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Abstract—Vehicle classification is a hot computer vision topic,
with studies ranging from ground-view to top-view imagery.
Top-view images allow understanding city patterns, traffic man-
agement, among others. However, there are some difficulties for
pixel-wise classification: most vehicle classification studies use
object detection methods, and most publicly available datasets
are designed for this task, creating instance segmentation datasets
is laborious, and traditional instance segmentation methods
underperform on this task since the objects are small. Thus, the
present research objectives are as follows: first, propose a novel
semisupervised iterative learning approach using the geographic
information system software, second, propose a box-free instance
segmentation approach, and third, provide a city-scale vehicle
dataset. The iterative learning procedure considered the following:
first, labeling a few vehicles from the entire scene, second, choosing
training samples near those areas, third, training the deep learning
model (U-net with efficient-net-B7 backbone), fourth, classifying
the whole scene, fifth, converting the predictions into shapefile,
sixth, correcting areas with wrong predictions, seventh, includ-
ing them in the training data, eighth repeating until results are
satisfactory. We considered vehicle interior and borders to separate
instances using a semantic segmentation model. When removing
the borders, the vehicle interior becomes isolated, allowing for
unique object identification. Our procedure is very efficient and
accurate for generating data iteratively, which resulted in 122 567
mapped vehicles. Metrics-wise, our method presented higher in-
tersection over union when compared to box-based methods (82 %
against 72 %), and per-object metrics surpassed 90% for precision
and recall.

Index Terms—Aerial image, anchor-free, deep learning (DL),
instance segmentation.
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1. INTRODUCTION

SUALLY, the city’s infrastructure was not designed to ab-
U sorb population growth and road traffic, which has reached
high congestion levels in many urban centers worldwide. The
accentuated growth in the number of vehicles makes monitoring
and managing urban traffic highly complex and necessary. In this
context, automatic vehicle detection based on remote sensing
images is a powerful tool for various applications, such as traf-
fic monitoring, air pollution, congestion studies, public safety,
parking utilization, disaster management, and rescue missions.
Periodic image acquisition provides information on the number
and location of vehicles in different urban environments, allow-
ing coverage of large areas and proper monitoring of moving
targets.

Vehicle detection is a widely studied topic in the computer
vision community, containing several studies with ground-view
and aerial-view images. These two approaches present marked
differences in vehicle representation, in which ground images
emphasize the vehicle faces, while the top view of the vehicle
acquires straight shapes [1], [2]. Another significant difference
is that the vehicle’s spatial resolution in aerial images is signifi-
cantly lower than in terrestrial images. In-ground view images,
several literature reviews address advanced driver assistance
systems for autonomous vehicles using image processing and
vehicle detection from various onboard handling sensors, such
as radar, monocular camera, and camera binocular [3]-[5]. In
addition, several studies use images from surveillance cameras
on roads [6], on top of buildings [7], pedestrian bridges [8],
among others.

Despite the broad applicability of ground images and videos,
vehicle detection from high-resolution aerial and satellite images
allows for a synoptic understanding of city patterns, guiding
crucial public policies, such as urban planning and traffic man-
agement. Vehicle detection using aerial view imagery includes
different strategies and sensors, such as unmanned aerial vehi-
cles (UAV), airplanes, or orbital platforms, which provide data
at different heights and resolutions.

Even though skilled professionals may easily distinguish
vehicles from different urban features, the rapid and automatic
classification is a challenging task since the vehicles:
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Fig. 1.

1) are small objects;

2) present high variability in shape, color, and size;

3) appear in different background settings;

4) present different brightness and contrasts among the city;

5) may be crowded (e.g., parking lots);

6) may be occluded by other objects, such as trees and

buildings; and

7) have many look-alikes in the city.

Fig. 1 shows six examples of difficult areas to identify the
vehicles, where (a) and (b) present shadows, (c) and (d) show
a large concentration of vehicles, (e) presents look-alikes (the
tombs are very similar to cars when seen from this angle), and
(f) presents occluded cars by the building roof.

Currently, the deep learning (DL) methods represent state-
of-the-art vehicle detection, surpassing traditional algorithms.
These advances are strongly related to convolutional neural
networks (CNN), which apply kernels along with the image,
obtaining low, middle, and high-level features, enhancing the
classification results. Vehicle detection using DL may present
different approaches, such as object detection [9], semantic
segmentation [10], and instance segmentation [11]. In object
detection, the DL outputs bounding boxes around the car. In-
stance segmentation generates bounding boxes and a segmen-
tation mask, and semantic segmentation outputs a class-aware
segmentation mask.

Most studies on vehicles address object detection that fo-
cuses on the delineation of the targets’ bounding box, while
instance segmentation, which aims at mapping each object at the
pixel level, is still little explored. A challenge in the individual
segmentation of vehicles is the lower performance for small

Six examples ((a), (b), (¢), (d), (e), and (f)) of difficult regions to classify cars in the urban setting.

objects that, when they are very close, coalesce into a sin-
gle group [12], [13]. Furthermore, deep instance segmentation
methods require a large amount of data, especially considering
small object detection. Therefore, training requires a much
more complex annotation (since it requires the polygons from
each object), containing all possible variations and apparition
locations to not depend on a given scenario. The common
objects in context (COCO) [14] dataset defined small objects
with less than 322 pixels and results considering the small
objects are nearly half of the performance on medium and large
objects.

More recently, artificial intelligence has an upcoming trend
that aims to enhance results and practical solutions by using a
data-centric rather than a model-centric approach. The central
concept behind this is that the model performance is already very
high and that enhancing the data would bring better benefits. One
pillar of the model-centric approach is the selection of more
informative samples within the dataset. In this context, active
learning is a promising methodology to obtain quality labeled
data sequentially. In remote sensing, images often present vast
dimensions, and the integration of commonly used GIS software
may be an excellent ally for active learning in object detection,
since:

1) we may see the entire data at once;

2) itis very straightforward to manipulate and correct poly-

gon data;

3) we may use other facilities, such as polygon shapefiles to

choose where to gather the data.

