Dt

UNIVERSIDADE DE BRASILIA
] INSTITUTO DE GEQCII::NCIAS .
PROGRAMA DE POS-GRADUAGCAO EM GEOCIENCIAS APLICADAS E GEODINAMICA

APPLICATION OF ORBITAL SENSORS TO
DETECT DEFORESTATION IN THE AMAZON
RAINFOREST

CLAUDIA ARANTES SILVA

TESE DE DOUTORADO N° 67

Adyvisor: Ph.D. Edson Eyji Sano — Embrapa Cerrados
Co-advisor: Ph.D. Fabio Del Frate — Tor Vergata University of Roma

Brasilia — DF, 2021



UNIVERSIDADE DE BRASILIA

] INSTITUTO DE GEQCIENCIAS .
PROGRAMA DE POS-GRADUAGCAO EM GEOCIENCIAS APLICADAS E GEODINAMICA

APLICACAO DE DADOS ORBAIS MULTI-
SENSORES PARA IDENTIFICACAO DO
DESMATAMENTO NA FLORESTA AMAZONICA

Claudia Arantes Silva

Tese de Doutorado apresentada ao
Programa de Po6s-Graduagao em
Geociéncias Aplicadas e Geodinamica, na
area de concentragdo Geoprocessamento e
Analise Ambiental, do Instituto de
Geociéncias da Universidade de Brasilia

(UnB), para obtencdo do Titulo de Doutora.



Brasilia — DF, 2021

UNIVERSIDADE DE BRASILIA — INSTITUTO DE GEOCIENCIAS

APPLICATION OF ORBITAL SENSORS TO DETECT DEFORESTATION IN
THE AMAZON RAINFOREST

Claudia Arantes Silva

Tese de Doutorado

Thesis Committee

Ph.D. Edson Eyji Sano
Embrapa Cerrados - Brazil — Advisor

Ph.D. Giovanni Laneve
Scuola di Ingegneria Aerospaziale, Sapienza University of Rome — Italy

Ph.D. Hélcio Vieira Junior
Centro Gestor e Operacional do Sistema de Prote¢do da Amazonia (Censipam) — Brazil

Ph.D. Suzan Waleska Pequeno Rodrigues
Instituto de Geociéncias — Universidade de Brasilia — Brazil

Brasilia — DF, 2021



Somente a existéncia que transcende a si
mesma, somente a vida humana que ultrapassa
seus limites na dire¢do do mundo é capaz de se

realizar. Do contrdrio, ao visar diretamente a
autorrealizagdo, fracassa.

Viktor Frankl
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RESUMO

O avango do agronego6cio em terras amazonicas tem sido caracterizado por um ciclo
preocupante de desmatamento, queimadas, exploragdo da terra e abertura de novas vias
de escoamento que se retroalimenta. Em grande medida, essa exploragdo se da de forma
desordenada e em niveis superiores ao que preconiza a lei. Apds 2012, com a aprovagao
do novo Codigo Florestal Brasileiro, verificou-se uma reversdo na tendéncia de queda
dos indices de desmatamento. A perda de floresta e a emissao dos gases de efeito estufa
(GEE) voltaram a ser motivo de grande preocupa¢do mundial. Em 2015, no Acordo de
Paris, o Brasil se comprometeu em reduzir emissdes de GEE. Considerando que uma
parte significativa dessas emissdes tem origem em queimadas na floresta, o
monitoramento da mesma se torna especialmente importante. Parte consideravel da
ocupacdo da floresta ocorre dentro do arco do desmatamento, regido em forma de arco
que esta localizada no extremo sul da Amazonia Brasileira. Historicamente, o
acompanhamento desses efeitos antropogénicos tem sido realizado por imagens opticas
de sensores orbitais. No periodo de chuvas, que se estende de novembro a abril, o
imageamento optico da floresta Amazonica fica prejudicado por causa da cobertura
persistente de nuvens, o que pode ser contornado por meio de uso de dados de radar de
abertura sintética (SAR). Este trabalho teve por objetivo principal apresentar uma
técnica de deteccdo do desmatamento em tempo quase real com a utilizagdo de imagens
de radar de acesso livre. Para alcangar esse objetivo, foram publicados trés artigos com
diferentes abordagens de deteccdo de efeitos antropogénicos. As areas de estudo nos
artigos se situam no municipio de Novo Progresso, regido conhecida pelas elevadas
taxas de ocupacao humana dentro do arco do desmatamento, a sudoeste do estado do
Para. O objetivo do primeiro estudo foi analisar como as imagens de radar, Opticas e
termais identificam os desmatamentos por corte raso na floresta Amazonica. O estudo

correspondeu a uma area de 40 km x 40 km. Foram utilizadas imagens de radar em



bandas X (satélite COSMO-SkyMed) e C (satélite Sentinel-1A), e indices de vegetacdo
por diferenga normalizada (NDVI), indices de umidade por diferenca normalizada
(NDMI) e temperaturas da superficie terrestre (LST) derivadas do satélite Landsat 8. A
analise qualitativa revelou informagdes importantes sobre os limites das areas e o
periodo de ocorréncia dos desmatamentos com boa precisdo relativa. Os indices
calculados agregaram informagdes sobre atividades fotossintéticas e niveis de biomassa.
A pesquisa mostrou o potencial do uso de indices Opticos e termais e, principalmente, de
imagens de radar para identificacdo dos desmatamentos por corte raso em ambiente de
floresta imida. O segundo artigo foi conduzido para melhor compreender a dindmica do
desmatamento na regido, incluindo a fase de queimadas e emissdes intrinsecas de gases
de efeito estufa. Este estudo foi realizado sobre uma area de 36.800 km?2. Foi
identificada uma forte correlacdo entre ocorréncia de incéndios na area recém
desmatada seguindo as praticas locais de corte e queima. O terceiro artigo teve como
objetivo desenvolver uma metodologia para identificacdo do desmatamento logo apos a
sua ocorréncia. Esse estudo fez parte de doutorado sanduiche desenvolvido em Roma,
Italia, na Universidade Tor Vergata. As imagens de radar na banda C foram processadas
para servir de dado primario no desenvolvimento de redes neurais do tipo MultiLayer
Perceptron (MLP) para identificar desmatamentos por corte raso em tempo quase real.
A metodologia desenvolvida identificou areas de desmatamento de 2 ha ou maiores com

alta precisdo e de forma automatica.
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ABSTRACT

The advance of agribusiness in the Amazonian lands has been characterized by a
worrying cycle of deforestation, fire, land exploitation, and the opening of new lands.
To a large extent, this exploitation takes place in a disorderly manner and at levels much
higher than what is allowed by the National Forest Conservation law. After 2012,
following the approval of the new Brazilian Forest Code, there was a reversing in the
decay of deforestation levels. Since then, the loss of the forest itself and the emission of
greenhouse gases (GHG) have been of great concern worldwide. In 2015, during the
Paris Agreement, Brazil committed to reduce its GHG emissions, in which deforestation
has a great contribution. A great deal of forest claiming due to human occupation occurs
within the arc of deforestation, a region that stretches along the extreme south of the
Brazilian Amazon. Historically, the monitoring of these anthropogenic effects has been
carried out by optical satellite images. During the rainy season, which extends from
November to April, optical imaging of the Amazon forest is impaired because of
persistent cloud cover, which can be circumvented through the use of synthetic aperture
radar (SAR) data. This work aimed to present a technique for detecting near real-time
deforestation using open access radar images. This thesis comprises three published
articles which describe different approaches to detect anthropogenic effects. The study
area is located in the municipality of Novo Progresso, a region known for its high rates
of human occupation within the arc of deforestation, in the southwest of the Para State.
The objective of the first study was to analyse how radar, optical, and thermal images
identify clear-cut deforestation in the Brazilian Amazon. The study focused on an area
of 40 km x 40 km. X-band (COSMO-SkyMed satellite) and C-band (Sentinel-1A
satellite) SAR data and Landsat-based normalized difference vegetation index (NDVI),
normalized difference moisture index (NDMI), and the land surface temperatures (LST)

were used. Qualitative analysis revealed important information about the boundaries of



the areas and the period of occurrence of deforestation with reasonable accuracy. The
calculated indices aggregated information about photosynthetic activities and biomass
levels. The research showed the potential of using optical and thermal indices and
mainly radar images to identify clear-cut deforestation in a tropical forest environment.
The second article allowed to better understand the dynamics of deforestation in the
region, including the burning phase and intrinsic greenhouse gases emission. This study
was carried out over an area of 36,800 km?. A strong correlation was identified between
the occurrences of fire after recent deforestation following local slash-and-burn
practices. The third article aimed to present a methodology for identifying deforestation
soon after its occurrence. This study was part of a sandwich doctorate developed in
Rome, Italy, at the Tor Vergata University. Sentinel-1 C-band radar images were
processed and a neural network methodology (MultiLayer Perceptron) was applied to
identify clear-cut deforestation in near real-time. The proposed methodology identified,

automatically, deforestation areas larger than 2 ha with good accuracy.
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1. Introduction

Global efforts to mitigate climate change and preserve our unique ecosystems
are directly related to reducing forest degradation and deforestation (Aragdo et al.,
2014). The Amazon contains the largest remaining tropical rainforest in the world. With
about 5.2 million km?, the Brazilian Amazon covers the states of Acre (AC), Amapa
(AP), Amazonas (AM), Maranhdo (MA), Mato Grosso (MT), Para (PA), Rondonia
(RO), Roraima (RR) and Tocantins (TO), and occupies about 60% of the Brazilian
territory. Its importance lies not only in the value of its biodiversity but also in the
existence of the original cultures that are part of this ecosystem (Fearnside, 2021).

Anthropogenic disturbances in the Brazilian Amazon occur through selective
logging (degradation), corresponding to the removal of tree species of high economic
value and mostly by slash and burning, causing the complete removal of original
vegetation. Selective logging of long-standing trees affects significantly the structure
and the floristic diversity of forests over time (Bezerra et al., 2021). The persistence of
endemic bird species of high conservation value in the Amazon is threatened by human-
induced deforestation (Anjos et al., 2021).

Fire-induced tree mortality, related to the slash and burn practices, causes losses
in the functional and phylogenetic diversity of trees at higher rates than in taxonomic
diversity (Nobrega et al., 2019). Recurrent fires affect the forest structure, species
richness, and composition and reduce the biomass of living trees, causing impacts on
birds and vegetation (Silveira et al., 2016).

A deeper understanding of the forest dynamics helps mitigating the deforestation
effects, carbon cycle estimates, and to characterize how the environment adapts to the
microclimatic changes. Whenever possible, these studies should be based on multi-scale
remote sensing tools (Bustamante et al., 2016).

Environmental damage to the Amazon forest has reached critical levels.
Deforestation is increasing rapidly and conservation policies are insufficient. Remote
sensing techniques allow the rapid detection of deforestation and forest degradation
over large territorial extensions. While reducing field research, the interoperability of
Earth observation technologies is essential for national forest monitoring systems. An
area of the size of the Amazon rainforest demands continuous monitoring through

satellite and, preferable, from freely accessible data, such as the China-Brazil Earth



Resources Satellite (CBERS), Landsat, and Sentinel-2 satellites. Brazil strongly relies
on these missions to monitor such a large territory.

Through the partnership between the Brazilian and Chinese governments,
CBERS program is the main provider of optical images of the Brazilian territory. Since
March 2020, CBERS-4 and CBERS-4A satellites are providing most of the optical
images that are employed by our remote sensing community. The Multispectral Camera
(MUX) provides imagery in the blue, green, red, and near-infrared (NIR) spectral bands
with the spatial resolutions of 20 m (CBERS-4) and 16 m (CBERS-4A). The Landsat 8
satellite from the National Aeronautics and Space Administration (NASA), launched in
February 2013, carries two sensors, the Operational Land Imager (OLI), with a spatial
resolution of 30 m, and the Thermal Infrared Sensor (TIRS) with a spatial resolution of
100 m (Barsi et al., 2014; Knight & Kvaran, 2014). The Sentinel-2 satellite, from the
European Space Agency (ESA), was launched in June 2015 and produces images of 10
m spatial resolution. In February 2021, Brazil began to operate the Amazonia-1 satellite
designed by the National Institute for Space Research (INPE). The satellite carries an
advanced Wide Field Imager (WFI) sensor which acquires images in four spectral bands
from blue to NIR, swath width of 850 km, and spatial resolution of 60 m.

Scientific studies from open-access optical sensors have been successfully
applied to monitoring forest change, deforestation, and forest degradation (DeVries et
al., 2016, Kranz et al., 2018; Crowson et al., 2019; Wang et al., 2019). However, the
persistent presence of clouds makes monitoring by optical sensors difficult in tropical
forest environments throughout the year. Such limitation does not occur with synthetic
aperture radar (SAR) sensors (Meneses and Almeida, 2012; Woodhouse, 2015). SAR
sensors use their own energy and utilize longer, centimeter to meter wavelenghts,
allowing them to see terrain through clouds at any time of the day. For environmental
applications, the X-band (~2.5 cm) has little penetration into the vegetation cover,
interacting mostly with the leaves. The C-band (~5 cm) has low to moderate
penetration, interacting with leaves and branches. The L-band (~27 cm) has high
penetration, allowing interaction with trunks and branches and can be applied for
biomass and vegetation mapping.

The C-band Sentinel-1 satellite provides open access satellite data. The Sentinel-
1 mission is composed of a constellation of two satellites, the Sentinel-1A and the
Sentinel-1B. They operate in the same orbit with an orbital phasing difference of 180°

and produce images in almost any weather conditions, with a spatial resolution of 10 m



(Torres et al., 2012). The Sentinel mission encourages the development of new SAR

data integration techniques that may assist operational monitoring of large forest areas.

2. Problem, justification, and contribution

The Brazilian Amazon covers about 60% of the Brazilian territory. Intense cloud
cover lasts for more than half of the year. Currently, the methodologies based on optical
sensors are applied to produce deforestation alerts for environmental law enforcement
procedures and for long-time, clear-cut deforestation monitoring. The drawback is the
monitoring during the raining season so that the country needs to develop new methods
for near real-time forest surveillance based on SAR data.

In the Brazilian Amazon, the arc of deforestation is the region with the highest
occurrence of deforestation and land occupation (Azevedo-Ramos et al., 2018; Souza et
al., 2020). This region concentrates of total deforestation of the Brazilian Amazon,
mostly for soybean plantation and cattle ranching (Nepstad 1999, Soares-Filho et al.,
2006). Since 2006, Para State presents the highest levels of deforestation in the
Brazilian Amazon.

The main objective of this research is to propose and validate a set of
methodologies to help monitor anthropogenic disturbances in the Brazilian rainforest,
based on different orbital sensors from a broad range of spatial and temporal
resolutions. Depending on the method, a combination of sensors was used. Most of
illegal activities of forest disturbances take place in the raining season. Therefore, the
research also deals with tropical forest monitoring based on radar sensor. An algorithm,
created on SAR data automatic vegetation cover disturbance, is proposed.

For those, an extensive bibliographical review was carried out and the main
objectives were attained in tree scientific papers. The study area was the Novo
Progresso region, southwest of the Para State, along the BR-163 highway, where high
levels of deforestation and land occupation are taking place. First, the deforestation
detection was carried out combining radar, optical and thermal sensors. Second, we
showed the correlation between deforestation and fire occurrences and the greenhouse
gas (GHG) estimates. Last, an automatic technique based on neural network was applied

to radar images to identify near real-time deforestation.



Paper # 1

The research titled “Qualitative analysis of deforestation in the Amazon forest
from SAR, optical and thermal sensors” aimed to analyze qualitatively the spectral
responses of clear-cut deforested areas in the Brazilian Amazon using the X- and C-
bands SAR images, combined with optical and thermal data. The research covered and
area of 40 km x 40 km located in the municipality of Novo Progresso, Para State, where
high deforestation rates are observed. The study was based on a multi-temporal analysis
of the SAR data acquired by the COSMO-SkyMed (X-band) and Sentinel-1A (C-band)
satellites and by optical and thermal images acquired by the Landsat 8 satellite during
the period from 2016 to 2018.

The SAR data were converted into backscattering coefficients of different
polarizations and ratios. Covariance, gradient, minimum value, maximum value, and
standard deviation from three periods (2016-2017, 2017-2018, and 2016-2018) were
considered to highlight the boundaries of deforested. The results were presented in the
RGB color composites. The optical and thermal data were analyzed after converting
into the Normalized Difference Vegetation Index (NDVI), Normalized Difference
Moisture Index (NDMI), and Land Surface Temperature (LST). In this case, deforested
areas were highlighted based on contrast between primary forest and deforested areas in
terms of these three attributes (green vegetation, moisture, and surface temperature).

The deforestation detection was validated based on deforestation polygons
obtained by the 3—6 m spatial resolution COSMO-SkyMed SAR images from the year
2016 and on the data produced by the Near Real-Time Deforestation Detection System
(DETER-B) from 2017 and 2018. The polygons were overlaid in the Landsat 8 RGB
color composites (RGB/654) obtained during the dry seasons of 2015, 2016, 2017 and
2018. The SAR technology proved to be useful in identifying deforested areas during
the rainy season in the Amazon forest. The RGB multitemporal combinations
highlighted the deforested areas. The article is available for download in the following
link: https://revistas.uftj.br/index.php/aigeo/article/view/31314/17792.

