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ABSTRACT

Title: Identification and Synchronization of Chaotic and Hyperchaotic Systems Using Lya-
punov Stability Theory
Author: Kevin Herman Muraro Gularte
Supervisor: José Alfredo Ruiz Vargas, Prof. Dr.
Graduate Program in Electronic and Automation Systems Engineering
Brasília, December 10th, 2021

The identification and synchronization of chaotic systems are an active topic in the most
diverse areas of knowledge. Identification and synchronization schemes of chaos and hyper-
chaos usually are designed to ensure the convergence of the identification and synchroniza-
tion errors to a small neighborhood of zero due to the absence of disturbances in the stability
analysis. Thus, many works present several recent contributions, but many show possibilities
for improvement. Motivated by options for improvement, this doctoral thesis proposes dif-
ferent schemes for identifying and synchronizing chaotic and hyperchaotic systems. Firstly,
a method based on neural networks is proposed to identify general chaotic systems. This
scheme is unified because it allows parallel and serial-parallel identification models. Based
on Lyapunov theory, it is proved that estimation errors are bounded, even in the presence
of bounded disturbances. The method allows an adjustment of the transient irrespective of
the steady error. A welding and a hyperchaotic financial system were simulated to validate
the theoretical. The second contribution is an algorithm for synchronizing a chaotic Lorenz
system. The algorithm is based on Lyapunov theory and requires only a scalar control signal
for the synchronization, even disturbances are present in all states. The third contribution
considers the synchronization of a chaotic system. A scalar control law was designed to syn-
chronize this system based on Lyapunov theory and considering disturbances in all states.
It was shown that the synchronization errors converge to a bounded region. Also, a corre-
sponding electronic circuit was implemented to validate the proposed scheme in a realistic
situation. In the sequence, the synchronization of a Lü hyperchaotic system is considered.
The design of the synchronization scheme is challenging because it is a 4D system. Thus,
a reverse engineering procedure determined that only one scalar control signal is suitable.
Based on Lyapunov theory, it was proved that a scalar control in the second state allows
ensuring a convergent synchronization error for a bounded region. Finally, the projective
synchronization of a hyperchaotic system was considered to extend the application to more
general situations. This system is particularly challenging due to its structural complexity,
and by using reverse engineering, the procedure determined that only two control signals
would be necessary. It was possible to show through Lyapunov theory that the synchroniza-
tion error is bounded in finite-time. Extensive simulations were performed to validate the
proposed synchronizations scheme, including secure communication cases.

Keywords: Lyapunov Stability Theory, Chaotic Systems, Systems Identification, Secure
Communication.



RESUMO ESTENDIDO

Título: Identificação e Sincronização de Sistemas Caóticos e Hipercaóticos Usando a Teoria
de Estabilidade de Lyapunov
Autor: Kevin Herman Muraro Gularte
Orientador: José Alfredo Ruiz Vargas, Prof. Dr.
Programa de Pós-Graduação em Engenharia de Sistemas Eletrônicos e de Automação
Brasília, 10 de dezembro de 2021

A identificação e sincronização de sistemas caóticos têm tido aplicações nas mais diver-
sas áreas do conhecimento, como engenharia, medicina, economia e biologia. Geralmente os
esquemas de identificação e sincronização de sistemas caóticos objetivam garantir que os er-
ros de identificação e sincronização tendam a zero, ou que pelo menos sejam limitados. Para
tanto, utiliza-se a Teoria da Estabilidade de Lyapunov. Em muitos trabalhos, é comum que
algumas considerações simplificadoras sejam feitas para facilitar esta análise de estabilidade.
Por exemplo, dentre essas simplificações assume-se a inexistência de distúrbios na análise
de convergência e estabilidade. Assim, muitos trabalhos apresentam diversas contribuições
recentes, mas muitos deles apresentam possibilidades de melhoria. Na área de identificação,
a principal possibilidade de melhoria encontrada foi à falta de um parâmetro de projeto que
permitisse controlar a duração do transiente. Na área de sincronização caótica, poucos tra-
balhos foram encontrados sobre a sincronização subatuada de sistemas caóticos e, nenhum,
de sincronização projetiva subatuada de sistemas hipercaóticos que considerassem a pre-
sença de distúrbios. Desta forma, nesta tese de doutorado, pretende-se propor esquemas de
identificação e sincronização de sistemas caóticos que preencham as lacunas mencionadas.
Assim, são apresentadas contribuições originais para o estado da arte na área identificação e
sincronização de sistemas caóticos e hipercaóticos subatuados.

No capítulo 1 há a organização do trabalho, motivações, contribuições, objetivos e pu-
blicações. Considera-se no capítulo 2 a identificação, uma vez que para se obter um con-
trole com elevado desempenho se requer geralmente bons modelos. Então, é proposto um
esquema baseado em redes neurais para a identificação de sistemas caóticos gerais. Este
esquema é unificado no sentido que permite a utilização de modelos para identificação para-
lelos e serie-paralelos. Convêm ressaltar que modelos paralelos são especialmente indicados
quando se requer estimação de estados que não são disponíveis para medida. Com base na
teoria de estabilidade de Lyapunov é provado que os erros de estimação são limitados e que
podem ser reduzidos arbitrariamente a partir de parâmetros de projeto. Adicionalmente, o
método permite um ajuste da duração do transiente de forma independente do ajuste do erro
em regime. Esta característica torna o esquema especialmente relevante em situações reais
onde a qualidade do controle está fortemente relacionada com o ajuste destes parâmetros.
Dois sistemas caóticos de grande relevância são utilizados para validar os resultados: um
sistema de soldagem e um sistema hipercaótico financeiro.

O capítulo 3 consiste na proposição de um algoritmo para sincronização subatuada do
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sistema caótico de Lorenz. Esse algoritmo é definido com base na teoria de estabilidade de
Lyapunov e se caracteriza por necessitar apenas de um sinal de controle escalar para imple-
mentar a sincronização. Outra vantagem comparativa em relação ao que existe na literatura é
a consideração da presença de distúrbios em todos os estados para a análise de convergência
e estabilidade. Objetivando-se ressaltar a aplicação do algoritmo proposto, considera-se o
caso de comunicação segura na presença de distúrbios. O capítulo 4 considera a sincroni-
zação de um sistema caótico de forma circuital. Foi projetada uma lei de controle escalar
para sincronizar este sistema usando-se a teoria de estabilidade de Lyapunov e considerando
distúrbios em todos os estados. Desta forma foi mostrado que os erros de sincronização con-
vergem para uma região limitada cujo raio depende dos distúrbios em todos os estados. Para
validar esta proposta em uma situação realista, foi implementado o circuito eletrônico corres-
pondente e testado. Os resultados mostraram que o sincronizador é robusto na presença de
distúrbios e que o algoritmo proposto poder ser utilizado com confiabilidade na codificação
e decodificação de mensagens.

No capítulo 5 é considerada a sincronização de um sistema hipercaótico de Lü. Esse
sistema é interessante, pois tem uma dinâmica mais rica que os sistemas caóticos anterior-
mente estudados por se tratar de um sistema com dois exponentes de Lyapunov positivos.
Logo, esse sistema é mais adequado para comunicação segura. Contudo, por se tratar de um
sistema 4D o projeto do esquema de sincronização é desafiador. Desta forma, pelo uso de
um procedimento de engenharia reversa, foi determinado que seria necessária somente uma
atuação no segundo estado. Definida, então, a forma de atuação e sua localização, com base
na teoria de estabilidade de Lyapunov foi provado que um controle escalar no segundo estado
permite assegurar um erro de sincronização convergente para uma região limitada cujo raio
depende, entre outros, dos distúrbios. O esquema foi testado através de extensas simulações
e implementado através de eletrônica analógica. No capítulo 6 objetivando-se estender a
aplicação a situações mais gerais, é considerada a sincronização projetiva em tempo finito de
um sistema hipercaótico. Este sistema foi proposto em 2019 e é particularmente desafiador
devido à sua complexidade estrutural. Com base em um procedimento de engenharia reversa
foi determinado que fosse necessária apenas dois sinais de controle. Usando-se dois sinais de
controle, no primeiro e quarto estado, foi possível mostrar através da teoria de estabilidade
de Lyapunov que o erro de sincronização é convergente em tempo finito para uma região
limitada, mesmo com a presença de distúrbios em todos os estados. Extensivas simulações
foram realizadas empregando Matlab/Simulink para validar o esquema proposto. No capí-
tulo 7 se estabelece as conclusões e trabalhos futuros. No primeiro apêndice há uma seção
de conhecimentos preliminares e no segundo há os códigos utilizados nas simulações.

Palavras-chave: Teoria de Estabilidade de Lyapunov, Sistemas Caóticos, Identificação de
Sistemas, Comunicação Segura.
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INTRODUCTION

1.1 THESIS MOTIVATION

Many works in the area of control of uncertain dynamic systems have been done in linear
models. However, this subject has already been extensively studied, and many of these
models are unsuitable for generalized applications since nonlinearity is much more common
in nature. Furthermore, most linear models are simplifications or approximations that may
have applicability limitations. For this reason, nonlinear models have been increasingly
demanded. Hence, the first motivation of this work is to study nonlinear models.

The models can be subdivided into white, gray, and black boxes [1]. The white box mod-
els are those in which the parameters of a model are known. In the gray box models, not all
model parameters are known. In the black box, none of the model parameters are known.
Historically, the study of white-box models has been extensively accomplished, but also, in
a growing way, the gray and black box models have been considered. The estimation of the
system parameters has been frequently used when not all systems information is known [2].
Hence, the area of systems identification has had great relevance and, particularly, identi-
fication based on neural networks [3]. A case similar to the identification problem is the
observation problem, in which not all states are available for measurement but can be esti-
mated using estimation techniques. Another interesting case to study of control area, where
closed-loop identification is performed and, therefore, there is feedback [4]. All these cases
have interesting applications that need to be investigated. So, the second motivation of this
work lies in the design of identification, observation, and control schemes.

Neural networks are used to approximate unknown nonlinearities in a system. They
satisfy the universal approximation condition on a compact domain, allowing unknown maps
to be approximated with an arbitrary degree of precision if a suitable structure is provided for
the neural model [5]. Neural networks have the advantage of relatively fast implementation
and auto-learning, that is, the ability to rely on historical samples to learn. In addition, they
are adaptive since neural networks can be used in online applications without needing to
have their architecture changed with each update. The problem in these applications is that
the residual state error frequently depends on the network structure, which can present a
problem. However, Lyapunov stability theory can be used to overcome this drawback since
weight adjustment laws based on Lyapunov direct method ensure the boundedness of the
estimates. In addition, a suitable choice for identification, observation, and control models,
based on the Lyapunov analysis, ensures the convergence of the residual state errors to an
arbitrary neighborhood of the origin. The advantage of this framework is that irrespective
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of how the model is constructed, it is possible to have small residual approximation errors,
even in the presence of bounded disturbances. This may arise, for example, due to changes
in dynamics due to faults or equipment aging. Therefore, the motivation for using artificial
neural networks in this work is that they allow us to approximate unknown nonlinearities
and via Lyapunov theory, and it is possible to ensure that the errors are bounded, even in the
presence of unknowns.

In the estimation process, there is a moment when the neural networks learning pro-
cess occurs, called the transient regime, and a moment when the neural network has stabi-
lized, and there are no significant changes in the residual state error, called the permanent
regime [6]. Controlling the duration of the transient regime may be helpful for practical
purposes since certain controllers have a very short transient regime and may have prob-
lems of chattering. Other controllers have a very long transient regime and may have bad
performance.

Additionally, once it is possible to estimate the parameters of a system, it is possible to
design synchronization schemes between two systems in which the parameters are known, or
the values of those parameters have been estimated [7]. An advantage of chaotic systems is
that one can have the same structure as the chaotic system that even so, the states trajectories
over time can be different depending on the initial conditions. This is because, by definition,
chaotic systems are sensitive to initial conditions [8].

Also, chaotic systems exhibiting aperiodic behavior are relatively unpredictable from
other systems, so they are usually interesting systems used in a cryptography system. Be-
cause they can present the same structure in the system of differential equations, depending
on the chaotic system, it is possible to synchronize with the number of control signals less
than the number of states in the dynamic system. A consequence of structurally simple con-
trols is to lower costs and facilitate physical implementations. In literature, there have been
few studies on this subject. Therefore there is much room for new academic studies.

1.2 THESIS OBJECTIVES

1.2.1 General objective

Based on the Lyapunov stability theory, develop theoretical models of:

1) identification of chaotic systems using artificial neural networks, with the possibility
of adjusting the residual state errors and the regime transient duration from different design
parameters; and

2) underactuated synchronization of chaotic and hyperchaotic systems, where the syn-
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chronization error is bounded.

1.2.2 Specific objectives

• Make the adaptive open-loop identification of a financial hyperchaotic.

• Consider the cases of parallel and semi-parallel identification.

• Extend the synchronizations schemes to the secure communication case, where the
message is encoded and decoded.

• Proposed a synchronization scheme to the projective synchronization case.

• Perform validations of the proposed schemes through simulations, applications using
analog electronics, or physical implementation.

• Perform a practical application of an adaptive identification proposed scheme in a
welding system using the online identifier.

• Perform a comparison of an identification algorithm found in literature and the pro-
posed identification scheme.

• Perform a comparison of a synchronization algorithm found in literature and the pro-
posed identification scheme.

1.3 THESIS CONTRIBUTIONS

1.3.1 Main Contributions

• The proposal of an online chaotic identification scheme that uses artificial neural net-
works that allows an adjustment of the duration of the transient regime from a design
parameter that is not related to the size of the residual state error.

• The proposal of underactuated synchronization schemes of chaotic and hyperchaotic
systems in which it is theoretically proven that the synchronization error is bounded
even in the presence of bounded external and internal disturbances.

1.3.2 Other Contributions

• The proposal of an online identification scheme that uses artificial neural networks that
allows an adjustment of the duration of the transient regime from a design parameter
that is not related to the size of the residual state error.
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• The proposal of an online identification scheme that uses artificial neural networks that
allows an adjustment of the duration of the transient regime from a design parameter
that is not related to the size of the residual state error.

• The application of the Lyapunov stability theory to find a neural identifier in which the
residual state error relates to some design matrices, so as to allow its convergence to a
neighborhood of the origin, even if in presence of bounded disturbances.

• It is proven by using the Lyapunov stability analysis that the convergence of the syn-
chronization error is accomplished in finite time.

• Most proposed control schemes are as simple as possible, with a proportional control
signal sufficient to synchronize even hyperchaotic systems. This feature facilitates the
use of these synchronization and encryption schemes in practical applications.

• The proposal of the probably first underactuated projective synchronization scheme of
a hyperchaotic system in which it is theoretically proven that the synchronization error
is bounded even in the presence of bounded external and internal disturbances.

1.4 THESIS OVERVIEW

This is a paper-based doctoral thesis. Thus, chapters 2-6 will contain the developments
of the works and the respective introductions with the literature review. The Ph.D. thesis is
organized as follows. This chapter presents the introduction, motivation, objective, possible
contributions, and structure of the proposed work.

In Chapter 2, by using Lyapunov stability theory, an online adaptive neural identifica-
tion scheme is proposed for a class of nonlinear systems in the presence of bounded distur-
bances. The proposed algorithm allows 1) to reduce the residual error of state estimation
to small values utilizing design matrices; 2) to control the transient time arbitrarily from a
design parameter. Simulations were done to demonstrate the effectiveness and efficiency of
the proposed learning algorithm. Simulations were performed for chaotic and hyperchaotic
systems to demonstrate the effectiveness and efficiency of the proposed learning algorithm.
In these simulations, the size of the residual state error and the choice of the transient time
were analyzed. The chapter ends with an application: the neural identification of a welding
system with chaotic behavior where the size of the residual state error was analyzed.

In Chapter 3, by using the Lyapunov stability theory, an underactuated synchronization
scheme of a Lorenz chaotic system in the presence of bounded disturbances is proposed. An
application is also made in secure telecommunication. In Chapter 4, based on the Lyapunov
stability theory, a chaotic system synchronization scheme in the presence of bounded dis-
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turbances is proposed. In this scheme, the dimension of control inputs is less than states.
The case of encoding and decoding messages is also analyzed. A physical application in an
electrical circuit is made to validate the scheme.

In Chapter 5, by using the Lyapunov stability theory, an underactuated synchronization
scheme for secure communication based on Lü hyperchaotic system is proposed. An ap-
plication is also made in secure telecommunication. There are also simulations considering
applications in electronic circuits. In Chapter 6, a synchronization and secure communica-
tion scheme based on a hyperchaotic underactuated projective synchronization is proposed,
where there are two inputs and four states. It is proved that the synchronization error is
bounded through the Lyapunov stability theory. Simulations considering a circuital imple-
mentation project were carried out.

Subsequently, Chapter 7 summarizes the theoretical contributions of the research, the re-
sults obtained, and suggestions for future research are also discussed. Appendix 1 describes
the theoretical basis of the artificial neural networks, learning algorithms, Lyapunov stability
theory, and other technical backgrounds supporting the work chapters. Appendix 2 contains
the codes in Matlab language used to generate most of the figures and tables in this thesis.

1.5 PUBLICATIONS

During the doctorate period, several papers were recently published [9–21]. The identi-
fications works were published in

• K. H. M. Gularte and J. A. R. Vargas, "Open and Closed Loop Neural Identifica-
tion of Uncertain Systems with Transient Time Adjustment," 2018 IEEE International

Conference on Automation/XXIII Congress of the Chilean Association of Automatic

Control (ICA-ACCA), pp. 1–7, 2018.

• K. H. M. Gularte, J. J. M. Chavez, J. A. R. Vargas, and S. C. A. Alfaro, “An adap-
tive neural identifier with applications to financial and welding systems,” International

Journal of Control, Automation and Systems, vol. 19, no. 5, pp. 1976–1987, 2021.

The synchronizations works were published in

• K. H. M. Gularte, L. N. C. Rêgo, and J. A. R. Vargas, "Scheme for chaos-based
encryption and lyapunov analysis," International Conference on Automation/XXIII

Congress of the Chilean Association of Automatic Control (ICA-ACCA), pp. 1–7,
2018.
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• K. H. M. Gularte, A. Zaiter, R. R. Santos, and J. A. R. Vargas, "Sincronização de
um sistema sprott k-caótico subatuado baseado em controle proporcional com ganho
variável," XXII Congresso Brasileiro de Automática, 2018, João Pessoa. Anais do

XXII Congresso Brasileiro de Automática, vol. 1, no. 1, 2019.

• K. H. M. Gularte, R. R. Santos, W. A. M. Gabalan, and J. A. R. Vargas, "Proposta para
comunicação segura baseada em sincronização projetiva caótica," ANAIS DO 14º SIM-

PÓSIO BRASILEIRO DE AUTOMAÇãO INTELIGENTE, Ouro Preto, pp. 2939–2945,
2019.
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• K. H. M. Gularte, L. M. Alves, J. A. R. Vargas, J. P. A. Maranhão, G. C. Carvalho, S.
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TECHNICAL BACKGROUND

2.1 MOTIVATION

This chapter introduces the technical background about Lyapunov Stability Theory, neu-
ral networks, their properties, and the notation used throughout this Ph.D. thesis. The aim is
to provide basic information about the contents used in this thesis.

2.2 DYNAMIC SYSTEMS

The concepts presented in this section are extracted from [22].

Dynamical systems can be modeled by a finite number of coupled first-order ordinary
differential equations

ẋ1 = f1(t, x1, ..., xn, u1, ..., up)

ẋ2 = f2(t, x1, ..., xn, u1, ..., up)

...
...

ẋn = fn(t, x1, ..., xn, u1, ..., up)

(2.1)

where ẋi denotes the derivative of xi, with respect to the time variable t, and u1, u2, ..., up
are specified input variables. We call the variables x1, x2, ..., xp are the state variables. They
represent the memory that the dynamic system has of its past. The vector notation to write
the above equations compactly is used. Define

x =



x1

x2
...
...
xn


,


u1

u2
...
up

 , f(t, x, u) =


f1(t, x, u)

f2(t, x, u)
...
...

fn(t, x, u)


(2.2)

and rewrite the n first-order differential equations as one n-dimensional first-order vector
differential equation

ẋ = f(t, x, u) (2.3)
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(2.3) is the state equation, and x is the state and u is the input. Usually, (2.3) is associate
with another equation

y = h(t, x, u) (2.4)

defines a q-dimensional output vector that comprises variables of particular interest in the
analysis of the dynamical system, like variables that can be physically measured or variables
required to behave in a specified manner. (2.4) is the output equation and equations (2.3) and
(2.4) together are the state-space model, or simply the state model. Mathematical models of
finite-dimensional physical systems do not always come in the form of a state-space model.
However, physical systems often are modeled in this form by carefully choosing the state
variables.

ẋ = f(t, x) (2.5)

Working with an unforced state equation does not necessarily mean that the input to the
system is zero. It could be that the input has been specified as a given function of time,
u = γ(t), a given feedback function of the state, u = γ(x), or both, u = γ(t, x). Substitution
of u = γ in (2.3) eliminates u and yields an unforced state equation. A particular case of
(2.5) arises when the function f does not depend explicitly on t; that is,

ẋ = f(x) (2.6)

in this case, the system is said to be autonomous or time-invariant. The behavior of an
autonomous system is invariant to shifts in the time origin since changing the time variable
from t to τ = t − a does not change the right-hand side of the state equation. If the system
is not autonomous, it is called nonautonomous or time-varying.

An important concept in dealing with the state equation is the concept of an equilibrium
point. A point x = x∗ in the state space is said to be an equilibrium point of (2.5) if it has
the property that whenever the state of the system starts at x∗ it will remain at x∗ for all
future time. For the autonomous system (2.6), the equilibrium points are the real roots of the
equation

f(x) = 0 (2.7)

An equilibrium point could be isolated; there are no other equilibrium points in its vicin-
ity, or there could be a continuum of equilibrium points.
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2.3 MATHEMATICAL PRELIMINARIES

This section provides some fundamental mathematical concepts that are necessary for
the work chapters.

2.3.1 Young inequality

By defining that a and b are positive variables, p > 1 and q > 1, consider the following
Young inequality for products

ab ≤ ap

p
+
bq

q
(2.8)

where 1
p
+ 1

q
= 1. Assuming p = 2 and q = 2, then

ab ≤ a2

2
+
b2

2
(2.9)

Note that this expression can also be deduced from inequality (a−b)2 ≥ 0. This is important
because, in the case of p = 2 and q = 2, (2.9) is also correct for any negative real value of a
and b. Rewriting (2.9) results

(
a
√
σ
)( b√

σ

)
≤ a2σ

2
+
b2

2σ
(2.10)

being σ > 0. More information can be obtained in [23].

2.3.2 Vector Norms

DEFINITION 1 Let x ∈ X ⊂ ℜn be a n-dimensional vector. The p-norm of f is defined by

∥x∥p =

(∑
i

|xi|p
)1/p

, for p ∈ [1,∞) (2.11)

Thus, by denoting p = 1, 2,∞, the corresponding normed spaces are called L1, L2, L∞,
respectively. In this thesis usually, it is used the case where p = 2:

∥x∥ = ∥x∥2 =

√∑
i

|xi|2 (2.12)

∥x∥2 = xTx, x ∈ ℜ1×n (2.13)
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By defining a real constant α, using the vector x ∈ ℜn, and considering y ∈ Y ⊂ ℜn a
n-dimensional vector, the followings properties are true:

||x|| ≥ 0 (2.14)

||α·x|| = |α|·||x|| (2.15)

||x+ y|| ≤ ||x||+ ||y|| (2.16)

More information can be obtained in [5, 24, 25].

2.3.3 Matrix Norms

DEFINITION 2 Let A,B ∈ ℜn×n be n-dimensional matrices, and c ∈ ℜ. Then, the follow-
ing properties are valid

∥A∥ ≥ 0 (2.17)

∥cA∥ ≤ |c| · ∥A∥ (2.18)

∥Ax∥ ≤ ∥A∥F · ∥x∥ (2.19)

∥A+B∥ ≤ ∥A∥ + ∥B∥ (2.20)

tr(A+B) = tr(A) + tr(B) (2.21)

The Frobenius norm can be defined as:

∥A∥2F = tr(ATA) (2.22)

Where tr(A) is the trace function. This function returns the sum of diagonal entries of a
square matrix. More information can be obtained in [25].
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2.3.4 Lyapunov Stability Theory

We present in this section some concepts about Lyapunov stability theory. The following
definitions and theorem were extracted from [24].

2.3.4.1 Concepts of Stability

We consider systems described by ordinary differential equations of the form

ẋ = f (t, x) , x (t0) = x0 (2.23)

where x ∈ ℜn, f : τ × B (r), τ = [t0,∞), and B (r) = {x ∈ ℜn| ∥x∥ < r} . We assume
that f is of such nature that for every x0 ∈ B (r) and every t0 ∈ ℜ+, (2.23) possesses one
and only one solution x (t; t0;x0).

DEFINITION 3 A state xe is said to be an equilibrium state of the system described by
(2.23) if

f (t, xe) ≡ 0 for all t ≥ t0 (2.24)

DEFINITION 4 An equilibrium state xe is called an isolated equilibrium state if there
exists a constant r > 0 such that B (xe, r) := {x| ∥x− xe∥ < r} contains no equilibrium
state of (2.23) other than xe.

DEFINITION 5 The equilibrium state xe is said to be stable(in the sense of Lyapunov) if for
arbitrary t0 and ε > 0 there exists a δ (ε, t0) such that |x0−xe| < δ implies |x (t; t0;x0)−xe|
for all t ≥ t0.

DEFINITION 6 The equilibrium state xe is said to be uniformly stable (u.s) if it is stable
and if δ (ε, t0) in Definition 5 does not depend on t0.

DEFINITION 7 The equilibrium state xe is said to be asymptotically stable (a.s) if (i) it is
stable, and (ii) there exists a δ (t0) such that |x0−xe| < δ (t0) implies limt→∞|x (t; t0;x0)−
xe| = 0 . If condition (ii) is satisfied, then the equilibrium state xe is said to be attractive.

DEFINITION 8 The set of all x0 ∈ ℜn such that x (t; t0;x0) → xe as t → ∞ for some
t0 ≥ 0 is called the region of attraction of the equilibrium state xe.

DEFINITION 9 The equilibrium state xe is said to be uniformly asymptotically stable
(u.a.s) if (i) it is uniformly stable, (ii) for every ε > 0 and any t0 ∈ ℜ+, there exist a δ0 > 0

independent of t0 and ε and a T (ε) > 0 independent of t0, such that |x (t; t0;x0) − xe| < ε

for all t > t0 + T (ε) whenever |x0 − xe| < δ0.
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DEFINITION 10 The equilibrium state xe is exponentially stable (e.s) if there exists an
α > 0, and for every ε > 0 there exists a δ (ε) > 0 such that

|x (t; t0;x0)− xe| < εe−α(t−t0) for all t ≥ t0 (2.25)

whenever |x0 − xe| < δ (ε) .

DEFINITION 11 The equilibrium state xe is said to be unstable if it is not stable.

When (2.23) have a unique solution for each x0 ∈ ℜn and t0 ∈ ℜ+, we need the following
definitions for the global characterization of solutions.

DEFINITION 12 A solution x (t; t0;x0) of (2.23) is bounded if there exists a β > 0 such
that |x (t; t0;x0) | < β for all t > t0, where β may depend on each solution.

DEFINITION 13 The solutions of (2.23) are uniformly bounded (u.b) if for any α > 0 and
t0 ∈ ℜ+, there exists a β = β(α) independent of t0 such that if |x0| < α, then |x (t; t0;x0) | <
β for all t > t0.

DEFINITION 14 The solutions of (2.23) are uniformly ultimately bounded (u.u.b) (with
bound B) if there exists a B > 0 and if corresponding to any α ≥ 0 and t0 ∈ ℜ+, there exists
a T = T (α) > 0 (independent of t0) such that |x0| < α implies |x (t; t0;x0) | < B for all
t > t0 + T .

DEFINITION 15 If x (t; t0;x0) is a solution of ẋ = f(t, x), then the trajectory x (t; t0;x0)
is said to be stable (u.s., a.s., u.a.s., e.s., unstable) if the equilibrium point ze = 0 of the
differential equation

ż = f (t, z + x (t; t0;x0))− f (t, x (t; t0;x0)) (2.26)

is stable (u.s., a.s., u.a.s., e.s., unstable, respectively).

2.3.4.2 Lyapunov’s Direct Method

The stability properties of the equilibrium state or solution of (2.23) can be studied by
using the direct method of Lyapunov (also known as Lyapunov’s second method). The ob-
jective of this method is to answer questions of stability by using the form of f (t, x) in (2.23)
rather than the explicit knowledge of the solutions. We start with the following definitions.

DEFINITION 16 A continuous function φ : [0, r] → ℜ+ (or a continuous function φ :

[0,∞) → ℜ+) is said to belong to class K, i.e., φ ∈ K, if

(i) φ (0) = 0.

(ii) φ is strictly increasing on [0, r] (or on [0,∞)).
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DEFINITION 17 A continuous function φ : [0,∞) → ℜ+ is said to belong to class KR,
i.e., φ ∈ KR, if

(i) φ (0) = 0.

(ii) φ is strictly increasing on [0,∞).

(iii) limr→∞φ(r) = ∞.

DEFINITION 18 Two functions φ1, φ2 ∈ K defined on [0, r] (or on [0,∞]) are said to be of
the same order of magnitude if there exist positive constants k1, k2, such that

k1φ1 (r1) ≤ φ2 (r1) ≤ k2φ2 (r1) ,∀r1 ∈ [0, r] (or ∀r1 ∈ [0,∞]) (2.27)

DEFINITION 19 A function V (t, x) : ℜ+ × B(r) → ℜ with V (t, 0) = 0,∀t ∈ ℜ+ is pos-
itive definite if there exists a continuous function φ ∈ K such that V (t, x) ≥ φ(|x|),∀t ∈
ℜ+, x ∈ B(r) and some r > 0. V (t, x) is called negative-definite if −V (t, x) is positive
definite.

DEFINITION 20 A function V (t, x) : ℜ+ × B(r) → ℜ with V (t, 0) = 0,∀t ∈ ℜ+ is
said to be positive(negative) semidefinite if V (t, x) ≥ 0(V (t, x) ≤ 0), for all t ∈ ℜ+ and
x ∈ B(r) for some r > 0.

DEFINITION 21 A function V (t, x) : ℜ+ × B(r) → ℜ, with V (t, 0) = 0,∀t ∈ ℜ+ is said
to be decrescent if there exists φ ∈ K such that |V (t, x) | ≤ φ (|x|) ,∀t ≥ 0 and ∀x ∈ B (r)

for some r > 0.

DEFINITION 22 A function V (t, x) : ℜ+ × ℜr → ℜ with V (t, 0) = 0,∀t ∈ ℜ+ is said to
be radially unbounded if there exists φ ∈ KR such that V (t, x) ≥ φ (|x|) for all x ∈ ℜn

and t ∈ ℜ+.

It is clear from the Definition (22) that if V (t, x) is radially unbounded, it is also positive
definite for all x ∈ ℜn, but the converse is not true.

Let us assume (without loss of generality) that xe = 0 is an equilibrium point of (2.23)
and define V̇ to be the time-derivative of the function V (t, x) along the solution of (2.23),
i.e.,

V̇ =
∂V

∂t
+ (∇V )T f (t, x) (2.28)

where ∇V =
[
∂V
∂x1
, ∂V
∂x2
, ..., ∂V

∂xn

]T
is the gradient of V with respect to x. The second method

of Lyapunov is summarized by the following theorem.

THEOREM 2.3.1 Suppose there exists a positive definite function V (t, x) : ℜ+ × B(r) →
ℜ for some r > 0 with continuous first-order partial derivatives with respect to x, t, and
V (t, 0) = 0,∀t ∈ ℜ+. Then, the following statements are true:
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(i) If V̇ ≤ 0, then xe = 0 is stable.

(ii) If V is decrescent and V̇ ≤ 0, then xe = 0 is uniformly stable.

(iii) If V is decrescent and V̇ < 0, then xe is uniformly asymptotically stable.

(iv) If V is decrescent and there exist φ1, φ2, φ3 ∈ K of the same order of magnitude
such that

φ1 (|x|) ≤ V (t, x) ≤ φ2 (|x|) , V (t, x) ≤ −φ3 (|x|) (2.29)

for all x ∈ B(r) and t ∈ ℜ+, then xe = 0 is exponentially stable.

In the above theorem, the state x is restricted to be inside the ball B(r) for some r > 0.
Therefore, the results (i) to (iv) of Theorem 2.3.1 are referred to as local results.

THEOREM 2.3.2 Assume that (2.23) possesses unique solutions for all x0 ∈ ℜn. If there
exists a function V (t, x) defined on |x| ≥ R (where R may be large) and t ∈ [0,∞) with
continuous first-order partial derivatives with respect to x, t and if there exist φ1, φ2 ∈ KR

such that

(i) φ1 (|x|) ≤ V (t, x) ≤ φ2 (|x|)

(ii) V̇ (t, x) ≤ 0 for all |x| ≥ R and t ∈ [0,∞), then, the solutions of (2.23) are uniformly
bounded. If in addition there exists φ3 ∈ K defined on [0,∞) and

(iii) V̇ (t, x) ≤ φ3 (|x|) for all |x| ≥ R and t ∈ [0,∞) then, the solutions of (2.23) are
uniformly ultimately bounded.

2.4 ARTIFICIAL NEURAL NETWORKS

Initially will be shown some concepts about neural networks biological that will ulti-
mately serve as motivation for the artificial neural network, which will be discussed next.
The concepts and figures used in this section were taken from [26].

2.4.1 Biological Neural Networks

Neurons, or nerve cells, are the building blocks of the nervous system. Neurons have
unique features and structures that differentiate them from other cells. The neuron has three
distinct regions:

• Cell body (or soma): provides the support functions and structure of the cell. It collects
and processes information received from other neurons.
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• Dendrites: are tube-like extensions that repeatedly branch and form a bushy tree around
the cell body. They provide the main path on which the neuron receives coming infor-
mation.

• Axon: the part of the neuron that extends away from the cell body and provides the
path over which information travel to other neurons.

The Figure 2.1 (from [26]) shows a biological neuron.

Figure 2.1 – Biological Neuron Scheme.

At the origin of the axon, a nerve impulse is triggered by the cell body in response to
the received information. The impulse sweeps along the axon until it reaches the end. The
junction point of an axon with a dendrite of another neuron is called a synapse.

2.4.2 Artificial Neural Models

An artificial neural network (ANN) is a massively parallel distributed processor inspired
by biological neural networks, storing experimental knowledge and making it available for
use. The similarities with the brain are:

• Knowledge is acquired through a learning process.