The present research aims to advance in three fields (data
generation through iterative learning, DL method, and dataset).
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1) Iterative learning procedure for data generation: A novel
proposition for integration of DL with commonly used
GIS software by iteratively correcting erroneous areas,
being less time-consuming and laborious.

2) Bounding box-free instance segmentation: A novel in-
stance segmentation method that uses object interiors and
contours to isolate them and output separate instances.

3) BSB vehicle dataset: A city-scale dataset with polygons
shapefiles.

II. RELATED WORKS

Different strategies have been developed and described for
vehicle detection through aerial and orbital images in the last two
decades. In this trajectory, the following two main approaches
stand out [15]-[17]: a) methods based on superficial learning
and b) DL-based methods.

A. Early Vehicle Detection Studies Using a
Shallow-Learning-Based Approach

Considering vehicle detection approaches based on super-
ficial learning, Hinz [18] proposed a generic subdivision into
explicit and implicit models. The explicit model describes a
vehicle in 2-D or 3-D (representation of a box or wire-frame
structure), considering the car detection from a “top-down” or
“bottom-up” model. The implicit model considers the collection
of multiple features of a region of the image and their statistics
gathered in vectors followed by a classification process (single
classifier, combination of classifiers, or hierarchical model). In
the present analysis, we considered the following groups of algo-
rithms: 1) pixel-wise classification and segmentation (including
threshold segmentation method, segmentation based on pixel
clustering, segmentation based on edge detection and region
growth method, segmentation based on inter-frame difference
or background difference); 2) object-based classification; object
detection (obtaining the bounding box without vehicle segmen-
tation) from multiple features and machine learning within a
sliding window approach.

The threshold segmentation method was widely used in differ-
ent pre-processed images to highlight vehicles, such as principal
component analysis, Bayesian background transformation, and
gradient-based method [19]; Morphological grayscale method
and background difference (vehicle enhancement by subtrac-
tion between the original image and the road background im-
age) [20]. Cheng et al. [21] perform pixel-wise classification for
vehicle detection using dynamic Bayesian networks (DBNs),
considering features that comprise pixel-level information and
the relationship between neighboring pixels in a region (location
analysis of features and color attributes).

Object-based methods use image segmentation to split an
image into separated regions and classify them instead of pix-
els [22]. Different vehicle detection surveys use object-oriented
image classification, considering the following:

1) eCognition classification [23];

2) segmentation using Otsu Threshold, feature extraction

(geometric-shape properties, gray level features, and Hu
moments), and statistical classifier [24];
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3) superpixel-based image segmentation, HOG features, and
support vector machines (SVM) [25].

Vehicle detection methods have increased significantly by
combining more robust descriptor extraction procedures with
machine learning methods for object detection (see Table I).
Therefore, vehicle detection uses an image scan through a pre-
trained classifier. Among the methods of extraction and selection
of features, the most used were: Haar-like features, histogram of
oriented gradient (HoG), histogram of Gabor coefficient (HGC),
and local binary patterns (LBP), local steering kernel (LSK),
bag-of-words (BoW), and scale invariant feature transform
(SIFT). Several studies have improved the description of cars
by combining different resource extraction methods. The most
used machine learning methods were the SVM and Adaptive
Boosting (AdaBoost) in the classification step. However, the
literature also describes the use of other methods to compare
and improve detection accuracy and efficiency, such as k-nearest
neighbor (k-NN), decision trees (DT), random forests (RF),
DBN, partial least squares (PLS). Some associations between
feature extraction methods and classifiers had more significant
propagation for detecting vehicles, such as HoG + SVM [26]
and Haar-like + AdaBoost called Viola—Jones [27]. However,
the shallow-learning-based methods do not sufficiently describe
and generalize vehicle detection in complex backgrounds. Some
studies to minimize errors have restricted vehicle detection to
certain circumstances: 1) only along roads, considering the
use of masks from a buffer area [20], [28]-[31]; 2) exclu-
sion of objects elevated above a certain height from the DEM
(e.g., buildings and vegetation) [32]; and correlation of cars
in consecutive frames [33]. Also, most of these methods are
sensitive to the in-plane rotation of objects (detecting only
in a specific orientation) and to changes in lighting such as
Viola—Jones.

In the transition from traditional to DL methods, some studies
use deep architecture only to extract highly descriptive features
combined with a machine learning classifier. In this approach,
the following propositions stand out: deep Boltzmann machines
(DBMs) and weakly supervised learning [34], multilayer deep
resource generation model using DBMs and multiscale hough
forest model [35], [36], CNN and Exemplar-SVMs [37], and
CNN and SVM [38].

B. DL-Based Vehicle Detection

A significant milestone in CNN’s dominance in computer
vision was its success in the ImageNet large scale visual recogni-
tion challenge in 2012 [53]. DL-based vehicle detection studies
have intensified in the following years, with an annual increase
making it the dominant method today. DL architecture networks
perform better than shallow learning-based methods due to the
following reasons [54]:

1) operates both for feature extraction and classification;

2) CNN improves automatic feature generation with the
ability to learn local characteristics of different orders,
inherently exploiting spatial dependence;

3) less time-consuming.
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TABLE I
STUDIES DEVELOPED FOR THE DETECTION OF CARS USING DIFFERENT FEATURE EXTRACTION APPROACHES (SHALLOW-LEARNING-BASED FEATURES) AND
CLASSIFICATION, IN WHICH THE FEATURE EXTRACTION METHODS DESCRIBED ARE: COLOR PROBABILITY MAPS (CPM), HAAR-LIKE FEATURES (HLF),
HISTOGRAM OF GABOR COEFFICIENTS (HGC), HISTOGRAM OF ORIENTED GRADIENTS (HOG), LOCAL BINARY PATTERNS (LBP), LOCAL STEERING KERNEL
(LSK), LOCAL TERNARY PATTERN (LTP), OPPONENT HISTOGRAM (OH), SCALE INVARIANT FEATURE TRANSFORM (SIFT), AND
INTEGRAL CHANNEL FEATURES (ICFS)