Paper # 2

The second article titled “Fire occurrences and greenhouse gas emissions from

deforestation in the Brazilian Amazon” addressed the relation between fire occurrence



in the forest caused by deforestation after slash-and-burn practices and the estimates of
greenhouse gas (GHG) emissions in the surroundings of the Novo Progresso
municipality, Para State.

The investigation was based on deforestation and fire data from 2007 to 2019
reported by INPE. The study area is fully inserted in the arch of deforestation which
concentrates 77% of the total deforestation in the Brazilian Amazon. Fires occurrences
within the primary forest were investigated to assess ecosystem degradation. The work
also presents the amount of GHG emitted from the first deforestation process along the
Brazilian rainforest in 2019.

It is important to highlight that the intact forest does not sustain large fires in the
Brazilian Amazon, due to the high levels of moisture, even during the dry season. Fire
occurrences in the humid tropical forest are observed in dead trees and along the duff
layer. The understory vegetation may propagate flame in the surroundings of large
cleared areas (edges of degraded forests) in combination with an intense dry season.
Flame propagation through the understory vegetation is too weak to be captured by
satellite sensors. Therefore, the fire hotspots inside the intact forest may be due to the
flaming of large naturally dead trees or along open forest trails where small slashed trees
sustain the fire. Selective logging also degrades the area around the large fallen trees,
making the vicinity prone to propagate flame. Fire occurrences inside the standing forest
are restricted to degraded forest caused by the previously discussed events or their
combined effects.

Deforestation data was also used to assess GHG emissions from slash-and-burn
practices. Total GHG emission for the Amazon was limited to the burning of the newly
deforested area corrected by the average regrowth of secondary forest. The research
showed a good correlation between the occurrences of fire in the newly deforested area
in the municipality of Novo Progresso following the local slash-and-burn practices. The
same trends were also observed for the Para State, suggesting a common practice within
the arch of deforestation. For PY2018-2019 (PY = PRODES-Year), the emissions after
deforestation practices in the Novo Progresso region were about 8.81 Mton of COo.

The incidence of fire outbreaks in forest areas nearby new cleared and burned
areas confirm the strong impact of deforestation on ecosystem degradation due to the
occurrence of fires in the Brazilian Amazon. The article also discussed the increase in

deforestation and degradation in the Brazilian Amazon with the approval of the new



Brazilian Forest Code in 2012 (Law 12,651 of 25 May 2012). The article is available for
download in the following link: https://www.mdpi.com/2072-4292/13/3/376.

Paper # 3

After understanding the dynamics of deforestation in the Amazon rainforest and
considering its dimension, a third article was written where a methodology to identify
near real-time deforested areas using climate-independent and open-access satellite
imagery was proposed. The paper titled "Near-real time deforestation detection in the
Brazilian Amazon with Sentinel-1 and Neural Networks" proposed a methodology
based on neural network and C-band, VV- and VH-polarized Sentinel-1A data for rapid
deforestation detection.

The research was conducted in an area that covers part of the municipalities of
Altamira, Itaituba, and Novo Progresso, located in the southwest of the Para State. This
region shows the highest deforestation rates in this state. A set of 30 Sentinel-1 images
from 2019 was used for training the neural network algorithm. Another set of 30
Sentinel-1 images from 2018 were used for the algorithm validation and automatic
identification of near real-time deforestation. During the algorithm training step,
statistical parameters (mean backscattering coefficients and their corresponding
standard deviation and maximum-minimum difference) were calculated from Forested-
Forested (forested areas) and Forested-Deforested (forested areas that were deforested)
areas. Statistical data were used as input parameters for the NN classifier. The Multi-
Layer Perceptron (MLP) structure was used to map deforestation considering a
minimum area of 2 ha. Four different case studies were analyzed for both polarizations:

(1) mean c° values;

(2) mean c° values and corresponding standard deviation;

(3) mean c° values and corresponding maximum-minimum difference values;
and

(4) mean c° values and corresponding standard deviation and maximum-
minimum difference values.

In the algorithm training phase, the data set was divided into training (75%),
validation (15%), and testing (10%) sets. The training and validation sets were used

during the algorithm training process, while the test set was used to assess the



performance achieved in the two previous phases. Network training is achieved
whenever the error in the validation dataset reaches its minimum. After the training
phase, the algorithm was applied to a new data set. The trained model was then applied
to radar images from 2018 for automatic recognition of deforested areas. The neural
network results from the 2018 data set were validated using data published by the
MapBiomas and PRODES projects. Differences in results between the two projects
were discussed and presented in the article. The manuscript was submitted to the
European Journal of Remote Sensing on July 2021 and currently is under the second

round of review.
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Resumo

A mitigagdo de mudangas climaticas e preservagdo de ecossistemas depende da redugdo do desmatamento e de-
gradagdo de florestas tropicais. O objetivo deste estudo foi analisar imagens de radar, dpticas e termais para identificar
desmatamentos por corte raso no periodo de 2016 a 2018 em uma area localizada no arco de desmatamento da Amazo-
nia. Foram utilizadas imagens de radar em bandas X (satélite COSMO-SkyMed) e C (satélite SENTINEL-1A), indices
de vegetacdo por diferenga normalizada (NDVI), indices de umidade por diferenga normalizada (NDMI) e temperatu-
ras da superficie terrestre (LST) (satélite Landsat-8). As areas com evidéncias de antropismo mapeadas com base nas
imagens do satélite COSMO-SkyMed no municipio de Novo Progresso (PA), periodo de 2016 a 2018, foram utilizadas
como mascara inicial. Imagens de radar identificaram, com boa precisdo relativa, as épocas ¢ as areas de desmatamento.
NDVI e NDMI evidenciaram, respectivamente, quedas nas atividades fotossintéticas e nos niveis de biomassa nas areas
de desmatamento identificadas. Ja a LST foi mais elevada nas areas de rebrota em relagdo a vegetagao densa. A analise
do potencial de imagens de radar, opticos e termais mostrou elevada relevancia na detec¢do de desmatamento por corte
raso em ambiente florestal imido.

Palavras-chave: Floresta tropical; Degradacdo; Analise temporal

Abstract

The mitigation of climate change and the preservation of ecosystems depends on the reduction of deforestation
and degradation of tropical forests. The objective of this study is to analyze radar, optical, and thermal images to identify
clear cut deforestation from 2016 to 2018 in an area located in the arch of deforestation of the Amazon forest. We used X-
(COSMO-SkyMed satellite) and C-bands (SENTINEL-1A satellite) radar data, normalized difference vegetation index
(NDVI), normalized difference moisture index (NDMI), and land surface temperature (LST) (Landsat-8 satellite). We
considered, as an initial mask, the areas with evidence of anthropogenic actions in the municipality of Novo Progresso
(PA), from 2016 to 2018. Radar features were able to be identified, with relative accuracy, the time and the area of defo-
restation. NDVI and NDMI indices showed, respectively, decrease in the photosynthetic activities and the biomass levels
in deforested areas. On the other hand, the LST was higher in regrowth areas than in dense vegetation. The analysis of
potential of radar, optical, and thermal data showed to be relevant in the identification of clear cut deforestation in tro-
pical rainforest environment.

Keywords: Tropical forest; Degradation; Temporal analysis
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1 Introducao

As acdes para reduzir o desmatamento e a de-
gradagdo das florestas estdo diretamente relaciona-
das aos esforgos globais para preservar os ecossiste-
mas unicos de nosso planeta e mitigar as mudangas
climaticas (Aragao et al., 2014). Para mitigagao e
adaptacao decorrente de mudancas climaticas e esti-
mativas do ciclo do carbono, ¢ fundamental um mo-
nitoramento integrado para obter um entendimento
mais assertivo da dindmica dos processos na floresta.
A floresta tropical da Amazonia possui uma extensao
territorial de 5,5 milhdes de km?. O desmatamento
da floresta Amazonica por agdes antropogénicas
ocorre principalmente por meio de corte seletivo e
corte raso. O corte seletivo ¢ a retirada de espécies de
arvores com valor econdmico elevado. No processo
de extragdo, ocorre a derrubada de arvores vizinhas
que se encontram na trajetoria de queda da arvore
derrubada. Esse processo ¢ realizado principalmente
por madeireiros ¢ antecede o corte raso, que corres-
ponde a retirada completa da vegetacdao. Nas prati-
cas de manejo da terra, realizadas principalmente
por pecuaristas e fazendeiros, clareiras sdo abertas,
a floresta entdo é derrubada e queimada (Morton et

al.,2006; Matricardi et al., 2010; Domingues & Ber-
mann, 2012; Souza et al., 2017).

A dindmica do desmatamento nas florestas
tropicais se inicia pelas bordas florestais (Nepstad
et al., 1999, 2001; Cochrane, 2003) (Figura 1). As
aberturas de caminhos e estradas dentro da floresta
permitem o acesso de colonos em areas antes inaces-
siveis, fragmentam a floresta, a umidade diminui e o
microclima local ¢ alterado e a floresta torna-se mais
vulneravel ao fogo. Os incéndios florestais e as emis-
soes de fumagas acarretam diminui¢do das chuvas;
as areas previamente queimadas sdo mais propensas
as reincidéncias. A resiliéncia do ecossistema dimi-
nui, tornando a floresta mais susceptivel a incéndios
e outros danos. O aumento no nivel de degradacao
da floresta e mudangas no estoque de carbono foram
reportados por diversos autores como Arima et al.
(2005), Soares-Filho et al. (2006), Broadbent et al.
(2008), Butt et al. (2011), Knox et al. (2011), David-
son et al. (2012), Barros & Fearnside (2016) e Jusys
(2016). Durante o manejo da terra, incéndios podem
penetrar em florestas degradadas ou intactas na for-
ma de fogo de superficie (Guenther et al., 2017),
cujos danos s3o mais dificeis de serem documenta-
dos (Asner et al., 2005).

Fragmentacdo

ot i

Corte de Arvores

Incéndio Florestal
B .

Figura 1
Dinamica de
desmatamento
e degradag@o
da floresta
Amazonica
(modificado
de Cochrane
2003).
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O monitoramento de desmatamento baseado
em satélites ¢ uma ferramenta essencial nos estudos
de efeitos antropogénicos em florestas tropicais, pois
permite a identificacdo das diferentes formas de ex-
ploragdo das florestas e manejo da terra em grandes
extensdes territoriais, com tempo de revisita ade-
quado e um custo razoavel (Hosonuma et al., 2012;
Hansen et al., 2013; Thompson et al., 2013; Aragdo
et al., 2014; Bustamante et al., 2016; Mitchell et
al., 2017). Historicamente, técnicas de sensoria-
mento remoto tém desempenhado um papel funda-
mental no monitoramento da cobertura vegetal dos
biomas brasileiros, conforme relatado por Ferrreira
et al. (2008), Souza et al. (2013) e Carreiras et al.
(2017). Porém, durante os meses de chuva, a cober-
tura persistente de nuvens cria uma forte limitagdo
para o uso de sensores opticos. E durante o periodo
chuvoso que ocorre a intensificagdo de cortes raso e
seletivo de arvores na Amazonia. Nos meses de seca,
a baixa umidade relativa do ar favorece a queima de
arvores derrubadas e posterior transformagdo em
areas de pastagens. A despeito da limitagdo do em-
prego de sensores opticos pela presenga de nuvens,
os mesmos ainda sao amplamente utilizados no mo-
nitoramento da floresta Amazonica (INPE, 2013;
Shimabukuro et al., 2015; Grecchi et al., 2017).

Os sensores de radar de abertura sintética
(SAR) praticamente nao sofrem interferéncia at-
mosférica, pois conseguem atravessar as nuvens e,
portanto, permitem a aquisi¢do de dados indepen-
dentemente da estacdo climatica, permitindo o mo-
nitoramento continuo do desmatamento, focos de
incéndios e rebrota (Bernhard et al., 2011; Reiche
et al., 2015; Martone et al., 2018). Dados SAR per-
mitem, por meio da analise de retroespalhamento
volumétrico da vegetacdo, a producdo de informa-
¢Oes sobre cobertura vegetal, copa, galhos e troncos
(Henderson & Lewis, 1998; Aboud Neta et al., 2010;
Ernhard et al., 2011; Lardeux ef al., 2011; Capodici
etal.,2013; Lei et al., 2018).

O objetivo dessa pesquisa € apresentar uma
analise qualitativa de imagens SAR nas bandas X
e C, opticas e termal para identificar desmatamento
por corte raso em uma area localizada no arco de
desmatamento na floresta Amazonica. A metodolo-
gia testada acrescenta informagdes sobre como os
diferentes comprimentos de onda em que os senso-
res de radar operam respondem ao desmatamento
em um ambiente de floresta tropical umido. Espe-
ra-se que esse estudo possa acrescentar informagdes
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que auxiliem em metodologias futuras de controle
de desmatamento em larga escala.

2 Mg’rtodos
2.1 Area de Estudo

A area de estudo localiza-se na regido sudeste
da Amazodnia Legal, a norte do municipio de Novo
Progresso, estado do Para (PA) (Figura 2). A porcao
leste da area ¢ cortada pela rodovia BR-163. A maio-
ria dos desmatamentos na regido sdo convertidos em
areas de pastagem e em areas de cultivo agricola. O
clima ¢ marcado por um periodo umido ¢ um perio-
do seco mais prolongado (Figura 3).

2.2 Dados de Sensoriamento Remoto

Para esse estudo, foram utilizadas imagens
de radar em banda X do satélite COSMO-SkyMed,
banda C do satélite Sentinel-1A, imagens Opticas e
termais do satélite Landsat-8, sensor Operational
Land Imager (OLI) nas bandas 4 (vermelho, 0,64
— 0,67 um), 5 (infravermelho préximo, 0,85 — 0,88
um) e 6 (infravermelho de ondas curtas, 1,57 — 1,65
um) e sensor Thermal Infrared Sensor (TIRS) na
banda 10 (infravermelho termal, 10,6 — 11,19 pm)
do periodo de 2016 a 2018. Imagens Opticas de 2015
foram utilizadas para realgar a presenga de floresta
intacta (antes dos desmatamentos ocorridos a partir
de 2016).

O sistema italiano COSMO-SkyMed consis-
te em uma constelagdo de quatro satélites de médio
porte, de baixa oOrbita terrestre ¢ no mesmo plano
orbital, cada um equipado com um sensor em ban-
da X (Covello et al., 2010). As imagens do COS-
MO-SkyMed foram adquiridas pelo Centro Gestor
e Operacional do Sistema de Protecdo da Amazonia
(Censipam) no periodo de 2016 a 2018 e no modo de
imageamento StripMap, Highlmage, faixa de ima-
geamento de 40 km e polarizacdo HH. Foram sele-
cionadas imagens de abril de cada ano (Tabela 1).

As imagens do Sentinel-1A s@o obtidas pela
Agéncia Espacial Europeia (ESA), composta por
uma constelacdo de dois satélites A e B que compar-
tilham o mesmo plano orbital (Torres ef al., 2012).
As imagens sao de acesso livre e foram seleciona-
das de acordo com as datas proximas as imagens do
COSMO-SkyMed. Na area de estudo, haviam dis-
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Figura 2 Mapa de localizacao da area de estudo em imagens dos satélites COSMO-SkyMed e Landsat-8 de 2016. Alvo 1 corresponde
a um maior detalhamento da imagem apresentado nas Figuras 5 e 6.
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Tabela 1 {)atzs de aquisicdo 1c:as 2015 - - 14 de agosto
imagens utilizadas: COSMO-Sky-
Med (banda X), Sentinel-1 (banda 2016 25 de abril 19 de janeiro 31 dejulho
C) e Landsat-8 (bandas: vermelho, } .
infravermelho préximo, infraver- 2017 07 de abril 19 de abril 03 de agosto
melho de ondas curtas ¢ infraver- 2018 08 de abril 08 de maio 05 de julho
melho termal).
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poniveis imagens no modo de aquisicdo Interfero-
metric Wide (IW), faixa de imageamento de 250 km
e polarizagcdes VV e VH.

As imagens Opticas foram obtidas pelo saté-
lite norte-americano Landsat-8 que opera com dois
sensores denominados de OLI e TIRS (Barsi et al.,
2014; Knight & Kvaran, 2014). Os dois sensores
proporcionam imagens coincidentes da superficie
terrestre, porém, em diferentes regides espectrais.
Foram selecionadas imagens opticas da cena 227/65
dos sensores OLI e TIRS, com presenca minima de
cobertura de nuvens. Todos os dados foram projeta-
dos para o sistema de coordenadas geograficas, da-
tum WGS84.

2.3 Processamento das Imagens

A Figura 4 apresenta a metodologia de pro-
cessamento aplicada para as imagens SAR, opticas ¢
termal. As imagens SAR (bandas X e C) foram utili-
zadas a partir do nivel de processamento Single Look
Complex (SLC). As imagens do COSMO-SkyMed
seguiram o procedimento padrdo de processamento
sugerido pela Agéncia Espacial Italiana por meio do

programa SARscape (ISA, 2009). A anélise multi-
temporal (change detection) foram aplicadas para
detectar as mudangas ocorridas entre as imagens no
periodo de 2016 a 2018. A técnica de detecgao de
mudanga multi-temporal (Lu ef al., 2004) faz uma
analise de imagens na mesma posi¢ao geografica em
diferentes datas para identificar quaisquer mudancas
ocorridas entre as duas datas. Foram calculados os
seguintes pardmetros estatisticos: covariancia, gra-
diente, valor minimo, valor maximo, média, media-
na e desvio-padrdo para investigar as alteragoes de
retroespalhamento de multiplas imagens ao longo
do tempo.

