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RESUMO 

 
O avanço do agronegócio em terras amazônicas tem sido caracterizado por um ciclo 

preocupante de desmatamento, queimadas, exploração da terra e abertura de novas vias 

de escoamento que se retroalimenta. Em grande medida, essa exploração se dá de forma 

desordenada e em níveis superiores ao que preconiza a lei. Após 2012, com a aprovação 

do novo Código Florestal Brasileiro, verificou-se uma reversão na tendência de queda 

dos indices de desmatamento. A perda de floresta e a emissão dos gases de efeito estufa 

(GEE) voltaram a ser motivo de grande preocupação mundial. Em 2015, no Acordo de 

Paris, o Brasil se comprometeu em reduzir emissões de GEE. Considerando que uma 

parte significativa dessas emissões tem origem em queimadas na floresta, o 

monitoramento da mesma se torna especialmente importante. Parte considerável da 

ocupação da floresta ocorre dentro do arco do desmatamento, região em forma de arco 

que está localizada no extremo sul da Amazônia Brasileira. Historicamente, o 

acompanhamento desses efeitos antropogênicos tem sido realizado por imagens ópticas 

de sensores orbitais. No período de chuvas, que se estende de novembro a abril, o 

imageamento óptico da floresta Amazônica fica prejudicado por causa da cobertura 

persistente de nuvens, o que pode ser contornado por meio de uso de dados de radar de 

abertura sintética (SAR). Este trabalho teve por objetivo principal apresentar uma 

técnica de detecção do desmatamento em tempo quase real com a utilização de imagens 

de radar de acesso livre. Para alcançar esse objetivo, foram publicados três artigos com 

diferentes abordagens de detecção de efeitos antropogênicos. As áreas de estudo nos 

artigos se situam no município de Novo Progresso, região conhecida pelas elevadas 

taxas de ocupação humana dentro do arco do desmatamento, a sudoeste do estado do 

Pará. O objetivo do primeiro estudo foi analisar como as imagens de radar, ópticas e 

termais identificam os desmatamentos por corte raso na floresta Amazônica. O estudo 

correspondeu a uma área de 40 km x 40 km. Foram utilizadas imagens de radar em 
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bandas X (satélite COSMO-SkyMed) e C (satélite Sentinel-1A), e índices de vegetação 

por diferença normalizada (NDVI), índices de umidade por diferença normalizada 

(NDMI) e temperaturas da superfície terrestre (LST) derivadas do satélite Landsat 8. A 

análise qualitativa revelou informações importantes sobre os limites das áreas e o 

período de ocorrência dos desmatamentos com boa precisão relativa. Os índices 

calculados agregaram informações sobre atividades fotossintéticas e níveis de biomassa. 

A pesquisa mostrou o potencial do uso de índices ópticos e termais e, principalmente, de 

imagens de radar para identificação dos desmatamentos por corte raso em ambiente de 

floresta úmida. O segundo artigo foi conduzido para melhor compreender a dinâmica do 

desmatamento na região, incluindo a fase de queimadas e emissões intrínsecas de gases 

de efeito estufa. Este estudo foi realizado sobre uma área de 36.800 km2. Foi 

identificada uma forte correlação entre ocorrência de incêndios na área recém 

desmatada seguindo as práticas locais de corte e queima. O terceiro artigo teve como 

objetivo desenvolver uma metodologia para identificação do desmatamento logo após a 

sua ocorrência. Esse estudo fez parte de doutorado sanduíche desenvolvido em Roma, 

Itália, na Universidade Tor Vergata. As imagens de radar na banda C foram processadas 

para servir de dado primário no desenvolvimento de redes neurais do tipo MultiLayer 

Perceptron (MLP) para identificar desmatamentos por corte raso em tempo quase real. 

A metodologia desenvolvida identificou áreas de desmatamento de 2 ha ou maiores com 

alta precisão e de forma automática. 
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ABSTRACT 

 

The advance of agribusiness in the Amazonian lands has been characterized by a 

worrying cycle of deforestation, fire, land exploitation, and the opening of new lands. 

To a large extent, this exploitation takes place in a disorderly manner and at levels much 

higher than what is allowed by the National Forest Conservation law. After 2012, 

following the approval of the new Brazilian Forest Code, there was a reversing in the 

decay of deforestation levels. Since then, the loss of the forest itself and the emission of 

greenhouse gases (GHG) have been of great concern worldwide. In 2015, during the 

Paris Agreement, Brazil committed to reduce its GHG emissions, in which deforestation 

has a great contribution. A great deal of forest claiming due to human occupation occurs 

within the arc of deforestation, a region that stretches along the extreme south of the 

Brazilian Amazon. Historically, the monitoring of these anthropogenic effects has been 

carried out by optical satellite images. During the rainy season, which extends from 

November to April, optical imaging of the Amazon forest is impaired because of 

persistent cloud cover, which can be circumvented through the use of synthetic aperture 

radar (SAR) data. This work aimed to present a technique for detecting near real-time 

deforestation using open access radar images. This thesis comprises three published 

articles which describe different approaches to detect anthropogenic effects. The study 

area is located in the municipality of Novo Progresso, a region known for its high rates 

of human occupation within the arc of deforestation, in the southwest of the Pará State. 

The objective of the first study was to analyse how radar, optical, and thermal images 

identify clear-cut deforestation in the Brazilian Amazon. The study focused on an area 

of 40 km x 40 km. X-band (COSMO-SkyMed satellite) and C-band (Sentinel-1A 

satellite) SAR data and Landsat-based normalized difference vegetation index (NDVI), 

normalized difference moisture index (NDMI), and the land surface temperatures (LST) 

were used. Qualitative analysis revealed important information about the boundaries of 
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the areas and the period of occurrence of deforestation with reasonable accuracy. The 

calculated indices aggregated information about photosynthetic activities and biomass 

levels. The research showed the potential of using optical and thermal indices and 

mainly radar images to identify clear-cut deforestation in a tropical forest environment. 

The second article allowed to better understand the dynamics of deforestation in the 

region, including the burning phase and intrinsic greenhouse gases emission. This study 

was carried out over an area of 36,800 km2. A strong correlation was identified between 

the occurrences of fire after recent deforestation following local slash-and-burn 

practices. The third article aimed to present a methodology for identifying deforestation 

soon after its occurrence. This study was part of a sandwich doctorate developed in 

Rome, Italy, at the Tor Vergata University. Sentinel-1 C-band radar images were 

processed and a neural network methodology (MultiLayer Perceptron) was applied to 

identify clear-cut deforestation in near real-time. The proposed methodology identified, 

automatically, deforestation areas larger than 2 ha with good accuracy. 
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1. Introduction 

 

Global efforts to mitigate climate change and preserve our unique ecosystems 

are directly related to reducing forest degradation and deforestation (Aragão et al., 

2014). The Amazon contains the largest remaining tropical rainforest in the world. With 

about 5.2 million km2, the Brazilian Amazon covers the states of Acre (AC), Amapá 

(AP), Amazonas (AM), Maranhão (MA), Mato Grosso (MT), Pará (PA), Rondônia 

(RO), Roraima (RR) and Tocantins (TO), and occupies about 60% of the Brazilian 

territory. Its importance lies not only in the value of its biodiversity but also in the 

existence of the original cultures that are part of this ecosystem (Fearnside, 2021). 

Anthropogenic disturbances in the Brazilian Amazon occur through selective 

logging (degradation), corresponding to the removal of tree species of high economic 

value and mostly by slash and burning, causing the complete removal of original 

vegetation. Selective logging of long-standing trees affects significantly the structure 

and the floristic diversity of forests over time (Bezerra et al., 2021). The persistence of 

endemic bird species of high conservation value in the Amazon is threatened by human-

induced deforestation (Anjos et al., 2021). 

Fire-induced tree mortality, related to the slash and burn practices, causes losses 

in the functional and phylogenetic diversity of trees at higher rates than in taxonomic 

diversity (Nóbrega et al., 2019). Recurrent fires affect the forest structure, species 

richness, and composition and reduce the biomass of living trees, causing impacts on 

birds and vegetation (Silveira et al., 2016). 

A deeper understanding of the forest dynamics helps mitigating the deforestation 

effects, carbon cycle estimates, and to characterize how the environment adapts to the 

microclimatic changes. Whenever possible, these studies should be based on multi-scale 

remote sensing tools (Bustamante et al., 2016). 

Environmental damage to the Amazon forest has reached critical levels. 

Deforestation is increasing rapidly and conservation policies are insufficient. Remote 

sensing techniques allow the rapid detection of deforestation and forest degradation 

over large territorial extensions. While reducing field research, the interoperability of 

Earth observation technologies is essential for national forest monitoring systems. An 

area of the size of the Amazon rainforest demands continuous monitoring through 

satellite and, preferable, from freely accessible data, such as the China-Brazil Earth 
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Resources Satellite (CBERS), Landsat, and Sentinel-2 satellites. Brazil strongly relies 

on these missions to monitor such a large territory.  

Through the partnership between the Brazilian and Chinese governments, 

CBERS program is the main provider of optical images of the Brazilian territory. Since 

March 2020, CBERS-4 and CBERS-4A satellites are providing most of the optical 

images that are employed by our remote sensing community. The Multispectral Camera 

(MUX) provides imagery in the blue, green, red, and near-infrared (NIR) spectral bands 

with the spatial resolutions of 20 m (CBERS-4) and 16 m (CBERS-4A). The Landsat 8 

satellite from the National Aeronautics and Space Administration (NASA), launched in 

February 2013, carries two sensors, the Operational Land Imager (OLI), with a spatial 

resolution of 30 m, and the Thermal Infrared Sensor (TIRS) with a spatial resolution of 

100 m (Barsi et al., 2014; Knight & Kvaran, 2014). The Sentinel-2 satellite, from the 

European Space Agency (ESA), was launched in June 2015 and produces images of 10 

m spatial resolution. In February 2021, Brazil began to operate the Amazonia-1 satellite 

designed by the National Institute for Space Research (INPE). The satellite carries an 

advanced Wide Field Imager (WFI) sensor which acquires images in four spectral bands 

from blue to NIR, swath width of 850 km, and spatial resolution of 60 m. 

Scientific studies from open-access optical sensors have been successfully 

applied to monitoring forest change, deforestation, and forest degradation (DeVries et 

al., 2016, Kranz et al., 2018; Crowson et al., 2019; Wang et al., 2019). However, the 

persistent presence of clouds makes monitoring by optical sensors difficult in tropical 

forest environments throughout  the year. Such limitation does not occur with synthetic 

aperture radar (SAR) sensors (Meneses and Almeida, 2012; Woodhouse, 2015). SAR 

sensors use their own energy and utilize longer, centimeter to meter wavelenghts, 

allowing them to see terrain through clouds at any time of the day. For environmental 

applications, the X-band (~2.5 cm) has little penetration into the vegetation cover, 

interacting mostly with the leaves. The C-band (~5 cm) has low to moderate 

penetration, interacting with leaves and branches. The L-band (~27 cm) has high 

penetration, allowing interaction with trunks and branches and can be applied for 

biomass and vegetation mapping. 

The C-band Sentinel-1 satellite provides open access satellite data. The Sentinel-

1 mission is composed of a constellation of two satellites, the Sentinel-1A and the 

Sentinel-1B. They operate in the same orbit with an orbital phasing difference of 180° 

and produce images in almost any weather conditions, with a spatial resolution of 10 m 
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(Torres et al., 2012). The Sentinel mission encourages the development of new SAR 

data integration techniques that may assist operational monitoring of large forest areas. 

