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Detecção de Esquizofrenia com Base em Análise Estrutural do Cérebro Us-

ando Aprendizagem de Máquina Aplicada a Combinações de Cortes em Imagens

Volumétricas de Ressonância Magnética

Resumo Estendido

A Esquizofrenia é uma doença mental com muitas manifestações cĺınicas, que transfor-

mam o diagnóstico em um grande desafio. Até que um diagnóstico seja finalizado, o paciente

passa por muitos episódios de sofrimento mental que podem redundar em conflitos sociais,

acidentes involuntários e até suićıdios.

Apesar da complexidade cĺınica, um diagnóstico nos estágios iniciais da doença é de

grande relevância. Vários estudos recentes, com foco na análise das modificações estruturais

do cérebro, encontraram correlações com a esquizofrenia, e sugerem que a esquizofrenia pode

ser diferenciada do caso controle com base em imagens anatômicas de ressonancia magnética.

Pesquisas anteriores aplicando aprendizagem de máquina a estas imagens de ressonância

magnética apresentaram resultados promissores. Apesar dos resultados, o escopo destas

pesquisas estava limitado a um ou poucos cortes do cérebro e também não utiliza os mais

recentes algoritmos de aprendizagem de máquina nos seus classificadores. Em consequência,

o uso de poucas fatias ou algoritmos mais simples pode levar a perda de informação devido

à extração de caracteristicas em ńıvel abaixo do desejado.

No presente estudo, criamos modelos de aprendizagem de máquina baseados em Redes

Neurais Convolucionais (Convolutional Neural Networks - CNN), e avaliamos os parâmetros

para treinamento. Para tanto, utilizamos um conjunto de dados para treinamento, corre-

spondente a imagens de Ressonância Magnética, com imagens de um grupo de controle (com

pessoas sem diagnóstico de distúrbio mental) e um grupo experimental (com portadores de

esquizofrenia). Avaliamos também critérios para a seleção dos cortes a serem utilizados

para compor o conjunto de dados (dataset) e as diversas combinações que podem levar a

um melhor desempenho do classificador.

Obtivemos as imagens dos cortes pela extração uma a uma da estrutura 3D correspon-

dente a um volume do crânio humano, em cada imagem. Os cortes são numerados usando

os ı́ndices do eixo axial do volume mapeado. Experimentamos selecionar as fatias utilizando

métricas como covariância e entropia, e os melhores resultados foram obtidos quando uti-

lizamos o conceito de entropia para avaliar as imagens dos cortes.

Os cortes foram ordenados pelo critério de maior entropia. Com esse critério, fizemos

a avaliação individual dos cortes pelo modelo de aprendizagem de máquina e a seleção

dos conjuntos de cortes. Nossa abordagem foi criar um dataset com adição incremental

dos cortes ordenados pela entropia e usá-lo como conjunto de treinamento do modelo de

aprendizado de máquina. Primeiramente, foi treinado o modelo com apenas uma fatia. No

próximo, passo foi treinado com duas fatias para compor o conjunto de dados e assim por
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diante, até criarmos um dataset com todas as imagens extráıdas do volume representado.

Cada dataset criado foi submetido ao treinamento no modelo de aprendizado de máquina

e foram obtidas as métricas de desempenho do sistema.

Nossos resultados sugerem que é posśıvel obter do classificador acurácia próximo de 80%

quando treinado com um conjunto de cortes previamente selecionado.

Neste trabalho, também exploramos o uso de Inteligência Artificial Explicável (Explain-

able Artificial Intelligence - XAI), para compreender o resultado da classificação do modelo.

Palavras-chave: Esquizofrenia, Deep Learning, Machine Learning, Aprendizagem de Máquina.

Neurociência, Imageamento por Ressonância Magnética, Mudanças Estruturais no Cérebro,

Entropia
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1 Introdução

Esta pesquisa trata da detecção da Esquizofrenia em imagens estruturais do cérebro,

obtidas por equipamento de imageamento por ressonância magnética. Esta pesquisa visa

estudar o uso de mais de uma imagem de corte para avaliar estruturas anatômicas do cérebro.

Os desafios da esquizofrenia

A esquizofrenia é uma seria desordem psiquiátrica com graves implicações sociais e que

afeta cerca de 1% da população adulta mundial [2]. Esta doença altera as relações do pa-

ciente com sua famı́lia , colegas de trabalho e amigos redundando em colapso das relações

sociais. As esquizofrenia manifesta-se no inicio da vida adulta, possuindo uma combinação

de sintomas positivos e negativos. Os sintomas positivos incluem alucinações, ilusões e pen-

samento desordenado; os sintomas negativos incluem falta de demonstração de emoções,

baixa capacidade de se expressar em palavras, incapacidade de ter prazer em atividades

que anteriormente gostava de realizar e incapacidade de iniciar e concluir atividades com

metas [2]. Estes sintomas não são percebidos inteiramente pelos médicos e existem iniciati-

vas como as descritas por G. Michalakis et al. [4], para projetar e desenvolver uma simulação

baseadas em cenários de paciente com desordens mentais, visando a desenvolver uma per-

cepção dos sintomas que um paciente de esquizofrenia enfrenta e desenvolver empatia com

o paciente [4].

A esquizofrenia continua sendo essencialmente diagnosticada por um clinico [3]. O clinico

precisa desenvolver um diagnostico subjetivo sobre o paciente a sua frente, principalmente

pela observação dos sinais de pensamento desorganizado presentes na fala do paciente. Ex-

iste a possibilidade que este diagnostico subjetivo possa concluir que o paciente é t́ımido ou

introvertido ao invés de corretamente diagnosticar a esquizofrenia. Este diagnostico impre-

ciso pode acontecer mesmo quando o paciente é entrevistado por outros cĺınicos na busca

por uma segunda ou terceira opinião sobre o paciente. Qualquer atraso na obtenção do

diagnostico correto do paciente pode levar a eventos de conflito social, confusão mental e

nos casos mais extremos pode levar a acidentes involuntários e até a tentativas de suićıdio.

Diagnosticando a Esquizofrenia com o auxilio da Ressonância Magnética

O sistema de imageamento por ressonância magnética é uma ferramenta considerável

para proceder exames não invasivos de estruturas anatômicas do cérebro. Estudos das es-

truturas internas do cérebro usando Ressonância Magnética, indicam a existência de uma

redução significativa do lobo temporal e das estruturas temporais mediais [3]. Analise con-

duzidas em estudos por imagem de gêmeos monozigóticos, onde um deles foi afetado pela

esquizofrenia e o outro não, mostraram que o gêmeo afetado apresentava ventŕıculos maores

e menores tamanhos do córtex e do hipocampo. A redução do tamanho do cérebro é mais

significativo no plano axial do que no plano sagital, sugerindo o envolvimento mais signi-
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ficativo de regiões tipicamente viśıveis nos cortes axiais [3].

Limitações de estudos anteriores

A aprendizagem de maquina vem sendo aplicada a imagens de ressonância magnética

para superar os limites de um exame clinico subjetivo e ajudar a descobrir mudanças na

estrutura do cérebro. Esta abordagem visa dar suporte aos médicos na obtenção de um diag-

nostico objetivo o mais rápido posśıvel. Fay(2019) propôs utilizar um modelo de aprendiza-

gem de maquina baseado em redes convolucionais (CNN) para classificar imagens do cérebro

obtidas por Ressonância Magnética e detectar esquizofrenia. Esta pesquisa teve resultados

promissores mas a analise estava limitada a apenas dois cortes [8]. Ferreira(2016)propôs

utilizar uma máquina de vetores de suporte (Support Vector Machine - SVM) como um

classificador para detectar esquizofrenia. A pesquisa também obteve bons resultados a

partir das analises das imagens de ressonância magnética mas teve o esforço adicional de

selecionar manualmente os cortes medindo estruturas e avaliando quais caracteŕısticas ofere-

ceriam seriam as melhores para serem submetidas ao treinamento e predição pelo modelo [1].

Os resultados em acurácia, precisão e sensibilidade foram menores que os obtidos em [8].

Os resultados sugerem que a seleção manual e as caracteŕısticas medias podem ter perdido

informação importante no que concerne as imagem originais já que ambas as pesquisas us-

aram o mesmo conjunto de dados . Um artigo recente por JIhoon et al [7], também descreve

o uso de uma rede neural profunda 3D para detectar esquizofrenia em conjuntos dados de

imagens estruturais obtidas por Ressonância Magnética, com uma abordagem de converter

cada imagem de corte em um frame e combinando todas elas para transforma em um video.

Os conjunto de dados de imagens obtidas por ressonância magnética contem poucas

imagens de pessoas diagnosticadas com esquizofrenia e de pessoas saudáveis usadas como

controle. Muitos aspectos de privacidade estão associadas com a disponibilidade dos dados

de forma aberta a todos e os pesquisadores interessados nesses dados precisam concordar

com os termos de contratos de manutenção da privacidade dos dados para que seja posśıvel

usá-los. Uma abordagem bastante usada é utilizar estrategias de aumento de dados ( data

augmentations) pela realização de transformações das imagens originais como modificações

espaciais , filtragens por mudança de banda de passagem como proposto por Y. Nin et

al [6]. Estudos anteriores apontaram que uma forma de obter diagnósticos mais acurados

usando imagens de ressonância magnética associadas a aprendizagem de maquina mas foram

notadas as seguinte limitações:

1. Uso de apenas um corte do imageamento por ressonância magnética, nos entendemos

que usando mais de um corte para treinamento nos levará a identificar estruturas

relevantes presentes em outros cortes;

2. A combinação de diferentes cortes do dataset usados no treinamento do modelo de

inteligencia artificial poderá identificar informações sobre alterações anatômicas e pro-

porções existentes de um corte para outros;
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3. Comparação de diferentes combinações de cortes podem levar a uma melhor acurácia

na classificação de imagens

4. Alguns sistemas usados para classificação de imagens não são transparentes em como

atingem seus resultados e existe uma oportunidade para explicar as razoes para um

resultado obtido;

5. Existem implicações de ordem pratica e legal relacionadas com o fornecimento de

diagnostico automatizado sem uma explicação que possa ser entendida por pessoas ,

detalhando os passos realizados para atingir os resultados

Problema cientifico e proposta de pesquisa

Estudos baseados em imagens do cérebro de pacientes de esquizofrenia mostraram que

existem mudanças estruturais caracteŕısticas que não podem ser atribúıdas a efeitos de dro-

gas ou outros fatores. Imageamento usando projeção [5] identificaram diferenças geométricas

ao ńıvel de neurônios entre pacientes de esquizofrenia e indiv́ıduos sadios: os pacientes de

esquizofrenia apresentam uma rede entre neurônios muito tênue e tortuosa que não é viśıvel

nos indiv́ıduos sadios, sugerindo estar associada a esta doença.

As limitações previamente descritas culminaram na seguinte pergunta de pesquisa:

É posśıvel criar um conjunto cuidadosamente escolhido de imagens originadas exames

por ressonância magnética, que quando submetidas a um modelo de aprendizado de maquina

é capaz de dar suporte a um diagnostico de Esquizofrenia mais objetivo ?

Nossa pesquisa tem uma hipótese central de que algumas combina coes de diferentes

imagens de corte oriundas de um exame de ressonância magnética , quando são submetidas

a uma rede neural convolucional , CNN, pode ter uma performance melhor na detecção de

esquizofrenia devido a possibilidade de avaliar relações entre estruturas anatômicas tridi-

mensionais ao invés de avaliar uma única imagem de um corte bidimensional. Além disso,

uma analise de aspectos relacionados as combinações de imagens de cortes , por exemplo,

a entropia, pode revelar e identificar correlações entre esses valores e a performance de um

classificador de imagens baseado em redes neurais convolucionais. É esta hipótese que iremos

avaliar na nossa pesquisa.

Objetivos

Objetivos gerais

Nosso objetivo geral e avaliar de forma sistemática as varias combinações de imagens

de cortes anatômicos axiais de exames de ressonância magnética, usando redes neurais con-

volucionais para detectar a presença de esquizofrenia, de acordo com rótulos previamente

determinado por especialistas neste domı́nio de conhecimento e comparar a performance

com classificadores que utilizam uma onica imagem de corte. Para atingir este objetivo m

nos vamos analisar aspectos com a covariância e a entropia. Também vamos conduzir testes
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emṕıricos com modelos de redes neurais convolucionais para determinar a performance com

diferentes combinações de imagens de cortes.

Objetivos espećıficos

Para atingir o objetivo geral desta pesquisa, nos propomos os seguintes objetivos es-

pećıficos:

• Experimentar com métodos como entropia e correlação de Pearson para identificar

as imagens de contes contendo mais informação que irão melhorar os resultados dos

classificadores.

• Experimentar com diversas combinações de imagens de cortes de exames de ressonância

magnética ao invés de usar a imagem de um único corte , visando obter as melhores

métricas de performance de um modelo de classificação de imagens

• Avaliar a performance de uma pequena rede neural convolucional e comparar com

a performance de uma rede neural utilizando uma arquitetura estado da arte , pre

treinada;

• Avaliar técnicas de Inteligencia Artificial Explicável , XAI, aplicada ao problema de

detecção de esquizofrenia.

2 Fundamentação teórica e estado da arte

Esquizofrenia

A Esquizofrenia é uma doença mental com muitas manifestações clinicas que tornam o

diagnostico medico um desafio significativo. Pacientes são levados aos médicos apos eventos

perturbadores envolvendo o paciente e sua famı́lia e outros grupos sociais. Esta doença afeta

1% da população adulta mundial e geralmente começa no inicio da idade adulta. O pico dos

sintomas acontecem por volta da terceira de cada de idade ocorrendo alguns poucos anos

antes em homens do que em mulheres. O curso do desenvolvimento da doença é variável.

Apenas uma minoria dos pacientes irão apresentar deterioração da situação evoluindo para

um estado cronico , enquanto muitos outros terão sintomas persistentes ou deficit funcionais.

Um diagnostico que possa ser obtido ainda nos estágios iniciais da doença é de grande im-

portância já que irá guiar os médicos na prescrição de tratamento ainda nos estágios iniciais

da doença, evitando o terŕıvel sofrimento mental e as consequências sociais que um colapso

mental do paciente podem ocasionar.. Além disso, pesquisas com o objetivo de identificar

exames que possam detectar a esquizofrenia usando parâmetros objetivos e mensuráveis são

de crucial importância. Imageamento por ressonância magnética associado a algoritmos de
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aprendizagem de maquina podem se tornar a melhor ferramenta para detectar mudanças

caracteŕısticas estruturais em regiões do cérebro de um paciente portador de esquizofrenia.

Imageamento por Ressonância Magnética

Imageamento por Ressonância Magnética é uma técnica para imagens de cortes anatômicos

internos e da organização funcional de uma organismo sem precisar abri-lo. Da mesma

forma que outros dispositivos de tomografia, o equipamento de imageamento por ressonância

magnética é capaz de gerar matrizes de dados multidimensionais representando a distribuição

espacial de medidas de estruturas f́ısicas. Apesar de semelhante a outras tecnologias, o im-

ageamento por ressonância magnética é superior a outras tecnologias já que consegue gerar

imagens bidimensionais representandos cortes em qualquer orientação. imagens tridimen-

sionais representando volumes e até imagens com 4 dimensões a partir de distribuições

espectro espaciais sem qualquer modificação ou ajuste do equipamento para realizar as

diferentes operações; adicionalmente, a operação do equipamento de imageamento por res-

sonância magnética é muito seguro devido a sua banda de transmissão de radiofrequência e o

processo de imageamento não usa radiação ionizada, evitando efeitos danosos aos pacientes.

O primeiro uso desta técnica foi para obter imagens anatômicas e morfológicas de cortes

finos do corpo humano , mas novas aplicações estão sendo aperfeiçoadas continuamente, tais

como imageamento funcional e fisiológico aplicado a todos os sistemas do corpo humano.