Article  Features Classifier Image
[39] HoG, HIf, LBP AdaBoost aerial
[31] HoG, HIf, LBP AdaBoost aerial
[40] LBP, HoG, and HIf AdaBoost aerial
[33] HoG SVM UAV
[41] HoG and HGH k-NN, SVM, DT, and RF aerial
[42] HoG, CPM, and pairs of pixel comparisons PLS aerial
[43] HoG and HIf AdaBoost and SVM WAMI
[44] HoG, LBP, and OH SVM aerial
[32] HoG AdaBoost aerial
[28] SIFT SVM UAV
[29] HoG SVM UAV
[30] HIf AdaBoost and SVM aerial
[45] ICFs + HoG AdaBoost UAV and GE
[46] HoG SVM and Causal MRF UAV
[47] HOG, LBP, and LTP SVM, DPM, template matching, and Hough Forest  aerial
[48] HoG and HIf SVM and AdaBoost UAV
[49] SIFT Multi-Instance Learning satellite
[50] HIf + Road Orientation Adjustment AdaBoost UAV
[51] LSK + bag-of-words (BoW) SVM UAV and satellite
[52] LSK + vector of locally aggregated descriptors (VLAD)  Directed-Acyclic-Graph SVM aerial

The classification methods are AdaBoost, DT, deformable part model (DPM), DBN, k-NN, PLS, RF, and SVM. The images used in this article are UAV, google earth (GE),

and wide area motion imagery (WAMI).

Different DL approaches have been applied in vehicle de-
tection, such as object detection, semantic segmentation, and
instance segmentation.

1) Object Detection: Vehicle studies using object detection
are dominant due to fast target detection, improving real-time
monitoring efficiency. However, these methods do not allow a
precise mapping of their contours obtained with semantic and
instance segmentation. Table II presents the main studies of
vehicles using object detection methods. A subdivision of the
object detection algorithms is two-stage object detection and
one-stage object detection.

Two-step methods first generate several bounding boxes
around potential objects called region proposals, and then a
classifier determines the object’s presence. The classification
for each potential object slows down the process, focusing on
detection accuracy. As examples of two-stage object detection
algorithms highlight regions with CNN features (R-CNN) [55],
its variants fast R-CNN [56], faster R-CNN [57], and mask
R-CNN [58].

One-stage object detection processes images through a single
neural network, detecting, and classifying multiple objects
simultaneously and ensuring speed. These methods focus on
the detection speed but have limitations to detecting crowded
groups of small objects. Among these algorithms, you only
look once (YOLO) [59], you only look twice (YOLT) [60],
and single-shot multibox detector (SSD) [61] are the most
prevalent.

2) Semantic and Instance Segmentation: Vehicle studies
with semantic and instance segmentation present less quan-
tity than those developed with object detection methods.

Tayara et al. [13] performed a fully convolutional regression
network, whose training stage uses the input image and ground
truth data that describes each vehicle as a 2-D Gaussian function
distribution. Therefore, the vehicle’s original format acquires a
simplified elliptical shape in the ground truth and output images.
The vehicle segmentation uses a threshold value in the predicted
density map, generating a binary mask. Although the method
avoids grouping cars and favors counting, vehicles take on a
different form described by the Gaussian function, which has a
low precision at the pixel level. In contrast, Mou and Zhu [12]
sought an instance segmentation of vehicles with pixel-level
accuracy, where cars appear well delimited in a distinct physical
instance. In this context, a severe problem is the differentiation
of vehicles in contact that agglutinated in a single instance.
The solution proposed by the authors was to establish an ar-
chitecture that subdivided the central vehicle regions and their
limits instead of treating the vehicle problem as a single unit.
Reksten and Salberg [89] recently used the mask R-CNN with
an image normalization strategy to suit different environments
and an accurate road mask to filter driving vehicles from those
parked.

Other studies combine a prior segmentation followed by vehi-
cle detection. Audebert et al. [90] used the DL-based segment-
before-detect method containing the following three steps:

1) semantic segmentation using a fully convolutional net-
work to infer pixel-level class masks;
vehicle detection by regressing the bounding boxes of
connected components;
object-level classification using CNN
(LeNet, AlexNet, and VGG-16).

2)

3) architectures
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TABLE II
RELATED WORKS USING OBJECT DETECTION ALGORITHMS, CONSIDERING THE METHOD AND DATA TYPE

Paper  Method

)
&
-
&

[62] Hybrid Deep Convolutional Neural Network (HDNN)

[63] Two step detection: BING to extract region proposals and feature extraction for classification with CNN
[64] Two CNNs: AVPN to predict bounding boxes of the targets, and VALN for inferring type and orientation.
[65] An improved vehicle detection method based on Faster R-CNN.

[50] Vehicle detection using the Faster R-CNN

[66] Method based on Cascaded Convolutional Neural Networks
[67] Hard Example Mining (HEM) to the Stochastic Gradient Descent training of a CNN classifier.

[68] Real-Time Ground Vehicle Detection based on CNN.

[69] Development of the Deep Vehicle Counting Framework based on Enhanced-SSD

[70] Comparison between YOLOV3 (best model) and Faster R-CNN

[71] Detection model based on two CNNs that adopt the VGG-16 model

[72] EOVNet (Earth observation image-based vehicle detection network), a modified Faster R-CNN.
[1] Improved Faster R-CNN with Multiscale Feature Fusion and Homography Augmentation

[73] R3-Net a deep network for multi-oriented vehicle detection

[74] Detection algorithm based on Faster R-CNN

[75] Systematic investigation of the Fast R-CNN and Faster R-CNN in vehicle detection

[5] YOLOV3, vehicle tracking using deep appearance features, and Kalman filtering for motion estimation
[7] Model based on multi-task cost-sensitive-convolutional neural network (MTCS-CNN)

[76] Novel double focal loss convolutional neural network (DFLCNN)

[77] Improved YOLOV3 using a sloping bounding box attached to the angle of the target vehicles

[78] Orientation-aware feature fusion single-stage detection (OAFF-SSD)

[15] Detection model for different scales using CNN and proposition of an Outlier-Aware Non-Maximum Suppression.
[79] Comparison among faster R-CNN, R-FCN, and SSD (Best model)
[80] Optimized DL model considering feature extraction, object detection, and non-maximum suppression.

