = zi for some i = 1,2, them u = ui and v = vi, i.e, u is the i-th argu-
ment of g(u1,u2) and v is the i-th argument of g(v1,v2). Notice that the
induction hypothesis holds for {z : g(u1,u2)≜ g(v1,v2)} and it follows
that exist positions q ∈ pos(s), q′ ∈ pos(t) such that (xσ

′) = z, s|q =
(xσ)|q{z 7→ g(u1,u2)} and t|q′ = (xσ)|q{z 7→ g(v1,v2)}= g(v1,v2). As
take p = q.i and p′ = q′.1 this prove follows similarly as the proof of
Lemma2.5.

• Case 2: If P = P1 ∪{z1 : u1 ≜ v2,z2 : u1 ≜ v1}.
There are two cases to consider:

1. If y ̸= z1,z2 then y, then z : u ≜ v ∈ P′ and the result follows by induction
hypothesis.
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2. If y = zi for some i = 1,2, them u = ui and v = v(i+1)mod2, i.e, (u,v) =
(u1,u2) or (u,v) = (u2,v1). In both cases, by the induction hypothesis it
follows that exist positions q ∈ pos(s), q′ ∈ pos(t) such that (xσ

′) = z,
s|q =(xσ)|q{z 7→ g(u1,u2)} and t|q′ =(xσ)|q{z 7→ g(v1,v2)}= g(v1,v2)

and the proof is similar to the proof of Lemma 2.5, just

(a) taking p = q.1 and p′ = p.2 if (u,v) = (u1,v2), or

(b) taking p = q.2 and p′ = q′.2 if (u,v) = (u2,v1).

Lemma B.6 (Lemma 16 in [1]). Given terms s, t ∈ T (X ,Σ /0∪C), if u ∈ genC(s, t) then there
is a derivation ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifC ⟨P | S | σ⟩ such that u ≡C xσ .

Proof. By induction on the structure of u.

Case 1: u = x.

Then the initial configuration ⟨{x : s ≜ t} | /0 | id⟩ outputs x id = x trivially.

Case 2: u = f (u1, . . . ,un).

The proof is similar to the proof of Lemma 2.7.

Case 3: u = g(u1,u2).

There is a pair of substitutions θ = (θ1,θ2) such that uθ ≡C (s, t), that is s and t are
of the form s = g(s1,s2) and t = g(t1, t2). Therefore, rule (C-Dec) applies in the initial
configuration, as follows:

⟨{x : s ≜ t} | /0 | id⟩
(C-Dec) (C-Dec)

⟨{x1 : s1 ≜ t1,x2 : s2 ≜ t2} | /0 | {x 7→ g(x1,x2)}︸ ︷︷ ︸
σ0

⟩ ⟨{y1 : s1 ≜ t2,y2 : s2 ≜ t1} | /0 | {x 7→ g(y1,y2)}︸ ︷︷ ︸
σ ′

0

⟩

depending on the instances of the subterms u1,u2 of u, there are four cases:

1. u1 ∈ genC(s1, t1) and u2 ∈ genC(s2, t2).

Then induction hypothesis in hence there are reductions

⟨{x1 : s1 ≜ t1} | /0 | id⟩ ∗
=⇒(R1) ⟨C1 | S1 | σ1⟩,

⟨{x1 : s1 ≜ t2} | /0 | id⟩ ∗
=⇒(R2) ⟨C2 | S2 | σ2⟩
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where (R1),(R2) represents derivations of AUnifC simplification rules.

The deal is combine this derivations like we did in the prove of Lemma 2.7. This
combination is analogous as the combination did in the prove of Lemma 2.7.
Then, we obtain

⟨

{
x1 : s1 ≜ t1

x2 : s2 ≜ t2

}
| /0 | σ0⟩

∗
=⇒AUnifC ⟨P′ | S′ | σ⟩

where σ is such that xσ =C u ∈ genC(s, t).

2. u1 ∈ genC(s1, t2) and u2 ∈ genC(s2, t1).

This combination is similar to what was done in the previous case, obtaining

⟨

{
y1 : s1 ≜ t2

y2 : s2 ≜ t1

}
| /0 | σ0⟩

∗
=⇒AUnifC ⟨P′ | S′ | σ⟩

3. u1 ∈ genC(s2, t2) and u2 ∈ genC(s2, t1).

This generalizer is equivalent modulo C as the generalizer of the (Case 1), then
the result follows.

4. u1 ∈ genC(s2, t1) and u2 ∈ genC(s1, t2):

This generalizer is equivalent modulo C as the generalizer of the Case 2, then the
result follows.





