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Fábio César Siqueira da Silva, D.Sc. (Wavsense LLC)

(Examinador Externo)

Prof. Achiles Fontana da Mota, D.Sc. (ENE-UnB)

(Examinador Interno)
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Abstract

This works is focused on the construction of a reliable model for the time-domain propagat-

ing electromagnetic field of an antenna. Such model, which can be seen as the Green’s function

of an antenna setup, is based on two pillars: the first regards a dataset of phasor electric field

samples from the antenna previously collected on laboratory over a collection of frequencies;

while the second relies on an adaptation of the famous Nyquist sampling theorem used to per-

form an interpolation over the frequencies. As it is shown, the Nyquist reconstruction method

is not capable of retrieving causal electric fields. For this reason, The general sampling theorem

is considered and a new sampling theorem is proposed to correct the causality of the recon-

structed field. Moreover, a new identification method, based on a mode-recursive algorithm

inspired by the Kalman filter, is proposed and applied to estimate the mode coefficients of

an antenna minimising their uncertainty and, consequently, their bias, hence leading to more

reliable estimators.

Keywords: Antenna, time-domain, causality, mode coefficients, spherical wave expansion, gen-

eral sampling theorem, self-adjoint differential operators, spectral theory of self-adjoint and

compact operators.
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Chapter 1

Introduction

In general, the parameters of an antenna are described by their performance on the frequency-

domain centred, in particular, at its band of operation. The reason lies mainly in the fact that

the phasor form of the antenna fields, from which those parameters derive, are quite simple to

handle from the mathematical perspective.

It is often the case, however, that an application (e.g ., radar) is focused in the time-domain

response of the electromagnetic fields of an antenna. Despite what is commonly thought, and

as it will be further shown, the time-domain form of a field is not easily achieved by simply

taking the Inverse Fourier Transform of its phasor form. Moreover, even if that were the case,

for most practical scenarios the phasor form would not be available as a function of frequency,

but it would only be known at a particular discrete set of frequencies, over which the antenna

has been tested and its fields were measured.

On this matter, the objective of this work shall be seen as developing a method for estimating

the time-domain electromagnetic fields of an antenna given measured samples of its phasor field

in different frequencies. In the way of achieving such goal, some complementary objectives have

also been established: planning the set of sampling frequencies with the intention of reducing the

number of tests performed over the antenna; and using the minimal set of functions (eigenspace)

onto which the phasor fields are projected in order to save computational resources and improve

the implementation performance.

As a first step towards such direction, this chapter intends to provide the necessary context

over which this work is built and introduce the first technical aspects of it. Furthermore, it

is worth emphasising that although the minimum formalism, required to robustly state and

define the mathematical problem, is adopted throughout the text, it is mildly presented in the

following sections.

1.1 State-of-the-Art

With respect to the construction of a mathematical model for the time-domain radiated

electromagnetic field of an antenna, a central issue lies in the determination, or estimation,

of its spherical mode coefficients as function of frequency, which are necessary to completely

characterise such field. In this regard, [MAU13] shows that the usage of Vector Spherical

Harmonics requires less mode coefficients to efficiently represent the electromagnetic field, as it

1



1.2 – Theoretical background 2

is expected since it carries more information about the vector behaviour of the field. For this

reason, the vector approach is also adopted throughout this text.

Regarding the retrieving of the time-domain electromagnetic field, some techniques are

worth citing: [RRF14] estimate near-field components using a FDTD solver for the case of a

UWB antenna from which the far-field is obtained after a transformation while [Kli10] provides

a method for determining the time-domain Poynting vector of the radiated (far-field) electro-

magnetic field, also based in the modal decomposition of such vector. The causality nature of

those results are, nevertheless, not ensured. In this sense, [Lag21] creates model for the antenna

excitation that would provide causal responses. As it is known and expected, the causality of

the response, however, should be ensured by the physical properties of the model and not by a

certain class of excitations. In such context, this work provides a robust causal model for the

electromagnetic fields (near and far-field) produced by an antenna base in the Spherical modal

expansion.

1.2 Theoretical background

In order to better understand the proposed work, it is worth reminding some fundamentals

about both linear systems and antenna measurements.

1.2.1 Remark on Space and Notation of Physical Quantities

For the purpose of modelling the electromagnetic field produced by an antenna, it is enough

to require the spatial spaceS to be a three-dimensional euclidean inner product linear space over

R, where its vectors are usually thought as directions. Although all classical time-dependent

vectors lie in S, it is also useful to define its complexification SC – a complex extension of

S whose process is nicely described by [BN00, Section 2.1] – where the frequency-dependent

counterparts of those vectors live.

As discussed and shown in [Rud91, Section 1.19 and Theorem 1.21], any orthonormal basis{
x̂, ŷ, ẑ

}
⊂ S, which is also an orthonormal basis in SC, induces a homeomorphism of SC onto

C3, which hence means that those spaces share the same topology. In fact, an arbitrary vector
−→a ∈ SC, if written as −→a = axx̂ + ayŷ + azŷ, may be identified by a column matrix a ∈ C3,

given by a =
[
ax ay az

]T
, of its components with respect to such basis where ax, ay and az

are, of course, complex numbers.

As it has been presented, and also for the sake of tradition and simplicity, vectors inSC shall

be represented by a regular (non-boldfaced) character with an arrow or wedge (for denoting

unit vectors) above them (e.g ., −→a and x̂). On the other hand, their associated column matrices

in C3, with respect to an orthonormal basis conveniently established by the context, shall be

written using the same symbol now boldfaced but without the arrow while the wedge is kept

(e.g ., a and x̂).

Moreover, SC defines the inner product for its vectors as −→a · −→b = aHb to keep its metric
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in accordance with the euclidean notion of distance. In this sense, the magnitude of a vector
−→a will be denoted by its regular character, a, and given by a =

√−→a · −→a =
√
aHa. SC

also implements the cross product of its vectors as −→a × −→b ∈ SC associated with the matrix

JaK b ∈ C3. Still on this subject, it is worth highlighting that abuses of notation like a · b
and a× b (respectively meaning aHb and JaK b) may occasionally occur when no confusion is

possible to preserve the visual clarity and cleanliness of some equations.

In most cases, the scalar and vector quantities dealt in this text are time-dependent, which

naturally suggests treating them as regular functions of time on the form a : R → R or
−→a : R→ S. However, more structure is needed since the Fourier Transform of such quantities

should be well defined and, of course, they must be retrieved through the Inverse Fourier

Transform. Classically, such structure is reached by restricting those function to the Schwartz

spaces S (R;R) and S (R;S), cf . [Zem87, Theo. 7.3-2, page 183], of rapid descent functions.

Nevertheless, such restriction exclude several practical and desirable cases (e.g ., plane waves).

Such issue is not overcame in the domain of classical functions, but in the domain of tempered

distributions (or slow growth distributions) defined onto those Schwartz spaces, cf . [Zem87,

Theo. 7.4-2, page 187]. Hence, it must be required that a and −→a lie in the dual spaces S (R;R)∗
and S (R;S)∗, respectively.

Regarding the notation and following the literature convention, no distinction will be made

between a function f and its regular tempered distribution, which is the linear functional (or

linear form) in the dual space of the suitable Schwartz space defined by the map

φ 7→
ˆ
R
f (t)φ (t) dt (1.1)

for any function φ in the said Schwartz space.

1.2.2 Antenna as a Dynamic System

In the most pragmatic fashion, consider an antenna and let E (r, t) denote the electric field

it produces at the position r, with respect to a conveniently established frame of reference, and

at the time t. Since this field is created due to the presence of a current density field J (r, t) on

the surface of the antenna, such device may hence be thought as a dynamic system having the

current density as its input while the electric field is seen as its output, as it has been depicted

in Figure 1.1.

Such system, which clearly inherits the linearity, reality and non-discreteness from Maxwell’s

Equations, must also, for obvious reasons, be causal. Moreover, if the antenna geometry and

electromagnetic properties of the related media are assumed to not change over time, the system

is also time-invariant. A system carrying all this properties will henceforth be referred as PLTI

system, where “P” stands for physical (characterised by causality, reality and non-discreteness)

while “LTI” is the well know acronym for “Linear and Time-invariant”.

In most practical cases, the field J can not be arbitrarily set. Instead, it is usually induced

and controlled by a well defined scalar time-domain signal wave U (e.g ., voltage, current) input
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J (r, ·)
Antenna

E (r, ·)

Figure 1.1: Dynamic system block representing the antenna.

at the equipment RF chain that feeds the antenna. Such process also defines an electromagnetic

dynamic system (Figure 1.2) which, for the very same previous reasons, is also considered to

be PLTI. In this sense, it becomes interesting to define the operation setup of an antenna as

the composition of the two systems which, of course, is a PLTI system itself as well.

U
Antenna

RF
Chain

E (r, ·)J (r, ·)

Figure 1.2: Block diagram of an antenna operation setup.

In the light of the above formalism, the main purpose of this work may be considered as

finding the equivalent transfer function of such composition. Which might be done by estimating

each transfer function separately and then combined them. In fact, the transfer function of the

antenna block is a well established result, cf . [Jac99, Sec. 6.4, Eq. 6.44]. However, since only

samples of E and U are actually collected, it makes better sense identifying the composition

as a whole. The next section provides a heuristic approach to the method used to reach this

goal, hence working as a high-level outline of this work, whose detailed contents are developed

in the following chapters.

1.2.3 Modelling the Antenna Operation Setup

The PLTI properties of the previously defined operation setup ensure that the electric field

E (r, ·) is given by the convolution of the input signal U with the Green’s Function (or transfer

function) G (r, ·) of such setup as follows

E (r, t) =

ˆ
R
G (r, t′)U (t− t′) dt′, (1.2)

where the integral is taken in the Lebesgue sense. Of course G must be real-valued since it is the

electric field response to the impulse U = δ. Moreover, the causality requires that G (r, t) = 0

for any t < 0 in order to prevent any advanced response of the system, hence exposing the

non-analytic nature of this function.
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From this standpoint, it is worth noting that the objective of this work, early described in

this introduction, can now be seen as estimating G, since it completely provides the necessary

information to calculate the electric field, given an arbitrary input signal. In this direction, the

start point is the result

G (r, t) =
1

U0

ˆ
R
E (r, ν) ej2πνtdν (1.3)

(proven in the Section 7.A) for some real constant U0 meaning the amplitude of the input signal

over which the phasor was collected, which establishes that G is directly proportional to the

inverse Fourier Transform of the electric phasor field E (r, ν), where ν denotes the frequency

of the phasor. As consequence, the problem of finding G is now equivalent to the problem of

finding E.

As it will be shown in Chapter 3, it is possible to project the electric phasor field E on the

orthogonal and complete set
{
T ℓm

}
ℓ∈N,|m|⩽ℓ

, T ℓm (r, ν) ∈ C3×2, constructed from the known

spherical eigenfunctions of the vector laplacian operator. Thus, it holds that

E (r, ν) =
∑

ℓ∈N

∑

|m|⩽ℓ

T ℓm (r, ν) qℓm (ν) , (1.4)

where {qℓm}ℓ∈N,|m|⩽ℓ, qℓm (ν) ∈ C2×1, is a sequence of coefficient functions and the indices ℓ

and m correspond to the (ℓ,m)-spherical mode.

The determination of the coefficients functions qℓm is certainly the part of this work that

requires the most practical attention since they can not be directly measured. In fact, as

described in Chapter 4, for a mode ℓ, it is only possible to estimate samples
{
qℓm (νn)

}
n∈N at a

countable set of frequencies {νn}n∈N over which tests were performed and electric field samples

were measured. In this scenario, an interpolation method shall take place in order to estimate

the value of the function qℓm at an arbitrary frequency. Most commonly, the Whittaker-

Nyquist-Shannon Sampling Theorem (WNSST) is adopted to fill those gaps. However, as it

is shown in the introduction of chapter 5, such procedure leads to non-causal responses E. In

order to avoid such problem, a generalised sampling theorem is studied in along that chapter as

a template result for other sampling theorems which, leading to causal responses, are proposed

in Chapter 6. In this sense, qℓm is reconstructed as

qℓm (ν) =
∑

n∈N

qℓm (νn) ξn (ν) , (1.5)

where the constructor functions ξn : R→ C arise from those new sampling theorems.

Once the mode coefficient qℓm are accessible as functions, it becomes possible write the

phasor electric field as

E (r, ν) =
∑

n∈N

∑

ℓ∈N

∑

|m|⩽ℓ

T ℓm (r, ν) ξn (ν) · qℓm (νn) (1.6)
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and, consequently, the Green’s function may be retrieved as follows

G (r, t) =
∑

n∈N

∑

ℓ∈N

∑

|m|⩽ℓ

[
1

U0

ˆ
R
T ℓm (r, ν) ξn (ν) e

j2πνtdν

]
qℓm (νn)

=
∑

n∈N

∑

ℓ∈N

∑

|m|⩽ℓ

[
1

U0

ˆ
R
T ℓm (r, t) Ξn (t− t′) dt′

]
qℓm (νn)

=
∑

n∈N

∑

ℓ∈N

∑

|m|⩽ℓ

Gℓmn (r, t) qℓm (νn) , (1.7)

where T ℓm (r, ·) and Ξn are the inverse Fourier transforms of T ℓm (r, ·) and ξn, respectively,

whilst Gℓmn (r, ·) is their convolution. Thus, once the set
{
qℓm (νn)

}
n∈N is know, the goal of

this work becomes finding those three functions. In particular, T ℓm is calculated in Section 3.B

and suitable Ξn is proposed, since it is not unique, in Section 6.3 at Equation (6.26), more

precisely.

Chapter 7 is dedicated to construct Gℓmn and it also stores the final results of this work.

As it will be seen later in that chapter, it is possible to split Gℓmn, and consequently, G in

a propagating component Gfar, regarding the antenna far-field, and in a reactive component

Gnear, associated with the near field.

Although analytic solutions for both components are found, i.e., without any dependency

on integrals, the results are focused on the Gfar once it is not only more interesting from the

application perspective, but also it is extremely easier to be mathematically handle whilst the

complexity of Gnear is remarkable. Lastly, equations (7.17), (7.18) and (7.19) form, in that

order, a three-steps algorithm to construct E given an arbitrary real signal U , hence concluding
the objectives.

1.3 Main Contributions

Among all the work exposing in this dissertation, two major contributions must be high-

lighted:

1. Minimisation of the mode coefficients uncertainty during estimation while keeping low

residual energy. A mode-recursive algorithm, inspired by the performance of Kalman

filter, is proposed as a method for estimating the spherical mode coefficients from the

measured samples of the phasor electric field. The algorithm relies, at each iteration, in

the optimisation of the Kalman Gain, hence minimising the variance of the each mode

coefficients and, consequently, the accuracy of the estimation in the form of residual

energy.

2. Development of sampling theorem for electromagnetic signals. Although Nyquist sam-

pling theorem provides a reliable method to reconstruct a signal sampling in time-domain,
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it fails in retrieving physical results as the reconstructed signals do not obey causality con-

ditions. In this context, a new sampling theorem is proposed, based on the kernels created

from self-adjoint differential operators, which is capable of retrieving causal signals.

1.4 Organisation of This Work

This dissertation is mainly organised as follows:

• Chapter 2 provides a brief background on the main results of electromagnetism which

will be needed throughout this work.

• Chapter 3 develops in details the theory behind the spherical wave expansion of the

electric field for the particular case of an antenna.

• Chapter 4 exposes the algorithms intended to estimate the spherical mode coefficients

from the set of measured electric field collected in the far-field.

• Chapter 5 introduces the general sampling theorem and presents in details its conditions

that will be further particularised.

• Chapter 6 is dedicates to the construction of the kernel, based on self-adjoint linear

differential operators, which is used to generate the causal constructors.

• Chapter 7 reconstructs the time-domain radiated electromagnetic field and present the

achieved results.



Chapter 2

Electromagnetism Background

Fundamentally, the Classical Electromagnetism Theory establishes the existence of charges,

an inherent property held by material particles, and the electromagnetic field, which spans all

over space. This field dynamically influences the charge carriers by means of a force, known

as Lorentz Force, whilst the presence and movement of charges disturb the values of the field

around them in a process elegantly described by Maxwell’s Equations.

As a natural consequence of that second order dynamics, charges can exchange their kinetic

energy with each other across space through waves propagating at the electromagnetic field. The

described process, which also works for long distances, synthesises the idea behind antennae:

material structures allowing charges to move in particular patterns over their surfaces and hence

producing electromagnetic waves with different signatures.

In such context, this chapter intends to provide the basic language of Electromagnetism,

mainly focused on Antenna Theory, that will be largely used throughout this text.

2.1 Time Domain, Frequency Domain and Phasors

As usual, the time domain electric field can be thought as a vector field E : R3 × R → R3

where the vector E (r, t) ∈ R3 denotes the electric field at the position r ∈ R3 and time t ∈ R.
More formally, nevertheless, the electric field shall actually be associated to the tempered

distribution of the field E (traditionally also denoted by E) for which its Fourier Transform

E : R3 × R→ C3 with respect to the time and its inverse are comfortably defined as follows

E (r, ν) =

ˆ
R
E (r, t) e−j2πνtdt (2.1)

E (r, t) =

ˆ
R
E (r, ν) ej2πνtdν (2.2)

where ν ∈ R denotes the frequency. It is worth noting that Equation (2.2) implies that Re (E)

and Im (E) must respectively be even and odd functions of the frequency to ensure the reality

of E . Hence, E (r,−ν) = E (r, ν)∗ holds true for any r ∈ R3 and, consequently, that equation

can be rewritten as

E (r, t) = 2Re

(ˆ ∞

0

E (r, ν) ej2πνtdν

)
, (2.3)

8
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which highlights the fact that it is enough to evaluate E for ν ⩾ 0 to determine E .

The linearity of Maxwell’s Equations allows the analysis of an electromagnetic problem to

be performed over E, for which the solution is usually described in a simpler fashion, and then

using (2.2) or even (2.3) to retrieve the time-domain electric field. More substantially, consider

an electromagnetic setup excited at a single frequency ν ′. For this particular case, it holds that

E (r, ν) = E (r, ν) · δ (ν − ν
′) + δ (ν + ν ′)

2
, (2.4)

where E : R3×R→ C3 is called the phasor electric field. It is interesting to notice that the E

inherits the hermitianess of E due to the evenness of Dirac’s distribution, which can hence be

used to determine the real electric field as follows:

Eν′ (r, t) =

ˆ
R
E (r, ν) · δ (ν − ν

′) + δ (ν + ν ′)

2
ej2πνtdν

=
1

2

[
E (r, ν ′) ej2πν

′t +E (r,−ν ′) e−j2πν′t

]

=
1

2

[
E (r, ν ′) ej2πν0t +

(
E (r, ν ′) ej2πν

′t
)∗
]

= Re
(
E (r, ν ′) ej2πν

′t
)
. (2.5)

From a practical standpoint, the real vector Eν′ (r, t) is the one that can be physically

observed, which is done by measuring the magnitude and phase of each of its components. Such

information is, of course, synthesised at the complex phasorE (r, ν ′), which will henceforth have

the meaning of the measured electric field sample.

2.2 The Helmholtz Equation

Let Q be an index set (not necessarily countable) and
(
qi ∈ R

)
i∈Q, be a collection of charges

and let ri and ṙi denote the position and the velocity, as functions of time, of the i-th charge,

respectively. In this context, the time-domain charge ϱ and current J density fields are defined

as follows

ϱ (r, t) =
∑

i∈Q

qi · δ
(
r − ri (t)

)
(2.6)

J (r, t) =
∑

i∈Q

qi · ṙi (t) · δ
(
r − ri (t)

)
. (2.7)

In light of such formalism, the Maxwells equations describing the fields produced by such charge

and current distribution can be synthesised in time and Frequency-domain and in the phasor

form as
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Maxwell’s Equation Time-domain Frequency-domain Phasor form

Faraday’s Law ∇×E+ ∂B
∂t

= 0 ∇×E+jωB = 0 ∇×E+jωB = 0

Ampère’s Law ∇×H− ∂D
∂t

= J ∇×H−jωD = J ∇×H−jωD = J

Gauss’s Law for Electricity ∇·D = ϱ ∇·D = ρ ∇·D = ρ

Gauss’s Law for Magnetism ∇·B = 0 ∇·B = 0 ∇·B = 0

For completeness reasons, it is worth highlighting that the electromagnetic field ends up

affecting the movement of the charges themselves through the Lorentz force defined, for the

i-th charge, by

FEM
i (t) = qi ·

[
E
(
ri (t) , t

)
+ ṙi (t)×B

(
ri (t) , t

)]
. (2.8)

Considering a linear and non-dispersive medium, i.e., D = ϵE and B = µH , and a region

of space bearing no free charges, i.e., ρ = 0 and J = 0, it is possible to show the electromagnetic

field obeys the homogeneous wave equations

∇2E − 1

c2
∂2E
∂t2

= 0 and ∇2H− 1

c2
∂2H
∂t2

= 0 (2.9)

while their phasors satisfy the Homogeneous Helmholtz Equations

∇2E + κ2E = 0 and ∇2H + κ2H = 0 (2.10)

where, most naturally, c = 1√
µϵ

and κ = ω/c.

2.3 Radiated Power

About energy in an electromagnetic context, it is important to emphasise that energy and,

therefore, power are concepts fundamentally associated to moving particles. In other words,

the energy radiated by an electromagnetic system, as an antenna, by instance, comes from

the kinetic energy of its charges. Thus, it is worth starting by studying the power Pi of the

i-charge, defined by

Pi (t) = FEM
i (t) · ṙi (t)

= qi

(
E
(
ri (t) , t

)
+ ṙi (t)×B

(
ri (t) , t

))
· ṙi (t)

= qi · E
(
ri (t) , t

)
· ṙi (t) . (2.11)
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The total power is hence given by

P (t) =
∑

i∈Q

Pi (t)

=
∑

i∈Q

qi · E
(
ri (t) , t

)
· ṙi (t)

=
∑

i∈Q

qi ·
[˚

V

E
(
r, t
)
δ
(
r − ri (t)

)
dV

]
· ṙi (t)

=

˚
V

E
(
r, t
)∑

i∈Q

qi · δ
(
r − ri (t)

)
· ṙi (t) dV

=

˚
V

E (r, t) ·J (r, t) dV, (2.12)

For a surface V holding all the charges. Thus, by using the time-domain Àmpere’s Law and the

Divergence Theorem on the above result, it yields the Poynting Theorem, which is presented

as follows

P (t) =

˚
V

(
E (r, t) · ∂D

∂t
(r, t) +H (r, t) · ∂B

∂t
(r, t)

)
dV+

"
∂V

(
E (r, t)×H (r, t)

)
·n̂ (r) dA.

(2.13)

If V is static and once again considering a linear medium, the above result becomes

P (t) =
d

dt

˚
V

(
ϵE (r, t)2 + µH (r, t)2

2

)
dV +

"
∂V

(
E (r, t)×H (r, t)

)
· n̂ (r) dA, (2.14)

from which it becomes extremely suggestive defining the first integral as the total electro-

magnetic energy stored inside V while the second, which is precisely the rate at which the

electromagnetic energy cross the boundary ∂V , as the total radiated power:

Prad (t) =

"
∂V

(
E (r, t)×H (r, t)

)
· n̂ (r) dA (2.15)

2.3.1 Monochromatic Radiated Power

An interesting result is reached regarding the radiated power for monochromatic electro-

magnetic fields on the form

E (r, t) = Re
(
E (r, ν) ej2πνt

)
(2.16)

H (r, t) = Re
(
H (r, ν) ej2πνt

)
, (2.17)
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since

Prad (t) =

"
∂V

[
Re
(
E (r, ν) ej2πνt

)
× Re

(
H (r, ν) ej2πνt

)]
· n̂ (r) dA

=

"
∂V

[
E (r, ν) ej2πνt +E (r, ν)∗ e−j2πνt

2
×H (r, ν) ej2πνt +H (r, ν)∗ e−j2πνt

2

]
· n̂ (r) dA

=
ej4πνt

2

"
∂V

Re
(
E (r, ν)×H (r, ν)

)
· n̂ (r) dA

+
1

2

"
∂V

Re
(
E (r, ν)×H (r, ν)∗

)
· n̂ (r) dA.

The first component of Prad also depends harmonically on time, but with a frequency twice

greater than the original implying an oscillating aspect for the radiated power. Nevertheless,

the second component, which does not depend on time, provides the mean behaviour of the

radiated time,
〈
Prad

〉
=

1

2
Re

["
∂V

(
E (r, ν)×H (r, ν)∗

)
· n̂ (r) dA

]
, (2.18)

in the sense that it can be said if (and how much) energy is effectively being transmitted

(
〈
Prad

〉
> 0) or received (

〈
Prad

〉
< 0) by the distribution or even if it is an isolated system

(
〈
Prad

〉
= 0).



Chapter 3

Antenna Electromagnetic Fields

For the purposes of this work, and certainly for practical reasons as well, an antenna shall

be seen as a material structure with desirable conducting properties and entirely confined in a

finite volume Vant ⊂ S. On the other hand, the complement of Vant, i.e., S \ Vant is assumed

to bear neither free charges nor currents. The fields inside Vant are of little interest while those

outside that region, conversely, deserve better attention. Within this context, this Chapter

aims at providing a mathematical description and also a model for the electromagnetic fields

E and H created by an antenna in S \ Vant.

3.1 Spherical Mode Expansion

The sought mathematical model for the antenna fields must, of course, be in accordance

with the formalism of the Classical Electromagnetic Theory, which at this point is synthesised in

Helmholtz Equation Equation (2.10). Since no source lies inS\Vant, that equation conveniently

becomes homogeneous at that region, handing, for a fixed frequency, three eigenvalue problems

to be solved. For that very reason, the idea behind solving them is an old acquaintance: find

the eigenfunctions and project the solution over the corresponding eigenspace.

Before starting work in this idea, a coordinate system to describe S \ Vant must be chosen.

It must be observed that the finiteness of Vant indicates that the spherical coordinate system,

whose a briefly description can be found at Appendix B, is the most suitable choice. Although

the origin of this system and fixed unit vectors x̂, ŷ and ẑ may be chosen at will, it is highly

recommended that symmetries of the antenna geometry with respect to those axes are consid-

ered while the origin must be kept inside Vant. It is also worth warning that the radius vector

r, only as argument of function and as an abuse of notation, is used interchangeably with the

tuple (r, θ, ϕ), i.e., f (r) and f (r, θ, ϕ) not only have the same meaning, but also they represent

the same mathematical object.

