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Resumo
Há um grande interesse em melhorar as projeções de inflação para o planejamento e a
tomada de decisão pelas famílias, setor privado e formuladores de políticas. No entanto,
superar até mesmo modelos univariados pode ser uma tarefa difícil. Usamos métodos
de machine learning e um grande conjunto de dados para prever a inflação de bens
industriais no IPCA brasileiro para horizontes até t + 12, considerando dados entre
janeiro de 2007 e agosto de 2021. Avaliamos as previsões de quatro métodos lineares
regularizados e dois métodos não lineares baseados em árvores, considerando random
walk e modelos autorregressivos como benchmarks, utilizando uma metodologia pseudo
out-of-sample. Também avaliamos os resultados sem dados de desemprego como regressores,
levando em consideração as discussões em torno da relevância dos dados de desemprego na
previsão de inflação. Os métodos não lineares superam os métodos lineares regularizados
e os benchmarks. Também encontramos evidências de que os mecanismos de seleção de
variáveis dos métodos random forest e gradient tree boosting têm um desempenho melhor
do que os de modelos lineares regularizados para prever a inflação de bens industriais. As
random forests se destacam em termos de erro de previsão e como o método que melhor
controla o trade-off viés-variância. O método também exibe um desempenho mais uniforme
do que o gradient tree boosting ao longo dos horizontes de previsão.

Palavras-chave: Previsão, machine learning, inflação de bens industriais.





Abstract
There is great interest in improving inflation forecasts for better planning and decision
making by households, the private sector, and policy makers. However, even outperforming
univariate models can be a difficult task. We use machine learning methods and a large
data set to forecast industrial goods inflation on Brazilian IPCA for horizons up to t + 12,
considering the time span between January 2007 and August 2021. We assess the forecasts
of four regularized linear methods and two nonlinear tree based methods, with random
walk and AR models as benchmarks, in a pseudo out-of-sample framework. We also assess
the results without unemployment data as regressors, considering the discussions around
the relevance of unemployment data on inflation forecasting. The nonlinear methods
outperform the regularized linear methods and the benchmarks. We also find evidence that
the variable selection mechanisms of random forest and gradient tree boosting perform
better than on linear regularized models to forecast industrial goods inflation. Random
forest stands out in terms of forecasting error and as the method that better controls the
bias-variance trade-off. It also displays a more uniform performance than gradient tree
boosting across the forecasting horizons.

Keywords: Forecasting, machine learning, industrial goods inflation.
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1 Introduction

Inflation forecasts are essential to guide the decisions of the agents. However,
forecasting inflation is not an easy task, as it seems to be among the least stable macroe-
conomic variables (Elliott; Timmermann, 2008). This is due to its dependency on the
relationship between several variables that are subject to shifts and shocks. Machine
learning (ML) (Bishop, 2006; Izenman, 2008) techniques used to manipulate and analyze
data is one of the results of the very productive collaborations between computer scientists
and statisticians in the last decades (Varian, 2014). Designed primarily for prediction
problems (Mullainathan; Spiess, 2017), its impacts on economic literature and inflation
forecasting are emerging (Athey, 2019).

This work uses machine learning methods to forecast industrial goods inflation in
Brazil measured by IPCA1. Inflation forecasts are particularly important for Brazil, an
emerging country which adopted inflation targeting in 1999, after controlling hyperinflation
in the mid 90’s with the implementation of the Plano Real. Inflation targeting regimes
require credibility and transparency on the conduction of the monetary policy to effectively
anchor the expectations (Svensson, 2010). Thus, reliable inflation forecasts are crucial for
the success of inflation-targeting strategies on emerging countries (Mishkin, 2000), which
usually exhibit higher inflation rates and inflationary uncertainty than developed countries
(Bansal; Dahlquist, 2000).

We contribute to the literature by expanding the list of machine learning methods
tested for inflation forecasting and by not focusing on headline prices variation, but on
sectoral inflation. Breaking down inflation can be useful for a better comprehension of the
inflationary dynamics and of the impacts of monetary policy on different sectors (Altissimo
et al., 2009; Clark, 2006). Additionally, the evolution of relative prices can be useful to
analyse the effects of sectorial shocks (Aoki, 2001) and relates to an important part of
headline inflation (Reis; Watson, 2010). There are also attempts to improve the accuracy
of inflation forecasts by using disaggregated data to model each component by its intrinsic
characteristics, even though there is no consensus in the literature about the effectiveness
(Hubrich, 2005).

We consider one of the breakdowns adopted by Banco Central do Brasil (BCB),
which disaggregates IPCA into four segments2 with different dynamics: food at home,
industrial goods, services and administered prices (BCB, 2019). We opt to work with
1 IPCA is the Extended National Consumer Price Index. It is the official reference for the Brazilian

inflation targeting system. The Brazilian Institute of Geography and Statistics (IBGE) calculates and
publishes IPCA in a monthly basis.

2 This is also the breakdown that BCB considers to collect disaggregated market expectations for IPCA,
after the reformulation of Focus Survey in September/2021.
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industrial goods inflation due to the inclusion of tradable goods and the influence of
imported inflation and cost based variations to the sector (ECB, 2019), which may
potentiate the benefits of using a rich data set, including international data like commodity
prices and industrial costs.

We assess the forecasts of four regularized linear models (ridge regression, LASSO,
adaLASSO and elastic net) and two nonlinear tree based methods (random forests and
gradient tree boosting). We use autoregressive models and random walk as benchmarks.
The forecasts follows a pseudo out-of-sample framework, meaning that we use only data
available by the cut-off date to estimate the models, which we consider as five business
days before the publication of IPCAt+1. We estimate the models using a 60 period rolling
window and report mean squared errors (MSE) and mean absolute errors (MAE) for five
horizons: t + 1, t + 3, t + 6, t + 9 and t + 12.

Our data covers the period between January 2007 and August 2021 (176 observa-
tions) and includes monthly time series for inflation indexes, exchange rates, commodity
prices, producer prices, industrial manufacturing and transportation costs, industrial wages,
exports, local and international interest rates, monetary variables, public debt, energy
consumption and prices, economic activity indicators and unemployment. We also include
market expectations and professional forecasts for IPCA and exchange rate from BCB’s
Focus Survey. We consider eleven lags of all the variables, with the exception of the market
expectations from Focus.