Hoje em dia o imageamento por ressonância magnética evoluiu de exame de imagens de

cortes bidimensional para uma técnica de analise de imagens volumétricas.

Engenharia de caracteŕısticas

Enquanto analisávamos as imagens dos cortes obtidas por ressonância magnética visando

construir os datasets para treinar o classificador baseado em aprendizagem de maquina ,

observamos que alguns cortes eram bem similar a outros cortes e alguns deles pareciam

não conter informação relevante já que eram imagens da parte superior do cranio contento

apenas o contorno dos ossos que formam a caixa craniana

Nossa abordagem para solucionar o problema foi utilizar a engenharia de caracteŕısticas.

Em essência o objetivo da engenharia de caracteŕısticas é identificar as caracteŕısticas que

são mais relevantes em um conjunto de dados para um dado modelo de aprendizagem de

maquina. Ao aplicar a engenharia de caracteŕısticas a um problema é necessário aplicar

transformações aos dados quantificar caracteŕısticas e compará-la com outras, identificar

redundâncias e correlações. A Engenharia de caracteŕısticas é uma parte essencial de uma

experimento de exploração em aprendizagem de máquina por tratar dados brutos e aparente-

mente não relacionados convertendo-os em dados relevantes com a ajuda de ferramentas es-

tat́ısticas e de aprendizagem de maquina. Com o uso desta técnica o modelo pode convergir

para ótimos parâmetros com a utilização de menos recursos computacionais.

Covariância

No estudo da teoria da probabilidade e estat́ıstica, a covariância mede o variabilidade
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conjunta de duas varáveis aleatórias. A covariância indica que os grande valores de duas

variáveis estão relacionadas ou se seus menores valores estão relacionados. A covariância na

situação exemplificada será positiva e se as variáveis se comportam de forma inversa então

ela será negativa , indicando uma relação inversas entre as variáveis. Finalmente se o valor

da covariância é zero então não existem relacionamento entre as variáveis.

Correlação de Pearson

A covariância busca mostrar se existe um comportamento de interdependência linear

entre duas variáveis , mas a covariância é uma medida dimensional que é afetada pelas

unidades das medias das series de valores sob analise. De forma a corrigir esta situação,

a estat́ıstica dispõe da ferramenta correlação de Pearson. Esta media é uma normalização

da covariância representada por um numero adimensional variando de -1 a +1. Quando o

valor da correlação de Pearson é +1, ela indica que existe uma relação linear direta, ou seja

quando uma serie de números aumenta o seu valor, a outra também aumenta. Quando o

valor da correlação é -1 então existe uma perfeita relação linear inversa, quando uma serie

aumenta os seus valores, na outra serie os valores diminuem. Se o valor da correlação é

próximo de zero então o relacionamento entre as variáveis é mı́nimo.

Entropia

A entropia representa um conceito cientifico inicialmente introduzido como uma declaração

da segunda lei da termodinâmica. É comumente associada com um estado de aleatoriedade,

incerteza ou desordem. O termo é aplicado em diversos campos cient́ıficos, desde as suas

ráızes na termodinâmica até os prinćıpios da teoria da informação. É usado principal-

mente na qúımica, f́ısica, biologia, cosmologia, estudos climáticos, sociologia e sistemas

de informação. De acordo com Cover, T. M. [5], Hartley, em 1930, introduziu a medida

logaŕıtmica da informação para comunicação que era, em essência, o logaritmo do tamanho

do alfabeto.

A entropia é significativa no domı́nio da ciência de dados e na Inteligencia Artificial.

Ele é usado para criar arvores de classificação, é a base da Informação Mutua que é usada

para, por exemplo, medir o relacionamento entre dois conjuntos de dados. A Entropia

também é a base para a Entropia Relativa (The Kullback Leibler Distance) e da Entropia

Cruzada usada nos algoritmos de redução da dimensionalidade, tais como t-SNE e UMAP,

pela quantificação das similaridades e diferenças. Simplificando , o resultado do calculo

da entropia nos mostra quão randômicos são os valores em um conjunto de dados. Por

exemplo, a entropia está associada com o quanto ficaremos surpresos ao escolher um valor

de um conjunto de dados e prever qual valor será.

No domı́nio da nossa pesquisa, a Entropia nos fornece um valor numérico que indica

a diversidade da informação contida na imagem de um corte do cérebro. Nossa intuição

para este critério de seleção é que quanto maior o valor da entropia, mais estruturas estão

contidas na imagem de um corte.
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Redes Neurais Profundas e Redes Neurais Convolucionais

As Redes Neurais Profundas é uma das áreas de estudo da Inteligencia Artificial e lida

com algoritmos de aprendizagem de maquina capazes de aprender em diversos ńıveis de rep-

resentação, correspondendo a uma hierarquia de caracteŕısticas ou fatores onde conceitos de

alto ńıvel são definidos a partir de conceitos de baixo ńıvel. O aprendizado profundo Deep

Learning consiste em métodos de representação do conhecimento com múltiplos ńıveis de

representação como resultado da composição de módulos não lineares mais simples. Cada

um deles transforma as representações em seu ńıvel, começando com uma entrada bruta ate

chegar em uma representação de alto ńıvel, com um ńıvel mais alto de abstração. Com a uti-

lização de um numero suficiente de módulos, funções muito complexas podem ser aprendidas

e realizadas como reconhecimento de imagens e da fala humana. As redes de aprendizado

profundo receberam muita atenção da comunidade cientifica devido aos diversos benchmarks

em que teve desempenho significativo. As redes neurais profundas podem superar as técnicas

convencionais de aprendizagem de maquina por conta da sua habilidade de aprendem a partir

de dados brutos através de filtragens encadeadas, operações lineares e não-lineares , levando

a reconhecimento de padrões de grande complexidade em altos ńıveis de abstração.

As redes neurais profundas podem ser de de diversos tipos de arquitetura mas a rede

Neural Convolucional é a primeira opção dos pesquisadores quando se trata de problemas

envolvendo classificação e reconhecimento de imagens. A principal caracteŕıstica deste tipo

de rede é a presença de uma camada Convolucional, onde é realizada a operação matemática

de convolução entre os dados de entrada e um kernel contendo um padrão de valores capazes

de reconhecer um determinado padrão de interesse se estiver presente nos dados de entrada.

XAI - Inteligencia Artificial Explicável

A sofisticação e adição de cadas vez mais camadas nas arquiteturas das redes neurais pro-

fundas trouxeram uma capacidade cada vez maior de aprendizado mas em contrapartida as

Redes Neurais profundas tornaram-se verdadeiras caixas-pretas dificultando a compreensão

das razões pelo qual um determinado resultado foi alcançado.

Esta situação motivou agencias governamentais , empresas e instituições acadêmicas a

financiar pesquisas que estudem formas de garantir que os resultados obtidos como sáıda

de modelos de aprendizagem de maquina possam ser confiáveis e também explicáveis. Uma

das primeiras iniciativas no sentido de obter explicação de sistemas baseados em inteligen-

cia artificial foi o programa Explainable Artificial Intelligence (XAI) patrocinado pelo De-

partamento de Defesa dos Estados Unidos, Defense Advanced Research Projects Agency

(DARPA); Este programa cunhou o termo XAI, com X de Explainable, explicável, com a

intenção explicita de criar sistemas de inteligencia artificial compreenśıveis por seres hu-

manos , através de explicações práticas. O principal objetivo do programa foi criar um

coleção de técnicas de aprendizagem de maquina pra construir modelos explicáveis que

combinados com técnicas de explicação pudesse permitir aos usuários entender com modelo

xiv



de IA funciona corretamente,

A XAI tem duas principais abordagens usadas como base para suas técnicas e métodos.

A primeira abordagem é interpretar e justificar uma predição de um modelo de Machine

Learning ou Deep Learning com seus dados de entrada. Esta abordagem é conhecida como

Post-Hoc , já que a explanação é obtida apos a predição. A segunda abordagem é construir

um modelo de inteligencia artificial que seja naturalmente explicável, sendo desde o seu

projeto concebido para explicar como obtêm seus resultados, sendo por isso conhecida como

abordagem Ante-Hoc. a abordagem Post-hoc é a base de diversas ferramentas importantes

para explicar modelos de redes neurais profundas com grande numero de camadas, pesos e

parâmetros que de outra forma seriam caixas-pretas não interpretáveis. A abordagem Post-

Hoc é agnóstica no que diz respeito ao modelo que está explicando. Ela não está interessada

nas funções internas do modelo mas sim em criar um modelo equivalente ao original que a

partir das sáıdas do modelo sob analise ira produzir um resultado explicável.

3 Materiais e Métodos

Os métodos utilizados na nossa pesquisa foram desenvolvidos para dar suporte ao obje-

tivo geral de avaliar sistematicamente as diferentes combinações de imagens de cortes axiais

obtidos a partir de imageamento por ressonância magnética, para o problema de detecção

da presença ou não de modificações estruturais no cérebro causadas pela esquizofrenia , pela

utilização de modelos de redes neurais convolucionais. Para atingir este objetivo geral, ex-

ecutamos métodos que nos permitiram cumprir os seguintes objetivos objetivos espećıficos:

- Experimentar com a medida da entropia e com a correlação de Pearson para identificar

as imagens de cortes com mais informações e que melhorassem os resultados do nosso clas-

sificador. - Experimentar com combinações de varias imagens de cortes por imageamento

por ressonância magnética ao invés de usar uma única imagem de um corte central, visando

obter as melhores métricas de performance de uma modelo classificador de imagens - Avaliar

a performance de uma pequena rede neural convolucional comparada com uma arquitetura

de rede estado-da-arte , pré-treinada para para classificação de imagens - avaliar técnicas de

Inteligencia artificial Explicável aplicadas ao problema de detecção de esquizofrenia por um

modelo classificador.

Nosso experimentos consistiram em

- Preprocessar imagens brutas originadas de exames por ressonância magnética de pa-

cientes portadores de esquizofrenia e de pacientes sadios do grupo de controle. A partir dos

dados de entrada gerar imagens bidimensionais de cortes do eixo axial do cérebro, usando-os

para criar um conjunto de dados para a condução dos experimentos subsequentes.

- Usando o conceito da entropia de Shannon . avaliamos os cortes individuais e as com-

binações de cortes, buscando obter a combinação que poderia gerar os melhores resultados
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da maquina de aprendizagem usada como classificador.

- Usando a medida da covariância, nos avaliamos se imagens de cortes individuais e

combinações de cortes poderiam ser correlacionados ou se haveria alguma dependência entre

eles, indicando algum tipo de redundância de informação que poderia levar a uma otimização

da quantidade de dados.

- Apresentar uma combinação de imagens selecionadas para uma rede neural convolu-

cional para treinamento e avaliação . Os passos de treinamento e avaliação foram repetidos

para diversas imagens de cortes e para diversas combinações.

- Baseado no experimento anterior, foram identificados as coleções de cortes que tinham

as melhores métricas de performance.

- Submeter o conjunto de dados de cortes selecionados a uma arquitetura de rede neural

convolucional o mais simples posśıvel para avaliar os resultados

- Submeter o conjunto de dados de cortes selecionados a uma arquitetura de rede neural

convolucional estado-da-arte e pre-treinada para classificação de imagens

- Comparar os resultados dos dois experimentos anteriores

- Aplicar um método de Inteligencia artificial Explicável para verificar o que esta sendo

levado em consideração pelo modelo estado-da-arte de classificação de imagens, no momento

em que classifica as imagens de cortes.

- Exibir os resultados dos experimentos em tabelas.

4 Resultados e Discussões

Experimentamos os valores de covariância/correlação de Pearson para investigar se havia

indicação de redundância de informações que poderia levar à seleção das fatias mais rele-

vantes para construir nosso conjunto de dados. Nossa intuição foi verificar se fatias ad-

jacentes teriam uma grande correlação entre elas que poderia levar à eliminação de uma

das fatias. Uma combinação com maior chance de estar nesta hipótese foi entre as fatias

1 e 2, mas com um pequeno valor de correlação de 0,234. Além dessa combinação especi-

fica, a maioria das combinações estavam abaixo desse valor, por isso não consideramos essa

abordagem para seleção de fatias.

A Avaliação de entropia de fatias individuais e de conjuntos de fatias apresentou resul-

tados mais promissores. Os passos realizados na metodologia obtiveram uma lista de fatias,

ordenadas pelo seu valor de entropia. Essa lista de fatias foi usada para construir o conjunto

de dados para o classificador por aprendizado de máquina e obter métricas sobre seu desem-

penho. Esta informação permitiu explorar quais fatias melhoravam ou não os resultados do

classificador por aprendizado de máquina.
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Observamos que a fatia seis sozinha foi responsável por obter os melhores valores de

métricas, não importa se usando as métricas perda ou precisão para comparação entre as

coleções de fatias. Analisando os resultados ordenados por métricas de perda, observamos

que as fatias 6, 7, 10 e 9 em combinações incrementais representam as principais combinações

para precisão. As tabelas de resultados, ordenadas por precisão, mostram informações

semelhantes, com as fatias 6, 7,10 e 9 presentes para as melhores combinações novamente,

mas notamos que a segunda melhor precisão foi obtida por uma lista mais longa, composta

pelas fatias 6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16, um resultado um tanto

inesperado.

Uma das tarefas finais desta pesquisa foi submeter os conjuntos de dados de coleções

de fatias a uma arquitetura de rede neural de última geração, treiná-la, validá-la, coletar

seus resultados e compará-los com os resultados de um modelo inicial usado para criar uma

avaliação por linha de base. Usamos uma arquitetura VGG16 que embora não seja o mais

recente, é ainda uma arquitetura muito utilizada para classificadores de imagens e detecção

de objetos.

Com um modelo de arquitetura VGG16 adaptado ao nosso problema de classificação,

submetemos o modelo para treinamento e avaliação do conjunto de dados de validação. Após

aproximadamente 13 horas de treinamento para cada uma das 2 melhores coleções de fatias

de precisão, obtivemos dados e montamos uma tabela com os resultados do desempenho do

treinamento.

O experimento final da nossa pesquisa foi criar uma visualização de explicação sobre a

predição feita pelo modelo. Os resultados foram obtidos usando um modelo customizado

baseado em arquitetura VGG16 de última geração. O modelo foi treinado usando trans-

ferência de aprendizado como estratégia para reduzir o tempo de treinamento, usando os

pesos anteriores da arquitetura treinado no conjunto de dados Imagenet.

5 Conclusão

Neste trabalho, propusemos avaliar uma forma sistemática de determinar quais com-

binações de cortes axiais de ressonância magnética anatômica levariam a melhores resulta-

dos para o problema de classificação usando uma Rede Neural para detectar a presença de

esquizofrenia ou não.

Primeiro, experimentamos com a Covariância/Correlação de Pearson para determinar

se um fatia poderia ser correlacionada com outras fatias, mas os resultados não indicaram

uma correlação entre as fatias.

Depois disso, experimentamos com Entropia. Desta vez, nossos resultados indicaram

que o valor de entropia foi uma métrica significativa para indicar quais imagens são mais
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relevantes em um conjunto de dados para treinar o modelo de aprendizado de máquina,

trazendo uma intuição de que quanto maior o valor da entropia da fatia, mais diversificado

era o conteúdo da imagem, com mais estruturas representadas nele.

O próximo passo foi enviar a lista de fatias para uma avaliação do modelo de aprendizado

de máquina e construir uma lista de coleções de fatias ordenadas por precisão. Esta lista

nos mostrou essa fatia seis sozinha tinha a melhor precisão. A segunda melhor coleção em

acurácia foi constitúıda das fatias 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 e 16.