In this whole context, the vector eigenfunctions, as described in Appendix E and also as

intuitively expected, are spherical vector waves. Thus, the electric and magnetic fields expanded

13
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in those waves have the form

E (r, κ) = κ
√
η
∑

s∈B

∑

ℓ∈N

∑

|m|⩽ℓ

Y ℓm (θ, ϕ)Zℓs (κr) qℓms (κ) , (3.1)

H (r, κ) =
jκ√
η

∑

s∈B

∑

ℓ∈N

∑

|m|⩽ℓ

Y ℓm (θ, ϕ)Zℓs (κr)pℓms (κ) , (3.2)

where the components of these fields are taken with respect to the spherical coordinate system

unit vectors, i.e.,

E =




−→
E · r̂
−→
E · θ̂
−→
E · ϕ̂


 and H =




−→
H · r̂
−→
H · θ̂
−→
H · ϕ̂


 , (3.3)

the matrices Y ℓm (θ, ϕ) ∈ C3×3 andZℓs (κr) ∈ C3×2 compose the eigenfunction Y ℓm (θ, ϕ)Zℓs (κr)

whilst qℓms (κ) and pℓms (κ) ∈ C2×1 are the constants pondering each eigenfunction and they

will henceforth be referred to as mode coefficients. In a pragmatic sense, the term mode will be

used as a synonym for the tuple of indices (ℓ,m), which are, respectively, the degree and order

of the corresponding spherical harmonics. The index s, which assume its values in B = {3, 4},
is described in Section D.3 and will be the focus of the Section 3.2.

If Equations (3.1) and (3.2) are applied to the phasor form of Faraday’s Law, after some

algebraic work it yields

pℓms =

[
0 1
1 0

]
qℓms, (3.4)

meaning that it is enough to determine either qℓms or pℓms. Traditionally, the electric field is

more required, which hence makes finding qℓms more interesting.

Moreover, the radial component of E and H are only caused by the second components

of qℓms and pℓms, respecively. Thus, assuming r̂ as the propagation direction, if the second

component of qℓms vanishes, then the mode is said to be transverse electric (TE); analogously,

if the second component of pℓms vanishes, then the mode is transverse magnetic (TM). For that

reason, the first components qℓms and pℓms are denoted by qTEℓms and pTMℓms, respecively. On the

other hand, it must be noticed from Equation (3.4) that the second component of qℓms is p
TM
ℓms

itself, while the second component of pℓms is qTEℓm. Thus, it makes better sense denoting the

mode coefficients as

qℓms =

[
qTEℓms

qTMℓms

]
and pℓms =

[
pTMℓms

pTEℓms

]
. (3.5)

It is worth stressing that the mode coefficients are actually functions of the wavenumber κ

(or the frequency ν as one might like) and perhaps this is the most appropriated moment to

point out that the core of this whole work may be seen as estimating those functions from a

set of collected electric field samples. Thus, from now on, only the electric field will be studied

in the next sections, even because the magnetic field might always be retrieved from electric

solution due to Equation (3.4).
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3.2 Transmitting and Receiving Fields

The eigenfunctions related to s = 3 and s = 4 are respectively associated with spherical

waves arriving in and leaving the antenna. Since the index s carries such strong meaning, it is

worth breaking apart the field solution by defining the transmitting Etra and receiving fields

Erec as

Etra = κ
√
η
∑

ℓ∈N

∑

|m|⩽ℓ

Y ℓmZℓ4qℓm4, (3.6)

Erec = κ
√
η
∑

ℓ∈N

∑

|m|⩽ℓ

Y ℓmZℓ3qℓm3, (3.7)

from which the total field in Equation (3.1) may be easily assembled as E = Etra +Erec.

While Etra is naturally produced by currents inside Vant, Erec is most certainly not, which

might raise a possible doubt about the physical meaning of this solution since S \ Vant is free
of charges and currents. As a matter of fact, this solution is understood as being created by

sources spotted at the infinite, hence modelling the total field produced by all the possible

far away radiation emitters. Therefore, it is clear that the mode coefficient functions qℓm3 are

completely random and cannot be deterministically well designed.

On the other hand, the functions qℓm4 are parameters of the studied antenna and might be

predicted and controlled (at least in theory). In fact, the functions qℓm4, if known, characterise

the antenna in all of its electromagnetic aspects hence working as a mathematical signature

or identity of it. One might even state that two antennae are equal if they have the same

set of mode coefficient functions. Such idea may even be developed beyond this notion of

equality by using the mode coefficients to define a metric, hence inducing a performance notion

of distance between two antennae, under which they can be compared. Nevertheless, it must

be highlighted that those functions are not invariant under translations nor under rotations on

the chosen reference frame, cf . [Mé21].

As a final thought on this matter, it is worth bringing attention to the fact that it is

completely reasonable to assume from now on that it is possible to have separately access to

Etra and Erec rather than the total field Etra + Erec. This is most due to the fact that the

collected samples, that will be used to estimate the electric field, will be measured either in a

transmitting test or in a receiving test performed on the antenna over a supposedly controlled

environment conditions.

3.3 Analytic Determination of Mode Coefficients

It is important to know that there is a sense of orthogonality between eigenfunctions on the

form Y ℓmZℓs. In fact, considering the Proposition D.7, it holds that"
(Y ℓmZℓs)

H (Y ℓ′m′Zℓ′s) dΩ = ZH
ℓsZℓsδℓℓ′δmm′ . (3.8)
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As usual, such orthogonality can be used to isolate the mode coefficients. In this regard, assume

that Etra or, more uncommon, Erec are analytically known. Thus, from Equations (3.6) and

(3.7), it follows that

qℓm4 =
1

κ
√
η

(
ZH

ℓ4Zℓ4

)−1
ZH

ℓ4

"
Y H

ℓmEtradΩ, (3.9)

qℓm3 =
1

κ
√
η

(
ZH

ℓ3Zℓ3

)−1
ZH

ℓ3

"
Y H

ℓmErecdΩ. (3.10)

It is worth noting that if the analytic forms of Etra and Erec used on the above equations do

really represent transmitting and receiving electric fields on an antenna, respectively, then such

equations will not depend on the radius r, since the mode coefficients cannot depend on it as

well.

Remark. Due to the clear similarities in equations regarding the transmitting and receiving

fields and also due to the fact that Zℓ3 = Z∗
ℓ4, only the transmitting case will henceforth be

considered. Additionally, the notation characterising that case on its associated variables will

be also dropped for simplicity. Thus, from now on, bear in mind that E ← Etra, qℓm ← qℓm4

and Zℓ ← Zℓ4.

3.4 Radiated Power

Regarding the results that have been presented this far in the current Chapter, one might

find it to be difficult to understand the mode coefficients as something more than mathematical

objects and eventually argue about a possible lack of physical meaning for them. This is not

really true nonetheless. As it will be shown in this section, there is indeed a close relationship

between the mode coefficients and the way the electromagnetic energy is distributed among the

modes.

Initially, let V ⊂ S denote a spherical volume with arbitrary radius r, centred in the origin

of the coordinate system, and such that Vant ⊂ V . The mean power through the boundary ∂V

that emanates from the antenna, as defined in Equation (2.18), can be calculated as

⟨P∂V ⟩ =
1

2
Re

["
∂V

(
E ×H∗) · r̂dA

]

=
r2

2
Re

[" (
E ×H∗) · r̂dΩ

]

=
r2

2
Re

["
H∗ ·

(
r̂ ×E

)
dΩ

]

=
r2

2
Re

["
HH Jr̂KEdΩ

]
, (3.11)

where Jr̂K =



0 0 0
0 0 −1
0 1 0


 is skew-symmetric. Considering Equation (3.6), the above integrand
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may be developed as

HH Jr̂KE = −jκ2

∑

ℓ∈N

∑

|m|⩽ℓ

Y ℓmZℓpℓm




H

Jr̂K


∑

ℓ′∈N

∑

|m′|⩽ℓ′

Y ℓ′m′Zℓ′qℓ′m′




= −jκ2
∑

ℓ∈N

∑

|m|⩽ℓ

pH
ℓmZ

H
ℓ Y

H
ℓm Jr̂K

∑

ℓ′∈N

∑

|m′|⩽ℓ′

Y ℓ′m′Zℓ′qℓ′m′

= −jκ2
∑

ℓ∈N

∑

|m|⩽ℓ

∑

ℓ′∈N

∑

|m′|⩽ℓ′

pH
ℓmZ

H
ℓ Y

H
ℓm Jr̂KY ℓ′m′Zℓ′qℓ′m′ ,

= −jκ2
∑

ℓ∈N

∑

|m|⩽ℓ

∑

ℓ′∈N

∑

|m′|⩽ℓ′

pH
ℓmZ

H
ℓ Y

H
ℓmY ℓ′m′ Jr̂KZℓ′qℓ′m′ ,

where it must be noted, from Definition D.2 and after a quick algebraic work, that Jr̂K and

Y ℓ′m′ (or Y ℓm) commute. Thus,

⟨P∂V ⟩ = −
(κr)2

2
Re


j
∑

ℓ∈N

∑

|m|⩽ℓ

∑

ℓ′∈N

∑

|m′|⩽ℓ′

pH
ℓmZ

H
ℓ

("
Y H

ℓmY ℓ′m′dΩ

)
Jr̂KZℓ′qℓ′m′




= −(κr)2

2
Re


j
∑

ℓ∈N

∑

|m|⩽ℓ

∑

ℓ′∈N

∑

|m′|⩽ℓ′

pH
ℓmZ

H
ℓ δℓℓ′δmm′ Jr̂KZℓ′qℓ′m′




= −(κr)2

2
Re


j
∑

ℓ∈N

∑

|m|⩽ℓ

pH
ℓmZ

H
ℓ Jr̂KZℓqℓm




= −(κr)2

2

∑

ℓ∈N

∑

|m|⩽ℓ

Re
(
jpH

ℓmZ
H
ℓ Jr̂KZℓqℓm

)
.

From Definition E.4 and by remembering Equation (3.4), it can be easily proved that

jpH
ℓmZ

H
ℓ Jr̂KZℓqℓm = qH

ℓm

[
jzℓZ∗

ℓ 0
0 −jz∗ℓZℓ

]
qℓm

and its real part can now calculated through

Re
(
jpH

ℓmZ
H
ℓ Jr̂KZℓqℓm

)
=

1

2

(
qH
ℓm

[
jzℓZ∗

ℓ 0
0 −jz∗ℓZℓ

]
qℓm + qH

ℓm

[
jzℓZ∗

ℓ 0
0 −jz∗ℓZℓ

]H
qℓm

)

=
1

2

(
qH
ℓm

[
jzℓZ∗

ℓ 0
0 −jz∗ℓZℓ

]
qℓm + qH

ℓm

[
−jz∗ℓZℓ 0

0 jzℓZ∗
ℓ

]
qℓm

)

=
1

2
qH
ℓm

[
jzℓZ∗

ℓ − jz∗ℓZℓ 0
0 jzℓZ∗

ℓ − jz∗ℓZℓ

]
qℓm

=
1

2j
(z∗ℓZℓ − zℓZ∗

ℓ ) q
H
ℓmqℓm.
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By using the Zℓ =
zℓ
u
− z′ℓ and the wronskian result as stated in [Nis, Eq. 10.50.1], it holds that

Re
(
jpH

ℓmZ
H
ℓ Jr̂KZℓqℓm

)
=

1

2j
(z∗ℓ z

′
ℓ − zℓz′∗ℓ ) qH

ℓmqℓm

=
1

2j
W(z∗ℓ , zℓ) q

H
ℓmqℓm

=
1

2j

−2j
(kr)2

qH
ℓmqℓm

=
−1
(kr)2

qH
ℓmqℓm. (3.12)

Finally,

⟨P∂V ⟩ =
1

2

∑

ℓ∈N

∑

|m|⩽ℓ

qH
ℓmqℓm (3.13)

Equation (3.13) is the main result of this section. It provides a simple method to calculate

at which rate the energy of the antenna is flowing through a spherical surface ∂V and, more

important, it states that such rate does not depend on the size of the surface, i.e., the radius

r. It is important to emphasise that, contrary to what is commonly needed, no approximation

was assumed1 to reach Equation (3.13), which hence implies that it is true at both far and near

field regions. As a consequence, ⟨P∂V ⟩ can be referred, without any concern, as the antenna

radiated power and hereafter it will be denoted simply by ⟨Prad⟩.
Most naturally, the structure of Equation (3.13) motivates the definition of the radiated

power per mode ⟨Prad⟩ℓm as

⟨Prad⟩ℓm =
1

2
qH
ℓmqℓm =

1

2

∥∥qℓm

∥∥2 =
1

2

(∣∣qTEℓm
∣∣2 +

∣∣qTMℓm
∣∣2
)
, (3.14)

which elegantly connects a mode coefficient to the amount of power that mode carries, endowing

it with mode-filter attributes. For completeness sake,

∥∥qℓm

∥∥ =
√

2 ⟨Prad⟩ℓm. (3.15)

3.5 Far and Near Fields

The second kind spherical Hankel function zℓ provides a key to severely simplify the analysis

of the antenna fields and to better understand their meaning as well. Willing to reach these

achievements, consider the following result, cf . [Nis, Eq. 10.49.7],

1Actually, all results presented so far in this Chapter are mathematically exact.
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zℓ (u) = jℓ+1 e
−ju

u

ℓ∑

k=0

(2k)!

k!

(
ℓ+ k

ℓ− k

)
1

(2ju)k
(3.16)

= jℓ+1 e
−ju

u
·
[
1 +

ℓ∑

k=1

(2k)!

k!

(
ℓ+ k

ℓ− k

)
1

(2ju)k

]

= jℓ+1 e
−ju

u
·
[
1 +Qℓ

(
1

2ju

)]

= jℓ+1 e
−ju

u
+ jℓ+1 e

−ju

u
Qℓ

(
1

2ju

)
, (3.17)

where Qℓ is an ℓ-degree polynomial with real coefficients and no independent term. Now,

consider the definition

zfarℓ (u) = jℓ+1 e
−ju

u
, (3.18)

where the meaning of the word “far” in this context will be soon revealed. As it has been

used in the proof of Equation (3.12), W (z∗ℓ , zℓ) = −2j/u2. However, it can be easily proved that

the wronskian of zfarℓ
∗
and zfarℓ has that precisely same value, i.e., W

(
zfarℓ

∗
, zfarℓ

)
= −2j/u2. As

a strong conclusion taken from this fact, one can say that if the matrix Zℓ were constructed

by using only the zfarℓ component of zℓ, then the antenna would radiate the same power, even

though the electric field would not be the same. It becomes now clear that only the component

of the electric field that decays proportionally to the factor 1/κr does actually radiate, while the

remaining components are then the responsible for the energy stored in the field surrounding

the antenna. Traditionally, those components are called far and near field, respectively. This

nomenclature, nevertheless, might lead to some confusion since the far field exists near the

antenna, where it is even stronger, while the near field do also exist far from the antenna, even

though it fades sharply faster than the far field as the distance grows.

The objective of this section is to find the form of the near and far fields. For this goal, the

matrix Zℓ must be studied. That being the case, consider the following result reached after

some simple algebraic work,

Zℓ (u) =




0
√
ℓ (ℓ+ 1) zℓ(u)

u

zℓ (u) 0

0 zℓ−1 − zℓ(u)
u




= jℓ
e−ju

u



0 0
j 0
0 1


+ jℓ

e−ju

u




0
√
ℓ (ℓ+ 1) j

u

[
1 +Qℓ

(
1

2ju

)]

jQℓ

(
1

2ju

)
0

0 Qℓ−1

(
1

2ju

)
+ 1

ju

[
1 +Qℓ

(
1

2ju

)]




= Z far
ℓ (u) +Znear

ℓ (u) . (3.19)
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With the last definition, the far and near fields are finally achieved as

Efar = κ
√
η
∑

ℓ∈N

∑

|m|⩽ℓ

Y ℓmZ
far
ℓ qℓm (3.20)

Enear = κ
√
η
∑

ℓ∈N

∑

|m|⩽ℓ

Y ℓmZ
near
ℓ qℓm, (3.21)

where it must be noticed that the transmitting field can always be retrieved byE = Efar+Enear.

Still in the nomenclature matter, it is worth adding that Efar will also be called propagating or

radiated field while, in contrast, Enear might be referred as non-propagating or reactive field.

Attention should be brought to the fact that the far and near fields share the same set of

mode coefficients. Which clearly means that if those coefficients are estimated by only analysing

the far field behaviour, then they can be used to reconstruct the near field. Therefore, this work

shall hereafter concentrate its attention towards the far field, once it is substantially easier to

handle and measure than the near field.

In this direction, consider the field rewritten as

Efar (r, κ) =
e−jκr

r

√
η
∑

ℓ∈N

∑

|m|⩽ℓ

jℓY ℓm (θ, ϕ)



0 0
j 0
0 1


 qℓm (κ) , (3.22)

which clearly has the form

Efar (r, κ) =
e−jκr

r
E (θ, ϕ, κ) , (3.23)

where E will be called radius-normalised electric field (or, when no confusion is possible, just

electric field), even though it does not have electric field units. Equation (3.23) reveals the

simple dependence of the radiated electric field on the distance r, in fact, the most important

impact of it is actually changing the phase of the field. E, on the other hand, stores the most

valuable information about the radiated field regarding the radiation pattern of the antenna

and, for this reason, it will become the focus of the attention for estimating the mode coefficients

in the next chapter.

As a second conclusion on the far field, one must notice that it has no radial component,

i.e., Efar · r̂ = ET
farr̂ = 0, due to the zeros in the first row of Z far

ℓ . Moreover, it can be quickly

proved that

JrK



0 0
j 0
0 1


 = j



0 0
j 0
0 1



[
0 1
1 0

]
,

which, alongside the already used fact that JrK and Y ℓm commute, can be used to evaluate the
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following

r ×Efar = JrKEfar

=
e−jκr

r

√
η
∑

ℓ∈N

∑

|m|⩽ℓ

jℓ JrKY ℓm (θ, ϕ)



0 0
j 0
0 1


 qℓm (κ)

=
e−jκr

r

√
η
∑

ℓ∈N

∑

|m|⩽ℓ

jℓY ℓm (θ, ϕ) JrK



0 0
j 0
0 1


 qℓm (κ)

= j
e−jκr

r

√
η
∑

ℓ∈N

∑

|m|⩽ℓ

jℓY ℓm (θ, ϕ)



0 0
j 0
0 1



[
0 1
1 0

]
qℓm (κ)

= j
e−jκr

r

√
η
∑

ℓ∈N

∑

|m|⩽ℓ

jℓY ℓm (θ, ϕ)



0 0
j 0
0 1


pℓm (κ)

= ηH far (r, κ) .

Hence,

H far =
1

η
r ×Efar, (3.24)

implying that the radiated magnetic field H also does not have a radial component. Which

leads to one more nice property of the far fields: the propagation is transverse electromagnetic

(TEM). It must be observerd that, from Equation (3.24), the complex Poynting vector becomes

Efar ×H∗
far =

1

η

(
EH

farEfar

)
r̂ =

1

η

∥∥Efar

∥∥2r̂ =
1

ηr2
∥E∥2 r̂, (3.25)

reassuring the already assumed direction of the energy flux to be radial.

At this point, since E (θ, ϕ, κ) =
[
0 Eθ (θ, ϕ, κ) Eϕ (θ, ϕ, κ)

]T
, the equations involving E

will be simplified by ignoring its first element, i.e., from now on, it will be considered that

E (θ, ϕ, κ) ∈ C2×1 where

E (θ, ϕ) =
[
Eθ (θ, ϕ, κ) Eϕ (θ, ϕ, κ)

]T
. (3.26)

Thus,

E (θ, ϕ, κ) =
∑

ℓ∈N

∑

|m|⩽ℓ

jℓ
√
η√

ℓ (ℓ+ 1)




jmY m
ℓ

sin θ

∂Y m
ℓ

∂θ

−∂Y
m
ℓ

∂θ

jmY m
ℓ

sin θ



[
j 0
0 1

]
qℓm (κ)

=
∑

ℓ∈N

∑

|m|⩽ℓ

jℓ
√
η√

ℓ (ℓ+ 1)




−mY m
ℓ

sin θ

∂Y m
ℓ

∂θ

−j ∂Y
m
ℓ

∂θ

jmY m
ℓ

sin θ


 qℓm. (3.27)
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By defining the matrix

T ℓm (θ, ϕ) =
jℓ
√
η√

ℓ (ℓ+ 1)




−mY m
ℓ

sin θ

∂Y m
ℓ

∂θ

−j ∂Y
m
ℓ

∂θ

jmY m
ℓ

sin θ


 , (3.28)

the last equation can be compactly rewritten as

E (θ, ϕ, κ) =
∑

ℓ∈N

∑

|m|⩽ℓ

T ℓm (θ, ϕ) qℓm (κ) . (3.29)

It is interesting to notice that T ℓm inherits the orthogonality of Y ℓm in the sense that

"
T H

ℓmT ℓ′m′dΩ = ηδℓℓ′δmm′ , (3.30)

from which the mode coefficients can now be determined if E is analytically available through

the following expression

qℓm =
1

η

"
T H

ℓmEdΩ, (3.31)

which is surely simpler than Equation (3.9).

3.6 Antenna Properties

In practice, one is interested in the description of the most common antenna properties that

are useful as classical figures of merit to analyse and compare the antenna performance. Those

properties, of course, may also be derived from the above formalism involving the mode coeffi-

cients. This section is dedicated to register such properties as functions the mode coefficients.

Firstly, it is interesting to see from Equation (3.25) that the radiated power, once again

calculated on a spherical surface of radius r, can also be expressed as

⟨Prad⟩ =
r2

2
Re

("
(Efar ×H far) · r̂dΩ

)

=
1

2η
Re

("
∥E∥2 dΩ

)

=
1

2η

"
∥E∥2 dΩ, (3.32)

even though its value have already been calculated at (3.13).

3.6.1 Radiation Intensity

The antenna radiation intensity U (θ, ϕ, κ) ∈ R⩾0 is defined with the intention to provide

the idea of how much power is radiated in each direction. Hence, it makes sense defining it as
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a “directional” density of radiated power, i.e., the radiated power per solid angle as

U =

∥∥E
∥∥2

2η
=

1

2η

∑

ℓ,m

∑

ℓ′,m′

qH
ℓmT

H
ℓmT ℓ′m′qℓ′m′ , (3.33)

where
∑
ℓ,m

is the contraction form for
∑
ℓ∈N

∑
|m|⩽ℓ

. The graph in spherical coordinates of U, which

is a 3-dimensional plot, is said to be the radiation pattern of the antenna.

3.6.2 Normalised and Directive Gains

In order to perform a relative analysis of the spherical radiation distribution, it is worth

studying a normalised version of the radiation intensity. The finiteness of the radiated power

implies that U (θ, ϕ, κ) must reach a maximum at some diretion (θ◦, ϕ◦). By assuming that the

series in Equation (3.33) converges to a differentiable function, such direction would then be

one of the solutions of
∂U

∂θ
(θ, ϕ) = 0 and

∂U

∂ϕ
(θ, ϕ) = 0. (3.34)

Once (θ◦, ϕ◦) is known, the radiation intensity can then be normalised by U (θ◦, ϕ◦) and this

ratio is defined as the normalised gain g (θ, ϕ). Thus,

g (θ, ϕ) =
U (θ, ϕ)

U (θ◦, ϕ◦)
. (3.35)

Since solving Equation (3.34) may become too complex, the direction (θ◦, ϕ◦) may not be always

available. Alternatively, it is possible to normalise the radiation intensity by using the isotropic

radiation intensity UI , which would come to be the radiation intensity of an isotropic antenna,

if it were real, that would radiate the same power of the real antenna. Hence,

UI =
⟨Prad⟩
4π

=
1

8π

∑

ℓ,m

∥∥qℓm

∥∥2. (3.36)

When the radiation intensity is normalised by such factor, it is called directive gain and denoted

by

D (θ, ϕ) = 8π · U (θ, ϕ)
∑
ℓ,m

∥∥qℓm

∥∥2 =
4π

η
·

∑
ℓ,m

∑
ℓ′,m′

qH
ℓmT

H
ℓmT ℓ′m′qℓ′m′

∑
ℓ,m

∥∥qℓm

∥∥2 . (3.37)

The maximum value of D, i.e., D (θ◦, ϕ◦) is commonly called directivity of the antenna.

3.7 Causality Requirements for Mode Coefficients

Causality is an important aspect of this work since it aims to attain a model for the time-

domain Electric Field of an antenna. Even though the causality, by itself, does not provide

enough information to perform the reconstruction of the Electric field, it establishes the rules

this reconstruction must obey.
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As it has been explained in subsection 1.2.2, an antenna might be thought as a PLTI system

and E (r, ·) would be the Fourier transform of its time-domain impulse response at position

r, i.e., E (r, ·) is the frequency-domain impulse response. Therefore, whenever the inverse

Fourier transform is applied in E (r, ·), the result E (r, ·) must correspond to a causal system,

i.e., E (r, t) ∈ R3 for any time t ∈ R and t < 0 must imply in E (r, t) = 0. In this section, it

will be studied over which condition the coefficient modes qℓm lead to a causal response of the

antenna.

It should be noticed that the complete form of the electric field, i.e., E = Efar + Enear

as described in Equation (3.6), shall be used to analyse the causality of the antenna, since

requiring causality only for Efar does not imply a causal Enear.

The Appendix A establishes important results about causality in the context of a general

PLTI system and most of them will be necessary to understand this section. For this reason,

the reader is encouraged to refer to that appendix whenever its results are used or even to read

it previously.

3.7.1 Hermitianness of the Electric Field

The first, and easiest, aspect of the causality that will be observed is the hermitianness of

the Electric Field, which is a necessary condition for causality, but not sufficient, as concluded

in Lemma A.2. Mathematically, it means that E (r,−κ) = E (r, κ)∗ must hold for any κ ∈ R
at any r ∈ R3 \ Vant. Before applying this condition to Equation (3.6), consider its left hand

side as

E (r,−κ) = −κ√η
∑

ℓ∈N

∑

|m|⩽ℓ

Y ℓm (θ, ϕ)Zℓ (−κr) qℓm (−κ) , (3.38)

which clearly requires Zℓ to be defined for negative values. This definition can be done by

considering the analytic continuation of zℓ which leads, as described in Proposition E.1, to

Zℓ (−κr) = (−1)ℓ Zℓ (κr)
∗
[
1 0
0 −1

]
, (3.39)

However, to keep the equations as small as possible, this formula will be saved for later and

Zℓ (−κr) will continue to be written for now. For the right hand side, consider the Proposi-

tion D.6, which establishes that Y ∗
ℓm = (−1)m Y ℓ,−m. Thus,

E (r, κ)∗ = κ
√
η
∑

ℓ∈N

∑

|m|⩽ℓ

Y ℓm (θ, ϕ)∗Zℓ (κr)
∗ qℓm (κ)∗

= κ
√
η
∑

ℓ∈N

∑

|m|⩽ℓ

(−1)m Y ℓ,−m (θ, ϕ)Zℓ (κr)
∗ qℓm (κ)∗ . (3.40)

Since Equations (3.38) and (3.40) must be equal, then

∑

ℓ∈N

∑

|m|⩽ℓ

[
(−1)m Y ℓ,−m (θ, ϕ)Zℓ (κr)

∗ qℓm (κ)∗ + Y ℓm (θ, ϕ)Zℓ (−κr) qℓm (−κ)
]
= 0
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must hold for any r, θ, ϕ and κ. However, since the matrices Y ℓm are orthogonal, Proposi-

tion D.7, it must be true that

(−1)m Zℓ (κr)
∗ qℓ,−m (κ)∗ +Zℓ (−κr) qℓm (−κ) = 0

for any tuple of indices (ℓ,m) where ℓ ∈ N and |m| ⩽ ℓ. The Equation (3.39) can finally be

applied to the last result yielding

(−1)m Zℓ (κr)
∗ qℓ,−m (κ)∗ + (−1)ℓ Zℓ (κr)

∗
[
1 0
0 −1

]
qℓm (−κ) = 0

or

Zℓ (κr)
∗

(
(−1)m qℓ,−m (κ)∗ + (−1)ℓ

[
1 0
0 −1

]
qℓm (−κ)

)
= 0.