 

2. Problem, justification, and contribution 

 

The Brazilian Amazon covers about 60% of the Brazilian territory. Intense cloud 

cover lasts for more than half of the year. Currently, the methodologies based on optical 

sensors are applied to produce deforestation alerts for environmental law enforcement 

procedures and for long-time, clear-cut deforestation monitoring. The drawback is the 

monitoring during the raining season so that the country needs to develop new methods 

for near real-time forest surveillance based on SAR data.  

In the Brazilian Amazon, the arc of deforestation is the region with the highest 

occurrence of deforestation and land occupation (Azevedo-Ramos et al., 2018; Souza et 

al., 2020). This region concentrates  of total deforestation of the Brazilian Amazon, 

mostly for soybean plantation and cattle ranching (Nepstad 1999, Soares-Filho et al., 

2006). Since 2006, Pará State presents the highest levels of deforestation in the 

Brazilian Amazon.  

The main objective of this research is to propose and validate a set of 

methodologies to help monitor anthropogenic disturbances in the Brazilian rainforest, 

based on different orbital sensors from a broad range of spatial and temporal 

resolutions. Depending on the method, a combination of sensors was used. Most of 

illegal activities of forest disturbances take place in the raining season. Therefore, the 

research also deals with tropical forest monitoring based on radar sensor. An algorithm, 

created on SAR data automatic vegetation cover disturbance, is proposed.  

For those, an extensive bibliographical review was carried out and the main 

objectives were attained in tree scientific papers. The study area was the Novo 

Progresso region, southwest of the Pará State, along the BR-163 highway, where high 

levels of deforestation and land occupation are taking place. First, the deforestation 

detection was carried out combining radar, optical and thermal sensors. Second, we 

showed the correlation between deforestation and fire occurrences and the greenhouse 

gas (GHG) estimates. Last, an automatic technique based on neural network was applied 

to radar images to identify near real-time deforestation. 
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Paper # 1  

 

The research titled “Qualitative analysis of deforestation in the Amazon forest 

from SAR, optical and thermal sensors” aimed to analyze qualitatively the spectral 

responses of clear-cut deforested areas in the Brazilian Amazon using the X- and C-

bands SAR images, combined with optical and thermal data. The research covered and 

area of 40 km x 40 km located in the municipality of Novo Progresso, Pará State, where 

high deforestation rates are observed. The study was based on a multi-temporal analysis 

of the SAR data acquired by the COSMO-SkyMed (X-band) and Sentinel-1A (C-band) 

satellites and by optical and thermal images acquired by the Landsat 8 satellite during 

the period from 2016 to 2018. 

The SAR data were converted into backscattering coefficients of different 

polarizations and ratios. Covariance, gradient, minimum value, maximum value, and 

standard deviation from three periods (20162017, 20172018, and 20162018) were 

considered to highlight the boundaries of deforested. The results were presented in the 

RGB color composites. The optical and thermal data were analyzed after converting 

into the Normalized Difference Vegetation Index (NDVI), Normalized Difference 

Moisture Index (NDMI), and Land Surface Temperature (LST). In this case, deforested 

areas were highlighted based on contrast between primary forest and deforested areas in 

terms of these three attributes (green vegetation, moisture, and surface temperature).  

The deforestation detection was validated based on deforestation polygons 

obtained by the 36 m spatial resolution COSMO-SkyMed SAR images from the year 

2016 and on the data produced by the Near Real-Time Deforestation Detection System 

(DETER-B) from 2017 and 2018. The polygons were overlaid in the Landsat 8 RGB 

color composites (RGB/654) obtained during the dry seasons of 2015, 2016, 2017 and 

2018. The SAR technology proved to be useful in identifying deforested areas during 

the rainy season in the Amazon forest. The RGB multitemporal combinations 

highlighted the deforested areas. The article is available for download in the following 

link: https://revistas.ufrj.br/index.php/aigeo/article/view/31314/17792. 

 

Paper # 2  

 

The second article titled “Fire occurrences and greenhouse gas emissions from 

deforestation in the Brazilian Amazon” addressed the relation between fire occurrence 
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in the forest caused by deforestation after slash-and-burn practices and the estimates of 

greenhouse gas (GHG) emissions in the surroundings of the Novo Progresso 

municipality, Pará State.  

The investigation was based on deforestation and fire data from 2007 to 2019 

reported by INPE. The study area is fully inserted in the arch of deforestation which 

concentrates 77% of the total deforestation in the Brazilian Amazon. Fires occurrences 

within the primary forest were investigated to assess ecosystem degradation. The work 

also presents the amount of GHG emitted from the first deforestation process along the 

Brazilian rainforest in 2019. 

It is important to highlight that the intact forest does not sustain large fires in the 

Brazilian Amazon, due to the high levels of moisture, even during the dry season. Fire 

occurrences in the humid tropical forest are observed in dead trees and along the duff 

layer. The understory vegetation may propagate flame in the surroundings of large 

cleared areas (edges of degraded forests) in combination with an intense dry season. 

Flame propagation through the understory vegetation is too weak to be captured by 

satellite sensors. Therefore, the fire hotspots inside the intact forest may be due to the 

flaming of large naturally dead trees or along open forest trails where small slashed trees 

sustain the fire. Selective logging also degrades the area around the large fallen trees, 

making the vicinity prone to propagate flame. Fire occurrences inside the standing forest 

are restricted to degraded forest caused by the previously discussed events or their 

combined effects.  

Deforestation data was also used to assess GHG emissions from slash-and-burn 

practices. Total GHG emission for the Amazon was limited to the burning of the newly 

deforested area corrected by the average regrowth of secondary forest. The research 

showed a good correlation between the occurrences of fire in the newly deforested area 

in the municipality of Novo Progresso following the local slash-and-burn practices. The 

same trends were also observed for the Pará State, suggesting a common practice within 

the arch of deforestation. For PY2018–2019 (PY = PRODES-Year), the emissions after 

deforestation practices in the Novo Progresso region were about 8.81 Mton of CO2.  

The incidence of fire outbreaks in forest areas nearby new cleared and burned 

areas confirm the strong impact of deforestation on ecosystem degradation due to the 

occurrence of fires in the Brazilian Amazon. The article also discussed the increase in 

deforestation and degradation in the Brazilian Amazon with the approval of the new 
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Brazilian Forest Code in 2012 (Law 12,651 of 25 May 2012). The article is available for 

download in the following link: https://www.mdpi.com/2072-4292/13/3/376. 

 

Paper # 3  

 

After understanding the dynamics of deforestation in the Amazon rainforest and 

considering its dimension, a third article was written where a methodology to identify 

near real-time deforested areas using climate-independent and open-access satellite 

imagery was proposed. The paper titled "Near-real time deforestation detection in the 

Brazilian Amazon with Sentinel-1 and Neural Networks" proposed a methodology 

based on neural network and C-band, VV- and VH-polarized Sentinel-1A data for rapid 

deforestation detection. 

The research was conducted in an area that covers part of the municipalities of 

Altamira, Itaituba, and Novo Progresso, located in the southwest of the Pará State. This 

region shows the highest deforestation rates in this state. A set of 30 Sentinel-1 images 

from 2019 was used for training the neural network algorithm. Another set of 30 

Sentinel-1 images from 2018 were used for the algorithm validation and automatic 

identification of near real-time deforestation. During the algorithm training step, 

statistical parameters (mean backscattering coefficients and their corresponding 

standard deviation and maximum-minimum difference) were calculated from Forested-

Forested (forested areas) and Forested-Deforested (forested areas that were deforested) 

areas. Statistical data were used as input parameters for the NN classifier. The Multi-

Layer Perceptron (MLP) structure was used to map deforestation considering a 

minimum area of 2 ha. Four different case studies were analyzed for both polarizations: 

(1) mean  values; 

(2) mean  values and corresponding standard deviation; 

(3) mean  values and corresponding maximum-minimum difference values; 

and 

(4) mean  values and corresponding standard deviation and maximum-

minimum difference values. 

In the algorithm training phase, the data set was divided into training (75%), 

validation (15%), and testing (10%) sets. The training and validation sets were used 

during the algorithm training process, while the test set was used to assess the 
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performance achieved in the two previous phases. Network training is achieved 

whenever the error in the validation dataset reaches its minimum. After the training 

phase, the algorithm was applied to a new data set. The trained model was then applied 

to radar images from 2018 for automatic recognition of deforested areas. The neural 

network results from the 2018 data set were validated using data published by the 

MapBiomas and PRODES projects. Differences in results between the two projects 

were discussed and presented in the article. The manuscript was submitted to the 

European Journal of Remote Sensing on July 2021 and currently is under the second 

round of review. 
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Resumo

A mitigação de mudanças climáticas e preservação de ecossistemas depende da redução do desmatamento e de-
gradação de florestas tropicais. O objetivo deste estudo foi analisar imagens de radar, ópticas e termais para identificar 
desmatamentos por corte raso no período de 2016 a 2018 em uma área localizada no arco de desmatamento da Amazô-
nia. Foram utilizadas imagens de radar em bandas X (satélite COSMO-SkyMed) e C (satélite SENTINEL-1A), índices 
de vegetação por diferença normalizada (NDVI), índices de umidade por diferença normalizada (NDMI) e temperatu-
ras da superfície terrestre (LST) (satélite Landsat-8). As áreas com evidências de antropismo mapeadas com base nas 
imagens do satélite COSMO-SkyMed no município de Novo Progresso (PA), período de 2016 a 2018, foram utilizadas 
como máscara inicial. Imagens de radar identificaram, com boa precisão relativa, as épocas e as áreas de desmatamento. 
NDVI e NDMI evidenciaram, respectivamente, quedas nas atividades fotossintéticas e nos níveis de biomassa nas áreas 
de desmatamento identificadas. Já a LST foi mais elevada nas áreas de rebrota em relação à vegetação densa. A análise 
do potencial de imagens de radar, ópticos e termais mostrou elevada relevância na detecção de desmatamento por corte 
raso em ambiente florestal úmido.
Palavras-chave: Floresta tropical; Degradação; Análise temporal

Abstract

The mitigation of climate change and the preservation of ecosystems depends on the reduction of deforestation 
and degradation of tropical forests. The objective of this study is to analyze radar, optical, and thermal images to identify 
clear cut deforestation from 2016 to 2018 in an area located in the arch of deforestation of the Amazon forest. We used X- 
(COSMO-SkyMed satellite) and C-bands (SENTINEL-1A satellite) radar data, normalized difference vegetation index 
(NDVI), normalized difference moisture index (NDMI), and land surface temperature (LST) (Landsat-8 satellite). We 
considered, as an initial mask, the areas with evidence of anthropogenic actions in the municipality of Novo Progresso 
(PA), from 2016 to 2018. Radar features were able to be identified, with relative accuracy, the time and the area of defo-
restation. NDVI and NDMI indices showed, respectively, decrease in the photosynthetic activities and the biomass levels 
in deforested areas. On the other hand, the LST was higher in regrowth areas than in dense vegetation. The analysis of 
potential of radar, optical, and thermal data showed to be relevant in the identification of clear cut deforestation in tro-
pical rainforest environment.
Keywords: Tropical forest; Degradation; Temporal analysis
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1 Introdução

As ações para reduzir o desmatamento e a de-
gradação das florestas estão diretamente relaciona-
das aos esforços globais para preservar os ecossiste-
mas únicos de nosso planeta e mitigar as mudanças 
climáticas (Aragão et al., 2014). Para mitigação e 
adaptação decorrente de mudanças climáticas e esti-
mativas do ciclo do carbono, é fundamental um mo-
nitoramento integrado para obter um entendimento 
mais assertivo da dinâmica dos processos na floresta. 
A floresta tropical da Amazônia possui uma extensão 
territorial de 5,5 milhões de km2. O desmatamento 
da floresta Amazônica por ações antropogênicas 
ocorre principalmente por meio de corte seletivo e 
corte raso. O corte seletivo é a retirada de espécies de 
árvores com valor econômico elevado. No processo 
de extração, ocorre a derrubada de árvores vizinhas 
que se encontram na trajetória de queda da árvore 
derrubada. Esse processo é realizado principalmente 
por madeireiros e antecede o corte raso, que corres-
ponde à retirada completa da vegetação. Nas práti-
cas de manejo da terra, realizadas principalmente 
por pecuaristas e fazendeiros, clareiras são abertas, 
a floresta então é derrubada e queimada (Morton et 

al., 2006; Matricardi et al., 2010; Domingues & Ber-
mann, 2012; Souza et al., 2017). 