Em todos os experimentos anteriores que precisavam de um modelo de aprendizado

de máquina para avaliar o precisão de fatias e coleções, usamos uma pequena rede neural

composta por 2 camadas convolucionais e camadas acessórias. Este modelo foi usado como

linha de base para treinar e avaliar modelos e conjuntos de dados em menos tempo, pois os

experimentos precisavam ser repetidos muitas vezes. No entanto, para uma avaliação final,

optamos por experimentar com o estado da arte em arquitetura de última geração, não a

mais recente, mas ainda relevante hoje em dia, a arquitetura VGG16. Com o aux́ılio da

estratégia de transferência de aprendizagem, constrúımos um modelo customizado com esta

arquitetura e submetemos a ela as duas melhores coleções fatias ordenadas por precisão. A

curva de acurácia obtidas com essa arquitetura nos mostraram que ao utilizar as fatias de 0

a 16, este modelo pode atingir uma precisão superior a 80Nosso último experimento foi com

Inteligência Artificial Explicável, a XAI, para desenvolver uma explicação sobre o que nosso

modelo VGG16 personalizado estava procurando ao fazer sua classificação. Para o conjunto

de dados apenas contendo a fatia seis, o modelo concentrou-se na parte central da imagem e

para o conjunto de dados composto por fatias de 0 a 16, observou a parte central das fatias

e o parte de trás do cérebro.

Assim, com base em nossa pesquisa, podemos resumir que:

1. A entropia é uma métrica de interesse para avaliar e selecionar as imagens de cortes

de exames de ressonância magnética para compor o conjunto de dados de imagens.

2. A arquitetura VGG16 ainda é um bom modelo de arquitetura para ser usado como

base para uma problema de classificação de imagens.

3. A imagem do corte seis nos confrontou com uma situação inesperada, pois por si

só, tinha um desempenho melhor em precisão ao ser submetido ao modelo CNN de

linha de base, embora aparente não ter nenhuma estrutura relacionada ao problema

da esquizofrenia;

Podemos sugerir três hipóteses a partir dessa observação:

• Há um erro em nosso experimento. Alguma situação equivocada na metodologia uti-

lizada para preparar o conjunto de dados ou a construção da arquitetura, determinação

de parâmetros ou tamanhos de kernel de convolução, nos levaram a um erro.
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• Existe uma relação oculta entre a fatia seis e a doença que não é conhecida ainda.

Como notamos que temos tamanhos diferentes para crânios humanos, a fatia seis pode

ser fatia sete ou oito no crânio de outra pessoa, desta forma precisamos desenvolver

um método para normalizar as medidas e posições dos cortes no crânio e repetir os

experimentos com estes novos dados.

• A IA pode nos trazer duas abordagens ao comparar o desempenho de um modelo

de classificação por aprendizagem de maquina, a um especialista humano: - Treinado

corretamente com uma grande quantidade de dados rotulados por um especialista, uma

máquina de IA pode superar um humano para a mesma tarefa de classificação, abrindo

a oportunidade para automatizar essa atividade; - Uma máquina de IA pode descobrir

padrões e relações que nem suspeitávamos existir, percebendo detalhes que um ser

humano não percebeu antes ou deliberadamente teria descartado como possivelmente

irrelevante.

4. Embora a fatia seis sozinha tenha a melhor precisão em nossa avaliação do modelo

CNN de linha de base, a coleção composta por fatias de 0 a 16 obteve a melhor precisão

quando submetida ao modelo customizado baseado na arquitetura VGG16.

5. Estudos anteriores mostraram uma preferência por usar fatias de 9 a 16 ao analisar

pesquisas aplicando ML ao problema de detecção de esquizofrenia, mas nossa pesquisa

mostrou que fatias de 0 até 16 são relevantes para os resultados dos modelos de clas-

sificação.
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Abstract

Schizophrenia is a mental disease with many clinical manifestations, making the diag-

nosis a significant challenge. Until a correct diagnosis is attained, the patient experiments

with mental suffering that can lead to social conflicts, involuntary accidents, and suicides.

Despite the clinical complexity, early diagnosis is of utmost importance, and several

recent studies focus on analyzing structural brain modifications that have been correlated

to schizophrenia and can be detected in anatomical magnetic resonance images.

Previous research applying machine learning to such images presented promising re-

sults. However, the scope was limited to analyzing only one or few slices of the brain while

not using recent algorithms at the core of the classifiers. Furthermore, using fewer slices

and simple algorithms can lead to information loss due to sub-optimal feature extraction.

This study created machine learning models based on Convolutional Neural Networks

(CNN) and evaluated the best training parameters. We used a Magnetic Resonance

Images (MRI) dataset with scans from schizophrenia-diagnosed patients and a subjects

control group. Also, we evaluated criteria to select the slices to be used to build a dataset

and the various combinations of slices that could enhance the performance of an image

classifier.

We obtained the slices by extracting them one by one from the 3D correspondent

structure of a human skull for each image of the MRI scanning process. The slices

were numbered based on the axial index of the mapped volume. We experimented with

selecting the slices using metrics like covariance and entropy, and the best results were

obtained when we used the entropy concept to evaluate the slice’s images.

The slices were sorted by the greatest entropy. Using this criterion, we evaluated

each slice individually, using a machine learning model and the collections of slices. Our

approach was to create datasets with incremental addition of slices ordered by the entropy

and use them as a training dataset for the machine learning model. First, we started

training with a dataset containing only one individual slice from the scanned volumes.

Then, in a second step, we used two slices to build the dataset, and so on, until we created

a dataset with all the images extracted from the volume.

Each dataset created from the combinations of slices was used to train the ML model

and evaluated to obtain the performance indicators.

Our results suggest that it is possible to obtain an accuracy near 80% when trained

with a previously selected combination of slices.

In this study, we also explored the use of Explainable Artificial Intelligence (XAI) to
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comprehend the model output classification.

Keywords: Schizophrenia, Deep Learning, Machine Learning, Neuroscience, Magnetic

Resonance Imaging, Structural Brain Changes, Entropy
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1 Introduction

This research deals with detecting schizophrenia in brain structural images obtained

by a Magnetic Resonance Imaging scanner. It specifically addresses using more than one

brain image slice to evaluate brain anatomical structures.

1.1 Schizophrenia and its challenges

Schizophrenia is a serious psychiatric disorder with severe social implications, which

affects about 1% of the adult world population [8]. It alters the relations between the

patient, his family, co-workers, and friends, inducing a social breakdown. Schizophrenia

starts in early adulthood and has a combination of positive and negative symptoms. The

positive symptoms include hallucinations, delusions, and thought disorder; the negative

symptoms include flat emotional expression, poor quality of speech, the inability to have

pleasure with activities previously enjoyable, and the inability to start and complete goal-

directed activities [8]. These symptoms are not entirely perceived by the clinician, and

there are even initiatives, like those described by G. Michalakis et al. [18], to design and

develop a scenario-based mental disorder simulation, aiming at empathizing the end-user

with the symptoms that a person is living with schizophrenia faces [18].

Schizophrenia remains a clinical diagnosis [11]. A clinician has to make a subjective

diagnosis about the person in front of her/him, mainly observing the signs of thought

disorder present in the person’s discourse. There exists a possibility that this subjective

diagnosis can conclude that the patient is a little bit shy or less extroverted instead

of correctly diagnosing schizophrenia. This imprecise diagnosis can even occur when

submitting the patient to second and third opinions from other clinicians. Any delay in

correctly diagnosing the disease can lead to social conflict events, mental confusion, and,

in worst cases, involuntary accidents and even suicide attempts.
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1.2 Diagnosing Schizophrenia with the assistance of struc-

tural MRI

Magnetic Resonance Imaging is a considerable tool for proceeding with non-invasive

exams of brain anatomical structures. MRI studies of the brain’s internal structures using

MRI indicate a more significant reduction in the temporal lobe and medial temporal

structures [11]. Analysis conducted on imaging studies of monozygotic twins, where one

of them is affected by the disorder, showed the affected twin has larger ventricles and

smaller cortical and hippocampal size. The brain size reduction is more significant in the

axial plane than in the sagittal plane, suggesting more significant involvement of regions

typically visible in axial slices [11].

1.3 Previous studies limitations

Machine learning is being applied to MRI brain scans to overcome the limits of

a subjective clinical diagnosis and help discover changes in the brain structure. This

approach aims to support physicians with a quicker and more objective diagnostic pro-

cedure. Fay (2019) proposed using a Machine Learning model based on Convolutional

Neural Networks (CNN) to classify MRI scans of the brain and detect Schizophrenia. This

research yielded promising results, but the analysis was limited to only two slices [32].

Ferreira (2016) proposed using a Support Vector Machine (SVM) as a classifier to detect

Schizophrenia. He obtained good results from the analysis of the MRI scans, but with

the added effort of manually selecting and measuring structures and evaluating which

characteristics were the best to submit for training and prediction [6]. The results in

accuracy, precision, and sensibility, were lower than those attained in [32]. The results

suggest that the manually selected and measured features may have lost important in-

formation concerning the original images, as both studies used the same data sets. A

recent article by Jihoon Oh et al. [22] also describes the use of a 3D deep CNN to detect

Schizophrenia in structural MRI datasets, with an approach of converting each scan slice

into a frame, combining all of them to transform into video.

The datasets of scanned images usually contain few images of persons diagnosed

with schizophrenia and healthy control subjects. Many privacy concerns are associated

with offering the data openly, and researchers must sign non-disclosure agreements to

use datasets. One approach to data set augmentation is to create new images from

transformations such as spatial smoothing and band-pass filtering, as proposed by Y.

Niu et al. [21].

Previous studies had pointed the way for a more accurate diagnostics using MRI

imaging associated with Machine Learning, but we noticed the following limitations:
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1. Use of single slices of MRI imaging, we think that using more than one slice for

training can lead to identifying relevant structures present in other slices;

2. The combination of different slices in the dataset used for model training can raise

relevant information about anatomic alterations and proportions from one slice to

another;

3. Comparison of different slices combinations can lead to better accuracy in classifying

the images;

4. Some systems used for classification are opaque on how they achieve the results,

and there is an opportunity to explain the reasons for a result;

5. There are practical and legal implications related to providing a diagnosis without

a human-understandable explanation about the steps to achieve the results;

1.4 Scientific Problem and Research Proposal

Imaging studies of the brains of schizophrenia patients showed that there are char-

acteristic structural changes that cannot be associated with drug effects or other factors.

Imaging using projection [19] identified geometric differences at the neuron level between

schizophrenia and control cases: schizophrenia cases showed a thin and tortuous neuronal

network not visible in control cases, suggesting that it is associated with the disorder.

The limitations previously described sparked the following research question:

Is it possible to create a dataset of selected MRI scanned images that, when submitted

to a machine learning model, support an early Schizophrenia diagnosis ?

Our research has a central hypothesis that some combinations of different MRI

scan slices, when applied to a Convolutional Neural Network, CNN, can better perform

schizophrenia classification due to the possibility of evaluating relations between anatom-

ical tridimensional structures contrary to simply evaluating one single two-dimensional

slice image. Furthermore, an analysis of aspects related to slice combinations, for ex-

ample, the entropy, can reveal and identify correlations between these values and the

performance of a CNN-based state-of-the-art image classifier. This hypothesis is what

we will evaluate in this research.
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1.5 Objectives

1.5.1 General Objective

Our general objective is to evaluate in a systematic way the various combinations of

anatomical MRI scan axial slices for the problem of classification using CNN to detect

the presence of schizophrenia or not, according to labels predetermined by specialists

in the field and compare performance with single slices classification performance. To

achieve this, we will analyze the slice’s aspects like covariance and entropy. Also, we will

conduct empirical tests with CNN models to determine the performance of different slice

combinations.

1.5.2 Specific Objectives

In order to achieve the general objective of this research, we propose the following

specific objectives:

• Experimenting with methods like entropy and Pearson’s correlation to identify the

most informative slices will enhance our classifier’s results.

• Experimenting with various combinations of slices from MRI scans instead of a

single central slice, aiming to obtain the best performance metrics from the classi-

fication model.

• Evaluate the performance of a small Convolutional Neural Network compared with

a pre-trained state-of-the-art neural network architecture for image classification.

• Evaluation of techniques of Explainable Artificial Intelligence applied to schizophre-

nia classification.

1.6 Thesis Structure

We have structured this thesis in the following parts:

• Theoretical Foundation and State-of-the-Art: This part will present the theoretical

basis of this research, describing the technologies and fundamental concepts we used

to build this research.

• Materials and Methods: This item will present the material used, mainly the

datasets containing the MRI scans. The methods will describe how we used the
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obtained datasets, the treatments that we submitted the datasets, and how we

processed these data in order to obtain the results

• Results and Discussions: Here, we will present the research results in tables com-

paring result metrics and discuss the results.

• Conclusion: The final part contains our conclusions from the experiments of the

research, whether they align with our first hypothesis and conclude this work,
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2 Theoretical Foundation and State-of-the-Art

of Schizophrenia Analysis, Classification of

Magnetic Resonance Images, and Explainable

Classification Algorithms

2.1 Schizophrenia

Schizophrenia is a mental disease with many clinical manifestations that make di-

agnostics a significant medical challenge. Patients are conducted to clinicians mainly

after disturbing events involving the patient, his family, and other social companions.

This disease affects about 1% of the adult world population and generally starts in early

adulthood. The peak age of onset is in the third decade, occurring a few years earlier

in males than in females. The disease course of evolution is variable. Only a minority

of the patients show chronic and deteriorating courses, while many others have enduring

symptoms or functional deficits.

Researchers noted significant mortality from suicide and natural causes among per-

sons affected by Schizophrenia. The clinician diagnoses Schizophrenia by evaluating med-

ical history, investigating occurrences among family members, and interviewing the pa-

tient. The interviews aim to evaluate the patient’s discourse, trying to identify the pres-

ence of delusions, hallucinations, and thought disorders. These are considered positive

and complemented by negative symptoms, such as avolition (decrease in the motivation

to initiate and perform self-directed purposeful activities), alogia (difficulty with speaking

or the tendency to speak rarely), and affective flattening. Thought Disorder is described

as confused speech, with terminologies such as Formal Thought Disorder, Disorganized

Thinking, and Disorganized Speech, which refer to abnormalities in the amount and form

of speech production associated with a disorganized thinking pattern [29]. The Diagnostic

and Statistical Manual of Mental Disorders by the American Psychiatric Association [2]

requires that these symptoms be present for at least six months to consider the possi-

bility of Schizophrenia. Moreover, there must be impaired personal functioning, and the

symptoms must not be secondary to another disorder such as depression or substance

abuse. These criteria are very subjective and depend on the clinician’s expertise and the

6



patient’s willingness to put feelings and thoughts in words.

An early diagnosis of schizophrenia is of great importance, as it will guide the pre-

scription of treatment in the initial stages, avoiding the terrible mental suffering and

social consequences of a patient’s mental collapse. Therefore, research targeting exams

that detect schizophrenia using measurable and objective parameters is crucial. MRI

imaging, enhanced by Machine Learning algorithms, could be the ultimate tool for physi-

cians, as it can help detect characteristic structural changes in brain regions of a patient

with schizophrenia.

2.2 Magnetic resonance imaging { MRI

Figure 2.1. Siemens MRI Scanner MAGNETOM Free.Max. Source: [26]

Humans depend on their environment sensors (eyes, ears, noses, etc.), and the visual

sensors, the eyes, are central for collecting and processing information relevant to our

daily routines [16]. Based on this premise, medical images play an essential role in physi-

cists’ toolbox for evaluating patients’ conditions and discovering diseases and anomalous

health conditions. One of the best non-invasive medical imaging systems is the Mag-

netic Resonance Imaging (MRI), which can provide high-contrast images of structures,

metabolism, and functioning of internal organs from biological systems, human or not.