• Interneuron connectivity named as synaptic weights is used to store this knowledge.

The procedure for the learning process is known as a learning algorithm. Its function is
to modify the synaptic weights of the networks in order to attain a prespecified goal. The
weights modification provides the traditional method for neural networks design and imple-
mentation. The neuron is the fundamental information-processing unit for the operation of a
neural network [26, 27]. The Figure 2.2 [27] shows the model of a neuron.

This model has three basic elements:
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Figure 2.2 – Nonlinear model of a neuron.

• A set of synapses links, each element being characterized by its own weight or strength.

• An adder for summing the inputs signal components, multiplied by the respective
synapsis weight.

• A nonlinear activation function transforming the adder output into the output of the
neuron.

The neuron scheme presented in Figure 2.2 also includes an externally applied bias or
threshold, denoted by b. Bias can increase or decrease the input of the activation function,
depending on whether it is positive or negative, respectively.

2.4.3 Linearly Parameterized Neural Networks

Linearly parameterized neural networks (LPNNs) can be expressed mathematically as

ρnn

(
Ŵ , ζ

)
= Ŵσ (ζ) (2.30)

where ρnn : ℜLnn 7→ ℜn is a function, Ŵ ∈ ℜn×Lρ is a weight matrix, ζ ∈ ℜLζ are
the inputs of the neural network and σ : ℜLζ 7→ ℜLρ is the basis function vector, which
can be considered as a nonlinear vector function whose arguments are preprocessed by a
scalar function s(·), and n, Lρ, Lζ , Lnn are integers strictly positive. Commonly used scalar
functions include sigmoid (used in this work), hyperbolic tangent, gaussian, Hardy’s, inverse
Hardy’s multiquadratic [5]. However, this work is only interested in the class of LPNNs for
which σ(·) is bounded, since in this case results

∥σ (ζ)∥ ≤ σ0 (2.31)

being σ0 a strictly positive constant.
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The class of LPNNs considered in this work includes radial basis function neural net-
works (RBFs), wavelet networks, high order neural networks (HONNs) [5, 28, 29], and also
others linearly parameterized approximators as Takagi-Sugeno fuzzy systems [30]. Univer-
sal approximation results in [5, 28–30] indicate that:

PROPERTY 1 Given a constant ε0 > 0 and a continuous function f : ℜLζ 7→ ℜn there exists
a weight matrix Ŵ = W ∗ and a Lρ is big enough such that

∥∥∥f (ζ)− Ŵσ (ζ)
∥∥∥
∞

≤ ε0 (2.32)

where Ŵ ∈ Γ, ζ ∈ Ω, Γ =
{
Ŵ |
∥∥∥Ŵ∥∥∥ ≤ αŴ

}
, αŴ is a positive constant, Ŵ is the esti-

mation of W ∗, which is an "optimum" matrix, and ε0 is an approximation, reconstruction or
modeling error.

PROPERTY 2 The Output of LPNNs is continuous with respect to their arguments and sat-
isfies the condition of Lipschitz [24], for all ζ ∈ Ω (ζ), where Ω is a compact set.

2.4.4 Neural Network Structures

The way in which the neurons of a neural network are interconnected determines its
structure. The commonly used static neural network structures for system identification are
multilayer perceptron, fuzzy systems, radial basis function, and wavelet networks.

2.4.4.1 Multilayer Feedforward Neural Network

They distinguish themselves by the presence of one or more hidden layers whose com-
putation nodes are called hidden neurons. Typically the neurons in each layer have as their
inputs the output signals of the preceding layer. If each neuron in each layer is connected to
every neuron in the adjacent forward layer, then the neural network is named as fully con-
nected, on the opposite case, it is called partly connected. A multilayer perceptron (MLP)
has three distinctive characteristics:

• The activation function of each neuron is smooth as opposed to the hard limit used in
the single-layer perceptron. Usually, this nonlinear function is sigmoidal.

• The network contains one or more layers of hidden neurons.

• The network exhibits a high degree of connectivity.
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Figure 2.3 – Multilayer perceptron.

In this thesis, in Chapter 2, systems with one hidden layer are used. The Figure 2.3
(from [26]) shows the Multilayer perceptron scheme.

2.4.5 Sigmoidal functions

This section extracts some informations from [31]. The activation functions usually em-
ployed in multilayer perceptron are sigmoidal.

Some Sigmoidal functions
Name Formula

Logistic
1

1 + e−γx
, γ > 0

Hyperbolic Tangent
ex − e−x

ex + e−x

Arc-tangent arctan(x)

Table 2.1 – Common Sigmoidal Activation Functions for MLP Networks.

In this work, all activation functions are logistic types.

2.5 CHAOTIC SYSTEMS

The concepts presented in the subsection 2.5.1 were extracted from [8] and the informa-
tions presented in subsections 2.5.2-2.5.4 were extracted from [32].
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2.5.1 Defining chaos

No definition of the term chaos is universally accepted yet, but almost everyone would
agree on the three ingredients used in the following working definition:

Chaos is aperiodic long-term behavior in a deterministic system that exhibits sensitive
dependence on initial conditions.

• "Aperiodic long-term behavior" means that there are trajectories which do not settle
down to fixed points, periodic orbits, or quasiperiodic orbits as t → ∞. For practical
reasons, we should require that such trajectories are not too rare. For instance, we
could insist that there be an open set of initial conditions leading to aperiodic trajec-
tories, or perhaps that such trajectories should occur with nonzero probability, given a
random initial condition.

• "Deterministic" means that the system has no random or noisy inputs or parameters.
The irregular behavior arises from the system’s nonlinearity, rather than from noisy
driving forces.

• "Sensitive dependence on initial conditions" means that nearby trajectories separate
exponentially fast, i.e., the system has a positive Lyapunov exponent.

2.5.2 Lyapunov exponents

Lyapunov exponents are numbers that measure the exponential attraction or separation
in time of two adjacent trajectories in phase space with different initial conditions. There are
actually "n" different Lyapunov exponents for an n-dimensional system [8]. A positive Lya-
panov exponent indicates a chaotic motion in a dynamical system with bounded trajectories.

Let δ(t) be the distance in time t of two trajectories in phase space that started with an
initial distance δ0 at time t0. If δ(t) grows exponentially with the evolution of the system,
then it has a sensitive dependency to the initial conditions. In mathematical terms,

δ(t) = δ0e
λ(t− t0) (2.33)

being λ the Lyapunov exponent.

The sum of the Lyapunov exponents is the time-averaged divergence of the phase space
velocity; hence any dissipative dynamical system will have at least one negative exponent,
the sum of all exponents is negative, and the post-transient motion of trajectories will occur
on a zero volume limit set, an attractor [33]. An attractor for a dissipative system with one
or more positive Lyapunov exponents is said to be "strange", or "chaotic" [33].
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There are many different methods to estimate the largest Lyapunov exponents. The
method proposed by Wolf [33] is most widely used to estimate Lyapunov exponents. How-
ever, also the Rosenstein [34] and Kantz [35] methods are usually employed to estimate the
largest Lyapunov exponents.

2.5.3 Poincaré section (map)

An old technique for analyzing solutions to differential equations, developed by Poincaré,
now assumes greater importance in the modern study of dynamical systems. The Poincaré
section is a method to transform a continuous dynamical process in time into a set of dif-
ference equations, known in modern as a map. More specifically, the Poincaré section is a
sequence of points in phase space generated by the penetration of a trajectory of continu-
ous evolution through a generalized plane or surface in the space. For a periodically forced
second-order nonlinear oscillator, a Poincaré map can be obtained by stroboscopically ob-
serving the position and velocity at a particular phase of the forcing function. The study of
maps obtained from Poincaré sections of flows is based on the theory that certain topological
features of the movement in time are preserved in the discrete-time dynamics of the maps.

To illustrate how a Poincaré section is obtained, imagine a system of three first-order
differential equations that represent continuous trajectories in Cartesian space (see Figure
2.4). If the solutions are bounded, the solution curve is contained within some finite volume
in this space.

Figure 2.4 – Poincaré section.

Motions whose Poincaré maps have a finite set of points (periodical or subharmonic
motion) or a closed curve of points are known as classical attractors. A motion with a set of
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Poincaré points that is not a classical attractor and has specific fractal properties is known as
a strange attractor. Strange attractor motions are related to chaotic motions.

2.5.4 Bifurcation diagram

Bifurcation denotes the change in the type of long-time dynamical motion when some
parameter or set of parameters is varied (for example, as when a rod under a compressive
load buckle—one equilibrium state changes to two stable equilibrium states). The study of
the changes in the dynamic behavior of systems as parameters is the subject of bifurcation
theory. Parameter Values at which the qualitative or topological nature of the motion changes
are known as critical or bifurcation values.

2.5.5 Difference of chaotic and hyperchaotic systems

A necessary condition for a system to be chaotic is that at least one Lyapunov exponent
be positive [36]. For a continuous dynamic system to be chaotic, it is necessary to have
three or more states. On the other hand, a system can exhibit hyperchaos when at least two
of their associated Lyapunov exponents are positive, and its states dimension is higher than
three [37]. Note that every hyperchaotic system is also a chaotic system.

2.6 SYSTEMS IDENTIFICATION

Initially will be shown some concepts about systems identification. The concepts and
Figures used in this section were taken from [1].

2.6.1 Theoretical and Experimental Modeling

In the following figure, there are different kinds of mathematical models.
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Figure 2.5 – Different kinds of mathematical models.

Although the theoretical analysis can, in principle, deliver more information about the
system, provided that the internal behavior is known and can be described mathematically,
experimental analysis has found ever-increasing attention over the past 50 years. The main
reasons are the following:

• Theoretical analysis can become quite complex even for simple systems.

• Mostly, model coefficients derived from the theoretical considerations are not precise
enough.

• Not all actions taking place inside the system are known.

• The actions taking place cannot be described mathematically with the required accu-
racy.

• Some systems are very complex, making the theoretical analysis too time-consuming.

• Identified models can be obtained in a shorter time with less effort compared to theo-
retical modeling
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The experimental analysis allows the development of mathematical models by measuring
the input and output of systems of arbitrary composition. One significant advantage is that
the same experimental analysis methods can be applied to diverse and arbitrarily complex
systems. By measuring the input and output only, one does, however, only obtain mod-
els governing the input-output behavior of the system, i.e., the models will in general not
describe the precise internal structure of the system. These input-output models are approx-
imations and are still sufficient for many areas of application. If the system also allows the
measurement of internal states, one can obviously also gather information about the internal
structure of the system. With the advent of digital computers starting in the 1960s, capable
identification methods have started.

2.6.2 Offline and Online Identification

If digital computers are utilized for the identification, then one differentiates between two
types of coupling between process and computer, see figure 2.6 (from [1]):

• Offline (indirect coupling)

• Online (direct coupling)

For offline identification, the measured data are first stored (e.g., data storage) and are
later transferred to the computer utilized for data evaluation and are processed there.

The online identification is performed parallelly to the experiment. The computer is
coupled with the process, and the data points are operated on as they become available. All
algorithms used in this work are of online type.
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Figure 2.6 – Different setups for the data processing as part of the identification.

2.7 TRANSIENT STATE, STEADY-STATE, AND UNSTEADY-STATE
RESPONSE

The following definition were extracted from [6].

Two parts compose a system response in the time domain, transient, steady-state, or
unsteady-state. Transient is the immediate system response to an input from an equilibrium
state. After the transient state, a system response can assume a steady-state or unsteady-
state. In a stable system, the output tends to a constant value when t→ ∞. When the system
response enters and stays in the threshold around the constant value, the system reaches the
steady state. The time the stable system takes to reach the steady-state is the settling time,
ts. On the other hand, if the response never reaches a final value or oscillates, surpassing
the threshold when t → ∞ the system is then at unsteady-state. Consequently, the system
outputs at unsteady-state vary with time during the on-time interval even induced by an
invariable input.
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2.8 SYNCHRONIZATION SYSTEMS

Most of the information contained in this section was extracted from [38].

2.8.1 Synchronization concepts

The analysis of synchronization phenomena in the evolution of dynamical systems has
been a subject of active investigation for a long time. In the 17th century, Christiaan Huy-
gens discovered that two very loosely coupled pendulum clocks (hanging from the same
beam) synchronized in phase. Recently, the search for synchronization schemes has shifted
to chaotic systems. In this sense, the emergence of collective (synchronized) dynamics is, in
general, not trivial.

In chaotic systems, two trajectories emerging from two different close-by initial condi-
tions separate exponentially over time. Therefore, chaotic systems intrinsically defy syn-
chronization because even two identical systems starting from slightly different initial con-
ditions would evolve in time unsynchronized manner (the systems states differences would
grow exponentially). This is a practical problem since initial experimental conditions are
never known perfectly. Therefore, the setting of some collective (synchronized) behavior in
coupled chaotic systems has great importance and interest. The synchronization of chaos
is when two (or many) chaotic systems (either equivalent or nonequivalent) adjust a given
property of their motion to a typical behavior due to coupling or forcing. This ranges from a
complete agreement of trajectories to the locking of phases.

A global system is formed by two subsystems that realize a drive–response (or master-
slave) configuration. This implies that one subsystem evolves freely and drives the evolution
of the other. So, the response system is slaved to follow the drive system’s dynamics (or a
proper function of the dynamics). Instead, it purely acts as an external but chaotic forcing for
the response system. In such a case, external synchronization is produced. In other words,
synchronization lies in adjusting the dynamic behavior of two dynamic systems, known as
master (drive) and slave (response), so their trajectories converge in time. The synchroniza-
tion of chaotic systems was first introduced in 1990 [39]. Typical examples of synchroniza-
tion applications are communication with chaos.

2.8.2 Synchronization types

There are many different synchronization types, namely complete or identical synchro-
nization (CS) [39, 40], phase (PS) [41] and lag (LS) synchronization [42], generalized syn-
chronization (GS) [43, 44], intermittent lag synchronization (ILS) [42, 45], imperfect phase
synchronization (IPS) [46], almost synchronization (AS) [47], antisynchronization [48], pro-
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jective synchronization [49], hybrid projective synchronization [50], generalized projective
synchronization [51, 52], modified projective synchronization (MPS) [53], function projec-
tive synchronization (FPS) [54], Q-S synchronization [55], full state hybrid projective syn-
chronization [56], impulsive synchronization [57], finite-time synchronization [58], and ex-
ponential synchronization [59].

CS was the first discovered and is the simplest form of synchronization in chaotic sys-
tems. It consists of perfect hooking of the chaotic trajectories of two systems which are
achieved utilizing a coupling signal to remain in step with each other over time. This mech-
anism was first shown to occur when two identical chaotic systems are coupled unidirection-
ally, provided that the conditional Lyapunov exponents of the subsystem to be synchronized
are all negative [39]. GS goes further in using completely different systems and associat-
ing the output of one system to a given function of the output of the other system [43, 44].
Coupled nonidentical oscillatory or rotatory systems can reach an intermediate regime (PS),
wherein locking of the phases is produced, while correlation in the amplitudes remains
weak [41]. The transition to PS for two coupled oscillators has been firstly characterized
regarding the Rössler system [41].

LS is a step between PS and CS. It implies the asymptotic boundedness of the difference
between the output of one system at time t and the output of the other shifted in time of a
lag time τlag [42]. This implies that the two outputs lock their phases and amplitudes but
with a time lag [42]. ILS means that the two systems are most of the time verifying LS. Still,
intermittent bursts of local nonsynchronous behavior may occur [42, 45] in correspondence
with the passage of the system trajectory in particular attractor regions wherein the local
Lyapunov exponent along a globally contracting direction is positive [42, 45]. Analogously,
IPS is a situation where phase slips occur within a PS regime [46]. Finally, AS results in the
asymptotic boundedness of the difference between a subset of variables of one system and
the corresponding subset of variables of the other system [47].

2.9 SECURE COMMUNICATION GENERATIONS

The concepts of this section were extract from [60].

2.9.1 First generation

The first generation was proposed in 1993, known as additive chaos masking [61] and
chaotic shift keying [62]. The additive chaos masking scheme consists of two identical
chaotic systems in both the transmitter and the receiver. Chaotic shift keying, also known as
chaotic switching, was designed to transmit a digital message signal.
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The scheme was proved that it could not be used under experimental conditions because
of the following drawbacks. Since the message signal is typically 20dB to 30dB weaker
than the chaotic mask, this method is susceptible to channel noise and parameter mismatch
between the chaotic transmitter and receiver systems. Furthermore, this scheme has a meager
degree of security [63] and is very robust to noise and parameter mismatch. However, it has
a low degree of security if the chaotic attractors are too far away in the bifurcation space.
However, since this is the first scheme of chaotic digital communication systems, many
possibilities exist for improving it.

2.9.2 Second generation

The second generation was proposed from 1993 to 1995, known as chaotic modulation.
This generation used two different ways to modulate message signals into chaotic carri-
ers. The first method, called chaotic parameter modulation [64], used message signals to
change the parameters of the chaotic transmitter. The second method, called chaotic non-
autonomous modulation [65], used the message signal to change the phase space of the
chaotic transmitter.

The message signal modulates some parameters of the chaotic system in the transmitter
such that its trajectories keep changing in different chaotic attractors. The second-generation
improved the degree of security but was still found unsatisfactory [66–68].

2.9.3 Third generation

The third generation was proposed in 1997 [69] to improve security to a much higher
level than the first two generations. We call this generation a chaotic cryptosystem. In this
generation, the combination of the classical cryptographic technique and chaotic synchro-
nization is used to enhance security. So far, this generation has had the highest security in all
the chaotic secure communication systems proposed and has not yet been broken.

2.9.4 Fourth generation

The fourth-generation employed impulsive chaotic synchronization to synchronize chaotic
transmitters and chaotic receivers. The synchronization signal for a third-order chaotic trans-
mitter only used ≤ 94Hz bandwidth. This bandwidth is much smaller than the 30kHz

bandwidth needed for transmitting synchronization signals in the other three generations.
The degree of security of the fourth generation is higher than that of the third generation.
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AN ADAPTIVE NEURAL IDENTIFIER
WITH APPLICATIONS TO FINANCIAL
AND WELDING SYSTEMS

The research outcomes of this chapter have been published as a journal paper entitled "An
adaptive neural identifier with applications to financial and welding systems" in [16]. This

chapter has extended and improved some parts compared to the original paper.

Modeling techniques are commonly separated into two groups: i) those based on mod-
eling by physic laws; and ii) those based on identification from data (black-box identifica-
tion) [70]. System identification lies in the estimation of the parameters of mathematical
models from their input and output measurements. In this subject, there are several possible
approaches to perform the parameter estimation, in discrete [71, 72] or continuous-time do-
main [73,74]. Many works have been made using Wiener [75,76] and Hammerstein [77–80]
models. The block-oriented models allow for building models from simple blocks to find
structures that are useful for several actual applications. Another approach lies in the use of
fractional order models [75,81,82], which have been used mainly in the area of electrochem-
ical energy storage systems [82]. For example, in [75], a fractional Wiener system identifi-
cation was considered. In [78], a nonlinear recursive identification method of Hammerstein
ARMAX systems was proposed. An additional approach lies in the use of an Extreme Learn-
ing Machine (ELM) [74, 80, 83]. The main feature of the ELM is the random initialization
of hidden nodes which remain unchanged during the learning process without iterative tun-
ing [74]. Another area considers the recursive [71] or iterative [84] identification of cascade
systems. In [85], an improved nonlinear subspace identification method was performed. As
can be seen, the area of system identification is widespread in the literature.

Neural identification models are relevant in predicting the behavior of dynamic systems
and providing a parameterization when the model is uncertain. In 1956, the term system

identification for the problem of parameter estimation of a black-box model from their input-
output relationship was first introduced by Zadeh [2]. In the sequence, from 1990, works on
identification systems using dynamic neural networks were performed. See, for instance,
[3]. In dynamic neural models their weights are usually adjusted using the backpropagation
algorithm or their robust modifications [3, 28, 86–90].

Several methods for identification and control based on linearly parameterized neural
networks have emerged in the literature. These works are motivated by the simple structure
of this kind of neural network, which simplifies the stability analysis. See, for example, the
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seminal work [91]. LPNN’s include a fairly large class of neural networks, such as high
order neural networks, radial basis function networks, adaptive fuzzy systems, and wavelet
networks [28, 92–94]. Also, neuro-fuzzy identification models have been extensively used.
See, for example, [95, 96] and the references therein. Other relevant approaches include the
employment of fuzzy wavelet neural networks [95], and sinusoidal rough-neural networks
[97]. There are also recent cases of the usage of neural networks in closed-loop identification
in which feedback control signals are used [4, 98–100].

It should be noted that most of the neural identification models found in the literature use
the series-parallel configuration [9, 71, 73–75, 80, 95, 97, 101–107]. However, for observer-
based control problems, the parallel approach is more valuable than the series-parallel model,
since the parallel configuration only employs the estimated states in the neural regressor
[108]. Also, in most works in the literature, see, for instance, [71, 73, 75, 80, 95, 105–107],
the adjustment of transient can not be made irrespective of the residual state error.

On the other hand, welding modeling is a challenging problem mainly owing to the com-
plexity of the welding process, which is, inherently, time-varying, strongly coupled, and
chaotic [109–113]. Several factors impact the welding process, such as welding voltage,
welding current, welding speed, wire-speed, shielding gas, welding wire, work-piece, move-
ment of the weld pool, and environmental conditions, among others. Hence, it is challenging
to obtain a model by using classical approaches. In this case, intelligent approaches, such as
neural networks and fuzzy logic, are more applicable [110, 111, 114, 115].

However, the application of these approaches in welding brings the following drawbacks:
i) neural networks and fuzzy logic modeling depend on a process of data collection which is
both very time-consuming and expensive [111, 116]; ii) rule explosion in fuzzy logic mod-
eling become uncontrollable with the increase of variables [111]; iii) off-line learning with
well-known drawbacks (overfitting and local minima [103]) is usually employed; iv) pro-
posed works are, in general, not reusable since they are only valid for a specific droplet trans-
fer mode in which their input/output relationships were acquired [117–121]; and v) proposed
approaches for weld geometry prediction suffer from lack of theoretical results related to the
stability and convergence of the approximation errors. See, for instance, [116, 122–124].

For example, in [116], a real-time weld geometry prediction is performed by using neural
networks optimized by both principal component analysis (PCA) and genetic algorithm. The
PCA algorithm preprocessed the sample data to remove the redundant information between
model variables and reduce the model complexity. Hence, [116] had a stiff data collection
process. In [122], a radial basis function neural network model to predict the weld bead
geometry in shielded metal arc welding was proposed. In [123], a neural network model for
predicting the depth of penetration and optimizing the welding bead was devised. In [124],
a simulation study using multiple regression analysis and adaptive neuro-fuzzy inference
system was accomplished. The main aim was to predict the complete weld bead geometry
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for a cold metal transfer welding process. All of these works presented relevant contributions
to the subject of welding prediction. However, the theoretical justification of the stability and
convergence of the prediction process was not considered. Furthermore, all of these works
are only applicable to a simple welding transfer mode, where the data for training of the
algorithms was obtained.

Motivated by the previous facts, a flexible neural identification model, which allows for
series-parallel and parallel configurations, is proposed in this chapter. Based on Lyapunov
theory and an identification model with suitable feedback terms, an adaptive law for the
weight is proposed to guarantee that the state error converges to an arbitrary neighborhood of
the origin while the weight error is uniformly bounded. Furthermore, the proposed algorithm
allows for the regulation of the identification transient without affecting the residual state
error, which is owing to both the enhanced weight law and the identification model. More
precisely, the following contributions of this chapter are presented.

1) The proposed scheme allows for the adjustment of the identification transient from
a design parameter that is not related to the size of the residual state error, in contrast to
[71, 73–75, 80, 95, 97, 101–107];

2) The proposed identification model allows for the use of parallel and serial-parallel
configurations, in contrast to [9, 71, 73–75, 80, 95, 97, 101–107];

3) The application of the proposed methodology for online weld geometry prediction
over multiple droplet transfer modes is accomplished. It allows for reusability and does not
suffer from overfitting or peaking phenomenon, in contrast to [116–124]. To the best of the
author knowledge, an online identification algorithm for welding processes over multiple
droplet transfer modes and based on Lyapunov theory is not present in the literature.

The chapter is organized as follows. Section 3.1 presents related concepts to linearly
parameterized neural networks. In Section 3.2, the problem to be studied and the main
assumptions were introduced. The identification model and state estimate error equation
are presented in Section 3.3. In Section 3.4, a weight law, which ensures that the residual
state error is ultimately bounded, is proposed. The proposed identifier is validated in Section
3.5, where two chaotic systems are considered. Finally, the conclusions of the chapter are
presented in Section 3.6.

3.1 LINEARLY PARAMETERIZED NEURAL NETWORKS

Linearly parameterized neural networks can be expressed as

ρnn

(
Ŵ , ζ

)
= Ŵσ (ζ) (3.1)
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where ρnn : ℜLnn 7→ ℜn is a function, Ŵ ∈ ℜn×Lρ is a weight matrix, ζ ∈ ℜLζ are the inputs
of the neural network and σ : ℜLζ 7→ ℜLρ is a nonlinear vector function whose arguments
are preprocessed by a scalar function s(·), and n, Lρ, Lζ , Lnn are integers strictly positive.
Normally used scalar functions s(·) include sigmoid (used in this chapter), hyperbolic tan-
gent, gaussian, Hardy’s, inverse Hardy’s multiquadratic [86]. This chapter is only interested
in the class of LPNNs for which σ(·) is bounded, that is,

∥σ (ζ)∥ ≤ σ0 (3.2)

where σ0 is a strictly positive constant.

3.2 PROBLEM STATEMENTS

Consider the following nonlinear differential equation:

ẋ = F (x, u, v, t) , x (0) = x0 (3.3)

where x ∈ X ⊂ ℜn is a n-dimensional state vector, u ∈ U ⊂ ℜm is a m-dimensional
admissible input vector, v ∈ V ⊂ ℜp is p-dimensional vector of time varying uncertain
variables, t is the time, and F : X × U × V × [0,∞) 7→ ℜn is a continuous map. It is
assumed that X,U, V are compact sets and F is an unknown map and is locally Lipschitzian
with respect to x in X × U × V × [0,∞), so that (3.3) has a unique solution through x0.

In this chapter, the following is established:

ASSUMPTION 3.2.1 On a region X × U × V × [0,∞)

∥h(x, u, v, t)∥ ≤ h0 (3.4)

h (x, u, v, t) = F (x, u, v, t)− f (x, u) (3.5)

where h are external or internal disturbances, f is an unknown map and h̄0, such that h̄0 >
h0 ≥ 0, is an unknown constant.

REMARK 3.2.1 The Assumption 3.2.1 is standard in the literature. The consideration of
disturbances explicitly is interesting in Lyapunov analysis to know the real impact of distur-
bances on the size of the residual state set.

The main goal is to design an identifier based on neural networks for (3.3) to ensure the
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convergence of the estimated state to an arbitrary neighborhood of the actual state, even in
the presence of approximation error and bounded disturbances.

3.3 IDENTIFICATION MODEL AND STATE ESTIMATE ERROR EQUA-
TION

Consider that f̄ is the best known approximation of f , P ∈ ℜn×n is a scaling matrix de-
fined as P = P T > 0, ḡ = P−1g, and g(x, u) = f(x, u)− f̄(x, u). After some mathematical
manipulations, the system (3.3) can be rewritten as

ẋ = f̄ (x, u) + P ḡ (x, u) + h (x, u, v, t) (3.6)

Note that if the designer has no previous knowledge of f , then f̄ is assumed as being a
zero vector. From (3.6), based on LPNNs, the nonlinear mapping ḡ(x, u) can be substituted
by the neural parametrization W ∗σ(x, u) plus the reconstruction error term ε(x, u). Then,
(3.6) becomes

ẋ = f̄ (x, u) + PW ∗σ (x, u) + Pε (x, u) + h (x, u, v, t) (3.7)

where σ (x, u) is a nonlinear vector function whose arguments are preprocessed by a scalar
sigmoidal function s(·) and W ∗ ∈ ℜn×L is an ideal matrix, only required for analytical
purposes, defined as

W ∗ := argmin
(Ŵ∈Γ)

{∥∥∥ḡ (x, u)− Ŵσ (x, u)
∥∥∥
∞

}
(3.8)

where x ∈ X , u ∈ U , Γ =
{
Ŵ ∈ ℜn×L : || Ŵ ||F < αŵ

}
, αŵ is a strictly positive constant,

and Ŵ is an estimate of W ∗. The reconstruction error term ε (x, u) can be defined as

ε (x, u) := ḡ (x, u)−W ∗σ (x, u) (3.9)

Since X , U are compact sets and by using (3.2), the following can be assumed.

ASSUMPTION 3.3.1 On a region X × U , the approximation error is upper bounded by
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∥ε(x, u)∥ < ε0 (3.10)

ε̄0 > ε0 ≥ 0 (3.11)

where ε̄0 is an unknown constant.

The Assumption 3.3.1 is standard in identification. Additionally, note that the unique-
ness of ||ε(x, u)|| is ensured by (3.8), but ε(x, u) and W ∗ might be nonunique. The W ∗ is
introduced as being the value of Ŵ that minimizes the L∞-norm difference between ḡ(x, u)
and Ŵσ(x, u). The scaling matrix P in (3.6) is defined to manipulate the performance of the
identification process.

The proposed identification model is

˙̂x = − (L− ψγW I) (x̂− x) + PŴ σ̂ (3.12)

where x̂ is the estimated state, γW > 0, ψ > 0, σ̂ = σ (x, u) for the series-parallel and
σ̂ = σ (x̂, u) for the parallel configuration [24], σ̂ is a nonlinear vector function whose ar-
guments are preprocessed by a sigmoidal scalar function s(·), and L ∈ ℜn×n is a positive
definite feedback gain matrix introduced to attenuate the effect of the perturbations. It will
be demonstrated that the identification model (3.12) and the adjustment law for Ŵ , to be
proposed in the next section, ensure the convergence of the residual state error to an arbi-
trary neighborhood of the origin, even in the presence of reconstruction error and bounded
disturbances.

Assuming that the state estimation error is x̃ = x̂− x, from (3.7) and (3.12), results

˙̃x = − (L− ψγW I) x̃+ PW̃ σ̂ + PW ∗σ̃

− Pε (x, u)− h (x, u, v, t)
(3.13)

where W̃ = Ŵ −W ∗, σ̃ = 0 for the series-parallel identification model and σ̃ = σ (x̂, u)−
σ (x, u) for the parallel identification model.

3.4 ADAPTIVE WEIGHT LAW AND STABILITY ANALYSIS

Before presenting the main theorem, some facts are stated, used in the stability analysis.
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FACT 3.4.1 In the problem of this chapter, the following equation is valid:

tr
(
W̃ T x̃σT

)
= x̃T W̃σ (3.14)

FACT 3.4.2 Let W ∗,W0, Ŵ , W̃ ∈ ℜn×L. Then, with the definition of W̃ = Ŵ −W ∗, the
following equation is true:

2tr
[
W̃ T

(
Ŵ −W0

)]
=
∥∥∥W̃∥∥∥2

F
+
∥∥∥Ŵ −W0

∥∥∥2
F
− ∥W ∗ −W0∥2F (3.15)

FACT 3.4.3 Let A ∈ ℜc×d, b ∈ ℜc, where c > 0 and d > 0 are whole numbers. Then, the
following expressions are true:

tr
(
AT + A

)
= 2tr (A) (3.16)

−bTAb ≤ −λminb
T (A) b (3.17)

where λ(A) is its eigenvalues

FACT 3.4.4 Consider that a, b and c ∈ ℜ+, so

a ∥x̃∥2 − b ∥x̃∥ − c > 0 (3.18)

∥x̃∥2 − b

a
∥x̃∥+ b2

4a2
>
c

a
+

b2

4a2
(3.19)

(
∥x̃∥ − b

2a

)2

>
4ac+ b2

4a2
(3.20)

∥x̃∥ > b±
√
4ac+ b2

2a
(3.21)

As b−
√
4ac+ b2 < 0 and ∥x̃∥ ≥ 0, this is an invalid solution, then

∥x̃∥ >
b
2
+
√
ac+

(
b
2

)2
a

(3.22)

FACT 3.4.5 Consider that a, b, and c ∈ ℜ+, then

m (x̃) = −a ∥x̃∥2 + b ∥x̃∥+ c (3.23)

The derivative of equation (3.23) is equal to
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ṁ = −2a ∥x̃∥+ b (3.24)

The maximum value of (3.23) occurs when ṁ = 0, then

∥x̃∥ =
b

2a
(3.25)

Replacing this value in (3.23), then the maximum value of (3.23) is equal to

m (x̃) =
4ac+ b2

4a
(3.26)

FACT 3.4.6 Let a1, a2, a3, a4 ∈ ℜ+. Consider the following logistic sigmoid function

s(a4) =
a1

a2 + a3·e−a4
(3.27)

Note that regardless of the values of a4, the value of s is bounded:

a1
a2 + a3

< s <
a1
a2

(3.28)

REMARK 3.4.1 Note that σ̃ (x̂(t), x(t), u(t)) is bounded, in other words, there are a σsup
such that σsup ≥ sup {σ̃ (x̂(t), x(t), u(t))} for all t ≥ 0.

The main theorem of this chapter is stated and proved in this section.

THEOREM 3.4.1 Consider the class of general nonlinear systems defined in (3.3), which
satisfies the Assumptions 3.2.1 and 3.3.1, and the identification model (3.12). If the weight
learning law is given by

˙̂
W = −2γW

[
ψ
(
Ŵ −W0

)
+ x̃σ̂T

]
(3.29)

then x̃ and W̃ are uniformly bounded and x̃ is uniformly ultimately bounded with ulti-

mate bound ρ2, where ρ2 = b
2λmin(Q)

+

√
λmin(Q)c+( b

2
)2

λmin(Q)
, b = 2

(
ε̄0 + ∥P−1∥F h̄0 + ȳ

)
, c =

ψ ∥W ∗ −W0∥2F , Q = LTP−1 +P−1L, W0 is a constant matrix, ȳ = 0 for the series-parallel
identification model, ȳ = σsup ∥W ∗∥F for the parallel identification model, and σsup = sup

σ̃ (x̂(t), x(t), u(t)) for all t ≥ 0.