As imagens SAR do Sentinel-1A foram pro-
cessadas utilizando o software SNAP da ESA. De-
pois de processados, esses dados foram analisados
por meio de divisdo de bandas e combinagdo das
diferentes polarizacdes. Os valores digitais das ima-
gens do Landsat-8 foram convertidos para reflectan-
cia na superficie terrestre, aplicando-se a técnica de
remocao de nuvens por meio do plug-in RS & GIS,
disponivel no programa QGIS. Posteriormente, fo-
ram calculados o NDVI, o NDMI e a LST por meio
das seguintes equacdes:

COSMO-skyMed Sentinel - 1
(Banda X) (Banda C)
Imagem Banda X (SLC) | Imagem SAR SLC
(SARscape) (SNAP)
Multi Looking . .
[ (15m x 15m) Arquivo de Orbita

v

Landsat-8

Calibragao Radiomeétrica

[ Filtro Speckle
(Frost 5 pixeis X 5 pixels

Imagem odptica
QGIS, ENVI, ArcGis

Geocodificagdo Deburst [ Correcdo de nuvens ]
Calibragdo Multi Looking [ L ]
L Radiométrica (15m x 15m) heflectinala

¥

v

Figura 4 Fluxo de

Anélise Multitemporal

Correcao de Terreno

o

processamento digital

indices Normalizados A
das imagens SAR

(NDVI, NDMI) e LST (bandas X ¢ C),

opticas e termal.
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Red — NIR

= — 1
i Red + NIR M
NDM] — SWIR — NIR @
~ SWIR + NIR
ki
LST = ———— 3

onde Red, NIR e SWIR correspondem as reflectan-
cias nas faixas espectrais do vermelho, infraverme-
lho proximo e infravermelho de ondas curtas, res-
pectivamente; &, € k, correspondem a constantes de
conversdo das bandas termais; e L refere-se a radian-
cia no topo da atmosfera.

2.4 Dados de Referéncia

Foram utilizados, como dados de referéncia
de areas desmatadas, as composi¢des coloridas de
imagens oOpticas entre 2015 e 2018; os poligonos de
desmatamento do sistema de detecgdo de indicativos
de desmatamento em tempo quase real (DETER-B)
do Instituto Nacional de Pesquisas Espaciais (INPE)
para os anos de 2017 e 2018; e os poligonos de des-
matamento (T0) mapeados pelo Censipam em 2016.
As composic¢des coloridas RGB das imagens Opticas
foram formadas com as bandas espectrais 6 (SWIR),
5 (NIR) e 4 (RED), respectivamente.

O INPE, por meio do Projeto de Monitora-
mento do Desmatamento na Amazonia por Satélites
(PRODES), tem calculado as taxas anuais de desma-
tamento por corte raso em areas maiores que 6,25
hectares na Amazonia Legal brasileira (INPE, 2013).
O sistema faz uso de dados dpticos de resolugao es-
pacial moderada provenientes principalmente dos
satélites Landsat (30 m de resolugdo espacial e re-
visita de 16 dias) e CBERS (20 metros de resolugdo
espacial e revisita de 26 dias). Esse monitoramento
¢ possivel de ser realizado apenas de seis a oito me-
ses no ano, correspondente ao periodo seco, o que €
insuficiente para a¢des de prevengao, fiscalizagdo e
controle do desmatamento em curto prazo (Escada
et al.,2010).

Com o objetivo de apoiar a vigilancia e o
controle do desmatamento, o INPE vem desenvol-
vendo sistemas complementares de monitoramento.
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Esse ¢ o caso do DETER-B, baseado em imagens do
sensor Wide Field Imager (WFI) a bordo do satélite
CBERS-4 (resolugao espacial de 64 m) e principal-
mente em imagens do Advanced Wide Field Sensor
(AWIFS) do satélite indiano Resourcesat-1, com re-
solucdo espacial de 56 m e resolugdo temporal de 5
dias (Diniz et al., 2015). O DETER-B demonstrou
ser capaz de indicar alteracdes florestais em diferen-
tes estagios de degradacao, contribuindo para o com-
bate de desmatamento no arco de desflorestamento
localizado na Amazdnia Legal.

Durante o periodo de chuvas, em que o moni-
toramento por meio de satélites opticos do INPE fica
prejudicado, o Censipam colabora com os 6rgaos
federais de fiscalizagdo (IBAMA e ICMBio). Com
base nos dados do PRODES, o IBAMA define os
hotspots de desmatamento para que o Censipam, por
meio de imagens radar, possa mapear os poligonos
menores, mais dificeis de serem identificados por
sensores de resolucdo moderada, gerando alertas de
desmatamento na Amazonia em tempo proximo ao
real. O Censipam faz uso de imagens em banda X do
satélite italiano COSMO-SkyMed e mapeia as areas
desmatadas, com resolu¢ao espacial de 3 a 6 m, cha-
mada base T0. Desde 2016, a area monitorada tem
sido de 300.000 km? mensais, no periodo compreen-
dido entre outubro a abril nos estados da Amazdnia.

3 Resultados

Foi realizada uma andlise temporal calcu-
lando-se, sobre pares de imagens, a covariancia, o
gradiente, o valor minimo, o valor méximo e o des-
vio-padrao para trés periodos: 2016 a 2017; 2017 a
2018; e 2016 a 2018. Os resultados sdo apresentados
em composi¢des coloridas RGB que melhor evi-
denciaram os limites das areas de desmatamento e
os periodos aproximados de ocorréncia. A Figura 5
apresenta as combinagdes temporais RGB das ima-
gens do COSMO-SkyMed dos parametros calcula-
dos na analise temporal. Em todas as composi¢des
coloridas, no canal vermelho (R) foram inseridas as
imagens do periodo de 2016 a 2017, no canal verde
(G), as imagens de 2016 a 2018 e no canal azul (B),
as imagens de 2017 a 2018. Imagens do Landsat-8
foram selecionadas durante os periodos secos dos
anos de 2015, 2016, 2017 e 2018 para comparagao
e validagao visual das mudancas ocorridas na area.
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Nas imagens de covariancia (A) e gradiente
(B), as areas desmatadas durante o periodo de 2016
a 2017 foram evidenciadas pela coloragdo amarela.
As coloragdes em ciano e magenta mostram mudan-
cas ocorridas entre 2017 ¢ 2018. Porcoes da area de
coloragdo escura a preta mostram areas desmatadas
mais antigas. A imagem de valores méaximos (C) ndo
se mostrou adequada para definir as areas de des-
matamento. A imagem de valores minimos (D) apre-
sentou uma textura mais lisa das areas desmatadas
mais antigas. Dos pardmetros temporais calculados,
o gradiente (B) e o valor minimo (D) mostraram-se
mais eficientes em diferenciar as areas que sofreram
alterag@o e as areas de desmatamento mais antigas.
A combinagdo de desvio-padrdo ndo foi mostrada na
figura por apresentar as mesmas caracteristicas do
gradiente (B).

Uma segunda avalicao foi realizada para o pe-
riodo total de 2016 a 2018, combinando-se os melho-
res resultados da analise dos parametros temporais
calculados (covariancia, gradiente ¢ valor minimo),
imagens de retroespalhamento (¢°, unidade em dB)
e diferengas de bandas (Figura 6). Na imagem cov-
-min-grad (A) (composicdo RGB: R = covariancia;

G = valor minimo; ¢ B = gradiente), as areas que so-
freram alteracdo entre 2016 ¢ 2018 foram evidencia-
das pela cor magenta e as areas desmatadas mais an-
tigas apresentaram-se com padrdo verde escuro. Na
imagem dif-min-grad (B) (composicdo RGB: R = di-
ferenga de 0°de 2016-0° de 2018; G = valor minimo;
e B = gradiente), o padrao azulado permitiu definir
melhor os limites das areas que sofreram alteragéo,
quando comparada com a imagem cov-min-grad
(A). As areas desmatadas mais antigas puderam ser
observadas na cor marrom. Na imagem dif- ¢° 16-
o’ 18 (C) (composi¢cdo RGB: R = diferenca entre ¢°
de 2016 € 6°de 2018; G = ¢° de 2016; ¢ B = ¢°de
2018), as areas em coloracdo verde claro correspon-
deram as areas alteradas em 2016. Por¢oes em verde
escuro mostraram areas desmatadas mais antigas e,
nas por¢des mais azuladas, areas que foram desma-
tadas em 2018. Na imagem ¢° 16- ¢° 17-c° 18 (D)
(composi¢do RGB: R =¢” de 2016; G = ¢° de 2017;
e B =0° de 2018), a coloragao RGB correlacionou-
-se com os periodos aproximados de desmatamen-
to. Tons amarelos evidenciaram os desmatamentos
ocorridos entre 2016 e 2017, tons azulados, os des-
matamentos mais recentes (ocorridos entre 2017 e
2018) e os tons mais escuros, as areas desmatadas

R=2016 a 2017 G=2016 a 2018 B=2017 a2018

gradiente (B)

covaréncia (A)

015/08/14 (E

minimo (D)

2018/0705 (H)

€

Figura 5 Composicdes coloridas RGB bitemporais (R =2016 a 2017; G =2016 a 2018; e B =2017 a 2018) derivados dos parametros
covariancia (A), gradiente (B), valor maximo (C) e valor minimo (D) do satélite COSMO-SkyMed. Na parte inferior da figura, sdo
mostradas as composicdes coloridas RGB/654 do satélite Landsat-8 obtidas em 2015/08/14 (E), 2016/07/31 (F) (com poligonos de
desmatamento TO0), 2017/08/03 (G) (com poligonos de desmatamento TO e DETER-B de 2017) e 2018/07/05 (H) (com poligonos de
desmatamento TO e DETER-B de 2018).
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ja bem consolidadas. Todas as composicoes RGB
das imagens do COSMO-SkyMed apresentaram
bons resultados para detec¢do e discriminagao das
areas desmatadas.

Na parte inferior da Figura 6, a primeira ima-
gem a esquerda (I) é composta por imagens do saté-
lite Sentinel-1A (composi¢do RGB: R = ¢° VH de
2016; G =0¢° VH de 2017; ¢ B =6 VH de 2018).
As areas que sofreram alteracdo apresentaram tons
amarelos e verdes e areas desmatadas bem consoli-
dadas em coloragdo marrom, porém, os limites des-
sas areas ficaram pouco definidos. Nas imagens de
retroespalhamento dos anos de 2016 (J), 2017 (K) e
2018 (L) (composi¢do RGB: R=¢° VV; G=¢" VH;
e B =diferengca VV-VH), nao foi possivel diferenciar

novas areas de desmatamento. Os tons escuros nas
imagens corresponderam as areas de desmatamentos
bem estabelecidos.

A expansdo do desmatamento no arco de des-
florestamento da Amazonia ocorre seguindo uma
dinamica de corte seletivo e derrubada da floresta,
implanta¢do da pecuaria e transformagdo posterior
da area em agricultura mecanizada (Domingues &
Bermann, 2012). Com o objetivo de observar o com-
portamento da vegetacdo, umidade e temperatura nas
areas de desmatamento, foram calculados os indices
NDVI e NDMI e a temperatura superficial terrestre a
partir das imagens opticas. O indice NDVI ¢ aplica-
do para identificar a presenca de vegetagao e visua-
lizar o seu nivel de vigor (Ponzoni et al., 2015). O

cov-min-grad (A)

o0_16-00_17-c0_18 (1)

L p——

Gito0_16-00_18

00_16-00_17-00_18
) e

Figura 6 Imagens do COSMO-SkyMed: covariancia-minimo-gradiente (A), diferenca 6°(2016-2018)-minimo-gradiente (B), diferenga
6’ (2016-2018)- 6° 2016 - c° 2018 (C) e 6° 2016-c° 2017- ¢ 2018 (D). Composigdes coloridas RGB/654 do satélite Landsat-8 ob-
tidas em 2015/08/14 (E), 2016/07/31 (F) (com poligonos de desmatamento T0), 2017/08/03 (G) (com poligonos de desmatamento TO e
DETER-B de 2017) ¢ 2018/07/05 (H) (com poligonos de desmatamento TO e DETER-B de 2018). Imagens do Sentinel-1A: 6° 2016-
6’ 2017- 6 2018 (I) (composi¢do RGB: R =’ VH de 2016; G =¢° VH de 2017; ¢ B =" VH de 2018); ¢° 16 (J) (composigdo R =
6’ VV;, G=¢" VH; e B = diferenga VV-VH) para os anos de 2016-01-19, 2017-04-19 (K) e 2018-05-08 (L).
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indice NDMI ¢ aplicado com o objetivo de observar
a diferenca de umidade nas areas desmatadas e nas
areas de floresta. Esse tltimo também pode auxiliar
na identificacdo da presenca de vegetagao (Wilson &
Sader, 2002).

Apds o célculo do NDVI, foi realizada uma
classificagdo no programa ENVI. Foi utilizada a fer-
ramenta SPEAR, que faz uma delineagdo da vege-
tagdo para permitir identificar a presenca de vege-
tacdo e visualizar seu nivel de vigor. O NDVI gera
uma imagem com valores que variam de -1 a +1. Os
pixels sem vegetagdo tendem a -1 enquanto os pi-
xels com vegetac@o vigorosa tendem a 1. Os valores
NDVI foram divididos em quatro classes: areas nao
vegetadas (entre -1 a 0,50), vegetacdo esparsa (aci-
ma de 0,50 e abaixo de 0,62), vegetacdo moderada
(acima de 0,62 e abaixo de 0,68) e vegetacao densa
(entre 0,68 a 1). Os valores foram ajustados visual-
mente de modo que representassem bem as quatro
classes. Para o ano de 2015, os limiares booleanos
minimo e maximo foram de -0,57 € 0,84; em 2016,
minimo de -0,41 € maximo de 0,84; em 2017, mini-
mo de -0,94 e maximo de 0,86; ¢ em 2018, minimo
de -0,98 e maximo de 0,87. A Figura 7 mostra, em
detalhe, para as datas de 2015/08/14, 2016/07/31,
2017/08/03 e 2018/07/05, a classificacdo do NDVI
[(A) a(D)]; imagens RGB-654 usadas como referén-
cia[(E) a (H)]; imagens do indice de umidade NDMI
[(D) a (L)]; e imagens de temperatura superficial ter-
restre [(M) a (P)]. Os valores de NDVI variam de -1
a +1, onde os valores mais elevados correspondem a
areas de vegetacdo fotossinteticamente mais ativas
e os valores inferiores representam areas com bai-
xa vegetacao. O NDVI individualizou bem as areas
sem vegetacdo e vegetagdo esparsa, porém, as areas
de rebrota e vegetagdo densa apresentaram o mesmo
nivel de vigor.

O NDMI também possui valores que variam
de -1 a +1, onde os valores mais elevados corres-
pondem as areas mais umidas (com presenga de
vegetacdo) e os valores menores, as areas de baixa
umidade ou pouca vegetacdo. Observou-se uma
queda da umidade nas areas desmatadas ou de
pouca vegetagdo. Porém, areas de rebrota e areas
de vegetacdo densa apresentaram valores similares
e impossibilitaram a individualizagdo dessas
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duas classes. A LST foi calculada para observar o
comportamento da temperatura nas areas desmatadas
e nas areas de floresta. Os mapas de temperatura
mostraram coeréncia relativamente alta com os indi-
ces de umidade. As regides com mais alta temperatu-
ra apresentaram baixa umidade. Entretanto, as tem-
peraturas nas areas de rebrota foram levemente mais
elevadas que as areas de floresta densa, permitindo
diferenciar visualmente essas duas classes. As areas
de solo exposto alcangaram valores de temperatura
de superficie acima de 50 °C.

4 Conclusoes

Os dados SAR, em banda X, forneceram in-
formagdes importantes sobre os atributos tempo-
rais e combinagdes RGB que melhor evidenciaram
as areas de desmatamentos na regido. Covariancia,
gradiente e minimo foram os parametros temporais
que melhor evidenciaram os desmatamentos como
também o periodo aproximado de sua ocorréncia.
Esses parametros, quando combinados com dados
de retroespalhamento, por exemplo, diferenga de o,
minimo e gradiente, permitiram delinear os limites
de desmatamento com maior definicdo quando com-
parados a combinacdo pura de pardmetros da analise
temporal. As composi¢des de diferengas entre ban-
das de ¢ também podem ser usadas para extrair in-
formagdes de alteragdo como o periodo aproximado
de ocorréncia dos desmatamentos.

Os dados SAR, em banda C, ndo apresentaram
resultados capazes de definir inequivocamente areas
de desmatamento. Esses resultados deram-se, prova-
velmente, a soma de alguns fatores como o modo de
aquisicao dos dados em banda C ser Interferometric
Wide, menos detalhado quando comparado ao modo
StripMap, das imagens em banda X.