Since it is valid for any value of r, the only left possibility is

qℓm (−κ) = (−1)ℓ+m

[
−1 0
0 1

]
qℓ,−m (κ)∗ . (3.41)

The last equation is the desired result. It establishes how the mode coefficients should be define

for negative values of wavenumber (or frequency) so that E could be hermitian.

3.7.2 Kramers-Kronig relations for the Electric Field

Another necessary condition for causality that must be explored are the Kramers-Kronig

relations. In fact, as stated in Corollary A.1, this condition and the hermitianness are together

sufficient to ensure the causality of the antenna. In this sense, the electric field E (r, ·) must

obey for any r

E (r, κ) = − 1

jπ
PV

ˆ
R

E (r, κ′)

κ′ − κ dκ′. (3.42)

Considering once again Equation (3.6), the above condition becomes

∑

ℓ∈N

∑

|m|⩽ℓ

Y ℓm (θ, ϕ)

[
κZℓ (κr) qℓm (κ) +

1

jπ
PV

ˆ
R

κ′Zℓ (κ
′r) qℓm (κ′)

κ′ − κ dκ′
]
= 0.

And since the matrices Y ℓm are orthogonal, the following must hold for all modes

κZℓ (κr) qℓm (κ) +
1

jπ
PV

ˆ
R

κ′Zℓ (κ
′r) qℓm (κ′)

κ′ − κ dκ′ = 0.

The above result implies that the class of function on the form κZℓ (κr) qℓm (κ) must obey

Kramers-Kronig for all modes and for any r. It is interesting to notice that such functions do

not individually correspond to causal systems since they are not hermitian in general.

At this point, it is worth considering each component of κZℓ (κr) qℓm (κ) separatedly. How-

ever, one must be able to notice that the third component can be obtained through the first,
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hence they carry the same information. Thus, for simplicity, only the first and second compo-

nents are considered leading to

κzℓ (κr) q
TE
ℓm (κ) +

1

jπ
PV

ˆ
R

κ′zℓ (κ
′r) qTEℓm (κ′)

κ′ − κ dκ′ = 0, (3.43)

zℓ (κr) q
TM
ℓm (κ) +

1

jπ
PV

ˆ
R

zℓ (κ
′r) qTMℓm (κ′)

κ′ − κ dκ′ = 0. (3.44)

The second kind spherical Hankel function zℓ can be expanded in its Laurent series around

zero, cf . [Nis, Eq. 10.53.1-10.53.2], i.e. it converges at any element of C \ {0}, where it has a

pole of order ℓ+ 1. After some organisation, this series can be written as

zℓ (u) =
ℓ∑

a=0

Cau
2a−ℓ−1 +

∞∑

a=ℓ

Dau
a

where it is worth noting that the series has coefficient zero associated with the terms u−ℓ, u−ℓ+2,

u−ℓ+4, · · · , uℓ−2 and also that the presented coefficients Ca and Da do not vanish (their value

are actually not important for the following analysis). If zℓ is replaced by its series in Equations

(3.43) and (3.44), they become

ℓ∑

a=0

Ca

(
κ2a−ℓqTEℓm (κ) +

1

jπ
PV

ˆ
R

κ′2a−ℓqTEℓm (κ′)

κ′ − κ dκ′

)
r2a−ℓ−1

+
∞∑

a=ℓ

Da

(
κa+1qTEℓm (κ) +

1

jπ
PV

ˆ
R

κ′a+1qTEℓm (κ′)

κ′ − κ dκ′
)
ra = 0

ℓ∑

a=0

Ca

(
κ2a−ℓ−1qTMℓm (κ) +

1

jπ
PV

ˆ
R

κ′2a−ℓ−1qTMℓm (κ′)

κ′ − κ dκ′

)
r2a−ℓ−1

+
∞∑

a=ℓ

Da

(
κaqTMℓm (κ) +

1

jπ
PV

ˆ
R

κ′aqTMℓm (κ′)

κ′ − κ dκ′
)
ra = 0,

which must hold for any valid r. Due to the uniqueness of Laurent series, cf . [Net05, Ch. IV,

Theorem. 8, Page 211], all coefficients of the series above must vanish. Thus, for any a ∈
N⩽ℓ ∪ {0}

κ2a−ℓqTEℓm (κ) = − 1

jπ
PV

ˆ
R

κ′2a−ℓqTEℓm (κ′)

κ′ − κ dκ′ (3.45)

κ2a−ℓ−1qTMℓm (κ) = − 1

jπ
PV

ˆ
R

κ′2a−ℓ−1qTMℓm (κ′)

κ′ − κ dκ′ (3.46)

shall hold for any a ∈ N⩾ℓ, while

κa+1qTEℓm (κ) = − 1

jπ
PV

ˆ
R

κ′a+1qTEℓm (κ′)

κ′ − κ dκ′ (3.47)

κaqTMℓm (κ) = − 1

jπ
PV

ˆ
R

κ′aqTMℓm (κ′)

κ′ − κ dκ′ (3.48)
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must also be true. The four above conditions are the main results of this subsection. If one is

able to ensure them, alongside Equation (3.41), then the antenna will surely be causal.

A sufficient condition, but it must be emphasised that it is not actually necessary, to guar-

antee that the above functions satisfy Kramers-Kronig relations is established in Theorem A.1.

Such condition, nevertheless, requires extending the functions to an open set D ⊆ C containing

C+ =
{
κ ∈ C; Im (κ) ⩾ 0

}
over which they must be holomorphic (or analytic in this context)

as described in the said Theorem. Thus, if

κ2a−ℓqTEℓm (κ) and κ2a−ℓ−1qTMℓm (κ) , ∀a ∈ N⩽ℓ ∪ {0} (3.49)

and

κa+1qTEℓm (κ) and κaqTMℓm (κ) , ∀a ∈ N⩾ℓ (3.50)

are analytic inD and they vanishes as κ →∞ on C+, then they obey Kramers-Kronig relations.

Of course the analyticity required above does not determine the sought functions, but it can

provide some clues about they form.

The most obvious characteristic of qTEℓm and qTMℓm comes from the (3.49) at a = 0, which qTEℓm
and qTMℓm must have at least ℓ and ℓ+ 1 zeros at κ = 0, respectively. Thus,

qTEℓm (κ) = κℓfTE
ℓm (κ) and qTMℓm (κ) = κℓ+1fTM

ℓm (κ)

where the auxiliary fTE
ℓm and fTM

ℓm should also be analytic in D. This conclusion would suffice if

it were not for the requirement of vanishing as κ →∞ on C+. Actually, given an exponent b,

constructing auxiliary functions so that such that

lim
κ→∞

κℓ+bfTE
ℓm (κ) = 0 and lim

κ→∞
κℓ+bfTM

ℓm (κ) = 0

is not hard whatsoever. Consider fTE
ℓm for example. It would be enough choosing ℓ + b + 1 (or

more) poles
{
κi

}
i∈N⩽ℓ+b+1

in the lower half-plane and defining

fTE
ℓm (κ) =

1

(κ − κ1) (κ − κ2) · · · (κ − κℓ+b+1)
.

In fact, if κ = Rejθ, then

∣∣∣κbqTEℓm (κ)
∣∣∣ = Rℓ+b

∣∣Rejθ − κ1

∣∣∣∣Rejθ − κ2

∣∣ · · ·
∣∣Rejθ − κℓ+b+1

∣∣

=
1∣∣ejθ − κ1

R

∣∣∣∣ejθ − κ2

R

∣∣ · · ·
∣∣ejθ − κℓ+b

R

∣∣∣∣Rejθ − κℓ+b+1

∣∣ ,

from which it is clear that lim
R→∞

∣∣κbqTEℓm (κ)
∣∣ = 0. Moreover, notice that the chosen fTE

ℓm is also

suitable for any exponent less than b. This approach would suffice it were not for the fact

that b must be as great as one might want, due to (3.50), and, most certainly, the auxiliary

functions should not depend on b. Nevertheless, the above discussion provides the insight on

how to proceed.
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Before continuing, it is worth analysing another candidate for the auxiliary functions. Given

the exponential nature of the problem difficulty, one may be wondering if choosing fTE
ℓm (κ) =

ejακ, for some α > 0, would work. Well, it would not. The reason is that

∣∣κbqTEℓm (κ)
∣∣ = Rℓ+be−αR sin θ

only converges to zero as R→∞ if θ ∈ (0, π), hence it does not contemplate the real frequency

(or wavenumber) case. Attempts to adapt this approach commonly leads to non-analytical

auxiliary functions.

One solution, motivated by the above discussion, is to consider a sequence {κi}i∈N on the

lower half-plane without accumulation point and project an entire function2 h with simple zeros

at the sequence, i.e., h (κi) = 0 ∀i ∈ N. The Weierstrass Factorisation Theorem, cf . [Net05,

Ch. V, Corollary, page 364], ensures that there is an entire function g so that h has the form

h (κ) = eg(κ)
∏

i∈N

(
1− κ

κi

)
,

which converges on any compact subset of C. At this point, it is enough defining fTE
ℓm (and also

fTM
ℓm ) as

fTE
ℓm (κ) =

1

h (κ)
=

e−g(κ)

∏

i∈N

(
1− κ

κi

) .

Finally, if qTEℓm and qTMℓm are assumed to be analytic, then they may have the following aspect

qTEℓm (κ) =
κℓe−gTEℓm (κ)

∏

i∈N

(
1− κ

κTE
iℓm

) and qTMℓm (κ) =
κℓ+1e−gTMℓm (κ)

∏

i∈N

(
1− κ

κTM
iℓm

) , (3.51)

where all poles must have negative imaginary part and they cannot be arbitrarily close to each

other.

As models for the mode coefficients, it is worth remembering the forms constructed above

are not unique. In fact, a finite number of zeros, even at κ = 0, or entire functions, like ejκ to

ensure the convergence to zero on the upper half-plane, can still be put into the those models

and they would still imply causality. This uncertainty on the their form and the fact that

infinitely many poles, for each mode, needs to be estimated most certainly discourage their

utilisation.

3.A Computational form of Tℓm Matrix

Given the relevance of the T ℓm to describe the radiated field and the antenna properties, it

is important to have a more explicit form for it that does not involves the derivative in θ. This

2A complex-valued function of one complex variable is said to be entire if it is holomorphic on C.
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brief appendix develops such form in aiming its computational implementation. The starting

point is to develop Equation (3.28) as follows

T ℓm (θ, ϕ) =
jℓ
√
η√

ℓ (ℓ+ 1)




−mY m
ℓ

sin θ

∂Y m
ℓ

∂θ

−j ∂Y
m
ℓ

∂θ

jmY m
ℓ

sin θ




=
jℓ
√
η√

ℓ (ℓ+ 1)

[
0 −1
j 0

]


−∂Y

m
ℓ

∂θ

mY m
ℓ

sin θ

mY m
ℓ

sin θ
−∂Y

m
ℓ

∂θ




=
jℓ
√
η√

ℓ (ℓ+ 1)

[
0 −1
j 0

](mY m
ℓ

sin θ
O2 −

∂Y m
ℓ

∂θ
I2

)
, (3.52)

where O2 =

[
0 1
1 0

]
is an auxiliary matrix.

Due to the sine in the denominator, it is important to analyse the behaviour of T ℓm at θ = 0

and θ = π. As stated in Proposition D.2, it holds that

∂Y m
ℓ

∂θ
(0, ϕ) =

∂Y m
ℓ

∂θ
(π, ϕ) = 0. (3.53)

Besides, from the Definition C.1, the ratio
Y m
ℓ

sin θ
is well defined (removable singularity)

whenever m ̸= 0 and the following holds

lim
θ→0

Y m
ℓ (θ, ϕ)

sin θ
= lim

θ→π

Y m
ℓ (θ, ϕ)

sin θ
=





0, if ℓ > 1

1
2

√
3
2π
e−jϕ, if ℓ = 1 and m = −1

−1
2

√
3
2π
ejϕ, if ℓ = 1 and m = 1

. (3.54)

However, for those particular cases where m = 0, the term
mY m

ℓ

sin θ
is beforehand zero. Thus,

T ℓm (0, ϕ) = T ℓm (π, ϕ) =





02×2, if m = 0 or ℓ > 1

−j
[
0 −1
j 0

]
m

4

√
3η

π
ejϕO2, if m ̸= 0 and ℓ = 1

. (3.55)

For any other case, i.e., θ ∈ (0, π), the Proposition D.2 can be used to go further by doing

T ℓm (θ, ϕ) =
jℓ
√
η√

ℓ (ℓ+ 1)

[
0 −1
j 0

](
mY m

ℓ

sin θ
O2 − ℓ

cos θ

sin θ
Y m
ℓ I2 +

Cℓm

sin θ
Y m
ℓ−1I2

)

=
jℓ
√
η√

ℓ (ℓ+ 1)

1

sin θ

[
0 −1
j 0

](
mY m

ℓ O2 − ℓ cos θY m
ℓ I2 + CℓmY

m
ℓ−1I2

)
, (3.56)

where Cℓm =
√

2ℓ+1
2ℓ−1

√
ℓ2 −m2 is an auxiliary coefficient defined to prevent overloading the

equations more than it is necessary.
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3.B Results on Fourier Transform of the Spherical Hankel
Function

The main objective of this appendix is to construct the inverse Fourier transform of the

Zℓ. To simplify the following equations, the argument of such function will be frequency-like

variable u = κr = 2πr
c
ν. Thus,

F−1 (Zℓ) (t) =

ˆ
R
Zℓ

(
2πr

c
ν

)
e2πjνtdν

=
c

2πr

ˆ
R
Zℓ (u) e

2πju ct
2πr du

=
c

2πr

ˆ
R
Zℓ (u) e

2πjuτdu (3.57)

where τ = ct
2πr

is the counterpart time-like variable. The first step towards such result is, of

course, calculate the inverse Fourier transform of the second kind spherical Hankel function

zℓ. For this intermediary goal, consider the following auxiliary results, documented as lemmas,

about the inverse Fourier transform.

Lemma 3.1. F−1

(
1

uk+1

)
(τ) = jπ · (j2πτ)

k

k!
· sgn (τ)

Proof. It is enough to observe that

dk

dvk

(
1

u

)
=

dk−1

dvk−1

(
− 1

u2

)
=

dk−2

dvk−2

(
2

u3

)
= · · · = (−1)k k!

uk+1
.

Using that F−1
(
f (k) (u)

)
(τ) = (−j2πτ)k F−1

(
f (u)

)
(τ), it becomes

F−1

(
(−1)k k!

uk+1

)
(τ) = (−j2πτ)k F−1

(
1

u

)
(τ) .

Finally, since F−1
(
1
u

)
(τ) = jπ · sgn (τ),

F−1

(
(−1)k k!

uk+1

)
(τ) = (−j2πτ)k · jπ · sgn (τ) ,

from which the yielded result follows. ■

Lemma 3.2. F−1 (zℓ) (τ) = −jℓπ
ℓ∑

k=0

πk

(
2k

k

)(
ℓ+ k

ℓ− k

)
·
(
τ − 1/2π

)k · sgn (τ − 1/2π)

Proof. Once again considering the expansion of zℓ, cf . [Nis, Eq. 10.49.7],

zℓ (u) = jℓ+1e−ju

ℓ∑

k=0

1

(2j)k
(2k)!

k!

(
ℓ+ k

ℓ− k

)
1

uk+1
,
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the following holds

F−1 (zℓ) (τ) =

ˆ
R
zℓ (u) e

2πjuτdu

= jℓ+1

ℓ∑

k=0

1

(2j)k
(2k)!

k!

(
ℓ+ k

ℓ− k

) ˆ
R

e−ju

uk+1
e2πjuτdu

= jℓ+1

ℓ∑

k=0

1

(2j)k
(2k)!

k!

(
ℓ+ k

ℓ− k

) ˆ
R

1

uk+1
e2πju(τ−

1/2π)du

= jℓ+1

ℓ∑

k=0

1

(2j)k
(2k)!

k!

(
ℓ+ k

ℓ− k

)
F−1

(
1

uk+1

)
(τ − 1/2π)

= jℓ+1

ℓ∑

k=0

1

(2j)k
(2k)!

k!

(
ℓ+ k

ℓ− k

)
· jπ · (j2π (τ −

1/2π))k

k!
· sgn (τ − 1/2π)

= −jℓπ
ℓ∑

k=0

πk (2k)!

(k!)2

(
ℓ+ k

ℓ− k

)
·
(
τ − 1/2π

)k · sgn (τ − 1/2π) . ■

Lemma 3.3. F−1

(
zℓ (u)

u

)
(τ) = −2jℓ+1π2

ℓ∑

k=0

πk

(
2k

k

)(
ℓ+ k

ℓ− k

)
·
(
τ − 1/2π

)k+1

k + 1
· sgn (τ − 1/2π)

Proof. Once again,

F−1

(
zℓ (u)

u

)
(τ) =

ˆ
R

zℓ (u)

u
e2πjuτdu

= jℓ+1

ℓ∑

k=0

1

(2j)k
(2k)!

k!

(
ℓ+ k

ℓ− k

) ˆ
R

e−ju

uk+2
e2πjuτdu

= jℓ+1

ℓ∑

k=0

1

(2j)k
(2k)!

k!

(
ℓ+ k

ℓ− k

) ˆ
R

1

uk+2
e2πju(τ−

1/2π)du

= jℓ+1

ℓ∑

k=0

1

(2j)k
(2k)!

k!

(
ℓ+ k

ℓ− k

)
F−1

(
1

uk+2

)
(τ − 1/2π)

= jℓ+1

ℓ∑

k=0

1

(2j)k
(2k)!

k!

(
ℓ+ k

ℓ− k

)
· jπ · (j2π (τ −

1/2π))k+1

(k + 1)!
· sgn (τ − 1/2π)

= −2jℓ+1π

ℓ∑

k=0

πk+1 (2k)!

(k + 1)! · k!

(
ℓ+ k

ℓ− k

)
·
(
τ − 1/2π

)k+1 · sgn (τ − 1/2π) . ■
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At this point, it must be noticed that

F−1

(
zℓ (u)

u

)
(τ) = −2jℓ+1π2 · polℓ (τ − 1/2π) · sgn (τ − 1/2π) , (3.58)

where polℓ is polynomial of degree ℓ+ 1, and

F−1 (zℓ (u)) (τ) = −jℓπ · pol′ℓ (τ − 1/2π) · sgn (τ − 1/2π) , (3.59)

implying a quite nice relationship between the two transforms. Now, it is possible to calculate

the inverse Fourier transform of Zℓ as follows

ˆ
R
Zℓ (u) e

2πjuτdu =

ˆ
R




0
√
ℓ (ℓ+ 1) zℓ(u)

u

zℓ (u) 0

0 zℓ−1 (u)− zℓ(u)
u


 e2πjuτdu

=




0
√
ℓ (ℓ+ 1)

ˆ
R

zℓ (u)

u
e2πjuτdu

ˆ
R
zℓ (u) e

2πjuτdu 0

0

ˆ
R
zℓ−1 (u) e

2πjuτdu−
ˆ
R

zℓ (u)

u
e2πjuτdu




=




0 −2jℓ+1π2
√
ℓ (ℓ+ 1)polℓ (τ − 1/2π)

−jℓπ · pol′ℓ (τ − 1/2π) 0

0 −jℓ−1π · pol′ℓ−1 (τ − 1/2π) + 2jℓ+1π2polℓ (τ − 1/2π)




· sgn (τ − 1/2π) . (3.60)

Finally,

F−1 (Zℓ) (t) = Zℓ

(
r,

ct

2πr
− 1

2π

)
· sgn

(
ct

2πr
− 1

2π

)
, (3.61)

where

Zℓ (r, τ) = jℓ
c

2r




0 −2πj
√
ℓ (ℓ+ 1) · polℓ (τ)

−pol′ℓ (τ) 0

0 j · pol′ℓ−1 (τ) + 2πj · polℓ (τ)


 (3.62)

and

polℓ (τ) =
ℓ∑

k=0

πk

(
2k

k

)(
ℓ+ k

ℓ− k

)
· τ

k+1

k + 1
. (3.63)
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Lastly, it is also worth calculating F−1 (νZℓ) (t), which can be done as

F−1 (νZℓ) (t) =
1

2πj

d

dt
F−1 (Zℓ) (t)

=
1

2πj

d

dt

(
Zℓ

(
r,

ct

2πr
− 1

2π

)
· sgn

(
ct

2πr
− 1

2π

))

=
1

2πj

[
c

2πr
∂tZℓ

(
r,

ct

2πr
− 1

2π

)
· sgn

(
ct

2πr
− 1

2π

)

+ 2
c

2πr
Zℓ

(
r,

ct

2πr
− 1

2π

)
· δ
(
ct

2πr
− 1

2π

)]

=
1

2πj

[
c

2πr
∂tZℓ

(
r,

ct

2πr
− 1

2π

)
· sgn

(
ct

2πr
− 1

2π

)
+ 2Zℓ

(
r,

ct

2πr
− 1

2π

)
· δ
(
t− r

c

)]

=
c

j4π2r
∂tZℓ

(
r,

ct

2πr
− 1

2π

)
· sgn

(
ct

2πr
− 1

2π

)
+

1

jπ
Zℓ

(
r,

ct

2πr
− 1

2π

)
· δ
(
t− r

c

)

(3.64)



Chapter 4

Estimation of the Mode Coefficients

Although the theory presented in the previous chapter provides a simple and ingenious

method for representing the electric field emitted by an antenna, it is not fully prepared to be

applied in practice. To that end, some challenges must be overcome. The most obvious issue

regards the fact that the series in Equation (3.29) must be truncated in a finite number of

modes in order to be computationally implemented. Additionally, a mode coefficient function

qℓm is not, and can not be, directly measured, hence it must be observed from samples of the

phasor electric field collected during tests performed on the antenna.

In this chapter, and also in light of the difficulties exposed above, a stochastic and trun-

cated model for the phasor electric field samples is developed and an asymptotically unbiased

estimator for the mode coefficients is proposed based on the minimisation of their covariances.

4.1 Truncation of Phasor Electric Field

As it has been shown in Chapter 3, The phasor electric field transmitted by an antenna

can be understood as the linear combination of countably infinite spherical waves, each one

described by a mode. However, it is not possible to compute an infinite number of modes and,

consequently, the usage of Equation (3.29) to model samples of the electric field is conditioned

to the choice of a finite number of modes over which this field will be projected.

In this regard, it is suggestive considering an upper bound for the degree of the modes,

which would constrain the order as well. In this direction, consider k ∈ N to be such bound

and let Ek and εtruk denote the electric field in Equation (3.29) truncated up to the k-th degree

and the truncation error given by E− Ek, respectively. Hence, it can be written that

Ek (θ, ϕ, ν) =
∑

ℓ∈N⩽k

∑

|m|⩽ℓ

T ℓm (θ, ϕ) qℓm (ν) , (4.1)

εtruk (θ, ϕ, ν) =
∑

ℓ∈N>k

∑

|m|⩽ℓ

T ℓm (θ, ϕ) qℓm (ν) . (4.2)

It is important to compute, of course, the total number of modes Nk over which the field is

about to be projected. Surely, it can be easily calculated by summing the first k odd numbers

starting from 3 as follows

Nk = 3 + 5 + 7 + · · ·+ (2k + 1) = k2 + 2k. (4.3)

34
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Moreover, Equation (4.1) encourages the definition of the matrices Tk (θ, ϕ) ∈ C2×2Nk and

qk (ν) ∈ C2Nk×1, given by

Tk =
[
T (1,−1) T (1,0) T (1,1) T (2,−2) · · · T (k,k)

]
, (4.4)

qk =
[
qT
(1,−1) qT

(1,0) qT
(1,1) qT

(2,−2) · · · qT
(k,k)

]T
, (4.5)

so that the Ek can be written as the linear form

Ek (θ, ϕ, ν) = Tk (θ, ϕ)qk (ν) , (4.6)

which is not only more compact and clear than Equation (4.1), but it also better supports the

computational implementation of the estimators further developed.

4.2 Modelling the Measured Samples

At this point, let εmea (θ, ϕ, ν) denote the measurement noise introduced by the sensor when

measuring the electric field in the direction (θ, ϕ) and at the frequency ν. Hence, the observed

phasor electric field can be modelled after the random variable Ẽ at the form

Ẽ (θ, ϕ, ν) = E (θ, ϕ, ν) + εmea (θ, ϕ, ν)

= Ek (θ, ϕ, ν) + εtruk (θ, ϕ, ν) + εmea (θ, ϕ, ν)

= Tk (θ, ϕ)qk (ν) + εk (θ, ϕ, ν) , (4.7)

where εk denote the total noise defined as the sum of the deterministic variable εtruk with the

random variable εmea, from which the samples inherit their stochastic characteristics.

Naturally, the sensor is assumed to be calibrated, hence implying that
〈
εmea (θ, ϕ, ν)

〉
=

0 ∈ C2×1 for any tuple (θ, ϕ, ν). Besides, it is reasonable to suppose that components of εmea

are uncorrelated and that the nature of this noise does not depend on the direction, while the

independence on the frequency is assumed by simplicity. Therefore, cov
(
εmea (θ, ϕ, ν)

)
= σ2I2,

where σ2 ∈ R is constant. In the context of those assumptions, it holds that
〈
εk (θ, ϕ, ν)

〉
=

εtruk (θ, ϕ, ν) , which easily leads to cov
(
εk (θ, ϕ, ν)

)
= σ2I2.

In light of the background established above, assume that a collection of M ∈ N directions,

denoted by
{
(θi, ϕi)

}
i∈N⩽M

, has been chosen and consider that samples of the phasor electric

field
{
Ẽ (θi, ϕi, ν)

}
i∈N⩽M

were measured in those directions at an arbitrary frequency ν. In this

context, consider the matrices Ẽ (ν) ∈ C2M×1, Υk ∈ C2M×2Nk and ϵk (ν) ∈ C2M×1 defined by

the blocks

Ẽ (ν) =




Ẽ (θ1, ϕ1, ν)

Ẽ (θ2, ϕ2, ν)

Ẽ (θ3, ϕ3, ν)
...

Ẽ (θM , ϕM , ν)



, Υk =




Tk (θ1, ϕ1)

Tk (θ2, ϕ2)

Tk (θ3, ϕ3)

...

