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ABSTRACT 

The automatic and accurate detection of mangroves from remote sensing data is essential 

to assist in conservation strategies and decision-making that minimize possible 

environmental damage, especially for the Brazilian coast with continental dimensions. In 

this context, segmentation techniques using deep learning are powerful tools with 

successful applications in several areas of science, achieving results superior to traditional 

machine learning methods. However, few studies used deep learning for mangrove areas, 

and none considered time series of radar images. The present research has the following 

objectives: (a) development of a mangrove dataset for deep learning in the Southeast 

region of Brazil considering the spatial, temporal, and polarization dimensions; (b) 

evaluation of U-net architecture models with three backbones different (ResNet -101, 

VGG16, and Efficient-net-B7); (c) compare the detection capability of Sentinel-1 images 

using the following VV-only, VH-only, and VV+VH polarizations; and (d) evaluate the 

number of temporal images for the best detection of targets (29, 15, 8, 4 images), in the 

case of using both polarizations the number of images doubles. This research uses the 

annual Sentinel-1 time series for the period 2017-2020. Data labeling used manual 

interpretation, resulting in 2,886 images with spatial dimensions of 128x128 pixels and 

their respective annotations (2,136 for training, 450 for validation, and 300 for testing). 

The best result considered both polarizations (VV+VH), the maximum number of time-

series images (29 VV and 29 VH), U-net with the Efficient-net-B7 backbone, and a 

threshold of 0.75 (97.35 accuracy, 85.77 precision, 84.96 recall, 85.36 F-score, and 74.46 

IoU). The entire image classification used a sliding window approach considering five 

stride values (8, 16, 32, 64, 128 pixels), where the best result was with 8 pixels. The 

present method is suitable for monitoring mangrove patterns over time, providing 

subsidies for conserving these ecosystems. 

 

Keywords: mangrove mapping, synthetic aperture radar (SAR), remote sensing, deep 

learning, convolutional neural networks 

 

 

 

 

 



iii 
 

TABLE OF CONTENTS 
ABSTRACT .............................................................................................................. ii 

LIST OF FIGURES ................................................................................................... iv 

LIST OF TABLES ..................................................................................................... iv 

1. INTRODUCTION ................................................................................................... 1 

2. MATERIALS AND METHODS ............................................................................... 4 

2.1 Study area........................................................................................................ 4 

2.2 Sentinel-1 data ................................................................................................. 5 

2.3 Annotations ..................................................................................................... 6 

2.4 Training, validation, and test dataset ................................................................ 6 

2.5 Deep learning approach .................................................................................... 7 

2.6 Analysis of different sets of temporal images ..................................................... 7 

2.7 Sliding window approach ................................................................................. 8 

2.8 Accuracy metrics .............................................................................................. 8 

3. RESULTS .............................................................................................................. 9 

3.1 Accuracy metrics .............................................................................................. 9 

3.2 Evaluation of number of images in the time series composition ........................ 11 

3.3 Sliding windows results .................................................................................. 11 

4. DISCUSSION ...................................................................................................... 13 

5. CONCLUSIONS................................................................................................... 14 

REFERENCE........................................................................................................... 15 

 

 

 

 

  



iv 
 

LIST OF FIGURES 

Figure 1. Research methodological flowchart, where Eff-B7 is Efficient-net-B7 and R-101 is 

ResNet-101..................................................................................................................... 4 

Figure 2. Study area in southeastern Brazil. ....................................................................... 5 

Figure 3. Mangrove images: (A) color composition of VH Sentinel-1 temporal bands (RGB: 

04/03/2019, 01/09/2019, and 02/02/2019); (B) mangrove vector (ground truth – red line) on the 

color composite S-1; (C) mangrove vector over the color composite of Sentinel-2 images (RGB: 

4-8-2 bands) dated 12/11/2018; (D) segmentation result showing true negative (white), false 

positive (blue), false negative (red) and true positive (green). ............................................. 12 

 

LIST OF TABLES 

Table 1. Studies of mangroves using deep learning techniques. ............................................ 3 

Table 2. Accuracy, precision, recall, F-score, and Intersection over Union (IoU) results for the 

VV-only, VH-only, and VV+VH polarizations considering the U-net architecture with the 

Efficient-net-B7 (Eff-B7), ResNet-101 (R-101), and VGG16 backbones. ............................. 10 

Table 3. Inference time and time to train a single epoch for the single and dual polarizations 

considering the U-net architecture with the Efficient-net-B7 (Eff-B7), ResNet-101 (R-101), and 

VGG16 backbones. ....................................................................................................... 11 

Table 4. Accuracy, precision, recall, F-score, and Intersection over Union (IoU) results for the 

VV+VH polarizations considering different numbers of images in the time series composition 

(22, 15, 8, and 4) using the best model (U-net architecture with the Efficient-net-B7 backbone).