A dinâmica do desmatamento nas florestas 
tropicais se inicia pelas bordas florestais (Nepstad 
et al., 1999, 2001; Cochrane, 2003) (Figura 1). As 
aberturas de caminhos e estradas dentro da floresta 
permitem o acesso de colonos em áreas antes inaces-
síveis, fragmentam a floresta, a umidade diminui e o 
microclima local é alterado e a floresta torna-se mais 
vulnerável ao fogo. Os incêndios florestais e as emis-
sões de fumaças acarretam diminuição das chuvas; 
as áreas previamente queimadas são mais propensas 
às reincidências. A resiliência do ecossistema dimi-
nui, tornando a floresta mais susceptível a incêndios 
e outros danos. O aumento no nível de degradação 
da floresta e mudanças no estoque de carbono foram 
reportados por diversos autores como Arima et al. 
(2005), Soares-Filho et al. (2006), Broadbent et al. 
(2008), Butt et al. (2011), Knox et al. (2011), David-
son et al. (2012), Barros & Fearnside (2016) e Jusys 
(2016). Durante o manejo da terra, incêndios podem 
penetrar em florestas degradadas ou intactas na for-
ma de fogo de superfície (Guenther et al., 2017), 
cujos danos são mais difíceis de serem documenta-
dos (Asner et al., 2005).

Figura 1 
Dinâmica de 
desmatamento 
e degradação 
da floresta 
Amazônica 
(modificado 
de Cochrane 
2003).
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O monitoramento de desmatamento baseado 
em satélites é uma ferramenta essencial nos estudos 
de efeitos antropogênicos em florestas tropicais, pois 
permite a identificação das diferentes formas de ex-
ploração das florestas e manejo da terra em grandes 
extensões territoriais, com tempo de revisita ade-
quado e um custo razoável (Hosonuma et al., 2012; 
Hansen et al., 2013; Thompson et al., 2013; Aragão 
et al., 2014;  Bustamante et al., 2016; Mitchell et 
al., 2017). Historicamente, técnicas de sensoria-
mento remoto têm desempenhado um papel funda-
mental no monitoramento da cobertura vegetal dos 
biomas brasileiros, conforme relatado por Ferrreira 
et al. (2008), Souza et al. (2013) e Carreiras et al. 
(2017). Porém, durante os meses de chuva, a cober-
tura persistente de nuvens cria uma forte limitação 
para o uso de sensores ópticos. É durante o período 
chuvoso que ocorre a intensificação de cortes raso e 
seletivo de árvores na Amazônia. Nos meses de seca, 
a baixa umidade relativa do ar favorece a queima de 
árvores derrubadas e posterior transformação em 
áreas de pastagens. A despeito da limitação do em-
prego de sensores ópticos pela presença de nuvens, 
os mesmos ainda são amplamente utilizados no mo-
nitoramento da floresta Amazônica (INPE, 2013; 
Shimabukuro et al., 2015; Grecchi et al., 2017). 

Os sensores de radar de abertura sintética 
(SAR) praticamente não sofrem interferência at-
mosférica, pois conseguem atravessar as nuvens e, 
portanto, permitem a aquisição de dados indepen-
dentemente da estação climática, permitindo o mo-
nitoramento contínuo do desmatamento, focos de 
incêndios e rebrota (Bernhard et al., 2011; Reiche 
et al., 2015; Martone et al., 2018). Dados SAR per-
mitem, por meio da análise de retroespalhamento 
volumétrico da vegetação, a produção de informa-
ções sobre cobertura vegetal, copa, galhos e troncos 
(Henderson & Lewis, 1998; Aboud Neta et al., 2010; 
Ernhard et al., 2011; Lardeux et al., 2011; Capodici 
et al., 2013; Lei et al., 2018).

O objetivo dessa pesquisa é apresentar uma 
análise qualitativa de imagens SAR nas bandas X 
e C, ópticas e termal para identificar desmatamento 
por corte raso em uma área localizada no arco de 
desmatamento na floresta Amazônica. A metodolo-
gia testada acrescenta informações sobre como os 
diferentes comprimentos de onda em que os senso-
res de radar operam respondem ao desmatamento 
em um ambiente de floresta tropical úmido. Espe-
ra-se que esse estudo possa acrescentar informações 

que auxiliem em metodologias futuras de controle 
de desmatamento em larga escala.

2 Métodos
2.1 Área de Estudo

A área de estudo localiza-se na região sudeste 
da Amazônia Legal, a norte do município de Novo 
Progresso, estado do Pará (PA) (Figura 2). A porção 
leste da área é cortada pela rodovia BR-163. A maio-
ria dos desmatamentos na região são convertidos em 
áreas de pastagem e em áreas de cultivo agrícola. O 
clima é marcado por um período úmido e um perío-
do seco mais prolongado (Figura 3).

2.2 Dados de Sensoriamento Remoto

Para esse estudo, foram utilizadas imagens 
de radar em banda X do satélite COSMO-SkyMed, 
banda C do satélite Sentinel-1A, imagens ópticas e 
termais do satélite Landsat-8, sensor Operational 
Land Imager (OLI) nas bandas 4 (vermelho, 0,64 
– 0,67 µm), 5 (infravermelho próximo, 0,85 – 0,88 
µm) e 6 (infravermelho de ondas curtas, 1,57 – 1,65 
µm) e sensor Thermal Infrared Sensor (TIRS) na 
banda 10 (infravermelho termal, 10,6 – 11,19 µm) 
do período de 2016 a 2018. Imagens ópticas de 2015 
foram utilizadas para realçar a presença de floresta 
intacta (antes dos desmatamentos ocorridos a partir 
de 2016).

O sistema italiano COSMO-SkyMed consis-
te em uma constelação de quatro satélites de médio 
porte, de baixa órbita terrestre e no mesmo plano 
orbital, cada um equipado com um sensor em ban-
da X (Covello et al., 2010). As imagens do COS-
MO-SkyMed foram adquiridas pelo Centro Gestor 
e Operacional do Sistema de Proteção da Amazônia 
(Censipam) no período de 2016 a 2018 e no modo de 
imageamento StripMap, HighImage, faixa de ima-
geamento de 40 km e polarização HH. Foram sele-
cionadas imagens de abril de cada ano (Tabela 1).

As imagens do Sentinel-1A são obtidas pela 
Agência Espacial Europeia (ESA), composta por 
uma constelação de dois satélites A e B que compar-
tilham o mesmo plano orbital (Torres et al., 2012). 
As imagens são de acesso livre e foram seleciona-
das de acordo com as datas próximas às imagens do 
COSMO-SkyMed. Na área de estudo, haviam dis-
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Figura 2 Mapa de localização da área de estudo em imagens dos satélites COSMO-SkyMed e Landsat-8 de 2016. Alvo 1 corresponde 
a um maior detalhamento da imagem apresentado nas Figuras 5 e 6.

Figura 3 Precipitação 
média anual e mensal da 
série temporal de 1988 a 
2017 da região de Novo 

Progresso (retirado de 
INMET, 2019).

Ano
Satélite

COSMO-SkyMed Sentinel-1A Landsat-8

2015 - - 14 de agosto

2016 25 de abril 19 de janeiro 31 de julho

2017 07 de abril 19 de abril 03 de agosto

2018 08 de abril 08 de maio 05 de julho

Tabela 1 Datas de aquisição das 
imagens utilizadas: COSMO-Sky-
Med (banda X), Sentinel-1 (banda 
C) e Landsat-8 (bandas: vermelho, 

infravermelho próximo, infraver-
melho de ondas curtas e infraver-

melho termal).
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poníveis imagens no modo de aquisição Interfero-

metric Wide (IW), faixa de imageamento de 250 km 
e polarizações VV e VH.

As imagens ópticas foram obtidas pelo saté-
lite norte-americano Landsat-8 que opera com dois 
sensores denominados de OLI e TIRS (Barsi et al., 
2014; Knight & Kvaran, 2014). Os dois sensores 
proporcionam imagens coincidentes da superfície 
terrestre, porém, em diferentes regiões espectrais. 
Foram selecionadas imagens ópticas da cena 227/65 
dos sensores OLI e TIRS, com presença mínima de 
cobertura de nuvens. Todos os dados foram projeta-
dos para o sistema de coordenadas geográficas, da-

tum WGS84.

2.3 Processamento das Imagens

A Figura 4 apresenta a metodologia de pro-
cessamento aplicada para as imagens SAR, ópticas e 
termal. As imagens SAR (bandas X e C) foram utili-
zadas a partir do nível de processamento Single Look 

Complex (SLC). As imagens do COSMO-SkyMed 
seguiram o procedimento padrão de processamento 
sugerido pela Agência Espacial Italiana por meio do 

programa SARscape (ISA, 2009). A análise multi-
temporal (change detection) foram aplicadas para 
detectar as mudanças ocorridas entre as imagens no 
período de 2016 a 2018. A técnica de detecção de 
mudança multi-temporal (Lu et al., 2004) faz uma 
análise de imagens na mesma posição geográfica em 
diferentes datas para identificar quaisquer mudanças 
ocorridas entre as duas datas. Foram calculados os 
seguintes parâmetros estatísticos: covariância, gra-
diente, valor mínimo, valor máximo, média, media-
na e desvio-padrão para investigar as alterações de 
retroespalhamento de múltiplas imagens ao longo 
do tempo.

As imagens SAR do Sentinel-1A foram pro-
cessadas utilizando o software SNAP da ESA. De-
pois de processados, esses dados foram analisados 
por meio de divisão de bandas e combinação das 
diferentes polarizações. Os valores digitais das ima-
gens do Landsat-8 foram convertidos para reflectân-
cia na superfície terrestre, aplicando-se a técnica de 
remoção de nuvens por meio do plug-in RS & GIS, 
disponível no programa QGIS. Posteriormente, fo-
ram calculados o NDVI, o NDMI e a LST por meio 
das seguintes equações:

Figura 4 Fluxo de 
processamento digital 
das imagens SAR 
(bandas X e C), 
ópticas e termal.
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onde Red, NIR e SWIR correspondem às reflectân-
cias nas faixas espectrais do vermelho, infraverme-
lho próximo e infravermelho de ondas curtas, res-
pectivamente; k

1
 e k

2 
correspondem a constantes de 

conversão das bandas termais; e L
i 
refere-se à radiân-

cia no topo da atmosfera.