Os indices calculados a partir de imagens
opticas forneceram informacdes importantes sobre
a presenca ¢ vitalidade da vegetagdo nas areas de
desmatamento ¢ de sua relagdo com as condigoes de
umidade e de temperatura nessas areas. Os indices
NDVI e NDMI mostraram-se correlatos, areas com
vegetagdo densa a moderada apresentaram umidade
elevada e areas sem vegetacao ou vegetacdo esparsa
apresentaram baixa umidade. Porém, pode-se obser-
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Veg Esparsa 0.50

I Veg Moderada 0.82

B Veg Densa 088

2015/08i14 (1)

Figura 7 Mapas de classificagdo do NDVI para 2015-08-14 (A), 2016-07-31 (B), 2017-08-03 (C) ¢ 2018-07-05 (D). Composigdes co-
loridas RGB/654 do satélite Landsat-8 obtidas em 2015/08/14 (E), 2016/07/31 (F) (com poligonos de desmatamento T0), 2017/08/03
(G) (com poligonos de desmatamento TO e DETER-B de 2017) e 2018/07/05 (H) (com poligonos de desmatamento TO e DETER-B
de 2018). Mapas de indices de umidade (NDMI) para 2015-08-14 (I), 2016-07-31 (J), 2017-08-03 (K) e 2018-07-05 (L). Mapas de
temperatura superficial terrestre (LST) para 2015-08-14 (M), 2016-07-31 (N), 2017-08-03 (O) e 2018-07-05 (P).

var, pelas imagens opticas, que, nas areas que foram
desmatadas e posteriormente houve uma rebrota da
vegetacdo, esses dois indices apresentaram valores
similares em relagdo as areas de vegetacdo densa,
ndo permitindo uma diferenciacdo entre essas duas
classes. A temperatura superficial terrestre mostrou-
-se mais sensivel que os indices normalizados pela
diferenca onde foi possivel observar uma tempe-
ratura levemente maior nas areas de rebrota e uma
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temperatura mais baixa nas areas de vegetagdo den-
sa, sendo possivel fazer uma separagdo visual entre
essas duas areas.

A tecnologia SAR mostrou-se 1til na identifi-
cacao dos desmatamentos durante o periodo de chu-
vas na Amazonia Legal. Neste estudo, foi relevante
avaliar os parametros temporais € combinagoes RGB
que melhor ressaltaram as areas de desmatamentos e
seus limites na area de estudo. Em pesquisas futu-
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ras, pretende-se realizar analises de textura de dados
SAR para uma melhor defini¢do e discriminacao das
classes vegetais como também analises quantitativas
das informacdes SAR e Opticas.
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Abstract: This work presents the dynamics of fire occurrences, greenhouse gas (GHG) emissions,
forest clearing, and degradation in the Brazilian Amazon during the period 2006-2019, which includes
the approval of the new Brazilian Forest Code in 2012. The study was carried out in the Brazilian
Amazon, Para State, and the municipality of Novo Progresso (Para State). The analysis was based on
deforestation and fire hotspot datasets issued by the Brazilian Institute for Space Research (INPE),
which is produced based on optical and thermal sensors onboard different satellites. Deforestation
data was also used to assess GHG emissions from the slash-and-burn practices. The work showed a
good correlation between the occurrence of fires in the newly deforested area in the municipality of
Novo Progresso and the slash-and-burn practices. The same trend was observed in the Para State,
suggesting a common practice along the deforestation arch. The study indicated positive coefficients
of determination of 0.72 and 0.66 between deforestation and fire occurrences for the municipality
of Novo Progresso and Para State, respectively. The increased number of fire occurrences in the
primary forest suggests possible ecosystem degradation. Deforestation reported for 2019 surpassed
10,000 km?, which is 48% higher than the previous ten years, with an average of 6760 km?. The steady
increase of deforestation in the Brazilian Amazon after 2012 has been a worldwide concern because
of the forest loss itself as well as the massive GHG emitted in the Brazilian Amazon. We estimated
295 million tons of net CO,, which is equivalent to 16.4% of the combined emissions of CO, and
CHj emitted by Brazil in 2019. The correlation of deforestation and fire occurrences reported from
satellite images confirmed the slash-and-burn practice and the secondary effect of deforestation, i.e.,
degradation of primary forest surrounding the deforested areas. Hotspots’ location was deemed to
be an important tool to verify forest degradation. The incidence of hotspots in forest area is from 5%
to 20% of newly slashed-and-burned areas, which confirms the strong impact of deforestation on
ecosystem degradation due to fire occurrences over the Brazilian Amazon.

Keywords: Amazon rainforest; forestry degradation; greenhouse gas emission; remote sensing application

1. Introduction

Global efforts have been made to preserve Earth’s ecosystems and to mitigate climate
changes, including reductions of deforestation and forest degradation [1,2]. The Brazilian
Amazon is one of the most endangered ecosystems. A deep understanding of this ecosys-
tem, including its carbon cycle, is essential to know the adaptability of the environment to
climate changes [3]. The Brazilian Amazon, with about 5.2 million km?, covers the states
of Acre (AC), Amapa (AP), Amazonas (AM), Maranhao (MA), Mato Grosso (MT), Para
(PA), Rondonia (RO), Roraima (RR), and Tocantins (TO), and occupies about 60% of the
Brazilian territory (Figure 1A). Human occupation in this region has claimed large areas
of the original forest for settlement, beef production, crop plantation, and hydropower
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generation [4-12], especially in a region known as the deforestation arch. This arch-shaped
region is located in the southernmost part of the Brazilian Amazon and shows the highest
occurrence of forest clearings [13] and occupation [14,15]. It covers about 1.71 million km?,
i.e., 33% of the Brazilian Amazon. This region stretches from the southeast of Para State to
the east of Acre State, concentrating 77% of total deforestation of the Brazilian Amazon,
mostly for soybean plantation and cattle ranching [5,15,16]. Figure 1B shows the annual
deforestation over the Pard State and the Brazilian Amazon, as estimated by the National
Institute for Space Research (INPE), from 1988 to 2019. This institution defines deforestation
as the clear-cut conversion of the primary forest by human activities, detected by the Earth
Observation satellite optical sensors [13].
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Figure 1. (A) Location of the deforestation arch in the Brazilian Amazon. (B) Annual deforestation area in the Brazilian
Amazon (triangle) and in the Para State (square), according to the Monitoring Deforestation of the Brazilian Amazon Forest by
Satellite (PRODES) project, coordinated by the National Institute for Space Research (INPE). State identification: AC = Acre;
AM = Amazonas; AP = Amapd; MA = Maranhao; MT = Mato Grosso; PA = Para; RO = Rondonia; RR = Roraima; TO = Tocantins.

Since 2006, the highest levels of deforestation in the Brazilian Amazon are found in
the Para State, reaching about 5000 km? in 2019. It can also be seen in Figure 1B that the
deforestation trend in the Para is similar to that of the entire Brazilian Amazon. In this state,
forest disturbances are located mainly in the south, southwest, and east borders, covering
approximately 550,000 km?. The largest annual deforestation in the Brazilian Amazon
occurred in 1995, surpassing 29,000 km?. A second peak occurred in the period 2002-2004,
with an average of 24,939 km?2. From 2004 to 2012, there was a sharp decrease in annual
deforestation rates, as indicated by the blue line in Figure 1B (correlation higher than 80%).
Voluntary “Reducing Emission from deforestation and forest Degradation in Developing
countries” (REDD+) projects for the region started in 2008 [17]. By this time, Brazil was
close to reaching the goal of reducing deforestation by 80% until 2020 (green, dashed line in
Figure 1B) compared to the 19962005 period. This goal was set in 2009 during the United
Nations Framework Convention on Climate Change (UNFCCC) held in Copenhagen,
Denmark [18]. The trend, however, inverted, as indicated by the steady growth of the red
line in Figure 1B. The inflexion is linked to the Federal Law n. 12.727/2012 [19] that, to
some extent, relaxed forest conservation. As of 2019, deforestation in Para State alone was
higher than the target value set in 2009 for the whole Brazilian Amazon.

Figure 2 shows the relationship between land use and land cover changes, and forest
fire in the Brazilian Amazon, as proposed in References [5,6]. Road construction facilitates
forest access, accelerating deforestation and selective logging, and lowering the resilience of
surrounding forests to fire [20-23]. Deforestation raises the number of forest edges, increasing
the susceptibility of forests to fires [24-27]. Selective logging degrades forest, reduces canopy
and soil moisture, and increases canopy temperature and tree mortality, intensifying fire out-
breaks [22,28,29]. The cycle grows in a spiral configuration: forest fires and smoke emissions
reduce rainfall, particularly in the dry season [24,30-35], previously burned areas are more
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prone to recurrence, changes in the global and local climate, along with land use intensifi-
cation, contribute to increasing the level of forest degradation [28,35-41], most significant
changes in forest canopy density take place in regions close to the forest edges [16,22,35,42],
and land management fires can penetrate the standing degraded forests, as demonstrated by
others studies [21,43,44].

Fragmentation
Degradation

Road Building Forest Fire

- >

Logging
Degradation

Figure 2. Relationship between land use and land cover changes and fire occurrences. Sources:
References [5,6].

Several in-situ measurements of the slash-and-burn forest clearing practices have
been conducted to infer greenhouse gas (GHG) emission [45-49]. Figure 3 shows the main
steps of the slash-and-burn practices observed in the Brazilian Amazon. By the end of
the rainy season, the forest is clear-cut (Figure 3A) and left in the terrain to dry until the
peak of the dry season (Figure 3B), after which the fire is set. The burning period typically
extends from July to October. The initial fire consumes the duff-layer, small branches,
and leaves, while most of the massive trunks remain in the terrain (Figure 3C). Finally,
the remaining scorched logs are stockpiled and burned along the coming years until the
terrain becomes dominantly bare soil (Figure 3D). Fire may penetrate the standing forest
if moisture favors flame propagation through the understory vegetation [42—-44]. Forest
degradation increases after successive fires, observed by the combustion of growing small
trees in dry seasons. The less resilient forest also favors significant fire recurrences over the
years. Fire is used mainly for land management, mostly for clearing the terrain after the
slash-and-burn deforestation for subsequent maintenance of deforested areas [50,51].

GHG emissions from deforestation in the Brazilian Amazon are also of great concern,
considering that it generally accounts for more than 200 t ha~! of CO, after the clear-cut
occupation [44,49,52]. These authors also observed that other gases such as CO, CHy, and
non-methane hydrocarbons and particulates are also emitted in large quantities.
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C D

Figure 3. Main stages of the clear-cut processes of forest clearing in the Brazilian Amazon. (A) Clear-

cut during the wet season or end of the wet season, (B) trunks and branches left in the terrain for
drying, (C) burning activity during the dry season, and (D) bare soil prepared for pasture or crop
plantation (Photos: E. Sano).

This paper addresses the relationship between forest loss, fire occurrence, forest
degradation, and primary GHG emissions over the Brazilian Amazon and downscaling to
the Para State and Novo Progresso municipality. Several authors studied carbon emissions
from fires in the Brazilian Amazon, emphasizing specific topics such as drought-related
fires rather than forest-clearing-related fires [35] or in specific regions such as the states
of Rondo6nia and Mato Grosso [53]. Aragao and Shimabukuro [37] reported an increase
of fire occurrences in areas experiencing reduced deforestation. The literature review
showed that there is no previous study relating the amount of fire occurrences in standing
forest (degradation) due to deforestation following the slash-and-burn practices over the
region. We relied on annual reports published by INPE, for the period 2006-2019. The
data were used to correlate fire events in a specific area (Novo Progresso municipality)
and in a regional area (Para State), both located in the deforestation arch. Fire outbreaks
inside the primary forest were also investigated to assess ecosystem degradation. The work
also presents the amount of GHG originated by the first forest clearing process along the
Brazilian rainforest in 2019. The period of 2007-2019 was selected for this study, as it has
sharp decay on deforestation rates followed by the steady growth of human occupation
after 2012, as depicted in Figure 1.

2. Materials and Methods
2.1. Novo Progresso Region

Pard State encompasses an area of 1,246,000 km?, equivalent to the total area occupied
by Germany, France, the United Kingdom, and Italy, altogether. The Novo Progresso
region, located in the southwest of the Para State (Figure 4), covers 36,800 km? and is one
of the areas in this state facing long-time, largest clear-cutting deforestation. Most of the
deforestation in the Novo Progresso region is found along the BR-163 highway, crossing
the region in the North-South direction. Land cover change mapping and monitoring of
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this municipality has been a big concern in the literature [54-56]. Within this context, we
analyzed our data by considering them in three different scales: municipality, state, and
region levels, in order to check the consistency among these scales.

»agff Deforestation Arch 600,000 700,000 800,000

Pard State

4 BR-163

930,000
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920,000
920,000

Study area

0 20 40 60
— w— T

910,000
910,000
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Figure 4. Location of the Novo Progresso region, southwest of the Para State. Red-Green-Blue (RGB) false-color composite
of bands 5, 4, and 3 of Landsat 8 satellite images [57].

2.2. Datasets

The datasets of deforestation and fire hotspots were produced by the INPE’s Amazon
Deforestation Satellite Monitoring Program (PRODES) and the Forest Fire Program (Pro-
grama Queimadas), respectively. PRODES provides the annual rates of clear-cut deforested
areas larger than 6.25 hectares over the Brazilian Amazon [58]. The system makes use of
moderate spatial resolution (10-100 m) optical data, mostly from the dry season, obtained
by Landsat 8 (30 m spatial resolution and 16-day revisit time), China-Brazil Earth Resources
Satellite (CBERS-4) (20 m spatial resolution and 26-day revisit time), and Sentinel-2 (10 m
spatial resolution and 5-day revisit time) satellites. The near real-time fire detection data,
provided by the Forest Fire Program [59], are based on thermal sensors onboard several
sun-synchronous and geostationary satellites, namely:

e  MODerate Resolution Imaging Spectroradiometer (MODIS) sensor onboard Aqua and
Terra platforms.

e Advanced Very High-Resolution Radiometer (AVHRR) sensor onboard National
Oceanic and Atmospheric Administration (NOAA) satellite.

e AVHRR-3 and Infrared Atmospheric Sounder Interferometer (LASI) sensors onboard
Meteorological Operational (MetOp) satellite.

e  Visible Infrared Imaging Radiometer Suite (VIIRS) sensor onboard Suomi National
Polar-orbiting Partnership (NPP) satellite.
Advanced Baseline Imager (ABI) sensor, onboard GOES-R satellite.
Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard Meteosat
Second Generation (MSG) satellite.

Deaily fire hotspot monitoring is performed by the MODIS sensor (Collection 6) [59-61].
The detection of fire hotspots by INPE through satellite images is carried out using well-
known techniques [62-64], basically by subtracting brightness temperatures measured in
the middle infrared (MIR) band (around 4 um) with that of the measured thermal infrared
(TIR) band (around 11 pm). Thermal anomalies are identified when the difference in the
brightness temperature measured in these two spectral bands is higher than a given threshold,
i.e.,, when the temperature from MIR is much higher than that of TIR. Hantson et al. [65]
investigated the strengths and weaknesses of hotspots detected by MODIS to characterize
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fire occurrence in many different ecosystems. For the Brazilian Amazon, they reported less
than 2.1% of commissioning error, and 80% confidence interval between hotspot detection
(MODIS) and burned area (Landsat). The coefficient of determination between the annual
number of hotspots and burned areas for the Amazon was R? = 0.95.

2.3. Methodology
2.3.1. Deforestation and Fire Hotspots

In the southwest region of Para State, the typical rainy season is from November to
May and the typical dry season is from June to October [66]. INPE s deforestation mapping
starts on 1 August of the previous year until 31 July of the current year. In this paper, this
period is referred to as PY (PRODES Year). In PRODES, the processing time is quite long to
account for the required level of confidence (>90%) and the size of the region (deforestation
arch). Deforestation reports are generally published about four months after the end of the
mapping period.

Fire occurrences within the forest and deforested areas were covered for the same
reference period (2007-2019) to evaluate their strength of relationship with deforesta-
tion. To avoid misinterpretations, the reference year for the hotspots follows that of
deforestation. Most planned fires, however, take place in the mid/end of the dry season
(August-September) for higher combustion efficiency. The first fires consume about 50%
of the recently slashed biomass. The scorched biomass is then stockpiled and burnt in
the following years to complete the land clearing process. The newly deforested areas
reported for a given PY show intense fire activities in the first months of PY+1 (August-
September), but fire hotspots are likely to appear at that pre-burnt area for the next PRODES
years (PY+2, PY+3, PY+4, and so on), though at lesser intensity when compared to the
first burn. Throughout the work, fire scars, hotspots, and fire outbreaks are mentioned
indiscriminately and are considered as indicative of the spatial and temporal burned areas.