This innovative technology can provide images with excellent quality and ensure patient

safety. It is continually being improved to support images with higher resolution and

speed. Furthermore, with the lowers costs of computational resources, machine learning,

and deep learning are used to understand the MRI image outputs better, building robust

diagnosis systems.
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MRI is based on the principles of nuclear magnetic resonance, a spectroscopic tech-

nique to obtain microscopic chemical and physical information about molecules. It is

today the most versatile biomedical imaging technique [3]. Figure 2.2 illustrates the ba-

sic functioning of an MRI system. The invention of Magnetic Resonance Imaging was

accomplished by many researchers that explored Nuclear Magnetic Resonance (NMR)

and the physics of Magnetic Resonance Imaging in the early years of the 20th century.

MR Imaging invention is credited to Paul C. Lauterbur as he developed a system to

encode spatial information into an NMR Signal using magnetic field gradients in 1971

and published the theory sustaining it in 1973 [15].

MRI is a technique capable of creating tomographies (the Greek word ”tomos” mean-

ing cuts), image cuts of the internal anatomical and functional organization of an ob-

ject without opening it. Like other tomography devices, the MRI scanner can generate

multidimensional data arrays representing the spatial distribution of measured physical

quantities. However, MRI scanners exceed other devices as they can output 2D images

representing sections at any orientation, 3D volumetric images, and even four dimensions

images from spatial-spectral distributions without any modification or adjustment to the

equipment to perform diverse operations. In addition, the operation of the MRI scan-

ner is very secure as it operates in the radio-frequency range, and the imaging process

does not use ionizing radiation, avoiding harmful effects on patients. The first use of the

technique was to obtain anatomical and morphological images of thin slices through the

human body, but new applications were discovered, such as functional and physiological

imaging, which is applied to all systems of the human body. MRI has evolved from an

initial tomographic imaging technique to a volume imaging technique.

2.2.1 Main components of a typical MRI scanner

A typical MRI scanner has the following main components:

• Main magnet: a resistive, permanent, or superconducting magnet whose primary

function is to generate an intense uniform static field for polarizing nuclear spins in

an object.

• Gradient system: usually consists of three orthogonal gradient coils designed to

produce time-varying magnetic fields of controlled spatial non-uniformity. It is a

crucial component as gradient fields are essential for signal localization.

• RF System: consists of a transmitter coil capable of generating a rotating magnetic

field for excitation of a spin system and a receiver coil that converts a precessing

magnetization into an electrical signal.
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• Receiver/Digitizer: Consists of a very sensible antenna that detects the RF signals

emitted by the patient’s body under examinations, digitizes the signal, and feeds

this information to the computer system.

• Computer system: a specialized computer to receive, record and analyze the images

of the patient’s body that have been scanned. Its primary role is to interpret the

antenna’s data via receiver and digitizer and produce an understandable image of

the body part under examination.

Figure 2.2 shows how the main components of an MRI scanner are interconnected:

Figure 2.2. Simplified block diagram of typical MRI system. Functionally related
subsystems such as transmit and receive chain, computer, and peripheral units such
as patient and operator interface, are color-coded. Source: [3]
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2.3 Feature Engineering

While analyzing the MRI Scans to build the datasets for training our machine learning

engine, we had to treat the volume scans to obtain the image slices and analyze them to

identify which scan-axis would present the most relevant structures. After obtaining the

slices, we observed that some appeared to be quite similar, and some of them appeared

to carry no significant information as they were images of the upper part of the skull with

only bones of the cranial case.

These similarities and also the absence of relevant information, in our opinion, could

indicate redundancies in the information contained in the images. We thought that could

be some method for identifying what slices would be the best for building the dataset.

Our approach to solving this problem was to use Feature Engineering. In its essence,

feature engineering is to identify the most relevant features in a dataset to a given su-

pervised learning model and achieve it. One will need to apply transformations to the

dataset, quantify features to compare against each other and identify redundancy and

correlations. Feature Engineering is an essential part of a machine learning exploration

experiment as it will help convert untreated, raw data into relevant features with the help

of statistical and machine learning tools. With these techniques, the model can converge

to the optimal parameters with fewer computational resources being used.

The reason to use feature engineering is that after applying transformations to the

dataset, it will be more closely related to the target objective. Another possibility that

feature engineering brings us is the possibility of bringing external data sources that

could add information to the model. In our specific case, we thought of experimenting

with covariance and entropy to evaluate if there was information redundancy between

the slices by evaluating the covariance factor between them and which slices carried more

information inside them by calculating their entropy.

2.4 Covariance

In the study of probability theory and statistics, covariance measure the joint variabil-

ity of two random variables. It indicates if one of the variable’s greater values corresponds

to the other variable’s greater values or if the lesser values of one variable correspond to

the lesser values of the other. The covariance value will be positive in this situation as

they vary accordingly. The other way, if the greater values of a variable correspond to

the lesser values of the other variable or vice-versa, the covariance value will be nega-

tive, indicating they have an inverse relation. Finally, if the covariance value is zero, it

indicates no relationship between the two variables.
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For example, in our research, the covariance was used to verify if two different slices of

an MRI scan had some correlation, indicating that they could carry similar information.

If this was real, we could eliminate one of them to decrease the computation effort done

during the training and evaluation of the neural network model used for classification.

Pandas function to calculate covariance computes the pairwise covariance among

columns excluding NA/Null values. It returns a data frame containing the covariance

matrix of the columns of the original data frame. A threshold can be set for the minimum

number of observations for each value created. Comparisons below this threshold will be

returned as NaN.This method is used for the analysis of series data in order to evaluate

the relationship between different measures. Covariance is defined by the formula

cov (X, Y ) = E [(X − E [X])] (Y − E [Y ])

2.4.1 Pearson’s Correlation

Covariance seeks to show if there is a linear interdependency behavior between two

variables, but it is a dimensional measurement, being affected by the measurement units

of the series under analysis. In order to correct this situation, the statistics term Pearson’s

correlation is used. It is a normalization of the covariance represented by an adimensional

number ranging from −1 to +1. When the Pearson’s correlation value is +1, it indicates

a direct linear relationship, when one series increases its value, the other also increases;

when one of them decreases, the other also decreases. For the −1 value for the correlation,

we have a perfect inverse linear correlation: when one series increases its values, the other

series decreases its values. As the values approach zero, there is less relationship between

the variables. The correlation is defined by the formula

corr (X, Y ) =
cov (X, Y )

σXσY

where σX and σY are the standard deviations of X and Y .

2.5 Entropy

Entropy represents a scientific concept first introduced as a statement of the sec-

ond law of thermodynamics. It is commonly associated with a state of randomness,

uncertainty, or disorder. The term is applied in many scientific fields, from its roots in

thermodynamics to the principles of information theory. It is used mainly in chemistry,

physics, biology, cosmology, climate studies, sociology, and information systems. Accord-

ing to Cover, T. M. [5], Hartley, in 1930, introduced the logarithmic measurement of
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information for communication that was, in essence, the logarithm of the alphabet size.

2.5.1 Information Theory and Shannon Entropy

Claude Shannon was one of the most fantastic engineers, mathematicians, scientists,

researchers, and inventors of the last century. His research initially focused on signal

communication and cryptography but embraced early studies in artificial intelligence and

machine learning. One of the most influential papers written by him was ”AMathematical

Theory of Information” [25], developed during the war years, which is a founding layer

for digital communications. Shannon has envisioned that communications could be seen

as the same being radio, telephone, or television. All messages risk not being recovered

at a destination because of noise. For him, a message was a sequence with statistical

properties, and these statistics could be captured, coded, and minimized to allow effective

transmission. The higher the entropy of the message, the more effort is needed to transmit

it. Shannon stated that the information contained in a message be measured in ”bits,”

digital bits. Shannon’s calculations proved that the information content of a message, the

number of bits, could not exceed the capacity of a given channel, the fundamental limit to

that capacity. Shannon Limit is now the name of the term that names this capacity limit.

Nowadays, the Information Theory went beyond the initial communications domain, and

different areas such as speech recognition, artificial intelligence, information retrieval, and

handwriting recognition make wide use of it.

Entropy in the communication domain is a calculation method based on Claude Shan-

non’s work on mathematical models to abstract the transmitting and recovering of signals

in a given media. The entropy of a variable indicates the level of randomness or uncer-

tainty of the variable contents. Shannon Entropy provides an uncertainty measurement

of a probability distribution. In his seminal work [25], Shannon lays down the foundations

for the Mathematical Theory of Communication or simply the Information Theory, which

proposes a model that represents the reproduction at a destination, the exact message

initiated in its origin, or its most approximated representation. Its objective was to find

a metric capable of characterizing the message without ambiguities.

Entropy is significant in the domain of data science and Artificial Intelligence. It is

used to build classification trees; it is the basis of Mutual Information that is used to

measure the relationship between two datasets, for example; Entropy also is the basis of

Relative Entropy ( The Kullback Leibler Distance) and Cross-Entropy used in dimension

reduction algorithms like t-SNE and UMAP, by quantifying similarities and differences.

In plain English, the result of the entropy calculation will show us how random the

values in a dataset are. For example, it is associated with how surprised we will be when

choosing any value from the dataset and predicting which value it will be.
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We chose the Shannon Entropy calculation to evaluate the information in the MRI

images used in our research. The Shannon Entropy is represented by the formula

H = −K

n∑
i=1

pi log pi

, which provides us with a numerical value that indicates the diversity of the information

contained in the slice image. Our intuition for this selection criterion is that the greater

the entropy value, the more structures the slice image contain.

2.6 Deep Learning and Convolutional Neural Networks

Deep Learning is a sub-field of Artificial Intelligence (AI) that deals with machine

learning algorithms capable of learning several levels of representations, corresponding

to a hierarchy of features, factors, or concepts, where higher-level concepts are defined

from lower-level ones. Deep Learning (DL) consists of representation-learning methods

with multiple levels of representation, resulting from the composition of simple nonlin-

ear modules. Each one transforms the representations at its level, starting with the raw

input, into a representation at a higher level, a slightly more abstract level. With the

composition of enough modules, very complex functions can be learned, such as image or

audio recognition [7]. Deep Learning is also a subgroup of machine learning techniques

that enables the construction of computational models composed of multiple layers ca-

pable of learning data representations with multiple levels of abstraction. Deep Learning

has gained significant attention from the scientific community due to the benchmark

records broken in areas such as speech and visual recognition. It can outperform con-

ventional machine learning techniques because of its ability to learn from raw input data

through consecutive filtering, linear operations, and nonlinear operations, leading to high

complexity and abstraction levels.

The most common form of machine learning is supervised learning. In supervised

learning, we ”teach” the model by presenting a large dataset with the concepts we want

it to learn, along with the labels of the concepts, for example, images and the labels

with their category. As the system is being trained, the machine receives an input image

and produces an output in vectors of values, each representing a category. The training

objective is that the correct category will present the highest value. If the right category

does not have the highest value, an error value is produced by comparing the desired

value and the value obtained; then, action will be performed in the model to adjust

parameters and reduce the error. After that, the interaction will continue until the limit

of interactions occurs or the desired metric of, for example, loss error, is achieved.
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These adjustable parameters, often called weights, are real numbers that function

as variable controls that define the input/output function of the machine. In a typical

deep-learning system, there may be hundreds of millions of these adjustable weights and

hundreds of millions of labeled examples to train the machine. To properly adjust the

weight vector, the learning algorithm computes a gradient vector that, for each weight,

indicates by what amount the error would increase or decrease if a tiny amount increased

the weight value. The weight vector is then adjusted in the opposite direction.

Convolutional Neural Networks are the researcher’s first option for many imaging

applications dealing with classification and recognition. For a model to recognize image

patterns, the following four stages [23] are involved:

• Acquisition: collect the image and adapt it to the input format needed in the

following stages

• Preprocessing: this stage is responsible for tasks like noise reduction and geometric

corrections

• Feature extraction: calculations named Convolutions are executed to compute and

filter the fundamental attributes needed to differentiate one class of patterns from

another

• Classification: this stage assigns an input pattern to one of the several pre-defined

classes

The previous explanation can be visually understood in the figure 2.3, representing

the process of classifying a manually written number digit. The neural network was

trained with the MNIST dataset, and in each layer occurs the identification of more

high-level details of the image until the final digit is classified and the model outputs a

result indicating the identified digit.
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Figure 2.3. Figure shows a CNN trained to extract features that are then used
by an fully connected neural network, FCN, to classify handwritten numerals.
Source: [23]
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For our experiments, we have used a sequential layers approach for our architecture,

with one layer stacked over the predecessor, with its inputs connected to the previous

layer’s outputs. We have used the following types of layers and activation functions in

our experiments:

2.6.1 Layers in Convolutional Neural Networks

The neural network model used in a significant part of the experiments was built

using the following types of layers:

• Convolution Layer – Conv2D: This type of layer creates a convolution kernel that is

convolved with the data applied to the inputs producing a transformed output. For

example, a filter or a kernel in a conv2d layer is used as a slider over 2D input data,

usually an image, performing an elementwise multiplication. The result will sum

up all the results into a single output pixel. The kernel will perform this operation

for every location it slides over, converting a 2D matrix into a different matrix of

features.

A discrete convolution basically is a mathematical operation on two functions h

and x , that results in a third function (h ∗ x). It is also expressed as the amount

of overlap of one function x when it is shifted over the function h ”blending” one

function with the other. The convolution of functions h and x over a finite range[
−k, k

]
is defined by the equation

(h ∗ x)[n] =
k∑

m=−k

h[m]x[n−m]

A bidimensional discrete convolution is defined by the equation

(H ∗ I)[n1, n2] =
k∑

m1=−k

k∑
m2=−k

H[m1,m2]I[n1 −m1, n2 −m2]

In order to explain the convolution operation realized by this layer, let us suppose

that we have a one-dimensional array composed of zeros and ones, and we want to

detect where the values change from zero to one. We will use a kernel with two

values, −1 and 1, that will be ”slided” over the array, performing the convolution

operation. Figure 2.4 show the steps to perform this operation:
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Figure 2.4. The figure shows the operation of sliding a kernel over a one-
dimensional array to detect a transition from 0 to 1.
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• Max pooling Operation for 2D Spatial Data Layer – MaxPooling2D:

This type of layer downsamples the input, reducing its spatial dimensions, resulting

in a lower resolution version of an input signal that still contains the significant or

essential structural elements. A MaxPooling layer calculates the maximum value

for each patch of the feature map, highlightning the most present feature and it is

more informative than looking at the average presence. A pooling layer is generally

applied to the output of a convolutional layer to reduce the size of each feature

map.

• Flattening Layer – Flatten:

This layer removes all the tensor dimensions except for one, reshaping it to have

a shape equal to the number of elements contained in the tensor. This operation

is equivalent to transforming into a one-dimension array. Finally, we flatten the

output of the convolutional layers to create a single long feature vector output.

• Dense Layer: It is the regular, deeply connected neural network layer and is the

most common and used Layer. The dense Layer implements the operation: output

= activation(dot(input, kernel) + bias), where,

– activation is the element-wise function

– input represents the input data

– dot represents a dot product of all input and its corresponding weights

– bias represent a biased value used in machine learning to optimize the model

A dense Layer is a simple Layer of neurons in which each neuron receives input

from all the neurons of the previous Layer, thus called as dense. A dense layer is

used to classify images based on output from convolutional layers.

2.6.2 Activation Functions

2.6.2.1 Rectified Linear Unit (ReLU)

The REctfied Linear Unit activation function, or ReLU for short, is a function that

returns the element-wise maximum value of 0 and the input tensor. It will output the in-

put directly if it is positive; otherwise, it will output zero, as defined by f(x) = max(0, x)

. Figure 2.5 shows the function behaviour for values of x from -10 to 10.
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Figure 2.5. Line Plot of ReLU Activation Function for negative and positive
inputs. ReLu is derivable, except on 0 value

2.6.2.2 Softmax

The Softmax function converts a vector of values to a probability distribution. The

output vector elements range from 0 to 1 and sum to 1. This function often activates

the last layer of a classification network because the result is interpreted as a probability

distribution. The value for each class output is the probability associated with that

class, and the class with the highest value indicates the probable correct answer for the

classification.