Proof.
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Consider the following Lyapunov function candidate:

V = x̃TP−1x̃+
tr
(
W̃ Tγ−1

W W̃
)

2
(3.30)

The time-derivative of (3.30) results

V̇ = x̃TP−1 ˙̃x+ (x̃TP−1 ˙̃x)T + γ−1
W tr

(
W̃ T ˙̃W

)
(3.31)

By replacing (3.13) and (3.29) in (3.31), implies

V̇ = −x̃T
(
P−1L+ LTP−1

)
x̃− ψγW [x̃TP−1x̃

+
(
x̃TP−1x̃

)T
] + x̃T

(
W̃ σ̂ +W ∗σ̃ − ε− P−1h

)
− 2ψtr

[
W̃ T

(
Ŵ −W0

)]
+ [x̃T (W̃ σ̂ +W ∗σ̃ − ε

− P−1h)]T − 2tr
(
W̃ T x̃σ̂T

)
(3.32)

Employing the Facts 3.4.1 and 3.4.2 in (3.32) results

V̇ ≤ −λmin (Q) ∥x̃∥2 − 2ψγW x̃
TP−1x̃

+ 2 ∥x̃∥
(
∥ε∥+

∥∥P−1
∥∥
F
∥h∥+ ȳ

)
− ψ

(∥∥∥W̃∥∥∥2
F
+
∥∥∥Ŵ −W0

∥∥∥2
F
− ∥W ∗ −W0∥2F

) (3.33)

By using ∥ε∥ < ε̄0 and ∥h∥ < h̄0, (3.33) implies

V̇ ≤ −∥x̃∥2 [λmin (Q)] + ∥x̃∥
(
2ε̄0 + 2

∥∥P−1
∥∥
F
h̄0 + 2ȳ

)
+ ψ ∥W ∗ −W0∥2F − ψ

∥∥∥W̃∥∥∥2
F
− ψ

∥∥∥Ŵ −W0

∥∥∥2
F
− 2ψγW x̃

TP−1x̃
(3.34)

By considering that a = λmin (Q), b = 2(ε̄0+∥P−1∥F h̄0+ ȳ), and c = ψ ∥W ∗ −W0∥2F ,
where a > 0, b ≥ 0, and c ≥ 0, results

V̇ ≤ −a ∥x̃∥2 + b ∥x̃∥+ c

− ψ
∥∥∥W̃∥∥∥2

F
− ψ

∥∥∥Ŵ −W0

∥∥∥2
F
− 2ψγW x̃

TP−1x̃
(3.35)

Case 1: Boundedness of W̃ and x̃: Based on (3.35), then
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V̇ ≤ −a ∥x̃∥2 + b ∥x̃∥+ c− ψ
∥∥∥W̃∥∥∥2

F
(3.36)

In this way, V̇ < 0 as long as

∥∥∥W̃∥∥∥
F
>

√
4ac+ b2

4aψ
:= ρ1 (3.37)

or

∥x̃∥ >
√
4ac+ b2 + b

2a
:= ρ2 (3.38)

Thus, since ρ1 and ρ2 are constants, by using Lyapunov arguments [22], it can be
established that W̃ and x̃ are uniformly bounded since V̇ < 0 outside of compact set Ω,
where Ω = {W̃ , x̃ :

∥∥∥W̃∥∥∥
F
≤ ρ1 or ∥x̃∥ ≤ ρ2}. Observe that if, at any time,

∥∥∥W̃∥∥∥
F

or

∥x̃∥ escape of the residual set Ω, then V̇ < 0, and it forces the convergence of the weight
and state error to the residual set Ω (Figure 3.1).

Case 2: Identification transient: From (3.35), then

V̇ ≤ −αV + αV − a ∥x̃∥2 + b ∥x̃∥+ c

− ψ
∥∥∥W̃∥∥∥2

F
− ψ

∥∥∥Ŵ −W0

∥∥∥2
F
− 2ψγW x̃

TP−1x̃
(3.39)

or
V̇ ≤ −αV − ψ

∥∥∥Ŵ −W0

∥∥∥2
F

+
∥∥∥W̃∥∥∥2

F

(
α

2γW
− ψ

)
+ x̃TP−1x̃ (α− 2ψγW )

(3.40)

By considering that α = 2ψγW results

V̇ ≤ −αV (3.41)

By using Lemma 3.2.4 [24], it can be established that:

V (t) ≤ e−α(t−t0)V (t0) (3.42)

∀t ≥ t0 ≥ 0 (3.43)

Assuming that t0 = 0, then
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θ

Figure 3.1 – Bounded set.

V (t) ≤ V (0)e−αt (3.44)

In addition, by defining

VM := sup
(x̃,W̃ )∈Ω

{
V
(
x̃, W̃

)}
(3.45)

and if V (t) = VM , then a time interval in which x̃ and W̃ reach Ω can easily be obtained,
i.e.,

ln [VM ] ≤ −αt+ ln [V (0)] (3.46)

or

t ≤
ln
[
V (0)
VM

]
α

(3.47)

REMARK 3.4.2 In (3.38), the size of the residual state error is inversely proportional to
λmin(Q); hence, by changing the values of L and P , the residual state error size can be
reduced, even in the presence of bounded disturbances.

REMARK 3.4.3 The identification model and learning law were chosen to allow for the
adjustment of the transient independent from the residual state error. Note that t in (3.47)
is the maximum time for x̃ and W̃ reach Ω, where the identification transient is inversely
proportional to α. Since α = 2ψγW , the manipulation of the identification transient is
possible only by changing γW , since the ultimate bound ρ2 in (3.38) does not depend on γW .

REMARK 3.4.4 The uncoupling between identification transient and residual state error was
mainly obtained by the introduction of the design parameter γW jointly in the identification
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model (3.12) and weight law (3.29). The employment of this parameter had a positive impact
on the Lyapunov analysis, which allowed us the obtainment of (3.38) and, finally, (3.47).

3.5 SIMULATION

In this section, two examples are presented to validate the theoretical results. The first
example, Section 3.5.1, shows the independence between the transient and residual state
error using a serial-parallel configuration. In Section 3.5.2, a comparison is made between
chapter identification algorithm and that in [74]. The second example, an application of
the proposed methodology to a challenging problem, is presented in Section 3.5.3, where a
parallel configuration was used.

In all simulations to obtain the numerical solutions were used the solver ode45 of Matlab
/Simulink®, with variable-step, and relative and absolute tolerance of 1e − 10, in an AMD
Ryzen 7 1700 processor, Windows 10. Figure 3.2 shows a flow diagram with the implemen-
tation of the proposed method. Note that the blue blocks show the unknown information
(black-box identification), and the other blocks the known information.

unknown continuous map input

unknown continuous map

continuous
map outputs

system
identification

choose
the initial
conditions

estimated
states

Adjust the
parameters

compare data

Figure 3.2 – Flow diagram.
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3.5.1 Hyperchaotic Finance System

Consider the perturbed hyperchaotic finance system [125, 126], which is described by

ẋ1 = x3 + (x2 − a)x1 + x4 + dx1

ẋ2 = 1− bx2 − x21 + dx2

ẋ3 = −x1 − cx3 + dx3

ẋ4 = −dx1x2 − kx4 + dx4

(3.48)

where x1,x2, x3, and x4 are the interest rate, investment demand, price exponent, and average
profit margin, respectively, dx1 , dx2 , dx3 , and dx4 are unknown disturbances, and a = 0.9,
b = 0.2, c = 1.5, d = 0.2, and k = 0.17 are known parameters. The system is autonomous,
that is, u = 0.

To identify the uncertain system (3.48), the proposed identification model (3.12) and the
adaptive law (3.29) were implemented. The initial conditions for the chaotic system and
identification model were x1(0) = 1, x2(0) = 2, x3(0) = 0.5, x4(0) = 0.5, x̂1(0) = −2,
x̂2(0) = −2, x̂3(0) = −2, x̂4(0) = −2, and Ŵ (0) = 0 to evaluate the performance of the
proposed algorithm under adverse initial conditions. The design matrices were chosen as
P = 30I and L = 2I , where I is the identity matrix. The nonlinear vector function σ is
equal to

σT =
[s(x1), s(x2), s(x3), s(x4)

s2(x1), s2(x2), s2(x3), s2(x4)]
(3.49)

and s(·) = 5
1+e−0.5(.) . The design parameters ψ and W0 were chosen as ψ = 1 and W0 =[

I | 0
]
.

To verify the robustness of the proposed method, at t = 5s is introduced the presence
of disturbances of the form dx1 = 0.7cos(6t), dx2 = cos(5t), dx3 = 0.9cos(4t), and dx4 =

0.8sin(3t). From (3.47), it can be seen that the parameter α affects the transient time. Once
α = 2ψγW , the parameter γW can be used to control the transient, since γW is not related
to the size of the residual state error, as can be seen in (3.12). Three different values of γW
were used for three different simulations. The three values chosen for γW are γW = 0.5,
γW = 5, and γW = 50. Figures 3.3 - 3.6 show the performances obtained in the estimation
of the states for different values of γW . The Table 3.1 shows the root mean square value error
(RMSE) for the different values of γW .
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Figure 3.3 – Performance in the estimation of the interest rate (x1).
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Figure 3.4 – Performance in the estimation of the investment demand (x2).
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Figure 3.5 – Performance in the estimation of the price exponent (x3).
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Figure 3.6 – Performance in the estimation of the average profit margin (x4).

Table 3.1 – Root mean square of state errors for t = [0 4] seconds.

Root Mean Square of State Errors
γW 0.5 5 50

e1rms 0.794721 0.650665 0.482688
e2rms

1.059300 0.867260 0.643366
e3rms

0.662322 0.542299 0.402297
e4rms 0.662369 0.542317 0.402315

erms 0.811025 0.664020 0.492596

Note from Figures 3.3 - 3.6 that the residual state error, after the transient, is approxi-
mately null for all situations. These figures also depict that the transients are different de-
pending on the design parameter γW . Table 3.1 shows the RMSE for different γW value.
Small γW correspond to large RMSE and transient. Also, large γW correspond to small
RMSE and transient, as depicted in Table 3.1 and Figure 3.2.

Tables 3.2 - 3.8 show results when changing the parameters of ψ, L and P . Larger values
of ψ lead to lower RMSE values in all cases. This is expected because of larger values of ψ
lead to a shorter transient duration. In the case of L and P , it is a little more complex. In
the case of L, it is observed that when γW is small, a larger value of L leads to a smaller
transient and consequently a smaller RMSE, but for high values of γW , changes in L do not
have much effect. In the case of P , one notices that when γW is raised, an increase in P
leads to a higher RMSE value. The reason for this is that higher values of P collaborate to
have a longer transient duration.
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Table 3.2 – Root mean square of state errors for t = [0 10] seconds and ψ = 1, L = 2I, and P
= 30I.

Root Mean Square of State Errors
γW 0.5 5 50

e1rms
0.628738 0.498952 0.312479

e2rms
0.838058 0.665049 0.416507

e3rms 0.524012 0.415878 0.260504
e4rms

0.524047 0.415881 0.260483

erms 0.641634 0.509201 0.318912

Table 3.3 – Root mean square of state errors for t = [0 10] seconds and ψ = 0.1, L = 2I, and
P = 30I.

Root Mean Square of State Errors
γW 0.5 5 50

e1rms 0.704385 0.673863 0.548365
e2rms

0.939192 0.898458 0.731131
e3rms

0.586971 0.561556 0.456977
e4rms 0.586990 0.561560 0.456978

erms 0.718901 0.687751 0.559668

Table 3.4 – Root mean square of state errors for t = [0 10] seconds and ψ = 10, L = 2I, and P
= 30I.

Root Mean Square of State Errors
γW 0.5 5 50

e1rms
0.436541 0.266011 0.155488

e2rms 0.578026 0.352088 0.206001
e3rms

0.367531 0.229060 0.134457
e4rms

0.366604 0.226480 0.132730

erms 0.445148 0.272501 0.159446

Table 3.5 – Root mean square of state errors for t = [0 10] seconds and ψ = 1, L = 0.2I, and
P = 30I.

Root Mean Square of State Errors
γW 0.5 5 50

e1rms
0.739183 0.513046 0.313774

e2rms
0.985318 0.683835 0.418233

e3rms 0.616103 0.427624 0.261582
e4rms

0.616123 0.427628 0.261562

erms 0.754375 0.523584 0.320233
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Table 3.6 – Root mean square of state errors for t = [0 10] seconds and ψ = 1, L = 20I, and P
= 30I.

Root Mean Square of State Errors
γW 0.5 5 50

e1rms
0.393517 0.408435 0.299869

e2rms
0.524287 0.544399 0.399698

e3rms 0.327790 0.340448 0.249996
e4rms

0.327887 0.340443 0.249974

erms 0.401429 0.416827 0.306043

Table 3.7 – Root mean square of state errors for t = [0 10] seconds and ψ = 1, L = 2I, and P
= 3I.

Root Mean Square of State Errors
γW 0.5 5 50

e1rms
0.609060 0.462488 0.283054

e2rms 0.812111 0.616407 0.377257
e3rms

0.507335 0.385395 0.235916
e4rms

0.507487 0.385423 0.235898

erms 0.621403 0.471930 0.288835

Table 3.8 – Root mean square of state errors for t = [0 10] seconds and ψ = 1, L = 2I, and P
= 300I.

Root Mean Square of State Errors
γW 0.5 5 50

e1rms 0.635612 0.510440 0.327864
e2rms

0.847229 0.680361 0.437013
e3rms

0.529808 0.425459 0.273330
e4rms 0.529814 0.425460 0.273312

erms 0.648681 0.520927 0.334615

In conclusion, an increase of γW does not affect the residual state error, but the transient is
reduced. Inversely, a decrease of γW does not affect the residual state error, but the transient
is extended since the ultimate bound of the state error does not depend on γW . Note that the
identification performed well, even in the presence of disturbances at t = 5s.

3.5.2 Comparison

The parameters for the comparison are the same as in [74]. Three simulations were per-
formed to verify the performance of the two identification algorithms. The first simulation
compares the performance related to the residual state error. The second and third simu-
lations were made to observe differences in the transient period. To identify the uncertain
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system (3.48), the proposed identification model (3.12) and the adaptive law (3.29) were im-
plemented. In these two simulations, the initial conditions of the identification system were
the same as in the Subsection 3.5.1. The nonlinear vector function σ is defined in (3.49)
where s(·) = 5

1+e−0.5(.) and the design parameters ψ and W0 were chosen as ψ = 1 and

W0 =
[
I | 0

]
.

In the first simulation, a high disturbance was selected to better check the potential of
the algorithms. The disturbance was chosen to be equal to dx1 = 8000cos(9t), dx2 =

10000cos(6t), dx3 = 6000sin(15t) + 10000e−t, and dx4 = 6000sin(15t) + 4000cos(20t).
The parameters chosen for this simulation were L = 140000I , P = 15L, ψ = 0.00005, and
γW = 5.
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Figure 3.7 – Comparison of the state error norm.

Table 3.9 – Root mean square of state errors for t = [0 10] seconds and consider that ψ =
5·10−5, L = 14·I·104, and P = 21·I·105.

Root Mean Square of State Errors
erms in proposed algorithm

ψ L P 0.050721
0.1ψ L P 0.051067
10ψ L P 0.052372
ψ 0.1L P 0.118153
ψ 10L P 0.016807
ψ L 0.1P 0.052867
ψ L 10P 0.043514

As can be seen in Figure 3.7, the performance of both algorithms is satisfactory, and the
state error norms are close to zero. This is also because both schemes use LPNNs, but it
should be noted that the algorithm proposed in [74] induces a state error far from zero. The
proposed algorithm performance was better due to the adjustment of the design parameters.
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Table 3.9 shows the different RMSE values for changes in the parameters ψ, L, and P .
Changes in the value of ψ do not have much impact on the RMSE values, although it shows
a slight increase in the RMSE value as expected in (3.38). Larger values of L and P lead to
higher RMSE values, as expected.

In the second and third simulations, the disturbances were chosen as dx1 = 5cos(9t)x1,
dx2 = 15cos(6t)x2x3, dx3 = x4[sin(15t) + 10e−t], and dx4 = 3sin(15t) + 2cos(20t). The
parameters chosen for this simulation were L = 2I , P = 15L, and ψ = 1. In the second
simulation γW = 0.5 and in the third γW = 50. The Figures 3.8 and 3.9 shows the results of
the simulations.
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Figure 3.8 – Comparison of the state error norm when γw = 0.5.
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Figure 3.9 – Comparison of the state error norm when γw = 50.
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Table 3.10 – Root mean square of state errors for t = [0 10] seconds and consider that ψ = 1,
L = 2·I , and L = 30·I .

Root Mean Square of State Errors in the Proposed Algorithm
erms when γW = 0.5 erms when γW = 50

ψ L P 2.897384 0.610932
0.1ψ L P 3.233244 1.606452
10ψ L P 1.686113 0.271689
ψ 0.1L P 3.374821 0.614588
ψ 10L P 1.499498 0.579801
ψ L 0.1P 2.909199 0.626446
ψ L 10P 2.645071 0.783904

It should be noted that from the Figures 3.8 and 3.9, the residual state error, after the tran-
sient, is approximately null for both algorithms. However, there is an essential difference in
both transients. Chapter approach allows for simple manipulation of the transient irrespec-
tively of the residual state error, which can be seen in Figures 3.8 and 3.9. This feature is the
main advantage of the chapter scheme compared with that in [74].

Table 3.10 shows results when changing ψ, L, and P . Larger values of ψ and L lead to
lower RMSE values in all cases, and larger P values lead to lower RMSE values in most
cases. When γW = 50, a higher value of P led to a higher value of RMSE because the
transient duration increased. The results of Table 3.10 were different from tables 3.3 - 3.8
because here there were changes not only in the transient, but also in the residual state error.
So it was expected that larger values of ψ would lead to larger transients, and larger values
of L and P would lead to smaller RMSE.

3.5.3 Welding System

Consider that the GMAW can be modeled by (3.3), where the input vector is defined by
u = [ui], i = 1, 2, 3 and the state vector is defined by x = [xj], j = 1, 2, 3, 4, 5, 6. More
specifically, u1 is the nominal wire speed, u2 is the open-circuit voltage, u3 is the nominal
welding speed, x1 is the welding current, x2 is the arc voltage, x3 is the stick out, x4 is the
width, x5 is the reinforcement, and x6 is the penetration of the weld bead. The aim is to
obtain a parameterization based on neural networks and identify their weights through stable
adaptive laws.

Figure 3.10 shows the experimental setup that was implemented to measure the actual
values of the welding current, arc length, arc voltage, and stick out, as well as the geometric
parameters of the weld bead, such as width, reinforcement, and penetration. The welding
source used was a multiprocess TransPuls Synergic 5000 Fronius; the GMAW welding torch
is a Watercooled TTW 4500 Robacta, which uses a welding wire AWS ER 316, 1.2 mm, and
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the shielding gas was 96% argon plus 4% CO2 with a flow rate of 15 l/min. The test piece
was a sheet of 1020 steel with a thickness of 6 mm, width 35 mm, and length of 300 mm,
which is moved by a prismatic position table actuated by a ball screw and stepper motor. A
program in Labview® was designed to control the speed of the table (welding speed), the
firing of the GMAW process, the welding current, and the ending of the process. The NI
USB 6009, National Instruments, the ROB 5000, and Fronius were used as communication
interfaces with the welding source. A web camera of 2 megapixels was adapted for infrared
at an acquisition frequency of 30-50 frames per second (fps). A High pass infrared filter of
1000 nm, an infrared attenuator for wavelength above 800 nm (attenuator and filter high-
pass), and a zoom lens of 18-108 mm/F2.5 were also employed.

The infrared camera was fixed at a distance of 0.8 m from the target to view the weld
pool laterally. In other words, the angles between the lens axis and the welding were 90◦C,
and with an inclination of 0◦C to the horizontal plane. However, the width of the bead was
filmed using an arrangement of mirrors near the torch. The aim was to focus on the width
and reinforcement bead during the welding process. The camera position and mirrors al-
lowed for the observation of these variables. On the other hand, to estimate the penetration,
it was necessary to longitudinally cut the weld bead and chemically process it to enhance
the obtained images (Figures 3.17 - 3.19). All pictures were then recorded on the computer,
which controls the camera, to be subsequently synchronized, processed, and analyzed. The
experiment was accomplished with a base metal at room temperature (25 ◦C), welding volt-
age ranging from 17 to 32 V, welding speed ranging from 6.5 to 13.5 mm/s, and wire-speed
ranging from 4.7 to 8.3 m/min, as depicted in Figures 3.11 - 3.13. All parameters are listed in
Table 3.11, the obtained measurements are included in Figures 3.14 - 3.19, and the estimated
weight norm is shown in Figure 3.20.
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Table 3.11 – Welding parameters.

Material 1020 steel of 300 X 35 X 6 mm
Type of gas 96% Argon, 4% CO2
Gas flow 15 L/min
Electrode Negative
Wire 15 GMAW - AWS Stainless

ER 316, 1.2 mm
Camera acquisition rate 50 fps
(frames per second -fps)
Plate-electrode distance 3 mm
Open circuit voltage 17 - 32 V
Welding speed 3 mm
Plate-electrode distance 3 mm
Open circuit voltage 17 - 32 V
Welding speed 6.5 to 13.5 mm/s

with variable acceleration
Wire speed 4.7 to 8.3 m/min

Figure 3.10 – Experimental setup: (1) web camera with 2.0 megapixels, 50 fps, and adapted
for infrared, (2) high pass infrared filter of 1000 nm and 1050 nm, (3) infrared attenuator for
wavelength above 800 nm (attenuator and filter high-pass), (4) telephoto lens with a zoom of
18 - 108 / 2.5, and (5) polarizer.
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Figure 3.11 – Nominal Wire Speed (m/min).
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Figure 3.12 – Nominal Open Circuit Voltage (V).
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Figure 3.13 – Nominal Welding Speed (m/s).
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Figure 3.14 – Performance in the estimation of the welding current (x1).
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Figure 3.15 – Performance in the estimation of the arc voltage (x2).
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Figure 3.16 – Performance in the estimation of the stick out (x3).
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Figure 3.17 – Performance in the estimation of the width (x4).

Figure 3.18 – Performance in the estimation of the reinforcement (x5).
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Figure 3.19 – Performance in the estimation of the penetration (x6).
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Figure 3.20 – Estimation Weight Norm.

The proposed identification model (3.12) and the adaptive law (3.29) were implemented.
The initial conditions for the identification model were x̂1(0) = 0, x̂2(0) = 0, x̂3(0) = 0,
x̂4(0) = 0.01, x̂5(0) = 0, x̂6(0) = 0, and Ŵ (0) = 0 to evaluate the performance of the
proposed algorithm under adverse initial conditions. The design matrices were chosen as

L = P = 20



5 0 0 0 0 0

0 4 0 0 0 0

0 0 10 0 0 0

0 0 0 4 0 0

0 0 0 0 1.1 0

0 0 0 0 0 1


(3.50)
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The nonlinear vector function σ was selected as

σT =
[s(x̂1), s(x̂2), s(x̂3), s(x̂4), s(x̂5), s(x̂6),

s2(x̂1), s2(x̂2), s2(x̂3), s2(x̂4), s2(x̂5), s2(x̂6)]
(3.51)

The chosen activation function was s(·) = 5
1+e−0.5(·) . The design parameters ψ and γW

were chosen as ψ = 0.001 and γW = 0.001. W0 was chosen as W T
0 =

[
I

0

]
. Figures 3.11 -

3.13 show the inputs, and Figures 3.14 - 3.19 show the estimation performance of the states,
and Figure 3.20 show the Frobenius norm of the weight matrix. Observe that the simulation
corroborates the theoretical results since the estimated states converge to a neighborhood of
the actual states, and the residual state error and transient can be adjusted according to the
user requirements.

Table 3.12 shows results when changing ψ, L, P , and γW . No significant changes in
values from RMSE to changes in ψ were observed. Lower values of RMSE were observed
for higher values of L in all cases and larger values of P and γW in most cases. The cases
in which the RMSE increased with the increase of P must have happened because of small
transient appearances after not derivable points in figures 3.18 and 3.19. An increase in γW
led to lower transient and lower RMSE values.

Table 3.12 – Root mean square of state errors for t = [0 10] seconds and consider that ψ = 1,
L = 2·I , and L = 30·I .

Root Mean Square of State Errors in the Proposed Algorithm
erms of x1 erms of x2 erms of x3 erms of x4 erms of x5 erms of x6

ψ L P γW 39.000338 1.955200 0.330874 0.397476 0.072766 0.129421
0.1ψ L P γW 39.000328 1.955198 0.330874 0.397476 0.072766 0.129421
10ψ L P γW 39.000439 1.955217 0.330874 0.397477 0.072767 0.129421
ψ 0.1L P γW 69.034589 3.277834 0.562885 0.704905 0.132829 0.132829
ψ 10L P γW 28.495272 1.433543 0.244221 0.293705 0.054324 0.095736
ψ L 0.1P γW 38.828820 1.954766 0.331411 0.398783 0.073730 0.128943
ψ L 10P γW 37.621412 1.894895 0.333088 0.393300 0.393300 0.132241
ψ L P 0.1γW 38.828112 1.953731 0.331417 0.398784 0.073731 0.128944
ψ L P 10γW 37.590665 1.896355 0.335465 0.394251 0.072550 0.132494

It should be noted that, resulting from the stimulus used to excite the process (open-
circuit voltage, welding speed, and wire-speed), the welding oscillates between different
transfer modes (short-circuit, globular, and spray). To the best of the author’s knowledge, an
identification scheme to tackle different transfer modes of welding in a unified form has not
yet been proposed in the literature.
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3.6 SUMMARY

In this chapter, a unified method to identify uncertain nonlinear systems has been pro-
posed. Based on series-parallel and parallel configurations, a neural identification model
to make both all errors uniformly bounded as well as the state error uniformly ultimately
bounded was introduced. It has been shown that the proposed scheme allows for the ma-
nipulation of the identification transient without changing the ultimate bound for the state
error. Simulations have been performed to validate the theoretical results and depict the
peculiarities and application of the proposed method. Future works include the application
of the proposed identification scheme to observation and output feedback control problems,
like [127, 128], where the states were estimated through an adaptive observer.
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SCHEME FOR SYNCHRONIZATION AND
ENCRYPTION OF A 3D-CHAOTIC
LORENZ SYSTEM AND LYAPUNOV
ANALYSIS

The research outcomes of this chapter have been published as a conference paper entitled

"Scheme for chaos-based encryption and lyapunov analysis" in [10]. This chapter has ex-

tended and improved some parts compared to the original paper.

Many synchronization schemes of chaotic systems appeared in the literature [129–131],
mainly with the purpose of secure telecommunication. The objective of these works is to
encrypt confidential information with the use of chaotic circuits. Thereunto, it is necessary
to use a transmitter system based on chaotic circuits to encode confidential information and
another chaotic system to receive to reconstruct the encoded message. Among all different
proposals found in the literature, for example, chaotic masking and parameters modulation
[132], it is observed that the first can be implemented with low costs since the system can be
built via analog electronics.

However, the proposals found in the literature usually have a lot of common problems,
such as the use of chaotic systems completely actuated as receivers. In other words, it is as-
sumed equality of dimensions between the state and input, so the control signal is presented
in all the differential equations that define the slave chaotic system. Besides that, the lack of
disturbances in the stability analysis is the biggest and most relevant problem that negatively
impacts the robustness of the proposed algorithms. Note that disturbances, internal or ex-
ternal, are inevitable to analog electronics implementations once the electronic components
have, for example, uncertainties, heating, nonideal behavior. On the other hand, disturbances
are inevitable in the transmission lines in real applications.

More specifically, in [133–135] it is proposed schemes for secure telecommunication
based on Lyapunov stability theory and in different nonlinear control techniques (Backstep-
ping, sliding mode, adaptive, projective, multi-scroll, and so on [133–139]). However, most
papers consider a control dimension equal to the chaotic system order [53, 140, 141] and do
not consider the presence of disturbances in the stability analysis. In [142], it is considered
the presence of multiplicative disturbances and control with reduced order, but the system
requires the use of an observer to estimate the states that are not available to measure, which
makes the system complex.
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This chapter intends to design a secure telecommunication system that solves the men-
tioned problems based on the information above. The design is based on Lyapunov stability
theory [24]; however, in oppose to [143], and [144] in the analysis, it is considered the pres-
ence of bounded disturbances in all the differential equations in the slave chaotic system
explicitly. More precisely, a Lorenz system with a simple control that acts in only one differ-
ential equation makes the design easy to implement via analog components. More exactly,
the synchronization scheme of this chapter presents the following characteristics.

1) One of the first underactuated synchronization schemes for Lorenz systems is pro-
posed.

2) The control is one-dimensional.

3) The synchronization scheme uses a simple proportional control.

4) The proposed scheme considers the presence of disturbances in all states in the stability
analysis.

5) The proposed scheme is applied to secure communication.

As far as the author knows, no work prior to this chapter combined all these characteristics
simultaneously, which is the main contribution of this chapter.

The chapter is organized as follows. In Section 4.1, the problem and main assumptions
are introduced. In Section 4.2, the synchronization error, the control law, and the Lyapunov
analysis are presented. In Section 4.3, the secure communication case is analysed. Section
4.4 shows simulations and the application of the proposed method in secure telecommunica-
tion. The conclusions of the chapter are done in Section 4.5.

4.1 PROBLEM FORMULATION

Consider the chaotic system [61, 145] described by

ẋ(t) = −ax(t) + ay(t)

ẏ(t) = bx(t)− y − 4dx(t)z(t) + u

ż(t) = −cz + dx(t)y(t)

(4.1)

where a = 16, b = 45.6, c = 4, and d = 5. Note that this system with two attractors was
proposed by Lorenz, where x(t), y(t), and z(t) are the system states and a, b, c and d are real
constants. From (4.1), consider the master and slave systems with disturbances:
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ẋm = −axm + aym + h1m(t)

ẏm = bxm − ym − 4dxmzm + h2m(t)

żm = −czm + dxmym + h3m(t)

(4.2)

ẋs = −axs + ays + h1s(t)

ẏs = bxs − ys − 4dxszs + h2s(t) + u

żs = −czs + dxsys + h3s(t)

(4.3)

where xm, ym, and zm are the states of the master system; xs, ys, and zs, are the states of the
slave system; h1m, h2m, and h3m are the disturbances in the master system, h1s, h2s and h3s
are the disturbances in the slave system, and u is the signal control. Then, this chapter aim is
to synchronize the systems (4.2) and (4.3) in which the slave system allows only one scalar
control signal acting in only one state.

REMARK 4.1.1 Once the system (4.1) is chaotic, its behavior is related to the initial condi-
tions and sensitive to changes. Because of that and also by the fact that it has an aperiodic
behavior the synchronization of chaotic systems tends to be more challenging than other
dynamic systems.

REMARK 4.1.2 Note that the synchronizer only has access to information from the actuated
master states, that is, from the states where there is a control signal. In the (4.3) system, the
control u cannot have the presence of the states xm and zm. However, the other states of the
master system and all the states of the slave system are available.

FACT 4.1.1 In [145] was proved that (4.1), and consequently (4.2), is chaotic and that the
system is dissipative. A consequence of the system being dissipative is also being bounded.
With the boundedness of the system (4.1), the following inequalities are true:

|xm(t)| ≤ x̄

|ym(t)| ≤ ȳ

|zm(t)| ≤ z̄

(4.4)

∀t ≥ 0, where x̄, ȳ, and z̄ are unknown positive constants.

ASSUMPTION 4.1.1 The disturbances are bounded. More specifically

h̃1(t) = h1s(t)− h1m(t)

h̃2(t) = h2s(t)− h2m(t)

h̃3(t) = h3s(t)− h3m(t)

(4.5)
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∀t ≥ 0, where |h̃1(t)| ≤ h̄1, |h̃2(t)| ≤ h̄2, and |h̃3(t)| ≤ h̄3, with h̄1, h̄2, and h̄3 being
unknown constants.

REMARK 4.1.3 The objective of considering the disturbances h in (4.2) and (4.3) is to
emphasize that the synchronization is valid even in the presence of unexpected changes in the
system dynamics. These changes can occur due to failures, climate changes, or equipment
aging.

4.2 SYNCHRONIZATION EQUATION ERROR AND PROPOSED SIG-
NAL CONTROL

Define the dynamic of the synchronization errors as


ė1 = ẋs − ẋm

ė2 = ẏs − ẏm

ė3 = żs − żm

(4.6)

By using and (4.2) and (4.3) in (4.6), and employing (4.4), results


ė1 = −ae1 + ae2 + h̃1

ė2 = −e2 + be1 − 4d(e1e3 + e1zm + e3xm) + h̃2 + u

ė3 = −ce3 + d(e1e2 + e1ym + e2xm) + h̃3

(4.7)

Once the dynamic of errors is defined, an appropriate control signal is provided so that
the slave system synchronizes.

THEOREM 4.2.1 Consider the master and slave systems (4.2) and (4.3), and the proportional
control law

u = −ψe2 (4.8)

If,

ψ > δ (4.9)

Then, the synchronization error is uniformly ultimately bounded and converges in finite-time
to the compact set
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Ω =
{
e ∈ ℜ3 | ||e|| ≤ θ

}
(4.10)

where δ = 0.5σ2h̄
2
2 + 0.5σ−1

5 (b2 + a2γ2 + 16z̄2) − 1, θ =
√

β
ρ
, β = βu + βn, ρ =

min{ρ1, ρ2, ρ3}, βu = 0.5σ−1
2 , βn = 0.5(γσ−1

1 h̄21 + 4σ−1
3 h̄23), ρ1 = aγ − 0.5γσ1 − 2dσ4ȳ

2 −
0.5σ5, ρ2 = ψ − δ, ρ3 = 4c − 2σ3 − 2dσ−1

4 , ∥e∥2 = e21 + e22 + e23, and σi, i = 1, ..., 5 are
positive constants.

Proof.