[81] Small-Sized Vehicle Detection Network (AVDNet) (one-stage vehicle detection network)
[82] Comparison among four object detection networks: D-YOLO (best model), YOLOV2, YOLOV3, and YOLT

[83] Vehicle detection based on RetinaNet architecture

[84] Model based on Alexnet network (classification) and Faster R-CNN (target detection)

[85] Faster R-CNN with a improved feature-balanced pyramid network (FBPN)

[86] Comparison among YOLOv3, YOLOv4 (best models), and Faster R-CNN

[871 Super-resolution cyclic GAN with RFA and YOLO as the detection network (SRCGAN-RFA-YOLO)
[88] Modified YOLOv3 and fcNN using 3D features in cascade.

[16] Method using the lightweight feature extraction network with the Faster R-CNN

[17] Orientation-Aware Vehicle Detection with an Anchor-Free Object Detection approach

D= W= = = WW WA WRNRDNT DN WEREWINWWND— W
[\

NS}

The data types are separated into seven categories: 1) satellite, 2) aerial, 3) UAV, (4) ultrahigh-resolution UAV, 5) google earth (GE), 6) cameras at the top of the
building, and (7) several. Acronyms for the methods: residual feature aggregation (RFA), generative adversarial network (GAN), and YOLO.

Yu et al. [91] developed a convolutional capsule network with
the following steps:
1) superpixel segmented;
2) labeling patches into vehicles or background using
convolutional capsule network;
3) nonmaximum suppression to
detections.
Tao et al. [92] performed a scene classification with DL
followed by different vehicle detectors and postprocessing rules
according to the scene context.

eliminate repetitive

III. MATERIAL AND METHODS
A. Study Area and Image Acquisition

The entire city of Brasilia was the study area (see Fig. 2). Large
regions with many mapped look-alike features and different sce-
narios favor learning DL models. The image has 57 856 x42 496
spatial dimensions, and 0.24-m resolution obtained by the In-
fraestrutura de Dados Espaciais do Distrito Federal (IDE/DF).!
In this scenario, a car has approximately 20 (Iength) x 10 (width)
pixel dimensions.

![Online]. Available: https:/www.geoportal.seduh.df.gov.br/geoportal/, ac-
cessed on January 8, 2022.

B. Semisupervised Iterative Learning

Manually identifying all the cars in a city is very time-
consuming. So, the solution is to seek alternatives to automate
the generation of datasets correctly. For example, if a very
good annotator took five seconds to label a single car, it would
take over 200 h to label 150 000 vehicles. Thus, we proposed
a novel semisupervised approach using the geographic infor-
mation system (GIS) data to increase operability (see Fig. 3).
Briefly, the method consists in labeling a portion of the image
for training the model and then using the model to classify
the entire 57 856 x42 496-pixel image. Then, we converted the
predictions into the shapefile format easily edited in ArcMap,
corrected the areas that present the most errors, and included
them in the training data.

The proposed procedure to increase the training database
reconciles incremental and cumulative learning, selecting sam-
ples that improve the model performance. An effective database
expansion design aims to achieve greater incremental accuracy
in subsequent predictions. The procedure is cumulative, using
the entire set of labeled samples present in each step. Thus,
the segmentation model increases its performance until the
accuracy values do not vary significantly, i.e., the decrease in
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Fig. 2. Study area.

the incremental accuracy is due to the depletion of informative
data.

1) Ground Truth: The manual annotations and corrections
used the ArcMap software, considering a polygon shapefile
for each vehicle since it is much easier to manipulate when
compared to raster (mask) data. We applied a 1-pixel buffer
(0.24 m in the corresponding image) with negative distance
to generate the borders inside the polygon features. The first
training procedure used training samples made from scratch.
Subsequent iterations used the DL predictions as the primary
raw data, with corrections for the areas with the most errors.
The number of verified and corrected areas increases after
each iteration using the semisupervised approach, increasing the
dataset.

2) DL Sample Generator Software: The capture of DL sam-
ples must be in strategic areas. The present research proposed a
novel method for selecting samples using the Point shapefile.
This procedure allows choosing critical points where wrong
predictions become part of new training after correction, quickly
improving the model’s detection capacity with much less la-
borious work. The developed DL sample generator from point
shapefiles became a module in the Abilius Software program
that receives the following three inputs:

1) the original image;

2) the ground truth image;

3) the point shapefiles.

The program requires inputs in the same projection, and
the user may choose the size of the image tiles generated.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022
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The software uses the point shapefile to center the image tiles
and crops the image and its corresponding ground truth im-
age. Besides, this software outputs the annotations for instance
segmentation, considering the COCO annotation format [14],
which is compatible with region CNN methods [93], such as the
mask-RCNN [58] and similar methods. Using point shapefiles
also enables the user to generate samples close to each other, a
powerful augmentation technique.

3) DL Approach: Usually, region-based instance segmenta-
tion underperforms on small objects, and semantic segmentation
does not present distinct classification for different instances,
unable to differentiate adjacent vehicles. The conversion of a
conventional semantic segmentation model to a polygon shape-
file with touching vehicles [see Fig. 4(a)] acquires a single
polygon. Semantic segmentation models are the most used
among the remote sensing community, mainly because of the
good per-pixel results and simplicity of models and annotation
formats. Thus, to solve this problem, we adopted a similar
solution proposed by Mou and Zhu [12]. Instead of multitasking
learning, we adopted a multiclass learning procedure in which
the contour class competes against the vehicle class.