2.6.2.3 Sigmoid

The sigmoid function is a mathematical function S define by

S(x) =
1

(1 + e−x)
.

The Sigmoid Activation Function is also called a logistic function and is known for

its characteristic S-shaped line-plot. It is equivalent to a Softmax function reduced to a 2

elements classification, where the second element is assumed to be zero. For small values,

the function returns a value close to zero; for large values, the result of the function is close

to 1. Because of this characteristics it is used for binary classifications. In addition, this

function is continuous and derivable, making it a very useful function for classification.

Figure 2.6 shows the function behaviour for values of x from -10 to 7.5.

19



Figure 2.6. Line Plot of Sigmoid Activation Function for negative and positive
inputs

2.6.3 VGG16

The VGG16 neural network model is a state-of-the-art architecture for image clas-

sification and object detection. Karen Simonyan and Andrew Zisserman developed the

VGG architecture to demonstrate their research and submitted the paper as an entry to

the 2014 ImageNet Large Scale Visual Recognition Challenge (ILSVRC).

As cited in the paper [27], VGG is a significantly more accurate Convolutional Net-

work Architecture that achieves state-of-the-art accuracy on ILSVRC classification and

localization tasks. The architecture also applies to other image recognition datasets,

achieving excellent performance even when used as part of simple pipelines like deep fea-

tures classified by a linear SVM without fine-tuning. This architecture achieved 1st and

second place in the 2014 ILSVRC challenge in detecting objects, object localization in an

image coming from 200 classes, and in the task of image classification, each labeled with

one of 1000 categories, an image classification task.

The VGG16 neural network model was named after the Visual Geometry Group from

Oxford University, England. It is a research group inside the engineering department of

Oxford University that focuses on researching the sense of vision and artificial intelligence

and its impact on robotics, searching large image and video collections, production and

quality control on industrial processes, and computer vision. The number 16 refers to

the depth that is 16 layers deep.

The paper was submitted as an entry to the 2014 ImageNet Large Scale Visual Recog-

nition Challenge. It is a challenge that evaluates algorithms for object detection and

image classification on a large scale. In 2014 there were two competitions: a detection
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challenge on fully labeled data for 200 categories of objects and an image classification

plus an object localization challenge with 1000 categories.

Convolutional Networks had at the time great success in the large-scale image and

video recognition due to sizeable public image repositories and higher performance com-

puting systems with GPUs or large-scale distributed clusters. As hardware was becoming

more cost achievable and ConvNets became a commodity in the computer vision field,

various groups were researching improvements to the architecture. The ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC) played a significant role in advance of deep

visual recognition architectures, serving as a testbed for large-scale image classification

systems.

The VGG is an important development as it is focused on standardizing deep convolu-

tional networks design to support deeper and better performing models This architecture

achieves 92.7% test accuracy on the ImageNet dataset, which contains 14 million images

belonging to 1000 classes. The first significant advance in the architecture is using many

small filters, specifically 3x3 and 1x1, with a stride of one, contrary to the large filters

used in other architectures like AlexNet. Max pooling layers are used after most of the

convolutional layers. VGG networks use two, three, or four convolutional layers stacked

together before a max pooling layer is used. This arrangement intends that stacked con-

volutional layers using small filters approximate the effect of one convolutional with a

filter of a large size. Another critical implementation is the use of a very large number

of filters. The number of filters increases according to the model depth. It starts with

a significant number of 64 filters, increases to 128, 256, and 512 filters at the end of the

feature extraction of the model. Figure 2.7 shows the architecture of VGG.
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Figure 2.7. Architecture of the VGG Convolutional Neural Network. Source: [27]
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Figure 2.8 below shows a graphical representation of VGG16 architecture.

Figure 2.8. Graphical representation of VGG16 architecture. Source: [20]
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2.6.4 Transfer Learning

Transfer learning is a machine learning strategy where a model developed and trained

for a task has its knowledge reused as a starting point for solving a different but related

problem. For example, we can use a model previously trained to classify vehicles and

repurpose it to differentiate buses from trucks. A significant advantage of using pre-

trained models is to diminish the time for training for our problem as the weights of the

initial training, which have lasted for many hours, are reused, and only a tiny part of the

model is trained with the new data.

The most common use of transfer learning is to use state-of-the-art deep-learning

models pre-trained for the ImageNet classification and object detection competition like

VGG, Inception, and ResNet and repurpose them to new image classification and detec-

tion tasks. These models took days to be trained and tuned, and thanks to permissive

licenses from the researcher’s institutions, these models and their weights can be down-

loaded and used freely. We took this approach in our research, where we repurposed

a VGG16 neural network to classify collections of slices images in order to detect the

presence of Schizophrenia.

2.7 XAI { Explainable Artificial Intelligence

Artificial Intelligence and the sub-field of Machine Learning are revolutionizing the

area of Decision Support Systems. All software systems, from financial services to medical

support and precision agriculture, can benefit from Artificial Intelligence, becoming more

accurate, autonomous, and “intelligent” with the addition of machine learning algorithms.

The addition of these technologies enables the automation of several repetitive tasks

reducing of needed time to process and reproduce decision-making processes done by

human operators. For example, Healthcare Area is experimenting with a revolution in

machine learning supported diagnosis, with an amplified visualization of characteristics

that were hidden, beyond human perception, leading to more precise diagnosis with

accuracy similar to human decisions or superior. Although these advances are astonishing,

more sophisticated, and accurate, machine learning models compare to black boxes, where

little is known of its internal process of classification or prediction of results.

This situation has motivated government agencies, corporations, and universities to

fund researchers to study ways to guarantee that machine learning algorithm’s output

results are reliable and also explainable. As a result, several libraries and methodologies

were developed to explain and justify the outputs obtained from a machine learning

engine.

One of the first initiatives towards obtaining explanations from Artificial Intelligence

24



based systems was the Explainable Artificial Intelligence (XAI) program, launched by

the Defense Advanced Research Projects Agency (DARPA) of the United States De-

partment of Defense in May 2017 [10]. The program coined the acronym XAI, with X

for Explainable, with the explicit intention to create human-understandable AI systems

through practical explanations rather than interpretable, comprehensible, or transparent

AI. The program’s main objective was to create a collection of ML techniques to pro-

duce explainable models that, combined with explanation techniques, would enable users

to understand when a model works correctly, when it fails, trust its results and how to

improve its performance.

XAI uses two main approaches to base its techniques and methods. The first approach

is to interpret and justify a prediction from a non-interpretable ML or DL model with

input data. This approach is known as a Post-Hoc one, as the explanation is obtained

after the prediction. The second approach is to build a naturally explainable model

capable of explaining its results since its conception, known as the Ante-Hoc approach.

Post-hoc approaches are valuable tools when accessing DL or ML models that can be

viewed as black boxes as the number of layers, weights, and parameters increases. The

Post-hoc approach is agnostic concerning the model it is explaining. It is not interested

in its inner functions but in creating a proxy model with the same outputs with an

explainable result.

XAI brings benefits to three types of DL users [9] as follows:

• Model Developers and Builders: These individuals’ primary job is to develop, ex-

periment with, and deploy deep neural networks. They strongly understand DL

techniques and have a well-developed intuition surrounding model building. They

can decide on key issues, such as identifying what models perform best on which

types of data.

• Model Users: This group of users have some technical background but are neural

network novices. They use well-known neural network architectures to develop

domain-specific applications, small-scale training of models, and downloading pre-

trained model weights to use as a starting point.

• Model Novices: The third group typically has no prior knowledge about DL and

may not have a technical background. They simply use AI-powered devices and

applications.

• Physicians: We added this fourth group based on the domain of this work, as they

will use the DL model results, associated with the explanation provided by the XAI

results, to support their diagnosis.
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XAI also gains importance as more laws and regulations are created to mediate con-

flicts that model results can cause when applied to daily aspects of human life. The

Brazilian Chamber of Deputies approved the 13.709 Law on August 14th, 2018, known

as Lei Geral de Proteção de Dados Pessoais (LGPD), General Law for Personal Data Pro-

tection contains items that deal directly with the Right of Explaining. It’s 20th article

states that the owner of some personal data has the right to review decisions exclusively

generated from an automated process that uses his data exclusively as input to make

professional profiles, financial profiles, and consumption profiles and affects his interests.

The European GPDR inspired Brazilian law, the European Union General Data Protec-

tion Regulation, effective from May 25th, 2018. GPDR regulates personal data protection

and privacy in the European Union region and states at the 71st item that an explanation

must be provided to an individual for decisions and results obtained by an automated

process.

2.7.1 Algorithms and Libraries for XAI

The most used strategy to obtain an explanation for a model behavior is to use an

explainable model like decision trees, rules, additive models, attention-based networks,

or sparse linear models. This kind of model offers the possibility of inspecting the paths

followed to achieve a result, but with DL models, this is not so easy, as they are composed

of several layers with lots of weights and parameters to adjust. In order to explain the ML

and DL models, several approaches and algorithms have been created. We will describe

two of the more used ones.

2.7.1.1 LIME

With the increasing adoption of Deep Neural Networks in real-world applications, DL

users achieve greater accuracy as they perfect the DL networks for the task at hand. Con-

sequently, they obtain results that are far better than those that a naturally interpretable

model could provide, leading to a situation where explainability is underrated. In this

case, providing explainability would mean damaging the model, lowering the number of

feature data to be analyzed, and degrading the model results. LIME comes to aid in

providing this explainability without modifying the model under analysis.

Local Interpretable Model-agnostic Explanation [31] LIME proposes to obtain an

explanation by treating the model under inspection as a black box. This explanation

technique explains the predictions of any AI classifier by learning an interpretable model

locally around the prediction.

LIME’s objective is to identify an interpretable model over the interpretable repre-
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sentation that is locally faithful to the classifier. Although an interpretable model may

not approximate the black-box model globally, it can approximate it for an individual

instance. The black-box model under the explaining approach will receive data at its

inputs, and the model responses will be learned. Also, data with perturbations will be

submitted to see how the black-box model reacts to this noise, and the set of responses

will be used to infer/approximate the model behavior. This strategy is model-agnostic as

it does not need to know the model’s internal components or how the information flows

inside it.

An example of an output that can be obtained with the usage of LIME is shown below

in figure 2.9. (a) shows the original image of a husky dog that a model misclassified as

a wolf. In (b), LIME helped explain what was wrong with the classification job as none

of the dog’s characteristics was recognized. It was the background that the model took

into consideration to predict a wolf.

Figure 2.9. (a) Original image of a husky dog (b) Areas that explain misclassifi-
cation as a wolf. Source: [31]

2.7.1.2 TF-Explain GradCAM

Gradient-weighted Class Activation Mapping (Grad-CAM) [24] is a class-discriminative

localization technique for making CNN-based models transparent by producing visual ex-

planations for the model predictions. This technique aims to improve the interpretability

of CNN models, explaining why they predicted what they predicted. The Grad-CAM

technique uses the gradients of any target concept, flowing into the final convolutional

layer to produce a coarse localization map highlighting the important regions in the image

for predicting the concept. This technique can be applied for tasks like image classifica-

tion, image captioning, and visual question answering (VQA)and help identify biases in

datasets.
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To explore the interpretability of the models with Grad-CAM, we have used the tf-

explain library that offers the implementation of models constructed with Tensorflow. It

offers an explanation method that outputs the explanation, as a heat-map, for example.

This explanation can be obtained from a trained model loaded with the core API of

Tensorflow and saved to a disk or at training time with callback functions integrated

with Tensorboard. Tensorboard is a Tensorflow module that provides the visualization

and tooling for analyzing a machine learning model experimentation. With it, we can

validate what our network model looks at when making the predictions and if the relevant

input patterns activate it. An example of the Grad-CAMmodel output visual explanation

can be seen in figure 2.10, where (a) shows the original image is explained. (b) Moreover,

(c) shows the relevant areas colored in red that identify respectively a Cat and a Dog.

Figure 2.10. (a) Original image of a cat and a dog. (b) Area in red shows what
identifies a cat. (c) Area in red shows what identifies a dog. Source: [31]
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3 Proposed Methods for Schizophrenia

Detection Based on Multi-Slice Anatomical

Images

The methods described in this chapter were designed to support the general objective

of systematically evaluating the different combinations of anatomical MRI scan axial

slices for the problem of classification using Convolutional Neural Networks to detect the

presence of schizophrenia structural modifications or not.

In order to achieve this objective, we executed methods to achieve the following

specific objectives:

• Experimenting with entropy and Pearson’s correlation to identify the most infor-

mative slices that would enhance our classifier’s results.

• Experimenting with various combinations of slices from MRI scans instead of a

single central slice, aiming to obtain the best performance metrics from the classi-

fication model.

• Evaluate the performance of a small Convolutional Neural Network compared with

a pre-trained state-of-the-art neural network architecture for image classification.

• Evaluate techniques of Explainable Artificial Intelligence applied to schizophrenia

classification.

Our experiments consisted of:

• Preprocessing the MRI images raw data of schizophrenia (SZ) patients and healthy

controls (HCs) subjects, extracting two-dimensional images, like slices, along the

axial direction, used to compose an image dataset to conduct the subsequent ex-

periments.

• Using the Shannon Entropy, we evaluated the individual slices and combination

of slices, searching for the combination which could bring the best results for the

classification machine learning engine
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• Using the Covariance Estimation, we evaluated if the individual slices and combina-

tion of slices could be correlated or have any dependence on each other, indicating

some information redundancy that would be better to exclude.

• Present a selected mix of 2D images of slices to a Convolutional Neural Network for

training and evaluation. The training and evaluation were repeated for several indi-

vidual MRI scan slices and a combination of slices, each combination or individual

slice training being submitted through a k-fold evaluation strategy.

• Based on the previous experiment, identify the collection of slices that have the

better performance metrics.

• Submit the dataset of selected slices to the simple CNN architecture model for

evaluating the results

• Submit the dataset of selected slices to a pre-trained state-of-the-art neural network

architecture for image classification.

• Compare the results for the two previous experiments.

• Apply XAI methods for verifying what is being taken into consideration by the

machine learning engine to classify the slices images.

Tables showing the result data from these evaluations are in the results section.

3.1 Data Description

In order to evaluate the proposed methods, we used the MRI dataset from SZ patients

and HC subjects from BIRN [30]. This dataset initially appeared in [13]. Each patient or

subject file downloaded from the BIRN website contains functional and structural MRI

scans.

The used dataset is a collection of scanned images resulting from the process of MRI

scanning. Their type is NIfTI, which stands for Neuroimaging Informatics Technology

Initiative [12], a data format created for storing MRI, Functional Magnetic Resonance

Imaging (fMRI), and other medical images. NIfTI format is an adaptation of the Ana-

lyze™ 7.5 format, also used for medical images, developed by Biomedical Imaging Resource

(BIR) at Mayo Clinic. NIfTI and Analyze 7.5 are compatible as NIfTI only adds more

fields to clarify the orientation in the space of the images, such as which side is left or

right.

The NIfTI data format comprises three files:
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• A header file for storing meta-data with extension .hdr.

• The actual data file with extension .img.

• A file with extension .nii with the contents of the two previous files for easy data

processing.

In order to explore MRI Scanning files, we used the python library nilearn, which spe-

cializes in the treatment of NIfTI files, including the plotting of images. For extracting the

image slices, we used the python library NiBabel [17]. This library provides access to the

most common neuroimaging file formats, such as ANALYZE (plain, SPM99, SPM2, and

later), GIFTI, NIfTI1, NIfTI2, CIFTI-2, MINC1, MINC2, AFNI BRIK/HEAD, MGH,

and ECAT as well as Philips PAR/REC and limited access to DICOM file format. In

addition, it provides access to meta-data in the header file and the image data, viewed

as NumPy arrays.