2.4 Dados de Referência

Foram utilizados, como dados de referência 
de áreas desmatadas, as composições coloridas de 
imagens ópticas entre 2015 e 2018; os polígonos de 
desmatamento do sistema de detecção de indicativos 
de desmatamento em tempo quase real (DETER-B) 
do Instituto Nacional de Pesquisas Espaciais (INPE) 
para os anos de 2017 e 2018; e os polígonos de des-
matamento (T0) mapeados pelo Censipam em 2016. 
As composições coloridas RGB das imagens ópticas 
foram formadas com as bandas espectrais 6 (SWIR), 
5 (NIR) e 4 (RED), respectivamente.

O INPE, por meio do Projeto de Monitora-
mento do Desmatamento na Amazônia por Satélites 
(PRODES), tem calculado as taxas anuais de desma-
tamento por corte raso em áreas maiores que 6,25 
hectares na Amazônia Legal brasileira (INPE, 2013). 
O sistema faz uso de dados ópticos de resolução es-
pacial moderada provenientes principalmente dos 
satélites Landsat (30 m de resolução espacial e re-
visita de 16 dias) e CBERS (20 metros de resolução 
espacial e revisita de 26 dias). Esse monitoramento 
é possível de ser realizado apenas de seis a oito me-
ses no ano, correspondente ao período seco, o que é 
insuficiente para ações de prevenção, fiscalização e 
controle do desmatamento em curto prazo (Escada 
et al., 2010).

Com o objetivo de apoiar a vigilância e o 
controle do desmatamento, o INPE vem desenvol-
vendo sistemas complementares de monitoramento. 

Esse é o caso do DETER-B, baseado em imagens do 
sensor Wide Field Imager (WFI) a bordo do satélite 
CBERS-4 (resolução espacial de 64 m) e principal-
mente em imagens do Advanced Wide Field Sensor 
(AWIFS) do satélite indiano Resourcesat-1, com re-
solução espacial de 56 m e resolução temporal de 5 
dias (Diniz et al., 2015). O DETER-B demonstrou 
ser capaz de indicar alterações florestais em diferen-
tes estágios de degradação, contribuindo para o com-
bate de desmatamento no arco de desflorestamento 
localizado na Amazônia Legal.

Durante o período de chuvas, em que o moni-
toramento por meio de satélites ópticos do INPE fica 
prejudicado, o Censipam colabora com os órgãos 
federais de fiscalização (IBAMA e ICMBio).  Com 
base nos dados do PRODES, o IBAMA define os 
hotspots de desmatamento para que o Censipam, por 
meio de imagens radar, possa mapear os polígonos 
menores, mais difíceis de serem identificados por 
sensores de resolução moderada, gerando alertas de 
desmatamento na Amazônia em tempo próximo ao 
real. O Censipam faz uso de imagens em banda X do 
satélite italiano COSMO-SkyMed e mapeia as áreas 
desmatadas, com resolução espacial de 3 a 6 m, cha-
mada base T0. Desde 2016, a área monitorada tem 
sido de 300.000 km² mensais, no período compreen-
dido entre outubro a abril nos estados da Amazônia.

3 Resultados

Foi realizada uma análise temporal calcu-
lando-se, sobre pares de imagens, a covariância, o 
gradiente, o valor mínimo, o valor máximo e o des-
vio-padrão para três períodos: 2016 a 2017; 2017 a 
2018; e 2016 a 2018. Os resultados são apresentados 
em composições coloridas RGB que melhor evi-
denciaram os limites das áreas de desmatamento e 
os períodos aproximados de ocorrência. A Figura 5 
apresenta as combinações temporais RGB das ima-
gens do COSMO-SkyMed dos parâmetros calcula-
dos na análise temporal. Em todas as composições 
coloridas, no canal vermelho (R) foram inseridas as 
imagens do período de 2016 a 2017, no canal verde 
(G), as imagens de 2016 a 2018 e no canal azul (B), 
as imagens de 2017 a 2018. Imagens do Landsat-8 
foram selecionadas durante os períodos secos dos 
anos de 2015, 2016, 2017 e 2018 para comparação 
e validação visual das mudanças ocorridas na área.

(1)

(2)

(3)
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Nas imagens de covariância (A) e gradiente 
(B), as áreas desmatadas durante o período de 2016 
a 2017 foram evidenciadas pela coloração amarela. 
As colorações em ciano e magenta mostram mudan-
ças ocorridas entre 2017 e 2018. Porções da área de 
coloração escura a preta mostram áreas desmatadas 
mais antigas. A imagem de valores máximos (C) não 
se mostrou adequada para definir as áreas de des-
matamento. A imagem de valores mínimos (D) apre-
sentou uma textura mais lisa das áreas desmatadas 
mais antigas. Dos parâmetros temporais calculados, 
o gradiente (B) e o valor mínimo (D) mostraram-se 
mais eficientes em diferenciar as áreas que sofreram 
alteração e as áreas de desmatamento mais antigas. 
A combinação de desvio-padrão não foi mostrada na 
figura por apresentar as mesmas características do 
gradiente (B).

Uma segunda avalição foi realizada para o pe-
ríodo total de 2016 a 2018, combinando-se os melho-
res resultados da análise dos parâmetros temporais 
calculados (covariância, gradiente e valor mínimo), 
imagens de retroespalhamento (σ0, unidade em dB) 
e diferenças de bandas (Figura 6). Na imagem cov-
-min-grad (A) (composição RGB: R = covariância; 

G = valor mínimo; e B = gradiente), as áreas que so-
freram alteração entre 2016 e 2018 foram evidencia-
das pela cor magenta e as áreas desmatadas mais an-
tigas apresentaram-se com padrão verde escuro. Na 
imagem dif-min-grad (B) (composição RGB: R = di-
ferença de σ0 de 2016-σ0 de 2018; G = valor mínimo; 
e B = gradiente), o padrão azulado permitiu definir 
melhor os limites das áreas que sofreram alteração, 
quando comparada com a imagem cov-min-grad 
(A). As áreas desmatadas mais antigas puderam ser 
observadas na cor marrom. Na imagem dif- σ0_16- 
σ0_18 (C) (composição RGB: R = diferença entre σ0 
de 2016 e σ0 de 2018; G = σ0 de 2016; e B = σ0 de 
2018), as áreas em coloração verde claro correspon-
deram às áreas alteradas em 2016. Porções em verde 
escuro mostraram áreas desmatadas mais antigas e, 
nas porções mais azuladas, áreas que foram desma-
tadas em 2018. Na imagem σ0_16- σ0_17- σ0_18 (D) 
(composição RGB: R = σ0 de 2016; G = σ0 de 2017; 
e B = σ0 de 2018), a coloração RGB correlacionou-
-se com os períodos aproximados de desmatamen-
to. Tons amarelos evidenciaram os desmatamentos 
ocorridos entre 2016 e 2017, tons azulados, os des-
matamentos mais recentes (ocorridos entre 2017 e 
2018) e os tons mais escuros, as áreas desmatadas 

Figura 5 Composições coloridas RGB bitemporais (R = 2016 a 2017; G = 2016 a 2018; e B = 2017 a 2018) derivados dos parâmetros 
covariância (A), gradiente (B), valor máximo (C) e valor mínimo (D) do satélite COSMO-SkyMed. Na parte inferior da figura, são 
mostradas as composições coloridas RGB/654 do satélite Landsat-8 obtidas em 2015/08/14 (E), 2016/07/31 (F) (com polígonos de 
desmatamento T0), 2017/08/03 (G) (com polígonos de desmatamento T0 e DETER-B de 2017) e 2018/07/05 (H) (com polígonos de 
desmatamento T0 e DETER-B de 2018).
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já bem consolidadas. Todas as composições RGB 
das imagens do COSMO-SkyMed apresentaram 
bons resultados para detecção e discriminação das 
áreas desmatadas.

Na parte inferior da Figura 6, a primeira ima-
gem à esquerda (I) é composta por imagens do saté-
lite Sentinel-1A (composição RGB: R = σ0_VH de 
2016; G = σ0_VH de 2017; e B = σ0_VH de 2018). 
As áreas que sofreram alteração apresentaram tons 
amarelos e verdes e áreas desmatadas bem consoli-
dadas em coloração marrom, porém, os limites des-
sas áreas ficaram pouco definidos. Nas imagens de 
retroespalhamento dos anos de 2016 (J), 2017 (K) e 
2018 (L) (composição RGB: R = σ0_VV; G = σ0_VH; 
e B = diferença VV-VH), não foi possível diferenciar 

novas áreas de desmatamento. Os tons escuros nas 
imagens corresponderam às áreas de desmatamentos 
bem estabelecidos.

A expansão do desmatamento no arco de des-
florestamento da Amazônia ocorre seguindo uma 
dinâmica de corte seletivo e derrubada da floresta, 
implantação da pecuária e transformação posterior 
da área em agricultura mecanizada (Domingues & 
Bermann, 2012). Com o objetivo de observar o com-
portamento da vegetação, umidade e temperatura nas 
áreas de desmatamento, foram calculados os índices 
NDVI e NDMI e a temperatura superficial terrestre a 
partir das imagens ópticas. O índice NDVI é aplica-
do para identificar a presença de vegetação e visua-
lizar o seu nível de vigor (Ponzoni et al., 2015). O 

Figura 6 Imagens do COSMO-SkyMed: covariância-mínimo-gradiente (A), diferença σ0 (2016-2018)-mínimo-gradiente (B), diferença 
σ0_(2016-2018)- σ0_2016 - σ0_2018 (C) e σ0_2016- σ0_2017- σ0_2018 (D). Composições coloridas RGB/654 do satélite Landsat-8 ob-
tidas em 2015/08/14 (E), 2016/07/31 (F) (com polígonos de desmatamento T0), 2017/08/03 (G) (com polígonos de desmatamento T0 e 
DETER-B de 2017) e 2018/07/05 (H) (com polígonos de desmatamento T0 e DETER-B de 2018). Imagens do Sentinel-1A: σ0_2016- 
σ0_2017- σ0_2018 (I) (composição RGB: R = σ0 VH de 2016; G = σ0 VH de 2017; e B = σ0 VH de 2018);  σ0_16 (J) (composição R = 
σ0_VV; G = σ0_VH; e B = diferença VV-VH) para os anos de 2016-01-19, 2017-04-19 (K) e 2018-05-08 (L).
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índice NDMI é aplicado com o objetivo de observar 
a diferença de umidade nas áreas desmatadas e nas 
áreas de floresta. Esse último também pode auxiliar 
na identificação da presença de vegetação (Wilson & 
Sader, 2002).