The model output subdivides the vehicle into two parts (edge
and interior) [see Fig. 4(b)]. Deleting the edges isolates the
individual vehicles, and all previously touching cars will be at
least 2 pixels apart from each other. The next step is to develop
a function to attribute a different value to each vehicle. This
proposed method generates a list with all contours, using the
OpenCV function (findContours) [94], and iteratively convert
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Manually label vehicles from
scratch

v

Insert a point shapefile close to
the annotated objects

v

Generate DL samples using
the point shapefile as
reference

Manually correct

L errors

Train and classify entire image

¢ Selection of bad
areas

Convert Raster to Polygon

«

If results are
good

~

Make final edits and stop

If results are
bad

Fig. 3. Proposed semisupervised pipeline.

the contours to a mask attributing different values from 1 to N,
being N the total number of distinct vehicles [see Fig. 4(c)].
Aiming to optimize computational resources, we adapted the
polygon2mask function from the scikit-image package [95] that
generates an array with zeros every time it is called, which is
costly due to the enormous image dimensions. Thus, we only
create an array with zeros once. In each iteration, we attribute
different values to the generated mask (one object at a time),
guaranteeing distinct values for each vehicle.

Now, the predictions are distinct for each object. However,
since the objects are small, a 1-pixel error at the edges is
considerable and not as precise. The edge restoration uses the
instance array as the input. The first step is to apply 1-pixel
padding in the entire image. Then, we make the following eight
copies of the original array dislocated in different directions: 1)
up, 2) down, 3) left, 4) right, 5) up-right, 6) up-left, 7) down-right,
and 8) down-left. Then, we sum all arrays considering only
pixels with zero value and remove the initial padding (recovering
the image’s original shape). This procedure enlarges the object
edges, independent of the object orientation, resulting in the

3409

same semantic information [see Fig. 4(a)], but with different
instances for each object [see Fig. 4(d)].

Despite the variety of semantic segmentation models, this
study used a single combination throughout the iterative learning
process since the primary goal is not to develop a new DL
architecture but to make an efficient procedure for large areas
per-pixel vehicle detection separating different instances. The
configuration used the semantic segmentation models reposi-
tory [96] and considered the U-net architecture [97] with the
Efficient-net-B7 backbone [98]. Nevertheless, to present a more
robust comparison, we evaluated the DeepLabv3+[99], pyramid
scene parsing network (PSPNet) [100], feature pyramid network
(FPN) [101], and LinkNet [102] on final generated dataset, all
of which using the Efficient-net-B7 backbone.

The hyperparameters were the same for all training iterations:

1) 300 epochs;

2) adam optimizer;

3) batch size of five.

Besides, the method considered the cross-entropy loss func-
tion with weights (0.1 for background, 0.6 for vehicles, 0.3 for
the contour) and 15% of the images as validation, saving the
model with the lowest cross-entropy loss. The dataset expansion
used two augmentation strategies: the random horizontal and
vertical flip, both with probabilities of 50%.

Moreover, we compared the proposed method with the mask-
RCNN model [58] to evaluate the differences between a box-
free method (ours) and a box-based method. In this context, the
Detectron2 software is open source [103], being one of the most
widely used in instance segmentation. It is important to state
that there are limitations in comparing box-free and box-based
methods because:

1) the hyperparameters are different;

2) the models are different (both architectures and back-

bones); and

3) the data format is different (e.g., instance segmentation

models require data in the COCO annotation format).

The proposed annotation tool simultaneously provides se-
mantic segmentation ground truth and COCO annotations for
compatibility with box-based methods.

Three backbone configurations were tested (ResNeXt-
101 [104], ResNet-101 [105], and ResNet-50), all of which
presents pretrained weights, which speeds the training pro-
cess. For box-based methods, a very substantial augmentation
includes scaling the image dimensions, which increases the
number of pixels for the object class, increasing results. In this
regard, we considered two scenarios. The first considered the
original image dimensions (256 x256), and the second scenario
scales the image to 1024 x 1024-pixel dimension. This augmen-
tation strategy is much harder for semantic segmentation models
(using our computer configurations, requiring a more robust
GPU) since the computational cost would increase substantially,
running out of memory. In contrast, the instance segmentation
models allow this strategy since the segmentation masks are
performed only for the proposed boxes. Despite the differences,
the comparison is valid to understand if our proposed method is
better at pixel-level accuracy, even using augmentations for the
box-based instance segmentation methods that are not valid for
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Theoretical outputs from semantic segmentation algorithms, in which (a) is a normal semantic segmentation strategy, (b) is segmentation with boundaries,

(c) is instance segmentation by removing the boundaries, and (d) is our proposed solution to restore the correct size maintaining distinct predictions. (a) Semantic
prediction. (b) Semantic prediction with boundaries. (c) Instance predictions by removing boundaries. (d) Our proposal: restore the original size maintaining distinct

predictions.

our proposed method. In both cases, we used random horizontal
and vertical flips. The training used 10 000 iterations, two images
per batch, and the other parameters as default.

4) Large Image Classification: The dimensions of the train-
ing images are 256 X256, which is smaller than the entire image.
Thus, we considered a sliding window approach with a 128-pixel
stride to classify the whole image. The stride size smaller than
the image dimensions results in overlapping pixels. A traditional
way is to take the mean average among the overlapping pixels.
Moreover, this approach reduces errors at the borders of the
frames, exemplified in recent works [106]-[108]. A drawback of
using this method is the computational cost. The time to classify
an image increases nonlinear when reducing the stride value.
Since our image presents large dimensions, we did not consider
smaller stride values.

C. Model Evaluation

The model evaluation considered a test set of 50 images with
256 x256-pixel dimensions (same as dimensions for training and
validation), and three independent testing areas (see Fig. 5),
considering different difficulty scenarios. The first considered
areas with no occlusion and significant difficulties for the cars
[see Fig. 5(a)], with 2560x2560-pixel dimensions. The second
scenario is a parking lot with many crowded vehicles [see
Fig. 5(b)] with 2304 x2304-pixel dimensions. The third scenario

cover residential areas with a building generating shadow and
regions of occlusion [see Fig. 5(c)] with 1560x 1560-pixel di-
mensions. The semantic segmentation of the entire test area used
a sliding window with 128-pixel steps. Meanwhile, the instance
segmentation (mask-RCNN) of the testing areas used the mosaic
method developed by Carvalho et al. [109].