 ................................................................................................................................... 11 

Table 5. Area under the precision-recall curve and area under the receiver operational 

characteristic for the four years considering five different stride values. ............................... 12 



1 
 

1. INTRODUCTION 

Mangrove ecosystems are distributed along the intertidal zones between 30º S to 

30º N latitudes, where their structures can survive in seawater, brackish water, and even 

in the twice ocean water salinity, such as in salt evaporation pools (Giri, 2016; Kuenzer 

et al., 2011). This environment consists of one of the most productive and biologically 

complex ecosystems worldwide (Murdiyarso et al., 2015), developing on a gentle slope 

and including biological and physical multiple processes (Deyoe et al., 2020). The 

mangroves have a vital role in the coastal zone by providing a wide range of 

environmental services subdivided into four main categories (Mitra, 2020): provision 

(food, water, raw material, and medicinal resources), regulation (natural climate disasters, 

water purification, and detoxification, pollination, erosion, soil fertility, and disease 

regulation), cultural (recreation, tourism, aesthetics, education, spiritual, heritage, and 

mental), and support (ecosystem process, life cycle, and biodiversity). Getzner and Islam 

(2020) performed a meta-analysis of the economic values of mangrove ecosystem 

services and identified a wide range of values (without conclusive results) but highlighted 

the economic importance and emphasized the need for conservation management. 

Anthropogenic factors and global changes have an intense impact on these ecosystems 

(Asbridge et al., 2015; Carugati et al., 2018), causing significant forest fragmentation 

(Bryan-Brown et al., 2020) and loss of mangroves (annual loss rates between 0.26 and 

0.66) (Hamilton and Casey, 2016). In the period 2000-2016, the global lost mangrove 

area was 3,363 km2 (2.1%), representing an average annual rate of 0.13%, with 62% of 

the mangrove lost due to anthropogenic causes (predominantly by conversion to 

aquaculture and agriculture) and 38% due to natural causes (shoreline erosion and 

extreme weather events) (Goldberg et al., 2020). Human impacts decreased by 10% over 

the period 2000-2016, from 66% in 2005 to 56% in 2016 (Goldberg et al., 2020), likely 

due to increased emphasis on conservation efforts and a new awareness of the importance 

of mangroves (Friess et al., 2016; Hakimdavar et al., 2020). 

Thus, monitoring and conservation are essential to maintain the functioning of 

mangrove ecosystems, where up-to-date information on their extent is highly relevant to 

support decision-making processes (Kuenzer et al., 2011). Most mangrove forests are 

extensive and isolated areas requiring much effort to access due to temporary flooding, 

making field observations much more complex and time-consuming (Minh et al., 2019; 

Walters et al., 2008). The remote sensing monitoring of mangroves has become an 
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indispensable procedure due to the following factors: it overcomes the limitations of field 

research, coverage of large areas, low cost, and adds knowledge of processes on a forest 

and ecosystem scale. Therefore, remote sensing techniques have been used to monitor 

and evaluate changes in the mangroves, considering spatial distribution, hydrodynamic, 

morphological, and ecological processes. A large amount of research on mangroves using 

remote sensing is systematized in several review articles with different focuses: sensors 

and image processing techniques (Cárdenas et al., 2017; Kuenzer et al., 2011; Maurya et 

al., 2021); multispectral remote sensing (Thakur et al., 2020); studies based on unmanned 

aerial vehicles (Zimudzi et al., 2021); research topics (Heumann, 2011; Wang et al., 

2019), extent change (Hu et al., 2018); coastal flood risk reduction (Gijsman et al., 2021), 

land-use change (Sheriza et al., 2021); carbon stock (Dat Pham et al., 2019a), species, 

structure, and biomass (Dat Pham et al., 2019b); and opportunities and challenges (Giri, 

2016). In Brazil, several studies used remote sensing techniques to detect and analyze 

mangroves (De Souza Pereira et al., 2012; Diniz et al., 2019; Magris and Barreto, 2010; 

Pelage et al., 2019; Rodrigues and Souza-Filho, 2011; Walfir et al., 2005). 

The review developed by Dat Pham et al. (2019b) demonstrates a predominance 

of optical images in mangrove mapping over SAR or LIDAR images 2010-2018. 