Tk (θM , ϕM)




and ϵk (ν) =




εk (θ1, ϕ1, ν)

εk (θ2, ϕ2, ν)

εk (θ3, ϕ3, ν)

...

εk (θM , ϕM , ν)



, (4.8)
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from which Equation (4.7) can be modified into

Ẽ (ν) = Υkqk (ν) + ϵk (ν) . (4.9)

It is worth highlighting that Equation (4.9) synthesises the model for the samples containing

all the information on the electric field at the frequency ν that has been collected. For this

reason, such model will further been used in the next sections to create estimators for the mode

coefficient qk (ν).

Remark. In order to keep the visual clarity of the equations, the frequency argument of Ẽ, q

and ϵ and its variations might be henceforth omitted when no confusion is possible.

4.3 Batch Estimation of the Mode Coefficients

Let q̂k denote an estimator for the deterministic value qk. Of course, one is interested in

retrieving the electric field by simply doing

Êk = Υkq̂k. (4.10)

Due to the linearity of the model in (4.9), the most intuitive approach to find such estimator

would be choosing the one that minimises the residual energy, given by

E res
k =

(
Ẽ− Êk

)H (
Ẽ− Êk

)
, (4.11)

hence leading to the well known linear regression, cf . [Lju99, Ch. 7, Eq. 7.34],

q̂k =
[
ΥH

kΥk

]−1 ·ΥH
k Ẽ, (4.12)

if the moment matrix ΥH
kΥk could be inverted, which shall be assumed from now on unless

stated otherwise.

Although the minimum possible residual energy is achieved by this method, the quality

of the regression shall actually be analysed by studying the bias and the covariance of the

estimators, which regard the accuracy and precision of them, respectively.

4.3.1 Estimator bias

It is important to notice that the estimators q̂k and Êk are actually biased due to the

truncation error. In fact, from Equations (4.9) and (4.12), consider the following

q̂k =
[
ΥH

kΥk

]−1 ·ΥH
k

(
Υkqk + ϵk

)

= qk +
[
ΥH

kΥk

]−1 ·ΥH
k ϵk, (4.13)
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from which the expected value of the q̂ can be simply calculated as

〈
q̂k

〉
= qk +

[
ΥH

kΥk

]−1 ·ΥH
k

〈
ϵk

〉

= qk +
[
ΥH

kΥk

]−1 ·ΥH
k ϵ

tru
k . (4.14)

Hence, the biases of q̂k and Êk, which are defined by bias
(
q̂k

)
= ⟨q̂k⟩ − q and bias

(
Êk

)
=〈

Êk

〉
− Êk, will be given by

bias
(
q̂k

)
=
[
ΥH

kΥk

]−1
ΥH

k ϵ
tru
k , (4.15)

bias
(
Êk

)
= Υk

[
ΥH

kΥk

]−1
ΥH

k ϵ
tru
k , (4.16)

that clearly do not vanish for a finite value of k. However, they can be made as small as

required by just increasing k, which controls the number of modes where the collected data will

be projected. Thus, the accuracy of the estimators can be controlled as well.

4.3.2 Estimator Covariance

The covariance of the q̂k can be evaluated by using Equations (4.13) and (4.14) through the

quantity

q̂k −
〈
q̂k

〉
=
[
ΥH

kΥk

]−1
ΥH

k

(
ϵk − ϵtru

k

)

=
[
ΥH

kΥk

]−1
ΥH

k ϵ
mea,

since, by definition, it holds that

cov (q̂k) =

〈(
q̂k −

〈
q̂k

〉)(
q̂k −

〈
q̂k

〉)H〉

=
[
ΥH

kΥk

]−1
ΥH

k

〈
ϵmeaϵmeaH

〉
Υk

[
ΥH

kΥk

]−1

=
[
ΥH

kΥk

]−1
ΥH

k · cov (ϵmea) ·Υk

[
ΥH

kΥk

]−1
.

At this moment, it is worth introducing the traditional notations Pk = cov (q̂k) and R =

cov (ϵmea), from which the last equation becomes

Pk =
[
ΥH

kΥk

]−1
ΥH

k · R ·Υk

[
ΥH

kΥk

]−1
. (4.17)

Moreover, the whiteness of the measurement noise implies that R = σ2I2M . Thus, Equa-

tion (4.17) can be compactly rewritten as

Pk =
[
ΥH

kΥk

]−1
σ2. (4.18)

Even though Equation (4.18) is only defined when the matrix moment is invertible, it is intuitive

and interesting to see the covariance as infinite when that matrix can not be inverted. Hence
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stressing the fact that uncertainty on the values of the parameters becomes too large the

regressors are ill conditioned. Finally, the covariance of the Êk can be easily calculated leading

to the result

cov
(
Êk

)
= ΥkPkΥ

H
k = Υk

[
ΥH

kΥk

]−1
ΥH

k σ
2, (4.19)

from where it must be noticed1 that tr
(
cov
(
Êk

))
= 2Nkσ

2. Since Êk is an array of 2M estima-

tors, it can be said that the mean value of the variance of a scalar estimator is approximately

given by Nkσ
2/M. Hence, it is also possible to control the precision of the electric field estimation

by changing the number of the modes and the number of the collected samples.

4.3.3 Tikhonov Regularisation

As previously commented, the usage of the Equation (4.12) revolves around the existence

of the inverse of the moment matrix. Numerically, however, it is also important that such

matrix is not even near-singular, which can be avoided by preventing that two or more modes

become too close to each other. Despite the fact that the modes are linearly independent, it

is impossible to ensure those conditions for a finite number of chosen directions. It is mainly

caused by the fact that the spatial frequency of the spherical harmonics increases indefinitely

as more modes are considered in the regression. Hence, in practice, Nk and, therefore, k are

bounded from above.

Such difficulty can be detected whenever the covariance of the parameters, the main diagonal

of Pk, is sharply increased by the addition of modes, which is usually associated to an overfitting

of the model over the samples. The most common workaround for this issue is to consider an

estimator on the form

q̂k =
[
ΥH

kΥk +A
]−1 ·ΥH

k Ẽ (4.20)

where the square matrix A must be positive definite to ensure that ΥH
kΥk+A can be inverted.

Hence, it is natural to consider a matrix Λ ∈ Cd×2Nk , with an arbitrary number of rows d, and

define A = ΛHΛ. This method is called Tihkonov Regularisation and the estimator, that can

now be written as

q̂k =
[
ΥH

kΥk +ΛHΛ
]−1 ·ΥH

k Ẽ, (4.21)

minimises the quantity
(
Ẽ − Êk

)H(
Ẽ − Êk

)
+
(
Λq̂k

)H(
Λq̂k

)
, whose right term is related with

the radiated power, as described in Equation (3.13), when Λ = λI for a scalar λ. Hence, it can

be said that Tikhonov Regularisation minimises a trade-off between the residual energy and

the radiated energy in each mode.

The statistical characteristics of this new estimator can be calculated as it has been done

1By using the property tr (AB) = tr (BA).
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in the last section. In fact,

q̂k =
[
ΥH

kΥk +ΛHΛ
]−1

ΥH
k (Υkqk + ϵk)

=
[
ΥH

kΥk +ΛHΛ
]−1[

ΥH
kΥkqk +ΥH

k ϵk

]

=
[
ΥH

kΥk +ΛHΛ
]−1[ (

ΥH
kΥk +ΛHΛ

)
qk −ΛHΛqk +ΥH

k ϵk

]

= qk +
[
ΥH

kΥk +ΛHΛ
]−1[

ΥH
k ϵk −ΛHΛqk

]
. (4.22)

Hence, the expected value of is now given by

⟨q̂k⟩ = qk +
[
ΥH

kΥk +ΛHΛ
]−1[

ΥH
k ϵ

tru
k −ΛHΛqk

]
, (4.23)

from which one concludes that such estimator is also biased, but this time such bias can not be

directly controlled by just increasing the number of modes. Furthermore, the new covariance

matrix can be calculated by noting that

q̂k − ⟨q̂k⟩ =
[
ΥH

kΥk +ΛHΛ
]−1

ΥH
k ϵ

mea. (4.24)

Thus,

Pk =
[
ΥH

kΥk +ΛHΛ
]−1

ΥH
kΥk

[
ΥH

kΥk +ΛHΛ
]−1

σ2. (4.25)

With this last result, it becomes clear that comparing the performance of the regularisation for

the whole set of Γ possibilities would be quite sophisticated from the mathematical standpoint.

Such comparison, however, shall further be done numerically for a few chosen of Λ = λI. On

this matter, it is worth saying that even though Λ introduces several new control parameters

that might be tuned to improve the estimation results, it is most commonly adopted Λ = λI

for simplicity. By doing this, the bias and the covariance of q̂k become

bias (q̂k) =
[
ΥH

kΥk + |λ|2 I
]−1[

ΥH
k ϵ

tru
k − |λ|2 qk

]

=
[
ΥH

kΥk + |λ|2 I
]−1

ΥH
k ϵ

tru
k −

[
ΥH

kΥk + |λ|2 I
]−1

|λ|2 qk

=
[
ΥH

kΥk + |λ|2 I
]−1

ΥH
k ϵ

tru
k −

[
1

|λ|2
ΥH

kΥk + I

]−1

qk (4.26)

and

Pk =
[
ΥH

kΥk + |λ|2 I
]−1

ΥH
kΥk

[
ΥH

kΥk + |λ|2 I
]−1

σ2. (4.27)

The above results make it clear that high values of |λ|2 increases the precision of the estimator

as lim|λ|2→∞ Pk = 0, while the accuracy decreases as lim|λ|2→∞ bias (q̂k) = qk, implying that

q̂k → 0. This result is in accordance with the sole minimisation of q̂H
k q̂k, as expected. Hence,

it can be said that |λ|2 controls the balance between precision and accuracy.
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4.4 Mode-Recursive Estimation Algorithm

Considering the statistical limitations of the estimator in Equation (4.21) discussed in the

last section, this work proposes a method, inspired by the algorithm behind the Kalman Filter,

for estimating the mode coefficients qk where precision and accuracy can both be controlled

by increasing the number of modes. This sections is dedicated to document such method,

which is synthesised in a mode-recursive algorithm instead of a single equation as in the batch

estimation.

In order to introduce the main idea of the method, assume that an estimator q̂k and its

covariance Pk are available beforehand and such information must be used to increase the

number of modes by constructing a new estimator q̂k+1 with covariance Pk+1. At first, let

∆Nk+1 denote the number of added modes, which can be computed by using Equation (4.3) as

∆Nk+1 = Nk+1 −Nk = 2k + 3. (4.28)

Intuitively, the most natural guess for q̂k+1 and Pk+1 would have the form

q̂k+1 =

[
q̂k

∆q̂k+1

]
and Pk+1 =

[
Pk 0

0T ∆Pk+1

]
, (4.29)

where ∆q̂k+1 ∈ C2∆Nk+1×1 is a guess that must be made on the new coefficients while its

covariance ∆Pk+1 = cov
(
∆q̂k+1

)
∈ C2∆Nk+1×2∆Nk+1 shall be seen as measure of the uncertainty

of such guess.

As a first thought, it could be said that the guess q̂k+1 in Equation (4.29) is a rough

estimation since the introduction of new modes should not add more energy, but redistribute

it among the old and the new modes. On the other hand, if the energy acquired by the new

modes is low enough if compared with the total, hence implying that they could be neglected,

such could then be considered good estimator for the mode coefficients.

The quality of q̂k+1 must, of course, be evaluated by analysing the residual of the electric field

it predicts. With this in mind, consider the definitions Êk+1 = Υk+1q̂k+1 and rk+1 = Ẽ− Êk+1,

from which a correction to q̂k+1 might be designed as

q̂+
k+1 = q̂k+1 +Kk+1rk+1, (4.30)

where the superscript + will be used to denote an estimator that has been corrected. In contrast,

the superscript − shall also be used from now on to denote a variable before its correction.

Once the corrected estimator q̂+
k+1 has been obtained, a new prediction Ê

+

k+1 = Υk+1q̂
+
k+1 and

its residual r+k+1 become available.

About the above equation, it is interesting to think that each row of the gain matrix

Kk+1 ∈ C2Nk+1×2M , which is commonly known as Kalman gain, weighs the residuals and cor-

rects the corresponding value in the guess. Thus, a low residual implies low correction, meaning

that guess has some quality, while a high residual implies high correction on the guess. Such
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nice ideas involving Kk+1 naturally lead to the question on how it should be chosen, which is

answered in the next subsection.

With the intention of synthesising the algorithm that has been designed so far, consider

q̂−
k+1 = Fk+1q̂

+
k +Gk+1∆q̂k+1 (Mode Coeff. Propagation)

P−
k+1 = Fk+1P

+
k F

T
k+1 +Gk+1∆Pk+1G

T
k+1 (Covariance Propagation)

Ê
−
k+1 = Υk+1q̂

−
k+1 (A priori estimate)

r−k+1 = Ẽ− Ê
−
k+1 (Innovation)

q̂+
k+1 = q̂−

k+1 +Kk+1r
−
k+1 (Mode Coeff. Correction)

Ê
+

k+1 = Υk+1q̂
+
k+1 (A posteriori estimate)

r+k+1 = Ẽ− Ê
+

k+1 (Residual)

where the auxiliary matrices

Fk+1 =

[
I2Nk

02∆Nk+1×2Nk

]
and Gk+1 =

[
02Nk×2∆Nk+1

I2∆Nk+1

]
(4.31)

are defined to better support the some calculations.

4.4.1 Correction of the Covariance

As usual, the process of calculating the covariance matrix begins with the determination of

the auxiliary quantity

q̂+
k+1 −

〈
q̂+
k+1

〉
= q̂−

k+1 −
〈
q̂−
k+1

〉
+Kk+1

(
r−k+1 −

〈
r−k+1

〉 )
. (4.32)

Since the above term involves the residual, it will be useful write it in the form

r−k+1 = Ẽ− Ê
−
k+1

= Υk+1qk+1 + ϵk+1 −Υk+1q̂
−
k+1

= −Υk+1

(
q̂−
k+1 − qk+1

)
+ ϵk+1, (4.33)

from where it can be seen that its expected value is simply given by

〈
r−k+1

〉
= −Υk+1

( 〈
q̂−
k+1

〉
− qk+1

)
+ ϵtru

k+1. (4.34)

Hence,

r−k+1 −
〈
r−k+1

〉
= −Υk+1

(
q̂−
k+1 −

〈
q̂−
k+1

〉 )
+ ϵmea (4.35)

and

q̂+
k+1 −

〈
q̂+
k+1

〉
= q̂−

k+1 −
〈
q̂−
k+1

〉
+Kk+1

(
−Υk+1

(
q̂−
k+1 −

〈
q̂−
k+1

〉 )
+ ϵmea

)
. (4.36)
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Let C−
k+1 =

〈[
q̂−
k+1 −

〈
q̂−
k+1

〉 ]
ϵmeaH

〉
and consider the corrected covariance P+

k+1 calculated as

follows

P+
k+1 =

〈[
q̂+
k+1 −

〈
q̂+
k+1

〉 ][
q̂+
k+1 −

〈
q̂+
k+1

〉 ]H〉

=

〈[
q̂−
k+1 −

〈
q̂−
k+1

〉 ][
q̂−
k+1 −

〈
q̂−
k+1

〉 ]H〉

+Kk+1

[
−Υk+1

〈[
q̂−
k+1 −

〈
q̂−
k+1

〉 ][
q̂−
k+1 −

〈
q̂−
k+1

〉 ]H〉
+

〈
ϵmea

[
q̂−
k+1 −

〈
q̂−
k+1

〉 ]H〉
]

+

[
−
〈[

q̂−
k+1 −

〈
q̂−
k+1

〉 ][
q̂−
k+1 −

〈
q̂−
k+1

〉 ]H〉
ΥH

k+1 +
〈[

q̂−
k+1 −

〈
q̂−
k+1

〉 ]
ϵmeaH

〉]
KH

k+1

+Kk+1

〈(
−Υk+1

(
q̂−
k+1 −

〈
q̂−
k+1

〉 )
+ ϵmea

)(
−Υk+1

(
q̂−
k+1 −

〈
q̂−
k+1

〉 )
+ ϵmea

)H
〉
KH

k+1

= P−
k+1 +Kk+1

[
−Υk+1P

−
k+1 + C−H

k+1

]
+
[
−P−

k+1Υ
H
k+1 + C−

k+1

]
KH

k+1

+Kk+1

[
Υk+1P

−
k+1Υ

H
k+1 + R−Υk+1C

−
k+1 − C−H

k+1Υ
H
k+1

]
KH

k+1. (4.37)

Ideally, the algorithm must be such that uncertainty of the parameters becomes smaller

after each iteration, thus implying the estimator becomes better. Therefore, it is logical to

require that tr
(
P+

k+1

)
becomes as small as it is possible. As explained in Section 4.A, such

minimal trace exists under the assumption of positive definiteness of the leading term of the

quadratic form, from which it is shown, at Equation (4.58), that the optimal gain is given by

Kk+1 =
(
P−

k+1Υ
H
k+1 − C−

k+1

) (
Υk+1P

−
k+1Υ

H
k+1 + R−Υk+1C

−
k+1 −

(
Υk+1C

−
k+1

)H)−1

.

(Kalman Gain)

Now, using the result stated at Equation (4.59), the optimal corrected covariance is written as

P+
k+1 = P−

k+1 −Kk+1

(
P−

k+1Υ
H
k+1 − C−

k+1

)H

= (I −Kk+1Υk+1)P
−
k+1 −Kk+1C

−H
k+1. (Covariance Correction)

4.4.2 Covariance Between the Estimator and the Measurement Noise

Since the auxiliary matrix C−
k+1 became necessary to calculate the Kalman gain in Kalman

Gain and, posteriorly, the covariance correction in Covariance Correction, it must also be

calculated in each iteration. This subsection is then intended to provide propagating equations

for that matrix.

Initially, it is reasonable to assume that guesses ∆q̂k+1 and the measurement noise are

statistical uncorrelated, i.e.,
〈
∆q̂k+1ϵ

meaH
〉
= 0. From this assumption and the Mode Coeff.
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Propagation, it can be written that

C−
k+1 =

〈[
q̂−
k+1 −

〈
q̂−
k+1

〉 ]
ϵmeaH

〉

= Fk+1

〈[
q̂+
k −

〈
q̂+
k

〉 ]
ϵmeaH

〉

= Fk+1C
+
k . (Auxiliary Cov. Propagation)

On the other hand, the Equation (4.36), that is now better rewritten as

q̂+
k+1 −

〈
q̂+
k+1

〉
=
(
I −Kk+1Υk+1

)(
q̂−
k+1 −

〈
q̂−
k+1

〉 )
+Kk+1ϵ

mea, (4.38)

can once again be used to calculate the correction C+
k+1 as follows

C+
k+1 =

〈[
q̂+
k+1 −

〈
q̂+
k+1

〉 ]
ϵmeaH

〉

=
(
I −Kk+1Υk+1

)〈[
q̂−
k+1 −

〈
q̂−
k+1

〉 ]
ϵmeaH

〉
+Kk+1

〈
ϵmeaϵmeaH

〉

= (I −Kk+1Υk+1)C
−
k+1 +Kk+1R (Auxiliary Cov. Correction)

At this moment, it is worth highlighting once again that the convergence of the algorithm

depends on the matrix Υk+1P
−
k+1Υ

H
k+1 + R has a greater spectral radius than Υk+1C

−
k+1 +(

Υk+1C
−
k+1

)H
. Nevertheless, checking if this condition is satisfied in each iteration would cer-

tainly become troublesome due to a high increasing in computational resources and in the

execution time. As a workaround, the convergence of the residual energy alongside the con-

vergence of the trace of the corrected covariance can be used as an evidence of regression

performance.

4.4.3 Bias Propagation and Correction

Even though the bias can not be observed, it is possible to infer some properties about its

convergence. Initially, with the reasonable assumption of an unbiased guess, i.e., bias
(
∆q̂k+1

)
=

0, it can be easily proven that

bias
(
q̂−
k+1

)
= Fk+1bias

(
q̂+
k

)
(4.39)

bias
(
q̂+
k+1

)
= (I −Kk+1Υk+1) bias

(
q̂−
k+1

)
+Kk+1ϵ

tru
k+1. (4.40)

It is interesting to notice the resemblance of the last equation to the Auxiliary Cov. Correction

and to the Covariance Correction. Thus, if the algorithm converges, which is mostly charac-

terised by Kk+1 → 0 while the spectral radius of I −Kk+1Υk+1 is kept less than one, then the

bias and the covariances would converge as well.

4.4.4 Algorithm Initialisation and Guessing Strategy

Since the proposed algorithm is recursive, it must have its parameters initialised. Although

it is possible starting it at k = 1 with an initial guess like q̂+
1 = 0 and a high value for P1, as it
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is commonly done for parametric identifications, those choices would certainly lead to a poor

performance with respect to the execution time and computational resources. It is also worth

highlighting that each iteration would take longer than the previous one since the dimensions

of the matrices involved in the regression increase as more modes are added.

In this scenario, the employment of the algorithm is constrained to an effective initialisation

of its parameters. Such effectiveness can be achieved by using the batch regression for a

minimal required number of modes. In fact, let k0 denote the maximum initial degree of the

mode coefficients. The initial parameters might hence be chosen by considering the Equations

(4.21), (4.24) and (4.27) as follows

q̂+
k0

=
[
ΥH

k0
Υk0 + |λ|2 I

]−1
ΥH

k0
Ẽ, (4.41)

C+
k0

=
[
ΥH

k0
Υk0 + |λ|2 I

]−1
ΥH

k0
σ2, (4.42)

P+
k0

=
[
ΥH

k0
Υk0 + |λ|2 I

]−1
ΥH

k0
Υk0

[
ΥH

k0
Υk0 + |λ|2 I

]−1
σ2. (4.43)

A strategy for choosing the guesses, on the other hand, could be quite more subjective than

choosing the initial parameters. For this task, it is worth remembering that as more modes are

added, it is expected that they have less energy than the previous modes. Even for that reason,

the certainty of this fact also grows at each iteration. Thus, reasonable choices for the guesses

and their uncertainty would be

∆q̂k+1 = 02∆Nk+1×1, (4.44)

∆Pk+1 = αk+1I2∆Nk+1
, (4.45)

where positive constants in
{
αk

}
k∈N⩽k0

should form a monotonically decreasing sequence. It

could be said that a natural and wise choice for those constants is αk+1 = max
(
diag

(
P+

k

))
.

4.4.5 Implementation

By considering the definitions and results that have been developed so far in the current

and previous sections, the proposed algorithm is finally ready to be used. With this intention in

mind, the block diagram shown in Figure 4.1 was created to better support the computational

implementation of the algorithm.

In short, the diagram depicts the workflow that has been designed for one iteration and,

therefore, it also works as an outline for this whole section. Moreover, it is interesting to

compare it with a dynamical system where q̂+, C+ and P+ must be seen as an internal state,

∆q̂, ∆P and Ẽ would be the external inputs while the residual energy alongside the trace of the

covariance would compose the outputs, which are particularly used as a metric to the quality

of the regression.

About the computational resources, particular attention should be drawn to Regressors

block, which not only serves several other blocks, but also grows accelerated since its number of
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columns 2Nk quadratically depends on k. For that reason, before the usage of this algorithm,

it is strongly encouraged that a maximum value kmax is defined and Υkmax is precompiled and

locally stored in disk in order to save time. By doing this, each Υk becomes nothing more

than a slice of Υkmax , hence it is enough to load the later before running the iteration. Still on

this matter, it is worth stressing that the calculated regressor matrix does not depend on the

electric field samples. So, it could be reused for different sets of samples, if they were collected

at the same set of directions, which is often the case for tests performed in the same antenna

but in different frequencies.

q̂+
k

C+
k C+

k+1

P+
k

q̂+
k+1

P+
k+1

Mode Coeff.
Propagation

Aux. Cov.
Propagation

Aux. Cov.
Correction

A priori
Estimate

A posteriori
estimate

Covariance
Propagation

Kalman
Gain

Covariance
Correction

Mode Coeff.
Correction

+− +−

r+H
k+1r

+
k+1 tr

(
P+
k+1

)

Ẽ∆q̂k+1

∆Pk+1
Regressors

Residual
Energy

Covariance
Trace

C−k+1

q̂−k+1 Ê
−
k+1

P−k+1 Kk+1

Υk+1

Ê
+

k+1

r−k+1 r+k+1

Figure 4.1: Block diagram describing the schematics of an iteration of the proposed regression
algorithm. Each block corresponds to an equation previously described in this Chapter.

4.5 Results

The algorithm has been implemented and applied to a data set of collected electric field sam-

ples of a real antenna provided by the Institut d’Electronique et des Technologies du Numérique

(IETR) of the University of Rennes. The data is composed by a collection of 61 tests per-

formed at different frequencies, from 230GHz to 290GHz with step of 1GHz, and atM = 4900

different directions (θ, ϕ) composing a grid where

(θ, ϕ) ∈
{(

3.6◦ ·i, 3.6◦ ·(j − 1)
)
; i ∈ N⩽49 ∧ j ∈ N⩽100

}
. (4.46)
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In order to evaluate the performance of the regressions methods, so they can be later

compared to each other, two metrics were defined. The first is the Relative Residual Energy ρk

given by

ρk =

∥∥Ẽ− Êk

∥∥2
∥∥Ẽ
∥∥2 =

(
Ẽ− Êk

)H(
Ẽ− Êk

)

Ẽ
H
Ẽ

, (4.47)

which measures how good the estimated mode coefficients are in explaining the collected sam-

ples. As it has already been commented in subsection 4.3.3, it is also important to evaluate the

precision of the the estimator, which is made by checking the trace of its covariance matrix.

Since the number of elements in the main diagonal of this matrix is linearly related to the

number of modes, it makes better sense using the Normalised Variance per Mode ςk, defined as

ςk =
tr (Pk)

Nk · σ2
, (4.48)

as the indicator for the precision of the estimator. In order to analyse the behaviour of each

regression, the metrics were applied for several values of k, even for batch methods. Moreover,

since those behaviours are quite alike at different frequencies, the samples associated with

frequency 260GHz were taken as example and considered for the results.

The first presented result, which is shown in Figure 4.2 (mind the log scale for the metrics),

regards the performance of the non-regularised batch method, i.e., |λ|2 = 0. It is worth noticing

that both metrics decrease as more modes are added to regression, hence increasing its quality

up to the mode k = 50, when an overfitting occurs. Such overfitting is highlighted by a sharply

increased variance (or uncertainty), meaning the estimator is no longer reliable.
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ς k

Normalised Variance per Mode

Batch, |λ|2 = 0.0

Figure 4.2: Performance of the batch regression without regularisation at 260GHz. An overfit-
ting occurs when k = 50 meaning that this regression method is only applicable up to k = 49.
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The estimated coefficients can be visualised by considering the fraction of the radiated power

(or signal energy, as it would be defined in Signal Processing) per mode as it is depicted in

Figure 4.3. It must be noticed some slightly concentrated energy around ℓ = 50 and m = 0,

which are actually artefacts from the regression and are associated with the high uncertainty.
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Figure 4.3: Energy distribution per mod at 260GHz. Estimated using non-regularised batch
regression method with k = 50.