In supervised learning tasks, the accuracy analysis compares
the predicted results and the ground truth data. The confusion
matrix is a standard structure for all tasks, yielding four possible
outcomes: true positives (TP), true negatives, false positives
(FP), and false negatives (FN). For semantic segmentation tasks,
the confusion matrix analysis is per pixel. There are many
possible metrics, such as overall accuracy, precision, recall,
f-score, among others. Since we aim to evaluate how the metrics
improve iteratively, we chose the intersection over union (IoU),
which is widely adopted as one of the most important semantic
segmentation metrics. The IoU is given by

ANB| TP

IoU = - .
Y TJAUB| T TP+FP+EN

ey

In which AN B is the area of intersection, and A U B is the
area of union. The analysis considered the following: a) IoU for
the test set and the three testing areas (considering the proposed
expanded border algorithm and without considering the borders)
at each iteration, and b) per-object metrics in the testing areas
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Zoom from the three separate testing areas A, B, and C.

(T1, T2, and T3). The object analysis had the following four
classifications:

1) correct predictions;

2) partial predictions;

3) FP;

4) FN.
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TABLE III
IoU RESULTS FOR OUR PROPOSED METHOD IN THE BSB VEHICLE DATASET
CONSIDERING THE EXPANDED (EXP.) BORDER ALGORITHM, AND NOT
CONSIDERING THE BORDERS, FOR EACH TRAIN ITERATION

Train #  Type T1 T2 T3 Test Set

1 No border 63.19 63.67 5197 52.60
Exp. Border 80.80 7723 66.89 66.03

5 No border 6441 64.65 5441 63.52
Exp. Border 86.73 7994 7475 80.39

3 No border 60.40 6227 5243 61.49
Exp. Border 87.69 8231 7595 80.73

4 No border 62.83 6239 5581  63.39
Exp. Border 88.03 8198 78.44 81.06

5 No border 63.98 64.13 5624 64.51
Exp. Border 88.37 81.31 77.10 8245

IV. RESULTS

A. Training Iterations

The final version of the dataset used a total of five iterations.
The total number of point shapefiles was 1066 with training sam-
ples in various scenarios (see Fig. 6). Each iteration considered
point shapefiles in areas where the errors did not disappear in
previous iterations (to see if the mistakes disappeared). Still, at
each iteration, the concentration of points had different focuses.
For example, the second training focused on eliminating look-
alike features, which already gives a good boost in performance
metrics, with an easy correct the error, since we only need to
delete some polygons. The fourth training had the minimum
number of points since the areas required more corrections (e.g.,
parking lots), being more laborious. Thus, the proposed proce-
dure effectively uses the results of the DL model in repeated
corrections of pseudolabels. Gradually, the predictions become
more reliable, minimizing errors and manual correction labor in
each interaction.

B. Metrics

1) Pixel Metrics: Table III lists the results for IoU on the four
separate testing sets (Test Area 1, Test Area 2, Test Area 3, and
Test Set), considering each training step. There is an evident rise
in the metrics when increasing the number of training samples
on the same independent test areas. Test Area 1 (T1) had the
highest results, and it is indeed the easiest since there are no
shadows and occluded cars. Test area 2 (T2) has a parking lot
with many crowded vehicles, presenting more errors. Test Area
3 (T3) has many regions with shadows, and partial vehicles had
the lowest IoU, bringing to light the difficulty in some areas, even
for human specialists. The test set has fifty 256256 samples
all around the city, with varying difficulty levels. The IoU of the
test set is approximately the average of the distinct testing areas
(81.88).

Table IV lists the results considering different architectures
using the Efficient-net-B7 backbone. For all models, the same
behavior was still present, in which the expanded border algo-
rithm had a higher value than without using the borders, showing
that the method is not dependent on the model architecture used,
but on the preparation of data. Besides, the PSPNet was by far the
worst model, and the difference between the expanding border
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algorithm and without the borders was the lowest, showing that
better models enhance the proposed algorithm even more. The
DLv3+, LinkNet, and FPN presented slightly worse results than
the U-net, demonstrating that the U-net was the best choice for
this problem.

When comparing the IoU using our growing border algorithm
to recover initial values without considering the borders, the
results are very distinct, with a difference greater than 15% in
the IoU metric. Also, the metrics remain very similar even when
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Study area with the point shapefiles (training points) used in each training, in which the training is cumulative.

increasing the number of training samples. A possible explana-
tion is error compensation, not bringing insightful information
on the testing data.

Fig. 7 shows the semantic segmentation result, with and with-
out borders. The visual results demonstrate that the proposed
method expands vectorially 1 pixel on the edges, consisting of
a fast process. Furthermore, the instances show an efficient sep-
aration. Fig. 7(b) (second row) demonstrates that the traditional
predictions would merge the vehicles into a single polygon, if we
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TABLE IV
ToU RESULTS CONSIDERING THE DEEPLABV3+, LINKNET, PSPNET, AND FPN
ARCHITECTURES CONSIDERING THE EXPANDED (EXP.) BORDER ALGORITHM,
AND NOT CONSIDERING THE BORDERS

Model Type Tl T2 T3 Test Set

DLv3+ No border 63.33  59.58 50.64  62.55

V- Exp. Border 86.36 7427 67.04 78.05

LinkNet No border 66.47 6350 53.73  64.93
Exp. Border 86.78 79.33  70.31  81.31

PSPNet No border 6192 5746 5143 63.86
Exp. Border 79.48 6196 5892 69.78

FPN No border 62.83 6239 5581 63.10
Exp. Border 88.03 8198 7844  78.26
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Fig. 7. Representation of two examples considering the vehicles with no

borders and with expanded borders, in which the borders are highlighted in
red.