Appendix C

Appedinx of Chapter 4

C.1 Proofs of Section 4.3

Lemma C.1 (Uniqueness of generalization variables cf. Lemma 17 in [1].). Let AA⟨s, t⟩ be
an AUPA. If ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifA ⟨P∪{y : u ≜ v} | S | σ⟩ then y does not appear in
any constraint in P or S.

Proof. The proof is by induction on the length n of the derivation

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifA ⟨P∪{y : u ≜ v} | S | σ⟩.

Induction Base: If n = 0 then ⟨P∪{y : u ≜ v} | S | σ⟩ = ⟨{x : s ≜ t} | /0 | id⟩, i.e, P = /0,
S = /0 and σ = id. Therefore, x does not appear in any constraint of P∪S = /0.

Inductive Step:If n > 0 let’s split the derivation in

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnifA ⟨P′ | S′ | σ

′⟩=⇒(R) ⟨P | S | σ⟩

The proof follows by analyses of each inference rule (R) of Figure 4.1 applies in the
n-th of the derivation. For rules (Dec), (Sol) and (Rec) the proof was already done in
Lemma 2.1. Therefore, only (A-Left) and (A-Right) cases remains.

Case (R)=(A-Left):

Then the n-step of the reduction is of the form
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⟨P1 ∪{y : h(un)≜ h(vm)} | S | σ ′⟩

((A-Left)) ��

⟨P1 ∪

{
y1 : h(u1, . . . ,uk)≜ u1,

y2 : h(uk+1, . . . ,un)≜ h(v2, . . . ,vm)

}
| S | σ⟩

There are two cases to analysing

1. If y ̸= y1,y2 then {y : u ≜ v} ∈ P1 and the result follows by induction hy-
potheses,

2. If y = y1 or y = y2. The result follows by the freshness of y1 and y2.

Case (R) = (A-Right):

The argument is analogue as the previous case.

Lemma C.2 (Range of substitutions c.f. in Lemma 18 of [1]). Let AA⟨s, t⟩ be an AUPA. If

{x : s ≜ t | /0 | id}=⇒AUnifA ⟨P | S | σ⟩

then
Index(P∪S)⊆ vran(σ)∪{x} and vran(σ)⊆ V(xσ).

Proof. By induction on the length ⟨{x : s ≜ t} | /0 | id⟩ n
=⇒AUnifA ⟨P | S | σ⟩.

Induction base: If n = 0 then ⟨P | S | σ⟩ = ⟨{x : s ≜ t} | /0 | id⟩, thus P = {x : s ≜ t},
S = /0 and σ = id. Therefore, the result follows by Definition 1.1, 1.7 and 2.2, i.e,
vran(σ) = /0 ⊆ {x}= V(xσ) and Index(P∪S) = x ⊆ {x}

Induction step: If n > 0, the reduction unfolds as

⟨{x : s ≜ t} | /0 | id⟩ n−1
=⇒AUnifA ⟨P′ | S′ | σ

′⟩=⇒(R) ⟨P | S | σ⟩

The proof follows by analyses of each inference rule (R) of Figure 4.1, where the cases
where (R) is (Dec), (Sol) or (Rec) were already verified in the proof of Lemma 2.2.
Thus, remains analyses the cases which (R) is (A-Left) or (A-Left).

Case (R) = (A-Left):



C.1 Proofs of Section 4.3 123

Thus, the n-th of the reduction is of the form

⟨P1 ∪{y : h(un)≜ h(vm)} | S | σ ′⟩

((A-Left)) ��

⟨P1 ∪

{
y1 : h(u1, . . . ,uk)≜ u1,

y2 : h(uk+1, . . . ,un)≜ h(v2, . . . ,vm)

}
| S | σ⟩

With P′ = P1 ∪{y : h(un) ≜ h(vm)}. Notice that are n− 1 possibilities for P,
depending on how (A-Left) was applied, i.e, one possibility for each 1≤ k ≤ n−1,

P = P1 ∪{y1 : h(u1, . . . ,uk)≜ u1,y2 : h(uk+1, . . . ,un)≜ h(v2, . . . ,vm)}.

In any case S = S′ and σ = σ
′{y 7→ h(y1,y2)}.

The definition of index variables hence that

Index(P∪S)⊆ Index(P1 ∪S)∪{y1,y2}∪{x}.

Since σ =σ
′{y 7→ h(y1,y2)} it follows that vran(σ)= (vran(σ ′)∪{y1,y2})/{y}.

On the other hand, the variable y does not appear in any constraint of S∪P. Hence,
the result follows by induction hypotheses, i.e. Index(P∪S)⊆ vran(σ).