The literature on inflation forecasting is vast and includes several traditional
approaches and its variations, such as Phillips curves, unobserved component stochastic
volatility models, structural models, vector autoregressions, bayesian models, factor models,
DSGE models and many others (Faust; Wright, 2013). The broader availability of data
and advancements in statistical methods and computational power also favored the use of
less traditional methods to forecast inflation, such as the use of big data (Cavallo; Rigobon,
2016) and machine learning.

Our work connects particularly to works that use ML methods to forecast Brazilian
inflation. Recent publications compare the forecasting accuracy of ML methods like
random forests and several instances of regularized models (such as ridge regression,
LASSO, adaLASSO and elastic net) to traditional econometric approaches, factor models
and reduced-form structural models. The results of some of the first publications are not
entirely favorable to ML methods. For instance, Medeiros et al. (2016) find that LASSO
based methods only outperform AR models when forecasting Brazilian headline inflation in
the short-term3 and without statistical difference. However, examples in which ML methods

3 IPCA up to t + 4 and IGP-M at t + 1. IGP-M is the General Market Price Index. Fundação Getúlio
Vargas (FGV) calculates and publishes IGP-M in a monthly basis. It includes consumer, wholesale
and construction prices.
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outperform traditional approaches are emerging in the literature. Some examples are the
works of Garcia et al. (2017) and Araujo and Gaglianone (2020) forecasting Brazilian
headline IPCA and Chakraborty and Joseph (2017) and Medeiros et al. (2021), predicting
UK CPI and USA CPI, respectively. Random forest stands out among the ML methods
in these works, specially in periods of greater uncertainty (Chakraborty; Joseph, 2017;
Medeiros et al., 2021).

Furthermore, it is worth mentioning that our work is an instance of the so-called
prediction policy problem. It is crucial to distinguish prediction policy problems from those
that deal with causal inference. We may find a rich discussion of the differences in the
work of Kleinberg et al. (2015). In a broad view, these authors argue that a wide range of
relevant problems of public policy formulation does not necessarily require causal inference
but rather predictive inference.

We find that the nonlinear methods have the best performance, ranking first
and second in terms of smallest MSE and MAE for all forecasting horizons, with the
exception of t + 1, in which ridge regression has the second best performance. Random
forest outperforms all the other methods, except for t + 12, when gradient tree boosting
reports smaller errors. Among the regularized linear models, ridge regression stands out,
even though the methods did not beat the AR benchmark in t + 3 and t + 6 horizons.

In order to assess the relevance of unemployment data on industrial goods inflation
forecasting, we repeat the tests for all models after removing it from the list of regressors.
Even though the negative correlation between inflation and unemployment is a historically
important basis for inflation forecasting (Stock; Watson, 1999), many aspects of its
dynamics are still unexplained and its relevance is even questioned by some authors
(Mankiw, 2001). The removal of unemployment data has minor effects on the results of
the nonlinear methods, which continue to have better overall performance, and conflicting
contributions among the forecasting horizons on LASSO based models. However, there are
improvements in the MSE and MAE for elastic net and ridge regression in all forecasting
horizons, with the latter beating both benchmarks.

The results give further evidence that not only the nonlinear methods are able to
better represent the complex dynamics of inflation, but also that the variable selection for
random forest and gradient tree boosting perform better than for the shrinkage methods
to forecast industrial goods inflation. Moreover, even though we do not intend to assess
the causal inference between inflation and unemployment, we have an indication that
either (i) unemployment data may not be relevant to forecast industrial goods inflation
when using a large data set, even though ML methods frequently select it; or (ii) the
influence of unemployment on industrial goods inflation is episodic; or (iii) IBGE’s open
unemployment is not a good proxy to forecast inflation.

This work is organized as follows. The next section introduces the machine learning
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methods we use to forecast the industrial goods segment of IPCA, as well as defines the
benchmarks. Section 3 describes the procedures we adopt to tune and estimate the models.
We detail the data set we use in Section 4 and present the results in Section 5. Section 6
summarizes and concludes the work.
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2 Models

2.1 Benchmarks: Random Walk and AR

We use random walk and autoregressive models as benchmarks. Despite being basic
univariate models, the literature has several evidence that beating these naive models in
forecasting inflation is not an easy task. For example, Atkeson and Ohanian (2001) show
that even state of the art (by the time the article was written) NAIRU based Phillips
curves cannot forecast US inflation four quarters ahead better than a simple random walk,
over the period between 1984 and 1999. Considering inflation in Brazil, Medeiros et al.
(2016) find that AR models outperform LASSO and adaLASSO models for forecasting
IPCA horizons longer than four months ahead and IGP-M horizons other than one month
ahead.

The random walk model forecasts all horizons as the last value observed for the
variable as in x̂t+h = xt, where h is the forecast horizon.

The autoregressive models are linear models represented as:

x̂t+h = c +
p∑

i=1
Φixt−i , (2.1)

where c is a constant, Φi are the parameters of the model estimated using regression on
past observations of the variable and p is the order of the model, determined by some
model selection criteria.

2.2 Regularized linear models

Linear models for time series forecasting have the form:

yt+h = β0 + Xtβ̂ + ϵt+h , (2.2)

where Xt is a matrix of dimensions Txn with the regressor variables as columns, T is the
number of observations, n is the number of regressors, β̂ is the model coefficients column
vector, β0 is the intercept, yt+h is the variable we want to forecast and ϵt+h is the error
term.

Traditional linear regression models use OLS to estimate β̂ by minimizing the sum
of squared residuals, as in:
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β̂ = arg min
β

(
T∑

t=1
(yt+h − β0 − Xtβ)2

)
. (2.3)

One of the problems of OLS is that, when n > T , the OLS estimator is not unique,
as the minimization problem is rank deficient. Considering the broad availability of data,
it is possible that n ≫ T , specially in time series forecasting problems using machine
learning methods. In these cases, it is possible to completely overfit (Masini et al., 2021).
Another characteristic of OLS is that the forecasts often have low bias, but large variance,
which might lead to bad prediction accuracy. Sometimes it is useful to sacrifice bias to
reduce the variance of the predicted values and improve the overall prediction accuracy
(Hastie et al., 2009).