TABLE V
IoU RESULTS FOR THE MASK-RCNN WITH RESNEXT-101 (X-101),
RESNET-101 (R-101), AND RESNET-50 (R-50) BACKBONES CONSIDERING
SCALING AUGMENTATION (1024 x 1024 PIXEL DIMENSIONS) AND WITHOUT
SCALING AUGMENTATION (ORIGINAL 256 x 256 PIXEL DIMENSIONS) IN THE
BSB VEHICLE DATASET

backbone scaling Tl T2 T3 Test Set
X-101 Yes 80.14 76.75 66.65 72.22
No 75.41 63.88 55.17 67.06
R-101 Yes 80.54 72.32 64.93 72.02
No 76.13 65.01 55.51 65.80
R-50 Yes 81.24 75.40 65.59 71.85
No 79.40 66.59 55.32 66.49

have not differentiated them with the borders. Expanding edges
on different instances retrieves the same semantic prediction
information but with the distinction of the vehicles.

Table V lists the same testing areas but considers the mask-
RCNN algorithm. Region algorithms rely on some procedures
to enhance the classification of small objects. The results show
that using the mask-RCNN with scaling the input image to
1024x 1024 spatial dimensions (four times the original size)
improves the results in more than 5% of IoU for all backbones.
However, pixel metrics results are still far from the results using
semantic segmentation architectures, in which the best model
(ResNeXt-101) was more than 10% lower in IoU than the U-net
model.
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TABLE VI
PER OBJECT METRICS: CORRECT PREDICTIONS (CP), PARTIAL PREDICTIONS
(PP), FN, AND FP

T1 T2 T3
CP 89 395 430
PP 1 1 9
FN 0 5 21
FP 1 9 25

2) Per Object Metrics: Table VI lists the per object metrics
(correct predictions, partial predictions, FN, and FP) on the three
separate testing areas (T1, T2, and T3), considering the best
model (containing all training samples). T1 classified all objects,
showing that vehicles without shadows, occlusion, and crowded
areas have very high precision. On the other hand, T3, with many
shadow areas and occlusion, had the highest incidence of errors,
with 21 FN and 25 FP. Considering that there were 430 correct
predictions, the accuracy was still greater than 90%.

C. Semantic to Instance Segmentation Results

Fig. 8 shows three zoomed areas considering the traditional
semantic segmentation method (first two rows) and our proposed
box-free instance segmentation method. Both figures consider
the same model. The first row [see Fig. 8 (a), (b), and (c)] shows
in yellow the merged cars, considering many vehicles in the
same polygon, while the green cars were already independent
even without our method. The second row (see Fig. 8(al), (bl),
and (c1)) shows the outlines of the polygons.

The third and fourth rows (Fig. 8(a2), (b2), (c2), (a3), (b3),
and (c3)) show our proposed method considering the expanding
border algorithm and separation into instance predictions. The
fourth row shows cars in which each independent vector is
represented by a different color, demonstrating that the method is
efficient for separating vehicles in a precise pixel classification.
Besides, interpreting these results gets much more straightfor-
ward, estimating the sizes of the vehicles and more accurate
counting.

D. Error Analysis

Even though the results were very accurate, some regions
contain limitations. The training procedure used many look-
alikes features to train a better model. However, the number
of look-alikes in a city is extensive, introducing some mistakes
(see Fig. 9 (b), (¢), (e), and (f)). Some crowded areas may raise
some errors by joining two cars (see Fig. 9 (a) and (d)).

E. Final City-Scale Classification

The final city classification presented much fewer errors when
compared to the first training. However, some errors were still
present, as shown in the previous section. Fig. 10 shows the
final classified image with a manual correction using two GIS
specialists. The data are publicly available with 122 567 vehicles
(car, bus, truck, and boat) [110].
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V. DISCUSSION
A. Integration With GIS Software

To the best of authors’ knowledge, this research is the first
to use semisupervised iterative learning with GIS platform in-
tegration. We created a tool to generate the DL samples with
corresponding ground truth data for semantic (PNG mask) and
instance segmentation (COCO annotation format) to extract the
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Visual comparison of the traditional semantic segmentation results without using the border procedure (first two rows), and the proposed method (last

best out of this method. A significant advantage of this method
is understanding the misclassifications zones at each iteration,
enabling choosing appropriate areas to continue the training with
a substantial decrease in the laborious work. Besides, gener-
ating training samples from point shapefiles allows a dataset
augmentation by selecting points in strategic regions, enabling
the acquisition of many samples in a limited space. This iterative
approach stays in hand with Koga et al., supplying the algorithm
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with complex examples (e.g., look-alikes). Our method allows
obtaining the exact points in which the algorithm confuses with
hard examples, being able to supply those mistaken areas back
to training, rapidly improving results.

Moreover, the shapefile data is easy to manipulate, correct
polygons, generate borders, change classes, among others, re-
ducing problems, such as publicly available data with many
errors in the ground truth data. Another great benefit is for end-
users since the visualization of the data in those GIS platforms
has many facilities, such as counting, choosing a specific area
for analysis, getting the average size of the objects. Therefore,
DL and GIS systems may work as allies for generating better
predictions in less time.

B. Box-Free Instance Segmentation

The instance segmentation results for vehicle mapping pursue
the following two goals: 1) high separability between objects and
2) high per-pixel precision. The traditional instance segmen-
tation models are region-based methods with a segmentation
branch like the mask-RCNN. These box-based models have
high object separability, but their pixel delimiting is lower than
semantic segmentation models. Conversely, traditional semantic
segmentation models cannot separate objects but have high
per-pixel accuracy. Therefore, this study seeks a different ap-
proach from the traditional methods of instance segmentation,
adapting the configuration of the input data and the image
post-processing procedures to obtain, from semantic segmen-
tation methods, results of the instances with greater precision.
Thus, we proposed a box-free instance segmentation method
using semantic segmentation models with object separation by
turning the interiors of the borders into distinct polygons and
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Errors in the classification procedure, and errors present from the conversion from polygon to raster.

restoring the original object size. The border approach accurately
isolates the objects, making it easy to attribute unique values
to each vehicle using nonlearning postprocessing steps. Mou
and Zhu [12] had already introduced the usage of borders to
separate instances. Even though the method is very interesting
and effective, we incorporated the expanding border algorithm
for more precise mapping. Our procedure uses a straightforward
and fast vectorized approach to recover the 1-pixel at the borders
of each object. In the literature, another proposal is by Tayara et
al. [13], which uses dots to represent each car with a Gaussian
elliptical shape, but the segmentation masks for each vehicle
are ellipticals differing from the car shapes, applied only for
counting.