Our experiment used the structural scan file that contains axial, coronal, and sagittal

slices from the patient/subject of examination. Each participant file represents the brain

as a 3D image with 252 x 252 x 27 voxels. From this file containing the scanned brain

volume, we extracted the 27 axial slices with 252 x 252 pixels as input to the neural

network. We used 79 scans of control subjects and 79 scans of diagnosed schizophrenic

patients, adding up to 158 scans.

Each MRI scan is a volume composed of images that can be viewed and indexed in

three different types of orientations of the human head:

• Axial plane: it is an X-Y from top to down

• Coronal plane: it is an X-Z plane, with images from front to back

• Sagittal plane: it is a Y-Z plane from the left side to the right side

Figure 3.1 shows the three axis of a MRI scanned brain.

The NiBabel library enables us to access the scanned volume meta-data information

present in the header.
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Figure 3.1. Figure showing the axis planes for a MRI scanned brain volume (A)
Axial, (B) Coronal, (C) Sagittal. Source: [28]
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3.2 Neural Network Architecture

The network was built using the Tensorflow library [1] with Keras API [4] as a high-

level abstraction. The coding was done in Python 3.7, using Jupyter Notebooks as the

running environment and Anaconda for Python environment management. The Neural

Network model was defined as Sequential, as the layers were stacked over each other, data

flows through the inputs, is processed in the hidden layers, and the output layer presents

the results.

Figure 3.2, shows a simplified view of the architecture:

Figure 3.2. Simplified architectural view of the Neural Network Model used in
the experiments.
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• The first layer (FL) is defined as a Conv2D type, which creates a convolutional

kernel convolved with the inputs to produce a tensor of outputs. The FL has 32

neurons and takes inputs representing 252 x 252 x 1 tensor, according to the slice

dimensions. Moreover, the FL uses 5x5 kernels and a rectified linear unit (RELU)

activation function.

• The second layer is the MaxPooling2D type that downsamples the input by taking

the maximum value over a window of 2 x 2 cells.

• The third layer is another Conv2D type, applying another convolution with a kernel

of 5 x 5 cells

• The fourth layer is another MaxPooling2D 2 x 2 cells.

• The fifth layer is a Flatten type. It reshapes the tensor to have the shape equal to

the number of elements needed for the last layer.

• The last layer is Dense, with 2 neurons and ”softmax” activation function, respon-

sible for presenting the probabilities of each possible classification

Table 3.1 shows the network architecture summary.

Table 3.1. Used Neural Network Architecture

Model: sequential

Layer (type) Output Shape Parameter value

Bidimendional convolutional 252× 252× 32 832
Max Pooling 126× 126× 32 0
Bidimendional convolutional 122× 122× 64 51,264
Max Pooling 61× 61× 64 0
Flatten 238,144 0
Dense 2 476,290

Total number of parameters: 528,386
Trainable parameters: 528,386
Non-trainable parameters: 0

3.3 Extraction of Image Slices

In order to create a dataset for training the model, we had to obtain the images of

individual slices of the scanned brain volume. The library nibabel provides a function to

obtain a NumPy array from the volume and extract the images. The extraction of an

individual slice was executed as follows:

1. After downloading the collection of scanned volumes from the BIRN site, two direc-

tories will separate the files of control subjects from Schizophrenia patients. Two
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files represents each MRI scan , they have the same filename, one with the exten-

sion hdr containing meta-data information and the other with the extension img

containing the scanned data.

2. The volume image is read from the disk using the nibabel library. The volume is

read into memory as a NumPy array with dimensions 256 x 256 x 27.

3. Our primary interest is in the images in the Axial plane, as this axis is where

the anatomical modifications of brain structures are most noticed in schizophrenia

patients. In order to access these images, we access each slice from the volume by

accessing the third index of the NumPy array. For example, to access the second

slice image, we use the following pseudo-code:

read a file containing MRI Scan 3D volume to a numeric array

extract two dimensions sub-array, a slice, from 3D volume using index 2

save the slice to disk as an image with gray shades color map

Figure 3.3 shows slice 13, slice 14 and (c) shows slice 15 from a subject extracted

from MRI scans. Figure 3.4 shows the same index slices from a second subject MRI

scan.

Figure 3.3. MRI Scan slices of a subject (a) Slice 13 (b) Slice 14 (c) Slice 15
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Figure 3.4. MRI Scan slices of a second subject (a) Slice 13 (b) Slice 14 (c) Slice
15
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3.3.1 Data Augmentation

Our dataset is composed of slices extracted from 158 MRI scans, and this is a small

number of images. A small dataset can lead to poor metrics values associated with the

validation dataset, inducing evaluation errors. Data augmentation techniques are the

commonly used solution to this situation. Data augmentation increases the dataset size

by creating new images from existing images and introducing noise or transformations

like rotations, color inversions, and position shifts. The intuition is to create new images

similar to real ones that can be presented to the model when deployed in production. In

our dataset, we observed that some images have rotations with angles varying from -10

to 10 degrees, as shown in figure 3.5, probably caused by variations of subject positioning

in the MRI Scanner. Therefore, we programmed a function to create 20 new images from

each image extracted from the scanned volume by rotating 1 degree from -10 degrees to

10 degrees for each original image. Before executing the data augmentation function, we

put part of the dataset aside to create the validation dataset.

Figure 3.5. Images of slices showing rotations due to positioning in MRI Scanner.
(a) Rotated down image. (b) Slightly rotated up the image. (c) Rotated up the
image.

3.3.2 Analysing a 3D volume of images as a photo film reel

Since the initial stages of our research, we had the vision that we needed to create a

dataset composed of various slice images, but each sample would be composed of different

slice images of the same subject/patient. Investigating possible input layers to use in our

neural network, we identified two main possibilities: use a first 3D dimensional layer with

the complexities and extended training and validation time, or convert the sequence of

images of the same subject/patient to an analogy of a photo film roll. We choose the

second option as it would provide the simplified possibility of treating the ”photo film

reel” as a two-dimensional image composed of several slice images collated.
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The following algorithm executed the collation of images:

1. Obtain an MRI scan from a subject/patient.

2. Creates a zeroed numeric array with the size of 252 pixels of height and 27 slices x

252 pixels of width.

3. Interacting extracting the slices of the MRI volume from index zero to 26, in the

axial direction.

4. For each slice, make a copy of the slice to a zeroed array, inserting it at the width

position 252 multiplied by the index.

5. Write the numeric array as an image file to disk.

Figure 3.6 shows the example image resulting from the collation of slice images.

38



Figure 3.6. Example of slices extracted from an MRI Scanned 3D brain converted
to 2D photo film reel of slices.
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3.4 Folder organization for storing the images

The slices’ evaluation starts with preparing the datasets for the training and validation

of the machine learning models. We prepared the datasets by extracting the slices images,

transforming them into images like photo film reels, and organizing them on the hard

disk in folders as shown in table 3.2

Table 3.2. Table showing the folders organization for training and validation of
the machine learning model. For each slice collection, we have an organization like
this one.

Folder Contents

/data/train/slicescollection/schizo Images of one collection of slices from the

Esquizophrenia patient group to be used for training

/data/train/slicescollection/control Images of one collection of slices from the

healthy control group to be used for training

/data/val/slicescollection/schizo Images of one collection of slices from the

Esquizophrenia patient group to be used for validation

/data/val/slicescollection/control Images of one collection of slices from the

healthy control group to be used for validation
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The organization of the collections was executed as follows:

• First, we have created folders following the organization of the table 3.2: one folder

for the training images and another for the validation images. Below each one,

we have a subfolder named with a slices collection identifier, where we created the

two folders named control and schizo that will contain the images for each of the

classes. The images of each subject are organized as photo film reels.

• The division of the dataset in two parts were 70% for training and 30% for valida-

tion.

• We used a python library named split-folder and a custom shell script to execute

the distribution of the images in the correct folders according to the group, slice

collection, training, or validation dataset.
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3.5 Evaluation of Network Models

We evaluated the neural network models with the following steps:

1. Evaluate the best combination of batch size and epochs to train the model. For

batch size, we used the values 10,15,20, and 25. For epochs, the values were 5,10,20,

and 30.

2. Evaluate the best optimizer for the model using the algorithms ”Stochastic Gra-

dient Descent (SGD),” RMSprop,” Adagrad,” Adadelta,” Adam,” Adamax,” and

”Nadam.”

3. Use the best combination of batch size, epochs, and optimizer, determined in pre-

vious steps, to create the model.

4. Evaluate model mean performance using a k-fold strategy. This strategy divides the

data set into k parts, trains the model with k-1 parts, and tests with the remaining

part. In this k-fold strategy, we used k = 10, as it is one of the recommendations

in [14], and using larger values of k did not change our results in the preliminary

tests.

We repeated the steps for the selected individual slices and slice combinations.

3.5.1 Evaluation of Model’s Performance Metrics

The evaluation of the models training and predicted performance uses four terms:

• True Positive (TP): Observation and prediction are positive.

• False Positive (FP): Observation is negative, but the prediction is positive.

• True Negative (TN): Observation and prediction are negative.

• False Negative (FP): Observation is positive but is predicted negative.

The four terms are used to formulate the following metrics:

• Loss: The purpose of loss functions is to compute the quantity a model should seek

to minimize during training. As we classify an MRI scan as probable SZ patients

or HC subjects, it is a binary classifier, and we use the binary cross-entropy loss

function to compute cross-entropy between the labels and predictions. This metric

is defined by

Loss =
1

N

N∑
i=1

−(yi. log(pi) + (1− yi). log(1− pi)).

42



• Accuracy: Calculates how often predictions equal labels. This metric creates two

local variables, total and counts, that compute the frequency with which predicted

labels match true labels. This frequency is ultimately returned as binary accuracy:

an idempotent operation that simply divides the total by count. Function A defines

this metric as

Acc =
(TP + TN)

(TP + TN + FP + FN)
.

• Precision: Computes the precision of the predictions concerning the labels. The

metric creates two local variables, true positives and false positives , to compute the

precision. This value is ultimately returned as precision, an idempotent operation

that divides true positives by the sum of true positives and false positives. This

metric is defined by

P =
TP

(TP + FP )
.

• Sensitivity: This metric measures the proportion of actual positives that are cor-

rectly identified as such. This metric is defined by

Sy =
TP

(TP + FN)
.

• Specificity measures the proportion of actual negatives that are correctly identified

as such. It is defined by

Sp =
TN

(TN + FP )
.

• AUC: A Riemann sum computes the approximate AUC (Area under the curve).

This metric creates four local variables, true positives, true negatives, false positives,

and false negatives, that are used to compute the AUC. A linearly spaced set

of thresholds is used to discretize the AUC curve to compute pairs of recall and

precision values. For example, the area under the ROC curve is computed using

the height of the recall values by the false positive rate, while the area under the

PR curve is computed using the height of the precision values by the recall.

• Recall: Computes the recall of the predictions with respect to the labels. This

metric creates two local variables, true positives and false negatives used to compute

the recall. This value is ultimately returned as recall, an idempotent operation that

divides true positives by the sum of true positives and false negatives. The metric

is defined by

Rcl =
TP

(TP + FN)
.
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3.6 Evaluation of the correlation of information between

slices using Covariance Estimation

Observing the slices images, we noted that some slices seemed to have a repetition

of structures with the same format or pixel levels or with small variations, making us

think of the possibility of existing repeated information from one slice to another or some

correlation. If this hypothesis were valid, that would be a possibility of excluding some

slices as they only would add computational effort to the machine learning engine and

not present characteristics relevant to the machine learning model, capable of helping to

discriminate healthy control subjects from schizophrenic patients. As a method for eval-

uating this possibility, we used the Covariance Estimation for the slice images, comparing

the images between each other.

This procedure was executed for the two groups of subjects, with individual results

for each group. It was executed as follows:

1. From previously extracted slice images from different subjects, we extract the cen-

tral portion of the slice image, size of 48 pixels, same slice of every participant of

the group and combined all of them in an array

2. The previous procedure was repeated for every slice of the scanned MRI volumes

in the axial direction

3. All the values were combined in a matrix to be submitted to the covariance evalu-

ation algorithm

4. After calculating the covariance of the slices, a graph is built to provide a visual

representation of the results

3.7 Evaluation of best slices for dataset creation using

Shannon Entropy

In order to evaluate which 2D slice images would be relevant to use in our machine

learning classifier, we choose to use the Shannon Entropy value to provide an insight into

the overall information contained in the image. The Shannon entropy, represented by the

formula

H = −K
n∑

i=1

pi log pi

provides a numerical value that indicates the diversity of the information contained in

the slice image.

44



Our intuition to use this selection criterion was that the greater the entropy value,

the more diverse information was present, indicating that more structure representations

would be present in the slice image. This would indicate that a specific slice is a better

representative to differentiate the control group from schizophrenia subjects. These slices,

in our intuition, would be the ones with better results when submitted to the CNN model

training and evaluation.

The Shannon Entropy value of the image slice was obtained using the function

shannon-entropy from the library skimage.measure. It defines the equation of Shannon

entropy internally as

S = −
∑

(pk. log(pk))

, where pk are frequency/probabilities of pixel of value k. Its inputs are the grayscale

image of the slice and the logarithmic base value to use, which usually equals 2. The

output value of the function is measured in bits or Shannon values for base=2.

Our method for this experiment was as follows:

First part: Calculate the entropy for the individual slices datasets

1. Extract the individual slices of the scanned MRI volume, separated into folders

for schizo and control, and under these folders, the sub-folders with the individual

slices

2. Calculate the average entropy for each slice dataset in the control folder

3. Calculate the average entropy for each slice dataset in the schizo folder

4. Calculate the average entropy for each slice dataset for the aggregated groups con-

trol and schizo

5. Create a table with the results and generate the graphs for the results

6. Create a sorted list of the slices ordered by the calculated average entropy

Second part: Identify the best collection of slices to use for classifying the

subjects based on the average entropy of the individual slices

1. Using the classified order of individual slices by their entropy, create a dataset with

slices of the first slice whit the greatest entropy from control and schizophrenia

patients with respective labels

2. Split this dataset into training test and validation

3. Submit the split dataset to model training and test
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4. Using the trained model, submit the validation split dataset to the model for eval-

uation and collect the metrics of accuracy and loss error

5. Add the next slice from the ordered list of slices by accuracy and repeat the steps

from step 1 until all the ordered list has been iterated.

6. Collect the data for tabulation and analysis

Third part: Present the collected data

1. Using the classified order of individual slices by their entropy, create a dataset with

slices of the first slice whit the greatest entropy from control and schizophrenia

patients with respective labels

2. Split this dataset into training test and validation

3. Submit the split dataset to model training and test

4. With the trained model, submit the validation split dataset to the model for eval-

uation and collect the metrics of accuracy and loss error

5. Add the next slice from the ordered list of slices by accuracy and repeat the steps

from step 1

6. If the new slice does not enhance the previous results, then exclude these slices from

the list of best slices to use for classification

7. Repeat until all the ordered list has been iterated.

8. Collect the data for tabulation and analysis

3.8 Evaluation of top accuracy slices collection by a state-

of-the-art Deep Learning architecture

After evaluating the entropy of the slices, collection of slices, and submitting them

to a small-scale neural network used as a baseline, we determined a rank of collections

ordered by accuracy. With this list in hand, we submitted the top 2 collections to a

state-of-the-art architecture, the VGG16, to evaluate the results obtained with a special

collection of slices. We used the transfer learning technique; with this approach, we took

advantage of the previous training in the architecture in the ImageNet dataset. The

procedures for this evaluation are as follows:

1. Create a dataset with the collection of the slices that obtained the best accuracy,

separated in training and validation
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2. Create a VGG16 Neural Network model using a template available in the repository

for the Tensorflow Keras library, modifying its input to adapt to our images and

adding a last Dense layer with its output adapted to our number of classes. The

weights used to come from the ImageNet dataset training.