However, SAR images have the following advantages over optical sensors: the ability to 

penetrate clouds and smoke that are persistent inconveniences in tropical areas, day and 

night acquisition, sensitivity to target structure, surface roughness, and dielectric 

properties (Dat Pham et al., 2019b; Kuenzer et al., 2011; Walters et al., 2008). The main 

factors for the lower proportion of radar studies are the complexity of the data and the 

lower availability of free data. The interpretation of radar data in mangrove ecosystems 

is a complex analysis, where the backscatter signal corresponds to canopy closure and 

geometry, leaf structure, stem structure, underlying surface component (soil, mudflat, and 

water), and its dielectric properties (depending on underlying water surfaces, soil, and 

plant moisture) (Kuenzer et al., 2011). A recent increase in mangrove mapping using SAR 

is due to the advent of the Sentinel-1 (S-1) constellation with two satellites (1A and 1B) 

carrying a C-band SAR instrument (5.405 GHz) on board (Torbick et al., 2016). These 

images have free distribution and high temporal resolution (twelve days for one satellite 

and six days for the constellation), which is crucial for monitoring. 

Besides, the S-1 data promoted the mapping of mangroves from the SAR time 

series, where the phenological characteristics of the temporal profile allow separating 

mangrove forests from other types of land use/land cover. However, most mangrove 
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studies have used the S-1 time series combined with other optical data time series 

(Ghorbanian et al., 2022; Hu et al., 2020; Zhao and Qin, 2020), eventually only 

contributing to the generation of the water mask (Chen et al., 2017; Dong et al., 2020). 

Recently, deep learning technology presented significant breakthroughs in image 

processing, mainly because of convolutional neural networks (CNN), which enable an 

understanding of the different levels of abstraction (Griffiths and Boehm, 2019; Li et al., 

2018; Vali et al., 2020). There are many deep learning tasks such as object detection, 

keypoint detection, semantic segmentation, instance segmentation, and panoptic 

segmentation (de Carvalho et al., 2022; Hoeser and Kuenzer, 2020; Yu et al., 2018). 

Usually, remote sensing studies for counting and estimating the objects use instance 

segmentation, while the amorphous targets use preferentially semantic segmentation, 

such as burned areas (Arruda et al., 2021; de Bem et al., 2020b) and oil spills (Bianchi et 

al., 2020; de Moura et al., 2022). Few studies have applied deep learning approaches to 

mangrove classification, and most have classified small areas (Y. Guo et al., 2021). Table 

1 lists articles published in scientific journals on remote sensing of mangroves using deep 

learning techniques to date, most of which use optical imaging, with only one study using 

radar imaging (Ghosh and Behera, 2021). In addition, the deep learning studies for 

mangroves consider images from a single date, and there are no studies using time series. 

 

Table 1. Studies of mangroves using deep learning techniques. 

Article Mapped Object Location Data Deep Learning Method 

(Sun et al., 2019) Tree species diversity  China 
VHR-RGB images and LiDAR 

points. 

AlexNet VGG16 and 

ResNet50 

(Wan et al., 2019) Species mapping Hong Kong WorldView 2 GoogLeNet 
(Ghosh and Behera, 

2021) 

Aboveground biomass 

estimates of mangroves 
Indian 

S-1 (coherence and VH 

backscatter) 
DL model 

(M. Guo et al., 2021) Mangrove mapping China 
S-2A (5 original bands and 6 

indices) 

Mangrove Extraction 

Network (ME-Net) 

(Y. Guo et al., 2021) Mangrove mapping The Maritime Silk Road Landsat Capsules-Unet 

(Li et al., 2021) Species distribution Hong Kong 

WorldView-3, airborne 

hyperspectral images, and 

LiDAR point cloud. 

CNN, RF and SVM 

(Wan et al., 2021) 
Exotic mangrove 

detection 
Hong Kong WorldView 2 ResNet 

 

The present study aims to provide an effective monitoring procedure using deep 

learning techniques. In this regard, this study presents the following contributions: (a) one 

of the first to use deep learning for mapping mangroves, which can guide other 

researchers to exploit this target, (b) a mangrove dataset in the Brazilian region, (c) a 

comparison of different Sentinel-1 (S-1) polarization (VV, VH, and VV+VH) considering 
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annual data in a period 2017-2020. Therefore, this research seeks to fill a knowledge gap 

in deep learning studies for mangrove mapping using radar time series.  

2. MATERIALS AND METHODS 

The research can be subdivided into the following steps (Figure 1): (a) selection 

of the study area and acquisition of the S-1 time series for the period 2017-2020; (b) pre-

processing; (c) data annotation; (d) evaluation of the deep learning model for the years 

2017-2019-2020, comparing the U-net architecture with three backbones (Efficient-net-

B7 (Eff-B7), ResNet-101 (R-101) and VGG16 ) and with three polarization combinations 

(only VV, only VH, and VV+VH), totaling nine models; (f) analysis of the number of the 

images (29, 15, 8, and 4 times), considering the best model defined in the previous step; 

and (g) image reconstruction using the best model and the sliding window with the 2018 

image was not used in any previous process to guarantee the independence of the other 

phases. 