The proposed box-free instance segmentation method demon-
strated a competitive and superior performance than the mask
R-CNN with different backbones and with and without image
scaling. The application of image scaling is suitable for small
objects (area < 322 pixels) [111], [112], such as cars, increasing
their detection capability. In tests restricted to mask R-CNN,
the best result considered ResNeXt-101 and image scaling to
1024 x 1024 pixel dimensions. However, the best mask R-CNN
result was lower than our method using U-net with Efficient-
net-B7 backbone (72% versus 82%). Therefore, the proposed
method generated high-quality maps with distinct polygons for
each object and presented a good pixel-wise accuracy, demon-
strating adequation for this task. Besides, our proposed solution
substitutes learning methods for object detection with nonlearn-
ing methods, which reduces the complexity of the entire process.
For example, the mask-RCNN algorithm loss function is the
sum of mask loss, classification loss, and box regression. In
our proposed solution, we use a single loss function. Besides,
we simplified the data preparation process, eliminating the
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bounding boxes or storing any information in JSON files for
use with other software. The training procedure only requires
the image with its corresponding mask (with the borders). Thus,
a simple change in the data preparation process allows the ap-
plication of instance segmentation with more precise pixel-wise
results.

The step of restoring the original object size by expanding
its borders by 1 pixel is a crucial factor in increasing accu-
racy metrics, reaching 15% more IoU than without the edge
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regardless of the architecture tested. Considering that the cars in
the analyzed images have a dimension of 20x 10 pixels, a perfect
prediction only limited to the interior would reach only 72%
IoU. The better the model results, the greater the IoU differences
between the result with and without the edge growth algorithm,
see Table IV. These results imply the procedure of augmenting
the vehicle dataset using iterative learning, which must consider
the features with reconstituted edges to delineate the objects
better and compensate for errors. In addition, the evaluation of
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metrics per polygon in three test areas surpassed in all cases
90% in accuracy and recall. These results demonstrate an ideal
scenario with good pixel mapping and the ability to distinguish
different instances.

The large-area predictions using DL is an important topic that
may be improved. Previous work shows that sliding windows
with low step values correct errors at frame edges, improving
results [90], [106]-[108]. It takes about one hour to classify our
entire study area (57 856 x42 496-pixel dimensions) using a 128-
pixel stride. Future studies may evaluate the usage of parallel
computing to accelerate this process.

This method can be easily adapted to other remote sensing
targets (e.g., airplanes, buildings, houses, swimming pools).
There is no need to use the borders for some targets that do not
appear crowded, such as swimming pools, since the predictions
will already be separated when extracting the polygons from the
predicted mask. Besides, there are the following two possibilities
for multiple targets at once: 1) create a new class for each
contour, and 2) create a single contour class for all classes. In
both cases, the loss function would remain the same. However,
depending on how balanced the classes are, it might be necessary
to use weights on each class. Besides, this methodology could
be enhanced to fulfill other segmentation tasks, such as panoptic
segmentation [113] in remote sensing datasets, such as the BSB
aerial dataset [114].

C. Vehicle Dataset

A promising trend in artificial intelligence considers data-
centric approaches, which consists of leveraging the data quality.
In the present research, we aimed for a precise pixel-wise clas-
sification maintaining different instances for each object, being
very relevant for vehicle studies since most vehicle datasets aim
to use object detection models (only bounding boxes) [115]-
[118]. Some multiclass datasets also include vehicles [119],
[120]. The iSAID dataset only comprises vehicles, for instance,
segmentation tasks, with COCO annotation format annotations.
Although object detection is very promising for counting ve-
hicles, it requires adjustments (e.g., bounding box orientation)
to obtain precise information (e.g., size), making the labeling
procedure more complex. Moreover, to obtain pixel informa-
tion about the cars to generate a map, it is crucial to get the
boundaries of each object. Our proposed method can obtain
pixel-wise instance-level predictions with the same information
required for a traditional semantic segmentation model, a box-
free method. Furthermore, our proposed dataset stores polygonal
data, facilitating additional adjustments, such as dividing into
more classes or refining labeled data.

Most vehicle studies use images with resolutions better than
20 cm. VAID [118] and VEDALI have the highest resolution
(12.5 cm) among the data sets. Our dataset has a pixel resolution
of 0.24 m, and the proposed method distinguished different in-
stances, even at nearly twice the resolution of most datasets. The
limitation of our dataset is that, for example, some distinguish
sedans, which would be very difficult in our data. Therefore,
our approach increases efficiency with a better resolution and
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is more suitable for separating into more classes (e.g., sedans,
bus).

VI. CONCLUSION

The present research presented the following three contribu-
tions:

1) abox-free instance segmentation method;

2) a semisupervised iterative approach to generate a high-

quality dataset;

3) the BSB vehicle dataset.

The proposed DL method shows better results when compared
to the mask-RCNN architecture with a pixel-wise IoU difference
greater than 12%. We show that it is crucial to consider the
borders for evaluating the pixel-wise mask, being very relevant
to the proposed method to restore the objects’ original size.
The semisupervised iterative approach stabilized results in the
fifth iteration, with a total of 1066 DL samples of 256x256
spatial dimensions. Our DL tool is a promising approach to
generate datasets since it enables us to tackle strategic areas
by inserting a point shapefile, significantly reducing laborious
works. Finally, two specialists refined the BSB vehicle dataset
containing more than 120 thousand unique vehicle polygons that
are easily manipulative to other tasks.

The resolution in this research presents information very close
to WorldView3 satellite imagery. Future research may consider
the usage of more spectral bands in satellite data to enhance
predictions. Besides, the results of our data are much better in
situations without shadows and occlusion. For the generation of
aerial imagery datasets, the researchers should consider train-
ing and evaluating the data in specific day periods with fewer
shadows.
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