Figure 5 illustrates, for a given year, the accumulative location of detected fire hotspots
inside the forest shown as red dots, and in the deforested areas, indicated by blue dots.
Hotspots’ location accuracy is 500 m. Due to positioning uncertainty, the fire hotspots
reported at a distance higher than 500 meters (buffer zone) from the edge of deforested
areas were considered to take place at the standing forest. The boundaries of deforested
areas were updated annually. Therefore, the buffer zone of 500 m was updated accordingly.
Figure 5 shows the consolidated data of forest and non-forest areas as reported by INPE,
corresponding to the actual status of the region by 31 July 2019 (PY2018-2019). The hotspots
in Figure 5 give the location of their incidences at any time during the period of 1 August
2018 to 31 July 2019. Most of the fire hotspots would appear in the dry season of 2018, from
July to October, for which clear-cut had occurred at the first quarter of 2018 (PY2017-2018).

PY2018-2019

Novo Progresso

5
& 500 m strip

4 BR-163
:l Deforested area

@ Hotspots in Forest area
'] Forest area @ Hotspots in Deforested area

Figure 5. Examples of deforested areas (yellow and striped polygons), forest (green and white areas),
fire hotspots in the forest areas (red dots), fire hotspots in the deforested areas (blue dots), and
deforestation dynamics example (dotted square) in the Novo Progresso region.
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It is important to highlight that the healthy undisturbed forest does not sustain large
fires in the Brazilian Amazon, due to the high levels of humidity, even in the dry season.
Fire occurrences in the humid tropical forest are observed in dead trees and along the
duff-layer. The understory vegetation may propagate flame in the surroundings of large
cleared areas (degraded edges of forests) in combination with an intense dry season. Flame
propagation through the understory vegetation is too weak to be captured by satellite
sensors. Therefore, the fire hotspots inside the intact forest may be due to the flaming
of large naturally dead trees or along an open forest trail where small slashed trees have
the ability to sustain the fire. Selective logging also degrades the area around the large
falling trees, thus making the vicinity prone to propagate flame. Fire occurrences inside the
standing forest are restricted to degraded forest caused by any of the previously discussed
events or their combined effects.

This study deals with deforestation and the use of fire for land clearing. Fire hotspots
may also occur in nearby degraded areas, such as dead trees, near extracted logs and trails.
Total GHG emission for the Amazon was limited to the burning of the newly deforested
area corrected by the average regrowth of secondary forest throughout.

2.3.2. Greenhouse Gas Emissions

Amazon GHG emissions from slash-and-burn practices can be estimated based on
in-situ measurements of forest clearing fire experiments [50,52]. Figure 6 explains the
GHG estimation model. Emissions are calculated based on the amount of burned dry
biomass, combustion efficiency, and the emission factors for each gas. The dry weight
of biomass (ton) is estimated from the local fresh biomass (ton ha™!), its humidity (%),
and the amount of deforested area (ha). For the Novo Progresso region, we used the
data obtained [52] from two different sites in the Alta Floresta municipality, which is less
than 500 km from the Novo Progresso region. For the Pard State, the fresh biomass was
calculated by averaging the estimates from Alta Floresta, Mato Grosso State, and Manaus,
Amazonas State [46,50,52]. For the Brazilian Amazon, the average fresh biomass included
the values from the Para State and from the municipalities of Cruzeiro do Sul and Rio
Branco, both in Acre State. More detailed information about the methodology of the GHG
emissions and estimates can be found in Carvalho Jr. et al. [50] and Soares Neto et al. [52].

o @ ..-_.i

Clear-cut

Drying \‘

Standing forest
Fresh biomass - FB (ton/ha)
Humidity (%)

Deforested area — DA (ha) Combustion efficiency — CE (%)

DB {ton] = DA* FB*(lOO-HU)/lOO Emission factors (kg/tondb):
efCO, = 1,599 / efCH, = 9.2

TE (ton) = DB*CE*{efCO, + 21*efCH,)/100

Figure 6. Procedure of the estimation of the greenhouse gas (GHG) emission. HU = humidity; DB = dry biomass,

TE = total emission.

Soares Neto et al. [52] reported combustion efficiencies of about 50% and fresh biomass
humidity of 42%, prior to clear-cut. Table 1 summarizes the relevant data for emission
estimates from slash-and-burn activities in the Brazilian Amazon rainforest.
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Table 1. Basic data for gas emissions estimate. Source: References [50,52].
Parameter Reference Value Reference Area
Fresh biomass (ton ha—1) 512 Novo Progresso
Fresh biomass (ton ha™1) 570 Para State

Fresh biomass (ton ha—1) 580 Brazilian Amazon
Emission factor CHy (kg ton~! (db)) * 9.2 Brazilian Amazon
Emission factor CO (kg ton™! (db)) 111.3 Brazilian Amazon
Emission factor CO, (kg ton—1 (db)) 1599 Brazilian Amazon
Emission factor NMHC (kg ton~1 (db)) 5.57 Brazilian Amazon
Emission factor PM, 5 (kg ton~! (db)) 4.84 Brazilian Amazon
Fresh biomass humidity (%) 42 Brazilian Amazon
Combustion efficiency (%) 50 Brazilian Amazon

* db refers to mass of dry biomass burned. NMHC = non-methane hydrocarbon; PM = particulate matter.

3. Results and Discussion
3.1. Fire Hotspots in the Novo Progresso Region

Table 2 reports the statistics about the fire hotspot occurrences inside the deforested
and forest areas in the Novo Progresso region. We found a total of 11,769 fire hotspots in
PY2006-2007, with 9702 located in deforested areas (corresponding to 5230.90 km?) and
2067 in forest areas (corresponding to an area of 31,574.50 km?). In PY2018-2019, the total
fire outbreaks detected from 1 August 2018 to 31 July 2019 was 39,384, from which 37,236
over 8481.80 km? of deforested area, and 2148 over 28,323.70 km? of intact forest.

Table 2. Total annual fire hotspots distribution in the Novo Progresso region. Deforested and forest
areas and fire hotspots are reported from PY2006-2007 until PY2018-2019 in the Novo Progresso
region. PY = PRODES year.

Forest Area Accumulated Annual Fire Fire Hotspots
PY (km2) Deforested Deforested Hotspots in in Deforested
Area (km?) Area (km?) Forest Area
2006-2007 31,574.5 5230.9 2067 9702
2007-2008 31,153.6 5651.9 421.0 2012 9870
2008-2009 30,543.9 6261.5 609.6 1345 7753
2009-2010 30,406.7 6398.7 137.2 1035 5060
2010-2011 30,281.5 6524.0 125.3 1675 9573
2011-2012 30,096.5 6708.9 184.9 572 3621
2012-2013 29,704.1 7101.3 392.4 4536 36,350
2013-2014 29,437.9 7367.6 266.3 457 10,186
2014-2015 29,200.6 7604.8 237.3 3243 34,817
2015-2016 29,021.9 7783.5 178.7 2085 32,196
2016-2017 28,938.4 7867.1 83.6 1212 19,572
2017-2018 28,655.2 8150.3 283.2 4338 42,723
2018-2019 28,323.7 8481.8 331.5 2148 37,236

Figure 7 shows the variation of total fire outbreaks relative to PY2006-2007 and accu-
mulated deforestation in the Novo Progresso region. From PY2006-2007 to PY2018-2019,
deforested areas increased by 8.8%, with a positive correlation of 0.72 with total detected
fire hotspots for the same area. The variation of hotspots was stable from PY2006-2007 to
PY2011-2012 and increased from PY2012-2013 to PY2018-2019. Deforested areas increased
from 4.0% of the period PY2006-2007 to PY2011-2012 to 4.8% of the period PY2012-2013 to
PY2018-2019. The average of fire outbreaks was 9047 against 33,014 from PY2012-2013 to
PY2018-2019, a three-fold increase.

In this study, deforestation, fire hotspot, and GHG emission data for the period
2007-2019 were analyzed at the levels of municipality, state, and region. In the Novo
Progresso municipality, both deforestation and fire hotspots increased over time, though fire
hotspots’ increase was not so consistent as deforestation over the period considered. Several
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studies indicate that, in tropical forests, deforestation and land management practices by
using fire are strongly linked [4-12]. In the research conducted in Reference [67] in the Novo
Progresso region, more than 70% of fire events detected from MODIS time series for the
period 20002014 occurred over deforested areas. The sharp increase of fire hotspots found
in the period from PY2012-2013 to PY2018-2019 may be related to the current Brazilian
Forest Code [19]. This law states that farmers located in the Brazilian Amazon need to
maintain 80% of their land with native vegetation if located in forestlands or 30% if located
in non-forestlands. However, the law amnestied 58% of the required restoration areas
deforested illegally before 2008 [68]. Therefore, the increase in total fire hotspots from 2013
may be associated with the relaxation from the prevailing law.
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Figure 7. Variation of the total fire hotspots (red) relative to the year PY2006-2007 and accumulated deforestation area

(black) in the Novo Progresso region.

Figure 8 exemplifies the dynamics of deforestation occurred in the Novo Progresso
region. The deforestation dynamics over the period under investigation are shown in
yellow. We can see that the deforested area shown in the bottom and right corner in the
PY2012-2013 (area A, Figure 8) was subjected to intense fire activity. The clear-cut process
and fire occurred in the same PRODES year of 2012-2013. A significant number of fire
outbreaks were detected in PY2012-2013, PY2013-2014, and PY2014-2015. Conversely,
fewer hotspots were detected in PY2016-2017 and PY2018-2019, indicating that the area
was almost free of original forest residues after PY2016-2017.

The fire hotspots over recently deforested areas (clear-cut) are man-induced, as a rapid
and cheap means to clear the area (slash-and-burn) that can be observed by comparing
Figure 3B,C. Eventually, the fire set to clean a given deforested area may propagate fire
on a nearby pasture, or on some crop area or even through the understory of a standing
forest, by accident. Fire occurrences inside consolidated occupied areas may suggest land
management, as shown in the large-deforested area in PY2012-2013 (area B, Figure 8). For
this area, the high density of hotspots was detected in PY2015-2016 and decayed in the
following two years. The high concentration of fire outbreaks in deforested areas is caused
by either the combustion of old pre-carbonized trunks that were not burned in the previous
years or due to the burning of pasture, caused by an advance of the fire front from the
deforested area or even land management.

Fire intensity increased sharply thereafter, as it can be seen in PY2017-2018 (area C,
Figure 8). Burning activities were also observed in PY2018-2019, though with less intensity.
The slash-and-burn approach for clearing the forest is even more evident by observing
PY2018-2019 in Figure 8. The strong overlapping of deforestation and fire occurrences,
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shown by the large concentration of hotspots, indicates that the clear-cut took place after
31 July 2018, and the slashed biomass was most likely burnt during the dry season of
the same year (2018). The method seemed different from the previous years since forest
clearing usually takes place in the rainy season, i.e., in the first quarter of PY, and the
fire activity starts in the third quarter of the same year but is reported as PY+1. Such
forest clearing processes, also reported by different researchers [5,6,8,11,12,27], confirm the
cycle depicted in Figure 2. It begins with the extraction of high commercial value trees
(selective logging), followed by the removal of smaller trees and by the clear-cutting of
remaining trees and shrubs, producing deforestation in the middle of the forest. Regarding
the large-scorched trunks, the clearing process may extend for about five to six years until
the remaining logs that were stockpiled had been combusted to completion.
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Figure 8. Deforestation dynamics from PY2011-2012 to PY2018-2019 in a portion of the Novo Progresso region. The figure,

from upper-left to low-right, shows the yearly evolution of hotspots related to deforestation in deforested (blue dots) and

forested (red dots) areas.

The occurrence of fire inside deforested areas can be observed in Figure 9. In PY2006-2007,
the deforested area corresponded to 14.2% of the total Novo Progresso region. For the
considered period, there was a steady increase in deforestation. By PY2018-2019, the defor-
ested area accounted for 23.0%, an increase of 8.8% in land cleaning, which corresponds to
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an area of 3250 km?2. In PY2006-2007, there were 11,769 occurrences of total fire hotspots
in the Novo Progresso region, of which 82.4% were in deforested areas. In PY2018-2019,
the hotspots in deforested area reached 94.5%, an increase of 12.1%. Fire outbreaks in
deforested areas indicate the systematic use of fire as a means for new land clearing and
land management practices.

The highest annual rate of deforestation occurred in PY2008-2009 (609.6 km?) and
the lowest in PY2016-2017 (83.5 km?) (Table 2). After PY2008-2009, a deforestation
peak occurred in PY2012-2013 (392.4 km?), followed by the periods of PY2017-2018 and
PY2018-2019 when deforestation rates rose again. Fire hotspots, though, increased at
higher rates than deforestation, the curve fitting of fire outbreaks indicates a somehow
steady increase of fire occurrences for the studied period. The average number of hotspots
was 7597 from PY2006-2007 to PY2011-2012 and 30,440 from PY2012-2013 to PY2018-2019,
four times higher than the previous period.
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Figure 9. Temporal analysis of fire hotspots occurrence in the deforested areas (green) and the relative increase of deforesta-

tion (black) in the Novo Progresso region.

Figure 10 shows the number of fire hotspots detected inside the forest for PY2018-2019
as a function of distance from the edge of the deforested area. As can be seen, a significant
incidence of fire outbreaks occurred in the first 800 m from the margins and extended up to
1200 m. The same behavior was also observed for the previous years. Other researchers
had already recognized a more significant frequency of fires within forest areas and near
the deforested areas [4-6,16,43,44,50]. The behavior of hotspot occurrences agrees with the
data reported in References [40,44]. The increase of fires around the edges of deforested
areas enhances the forest degradation along the edges. The decrease in forest resilience
to fire makes it more susceptible to sustain biomass combustion due to the reduction
in near-the-edge forest humidity. Periods of severe drought combined with an intense
slash-and-burn activity favor the outbreaks of fires in standing degraded forests [69].

The research carried out by Matricardi et al. [70], during the period 1992 to 2014,
revealed that forest degradation in the Brazilian Amazon had surpassed deforestation.
They attributed 40% of the whole Amazon forest was degraded by intensive logging and
understory fires, and the remaining 60% through edges and isolated forest fragmentation.

The influence of slash-and-burn practices near to forest degraded areas is evident,
as shown by the plots in Figure 11. There is a direct correlation between forest clearing
and forest degradation due to the use of fire on newly slashed areas. In that sense, forest
clearing is a direct cause of primary forest degradation, as shown in Figure 8. A close look
at the plots from PY2017-2018 and PY2018-2019 reveals the intense occurrences of fire
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in forest areas, which was not observed in previous years, thus indicating the damage of
a healthy ecosystem. For the time span of this study, the number of fire occurrences in
healthy forest is from 5% to 20% of deforested areas. Then, the degraded area could be
estimated, to some extent, based on the size of the pixel that characterizes a hotspot.
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Figure 10. Number of fire hotspots in the forest area, for the PY2018-2019, identified according to
their distance from the borders of the deforested areas in the Novo Progresso region.
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Figure 11. Fire hotspots inside the forest and in deforested area over time for the Novo Progresso region.

3.2. Fire Hotspots and Deforestation in the Pard State

In recent years, Para State has faced high deforestation rates in the Brazilian Amazon.
Table 3 shows the total occurrence of annual fire hotspots, the accumulated deforested areas,
and the annual deforested area in this state. A total of 146,863 fire hotspots were detected
in PY2006-2007 and 351,001 fire hotspots in PY2018-2019. In PY2006-2007, there was an
accumulated deforested area equivalent to 9.35%. From PY2006-2007 to PY2018-2019,
the deforested area reached 12.30%, a 2.95% increase in deforestation for the specified
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period and area of 42,350 km?. Fire occurrences, however, increased at a rate higher than
deforestation, which also indicates forest degradation [4-6,29,69,70].

Figure 12 shows the variation of total fire hotspots from PY2007 to PY2019 along with
the accumulated deforestation area in the Para State. There was a positive correlation of 0.66
between total hotspots and deforested areas. It can be observed that the variation of total
hotspots was stable from PY2006-2007 to PY2011-2012 and increased from PY2012-2013
to PY2018-2019. Similar trends were observed for the smaller area (Figure 9). There is
an expectation that the local and regional deforestation practices also apply for the entire
deforestation arch.

Table 3. Distribution of the total annual fire hotspots, accumulated deforested area (%), and annual
deforested area (km?2) in the Par4 State, analyzed from July 2007 to December 2019.

PY Total Annual Accumulated Annual Deforested
Fire Hotspots Deforested Area (%) Area (km?)
2006-2007 146,863 9.35 5526
2007-2008 202,922 9.80 5607
2008-2009 119,234 10.14 4281
2009-2010 113,174 10.44 3770
2010-2011 174,394 10.69 3008
2011-2012 80,401 10.83 1741
2012-2013 372,391 11.01 2346
2013-2014 181,458 11.17 1887
2014-2015 324,024 11.34 2153
2015-2016 560,591 11.58 2992
20162017 276,283 11.77 2433
2017-2018 692,498 11.99 2744
2018-2019 351,001 12.30 3862

Source: Fire hotspots from the Forest Fire Program and deforestation from the Monitoring Deforestation of
the Brazilian Amazon Forest by Satellite (PRODES) project produced by the National Institute for Space Re-
search (INPE).
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Figure 12. Variation of the total fire hotspots (blue) relative to the year PY2006-2007 and accumulated deforestation area

(black) in the Para State.
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3.3. Gas and Particulate Emissions

Total gas and particulate emissions as a function of the burned area were calculated
and summarized in Table 4. These data represent the emissions exclusively with the
combustion of biomass from slash-and-burn activities. The efficiency of the first fire was
about 50%. It did not include small fires that may take place in the degraded standing forest,
pasture, or crop remaining over the bare soil. Also, the emissions are solely from the first
fire of the newly slashed area. Over the years, after the initial large fire, stockpiled scorched
biomass, i.e., the remaining 50%, is subjected to successive burns, ultimately approaching
100% combustion efficiency for that newly deforested area. Total CO, emissions accounted
for the methane that is converted into an equivalent amount of CO,, considering its relative
radiative forcing, plus the emissions of the CO; itself, as shown in Figure 6.