Após o cálculo do NDVI, foi realizada uma 
classificação no programa ENVI. Foi utilizada a fer-
ramenta SPEAR, que faz uma delineação da vege-
tação para permitir identificar a presença de vege-
tação e visualizar seu nível de vigor. O NDVI gera 
uma imagem com valores que variam de -1 a +1. Os 
pixels sem vegetação tendem a -1 enquanto os pi-
xels com vegetação vigorosa tendem a 1. Os valores 
NDVI foram divididos em quatro classes: áreas não 
vegetadas (entre -1 a 0,50), vegetação esparsa (aci-
ma de 0,50 e abaixo de 0,62), vegetação moderada 
(acima de 0,62 e abaixo de 0,68) e vegetação densa 
(entre 0,68 a 1). Os valores foram ajustados visual-
mente de modo que representassem bem as quatro 
classes. Para o ano de 2015, os limiares booleanos 
mínimo e máximo foram de -0,57 e 0,84; em 2016, 
mínimo de -0,41 e máximo de 0,84; em 2017, míni-
mo de -0,94 e máximo de 0,86; e em 2018, mínimo 
de -0,98 e máximo de 0,87. A Figura 7 mostra, em 
detalhe, para as datas de 2015/08/14, 2016/07/31, 
2017/08/03 e 2018/07/05, a classificação do NDVI 
[(A) a (D)]; imagens RGB-654 usadas como referên-
cia [(E) a (H)]; imagens do índice de umidade NDMI 
[(I) a (L)]; e imagens de temperatura superficial ter-
restre [(M) a (P)]. Os valores de NDVI variam de -1 
a +1, onde os valores mais elevados correspondem a 
áreas de vegetação fotossinteticamente mais ativas 
e os valores inferiores representam áreas com bai-
xa vegetação. O NDVI individualizou bem as áreas 
sem vegetação e vegetação esparsa, porém, as áreas 
de rebrota e vegetação densa apresentaram o mesmo 
nível de vigor.

O NDMI também possui valores que variam 
de -1 a +1, onde os valores mais elevados corres-
pondem às áreas mais úmidas (com presença de 
vegetação) e os valores menores, às áreas de baixa 
umidade ou pouca vegetação. Observou-se uma 
queda da umidade nas áreas desmatadas ou de 
pouca vegetação. Porém, áreas de rebrota e áreas 
de vegetação densa apresentaram valores similares 
e impossibilitaram a individualização dessas 

duas classes. A LST foi calculada para observar o 
comportamento da temperatura nas áreas desmatadas 
e nas áreas de floresta. Os mapas de temperatura 
mostraram coerência relativamente alta com os índi-
ces de umidade. As regiões com mais alta temperatu-
ra apresentaram baixa umidade. Entretanto, as tem-
peraturas nas áreas de rebrota foram levemente mais 
elevadas que as áreas de floresta densa, permitindo 
diferenciar visualmente essas duas classes. As áreas 
de solo exposto alcançaram valores de temperatura 
de superfície acima de 50 °C.

4 Conclusões

Os dados SAR, em banda X, forneceram in-
formações importantes sobre os atributos tempo-
rais e combinações RGB que melhor evidenciaram 
as áreas de desmatamentos na região. Covariância, 
gradiente e mínimo foram os parâmetros temporais 
que melhor evidenciaram os desmatamentos como 
também o período aproximado de sua ocorrência. 
Esses parâmetros, quando combinados com dados 
de retroespalhamento, por exemplo, diferença de σ0, 
mínimo e gradiente, permitiram delinear os limites 
de desmatamento com maior definição quando com-
parados à combinação pura de parâmetros da análise 
temporal. As composições de diferenças entre ban-
das de σ0 também podem ser usadas para extrair in-
formações de alteração como o período aproximado 
de ocorrência dos desmatamentos.

Os dados SAR, em banda C, não apresentaram 
resultados capazes de definir inequivocamente áreas 
de desmatamento. Esses resultados deram-se, prova-
velmente, à soma de alguns fatores como o modo de 
aquisição dos dados em banda C ser Interferometric 

Wide, menos detalhado quando comparado ao modo 
StripMap, das imagens em banda X.

Os índices calculados a partir de imagens 
ópticas forneceram informações importantes sobre 
a presença e vitalidade da vegetação nas áreas de 
desmatamento e de sua relação com as condições de 
umidade e de temperatura nessas áreas. Os índices 
NDVI e NDMI mostraram-se correlatos, áreas com 
vegetação densa a moderada apresentaram umidade 
elevada e áreas sem vegetação ou vegetação esparsa 
apresentaram baixa umidade. Porém, pôde-se obser-
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var, pelas imagens ópticas, que, nas áreas que foram 
desmatadas e posteriormente houve uma rebrota da 
vegetação, esses dois índices apresentaram valores 
similares em relação às áreas de vegetação densa, 
não permitindo uma diferenciação entre essas duas 
classes. A temperatura superficial terrestre mostrou-
-se mais sensível que os índices normalizados pela 
diferença onde foi possível observar uma tempe-
ratura levemente maior nas áreas de rebrota e uma 

temperatura mais baixa nas áreas de vegetação den-
sa, sendo possível fazer uma separação visual entre 
essas duas áreas.  

A tecnologia SAR mostrou-se útil na identifi-
cação dos desmatamentos durante o período de chu-
vas na Amazônia Legal. Neste estudo, foi relevante 
avaliar os parâmetros temporais e combinações RGB 
que melhor ressaltaram as áreas de desmatamentos e 
seus limites na área de estudo. Em pesquisas futu-

Figura 7 Mapas de classificação do NDVI para 2015-08-14 (A), 2016-07-31 (B), 2017-08-03 (C) e 2018-07-05 (D). Composições co-
loridas RGB/654 do satélite Landsat-8 obtidas em 2015/08/14 (E), 2016/07/31 (F) (com polígonos de desmatamento T0), 2017/08/03 
(G) (com polígonos de desmatamento T0 e DETER-B de 2017) e 2018/07/05 (H) (com polígonos de desmatamento T0 e DETER-B 
de 2018). Mapas de índices de umidade (NDMI) para 2015-08-14 (I), 2016-07-31 (J), 2017-08-03 (K) e 2018-07-05 (L). Mapas de 
temperatura superficial terrestre (LST) para 2015-08-14 (M), 2016-07-31 (N), 2017-08-03 (O) e 2018-07-05 (P).
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ras, pretende-se realizar análises de textura de dados 
SAR para uma melhor definição e discriminação das 
classes vegetais como também análises quantitativas 
das informações SAR e ópticas.
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Abstract: This work presents the dynamics of fire occurrences, greenhouse gas (GHG) emissions,
forest clearing, and degradation in the Brazilian Amazon during the period 2006–2019, which includes
the approval of the new Brazilian Forest Code in 2012. The study was carried out in the Brazilian
Amazon, Pará State, and the municipality of Novo Progresso (Pará State). The analysis was based on
deforestation and fire hotspot datasets issued by the Brazilian Institute for Space Research (INPE),
which is produced based on optical and thermal sensors onboard different satellites. Deforestation
data was also used to assess GHG emissions from the slash-and-burn practices. The work showed a
good correlation between the occurrence of fires in the newly deforested area in the municipality of
Novo Progresso and the slash-and-burn practices. The same trend was observed in the Pará State,
suggesting a common practice along the deforestation arch. The study indicated positive coefficients
of determination of 0.72 and 0.66 between deforestation and fire occurrences for the municipality
of Novo Progresso and Pará State, respectively. The increased number of fire occurrences in the
primary forest suggests possible ecosystem degradation. Deforestation reported for 2019 surpassed
10,000 km2, which is 48% higher than the previous ten years, with an average of 6760 km2. The steady
increase of deforestation in the Brazilian Amazon after 2012 has been a worldwide concern because
of the forest loss itself as well as the massive GHG emitted in the Brazilian Amazon. We estimated
295 million tons of net CO2, which is equivalent to 16.4% of the combined emissions of CO2 and
CH4 emitted by Brazil in 2019. The correlation of deforestation and fire occurrences reported from
satellite images confirmed the slash-and-burn practice and the secondary effect of deforestation, i.e.,
degradation of primary forest surrounding the deforested areas. Hotspots’ location was deemed to
be an important tool to verify forest degradation. The incidence of hotspots in forest area is from 5%
to 20% of newly slashed-and-burned areas, which confirms the strong impact of deforestation on
ecosystem degradation due to fire occurrences over the Brazilian Amazon.

Keywords: Amazon rainforest; forestry degradation; greenhouse gas emission; remote sensing application

1. Introduction

Global efforts have been made to preserve Earth’s ecosystems and to mitigate climate
changes, including reductions of deforestation and forest degradation [1,2]. The Brazilian
Amazon is one of the most endangered ecosystems. A deep understanding of this ecosys-
tem, including its carbon cycle, is essential to know the adaptability of the environment to
climate changes [3]. The Brazilian Amazon, with about 5.2 million km2, covers the states
of Acre (AC), Amapá (AP), Amazonas (AM), Maranhão (MA), Mato Grosso (MT), Pará
(PA), Rondônia (RO), Roraima (RR), and Tocantins (TO), and occupies about 60% of the
Brazilian territory (Figure 1A). Human occupation in this region has claimed large areas
of the original forest for settlement, beef production, crop plantation, and hydropower
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generation [4–12], especially in a region known as the deforestation arch. This arch-shaped
region is located in the southernmost part of the Brazilian Amazon and shows the highest
occurrence of forest clearings [13] and occupation [14,15]. It covers about 1.71 million km2,
i.e., 33% of the Brazilian Amazon. This region stretches from the southeast of Pará State to
the east of Acre State, concentrating 77% of total deforestation of the Brazilian Amazon,
mostly for soybean plantation and cattle ranching [5,15,16]. Figure 1B shows the annual
deforestation over the Pará State and the Brazilian Amazon, as estimated by the National
Institute for Space Research (INPE), from 1988 to 2019. This institution defines deforestation
as the clear-cut conversion of the primary forest by human activities, detected by the Earth
Observation satellite optical sensors [13].
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Since 2006, the highest levels of deforestation in the Brazilian Amazon are found in
the Pará State, reaching about 5000 km2 in 2019. It can also be seen in Figure 1B that the
deforestation trend in the Pará is similar to that of the entire Brazilian Amazon. In this state,
forest disturbances are located mainly in the south, southwest, and east borders, covering
approximately 550,000 km2. The largest annual deforestation in the Brazilian Amazon
occurred in 1995, surpassing 29,000 km2. A second peak occurred in the period 2002–2004,
with an average of 24,939 km2. From 2004 to 2012, there was a sharp decrease in annual
deforestation rates, as indicated by the blue line in Figure 1B (correlation higher than 80%).
Voluntary “Reducing Emission from deforestation and forest Degradation in Developing
countries” (REDD+) projects for the region started in 2008 [17]. By this time, Brazil was
close to reaching the goal of reducing deforestation by 80% until 2020 (green, dashed line in
Figure 1B) compared to the 1996–2005 period. This goal was set in 2009 during the United
Nations Framework Convention on Climate Change (UNFCCC) held in Copenhagen,
Denmark [18]. The trend, however, inverted, as indicated by the steady growth of the red
line in Figure 1B. The inflexion is linked to the Federal Law n. 12.727/2012 [19] that, to
some extent, relaxed forest conservation. As of 2019, deforestation in Pará State alone was
higher than the target value set in 2009 for the whole Brazilian Amazon.