3. Configure the neural network to enable the training of only the last layer of the

architecture

4. Do the training, with a configuration to save the models that have the smaller loss

metric

5. Collect the history of the training

6. With the resulted data from the training create graphs of loss and accuracy versus

training epoch for evaluation of training performance

7. Repeat all the steps for the second best accuracy slice collection

3.9 Applying XAI method GradCam

Our last experiment was to apply an Explainable Artificial Intelligence method to

the output of our state-of-the-art model, based on VGG16 architecture. The procedure

objective was to have an insight into what the model is looking at when it makes a

prediction. This visualization will help verify if the prediction makes sense and could lead

to new conclusions about what structures are relevant when diagnosing Schizophrenia.

We experimented with the best models for a dataset composed of only slice six and for

a dataset composed of slices 0 until 16. we wrote custom scripts to obtain the heatmap

and the superimposed image to visualize the relevant areas. To execute this experiment,

we took the following steps:

1. Load a random image from the dataset with only slice 6 for evaluation

2. Preprocess the image to adapt for the model input layer

3. Load trained model, based on custom VGG16 architecture

4. Generate a heatmap for the image based on the model’s gradients for the last

convolutional layer

5. Generate a superimposed image of the original image and the heatmap

6. Display the result

7. Repeat the procedures for an image from the dataset with images from 0 to 16
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4 Results and Discussions

In order to help locate the slices of MRI brain scan referenced in experiments results,

we will show below the images with respective indexes in an MRI volume axial scan:

Figure 4.1. Examples extracted slices from MRI Scan, from index 0 to 24 from a
total of 27 slices.
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4.1 Evaluating anatomical MRI scan brain slices to obtain

the most representative dataset for training

In previous papers we observed that the researchers had a trend of analyzing only

central axial slices of the brain, from 9 to 16, in the majority of the cases selecting only

one of these slices to analyze. Our intuition was that other relevant slices containing

useful information would be used in a classifier. In the other direction, there was a pos-

sibility that different slices could have duplicated information or correlated information,

irrelevant if duplicated in the dataset. In this section, we report the results obtained

from the experiments to obtain the best mix of slices representing the most informational

relevant brain slices for the machine learning training dataset.

4.1.1 Covariance/Pearson’s Correlation evaluation

We experimented with the covariance/Pearson’s correlation values to investigate if

there was an indication of information redundancy that could lead to selecting the more

relevant slices to build our dataset of slices.

In the following graphics, we present the results from evaluating the covariance be-

tween slices of the Schizophrenia subjects group. Our intuition was to verify if adjacent

slices would have a great correlation between them that could lead to eliminating one of

them. A combination having the greatest chance to be in this hypothesis was between

slices 1 and 2 but with a small correlation value of 0.234. However, most combinations

were under this value, so we did not consider this approach.
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Figure 4.2. Graphics showing correlation between slices of the Schizophrenia
patients group
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The following graphics show the results of evaluating the correlation between healthy

control subjects group slices. As in the previous graphics, we made this experiment to

verify if there was a correlation between two adjacent slices, indicating that we could

eliminate one of them. We observed that slices 12 and 11 had a small correlation of

0.350, but we considered it to not be a relevant case for eliminating one of them based

on this criterion.

Figure 4.3. Graphics showing correlation between slices of the healthy control
subjects group
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The last experiment we made was to use slices of both groups and search for cor-

relation between adjacent slices and between slices and classes. The following graphics

show minimal values for the results, leading us to conclude that covariance is not a good

metric for our present problem: select the best slices to build our dataset.

Figure 4.4. Graphics showing correlation between slices of both subjects group
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The results presented by the covariance evaluation did not indicate a high correlation

between the two classes and the slices and the slices among them. Therefore, covariance

does not seem to be the best indicator. We think that this is an intrinsic limitation of

this measurement as it is a metric that analyzes only one kind of dependency, and also we

had a small dataset. The figures in this section showed that the correlation values were

near zero, indicating an insignificant correlation between the slices. It would be more

significant if it were near the +1 or the -1 value. Because of this, we experimented with

the Entropy value to have a metric for evaluating the best slices to build the dataset.

4.1.2 Entropy evaluation

4.1.2.1 Entropy evaluation of individual slices of a random control subject

As stated in the methodology, one of the experiments was to evaluate the entropy

as a criterion to select the slices that would provide the best results when added to the

dataset used for training a machine learning classifier. Therefore, we choose the Shannon

Entropy calculation for the image file. The Shannon entropy, represented by the formula

H = −K
n∑

i=1

pi log pi

, will give us an estimation of the diverseness of the information contained in the image.

The intuition is that the greater this metric, the more information the image contains

more relevant it will be for the machine learning classifier. Therefore, we submitted the

images of the slices individually and calculated the entropy for all the control subjects

and the schizophrenia patients. Table 4.1 shows the value of Shannon entropy for image

slices of a random control subject.
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Slice Entropy Slice Entropy

6 5.459513 4 5.100624

7 5.454676 19 5.075619

3 5.387418 13 5.068898

10 5.376120 20 4.964131

9 5.277592 8 4.937223

15 5.261407 5 4.924651

0 5.248929 21 4.850773

2 5.244146 1 4.840004

12 5.238758 22 4.715308

11 5.229948 23 4.383436

18 5.189273 24 4.191262

17 5.163017 25 3.736641

14 5.160322 26 3.619608

16 5.145192

Table 4.1. Shannon Entropy values of MRI scan slices from a random subject. It
is in descent sorted order of entropy:
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As we axially traverse the slices from bottom to top of the skull, we can observe that

the Shannon entropy value of the image decreases as it reaches the top of the skull. As

we can see in 4.1, the images have fewer internal structures and randomness. Except for

slice 1, all the greater values of Shannon entropy values are obtained until slice 20, and

after we notice a significant decrease of the Shannon entropy value.

4.1.2.2 Entropy evaluation of individual slices of a group of subjects and compar-

ison between the groups

After evaluating the Shannon entropy for a unique subject for establishing a baseline

reference, we calculated the average Shannon entropy for the two groups of subjects: the

control group and the group of schizophrenia patients. The objective was to observe the

variation of the average values between the two groups and if there was any significant

variation in the sorted order of the slices based on their Shannon entropy values.

The results are shown as follows: table 4.2 shows the obtained average Shannon

entropy values for the control group per slice, and table 4.3 shows the average Shannon

entropy obtained values for the schizophrenic patient’s group per slice:

55



Slice Entropy
6 5.667120
7 5.660915
10 5.651297
11 5.632566
9 5.625398
8 5.618431
5 5.595073
12 5.581329
4 5.565319
13 5.540825
14 5.518174
3 5.510389
1 5.478136
15 5.471145
2 5.456008
16 5.442481
17 5.415122
0 5.403902
18 5.389171
19 5.294878
20 5.201705
21 5.080780
22 4.939645
23 4.728316
24 4.506750
25 4.322952
26 4.178690

Table 4.2. Shannon Entropy average
values of MRI scan slices for the control
group. It is in descent sorted order of
entropy

Slice Entropy
10 5.741600
7 5.740798
6 5.735013
5 5.726238
9 5.721837
11 5.712964
12 5.699338
8 5.693178
3 5.682558
4 5.678587
2 5.655890
1 5.646118
13 5.638080
14 5.634989
0 5.600223
15 5.597278
16 5.535400
17 5.471225
18 5.437461
19 5.369407
20 5.284730
21 5.167518
22 5.000726
23 4.814832
24 4.586878
25 4.343048
26 4.182541

Table 4.3. Shannon Entropy average
values of MRI scan slices for schizophre-
nia patients group. It is sorted in descent
order of entropy
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Values presented in both tables were obtained by calculating Shannon entropy. First,

it was calculated for every slice of the MRI scan for all subjects in both groups; finally,

the average value was obtained. The same situation that we have observed in the results

of one random control individual is repeated for the average value of the group, the five

last slices near the top part of the skull have a smaller Shannon entropy value than the

others leading us to the same intuition that they have fewer varieties for the contained

information. Another observation is that for the two groups, the slices with greater

entropy are 5,6,7,8,9,10,11. They only exchange positions between the two groups. In

general, the control group’s average entropy values are a little smaller than the group of

schizophrenia patients.

Table 4.4 shows us again the average value of Shannon entropy for each slice of the

dataset, but this time we have calculated the average for the whole dataset, control group,

and schizophrenia patients.

Slice Entropy Slice Entropy

6 5.700776 15 5.533673

7 5.700515 0 5.501223

10 5.696063 16 5.488543

9 5.673205 17 5.442934

11 5.672421 18 5.413110

5 5.660095 19 5.331824

8 5.655485 20 5.242862

12 5.639829 21 5.123778

4 5.621469 22 4.969925

3 5.595738 23 4.771205

13 5.589036 24 4.546472

14 5.576082 25 4.332914

1 5.561409 26 4.180599

2 5.555095

Table 4.4. Shannon Entropy average values of MRI scan slices for the whole
dataset. It is in descent sorted order of entropy

The same information is shown in graph form in figure 4.5. Again, it shows little

variation in entropy values at initial slices with an accentuated descent after slice 19.
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Figure 4.5. Graphics showing average entropy for individual slices of all subjects.
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4.1.2.3 Slice selection based on images entropy

The steps made in the previous subsections aimed to obtain a list of slices, ordered

by its entropy value. This list was used for the next step: submit the dataset formed by

the slices to a machine learning classifier and obtain metrics about their performance as

a classifier of images. This information will permit us to explore which slices enhance not

the results of the machine learning classifier.

In order to evaluate which slices would be the best to build a dataset for the classifier,

we prepared datasets with an incremental list of slices, using the average Shannon Entropy

value ordered list referenced in 4.4 as input and presented this dataset for training in the

inputs of the machine learning model, training and evaluation. The result list of slices

for the interaction was the following: 6 , 7 , 10, 9 , 11, 5 , 8 , 12, 4 , 3 , 13, 14, 1 ,

2 , 15, 0 , 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 and 26. In each interaction, we added

a new slice, built a novel dataset, trained the ML model, evaluated it, and collected the

metrics of loss and accuracy for the best model evaluating the validation dataset. These

collected data is presented in the table 4.5:

59



Slices Accuracy Loss

6 0.765258 0.834440

6, 7 0.629108 1.798356

6, 7, 10 0.690141 1.900789

6, 7, 10, 9 0.671362 2.221895

6, 7, 10, 9, 11 0.586854 5.479521

6, 7, 10, 9, 11, 5 0.591549 4.305631

6, 7, 10, 9, 11, 5, 8 0.638498 3.156163

6, 7, 10, 9, 11, 5, 8, 12 0.610329 2.968923

6, 7, 10, 9, 11, 5, 8, 12, 4 0.544601 3.753664

6, 7, 10, 9, 11, 5, 8, 12, 4, 3 0.596244 3.409455

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13 0.624413 3.031253

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14 0.633803 6.443608

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1 0.507042 5.394758

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2 0.516432 2.899813

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15 0.441315 4.633669

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0 0.596244 2.920489

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16 0.708920 3.967879

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17

0.403756 6.129658

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18

0.422535 5.542782

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19

0.525822 6.297647

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20

0.666667 5.515784

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21

0.530516 6.183190

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21, 22

0.638498 5.120807

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21, 22, 23

0.516432 3.087831

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21, 22, 23, 24

0.535211 4.538959

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25

0.549296 6.915903

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26

0.572770 5.577716

Table 4.5. Result metrics were obtained from incrementally adding slices to the
training dataset
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In order to permit a better view of the results, we have shown the same table 4.5 in

two versions:

• Table 4.6 shows the collected data, sorted by loss metrics of the model, ascending

ordered.

• Table 4.7 shows the data sorted by accuracy metrics of the model in descending

order.
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Slices Accuracy Loss

6 0.765258 0.834440

6, 7 0.629108 1.798356

6, 7, 10 0.690141 1.900789

6, 7, 10, 9 0.671362 2.221895

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2 0.516432 2.899813

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0 0.596244 2.920489

6, 7, 10, 9, 11, 5, 8, 12 0.610329 2.968923

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13 0.624413 3.031253

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21, 22, 23

0.516432 3.087831

6, 7, 10, 9, 11, 5, 8 0.638498 3.156163

6, 7, 10, 9, 11, 5, 8, 12, 4, 3 0.596244 3.409455

6, 7, 10, 9, 11, 5, 8, 12, 4 0.544601 3.753664

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16 0.708920 3.967879

6, 7, 10, 9, 11, 5 0.591549 4.305631

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21, 22, 23, 24

0.535211 4.538959

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15 0.441315 4.633669

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21, 22

0.638498 5.120807

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1 0.507042 5.394758

6, 7, 10, 9, 11 0.586854 5.479521

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20

0.666667 5.515784

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18

0.422535 5.542782

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26

0.572770 5.577716

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17

0.403756 6.129658

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21

0.530516 6.183190

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19

0.525822 6.297647

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14 0.633803 6.443608

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25

0.549296 6.915903

Table 4.6. Result metrics ascending ordered by loss
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Slices Accuracy Loss

6 0.765 0.834

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16 0.709 3.968

6, 7, 10 0.690 1.901

6, 7, 10, 9 0.671 2.222

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20

0.667 5.516

6, 7, 10, 9, 11, 5, 8 0.638 3.156

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21, 22

0.638 5.121

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14 0.633803 6.443608

6, 7 0.629108 1.798356

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13 0.624413 3.031253

6, 7, 10, 9, 11, 5, 8, 12 0.610329 2.968923

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0 0.596244 2.920489

6, 7, 10, 9, 11, 5, 8, 12, 4, 3 0.596244 3.409455

6, 7, 10, 9, 11, 5 0.591549 4.305631

6, 7, 10, 9, 11 0.586854 5.479521

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26

0.572770 5.577716

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25

0.549296 6.915903

6, 7, 10, 9, 11, 5, 8, 12, 4 0.544601 3.753664

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21, 22, 23, 24

0.535211 4.538959

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21

0.530516 6.183190

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19

0.525822 6.297647

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18, 19, 20, 21, 22, 23

0.516432 3.087831

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2 0.516432 2.899813

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1 0.507042 5.394758

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15 0.441315 4.633669

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17, 18

0.422535 5.542782

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16,

17

0.403756 6.129658

Table 4.7. Result metrics are sorted by accuracy descending.
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We observed that slice six alone was responsible for obtaining the best metrics values,

no matter whether using loss or accuracy for comparison between the collection of slices.

Analyzing the results sorted by loss metrics, we observe that the slices 6, 7, 10, and 9

incremental combinations represent the top c4 combinations for accuracy. The table 4.7

sorted by accuracy shows similar information, with slices 6, 7,10 and 9 being present in

the top combinations again, but we noticed that the second-best accuracy was obtained

by a longer list, composed of the slices 6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0,

16, a somewhat unexpected result.
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4.2 Model Training and Classification Output

4.2.1 Model training metrics

The model training was configured to collect metrics during its execution. We choose

to collect Accuracy and Loss for the training dataset and the validation dataset origi-

nating from a 20% split of the training dataset. Due to the small number of images, we

worked on increasing the number of images by using data augmentation. Also, we worked

on a new CNN architecture, yet to be described in a future version of this document.

Figure 4.6 shows the graphs obtained from the collected data. Figure (a) is the graph

obtained from Accuracy data and shows that the validation dataset is following the train-

ing dataset. Figure (b) shows the Loss function with the validation dataset oscillating

around 0.4, indicating a good response to images not previously seen by the model.

(a) (b)

Figure 4.6. Model Training Metrics Graphs. (a) Epochs x Accuracy. (b) Epochs
x Loss function.

4.2.2 Performance metrics for various slices combinations

We used slices 9 to 16 for model evaluation, first as individual slices and after doing

incremental combinations of slices, creating the dataset used for training and evaluation.

Figure 4.1 shows examples of the slices used in the experiment.