Consider the following Lyapunov function candidate

V =
1

2
(γe21 + e22 + 4e23) (4.11)

where γ > 0. The time-derivative of (4.11) results

V̇ = γe1ė1 + e2ė2 + 4e3ė3 (4.12)

By replacing (4.7) in (4.12) implies

V̇ = γe1(−ae1 + ae2 + h̃1) + e2[−e2 + be1 − 4d(e1e3 + e1zm + e3xm) + h̃2

+ u] + 4e3[−ce3 + d(e1e2 + e1ym + e2xm) + h̃3]
(4.13)

Replacing (4.8) in (4.13) results

V̇ = −aγe21 − e22(ψ + 1)− 4ce23 + γe1h̃1 + e2h̃2 + 4e3h̃3 + 4de1e3ym

+ e2e1(b+ aγ − 4zm)
(4.14)

Thus, analyzing when V̇ ≤ 0, by employing inequality of Young, the Assumption 4.1.1,
and the Fact 4.1.1, so

γe1h̃1 ≤ 0.5γ(σ1e
2
1 + σ−1

1 h̄21)

e2h̃2 ≤ 0.5(σ2h̄
2
2e

2
2 + σ−1

2 )

4e3h̃3 ≤ 2(σ3e
2
3 + σ−1

3 h̄23)

4de1e3ym ≤ 2d(σ−1
4 e21ȳ

2 + σ4e
2
3)

e1e2(b+ aγ − 4zm) ≤ 0.5[σ5e
2
1 + σ−1

5 e22(b
2 + a2γ2 + 16z̄2)]

(4.15)
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replacing (4.15) and rewritten (4.14) implies

V̇ ≤ −e21ρ1 − e22ρ2 − e23ρ3 + βu + βn (4.16)

Note that: 1) there are values of γ and σi, i = 1, ..., 5 that cause ρ1 > 0 and ρ3 > 0;
and 2) ψ is chosen by the user so that (4.9) is satisfied, and, consequently, ρ2 > 0. So
there is a ρ > 0, and (4.16) can be rewritten as

V̇ ≤ −ρ ||e||2 + β (4.17)

Hence, V̇ < 0 as long as ∥e∥ > θ. Since θ is constant, then the synchronization errors
are bounded. In the region Ω note that if for any reason ∥e∥ is not part of that region Ω, V̇
becomes defined negative and forces the synchronization error convergence to the region
Ω, according to (4.17). In other words, if V̇ < 0 the error norm can only become smaller
as the time increases. In addition, the convergence to the residual set Ω is in a finite
time, due to the particular form of (4.17) [24]. Consequently, the synchronization error
is uniformly ultimately bounded and converge to a sphere with radius θ (Figure 4.1).

θ

Figure 4.1 – 3D-Bounded set.

REMARK 4.2.1 It should be pointed out that the proposed scheme, unlike the precursor
proposed [61], considers the presence of disturbances in all states, which is rarely considered
in the literature, as far as the author know.

REMARK 4.2.2 The idea of the proposed method lies in the usage of the system structure
and Lyapunov theory to design an adequate control law. Based on a trial-and-error procedure,
all possibilities of underactuated control in the analysis was considered and the simplest one
was chosen. Inequality of Young was used in the stability analysis in the process to make
V̇ < 0 outside of a small compact set.
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REMARK 4.2.3 Defining Di(i = 1, ..., 5) as the respective domains of σi(i = 1, ..., 5),
results

D1 = {σ1 ∈ ℜ|0 < σ1 < 2a}

D2 =

{
σ2 ∈ ℜ|0 < σ2 <

2(1 + ψ)

h̄22

}
D3 = {σ3 ∈ ℜ|0 < σ3 < 2c}

D4 =

{
σ4 ∈ ℜ| 2d

4c− 2σ3
< σ4 <

aγ

2dȳ2

}
D5 =

{
σ5 ∈ ℜ|b

2 + a2γ2 + 16z̄2

2(1 + ψ)
< σ5 < 2aγ

}
(4.18)

Observe that the residual synchronization error considered is affected by the control gain
ψ, disturbances, and upper bounds for the states of the master system, as can be seen from
(4.9). The performance for the actuated states can be arbitrarily enhanced by increasing ψ.
For non-actuated states, it can not be guaranteed that a change in the gain of the control
will cause the residual synchronization error to decrease, being this the main limitation of
underactuated synchronization systems.

4.3 CHAOS-BASED SECURE COMMUNICATION

In order to have a well-posed problem to secure telecommunication case, the following
assumption are done:

ASSUMPTION 4.3.1 It is assumed that the messages are bounded. More specifically,

|mi(t)| ≤ m̄i, i = 1, ..., 3 (4.19)

∀t ≥ 0, where m1, m2, and m3 are the original messages and m̄1, m̄2, and m̄3 are positive
constants.

Further, motivated by [7], it can be defined

m̂1 = s1 − xs

m̂2 = s2 − ys

m̂3 = s3 − zs

(4.20)

where s1 = xm +m1, s2 = ym +m2, and s3 = zm +m3 are the encoded messages; and m̂1,
m̂2, and m̂3 are the decoded messages.

By using (4.20) and defining m̃i = m̂i −mi, i = 1, ..., 3, where m̃1, m̃2, and m̃3 are the
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message errors, it can be concluded that

m̃i = −ei, i = 1, ..., 3 (4.21)

REMARK 4.3.1 It is worth noticing that the quality of the message reconstruction is the
same as the synchronization, as shown in (4.21). That is, the boundedness of the message
error is assured when the synchronization error is bounded.

REMARK 4.3.2 An overview of the secure communication scheme can be seen in Figure
4.2.
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system

xm
+

ym
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zm
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e2 u2
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zs
+

m1
+

s1

m3
+

s3

Figure 4.2 – Synchronization and secure communication scheme.

4.4 SIMULATION

To validate the signal control (4.8), computing simulations were made to synchronizae
the systems (4.2) and (4.3). The simulations done in Matlab/Simulink 2020b® were made
in a Windows 10 platform, with AMD Ryzen 7 1700 processor for all simulations, variable-
step algorithm ODE45 solver, and relative and absolute tolerance of 10−10. The simulation
done in Multisim used the trapezoidal integration method, truncation error with factor 7,
and maximum integration order of 2. The initial conditions for the master system were
xm(0) = [0.2;−0.3; 0.4], and for the slave system were xs(0) = [0.1; 0.3;−0.1]. The control
law (4.8) was used to synchronize the master and slave systems, with ψ = 50. Disturbances
in the slave system were considered, with h1m = 0, h2m = 0, h3m = 0, h1s = 0.1sin(2t),
h2s = 0.2sin(t), and h3s = 0.1sin(4t).

Figures 4.3 - 4.8 show the synchronization results obtained in MATLAB. It can be seen
by the figures that the synchronization error is close to zero. The figures also show that even
having only one control signal in one of the state equations (state y), the synchronization oc-
curs for the three states. Synchronization errors are not exactly zero because of the presence
of disturbances.
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Figure 4.3 – Performance on the synchronization of the first state.
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Figure 4.4 – Performance on the synchronization of the second state.
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Figure 4.5 – Performance on the synchronization of the third state.
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Figure 4.6 – Synchronization error of the first state.
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Figure 4.7 – Synchronization error of the second state.
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Figure 4.8 – Synchronization error of the third state.
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Table 4.1 shows that the optimal control gain value is approximately ψ = 50. Smaller,
according to theory, values of ψ can lead to larger values of βu and smaller values of ρ2, and,
consequently, greater values of residual synchronization error. Larger values of ψ theoreti-
cally should not increase the synchronization error value. However, in computer simulations,
high values of the control gain can lead to greater approximation errors.

Table 4.1 – Root mean square of state errors for t = [0 20] seconds and consider that ψ = 50.

Root Mean Square of State Errors in the Proposed Algorithm
e1rms e2rms e3rms erms

0.01ψ 2.058822 2.246861 0.939715 2.984134
0.1ψ 0.578907 0.648567 0.312524 0.865672
ψ 0.009019 0.019277 0.040397 0.042332

10ψ 0.007865 0.015392 0.053506 0.054188
100ψ 0.008793 0.011410 0.058363 0.058797

Figures 4.9 - 4.12 show the secure communication case by using MATLAB. The mes-
sages are equal to m1 = 0.1sin(25.1328t) and m3 = 0.05cos(4t) + 0.05cos(t). It can be
seen in Figures 4.9 - 4.10 that the original message is very different to encoded message and
similar to decoded message. Figures 4.11 - 4.12 show the message errors. The errors are
small, however are not null because of the presence of disturbances, as expected with the
theory.
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Figure 4.9 – Message introduced in the first state.
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Figure 4.10 – Message introduced in the third state.

0 2 4 6 8 10 12 14 16 18 20

-0.05

0

0.05

0.1

Figure 4.11 – First message error.
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Figure 4.12 – Third message error.

In the sequence, the Multisim software is used to simulate an actual implementation via

68



analog electronics of the master, slave, controller, encode, and decode systems. This can
be done using operational amplifiers and the different configurations, such as the summing
amplifier or the inverting amplifier. It is important to remark that the message could not be
encoded using the state y because the controller would consider the message a disturbance,
and it would not be possible to retrieve it. Figures 4.13 - 4.16 show the circuital implementa-
tion of those systems. It is good to note that ideal components are utilized in the simulations,
so the non-ideal behaviors of the circuits were not considered, such as component heating or
tolerances.

Figure 4.13 – Master circuit.
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Figure 4.14 – Slave circuit.

Figure 4.15 – Controller circuit with disturbances included.
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Figure 4.16 – Encode and decode circuits.

Finally, the obtained results from the simulation can be seen in Figures 4.17 - 4.19,
where Figure 4.17 shows that the confidential message sent is a sine with amplitude 0.4Vrms

and 5kHz of frequency, the Figure 4.18 shows the message encoded that appears to be a
random signal and Figure 4.19 shows the retrieved message. In Figures 4.17 - 4.19, the scale
is 500µs in the horizontal axis and 2V on the vertical axis. Some variation between the
original message and the retrieved message; however, the decoded message is very similar to
the original message, and the efficiency of the presented method can be seen. Note that the
disturbances were also considered in the simulation with amplitude 0.01Vrms and frequency
10kHz.

Figure 4.17 – Original message.
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Figure 4.18 – Encoded message.

Figure 4.19 – Decoded message.

4.5 SUMMARY

This chapter proposes a synchronization algorithm based on Lyapunov stability theory
for an underactuated Lorenz system and subject to bounded disturbances in all states. A
signal control was proposed theoretically and simulated to synchronize the master and slave
systems. The simulation results were consistent with the theoretical results.
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A SYNCHRONIZATION SCHEME OF A
3D-CHAOTIC
SYSTEM FOR INFORMATION SECURITY

The research outcomes of this chapter have been published as a conference paper entitled

"A Chaotic Synchronization scheme for information security" in [11]. This chapter has ex-

tended and improved some parts compared to the original paper.

Chaotic systems can be found in many fields, such as in engineering, biology, mathemat-
ics, physics, among others. Applications of chaotic systems include communication, signal
detection, cryptography, wireless sensors, laser system and so forth. [10, 61, 132, 140, 143,
146, 147]. Since the development of Pecora and Carroll’s method [39], many types of syn-
chronization have been developed, for example, anti-synchronization [147] and lag synchro-
nization [148]. Its applications extend to other areas, such as biomedical engineering [149]
and neural computing [74, 103].

The cryptography circuits found in the literature are based on the synchronization of two
chaotic circuits. Chaotic signals are helpful for encoding and decoding signals since, by
definition, the response of a chaotic system is complex, being unpredictable. Also, because
chaotic systems are sensitive to initial conditions, it is possible that even knowing the struc-
ture of the chaotic system does not recognize state trajectories. In this way, chaotic systems
are interesting to use in applications with encryption. The reason for disturbances occur-
ring in real situations is due to tolerances and nonideal behaviors of electronic components,
among other factors. In order to ensure excellent performance in practical applications, it is
necessary to consider the possibility of disturbances in the theoretical analysis.

Although there are many methods of synchronization in the current literature, many of
them present disadvantages, such as the need for a control signal in each state equation or, in
many cases, the nonconsideration of disturbances [53, 140, 141]. Another recurrent problem
in the literature is the relative complexity of the synchronizer. For example, in [133, 134]
adaptive synchronizers are introduced. Therefore, the dimension of the synchronizer is larger
than the dimension of the system. In [135], the dimension of the synchronizer is the same
as that of the system. However, due to the use of Integrator backstepping, the synchronizer
is structurally complex. In addition, the synchronizers proposed in [53, 140, 141] assume
restrictive hypotheses, such as the equality of dimension between the system and the control
[150]. Other works even consider the possibility of having bounded disturbances, but only
in some state. For further details, see [143, 144].
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It should be noted that, in order to achieve effective encrypting, there must be a super-
position between the frequency spectrum of the message, and the signal-to-noise ratio of
the message must be smaller than the signal-to-noise ratio of the employed state. If these
conditions are disobeyed, the signal can still be appropriately recovered by a high-pass high
order filter or by merely accepting the encrypted signal as the message signal, in case the
deformation between them is negligible.

Motivated by the previous facts, this chapter presents a simple and robust scheme of
synchronizing chaotic systems to overcome the mentioned deficiencies. The design is carried
out in the context of Lyapunov stability theory to ensure boundedness and convergence.
More specifically, the proposed synchronization scheme has the following characteristics.

1) To operate satisfactorily even in the presence of bounded disturbances that are present
in all state equations.

2) For the use of a simple proportional control acting on only one state equation.

3) The synchronization error to be bounded and convergent to a small value that the user
can adjust.

4) An application using electronic circuits to show the sophistication of the proposed
scheme.

As far as the author is aware, no work prior to this chapter combined all these features
simultaneously, which is the main contribution of this chapter.

The chapter is organized as follows. In Section 5.1, the problem and main assumptions
are presented. The synchronization error, the control law, and Lyapunov analysis is intro-
duced in Section 5.2. Section 5.3 is concerned with the secure telecommunication case. In
Section 5.4, the development of a scaled system and the electronic circuit for the implemen-
tation of the proposed method is accomplished. Section 5.5 shown some simulations of the
synchronization scheme. Section 5.6 presents the experimental implementation of electrical
circuit synchronization. Finally, the conclusions of the chapter are made in Section 5.6.

5.1 PROBLEM STATEMENT

Consider the following chaotic system [151]:


ẋ(t) = a(y(t)− x(t))

ẏ(t) = cx(t)− y(t)− x(t)z(t)

ż(t) = x(t)y(t)− bz(t)

(5.1)
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Based on the system (5.1), the master system is defined by


ẋm = a(ym − xm)

ẏm = cxm − ym − xmzm

żm = xmym − bzm

(5.2)

The slave system is defined by
ẋs = a(ys − xs) + h1(t)

ẏs = cxs − ys − xszs + h2(t) + u

żs = xsys − bzs + h3(t)

(5.3)

where x, y, and z are the states variables of the system (5.1), xm, ym, and zm are the state
variables of the master system, and xs, ys, and zs are the state variables of the slave system.
The systems parameters are a = 2.1, b = 0.6, and c = 30. The slave system disturbances are
h1(t), h2(t), and h3(t). Note that u is the control signal.

This chapter proposes the synchronization of (5.2) and (5.3) by using a control signal only
in the second state. Note that synchronization is achieved by any value of initial conditions,
even in the presence of disturbances.

REMARK 5.1.1 The limitation of the system being underactuated is that the synchronizer
only has access to information from the actuated master states, that is, from the states where
there is a control signal. In other words, in the (5.2) system, the control u cannot have the
presence of the states xm, zm, and wm. Although, the other states of the master system and
all the states of the slave system are available.

FACT 5.1.1 In [151] was proved that (5.1), and consequently (5.2), is chaotic and that the
system is dissipative. The consequence of the system being dissipative is also being bounded.
With the boundedness of the system (5.1), the following inequalities are true:

|xm(t)| ≤ x̄

|ym(t)| ≤ ȳ

|zm(t)| ≤ z̄

(5.4)

∀t ≥ 0, where x̄, ȳ, and z̄ are unknown positive constants.

REMARK 5.1.2 Since (5.1) is chaotic, so the system is dependent on its initial conditions.
Therefore, a simple change in the values of the initial conditions has a considerable effect on
the system behavior. Due to this, it is possible to make a secure telecommunication scheme
in which the structure of the master system is similar to the structure of the slave system since
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it is enough to have different initial conditions so that the states have different behaviors.

ASSUMPTION 5.1.1 We assume that the disturbance is bounded. More specifically

|h1(t)| ≤ h̄1

|h2(t)| ≤ h̄2

|h3(t)| ≤ h̄3

(5.5)

∀t ≥ 0, being h̄1, h̄2, and h̄3 unknown constants.

REMARK 5.1.3 The system (5.3) shows explicit disturbance, which is sometimes unusual
in the literature. This allows us to evaluate the influence of these uncertainties over the
convergence of the synchronization errors. It is generally interesting to consider the presence
of disturbances better to analyze the robustness of the scheme in actual situations.

5.2 SYNCHRONIZATION ERROR AND PROPOSED SIGNAL CON-
TROL

Synchronization errors of the system are defined by


e1(t) = xs(t)− xm(t)

e2(t) = ys(t)− ym(t)

e3(t) = zs(t)− zm(t)

(5.6)

Therefore, dynamic equations of the errors can be obtained using systems (5.2) and (5.3) in
the time-derivative of (5.6)


ė1 = a(e2 − e1) + h1

ė2 = ce1 − e2 − e1e3 − e1zm − e3xm + h2 + u

ė3 = e1e2 + e1ym + e2xm − be3 + h3

(5.7)

Once defined the dynamics of errors, the main theorem of this chapter is presented.

THEOREM 5.2.1 Consider the master and slave system described in (5.2) and (5.3) and the
proportional control law defined by:

u = −ψe2 (5.8)

If,
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ψ > δ (5.9)

Then, the synchronization error is uniformly ultimately bounded and converges in finite-time
to the compact set

Ω =
{
e ∈ ℜ3 | ||e|| ≤ θ

}
(5.10)

where δ = 0.5σ2h̄
2
2+0.5σ−1

4 (a2γ2+c2+z̄2)−1, θ =
√

β
ρ
, β = βu+βn, ρ = min{ρ1, ρ2, ρ3},

βu = 0.5σ−1
2 , βn = 0.5(γσ−1

1 h̄21 + σ−1
3 h̄23), ρ1 = aγ − 0.5(γσ1 + σ4 + σ5ȳ

2), ρ2 = ψ − δ,
ρ3 = b− 0.5σ3 − 0.5σ−1

5 , ∥e∥2 = e21 + e22 + e23, and σi, i = 1, ..., 5 are positive constants.

Proof.

Consider the following Lyapunov function candidate

V =
1

2
(γe21 + e22 + e23) (5.11)

where γ > 0. The time-derivative of (5.11) along the trajectories of (5.7), results

V̇ = γe1[a(e2 − e1) + h1]

+ e2(ce1 − e2 − e1e3 − e1zm − e3xm + h2 + u)

+ e3(e1e2 + e1ym + e2xm − be3 + h3)

(5.12)

Replacing (5.8) in (5.12), impies

V̇ = −aγe21 − e22(ψ + 1)− be23 + γe1h1 + e2h2 + e3h3

+ e1e3ym + e1e2(aγ + c− zm)
(5.13)

Thus, analyzing when V̇ ≤ 0, by using inequality of Young, the Assumption 5.1.1, and
the Fact 5.1.1, then

γe1h1 ≤ 0.5γ(σ1e
2
1 + σ−1

1 h̄21)

e2h2 ≤ 0.5(σ2h̄
2
2e

2
2 + σ−1

2 )

e3h3 ≤ 0.5(σ3e
2
3 + σ−1

3 h̄23)

e1[e2(aγ + c− zm)] ≤ 0.5[σ4e
2
1 + σ−1

4 e22(a
2γ2 + c2 + z̄2)]

e1e3ym ≤ 0.5(σ5e
2
1ȳ

2 + σ−1
5 e23)

(5.14)

Replacing (5.14) in (5.13), results
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V̇ ≤ −e21ρ1 − e22ρ2 − e23ρ3 + βu + βn (5.15)

Observe that: 1) there are values of γ and σi, i = 1, ..., 5 that cause ρ1 > 0 and
ρ3 > 0; and 2) ψ is chosen by the designer so that (5.9) is satisfied, and, consequently,
ρ2 > 0. Therefore, there is a ρ > 0, and (5.15) can be rewritten as

V̇ ≤ −ρ ||e||2 + β (5.16)

Based on (5.16), V̇ < 0 when ∥e∥ > θ. Since θ is a constant, it can be established
that the synchronization error is uniformly ultimately bounded (for further details, see
[24]). If under any circumstance ∥e∥ leaves the residual set Ω, V̇ becomes negative
definite and forces the convergence of the synchronization error to the residual set Ω. The
convergence to the residual set Ω is in finite-time, due to the particular form of 5.16 [24].
Therefore, the synchronization error is uniformly ultimately bounded and converge to a
sphere with radius θ (Figure 5.1).

θ

Figure 5.1 – 3D-Bounded set.

REMARK 5.2.1 The proposed method lies in the usage of the system structure and Lyapunov
theory to design an valid control law. Based on a trial-and-error procedure, all possibilities
of underactuated control in the analysis was considered and the simplest one was chosen.
Inequality of Young was used in the stability analysis in the process to make V̇ < 0 outside
of a small compact set.

REMARK 5.2.2 Defining Di(i = 1, ..., 5) as the respective domains of σi(i = 1, ..., 5),
results
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D1 = {σ1 ∈ ℜ|0 < σ1 < 2a}

D2 =
{
σ2 ∈ ℜ|0 < σ2 < frac2(1 + ψ)h̄22

}
D3 = {σ3 ∈ ℜ|0 < σ3 < 2b}

D4 =

{
σ4 ∈ ℜ|a

2γ2 + c2 + z̄2

2(1 + ψ)
< σ4 < 2aγ

}
D5 =

{
σ5 ∈ ℜ| 1

2b
< σ5 <

2aγ

ȳ2

}
(5.17)

The residual synchronization error considered is affected by the control gain ψ, disturbances,
and upper bounds for the states of the master system, as can be seen from (5.9). The perfor-
mance for the actuated states can be arbitrarily enhanced by increasing ψ. For non-actuated
states, it can not be guaranteed that a change in the gain of the control will cause the residual
synchronization error to decrease, being this the main limitation of underactuated synchro-
nization systems.

5.3 CHAOS-BASED SECURE COMMUNICATION

In addition to the synchronization case, the application of the proposed method to se-
cure telecommunication are also considered. To have a well-posed problem, the following
assumption must be imposed.

ASSUMPTION 5.3.1 It is assumed that the messages are bounded. More specifically,

|mi(t)| ≤ m̄i, i = 1, ..., 3 (5.18)

∀t ≥ 0, where m1, m2, and m3 are the original messages and m̄1, m̄2, and m̄3 are positive
constants.

Motivated by [7], it can be defined

m̂1 = s1 − xs

m̂2 = s2 − ys

m̂3 = s3 − zs

(5.19)

where s1 = xm +m1, s2 = ym +m2, and s3 = zm +m3 are the encrypted messages; and
m̂1, m̂2, and m̂3 are the decrypted messages.

On the other hand, by using (5.19) and defining m̃i = m̂i − δmi, i = 1, ..., 3, where m̃1,
m̃2, and m̃3 are the message errors, it can be concluded that
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m̃i = −ei, i = 1, ..., 3 (5.20)

REMARK 5.3.1 Observe that the quality of the message reconstruction is the same as the
synchronization, as shown in (5.20). Also, the boundedness of the message error is assured
when the synchronization error is bounded.

REMARK 5.3.2 An overview of the secure communication scheme can be seen in Figure
5.2.
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system
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ym
−

zm

+
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m3
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Figure 5.2 – Synchronization and secure communication scheme.

5.4 SCALING

It was found that the solution to these equations had a very high amplitude. Therefore,
the amplitude was scaled down by a factor of 20. More exactly,


ẋ = 2.1(y − x)

ẏ = 30x− y − 20xz

ż = 20xy − 0.6z

(5.21)

Following the scaling, the system was simulated in Matlab/Simulink, including the slave,
the synchronizer, and the message. The circuit was then projected so that the slave and the
master were as similar as possible, being both composed of 10 blocks, of which 2 were
multipliers (xy and xz), 1 was a synchronizer, 3 were integrators, and the remaining 3 were
adders. The schematic for this arrangement can be found in Figure 5.3.

In Figure 5.3, the switches identify the circuit as the master or the slave. The position of
the switches indicates that the schematic above represents the slave. For the master, k(t) =
m(t), p(t) = −s(t), w(t) = ys(t), and f(t) = −u(t)

10
; for the slave, k(t) = −s(t), p(t) =

m̂(t), w(t) = −u(t)
10

, and f(t) = u(t)+ ys(t). The resistors R1, R4, R6, R11, R12, R13, R14,
R15, R26, and R27 have value 10kΩ; the resistors R2, R3, R5, R21, R22, R23, R24, and R25
have value 100 kΩ; the resistors R7 and R8 have value 4.75kΩ; the resistors R9, R10, and
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Figure 5.3 – Circuit of master and slave systems.

R16 have value 165kΩ, 4.87kΩ, and 3.32kΩ respectively; R17 and R18 measure 90.9kΩ;
R19 and R20, 5.11kΩ. The capacitors have a value of 100 nF; the operational amplifies are
LF347 and multipliers are AD33JNZ. The capacitors and resistors have a tolerance of 5%
and 1% respectively.

It was noted that the equations from system 5.21 would result in the necessity of unity
gain in the integrators or tiny gain in the adders, leading to very large or very small resistance
values. Therefore, the system was again scaled in frequency by a factor of 1000, resulting in
the system of equations in what follows.


ẋ(t) = 1000 · 2.1(y(t)− x(t))

ẏ(t) = 1000(30x(t)− y(t)− 20x(t)z(t))

ż(t) = 1000(20x(t)y(t)− 0.6z(t))

(5.22)

The systems of equations (5.23) and (5.24) define, respectively, the master and the slave.
m(t) is the message signal, encrypted message is s(t) = m(t) + zm(t), the recovered signal
in the slave is m̂(t) = s(t) − zs(t), the control signal is u(t) = −100 · ey(t), and the
synchronization error of the y state is ey(t) = ys(t)− ym(t). More precisely,
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
ẋm = 1000 · 2.1(ym − xm)

ẏm = 1000(30xm − ym − 20xmzm)

żm = 1000(20xmym − 0.6zm)

(5.23)


ẋs = 1000 · 2.1(ys − xs)

ẏs = 1000(30xs − ys − 20xszs + u)

żs = 1000(20xsys − 0.6zs)

(5.24)

The 1000 gain that resulted from the frequency scaling was wholly allocated in the in-
tegrators. After adopting 100 nF as the valor for the capacitors, it was found that the resis-
tors R1, R4, and R6 should have the following value of resistances: R1 = R4 = R6 =

1
1000·100·10−9 = 10kΩ.

In order to facilitate the implementation and reduce the differences between the master
and the slave, the encrypted signal was given by −s(t), that is to say, the encrypting block
makes −m(t)− zm(t) and the decoder block makes s(t)− zs(t) = m̂(t). Thus, the encoder
and decoder blocks are identical, and both are equivalent to an inverting adder without gain.
Arbitrarily, it was decided that R23 = 10kΩ and, as a result of the absence of gain, R21 =

R22 = R23. Since the integrator inverts its input signal, the operations in the adders with
states must also be reverted. That is to say; summation should be substituted by subtraction
and vice versa. Consider R12 = 10kΩ and R3 = R5 = 100kΩ.

For the X state adder, R8 = R7 = 10000
2.1

= 4.7619kΩ. For the implementation, the value
of 4.75kΩ was used, since that was the nearest resistance value found for a precision resistor.
Consider Z = 2.1 − 2.1 − 1 = −1. Therefore, in this adder, it is necessary to connect a
resistor between the non-inverting input of the operational amplifier and ground, with value
R11 = 10000

−Z
= 10kΩ. For the Y state adder, R19 = 100000

20
= 5kΩ. However, the nearest

value commercially available was 5.11kΩ, which was adopted in the implementation. Also,
R2 = 100000

1
= 100kΩ and R16 = 100000

30
= 3.3333kΩ. For the latter case, the value of

3.32lΩ was used instead due to restrictions in the value of commercially available resistors.
Finally, Z = 20 + 1 − 30 − 1 = −10, so that a resistor is necessary to connect the non-
inverting input of the operational amplifier to ground, with value R13 = 100000

10
= 10kΩ. For

the Z state adders, R9 = 100000
0.6

= 166.6666kΩ. The nearest commercially available value
was 165kΩ. Also, R20 = 100000

20
= 5kΩ. As in the Y state adder, the adopted value was

5.11kΩ. Finally, due to Z = 0.6−20−1 = −20.4, a resistor must connect the non-inverting
input of the op-amp to ground, with value R10 = 100000

20.4
= 4.902kΩ. The value used for in

the implementation was 4.87kΩ.

The multiplication blocks were built by a simple connection of the AD633JNZ multiplier
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and a proper association of resistors. This configuration results in (X1−X2)(Y 1−Y 2)
10

(Ra+Rb)
Ra

.
Consider X2 = Y 2 = 0, Ra = R14 = R15 = 10kΩ, and Rb = R17 = R18 = 90kΩ,
then 1

10
multiplying factor can be eliminated and the output of the block is simply X1 ·

Y 1. Nonetheless, a precision resistor of 90kΩ could not be found, so 90.9kΩ resistors were
employed instead.

For the synchronizers, the desired operations are −10ey(t) = 10(ym(t) − ys(t)) and
f(t) = −10 · (−10ey(t)) + ys(t) = 100ey(t) + ys(t) = −u(t) + ys(t) for the master and the
slave respectively. Here, notice that the first difference between the master and slave circuits,
which, in Figure 5.3, is indicated by the position of the switches. The switch in the Y state
adder selects between y(t) in the master and f(t) in the slave. In the master, the differential
equation assumes the form ẏ(t) = 1000(30x(t)− y(t)− 20x(t)z(t)), while in the slaves it is
given by ẏ(t) = 1000(30x(t)−f(t)−20x(t)z(t)) = 1000(30x(t)−y(t)+u(t)−20x(t)z(t)).
In order to implement the equations of the synchronization blocks in the master, consider
R24 = 100kΩ, R26 = R27 = 100000

10
= 10kΩ, and Z = 10 − 10 − 1 = −1. The

non-inverting input can then be connected to ground by a resistor R25 = 100kΩ. For the
slave, it suffices to invert resistors R25 and R27. This inversion is represented by changing
the position of the switch. In Figure 5.3, the switches are positioned as in the necessary
configuration for the slave.

5.5 SIMULATION

The simulations done in Matlab/Simulink 2020b® were made in a Windows 10 platform,
with AMD Ryzen 7 1700 processor for all simulations. Simulations corresponding to Figures
5.4 - 5.13 and Table 5.1 used variable-step algorithm ODE45 solver, and relative and absolute
tolerance of 10−10. Simulations corresponding to Figures 5.14 - 5.17 and Table 5.2 used
variable-step algorithm ODE23t solver, and relative and absolute tolerance of 10−8.

The initial conditions for the master system were xm(0) = [0.1;−0.1; 0.1], and for the
slave system were xs(0) = [0.2; 0.1; 0.2]. The control law (5.8) was used to synchronize
the master and slave systems, with ψ = 100. Disturbances were considered, with h1 =

0.3sin(2t)+0.1sin(20t), h2 = 0.4sin(t)+0.1cos(2t), and h3 = 0.3square(t)+0.2sin(4t).

Figures 5.4 - 5.9 show the synchronization of the states X, Y, and Z of the master and the
slave in terms of differential equations. Figures 5.7 - 5.9 present the synchronization errors.
Note that the synchronization result was good, with synchronization errors close to zero even
with only one control signal and the presence of disturbances.
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Figure 5.4 – Synchronization of the first state in master and slave systems.
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Figure 5.5 – Synchronization of the second state in master and slave systems.
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Figure 5.6 – Synchronization of the third state in master and slave systems.
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Figure 5.7 – Synchronization error of the first state.
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Figure 5.8 – Synchronization error of the second state.
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Figure 5.9 – Synchronization error of the third state.
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Table 5.1 shows that the optimal control gain value is approximately ψ = 10. Smaller
values of ψ lead to larger values of βu and smaller values of ρ2, consequently, lead to greater
synchronization error values. Theoretically, larger values of ψ should not increase the syn-
chronization error value, but higher control gain can lead to greater approximation errors in
computer simulations.

Table 5.1 – Root mean square of state errors for t = [0 0.1] seconds and consider that ψ = 100.

Root Mean Square of State Errors in the Proposed Algorithm
e1rms e2rms e3rms erms

0.001ψ 0.330024 0.462829 0.419797 0.530140
0.01ψ 0.254716 0.364291 0.426320 0.445616
0.1ψ 0.009402 0.024971 0.038773 0.041080
ψ 0.009720 0.004866 0.054131 0.054499

10ψ 0.008243 0.000489 0.056497 0.056771
100ψ 0.005060 0.000031 0.036659 0.036819

Figures 5.10 - 5.13 present the communication secure case. Messages signals m1(t) and
m3(t) are introduced, as well as the encrypted signal s(t) and the recovered signal. m1 is
a square wave of frequency 159 Hz and amplitude 0.02 V and m3 is a sawtooth wave of
frequency 159 Hz and amplitude 0.02 V. Observe that the message error is very small, and
the encoded message is different from the original message.
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Figure 5.10 – Transmitted message(m(t)), encrypted message s(t), and recovered message
m̂(t) in the first state.
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Figure 5.11 – Transmitted message(m(t)), encrypted message s(t), and recovered message
m̂(t) in the third state.
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Figure 5.12 – Message error 1.
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Figure 5.13 – Message error 3.
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The complete simulated circuit is not included because it is the circuit presented in Figure
5.3, but duplicated with the switches properly positioned (as in section 5.3), ideal compo-
nents substituted by real ones, power supplies of +15V and -15V for the integrated circuits,
voltage sensors and a square wave generator that produces the message signal.

Figure 5.14 shows the state Z of the master and the slave for the circuit simulation. The
initial conditions differed between the simulations. Figure 5.15 shows the synchronization
errors. It should be noted that, unlike the simulation in Simulink, the states did not synchro-
nize perfectly during the circuit simulation. This is due to three main factors: noises, the
added imperfections in the multipliers and operational amplifiers, and the tolerance of the
resistors and capacitors. The simulation would have failed if resistors with 5% of tolerance
had been applied. As a result, resistors with tolerance rated as 1% were chosen instead.
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Figure 5.14 – Synchronization of the third state in the circuit simulation.
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Figure 5.15 – Synchronization error of the third state in the circuit simulation.

Figure 5.16 - 5.17 show the communication secure case. The signal m(t), which, as
described above, is a square wave of amplitude 0.4 V and frequency 100 Hz, along with the
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encrypted signal −s(t) and the decoded signal m̂(t). Since the states do not synchronize
perfectly, the message could not be completely recovered. However, the result is satisfactory
since an inevitable synchronization error will be due to the actual components and their
inherent disturbances.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
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Figure 5.16 – Transmitted message(m(t)), Encrypted message s(t), and recovered message
m̂(t) in the third state in the circuit simulation.
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Figure 5.17 – Message error 3 in the circuit simulation.

Table 5.2 – Root mean square of state errors for t = [0 0.1] seconds.

Root Mean Square of State Errors in the Proposed Algorithm
e1rms

e2rms
e3rms

erms

0.009312 0.014079 0.078171 0.078179
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5.6 EXPERIMENT

The circuit in Figure 5.3 was initially built on a breadboard. However, it was found that
the recovered signal contained an intense noise, preventing the proper operation of the circuit.
Due to this complication, it was decided that the circuit should be built on a printed circuited
board. Fortunately, all of the previous problems were eliminated in the new version. In
Figure 5.18 the red marked part is the one that gave origin to the printed board in Figure 5.19.
Based in Figure 5.18, Tables 5.3, 5.4, and 5.5 were manually done, that contain how each
element of the circuit, Multiplier, Operational Amplifier, Resistor, Capacitor, and Jumpers
interconnects, considering the lines with these names. In the Ultiboard, the components
were inserted, and then these tables were loaded with that the Ultiboard program generated
the printed board.

