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Abstract. Using the sub-supersolution method, we study the existence of
positive solutions for the anisotropic problem
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where Ω is a bounded and regular domain of RN , q > 1, and λ > 0.
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1. Introduction. In this paper, the main goal is to show the existence of pos-
itive solutions of the problem
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⎪⎩
−

N∑
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∂xi

(∣∣∣∣
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∂xi
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pi−2

∂u

∂xi

)
= λuq−1 in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ R
N , N ≥ 1, is a bounded and regular domain, pi > 1, i = 1, . . . , N ,

q > 1, and λ is a real parameter. We will assume without loss of generality
that the pi are ordered increasingly, that is, p1 ≤ · · · ≤ pN .

There is a vast literature concerning anisotropic elliptic problems. We men-
tion here only those references most strongly related to (1.1). First, in [9], it
was proved that for q < pN and for any γ > 0, there exist λγ > 0 and a
solution uγ of (1.1) with ‖uγ‖p = γ and λ = λγ . As the authors themselves
claim, from this result, the existence of solutions of (1.1) can not be deduced
for a given λ. In [4], using mainly variational methods, it was proved that if
p1 < q < pN , then there exist 0 < λ∗ ≤ λ∗ such that:

• If λ ≤ λ∗, (1.1) does not possess a positive solution.
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• If λ > λ∗, (1.1) possesses at least one positive solution.
Finally, from the general results of [14, Corollary 1], we can deduce that for
the case 1 < q < p1, with p1 ≥ 2, there exist 0 < λ∗ < λ∗∗ such that (1.1)
possesses at least one solution for λ ∈ (0, λ∗) ∪ (λ∗∗,∞).

In this paper, we complete and improve the above results. For that, we use
the sub-supersolution method, see [1,5], and [16] (see also [6–8], and references
therein for the application of this method to problems with nonlinear reaction
functions including singularities or critical exponent). The existence and regu-
larity theory involving p-Laplacian type equations is nowadays mature enough
to allow the discovery of new results by application to special cases suitably
chosen. This method allows us not only to prove the existence of a solution,
but also gives us lower and upper bounds of such a solution. Roughly speaking,
we construct by hand sub- and supersolutions to the main equation, inspired
by the usual way of determining energy estimates for these kind of equations.
Specifically, our main result is the following.

Theorem 1.1.

1. Assume that 1 < q < p1. There exists a positive solution of (1.1) if and
only if λ > 0.

2. Assume that p1 ≤ q < pN . There exists Λ > 0 such that (1.1) does
not possess positive solutions for λ < Λ and (1.1) possesses at least one
positive solution for λ > Λ.

An outline of the paper is the following: in Section 2, we recall some defini-
tions and some properties of the eigenvalues and eigenfunctions of the classical
p-Laplacian. Next, in Section 3, we enunciate the sub-supersolution method.
Then in Section 4, we construct sub- and supersolutions by multiplication of
powers of p-Laplacian eigenfunctions to be applied in the existence theorem.

2. Preliminary lemmas and setting. Consider h(x, s) : Ω × R → R a
Caratheodory function, i.e., measurable in x and continuous in the second
variable s. Consider the anisotropic problem

⎧
⎪⎨

⎪⎩
−

N∑

i=1

∂

∂xi

(∣∣∣∣
∂u

∂xi
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pi−2
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∂xi

)
= h(x, u(x)) in Ω,

u = 0 on ∂Ω.

(2.1)

The natural framework to study (2.1) is the anisotropic Sobolev space W 1,p
0 (Ω),

that is, the closure of C∞
0 (Ω) under the anisotropic norm

‖u‖W 1,p(Ω) :=
N∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
pi

where ∂u
∂xi

denotes the i−th weak partial derivative of u. Recall that if we set

N∑

i=1

1
pi

> 1, pi > 1 ∀i = 1, . . . , N, p∗ :=
N∑
1
pi

− 1
, p∞ := max{p∗, pN},

(2.2)
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then for every r ∈ [1, p∞], the embedding

W 1,p
0 (Ω) ⊂ Lr(Ω)

is continuous, and it is compact if r < p∞. More precisely, it holds the following
directional Poincaré-type inequality for any u ∈ C1

c (Ω) (see for instance [9])

||u||r ≤ di r

2

∣∣∣∣

∣∣∣∣
∂u

∂xi

∣∣∣∣

∣∣∣∣
r

, ∀r ≥ 1, di = sup
x,y∈Ω

〈x − y, ei〉, (2.3)

where {e1, . . . , eN} denotes the canonical basis of RN .
The theory of embeddings of this kind of anisotropic Sobolev spaces is vast

and we refer to [9] for the directional Poincaré-type inequality and to [12] for
Sobolev and Morrey’s embeddings of the whole W 1,p(Ω) space, obtained with
an important geometric condition on the domain Ω, namely that it must be
semi-rectangular. We briefly recall the definition for later use.