To address these problems, regularized linear methods introduce penalties for
overfitting the data, controlling model complexity by shrinking parameters values towards
zero, unless supported by the data (Bishop, 2006). The coefficients of the linear model are
the result of the following minimization problem:

β̂ = arg min
β

(
T∑

t=1
(yt+h − β0 − Xtβ)2 + p(β, λ, ω)

)
, (2.4)

where the regularization term p is a function of the coefficients β, a tuning parameter
λ ≥ 0 that controls how heavily the method penalizes overfitting and possibly other vector
or scalar parameters ω. The intercept is not part of the regularization function, as the
results would depend on the starting value of the forecasted variable. In the following
sections we present the regularization functions and the characteristics of ridge regression,
LASSO, adaLASSO, and elastic net methods.

2.2.1 Ridge Regression

Hoerl and Kennard (1970) introduced Ridge Regression as a method to reduce
the mean error by adding bias and reducing the variance of OLS estimators to fight
multicolinearity. The regularization term of Equation (2.4) uses the ℓ2 norm of the
coefficients, as in:

p(β, λ) = λ||β||22 = λ
n∑

i=1
β2

i . (2.5)

By using the ℓ2 norm to penalize complexity, the solution to the minimization
problem is not sparse, as the coefficients are rarely set to zero.
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2.2.2 LASSO

LASSO is the acronym for Least Absolute Shrinkage and Selection Operator,
a method proposed by Tibshirani (1996) that employs the ℓ1 norm to regularize the
coefficients in Equation (2.4):

p(β, λ) = λ||β||1 = λ
n∑

i=1
|βi| . (2.6)

By using the ℓ1 norm in the regularization term, the solution of LASSO is sparse,
meaning that the model performs shrinkage and variable selection at the same time. Ridge
regression does a proportional shrinkage, while LASSO performs a "soft thresholding",
translating each coefficient by the constant factor λ, truncating at zero (Hastie et al.,
2009). Another difference between ridge regression and LASSO is that, because of the
nature of the convex optimization problem, when the number of variables n is greater
than the number of observations T , LASSO selects at most n variables before it saturates
(Zou; Hastie, 2005).

2.2.3 AdaLASSO

Zhao and Yu (2006) show that the variable selection performed by LASSO may
be inconsistent under certain conditions and that, in particular, if an irrelevant predictor
is highly correlated with the predictors in the true model, LASSO may not be able to
distinguish it from the true predictors with any amount of data and any amount of
regularization.

To address this issue, Zou (2006) proposed the Adaptative LASSO (AdaLASSO),
a two step estimation that uses the coefficients of a first model to generate weights to
penalize different coefficients in LASSO ℓ1 penalty. The regularization function in Equation
(2.4) is:

p(β, λ, ω) = λ
n∑

i=1
ωi|βi| , (2.7)

where ωi = |β̂j|−τ are the adaptative weights based on the coefficients β̂j of the first step
estimation, and τ > 0 is an additional tuning parameter. The first step estimation can be
any consistent estimator of β, in which case adaLASSO is said to have what Fan and Li
(2001) define as the Oracle properties. The author suggests OLS unless collinearity is a
concern, in which case Ridge Regression may be a better option.
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2.2.4 Elastic Net

Zou and Hastie (2005), who first proposed elastic net, describe it as a method that
simultaneously performs automatic variable selection, continuous shrinkage and, unlike
LASSO, encourages a grouping effect of strongly correlated predictors.

As a compromise between Ridge Regression and LASSO, the elastic net uses a
linear combination of ℓ1 and ℓ2 norms, and the regularization function in Equation (2.4)
becomes:

p(β, λ, α) = λ

(
α

n∑
i=1

β2
i + (1 − α)

n∑
i=1

|βi|
)

= λ
(
α||β||22 + (1 − α)||β||1

)
, (2.8)

where α ∈ [0, 1].

2.3 Nonlinear models
For nonlinear models we focus on two regression tree based methods: Random

Forests and Gradient Tree Boosting.

Regression trees approximate an unknown nonlinear function with local predictions
using recursive partitioning of the space of covariates. The starting point is the root node.
A node is a subset of the set of variables and a non-terminal node splits into two child
nodes. The algorithm searches for the best split and applies this boolean condition on the
value of the variables. A node that does not split is called a terminal node or leaf. The
value on the terminal node determines the output variable (Izenman, 2008).

The tree size is a tuning parameter governing the model’s complexity. Large trees
may overfit the data, while small trees may not capture the data’s structure. Hence the
importance of choosing the optimal size adaptively, based on the data (Alpaydin, 2014).

2.3.1 Random Forest

Random Forest is a method originally proposed by Breiman (2001) used for
classification and regression. When used for regression, the algorithm grows a collection of
regression trees specifying each tree in a bootstrapped sub-sample of the original data.
When growing the trees, the method considers a limited random subset of variables to
determine the best split at each node. The prediction for each tree is at the terminal nodes
(or leaves), and the final prediction is formed by taking the average of all the trees. In
other terms:

ŷt+h = 1
B

B∑
b=1

fb(xt) , (2.9)
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where yt+h is the variable we want to forecast, B is the number of regression trees, and
fb(xt) is the result of each regression tree built considering a bootstrapped sub-sample of
the training data and the randomization of the subset of variables considered to determine
the best split at each node.

Bagging involves averaging across models estimated with several different bootstrap
samples in order to improve the performance of an estimator (Varian, 2014). Considerable
evidence has been accumulated since the introduction of bagging that demonstrates its
effectiveness on improving the accuracy of some estimators, specially nonlinear ones
like trees and neural networks (Friedman; Hall, 2007). Random forests goes beyond and
introduce randomness to the tree growing process to reduce the correlation between
individual trees (Efron; Hastie, 2016; James et al., 2013).

Random forests are very popular and can perform remarkably well in representing
complex relations in the data, with very little tuning required when compared to methods
like deep neural networks (Athey; Imbens, 2019).