Besides, σ = σ
′{y 7→ h(y1,y2)} implies that V(xσ) = (V(xσ

′)∪{y1,y2}/{y}.
Then, by induction hypotheses it follows that vran(σ)⊆ V(xσ).

Case (R) = (A-Right): The proof is analogous as the previous case.

Lemma C.3 (Lemma 20 in [1]). Given flattened terms s, t of terms in T (X ,Σ /0∪A) then there
exists a sequence ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifA ⟨P | {y : u ≜ v}∪S | σ⟩ if, and only if (u,v)
is an associative conflict pair of s and t.

Proof.

(=⇒) Suppose that is a sequence ⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifC ⟨P | {y : u ≜ v}∪S | σ⟩, we

want to show that (u,v) is a conflict pair of subterms of s and t.

Since {y : u ≜ v} in the set of solved constraints, which implies that (Sol) rule was
applied at some step in the constraint {y : u ≜ v}. Then, the reduction can be unfolded
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as

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifA ⟨{y : u ≜ v}∪P′ | S′ | σ

′⟩
=⇒(Sol) ⟨P′ | {y : u ≜ v}∪S′} | σ

′⟩
∗

=⇒AUnifA ⟨P | {y : u ≜ v}∪S} | σ⟩

Then, Lemma 4.4 in ⟨{x : s≜ t} | /0 | id⟩ ∗
=⇒AUnifA ⟨{y : u≜ v}∪P′ | S′ |σ

′⟩ hence (u,v)
is an associative pair of subterms. And, by definition of (Sol) rule, root(u) ̸= root(v).
Therefore the result follows by definition of associative conflict pair of subterms.

(⇐=) Suppose that (u,v) is an associative conflict pair of s and t. We want to show that there
exists a derivation such that ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifA ⟨P | {y : u ≜ v}∪S | σ⟩.

By definition, (u,v) is an associative pair of s and t such that root(u) ̸= root(v). Since
the definition of associative pair have two cases, this proof is divided accordingly.

Case 1: (u,v) = (s|p, tp′) and (p, p′) is an associative pair of positions of s and t. Then,
Lemma 4.2 implies that there exists a sequence

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifA ⟨P∪{y : u ≜ v} | S | σ⟩=C.

The results follows by an application of (Sol) in C.

Case 2: u = h(un) and v = h(vm) there exists an associative pair of positions (p′, p) of
s and t, such that

s|p = h(s1, . . . ,sk,u1, . . . ,un,sk+1 . . . ,sq),

t|p′ = h(t1, . . . , tk′,v1, . . . ,vm, tk′+1, . . . , tq′)

There are tree cases to be analysed, depending on the arguments of s|q that appears
before and after u1, . . . ,un.

1. If both {s1, . . . ,sk}= /0 and {sk+1, . . . ,sq}= /0.

Then, by Definition 4.3 it follows that {t1, . . . , tk′} = /0 and {tk′+1, . . . , tq′} = /0.
Thus, s|p′ = h(un) = u and t|p′ = h(vm) = v and the result follows by the Case 1.

2. If {s1, . . . ,sk}= /0 and {sk+1, . . . ,sq} ̸= /0.

Notice that if both n,m> 1, then u= h(u1, . . . ,un), v= h(v1, . . . ,vm) and root(u)=
root(v), which yields that (u,v) is not an associative conflict pair of s and t and
there is nothing to show. Therefore, we will only analysing the cases where
(u,v) = (u1,h(vm)) and (u,v) = (h(un),v1).
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(a) (u,v) = (u1,h(vm)).
Then, by Definition 4.3 it follows that {t1, . . . , tk′}= /0 and {tk′+1, . . . , tq′} ≠ /0.
Therefore, s|p = h(u1,sk1, . . . ,sq) and t|p′ = (v1, . . . ,vm, tk′+1 . . . , tq′). By
Lemma 4.2 it follows that exists a reduction of the form

⟨{x : s ≜ t} | /0 | id⟩ ∗
=⇒AUnifA ⟨P′∪{z : (s|p)≜ (t|p′)} | S | σ

′⟩. (1)

Hence,

⟨P′∪{z : (s|p)≜ (t|p′)} | S | σ
′⟩

(A-Right)

⟨P′∪

{
y1 : u1 ≜ h(v1, . . . ,vm),

y2 : h(u2, . . . ,sq)≜ h(vk′+1, . . . ,vq′)

}
| S | σ

′{z 7→ h(y1,y2)}︸ ︷︷ ︸
σ

⟩

(Sol)

⟨P | {y1 : u1 ≜ h(v1, . . . ,vm)}∪S | σ⟩

Where P = P′ ∪ {y2 : h(u2, . . . ,sq) ≜ h(vk′+1, . . . ,vq′)}. Thus, the result
follows as taking y = y1 and by the transitivity of ∗

=⇒AUnifA .