The performance metrics collected from the experiment are displayed in the following

tables:
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Table 4.8. Metrics for Individual Slices and Combinations

Slice Accuracy AUC

9 56.73% (+/- 10.41%) 0.58 (+/- 0.16)

10 56.73% (+/- 10.41%) 0.58 (+/- 0.16)

11 52.05% (+/- 19.25%) 0.52 (+/- 0.17)

12 55.00% (+/- 14.63%) 0.57 (+/- 0.15)

13 50.14% (+/- 13.46%) 0.52 (+/- 0.18)

14 58.95% (+/- 18.03%) 0.63 (+/- 0.15)

15 46.68% (+/- 15.69%) 0.49 (+/- 0.16)

16 63.14% (+/- 11.84%) 0.65 (+/- 0.15)

9-10 78.10% (+/- 9.69%) 0.84 (+/- 0.12)

9-11 88.97% (+/- 5.77%) 0.94 (+/- 0.04)

9-12 87.22% (+/- 3.15%) 0.93 (+/- 0.03)

9-13 88.98% (+/- 4.49%) 0.93 (+/- 0.04)

9-14 88.73% (+/- 4.96%) 0.94 (+/- 0.04)

9-15 90.13% (+/- 4.20%) 0.94 (+/- 0.04)

9-16 87.77% (+/- 3.04%) 0.93 (+/- 0.03)

Table 4.9. Metrics for Individual Slices and Combinations

Slice Precision Recall

9 56.73% (+/- 10.41%) 56.73% (+/- 10.41%)

10 56.73% (+/- 10.41%) 56.73% (+/- 10.41%)

11 51.99% (+/- 19.27%) 51.09% (+/- 19.57%)

12 54.90% (+/- 14.67%) 55.00% (+/- 15.14%)

13 50.30% (+/- 13.65%) 49.18% (+/- 13.04%)

14 58.79% (+/- 18.26%) 58.45% (+/- 18.75%)

15 47.22% (+/- 15.55%) 48.18% (+/- 15.38%)

16 63.08% (+/- 11.93%) 62.64% (+/- 12.67%)

9-10 78.10% (+/- 9.69%) 78.10% (+/- 9.69%)

9-11 88.94% (+/- 5.60%) 88.97% (+/- 6.08%)

9-12 87.31% (+/- 3.08%) 87.10% (+/- 3.29%)

9-13 89.24% (+/- 4.66%) 88.49% (+/- 5.00%)

9-14 88.93% (+/- 4.96%) 89.02% (+/- 4.09%)

9-15 91.07% (+/- 4.45%) 87.59% (+/- 3.12%)

9-16 87.91% (+/- 3.04%) 88.70% (+/- 4.41%)
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We have chosen to add slices to the dataset by their index at each interaction, as

our intuition suggested that we would be able to identify the slices that would enhance

the results metrics or turn it worse. The results table above shows that each slice added

increased the results until slice 16, which decreased the metrics. When using only one

slice for training, the worst metrics were obtained with slice 15. Slices 15 and 16 are the

slices where brain structures are less visible.
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4.2.3 Results using a State-of-the-art Model Architecture

One of the final tasks of this research was to submit the datasets of collections of slices

to a state-of-the-art Neural Network architecture, train, validate and collect its results,

and compare them with the results of a shallow model first used to create an evaluation

baseline. We used a VGG16 architecture; although it is not the most recent one, it is

still an architecture with great accuracy.

In order to obtain the results we choose to use the top 2 accuracy slices combinations

by accuracy , in table 4.10 that is part of 4.7.

Slices Accuracy Loss

6 0.765258 0.834440

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16 0.708920 3.967879

Table 4.10. Top 2 result metrics sorted by accuracy descending.

Slices Accuracy Loss

6, 7, 10, 9, 11, 5, 8, 12, 4, 3, 13, 14, 1, 2, 15, 0, 16 0.791 2.593

6 0.677 2.032

Table 4.11. Top 2 result metrics sorted by accuracy descending.

With a VGG16 model adapted to our classification problem, we submitted the model

to training and evaluation of the validation dataset. After approximately 13 hours of

training for each of the top 2 accuracy collection of slices, we obtained history data with

the results of the training performance.

Although in all our work, we pursue the possibility that a dataset with more than one

scan slice image would be the perfect collection to submit for training and prediction in

a machine learning engine, the results obtained by evaluating the entropy of the images

revealed that the slice 6 submitted alone, was responsible for achieving the maximum

accuracy. Therefore, we submitted training a dataset built only with slice six images

to the state-of-the-art engine VGG16 and obtained the performance graph Accuracy vs.

Epoch, shown in 4.7 and the graph Loss vs. Epoch showed in 4.8.
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Figure 4.7. Graph showing curve Accuracy vs Epochs for first place slice collec-
tion.

Figure 4.8. Graph showing curve Loss vs Epochs for first place slice collection.
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The second place slice image collection, composed of slices 6, 7, 10, 9, 11, 5, 8, 12,

4, 3, 13, 14, 1, 2, 15, 0, 16, has the performance graph for accuracy represented in figure

4.9 and the performance graph for loss metric represented in figure 4.10

Figure 4.9. Graph showing curve Accuracy vs Epochs for second place slice
collection.
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Figure 4.10. Graph showing curve Loss vs Epochs for second place slice collection.
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During the presentation of the thesis to the university post-graduation evaluation

committee, one of the members Dr. Fabricio Ataides Braz, noted that slice 16 improved

the results significantly when added to the slices collection for evaluation. Based on this

observation, we made an experiment using only slice 16, which resulted in the graphs

shown in 4.11 and 4.12.

Figure 4.11. Graph showing curve Accuracy vs Epochs for slice 16.

4.3 Explaining the prediction with XAI

The final experiment of this research was to visualize an explanation about the pre-

diction made by the model. The results were obtained using a custom model based on

state-of-the-art VGG16 architecture. The model was trained using a transfer learning

strategy to reduce the training time, by using the previous weights of the architecture

trained on the Imagenet dataset

First we evaluated a random image from the dataset built from only images of slice six

of the Schizophrenic patients group and the model trained only with slice 6 images dataset

. The results are represented in figure 4.13. (a) shows the original image of subject and

figure 4.13. (b) shows the superimposed heatmap image indicating the relevant areas for

the classification.

We can notice that the heatmap is indicating that the relevant areas are locate at

the midle of the slice. It includes the
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Figure 4.12. Graph showing curve Loss vs Epochs for slice 16.

Figure 4.13. (a) The figure shows the original image of slice 6 for the random
Schizophrenia subject (b) Visualization of heatmap showing relevant areas for the
classification result
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After that, we evaluated another random image but this time from the dataset built

with slices from 0 to 16 of the Schizophrenic patients group and trained with the dataset

of images from 0 to 16. The results are represented in figure 4.14 that shows the original

image of subject and figure 4.15, shows the superimposed heatmap image indicating the

relevant areas for the classification.
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Figure 4.14. The figure shows the original image of slices 0 until 16 for the random
Schizophrenia subject.
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Figure 4.15. Visualization of heatmap showing relevant areas for the classification
result
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5 Conclusions

In this work, we proposed to evaluate a systematic way to determine which combi-

nation of anatomical MRI scan axial slices would lead to better results for the problem

of classification using a Neural Network to detect the presence of schizophrenia or not.

First, we experimented with Covariance/Pearson’s Correlation to determine if one

slice could be correlated with other slices, but the results did not indicate a relevant

correlation between the slices.

After that, we experimented with Entropy. This time our results indicated that the

Entropy value was a significant metric to indicate which images are more relevant in a

dataset for training the machine learning model, bringing an intuition that the greater

the value of the Entropy of the slice, the more diverse was the content of the image, with

more structures represented in it.

The next step was to submit the list of slices to a machine learning model evaluation

and build a list of slices collections ordered by accuracy. This list showed us that slice

six alone had the best accuracy. The second best accuracy collection was constituted of

the slices 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16.

In all previous experiments that needed a machine learning model to evaluate the

accuracy of slices and collections, we used a small neural network composed of 2 con-

volutional layers, each convolutional layer followed by a max pooling layer, having its

flattening and dense layer as the last layers. This model was used as a baseline to train

and evaluate models and datasets in less time as the experiments needed to be repeated

many times. However, for a final evaluation, we choose to experiment with state-of-

the-art architecture, not the most recent but one still relevant nowadays, the VGG16

architecture. With the aid of the transfer-learning strategy, we built a custom model

with this architecture and submitted the top 2 accuracy collections to it. The accuracy

curves obtained with this architecture showed us that when using the slices from 0 to 16,

this model could achieve an accuracy superior to 80%, given enough samples of images

and epochs to train it.

Our last experiment was with Explainable Artificial Intelligence, XAI, to develop an

insight into what our custom VGG16 model was looking for when doing its classification.
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For the slice six only dataset, it focused on the center part of the image, and for the

dataset composed of slices from 0 to 16, it observed the central part of slices and the

back part of the brain.

So, based on our research, we can resume that:

1. Entropy is a metric of interest to evaluate and select the MRI slices to compose the

images dataset.

2. VGG16 is still a good architecture model to be used as a basis for an image classi-

fication problem.

3. Slice 6 confronted us with an unexpected situation as it alone had a more excellent

value of accuracy when experimenting with the baseline CNN model. Although

it appears not to have any structure related to the schizophrenia problem, some

pattern or relation has been detected by the CNN classifier, resulting in correctly

labeling the predictions with reasonable accuracy even by the VGG16 classifier.

We can hypothesize three situations from this observation.

• There is an error in our experiment, some situation with the methodology used

to prepare the dataset or the architecture, parameters, or kernel sizes that led

to a construction error.

• There is a hidden relation between slice six and the disease that is not known

yet. As we noted that we have different sizes for human skulls, slice six can

be slice 7 or 8 in another person’s skull, and we need to develop a method to

normalize the measurements and repeat the experiments with this normalized

data.

• AI can bring us two approaches when comparing the performance of an ML

classifier to a human specialist: - Correctly trained with a large amount of

data labeled by a specialist, an AI machine can outperform a human doing

the same classification, opening the opportunity to automate that activity -

An AI machine can discover patterns and relations that we never suspected ex-

isted, noticing details that a human being did not notice before or deliberately

discarded as possibly irrelevant.

4. Although slice six only had the best accuracy in our baseline CNN model evaluation,

the collection composed of slices from 0 to 16 achieved the best accuracy when

submitted to the VGG16 custom model.

5. Previous studies have shown a preference to use slices from 9 to 16 when analyzing

Schizophrenia studies, but our research showed that slices 0 to 16
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5.1 Future Work

Suggestions for future work are:

• Submit the MRI Scan slice images to a Radiologist or Neurology specialist and

discuss how to index the images and the initial reference to count them. This

analysis by a specialist will lead to creating references for comparing slices from

different subjects.

• Develop a method to normalize slices sizes and position for different skull sizes

• Expand the research using image slices from the sagittal and coronal axis

• Experiment with more recent ML architectures and strategies as Transformers.
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[7] L. Deng and D. Yu. Deep learning: Methods and applications. Foundations and

Trends® in Signal Processing, 7(3–4):197–387, 2014.

[8] G. Flores, J. C. Morales-Medina, and A. Diaz. Neuronal and brain morphological

changes in animal models of schizophrenia. Behavioural Brain Research, pages 190–

203, 2016.

[9] H. Fred, K. Minsuk, P. Robert, and C. D. Horng. Visual analytics in deep learning:

An interrogative survey for the next frontiers. IEEE Transactions on Visualization

and Computer Graphics, 25(8):2674–2693, 2019.

[10] D. Gunning and D. W. Aha. Darpa’s explainable artificial intelligence (XAI) pro-

gram. AI Mag., 40(2):44–58, 2019.

[11] P. J. Harrison. The neuropathology of schizophrenia: A critical review of the data

and their interpretation. Brain, 122(4):593–624, 04 1999.

80

https://keras.io


[12] Neuroimaging Informatics Technology Initiative. Nifti, analyze-style data format,

proposed by the nifti dfwg to facilitate inter-operation of functional mri data analysis

software packages. https://nifti.nimh.nih.gov/. Accessed: 2021-06-11.

[13] D. B. Keator, J. S. Grethe, D. Marcus, et al. A national human neuroimaging

collaboratory enabled by the biomedical informatics research network (birn). IEEE

Trans. Inf. Technol. Biomed., 12(2):162–172, 2008.

[14] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and

model selection”. Proceedings of the Fourteenth International Joint Conference on

Artificial Intelligence. Intl. Conf. Emerg. Trends Comput. Electron. Eng. (ICETCEE

2012), 1995.

[15] P. Lauterbur. Image formation by induced local interactions: Examples employing

nuclear magnetic resonance. Nature, 242:190–191, 1973.

[16] Z.P. Liang, P.C. Lauterbur, IEEE Engineering in Medicine, and Biology Society.

Principles of Magnetic Resonance Imaging: A Signal Processing Perspective. IEEE

Press series in biomedical engineering. SPIE Optical Engineering Press, 2000.

[17] B. Matthew, M. Christopher, H. Michael, et al. nipy/nibabel: 3.2.1, November 2020.

[18] G. Michalakis, M. Pavlou, G. Gerogiannis, et al. Another day at the office: Visuo-

haptic schizophrenia vr simulation. In 2020 IEEE Conf. on Virtual Reality and 3D

User Interfaces Abstracts and Ws. (VRW), pages 515–516, 2020.

[19] R. Mizutani, R. Saiga, Y. Yamamoto, et al. Structural diverseness of neurons between

brain areas and between cases, 2020.

[20] neurohive.io. Vgg16 – convolutional network for classification and detection. https:

//https://neurohive.io/en/popular-networks/vgg16/. Accessed: 2022-07-16.

[21] Y. Niu, Q. Lin, Y. Qiu, et al. Sample augmentation for classification of schizophre-

nia patients and healthy controls using ica of fmri data and convolutional neural

networks. In 2019 Tenth International Conference on Intelligent Control and Infor-

mation Processing (ICICIP), pages 297–302, 2019.

[22] J. Oh, B. Oh, K. Lee, et al. Identifying schizophrenia using structural mri with a

deep learning algorithm. Frontiers in Psychiatry, 11:16, 2020.

[23] G. Rafael. Deep convolutional neural networks [lecture notes]. IEEE Signal Process-

ing Magazine, 35(6):79–87, 2018.

81

https://nifti.nimh.nih.gov/
https://https://neurohive.io/en/popular-networks/vgg16/
https://https://neurohive.io/en/popular-networks/vgg16/


[24] S. Ramprasaath, C. Michael, D. Abhishek, et al. Grad-cam: Visual explanations

from deep networks via gradient-based localization. In 2017 IEEE International

Conference on Computer Vision (ICCV), pages 618–626, 2017.

[25] C. Shannon. A mathematical theory of communication. The Bell System Technical

Journal, 27:379–423, 1948.

[26] Siemens. Siemens MRI scanner magnetom free.max. https://www.

siemens-healthineers.com/magnetic-resonance-imaging/high-v-mri/

magnetom-free-max. Accessed: 2021-03-23.

[27] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. 2014.

[28] P. Sriramakrishnan, T. Kalaiselvi, T. Padmapriya, et al. A role of medical imaging

techniques in human brain tumor treatment. 8:565–568, 01 2020.

[29] P. J. Sumner, I. H. Bell, and S. L. Rossell. A systematic review of the structural neu-

roimaging correlates of thought disorder. Neuroscience and Biobehavioral Reviews,

pages 299–315, 2018.

[30] The Biomedical Informatics Research Network (BIRN). Neuroimaging tools &

resources collaboratory (nitrc) website. Available at https://www.nitrc.org/

projects/birn/.

[31] R. M. Tulio, S. Sameer, and G. Carlos. Model-agnostic interpretability of machine

learning. 2016.

[32] R. F. Vergara. Detecção de alterações cerebrais anatômicas associadas à esquizofrenia
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