At this point, it is worth comparing the last results with the regularised methods, as it

shown in Figure 4.4. For regularisation parameters up around |λ|2 ≈ 100, the results are pretty

much similar. Hence, it has been considered orders of magnitude greater or equal than 100.

As it was expected, the relative residual energy becomes larger as |λ|2 grows due to the also

growing bias of the estimator. Additionally, even though the normalised variance per mode

decreases, it must be noticed that such result is stepwise more related with the certainty that

the parameters are able to minimise the radiated power than the residual energy itself, hence

its increasing.

As result, the overfitting still occurs as artefacts still figure in the energy distribution, cf .

Figures 4.5, 4.6 and 4.7, but it can no longer be detected through the mean variance per mode

indicator. It is worth saying that those artefacts become even more accentuated, i.e., they

concentrate more energy, if a larger value for k is used.
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Figure 4.4: Comparison of the performance of the non-regularised and regularised batch re-
gression methods.
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Figure 4.5: Energy distribution per mode at 260GHz. Estimated using batch regularised
regression method with |λ|2 = 100 and k = 50.
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Figure 4.6: Energy Distribution per mode at 260GHz. Estimated using batch regularised
regression method with |λ|2 = 1000 and k = 50.

0 10 20 30 40 50

ℓ

−40

−20

0

20

40

m

Normalised
∣∣qTEℓm

∣∣2

0 10 20 30 40 50

ℓ

Normalised
∣∣qTMℓm

∣∣2

−30

−28

−26

−24

−22

−20

−18

N
or
m
al
is
ed

M
o
d
e
C
o
effi

ci
en
ts

(d
B
)

Figure 4.7: Energy Distribution per mode at 260GHz. Estimated using batch regularised
regression method with |λ|2 = 10000 and k = 50.
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In order to finally exemplify the usage of the recursive method, consider an initialisation of

the parameters using the non-regularised batch method with k0 = 30. Hence, Equations (4.41),

(4.42) and (4.43) become

q̂+
30 =

[
ΥH

30Υ30

]−1
ΥH

30Ẽ, (4.49)

C+
30 =

[
ΥH

30Υ30

]−1
ΥH

30σ
2, (4.50)

P+
30 =

[
ΥH

30Υ30

]−1
σ2. (4.51)

The performance of this method can be seen in Figure 4.8 (in purple). It must be noticed

that the relative residual energy reaches the same order of magnitude of the batch method,

hence keeping the same quality in explaining the data, while its normalised variance per mode

is substantially better than in the batch methods. Of course, such difference in the certainty

of the mode coefficients estimator is caused by the minimisation strategy each method uses:

while the batch methods minimises a trade-off between residual energy and radiated power, the

proposed recursive method only minimises the normalised variance per mode itself (through the

trace of the covariance matrix). Hence, achieving a better level of certainty, which naturally

implies the residual energy to be low.
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Figure 4.8: Comparison between the recursive regression algorithm with the batch methods.

An important consequence of using the recursive method to also be noticed is the fact

that it does not create artefacts in the energy distribution per mode, as it can be visualised

in Figure 4.9. Such fact is too a natural implication of the strategy used in this algorithm,

which is clear from Mode Coeff. Correction: the modes are corrected only if they justify a
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lower variance, in contrast to the batch methods where the modes are neither propagated nor

corrected (since the algorithm is not recursive) but, once again, are estimated by minimising a

trade-off between residual energy and radiated power.
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Figure 4.9: Energy distribution per mode at 260GHz. Estimated using recursive regression
method, which does not generate any artefacts.

Finally, to ensure the quality of the estimation, figures 4.10, 4.11, 4.12, 4.13 and 4.14 presents

a visual comparison between the measured electric field and the reconstructed field using the

estimated mode coefficients at five different frequencies spread over the measured band and the

respective relative residual energy of the estimation field.
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Figure 4.10: Comparison between the measured and estimated phasor field at 230GHz.
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Figure 4.11: Comparison between the measured and estimated phasor field at 245GHz.
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Figure 4.12: Comparison between the measured and estimated phasor field at 260GHz.
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Figure 4.13: Comparison between the measured and estimated phasor field at 275GHz.
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Figure 4.14: Comparison between the measured and estimated phasor field at 290GHz.

4.A Kalman Gain

Consider once again the Equation (4.37), whose indices and wedges will be suppressed in

the following equations so them are kept clear, and let the corrected covariance P+ be seen as

a quadratic form function of the gain K as follows

P+ (K) = P− +K
(
C− − P−ΥH

)H
+
(
C− − P−ΥH

)
KH +K

(
ΥP−ΥH+R−ΥC−−

(
ΥC−)H)KH

= P− +KBH + BKH +KAKH. (4.52)

From this standpoint, the goal of this appendix is to find an optimal gain K◦ such that

tr
(
P+ (K)

)
is minimal. In order to reach this goal, it is first necessary to ensure the exis-

tence of such point, which can be done by requiring the leading term A to be positive definite,

so that the quadratic form would surely be convex. It is worth noting that this requirement

can be achieved by assuming that the largest eigenvalue of ΥP−ΥH + R, which is positive

semidefinite since P− and R are covariance matrices (and consequently hermitian), is greater

than the largest eigenvalue of ΥC− +
(
ΥC−)H, which is hermitian.

By considering this assumption, it is safe to say that the stationary point of tr
(
P+
)
is

minimal and the problem becomes now finding that point denoted by
(
K◦, tr

(
P− (K◦)

))
. Let h

be the composition defined by h (K) = tr
(
P− (K)

)
, then this problem can be solved by founding

K◦ such that the Gâteaux variation δh (K◦;V) vanishes for any matrix direction V, cf . [Tro96,
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Ch. 3, proposition 3.3]. To that end, let ϵ denote a real number and consider the result

δh (K;V) =
d

dϵ

[
h (K+ ϵV)

]

ϵ=0

, (4.53)

cf . [Tro96, Ch. 2, equation 7], through which the variation can be calculated, and the application

h (K+ ϵV) = tr
(
P− + (K+ ϵV)BH + B (K+ ϵV)H + (K+ ϵV)A (K+ ϵV)H

)
(4.54)

whose derivative with respect to the variable ϵ is given by

d

dϵ

[
h (K+ ϵV)

]
= tr

(
VBH + BVH + VA (K+ ϵV)H + (K+ ϵV)AVH

)
.

Thus,

δh (K;V) = tr
(
VBH + BVH + VAKH +KAVH

)

= tr
(
[B+KA]VH + V [B+KA]H

)

At this point, it is worth defining the auxiliary matrix U = B + KA so the above expression

can be rewritten as δh (K;V) = tr
(
UVH + VUH

)
. An element

[
UVH + VUH

]
ij
of that matrix

will generically have the form

[
UVH + VUH

]
ij
=
∑

k

(
[U]ik

[
VH
]
kj
+ [V]ik

[
UH
]
kj

)

=
∑

k

(
[U]ik [V]

∗
jk + [V]ik [U]∗jk

)
.

Thus,

tr
(
UVH + VUH

)
=
∑

i

[
UVH + VUH

]
ii

=
∑

i

∑

k

(
[U]ik [V]

∗
ik + [V]ik [U]∗ik

)
. (4.55)

The condition for the minimum implies that for any choice of complex numbers [V]ik, it must

hold that ∑

i

∑

k

(
[U]ik [V]

∗
ik + [V]ik [U]∗ik

)
= 0.

In particular for the choices [V]ik = δii′δkk′ and [V]ik = jδii′δkk′ defined for arbitrary indices i′

and k′, the condition becomes

[U]i′k′ + [U]∗i′k′ = 0 (4.56)

[U]i′k′ − [U]∗i′k′ = 0, (4.57)

respectively. This, of course, can only be true if [U]i′k′ = 0 for any indices, which is equivalent

to write that U = 0. Thus, B + K◦A = 0 =⇒ K◦ = −BA−1, where the existence of A−1 is
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ensured by the assumption of its positive definiteness. Finally, this result implies in the Kalman

Gain expression

K◦ =
(
P−ΥH − C−) (ΥP−ΥH + R−ΥC− −

(
ΥC−)H)−1

. (4.58)

With this final result, it is now possible to compute the minimum covariance P+ (K◦) using

Equation (4.52)

P+ (K◦) = P− − BA−1BH − BA−1BH + BA−1AA−1BH

= P− − BA−1BH

= P− +K◦BH

= P− −K◦ (P−ΥH − C−)H , (4.59)

with concludes the objective of this appendix.



Chapter 5

General Sampling

Assume that for any mode (ℓ,m), the mode coefficient function qℓm has its values known

(or estimated) at a discrete set of positive frequencies, which consequently also determines qℓm

at a set of negative frequencies due to Equation (3.41), and let
{
νn
}
n∈Z denote the union of

those sets. Naturally, this scenario raises a question about the possibility of retrieving qℓm

as a function, i.e., qℓm (ν) for any ν ∈ R, through its set of samples
{
qℓm (νn)

}
n∈Z. If the

frequencies are equally spaced, meaning that νn = n ·∆ν for a constant “sampling frequency”

∆ν, then it becomes even more natural to answer this question by considering the remarkable

Whittaker-Nyquist-Shannon Sampling Theorem (WNSST) to perform such reconstruction as

follows

qℓm (ν) =
∑

n∈Z

qℓm (νn) · sinc
( ν

∆ν
− n

)
.

Of course this approach requires assuming that the inverse Fourier transform of qℓm is “band-

limited in time” meaning that its energy must be completely concentrated within a time-domain

compact whose radius must be no greater than 1/2∆ν. Although such assumption is reasonable,

the said approach is still troublesome regarding the causality conditions at (3.45) – (3.48). In

fact, consider those conditions in a generic form and notice that the usage of WNSST leads to

∑

n∈Z

(
νaξn (ν) +

1

jπ
PV

ˆ
R

υaξn (υ)

υ − ν dυ

)
qℓm (νn) = 0,

where ξn (ν) = sinc
(

ν
∆ν
− n

)
. Since the above condition must be valid for any set of samples{

qℓm (νn)
}
n∈Z, the following must hold for any n ∈ Z

νaξn (ν) = −
1

jπ
PV

ˆ
R

υaξn (υ)

υ − ν dυ.

However, once ξn is real for any n, the above condition cannot hold due to Property A.2. As

consequence, a central result for this work is reached and synthesised at the following theorem

due to its relevance.

Theorem 5.1. The usage of WNSST to reconstruct the mode coefficient functions qℓm leads

to non-causal electric fields.

The impossibility of using WNSST indicates that special care must be taken in the retrieving

of the mode coefficient functions through interpolation methods. From now on, this work shall

57
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concentrate its efforts in the sought of suitable reconstructions for the qℓm. In this quest,

analyticity for the reconstructors is clearly an advantage in the verifying of Kramers-Kronig

relations. That being said, it is suggestive seeking for a general form of WNSST that obeying

the causality conditions. In this direction, this Chapter provides the fundamental concepts and

results behind such generalisation process.

5.1 The General Sampling Theorem

The starting point towards that generalisation, which also comes to be the main result of this

Chapter, is the General Sampling Theorem (GST). However, before diving into its formalism, it

is worth introducing the motivation behind its development. For this goal, consider an unknown

complex-valued function ψ defined on some real domain. Although ψ is unknown by hypothesis,

also consider that it is possible to countably evaluate its values in arbitrary points of its domain

by performing some sort of procedure or experiment. In other words, it is possible to measure a

set of samples
{
ψ (un)

}
n∈N. The GST establishes the requirements on ψ and on the sampling

points {un}n∈N that must be satisfied in order to be possible to perfectly reconstruct ψ from

its collected samples.

The following Theorem and its proof are adapted from [Kra59].

Theorem 5.2 (General Sampling). Consider V ⊂ R and let (V,ΣV,µ) denote a measure space

such that µ (V) < +∞ (band-limited). Given a set U ⊆ R, a number u ∈ U and a family of

u-indexed functions K (u, ·) ∈ L2
w (V,ΣV,µ), if there exists a sequence (un)n∈N in U such that{

K (un, ·)
}
n∈N is a complete orthonormal set on L2

w (V,ΣV,µ), then for a signal ψ : U → C
that can be written as

ψ (u) =
〈
ψ
∣∣K (u, ·)∗

〉
V

def
=

ˆ
V

ψ ·K (u, ·) · wdµ (5.1)

for some ψ ∈ L2
w (V,ΣV,µ), then the series

∑

n∈N

ψ (un) ξn, where

ξn (u) =
〈
K (u, ·)

∣∣K (un, ·)
〉
V
, (5.2)

uniformly converges to ψ.

Proof. See appendix 5.A.

In order to contextualise the above notation with previous one, consider an invertible map

f : R → R, possibly linear, under which the frequency ν is retrieved from u in a way that

ν = f (u). In this sense, u shall also be seen as a variable that carries the frequency information.

Moreover, if physical meaning should be given to ψ, it must be taken in a way that either

qTEℓm (ν) = ψ (u) or qTMℓm (ν) = ψ (u) (5.3)
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holds. The function ψ is said to be the transform of ψ with respect of the kernel K and the

Theorem is is based on the existence of such function. Lastly, ξn is sought constructor (which

becomes the sinc in the particular case of WNSST).

In the context created above, it is worth seeing GST as the conditions the mode coefficient

functions must obey so they can be projected in a set of constructors pondered by their own

samples.

5.2 Signal Energy

Since ψ is a signal, a mathematical notion of energy can be associated to it in the form of

∥ψ∥2U
def
= ⟨ψ|ψ⟩U. As it will be seen, such energy bears a resemblance with the radiated power

per mode, cf . Equation (3.14), but it shall not be misinterpreted with the physical notion

of electromagnetic energy even though their names share the same word. The energy can be

written as

∥ψ∥2U =
∑

n∈N

∑

n′∈N

ψ (un)ψ (un′)∗ ⟨ξn|ξn′⟩U . (5.4)

If the kernel obeys the completeness relations, then ⟨ξn|ξn′⟩U = C · δnn′ holds as it has been

shown in Section 5.B. For this particular case, it is true that

∥ψ∥2U = C
∑

n∈N

|ψ (un)|2 , (5.5)

which means that energy information lies completely in the collected samples and does not

depend on the constructors in {ξn}n∈N.
On the other hand, it is also possible to calculate the energy of the transformed signal ψ.

For that, it is enough to see that, once this signal exists, it does also have a series representation

from the samples. In fact, once the transformed signal ψ ∈ L2
w (V,ΣV,µ) by hypothesis, its

conjugate ψ∗ belongs to this space as well. Therefore,

ψ∗ =
∑

n∈N

〈
ψ∗∣∣K (un, ·)

〉
·K (un, ·) .

Hence,

ψ =
∑

n∈N

〈
ψ∗∣∣K (un, ·)

〉∗ ·K (un, ·)∗

=
∑

n∈N

〈
K (un, ·)

∣∣ψ∗〉 ·K (un, ·)∗

=
∑

n∈N

〈
ψ
∣∣K (un, ·)∗

〉
·K (un, ·)∗

=
∑

n∈N

ψ (un) ·K (un, ·)∗ (5.6)
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which also implies the Parseval’s identity, cf . [GB15, Theorem 5.3.10]. Thus,

∥ψ∥2V =
∑

n∈N

|ψ (un)|2 (5.7)

also holds.

The similarity between Equations (5.5) and (5.7) leads to the Plancherel identity

∥ψ∥2U = C ∥ψ∥2V , (5.8)

which is only valid when the kernel obeys the completeness relations, i.e., the constructors form

an orthogonal set.

5.3 Truncation Error

The practical usage of the GST depends on its performance when its series is truncated.

Let N ∈ N be the number of constructors considered in the truncation and ψN denote the part

of ψ that is projected in those constructors in a way that

ψN =
∑

n⩽N

ψ (un) ξn. (5.9)

Naturally, the energy of this projection is

∥ψN∥2U =
∑

n⩽N

|ψ (un)|2 , (5.10)

from which is clear that ∥ψN∥2U < ∥ψ∥2U. It is interesting to notice that that the difference

∥ψ∥2U − ∥ψN∥2U is precisely the residual energy ∥ψ − ψN∥2U given by

∥ψ − ψN∥2U = ψ − ψN =
∑

n>N

|ψ (uN)|2 . (5.11)

As conclusion, the quality of the reconstruction is constrained to ∥ψ − ψN∥2U being very small

when compared to ∥ψ∥2U and it does not depend on the constructors ξn. Consequently, this

method of interpolation is as good as the energy of the signal is (completely or mostly) con-

centrated in a frequency-domain region, which is quite reasonable, so the energy associated to

samples outside this region is negligible.

5.4 WNSST as a particularisation of GST

As one might wonder, it is possible to reach the WNSST as a particular case of GST by

considering the kernel K : R× [−v◦, v◦]→ C defined by

K (u, v) =
e2πjuv√
2v◦

(5.12)
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for some v◦ > 0. As it will be shown in subsection 6.3.5, the family
{
K
(

n
2v◦
, ·
)}

n∈Z
forms a

complete orthonormal set on the Lebesgue space over the compact [−v◦, v◦]. Furthermore

〈
K (·, v)

∣∣K (·, s)
〉
=

1

2v◦

ˆ
R
e2πj(v−s)udu =

1

2v◦
δ (v − s) . (5.13)

Thus, this kernel obeys the completeness relation, ensuring the results discussed above. The

following also holds

〈
K (u, ·)

∣∣K (r, ·)
〉
=

1

2v◦

ˆ
[−v◦,v◦]

e2πj(u−r)vdv =
sin
(
2πv◦ (u− r)

)

2πv◦ (u− r)
= sinc

(
2v◦ (u− r)

)

from which the constructor can hence be calculated as

ξn (u) = sinc

(
2v◦

(
n

2v◦
− u
))

= sinc
(
2v◦u− n

)
. (5.14)

The last equation completely retrieves the WNSST. Furthermore, it is also interesting to con-

sider a simple map ν = αu and notice that the constructor as a function of frequency has the

form

ξn (ν/α) = sinc

(
2v◦ν

α
− n

)
, (5.15)

from which is clear that the sampling frequency is ∆ν = α/2v◦.

As it has been above exemplified, the kernel is completely responsible for the nature of

the constructor and , in special, its reality. Having this in mind, subsection 6.3.6 proposes an

adaptation of the kernel in Equation (5.12) which yields complex-valued constructors obeying

the causality conditions. Aiming this goal, the next section brings sufficient conditions over

possible kernels so that they provide causal constructors.

5.5 Causal Kernels

Since frequencies may spam all over the real values, it is natural to take U = R. In this

context, once again consider the causality conditions at (3.45) – (3.48) generically synthesised

as

uaψ (u) = − 1

jπ
PV

ˆ
R

raψ (r)

r − u dr (5.16)

and assume that sequence of the partial sums of
∑

n∈N ψ (un) ξn is bounded (or dominated) by

an Lebesgue integrable function, then the Dominated Convergence Theorem and it is possible

to say that
∑

n∈N

(
uaξn (u) +

1

jπ
PV

ˆ
R

raξn (r)

r − u dr

)
ψ (un) = 0.

Since the above condition must hold for any set
{
ψ (un)

}
n∈N of collected samples, it must be

true that

uaξn (u) +
1

jπ
PV

ˆ
R

raξn (r)

r − u dr = 0
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for any n ∈ N. Moreover, assuming that the function raK(r,v)
r−u

is Lebesgue integrable for any

(r, v) ∈ R × V, Fubini’s Theorem holds and the Lebesgue integral in R commutes with the

inner product in V. Hence,
〈
uaK (u, ·) + 1

jπ
PV

ˆ
R

raK (r, ·)
r − u dr

∣∣∣∣K (un, ·)
〉

V

= 0

do also hold for any n ∈ N. Thus, the completeness of the set
{
K (un, ·)

}
n∈N immediately

implies that

uaK (u, v) = − 1

jπ
PV

ˆ
R

raK (r, v)

r − u dr. (5.17)

Even though the last result can be thought as sought condition over the kernel, it is worth

going beyond and analysing the above equation in light of the values of a. In this direction,

consider the application of the inverse Fourier transform, with respect to the frequency variable

u, on such equation as follows

F−1 (uaK (u, v)) = sgn · F−1 (uaK (u, v)) , (5.18)

from which one can conclude that

F−1 (uaK (u, v)) (τ) = 0, ∀τ < 0. (5.19)

Let K be the inverse Fourier transform of K with respect to the frequency variable u, i.e.,

K (τ, v) =

ˆ
R
K (u, v) ej2πuτdu. (5.20)

For any a ⩾ 0, it holds that

F−1 (uaK (u, v)) (τ) =
1

(j2π)a
∂aK
∂τa

(τ, v) (5.21)

implying that K and all of its time derivatives must vanishes for τ < 0, i.e., K (a) (τ, v) =

sgn (τ) · K (a) (τ, v). On the other hand, for −ℓ ⩽ a < 0,

5.A Proof of the GST

Proof of Theorem 5.2. Once
{
K (un, ·)

}
n∈N is an orthonormal set on L2

w (V,ΣV,µ), it holds

that 〈
K (un, ·)

∣∣K (uℓ, ·)
〉
V
= δnℓ, (5.22)

and since it is also complete in that space, any function ψ ∈ L2
w (V,ΣV,µ) can be represented

as

ψ =
∑

n∈N

〈
ψ
∣∣K (un, ·)

〉
V
·K (un, ·) . (5.23)

In particular, if ψ is taken as K (u, ·) itself then

K (u, ·) =
∑

n∈N

ξn (u) ·K (un, ·) , (5.24)
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which is just a compact notation meaning that for any ε > 0 and (u, v) ∈ U ×V, there exists

N ∈ N such that m > N implies that

∣∣∣∣∣K (u, v)−
∑

n⩽m

ξn (u)K (u, v)

∣∣∣∣∣ < ε. (5.25)

On the other hand, consider the partial sum definition

ψm =
∑

n⩽m

ψ (un) ξn (5.26)

and the following result

∣∣∣ψ (u)− ψm (u)
∣∣∣ =

∣∣∣∣∣
〈
ψ
∣∣K (u, ·)∗

〉
V
−
∑

n⩽m

〈
ψ
∣∣K (un, ·)∗

〉
V
· ξn (u)

∣∣∣∣∣

=

∣∣∣∣∣

〈
ψ

∣∣∣∣∣K (u, ·)∗ −
∑

n⩽m

K (un, ·)∗ ξn (u)∗
〉

V

∣∣∣∣∣ (5.27)

which, from Cauchy-Schwarz inequality and (5.25), yields

∣∣∣ψ (u)− ψm (u)
∣∣∣ ⩽

∥∥ψ
∥∥
V
·
∥∥∥∥∥K (u, ·)−

∑

n⩽m

K (un, ·) ξn (u)
∥∥∥∥∥
V

· · · =
∥∥ψ
∥∥
V
·



ˆ
V

∣∣∣∣∣K (u, ·)−
∑

n⩽m

K (un, ·) ξn (u)
∣∣∣∣∣

2

wdµ




1/2

· · · ⩽
∥∥ψ
∥∥
V
·
(
ε2 · sup

V
{w} ·

ˆ
V

dµ

)1/2

· · · = ε
∥∥ψ
∥∥
V
·
(
sup
V
{w} · µ (V)

)1/2

. (5.28)

Since µ (V) < +∞ and ψ ∈ L2
w (V,ΣV,µ), it becomes clear that ψm uniformly converges to ψ

and one can finally write

ψ
a.e.
=
∑

n∈N

ψ (un) ξn, (5.29)

where the equality is taken in the sense that

∥∥∥∥∥ψ −
∑

n∈N

ψ (un) ξn

∥∥∥∥∥
U

= 0. (5.30)

The proof is hence concluded. ■
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5.B Kernels Satisfying Completeness Relations

Consider a kernel K satisfying the following completeness relation in udomain

〈
K (·, v)

∣∣K (·, s)
〉
U
=

C

w (v)
δ (v − s) . (5.31)

Hence, for some ψ ∈ L2 (U,ΣU, µ), it holds that

⟨ψ|K (·, v)⟩U =

ˆ
U

ψ (u)K (u, v)∗ µ (du)

=

ˆ
U

[ˆ
V

ψ (s)K (u, s)w (s)µ (ds)

]
K (u, v)∗ µ (du)

=

ˆ
V

ψ (s)

[ˆ
U

K (u, s)K (u, v)∗ µ (du)

]
w (s)µ (ds)

=
C

w (v)

ˆ
V

ψ (s)w (s) δ (v − s)µ (ds)

= Cψ (v) .

Thus, V-transformed ψ can be retrieved by the integral transform in U, implying those trans-

form are each other inverse in the sense that

ψ (v) =
1

C
·
〈
ψ
∣∣K (·, v)

〉
U
. (5.32)

Moreover, if that is the case, the constructors form an orthogonal family. In fact,

⟨ξn|ξm⟩U =

ˆ
U

ξnξ
∗
mdµ

=

ˆ
U

ξn (u) ξm (u)∗ µ (du)

=

ˆ
U

〈
K (u, ·)

∣∣K (un, ·)
〉
V

〈
K (u, ·)

∣∣K (um, ·)
〉∗
V
µ (du)

=

ˆ
U

[ˆ
V

K (u, v)K (un, v)
∗w (v)µ (dv)

]
·
[ˆ

V

K (um, s)K (u, s)∗w (v)µ (ds)

]
µ (du)

=

ˆ
V×V

[ˆ
U

K (u, v)K (u, s)∗ µ (du)

]
K (um, s)K (un, v)

∗w (v)w (s)µ (dv)µ (ds)

=

ˆ
V×V

〈
K (·, v)

∣∣K (·, s)
〉
U
K (um, s)K (un, v)

∗w (v)w (s)µ (dv)µ (ds) ,

then

⟨ξn|ξm⟩U = C

ˆ
V

K (um, v)K (un, v)
∗w (v)µ (dv)

= C
〈
K (um, ·)

∣∣K (un, ·)
〉
V

= C · δnm.



Chapter 6

Kernel Construction

Undoubtedly, Theorem 5.2 provides an elegant and useful method to reconstruct a signal

from samples of itself given the existence of the kernel K and the sequence (un)n∈N. Never-

theless, the attainment of such mathematical objects obeying those specific conditions may

become as challenging as, or even challenger than, the application of the GST itself. This

Chapter provides a clever approach to construct such objects.