2.3.2 Gradient Tree Boosting

Gradient Boosting is a greedy method originally proposed by Friedman (2001)
based on constructing additive models by sequentially fitting a base learner to current
pseudo-residuals at each iteration. The pseudo-residuals are the gradient of the loss function
being minimized, with respect to the model values at each training data point evaluated at
the current step. In other terms, if we want to estimate the function f(x), we iteratively
use regression trees and compute:

fm(x) = fm−1(x) − ρm
∂ℓ(f(x))

∂f(x)

∣∣∣∣∣
f(x)=fm−1(x)

, (2.10)

where ℓ(f(x)) is the loss fuction and ρm is the learning rate (a multiplicative factor to the
contribution of each tree that controls the convergence speed). The method repeats the
process for the number of iterations specified (Izenman, 2008).

Gradient tree boosting is a special case of gradient boosting, in which the base
learners are short regression trees. The idea is to iteratively add regression trees to the
model that are fit to the negative gradient of the loss function, reducing the estimation
error. The researcher should use some model selection criteria to tune the parameters of
gradient boosting, as well as the base parameters for the regression trees.

We used XGBoost, a variant of gradient tree boosting introduced by Chen and
Guestrin (2016) that implements algorithmic optimizations that improve scalability and
reduces running time. According to the authors, the impact of the system has been widely
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recognized in machine learning and data mining competitions like Kaggle’s and KDD Cup,
providing state of the art results on a wide range of problems.
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3 Methodology

We forecast industrial goods inflation on IPCA and report mean squared errors
and mean absolute errors for five horizons: t + 1, t + 3, t + 6, t + 9 and t + 12. The pseudo
out-of-sample methodology simulates real time forecasts, using only data available by the
cut-off date, which we consider as five business days before the publication of IPCAt+1.

We estimate the models using a 60 period rolling window and tune the hyper-
parameters using grid-search and out-of-sample evaluation1 on twelve forecasts. In other
words, at the beginning of the sample, we estimate the models with the 60 period rolling
window and forecast t+h for every combination of hyper-parameters. We store the forecasts
and compute the mean squared errors after twelve steps. In cases of higher computational
cost or higher number of hyper-parameters to tune, the combination with the smallest MSE
is used to forecast the complete test sample. This is the procedure we adopt for gradient
tree boosting. In other cases (ridge regression, LASSO, elastic net and random forest), we
perform the hyper-parameter validation at every step, by adding to the records another
set of forecasts for every combination of hyper-parameters on the grid and removing the
first set (thus keeping twelve forecasts to choose the smallest MSE).

For adaLASSO, we use ridge regression coefficients as the adaptative weights,
as Zou (2006) suggests2. We calculate the ridge regression coefficients at each step and
validate the shrinkage factor λ only once. The parameters selected for the benchmark AR
models vary between AR(3) and AR(4) models, with very small differences in MSE. We
adopt an AR(3) for parcimony.

Section 4 describes the data we use for the estimation of the models. To take into
account possible longer pass-through effects, we include the last observation and eleven
lags of each variable, totalling one year of data. The exceptions are the market expectations
for headline IPCA and exchange rate from the Focus survey. For the regularized models,
we standardize the predictors to prevent the magnitude of the variables from affecting the
regularization.

We test the predictive performance3 of the machine learning methods against the

1 Tashman (2000) emphasizes the importance of out-of-sample evaluation tests of forecasting accuracy
and describes this rolling window implementation. The main drawbacks of this methodology are the
computational cost, the fact that we reduce the period of valid forecasts and do not benefit from some
properties of the traditional k-fold cross-validation framework. However, we keep on simulating a true
out-of-sample evaluation and also avoid theoretical problems with respect to temporal evolutionary
effects and dependencies within the data (Bergmeir; Benitez, 2012).

2 Zou (2006) suggests β̂(ols) for general cases and β̂(ridge) when collinearity is a concern. Besides the
concerns with collinearity, we use β̂(ridge) as n > T .

3 Diebold (2015) published a paper with his personal perspective about the use of Diebold-Mariano test,
twenty years after the publication of the 1995 original paper. He emphasizes that the Diebold-Mariano
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benchmarks using Diebold-Mariano test, in which the null hypothesis is of equal forecast
accuracy (Diebold; Mariano, 1995). Diebold-Mariano test properties are likely to differ
under the null hypothesis with nested models, as forecasts errors are asymptotically the
same and therefore perfectly correlated (Clark; McCracken, 2001). However, Giacomini
and White (2006) prove that the test is valid if we estimate the models using a rolling
window framework.

We estimate the models using standard Python packages: Statsmodels for ARMA
models; Scikit-Learn for LASSO, Ridge Regression, Elastic Net and Random Forest;
ASGL4 package for AdaLASSO and XGBoost package for XGBoost.

test is intended for comparing forecasts and not for comparing models. Despite Diebold’s criticism
about the use of Diebold-Mariano test for pseudo out-of-sample model comparisons, we are interested
in the comparative historical predictive performance with a limited sample, one of the cases the author
claims that may justify its use.

4 ASGL is a package for regularized linear and quantile regression related to the research of Mendez-
Civieta et al. (2021)
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4 Data

The data covers the period between January 2007 and August 2021 (176 observa-
tions). We opt to use data starting from 2007 as it is the first full year after the weighting
structure revision of IPCA, implemented on July 2006. The previous weighting structure
considered the Consumer Expenditure Survey (POF) IBGE conducted during the biennium
of 1995/1996, a period of major changes1 in the Brazilian economy and stabilization of
the country inflation after the implementation of the Plano Real, in 1994. IBGE carried
out two additional weighting structure reviews of IPCA after July 2006, considering the
Consumer Expenditure Surveys of 2008/2009 and 2017/2018. The inflation rate in Brazil,
however, was significantly more stable.

We obtained the time series from IBGE, Fundação Getúlio Vargas (FGV), the Time
Series Management System (SGS) maintained by BCB, the Brazilian National Agency of
Petroleum, Natural Gas and Biofuels (ANP), the IPEADATA maintained by the Institute
for Applied Economic Research (IPEA) and the Federal Reserve Economic Data (FRED),
maintained by the Federal Reserve Bank of St. Louis. The data set includes monthly time
series for inflation indexes, exchange rates, commodity prices, producer prices, industrial
manufacturing and transportation costs, industrial wages, exports, local and international
interest rates, monetary variables, public debt, energy consumption and prices (electric
energy and fuels), economic activity indicators and unemployment. The full list of variables
and original sources are available in Appendix A.