Figure 5.19 shows the schematic for the printed circuit generated by the software Ulti-
board by means of the netlist Tables 5.3, 5.4, and 5.5. In Figure 5.20 is presented the picture
of the built circuit. Notably, jumpers were added to the interface of the blocks in 5.3 to
isolate them for individual tests. The element P1 in the schematic is external connection
pins. From 1 to 10, the pins are positive supplying, ground, negative supplying, state X, state
Y, state Z, message signal (master) or encrypted signal (slave), encrypted signal (master) or
recovered signal (slave), state Y of the slave (master) or control signal (master), a control
signal (master) or unused (slave).

The board contains some jumper wires whose function is not restricted to isolating the
appropriated blocks but are also used to determine the nature of the circuit (master or slave)
and the used state. Therefore, except for the jumper position, the slave and master boards are
identical, and it is possible to choose which states will be employed in each. If jumper J1 is
closed, the used state is X; if J2 is closed, the state is Z. For this chapter, the used state was
Z, for which the synchronization error was found to be the least among the three states. The
slave is obtained by closing J20, J18, and J17, while closing J9, J16, and J19 results in the
master. It should be noted that these groups are mutually exclusive since, if both were to be
closed, the outputs of the operational amplifiers would be short-circuited.
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Figure 5.18 – Simulink Scheme of the circuit.
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Figure 5.19 – Schematic of the printed circuit. Red: lower trails. Green: upper trails. Dark
Blue: welding points. Light blue: component description.

Figure 5.20 – Photo of the circuit.
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Table 5.3 – Netlists: Resistors, Capacitors.

Code
Nominal

Value
Pin 1 Pin 2

R1 10kΩ X_L AO1_9

R2 100kΩ Y_2 AO2_3

R3 100kΩ AO2_2 AO2_1

R4 10kΩ Y_L AO2_13

R5 100kΩ AO2_6 AO2_7

R6 10kΩ Z_L AO2_9

R7 4.75kΩ Y_1 AO1_6

R8 4.75kΩ X_1 AO1_5

R9 165kΩ Z_3 AO2_5

R10 4.87kΩ GND AO2_5

R11 10kΩ GND AO1_5

R12 10kΩ AO1_6 AO1_7

R13 10kΩ GND AO2_3

R14 10kΩ M1_Z XY

R15 10kΩ M2_Z XZ

R16 3.32kΩ X_2 AO2_2

R17 90.9kΩ GND M1_Z

R18 90.9kΩ GND M2_Z

R19 5.11kΩ XZ_2 AO2_3

R20 5.11kΩ XY_3 AO2_6

R21 100kΩ M AO1_2

R22 100kΩ SV AO1_2

R23 100kΩ AO1_2 S

R24 100kΩ AO1_13 U

R25 100kΩ C_R1 AO1_12

R26 10kΩ Y_s AO1_13

R27 10kΩ C_R2 AO1_12

C1 100nF AO1_9 AO1_8

C2 100nF AO2_13 AO2_14

C3 100nF AO2_9 AO2_8
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Table 5.4 – Netlists: Jumpers.

Code Pin 1 Pin 2
J1 X SV

J2 Z SV

J3 Y Y_1

J4 X X_1

J5 AO1_7 X_L

J6 AO1_8 X

J7 X X_2

J8 XZ XZ_2

J9 Y Y_2

J10 AO2_1 Y_L

J11 AO2_14 Y

J12 XY XY_3

J13 Z Z_3

J14 AO2_7 Z_L

J15 AO2_8 Z

J16 GND C_R1

J17 GND C_R2

J18 Y C_R1

J19 Y C_R2

J20 U Y_2
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Table 5.5 – Netlists: Integrated Circuits.

Code AO1 AO2 M1 M2

IC LF347 LF347 AD633JNZ AD633JNZ

Pin 1 S AO2_1 X X

Pin 2 AO1_2 AO2_2 GND GND

Pin 3 GND AO2_3 Y Z

Pin 4 VCC+ VCC+ GND GND

Pin 5 AO1_5 AO2_5 VCC- VCC-

Pin 6 AO1_6 AO2_6 M1_Z M2_Z

Pin 7 AO1_7 AO2_7 XY XZ

Pin 8 AO1_8 AO2_8 VCC+ VCC+

Pin 9 AO1_9 AO2_9
Pin 10 GND GND
Pin 11 VCC- VCC-
Pin 12 AO1_12 GND
Pin 13 AO1_13 AO2_13
Pin 14 U AO2_14

Figure 5.21 shows xs(t) in channel 1, xm(t) in channel 2, and ex(t) = xs(t) − xm(t) in
MATH (it is a mode in oscilloscope). Figure 5.22 shows ys(t) in channel 1, ym(t) in channel
2, and ey(t) = ys(t)− ym(t) in MATH. Finally, Figure 5.23 shows zs(t) in channel 1, zm(t)
in channel 2, and ez(t) = zs(t)−zm(t) in MATH. It should be noted that the synchronization
errors are small, indicating that the systems were able to achieve synchronization, as in the
simulation.
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Figure 5.21 – Observation of experimental xm(t) (Channel 2), xs(t) (Channel 1), and ex(t)
(MATH).

Figure 5.22 – Observation of experimental ym(t) (Channel 2), ys(t) (Channel 1), and ey(t)
(MATH).
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Figure 5.23 – Observation of experimental zm(t) (Channel 2), zs(t) (Channel 1), and ez(t)
(MATH).

Figure 5.24 shows the message signal m(t) in channel 1, a square wave of frequency 100
Hz, and amplitude 0.5 V. In channel 2 is presented the recovered signal m̂(t). Comparing
both, it is evident that they are very similar. In Figure 5.25 is shown the encrypted signal.
It is noticeable that the encrypted signal was gravely distorted even though it still possessed
the abrupt transitions typical to square waves. It would be possible for a binary transmission
system to employ the encryption directly, using an appropriate filter to invert it and remove
its DC component. Nevertheless, there would be significant bit errors in some points.
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Figure 5.24 – Observation of experimental m(t) (Channel 2), m̂(t) (Channel 1), and m(t)−
m̂(t) (MATH) for square wave

Figure 5.25 – Observation of experimental −s(t) for square wave

Figures 5.26 and 5.27 have the same configuration from Figures 5.24 and 5.25 respec-
tively, but with the message signal changed to a sinusoidal wave. The same applies to Figures
5.28 and 5.29, but for a triangular wave. The encrypted signal for the sinusoidal wave was
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very similar to the encrypted signal for the triangular wave. It would not be absurd to take
one for another. Even then, the behavior of the original waveforms is still noticeable, even if
not as evident as for the square wave.

Thus, from the figures, it can be observed that in both simulations and in the circuit
implementation of the system, the master system correctly encodes the message and the slave
system decodes the message. The performance is good though the system is underactuated
and even in the presence of real components, and consequently, even in the presence of
disturbances.

Figure 5.26 – Observation of experimental m(t) (Channel 2), m̂(t) (Channel 1), and m(t)−
m̂(t) (MATH) for sinusoidal wave.
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Figure 5.27 – Observation of experimental −s(t) for sinusoidal wave.

Figure 5.28 – Observation of experimental m(t) (Channel 2), m̂(t) (Channel 1), and m(t)−
m̂(t) (MATH) for triangular wave.
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Figure 5.29 – Observation of experimental −s(t) for triangular wave.

5.7 SUMMARY

A simple scheme for the synchronization of a chaotic system based on Lyapunov theory
has been proposed. Remarkable features of the proposed approach are stability, robustness,
and convergence to a small neighborhood of the origin, even when bounded disturbances are
present. The proposed synchronizer has been analogically simulated and applied to secure
telecommunication to validate the method. It should be noted that the encrypted signal still
holds resemblance to the original signal, as expected, even in the presence of disturbances
(for instance, due to the tolerances and nonideal behavior of the electronic devices).
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A SCHEME FOR SECURE
COMMUNICATION BASED ON LÜ
HYPERCHAOTIC SYSTEM AND
LYAPUNOV THEORY

The research outcomes of this chapter have been published as a conference paper entitled "A
Scheme for Encryption/Decryption based on Hyperchaotic Systems and Lyapunov Theory"
in [12]. This chapter has extended and improved some parts compared to the original paper.

The study of chaos, and especially, the synchronization of chaotic systems, has been in-
tensified over the last few years [10, 146, 147, 150, 152, 153]. Synchronization of chaotic
systems is frequently proposed in the literature and has attracted considerable attention,
especially to the engineering community, due mainly to its application to secure commu-
nication [83, 152, 154–158], encryption [159–161], neural computing [74, 103, 127, 162],
economics [126], biological systems [163], and biomedical engineering [76, 149].

Particularly, the synchronization of chaotic systems for secure communication has be-
come popular since 1990 with the introduction of the work of Pecora and Carroll [39]. The
Pecora and Carroll method (PC) describes the synchronization of two identical master-slave
systems and their application to secure communication. Since then, several types of syn-
chronization have been defined, such as anti-synchronization [147, 164], complete synchro-
nization [153], lag synchronization [148], and others.

Communication systems based on synchronization, such as chaotic signal masking, have
been successfully applied to secure communication [165]. Chaotic masking consists of en-
coding information by adding it to the chaotic signals in the transmitter. The masked infor-
mation is then transmitted to the receiver, where it is decrypted when the master and slave
systems are synchronized [7]. In most studies regarding chaotic systems synchronization,
the dimension of the control input is the same as that of the state vector. On the other hand,
insofar as the synchronization of chaotic systems is considered, synchronization, where the
number of control input is less than the number of state variables, has sometimes been dis-
cussed [166, 167].

However, synchronization schemes for underactuated hyperchaotic systems are rarely
found in the literature. For instance, in [164], the anti-synchronization problem is addressed
by using a sliding mode controller. Numerical simulations were presented to show the ef-
fectiveness of the proposed scheme. However, the anti-synchronization was achieved using
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two inputs described by sophisticated control laws, which make the circuit implementa-
tion difficult. In addition, disturbances were not taken into account, and applications to
anti-synchronization were not considered. In [168], an adaptive synchronization of a hyper-
chaotic system was proposed. The synchronization was achieved with a single-input linear
feedback controller and in the presence of uncertain parameters. However, disturbances were
not considered, and an application for such synchronization was not shown. In [153], a com-
plete synchronization of two identical delay hyperchaotic systems via a single-input control
and linear control law was suggested. However, as in [168], disturbances were not consid-
ered, and applications for secure telecommunication were not proposed. In [169], a sliding
mode control scheme was utilized to achieve the synchronization of a hyperchaotic circuit
with a single input, but also, neither disturbances nor applications in secure communications
were considered. Also, the complexity of the proposed control law limits further circuit
implementation and its consequent application to secure telecommunication.

Because of the statements above, it can be seen that all previously cited works present
some of the following drawbacks.

1) The presence of disturbances in the theoretical analysis was not considered. The
application of the proposed synchronization for secure communication is scant.

2) The underactuated case was rarely considered.

This chapter considers the synchronization of an underactuated hyperchaotic system and
its application to secure communication in virtue of the facts mentioned above. More specif-
ically, the problem of hyperchaotic synchronization based on a single control input is con-
sidered. However, in contrast to the literature, disturbances in the stability analysis are con-
sidered, with a positive impact on the robustness of the method, and apply the proposed
scheme to secure communication. Finally, extensive simulations were performed to show
the performance of the proposed approach and its effectiveness in encryption for parallel
secure telecommunication. As far as the author knows, this is the first underactuated syn-
chronization scheme of a hyperchaotic system with all these characteristics simultaneously
in the literature, which is the main contribution of this chapter.

The chapter is organized as follows. Section 6.1 presents the problem and main assump-
tions. The synchronization error and control law, which ensures that the synchronization
errors are bounded and finite-time convergent, are shown in Section 6.2. In Section 6.3, a
study of the proposed method in secure telecommunication is presented. In Section 6.4, sim-
ulations are performed to validate the proposed scheme. The conclusions of the chapter are
shown in Section 6.5.
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6.1 PROBLEM STATEMENT

At first, the hyperchaotic system used in this chapter are defined. Consider the master Lü
hyperchaotic system [170]:



ẋm = a(ym − xm)

ẏm = cym − xmzm + wm

żm = xmym − bzm

ẇm = zm − dwm

(6.1)

and the perturbed underactuated slave Lü hyperchaotic system:

ẋs = a(ys − xs) + h1(t)

ẏs = cys − xszs + ws + h2(t) + u

żs = xsys − bzs + h3(t)

ẇs = zs − dws + h4(t)

(6.2)

where xm, ym, zm, and wm are the state variables of the master system; and xs, ys, zs, and
ws are the state variables of the slave system. The systems parameters are a = 15, b = 5,
c = 10, and d = 1. The slave system disturbances are h1(t), h2(t), h3(t), and h4(t), and u is
the control signal.

REMARK 6.1.1 The restriction of the system being underactuated is that the synchronizer
only has access to information from the actuated master states, that is, from the states where
there is a control signal. In other words, in the (6.2) system, the control u cannot have the
presence of the states xm, zm, and wm. Although, the other states of the master system and
all the states of the slave system are available.

FACT 6.1.1 In [170] was proved that (6.1) is hyperchaotic and that the system is dissipative.
A consequence of the system being dissipative is also being bounded. With the boundedness
of the system (6.1), the following inequalities are true:

|xm(t)| ≤ x̄

|ym(t)| ≤ ȳ

|zm(t)| ≤ z̄

|wm(t)| ≤ w̄

(6.3)

∀t ≥ 0, where x̄, ȳ, z̄, and w̄ are unknown positive constants.

ASSUMPTION 6.1.1 Assume that the disturbances are bounded. More precisely,
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|h1(t)| ≤ h̄1

|h2(t)| ≤ h̄2

|h3(t)| ≤ h̄3

|h4(t)| ≤ h̄4

(6.4)

∀t ≥ 0, being h̄1, h̄2, h̄3, and h̄4 unknown constants.

Then, by considering Assumption 6.1.1, this chapter proposes the synchronization of
(6.2) and (6.3) by using a scalar control signal only in the second state, irrespective of the
presence of disturbances, which can affect all the states of the slave system.

REMARK 6.1.2 It is interesting to notice that systems (6.2) and (6.3) are different for the
sake of the presence of disturbances. Disturbances are inevitable in practical implementa-
tions because of the tolerance of the components, environmental conditions, and electromag-
netic noise. This fact relaxes the assumption of "identity of structure," which is usually found
in the literature (see, for example, [153, 168, 169], and the references therein).

6.2 SYNCHRONIZATION ERROR AND PROPOSED SIGNAL CON-
TROL

By defining the synchronization errors as



e1(t) = xs − xm

e2(t) = ys − ym

e3(t) = zs − zm

e4(t) = ws − wm

(6.5)

and by employing (6.2) and (6.3) in the time-derivative of (6.5), results



ė1 = a(e2 − e1) + h1

ė2 = ce2 − e1e3 − e1zm − e3xm + e4 + h2 + u

ė3 = e1e2 + e1ym + e2xm − be3 + h3

ė4 = e3 − de4 + h4

(6.6)

The main result of the chapter is summarized in what follows.

THEOREM 6.2.1 Consider the master and slave systems described by (6.2) and (6.3), and
the proportional control law defined by
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u = −ψe2 (6.7)

If,

ψ > δ (6.8)

Then, the synchronization error is uniformly ultimately bounded and converges in finite-time
to the compact set

Ω =
{
e ∈ ℜ4 | ||e|| ≤ θ

}
(6.9)

where δ = c+0.5[σ2h̄
2
2+σ

−1
5 (a2γ2+z̄2)+σ7], θ =

√
β
ρ
, β = βu+βn, ρ = min{ρ1, ρ2, ρ3, ρ4},

βu = 0.5σ−1
2 , βn = 0.5(γσ−1

1 h̄21+σ
−1
3 h̄23+σ

−1
4 h̄24), ρ1 = aγ−0.5(γσ1+σ5+σ6ȳ

2), ρ2 = ψ−δ,
ρ3 = b− 0.5(σ3 + σ−1

6 + σ8), ρ4 = d− 0.5(σ4 + σ−1
7 + σ−1

8 ), ∥e∥2 = e21 + e22 + e23 + e24, and
σi, i = 1, ..., 8 are positive constants.

Proof.

Consider the following Lyapunov function candidate

V =
1

2
(γe21 + e22 + e23 + e24) (6.10)

where γ > 0. The time-derivative of (6.10) along the trajectories of (6.6), results

V̇ = γe1[a(e2 − e1) + h1] + e2(ce2 − e1e3 − e1zm − e3xm + e4 + h2 + u)

+ e3(e1e2 + e1ym + e2xm − be3 + h3) + e4(e3 − de4 + h4)
(6.11)

By replacing (6.7) in (6.11), implies

V̇ = −γae21 − e22(ψ − c)− be23 − de24 + γe1h1 + e2h2 + e3h3 + e4h4

+ e1e2(γa− zm) + e1e3ym + e2e4 + e3e4
(6.12)

Analyzing when V̇ ≤ 0, by employing the inequality of Young, the Assumption 6.1.1,
and the Fact 6.1.1, then
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θ

Figure 6.1 – Bounded set.

γe1h1 ≤ 0.5γ(σ1e
2
1 + σ−1

1 h̄21)

e2h2 ≤ 0.5(σ2h̄
2
2e

2
2 + σ−1

2 )

e3h3 ≤ 0.5(σ3e
2
3 + σ−1

3 h̄23)

e4h4 ≤ 0.5(σ4e
2
4 + σ−1

4 h̄24)

e1[e2(aγ − zm)] ≤ 0.5[σ5e
2
1 + σ−1

5 e22(a
2γ2 + z̄2)]

e1e3ym ≤ 0.5(σ6e
2
1ȳ

2 + σ−1
6 e23)

e2e4 ≤ 0.5(σ7e
2
2 + σ−1

7 e24)

e3e4 ≤ 0.5(σ8e
2
3 + σ−1

8 e24)

(6.13)

By using (6.13), (6.12) implies

V̇ ≤ −e21ρ1 − e22ρ2 − e23ρ3 − e24ρ4 + βu + βn (6.14)

Note that: 1) there are values of γ and σi, i = 1, ..., 8 that make ρ1 > 0, ρ3 > 0,
and ρ4 > 0; and 2) ψ is chosen by the user so that (6.8) is satisfied, and, consequently,
ρ2 > 0. Therefore, there is a ρ > 0, and (6.14) can be rewritten as

V̇ ≤ −ρ ||e||2 + β (6.15)

Based on (6.15), V̇ < 0 when ∥e∥ > θ. Since θ is a positive constant, it can be
claimed that the synchronization error is uniformly ultimately bounded [24]. In the re-
gion Ω note that if for any reason ∥e∥ is not part of that region Ω, V̇ becomes defined
negative and forces the synchronization error convergence to the region Ω, according
to (6.15). In addition, the convergence to the residual set Ω is in a finite time, due to
the particular form of (6.15) [24]. Consequently, the synchronization error is uniformly
ultimately bounded and converge to a ball with radius θ (Figure 6.1).

REMARK 6.2.1 From the system structure and Lyapunov theory, an adequate control law is
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designed. Based on a trial-and-error procedure, all possibilities of underactuated control in
the analysis was considered and the simplest one was chosen. Inequality of Young was used
in the stability analysis in the process to make V̇ < 0 outside of a small compact set.

REMARK 6.2.2 Defining Di(i = 1, ..., 5) as the respective domains of σi(i = 1, ..., 5),
results

D1 = {σ1 ∈ ℜ|0 < σ1 < 2a}

D2 =

{
σ2 ∈ ℜ|0 < σ2 <

2(ψ − c)

h̄22

}
D3 = {σ3 ∈ ℜ|0 < σ3 < 2b}

D4 = {σ4 ∈ ℜ|0 < σ4 < 2d}

D5 =

{
σ5 ∈ ℜ|a

2 + γ2 + z̄2

2(ψ − c)
< σ5 < 2aγ

}
D6 =

{
σ6 ∈ ℜ| 1

2b
< σ6 <

2aγ

ȳ2

}
D7 =

{
σ7 ∈ ℜ| 1

2d
< σ7 < 2

}
D8 =

{
σ8 ∈ ℜ| 1

2d
< σ8 < 2

}

(6.16)

The residual synchronization error considered is affected by the control gain ψ, disturbances,
and upper bounds for the states of the master system, as can be seen from (6.8). The perfor-
mance for the actuated states can be arbitrarily enhanced by increasing ψ. For non-actuated
states, it can not be guaranteed that a change in the gain of the control will cause the residual
synchronization error to decrease (main disadvantage of the scheme).

6.3 CHAOS-BASED SECURE COMMUNICATION

In order to have a well-posed problem, the following assumption is made.

ASSUMPTION 6.3.1 It is assumed that the messages are bounded. More specifically,

|mi(t)| ≤ m̄i, i = 1, ..., 4 (6.17)

∀t ≥ 0, where m1, m2, m3, and m4 are the original messages and m̄1, m̄2, m̄3, and m̄4 are
positive constants.

Further, motivated by [7], it can be defined
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m̂1 = s1 − xs

m̂2 = s2 − ys

m̂3 = s3 − zs

m̂4 = s4 − ws

(6.18)

being s1 = xm + m1, s2 = ym + m2, s3 = zm + m3, and s4 = wm + m4 the encrypted
messages; and m̂1, m̂2, m̂3, and m̂4 the decrypted messages.

Also, by using (6.18) and defining m̃i = m̂i −mi, i = 1, ..., 4, where m̃1, m̃2, m̃3, and
m̃4 are the message errors, it can be concluded that

m̃i = −ei, i = 1, ..., 4 (6.19)

REMARK 6.3.1 Notice that the quality of the message reconstruction is the same as the
synchronization, as shown in (6.19). Furthermore, the boundedness of the message error is
assured when the synchronization error is bounded.

REMARK 6.3.2 An overview of the secure communication scheme can be seen in Figure
6.2.

Master
system

Synchronizer
Slave

system

xm
+

ym
−

zm

+

wm

+

e2
u2

xs
ys

zs

ws

+

m1
+

s1

m3
+

s3

m4
+

s4

Figure 6.2 – Synchronization and secure communication scheme.

6.4 SIMULATION

Simulations were performed using Matlab 2020b® on a Windows 10 platform, with AMD
Ryzen 7 1700 processor for all simulations, variable-step algorithm ODE45 solver, and rel-
ative tolerance of 10−10. To make the chaotic systems implementable, the master and slave
systems were scaled in size to 4%. The master and slave systems were synchronized by
using the control law (6.7), with ψ = 60. This control gain was required to obtain ade-
quate performance in all simulations. The initial conditions for the master slave and systems

109



are xm(0) = 0.1, ym(0) = 0.1, zm(0) = 0, wm = 0.1, xs(0) = −0.2, ys(0) = −0.2,
zs(0) = 0.1, and ws(0) = 0. Also, to evaluate the robustness of the proposed method in the
presence of disturbances, the following scaled disturbances are chosed: h1(t) = 0.02sin(5t),
h2(t) = 0.022cos(3t), h3(t) = 0.016sin(3t), and h4(t) = 0.002sin(6t).

Figures 6.3 - 6.6 show the synchronization performance for all states. Figures 6.7 -
6.10 show the synchronization errors. The synchronization is achieved fast, and the residual
synchronization error is close to zero, even with just a proportional control signal. Based
on Figures 6.3 - 6.10, the proposed synchronizer is stable and robust in the presence of
disturbances.
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Figure 6.3 – Synchronization result of xm(t) and xs(t).
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Figure 6.4 – Synchronization result of ym(t) and ys(t).
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Figure 6.5 – Synchronization result of zm(t) and zs(t).
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Figure 6.6 – Synchronization result of wm(t) and ws(t).
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Figure 6.7 – Synchronization error of x(t).
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Figure 6.8 – Synchronization error of y(t).
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Figure 6.9 – Synchronization error of z(t).
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Figure 6.10 – Synchronization error of w(t).
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Table 6.1 shows that the optimal control gain value is approximately ψ = 60. Smaller
values of ψ lead to larger values of β and smaller values of ρ, consequently, lead to greater
synchronization error values. Theoretically, larger values of ψ should not increase the syn-
chronization error value, but higher control gain can lead to greater approximation errors in
computer simulations.

Table 6.1 – Root mean square of state errors for t = [0 10] seconds and consider that ψ = 60.

Root Mean Square of State Errors in the Proposed Algorithm
e1rms e2rms e3rms erms

0.01ψ 0.345177 0.378929 0.233219 0.057706 0.057706
0.1ψ 0.064951 0.072758 0.072758 0.005701 0.094601
ψ 0.014854 0.006642 0.011160 0.002588 0.018651

10ψ 0.021911 0.006746 0.013454 0.002563 0.025515
100ψ 0.021345 0.005004 0.013449 0.002575 0.024802

In the sequence, the application of the proposed synchronization scheme for secure
communication is shown in Figures 6.11 - 6.22. The encryption/decryption of three mes-
sages is deemed, where the original messages were m1(t) = 0.3sin(3t) + 0.06cos(20t),
m3(t) = 0.3sin(2t)+0.1cos(15t)+0.02cos(30t), andm4(t) = 0.06sin(5t)+0.03sin(15t).
It is noteworthy that the synchronization scheme and decryption algorithm only use available
signals on the receiver.

Figures 6.11 - 6.16 show the performance of the synchronization of the slave and master
systems in the presence of the introduced messages and disturbances. Figures 6.17 - 6.19
depict the performance in the encryption/decryption of the messages. Message errors are
plotted in Figures 6.20 - 6.22. Note that original messages are very different from coded
messages and very close to coded messages. Additionally, message errors are tiny.
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Figure 6.11 – Synchronization performance of xm(t) and xs(t).
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Figure 6.12 – Synchronization performance of zm(t) and zs(t).
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Figure 6.13 – Synchronization performance of wm(t) and ws(t).
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Figure 6.14 – Synchronization error of x(t).
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Figure 6.15 – Synchronization error of z(t).
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Figure 6.16 – Synchronization error of w(t).
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Figure 6.17 – Original message 1 (blue), decrypted message 1 (red), and encrypted message
1 (green).
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Figure 6.18 – Original message 3 (blue), decrypted message 3 (red), and encrypted message
3 (green).
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Figure 6.19 – Original message 4 (blue), decrypted message 4 (red), and encrypted message
4 (green).
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Figure 6.20 – Message error 1.
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Figure 6.21 – Message error 2.
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Figure 6.22 – Message error 3.

Based on Figures 6.3 - 6.22, observe that the proposed synchronization scheme is stable,
practical, and easy to apply. On the other hand, it can also be applied to secure communica-
tion systems. However, the application performance depends on the power of the information
signal and disturbances, which have to be sufficiently lower than the power of the chaotic
carrier and message, respectively.

6.5 SUMMARY

A simple scheme for synchronization of a class of underactuated hyperchaotic systems
has been proposed. Based on Lyapunov theory, a simple control law, which only acts on one
state, has been devised to ensure the finite-time convergence of the synchronization error
to a bounded region, despite the presence of bounded disturbances. Exhaustive simulations
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using Matlab ® have been accomplished to validate the theoretical results and show their
application. Besides, the proposed methodology has been successfully applied to the encryp-
tion/decryption of messages.
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SECURE COMMUNICATION BASED ON
HYPERCHAOTIC UNDERACTUATED
PROJECTIVE SYNCHRONIZATION

The research outcomes of this chapter have been submitted to the IEEE Access journal,

and the paper was accepted for publication. This paper was done in joint work with other

authors: Lucas Martins Alves, José Alfredo Ruiz Vargas, Sadek Crisóstomo Absi Alfaro,

Guilherme Caribe de Carvalho, Jesus Franklin Andrade Romero. The name of the submitted

work is "Secure Communication Based on Hyperchaotic Underactuated Projective Synchro-
nization". This chapter has extended and improved some parts compared to the original

paper.

In the past few years, significant progress has been made in the study of chaotic systems.
Chaotic systems are deterministic nonlinear systems that show sensitive dependence on ini-
tial conditions and have an aperiodic behavior [8]. A necessary condition for a system to be
chaotic lies in that at least one Lyapunov exponent be positive [36]. The chaotic motion on
a strange attractor was first discovered in the 60s by Lorenz [145]. In the following years,
some relevant chaotic models, such as those by Rössler [171], Chen [172], Sprott [173], and
Lü [174], were introduced. More recently, many works have been proposed in the literature.
See, for example, [146, 175–177].

On the other hand, a system can exhibit hyperchaos when at least two of their associated
Lyapunov exponents are positive, and its dimension is higher than three [37]. Hyperchaos
was initially introduced in 1979 by Rössler [178]. Since then, other important models have
been proposed. Refer to [36, 155, 179–190] and the references therein to quote a few.

Chaotic and hyperchaotic systems have been used in most diverse contexts, includ-
ing nonlinear identification [16, 74, 103], observation and control [191], [101], economy
[192, 193], welding [194], [112], and secure communication [177, 187, 195–201]. In par-
ticular, chaos-based cryptography is a very active research topic in the literature, which is
motivated by the pseudo-random behavior observed in chaotic systems. Typical applications
encompass, for example, the generation of pseudo-random numbers for encryption and de-
cryption of messages [202–206]. The main technologies used for implementation are analog
electronics [184, 187, 207], field-programmable gate array (FPGA) [202, 208], microcon-
trollers [209, 210], and digital signal processing (DSP) [211]. It should be noted that chaos
has a less complex and unpredictable behavior than hyperchaos, as claimed in [212]. Hence,
the use of hyperchaos can sometimes be more suitable than chaos for secure communica-
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tion [213, 214].

Synchronization lies in adjusting the dynamic behavior of two dynamic systems, known
as master (drive) and slave (response), so that their trajectories converge in time. The syn-
chronization of chaotic systems was first introduced in 1990 [39]. Several classes of synchro-
nization have been proposed since then: antisynchronization (AS) [215], lag synchronization
(LS) [148], projective synchronization (PS) [53,181,216–219], modified projective synchro-
nization (MPS) [53], and function projective synchronization FPS [220]. In general, the
synchronization type depends on a scaling factor. For instance, PS is characterized by a con-
stant proportional synchronization between the master and slave systems. Hence, identical
and AS are particular cases of this kind of synchronization with scaling factors 1 or -1. Ma-
trix and functional scaling factors define MPS and FPS, respectively. However, most of the
synchronization works above are only valid under either fully-actuated control or matching
condition [221].

Also, interesting contributions have been proposed in [155, 169, 177, 182, 185, 189, 190,
216, 222, 223]. However, in these works, the usage of disturbances in the stability and con-
vergence analysis was not considered.

In summary, the synchronization of either chaos or hyperchaos is characterized by two
main hypotheses: the control dimension and system order are equal [53, 126, 146, 150, 155,
182, 185, 199, 219, 222] and unknowns are not considered in the stability analysis [155, 169,
177,182,185,189,190,216,222,223]. The former is related to the complexity of the synchro-
nization scheme and the latter to the robustness of the method. Synchronization of underac-
tuated hyperchaotic systems is rarely found in the literature. Also, to the best of the author
knowledge, the robust projective synchronization of underactuated hyperchaotic systems is
not present in the literature. It should be noted that underactuation is a condition defined by
a higher number of independent variables than control signals [224]. Thus, underactuated
systems have fewer actuators than degrees of freedom [225–228], i.e., the control dimension
is lesser than the state dimension. The main significance of the underactuated projective
synchronization is the reduction of actuators in diverse applications.

Motivated by the previous facts, this chapter presents a robust scheme for projective syn-
chronization of a hyperchaotic system to overcome the aforementioned drawbacks. Hence
the proposed approach is based on both Lyapunov theory (to ensure boundedness and finite-
time convergence) and underactuated control law (to simplify the application). More specif-
ically, this chapter presents the following contributions.

1) An underactuated projective synchronization scheme for a perturbed Zhou et al. hy-
perchaotic system [185] is proposed. The proposed synchronization has a simple structure,
in contrast to [53, 126, 146, 150, 155, 182, 185, 188, 189, 199, 212, 219, 229].

2) Neither matching condition nor fully-actuated control is assumed, i.e., the analysis
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considers that disturbances are present in all states, even in those without actuation, and all
states are not used in the proposed synchronization mechanism. In contrast to [155,169,177,
182, 185, 189, 190, 216, 222, 223].

3) The proposed scheme is applied to secure communication, and it was implemented
using electrical circuits. In contrast to [53, 126, 150, 155, 166, 182, 185, 189, 190, 219, 229].

It should be noted that a simple structure leads to easier implementations. The consid-
eration of disturbances in the stability analysis aim at robustness against disturbances which
are inevitable in actual applications. To the best of author knowledge, this is the first time
that a robust underactuated projective synchronization method for hyperchaotic systems is
proposed in the literature.

The chapter is organized as follows. In Section 7.1, the problem and main assumptions
are introduced. The synchronization error is presented in Section 7.2. In Section 7.3, a
control law, which ensures that the synchronization errors are bounded and finite-time con-
vergent, is proposed. Section 7.4 is concerned with application of the proposed method in
secure telecommunication. In Section 7.5, the development of an electronic circuit for the
implementation of the proposed method is accomplished, and a comparison study with an-
other work in the literature is performed. Finally, the conclusions of the chapter are drawn
in Section 7.6.

7.1 PROBLEM STATEMENT

Consider the following master hyperchaotic system [185]:



ẋm = a(ym − xm)− wm

ẏm = bxm − xmzm − ym

żm = xmym − czm

ẇm = dxmzm − kwm

(7.1)

Based on (7.1), a perturbed slave hyperchaotic system can be defined as



ẋs = a(ys − xs)− ws + h1 + u1

ẏs = bxs − xszs − ys + h2

żs = xsys − czs + h3

ẇs = dxszs − kws + h4 + u4

(7.2)

where xm, ym, zm, and wm are the state variables of the master system (7.1); xs, ys, zs, and
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ws are the state variables of the slave system (7.2); h1, h2, h3, and h4 are the disturbances;
u1 and u4 are the control signals. The system parameters satisfy a ∈ [10, 25], b ∈ [10, 50],
c ∈ [1, 3], d ∈ [1, 2], and k ∈ [−1, 2] [185].

The aim of this chapter lies in the synchronization of (7.1) and (7.2) by using an un-
deractuated control scheme, for any initial condition, even in the presence of unmatched
disturbances.

REMARK 7.1.1 Important clarification of the problem of the system being underactuated
is that the synchronizer only has access to information from the actuated master states, that
is, from the states where there is a control signal. In other words, in the (7.2) system, the
controls u1 and u4 cannot have the presence of the states ym and zm. However, the other
states of the master system and all the states of the slave system are available.