6.1 Spectral Theory of Compact and Self-adjoint Operators

Fortunately, a particular and well-known theory provides an insight into where to search

for those special kernels: the spectral theory for compact and self-adjoint operators. Regarding

this family of operators, let H denote an infinite-dimensional Hilbert Space, and J : H → H be

compact and self-adjoint. Then,

Property 6.1. All eigenvalues of J are real, cf . [GB15, Proposition 7.5.1];

Property 6.2. Eigenvectors associated with different eigenvalues of J are orthogonal, cf . [GB15,

Proposition 7.5.1];

Property 6.3. The eigenvalues of J form a countable set at which zero is its only possible limiting

point, cf . [GB15, Theorem 7.3.6-7.3.7];

Property 6.4. H admits a complete orthonormal set formed by the eigenvectors of J, cf . [GB15,

Theorem 7.3.6-7.3.7];

Property 6.5 (Spectral Theorem). There exist a sequence (λn)n∈N of eigenvalues of J with

respective normalised eigenvectors (φn)n∈N such that

Jψ =
∑

n∈N

λn ⟨ψ|φn⟩φn (6.1)

for any ψ ∈ H , cf . [GB15, p. 7.5.6].

In light of the results above, one might be encouraged to consider L2
w (V,ΣV,µ) as the

Hilbert space, endowed with the usual inner product ⟨·|·⟩V, and (un)n∈N and (K (un, ·))n∈N as the

eigenvalues and eigenfunctions of some compact and self-adjoint operator J : L2
w (V,ΣV,µ) →

S, respectively, for some S ⊆ L2
w (V,ΣV,µ) while K, as a function of u, is yet to be found.

65
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However, the possibility of a limiting point for the frequency-related sequence (un)n∈N, even

though it would be zero, is not actually desirable.

On the other hand, if J is such that λn ̸= 0 for all n ∈ N, it is possible to define a new

operator L : S → D ⊂ L2
w (V,ΣV,µ) given by

L =
∑

n∈N

⟨ · |φn⟩
λn

φn, (6.2)

in a way that the solutions of the equation Lζ = ψ are precisely given by the restriction

ζ = J|Dψ, which is easily checkable. Most naturally, it should be easy to see that ψ =∑
n∈N ⟨ψ|φn⟩φn for any ψ ∈ H . Interestingly, L has eigenvalues in {1/λn}n∈N and the same set

of eigenvectors of J, i.e. Lφn = 1
λn
φn for any n ∈ N. It must be highlighted that L is neither

compact nor the inverse of J, since its compactness forbids this, cf . [GB15, Proof of Theo-

rem 7.3.6], even though it is also self-adjoint. Thus, it is suggestive taking (un)n∈N as the

eigenvalues of L rather than J.

6.2 Self-adjoint Linear Differential Operators

As it has been discussed in the last section, the function nature of the eigenvectors, hence-

forth called eigenfunctions, suggests taking J as an integral operator whose compactness raises

as a natural consequence of its regularisation (smoothing) property on functions. In this case,

L is better if taken as a self-adjoint differential operator. In this very particular context, the

following results, adapted from [CL55, Chapter 7] regarding a class of self-adjoint differential

operators, becomes a powerful tool to construct the kernels.

Proposition 6.1. Consider a compact interval V = [v−, v+] and a linear differential operator

L : S → L2
w (V,ΣV,µ) on the form

L =
M∑

m=0

sm
dm

dvm
(6.3)

for M ⩾ 1 and let it be self-adjoint for a subset S ⊂ L2
w (V,ΣV,µ) ∩ CM(V;C) and coefficient

functions sm ∈ Cm(V;C). Hence, the following results hold:

Property 6.6. The eigenvalues of L, which are real due to its self-adjointness, form a countable

set with no accumulation point [CL55, Chapter 7, Theorem 2.1];

Property 6.7. The eigenfunctions of L, which also are countable due to the above property, form

a complete orthogonal set on L2
w (V,ΣV,µ) [CL55, Chapter 7, Theorem 4.2].

Although the above results are quite compelling, neither the subset S nor the functions sm

are determined in the Proposition 6.1. This is most due to the fact that such analysis, which is

developed in Section 6.A, is quite mathematically sophisticated to be synthesised in a general

form
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In light of the above properties, it is natural to consider the eigenvalues and eigenfunctions

as candidates for (un)n∈N and
{
K (un, ·)

}
n∈N respectively, which of course depends on finding

a kernel K tying these eigenfunctions together. This Chapter aims to construct those some

examples of those kernels.

6.3 First Order Operators

The simplest case of Proposition 6.1 occurs, of course, for the first order differential operators

(M = 1), which shall be analysed in this section. For such end, consider the operator L : S ⊂
L2
w (V,ΣV,µ) ∩ C1(V;C)→ L2

w (V,ΣV,µ) defined by

L =
1

w

[
s1
d

dv
+ s2

]
. (6.4)

The construction of the adjoint, as shown in Section 6.A, implies that

L† =
1

w

[
−s∗1

d

dv
+ (s2 − s′1)∗

]
(6.5)

and

S =
{
ψ ∈ L2

w (V,ΣV,µ) ∩ C1(V;C) ; C−Ψ
(
v−
)
+ C+Ψ

(
v+
)
= 0

}
(6.6)

where the complex constants C− and C+ are such that ψA,ψB ∈ S =⇒ [s1ψAψ
∗
B]V =

0 =⇒ s1 (v
+) |C−|2 = s1 (v

−) |C+|2 , after some simple algebraic manipulation. L will hence

be self-adjoint when

−s∗1 = s1 and (s2 − s′1)∗ = s2 (6.7)

which implies in Re (s1) = 0 =⇒ s1 = jp and s2− s′1 = s∗2 =⇒ s′1 = s2− s∗2 = 2j Im (s2) =⇒
Im (s2) =

p′

2
. Thus,

L =
1

w

[
jp

d

dv
+

(
q + j

p′

2

)]
(6.8)

for arbitrary functions p ∈ C1(V;C) and q ∈ C0(V;C).

6.3.1 Unbounded Eigenfunctions

In the context described above, consider the real eigenvalue problem for the case where

Equation (6.8) is extended to L2
w (V,ΣV,µ)∩ C1(V;C), i.e., without the boundary conditions.

In this direction, the solutions of

1

w

[
jpφ′ +

(
q + j

p′

2

)
φ

]
= λφ (6.9)

must be studied where φ (λ, ·) ∈ L2
w (V,ΣV,µ) ∩ C1(V;C) is the eigenfunction associated with

the eigenvalue λ ∈ R. Such solutions can be easily achieved by rearranging the last equation as

φ′

φ
+

1

2

p′

p
+
q − λw
jp

= 0,



6.3 – First Order Operators 68

which can be integrated yielding

log
φ (v)

φ (v−)
+

1

2
log

p (v)

p (v−)
+

ˆ
[v−,v]

q − λw
jp

dµ = 0

and, finally,

φ (λ, v) = φ
(
λ, v−

)
√
p (v−)

p (v)
ej(Q(v)+λW (v)), (6.10)

where

W (v) =

ˆ
[v−,v]

w

p
dµ and Q (v) =

ˆ
[v−,v]

q

p
dµ. (6.11)

Of course, one is mostly interested in normalised eigenfunctions. Thus, let W+ = W (v+) and

consider the inner product

〈
φ (λ1, ·)

∣∣∣φ (λ2, ·)
〉
V
=

ˆ
V

φ (λ1, ·)φ (λ2, ·)∗wdµ

= φ
(
λ1, v

−)φ
(
λ2, v

−)∗ p
(
v−
) ˆ

V

exp

(
j (λ2 − λ1)

ˆ
[v−,v]

w

p
dµ

)
w

p
dµ

= φ
(
λ1, v

−)φ
(
λ2, v

−)∗ p
(
v−
) ˆ

V

ej(λ2−λ1)WW ′dµ

= φ
(
λ1, v

−)φ
(
λ2, v

−)∗ p
(
v−
) ˆ

[0,W+]

ej(λ2−λ1)WdW

= φ
(
λ1, v

−)φ
(
λ2, v

−)∗ p
(
v−
)
·W+ej(

λ2−λ1
2 )W+

sinc

(
(λ2 − λ1)W+

2π

)
.

(6.12)

Thus,
∥∥φ (λ, ·)

∥∥2
V

= |φ (λ, v−)|2 p (v−)W+ and, by considering the abuse of notation φ ←
φ/∥φ∥V, the normalised eigenfunction is given by

φ (λ, v) =
1√

p (v)W+
ej
(
Q(v)−λW (v)+θ(λ)

)
, (6.13)

where θ (λ) is an arbitrary phase that rose during the normalisation from the term φ(λ,v−)/|φ(λ,v−)|
and may be seen as a degree of freedom in the eigenfunction.

6.3.2 Completeness Relation

An important aspect of the eigenfunction (6.13) is the fact that it obeys a Completeness

relation regarding the eigenvalues. In fact,
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〈
φ (·, v)

∣∣φ (·, s)
〉
U

def
=

ˆ
U

φ (·, v)φ (·, s)∗ dµ

=
ej(Q(v)−Q(s))

W+
√
p (v) · p (s)

ˆ
U

ej(W (s)−W (v))λdµ (λ)

=
2πej(Q(v)−Q(s))

W+
√
p (v) · p (s)

δ (W (s)−W (v))

=
2π

p (v) ·W+
δ
(
W (s)−W (v)

)

=
2π

p (v) ·W+ ·W ′ (v)
δ
(
s− v

)

=
2π

w (v) ·W+
δ
(
v − s

)
. (6.14)

As discussed in Section 5.B, such result provides several desirable consequences as the orthog-

onality of the constructors and the Plancherel identity for the reconstructed signal.

6.3.3 Bounded Eigenvalues

The background developed in the last subsections provides the tools to easily determine

the eigenvalues and eigenfunctions of the original operator L, which is restricted to S. In this

context, the eigenfunctions must obey the boundary conditions

C−φ
(
λ, v−

)
+ C+φ

(
λ, v+

)
= 0, (6.15)

which, from the Equation (6.13), implies that

C−
√
p (v−)W+

ej
(
θ(λ)
)
+

C+

√
p (v+)W+

ej
(
Q+−λW++θ(λ)

)
= 0,

since by definition Q (v−) = W (v−) = 0 and Q+ = Q (v+) and W+ = W (v+). By rearranging

the terms, it becomes

−C
+

C−

√
p (v−)

p (v+)
ej
(
Q+−λW+

)
= 1.

The self-adjointness condition, as stated in the beginning of this section, requires that p (v+) |C−|2 =
p (v−) |C+|2. Thus,

−C
+

C−

√
p (v−)

p (v+)
= −C

+

C−

√
|C−|2

|C+|2
= −

C+/|C+|
C−/|C−| = ejα (6.16)

where α− π is the phase difference between the constants C+ and C−. Therefore,

ej
(
α+Q+−λW+

)
= 1, (6.17)
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whose solutions are, as expected, quantised and given by

α +Q+ − λW+ = −2nπ =⇒ λn =
2π

W+
n+

α +Q+

W+
(6.18)

where n ∈ Z.

6.3.4 The Kernel

At this point, it must be already clear that the GST kernel will be given by the unbounded

eigenfunction, Equation (6.13), while the sampling points will precisely be the eigenvalues of

the self-adjoint operator. In other words,

K (u, v) =
1√

p (v)W (v+)
ej
(
Q(v)−uW (v)+θ(u)

)
and un =

2π

W (v+)
n+

α +Q (v+)

W (v+)
, (6.19)

where

W (v) =

ˆ
[v−,v]

w

p
dµ and Q (v) =

ˆ
[v−,v]

q

p
dµ

and p ∈ L2
w (V,ΣV,µ) ∩ C1(V;R>0), q ∈ L2

w (V,ΣV,µ) ∩ C0(V;R), w ∈ L2
w (V,ΣV,µ) ∩

C0(V;R>0), whilst θ : R→ R are arbitrary functions and α, v− and v+ > v− are arbitrary real

parameters.

The constructor can now be easily calculated as

ξn (u) =
〈
K (u, ·)

∣∣K (un, ·)
〉
V

=

ˆ
V

K (u, ·)K (un, ·)wdµ

=
ej(θ(u)−θ(un))

W (v+)

ˆ
[0,W (v+)]

ej(un−u)WdW

=
ej(θ(u)−θ(un))

W (v+)
W
(
v+
)
ej

un−u
2

W(v+)sinc

(
un − u
2π

W
(
v+
))

= ej(θ(u)−θ(un))ej
un−u

2
W(v+)sinc

(
un − u
2π

W
(
v+
))

.

Since un−u
2
W (v+) = nπ − uW(v+)−Q(v+)−α

2
, the constructor can be simply expressed as

ξn (u) = (−1)n e
−j

(
uW(v+)−Q(v+)−α

2
−θ(u)+θ(un)

)
sinc

(
n− uW (v+)−Q (v+)− α

2π

)
. (6.20)

6.3.5 WNSST Particularisation

Of course the results of WNSST can be found as a particularisation of the results from the

last subsection. In fact, for the following choices

p =
1

2π
, w = 1, q = 0, θ (u) =

uW (v+)−Q (v+)− α
2

, α = 0 and v− = −v+
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it is easy to show that W (v) = 2π (v + v+), thus W (v+) = 4πv+, Q (v+) = 0 and θ (un) = nπ.

Thus, the constructor at Equation (6.20) simply becomes

ξn (u) = sinc
(
n− 2v+u

)
, (6.21)

hence retrieving the formula Equation (5.14) as expected. As curiosity, it is interesting to see

that the operator L for this very particular case is

L = − 1

2πj

d

dv
(6.22)

and it operates at the very particular set

S =
{
ψ ∈ L2

w (V,ΣV,µ) ∩ C1(V;R) ; ψ
(
−v+

)
= ψ

(
v+
) }
.

In other words, it can be said that WNSST is a simple particularisation from the simplest case

of the application of GST.

6.3.6 Causal Constructors

The objective of this section is to tune the constructor parameters in order to ensure its

causality. For this goal, it will be necessary to beforehand calculate the inverse Fourier Trans-

form Ξn of the constructor at Equation (6.20). To simplify the equations, consider α = 0, since

it has the same influence of Q (v+), and θ (u) = 0. Thus,

ξn (u) = (−1)n e
−j

(
uW(v+)−Q(v+)

2

)
sinc

(
n− uW (v+)−Q (v+)

2π

)
(6.23)

and

Ξn (τ) =

ˆ
R
ξn (u) e

2πjuτdu

= (−1)n
ˆ
R
sinc

(
W (v+)

2π
u− Q (v+)

2π
− n

)
e
−j

(
W(v+)

2
u−

Q(v+)
2

)
e2πjuτdu

= (−1)n ej
Q(v+)

2

ˆ
R
sinc

(
W (v+)

2π
u− Q (v+)

2π
− n

)
e
2πju

(
τ−

W(v+)
4π

)
du
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By considering a simple change of variable u =
W(v+)

2π
u− Q(v+)

2π
−n, the above integral becomes

Ξn (τ) =
2π

W (v+)
(−1)n ej

Q(v+)
2

ˆ
R
sinc (u) e

2πj

(
2π

W(v+)
u+

Q(v+)+2πn

W(v+)

)(
τ−

W(v+)
4π

)
du

=
2π

W (v+)
(−1)n e

2πj

(
Q(v+)

4π
+

Q(v+)+2πn

W(v+)

(
τ−

W(v+)
4π

)) ˆ
R
sinc (u) e

2πju

(
2π

W(v+)
τ− 1

2

)
du

=
2π

W (v+)
(−1)n e

2πj

(
Q(v+)+2πn

W(v+)
τ−n

2

) ˆ
R
sinc (u) e

2πju

(
2π

W(v+)
τ− 1

2

)
du

=
2π

W (v+)
e
2πj

Q(v+)+2πn

W(v+)
τ
rect

(
2π

W (v+)
τ − 1

2

)
. (6.24)

The result above is enough to conclude that τ < 0 implies in Ξn (τ) = 0, since Ξn does not

vanish only if 0 < τ < W(v+)/2π. Hence, the particular choice of the phase function θ was

enough to create a causal constructor.

In light of such result, it is suggestive tuning the parameters in a way that

νn =
2π

W (v+)
n+

Q (v+)

W (v+)
, (6.25)

where 2π
W (v+)

is the distance between consecutive sampling frequencies and Q (v+) is better if

taken in a way that n = 0 implies in the central frequency of the sampling band, i.e. Q(v+)/W(v+)

is the central frequency. It is worth highlighting, nevertheless, that since negative frequencies

must be considered to reach the causality of the electric field as a whole, the centre of such

band is commonly zero implying that Q (v+) = 0 is the better choice and also that Q and q

are both the zero function. However, since this choice is not mandatory in the context of the

causality of the constructor itself, Q is then kept for completeness. Thus, τ can be taken as

the time itself and the time-domain constructor is given by

Ξn (t) =
2π

W (v+)
· e2πjνnt · rect

(
2π

W (v+)
t− 1

2

)
. (6.26)

Lastly, it is important to remember from Theorem 5.2 that the constructor above can only

be used to represent signals ψ that can be written in the form

ψ (ν) =
1√

W (v+)

ˆ v+

v−
ψ (v) ej(Q(v)−νW (v)) w (v)√

p (v)
dv, (6.27)

for some ψ ∈ L2
w (V,ΣV,µ). If this is not the case and Equations (6.23) and (6.26) are still

used as an attempt to reconstruct the signal, then the result would be a different signal which

is commonly interpreted as the original but suffering from undersampling effects. Moreover, if
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the inverse Fourier transform Ψ of ψ is taken, then

Ψ (t) =

ˆ
R
ψ (ν) ej2πνtdν

=
1√

W (v+)

ˆ
R

[ˆ v+

v−
ψ (v) ej(Q(v)−νW (v)) w (v)√

p (v)
dv

]
ej2πνtdν

=
1√

W (v+)

ˆ v+

v−
ψ (v)

[ˆ
R
ej2πν(t−

W (v)
2π )dν

]
ejQ(v) w (v)√

p (v)
dv

=
1√

W (v+)

ˆ v+

v−
ψ (v) δ

(
t− W (v)

2π

)
ejQ(v) w (v)√

p (v)
dv.

It must be noticed that W is a strictly increasing function since W ′ = w/p > 0. Thus, if

t − W (v)
2π

reaches zero, it happens only once and then, from the composition property of delta

distribution, it holds that

δ

(
t− W (v)

2π

)
=

2π

W ′ (v)
δ
(
v −W−1 (2πt)

)
=

2πp (v)

w (v)
δ
(
v −W−1 (2πt)

)
. (6.28)

Therefore,

Ψ (t) =
1√

W (v+)

ˆ v+

v−
ψ (v)

2πp (v)

w (v)
δ
(
v −W−1 (2πt)

)
ejQ(v) w (v)√

p (v)
dv

=
2π√
W (v+)

ˆ v+

v−
ψ (v) δ

(
v −W−1 (2πt)

)
ejQ(v)

√
p (v)dv

=





2π

√
p
(
W−1(2πt)

)
W (v+)

ψ
(
W−1 (2πt)

)
ejQ
(
W−1(2πt)

)
, if t ∈

(
0,

W(v+)
2π

)

0, if t /∈
(
0,

W(v+)
2π

) . (6.29)

As conclusion, this method can only be used to represent signals “band-limited” in time-domain,

i.e., the signal must vanish outside the interval

(
0,

W(v+)
2π

)
.

6.A Contruction of the Adjoint

Consider the differential operator L in Proposition 6.1. The objective of this appendix is to

construct the adjoint L† and study over which conditions L = L†, i.e., L is self-adjoint. For this

goal, consider ψA,ψB ∈ S and the following

〈
LψA

∣∣ψB

〉
V
=

ˆ
V

LψA ψ
∗
Bwdµ =

M∑

m=0

ˆ
V

smψ
(m)
A ψ∗

Bdµ. (6.30)
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For simplicity, also consider the family of auxiliary functions ζm = smψ
∗
B, from which the

integral in the last summation becomes

ˆ
V

smψ
(m)
A ψ∗

Bdµ =

ˆ
V

ψ
(m)
A ζmdµ

=
[
ψ

(m−1)
A ζ(0)m

]
V
−
ˆ
V

ψ
(m−1)
A ζ(1)m dµ

=
[
ψ

(m−1)
A ζ(0)m

]
V
−
[
ψ

(m−2)
A ζ(1)m

]
V
+

ˆ
V

ψ
(m−2)
A ζ(2)m dµ

=
[
ψ

(m−1)
A ζ(0)m

]
V
−
[
ψ

(m−2)
A ζ(1)m

]
V
+· · ·+(−1)m−1

[
ψ

(0)
A ζ

(m−1)
m

]
V
+(−1)m

ˆ
V

ψ
(0)
A ζ

(m)
m dµ

=

[
m−1∑

p=0

(−1)pψ(m−1−p)
A ζ(p)m

]

V

+ (−1)m
ˆ
V

ψ
(0)
A ζ

(m)
m dµ. (6.31)

To simplify the notation on the last equation, it is interesting to define the function matrices

ΨA =
[
ψ

(0)
A ψ

(1)
A ψ

(2)
A · · · ψ(M−1)

A

]T
and Zm =

[
ζ
(0)
m ζ

(1)
m ζ

(2)
m · · · ζ(M−1)

m

]T
(6.32)

and the M -order square matrix

Wm =




0 0 · · · 0 (−1)m−1 · · · 0

0 0 · · · (−1)m−2 0 · · · 0
...

...
. . .

...
...

. . .
...

0 −1 · · · 0 0 · · · 0
1 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0




(6.33)

so that the last equation can now be rewritten using the quadratic form

ˆ
V

smψ
(m)
A ψ∗

Bdµ =
[
ΨT

AWmZm

]
V
+ (−1)m

ˆ
V

ψ
(0)
A ζ

(m)
m dµ. (6.34)

Since the k-derivative of the auxiliary function ζm is given by

ζ(k)m =
(
smψ

∗
B

)(k)

=
k∑

q=0

(
k

q

)
s(k−q)
m ψ

(q)∗
B (6.35)

=

[(
k

0

)
s(k)m

(
k

1

)
s(k−1)
m · · ·

(
k

k

)
s(0)m · · · 0

]
Ψ∗

B,
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then

Zm =




(
0
0

)
s
(0)
m 0 0 · · · 0

(
1
0

)
s
(1)
m

(
1
1

)
s
(0)
m 0 · · · 0

(
2
0

)
s
(2)
m

(
2
1

)
s
(1)
m

(
2
2

)
s
(0)
m · · · 0

...
...

...
. . .

...
(
M−1
0

)
s
(M−1)
m

(
M−1
1

)
s
(M−2)
m

(
M−1
2

)
s
(M−3)
m · · ·

(
M−1
M−1

)
s
(0)
m




Ψ∗
B = SmΨ

∗
B. (6.36)

Thus,

ˆ
V

smψ
(m)
A ψ∗

Bdµ =
[
ΨT

AWmSmΨ
∗
B

]
V
+

ˆ
V

ψA

[
m∑

q=0

(−1)m
(
m

q

)
s(m−q)
m ψ

(q)∗
B

]
dµ

and

〈
LψA

∣∣ψB

〉
V
=

[
ΨT

A

(
M∑

m=0

WmSm

)
Ψ∗

B

]

V

+

ˆ
V

ψA

[
M∑

m=0

m∑

q=0

(−1)m
(
m

q

)
s(m−q)
m ψ

(q)∗
B

]
dµ

=

[
ΨT

A

(
M∑

m=0

WmSm

)
Ψ∗

B

]

V

+

ˆ
V

ψA

[
1

w

M∑

m=0

m∑

q=0

(−1)m
(
m

q

)
s(m−q)∗
m ψ

(q)
B

]∗
wdµ

=

[
ΨT

A

(
M∑

m=0

WmSm

)
Ψ∗

B

]

V

+

ˆ
V

ψA

[
1

w

M∑

m=0

M∑

q=m

(−1)q
(
q

m

)
s(q−m)∗
q ψ

(m)
B

]∗
wdµ

=

[
ΨT

A

(
M∑

m=0

WmSm

)
Ψ∗

B

]

V

+

ˆ
V

ψA

(
GψB

)∗
wdµ

=

[
ΨT

A

(
M∑

m=0

WmSm

)
Ψ∗

B

]

V

+
〈
ψA

∣∣GψB

〉
V
, (6.37)

where the operator G is defined as

G =
1

w

M∑

m=0

[
M∑

q=m

(−1)q
(
q

m

)
s(q−m)∗
q

]
dm

dvm
. (6.38)

From Equation (6.37), it is possible to conclude that G = L† if the set S ⊂ L2
w (V,ΣV,µ) ∩

CM(V;C) is such that

ψA,ψB ∈ S =⇒
[
ΨT

A

(
M∑

m=0

WmSm

)
Ψ∗

B

]

V

= 0. (6.39)

The condition above, although necessary, is not sufficient to determine the set S and shall

hence be thought as a test used to characterise it. In this context, [CL55, Ch. 11, Theorem 3.2]

ensures the existence of complex-valued square matrices C+, C− ∈ CM×M such that S can be
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taken as the set of all function in L2
w (V,ΣV,µ) ∩ CM(V;C) obeying the boundary conditions

C−Ψ (v−) + C+Ψ (v+) = 0. In other words, there exist C+, C− ∈ CM×M such that

S =
{
ψ ∈ L2

w (V,ΣV,µ) ∩ CM(V;C) ; C−Ψ
(
v−
)
+ C+Ψ

(
v+
)
= 0

}
(6.40)

satisfies the condition (6.39), hence ensuring the existence of the adjoint L†. It must be noticed

that S is actually a subspace of ψ ∈ L2
w (V,ΣV,µ) ∩ CM(V;C) since the null function clearly

figures in S and ψA,ψB ∈ S =⇒ αψA + βψB ∈ S for α, β ∈ C.

Once the adjoint exists, it is possible to study how to the family of functions sm may lead to

a self-adjoint differential operator L. In fact, by comparing Equation (6.3) and Equation (6.38),

L will be self-adjoint if

sm =
M∑

q=m

(−1)q
(
q

m

)
s(q−m)∗
q . (6.41)

It is important to notice that the condition above is not enough to determine the coefficient

functions, but only provides some constraints over them. In fact, it is easy to see that every

function sm has a degree of freedom on its either real or imaginary part depending onM parity.



Chapter 7

Green’s Function Construction

Although most of the achieved results in the past chapters have their own meaning and

relevance, all of them are actually intermediary conclusions towards the main goal of this

work. This chapter is hence dedicated to finally assemble them in a proposed form for the

antenna Green’s function. In this way, special care must be taken regarding the interpretation

of some auxiliary results and the mathematical complexity of such delicate procedure, at which

organisation is a valuable asset.