Table 4. Gas emission estimates as for PY2019 slash-and-burn activities in the Brazilian Amazon.

Novo Progresso

Parameter (Units) Region Para State Brazilian Amazon
Deforested area (ha) 33.15 x 103 446.30 x 10° 1.09 x 10°
Fresh biomass (Mton ha™1) 5.12 x 107* 5.70 x 10~4 5.80 x 104
Total Biomass (Mton) 16.97 254.2 632.4
CHy4 emitted (Mton) 0.047 0.67 1.7
CO; emitted (Mton) 7.86 109.2 293.3
Total CO, (Mton) 8.81 132.1 328.7
CO emitted (Mton) 0.55 8.3 20.41
NMHC emitted (Mton) 0.027 041 1.02
PMj; 5 emitted (Mton) 0.024 0.36 0.89

NMHC = non-methane hydrocarbon; PM = particulate matter.

A small region such as Novo Progresso emitted about 8.81 Mton of CO, over 331 km?
of land approximately for the year PY2018-2019. For comparison, the carbon emission of
Abruzzo region (Italy), with 1.30 million inhabitants, was 11.1 Mton for the year 2006 [71].
These data are even more alarming when we consider the emissions after deforestation
practices in the Para State, and the Brazilian Amazon, accounting for 132.1 and 328.7 Mton
of CO; released to the atmosphere respectively, in the PY2018-2019. Other emissions are
also of great concern in local and regional scales, notably, particulates of diameter less
than 2.5 mm. Local, regional, and total emissions were about 0.027, 0.41, and 0.89 Mton,
respectively. The same applies to CO emissions, accounting for 0.55, 8.3, and 20.41 Mton in
Novo Progresso, Pard State, and Brazilian Amazon, respectively.

After the year 2000, high deforestation rates were observed in the period of 2002 to
2004, with an average of 24,939 km?2. In this time span, the lowest deforestation occurred in
2012, equivalent to 4561 km? following the voluntary REDD+ project’s starting year [17].
Applying the same emission factors and other relevant data from Table 1, the total CO,
emissions for the period 2002-2004 and in 2012 were 752.3 Mton and 137.6 Mton on
average, respectively. The CO, emissions from 2019 are, therefore, 2.38 times higher than
the minimum (2012) and 2.29 times smaller than the maximum (2002-2004). Emissions were
estimated based on the deforested area. The results were not corrected for a possible offset
from forest regrowth. According to Smith et al. [72], the yearly increase in secondary forest
extent in the Brazilian Amazon was about 8.61% =+ 10.96%, offsetting GHG emissions from
newly slash-and-burned areas by 10.29% =+ 6.8%. Taking this scenario into consideration,
the net emissions from fires, for the year 2019, was 295 Mton of CO, for the Brazilian
Amazon, which is 16.4% of the whole emissions from Brazil [73], that consumes about 50%
of the recently slashed biomass.
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In Brazil, the total CO, emissions related to deforestation practices of newly slashed
areas in the Brazilian Amazon are higher than those from transport, electricity and heat,
manufacturing, industry, buildings, aviation, and shipping sectors of the Brazilian econ-
omy. The emissions from deforestation of the Amazon rainforest in Brazil is next to the
agricultural sector.

A rough estimate of burned biomass on wide areas can be carried out using geostation-
ary satellite sensor data starting from the computation of the fire radiative power, which
is the power radiated by the fire. By integrating this quantity over time, it is possible to
estimate the radiative fire energy and the burned biomass, and then the emissions in the
atmosphere if the coefficients providing the burning efficiency of vegetation affected by
the fire are available [74]. This will be the subject of a forthcoming paper.

4. Conclusions

This work showed a strong correlation between the occurrence of fire in the newly
deforested area in the municipality of Novo Progresso following the local slash-and-burn
practices. The same trends were also observed for the Para State, suggesting a common
practice along with the deforestation arch. The study indicated positive correlations of
0.72 and 0.66 between deforestation and fire occurrences in local and regional scales,
respectively. The use of fire as a rapid means for forest clearing was evident for the
PY2018-2019, which showed a strong overlapping of slash-and-burn activities in a brief
period. Many fire occurrences inside the forest in the near recent deforested areas result
in ecosystem degradation, turning it more prone to future fire events. The area of old-
growth forest, negatively influenced by nearby slash-and-burn practices, is a fraction of
the deforested area, thus enlarging forest degradation. The occurrences of hotspots in the
healthy forest are from 5% to 20% of newly deforested areas. This is a strong indication
of the primary cause of forest degradation due to slash-and-burn practices. The steady
increase in deforestation after the PY2011-2012 is a worldwide concern because of the
loss of intact forest and the massive greenhouse gases emissions, from the slash-and-burn
practices, accounting for about 295 million tons of CO, for the PY2018-2019 alone.
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ABSTRACT

Optical-based near-real time deforestation alert systems in the Brazilian Amazon are ineffective
in the rainy season. This study identify clear-cut deforested areas through Neural Network (NN)
algorithm based on C-band, VV- and VH-polarized, Sentinel-1 images. Statistical parameters of
backscatter coefficients (mean, standard deviation, and the difference between maximum and
minimum values - MMD) were computed from 30 Sentinel-1 images, from 2019, used as input
parameters of the NN classifier. The samples were manually selected, including forested and
deforested areas. After deforestation, mean backscatter signals decreased on the average of
2 dB for VV and 2.3 dB for VH from May to September-October. A Multi-Layer Perceptron (MLP)
network was used for detecting near-real time forest disturbances larger than 2 ha. Case
studies were performed for both polarizations considered the following input sets to the
MLP: mean; mean and standard deviation; mean and MMD; and mean, standard deviation,
and MMD. For the 2019 dataset, the latter showed the best performance of the NN algorithm
with accuracy and F1 score of 99%. Automatic extraction using 2018 Sentinel-1 images reached
accuracy and F1 score of 89% with the MapBiomas reference data and accuracy of 81% and F1
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score of 79% with the PRODES reference data.

Introduction

The Brazilian Amazon covers an area of approximately
5.2 million km? about 60% of the Brazilian territory,
encompassing the following states: Acre (AC), Amapa
(AP), Amazonas (AM), Mato Grosso (MT), Para (PA),
Rondonia (RO), Roraima (RR), Tocantins (TO), and part
of Maranhéo (MA; Figure 1). Satellite-based monitoring
of such a large territory is a complex task because of its
continental size and long rainy seasons. Forest distur-
bance in the Brazilian Amazon by human occupation is
mostly concentrated in a large region named deforesta-
tion arch. The arch has about 1.7 million km? (33% of the
Brazilian Amazon), extends from northeast of Maranhio
State to southeast of Acre State, and concentrates most of
the monitoring efforts conducted by the Brazilian envir-
onmental organizations (Cochrane, 2003; Davidson et al.,
2012; Farias et al., 2018; D. Nepstad et al., 2001; Souza
et al., 2020; Yanai et al., 2017).

Clear-cut deforestation larger than 200 hectares was
commonly observed in the region between 2000 and 2018
(Davis et al., 2020). In the last five years (2016-2020), the
Brazilian Amazon has lost about 43,300 km* of forest
cover. Deforestation, which is frequently associated with
fire occurrences and illegal selective logging (Silva Junior
et al., 2018; Van Marle et al., 2017), exceeded 10,000 km?
in 2019 and 10,800 km? in 2020. The Brazilian Amazon
has also been degraded by intensive selective logging

activities, causing a significant loss of forest diversity
(Bezerra et al., 2021; Matricardi et al., 2020). Silva et al.
(2021) recently addressed the dynamics of occupation
and greenhouse gas emissions in this region. Para is the
state presenting the highest levels of deforestation since
2006, mostly driven by the rural settlement, beef produc-
tion, crop plantation, and large reservoirs of hydropower
plants (D. C. Nepstad et al., 1999; Farias et al., 2018;
Kastens et al., 2017; Yanai et al., 2020).

The National Institute for Space Research (INPE) is
the Brazilian institution responsible for monitoring
annual deforestation in the Brazilian Amazon through
the Project of the Deforestation Monitoring by Satellite
(PRODES). The program relies on optical sensors
onboard the Landsat 8, Sentinel-2, and China-Brazil
Earth Resources Satellite (CBERS-4 and CBERS-4A)
satellites. In this project, deforestation is defined as the
conversion of primary forest into clear-cut areas (Diniz
et al., 2015; Terrabrasilis - Geographic Data Platform, n.
d.). Reports and deforestation data about the Brazilian
Amazon can also be obtained from the Brazilian Annual
Land Use and Land Cover Mapping Project (MapBiomas
initiative). It is a non-governmental organization that
generates annual land use and land cover (LULC) time
series of the entire country through the Landsat satellite
data processing and analysis in the Google Earth Engine
platform (Davis et al., 2020; Mapbiomas Brasil, n.d.).
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Figure 1. Location of the Brazilian Legal Amazon and the deforestation arch in Brazil. State identification: AC = Acre;
AM = Amazonas; AP = Amap4; MA = Maranhdo; MT = Mato Grosso; PA = Para; RO = Rond6nia; RR = Roraima; and TO = Tocantins.

During the rainy season, when the forest monitor-
ing based on optical satellites is impaired, the
Management and Operational Center for the
Amazon Protection System (Censipam), from the
Ministry of Defense, is the organization responsible
for processing the X-band, synthetic aperture radar
(SAR) images over critical areas. Regrettably, the
reports issued by the institution are used basically for
environmental law enforcement procedures. Figure 2
shows the deforestation process and weather condi-
tions throughout the year in the Brazilian Amazon.

Currently, in terms of Brazilian satellites, the
Brazilian Amazon is imaged by the joint Brazil-
China, CBERS-4A optical satellite along with the
Amazonia-1 satellite. The latter carries a wide-view
optical imager with three visible (VIS) bands and one
near-infrared (NIR) band with a swath of 850 km and
60 m of spatial resolution. The Ministry of Defense
and INPE are currently conducting the zero-phase
analysis of the national SAR mission. The integration
of optical and SAR imageries can improve forest mon-
itoring in tropical regions. Reiche et al. (2015) fused
Landsat normalized difference vegetation index
(NDVI) and L-band ALOS PALSAR backscatter time

series in the Viti Levu Island, Fiji. They found a strong
correlation between the backscatter multi-temporal
HV/HH ratio and NDVI, while the accuracy using
only NDVTI decreased significantly.

Monitoring the Brazilian rainforest through remote
sensing claims for some level of automation because of
its large territorial extent. Neural networks (NNs) are
one of the most advanced technological frontiers to
increase the automation level in satellite image proces-
sing. A NN is a massively parallel distributed proces-
sor made up of simple processing units using
cumulative empirical knowledge (Haykin, 2009). It
has been successfully applied in different cases. Del
Frate and Wang (2001) analysed the C- and L-band
backscatter coefficients for retrieving sunflower bio-
mass using NN algorithm to perform the inversion
modelling. NN has been also applied to map the evo-
lution of human settlements and urban land using
C-band SAR images (Del Frate et al., 2008), to char-
acterize the seismic source of an earthquake and its
geometric parameters (Stramondo et al., 2011), to
classify different crops by multi-polarized and multi-
temporal backscattering coefficients (Del Frate et al.,
2003), to detect land cover changes in urban areas
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Figure 2. Deforestation process and weather conditions commonly found in the Brazilian Amazon over the year. The numbers above
the images correspond to the monthly average precipitation (mm) for the southwest of Pard State from the period 1999-2020.

using X-band SAR images (Pratola et al., 2013), and to
detect vegetation burnt areas to monitor regrowth of
maquis vegetation with X-band data (Laurin et al,
2018).

Del Frate and Solimini (2004) proposed a NN algo-
rithm to estimate soil moisture, leaf area index (LAI),
and biomass in wheat fields. The algorithm was tested
with experimental data collected at X-, C-, and
S-bands. The model was based on the radiative trans-
fer theory and a combination of scattering contribu-
tions. These authors obtained good results of moisture
retrieval over bare soil and moderate results under
vegetation cover. Even though the saturation effects
reduced the absolute accuracy, the algorithm could
reproduce the biomass trend with a reasonable agree-
ment. Laurin et al. (2013) used the NN classifier to
map areas of tropical forests in West Africa. In this
study, the authors applied Landsat, ALOS AVNIR-2,
and ALOS PALSAR data. The classification results
were evaluated using optical data alone, SAR data
alone, Landsat and PALSAR, AVNIR-2 and
PALSAR, and a combination of three sensors. The
integration of the three sensors reached the best
results.

Few works have been conducted using machine
learning algorithms or SAR images to detect defores-
tation in the Amazon rainforest. Bem et al. (2020)
proposed a method based on convolutional neural

networks (CNNs) applied to Landsat optical images
from the Brazilian Amazon. They investigated differ-
ent CNN architectures to predict annual changes in
vegetation cover, comparing the results with two other
machine learning algorithms, the Random Forest and
the Multi-Layer Perceptron (MLP). They obtained
good results employing CNNs, with the F1 score of
94-95%. However, CNNs are not widely accessible
since they require a large number of samples and
specific hardware for training, unlike other machine
learning algorithms.

Doblas et al. (2020) suggested a procedure based on
Sentinel-1 data, maximum likelihood classification
(MLC), and adaptive thresholding (AT) for deforesta-
tion detection. They used SAR images acquired over 4
years (from November 2016 to December 2019) and
studied the time series of the backscatter coefficients to
identify deforested areas in the Brazilian Amazon.
They obtained 94% of accuracy with MLC and 96%
with AT. However, a comprehensive performance
analysis comparing training and validation data was
not addressed in that procedure. In our approach, the
aim is to assess the classification capability of the NN
algorithm to detect deforested areas based on different
spatial statistical characteristics of the backscatter
coefficient trend. In addition, machine learning algo-
rithms have been proved more appropriate than tradi-
tional statistical algorithms for the classification of
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remote sensing data (Benediktsson et al., 1990). This
work, therefore, presents a method to discriminate
deforested areas over the Brazilian Amazon based on
NN and Sentinel-1 SAR images. To our best knowl-
edge, the scientific community has not explored this
approach to detect near real-time deforestation over
the Brazilian Amazon. This paper is organized as
follows: Section 2 provides details of the data set and
the chosen NN. Section 3 presents the main results
obtained, while the results are discussed in Section 4.
The concluding remarks are presented in Section 5.

Material and methods
Study area

The study area encompasses part of the municipalities of
Altamira, Itaituba, and Novo Progresso, southwest of
Para State, a region with the highest deforestation rates
in this state (Figure 3). This region is considered a hotspot
in terms of human occupation and is one of the main
frontiers of deforestation in the deforestation arch.

Sentinel-1 data set

For this research, we selected Sentinel-1A, Single Look
Complex (SLC) images acquired in the Interferometric
Wide (IW) swath mode from the European Copernicus
program with a free and open data distribution policy

K
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(Open Access Hub, n.d.; Potin et al., 2019). The Sentinel-
1A operates at a C-band (5.3 cm wavelength) and a swath
width of 250 km (Torres et al., 2012). We selected one
image every 12 days, dual-polarization (VV and VH),
descendent mode, from the years 2019 to 2018, i.e. a total
of 30 images per year (Table 1). The incidence angle
ranged from about 29° to 46° and the resolution was
about 5 m in range and 20 m in azimuth (ESA, 2021).

The SAR images were pre-processed by means of
Sentinel Application Platform (SNAP), an open-
source software developed by the European Space
Agency (ESA; SNAP Download, n.d.). The pre-
processing operations included orbit file correction,
thermal noise removal, radiometric calibration
(Sigma0), de-burst, and speckle filtering by the
Gamma-Map filter. For terrain correction, we used
external data of 30-m spatial resolution, obtained
from AW3D digital elevation model (DEM) (“ALOS
Global Digital Surface Model ‘ALOS World 3D -
30 m’ (AW3D30)” n.d.). As a result, we obtained
images with an approximate spatial resolution of
14.05 m (WGS84, UTM) converted into backscatter-
ing coeflicients (0°, units in dB).

Forested and deforested sampling

Table 2 shows the selected Sentinel-2 overpasses from
May to October of 2019 that were used to visually
select areas without deforestation (FF) and areas with

{
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Figure 3. Location of the study area in the Para State, along the BR-163 highway.
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Table 1. Sentinel-1A interferometric wide (IW), single look complex (Level 1) overpasses from 2019 to 2018

considered in this study.