FACT 7.1.1 In [185] was proved that (7.1) is hyperchaotic and that the system is dissipative.
A consequence of the system being dissipative is also being bounded. With the boundedness
of the system (7.1), the following inequalities are true:

|xm(t)| ≤ x̄

|ym(t)| ≤ ȳ

|zm(t)| ≤ z̄

|wm(t)| ≤ w̄

(7.3)

∀t ≥ 0, where x̄, ȳ, z̄, and w̄ are unknown positive constants.

ASSUMPTION 7.1.1 It is assumed that the disturbances in (7.2) are bounded. More specifi-
cally,

|h1(t)| ≤ h̄1

|h2(t)| ≤ h̄2

|h3(t)| ≤ h̄3

|h4(t)| ≤ h̄4

(7.4)

∀t ≥ 0, where h̄1, h̄2, h̄3, and h̄4 are unknown positive constants.

REMARK 7.1.2 It is noteworthy that systems (7.1) and (7.2) are, in general, different, due
to the presence of disturbances. Besides, the chapter approach assumes that all these dis-
turbances are not in the control span. Hence, the control signal can not be used straightfor-
wardly to tackle with them. However, this chapter exploits the master boundedness and the
particular structure of (7.1) - (7.2), in the next sections, to devise a simple and robust control
law.
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REMARK 7.1.3 Note that Equation (7.1) does not have a disturbance term. That is no loss
of generality because any disturbance in (7.1) would join with those in (7.2) in the stability
analysis.

7.2 PROJECTIVE SYNCHRONIZATION ERROR

In this section, the main error associated with the synchronization problem is defined.

The projective synchronization error is defined as

e1 = xs − δxm

e2 = ys − δym

e3 = zs − δzm

e4 = ws − δwm

(7.5)

where δ is a nonzero constant defined by the user.

Based on (7.1) - (7.2), the time-derivative of (7.5) results

ė1 = −ae1 + ae2 − e4 + h1 + u1

ė2 = −e2 + be1 − e1e3 − δzme1 − δxme3 − (δ2 − δ)xmzm + h2

ė3 = −ce3 + e1e2 + δyme1 + δxme2 + (δ2 − δ)xmym + h3

ė4 = −ke4 + de1e3 + dδzme1 + dδxme3 + (δ2 − δ)dxmzm + h4 + u4

(7.6)

7.3 LYAPUNOV STABILITY ANALYSIS

After the formulation of the synchronization error equations, the next step is selecting a
control law. In what follows, this chapter considers a standard Lyapunov function candidate
V , which hinges upon the synchronization error, and chooses a control law to make V̇ lower
than zero outside a compact region at the origin Ω. The key drivers for the design are then the
peculiar structure of (7.2), boundedness of (7.1), and an enlargement process for constraining
V̇ to be negative definite outside Ω

Theorem 1: Consider the master and slave systems (7.1) - (7.1), Assumption 3.2.1, and the
control laws

u1 = −ψ1e1 − ψ2e1e
2
4

u4 = −ψ3e4
(7.7)
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If,

ψ1 > δ1

ψ2 >
d2

2

ψ3 > δ2

(7.8)

Then, the synchronization error is ultimately bounded. It converges in finite-time to the
compact set

Ω =
{
e ∈ ℜ4 | ∥e∥ ≤ θ < ξ

}
(7.9)

where the convergence time holds

tmax =


0 if e (t) ∈ Ω

1

ρ
ln

[
V (0)
ξ2

2
− β

ρ

]
otherwise

(7.10)

and δ1 = 0.5[σ1h̄
2
1 + σ5(a

2 + b2 + δ2z̄2) + σ6δ
2ȳ2 + σ7(dδx̄ + 1)] − a, δ2 = 0.5

(
σ4h̄

2
4 +

dδx̄+1
σ7

+ d2δ2x̄2

σ8
+ σ11

)
− k, θ =

√
2β
ρ

, ξ > 0, β = βu + βn + βδ, ρ
2
= min {ρ1, ρ2, ρ3, ρ4},

βu = 0.5
(

1
σ1

+ 1
σ4

)
, βn = 0.5

(
h̄2
2

σ2
+

h̄2
3

σ3

)
, βδ = 0.5 (δ2 − δ)

2
(

x̄2z̄2

σ9
+ x̄2ȳ2

σ10
+ x̄2z̄2

σ11

)
, ρ1 =

ψ1−δ1, ρ2 = 1−0.5
(
σ2 +

1
σ5

+ σ9

)
, ρ3 = c−0.5

(
σ3 +

1
σ6

+ σ8 + σ10 + 1
)

, ρ4 = ψ3−δ2,
∥e∥2 = e21 + e22 + e23 + e24, and σi, i = 1, ..., 11 are positive constants.

Proof.

Consider the following Lyapunov function candidate

V =
∥e∥2

2
(7.11)

The time-derivative of (7.11) results

V̇ = e1ė1 + e2ė2 + e3ė3 + e4ė4 (7.12)

By replacing (7.6) in (7.12) implies
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V̇ = e1(−ae1 + ae2 − e4 + h1 + u1)

+ e2[−e2 + be1 − e1e3 − δzme1 − δxme3 − (δ2 − δ)xmzm + h2]

+ e3[−ce3 + e1e2 + δyme1 + δxme2 + (δ2 − δ)xmym + h3]

+ e4[−ke4 + de1e3 + dδzme1 + dδxme3 + (δ2 − δ)dxmzm + h4 + u4]

(7.13)

Also, by employing (7.7) in (7.13), then

V̇ = −(ψ1 + a)e21 − e22 − ce23 − (ψ3 + k)e24 − ψ2e
2
1e

2
4 + h1e1 + h2e2 + h3e3

+ h4e4 + e1e2(a+ b− δzm) + δyme1e3 + e1e4(dδzm − 1) + dδxme3e4

− (δ2 − δ)xmzme2 + (δ2 − δ)xmyme3 + (δ2 − δ)xmzme4 + de1e3e4

(7.14)

On the other hand, from Fact 7.1.1, Assumption 3.2.1, and Young’s inequality, it
follows that

e1h1 ≤
σ1e

2
1h̄

2
1

2
+

1

2σ1
; e2h2 ≤

σ2e
2
2

2
+

h̄22
2σ2

e3h3 ≤
σ3e

2
3

2
+

h̄23
2σ3

; e4h4 ≤
σ4e

2
4h̄

2
4

2
+

1

2σ4

e1e2(a+ b− δzm) ≤
σ5(a

2 + b2 + δ2z̄2)e21
2

+
e22
2σ5

δyme1e3 ≤
σ6δ

2ȳ2e21
2

+
e23
2σ6

e1e4(dδxm − 1) ≤ σ7e
2
1(dδx̄+ 1)

2
+
e24(dδx̄+ 1)

2σ7

dδxme3e4 ≤
σ8e

2
3

2
+
d2δ2x̄2e24

2σ8

− (δ2 − δ)xmzme2 ≤
σ9e

2
2

2
+

(δ2 − δ)2x̄2z̄2

2σ9

(δ2 − δ)xmyme3 ≤
σ10e

2
3

2
+

(δ2 − δ)2x̄2ȳ2

2σ10

(δ2 − δ)xmzme4 ≤
σ11e

2
4

2
+

(δ2 − δ)2x̄2z̄2

2σ11

de1e3e4 ≤
e23
2
+
d2e21e

2
4

2

(7.15)

Based on (7.15), and analyzing when V̇ ≤ 0, (7.14) implies
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V̇ ≤ −e21(ψ1 − δ1)− e22ρ2 − e23ρ3 − e24(ψ3 − δ2) + βu

+ βn + βδ −
(
ψ2 −

d2

2

)
e21e

2
4

(7.16)

By using (7.8), (7.16) can be written as

V̇ ≤ −ρV + β (7.17)

Then, one can see that V̇ < 0 in (7.17) when e ∈ ΩC . Since Ω is a compact set, the
errors starting inside Ω will remain there forever. In case that the errors start outside Ω, it
can be seen that V̇ < 0, then V and, consequently, ∥e∥ will decrease monotonically until
the errors enter Ω at some finite time tmax.

To determine tmax, it should be noted that (7.17) implies ( [24], Lemma 3.2.4)

V (t) ≤
[
V (0)− β

ρ

]
exp(−ρt) + β

ρ
(7.18)

which further yields

tmax =
1

ρ
ln

{
V (0)
ξ2

2
− β

ρ

}
(7.19)

Therefore, (7.19) shows that the synchronization error converges to the compact set Ω
at least in a finite-time tmax and, hence ( [230]), that the this error is uniformly ultimately
bounded and converge to a ball with radius θ (Figure 7.1).

θ

Figure 7.1 – Bounded set.

REMARK 7.3.1 The main idea of the proposed method lies in the usage of the system struc-
ture and Lyapunov theory to design an adequate control law. Based on a trial-and-error
procedure, all possibilities of underactuated control in the analysis are considered, and the
simplest one was chosen. Inequality of Young was used in the stability analysis in the process
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to make V̇ < 0 outside of a small compact set, whose size can be decreased by increasing
the control gains, even in the presence of bounded unmatched disturbances.

REMARK 7.3.2 Integrator backstepping [231,232] and sliding mode [190,233] are also used
in the control of underactuated systems. However, most works based on backstepping suffer
from "the explosion of complexity," and, in general, the presence of matched disturbances
is assumed. See, for example, [231, 232]. On the other hand, sliding mode control suffers
from chattering, and the disturbances are also supposed to be matched [232]. Besides, most
of synchronizers based on hyperchaotic systems found in the literature employ complete
actuation [175, 212, 234, 235]. Then, the main peculiarity of this chapter, in contrast to the
literature, thus lies in that neither matching condition nor fully-actuated control is assumed.

REMARK 7.3.3 By replacing the parameters in (7.8) and considering the case of identical
synchronization (δ = 1), (7.8) can be rewritten as

ψ1 > 0.5[σ1h̄
2
1 + σ5(400 + 1024 + z̄2) + σ6ȳ

2

+ σ7(x̄+ 1)]− 20

ψ2 > 0.5

ψ3 > 0.5

(
σ4h̄

2
4 +

x̄+ 1

σ7
+
x̄2

σ8
+ σ11

)
+ 1

(7.20)

In addition, one can select conservative values for the bounds and other parameters as
x̄ = 27, ȳ = 38, z̄ = 63, w̄ = 240, h̄1 = 2.7, h̄2 = 3.8, h̄3 = 6.3, h̄4 = 24, σ1 = 1, σ4 = 1

2
,

σ5 = 1, σ6 = 1, σ7 = 1, σ8 = 1, and σ11 = 1
2
. Then ψ1 > 3429.29 and ψ3 > 523.75. It

should be noted that high gains do not prevent application since these gains can be decreased
by amplitude scaling of the hyperchaotic systems leading to lower bounds for the states, as
can be seen in Section 7.5.

REMARK 7.3.4 Defining Di(i = 1, ..., 11) as the respective domains of σi(i = 1, ..., 11),
results
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D1 =

{
σ1 ∈ ℜ|0 < σ1 <

2(ψ1 + a)

h̄21

}
D2 = {σ2 ∈ ℜ|0 < σ2 < 2}

D3 = {σ3 ∈ ℜ|0 < σ3 < 2c}

D4 =

{
σ4 ∈ ℜ|0 < σ4 <

2(ψ3 + k)

h̄24

}
D5 =

{
σ5 ∈ ℜ|1

2
< σ5 <

2(ψ + a)

a2 + b2 + δ2z̄2

}
D6 =

{
σ6 ∈ ℜ| 1

2c
< σ6 <

ψ1

δ2ȳ2

}
D7 =

{
σ7 ∈ ℜ| 2ψ3

dδx̄+ 1
< σ7 <

ψ1

dδx̄+ 1

}
D8 =

{
σ8 ∈ ℜ| 2ψ3

d2δ2x̄2
< σ8 < 2c− 1

}
D9 =

{
σ9 ∈ ℜ|0 < σ9 <

1

2

}
D10 = {σ10 ∈ ℜ|0 < σ10 < 2c− 1}

D11 = {σ11 ∈ ℜ|0 < σ11 < 2ψ3}

(7.21)

Note that the performance of the proposed method, as far as the residual synchronization
error is considered, is affected by the control gains ψ1 and ψ3, scaling factor δ, disturbances,
and upper bounds for the states of the master system, as can be seen from (7.8) and the
definitions below (7.10). In general, the performance for the actuated states can be arbitrarily
enhanced by increasing ψ1 and ψ3. For non-actuated states, although there is a complex
relationship between β and ρ in (7.9), in some cases, the performance can also be indirectly
controlled through ψ1 and ψ3 since higher control gains can allow for higher ρ in (7.9), as
can be seen from the stability analysis.

7.4 CHAOS-BASED SECURE COMMUNICATION

In addition to the projective synchronization case, the application of the proposed method
to secure telecommunication is also considered. To have a well-posed problem, the following
assumption must be imposed.

ASSUMPTION 7.4.1 It is assumed that the messages are bounded. More specifically,

|mi(t)| ≤ m̄i, i = 1, ..., 4 (7.22)

∀t ≥ 0, where m1, m2, m3, and m4 are the original messages and m̄1, m̄2, m̄3, and m̄4 are
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positive constants.

Further, motivated by [7], it can be defined

m̂1 = δs1 − xs

m̂2 = δs2 − ys

m̂3 = δs3 − zs

m̂4 = δs4 − ws

(7.23)

where s1 = xm +m1, s2 = ym +m2, s3 = zm +m3, and s4 = wm +m4 are the encoded
messages; and m̂1, m̂2, m̂3, and m̂4 are the decoded messages.

On the other hand, by using (7.23) and defining m̃i = m̂i − δmi, i = 1, ..., 4, where m̃1,
m̃2, m̃3, and m̃4 are the message errors, it can be concluded that

m̃i = −ei, i = 1, ..., 4 (7.24)

REMARK 7.4.1 It is worth noticing that the quality of the message reconstruction is the same
as the synchronization, as shown in (7.24). Furthermore, the boundedness of the message
error is assured when the synchronization error is bounded.

REMARK 7.4.2 An overview of the secure communication scheme can be seen in Figure
7.2.

Master
system

Synchronizer
Slave

system

xm
−

ym

+

zm

+

wm
−

e1

e4

u1

u4

xs
ys

zs

ws

+

+

m2
+

s2

m3
+

s3

Figure 7.2 – Synchronization and secure communication scheme.

7.5 SIMULATIONS

Simulations were performed using Matlab/Simulink 2020b® on a Windows 10 platform,
with AMD Ryzen 7 1700 processor for all simulations, variable-step algorithm ODE15s
solver, and relative tolerance of 10−8. All the scripts to reproduce the results of this chapter
are available with the author under request. In all simulations, it was considered that δ = 1.
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Figure 7.3 – Circuit diagram. M2_M, M3_M, M2_S, M3_S are the encryption/ decryption
blocks (Figure 7.6). U1 and U4 are generated by the CONTROL block (Figure 7.3). X_M
and X_S are the X state blocks (Figure 7.7). Y_M and Y_S are the Y state blocks (Figure
7.8). Z_M and Z_S are the Z state blocks (Figure 7.9). W_M and W_S are the W state
blocks (Figure 7.10). +XZ_M and +XZ_S are the inversion blocks (Figure 7.4). -XZ_M, -
XZ_S,-XY_M, and -XY_S are the multiplication blocks (Figure 7.5). V1 to V12 are voltage
to signal converters and the S1 and S2 are signal to voltage converters of the Simulink.
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7.5.1 Implementation Example

For implementation purposes, consider that a = 10, b = 47, c = 1, d = 1, and k = 2.
It was also necessary to scale both the frequency and amplitude of the hyperchaotic systems
(7.1) - (7.2) to decrease the transient and hold the operating voltage of the devices. The
system amplitude was then decreased up to 20 times, and the system rate was increased by a
factor of 1000. Hence, the scaled systems were rewritten in a condensed form as



Ẋ = 103[10(Y −X)−X + I∗u1] + h1

Ẏ = 103[47X − 20XZ − Y ] + h2

Ż = 103[20XY − Z] + h3

Ẇ = 103[20XZ − 2W + I∗u4] + h4

(7.25)

where I∗ = {0, 1}, u1 and u4 are defined as in (7.7) being ψ1 = ψ3 = 100 and ψ2 =

10000. Figure 7.3 shows the circuit diagram designed by using Simscape/Simulink being
their blocks detailed in Figures 7.4 - 7.11.

For the sake of conciseness, (7.25) was considered as being the transmitter when I∗ = 0

(X , Y , Z, and W must be substituted by Xm, Ym, Zm, and Wm) and the receiver when
I∗ = 1 (in which case X , Y , Z, and W must be substituted by Xs, Ys, Zs, and Ws).

The encrypted signals are defined as s2 = m2 + Ym, s3 = m3 + Zm and the decrypted
signals as m̂2 = s2−Ys, m̂3 = s3−Zs. This definition was adopted to use the same circuital
structure for simple encryption and decryption. The considered messages werem2 as being a
sequence of bits andm3 = a0+0.5 ·

∑8
i=1[ai ·cos(i ·w ·t)+bi ·sin(i ·w ·t)], where w = 941.7,

a0 = −0.1009055, a1 = 0.09614, b1 = −0.08111, a2 = −0.002126, b2 = −0.002561, a3 =
0.01418, b3 = 0.03685, a4 = 0.0004152, b4 = −0.002264, a5 = −0.01999, b5 = −0.0121,
a6 = 7.883 ·10−5, b6 = −0.0008134, a7 = 0.002927, b7 = −0.0009047, a8 = −3.586 ·10−5,
and b8 = −0.0008205.

In all simulations, analog multipliers AD633JNZ and operational amplifiers OPA228 are
used. Nominal voltage limits, slew rate, bandwidth, input impedance, output impedance, off-
set voltage, and polarization current from their datasheets were also considered. Further, all
capacitors and resistors used here were non-ideal with a tolerance of 0.1% to better reproduce
a more realistic scenario.
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Figure 7.4 – CONTROL block circuit. R1 = R4 = R5 = R8 = 100kΩ and R2 = R3 = R6 = R7
= 1kΩ with tolerance of 0.1%. The blocks OA1 and OA2 are operational amplifiers OPA228.
The blocks M1 and M2 are analog multipliers AD633JNZ.
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Figure 7.5 – Inverter block circuit. R1 = R2 = 10kΩ with tolerance of 0.1%. The block OA1
is an operational amplifier OPA228.
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Figure 7.6 – Multiplier block circuit. R1 = R2 = 10kΩ with tolerance of 0.1%. The block
M1 is an analog multiplier AD633JNZ.
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Figure 7.7 – Encryption/decryption block circuit. R1 = R2 = R3 = 100kΩ with tolerance of
0.1%. The block OA1 is an operational amplifier OPA228.
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Figure 7.8 – State X block circuit. C1 = 10nF, R1 = R2 = 10kΩ, and R3 = R4 = 100kΩ.
Resistors and capacitors have a tolerance of 0.1%, OA1 is an operational amplifier OPA228
and I1 is an inversion block (Figure 7.5).
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Figure 7.9 – State Y block circuit. C1 = 10nF, R1 = 100kΩ, R2 = 2.1kΩ, and R3 = 1kΩ.
Resistors and capacitors have a tolerance of 0.1%, OA1 is an operational amplifier OPA228
and I1 is an inversion block (Figure 7.5).
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Figure 7.10 – State Z block circuit. C1 = 10nF, R1 = 100kΩ, and R2 = 1kΩ. Resistors and
capacitors have a tolerance of 0.1% and OA1 is an operational amplifier OPA228.
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Figure 7.11 – StateW block circuit. C1 = 10nF, R1 = 50kΩ, R2 = 1kΩ, and R3 = 100kΩ. Re-
sistors and capacitors have a tolerance of 0.1% and OA1 is an operational amplifier OPA228.

Figure 7.12 - 7.19 depicts a typical performance of the synchronization using electronic
circuits, and Table 7.1 shows the root mean square of synchronization errors. The syn-
chronization errors are small even when underactuated control and unmatched perturbations
resulting from the non-ideal behavior of the devices are considered. Based on the simu-
lations, the proposed method is easily implementable by analog electronics and has good
performance, as far as the synchronization error is considered.
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Figure 7.12 – Synchronization performance of xm(t) and xs(t) using Matlab. The states are
in volts.
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Figure 7.13 – Synchronization performance of ym(t) and ys(t) using Matlab. The states are
in volts.
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Figure 7.14 – Synchronization performance of zm(t) and zs(t) using Matlab. The states are
in volts.
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Figure 7.15 – Synchronization performance of wm(t) and ws(t) using Matlab. The states are
in volts.
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Figure 7.16 – Synchronization error of x(t). The error is in volts.
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Figure 7.17 – Synchronization error of y(t). The error is in volts.
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Figure 7.18 – Synchronization error of z(t). The error is in volts.
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Figure 7.19 – Synchronization error of w(t). The error is in volts.
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Table 7.1 – Root mean square of synchronization errors for t = [0 0.03] seconds.

Root Mean Square of Synchronization Errors in the Proposed Algorithm
e1rms e2rms e3rms e4rms erms

0.000198 0.002452 0.001767 0.000632 0.002527

Figure 7.20 - 7.23 shows the performance of the encryption of two message signals using
the proposed synchronization method. As expected from theoretical analysis, the recovered
signals converge over time close to the original ones, even in the presence of internal or
external perturbations, which are due to the usage of non-ideal devices in a realistic scenario
in the simulations.
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Figure 7.20 – Performance of the secure communication of the second state. All signals are
in volts.
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Figure 7.21 – Performance of the secure communication of the third state. All signals are in
volts.
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Figure 7.22 – Message error of the second state.
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Figure 7.23 – Message error of the third state.

7.5.2 Comparison with [185]

To better show the performance of the proposed scheme, a comparison between the chap-
ter synchronizer performance with that in [185] in the presence of disturbances was realized.
In [185], a novel synchronizer for hyperchaotic Lorenz system was introduced. Although
finite-time convergence was accomplished, neither external disturbances in the stability anal-
ysis nor a simple underactuated control were considered.

The parameters used in the simulation were a = 20, b = 32, c = 3, d = 1, k = −1,
ψ1 = ψ3 = 100, and ψ2 = 10000. The initial conditions for the master and slave systems in
both cases were xm(0) = 1, ym(0) = 1, zm(0) = 1, wm(0) = 1, xs(0) = 20, ys(0) = 15,
zs(0) = 15, and ws(0) = −200. Also, an unmatched disturbance was introduced to check
the robustness of the proposed approach when it is compared with that in [185]. The used
disturbance was defined as
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h1 = 0.3 · exp(5 · 10−5·x2s)

h2 = 0.2 · exp(10−5·y2s)

h3 = 3sin(3t) + cos(20t)

h4 = 5sin(10t) + 10cos(t)

(7.26)

Three systems were simulated: the master (7.1), slave (7.2), using an underactuated con-
trol, and the slave system in [185], in which a full-actuated control is employed. From
simulations shown in Figure 7.24 - 7.31, it can be seen that the performance of the proposed
scheme is similar to that in [185]. However, the proposed approach is simpler than that
in [185] since the proposed control is only used in the xs and ws channels.

0 1 2 3 4 5 6 7 8 9 10

-10

0

10

20

30

Figure 7.24 – Synchronization error of x(t).
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Figure 7.25 – Synchronization error of y(t).
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Figure 7.26 – Synchronization error of z(t).
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Figure 7.27 – Synchronization error of w(t).

0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

Figure 7.28 – Synchronization error of x(t).
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Figure 7.29 – Synchronization error of y(t).
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Figure 7.30 – Synchronization error of z(t).
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Figure 7.31 – Synchronization error of w(t).

143



Table 7.2 shows that the optimal control gain value is approximately ψ1 = 1, ψ2 = 106,
and ψ3 = 100. Smaller values of these parameters lead to larger values of β and smaller
values of ρ, consequently, lead to greater synchronization error values. Theoretically, larger
values of these parameters should not increase the synchronization error value, but higher
control gain can lead to greater approximation errors in computer simulations.

Table 7.2 – Root mean square of state errors for t = [0 10] seconds and consider that ψ1 =
ψ3 = 100, and ψ2 = 10000.

Root Mean Square of State Errors in the Proposed Algorithm
e1rms e2rms e3rms e4rms erms

ψ1 ψ2 ψ3 1.493294 4.721932 4.641420 38.558155 38.780224
0.01ψ1 ψ2 ψ3 1.429751 4.484119 4.419726 36.490260 36.698627
0.1ψ1 ψ2 ψ3 1.436064 4.462597 4.410235 36.719126 36.928169
10ψ1 ψ2 ψ3 1.493636 4.337775 4.374533 38.841132 39.064938

100ψ1 ψ2 ψ3 1.519841 4.150333 4.289482 39.527566 39.754720
ψ1 0.01ψ2 ψ3 1.575117 4.434670 4.543989 39.686591 39.913421
ψ1 0.1ψ2 ψ3 1.520767 4.514290 4.536734 39.008991 39.233795
ψ1 10ψ2 ψ3 1.377317 4.620323 4.497149 36.115979 36.329537
ψ1 100ψ2 ψ3 1.306059 4.572268 4.432235 34.662253 34.867462
ψ1 ψ2 0.01ψ3 1.563147 3.839121 3.962410 187.732569 187.735909
ψ1 ψ2 0.1ψ3 1.422606 3.782394 3.973009 41.596886 41.846137
ψ1 ψ2 10ψ3 1.557796 4.895822 4.976434 39.282801 39.510939
ψ1 ψ2 100ψ3 1.603156 4.883210 5.200149 39.229397 39.457287

7.6 SUMMARY

An underactuated scheme for projective synchronization of hyperchaotic systems based
on Lyapunov theory has been proposed in this chapter. The main advantages of the pro-
posed synchronization method are its simplicity, low cost of implementation, and its ability
to tackle unmatched disturbances. It has been further employed in chaos-based secure com-
munication to depict the performance of a typical application. With the use of electronic
circuits, the ease of implementation has been shown as well. It should be noted that the
decoded signal is close to the original, as expected, even in the presence of unmatched dis-
turbances and underactuated control.

Potential drawbacks of the scheme must mention the need to use two control signals
instead of just one. This is due to the topology of the considered hyperchaotic systems.
Future works will include the underactuated synchronization of hyperchaotic systems of
high dimension by using online approximators such as neural networks and fuzzy systems.
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CONCLUSIONS

This work has studied synchronization and identification schemes of nonlinear systems
based on the Lyapunov theory.

8.1 IDENTIFICATION CASE

Initially, all issues related to identification based on neural networks and Lyapunov meth-
ods relevant to this work have been considered. In the sequence, a scheme about the issues
mentioned earlier based on Lyapunov arguments has been proposed to relate the state to
independent design parameters to decouple the transient and steady-error performances. Al-
though several works in the literature consider the identification and control based on neural
networks, it is noteworthy that the decoupling of the transient and steady-error performances
in these problems has rarely been investigated. In particular, secure communication based
on analog chaos and control of welding systems is two topics that have motivated enor-
mous technological and scientific interest in the last years. Hence, financial hyperchaotic
and welding systems have been employed to validate the identification scheme in this work.

On the other hand, all simulations were considered the presence of disturbances to assess
the robustness of the proposed algorithms. Several classes of disturbances have been used
to show that the proposed schemes corroborate the theoretical results, which are that the
algorithms are stable. The residual errors converge to an arbitrary neighborhood of the origin,
where the transient and steady-error performances can be adjusted irrespective.

Exhaustive simulations were carried out to evaluate the influence of the design param-
eters on the performance of the algorithms. The independence of the transient and steady-
error performances has been fully confirmed. In particular, the identification and control of a
welding system have been accomplished, which showed that the proposed schemes could be
used successfully in this case, where the transient and steady-state can be adjusted according
to any desired geometric parameters of the weld bead.

8.2 SYNCHRONIZATION CASE

In reviewing previous work on synchronization, it was found that in most of the works
found in the literature, the dimension of the control input is equal to the number of states in
the dynamic system. In addition, many works did not consider the presence of disturbances
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in all states of the system. In this way, it was decided in this doctoral thesis to propose
some underactuated synchronization schemes based on chaotic systems and that theoretically
considered the presence of disturbances in all state signs.

Initially, some synchronization systems based on chaotic 3-D systems were considered
and then extended to hyperchaotic 4-D systems. Additionally, a synchronization scheme
was generalized for the case of projective synchronization. All the proposed synchronization
schemes have been extended to the case of secure communication. Most secure communica-
tion systems were also designed in analog electronics. Several simulations were carried out
to validate the proposed theoretical schemes.

8.3 CHAPTERS CONCLUSIONS

Chapter 2 considered the online identification problem of uncertain systems. Based on
parallel and series-parallel configurations with feedback and Lyapunov arguments, a unified
identification algorithm was introduced to ensure the boundedness of all associated errors
and convergence of the state estimation error to an arbitrary neighborhood of the origin.
The main peculiarity of the proposed algorithm lies in allowing the adjustment of the iden-
tification transient by using parameters that are not related to the residual state error. Two
examples were deemed to validate the theoretical results and show the relevance of applying
the proposed methodology for online weld geometry prediction.

In Chapter 3 it was proposed a scheme for secure telecommunication based on the syn-
chronization of an underactuated chaotic Lorenz system, Lyapunov analysis, and analog
electronics. Unlike most of the schemes usually found in the literature, the proposed scheme
only requires that the control signal act in one of the state equations of the slave system.
The proposed scheme has the advantages of being robust against disturbances (internal and
external) and simple, which is essential since it leads to important cost reductions when im-
plemented using analog electronics. Computational simulations using Matlab and Multisim
were performed to validate the proposed robustness and simplicity of the scheme.

Chapter 4 proposed a scheme for secure telecommunication based on chaotic oscillators
and Lyapunov theory. The presence of internal and external disturbances to increase the
robustness of the method is considered in the Lyapunov design. Another advantage of the
proposed approach is that only one control input is required for synchronizing the master
system with the slave system, making it relatively easy for application. Additionally, imple-
mentation via analog circuits of the proposed model is performed to validate the theoretical
analysis (this is the main advantage of this scheme about the scheme proposed in chapter 3).

Chapter 5 was concerned with the encryption and decryption problem based on the syn-
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chronization of hyperchaotic systems (the main advantage of this scheme about the scheme
proposed in Chapters 3 and 4). Basically, by using Lyapunov arguments, a synchroniza-
tion algorithm was introduced to allow the encryption/decryption of information signals. In
contrast to what is found in the literature, the proposed scheme uses hyperchaotic underac-
tuated oscillators (transmitter/receiver), which synchronize even in the presence of bounded
perturbations in all states. Simulations were provided to validate the theoretical results.

Chapter 6 proposed a scheme for secure telecommunication based on hyperchaotic sys-
tems and the Lyapunov theory. The main advantage of this scheme about the schemes pro-
posed in chapters 3, 4, and 5 is the projective synchronization approach. The design of the
projective synchronizer considers the presence of disturbances to increase the robustness of
the method. The main advantage of the proposed approach lies in that only two control in-
puts are required to synchronize the master and slave systems. Hence, the control structure is
simple, which simplifies the applications. Based on Lyapunov theory, the proposed approach
ensures the finite-time convergence of the synchronization error to a bounded region, even in
the presence of disturbances in all states. A comparison study and secure communication ap-
plications in which messages can be encrypted and decoded were also addressed to validate
the theory.

8.4 FUTURE WORKS

For future works, the following research lines are suggested:

• It is well-known that linearly parameterized neural networks suffer from the "curse of
dimensionality" as considered in this work. Therefore, a natural sequence to alleviate
the drawback mentioned earlier lies in nonlinearly parameterized neural networks. In
this sense, the identifier in [150] can be used as a starting point.

• The application of the proposed identification scheme to the output feedback control
problem. Like [128], where the states were estimated through an adaptive observer.

• To implement the circuital scheme experimentally of synchronization of a hyperchaotic
system.

• The proposal of an underactuated synchronization system and secure telecommunica-
tion that works in hyperchaotic systems that there are more than four states.

• The proposal of an underactuated synchronization system in which a neural network
constitutes the slave system.

• Propose an adaptive underactuated chaotic synchronization system.
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• In secure communication applications find ways to protect messages against attacks,
such as using chaotic auxiliary systems to encode and decode messages.
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CODES

A.1 CODES FOR SIMULATIONS IN CHAPTER 3

A.1.1 Simulink plant used for simulations corresponding to Figures 3.3 - 3.6 and
Tables 3.1 - 3.8

Figure A.1 – Simulink of finance system.

A.1.2 Codes used for simulations corresponding to Figures 3.3 - 3.6 and Tables
3.1 - 3.8

Listing A.1 – Main.m

close all

%clear all

clc

format1 = ’jpeg’;

format2 = ’epsc’;

GAMAW1 = 0.5;

GAMAW2 = 5;

GAMAW3 = 50;

fSize = 38;

axesSize = 38;

lSize = 2;

dvlsize = 2;

dhlsize = 2;

addpath(’./Data/’);

Simulation_all
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Graphs

fileID = fopen(’./Tables/Table.txt’,’w’);

fprintf(fileID,’Root Mean Square of State Errors\n’);

fprintf(fileID,’gamma_W \t 0.5 \t\t 5 \t\t 50\n’);

fprintf(fileID,’e_1_{rms} \t %f \t %f \t %f\n’, Table(1,1), Table(2,1),

Table(3,1));

fprintf(fileID,’e_2_{rms} \t %f \t %f \t %f\n’, Table(1,2), Table(2,2),

Table(3,2));

fprintf(fileID,’e_3_{rms} \t %f \t %f \t %f\n’, Table(1,3), Table(2,3),

Table(3,3));

fprintf(fileID,’e_4_{rms} \t %f \t %f \t %f\n’, Table(1,4), Table(2,4),

Table(3,4));

fprintf(fileID,’e_{rms} \t %f \t %f \t %f\n’, Table(1,5), Table(2,5),

Table(3,5));

fclose(fileID);

save ./Saved_Data/Data.mat

clc

Listing A.2 – Simulation all.m

model = ’./Data/Identifier_System.mdl’;

Input = [0 GAMAW1];

open_system(model,’loadonly’); %load simulink model

modelname = ’Identifier_System’;

set_param(modelname,’SolverType’,’Variable-step’...

,’Solver’,’ode45’...

,’RelTol’,’1e-10’...

,’AbsTol’,’1e-10’...

,’MaxStep’,’0.1’...

,’StopTime’,’10’...

,’ScreenColor’,’white’...