 

Figure 1. Research methodological flowchart, where Eff-B7 is Efficient-net-B7 and R-

101 is ResNet-101. 

2.1 Study area 

The Cananéia-Iguape Estuarine Complex is within the Atlantic Forest biome and 

has the most highly conserved mangrove ecosystem in the São Paulo state, Brazil, located 

in the southern (latitudes between 24º 40’ S and 25º 20’ S and longitude 48º W) (Cunha-

Lignon et al., 2009; Rocha de Souza Pereira et al., 2012) (Figure 2). The region of 

Cananéia-Iguape is marked by the Serra do Mar and coastal plains, formed by systems of 

lagoons and barriers with inlets and bays that protect from wave action, allowing the 

development of mangroves (Schaeffer-Novelli et al., 1990). 
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Figure 2. Study area in southeastern Brazil. 

 

Following north to south, the villages inserted close to the complex are called 

Iguape, Subaúna, Pedrinhas, Itapitangui, Cananéia, Ararapira, and Ariri. Cananéia has the 

more extensive urban infrastructure in the region, even though it is a remote place. The 

typic mangrove species found in the region are Rhizophora mangle, Avicennia 

schaueriana, and Laguncularia racemosa under subtidal, intertidal, and supratidal 

conditions (Sessegolo and Lana, 1991). Rhizophora mangle is the dominant species of 

mangrove ecosystems (Deyoe et al., 2020), located in intertidal maritime fringe forests 

and has significant structural development due to the high frequency of flooding in stable 

depositional sites (Cunha-Lignon et al., 2011). 

2.2 Sentinel-1 data 

The image acquisition for the period 2017-2020 used the Alaska Satellite Facility 

Vertex website (ASF, NASA), considering the Interferometric Wide (IW) product with 

two polarizations VV (vertical transmission and reception) and VH (vertical transmission 

and horizontal reception) (Torbick et al., 2016). Data pre-processing used Sentinel-1 

Toolbox, considering the following steps in SeNtinel Application Platform (SNAP) 

software (Filipponi, 2019): (1) slice assembly (procedure to merge two slices from 
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products of an orbit); (2) orbit restitution, (3) thermal noise removal, (4) terrain-

correction, based on SRTM digital elevation model (three-second resolution); (5) 

radiometric calibration (sigma0); (6) Lee Sigma speckle filter (Lee et al., 2009) with a 

window size of 9 × 9, a sigma value of 0.9, and a target window size of 5 × 5; and (7) 

conversion to decibel (dB). 

Complementarily, we apply the Savitzky and Golay (S-G) filter (Savitzky and 

Golay, 1964) along time series to eliminate interferences over temporal profile. The S-G 

removes noise and preserves the phenological attributes present in time series (height, 

maximum and minimum point, shape, and asymmetry) (Abade et al., 2015; Crisóstomo 

de Castro Filho et al., 2020). With the pre-processed images, we generated temporal cubes 

for each year in 2017-2020, resulting in 121 bands for each polarization (VH and VV). 

2.3 Annotations 

The mangrove annotations used the visual interpretation in the QGIS software, 

having as reference the mapping of the Brazilian Institute of the Environment and 

Renewable Natural Resources (IBAMA, 2021) and the Global Mangrove Watch 

extracted from optical and radar by Landsat 8, JERS-1 SAR, ALOS PALSAR, ALOS-2 

PALSAR-2 (Bunting et al., 2018; Thomas et al., 2017). 

2.4 Training, validation, and test dataset 

The training, validation, and test samples had the exact spatial dimensions of 

128x128 pixels and temporal dimension of 29 for a single polarization, doubling to 58 

times when using both polarizations. The definition of 29 was the smallest number of 

temporal images within a year in the 2017-2020 interval. The sample selection was 

random, considering the years 2017, 2019, and 2020. The 2018 data were reserved for an 

independent evaluation of the image reconstruction from the sliding window (de 

Albuquerque et al., 2020; de Bem et al., 2020a; Yi et al., 2019). Thus, the dataset reached 

2136 samples for training (712 per year), 450 for validation (150 per year), and 300 (100 

per year) for testing. 

The choice of tiles in the image used the method proposed by Carvalho et al. 