7.1 The Time-domain Modal Basis

From chapter 1, record that the Green’s function of the antenna setup has the form

G (r, t) =
∑

n∈Z

∑

ℓ∈N

∑

|m|⩽ℓ

Gℓmn (r, t) qℓm (νn) (7.1)

where Gℓmn (r, t) can be thought as an abstract TE and TM response associated with the mode

(ℓ,m) and with the frequency νn, hence working as a basis for any antenna Green’s function

that might come to be observed in the same set of {νn}n∈Z. In fact, those responses are even

orthogonal since

Gℓmn (r, t) =

√
η

U0

ˆ
R

(
κ (ν)Y ℓm (θ, ϕ)Zℓ

(
κ (ν) · r

)
· ξn (ν)

)
ej2πνtdν

=
2π
√
η

U0c
Y ℓm (θ, ϕ)

ˆ
R
νZℓ

(
2πr

c
ν

)
· ξn (ν) ej2πνtdν,

which inherits the orthogonality of Y ℓm. Morover, as it is already suggestive and will soon be

seen, each Gℓmn can be split in a propagating component, hence associated with the far field,

and in a reactive component, associated with the near field, in a way that

Gℓmn = Gfar
ℓmn + Gnear

ℓmn. (7.2)

As it has been shown in Section 3.5, such split comes from the a decomposition of the matrix

Zℓ in its radius-decaying degree.

In order to computationally implement such basis, the objective of this section is to analyt-

ically calculate the above integral. The best approach to reach such goal is most certainly use

77
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the convolution property of the Fourier transform, inasmuch as Zℓ and ξn come from completely

different backgrounds. By doing this, the last equation becomes

Gℓmn (r, t) =
2π
√
η

U0c
Y ℓm (θ, ϕ)

ˆ
R
F−1 (νZℓ) (t

′) · Ξn (t− t′) dt′, (7.3)

where the inverse Fourier transforms F−1 (νZℓ) and Ξn have already been calculated in Equa-

tion (3.64) and Equation (6.26), respectively. From first result, it must be noticed that

ˆ
R
F−1 (νZℓ) (t

′) · Ξn (t− t′) dt′ =
c

j4π2r

ˆ
R
∂tZℓ

(
r,
ct′

2πr
− 1

2π

)
· sgn

(
ct′

2πr
− 1

2π

)
· Ξn (t− t′) dt′

+
1

jπ

ˆ
R
Zℓ

(
r,
ct′

2πr
− 1

2π

)
· δ
(
t′ − r

c

)
· Ξn (t− t′) dt′

=
c

j4π2r

ˆ ∞

r/c

∂tZℓ

(
r,
ct′

2πr
− 1

2π

)
· Ξn (t− t′) dt′

+
1

jπ
Zℓ (r, 0) · Ξn

(
t− r

c

)
.

Thus,

Gℓmn (r, t) =
2
√
η

jU0c
Y ℓm (θ, ϕ)

[
Zℓ (r, 0) · Ξn

(
t− r

c

)
+

c

4πr

ˆ ∞

r/c

∂tZℓ

(
r,
ct′

2πr
− 1

2π

)
· Ξn (t− t′) dt′

]
.

(7.4)

Each of the two terms of the right hand side of the equation above will now be separately

studied.

7.1.1 First Term

The definition of the matrix Zℓ (r, τ), Equation (3.62), yields that

Zℓ (r, 0) = jℓ
c

2r




0 0
−1 0
0 j




and, from Equation (6.26), it holds that

Zℓ (r, 0) · Ξn

(
t− r

c

)
a.e.
=





πcjℓ

W (v+)




0 0

−1 0

0 j


 e

2πjνn(t− r
c)

r
, if t ∈

(
r
c
, r
c
+

W(v+)
2π

)

0, if t /∈
(

r
c
, r
c
+

W(v+)
2π

) . (7.5)

The above equation makes it clear the local characteristic of the sampling method used, i.e., the

impulse response has a pulse-like aspect as already expected. Moreover, it is straightforward

to conclude that such term is associated with the propagation of the far-field.
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7.1.2 Second Term

The calculation of the integral term is slightly more sophisticated and requires more steps.

Firstly, it must be noticed that

c

4πr

ˆ ∞

r/c

∂tZℓ

(
r,
ct′

2πr
− 1

2π

)
· Ξn (t− t′) dt′

=
c

2W (v+)

e2πjνnt

r
· step

(
t− r

c

)
·
ˆ t

t0

∂tZℓ

(
r,
ct′

2πr
− 1

2π

)
· e−2πjνnt′dt′ (7.6)

where t0 = max

(
r
c
, t− W(v+)

2π

)
. By taking τ ′ = ct′

2πr
− 1

2π
, it holds that t′ = 2πr

c

(
τ ′ + 1

2π

)
and

the last integral becomes

ˆ t

t0

∂tZℓ

(
r,
ct′

2πr
− 1

2π

)
· e−2πjνnt′dt′ =

2πr

c

ˆ τ

τ0

∂tZℓ (r, τ
′) · e−2πjνn· 2πr

c (τ ′+ 1
2π )dτ ′

=
2πr

c
e−2πjνn· rc

ˆ τ

τ0

∂tZℓ (r, τ
′) · e−j 4π2r

c
νnτ ′dτ ′

where

τ0 =
c

2πr
max

(
r

c
, t− W (v+)

2π

)
− 1

2π
and τ =

c

2πr
t− 1

2π
. (7.7)

Thus,

c

4πr

ˆ ∞

r/c

∂tZℓ

(
r,
ct′

2πr
− 1

2π

)
· Ξn (t− t′) dt′

=
πe2πjνn(t−

r
c)

W (v+)
step

(
t− r

c

)ˆ τ

τ0

∂tZℓ (r, τ
′) · e−j 4π2r

c
νnτ ′dτ ′. (7.8)

The polynomial nature of ∂tZℓ (r, ·) at its definition and the result registered in Equation (7.39)

implies that

c

4πr

ˆ ∞

r/c

∂tZℓ

(
r,
ct′

2πr
− 1

2π

)
· Ξn (t− t′) dt′

=
π

W (v+)

e2πjνn(t−
r
c)

r2
step

(
t− r

c

)[
Zℓn (r, τ) e

− j4π2rνn
c

τ − Zℓn (r, τ0) e
− j4π2rνn

c
τ0

]
,

(7.9)

for a function matrix Zℓn that does not have zeros at r = 0, but bears poles at all orders less

than or equal to ℓ. With the last conclusion, it becomes clear tha the second term is the one

associated with the near field, as expected.
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7.2 Time-domain Propagating Wave

A quick consideration of the first term of Gℓmn leads to the conclusion that

Gfar
ℓmn (r, t)

a.e.
=





2π

U0W (v+)

e2πjνn(t−
r
c)

r
T ℓm (θ, ϕ) , if t ∈

(
r
c
, r
c
+

W(v+)
2π

)

0, if t /∈
(

r
c
, r
c
+

W(v+)
2π

) (7.10)

and, consequently that

Gfar (r, t) =
∑

n∈Z

∑

ℓ∈N

∑

|m|⩽ℓ

Gfar
ℓmn (r, t) qℓm (νn)

=





2π

U0W (v+)

1

r

∑

n∈Z

E (θ, ϕ, νn) e
2πjνn(t− r

c), if t ∈
(

r
c
, r
c
+

W(v+)
2π

)

0, if t /∈
(

r
c
, r
c
+

W(v+)
2π

) . (7.11)

Several interesting conclusions can be taken from the last result.

The first, and most obvious, regards the causality where the fact that both r and W (v+)

are positive implies that a non-positive time will never figure in the interval

(
r
c
, r
c
+

W(v+)
2π

)

and, therefore, t ⩽ 0 =⇒ Gfar (r, t) = 0, as requested by design.

A second interesting result is the pulse-like form of such field whose energy at the time t > 0

is completely concentrated at the spherical shell defined by

ct− cW (v+)

2π
< r < ct. (7.12)

From which it becomes clear that the term ct determines the distance of the wavefront at the

time t, as expected, but naturally obtained, while ct − cW(v+)/2π must be understood as how

far into the future of the wave it is possible to see with the frequency resolution of 2π
W (v+)

(refer

to the final comments of subsection 6.3.6), hence working as a “spatial prediction horizon” of

the sampling method.

Moreover, since νn = 2π
W (v+)

n linearly depends on n (refer to Equation (6.25)), the expression

2π

U0W (v+)

1

r

∑

n∈Z

E (θ, ϕ, νn) e
2πjνn(t− r

c)

is precisely the Fourier series of the far-field Green’s function Gfar (r, ·) inside the prediction

interval. Besides, the hermitianess of E implies that positive and negative frequencies can be
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combined as
∑

n∈Z

E (θ, ϕ, νn) e
2πjνn(t− r

c) =
∑

n∈N

E (θ, ϕ, νn) e
2πjνn(t− r

c) +
∑

n∈N

E (θ, ϕ,−νn) e−2πjνn(t− r
c)

=
∑

n∈N

E (θ, ϕ, νn) e
2πjνn(t− r

c) +
∑

n∈N

[
E (θ, ϕ, νn) e

2πjνn(t− r
c)
]∗

=
∑

n∈N

E (θ, ϕ, νn) e
2πjνn(t− r

c) +

[∑

n∈N

E (θ, ϕ, νn) e
2πjνn(t− r

c)

]∗

= 2Re

(∑

n∈N

E (θ, ϕ, νn) e
2πjνn(t− r

c)

)
.

Finally, the propagating Green’s function of the antenna has the form

Gfar (r, t) =
4π

U0W (v+)

1

r
Re

(∑

n∈N

E (θ, ϕ, νn) e
2πjνn(t− r

c)

)
, t ∈

(
r

c
,
r

c
+
W (v+)

2π

)
. (7.13)

Although the result above seems to be quite simple, it is important to stress that it can only

be directly used when (θ, ϕ) lies in the set {(θi, ϕi)}i∈N⩽M
of collected directions as described at

Section 4.2.For any other case, it is worth using again the definition of E, Equation (3.29), to

see that

Gfar (r, t) =
4π

U0W (v+)

1

r
Re


∑

n∈N

∑

ℓ∈N

∑

|m|⩽ℓ

T ℓm (θ, ϕ) qℓm (νn) e
2πjνn(t− r

c)




=
4π

U0W (v+)

1

r
Re


∑

ℓ∈N

∑

|m|⩽ℓ

T ℓm (θ, ϕ)
∑

n∈N

qℓm (νn) e
2πjνn(t− r

c)


 .

Finally, it is possible to conclude that

Gfar (r, t) =





4π

U0W (v+)

1

r
Re


∑

ℓ∈N

∑

|m|⩽ℓ

T ℓm (θ, ϕ)Qℓm

(
t− r

c

)

 , if t ∈

(
r
c
, r
c
+

W(v+)
2π

)

0, if t /∈
(

r
c
, r
c
+

W(v+)
2π

)

(7.14)

where

Qℓm (t) =
∑

n∈N

qℓm (νn) e
2πjνnt (7.15)

is the retarded Fourier series of the mode qℓm. The Equations (7.14) and (7.15) can be seen as

the main results of this work regarding the propagating Green’s function of the antenna.

7.3 Signal Wave

In this section, the obtained propagating Green’s function will be used to determine the

antenna response E (r, t) to an arbitrary time-domain put U : R → R. For such goal, record
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from Equation (1.2) that

E (r, t) =

ˆ
R
G (r, t′)U (t− t′) dt′. (7.16)

Therefore and since U is a real signal, it holds that

E (r, t) =
4π

U0W (v+)

1

r
Re


∑

ℓ∈N

∑

|m|⩽ℓ

T ℓm (θ, ϕ)

ˆ r/c+W(v+)/2π

r/c

Qℓm

(
t′ − r

c

)
U (t− t′) dt′




=
4π

U0W (v+)

1

r
Re



∑

ℓ∈N

∑

|m|⩽ℓ

T ℓm (θ, ϕ)
∑

n∈N

qℓm (νn)

ˆ r
c
+

W(v+)
2π

r
c

U (t− t′) e2πjνn(t′− r
c)dt′




=
4π

U0W (v+)

1

r
Re


∑

ℓ∈N

∑

|m|⩽ℓ

T ℓm (θ, ϕ)
∑

n∈N

qℓm (νn) e
2πjνn(t− r

c)
ˆ t− r

c

t− r
c
−W(v+)

2π

U (τ) e−2πjνnτdτ


 .

To simplify the above result, consider the definition of auxiliary time-domain functions:

Un (t) =

ˆ t

t−W(v+)
2π

U (τ) e−2πjνnτdτ (7.17)

and

U ℓm (t) =
∑

n∈N

qℓm (νn)Un (t) e
2πjνnt. (7.18)

Finally, the electric field will be hence given by

E (r, t) =
4π

U0W (v+)

1

r
Re


∑

ℓ∈N

∑

|m|⩽ℓ

T ℓm (θ, ϕ)U ℓm

(
t− r

c

)

 . (7.19)

From a mathematical or theoretical perspective, the last three equations, as an algorithm,

shall be considered the main result of this work. In practice, nevertheless, some aspects must

be punctuated. The most obvious, regarding the fact the ℓ must be truncated has already be

discussed in chapter 4. Another issue regards not only the truncation of the frequency, but also

the fact that the lowest collected frequency is certainly different from 2π/W(v+). Such issue is

discussed in the next section.

As a final thought regarding the above equations, it is interesting to notice that 2π/W(v+)

works as a time-resolution of the method in the sense that it is only sensible to inputs whose

dynamics change faster than that value. In order to clarify this fact, consider once again Equa-

tion (7.17) and notice that if the input is practically constant at the interval
[
t− W(v+)/2π, t

]
,
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then the integral can be approximated as

Un (t) = U (t)


−

e−2πjνnt

2πjνn
+
e
−2πjνn

(
t−

W(v+)
2π

)

2πjνn




= U (t)
e−2πjνnt

2πjνn

(
ejνnW(v+) − 1

)

= 0 (7.20)

since νnW (v+) = 2πn. Thus, U ℓm (t) = 0 and E (r, t) = 0, as expected, highlighting the fact

that the antenna works as a band-pass filter which is sensible to changes in its input. In other

words, if the sampling frequencies are poorly chosen, i.e., 2π/W(v+) is high, then W(v+)/2π could

be so small that the method could not perceive changes in the input.

7.4 Pulse-like Inputs

Commonly, it is the case where the input U bears a pulse-like form in a way that it can be

rewritten as

U (t) = Ũ (t) rect

(
t− t◦
T
− 1

2

)
a.e.
=

{
Ũ (t) , if t ∈ (t◦, t◦ + T )

0, if t /∈ (t◦, t◦ + T )
(7.21)

for some Ũ : R → R where t◦ ∈ R is the initial time of the pulse and T is its duration, which

must be less than W(v+)/2π to avoid overlapping as it has been explained in subsection 6.3.6. In

that case, it is worth developing Equation (7.17) a bit further by noticing that

Un (t) =





ˆ tmax

tmin

Ũ (τ) e−2πjνnτdτ, if tmin < tmax

0, if tmin ⩾ tmax

= step

(
tmax

tmin

− 1

) ˆ tmax

tmin

Ũ (τ) e−2πjνnτdτ

(7.22)

where

tmin = max

(
t− W (v+)

2π
, t◦

)
and tmax = min (t, t◦ + T ) . (7.23)

The last result makes it clear that it is important to beforehand calculate, or at least compu-

tationally estimate, integrals on the form

In (a, b) = step

(
b

a

) ˆ a+b

a

Ũ (τ) e−2πjνnτdτ (7.24)

to precisely apply the algorithm. For example, for the particular case where

Ũ (t) = cos (2πνt+ β) , (7.25)
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it holds that

In (a, b) = step

(
b

a

) ˆ a+b

a

cos (2πντ + β) e−2πjνnτdτ

= step

(
b

a

) ˆ a+b

a

(
ej(2πντ+β) + e−j(2πντ+β)

2

)
e−2πjνnτdτ

= step

(
b

a

) ˆ a+b

a

(
ej(2π(ν−νn)τ+β) + e−j(2π(ν+νn)τ+β)

2

)
dτ

= step

(
b

a

)(
ejβ

2

[
e2πj(ν−νn)τ

j (2π (ν − νn))

]a+b

a

− e−jβ

2

[
e−2πj(ν+νn)τ

j (2π (ν + νn))

]a+b

a

)

=
b

2
step

(
b

a

)[
ej(2π(ν−νn)(a+

b
2)+β)sinc

(
(ν−νn) b

)
+ e−j(2π(ν+νn)(a+ b

2)+β)sinc
(
(ν+νn) b

)]

(7.26)

7.5 Phase Correction at Implementation

Although the frequencies {νn}n∈N of the samples are known beforehand, it is most likely that

during the implementation of Equations (7.17) and (7.18) the formula νn = 2π
W (v+)

n is preferred.

In this scenario, one might be led to think that n = 1 correspond to the first frequency on the

collected data and so on. However, this is not true. It important to remember that due to the

causality requirements, negative frequencies had to be included in the frequency band. In this

case, the band becomes symmetric with respect to zero and the collected frequencies figure at

the edges of this band. Therefore, the minimum collected frequency probably has a very high

index.

In order to prevent confusion, it is interesting to normalise those indices. Firstly, let n1 de-

note the index of the lowest collected sample and notice that for any frequency less than the νn1 ,

qℓm is taken as zero since no energy is associated with such frequency. Then, Equation (7.18)

can be rewritten as

U ℓm (t) =
∑

n∈N⩾n1

qℓm (νn)Un (t) e
2πjνnt

and to avoid the inconvenient of dealing with those high indices, a shift is performed on them

in a way that the frequency is redefined as

νn = νn1 +
2π

W (v+)
(n− 1) . (7.27)

With this new definition, Equations (7.17) and (7.18) became valid once again.
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7.6 Results

To analyse the obtained algorithm, it has been used the same set of data considered in

the estimation at Section 4.5. For those data, 2π/W(v+) = 1GHz hence implying a temporal

resolution of 1 ns for the method. Moreover, an input of the form

U (t) = 1V · cos
(
2π · 260GHz · t+ π

2

)
· rect

(
t− t◦
T
− 1

2

)
(7.28)

where t◦ = 2/260GHz = 7.69 ps and T = 5/260GHz = 19.23 ps.

The vertical and horizontal components of the time-domain electric field were then evaluated

over a period of 9 ns at the direction (θ, ϕ) = (36.0◦, 0.0◦) and at a distance r = 2m from the

antenna. As result, Figure 7.1 shows the overall panorama, from which it is clear the that

the causality of the antenna model is preserved, while figures 7.2 and 7.3 care to show the a

time-zoomed form of Figure 7.1 focused on the input and output respectively.

It is interesting noticing the time-width of the response in comparison to the input, high-

lighting the fact that the field in that particular point is the resulted filed produced by infinitely

many emitters on the antenna surface hence spanning from the time when the closest emitter

starts to emit to the time where the furthest emitter cease its emission.
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Figure 7.1: Overall depiction of the Antenna response at a distance of 2m.
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Figure 7.2: Behaviour of the considered input.
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Figure 7.3: Behaviour of the vertical and the horizontal components of the time-domain electric
field at a distance of 2m.
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Figure 7.4 offers another point of view of the previous described process where now the

magnitude E (r, t) of the time-domain electric field is shown over a range of distance at different

instants. It is worth noting the pulse-like response of the field, which delimits its wavefront,

and its free-space attenuation.
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Figure 7.4: Sequential graphs depicting the emitting pulse magnitude as time goes on.

7.A Green’s Function Formalism

Consider an antenna fed by a time-domain input signal U : R → R. The time-domain

electric field produced will have the form

E (r, t) =

ˆ
R
G (r, τ)U (t− τ) dτ (7.29)

where the causality is ensured by requiring that G (r, τ) = 0 for τ < 0.
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E (r, ν) =

ˆ
R

(ˆ
R
G (r, τ)U (t− τ) dτ

)
e−j2πνtdt

=

ˆ
R
G (r, τ)

(ˆ
R
U (t− τ) e−j2πνtdt

)
dτ

=

ˆ
R
G (r, τ) e−j2πντdτ · U(ν)

= G (r, ν) · U(ν)

Consider an input

U (t) = U0 cos (2πν ′t) (7.30)

Hence

Un (ν) = U0 ·
δ (ν − ν ′) + δ (ν + ν ′)

2
(7.31)

The electric field will be

E (r, ν) = G (r, ν)U0 ·
δ (ν − ν ′) + δ (ν + ν ′)

2
(7.32)

Thus,

E (r, ν ′) = G (r, ν ′)U0 (7.33)

Therefore

G (r, ν ′) =
E (r, ν ′)

U0
(7.34)

Finally

G (r, t) =
1

U0

ˆ
R
E (r, ν) ej2πνtdν (7.35)

7.B The Incomplete Gamma Function

The objective of this appendix is calculate the integral
ˆ τ

τ0

τ ′
k
e−j 4π2r

c
νnτ ′dτ ′ (7.36)

where k is a non-negative integer. For such goal, consider the incomplete Gamma function

Γ (·, x) defined by

Γ (α, x0) =

ˆ ∞

x0

xα−1e−xdx. (7.37)

If α is a non-negative integer k, a simple process of integration by parts yields that

Γ (k + 1, x0) = k!e−x0

k∑

a=0

xa0
a!
. (7.38)
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Regarding the original integral, consider the change of variable τ ′ = c
j4π2rνn

x. Then,

ˆ τ

τ0

τ ′
k
e−j 4π2r

c
νnτ ′dτ ′ =

(
c

j4π2rνn

)k+1 ˆ j4π2rνn
c

τ

j4π2rνn
c

τ0

xke−xdx

=

(
c

j4π2rνn

)k+1

·
[ˆ ∞

j4π2rνn
c

τ

xke−xdx−
ˆ ∞

j4π2rνn
c

τ0

xke−xdx

]

=

(
c

j4π2rνn

)k+1

·
[
Γ

(
k + 1,

j4π2rνn
c

τ

)
− Γ

(
k + 1,

j4π2rνn
c

τ0

)]

=

(
c

j4π2rνn

)k+1

·
k∑

a=0

k!

a!

(
j4π2rνn

c

)a [
τae−

j4π2rνn
c

τ − τa0 e−
j4π2rνn

c
τ0

]

=
c

j4π2rνn

k∑

a=0

k!

a!

(
c

j4π2rνn

)k−a [
τae−

j4π2rνn
c

τ − τa0 e−
j4π2rνn

c
τ0

]
.

= hkn (r, τ)
e−

j4π2rνn
c

τ

r
− hkn (r, τ0)

e−
j4π2rνn

c
τ0

r
, (7.39)

where it is important to notice that the function hkn does not have zeros at r = 0·



Chapter 8

Conclusions

Taking into consideration the achieved results, specially those that came to fruition re-

garding the obtained expression for the time-domain electric field, it can be said that this has

reached its main objective, as described in the Introduction. Nevertheless, it is convenient to

make some comments about its secondary goals.

Initially, it had been intended to develop a new sampling method for reducing the number

of collected samples while keeping the same reconstruction performance of WNSST. In the

search of such method, a new class of sampling theorems, derived from Theorem 5.2 and based

on regular Sturm-Liouville operators, self-adjoint for separated boundary conditions has been

developed. Some of them performed better than WNSST for a class of functions, in particular

those with rapid variations, which can hence be considered as a byproduct of this research.

For this reason their kernel were considered to produce constructors. The main difficulty with

those kernels arose from the causality requirement since all of them were real-valued. However,

it is known that by loosing some constraints on the Sturm-Liouville Theory, it is possible to

reach complex-valued kernels, which could certainly be used improve the performance of the

algorithm. Since no more time could be spending on that direction, such problem is then left

as suggestion for future research.
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Appendix A

Fourier Analysis of Causality

Let h and h denote a pair of time/frequency-domain Fourier transform. Moreover, consider

h to be the impulse response of a PLTI system, i.e., h is real-valued and the condition t < 0

must imply h (t) = 0 to prevent any advanced response from the system. This appendix brings

forth sufficient conditions one must impose over h to ensure the causality of the said system.

A.1 Cauchy Principal Value

Definition A.1 (Cauchy Principal Value). Let the function f : R\{υ◦} → C not be Lebesgue

integrable on its domain. If, nevertheless, the limit

lim
ε→0+

[ˆ
(−∞,υ◦−ε]

f (υ) dυ +

ˆ
[υ◦+ε,+∞)

f (υ) dυ

]

exists, then it is said to be the Cauchy Principal Value of the integral of f and it is denoted by

PV

ˆ
R
f (υ) dυ.

Definition A.2. The signum function sgn : R→ {−1, 0,+1} is defined as

sgn (t) =





−1, if t < 0

0, if t = 0

+1, if t > 0

(A.1)

As stated in [Kam08, Ch. 7, Eq. 69, Page 395], the Fourier transform of the signum function

is the tempered distribution

F (sgn) (ν) =
1

jπ
PV

(
1

ν

)
. (A.2)

A.2 Kramers-Kronig Relations

A function f : D ⊆ R→ C is said to obey the Kramers-Kronig relations at υ◦ ∈ D when it

holds that

f (υ◦) =
1

jπ
PV

ˆ
R

f (υ)

υ − υ◦
dυ. (A.3)
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The plural in the word relations is due to the fact that the last equation, when its real and

imaginary parts are taken, leads to the following real conditions

Re f (υ◦) =
1

π
PV

ˆ
R

Im f (υ)

υ − υ◦
dυ (A.4)

Im f (υ◦) = −
1

π
PV

ˆ
R

Re f (υ)

υ − υ◦
dυ, (A.5)

which actually comes to be known as Kramers-Kronig relations. Commonly, one is most in-

terested in the case where f is well defined for any real value, i.e., D = R, and it obeys

Kramers-Kronig relations at any υ◦ ∈ R. At the desired case when it does happen, the function

is simply said to obey Kramers-Kronig relations.

As the firsts conclusions on this matter, consider the following easily checkable statements:

Property A.1. A function obeys Kramers-Kronig relations if, and only if, its real and imaginary

parts are a pair of Hilbert transform, i.e., Re f = −H (Im f) and Im f = H (Re f).

Property A.2. A pure real function f , i.e., Im f = 0, does not obey Kramers-Kronig relations

unless it is zero everywhere.

Property A.3. A pure imaginary function f , i.e., Re f = 0, does not obey Kramers-Kronig

relations unless it is zero everywhere.

As it will soon be shown, there is a close relationship between causality and the Kramers-

Kronig relation. For this reason, it becomes interesting to ensure that those relations hold.

This section is mainly meant to present, in the following results, a sufficient condition for this

to happen.

Proposition A.1. Let C+ =
{
υ ∈ C; Im (υ) > 0

}
denote the upper half-plane, D ⊆ C be

open, ζ : D → C be holomorphic in its domain and Γ ⊂ C+ be the set of all isolated singularities

of ζ in the upper half-plane and in the real line, which is assumed to be finite. If C+ \ Γ ⊂ D;

and every υ ∈ Γ ∩R is a pole of order 1; and lim
r→∞

r · sup
{
|ζ (υ)| ; |υ| = r ∧ υ ∈ C+

}
= 0, then

PV

ˆ
R
ζ (υ) dυ = 2πj

∑

υ∈Γ\R

Res (ζ, υ) + πj
∑

υ∈Γ∩R

Res (ζ, υ) . (A.6)

Proof. Cf . [Net05, Sec. 4.4, page 242].