Figure 2 shows the relationship between land use and land cover changes, and forest
fire in the Brazilian Amazon, as proposed in References [5,6]. Road construction facilitates
forest access, accelerating deforestation and selective logging, and lowering the resilience of
surrounding forests to fire [20–23]. Deforestation raises the number of forest edges, increasing
the susceptibility of forests to fires [24–27]. Selective logging degrades forest, reduces canopy
and soil moisture, and increases canopy temperature and tree mortality, intensifying fire out-
breaks [22,28,29]. The cycle grows in a spiral configuration: forest fires and smoke emissions
reduce rainfall, particularly in the dry season [24,30–35], previously burned areas are more
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prone to recurrence, changes in the global and local climate, along with land use intensifi-
cation, contribute to increasing the level of forest degradation [28,35–41], most significant
changes in forest canopy density take place in regions close to the forest edges [16,22,35,42],
and land management fires can penetrate the standing degraded forests, as demonstrated by
others studies [21,43,44].
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Several in-situ measurements of the slash-and-burn forest clearing practices have
been conducted to infer greenhouse gas (GHG) emission [45–49]. Figure 3 shows the main
steps of the slash-and-burn practices observed in the Brazilian Amazon. By the end of
the rainy season, the forest is clear-cut (Figure 3A) and left in the terrain to dry until the
peak of the dry season (Figure 3B), after which the fire is set. The burning period typically
extends from July to October. The initial fire consumes the duff-layer, small branches,
and leaves, while most of the massive trunks remain in the terrain (Figure 3C). Finally,
the remaining scorched logs are stockpiled and burned along the coming years until the
terrain becomes dominantly bare soil (Figure 3D). Fire may penetrate the standing forest
if moisture favors flame propagation through the understory vegetation [42–44]. Forest
degradation increases after successive fires, observed by the combustion of growing small
trees in dry seasons. The less resilient forest also favors significant fire recurrences over the
years. Fire is used mainly for land management, mostly for clearing the terrain after the
slash-and-burn deforestation for subsequent maintenance of deforested areas [50,51].

GHG emissions from deforestation in the Brazilian Amazon are also of great concern,
considering that it generally accounts for more than 200 t ha−1 of CO2 after the clear-cut
occupation [44,49,52]. These authors also observed that other gases such as CO, CH4, and
non-methane hydrocarbons and particulates are also emitted in large quantities.
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Figure 3. Main stages of the clear-cut processes of forest clearing in the Brazilian Amazon. (A) Clear-
cut during the wet season or end of the wet season, (B) trunks and branches left in the terrain for
drying, (C) burning activity during the dry season, and (D) bare soil prepared for pasture or crop
plantation (Photos: E. Sano).

This paper addresses the relationship between forest loss, fire occurrence, forest
degradation, and primary GHG emissions over the Brazilian Amazon and downscaling to
the Pará State and Novo Progresso municipality. Several authors studied carbon emissions
from fires in the Brazilian Amazon, emphasizing specific topics such as drought-related
fires rather than forest-clearing-related fires [35] or in specific regions such as the states
of Rondônia and Mato Grosso [53]. Aragão and Shimabukuro [37] reported an increase
of fire occurrences in areas experiencing reduced deforestation. The literature review
showed that there is no previous study relating the amount of fire occurrences in standing
forest (degradation) due to deforestation following the slash-and-burn practices over the
region. We relied on annual reports published by INPE, for the period 2006–2019. The
data were used to correlate fire events in a specific area (Novo Progresso municipality)
and in a regional area (Pará State), both located in the deforestation arch. Fire outbreaks
inside the primary forest were also investigated to assess ecosystem degradation. The work
also presents the amount of GHG originated by the first forest clearing process along the
Brazilian rainforest in 2019. The period of 2007–2019 was selected for this study, as it has
sharp decay on deforestation rates followed by the steady growth of human occupation
after 2012, as depicted in Figure 1.

2. Materials and Methods
2.1. Novo Progresso Region

Pará State encompasses an area of 1,246,000 km2, equivalent to the total area occupied
by Germany, France, the United Kingdom, and Italy, altogether. The Novo Progresso
region, located in the southwest of the Pará State (Figure 4), covers 36,800 km2 and is one
of the areas in this state facing long-time, largest clear-cutting deforestation. Most of the
deforestation in the Novo Progresso region is found along the BR-163 highway, crossing
the region in the North–South direction. Land cover change mapping and monitoring of
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this municipality has been a big concern in the literature [54–56]. Within this context, we
analyzed our data by considering them in three different scales: municipality, state, and
region levels, in order to check the consistency among these scales.
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2.2. Datasets

The datasets of deforestation and fire hotspots were produced by the INPE’s Amazon
Deforestation Satellite Monitoring Program (PRODES) and the Forest Fire Program (Pro-
grama Queimadas), respectively. PRODES provides the annual rates of clear-cut deforested
areas larger than 6.25 hectares over the Brazilian Amazon [58]. The system makes use of
moderate spatial resolution (10–100 m) optical data, mostly from the dry season, obtained
by Landsat 8 (30 m spatial resolution and 16-day revisit time), China–Brazil Earth Resources
Satellite (CBERS-4) (20 m spatial resolution and 26-day revisit time), and Sentinel-2 (10 m
spatial resolution and 5-day revisit time) satellites. The near real-time fire detection data,
provided by the Forest Fire Program [59], are based on thermal sensors onboard several
sun-synchronous and geostationary satellites, namely:

• MODerate Resolution Imaging Spectroradiometer (MODIS) sensor onboard Aqua and
Terra platforms.

• Advanced Very High-Resolution Radiometer (AVHRR) sensor onboard National
Oceanic and Atmospheric Administration (NOAA) satellite.

• AVHRR-3 and Infrared Atmospheric Sounder Interferometer (IASI) sensors onboard
Meteorological Operational (MetOp) satellite.

• Visible Infrared Imaging Radiometer Suite (VIIRS) sensor onboard Suomi National
Polar-orbiting Partnership (NPP) satellite.

• Advanced Baseline Imager (ABI) sensor, onboard GOES-R satellite.
• Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard Meteosat

Second Generation (MSG) satellite.

Daily fire hotspot monitoring is performed by the MODIS sensor (Collection 6) [59–61].
The detection of fire hotspots by INPE through satellite images is carried out using well-
known techniques [62–64], basically by subtracting brightness temperatures measured in
the middle infrared (MIR) band (around 4 µm) with that of the measured thermal infrared
(TIR) band (around 11 µm). Thermal anomalies are identified when the difference in the
brightness temperature measured in these two spectral bands is higher than a given threshold,
i.e., when the temperature from MIR is much higher than that of TIR. Hantson et al. [65]
investigated the strengths and weaknesses of hotspots detected by MODIS to characterize
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fire occurrence in many different ecosystems. For the Brazilian Amazon, they reported less
than 2.1% of commissioning error, and 80% confidence interval between hotspot detection
(MODIS) and burned area (Landsat). The coefficient of determination between the annual
number of hotspots and burned areas for the Amazon was R2 = 0.95.

2.3. Methodology
2.3.1. Deforestation and Fire Hotspots

In the southwest region of Pará State, the typical rainy season is from November to
May and the typical dry season is from June to October [66]. INPE´s deforestation mapping
starts on 1 August of the previous year until 31 July of the current year. In this paper, this
period is referred to as PY (PRODES Year). In PRODES, the processing time is quite long to
account for the required level of confidence (>90%) and the size of the region (deforestation
arch). Deforestation reports are generally published about four months after the end of the
mapping period.

Fire occurrences within the forest and deforested areas were covered for the same
reference period (2007–2019) to evaluate their strength of relationship with deforesta-
tion. To avoid misinterpretations, the reference year for the hotspots follows that of
deforestation. Most planned fires, however, take place in the mid/end of the dry season
(August–September) for higher combustion efficiency. The first fires consume about 50%
of the recently slashed biomass. The scorched biomass is then stockpiled and burnt in
the following years to complete the land clearing process. The newly deforested areas
reported for a given PY show intense fire activities in the first months of PY+1 (August–
September), but fire hotspots are likely to appear at that pre-burnt area for the next PRODES
years (PY+2, PY+3, PY+4, and so on), though at lesser intensity when compared to the
first burn. Throughout the work, fire scars, hotspots, and fire outbreaks are mentioned
indiscriminately and are considered as indicative of the spatial and temporal burned areas.

Figure 5 illustrates, for a given year, the accumulative location of detected fire hotspots
inside the forest shown as red dots, and in the deforested areas, indicated by blue dots.
Hotspots’ location accuracy is ±500 m. Due to positioning uncertainty, the fire hotspots
reported at a distance higher than 500 meters (buffer zone) from the edge of deforested
areas were considered to take place at the standing forest. The boundaries of deforested
areas were updated annually. Therefore, the buffer zone of 500 m was updated accordingly.
Figure 5 shows the consolidated data of forest and non-forest areas as reported by INPE,
corresponding to the actual status of the region by 31 July 2019 (PY2018–2019). The hotspots
in Figure 5 give the location of their incidences at any time during the period of 1 August
2018 to 31 July 2019. Most of the fire hotspots would appear in the dry season of 2018, from
July to October, for which clear-cut had occurred at the first quarter of 2018 (PY2017–2018).
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It is important to highlight that the healthy undisturbed forest does not sustain large
fires in the Brazilian Amazon, due to the high levels of humidity, even in the dry season.
Fire occurrences in the humid tropical forest are observed in dead trees and along the
duff-layer. The understory vegetation may propagate flame in the surroundings of large
cleared areas (degraded edges of forests) in combination with an intense dry season. Flame
propagation through the understory vegetation is too weak to be captured by satellite
sensors. Therefore, the fire hotspots inside the intact forest may be due to the flaming
of large naturally dead trees or along an open forest trail where small slashed trees have
the ability to sustain the fire. Selective logging also degrades the area around the large
falling trees, thus making the vicinity prone to propagate flame. Fire occurrences inside the
standing forest are restricted to degraded forest caused by any of the previously discussed
events or their combined effects.

This study deals with deforestation and the use of fire for land clearing. Fire hotspots
may also occur in nearby degraded areas, such as dead trees, near extracted logs and trails.
Total GHG emission for the Amazon was limited to the burning of the newly deforested
area corrected by the average regrowth of secondary forest throughout.

2.3.2. Greenhouse Gas Emissions

Amazon GHG emissions from slash-and-burn practices can be estimated based on
in-situ measurements of forest clearing fire experiments [50,52]. Figure 6 explains the
GHG estimation model. Emissions are calculated based on the amount of burned dry
biomass, combustion efficiency, and the emission factors for each gas. The dry weight
of biomass (ton) is estimated from the local fresh biomass (ton ha−1), its humidity (%),
and the amount of deforested area (ha). For the Novo Progresso region, we used the
data obtained [52] from two different sites in the Alta Floresta municipality, which is less
than 500 km from the Novo Progresso region. For the Pará State, the fresh biomass was
calculated by averaging the estimates from Alta Floresta, Mato Grosso State, and Manaus,
Amazonas State [46,50,52]. For the Brazilian Amazon, the average fresh biomass included
the values from the Pará State and from the municipalities of Cruzeiro do Sul and Rio
Branco, both in Acre State. More detailed information about the methodology of the GHG
emissions and estimates can be found in Carvalho Jr. et al. [50] and Soares Neto et al. [52].
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Figure 6. Procedure of the estimation of the greenhouse gas (GHG) emission. HU = humidity; DB = dry biomass,
TE = total emission.

Soares Neto et al. [52] reported combustion efficiencies of about 50% and fresh biomass
humidity of 42%, prior to clear-cut. Table 1 summarizes the relevant data for emission
estimates from slash-and-burn activities in the Brazilian Amazon rainforest.
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Table 1. Basic data for gas emissions estimate. Source: References [50,52].