Overspass Scene Identification
2019 2019

Overspass Scene ldentification
2018 2018

Jan-03 ST1A_IW_SLC_1SDV_20190103T092340
Jan-15 STA_IW_SLC_1SDV_20190115T092340
Feb-08 STA_IW_SLC_1SDV_20190208T092339
Feb-20 STA_IW_SLC_1SDV_20190220T092339
Mar-04 ST1A_IW_SLC_1SDV_20190304T092339
Mar -16 STA_IW_SLC_1SDV_20190316T092339
Mar —28 STA_IW_SLC_1SDV_20190328T092339
Apr-09 STA_IW_SLC_1SDV_20190409T092339
Apr-21 ST1A_IW_SLC_1SDV_20190421T092340
May-03 STA_IW_SLC_1SDV_20190503T092340
May-15 STA_IW_SLC_1SDV_20190515T092341
May-27 STA_IW_SLC_1SDV_20190527T092341
Jun-08 S1A_IW_SLC_1SDV_20190608T7092342
Jun-20 STA_IW_SLC_1SDV_20190620T092343
Jul-02 ST1A_IW_SLC_1SDV_20190702T7092344
Jul-14 STA_IW_SLC_1SDV_20190714T092344
Jul-26 S1A_IW_SLC_1SDV_20190726T092345
Aug-07 STA_IW_SLC_1SDV_20190807T092346
Aug-19 STA_IW_SLC_1SDV_20190819T092347
Aug-31 STA_IW_SLC_1SDV_20190831T092347
Sep-12 ST1A_IW_SLC_1SDV_20190912T092348
Sep-24 STA_IW_SLC_1SDV_20190924T092348
Oct-06 STA_IW_SLC_1SDV_20191006T092349
Oct-18 STA_IW_SLC_1SDV_20191018T092348
Oct-30 ST1A_IW_SLC_1SDV_20191030T092349
Nov-11 STA_IW_SLC_1SDV_20191111T092349
Nov-23 STA_IW_SLC_1SDV_20191123T092348
Dec-05 STA_IW_SLC_1SDV_20191205T092348
Dec-17 ST1A_IW_SLC_1SDV_20191217T092347
Dec-29 STA_IW_SLC_1SDV_20191229T092347

Jan-08 ST1A_IW_SLC_1SDV_20180108T092333
Jan-20 STA_IW_SLC_1SDV_20180120T092333
Feb-01 STA_IW_SLC_1SDV_20180201T092333
Feb-13 STA_IW_SLC_1SDV_20180213T092332
Feb-25 STA_IW_SLC_1SDV_20180225T092332
Mar-09 STA_IW_SLC_1SDV_20180309T092332
Mar-21 STA_IW_SLC_1SDV_20180321T092332
Apr-02 STA_IW_SLC_1SDV_20180402T092333
Apr-14 ST1A_IW_SLC_1SDV_20180414T092333
Apr-26 STA_IW_SLC_1SDV_20180426T092334
May-08 STA_IW_SLC_1SDV_20180508T092334
May-20 STA_IW_SLC_1SDV_20180520T092335
Jun-01 STA_IW_SLC_1SDV_20180601T092336
Jun-13 STA_IW_SLC_1SDV_20180613T092337
Jun-25 STA_IW_SLC_1SDV_20180625T092337
Jul-07 STA_IW_SLC_1SDV_20180707T092338
Jul-19 STA_IW_SLC_1SDV_20180719T092339

Jul-31 STA_IW_SLC_1SDV_20180731T092339

Aug-12 STA_IW_SLC_1SDV_20180812T092340
Aug-24 STA_IW_SLC_1SDV_20180824T092341
Sep-05 STA_IW_SLC_1SDV_20180905T092341
Sep-17 STA_IW_SLC_1SDV_20180917T092342
Sep-29 STA_IW_SLC_1SDV_20180929T092342
Oct-11 STA_IW_SLC_1SDV_20181011T092342
Oct-23 STA_IW_SLC_1SDV_20181023T092342
Nov-04 STA_IW_SLC_1SDV_20181104T092342
Nov-16 STA_IW_SLC_1SDV_20181116T092342
Nov-28 STA_IW_SLC_1SDV_20181128T092341
Dec-10 STA_IW_SLC_1SDV_20181210T092341
Dec-22 STA_IW_SLC_1SDV_20181222T092341

deforestation (FD). We collected samples over homo-
geneous areas (at least 90%) in terms of primary forest
and clear-cut deforestation, located in flat topography.
The presence of forest was guaranteed by evaluating
Sentinel-2 images from 2018 to 2020 (25 August 2018
image and 20 June 2020). The 98 FF samples presented
an average size of 95 pixels, while the 199 FD samples
presented an average size of 66 pixels (Figure 4).

For each FF and FD sample, the mean, standard
deviation, and maximum-minimum difference
(MMD), that is the difference between the maximum
and minimum value of the backscatter coefficient,

Table 2. Forest-Deforested and Forest—Forest samples (FD)
manually collected based on Sentinel-2 images acquired in
2019.

Number of samples Number of samples

Time interval FD FF
May 7-June 16 58
Jun 16-Jun 21 1
Jun 21-Jun 26 8
Jun 26-Jul 16 35
Jul 16-Jul 21 15
Jul 21-Jul 31 21
Jul 31-Aug 10 16
Aug 10-Aug 20 10
Aug 20-Aug 30 14
Aug 30-Sep 9 8
Sep 9-Sep 19 13
Sep 19-Oct 9 1
Total 199 929

were calculated for both VH and VV polarizations.
The metrics were computed over the polygons for
each acquisition in the year 2019. Figure 5 shows an
example of each statistical parameter for FF and FD
areas in the VH and VV polarizations. For every
acquisition, shown on the horizontal axis, the related
statistical value is reported on the y-axis. In this way,
the variation of the statistical parameter throughout
the year can be obtained and used to discriminate the
forested area from the deforested area.

Multi-layer perceptron (MLP)

An artificial NN may be viewed as an adaptive model of
nonlinear parallel processing units massively intercon-
nected. The NNs are capable of acquiring knowledge
from the surrounding environment through a process
of learning which modifies the interconnection weights
between the units. Therefore, NNs can learn from the
training examples by constructing input-output map-
pings. This learning ability allows NNs to generalize, i.e.
to produce good approximations of outputs from inputs
not found during the learning phase (Haykin, 2009). The
processing unit is the elementary block of the NNs, which
is mainly characterized by its activation function. The
latter is essential in NNs because it adds the non-
linearity that makes them capable of learning complex
patterns (Sharma et al., 2020).
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Figure 4. Example of Forested—Forested (FF) and Forested-Deforested (FD) samples manually collected in different overpasses of
Sentinel-2 satellite, overlaid on the RGB color composite of bands 4, 3, and 2 of Sentinel-2 satellite image obtained in 1 July 2019.

NN can be distinguished by their architectures or
structures. In this study, we considered the MLP. MLP
is a feedforward NN, i.e. the input is projected uni-
directionally to the output, which is distinguished by
the presence of one or more hidden layers between the
input and output layers. MLPs are applied in classifi-
cation and regression problems in many fields, includ-
ing remote sensing (Ramchoun et al., 2016). Since we
implemented a binary classifier, a sigmoid activation
function was used for the final layer. It outputs a value
between 0 and 1 that can be treated as a probability
that the given input belongs to a particular class
(Sharma et al., 2020).

The number of hidden layers and units depends on
the specific problem and cannot be determined a priori
(Ramchoun et al,, 2016). In this study, we applied two
hidden layers of units between the input vector with
the measured features and the output vector with the
classification response (Del Frate & Solimini, 2004).
The initial number of units was estimated following
the study conducted by Del Frate and collaborators and
was defined for each specific case. The MLP topology
consists of four layers (Figure 6). As discussed in detail
in Section 2.5, four case studies with different input

configurations were analysed. Therefore, we designed
four MLP topologies with the number of input and
hidden units varying depending on the case study.

Data set preparation

The statistical features extracted from the FD and FF
sample areas were inputs to the NN, trained to auto-
matically detect the probability that an area was defor-
ested. Different case studies were considered to form
the input vectors. First, the statistical parameters were
involved individually, and then a combination of them
was considered. Specifically, four different sets of
inputs were chosen:
(1) mean o0° values of both VV and VH
polarizations;
(2) mean 0° values and corresponding standard
deviation of both VV and VH polarizations;
(3) mean o° values and corresponding MMD
values of both VV and VH polarizations; and
(4) mean o° values and corresponding standard
deviation and MMD of both VV and VH
polarizations.
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Figure 5. Mean, standard deviation, and MMD (maximum-minimum difference) example of the backscatter coefficient in VH and

VWV polarizations.

Standard deviation and MMD were not considered
individually as they did not exhibit good perfor-
mances. Similarly, preliminary results obtained with
single polarization configurations suggested disre-
garding such an option. Figure 7 shows the processing
procedure, which is the same for the four case studies.

As a first step in the data set construction, the num-
ber of samples related to the FF condition was equalized
to the FD ones by increasing the former through a data
augmentation process. More specifically, synthetic data
(noisy data) was generated from the original data
(seeds) by adding slightly modified copies of them.
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Figure 6. Multi-Layer Perceptron topology, n, p, and g represent the total number of units in the input and hidden layers that

change accordingly in the considered case study.
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Figure 7. Block diagram showing the processing procedure.

Random noise vectors of the same size as the seeds
vectors were created according to a Gaussian distribu-
tion with specific mean and variance. These two para-
meters were chosen due to the required similarity
between the noisy vector and the original one. For the
first case study, where only the mean ¢° values are
considered, an example of a noise vector is shown in
Figure 8(a). It consists of 30 elements, as the number of
features in case study (1) in the VH polarization only.
The noise values range approximately from —0.3 to 0.3.
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The sum of the noise vector and the original seed vector
is shown in Figure 8(b) for the average value of the
backscatter. The original vector is shown in orange,
while the noisy one in blue.

To have a data set of sufficient size to train the NN,
the whole number of input samples (both FD and FF
samples) was increased in a similar way. The data set
generation results for the case study (1) (average value
of the backscatter coefficient) are shown in Table 3. In
this case, the data set was enlarged five-fold to obtain
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Figure 8. Random noise values generated (a) and the “seed” (shown in Orange) and noisy (shown in blue) samples for VH

polarization (b).



Table 3. Training data set description after augmentation
(case study 1: mean ¢° values).
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Table 5. Train, validation, and test set distribution for the case
study (1).

Forested- Forested—Forested

Parameters Deforested (FD) (FF)
Number of acquisitions 30 30

per year
Polarizations VH and W VH and W
Number of areas 199 98 x 3 = 294 (199

(for each acquisition) selected)
Augmented number of 199 x 5 = 995 199 x 5 = 995

areas

Number of samples 199 + 995 = 1194 199 + 995 =1194

Table 4. Description and number of the case study features.
MMD = maximum-minimum difference.

Case Total number

study Features of features

1 30 mean VH + 30 mean VV 60

2 30 mean VH + 30 SD VH + 30 mean VV + 30 120
standard deviation VV

3 30 mean VH + 30 MMD VH + 30 mean VV + 120
30 MMD WV

4 30 mean VH + 30 standard deviation VH + 30 180

MMD VH + 30 mean VV + 30 standard
deviation VWV + 30 MMD VWV

a total number of samples equal to 1194 + 1194 = 2388.
Since the statistical features differ significantly, each
sample was normalized between 0 and 1 before being
input to the NN.

Each sample in the data set is described by features
related to the backscatter coeflicient in the VH and VV
polarizations. The number of features for each sample
depends on the case study: for the case study (1), the
features are 60 (30 VH + 30 VV features); for the case
studies (2) and (3), they are 120 (60 VH + 60 VV
features); and for the case study (4), they are 180 (90
VH + 90 VV features). Table 4 provides a summary of
this split. Thus, the input of the NN is a vector with the
number of entries that is equal to the number of
features. Since the features differ significantly, each
sample was normalized between 0 and 1.

Training phase (2019 data set)

Generally, in machine learning models, the data set is
divided into three distinct parts: training, validation, and
test data sets split into the proportion of 75%, 15%, and
10%, respectively. These proportions are a typical choice
in machine learning data separation (Haykin, 2009). The
training and validation sets are used during the training
process, while the test set is used to evaluate the perfor-
mance achieved. Indeed, the test set is used separately
from the previous ones and is not involved in the learn-
ing procedure. In this paper, these proportions were
considered for all case studies. The sample division for
the first case study is reported in Table 5.

During the supervised learning process, the connec-
tion weights are optimized to minimize the error,
namely the difference between the desired response

Sampling sets  Forested-Deforested = Forested—Forested  Total

Train set 895 895 1790
Validation set 179 179 358
Test set 120 120 240
Total 1194 1194 2388

and the actual response, according to a loss function.
This error is evaluated both on the training and valida-
tion sets, which consists of examples not belonging to
the training one. To avoid overfitting problems, i.e. to
make the NN able to generalize over new patterns, the
training of the network is stopped when the error on
the validation data set reaches its minimum, according
to the early stopping algorithm (Prechelt, 1998).

The number of units in the hidden layer was opti-
mized for each input configuration, in terms of classi-
fication accuracy and generalization capability. Several
attempts were made to select the proper number of
units in the hidden layers which finally led to the
topologies summarized in Table 6.

Evaluation of the 2018 data set

The NN capability achieved during the training phase
is applied to novel input data. The trained model is
used for the automatic recognition of areas deforested
during the year 2018. The properties of the data set
used in this phase are similar to those of the training
data set: it was composed of 30 pre-processed
Sentinel-1 images acquired over the same area with
the same spatial resolution, which shows the o° values
for the VH and VV polarizations.

Each image of the time series was automatically
divided into sub-images with a size of 10 x 10 pixels,
resulting in 223,725 patches for each acquisition.
Considering the pixel resolution of the S1 images of
14.05 m, 10 pixels x 10 pixels makes an area of
approximately 2 ha. Table 7 shows an overview of
the data set dimension. The statistical parameters
were calculated for each patch for both polarizations,
as described in Section 2.5, and the same four case
studies were considered. Therefore, the input of the
trained NN is a vector with a number of entries
depending on the examined case study.

Table 6. MLP topology for each case study.

Number of

Number of units in the  Number of units  Number of
Case unitsinthe  first hidden in the second  units in the
study input layer layer hidden layer  output layer
1 60 20 5 1
2 120 30 5 1
3 120 30 5 1
4 180 40 10 1
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Table 7. Data set description of selected Sentinel-1 images
from 2018.

Parameter Specification
Number of acquisitions per year 30
Number of patches (for each acquisition) 223,725
Polarizations VH and W

Results evaluation

The sigmoid activation function in the NN output layer
returns a class probability in the interval [0,1].
A predicted value equal to or close to 0 means that the
model identifies an area as forested (FF); conversely,
a prediction equal to or close to 1 indicates a deforested
area (FD). To evaluate the results, the confusion matrix
was computed, and accuracy, precision, recall, and F1
score were derived. They are defined as (Equations 1-4):

| TP + TN 0
ccuracy =
) TPLFPLIN+FN
Precisi TP @)
recision = ———
TP + FP
TP
Recall = —— 3
= TP I EN 3)

Precision x Recall
F1=2 x _ (4)
Precsion + Recall

Where:

TP = True positives, i.e. the number of deforested

areas classified as deforested.

TN = True negatives, i.e. the number of
forested areas classified as forested.

FP = False positives, i.e. the number of
forested areas classified as deforested.

EN = False negatives, i.e. the number of defor-
ested areas classified as forested.

Results

Figure 9 shows an example of the multitemporal back-
scattering coefficients from an area that faced clear-cut
deforestation between 7 May 2019 (a) and
16 June 2019 (c) for both VH (b) and VV (d) polariza-
tions. The backscatter signal of deforestation presents
a short increase followed by a sharply decreased in
both polarizations until approximately 3 months
(roughly, 31 August 2019). Then, the signals tended
to increase after September.

From all FD samples collected in 2019, an average
decrease of the mean backscatter coeflicients of
approximately 2 dB for VV polarization and 2.3 dB
for VH polarization can be observed after deforesta-
tion. This decrease in the backscatter signal remains

evident for the next 3-4 months approximately. After
this period, we observed an irregular increase in both
polarizations.

2019 data set

Table 8 reports the results achieved for the four case
studies for the data sets obtained in 2019. The mean,
standard deviation, and MMD input set showed accu-
racy and F1 score of 99%. The other case studies also
achieved promising results: the accuracy obtained
using mean and MMD slightly decreased to 98%.
Lastly, mean and standard deviation, as well as mean,
only showed an accuracy of 97%. False positives and
false negatives were also very low. They were evaluated
through the F1 metric, which is the harmonic mean of
precision and recall. This means that the algorithm
avoids, to a great extent, false alarms and, in most
cases, does not miss the deforested areas.

2018 data set

To assess the NN performance, the 2018 results
were validated using two ground truth images pro-
vided by the MapBiomas and PRODES projects.
MapBiomas produces annual LULC maps by apply-
ing Random Forest classification overall Landsat
scenes acquired in a specific year. The LULC
maps are pixel-based, with a minimum mapping
area of 1 ha. PRODES provides the annual rates
of clear-cut deforestation with a minimum map-
ping area of 6.25 ha. PRODES makes use of mod-
erate spatial resolution from Landsat-8, CBERS-4,
and Sentinel-2 with 30 m, 20 m, and 10 m of
spatial resolutions, respectively.