(b) (u,v) = (h(un),v1).
Thus, s|p = h(u1, . . . ,un,sk1 . . . ,sq) and t|p′ = h(v1, tk′+1, . . . , tq′).
The result follows by analogous argument, just applying (A-Left) in (1)
instead of (A-Right).

3. If {s1, . . . ,sk} ̸= /0 and {sk+1, . . . ,sq}= /0.

The argument is analogous as the previous case.

Lemma C.4 (Lemma 21 in [1]). Let AA⟨s, t⟩ be an AUPA. If u ∈ genA(s, t) then there exist
a sequence ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifA ⟨P | S | σ⟩ such that u ≡A xσ .

Proof. The proof is by structural induction on term xσ

Case 1: u = x.

Then the initial configuration ⟨{x : s ≜ t} | /0 | id⟩ outputs xid = x trivially.

Case 2: u = f (u1, . . . ,un), with f ∈ Σ /0.

The proof is similar to the proof of Lemma 2.7.
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Case 3: u = h(u1, . . . ,uk), with h ∈ ΣA.

Then there is a pair of substitutions θ = (θ1,θ2) such that θ1 = s and θ2 = t. Therefore,
root(s) = root(t) = h∈ ΣA which implies that s and t are of the form s= h(s1, . . . ,sn)

and t = h(t1, . . . , tm).

Notice that k ≤ min(n,m) and that each ui generalizers an associative pair of subterms
(s′i, t

′
i) of s and t. Further, by induction hypotheses it follows that exist derivations

⟨{xi : s′i ≜ t ′i} | /0 | id⟩ ∗
=⇒(Ri) ⟨Ci | Si | σi⟩

such that ui ≡A (xσi) for each i ≤ k. Where (Ri), for i ≤ k, represent derivations of
AUnifA simplification rules.

The deal is to combine the derivations (Ri) like we did in the prove of Lemma 2.7.
However, to it is necessary first to find a derivation ⟨{x : s ≜ t} | /0 | id⟩ ∗

=⇒AUnifA ⟨P
′ |

S′ | σ
′⟩ such that each constraint {xi : s′i ≜ t ′i} occurs on P′ and σ

′ is a unflattened form
of h(x1, . . . ,xn).

1. k = m = n.

Then ui ∈ genA(si, ti), for each 1 ≤ i ≤ n, and by Lemma 4.2 it follows that exist
a derivation of the form:

⟨{x : s ≜ t} | /0 | id⟩=⇒(A-Left) ⟨{x1 : s1 ≜ t1,y1 : h(s2, . . . ,sn)≜ h(t2, . . . , tn)} | σ
′⟩

=⇒(A-Left) ⟨P1 ∪


x1 : s1 ≜ t1,

x2 : s2 ≜ t2,

y2 : h(s3, . . . ,sn)≜ h(t3, . . . , tn)

 | /0 | σ
′′⟩

∗
=⇒(A-Left) ⟨{x1 : s1 ≜ t1, . . . ,xn : sn ≜ tn} | /0 | σ

′′′⟩

with σ
′ = {x 7→ h(x1,y1)}, σ

′′ = {x 7→ h(x1,h(x2, . . .h(xn,y2)))} and

xσ
′′′ = h(x1,h(x2,h(. . . ,h(xn−1,xn)))),

which implies that xσ
′′′ is a unflattened form of h(x1, . . . ,xn).

Therefore, the result follows as combine the derivations (Ri) with i ≤ 1 like we
did in Lemma 2.7.

2. n ̸= m.

Then in u = h(u1, . . . ,un) there exist u j such that u j ∈ genA(sl,h(tl′, . . . , tr′)) or
u j ∈ genA(h(sl, . . . ,sr), tl).
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(a) if u j ∈ genA(sl,h(t|l′), . . . , t|r′) then by Lemma 4.2 and Lemma 4.3 it follows
that exist a reduction

⟨{x : s ≜ t} | /0 | id⟩
∗AUnifA

⟨{xn : s1 ≜ t1, . . . ,xl : sl ≜ h(tl′, . . . , tr′), . . . ,xk : sk ≜ tk} | /0 | σ
′⟩.

Where, by Lemma 4.1, it follows that xσ
′ is a unflattened version of h(x1, . . . ,xn).

Thus, the result follows as combine the derivations (Ri) with i ≤ k like we
did in Lemma 2.7.

(b) If u j ∈ genA(h(sl, . . . ,sr), tl), the proof is analogous as the case above.