,’TimeSaveName’,’t’);

save_system(’./Data/Identifier_System.mdl’);

newsys = ’./Mdl_2018a/Identifier_System.mdl’;

save_system(model,newsys,’ExportToVersion’,’R2018A_MDL’);

sim(model);

clc

close_system(model, 0); %Close the simulink model, 1 to save, 0 to not

save

gt1=t;

gx1=x;

gxest1=Xestimated;
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aux=size(x);

error1 = zeros(aux(1),4);

error1(:,1) = x(:,1) - Xestimated(:,1);

error1(:,2) = x(:,2) - Xestimated(:,2);

error1(:,3) = x(:,3) - Xestimated(:,3);

error1(:,4) = x(:,4) - Xestimated(:,4);

Input = [0 GAMAW2];

open_system(model,’loadonly’); %load simulink model

sim(model);

close_system(model, 0);

gt2=t;

gx2=x;

gxest2=Xestimated;

aux=size(x);

error2 = zeros(aux(1),4);

error2(:,1) = x(:,1) - Xestimated(:,1);

error2(:,2) = x(:,2) - Xestimated(:,2);

error2(:,3) = x(:,3) - Xestimated(:,3);

error2(:,4) = x(:,4) - Xestimated(:,4);

Input = [0 GAMAW3];

open_system(model,’loadonly’); %load simulink model

sim(model);

close_system(model, 0);

gt3=t;

gx3=x;

gxest3=Xestimated;

aux=size(x);

error3 = zeros(aux(1),4);

error3(:,1) = x(:,1) - Xestimated(:,1);

error3(:,2) = x(:,2) - Xestimated(:,2);

error3(:,3) = x(:,3) - Xestimated(:,3);

error3(:,4) = x(:,4) - Xestimated(:,4);

serror1 = size(error1);

serror2 = size(error2);

serror3 = size(error3);

Table = zeros(3,5);

Table(1,:) = [norm(error1(:,1)) norm(error1(:,2)) norm(error1(:,3)) norm(

error1(:,4)) norm(error1)/2]/sqrt(serror1(1));

Table(2,:) = [norm(error2(:,1)) norm(error2(:,2)) norm(error2(:,3)) norm(

error2(:,4)) norm(error2)/2]/sqrt(serror2(1));

Table(3,:) = [norm(error3(:,1)) norm(error3(:,2)) norm(error3(:,3)) norm(

error3(:,4)) norm(error3)/2]/sqrt(serror3(1));
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Listing A.3 – Plant.m

function [sys,x0,str,ts] = Plant(t,x,u,flag)

%System extract from Yu, H., Cai, G. and Li, Y., "Dynamic analysis and

%control of a new hyperchaotic ?nance control system", Nonlinear Dyn,

%Volume 67, Issue 3, Pages 2171-2182, 2012.

a=0.9; %Constants

b=0.2;

c=1.5;

d=0.2;

k=0.17;

switch flag,

%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 4; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 4; %Number of Outputs

sizes.NumInputs = 0; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=[1 2 0.5 0.5]; %Initial Conditions

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1, %Hyperchaotic System

sys= [ x(3)+(x(2)-a)*x(1)+x(4);

1-b*x(2)-(x(1))^2;

-x(1)-c*x(3);

-d*x(1)*x(2)-k*x(4)]+disturb(x,u,t);

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3,

sys = x;

%%%%%%%%

% End %

%%%%%%%%

case {2,4,9},

sys = []; % do nothing
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otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

function disturb = disturb(x,u,t) %disturb

if t>=5

n=4;

disturb=n*[0.7*cos(6*t);cos(5*t);0.9*cos(4*t);0.8*sin(3*t)];

else

disturb=[0 ; 0; 0; 0];

end

Listing A.4 – Identifier.m

function [sys,x0,str,ts] = Identifier(t,x,u,flag)

%Controller and its parameters

L = 2*[1 0 0 0; 0 1 0 0;0 0 1 0; 0 0 0 1];

P = 30*[1 0 0 0; 0 1 0 0;0 0 1 0; 0 0 0 1];

PSI=1;

G=1;

W01=G*[1 0 0 0 0 0 0 0]’; %W zero

W02=G*[0 1 0 0 0 0 0 0]’;

W03=G*[0 0 1 0 0 0 0 0]’;

W04=G*[0 0 0 1 0 0 0 0]’;

switch flag,

%%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 36; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 5; %Number of Outputs

sizes.NumInputs = 5; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=zeros(36,1); %

x0(1)=-2;

x0(2)=-2;

x0(3)=-2;

x0(4)=-2;

str=[];

ts=[0 0];
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%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1,

%Identification Model

sys = [-L*[x(1)-u(1);x(2)-u(2);x(3)-u(3);x(4)-u(4)] - u(5)*PSI*[x

(1)-u(1);x(2)-u(2);x(3)-u(3);x(4)-u(4)] + P*[x(5:12)’;x(13:20)’;x

(21:28)’;x(29:36)’]*S(x,u);

%Learning Law

-2*u(5)*(PSI*(x(5:12)-W01) + (x(1)-u(1))*S(x,u));

-2*u(5)*(PSI*(x(13:20)-W02) + (x(2)-u(2))*S(x,u));

-2*u(5)*(PSI*(x(21:28)-W03) + (x(3)-u(3))*S(x,u));

-2*u(5)*(PSI*(x(29:36)-W04) + (x(4)-u(4))*S(x,u))];

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3,

sys = [x(1:4);

norm([x(5:12)’;x(13:20)’;x(21:28)’;x(29:36)’],’fro’)];

case {2,4,9},

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function S = S(x,u) %Regressors

S=[1*(z(u(1)));

1*(z(u(2)));

1*(z(u(3)));

1*(z(u(4)));

1*(z(u(1))^2);

1*(z(u(2))^2);

1*(z(u(3))^2);

1*(z(u(4))^2)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z = z(uu) %Sigmoidal Function

lambda=0;

alfa=5;

beta=.5;

z=alfa/(exp(-beta*uu)+1)+lambda;

Listing A.5 – Graphs.m

addpath(’./Figures/’);

nome_1 = ’./Figures/FIG_2_3’;

nome_2 = ’./Figures/FIG_2_4’;
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nome_3 = ’./Figures/FIG_2_5’;

nome_4 = ’./Figures/FIG_2_6’;

set(0,’DefaultAxesFontSize’,axesSize);

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.064, 0.135, 0.921,

0.845]);

plot(gt1,error1(:,1),’:’,gt2,error2(:,1),’r:’,gt3,error3(:,1),’k’,’

LineWidth’,lSize);

grid on

grid minor

YL = get(gca, ’ylim’); %plot the vertical line

YR = YL(2) - YL(1);

YL = [YL(1) - 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, ’YLimInclude’, ’off’, ’Color’,’k’,’LineWidth’,dvlsize);

pa = annotation(’arrow’); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current

axes

pa.X = [5 8]; % the location of arrow

pa.Y = [1 1];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,1.2,’disturbance in action’,’Fontsize’,fSize) % write a text on

top of the arrow

h=legend({’$$\gamma_{W} = 0.5$$’,’$$\gamma_{W} = 5$$’,’$$\gamma_{W} = 50

$$’});

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

ylabel(’$$\tilde{x}_{1}(t)$$’,’Interpreter’,’Latex’,’Fontsize’,fSize)

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_1, format1);

saveas(gcf, nome_1, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.064, 0.135, 0.921,

0.845]);

plot(gt1,error1(:,2),’:’,gt2,error2(:,2),’r:’,gt3,error3(:,2),’k’,’

LineWidth’,lSize);

grid on

grid minor

YL = get(gca, ’ylim’); %plot the vertical line

YR = YL(2) - YL(1);

YL = [YL(1) - 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, ’YLimInclude’, ’off’, ’Color’,’k’,’LineWidth’,dvlsize);

pa = annotation(’arrow’); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current
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axes

pa.X = [5 8]; % the location of arrow

pa.Y = [1 1];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,1.3,’disturbance in action’,’Fontsize’,fSize) % write a text on

top of the arrow

h=legend({’$$\gamma_{W} = 0.5$$’,’$$\gamma_{W} = 5$$’,’$$\gamma_{W} = 50

$$’});

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

ylabel(’$$\tilde{x}_{2}(t)$$’,’Interpreter’,’Latex’,’Fontsize’,fSize)

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_2, format1);

saveas(gcf, nome_2, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.064, 0.135, 0.921,

0.845]);

plot(gt1,error1(:,3),’:’,gt2,error2(:,3),’r:’,gt3,error3(:,3),’k’,’

LineWidth’,lSize);

grid on

grid minor

YL = get(gca, ’ylim’); %plot the vertical line

YR = YL(2) - YL(1);

YL = [YL(1) - 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, ’YLimInclude’, ’off’, ’Color’,’k’,’LineWidth’,dvlsize);

pa = annotation(’arrow’); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current

axes

pa.X = [5 8]; % the location of arrow

pa.Y = [1 1];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,1.2,’disturbance in action’,’Fontsize’,fSize) % write a text on

top of the arrow

h=legend({’$$\gamma_{W} = 0.5$$’,’$$\gamma_{W} = 5$$’,’$$\gamma_{W} = 50

$$’});

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

ylabel(’$$\tilde{x}_{3}(t)$$’,’Interpreter’,’Latex’,’Fontsize’,fSize)

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_3, format1);

saveas(gcf, nome_3, format2);

close(fig)
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fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.064, 0.135, 0.921,

0.845]);

plot(gt1,error1(:,4),’:’,gt2,error2(:,4),’r:’,gt3,error3(:,4),’k’,’

LineWidth’,lSize);

grid on

grid minor

YL = get(gca, ’ylim’); %plot the vertical line

YR = YL(2) - YL(1);

YL = [YL(1) - 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, ’YLimInclude’, ’off’, ’Color’,’k’,’LineWidth’,dvlsize);

pa = annotation(’arrow’); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current

axes

pa.X = [5 8]; % the location of arrow

pa.Y = [1 1];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,1.2,’disturbance in action’,’Fontsize’,fSize) % write a text on

top of the arrow

h=legend({’$$\gamma_{W} = 0.5$$’,’$$\gamma_{W} = 5$$’,’$$\gamma_{W} = 50

$$’});

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

ylabel(’$$\tilde{x}_{4}(t)$$’,’Interpreter’,’Latex’,’Fontsize’,fSize)

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_4, format1);

saveas(gcf, nome_4, format2);

close(fig)

A.1.3 Simulink plant used for simulations corresponding to Figures 3.7 - 3.9 and
Tables 3.9 - 3.10

Figure A.2 – Simulink of comparison.
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A.1.4 Codes used for simulations corresponding to Figures 3.7 - 3.9 and Tables
3.9 - 3.10

Listing A.6 – Plant.m

function [sys,x0,str,ts] = Plant(t,x,u,flag)

%Hypercaotic Finance System

%Constants for the hyperchaotic system

a=0.9;

b=0.2;

c=1.5;

d=0.2;

k=0.17;

switch flag,

%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 4; %Number of continuous states

sizes.NumDiscStates = 0; %Number of discret states

sizes.NumOutputs = 4; %Number of outputs

sizes.NumInputs = 0; %Number of inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=[4 0 -0.5 2.5]; %Initial conditions

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1,

%Unified chaotic system implementation, the chosen constant generates

%a Chen system.

sys = [x(3) + (x(2) - a)*x(1) + x(4);

1 - b*x(2) - x(1)*x(1);

-x(1) - c*x(3);

-d*x(1)*x(2) - k*x(4)] + disturb(x,u,t);

%%%%%%%%%%

% Output %

%%%%%%%%%%

case 3,
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sys = x;

%%%%%%%%%%%%%

% End %

%%%%%%%%%%%%%

case {2,4,9},

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Summary: Return the system’s perturbations

%Arguments: state vector, input vector and time

function disturb = disturb(x,u,t)

if t>=5

disturb= 1000*[8*cos(9*t);

10*cos(6*t);

6*sin(15*t) + 10*exp(-t);

6*sin(15*t) + 4*cos(20*t)];

else

disturb=0; %Until t=5 secs the disturb is null

end

Listing A.7 – Identifier old.m

%Project description: Online Identification using hidden layer neural

networks

% with adaptive laws

%Authors: Jose Alfredo Ruiz Vargas and Emerson Grzeidak

%Date: 04/2015 Local: University of Brasilia

function [sys,x0,str,ts] = Identifier_old(t,x,u,flag)

%Diagonal matrix A with negative elements

A = [-30 0 0 0; 0 -29.5 0 0; 0 0 -32 0; 0 0 0 -30];

%Diagonal matrix A with positive elements

B = 150*[1.2 0 0 0; 0 0.9 0 0; 0 0 1.1 0; 0 0 0 0.8];

%Constant parameters for the learning laws

gammaW=0.01;

gamma0 = 0.1;

gamma1 = 1;

gamma2 = 0.0001;

%Initial weight to the output layer

W0 = [0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0];
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%Random generated matrix used for this simulation

%The matrix was generated using V0 = randn(4, 9)

%and the kept fixed for the simulation

V0 = [0.5377 0.3188 0.5784 0.7254 0.1241 0.6715 0.4889 0.2939 0.0689;

0.8339 0.3077 0.7694 0.0631 0.4897 0.2075 0.0347 0.7873 0.8095;

0.2588 0.4336 0.3499 0.7147 0.4090 0.7172 0.7269 0.8884 0.9443;

0.8622 0.3426 0.0349 0.2050 0.4172 0.6302 0.3034 0.1471 0.4384];

%Positive definite matrix P and Matrix K

P = 60*[0.001 0 0 0; 0 0.001 0 0; 0 0 0.001 0; 0 0 0 0.001];

K = P + P’;

%Parameters for the sigmoidal function

alpha=200;

beta=1;

switch flag,

%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 20; %Number of continuous states

sizes.NumDiscStates = 0; %Number of discrete states

sizes.NumOutputs = 25; %Number of outputs

sizes.NumInputs = 4; %Number of inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=zeros(20,1); %Initial conditions

x0(1:4)=[-2 -2 -2 -2]; %Initial conditions for the estimated

states

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1,

% Identification model and learning laws implementation

sys = [A*x(1:4) + B*[x(5:8)’; x(9:12)’; x(13:16)’; x(17:20)’]*Sig(x

, u, alpha, beta, V0)-parameter_l(x, u, gamma0, gamma1, gamma2, K, t);

-gammaW*(norm(x_error(x, u))*W_error(x, W0, 1) + w_term1(x,
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u, B, K, 1, alpha, beta, V0));

-gammaW*(norm(x_error(x, u))*W_error(x, W0, 2) + w_term1(x,

u, B, K, 2, alpha, beta, V0));

-gammaW*(norm(x_error(x, u))*W_error(x, W0, 3) + w_term1(x,

u, B, K, 3, alpha, beta, V0));

-gammaW*(norm(x_error(x, u))*W_error(x, W0, 4) + w_term1(x,

u, B, K, 4, alpha, beta, V0))];

%%%%%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%%%%%

case 3,

sys = [x(1:20);

norm(x(5:20));

norm((u(1)-x(1)));

norm((u(2)-x(2)));

norm((u(3)-x(3)));

norm((u(4)-x(4)))];

case {2,4,9},

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Summary: Return the line of the matrix of estimation errors for the

parameter W

%Arguments: state vector, initial weights for W and the desired line

function W_error = W_error(x, W0, line)

%The state vector is in column format, your transposed is needed

%to mount the estimation matrix W

temp = [x(5:8)’; x(9:12)’; x(13:16)’; x(17:20)’] - W0;

if line == 1

W_error = temp(1,:)’;

end

if line == 2

W_error = temp(2,:)’;

end

if line == 3

W_error = temp(3,:)’;

end

if line == 4

W_error = temp(4,:)’;
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Summary: Return the vector function l

%Arguments: state vector, system inputs, matrix K, time t and control

%parameters: gamma0, gamma1, gamma2

function parameter_l = parameter_l(x, u, gamma0, gamma1, gamma2, K, t)

denominator = (min(eig(K))*(norm(x_error(x,u))+gamma1*exp(-gamma2*t)));

parameter_l = - (gamma0*x_error(x,u))/denominator;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Summary: Return a vector with estimated state’s errors

%Arguments: state vector, system inputs

function x_error = x_error(x, u)

X = [x(1); x(2); x(3); x(4)];

U = [u(1); u(2); u(3); u(4)];

x_error = X - U;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Summary: Return the NN’s nonlinear regressor vector

%Arguments: state vector, system inputs and sigmoidal function parameters

function Sig = Sig(x,u, alpha, beta, V0) %Regressor

%Parameters for the activation function

V0Z = V0*[u(1); u(2); u(3); u(4); u(1)^2; u(2)^2; u(3)^2; u(4)^2; 1];

%A sigmoidal function is used, we pass each of the elements of the vector

Sig=[(z(V0Z(1), alpha, beta));

(z(V0Z(2), alpha, beta));

(z(V0Z(3), alpha, beta));

(z(V0Z(4), alpha, beta))];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Summary: Sigmoidal fucntion that returns the results of the regressor

%Arguments: the product VZ and parameters for the sigmoidal function

function z = z(arg, alpha, beta) %Sigmoidal activation function

z=alpha/(1+exp(-beta*arg)); %Sigmoidal Function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Summary: Return the line of B*K*Xerror*S(VZ)
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%Arguments: state vector, system inputs, matrix B and K,

%desired line of the matrix and parameters of sigmoidal function

function w_term1 = w_term1(x, u, B, K, line, alpha, beta, V0)

%term B*K*Xerror*S(VZ) 3x3

temp = B*K*x_error(x,u)*(Sig(x,u, alpha, beta, V0)’);

if line == 1

w_term1 = temp(1, :)’;

end

if line == 2

w_term1 = temp(2, :)’;

end

if line == 3

w_term1 = temp(3, :)’;

end

if line == 4

w_term1 = temp(4, :)’;

end

A.1.5 Codes used for simulations corresponding to Figure 3.7 and Table 3.9

Listing A.8 – Main.m

close all

%clear all

clc

format1 = ’jpeg’;

format2 = ’epsc’;

GAMAW1 = 0.5;

GAMAW2 = 5;

GAMAW3 = 50;

fSize = 38;

axesSize = 38;

lSize = 2;

dvlsize = 2;

dhlsize = 2;

addpath(’./Data/’);

Simulation_all

Graphs

serror1 = size(nerror2);
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e_rms_1 = norm(nerror2)/sqrt(serror1(1));

fileID = fopen(’./Tables/Table.txt’,’w’);

fprintf(fileID,’Root Mean Square of State Errors\n’);

fprintf(fileID,’e_{rms} proposed in paper\t %f\n’, e_rms_1);

fclose(fileID);

save ./Saved_Data/Data.mat

clc

Listing A.9 – Simulation all.m

model = ’./Data/Identifier_System.mdl’;

Input = [0 GAMAW2];

open_system(model,’loadonly’); %load simulink model

modelname = ’Identifier_System’;

set_param(modelname,’SolverType’,’Variable-step’...

,’Solver’,’ode45’...

,’RelTol’,’1e-10’...

,’AbsTol’,’1e-10’...

,’MaxStep’,’0.1’...

,’StopTime’,’10’...

,’ScreenColor’,’white’...

,’TimeSaveName’,’t’);

save_system(’./Data/Identifier_System.mdl’);

newsys = ’./Mdl_2018a/Identifier_System.mdl’;

save_system(model,newsys,’ExportToVersion’,’R2018A_MDL’);

sim(model);

clc

close_system(model, 0); %Close the simulink model, 1 to save, 0 to not

save

gt2=t;

aux=size(t);

aux_aqui=size(t);

error2 = zeros(aux(1),4);

nerror2 = zeros(aux(1),1);

error2(:,1) = x(:,1) - Xestimated_new(:,1);

error2(:,2) = x(:,2) - Xestimated_new(:,2);

error2(:,3) = x(:,3) - Xestimated_new(:,3);

error2(:,4) = x(:,4) - Xestimated_new(:,4);

error_comp = zeros(aux(1),4);

nerror_comp = zeros(aux(1),1);

error_comp(:,1) = x(:,1) - Xestimated_old(:,1);

error_comp(:,2) = x(:,2) - Xestimated_old(:,2);

error_comp(:,3) = x(:,3) - Xestimated_old(:,3);
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error_comp(:,4) = x(:,4) - Xestimated_old(:,4);

for i = 1:aux(1)

a1 = error2(i,1);

a2 = error2(i,2);

a3 = error2(i,3);

a4 = error2(i,4);

a_M = [a1 a2 a3 a4];

nerror2(i) = norm(a_M);

end

for i = 1:aux(1)

a1 = error_comp(i,1);

a2 = error_comp(i,2);

a3 = error_comp(i,3);

a4 = error_comp(i,4);

a_M = [a1 a2 a3 a4];

nerror_comp(i) = norm(a_M);

end

Listing A.10 – Identifier new.m

function [sys,x0,str,ts] = Identifier_new(t,x,u,flag)

%Controller and its parameters

L = 70000*2*[1 0 0 0; 0 1 0 0;0 0 1 0; 0 0 0 1];

P = 70000*30*[1 0 0 0; 0 1 0 0;0 0 1 0; 0 0 0 1];

PSI=0.00005; %0.00005

G=1;

W01=G*[1 0 0 0 0 0 0 0]’; %W zero

W02=G*[0 1 0 0 0 0 0 0]’;

W03=G*[0 0 1 0 0 0 0 0]’;

W04=G*[0 0 0 1 0 0 0 0]’;

switch flag,

%%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 36; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 5; %Number of Outputs

sizes.NumInputs = 5; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);
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x0=zeros(36,1); %

x0(1)=-2;

x0(2)=-2;

x0(3)=-2;

x0(4)=-2;

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1,

%Identification Model

sys = [-L*[x(1)-u(1);x(2)-u(2);x(3)-u(3);x(4)-u(4)] - u(5)*PSI*[x

(1)-u(1);x(2)-u(2);x(3)-u(3);x(4)-u(4)] + P*[x(5:12)’;x(13:20)’;x

(21:28)’;x(29:36)’]*S(x,u);

%Learning Law

-2*u(5)*(PSI*(x(5:12)-W01) + (x(1)-u(1))*S(x,u));

-2*u(5)*(PSI*(x(13:20)-W02) + (x(2)-u(2))*S(x,u));

-2*u(5)*(PSI*(x(21:28)-W03) + (x(3)-u(3))*S(x,u));

-2*u(5)*(PSI*(x(29:36)-W04) + (x(4)-u(4))*S(x,u))];

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3,

sys = [x(1:4);

norm([x(5:12)’;x(13:20)’;x(21:28)’;x(29:36)’],’fro’)];

case {2,4,9},

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function S = S(x,u) %Regressors

S=[1*(z(u(1)));

1*(z(u(2)));

1*(z(u(3)));

1*(z(u(4)));

1*(z(u(1))^2);

1*(z(u(2))^2);

1*(z(u(3))^2);

1*(z(u(4))^2)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z = z(uu) %Sigmoidal Function

lambda=0;

alfa=5;
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beta=.5;

z=alfa/(exp(-beta*uu)+1)+lambda;

Listing A.11 – Graphs.m

addpath(’./Figures/’);

nome_1 = ’./Figures/FIG_2_7’;

set(0,’DefaultAxesFontSize’,axesSize);

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.055, 0.135, 0.93,

0.845]);

plot(gt2,nerror_comp(:,1),gt2,nerror2(:,1),’:’,’LineWidth’,lSize);

grid on

grid minor

set(0,’DefaultAxesFontSize’,axesSize);

YL = get(gca, ’ylim’); %plot the vertical line

YR = YL(2) - YL(1);

YL = [YL(1) - 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, ’YLimInclude’, ’off’, ’Color’,’k’,’LineWidth’,dvlsize);

pa = annotation(’arrow’); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current

axes

pa.X = [5 8]; % the location of arrow

pa.Y = [5 5];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,5.3,’disturbances in action’,’Fontsize’,fSize) % write a text

on top of the arrow

h=legend(’Proposed in [74]’,’Proposed algorithm’,’Location’,’northeast’);

set(h,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylabel(’$$||\tilde{x}(t)||$$’,’Interpreter’,’Latex’,’Fontsize’,fSize)

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_1, format1);

saveas(gcf, nome_1, format2);

close(fig)

A.1.6 Codes used for simulations corresponding to Figures 3.8 - 3.9 and Table
3.10

Listing A.12 – Main.m

close all

%clear all

clc
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format1 = ’jpeg’;

format2 = ’epsc’;

GAMAW1 = 0.5;

GAMAW2 = 5;

GAMAW3 = 50;

fSize = 38;

axesSize = 38;

lSize = 2;

dvlsize = 2;

dhlsize = 2;

addpath(’./Data/’);

Simulation_all

Graphs

serror1 = size(nerror1);

serror3 = size(nerror3);

e_rms_1 = norm(nerror1)/sqrt(serror1(1));

e_rms_2 = norm(nerror3)/sqrt(serror3(1));

fileID = fopen(’./Tables/Table.txt’,’w’);

fprintf(fileID,’Root Mean Square of State Errors in the proposed

algorithm\n’);

fprintf(fileID,’e_{rms} in proposed in paper when gamma_W = 0.5 \t %f\n’,

e_rms_1);

fprintf(fileID,’e_{rms} in proposed in paper when gamma_W = 50 \t %f\n’,

e_rms_2);

fclose(fileID);

save ./Saved_Data/Data.mat

clc

Listing A.13 – Simulation all.m

model = ’./Data/Identifier_System.mdl’;

Input = [0 GAMAW1];

open_system(model,’loadonly’); %load simulink model

modelname = ’Identifier_System’;

set_param(modelname,’SolverType’,’Variable-step’...

,’Solver’,’ode45’...

,’RelTol’,’1e-10’...

,’AbsTol’,’1e-10’...

,’MaxStep’,’0.1’...
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,’StopTime’,’10’...

,’ScreenColor’,’white’...

,’TimeSaveName’,’t’);

save_system(’./Data/Identifier_System.mdl’);

newsys = ’./Mdl_2018a/Identifier_System.mdl’;

save_system(model,newsys,’ExportToVersion’,’R2018A_MDL’);

sim(model);

clc

close_system(model, 0); %Close the simulink model, 1 to save, 0 to not

save

gt1=t;

aux=size(t);

aux_aqui=size(t);

error1 = zeros(aux(1),4);

nerror1 = zeros(aux(1),1);

error1(:,1) = x(:,1) - Xestimated_new(:,1);

error1(:,2) = x(:,2) - Xestimated_new(:,2);

error1(:,3) = x(:,3) - Xestimated_new(:,3);

error1(:,4) = x(:,4) - Xestimated_new(:,4);

error_comp1 = zeros(aux(1),4);

nerror_comp1 = zeros(aux(1),1);

error_comp1(:,1) = x(:,1) - Xestimated_old(:,1);

error_comp1(:,2) = x(:,2) - Xestimated_old(:,2);

error_comp1(:,3) = x(:,3) - Xestimated_old(:,3);

error_comp1(:,4) = x(:,4) - Xestimated_old(:,4);

for i = 1:aux(1)

a1 = error1(i,1);

a2 = error1(i,2);

a3 = error1(i,3);

a4 = error1(i,4);

a_M = [a1 a2 a3 a4];

nerror1(i) = norm(a_M);

a1 = error_comp1(i,1);

a2 = error_comp1(i,2);

a3 = error_comp1(i,3);

a4 = error_comp1(i,4);

a_M = [a1 a2 a3 a4];

nerror_comp1(i) = norm(a_M);

end

Input = [0 GAMAW3];

open_system(model,’loadonly’); %load simulink model

sim(model);
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close_system(model, 0);

gt3 = t;

aux = size(t);

error3 = zeros(aux(1),4);

nerror3 = zeros(aux(1),1);

error3(:,1) = x(:,1) - Xestimated_new(:,1);

error3(:,2) = x(:,2) - Xestimated_new(:,2);

error3(:,3) = x(:,3) - Xestimated_new(:,3);

error3(:,4) = x(:,4) - Xestimated_new(:,4);

error_comp3 = zeros(aux(1),4);

nerror_comp3 = zeros(aux(1),1);

error_comp3(:,1) = x(:,1) - Xestimated_old(:,1);

error_comp3(:,2) = x(:,2) - Xestimated_old(:,2);

error_comp3(:,3) = x(:,3) - Xestimated_old(:,3);

error_comp3(:,4) = x(:,4) - Xestimated_old(:,4);

for i = 1:aux(1)

a1 = error3(i,1);

a2 = error3(i,2);

a3 = error3(i,3);

a4 = error3(i,4);

a_M = [a1 a2 a3 a4];

nerror3(i) = norm(a_M);

a1 = error_comp3(i,1);

a2 = error_comp3(i,2);

a3 = error_comp3(i,3);

a4 = error_comp3(i,4);

a_M = [a1 a2 a3 a4];

nerror_comp3(i) = norm(a_M);

end

Listing A.14 – Identifier new.m

function [sys,x0,str,ts] = Identifier_new(t,x,u,flag)

%Controller and its parameters

L = 2*[1 0 0 0; 0 1 0 0;0 0 1 0; 0 0 0 1];

P = 30*[1 0 0 0; 0 1 0 0;0 0 1 0; 0 0 0 1];

PSI=1;

G=1;

W01=G*[1 0 0 0 0 0 0 0]’; %W zero

W02=G*[0 1 0 0 0 0 0 0]’;

W03=G*[0 0 1 0 0 0 0 0]’;

W04=G*[0 0 0 1 0 0 0 0]’;

switch flag,
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%%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 36; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 5; %Number of Outputs

sizes.NumInputs = 5; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=zeros(36,1); %

x0(1)=-2;

x0(2)=-2;

x0(3)=-2;

x0(4)=-2;

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1,

%Identification Model

sys = [-L*[x(1)-u(1);x(2)-u(2);x(3)-u(3);x(4)-u(4)] - u(5)*PSI*[x

(1)-u(1);x(2)-u(2);x(3)-u(3);x(4)-u(4)] + P*[x(5:12)’;x(13:20)’;x

(21:28)’;x(29:36)’]*S(x,u);

%Learning Law

-2*u(5)*(PSI*(x(5:12)-W01) + (x(1)-u(1))*S(x,u));

-2*u(5)*(PSI*(x(13:20)-W02) + (x(2)-u(2))*S(x,u));

-2*u(5)*(PSI*(x(21:28)-W03) + (x(3)-u(3))*S(x,u));

-2*u(5)*(PSI*(x(29:36)-W04) + (x(4)-u(4))*S(x,u))];

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3,

sys = [x(1:4);

norm([x(5:12)’;x(13:20)’;x(21:28)’;x(29:36)’],’fro’)];

case {2,4,9},

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function S = S(x,u) %Regressors

S=[1*(z(u(1)));

1*(z(u(2)));

1*(z(u(3)));

1*(z(u(4)));

1*(z(u(1))^2);

1*(z(u(2))^2);

1*(z(u(3))^2);

1*(z(u(4))^2)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z = z(uu) %Sigmoidal Function

lambda=0;

alfa=5;

beta=.5;

z=alfa/(exp(-beta*uu)+1)+lambda;

Listing A.15 – Graphs.m

addpath(’./Figures/’);

nome_1 = ’./Figures/FIG_2_8’;

nome_2 = ’./Figures/FIG_2_9’;

set(0,’DefaultAxesFontSize’,axesSize);

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.055, 0.135, 0.93,

0.845]);

plot(gt1,nerror_comp1(:,1),gt1,nerror1(:,1),’:’,’LineWidth’,lSize);

grid on

grid minor

YL = get(gca, ’ylim’); %plot the vertical line

YR = YL(2) - YL(1);

YL = [YL(1) - 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, ’YLimInclude’, ’off’, ’Color’,’k’,’LineWidth’,dvlsize);

pa = annotation(’arrow’); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 8]; % the location of arrow

pa.Y = [2 2];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,2.3,’disturbances in action’,’Fontsize’,fSize) % write a text

on top of the arrow

h=legend(’Proposed in [74]’,’Proposed algorithm’,’Location’,’northeast’);

set(h,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylabel(’$$||\tilde{x}(t)||$$’,’Interpreter’,’Latex’,’Fontsize’,fSize)

dim = [.75 .43 .4 .4];

str = ’$$\gamma_{w} = 0.5$$’;
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annotation(’textbox’,dim,’String’,str,’Interpreter’,’Latex’,’Fontsize’,

fSize,’FitBoxToText’,’on’);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_1, format1);

saveas(gcf, nome_1, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.055, 0.135, 0.93,

0.845]);

plot(gt3,nerror_comp3(:,1),gt3,nerror3(:,1),’:’,’LineWidth’,lSize);

grid on

grid minor

YL = get(gca, ’ylim’); %plot the vertical line

YR = YL(2) - YL(1);

YL = [YL(1) - 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, ’YLimInclude’, ’off’, ’Color’,’k’,’LineWidth’,dvlsize);

pa = annotation(’arrow’); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 8]; % the location of arrow

pa.Y = [2 2];

pa.LineWidth = dhlsize; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,2.3,’disturbances in action’,’Fontsize’,fSize) % write a text

on top of the arrow

h=legend(’Proposed in [74]’,’Proposed algorithm’,’Location’,’northeast’);

set(h,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylabel(’$$||\tilde{x}(t)||$$’,’Interpreter’,’Latex’,’Fontsize’,fSize)

dim = [.75 .43 .4 .4];

str = ’$$\gamma_{w} = 50$$’;

annotation(’textbox’,dim,’String’,str,’Interpreter’,’Latex’,’Fontsize’,

fSize,’FitBoxToText’,’on’);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_2, format1);

saveas(gcf, nome_2, format2);

close(fig)

A.1.7 Simulink plant used for simulations corresponding to Figures 3.11 - 3.20
and Table 3.12

Figure A.3 – Simulink of welding system.
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A.1.8 Codes used for simulations corresponding to Figures 3.10 - 3.20 and Table
3.12

Listing A.16 – Main.m

close all

%clear all

clc

addpath(’./Data/’);

addpath(’./Figures/’);

valor = 1547;

data = xlsread(’Table.xlsx’);

vect = zeros(valor,3);

vect(:,1) = data(1:valor,3); %Velocidade de arame (m/min} (entrada)

vect(:,2) = data(1:valor,5); %tensão malha aberta (V) (entrada)

vect(:,3) = data(1:valor,4); %velocidade de soldagem (mm/s) (entrada)

y = zeros(valor,8);

y(:,1) = data(1:valor,2)/1000; %tempo (s)

y(:,2) = data(1:valor,6); %corrente (A)

y(:,3) = data(1:valor,8); %Longitude de arco (mm)

y(:,4) = data(1:valor,7); %tensão de arco (V)

y(:,5) = data(1:valor,9); %stick out (mm)

y(:,6) = data(1:valor,10); %largura(mm)

y(:,7) = data(1:valor,11); %reforço(mm)

y(:,8) = data(1:valor,12); %penetracao(mm)

z = y’;

save ./Data/data.mat z

format1 = ’jpeg’;

format2 = ’epsc’;

fSize = 38;

axesSize = 38;

lSize = 2;

model = ’./Data/Welding_Idenfication_System.mdl’;

open_system(model,’loadonly’); %load simulink model

modelname = ’Welding_Idenfication_System’;

set_param(modelname,’SolverType’,’Variable-step’...