Definition 2.1. Let (p1, p2, . . . , pN ) be a vector of numbers pi > 1, consisting
of L distinct values. For i ∈ {1, . . . , N}, let Ni be the multiplicity of the values
of pi, with

∑L
i=1 Ni = N . A semi-rectangular domain is an open bounded

domain Ω ⊂ R
N such that

Ω = Ω1 × Ω2 × · · · × ΩL, (2.4)

where Ωi ⊂ R
Ni are open bounded C0,1 domains.

It is not the case that this semi-rectangular condition reflects in our con-
struction of the solution: the existence of traces for this kind of functions is
heavily depending on the geometry of the domain as shown in [12]. Regularity
theory for anisotropic operators like the one defined by equation (1.1) is still
a challenging open problem, see for example [3]. We also recall the following
definition of a weak solution.

Definition 2.2. A function u ∈ W 1,p(Ω) is defined to be a sub-(super-)solution
of the problem (2.1) if u ≤ (≥) 0 in ∂Ω and ∀ 0 ≤ φ ∈ W 1,p

0 (Ω), it satisfies
∫

Ω

[ N∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi−2

∂u

∂xi

∂φ

∂xi
− h(x, u(x))φ

]
dx ≤ (≥)0. (2.5)

Finally, a solution u ∈ W 1,p
0 (Ω) of (2.1) has to satisfy

∫

Ω

[ N∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi−2

∂u

∂xi

∂φ

∂xi
− h(x, u(x))φ

]
dx = 0 ∀φ ∈ W 1,p

0 (Ω).

Now we introduce some well-known results concerning the eigenvalue prob-
lem for the p-Laplacian, that will be of crucial importance for the construction.
Specifically, we consider the problem

{−Δpu = λ|u|p−2u in Ω,
u = 0 on ∂Ω,

(2.6)
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where

Δpu = div(|∇u|p−2∇u) =
N∑

i=1

∂

∂xi

(
|∇u|p−2 ∂u

∂xi

)
.

The following result is well-known:

Lemma 2.1. The eigenvalue problem (2.6) has a unique eigenvalue λ = λ1 with
the property of having a positive associated eigenfunction ϕ1 ∈ W 1,p

0 (Ω), called
principal eigenfunction. Moreover, λ1 is simple, isolated, and is defined by

λ1 = inf

⎧
⎨

⎩

∫

Ω

|∇u|p : u ∈ W 1,p
0 (Ω),

∫

Ω

|u|pdx = 1

⎫
⎬

⎭ .

Furthermore, ϕ1 ∈ C1,β(Ω) for some β ∈ (0, 1) and ∂ϕ1/∂n < 0 on ∂Ω, where
n is the outward unit normal on ∂Ω. Finally, for N = 1, we have that

|∇ϕ1|p−2∇ϕ1 ∈ W 1,2(Ω), (2.7)

and in fact

−Δpϕ1(x) = λ1ϕ1(x) for a.e. x ∈ Ω.

Remark 2.1. The existence of λ1 and the main properties of ϕ1 are well-known,
see [10,13,15]. Property (2.7) holds for N = 1, see for instance [11], and for
N ≥ 2 in some specific domains, for example, for Ω convex, see [2].

3. An existence sub-supersolution theorem. We start by stating an impor-
tant theorem, for whose proof, we refer to [1, Theorem 5.1], that assures the
existence of a solution between a sub- and a supersolution.

Theorem 3.1. Consider problem (2.1) with h : Ω × R → R a Caratheodory
function and bounded in x, and such that there exist u, u ∈ W 1,p(Ω) ∩ L∞(Ω)
subsolution and supersolution of (2.1) such that u ≤ u. Then there exist a
solution u ∈ W 1,p

0 (Ω) of (2.1) such that

u ≤ u ≤ u.