We also use data from BCB’s Focus Market Readout to include market expectations
and professional forecasts. The report collects market expectations for several economic
variables from professional forecasters, banks, asset managers, consultancies and other
institutions that operate in the financial market. The agents inform their forecasts on
business days and BCB publishes the compiled statistics of the expectations collected until
Fridays on the next Monday. BCB ranks the forecasters and the five best for each forecast
horizon (short-term, mid-term and long-term) are part of Focus TOP5. We use the market
expectations for headline2 IPCA and monthly average exchange rates (USD/BRL) for
the next twelve months, considering the median of the forecasts of the TOP5 mid-term
ranking.

1 To illustrate this fact, the twelve month accumulated inflation shifted from 631,54% in January 1995
to 9,56% in December 1996.

2 In September/2021, BCB announced the inclusion of forecasts for the IPCA Industrial Goods segment
to the Focus Survey, among other additions. As our focus is on forecasting IPCA industrial goods
inflation, it would be interesting to use the specific market expectations for the segment (besides the
headline inflation) among the independent variables. The data, however, was not available for the time
span we used. When this data is available for a reasonable time span, it should be considered as one of
the regressors or even as a benchmark.
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In the cases in which only daily data is available, we consider the average value for
the month. Additionally, for regularized models, we standardize the predictors to prevent
the magnitude of the variables from affecting the regularization. Other than that, the only
transformation on the data are the ones necessary to achieve stationarity.

To take into account possible longer pass-through effects, we include the last
observation and eleven lags of each variable, totalling one year of data. The exception are
the market expectations from the Focus survey. Following the methodology described in
Section 3, the pseudo out-of-sample window goes from January/2014 to August/2021.
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5 Results

5.1 Complete sample

We forecast industrial goods segment inflation on IPCA using the methods described
in Section 2 for five horizons: t+1, t+3, t+6, t+9 and t+12. In this subsection we report
the results using the complete data described in Section 4 and Appendix A as regressors.

Table 1 reports the mean absolute error and mean squared error for each of the
forecast horizons. Overall, the nonlinear methods have the best performance, with random
forest and gradient tree boosting ranking first and second in terms of smallest MSE and
MAE for all forecasting horizons, with the exception of t+1, in which ridge regression has
the second best performance. Random forest dominates all the other models, linear and
non linear, both in terms of MSE and MAE for all forecasting horizons, except for t+12,
when gradient tree boosting is the best performing method.

Among the ML regularized linear models, ridge regression has the smallest MSE
and MAE for all forecasting horizons, except for t+6, in which adaLASSO has the best
overall performance, and t+12, in which LASSO has the smallest MAE. However, these ML
methods do not beat the AR(3) benchmark in t+3 and t+6 horizons. For some applications
in the literature, LASSO based models prove to be more accurate than other shrinkage
methods, including ridge regression. We attribute the superiority of ridge regression in
forecasting industrial goods inflation to the high correlation between the predictors, since
the data set includes several industrial costs, commodity prices, inflation indexes and
some of its breakdowns. In this situation, specially when the number of regressors is larger
than the number of observations, Zou and Hastie (2005) and Tibshirani (1996) observe
empirically that ridge regression dominates LASSO.

Garcia et al. (2017) report that LASSO based models have the best performance
forecasting IPCA in the short-term, when compared to other traditional and ML methods,
including random forest. They attribute the success of the methods to the use of expert
forecasts in the list of regressors, which tend to be very precise in the short-term. One
possible explanation for the bad performance of LASSO based models in our assessment is
that, even though we are considering expert forecasts as regressors, these expectations are
for headline inflation and not specifically for the for the industrial sector inflation.

Table 2 reports the results of the Diebold-Mariano test of the ML methods forecasts
against the two benchmarks (AR and RW). Even though the test has its limitations relative
to nested models, Giacomini and White (2006) prove it to be valid when estimating the
models in a rolling-window framework, as discussed in Section 3.
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Random forest forecasts are the only ones with statistical significance of at least
10% in Diebold-Mariano test for all horizons against the forecasts of the two benchmarks.
No ML linear regularized model forecast reaches statistical significance of at least 10%
against the AR benchmark for horizons of t+6 or longer and for horizons up to t+9 against
RW.

Figure 1 shows the boxplots for the forecasting errors, considering each method and
forecast horizon. Table 3 summarizes the interquantile range of the errors. The information
can be useful to analyze the error distribution and variance.

Random forest seems to be the method with the best bias-variance trade-off balance.
It reports the smallest error variance for t + 3, t + 6 and t + 9 horizons, as well as on
average, as evidenced by the lower error interquantile range. Among the linear regularized
models, ridge regression has the lowest error interquantile range for all forecasting horizons
(for t + 1, it has the lowest variance among all the methods). The error interquantile range
values for random forest, gradient tree boosting and ridge regression are close, but the
median and average errors in the boxplots suggest that the linear model has more biased
errors than the nonlinear ones in our sample.

Other authors also highlight the good performance of random forest in forecasting
headline inflation when compared to a variety of methods using data from different
countries. Some examples are the works of Araujo and Gaglianone (2020) forecasting
Brazilian IPCA, Medeiros et al. (2021) addressing USA CPI prediction and Chakraborty
and Joseph (2017) considering CPI in the United Kingdom.

Considering that random forest achieves the best overall performance, we assess
the relevance of the variables for this model. The feature importance algorithm we use
calculates the weighted average decrease in node impurity using Gini importance, in which
the weights relate to the probability of reaching that node. The higher the decrease in
node impurity when splitting a node into two child nodes based on a given feature, the
more important is the feature. The feature importance for random forest is the average
feature importance considering all the trees. We compute the frequency at which each
variable is among the 5% most important for random forest at each forecast (the eighteen
most important features for each window). We categorize the variables into six groups: (i)
AR components and inflation indexes; (ii) money and exchange rates; (iii) interests, bonds
and debt; (iv) costs, economic activity and trade; (v) commodities and energy and (vi)
unemployment.