Parameter Reference Value Reference Area

Fresh biomass (ton ha−1) 512 Novo Progresso
Fresh biomass (ton ha−1) 570 Pará State
Fresh biomass (ton ha−1) 580 Brazilian Amazon

Emission factor CH4 (kg ton−1 (db)) * 9.2 Brazilian Amazon
Emission factor CO (kg ton−1 (db)) 111.3 Brazilian Amazon
Emission factor CO2 (kg ton−1 (db)) 1599 Brazilian Amazon

Emission factor NMHC (kg ton−1 (db)) 5.57 Brazilian Amazon
Emission factor PM2.5 (kg ton−1 (db)) 4.84 Brazilian Amazon

Fresh biomass humidity (%) 42 Brazilian Amazon
Combustion efficiency (%) 50 Brazilian Amazon

* db refers to mass of dry biomass burned. NMHC = non-methane hydrocarbon; PM = particulate matter.

3. Results and Discussion
3.1. Fire Hotspots in the Novo Progresso Region

Table 2 reports the statistics about the fire hotspot occurrences inside the deforested
and forest areas in the Novo Progresso region. We found a total of 11,769 fire hotspots in
PY2006–2007, with 9702 located in deforested areas (corresponding to 5230.90 km2) and
2067 in forest areas (corresponding to an area of 31,574.50 km2). In PY2018–2019, the total
fire outbreaks detected from 1 August 2018 to 31 July 2019 was 39,384, from which 37,236
over 8481.80 km2 of deforested area, and 2148 over 28,323.70 km2 of intact forest.

Table 2. Total annual fire hotspots distribution in the Novo Progresso region. Deforested and forest
areas and fire hotspots are reported from PY2006–2007 until PY2018–2019 in the Novo Progresso
region. PY = PRODES year.

PY Forest Area
(km2)

Accumulated
Deforested
Area (km2)

Annual
Deforested
Area (km2)

Fire
Hotspots in

Forest

Fire Hotspots
in Deforested

Area

2006–2007 31,574.5 5230.9 2067 9702
2007–2008 31,153.6 5651.9 421.0 2012 9870
2008–2009 30,543.9 6261.5 609.6 1345 7753
2009–2010 30,406.7 6398.7 137.2 1035 5060
2010–2011 30,281.5 6524.0 125.3 1675 9573
2011–2012 30,096.5 6708.9 184.9 572 3621
2012–2013 29,704.1 7101.3 392.4 4536 36,350
2013–2014 29,437.9 7367.6 266.3 457 10,186
2014–2015 29,200.6 7604.8 237.3 3243 34,817
2015–2016 29,021.9 7783.5 178.7 2085 32,196
2016–2017 28,938.4 7867.1 83.6 1212 19,572
2017–2018 28,655.2 8150.3 283.2 4338 42,723
2018–2019 28,323.7 8481.8 331.5 2148 37,236

Figure 7 shows the variation of total fire outbreaks relative to PY2006–2007 and accu-
mulated deforestation in the Novo Progresso region. From PY2006–2007 to PY2018–2019,
deforested areas increased by 8.8%, with a positive correlation of 0.72 with total detected
fire hotspots for the same area. The variation of hotspots was stable from PY2006–2007 to
PY2011–2012 and increased from PY2012–2013 to PY2018–2019. Deforested areas increased
from 4.0% of the period PY2006–2007 to PY2011–2012 to 4.8% of the period PY2012–2013 to
PY2018–2019. The average of fire outbreaks was 9047 against 33,014 from PY2012–2013 to
PY2018–2019, a three-fold increase.

In this study, deforestation, fire hotspot, and GHG emission data for the period
2007–2019 were analyzed at the levels of municipality, state, and region. In the Novo
Progresso municipality, both deforestation and fire hotspots increased over time, though fire
hotspots’ increase was not so consistent as deforestation over the period considered. Several
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studies indicate that, in tropical forests, deforestation and land management practices by
using fire are strongly linked [4–12]. In the research conducted in Reference [67] in the Novo
Progresso region, more than 70% of fire events detected from MODIS time series for the
period 2000–2014 occurred over deforested areas. The sharp increase of fire hotspots found
in the period from PY2012–2013 to PY2018–2019 may be related to the current Brazilian
Forest Code [19]. This law states that farmers located in the Brazilian Amazon need to
maintain 80% of their land with native vegetation if located in forestlands or 30% if located
in non-forestlands. However, the law amnestied 58% of the required restoration areas
deforested illegally before 2008 [68]. Therefore, the increase in total fire hotspots from 2013
may be associated with the relaxation from the prevailing law.
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Figure 8 exemplifies the dynamics of deforestation occurred in the Novo Progresso
region. The deforestation dynamics over the period under investigation are shown in
yellow. We can see that the deforested area shown in the bottom and right corner in the
PY2012–2013 (area A, Figure 8) was subjected to intense fire activity. The clear-cut process
and fire occurred in the same PRODES year of 2012–2013. A significant number of fire
outbreaks were detected in PY2012–2013, PY2013–2014, and PY2014–2015. Conversely,
fewer hotspots were detected in PY2016–2017 and PY2018–2019, indicating that the area
was almost free of original forest residues after PY2016–2017.

The fire hotspots over recently deforested areas (clear-cut) are man-induced, as a rapid
and cheap means to clear the area (slash-and-burn) that can be observed by comparing
Figure 3B,C. Eventually, the fire set to clean a given deforested area may propagate fire
on a nearby pasture, or on some crop area or even through the understory of a standing
forest, by accident. Fire occurrences inside consolidated occupied areas may suggest land
management, as shown in the large-deforested area in PY2012–2013 (area B, Figure 8). For
this area, the high density of hotspots was detected in PY2015–2016 and decayed in the
following two years. The high concentration of fire outbreaks in deforested areas is caused
by either the combustion of old pre-carbonized trunks that were not burned in the previous
years or due to the burning of pasture, caused by an advance of the fire front from the
deforested area or even land management.

Fire intensity increased sharply thereafter, as it can be seen in PY2017–2018 (area C,
Figure 8). Burning activities were also observed in PY2018–2019, though with less intensity.
The slash-and-burn approach for clearing the forest is even more evident by observing
PY2018–2019 in Figure 8. The strong overlapping of deforestation and fire occurrences,
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shown by the large concentration of hotspots, indicates that the clear-cut took place after
31 July 2018, and the slashed biomass was most likely burnt during the dry season of
the same year (2018). The method seemed different from the previous years since forest
clearing usually takes place in the rainy season, i.e., in the first quarter of PY, and the
fire activity starts in the third quarter of the same year but is reported as PY+1. Such
forest clearing processes, also reported by different researchers [5,6,8,11,12,27], confirm the
cycle depicted in Figure 2. It begins with the extraction of high commercial value trees
(selective logging), followed by the removal of smaller trees and by the clear-cutting of
remaining trees and shrubs, producing deforestation in the middle of the forest. Regarding
the large-scorched trunks, the clearing process may extend for about five to six years until
the remaining logs that were stockpiled had been combusted to completion.
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Figure 8. Deforestation dynamics from PY2011–2012 to PY2018–2019 in a portion of the Novo Progresso region. The figure,
from upper-left to low-right, shows the yearly evolution of hotspots related to deforestation in deforested (blue dots) and
forested (red dots) areas.

The occurrence of fire inside deforested areas can be observed in Figure 9. In PY2006–2007,
the deforested area corresponded to 14.2% of the total Novo Progresso region. For the
considered period, there was a steady increase in deforestation. By PY2018–2019, the defor-
ested area accounted for 23.0%, an increase of 8.8% in land cleaning, which corresponds to



Remote Sens. 2021, 13, 376 11 of 18

an area of 3250 km2. In PY2006–2007, there were 11,769 occurrences of total fire hotspots
in the Novo Progresso region, of which 82.4% were in deforested areas. In PY2018–2019,
the hotspots in deforested area reached 94.5%, an increase of 12.1%. Fire outbreaks in
deforested areas indicate the systematic use of fire as a means for new land clearing and
land management practices.

The highest annual rate of deforestation occurred in PY2008–2009 (609.6 km2) and
the lowest in PY2016–2017 (83.5 km2) (Table 2). After PY2008–2009, a deforestation
peak occurred in PY2012–2013 (392.4 km2), followed by the periods of PY2017–2018 and
PY2018–2019 when deforestation rates rose again. Fire hotspots, though, increased at
higher rates than deforestation, the curve fitting of fire outbreaks indicates a somehow
steady increase of fire occurrences for the studied period. The average number of hotspots
was 7597 from PY2006–2007 to PY2011–2012 and 30,440 from PY2012–2013 to PY2018–2019,
four times higher than the previous period.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 19 

hotspots was 7597 from PY2006–2007 to PY2011–2012 and 30,440 from PY2012–2013 to 
PY2018–2019, four times higher than the previous period. 

Figure 9. Temporal analysis of fire hotspots occurrence in the deforested areas (green) and the rel-
ative increase of deforestation (black) in the Novo Progresso region. 

Figure 10 shows the number of fire hotspots detected inside the forest for PY2018–
2019 as a function of distance from the edge of the deforested area. As can be seen, a sig-
nificant incidence of fire outbreaks occurred in the first 800 m from the margins and ex-
tended up to 1200 m. The same behavior was also observed for the previous years. Other 
researchers had already recognized a more significant frequency of fires within forest 
areas and near the deforested areas [4–6,16,43,44,50]. The behavior of hotspot occurrences 
agrees with the data reported in References [40,44]. The increase of fires around the edges 
of deforested areas enhances the forest degradation along the edges. The decrease in 
forest resilience to fire makes it more susceptible to sustain biomass combustion due to 
the reduction in near-the-edge forest humidity. Periods of severe drought combined with 
an intense slash-and-burn activity favor the outbreaks of fires in standing degraded for-
ests [69]. 

The research carried out by Matricardi et al. [70], during the period 1992 to 2014, 
revealed that forest degradation in the Brazilian Amazon had surpassed deforestation. 
They attributed 40% of the whole Amazon forest was degraded by intensive logging and 
understory fires, and the remaining 60% through edges and isolated forest fragmenta-
tion. 

The influence of slash-and-burn practices near to forest degraded areas is evident, as 
shown by the plots in Figure 11. There is a direct correlation between forest clearing and 
forest degradation due to the use of fire on newly slashed areas. In that sense, forest 
clearing is a direct cause of primary forest degradation, as shown in Figure 8. A close look 
at the plots from PY2017–2018 and PY2018–2019 reveals the intense occurrences of fire in 
forest areas, which was not observed in previous years, thus indicating the damage of a 
healthy ecosystem. For the time span of this study, the number of fire occurrences in 
healthy forest is from 5% to 20% of deforested areas. Then, the degraded area could be 
estimated, to some extent, based on the size of the pixel that characterizes a hotspot.  
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tion (black) in the Novo Progresso region.

Figure 10 shows the number of fire hotspots detected inside the forest for PY2018–2019
as a function of distance from the edge of the deforested area. As can be seen, a significant
incidence of fire outbreaks occurred in the first 800 m from the margins and extended up to
1200 m. The same behavior was also observed for the previous years. Other researchers
had already recognized a more significant frequency of fires within forest areas and near
the deforested areas [4–6,16,43,44,50]. The behavior of hotspot occurrences agrees with the
data reported in References [40,44]. The increase of fires around the edges of deforested
areas enhances the forest degradation along the edges. The decrease in forest resilience
to fire makes it more susceptible to sustain biomass combustion due to the reduction
in near-the-edge forest humidity. Periods of severe drought combined with an intense
slash-and-burn activity favor the outbreaks of fires in standing degraded forests [69].