(2021), which crops the image from point shapefiles from the center of each frame. Using 

the graphic buffer in the ArcMap software allowed the visualization of possible 

intersections between the different sets (training, validation, and testing) and avoided data 

overlap. 
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2.5 Deep learning approach 

The semantic segmentation models aim to classify the image at a pixel level (Yu 

et al., 2018). Thus, the output image must contain the same dimensions as the original 

frame. The convolutional neural networks (CNN) (LeCun et al., 2015) play an important 

role in the deep learning-based architectures, enabling the extraction of features at 

multiple levels of resolution. This extraction is possible due to multiple convolutions and 

max-pooling layers (which reduces the dimensions of the images). In this regard, the 

semantic segmentation architectures must restore the image dimensions, using the 

upsampling operation. 

Despite the wide variety of architectures, the U-net (Ronneberger et al., 2015) is 

one of the most commonly used, containing an encoder and decoder structure, resulting 

in a U-shaped model. This model is an adaptation of the fully convolutional network 

(FCN) (Zhang et al., 2018), in which each encoder block is connected to a decoder block 

to maintain spatial cohesion and a more precise pixel classification. The encoder section 

can be replaced by several convolutional neural networks, enabling a better tradeoff 

between computational resources and predictive power.  

The U-net architecture was constant to maintain a more consistent ablation study, 

but we used three distinct backbones: (1) Efficient-net-B7 (Eff-B7) (Tan and Le, 2019), 

(2) ResNet-101 (R-101) (He et al., 2016), and (3) VGG16. We evaluated the images using 

VV-only, VH-only, and VV+VH for each backbone. The models had input dimensions 

of 128 (height) x 128 (width) x 29 (channels) for the single polarizations and 128 (height) 

x 128 (width) x 58 (channels) for the combined polarizations. Regarding 

hyperparameters, we used the Adam optimizer with a learning rate of 0.0001 and batch 

size of 10. 

2.6 Analysis of different sets of temporal images 

After defining the best model (architecture and backbone), we analyzed the 

mangroves' detection with different temporal sets (29, 15, 8, and 4 images). The image 

selection considered constant intervals over the time series, allowing the characterization 

of the different periods. Many studies synthesize the time series from a reduced number 

of images, for example, images of the seasons (e.g., Ghorbanian et al., 2022, 2021). The 

smaller number of images can decrease the processing time and data acquisition. 

However, a more extended time series allowed a better definition of phenological 

behavior and minimization of SAR noise, which helps the DL model detect the intended 

target. Few studies perform this type of analysis, and a similar study considered different 
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lengths of S-1 time series for center pivot detection (Albuquerque et al., 2021). The 

analysis of the number of images in the time series has not yet been carried out to detect 

mangroves.  

2.7 Sliding window approach 

The deep learning samples do not correspond to the actual study areas in remote 

sensing studies. The frames have fixed sizes, whereas the study areas are often larger, 

requiring post-processing procedures for real-life applications. One of the most used 

procedures is the sliding window approach, consisting of classifying frames with the 

exact dimensions as used for training but moving in the X and Y-axis in a predetermined 

stride value. Usually, the frame edges present a worse classification than the frame 

centers. A way to attenuate this problem is to use stride values lower than the image's 

dimensions and average the overlapping pixels. Several studies have evaluated different 

stride values for better results, showing an increase in the classification metrics (Costa et 

al., 2021; da Costa et al., 2021; de Albuquerque et al., 2020). The analysis considered 

step values of 8, 16, 32, 64, and 128 using the best model and polarization configuration. 

2.8 Accuracy metrics 

The accuracy metrics for supervised semantic segmentation models compare the 

deep learning prediction with the ground truth image (obtained manually). Nonetheless, 

the last layer uses a sigmoid activation function, limiting the results from 0 to 1, whereas 

the ground truth image contains binary values. Thus, it is necessary to establish a 

threshold value to make a proper comparison. The closer to 1, the stricter the threshold, 

and the tendency to have false positives decreases, while the threshold closer to 0 tends 

to reduce false negatives. We considered a conventional threshold of 0.5. 

With the defined thresholds, it is possible to define accuracy metrics based on the 

confusion matrix, which for a binary classification problem has the possible outcomes: 

(TP) true positives, (TN) true negatives, (FP) false positives, and (FN) false negatives. 

The most straightforward metric is the overall accuracy, which considers the correct 

pixels (TP + TN) divided by all (TP+TN+FP+FN). However, this metric may be 

misleading in imbalanced scenarios since the metric will present high values due to the 

TNs. The precision metric considers the correctly classified instances (TP) from the 

classified pixels (TP+FP). Similarly, recall considers the correctly classified pixels from 

all pixels that should have been classified (TP+FN). These two metrics alone might also 

be misleading. If the algorithm classifies a single-pixel correctly, the precision would be 



9 
 

100%, or if the algorithm classifies all pixels as 1, the recall would also be 100%. Thus, 

we use the F-score (harmonic mean between precision and recall) to get a good tradeoff 

between those two metrics. Finally, one of the primary metrics for semantic segmentation 

is the intersection over union (IoU). This metric is handy since it considers both false 

positives and false-negative errors, and it is not prone to class imbalance since it only 

considers the positive classes, in our case 1. TP divided by TP+FP+FN expresses the IoU. 