Figure 2 shows that the AR components and inflation indexes category is by far
the most important for shorter horizons and gradually loses importance for longer horizons.
The decreasing importance of AR components towards longer horizons is somewhat ex-
pected, as the AR models with smaller MSE tends to be AR(3) or AR(4). It is important
to point out that this category also includes the market expectations for future headline
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IPCA, which tends to be more accurate for shorter horizons. Oppositely, commodities
and energy and money and exchange groups gain importance towards longer horizons, at
least partially due to the pass-through lag. Unemployment is the least important category,
particularly for shorter forecasting horizons.

MSE x 1000 Forecast Horizon
(MAE x 1000) t+1 t+3 t+6 t+9 t+12

AR
0.808 0.976 1.225 1.361 1.444

(2.174) (2.503) (2.681) (2.84) (2.927)

Random Walk 1.097 1.165 1.615 1.857 1.977
(2.572) (2.703) (3.078) (3.286) (3.384)

LASSO 1.338 1.402 2.064 1.516 1.352
(2.671) (2.823) (3.325) (3.070) (2.776)

AdaLASSO 1.266 1.386 1.291 1.713 1.427
(2.745) (2.817) (2.835) (3.099) (3.015)

Ridge Regression 0.762 0.996 1.425 1.305 1.268
(2.039) (2.288) (2.985) (2.753) (2.815)

Elastic Net 1.171 1.435 1.466 1.350 1.551
(2.578) (2.925) (3.065) (2.889) (3.151)

Random Forest 0.663 0.763 0.814 0.870 0.955
(1.997) (2.137) (2.223) (2.276) (2.397)

Gradient Tree Boosting
0.788 0.804 0.860 1.033 0.733

(2.179) (2.234) (2.325) (2.424) (2.043)
The table shows the mean squared errors and mean absolute errors (in parentheses) for each of the
forecast horizons. The values are multiplied by 1000. The shaded cells indicate the models with the
lowest MSE and MAE for each horizon. The values in bold represent the models with the second
smallest MSE and MAE for each horizon.

Table 1 – Mean Squared Error and Mean Absolute Error - Complete sample (with unem-
ployment data)
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Against AR
Diebold-Mariano test: statistical significance

t+1 t+3 t+6 t+9 t+12
LASSO ** **
AdaLASSO *** **
Ridge Regression
Elastic Net ***
Random Forest ** *** *** *** ***
Gradient Tree Boosting ** ***

Against RW
Diebold-Mariano test: statistical significance

t+1 t+3 t+6 t+9 t+12
LASSO **
AdaLASSO
Ridge Regression **
Elastic Net
Random Forest ** * ** *** ***
Gradient Tree Boosting ** ** ***

* 10% statistical significance
** 5% statistical significance
*** 1% statistical significance

Table 2 – Diebold-Mariano test statistical significance against the benchmarks - Complete
sample (with unemployment data)

t+1 t+3 t+6 t+9 t+12 average
AR 0.358 0.436 0.414 0.420 0.446 0.415
RW 0.423 0.443 0.485 0.520 0.480 0.470
LASSO 0.360 0.450 0.545 0.513 0.410 0.456
AdaLASSO 0.425 0.444 0.463 0.510 0.503 0.469
Ridge Regression 0.306 0.359 0.410 0.399 0.377 0.370
Elastic Net 0.391 0.469 0.525 0.489 0.531 0.481
Random Forest 0.320 0.333 0.362 0.370 0.375 0.352
Gradient Tree Boosting 0.366 0.361 0.376 0.371 0.314 0.358

The table shows the error interquantile range for each of the forecast horizons. The values are multiplied
by 100. The shaded cells indicate the models with the lowest interquantile range for each horizon.

Table 3 – Error interquantile range - Complete sample (with unemployment data)
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(a) t+1 (b) t+3

(c) t+6 (d) t+9

(e) t+12

Boxplots for the errors, considering each forecast horizon. The white square represents the mean value.
The whiskers are 1.5 times the interquantile range.

Figure 1 – Error distribution - Complete sample (with unemployment data)
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Figure 2 – Variable importance for random forest - Complete sample (with unemployment
data)
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5.2 Sample without unemployment data

To assess the relevance of unemployment data on industrial goods inflation forecast-
ing, we repeat the tests for all models after removing it from the list of regressors. Although
machine learning methods seek to automate as many decisions as possible when looking for
patterns in the data, it is misleading to think that including every possible data is the best
alternative, as economic theory and content expertise are important to guide where the
algorithm looks for structure (Mullainathan; Spiess, 2017). The unemployment-inflation
relationship is the basis for the traditional Phillips curve and has played an important
role in empirical macroeconomics (Stock; Watson, 1999). However, many aspects of its
dynamics are still unexplained, and some authors question its relevance (Mankiw, 2001).
Atkeson and Ohanian (2001) show that even state of the art (by the time the article was
written) NAIRU based Phillips curves could not forecast US inflation four quarters ahead
better than a random walk. Also working with US inflation, Stock and Watson (2008)
consider the performance of unemployment based Phillips curves to be episodic.

There are also discussions about the relevance of unemployment data to forecast
Brazilian inflation (Sachsida, 2013). Mendonça et al. (2012) find that the effect of unem-
ployment over inflation is close to zero, even though in some cases it is possible to observe
the expected negative correlation in the short-term, depending on the proxies. Using high
dimensional models to forecast IPCA and IGP-M, Medeiros et al. (2016) also find that
unemployment is not among the the most relevant variables and consider it to be evidence
that inflation mechanisms in Brazil are not those stated by the Phillips curve, especially
when it comes to the unemployment-inflation relationship.

Table 4 shows the MSE and MAE after the removal of unemployment data. Random
forest continues to rank first or second in terms of smallest MSE and MAE in all forecasting
horizons, with negligible increase on the error (increase in MAEx1000 and MSEx1000
≤ 0.005). Gradient tree boosting has the best performance for t+9 and t+12. Table 5
reports that, once again, random forest is the only model that beat the forecasts of the
two benchmarks with statistical significance of at least 10%.