Proof. By continuity, the function h verifies condition (h2) of [1]. This con-
cludes the proof. �
4. Construction of sub- and supersolutions: proof of the main result. In this
section, we prove Theorem 1.1. For that, we apply Theorem 3.1 to (1.1).
Mainly, we construct the sub- and the supersolutions.

4.1. Subsolutions. Let us consider a rectangular bounded domain U ⊆ Ω, i.e.,

U :=
N∏

i=1

Ui, where Ui = (ai, bi), ai, bi ∈ R ∀ i = 1, . . . , N.

Denote by vi = vi(xi) a positive principal eigenfunction of −Δpi
in Ui, that

is, {
−Δpi

vi = ηi|vi|pi−2vi in Ui,

vi = 0 on ∂Ui.
(4.1)



Vol. 116 (2021) Positive eigenfunctions via sub-supersolutions method 89

From Lemma 2.1, recall that, if ni is the outward normal derivative to ∂Ui,
we have

∂vi

∂ni
< 0 on ∂Ui. (4.2)

Let us consider the function

u(x) =

⎧
⎪⎨

⎪⎩
ε

N∏

i=1

vαi
i (xi), x ∈ U,

0, x ∈ Ω \ U,

(4.3)

where αi > 1, i = 1, . . . , N , and ε > 0 will be chosen later.

Remark 4.1. We note that u(x) > 0 in ∅ �= U ⊂ Ω.

As every vi is bounded, it is clear that u ∈ W 1,p(Ω) and that u|∂Ω = 0.
Hence, u is a subsolution of (1.1) provided that

∫

Ω

N∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi−2

∂u

∂xi

∂φ

∂xi
dx ≤ λ

∫

Ω

uq−1φ dx ∀φ ∈ W 1,p
0 (Ω), φ ≥ 0.

Observe that

λ

∫

Ω

uq−1φ dx = λεq−1

∫

U

N∏

i=1

v
αi(q−1)
i φ dx. (4.4)

On the other hand, observe that

∂u

∂xi
= ε αi

( ∏

j �=i

v
αj

j

)
vα−1

i

∂vi

∂xi
in Ui.

Then, taking into account the positivity of vi, ∀ i = 1, . . . , N ,
∫

Ω

N∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi−2

∂u

∂xi

∂φ

∂xi
dx

=
N∑

i=1

∫

∏
j �=i Uj

{∫

Ui

[
εαi

( ∏

j �=i

v
αj

j

)
vαi−1

i

]pi−1∣∣∣∣
∂vi

∂xi

∣∣∣∣
pi−2

∂vi

∂xi

∂φ

∂xi
dxi

}
dx̂i

with the obvious notation for dx̂i. Next, by using an integration by parts
argument and the Fubini-Tonelli theorem, we get

∫

Ω

N∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi−2

∂u

∂xi

∂φ

∂xi
dx

= −
N∑

i=1

∫

∏
j �=i Uj

(
εαi

∏

j �=i

v
αj

j

)pi−1 ∫

Ui

∂

∂xi

(
v
(αi−1)(pi−1)
i

∣∣∣∣
∂vi

∂xi

∣∣∣∣
pi−2

∂vi

∂xi

)
φ dxidx̂i

+

N∑

i=1

∫

∏
j �=i Uj

(
εαi

∏

j �=i

v
αj

j

)pi−1{ ∫

∂Ui

v
(αi−1)(pi−1)
i

∣∣∣∣
∂vi

∂xi
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pi−2

∂vi

∂ni
φ dxi

}
dx̂i.
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The second term on the right can be discarded as ∂vi

∂ni
< 0 in ∂Ui, see (4.2).

Considering that
∂

∂xi

(
v
(αi−1)(pi−1)
i

∣∣∣∣
∂vi

∂xi

∣∣∣∣
pi−2

∂vi

∂xi

)

= (αi − 1)(pi − 1)v
(αi−1)(pi−1)−1
i

∣∣∣∣
∂vi

∂xi

∣∣∣∣
pi

+ v
(αi−1)(pi−1)
i

∂

∂xi

(∣∣∣∣
∂vi

∂xi

∣∣∣∣
pi−2

∂vi

∂xi

)

and, by construction, that

∂

∂xi

(∣∣∣∣
∂vi

∂xi

∣∣∣∣
pi−2

∂vi

∂xi

)
= −ηiv

pi−1
i in Ui,

our subsolution condition is implied by the following inequality
N∑

i=1

∫

∏
j �=i Uj

(
εαi

∏

j �=i

v
αj

j

)pi−1 ∫

Ui

{[
(1 − αi)(pi − 1)v(αi−1)(pi−1)−1

i

∣∣∣∣
∂vi

∂xi

∣∣∣∣
pi

+ v
(αi−1)(pi−1)
i ηiv

pi−1
i

]
− λεq−1

( N∏

k=1

v
αk(q−1)
k

)}
φ dxidx̂i ≤ 0.