For the sliding windows approach, since there is an averaging procedure in the 

probabilistic values for each pixel, it is preferable to use ranking metrics. Thus, we used 

the average precision (AP), the area under the precision-recall curve, and the area under 

the receiver operational characteristic (ROC) curve. 

3. RESULTS 

3.1 Accuracy metrics 

Table 2 list the U-net architecture results considering the three backbones (Eff-

B7, R-101, and VGG16) with VV, VH, and VV+VH polarizations. The dual-polarization 

(VV+VH) presented higher results when compared to the single polarizations considering 

all backbones, showing that the information in each polarization is complementary and 

may enhance results. Nonetheless, in this scenario, there is an increase in computational 

resources. First, the dataset requires more data, consuming more memory storage. 

Second, the deep learning models now need a 58-channel input (twice as much as single 

polarization), making the training procedure slower. 

The Efficient-net-B7 backbone presented the best results when comparing the 

single polarization, followed by the Resnet-101 and VGG16. The dual-polarization 

presented better results for all models, and the VV polarization presented better results 

than the VH for all models. The difference among models was not significant, showing 

that the patterns to be learned are not too complex, and simpler models such as the VGG16 

are highly close in results to the Efficient-net-B7. 

Regarding the different thresholds, the models tend to present higher results when 

reducing the cutoff point. Nonetheless, this difference is minimal, not even reaching 1% 

for any models. Since this problem has an imbalanced representation of positive and 

negative instances, the accuracy metrics were very similar for all models and not too 

informative. In contrast, precision and recall have a tradeoff component; the other tends 

to go down when one goes up. This can be seen in the VGG16 models with a higher recall 

rate than the precision rate, even though the F-score is similar to the other models. Finally, 
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the IoU metric, the primary metric in most studies, presents a similar tendency as the F-

score. 

Table 2. Accuracy, precision, recall, F-score, and Intersection over Union (IoU) results 

for the VV-only, VH-only, and VV+VH polarizations considering the U-net architecture 

with the Efficient-net-B7 (Eff-B7), ResNet-101 (R-101), and VGG16 backbones. 

Backbone Polarization Accuracy Precision Recall F-score IoU 

Threshold at 0.75 

Eff-B7 VV 96.81 85.07 78.78 81.80 69.21 

 VH 96.72 85.03 77.64 81.17 68.31 

 VV+VH 97.35 86.42 84.06 85.22 74.25 

R-101 VV 96.69 84.51 77.94 81.09 68.41 

 VH 96.58 82.67 78.96 80.78 67.75 

 VV+VH 97.27 85.50 84.34 84.92 73.79 

VGG 16 VV 96.57 79.37 84.26 81.74 69.12 

 VH 96.28 76.41 85.61 80.75 67.72 

 VV+VH 97.27 84.35 85.97 85.16 74.15 

Threshold at 0.5 

Eff-B7 VV 96.82 84.72 79.39 81.97 69.44 

 VH 96.73 84.67 78.21 81.31 68.51 

 VV+VH 97.35 86.10 84.53 85.31 74.38 

R-101 VV 96.70 84.24 78.45 81.24 68.41 

 VH 96.58 82.23 79.66 80.93 67.95 

 VV+VH 97.27 85.12 84.87 85.00 73.91 

VGG 16 VV 96.55 78.69 85.12 81.78 69.17 

 VH 96.23 75.75 86.25 80.66 67.59 

 VV+VH 97.27 83.86 86.66 85.24 74.28 

Threshold at 0.25 

Eff-B7 VV 96.83 84.38 79.98 82.12 69.66 

 VH 96.73 84.31 78.76 81.44 68.70 

 VV+VH 97.35 85.77 84.96 85.36 74.46 

R-101 VV 96.71 83.97 78.93 81.37 68.59 

 VH 96.58 81.78 80.35 81.06 68.15 

 VV+VH 97.27 84.71 85.40 85.05 73.99 

VGG 16 VV 96.51 78.00 85.93 81.77 69.17 

 VH 96.18 75.09 86.86 80.54 67.42 

 VV+VH 97.26 83.38 87.32 85.30 74.37 

 

Another relevant theme is the inference time and time to train each model. The 

times to train and inference are the same for the VV-only and VH-only considering that 

the polarization specifications are equal (same data type, dimensions, and the number of 

channels) (Table 3). The inference time using 58 and 29 input channels is very similar. 