The removal of unemployment data has minor effects on the results of the nonlinear
methods (which continue to have better overall performance) and conflicting contributions
among the forecasting horizons on LASSO based models. However, there are improvements
in the MSE and MAE for ridge regression and elastic net in all forecasting horizons.

Ridge regression is the best performing method in terms of MSE and MAE for
t+1 horizon, the method with smallest MAE for t+3 horizon and the second best model
for t+3 and t+6 in terms of MSE. It also reports the smallest MSE and MAE for all
forecasting horizons among the ML regularized linear models. The method beats both
benchmarks in all forecasting horizons in terms of MAE and MSE. Table 5 shows that
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the forecast without unemployment data reaches at least 10% statistical significance in
Diebold-Mariano test in three horizons against AR models and four horizons against RW1.

Table 6 and Figure 3 show that there are no major changes in the error interquantile
range relative to the sample with unemployment data. Futhermore, the boxplots confirm
that there are only subtle changes to the sample error distributions for random forest
and gradient tree boosting, whereas it is possible to observe the mean and median error
reduction for ridge regression.

Figure 4 shows the variable groups importance for random forest using the method-
ology described in subsection 5.1. As in the complete sample, the AR and inflation related
features continue as the most important for shorter horizons, gradually decreasing in
importance towards longer horizons, when commodities and energy gain relevance. Com-
pared to the variable importances of the sample with unemployment data, the category of
interests, bonds and debt has the bigger increase in importance, followed by the categories
of AR and inflation features and commodities and energy.

We do not intend to assess the causal inference between inflation and unemployment
in this work. There are methodologies and instruments much more suitable for this. However,
we have further indication that either (i) unemployment data may not be relevant to
forecast industrial goods inflation when using a large data set, even though ML methods
frequently select it; or (ii) the influence of unemployment on industrial inflation is episodic;
or (iii) IBGE’s open unemployment is not a good proxy to forecast inflation. We also have
evidence that the variable selection for random forest and gradient tree boosting perform
better than for the shrinkage methods to forecast industrial goods inflation.

1 With the complete sample, ridge regression forecasts has statistical significance of at least 10% on
Diebold-Mariano test only for t + 12 horizon against RW (and none against the AR model).
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MSE x 1000 Forecast Horizon
(MAE x 1000) t+1 t+3 t+6 t+9 t+12

AR
0.808 0.976 1.225 1.361 1.444

(2.174) (2.503) (2.681) (2.840) (2.927)

Random Walk 1.097 1.165 1.615 1.857 1.977
(2.572) (2.703) (3.078) (3.286) (3.384)

LASSO 1.459 1.393 1.716 1.495 1.606
(2.806) (2.816) (3.052) (3.062) (3.074)

AdaLASSO 1.024 1.282 1.766 1.355 1.585
(2.513) (2.725) (3.008) (2.838) (3.016)

Ridge Regression 0.616 0.793 0.855 0.957 1.147
(1.880) (2.098) (2.276) (2.438) (2.736)

Elastic Net 0.925 1.316 1.336 1.284 1.492
(2.332) (2.760) (2.858) (2.847) (3.027)

Random Forest 0.662 0.774 0.845 0.910 0.997
(1.999) (2.182) (2.269) (2.331) (2.443)

Gradient Tree Boosting
0.738 0.810 0.876 0.904 0.828

(2.176) (2.200) (2.274) (2.276) (2.207)
The table shows the mean squared errors and mean absolute errors (in parentheses) for each of the
forecast horizons. The values are multiplied by 1000. The shaded cells indicate the models with the
lowest MSE and MAE for each horizon. The values in bold represent the models with the second
smallest MSE and MAE for each horizon.

Table 4 – Mean Squared Error and Mean Absolute Error - Sample without unemployment
data
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Against AR
Diebold-Mariano test: statistical significance

t+1 t+3 t+6 t+9 t+12
LASSO ** ***
AdaLASSO * **
Ridge Regression ** * **
Elastic Net *
Random Forest ** *** *** *** ***
Gradient Tree Boosting * ** ***

Against RW
Diebold-Mariano test: statistical significance

t+1 t+3 t+6 t+9 t+12
LASSO
AdaLASSO
Ridge Regression *** * ** ***
Elastic Net
Random Forest ** * ** *** ***
Gradient Tree Boosting ** ** *** ***

* 10% statistical significance
** 5% statistical significance
*** 1% statistical significance

Table 5 – Diebold-Mariano test statistical significance against the benchmarks - Sample
without unemployment data

t+1 t+3 t+6 t+9 t+12 average
AR 0.358 0.436 0.414 0.420 0.446 0.415
RW 0.423 0.443 0.485 0.520 0.480 0.470
Lasso 0.364 0.461 0.479 0.541 0.462 0.461
AdaLasso 0.430 0.433 0.414 0.437 0.497 0.442
Ridge Regression 0.336 0.334 0.368 0.380 0.399 0.363
Elastic Net 0.387 0.420 0.458 0.462 0.457 0.437
Random Forest 0.316 0.363 0.354 0.388 0.357 0.355
Gradient Tree Boosting 0.357 0.338 0.382 0.365 0.378 0.364

The table shows the error interquantile range for each of the forecast horizons. The values are multiplied
by 100. The shaded cells indicate the models with the lowest interquantile range for each horizon.

Table 6 – Error interquantile range - Sample without unemployment data
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(a) t+1 (b) t+3

(c) t+6 (d) t+9

(e) t+12

Boxplots for the errors, considering each forecast horizon. The white square represents the mean value.
The whiskers are 1.5 times the interquantile range.

Figure 3 – Error distribution - Sample without unemployment data
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Figure 4 – Variable importance for random forest - Sample without unemployment data
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6 Summary and conclusion

We forecast industrial goods inflation on Brazilian IPCA using machine learning
methods and find further evidence that ML can be a valuable tool. Nonlinear tree based
methods perform better than linear shrinkage methods and outperform the benchmarks
RW and AR models. Ridge regression performs better than LASSO based models, probably
due to the high correlation among the regressors, which include several industrial costs,
commodity prices, inflation indexes and some of its breakdowns. Random Forest stands
out with lower errors and a more uniform performance across the forecasting horizons,
being the method that better controls the bias-variance trade-off. The results give further
evidence that the nonlinear methods are able to better represent the complex dynamics of
inflation, in line with the literature on Brazilian headline inflation forecasting. Regarding
the variable importance for random forest, we find that autoregressive components and
inflation related features are the most important for shorter horizons, gradually decreasing
in importance towards longer horizons, when commodities and energy gain relevance.