The data from MapBiomas and PRODES consid-
ered only deforested areas from 2018 found in the
same region of the Sentinel-1 data set. The ground
truth images were clipped into patches with the size of
10 pixels x 10 pixels, following the image division used
for the SAR data set obtained in 2018. Each patch in
the ground truth image is geographically related to the
patch in the Sentinel-1 imagery in the data set. Out of
the total, the ground truth patches reporting areas
deforested in 2018 represent approximately 0.3% in
MapBiomas while in PRODES they represent 0.6%.

The predictions related to 2018 deforested patches
were collected, and the same number of predictions
related to forested patches is selected randomly from
the total to create a well-balanced data set. Table 9
shows the results achieved for the 2018 images for the
four case studies.

Compared with the results obtained in 2019, all
evaluation parameters decreased for the data sets
obtained in 2018, especially for the recall, due to the
relatively high number of false negatives. The recall
decreased for the PRODES data. For both reference
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Figure 9. Left: Example of a deforested area in the study area shown by the Sentinel-2, RGB color composites of bands 4, 3, and 2
acquired on 7 May 2019, and 16 June 2019. Right: Sentinel-1 mean backscatter coefficients along the year 2019 in the VH and VV
polarizations. The red line highlights the backscatter position coincident with the first data of the optical image before

Table 8. Statistical results for the data sets obtained in 2019.
MMD = maximum-minimum difference.
Statistical parameters

Accuracy Precision Recall F1

Mean 0.97 0.98 0.97 097
Mean + standard deviation 0.97 0.99 0.94 097
Mean + MMD 0.98 0.96 0.99 098

Mean + standard deviation + MMD  0.99 0.99 0.98 0.99

data, the best-case scenario corresponded to the case
study that considered mean, standard deviation, and
MMD as input. In this case, the model achieved accu-
racy and F1 score of 89%, with a low number of false
positives and false negatives, validating with the
MapBiomas ground truth image and accuracy and F1
score of 81% and 79%, respectively, with the PRODES
ground truth. The second best case was obtained for
the mean backscatter coefficient as input parameter.
The model performance declined when mean and
standard deviation and mean and MMD were
considered.

deforestation.

Discussion

In this study, we proposed a method based on NNs
that detects deforested areas by analysing the
annual trend of specific statistical parameters
related to the backscatter coeflicients obtained
from Sentinel-1 images. Different statistical para-
meters, i.e. different case studies including mean,
standard deviation, and MMD of the backscatter
coefficient in VH and VV polarizations were con-
sidered. This method analysed 2 years of data sets:
2019 and 2018. Areas deforested in 2019 were
manually selected, labelled, and used to train and
test the algorithm, while the trained NN automati-
cally identified areas deforested in 2018.

Figures 10, 11, 12, and 13 represent samples
extracted from the 2019 data set. Figures 10 and 11
report two FF areas, while Figures 12 and 13 report FD
areas. On the left, the figures illustrate the RGB colour
composites (a, c) obtained from Sentinel-2 2019
images. The right shows the related mean backscatter
trend in both VH (b) and VV (d) polarizations.
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Table 9. Statistical results for the ground truth data sets obtained in 2018. SD = standard deviation. MMD = maximum-minimum

difference.
MapBiomas PRODES
Parameter Accuracy Precision Recall F1  Accuracy Precision Recall F1
Mean 0.85 0.88 0.81 085 079 0.87 0.67 0.76
Mean + SD 0.88 0.96 0.79 087 078 0.95 0.58 0.72
Mean + MMD 0.85 0.87 0.82 085 076 0.84 0.64 0.73
Mean + SD + MMD 0.89 0.90 0.89 089 0.1 0.88 0.73 0.79

The VV and VH signals from the Forested-
Forested samples (depicted in Figures 10 and 11)
show regularity of the signal for both polarizations
with the mean backscatter signal values from
—-14.2 dB for VH and -7.7 dB for VV polarizations.
When deforestation occurs, the VV and VH back-
scatter signals are perturbed. After deforestation, it
was observed a short increase of the backscatter
signal before a more pronounced decrease. From
all samples collected, we observed an average
decrease of 2.3 dB for VH and 2 dB for VV polar-
izations. The decrease was evident and lasted from
about 3 to 4 months. Some authors have observed
the increase and decrease of the backscatter signal
after deforestation (Bouvet et al., 2018; Doblas et al.,
2020; Hoekman et al.,, 2020; Joshi et al., 2015;
Kellndorfer, 2019; Reiche et al., 2018a, 2018b).

Reiche et al. (2018a) found a decrease of 2.0 dB in
VH after deforestation in the province of Riau,
Indonesia, through Sentinel-1 C-band SAR data time-
series. Reiche et al. (2018b) observed a decrease of
2.5 dB, using VV time-series of Sentinel-1, from defor-
estation studies in the province of Santa Cruz, Bolivia.

Bouvet et al. (2018) stated that the C-band SAR
backscatter signal over cleared or burned areas pre-
sents a lower backscatter signal of ~2.5 dB in the
Amazon rainforest in Peru. Decrease backscattering
was also observed for the majority of our deforested
areas collected in 2019.

Hoekman et al. (2020) reported that, in general,
undisturbed forests have a relatively high and stable
backscatter level; therefore, a significant decrease in
backscatter level would indicate deforestation. The
backscatter of clear-cut areas, in both polarizations, is
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usually 2.0 dB lower than the original forest cover.
However, remaining debris and undergrowth, terrain
slopes, soil roughness, and soil moisture may intensify
the decrease. The rainforest site in the Indonesian pro-
vince of Central Kalimantan and in the Para State,
Brazil, Hoekman et al. (2020) observed that VH and
VV signals go up and down, and deforestation was
characterized at the first moment the signal goes down.

Joshi et al. (2015) revealed an L-band backscatter
decrease of 1.1 dB in VH after clearing full forest cover
events in the region of Madre de Dios in Peru.

Doblas et al. (2020), in a study in the Amazon
rainforest, determined the mean backscattering values
of the forest as —12.4 and -6.25 dB for VH and VV
polarizations, respectively, while the mean backscat-
tering values of the deforested series are consistently
lower, reaching —13.1 and -7.6 dB for VH and VV
polarizations.

For the 2019 test data set, the NN model achieved
high performance in all case studies. This was due to the
manual selection and labelling of the test areas employ-
ing the RGB composition of Sentinel-2 images. For the
2018 data set, the performance decreased, as shown in
Figure 14 that reports the trend of the F1 metric for the
four case studies from 2019 to 2018 images.

To investigate the 2018 results, three deforested
areas among the largest ones in the ground truth
images were analysed. Figures 15, 16, and 17 show
the three areas. Each RGB color composition shows
the areas captured by the Sentinel-2 satellite from
April to July of 2018. These figures highlight the dif-
ferences in land cover changes due to the clear-cutting
process. At the bottom, the figures represent the
ground truth images and the classification made by
the MLP for the MapBiomas (b), (c), and PRODES (d),
(e) ground truths. In the ground truth images (b) and
(d), the areas deforested in 2018 are shown in white,
areas forested are shown in black, and areas deforested
before 2018 are in grey. The classification images (c)
and (e) show the patches as they were classified over-
lapped to the ground truth image.

The F1 score differences between the PRODES
and MapBiomas ground truth images may be
related to the resolution employed by the two pro-
jects. The coarser PRODES resolution does not
capture small deforested areas that are considered
in the MapBiomas ground truth. Indeed, PRODES
does not capture small forested areas inside
a deforested polygon. This can explain the differ-
ence in Recall, due to the number of false negatives
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between the two ground truth images. A large
number of false negatives are localized in the
small areas detected by the MapBiomas.
Moreover, the misclassification may be caused by
the deforestation method. After clear-cutting, the
trees are left on the ground for drying before
being burned. Since the amount of biomass
remains the same, the result is somehow similar
in backscatter values compared with intact forest
areas. Bouvet et al. (2018), Kellndorfer (2019), and
Hoekman et al. (2020) observed these trends.

Bouvet et al. (2018) reported that large branches
remaining in the ground can cause a double-bounce
scattering mechanism and mask the decrease of the
backscatter signal. The authors also stated that, after
rainfall events, the backscatter signals can exhibit the
same values as intact forests.

Kellndorfer (2019) stated that if deforestation results
in rough soil conditions (e.g. slash) backscatter can be
significantly enhanced until logs are removed. The
authors declared yet that, after deforestation, there is
a dominant change from volumetric scattering to sur-
face scattering, with an expected decrease in the cross-
polarized (VH, HV) signal.

Hoekman et al. (2020) reported that deforestation
in Brazil often is the slash-and-burn type of small
scale, and in most instances, the deforestation is pre-
ceded by severe degradation.

Figure 18 shows examples of test sites from the
Amazon forest, with slashed trees after 3 months of
drying (A). As it can be seen, the site conserves all
the previously standing biomass but with dried
leaves and trunks. The green leaves are from liana
vines that grew along with the slashed biomass
(Soares Neto et al., 2009). Figure 18 also shows
how a clear-cut site appears after the cleaning fire
(B). Small branches and leaves are combusted to
completion, while large trunks are only partially
consumed (Christian et al., 2007). Long ash trails
indicate trunks, mostly palm trees that were com-
pletely consumed through smouldering. However,
misclassification may be associated with the defor-
estation method.

In this study, we implemented a new methodolo-
gical flow based on Sentinel-1 data and MLP classi-
fier capable of detecting deforestation automatically
in the Amazon rainforest. The accuracy was in the
range of 81% to 89%, depending on the considered
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reference image. In hand-picked areas used for
training the NN, the accuracy reached 99%, compar-
able to those achieved by Bem et al. (2020), whose
accuracy reached 94%. Bem et al. (2020) combined
optical images and NN for detecting deforestation.
The method, however, could only be applied in the

dry season of the Amazon rainforest, which lasts for
about 6 months. Methods based on radar data can
be used throughout the year.

Doblas et al. (2020), which research is based on
radar data, reached maximum accuracy of 96% in
detecting deforestation. Our results are 2% higher
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Figure 15. First example of an area with deforestation (highlighted in red), shown by the Sentinel-2 RGB color composites
acquired in April, May, June, and July 2018 (a). MaBiomas ground truth (b), classification output with MapBiomas ground truth (c),
PRODES ground truth (d), and classification output with PRODES ground truth (e). FP = False positives (number of forested areas
classified as deforested), TN = True negatives (number of forested areas classified as forested), FN = False negatives (number of
deforested areas classified as forested), and TP =True positives (number of deforested areas classified as deforested).

than the data set of 2019 and 7% lower for the 2018 The MLP does not require high computer processing
images, which were obtained automatically by the  capability compared with other NN algorithms, such as
algorithm. the CNNs (Bouguettaya et al., 2019). The algorithm
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Figure 16. Second example of an area with deforestation (highlighted in red), shown by the Sentinel-2 RGB color composites
acquired in April, May, June, and July 2018 (a). MapBiomas ground truth (b), classification output with MapBiomas ground truth
(c), PRODES ground truth (d), and classification output with PRODES ground truth (e). FP = False positives (number of forested
areas classified as deforested), TN = True negatives (number of forested areas classified as forested), FN = False negatives (number
of deforested areas classified as forested), and TP =True positives (number of deforested areas classified as deforested).

used in this work was performed on a personal compu-  predictions is quite short. During the test phase with the
ter with the following configuration: NVIDIA™  data from 2018, the time necessary to open the images
GeForce™ GTX 1650 Max Q GPU with 4GB RAM.  and complete the whole processing was around
Once the network is trained, the time required to make 1 minute (Table 10).
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Figure 17. Third example of an area with deforestation (highlighted in red), shown by the Sentinel-2 RGB color composite
acquired on April, May, June, and July 2018 (a). MapBiomas ground truth (b), classification output with MapBiomas ground truth
(c), PRODES ground truth (d), and classification output with PRODES ground truth (e). FP = False positives (number of forested
areas classified as deforested), TN = True negatives (number of forested areas classified as forested), FN = False negatives (number
of deforested areas classified as forested), and TP =True positives (number of deforested areas classified as deforested).

Further research should involve strategies to
detect deforested areas smaller than 2 ha and use
the algorithm as an alert system essential for defor-
estations related to illegal mining activities in the

Brazilian Amazon. In addition, the algorithm could
be refined to detect recently deforested areas
(slashed areas) and to disregard areas under vege-
tation regrowth. In this latter case, vegetation
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Figure 18. lllustration of a Brazilian Amazon characteristic slashed area (a; Soares Neto et al., 2009) and torched biomass after a fire

(b; Christian et al., 2007) found in the Brazilian Amazon.

Table 10. Processing time required during the test phase
(2018 data set).

Case study Processing time (seconds)
1 46.3
2 55.0
3 44.0
4 65.2
indices proposed in literature such as the

Normalized Difference Vegetation Index (NDVI),
Enhanced Vegetation Index (EVI), or Normalized
Difference Water Index (NDWI) can be used to
identify the plant growth status and correlate it
with forest regrowth (Silva et al., 2019). The
method proposed in this study could also be inte-
grated with textural analysis, which exploits corre-
lation among neighbouring pixels, such as those
based on the computation of the Gray-Level Co-
Occurrence Matrix (GLCM; Del Frate et al., 2008)
or geostatistical measures of spatial variability, as
suggested by Zawadzki et al. (2005).

Conclusions

In this work, we investigate deforestation in the
Amazon rainforest using Sentinel-1 data, and three
statistical parameters related to the backscatter coeffi-
cient were analysed (mean, standard deviation, and
MMD (maximum-minimum difference)). It was
observed a backscatter decrease in the average signal
of C-band SAR images, approximately 2 dB for VV
polarization and 2.3 dB for VH polarization, immedi-
ately after deforestation. The decrease is evident for
approximately 3-4 months after the deforestation.

The MLP (Multi-Layer Perceptron) was used to
detect near real-time forest disturbances larger than
2 hectares. The algorithm analysed SAR images from
2019 for training and 2018 to identify deforest areas
automatically. A set of data from 2019 were used to test
the performance of the NN (Neural networks) algo-
rithm. Considering the mean, standard deviation, and
MMD of the backscatter coefficient as input parameters,
the NN was able to classify forested and deforested areas

with accuracy and F1 score of 99% for the 2019 data set.
For the 2018 data set, the results showed accuracy and
F1 score of 89% with MapBiomas ground truth and
accuracy and F1 score of 81% and 79%, respectively,
with the PRODES ground truth.

The proposed method may be suitable for monitor-
ing forest events in the Amazon at low cost and short
processing times and for assisting Brazilian environ-
mental law enforcement agencies in combating illegal
deforestation.
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6. Conclusions

The main conclusions from this research are summarized as follow:

1)

2)

3)

4)

3)

6)

7)

8)

9)

The X-band SAR technology proved to be useful in identifying deforested
areas during the rainy season in the Brazilian Amazon;

The C-band Sentinel-1 data were not able to unequivocally map areas of
deforestation using single images. In this case, it is recommended to consider
time series and Sentinel-1 data to improve the feasibility of deforestation
detection;

The NDVI and the NDMI were able to differentiate moderate to dense
vegetation with high moisture from sparse vegetation with low moisture;

The LST from forested and deforested areas was able to differentiate regrowth
from dense vegetation;

In the municipality of Novo Progresso, we observed a positive correlation (R?
=0.72) between fire occurrences and the newly deforested areas following the
slash-and burn practices. The same trends were also observed for the Para
State (R> = 0.66), suggesting a common practice along with the arch of
deforestation;

The clear-cutting deforestation process may extend for about two to five years
until the remaining logs that were stockpiled had been combusted to
completion;

The occurrences of fire hotspots in the primary forest are from 5% to 20% of
newly deforested areas. This is a strong indication of the primary cause of
forest degradation due to slash-and-burn practices;

The steady increase in deforestation after the PY2011-2012 is probably linked
to the Federal Law n. 12.727/2012 that relaxed the forest conservation;

In the PY2018-2019, the CO; released to the atmosphere after the
deforestation practices in the Pard State and in the Brazilian Amazon

accounted for 132.1 Mton and 328.7 Mton, respectively;

10) The net CO; emissions from fires in 2019 was 295 Mton in the Brazilian

Amazon, which is 16% of the whole emissions from Brazil, that consumes

about 50% of the recently slashed biomass;
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11) The statistical parameters related to the time series of C-band Sentinel-1
backscatter coefficients was able to detect deforestation in the first 3-4 months
of deforestation occurrence;

12) Immediately after deforestation, the mean C-band backscatter signals
decreased approximately 2.0 dB for VV polarization and 2.3 dB for VH
polarization;

13) The neural network methodology was able to map deforestation areas of about
2 ha or higher automatically;

14) The MLP network was able to identify deforestation within a short time frame
with a low computer processing and time demand;

15) The mean backscattering coefficients and their corresponding standard
deviation and maximum-minimum differences used as input parameters in the
neural network image processing were able to classify forested and deforested
areas with accuracy and F1 score of 99%;

16) Automatic detection of deforestation based on SAR images from 2018 reached
accuracy and F1 score of 89% with the MapBiomas project ground truth and
accuracy and F1 score of 81% and 79%, respectively, with the PRODES
ground truth;

17) The proposed methods may be suitable for assisting the Brazilian

environmental law enforcement agencies in combating illegal deforestation.
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