The research carried out by Matricardi et al. [70], during the period 1992 to 2014,
revealed that forest degradation in the Brazilian Amazon had surpassed deforestation.
They attributed 40% of the whole Amazon forest was degraded by intensive logging and
understory fires, and the remaining 60% through edges and isolated forest fragmentation.

The influence of slash-and-burn practices near to forest degraded areas is evident,
as shown by the plots in Figure 11. There is a direct correlation between forest clearing
and forest degradation due to the use of fire on newly slashed areas. In that sense, forest
clearing is a direct cause of primary forest degradation, as shown in Figure 8. A close look
at the plots from PY2017–2018 and PY2018–2019 reveals the intense occurrences of fire
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in forest areas, which was not observed in previous years, thus indicating the damage of
a healthy ecosystem. For the time span of this study, the number of fire occurrences in
healthy forest is from 5% to 20% of deforested areas. Then, the degraded area could be
estimated, to some extent, based on the size of the pixel that characterizes a hotspot.
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3.2. Fire Hotspots and Deforestation in the Pará State

In recent years, Pará State has faced high deforestation rates in the Brazilian Amazon.
Table 3 shows the total occurrence of annual fire hotspots, the accumulated deforested areas,
and the annual deforested area in this state. A total of 146,863 fire hotspots were detected
in PY2006–2007 and 351,001 fire hotspots in PY2018–2019. In PY2006–2007, there was an
accumulated deforested area equivalent to 9.35%. From PY2006–2007 to PY2018–2019,
the deforested area reached 12.30%, a 2.95% increase in deforestation for the specified
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period and area of 42,350 km2. Fire occurrences, however, increased at a rate higher than
deforestation, which also indicates forest degradation [4–6,29,69,70].

Figure 12 shows the variation of total fire hotspots from PY2007 to PY2019 along with
the accumulated deforestation area in the Pará State. There was a positive correlation of 0.66
between total hotspots and deforested areas. It can be observed that the variation of total
hotspots was stable from PY2006–2007 to PY2011–2012 and increased from PY2012–2013
to PY2018–2019. Similar trends were observed for the smaller area (Figure 9). There is
an expectation that the local and regional deforestation practices also apply for the entire
deforestation arch.

Table 3. Distribution of the total annual fire hotspots, accumulated deforested area (%), and annual
deforested area (km2) in the Pará State, analyzed from July 2007 to December 2019.

PY Total Annual
Fire Hotspots

Accumulated
Deforested Area (%)

Annual Deforested
Area (km2)

2006–2007 146,863 9.35 5526
2007–2008 202,922 9.80 5607
2008–2009 119,234 10.14 4281
2009–2010 113,174 10.44 3770
2010–2011 174,394 10.69 3008
2011–2012 80,401 10.83 1741
2012–2013 372,391 11.01 2346
2013–2014 181,458 11.17 1887
2014–2015 324,024 11.34 2153
2015–2016 560,591 11.58 2992
2016–2017 276,283 11.77 2433
2017–2018 692,498 11.99 2744
2018–2019 351,001 12.30 3862

Source: Fire hotspots from the Forest Fire Program and deforestation from the Monitoring Deforestation of
the Brazilian Amazon Forest by Satellite (PRODES) project produced by the National Institute for Space Re-
search (INPE).
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3.3. Gas and Particulate Emissions

Total gas and particulate emissions as a function of the burned area were calculated
and summarized in Table 4. These data represent the emissions exclusively with the
combustion of biomass from slash-and-burn activities. The efficiency of the first fire was
about 50%. It did not include small fires that may take place in the degraded standing forest,
pasture, or crop remaining over the bare soil. Also, the emissions are solely from the first
fire of the newly slashed area. Over the years, after the initial large fire, stockpiled scorched
biomass, i.e., the remaining 50%, is subjected to successive burns, ultimately approaching
100% combustion efficiency for that newly deforested area. Total CO2 emissions accounted
for the methane that is converted into an equivalent amount of CO2, considering its relative
radiative forcing, plus the emissions of the CO2 itself, as shown in Figure 6.

Table 4. Gas emission estimates as for PY2019 slash-and-burn activities in the Brazilian Amazon.

Parameter (Units) Novo Progresso
Region Pará State Brazilian Amazon

Deforested area (ha) 33.15 × 103 446.30 × 103 1.09 × 106

Fresh biomass (Mton ha−1) 5.12 × 10−4 5.70 × 10−4 5.80 × 10−4

Total Biomass (Mton) 16.97 254.2 632.4

CH4 emitted (Mton) 0.047 0.67 1.7

CO2 emitted (Mton) 7.86 109.2 293.3

Total CO2 (Mton) 8.81 132.1 328.7

CO emitted (Mton) 0.55 8.3 20.41

NMHC emitted (Mton) 0.027 0.41 1.02

PM2.5 emitted (Mton) 0.024 0.36 0.89
NMHC = non-methane hydrocarbon; PM = particulate matter.

A small region such as Novo Progresso emitted about 8.81 Mton of CO2 over 331 km2

of land approximately for the year PY2018–2019. For comparison, the carbon emission of
Abruzzo region (Italy), with 1.30 million inhabitants, was 11.1 Mton for the year 2006 [71].
These data are even more alarming when we consider the emissions after deforestation
practices in the Pará State, and the Brazilian Amazon, accounting for 132.1 and 328.7 Mton
of CO2 released to the atmosphere respectively, in the PY2018–2019. Other emissions are
also of great concern in local and regional scales, notably, particulates of diameter less
than 2.5 mm. Local, regional, and total emissions were about 0.027, 0.41, and 0.89 Mton,
respectively. The same applies to CO emissions, accounting for 0.55, 8.3, and 20.41 Mton in
Novo Progresso, Pará State, and Brazilian Amazon, respectively.

After the year 2000, high deforestation rates were observed in the period of 2002 to
2004, with an average of 24,939 km2. In this time span, the lowest deforestation occurred in
2012, equivalent to 4561 km2 following the voluntary REDD+ project’s starting year [17].
Applying the same emission factors and other relevant data from Table 1, the total CO2
emissions for the period 2002–2004 and in 2012 were 752.3 Mton and 137.6 Mton on
average, respectively. The CO2 emissions from 2019 are, therefore, 2.38 times higher than
the minimum (2012) and 2.29 times smaller than the maximum (2002–2004). Emissions were
estimated based on the deforested area. The results were not corrected for a possible offset
from forest regrowth. According to Smith et al. [72], the yearly increase in secondary forest
extent in the Brazilian Amazon was about 8.61% ± 10.96%, offsetting GHG emissions from
newly slash-and-burned areas by 10.29% ± 6.8%. Taking this scenario into consideration,
the net emissions from fires, for the year 2019, was 295 Mton of CO2 for the Brazilian
Amazon, which is 16.4% of the whole emissions from Brazil [73], that consumes about 50%
of the recently slashed biomass.
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In Brazil, the total CO2 emissions related to deforestation practices of newly slashed
areas in the Brazilian Amazon are higher than those from transport, electricity and heat,
manufacturing, industry, buildings, aviation, and shipping sectors of the Brazilian econ-
omy. The emissions from deforestation of the Amazon rainforest in Brazil is next to the
agricultural sector.

A rough estimate of burned biomass on wide areas can be carried out using geostation-
ary satellite sensor data starting from the computation of the fire radiative power, which
is the power radiated by the fire. By integrating this quantity over time, it is possible to
estimate the radiative fire energy and the burned biomass, and then the emissions in the
atmosphere if the coefficients providing the burning efficiency of vegetation affected by
the fire are available [74]. This will be the subject of a forthcoming paper.

4. Conclusions

This work showed a strong correlation between the occurrence of fire in the newly
deforested area in the municipality of Novo Progresso following the local slash-and-burn
practices. The same trends were also observed for the Pará State, suggesting a common
practice along with the deforestation arch. The study indicated positive correlations of
0.72 and 0.66 between deforestation and fire occurrences in local and regional scales,
respectively. The use of fire as a rapid means for forest clearing was evident for the
PY2018–2019, which showed a strong overlapping of slash-and-burn activities in a brief
period. Many fire occurrences inside the forest in the near recent deforested areas result
in ecosystem degradation, turning it more prone to future fire events. The area of old-
growth forest, negatively influenced by nearby slash-and-burn practices, is a fraction of
the deforested area, thus enlarging forest degradation. The occurrences of hotspots in the
healthy forest are from 5% to 20% of newly deforested areas. This is a strong indication
of the primary cause of forest degradation due to slash-and-burn practices. The steady
increase in deforestation after the PY2011–2012 is a worldwide concern because of the
loss of intact forest and the massive greenhouse gases emissions, from the slash-and-burn
practices, accounting for about 295 million tons of CO2 for the PY2018–2019 alone.
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6. Conclusions 

 

The main conclusions from this research are summarized as follow: 

 

1) The X-band SAR technology proved to be useful in identifying deforested 

areas during the rainy season in the Brazilian Amazon;  

2)  The C-band Sentinel-1 data were not able to unequivocally map areas of 

deforestation using single images. In this case, it is recommended to consider 

time series and Sentinel-1 data to improve the feasibility of deforestation 

detection; 

3) The NDVI and the NDMI were able to differentiate moderate to dense 

vegetation with high moisture from sparse vegetation with low moisture; 

4) The LST from forested and deforested areas was able to differentiate regrowth 

from dense vegetation; 

5) In the municipality of Novo Progresso, we observed a positive correlation (R2 

= 0.72) between fire occurrences and the newly deforested areas following the 

slash-and burn practices. The same trends were also observed for the Pará 

State (R2 = 0.66), suggesting a common practice along with the arch of 

deforestation; 

6) The clear-cutting deforestation process may extend for about two to five years 

until the remaining logs that were stockpiled had been combusted to 

completion; 

7) The occurrences of fire hotspots in the primary forest are from 5% to 20% of 

newly deforested areas. This is a strong indication of the primary cause of 

forest degradation due to slash-and-burn practices; 

8) The steady increase in deforestation after the PY2011–2012 is probably linked 

to the Federal Law n. 12.727/2012 that relaxed the forest conservation;  

9) In the PY2018–2019, the CO2 released to the atmosphere after the 

deforestation practices in the Pará State and in the Brazilian Amazon 

accounted for 132.1 Mton and 328.7 Mton, respectively;  

10)  The net CO2 emissions from fires in 2019 was 295 Mton in the Brazilian 

Amazon, which is 16% of the whole emissions from Brazil, that consumes 

about 50% of the recently slashed biomass; 
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11) The statistical parameters related to the time series of C-band Sentinel-1 

backscatter coefficients was able to detect deforestation in the first 3-4 months 

of deforestation occurrence; 

12) Immediately after deforestation, the mean C-band backscatter signals 

decreased approximately 2.0 dB for VV polarization and 2.3 dB for VH 

polarization; 

13) The neural network methodology was able to map deforestation areas of about 

2 ha or higher automatically; 

14)  The MLP network was able to identify deforestation within a short time frame 

with a low computer processing and time demand; 

15) The mean backscattering coefficients and their corresponding standard 

deviation and maximum-minimum differences used as input parameters in the 

neural network image processing were able to classify forested and deforested 

areas with accuracy and F1 score of 99%; 

16) Automatic detection of deforestation based on SAR images from 2018 reached 

accuracy and F1 score of 89% with the MapBiomas project ground truth and 

accuracy and F1 score of 81% and 79%, respectively, with the PRODES 

ground truth; 

17) The proposed methods may be suitable for assisting the Brazilian 

environmental law enforcement agencies in combating illegal deforestation. 
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