(4.5)
Let us require a condition on the pointwise integrand

λ ≥
N∑

i=1

(
εαi

∏

j �=i

v
αj

j

)pi−q

v
(αi−1)(pi−1)−1−αi(q−1)
i

[
(1 − αi)(pi − 1)

∣∣∣∣
∂vi

∂xi

∣∣∣∣
pi

+ ηiv
pi
i

]

=

N∑

i=1

(
εαi

∏

j �=i

v
αj

j

)pi−q

v
αi(pi−q)−pi
i

[
(1 − αi)(pi − 1)

∣∣∣∣
∂vi

∂xi

∣∣∣∣
pi

+ ηiv
pi
i

]
.

Now we consider various cases.
• If 1 < q < p1, then, by choosing αi > pi

(pi−q) > 1 for all i = 1, . . . , N , and
by letting ε → 0+, we obtain that u is a subsolution provided λ > 0.

• Assume that for some i0 ∈ {1, . . . , N − 1}, we have pi0+1 > q ≥ pi0 or
q ≥ pN . Then u is a subsolution if

λ ≥ λ∗ := max
U

S
where

S =
N∑

i=1

(
εαi

∏

j �=i

v
αj

j

)pi−q

v
αi(pi−q)−pi

i

[
(1 − αi)(pi − 1)

∣∣∣∣
∂vi

∂xi

∣∣∣∣
pi

+ ηiv
pi

i

]
.

We show that λ∗ is finite. Observe that S = S0 + S1 where

S0 =
i0∑

i=1

(
εαi

∏

j �=i

v
αj

j

)pi−q

v
αi(pi−q)−pi

i

[
(1 − αi)(pi − 1)

∣∣∣∣
∂vi

∂xi
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pi

+ ηiv
pi

i

]
.

and

S1 =
N∑

i=i0+1

(
εαi

∏

j �=i

v
αj

j

)pi−q

v
αi(pi−q)−pi

i

[
(1 − αi)(pi − 1)

∣∣∣∣
∂vi

∂xi
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pi

+ ηiv
pi

i

]
.
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We take αi > pi/(pi − q) for i = i0 + 1, . . . , N , so that S1 is finite.
On the other hand, if we take S0 under consideration, we observe

that the behaviour next to ∂U is controlled: when vi → 0+, then, as
∂

∂ni
vi < 0 on ∂Ui, we have that there exists δ > 0 small enough such that

the quantity
[
(1 − αi)(pi − 1)

∣∣∣∣
∂vi

∂xi

∣∣∣∣
pi

+ ηiv
pi

i

]
< 0 in U δ

i for all i = 1, . . . , i0,

where

U δ
i := {xi ∈ Ui : dist(xi , ∂Ui) < δ}.

Moreover, by continuity, S0 is bounded in U − U δ
i . Then S0 is bounded

or negative in U and we can conclude that λ∗ is finite.

4.2. Supersolutions. Since Ω is bounded, we can choose a domain U such that

Ω ⊂ U =
N∏

i=1

U i, U i = (ai, bi), ai, bi ∈ R.

Now for M > 0, we consider the function

u(x) := M
N∏

i=1

vi(xi), x ∈ Ω,

where vi are the first eigenfunctions to the pi-Laplacian in U i, whose first
eigenvalue we denote by ηi. Observe that

u∂Ω > 0.

Then u is a supersolution of (1.1) if for all 0 ≤ φ ∈ W 1,p
0 (Ω) it holds

λ

∫

Ω

Mq−1
N∏

i=1

vq−1
i φ dx ≤

∫

Ω

N∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi−2

∂u

∂xi

∂φ

∂xi
dx.