As remote sensing satellite images are not live-stream, the inference is not as crucial 

because the difference in the case of milliseconds is not perceptible. Nonetheless, there is 

a significant difference among the different models, in which the Efficient-net-B7 had the 

highest inference time, and VGG16 had the lowest, being more than ten times faster. 

Thus, more complex models have a computational cost in training time. The Efficient-

net-B7 takes nearly four minutes to train a single epoch, which for our scenario of 500 

epochs takes nearly 33 hours to train the model. There is a significant difference when 
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comparing training the model with more channels, being nearly three times much faster 

to train on a single polarization. 

Table 3. Inference time and time to train a single epoch for the single and dual 

polarizations considering the U-net architecture with the Efficient-net-B7 (Eff-B7), 

ResNet-101 (R-101), and VGG16 backbones. 

Backbone Polarization Inference time (ms) Epoch period (min:sec) 

Eff-B7 VV+VH 38.99 2:05 

 VV or VH 38.76 1:12 

R-101 VV+VH 14.45 1:50 

 VV or VH 13.73 0:45  

VGG16 VV+VH 3.44 1:30 

 VV or VH 3.39 0:33 

3.2 Evaluation of number of images in the time series composition 

Table 4 lists the accuracy metrics of mangrove detection from time series with 

different numbers of images using the best model (U-net architecture / Efficient-net-B7 

and both polarizations). The results showed a reduction in the metrics with the decrease 

in the number of images. Metric differences are relevant using the entire time series 

compared to the four-station images, reaching for the distinct threshold values (0.75, 0.5, 

and 0.25) a Precision difference of 3.5, Recall difference of 5.5, F-score difference of 4.5, 

IoU difference of 6.6. 

Table 4. Accuracy, precision, recall, F-score, and Intersection over Union (IoU) results 

for the VV+VH polarizations considering different numbers of images in the time series 

composition (22, 15, 8, and 4) using the best model (U-net architecture with the Efficient-

net-B7 backbone). 

# Of images Accuracy Precision Recall F-score IoU 

Threshold at 0.75 

29 

15 

97.35 

96.88 

86.42 

83.30 

84.06 

82.24 

85.22 

82.77 

74.25 

70.60 

8 96.81 85.50 78.25 81.72 69.08 

4 96.57 82.91 78.51 80.65 67.58 

Threshold at 0.5 

29 

15 

97.35 

96.88 

86.1 

83.00 

84.53 

82.69 

85.31 

82.84 

74.38 

70.71 

8 96.82 85.12 78.91 81.89 69.34 

4 96.57 82.60 79.01 80.76 67.74 

Threshold at 0.25 

29 

15 

97.35 

96.88 

85.77 

82.71 

84.96 

83.13 

85.36 

82.92 

74.46 

70.82 

8 96.83 84.72 79.52 82.04 69.55 

4 96.58 82.30 79.48 80.86 67.88 

3.3 Sliding windows results 

Table 5 lists the results for the sliding windows considering the different stride 

values. There is a tradeoff between computational cost and accuracy. The smaller the 

stride value, the higher the accuracy metrics and computational time. The stride value of 
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128 has no overlapping pixels, and the higher performance increase is from a 128 to 64 

stride value, in more than 10% on PR AUC and 5% in ROC AUC score. Nonetheless, the 

results increase at a lower rate when reducing the stride. 

Table 5. Area under the precision-recall curve and area under the receiver operational 

characteristic for the four years considering five different stride values. 

  Stride value 

Year Metric 8 16 32 64 128 

2017 PR-AUC 79.33 78.63 76.98 74.00 63.86 

 ROC 98.41 97.94 97.10 96.06 91.06 

 Time 

(hr:min:sec) 

14:50:06 03:45:26 00:55:57 00:14:57 00:05:00 

 

Figure 3 compares for a study area zoom the color compositions of the S-1 

temporal bands with and without mangrove vector overlap (terrestrial truth) (Figure 3a, 

b), Sentinel-2 images (Figure 3c), and the results of mangrove mapping using the best 

model (U-net/Efficient-net-B7, VH+VV polarizations, and 8-step sliding window) 

(Figure 3d).  

 

Figure 3. Mangrove images: (A) color composition of VH Sentinel-1 temporal bands 

(RGB: 04/03/2019, 01/09/2019, and 02/02/2019); (B) mangrove vector (ground truth – 

red line) on the color composite S-1; (C) mangrove vector over the color composite of 

Sentinel-2 images (RGB: 4-8-2 bands) dated 12/11/2018; (D) segmentation result 
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showing true negative (white), false positive (blue), false negative (red) and true positive 

(green). 

Figure 3d shows the error types (FP and FN) and hit areas (TN and TP). False 

positives always occur at the edges of mangroves in transition to other vegetation, while 

false negatives usually occur within mangroves in transition zones with bodies of water. 