C.2 Remarks of Chapter 4

C.2.1 Counter Example For Lemma 19 in [1].

The Lemma 19 in [1] (see Figure C.1) says that for every associative pair of subterms (u,v),
exist a constraint representing the AUPA for u and v, {y : u ≜ v}, in some derivation of
AUnifA.

Fig. C.1 Lemma 19 in [1].

However, the rules of AUnifA presented in Figure 4.1 applied in ⟨{x : s ≜ t} | /0 | id⟩
does not produce constraints that represents all associative pairs of subterms during its
simplification tree. As instance, for flattened terms s = h(a,b,c,d) and t = h(a′,b′,c′,d′),
with h ∈ ΣA. The Definition 4.3 yields that the following pairs of subterms are associative
ones:

(h(a,b),h(a′,b′)), (h(a,b,c),h(a′,b′)), (h(a,b),h(a′,b′,c′)) and (h(b,c),h(b′,c′)) (⋆)

And, applying the rules of Figure 4.1 in ⟨{x : s ≜ t} | /0 | id⟩, we obtain that the derivation
tree of AUnifA(s, t) is of the form illustrated bellow. In this figure we use ∗

=⇒ to denote
∗

=⇒AUnifA for short.
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⟨{x : s ≜ t} | /0 | id⟩

⋆ ⋆ ⋆ ⋆ ⋆

C1

⋆ ⋆

C2

⋆ ⋆

C3

⋆

C4

⋆ ⋆

C5

⋆

C1.1

⋆

C1.2

⋆

C2.1

⋆

C2.2

⋆

C4.1

⋆

C4.2

⋆

C1.1.1

⋆

N1 N2 N3 N4 N5 N6 N7 N8

with

C1 = ⟨{x2 : h(b,c,d)≜ h(b′,c′,d′)} | {x1 : a ≜ a′} | {x 7→ h(x1,x2)}⟩,

C2 = ⟨{x2 : h(c,d)≜ h(b′,c′,d′)} | {x1 : h(a,b)≜ a′} | {x 7→ h(x1,x2)}⟩,

C3 = ⟨{x1 : h(a,b,c)≜ a′,x2 : d ≜ h(b′,c′,d′)} | /0 | {x 7→ h(x1,x2)}⟩,

C4 = ⟨{x2 : h(b,c,d)≜ h(c′,d′)} | {x1 : a ≜ h(a′,b′)} | {x 7→ h(x1,x2)}⟩,

C5 = ⟨{x1 : a ≜ h(a′,b′,c′),x2 : h(b,c,d)≜ d′} | /0 | {x 7→ h(x1,x2)}⟩,

C1.1 = ⟨{x3 : b ≜ b′,x4 : h(c,d)≜ h(c′,d′)} | {x1 : a ≜ a′}{x 7→ h(x1,h(x3,x4))}⟩,

C1.2 = ⟨{x3 : h(b,c)≜ b′,x4 : d ≜ h(c′,d′)} | {x1 : a ≜ a′} | {x 7→ h(x1,h(x3,x4))⟩,

C2.1 = ⟨{x3 : c ≜ b′,x4 : d ≜ h(c,d′)} | {x1 : h(a,b)≜ a′} | {x 7→ h(x1,h(x3,x4))⟩,

C2.2 = ⟨{x3 : c ≜ h(b′,c′),x4 : d ≜ d′ | {x1 : h(a,b)≜ a′} | {x 7→ h(x1,h(x3,x4))⟩,

C4.1 = ⟨{x3 : b ≜ c,x4 : h(c,d)≜ d′} | {x1 : a ≜ h(a,b′)} | {x 7→ h(x1,h(x3,x4))⟩,

C4.2 = ⟨{x3 : h(b,c)≜ c′,x4 : d ≜ d′} | {x1 : a ≜ h(a,b′)} | {x 7→ h(x1,h(x3,x4))⟩,

C1.1.1 = ⟨{x5 : c ≜ c′,x6 : d ≜ d′} | {x1 : a ≜ a′,x3 : b ≜ b′} | {x 7→ h(x1,h(x3,h(x5,x6)))}⟩,

where N1, . . . ,N8 are the normal forms of ⟨{x : s ≜ t} | /0 | id⟩ w.r.t. =⇒AUnifA . Notice that
the application of the rules of Figure 4.1 will generates only repeat constraints, i.e, constraints
that had previously appeared in the derivation. Thus, we have described all the constraints
that appears in the simplification tree of this problem. Therefore, in this derivation there is
no constraint representing any of the associative pairs of subterms listed in (⋆) and it is a
contradiction of Lemma 19 in [1].
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