It is clear that
∫

Ω

N∑

i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi−2

∂u

∂xi

∂φ

∂xi
dx

=
∫

Ω

N∑

i=1

[
M

( ∏

j �=i

vj

)]pi−1∣∣∣∣
∂vi

∂xi

∣∣∣∣
pi−2

∂vi

∂xi

∂φ

∂xi
dx

= −
N∑

i=1

∫

Ω

(
M

∏

j �=i

vj

)pi−1
∂

∂xi

(∣∣∣∣
∂vi

∂xi

∣∣∣∣
pi−2

∂vi

∂xi

)
φ dx

=
N∑

i=1

ηi

∫

Ω

(
M

N∏

j=1

vj

)pi−1

φ dx.
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Thus we may ask for the strong condition

λ∗ :=
N∑

i=1

ηi

(
M

N∏

j=1

vj

)pi−q

≥ λ. (4.6)

Hence, if 1 < q < pN , by letting M → ∞, we have that u is a supersolution
∀λ > 0.

Proof of Theorem 1.1. If λ ≤ 0, the maximum principle assures that there
does not exist a positive solution of (1.1).

1. Assume 1 < q < p1. Fix λ > 0. Then we can choose ε > 0 small and M
large enough such that u, u are sub-supersolutions of (1.1) and u ≤ u in
Ω. Theorem 3.1 assures the existence of a solution u of (1.1) such that
u ≤ u ≤ u. This completes this case.

2. Assume p1 ≤ q < pN . In this case, taking for example ε = 1, we have
that u is a subsolution provided that λ ≥ λ∗ for some λ∗. On the other
hand, we can take M large such that u is supersolution and u ≤ u. Thus,
there exists a positive solution for λ ≥ λ∗.
Now, we define

Λ := inf{λ : (1.1) possesses at least one positive solution}.

We have proved that Λ < ∞. For p1 < q < pN , in [4], it was proved that
0 < Λ. We show now that this is also true for q = p1. Indeed, let us now
consider q = p1 and let us multiply the equation (1.1) by u and integrate
it on Ω to obtain

N∑

i=1

∫

Ω

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi

dx =
N∑

i=1

∣∣∣∣

∣∣∣∣
∂u

∂xi

∣∣∣∣

∣∣∣∣
pi

pi

= λ||u||p1
p1

= λ

∫

Ω

|u|p1dx.

Now we use the embedding (2.3) on r = p1 to get
(

d1p1

2

)−p1

||u||p1
p1

≤
∣∣∣∣

∣∣∣∣
∂u

∂x1

∣∣∣∣

∣∣∣∣
p1

p1

+
N∑

i=2

∣∣∣∣

∣∣∣∣
∂u

∂xi

∣∣∣∣

∣∣∣∣
pi

pi

= λ||u||p1
p1

,

and thus

||u||p1
p1

[
λ −

(
2

d1p1

)p1
]

≥ 0.

But if λ <
(

2
d1p1

)p1

this quantity is negative and it implies ||u||p1 =

0. This inequality implies that Λ ≥
(

2
d1p1

)p1

> 0 in order to have a
nontrivial solution.
We prove now that for all λ > Λ, we have the existence of a positive
solution. Indeed, fix λ0 > Λ. Then, by definition of Λ, there exists μ ∈
(Λ, λ0) and a positive solution, denoted by uμ, of (1.1) for λ = μ. Since
μ < λ0, it is clear that uμ is a subsolution of (1.1) for λ = λ0. On the
other hand, for M large, there exists a supersolution u of (1.1) for λ = λ0.
Finally, thanks to regularity results, see for instance [1, Proposition 4.1],
we have that uμ ∈ L∞(Ω). Hence, for M large, uμ ≤ u, and we can
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conclude the existence of a positive solution for λ = λ0. This completes
the proof.

�

Remark 4.2. Since our subsolution u is strictly positive in U , we have by The-
orem 3.1 that u ≥ u > 0 in a nonempty open set contained in Ω. In the case
p1 ≥ 2, by [4, Corollary 4.4], we have u > 0 in Ω.

Remark 4.3. We comment a possible further generalization.
Let x = (x1, ..., xN ), where xi ∈ Ωi ⊂ R

Ni , Ωi being an open, bounded,
and convex domain. Denote by ∇xi

the gradient along the vector xi and divxi

its divergence, and let

Δpi
u = divxi

(|∇xi
u|pi−2∇xi

u)

be the pi-Laplacian acting on the vector xi. Problems of the kind of
⎧
⎪⎨

⎪⎩
−

N∑

i=1

Δpi
u = λuq−1 in Ω =

∏
Ωi,

u = 0 on ∂Ω,

(4.7)

can be faced with the same technique, using properties of the pi-Laplacian
principal eigenfuctions and the integrability condition (2.7) recently obtained
in [2].
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