Considering the forecasts without unemployment data as regressors, we find that
the variable selection mechanisms of random forest and gradient tree boosting perform
better than on linear regularized models to forecast industrial goods inflation. We also
find further indication that either: (i) unemployment data may not be relevant to forecast
industrial goods inflation when using a large data set, even though ML methods frequently
select it; or (ii) the influence of unemployment on inflation is episodic; or (iii) IBGE’s open
unemployment is not a good proxy to forecast inflation.

One possible extension to this work is to use machine learning methods to forecast
the other inflation breakdown segments (administered prices, services and food at home)
and assess whether there are improvements with disaggregated inflation forecasting using
combinations of the best methods for each segment. Another possibility is to explore other
labor market proxies, such as labor market flow, unemployment duration, underemployment
rate and discouraged workers rate, for a more in depth assessment of the effects of
employment data on inflation forecasting using machine learning methods.
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APPENDIX A – List of variables

List of variables Original source

IPCA IBGE
IPCA - Industrial Goods Segment BCB
IPCA - Industrial goods core BCB
IPCA - Industrial goods - Volatile items BCB
Commodity Index - Brazil (IC-Br) BCB
Commodity Index - Brazil Agriculture (IC-Br - Agri-
culture)

BCB

Commodity Index - Brazil Energy (IC-Br - Energy) BCB
Commodity Index - Brazil Metal (IC-Br - Metal) BCB
General Price Index - Market (IGP-M) FGV
Wholesale Price Index-Market (IPA-M) FGV
Wholesale Price Index-Market (IPA-M) - Agriculture FGV
Wholesale Price Index-Market (IPA-M) - Industrial
goods

FGV

Wholesale Price Index-Market (IPA-M) - Extractive
industry

FGV

Wholesale Price Index-Market (IPA-M) - Transforma-
tion industry

FGV

Wholesale Price Index-Market (IPA-M) - Ethyl
ethanol

FGV

Wholesale Price Index-Market (IPA-M) - Anhydrous
ethyl ethanol

FGV

Wholesale Price Index-Market (IPA-M) - Computer
hardware, electronic and optical products

FGV

CPI USA All items U.S. Bureau of Labor Statistics
CPI USA All items 12M OECD
M0 BCB
M1 BCB
M2 BCB
M3 BCB
M4 BCB
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List of variables Original source

Total exports MDIC
EMBI+Brazil (Emerging Markets Bond Index Plus
Brazil)

JP Morgan

Selic BCB
Federal Funds Effective Rate - FEDFUNDS Federal Reserve
Libor rate - 3M ICE Benchmark Administration
Average exchange rate (USD/BRL) BCB
Power purchasing parity (USD/BRL) Ipea
Total electricity consumption Eletrobras
Electricity average price Eletrobras
U.S. Gulf Coast Conventional Gasoline Regular Spot
Price FOB

U.S. EIA

Total fuel sales - 12 months ANP
Gasoline sales - 1 month ANP
Ethanol sales - 1 month ANP
Diesel fuel sales - 1 month ANP
Deep Sea Freight Transportation Services U.S. Bureau of Labor Statistics
Producer Price Index by Industry: Total Manufactur-
ing Industries

U.S. Bureau of Labor Statistics

Producer Price Index by Commodity: All Commodi-
ties

U.S. Bureau of Labor Statistics

Central Bank Economic Activity Index (IBC-Br) BCB
Current economic conditions index Fecomercio - SP
Net public debt - total (% GDP) BCB
Real wages - industry CNI
Unemployment rate - open IBGE
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Focus survey - Market expectations Original source

IPCA t+1 - TOP5 Mid-term median BCB
IPCA t+2 - TOP5 Mid-term median BCB
IPCA t+3 - TOP5 Mid-term median BCB
IPCA t+4 - TOP5 Mid-term median BCB
IPCA t+5 - TOP5 Mid-term median BCB
IPCA t+6 - TOP5 Mid-term median BCB
IPCA t+7 - TOP5 Mid-term median BCB
IPCA t+8 - TOP5 Mid-term median BCB
IPCA t+9 - TOP5 Mid-term median BCB
IPCA t+10 - TOP5 Mid-term median BCB
IPCA t+11 - TOP5 Mid-term median BCB
IPCA t+12 - TOP5 Mid-term median BCB
Exchange rate (USD/BRL) t+1 - TOP5 Mid-term median BCB
Exchange rate (USD/BRL) t+2 - TOP5 Mid-term median BCB
Exchange rate (USD/BRL) t+3 - TOP5 Mid-term median BCB
Exchange rate (USD/BRL) t+4 - TOP5 Mid-term median BCB
Exchange rate (USD/BRL) t+5 - TOP5 Mid-term median BCB
Exchange rate (USD/BRL) t+6 - TOP5 Mid-term median BCB
Exchange rate (USD/BRL) t+7 - TOP5 Mid-term median BCB
Exchange rate (USD/BRL) t+8 - TOP5 Mid-term median BCB
Exchange rate (USD/BRL) t+9 - TOP5 Mid-term median BCB
Exchange rate (USD/BRL) t+10 - TOP5 Mid-term median BCB
Exchange rate (USD/BRL) t+11 - TOP5 Mid-term median BCB
Exchange rate (USD/BRL) t+12 - TOP5 Mid-term median BCB


	Title page
	Approval
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Models
	Benchmarks: Random Walk and AR
	Regularized linear models
	Ridge Regression
	LASSO
	AdaLASSO
	Elastic Net

	Nonlinear models
	Random Forest
	Gradient Tree Boosting


	Methodology
	Data
	Results
	Complete sample
	Sample without unemployment data

	Summary and conclusion
	Bibliography
	Appendix
	List of variables