Lemma A.1. Let D ⊆ C be open, f : D → C be holomorphic in its domain and Γ ∈ C+

denote the set of all isolated singularities of f , which is assumed to be finite. If C+ \ Γ ⊂ D;

and every element in Γ ∩ R is pole of order 1; and lim
r→∞

f
(
rejθ

)
= 0 for any θ ∈ [0, π]; then for

any real value υ◦ ∈ R \ Γ , it holds that

f (υ◦) =
1

jπ
PV

ˆ
R

f (υ)

υ − υ◦
dυ − 2

∑

υ∈Γ\R

Res (f, υ)

υ − υ◦
−
∑

υ∈Γ∩R

Res (f, υ)

υ − υ◦
. (A.7)
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Proof. The result is a direct consequence of the order of the real poles in Proposition A.1. In

fact, take ζ (υ) = f(υ)
υ−υ◦

and notice that Γ = Γ ∪{υ◦}, Γ∩R = (Γ ∩ R)∪{υ◦}, Γ \R = Γ \R and

Res (ζ, υ) =





Res(f,υ)
υ−υ◦

, if υ ̸= υ◦

f (υ◦) , if υ = υ◦
.

Hence,

PV

ˆ
R

f (υ)

υ − υ◦
dυ = 2πj

∑

υ∈Γ\R

Res (ζ, υ) + πj
∑

υ∈Γ∩R

Res (ζ, υ) + πj · Res (ζ, υ◦)

= 2πj
∑

υ∈Γ\R

Res (f, υ)

υ − υ◦
+ πj

∑

υ∈Γ∩R

Res (f, υ)

υ − υ◦
+ πj · f (υ◦) ,

which yields the result. ■

Theorem A.1 (Holomorphism =⇒ Kramers-Kronig). Let D ⊆ C be open with C+ ⊂ D, and

consider a function f : D → C such that lim
r→∞

f
(
rejθ

)
= 0 for any θ ∈ [0, π]. If f is holomorphic

in D, then it obeys the Kramers-Kronig relations. I.e.,

f is holomorphic in D =⇒ f (υ◦) =
1

jπ
PV

ˆ
R

f (υ)

υ − υ◦
dυ, ∀υ◦ ∈ R. (A.8)

Proof. The result comes as a particular case of Lemma A.1 where Γ = ∅. ■

Theorem A.1 is the sought result and it can quickly be summed up as: if a function f is

holomorphic everywhere in an open set containing the upper half-plane and the real line and

it goes to zero in their edges, then its restriction to the real line f |R obeys the Kramers-Kronig

relations. As consequence, if such function has singularities, then they must figure in the lower

half-plane.

Lastly, it must be highlighted that the converse of Theorem A.1 is not true. Which, in

other words, means that obeying Kramers-Kronig is not a sufficient condition to Holomorphism.

In fact, it is possible to construct a non-analytic (hence non-holomorphic) function for which

Kramers-Kronig is still valid. To illustrate this possibility, in the context of Lemma A.1, take for

example f (z) = 1
(z−j)2

, whose only one pole lies in upper half-plane and clearly Res (f, j) = 0.

Thus, f obeys Kramers-Kronig even though it is not holomorphic.

A.3 Parity and Hermitianness on Fourier transform Pairs

Throughout this section, let f and f denote a generic pair of time/frequency-domain Fourier

transform where f is real. In this context, consider the following definitions and results.

Property A.4. f is even ⇐⇒ f is real and even;
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Property A.5. f is odd ⇐⇒ f is imaginary and odd.

The above properties are easily verified by considering a simple application of Euler’s formula

in the Fourier transform, as follows

f (ν) =

ˆ
R

f (t) · cos (2πνt) dt− j
ˆ
R

f (t) · sin (2πνt) dt, (A.9)

f (t) =

ˆ
R

(
Re f (ν) · cos (2πνt)− Im f (ν) · sin (2πνt)

)
dν

+ j

ˆ
R

(
Re f (ν) · sin (2πνt) + Im f (ν) · cos (2πνt)

)
dν. (A.10)

Definition A.3 (Even and odd parts of a time-domain function). The even and odd parts of

f are the time-domain functions fe, fo : R→ R, respectively, defined by

fe (t) =
f (t) + f (−t)

2
and fo (t) =

f (t)− f (−t)
2

.

Property A.6. f = fe + fo.

Property A.7. The Fourier transform of fe is even and real.

Property A.8. The Fourier transform of fo is odd and imaginary.

Motivated by the last two properties, consider the following definition.

Definition A.4 (Even and odd parts of a frequency-domain function). The even and odd parts

of f are the frequency-domain functions fe, fo : R → R, respectively, defined by fe = F
(

fe
)

and jfo = F
(

fo
)
.

Property A.9. f = fe + jfo.

Property A.10. fe (t) =
f(t)+f(−t)

2
.

Property A.11. fo (t) =
f(t)−f(−t)

2j
.

More generally, it holds that

Proposition A.2. f is real ⇐⇒ f is hermitian.

Proof. (=⇒) It is a direct consequence of the parities of fe and fo and Property A.9. (⇐=) It

can be easily verified from Equation (A.10). ■
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A.4 Results on Causality

Consider once again a PLTI system and let h be its time-domain impulse response, meaning

that h must be real and h (t) = 0 if t < 0, while h denotes the Fourier transform of h . In this

context, the following results hold.

Lemma A.2 (Causality =⇒ Hermitianness). If h is the Fourier transform of the impulse

response h of a PLTI system, then h is hermitian.

Proof. Since h is real, the Proposition A.2 yields the result. ■

Lemma A.3. ho = sgn · he and he
a.e.
= sgn · ho.

Proof. Initially, one must be able to notice that given t ∈ R \ {0}, either h (t) or h (−t) is zero.
Hence, by studying the Definition A.3, the even and odd parts of h can be rewritten as

he (t) =
1

2





h (−t) , if t < 0

2h (0) , if t = 0

h (t) , if t > 0

and ho (t) =
1

2





−h (−t) , if t < 0

0, if t = 0

h (t) , if t > 0

,

from which it is now easy to notice that ho (t) = sgn (t) · he (t), yielding the first result. For the

second result, consider multiplying both sides of the first by sgn, which would lead to

sgn (t) ho (t) = sgn (t)2 · he (t) =
{

he (t) , if t ̸= 0

0, if t = 0
.

Thus, he (t) = sgn (t) ho (t) for any t ∈ R \ {0}, and since {0} has zero measure, the equality

holds almost everywhere, yielding the second result. ■

Lemma A.4. h a.e.
= sgn · h .

Proof. It is enough to sum the two results from Lemma A.3. ■

Corollary A.1. For any frequency ν ∈ R, h must be such that

h (ν) = − 1

jπ
PV

ˆ
R

h (υ)

υ − ν dυ. (A.11)

Theorem A.2 (Causality ⇐⇒ Kramers-Kronig + Hermitianness). A frequency-domain

function h : R → C is the Fourier transform of the impulse response of a PLTI system if,

and only if, it is hermitian and h∗ obeys Kramers-Kronig relations.
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Proof. (=⇒) The hermitianness of h is ensured by Lemma A.2, while the fact that h∗ obeys

Kramers-Kronig relations is a direct consequence of Corollary A.1. (⇐=) Since h∗ obeys

Kramers-Kronig relations, it holds that

h (ν)∗ =
1

jπ
PV

ˆ
R

h (υ)∗

υ − ν dυ =⇒ h (ν) = − 1

jπ
PV

ˆ
R

h (υ)

υ − ν dυ, ∀ν ∈ R.

If the inverse Fourier transform is taken on the above equation, it yields h (t) = sgn (t) · h (t),

which makes it clear that h (t) = 0 for any t < 0. The reality of h is ensured by the hermitianness

of h. Thus, h has what is needed to be the impulse response of a PLTI system. ■

Theorem A.3 (Holomorphism + Hermitianness =⇒ Causality). Consider an open setD ⊆ C
such that C+ ∈ D and let h∗ : D → C be holomorphic in D and lim

r→∞
h∗
(
rejθ

)
= 0 for any

θ ∈ [0, π]. If the restriction h|R is hermitian, then it also is the frequency-domain impulse

response of a PLTI system.

Proof. The holomorphism implies Kramers-Kronig relations (Theorem A.1), which with the

hermitianness implies the causality (Theorem A.2). ■

The last result establishes sufficient conditions over h so it correspond to a causal system and

hence it may be seen as the main conclusion of this appendix. It must be stressed, nevertheless,

that this result is not actually necessary for causality, by reasons that have been explained in

the end of Section A.2. Thus, it is possible that holomorphism in the upper half-plane and in

the real line cannot be ensured, hence making the requirements quite restrictive. If it were the

case, chances are that Theorem A.2 is the attained result to guarantee causality.



Appendix B

Spherical Coordinate System

This appendix aims to document some conversion results between spherical and cartesian

coordinates. The figure B.1 conveniently depicts the parameters (r, θ, ϕ) and the unit vectors

(r̂, θ̂, ϕ̂) with respect to the cartesian frame. As usual, r ∈ [0,∞) is radius; θ ∈ [0, π] is the

polar angle; and ϕ ∈ [−π, π] is the azimuthal angle.

O

x̂

ŷ

ẑ

r

ϕ

θ

θ̂

ϕ̂

r̂

Figure B.1: Spherical Coordinates parameters and unit vectors depiction.

B.1 Position Parameters conversion

A vector position r ∈ R3 can either be represented at the cartesian basis using the coordi-

nates (x, y, z) or spherically by the triple (r, θ, ϕ). The conversion between those coordinates is

given by

• Spherical to cartesian:




x = r cosϕ sin θ (B.1)

y = r sinϕ sin θ (B.2)

z = r cos θ (B.3)

• Cartesian to Spherical:




r =
√
x2 + y2 + z2 (B.4)

θ = arccos
(z
r

)
(B.5)

ϕ = sgn (y) · arccos
( x

r sin θ

)
(B.6)
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B.2 Vector Components Conversion

Given a vector
−→
F in a tridimensional euclidean space, it can then be represented by its

cartesian and spherical components as follows

−→
F = Fxx̂ + Fyŷ + Fz ẑ = Frr̂ + Fθθ̂+ Fϕϕ̂. (B.7)

The conversion between these components is given by



Fx

Fy

Fz


 = M (θ, ϕ)



Fr

Fθ

Fϕ


 (B.8)

where the rotation matrix

M (θ, ϕ) =



sin θ cosϕ cos θ cosϕ − sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0


 (B.9)

is, of course, orthogonal.



Appendix C

Special Functions

C.1 Spherical Bessel Functions

C.2 Associated Legendre Polynomials

As it will be clear in the next appendices, the associated Legendre polynomials play an

important role in describing the spherical harmonics and, therefore, the solutions of scalar and

vector HHE.

Definition C.1. Given ℓ ∈ N0 and m ∈
{
m′ ∈ Z; |m′| ⩽ ℓ

}
, the ℓ-degree m-order associated

Legendre polynomial Pm
ℓ : [−1, 1]→ R is defined1 as

Pm
ℓ (u) =

(−1)m
2ℓℓ!

(
1− u2

)m/2 dℓ+m

duℓ+m

(
u2 − 1

)ℓ
. (C.1)

Property C.1. |m| > ℓ =⇒ Pm
ℓ = 0.

Property C.2. P−m
ℓ = (−1)m (ℓ−m)!

(ℓ+m)!
Pm
ℓ .

Proposition C.1. Pm
ℓ is a solution of the associated Legendre equation

[ (
1− u2

)
y′
]′
+

[
ℓ (ℓ+ 1)− m2

1− u2
]
y = 0. (C.2)

Proof. See [Bel04, Sec. 3.8]

Proposition C.2 (Orthogonality in degree).

ˆ 1

−1

Pm
ℓ (u)Pm

ℓ′ (u) du =
2

2ℓ+ 1

(ℓ+m)!

(ℓ−m)!
δℓℓ′ . (C.3)

Proof. See [Bel04, Theorem 3.11]

1Commonly, Pm
ℓ is defined from the m-th derivative of the ℓ-degree Legendre polynomial Pℓ and (C.1)

becomes a consequence of such definition and Rodrigue’s Formula. However, since this approach is not able to
accommodate negative values of m, the property C.2 becomes hence a definition.
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Proposition C.3 (Orthogonality in order).

ˆ 1

−1

mm′

1− u2P
m
ℓ (u)Pm′

ℓ (u) du = m
(ℓ+m)!

(ℓ−m)!
δmm′ . (C.4)

Proposition C.4 (Orthogonality in degree).

ˆ 1

−1

(
m2

1− u2P
m
ℓ P

m
ℓ′ +

(
1− u2

) dPm
ℓ

du

dPm
ℓ′

du

)
du

= ℓ (ℓ+ 1)
2

2ℓ+ 1

(ℓ+m)!

(ℓ−m)!
δℓℓ′ (C.5)



Appendix D

Spherical Scalar Solutions of HHE

D.1 Separation of Variables

The starting point for reaching spherical vector solutions of the HHE is to study its spherical

scalar solutions. In this direction, let ψ ∈ C2(R3;C) ∩ L2 (R3,Σ, ν), where Σ denotes the R3

Borel σ-algebra and ν : Σ → R⩾0 represents the R3 Lebesgue measure, be a nontrivial scalar

solution of the HHE:

∇2ψ + k2ψ = 0. (D.1)

Since the above PDE is linear, the method of separation of variables is of course the most

traditional approach, in which solutions of the form ψ (r, θ, ϕ) = R (r)Θ (θ) Φ (ϕ) are studied.

After some algebraic work, the following three ordinary differential equations are isolated:

Φ′′ +m2Φ = 0, (D.2)

(sin θ ·Θ′)′

sin θ
+

(
ℓ (ℓ+ 1)− m2

sin2 θ

)
Θ = 0, (D.3)

(
r2R′)′ +

(
k2r2 − ℓ (ℓ+ 1)

)
R = 0, (D.4)

where ℓ and m are eigenvalues-related coupling constants.

D.2 Solutions of Equation (D.2)

It is straightforward to see that the solutions of (D.2) are Φm (ϕ) = ejmϕ, where it must be

required that m ∈ Z to ensure the continuity and differentiability of Φ at ϕ = 0 and ϕ = 2π.

D.3 Solutions of Equation (D.4)

Finally, by taking v = kr, the equation (D.4) becomes the ℓ-order Spherical Bessel Dif-

ferential Equation [Nis, Sec. 10.47], whose standard pairwise linearly independent solutions
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are

z1ℓ = jℓ, (Bessel function of the first kind)

z2ℓ = yℓ, (Bessel function of the second kind)

z3ℓ = h
(1)
ℓ , (Hankel function of the first kind)

z4ℓ = h
(2)
ℓ . (Hankel function of the second kind)

For convenience, these solutions shall be compactly represented in the single notation zsℓ labelled

by the superscript s ∈ {1, 2, 3, 4} as above shown. Thus, Rℓs (r) = zsℓ (kr).

D.4 Solutions of Equation (D.3)

Moreover, by defining u = cos θ, (D.3) reveals itself as the Associated Legendre Equation

[Nis, Subsec. 14.2.ii], whose solutions at the poles u = ±1 converge only if ℓ ∈ N0 [Bel04,

Sec. 3.1]. Hence, Θℓm (θ) = Pm
ℓ (cos θ), which vanishes if |m| > ℓ.
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The complete solution will hence be given by

ψ (r, θ, ϕ) =
∑

ℓ∈N

∑

|m|⩽ℓ

∑

s∈B

cℓmsz
s
ℓ (kr)Y

m
ℓ (θ, ϕ) . (D.5)

D.5 Spherical Harmonics

Definition D.1.

Y m
ℓ (θ, ϕ) =

√
2ℓ+ 1

4π

√
(l −m)!

(l +m)!
Pm
ℓ (cos θ) ejmϕ (D.6)

Proposition D.1. Y m
ℓ

∗ = (−1)m Y −m
ℓ .

Proof. In light of the Property C.2, consider the following

Y m
ℓ

∗ (θ, ϕ) =

√
2ℓ+ 1

4π

√
(l −m)!

(l +m)!
Pm
ℓ (cos θ) e−jmϕ

=

√
2ℓ+ 1

4π

√
(l −m)!

(l +m)!
(−1)m (ℓ+m)!

(ℓ−m)!
P−m
ℓ (cos θ) e−jmϕ

= (−1)m
√

2ℓ+ 1

4π

√
(l +m)!

(l −m)!
P−m
ℓ (cos θ) e−jmϕ

= (−1)m Y −m
ℓ (θ, ϕ) . ■

Proposition D.2. Proof.

∂Y m
ℓ

∂θ
(θ, ϕ) =

√
2ℓ+ 1

4π

√
(ℓ−m)!

(ℓ+m)!

∂

∂θ

(
Pm
ℓ (cos θ)

)
ejmϕ

= −
√

2ℓ+ 1

4π

√
(l −m)!

(l +m)!
Pm
ℓ

′ (cos θ) sin θejmϕ

Thus,

∂Y m
ℓ

∂θ
(0, ϕ) =

∂Y m
ℓ

∂θ
(π, ϕ) = 0.

If θ ̸= 0, [Nis, Eq. 14.10.5] can be used as

sin θPm
ℓ

′ (cos θ) = (ℓ+m)
1

sin θ
Pm
ℓ−1 (cos θ)− ℓ

cos θ

sin θ
Pm
ℓ (cos θ) .
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Hence,

∂Y m
ℓ

∂θ
(θ, ϕ) =

√
2ℓ+ 1

4π

√
(ℓ−m)!

(ℓ+m)!

[
ℓ
cos θ

sin θ
Pm
ℓ (cos θ)− (ℓ+m)

1

sin θ
Pm
ℓ−1 (cos θ)

]
ejmϕ

= ℓ
cos θ

sin θ
Y m
ℓ (θ, ϕ)−

√
2ℓ+ 1

4π

√
(ℓ−m)!

(ℓ+m)!

[
(ℓ+m)

1

sin θ
Pm
ℓ−1 (cos θ)

]
ejmϕ

= ℓ
cos θ

sin θ
Y m
ℓ (θ, ϕ)−

√
2ℓ+ 1

2ℓ− 1

√
ℓ2 −m2

sin θ
Y m
ℓ−1 (θ, ϕ)

■

Proposition D.3.

"
Y m
ℓ

∗Y m′

ℓ′ dΩ = δℓℓ′δmm′ (D.7)

Proposition D.4.

" (
mm′Y m

ℓ
∗Y m′

ℓ′

sin2 θ
+
∂Y m

ℓ
∗

∂θ

∂Y m′

ℓ′

∂θ

)
dΩ = ℓ (ℓ+ 1) δℓℓ′δmm′ (D.8)

Proposition D.5.

" (
mY m

ℓ
∗

sin θ

∂Y m′

ℓ′

∂θ
+
∂Y m

ℓ
∗

∂θ

m′Y m′

ℓ′

sin θ

)
dΩ = 0 (D.9)

Definition D.2.

Y ℓm =
1√

ℓ (ℓ+ 1)




√
ℓ (ℓ+ 1)Y m

ℓ 0 0

0
jmY m

ℓ

sin θ

∂Y m
ℓ

∂θ

0 −∂Y
m
ℓ

∂θ

jmY m
ℓ

sin θ




(D.10)

Proposition D.6. Y ∗
ℓm = (−1)m Y ℓ,−m
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Proof.

Y ∗
ℓm =

1√
ℓ (ℓ+ 1)




√
ℓ (ℓ+ 1)Y m

ℓ
∗ 0 0

0
−jmY m

ℓ
∗

sin θ

∂Y m
ℓ

∗

∂θ

0 −∂Y
m
ℓ

∗

∂θ

−jmY m
ℓ

∗

sin θ




=
(−1)m√
ℓ (ℓ+ 1)




√
ℓ (ℓ+ 1)Y −m

ℓ 0 0

0
−jmY −m

ℓ

sin θ

∂Y −m
ℓ

∂θ

0 −∂Y
−m
ℓ

∂θ

−jmY −m
ℓ

sin θ




= (−1)m Y ℓ,−m. ■

Proposition D.7. "
Y H

ℓmY ℓ′m′dΩ = I3δℓℓ′δmm′ . (D.11)



Appendix E

Spherical Vector Solutions of HHE

E.1 Vector Spherical Harmonics

The Vector Spherical Harmonics are three vector solutions of the HHE. Here lies an outline

description of them and some of their properties.

E.1.1 The L Field

Definition E.1. Let ψ be a nontrivial scalar solution of the HHE

L = ∇ψ (E.1)

Property E.1. ∇×L = 0.

Property E.2. ∇·L = −k2ψ.
Property E.3. ∇2L+ k2L = 0.

E.1.2 The M Field

Definition E.2. M = ∇×(ψr)

Property E.4. ∇·M = 0

Property E.5. M = L× r

Property E.6. ∇2M + k2M = 0.

Property E.7. ∇×(∇×M ) = k2M .

E.1.3 The N Field

Definition E.3. N =
1

k
∇×M

Property E.8. ∇·N = 0
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Property E.9. ∇×N = kM

Property E.10. ∇×(∇×N ) = k2N .

Property E.11. ∇2N + k2N = 0.

E.1.4 Linear Independence

Since L, M and N are meant to generate any solution of the vector Helmholtz equation.

It is usual to ask if they are in fact linearly independent in the euclidian space R3. In this

sense, it can be shown that only when they derive from ψs
00, the vectors M and N are both

zero. Hence, those vectors are not able to generate spherically symmetric vector solutions of

the Helmholtz Equation.

E.1.5 Spherically Symmetric Solutions

Since the vectors L, M and N are not able to provide spherically symmetric solutions to

the vector HHE, those solutions shall be find in another fashion. In other words, it must be

found vector fields with no dependence on θ or ϕ, hence of the form

F (r) = Fr (r) r̂ + Fθ (r) θ̂+ Fϕ (r) ϕ̂, (E.2)

such that

∇2F (r) + k2F (r) . (E.3)

For this particular case, it is possible to shown, by using the vector laplacian in spherical

coordinates, that the only possible solution is

F (r) = zs1 (kr) r̂. (E.4)

E.2 Vector Spherical Solutions of the HHE

It is finally possible to discuss the general vector solutions of the HHE given by

∇2Ψ+ k2Ψ = 0. (E.5)

The complete solution would have the form

Ψ (r, θ, ϕ) =
∑

ℓ∈N

∑

|m|⩽ℓ

∑

s∈B

(λsℓmL
s
ℓm + µs

ℓmM
s
ℓm + νsℓmN

s
ℓm)

=
∑

ℓ∈N

∑

|m|⩽ℓ

∑

s∈B

[
Ls

ℓm M s
ℓm N s

ℓm

]


λsℓm
µs
ℓm

νsℓm




=
∑

ℓ∈N

∑

|m|⩽ℓ

∑

s∈B

Y ℓm (θ, ϕ)Zℓs (kr) qℓms
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Where the matrix Zℓs would then be given by

Zℓs (kr) =




kzs′ℓ (kr)√
ℓ (ℓ+ 1)

0
√
ℓ (ℓ+ 1)

zsℓ (kr)

kr

0 zsℓ (kr) 0

zsℓ (kr)

r
0

1

kr

d

dr

(
rzsℓ (kr)

)




However, for the particular case where the Ψ is a solenoidal field, ∇·Ψ = 0, which will be

the case for the electromagnetic field in this report, it can be easily shown that λsℓm = 0. Hence,

it is convenient to redefine

qℓms =

[
µs
ℓm

νsℓm

]
(E.6)

and

Definition E.4.

Zℓs (kr) =




0
√
ℓ (ℓ+ 1)

zsℓ (kr)

kr
zsℓ (kr) 0

0
1

kr

d

dr

(
rzsℓ (kr)

)



. (E.7)

Proposition E.1 (Analytic continuation). Zℓs (−kr) = (−1)ℓ Zℓs (kr)
∗
[
1 0
0 −1

]

Proof. It is enough to consider the analytic continuation of Hankel functions: zsℓ (−u) =

(−1)ℓ zsℓ (u)∗, cf . [AS13, Eq. 10.1.36-37, page 439]. ■

E.3 Particularisation For Solenoidal Fields

E.4 Asymptotic Behaviour



Appendix F

Definitions and Results in Vector Calculus

F.1 First Derivatives

∇ (φψ) = ψ∇φ+ φ∇ψ (Gradient of Product)

∇·(φF ) = φ∇·F + F · ∇φ (Divergence of Product)

∇·(F ×G) = (∇×F ) ·G− F · (∇×G) (Divergence of Cross Prod.)

∇×(φF ) = φ∇×F +∇φ× F (Curl of Product)

F.2 Second Derivatives

∇2φ = ∇·(∇φ) (Scalar Laplacian Definition)

∇2F = ∇ (∇·F )−∇×(∇×F ) (Vector Laplacian Definition)

∇·(∇×F ) = 0 (Divergence of Curl)

∇×(∇φ) = 0 (Curl of Gradient)

∇2 (φψ) = ψ∇2φ+ φ∇2ψ + 2∇φ · ∇ψ (Scalar Laplacian of Prod.)

∇2(φF ) = F∇2φ+ φ∇2F + 2(∇φ ·∇)F (Vector Laplacian of Prod.)

F.3 Third Derivatives

∇2 (∇φ) = ∇
(
∇2φ

)
(Laplacian of Gradient)

∇2 (∇·F ) = ∇·
(
∇2F

)
(Laplacian of Divergence)

∇2 (∇×F ) = ∇×
(
∇2F

)
(Laplacian of Curl)
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F.4 ∇ in Spherical Coordinates

∇φ =
∂φ

∂r
r̂ +

1

r

∂φ

∂θ
θ̂+

1

r sin θ

∂φ

∂ϕ
ϕ̂ (Gradient in Spherical Coord.)

∇·F =
1

r2
∂

∂r

(
r2Fr

)
+

1

r sin θ

∂

∂θ
(sin θ · Fθ) +

1

r sin θ

∂Fϕ

∂ϕ
(Divergence in Spherical Coord.)

∇×F =
1

r sin θ

(
∂

∂θ
(sin θ · Fϕ)−

∂Fθ

∂ϕ

)
r̂

+
1

r

(
1

sin θ

∂Fr

∂ϕ
− ∂

∂r
(rFϕ)

)
θ̂

+
1

r

(
∂

∂r
(rFθ)−

∂Fr

∂θ

)
ϕ̂ (Curl in Spherical Coord.)

∇2φ =
1

r2
∂

∂r

(
r2
∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

r2 sin2 θ

∂2φ

∂ϕ2

(Scalar Laplacian in Spherical Coord.)

∇2F =

(
∇2Fr −

2Fr

r2
− 2

r2 sin θ

(
∂Fθ sin θ

∂θ
+
∂Fϕ

∂ϕ

))
r̂

+

(
∇2Fθ −

Fθ

r2 sin2 θ
+

2

r2
∂Fr

∂θ
− 2 cos θ

r2 sin2 θ

∂Fϕ

∂ϕ

)
θ̂

+

(
∇2Fϕ −

Fϕ

r2 sin2 θ
+

2

r2 sin2 θ

∂Fr

∂ϕ
+

2 cos θ

r2 sin2 θ

∂Fθ

∂ϕ

)
ϕ̂

(Vector Laplacian in Spherical Coord.)
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