4. DISCUSSION 

A consensus in image segmentation and classification is that deep learning 

achieves better results than traditional and machine learning methods. As it is relatively 

recent, few remote sensing studies used deep learning for mangrove detection, and among 

these, most studies were restricted to optical images. To the knowledge of the authors, 

only one article in a scientific journal used deep learning on radar images for mangrove 

detection (Ghosh and Behera, 2021). In addition, none of the mangrove articles (with 

optical or radar images) used time-series and deep learning.  

Another significant differential in this mangrove study was the combined use of 

the spatial, temporal, and polarization (VV and VH) dimensions. Classification based 

only on the temporal trajectory by pixels has the disadvantage of not depicting the 

different textures and patterns characteristic of mangroves. At the same time, the use of 

only images from a single date does not detect the phenological variations that contribute 

to the differentiation from the other vegetal coverings. Multichannel CNN uses a 

convolution that considers spatial, textural, and temporal attributes distributed across 

multiple channels, providing mapping accuracy. 

Mangrove mappings with S-1 images were restricted to traditional methods and 

consistently associated with images from other sensors. Predominantly, mangrove studies 

with S-1 images used only one date (Pham et al., 2020; Quang et al., 2020; Xia et al., 

2020) or synthesized temporal information into a single band by the annual composite 

(Liu et al., 2021), mean (Xiao et al., 2021), or median and maximum values (Lu and 

Wang, 2021), always being part of a set of optical and radar images. Some studies with 

S-1 time series reduced the analysis to 4 images referring to the seasons from the mean 

(Ghorbanian et al., 2021) or median (Ghorbanian et al., 2022), always associated with the 

Sentinel-2 (S-2) images. Zhao and Qin (2021) combined S-1 and S-2 time-series, with 

radar image conversion into quantiles corresponding to 9 percentages. Hu et al. (2020) 

detected mangroves by combining the S-1 and S-2 time series and the Random Forest 

method. 
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An important factor for continuous annual monitoring with deep learning is 

establishing samples and input data standardization. In this sense, time series of optical 

images have difficulty obtaining large numbers of images due to the presence of clouds 

in tropical zones. In opposition, studies with radar time series ensure adequate data 

acquisition and establish a standard for continued studies. 

As in other flooded vegetation (e.g. salt marsh) , the backscatter bands (VV and 

VH) present complementary information, improving the mapping accuracy (Bem et al., 

2021; Lasko et al., 2018). Our results demonstrate that U-net with Efficient-net-B7 

produced higher accuracy than ResNet-101 and VGG16. Analysis of segmentation 

performance using different numbers of temporal images shows a significant difference 

using 29 times and only four-season images. Besides, the 8-stride sliding windows present 

better results in reconstructing the entire image than larger intervals, as found in another 

study (de Albuquerque et al., 2020). Furthermore, the results revealed that only the SAR 

time series obtained satisfactory results, and multi-source remote sensing data is not 

crucial for accurate mangrove maps.  

5. CONCLUSIONS 

Remote sensing is essential to monitor the distribution of mangroves accurately. 

In this context, deep learning methods reach state of the art for image segmentation. 

However, few studies use deep learning models for mangrove mapping, where only one 

study uses radar images, while all the others use optical images. Another knowledge gap 

with deep learning in mangroves is the use of time series that allow exploring spatial, 

temporal, and polarization dimensions. Therefore, the present study aimed to evaluate 

deep learning methods based on CNN to annually monitor and map mangroves from the 

spatial, temporal, and polarization attributes of Sentinel-1 images. The reuse of DL 

models for other years requires data standardization, considering the same number of 

images that depict similar environmental and phenological conditions. Radar images have 

advantages over optical images due to non-atmospheric interference, guaranteeing data 

acquisition within a standard. Therefore, the first significant result of the research was the 

development of a mangrove dataset covering a significant area in southeastern Brazil 

from the S-1 time series in the period 2017-2020. The spatiotemporal database effectively 

supports the continuous monitoring of mangrove dynamics in the study area in the coming 

years. The U-net architecture's precision metrics obtained the best result from the 

Efficient-net-B7 (Eff-B7) backbone, which surpassed the ResNet-101 (R-101) and the 
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VGG16. In addition, we obtained better results using the following factors: (a) a 

combination of the VV and VH polarizations than the single polarization; (b) 29 temporal 

images than just four-season images; and (c) reconstructing the entire image from 8-step 

sliding windows instead of larger intervals. As future research, the study can be expanded 

to the Brazilian coast to optimize policy interventions aimed at the conservation and long-

term sustainability of mangroves. 
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