,’Solver’,’ode45’...

,’RelTol’,’1e-10’...

,’AbsTol’,’1e-10’...
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,’MaxStep’,’0.1’...

,’StopTime’,’15.47’...

,’ScreenColor’,’white’...

,’TimeSaveName’,’t’);

save_system(’./Data/Welding_Idenfication_System.mdl’);

newsys = ’./Mdl_2018a/Welding_Idenfication_System.mdl’;

save_system(model,newsys,’ExportToVersion’,’R2018A_MDL’);

clc

close_system(model, 0); %Close the simulink model, 1 to save, 0 to not

save

Simulation

Graphs

srror1 = size(error(:,1));

serror2 = size(error(:,2));

serror3 = size(error(:,3));

serror4 = size(error(:,4));

serror5 = size(error(:,5));

serror6 = size(error(:,6));

serror7 = size(error(:,7));

e_rms1 = norm(error(:,1))/sqrt(serror1(1));

e_rms2 = norm(error(:,2))/sqrt(serror2(1));

e_rms3 = norm(error(:,3))/sqrt(serror3(1));

e_rms4 = norm(error(:,4))/sqrt(serror4(1));

e_rms5 = norm(error(:,5))/sqrt(serror5(1));

e_rms6 = norm(error(:,6))/sqrt(serror6(1));

fileID = fopen(’./Tables/Table.txt’,’w’);

fprintf(fileID,’Root Mean Square of State Errors\n’);

fprintf(fileID,’e_{rms} proposed in paper (A)\t %f\n’, e_rms1);

fprintf(fileID,’e_{rms} proposed in paper (V)\t %f\n’, e_rms2);

fprintf(fileID,’e_{rms} proposed in paper (mm)\t %f\n’, e_rms3);

fprintf(fileID,’e_{rms} proposed in paper (mm)\t %f\n’, e_rms4);

fprintf(fileID,’e_{rms} proposed in paper (mm)\t %f\n’, e_rms5);

fprintf(fileID,’e_{rms} proposed in paper (mm)\t %f\n’, e_rms6);

fclose(fileID);

save ./Saved_Data/Data.mat

clc

Listing A.17 – Simulation.m

open_system(model,’loadonly’); %load simulink model

sim(model);

close_system(model, 0); %Close the simulink model, 1 to save, 0 to not
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save

aux=size(x);

error = zeros(aux(1),7);

error(:,1) = x(:,8) - x(:,1);

%error(:,2) = x(:,9) - x(:,2);

error(:,2) = x(:,10) - x(:,3);

error(:,3) = x(:,11) - x(:,4);

error(:,4) = x(:,12) - x(:,5);

error(:,5) = x(:,13) - x(:,6);

error(:,6) = x(:,14) - x(:,7);

Listing A.18 – Identifier.m

function [sys,x0,str,ts] = Identifier(t,x,u,flag)

%Identifier and its parameters

L = 100*[5 0 0 0 0 0 0; 0 4 0 0 0 0 0; 0 0 10 0 0 0 0;...

0 0 0 4 0 0 0; 0 0 0 0 1.1 0 0; 0 0 0 0 0 1 0; 0 0 0 0 0 0 1];

P = L;

GAMAW = 0.001;

PSI = 0.001;

G = 1;

W01 = G*[1 0 0 0 0 0 0 0 0 0 0 0 0 0]’; %W zero

W02 = G*[0 1 0 0 0 0 0 0 0 0 0 0 0 0]’;

W03 = G*[0 0 1 0 0 0 0 0 0 0 0 0 0 0]’;

W04 = G*[0 0 0 1 0 0 0 0 0 0 0 0 0 0]’;

W05 = G*[0 0 0 0 1 0 0 0 0 0 0 0 0 0]’;

W06 = G*[0 0 0 0 0 1 0 0 0 0 0 0 0 0]’;

W07 = G*[0 0 0 0 0 1 0 0 0 0 0 0 0 0]’;

switch flag,

%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 105; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 15; %Number of Outputs

sizes.NumInputs = 7; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=zeros(105,1); %Initial Conditions

x0(4,1) = 0.01;

str=[];
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ts=[0 0];

%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1,

%Identifier Model

sys = [-L*[x(1)-u(1);x(2)-u(2);x(3)-u(3);x(4)-u(4);x(5)-u(5);x(6)-u

(6);x(7)-u(7)]...

- GAMAW*PSI*[x(1)-u(1);x(2)-u(2);x(3)-u(3);x(4)-u(4);x(5)-u(5);

x(6)-u(6);x(7)-u(7)]...

+ P*[x(8:21)’;x(22:35)’;x(36:49)’;x(50:63)’;x(64:77)’;x(78:91)

’;x(92:105)’]*S(x,u);

%Learning Law

-2*GAMAW*(PSI*(x(8:21)-W01) + (x(1)-u(1))*S(x,u));

-2*GAMAW*(PSI*(x(22:35)-W02) + (x(2)-u(2))*S(x,u));

-2*GAMAW*(PSI*(x(36:49)-W03) + (x(3)-u(3))*S(x,u));

-2*GAMAW*(PSI*(x(50:63)-W04) + (x(4)-u(4))*S(x,u));

-2*GAMAW*(PSI*(x(64:77)-W05) + (x(5)-u(5))*S(x,u));

-2*GAMAW*(PSI*(x(78:91)-W06) + (x(6)-u(6))*S(x,u));

-2*GAMAW*(PSI*(x(92:105)-W07) + (x(6)-u(6))*S(x,u))];

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3,

sys = [u(1:7);x(1:7);

norm([x(8:21)’;x(22:35)’;x(36:49)’;x(50:63)’;x(64:77)’;x

(78:91)’;x(92:105)’],’fro’)];

case {2,4,9},

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function S = S(x,u) %Regressors

S=[1*(z(x(1)));

1*(z(x(2)));

1*(z(x(3)));

1*(z(x(4)));

1*(z(x(5)));

1*(z(x(6)));

1*(z(x(7)));

1*z(x(1))^2;

1*z(x(2))^2;

1*z(x(3))^2;

1*z(x(4))^2;

1*z(x(5))^2;
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1*z(x(6))^2

1*z(x(7))^2];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z = z(uu) %Sigmoidal Function

lamda=0;

alfa=5;

beta=.5;

z=alfa/(exp(-beta*uu)+1)+lamda;

Listing A.19 – Graphs.m

addpath(’./Figures/’);

nome_1 = ’./Figures/FIG_2_11’;

nome_2 = ’./Figures/FIG_2_12’;

nome_3 = ’./Figures/FIG_2_13’;

nome_4 = ’./Figures/FIG_2_14’;

nome_5 = ’./Figures/FIG_2_15’;

nome_6 = ’./Figures/FIG_2_16’;

nome_7 = ’./Figures/FIG_2_17’;

nome_8 = ’./Figures/FIG_2_18’;

nome_9 = ’./Figures/FIG_2_19’;

nome_10 = ’./Figures/FIG_2_20’;

set(0,’DefaultAxesFontSize’,axesSize);

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.056, 0.135, 0.941,

0.845]);

plot(y(:,1),vect(:,1),’LineWidth’,lSize);

grid on

grid minor

h=legend(’Wire Speed’,’Location’,’northeast’);

set(h,’FontSize’,fSize);

ylabel(’$u_1[m/min]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

xlim([0, 15.47]);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_1, format1);

saveas(gcf, nome_1, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.069, 0.135, 0.928,

0.845]);

plot(y(:,1),vect(:,2),’LineWidth’,lSize);

grid on

grid minor

h=legend(’Open Loop Voltage’,’Location’,’northeast’);

set(h,’FontSize’,fSize);

ylabel(’$u_2[V]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);
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xlim([0, 15.47]);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_2, format1);

saveas(gcf, nome_2, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.069, 0.135, 0.927,

0.845]);

plot(y(:,1),vect(:,3),’LineWidth’,lSize);

grid on

grid minor

h=legend(’Welding Speed’,’Location’,’northeast’);

set(h,’FontSize’,fSize);

ylabel(’$u_3[mm/s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

xlim([0 15.47]);

ylim([6 15]);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_3, format1);

saveas(gcf, nome_3, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.085, 0.135, 0.912,

0.845]);

plot(t,x(:,1),t, x(:,8),’r:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’Actual’,’Estimated’,’Location’,’northeast’);

set(h,’FontSize’,fSize);

ylabel(’$x_1[A]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

xlim([0 15.47]);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_4, format1);

saveas(gcf, nome_4, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.069, 0.135, 0.928,

0.845]);

plot(t,x(:,3),t, x(:,10),’r:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’Actual’,’Estimated’,’Location’,’northeast’);

set(h,’FontSize’,fSize);

ylabel(’$x_2[V]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

xlim([0 15.47]);

201



xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_5, format1);

saveas(gcf, nome_5, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.069, 0.135, 0.928,

0.845]);

plot(t,x(:,4),t, x(:,11),’r:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’Actual’,’Estimated’,’Location’,’northeast’);

set(h,’FontSize’,fSize);

ylabel(’$x_3[mm]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

xlim([0 15.47]);

ylim([0 16]);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_6, format1);

saveas(gcf, nome_6, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.069, 0.135, 0.927,

0.845]);

plot(t,x(:,5),t, x(:,12),’r:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’Actual’,’Estimated’,’Location’,’northeast’);

set(h,’FontSize’,fSize);

ylabel(’$x_4[mm]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

xlim([0 15.47]);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_7, format1);

saveas(gcf, nome_7, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.077, 0.135, 0.921,

0.845]);

plot(t,x(:,6),t, x(:,13),’r:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’Actual’,’Estimated’,’Location’,’northeast’);

set(h,’FontSize’,fSize);

ylabel(’$x_5[mm]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

xlim([0 15.47]);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);
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set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_8, format1);

saveas(gcf, nome_8, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.077, 0.135, 0.921,

0.845]);

plot(t,x(:,7),t, x(:,14),’r:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’Actual’,’Estimated’,’Location’,’northeast’);

set(h,’FontSize’,fSize);

ylabel(’$x_6[mm]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

xlim([0 15.47]);

ylim([-0.2 3]);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_9, format1);

saveas(gcf, nome_9, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.096, 0.135, 0.9015,

0.845]);

plot(t,x(:,15),’LineWidth’,lSize);

grid on

grid minor

h=legend(’Estimated Weigth Norm’,’Location’,’northeast’);

set(h,’FontSize’,fSize);

ylabel(’$||\tilde{W}(t)||$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

xlim([0 15.47]);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_10, format1);

saveas(gcf, nome_10, format2);

close(fig)

A.2 CODES FOR SIMULATIONS IN CHAPTER 4

A.2.1 Codes used for simulations corresponding to Figures 4.3 - 4.12 and Table
4.1

Listing A.20 – Main.m

clear %limpa variáveis anteriores

clc %limpa o que estava escrito no terminal

%Condições iniciais, única regra essencial é que os estados do mestre e

escravo sejam diferentes.
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x0_mestre = [0.2 -0.3 0.4];

x0_escravo = [0.1 0.3 -0.1];

psi = 50; %Ganho do controle subatuado

%IMPORTANTE: Coloque a mensagem igual a zero nos estados atuados, pois

esses estados

%são importantes para a correta sincronização dos sistemas mestre e

escravo

t_fim = 20; %Tempo em que a simulação termina

options = odeset(’RelTol’, 1e-10,... %configurações da simulação

’AbsTol’, 1e-10,...

’MaxStep’,0.001);

t_ciclo = [0 t_fim ]; %coloca-se o tempo inicial e final da simulação

em um vetor

x0(1) = x0_mestre (1); %repassando as condições iniciais para variáveis

escalonadas

x0(2) = x0_mestre (2);

x0(3) = x0_mestre (3);

x0(4) = x0_escravo(1);

x0(5) = x0_escravo(2);

x0(6) = x0_escravo(3);

[t, x] = ode45(@Esquema, t_ciclo, x0, options, psi);

%realiza a simulação e salva os resultados

aux = size(t);

msg = zeros(aux(1), 3);

for i = 1:aux(1)

tempo = t(i,1);

msg_aux = Mensagens(tempo);

msg(i,:) = msg_aux’;

end

Xmaster_sem_msg = x(:, 1:3);

Xmaster = x(:, 1:3) + msg(:, 1:3);

Xslave = x(:, 4:6);

clearvars -except t Xmaster_sem_msg Xmaster Xslave msg

e1 = Xslave(:,1) - Xmaster_sem_msg(:,1);

e2 = Xslave(:,2) - Xmaster_sem_msg(:,2);

e3 = Xslave(:,3) - Xmaster_sem_msg(:,3);

merror1 = Xmaster(:,1) - Xslave(:,1) - msg(:,1);

merror2 = Xmaster(:,2) - Xslave(:,2) - msg(:,2);

merror3 = Xmaster(:,3) - Xslave(:,3) - msg(:,3);

%Graphs
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e = [e1 e2 e3];

serror1 = size(e1);

serror2 = size(e2);

serror3 = size(e3);

serror = size(e);

fileID = fopen(’./Tables/Table.txt’,’w’);

fprintf(fileID,’Root Mean Square of State Errors\n\n’);

fprintf(fileID,’e_1_{rms} \t %f \n’, norm(e1)/sqrt(serror1(1)));

fprintf(fileID,’e_2_{rms} \t %f \n’, norm(e2)/sqrt(serror2(1)));

fprintf(fileID,’e_3_{rms} \t %f \n’, norm(e3)/sqrt(serror3(1)));

fprintf(fileID,’e_{rms} \t %f \n\n’, norm(e)/sqrt(serror(1)));

fclose(fileID);

save ./Saved_Data/Data.mat

clc

function y = Esquema(t, x, psi)

eq_mestre = Sistema(x(1), x(2), x(3)); %equação do sistema mestre

eq_escravo = Sistema(x(4), x(5), x(6)); %equação sistema escravo

y(1:3, 1) = eq_mestre;

y(4:6, 1) = eq_escravo + controle(x, psi) + disturb(t);

%O resultado dos sistema mestre e escravo

end

function controle = controle(x, psi)

controle = [0; %estrutura do controle

-psi*(x(5) - x(2));

0];

end

function disturb = disturb(t) %distúrbios, caso queira coloca-los

if t>=0 %Início dos distúrbios a partir de 5

segundos

disturb = [0.1*sin(2*t);

0.2*sin(t);

0.1*sin(4*t)];

else

disturb = 0; %Até t=10 segundos os distúrbios são nulos

end

end

Listing A.21 – Sistema.m

function equation = Sistema(x, y, z)

a = 16; %Constantes

b = 45.6;
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c = 4;

d = 5;

%coloque aqui a estrutura do seu sistema dinâmico

equation = [a*(y - x);

b*x - y - 4*d*x*z;

-c*z + d*x*y];

end

Listing A.22 – Mensagens.m

function msg = Mensagens(t)

msg = [0.1*sin(8*3.1416*t); %coloque aqui a estrutura do seu sistema

dinâmico

0; %0.15*square(0.5*t) + 0.05*sin(4*t)

0.05*cos(4*t) + 0.05*cos(t)];

end

%Mensagens enviadas (devem ser no maximo 5% do valor maximo atingido pelo

estado)

%Entenda como msg1 uma mensagem presente no primeiro estado, por exemplo

%Não coloque mensagens em estados onde o controle esta presente

%IMPORTANTE: Coloque a mensagem igual a zero nos estados atuados, pois

esses estados

%são importantes para a correta sincronização dos sistemas mestre e

escravo

Listing A.23 – Graphs.m

format1 = ’jpeg’;

format2 = ’epsc’;

fSize = 38;

axesSize = 38;

lSize = 2;

dvlsize = 2;

dhlsize = 2;

fonte = 38;

largura_linha = 2;

color1 = [0 0.4470 0.7410];

color2 = [0.8500 0.3250 0.0980];

color3 = [0.4660 0.6740 0.1880];

nome_1 = ’./Figures/FIG_3_3’;

nome_2 = ’./Figures/FIG_3_4’;

nome_3 = ’./Figures/FIG_3_5’;

nome_4 = ’./Figures/FIG_3_6’;

nome_5 = ’./Figures/FIG_3_7’;
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nome_6 = ’./Figures/FIG_3_8’;

nome_7 = ’./Figures/FIG_3_9’;

nome_8 = ’./Figures/FIG_3_10’;

nome_9 = ’./Figures/FIG_3_11’;

nome_10 = ’./Figures/FIG_3_12’;

set(0,’DefaultAxesFontSize’,axesSize);

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.033, 0.135, 0.952,

0.845]);

plot(t,Xmaster_sem_msg(:,1),t, Xslave(:,1),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$x_m(t)$’,’$x_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-4 4])

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_1, format1);

saveas(gcf, nome_1, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.033, 0.135, 0.952,

0.845]);

plot(t,Xmaster_sem_msg(:,2),t, Xslave(:,2),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$y_m(t)$’,’$y_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-5 5])

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_2, format1);

saveas(gcf, nome_2, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.025, 0.135, 0.96,

0.845]);

plot(t,Xmaster_sem_msg(:,3),t, Xslave(:,3),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$z_m(t)$’,’$z_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.5 4.5])

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_3, format1);
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saveas(gcf, nome_3, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.068, 0.135, 0.917,

0.845]);

plot(t,e1,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$e_1(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_4, format1);

saveas(gcf, nome_4, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.054, 0.135, 0.931,

0.845]);

plot(t,e2,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$e_2(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_5, format1);

saveas(gcf, nome_5, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.054, 0.135, 0.931,

0.845]);

plot(t,e3,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$e_3(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_6, format1);

saveas(gcf, nome_6, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.1, 0.135, 0.885,

0.845]);

aux = Xmaster(:,1) - Xslave(:,1);

plot(t,msg(:,1),’-’,’Color’,color1,’LineWidth’,largura_linha);

grid on
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grid minor

hold on;

plot(t, aux,’:’,’Color’,color2,’LineWidth’, largura_linha);

plot(t, 0.05*Xmaster(:,1),’-’,’Color’,color3,’LineWidth’, largura_linha);

ylim([-0.16 0.25])

h=legend(’Original message’, ’Decoded message’, ’Encoded message’,’

Location’,’northeast’);

set(h,’FontSize’,fonte);

xlabel(’$$t[s]$$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylabel(’$$m_1(t), \hat{m}_1(t), 0.05{\cdot}s_1(t)$$’,’Interpreter’,’Latex

’,’Fontsize’,fonte);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_7, format1);

saveas(gcf, nome_7, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.086, 0.135, 0.899,

0.845]);

aux = Xmaster(:,3) - Xslave(:,3);

plot(t,msg(:,3),’-’,’Color’,color1,’LineWidth’,largura_linha);

grid on

grid minor

hold on;

plot(t, aux,’:’,’Color’,color2,’LineWidth’, largura_linha);

plot(t, 0.05*Xmaster(:,3) - 0.1,’-’,’Color’,color3,’LineWidth’,

largura_linha);

ylim([-0.15 0.65])

h=legend(’Original message’, ’Decoded message’, ’Encoded message’,’

Location’,’northeast’);

set(h,’FontSize’,fonte);

xlabel(’$$t[s]$$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylabel(’$$m_3(t), \hat{m}_3(t), 0.05{\cdot}s_3(t) - 0.1$$’,’Interpreter’,

’Latex’,’Fontsize’,fonte);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_8, format1);

saveas(gcf, nome_8, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.068, 0.135, 0.917,

0.845]);

plot(t,merror1,’LineWidth’, largura_linha);

grid on

grid minor

ylim([-0.08 0.12])

h=legend(’$$\tilde{m}_1(t)$$’,’Interpreter’,’Latex’,’Location’,’northeast

’);

set(h,’FontSize’,fonte);
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xlabel(’$$t[s]$$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_9, format1);

saveas(gcf, nome_9, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.053, 0.135, 0.932,

0.845]);

plot(t,merror3,’LineWidth’, largura_linha);

grid on

grid minor

ylim([-0.1 0.6])

h=legend(’$$\tilde{m}_3(t)$$’,’Interpreter’,’Latex’,’Location’,’northeast

’);

set(h,’FontSize’,fonte);

xlabel(’$$t[s]$$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_10, format1);

saveas(gcf, nome_10, format2);

close(fig)

A.3 CODES FOR SIMULATIONS IN CHAPTER 5

A.3.1 Codes used for simulations corresponding to Figures 5.4 - 5.13 and Table
5.1

Listing A.24 – Main.m

clear %limpa variáveis anteriores

clc %limpa o que estava escrito no terminal

%Condições iniciais, única regra essencial é que os estados do mestre e

escravo sejam diferentes.

%Escalonamento de Amplitude

x_fator = 1;%20; %\bar{x} = x/x_fator , sendo "\bar{x}" o novo

valor e "x" o valor antigo

y_fator = 1;%20; %\bar{x} = x/x_fator , sendo "\bar{x}" o novo

valor e "x" o valor antigo

z_fator = 1;%20; %\bar{x} = x/x_fator , sendo "\bar{x}" o novo

valor e "x" o valor antigo

%Escalonamento Frequência

freq_fator = 1; %Quanto maior, mais rapido acontece a simulação

x0_mestre = [0.1 0.1 0.1]; %x0_mestre = [0.1 0.1 0.1];

x0_escravo = [0.2 0.1 0.2];

psi = 100; %Ganho do controle subatuado

%IMPORTANTE: Coloque a mensagem igual a zero nos estados atuados, pois
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esses estados

%são importantes para a correta sincronização dos sistemas mestre e

escravo

t_fim = 0.1; %Tempo em que a simulação termina

options = odeset(’RelTol’, 1e-10,... %configurações da simulação

’AbsTol’, 1e-10,...

’MaxStep’,0.001);

t_ciclo = [0 t_fim ]; %coloca-se o tempo inicial e final da simulação

em um vetor

amp_f(1) = x_fator;

amp_f(2) = y_fator;

amp_f(3) = z_fator;

x0(1) = x0_mestre (1)/amp_f(1); %repassando as condições iniciais para

variáveis escalonadas

x0(2) = x0_mestre (2)/amp_f(2);

x0(3) = x0_mestre (3)/amp_f(3);

x0(4) = x0_escravo(1)/amp_f(1);

x0(5) = x0_escravo(2)/amp_f(2);

x0(6) = x0_escravo(3)/amp_f(3);

[t, x] = ode45(@Esquema, t_ciclo, x0, options, psi, amp_f, freq_fator);

%realiza a simulação e salva os resultados

aux = size(t);

msg = zeros(aux(1), 3);

for i = 1:aux(1)

tempo = t(i,1);

msg_aux = Mensagens(tempo);

msg(i,:) = msg_aux’;

end

Xmaster_sem_msg = x(:, 1:3);

Xmaster = x(:, 1:3) + msg(:, 1:3);

Xslave = x(:, 4:6);

clearvars -except t Xmaster_sem_msg Xmaster Xslave msg

e1 = Xslave(:,1) - Xmaster_sem_msg(:,1);

e2 = Xslave(:,2) - Xmaster_sem_msg(:,2);

e3 = Xslave(:,3) - Xmaster_sem_msg(:,3);

merror1 = Xmaster(:,1) - Xslave(:,1) - msg(:,1);

merror2 = Xmaster(:,2) - Xslave(:,2) - msg(:,2);

merror3 = Xmaster(:,3) - Xslave(:,3) - msg(:,3);

Graphs
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e = [e1 e2 e3];

serror1 = size(e1);

serror2 = size(e2);

serror3 = size(e3);

serror = size(e);

fileID = fopen(’./Tables/Table.txt’,’w’);

fprintf(fileID,’Root Mean Square of State Errors\n\n’);

fprintf(fileID,’e_1_{rms} \t %f \n’, norm(e1)/sqrt(serror1(1)));

fprintf(fileID,’e_2_{rms} \t %f \n’, norm(e2)/sqrt(serror2(1)));

fprintf(fileID,’e_3_{rms} \t %f \n’, norm(e3)/sqrt(serror3(1)));

fprintf(fileID,’e_{rms} \t %f \n\n’, norm(e)/sqrt(serror(1)));

fclose(fileID);

save ./Saved_Data/Data.mat

clc

function y = Esquema(t, x, psi, amp_f, freq_fator)

eq_mestre = Sistema(amp_f(1)*x(1),...

amp_f(2)*x(2),...

amp_f(3)*x(3)); %equação do sistema mestre

eq_escravo = Sistema(amp_f(1)*x(4),...

amp_f(2)*x(5),...

amp_f(3)*x(6)); %equação sistema escravo

eq_mestre(1) = freq_fator*eq_mestre(1)/amp_f(1);

eq_mestre(2) = freq_fator*eq_mestre(2)/amp_f(2);

eq_mestre(3) = freq_fator*eq_mestre(3)/amp_f(3);

eq_escravo(1) = eq_escravo(1)/amp_f(1);

eq_escravo(2) = eq_escravo(2)/amp_f(2);

eq_escravo(3) = eq_escravo(3)/amp_f(3);

y(1:3, 1) = eq_mestre;

y(4:6, 1) = freq_fator*eq_escravo + 1000*controle(x, psi) + disturb(t);

%O resultado dos sistema mestre e escravo

end

function controle = controle(x, psi)

controle = [0; %estrutura do controle

-psi*(x(5) - x(2));

0];

end

function disturb = disturb(t) %distúrbios, caso queira coloca-los

if t>=0 %Início dos distúrbios a partir de 5

segundos

disturb = [0.3*sin(2*t) + 0.1*sin(20*t);
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0.4*sin(t) + 0.1*cos(2*t);

0.3*square(t) + 0.2*sin(4*t)];

else

disturb = 0; %Até t=10 segundos os distúrbios são nulos

end

end

Listing A.25 – Sistema.m

function equation = Sistema(x, y, z)

a = 2.1; %Constantes

b = 0.6;

c = 30;

equation = 1000*[a*(y - x); %coloque aqui a estrutura do seu sistema

dinâmico

c*x - y - 20*x*z;

-b*z + 20*x*y];

end

Listing A.26 – Mensagens.m

function msg = Mensagens(t)

tt = 1000*t;

msg = 0.2*[0.1*square(tt); %coloque aqui a estrutura do seu sistema din

âmico

0; %0.2*sin(tt);% + 0.05*sin(4*tt)

0.1*sawtooth(tt,0.5)];%sin(4*tt) + 0.05*sin(tt)];

end

%Mensagens enviadas (devem ser no maximo 5% do valor maximo atingido pelo

estado)

%Entenda como msg1 uma mensagem presente no primeiro estado, por exemplo

%Não coloque mensagens em estados onde o controle esta presente

%IMPORTANTE: Coloque a mensagem igual a zero nos estados atuados, pois

esses estados

%são importantes para a correta sincronização dos sistemas mestre e

escravo

Listing A.27 – Graphs.m

format1 = ’jpeg’;

format2 = ’epsc’;

fSize = 38;

axesSize = 38;

lSize = 2;

dvlsize = 2;
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dhlsize = 2;

fonte = 38;

largura_linha = 2;

color1 = [0 0.4470 0.7410];

color2 = [0.8500 0.3250 0.0980];

color3 = [0.4660 0.6740 0.1880];

nome_1 = ’./Figures/FIG_4_4’;

nome_2 = ’./Figures/FIG_4_5’;

nome_3 = ’./Figures/FIG_4_6’;

nome_4 = ’./Figures/FIG_4_7’;

nome_5 = ’./Figures/FIG_4_8’;

nome_6 = ’./Figures/FIG_4_9’;

nome_7 = ’./Figures/FIG_4_10’;

nome_8 = ’./Figures/FIG_4_11’;

nome_9 = ’./Figures/FIG_4_12’;

nome_10 = ’./Figures/FIG_4_13’;

set(0,’DefaultAxesFontSize’,axesSize);

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.053, 0.135, 0.932,

0.86]);

plot(t,Xmaster_sem_msg(:,1),t, Xslave(:,1),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$x_m(t)$’,’$x_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.45 0.65]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_1, format1);

saveas(gcf, nome_1, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.053, 0.135, 0.932,

0.86]);

plot(t,Xmaster_sem_msg(:,2),t, Xslave(:,2),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$y_m(t)$’,’$y_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.9 1.3]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_2, format1);

saveas(gcf, nome_2, format2);

close(fig)
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fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.045, 0.135, 0.94,

0.845]);

plot(t,Xmaster_sem_msg(:,3),t, Xslave(:,3),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$z_m(t)$’,’$z_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([0 3]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_3, format1);

saveas(gcf, nome_3, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.06, 0.135, 0.925,

0.86]);

plot(t,e1,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$e_1(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.005 0.105]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_4, format1);

saveas(gcf, nome_4, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.068, 0.135, 0.917,

0.86]);

plot(t,e2,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$e_2(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.052 0.022]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_5, format1);

saveas(gcf, nome_5, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.045, 0.135, 0.94,

0.845]);

plot(t,e3,’LineWidth’,lSize);

grid on
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grid minor

h=legend(’$e_3(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.02 0.4]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_6, format1);

saveas(gcf, nome_6, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.1, 0.135, 0.885,

0.86]);

aux = Xmaster(:,1) - Xslave(:,1);

plot(t,msg(:,1),’-’,’Color’,color1,’LineWidth’,largura_linha);

grid on

grid minor

hold on;

plot(t, aux,’:’,’Color’,color2,’LineWidth’, largura_linha);

plot(t, 0.05*Xmaster(:,1),’-’,’Color’,color3,’LineWidth’, largura_linha);

ylim([-0.085 0.06])

h=legend(’Original message’, ’Decoded message’, ’Encoded message’,’

Location’,’northeast’);

set(h,’FontSize’,fonte);

xlabel(’$$t[s]$$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylabel(’$$m_1(t), \hat{m}_1(t), 0.05{\cdot}s_1(t)$$’,’Interpreter’,’Latex

’,’Fontsize’,fonte);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_7, format1);

saveas(gcf, nome_7, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.086, 0.135, 0.899,

0.845]);

aux = Xmaster(:,3) - Xslave(:,3);

plot(t,msg(:,3),’-’,’Color’,color1,’LineWidth’,largura_linha);

grid on

grid minor

hold on;

plot(t, aux,’:’,’Color’,color2,’LineWidth’, largura_linha);

plot(t, 0.05*Xmaster(:,3) - 0.07,’-’,’Color’,color3,’LineWidth’,

largura_linha);

ylim([-0.45 0.2])

h=legend(’Original message’, ’Decoded message’, ’Encoded message’,’

Location’,’northeast’);

set(h,’FontSize’,fonte);

xlabel(’$$t[s]$$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylabel(’$$m_3(t), \hat{m}_3(t), 0.05{\cdot}s_3(t) - 0.07$$’,’Interpreter’
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,’Latex’,’Fontsize’,fonte);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_8, format1);

saveas(gcf, nome_8, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.068, 0.135, 0.917,

0.845]);

plot(t,merror1,’LineWidth’, largura_linha);

grid on

grid minor

h=legend(’$$\tilde{m}_1(t)$$’,’Interpreter’,’Latex’,’Location’,’northeast

’);

set(h,’FontSize’,fonte);

xlabel(’$$t[s]$$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylim([-0.105 0.015]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_9, format1);

saveas(gcf, nome_9, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.053, 0.135, 0.932,

0.86]);

plot(t,merror3,’LineWidth’, largura_linha);

grid on

grid minor

ylim([-0.4 0.05]);

h=legend(’$$\tilde{m}_3(t)$$’,’Interpreter’,’Latex’,’Location’,’northeast

’);

set(h,’FontSize’,fonte);

xlabel(’$$t[s]$$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_10, format1);

saveas(gcf, nome_10, format2);

close(fig)

A.3.2 Codes used for simulations corresponding to Figures 5.14 - 5.17 and Table
5.2

Listing A.28 – Main.m

clc %limpa o que estava escrito no terminal

model = ’Main_system.slx’;

%proj = openProject("D:/Doutorado/Tese de doutorado/

Tese_Doutorado_180007220_2021/Chapter_4/Simulation2/");

open_system(model,’loadonly’); %load simulink model
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modelname = ’Main_system’;

set_param(modelname,’SolverType’,’Variable-step’...

,’Solver’,’ode23t’...

,’RelTol’,’1e-8’...

,’AbsTol’,’1e-8’...

,’MaxStep’,’0.01’...

,’StopTime’,’0.1’...

,’ScreenColor’,’white’...

,’TimeSaveName’,’t’);

save_system(’Main_system.slx’);

%sim(model); %Descomente para simular

close_system(model, 0); %Close the simulink model, 1 to save, 0 to not

save

e1 = X_m - X_s;

e2 = Y_m - Y_s;

e3 = Z_m - Z_s;

merror = Z_m - Z_s - m;

e = [e1 e2 e3];

serror1 = size(e1);

serror2 = size(e2);

serror3 = size(e3);

serror = size(e);

fileID = fopen(’./Tables/Table.txt’,’w’);

fprintf(fileID,’Root Mean Square of State Errors\n\n’);

fprintf(fileID,’e_1_{rms} \t %f \n’, norm(e1)/sqrt(serror1(1)));

fprintf(fileID,’e_2_{rms} \t %f \n’, norm(e2)/sqrt(serror2(1)));

fprintf(fileID,’e_3_{rms} \t %f \n’, norm(e3)/sqrt(serror3(1)));

fprintf(fileID,’e_{rms} \t %f \n\n’, norm(e)/sqrt(serror(1)));

fclose(fileID);

save ./Saved_Data/Data.mat

Graphs

clc

%realiza a simulação e salva os resultados

Listing A.29 – Graphs.m

format1 = ’jpeg’;

format2 = ’epsc’;

fSize = 38;

axesSize = 38;

lSize = 2;
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dvlsize = 2;

dhlsize = 2;

fonte = 38;

largura_linha = 2;

color1 = [0 0.4470 0.7410];

color2 = [0.8500 0.3250 0.0980];

color3 = [0.4660 0.6740 0.1880];

nome_1 = ’./Figures/FIG_4_14’;

nome_2 = ’./Figures/FIG_4_15’;

nome_3 = ’./Figures/FIG_4_16’;

nome_4 = ’./Figures/FIG_4_17’;

set(0,’DefaultAxesFontSize’,axesSize);

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.045, 0.135, 0.94,

0.845]);

plot(t,Z_m,t, Z_s,’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$z_m(t)$’,’$z_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.1 3]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_1, format1);

saveas(gcf, nome_1, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.07, 0.135, 0.915,

0.845]);

plot(t,e3,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$e_3(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.23 0.05]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_2, format1);

saveas(gcf, nome_2, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.088, 0.135, 0.897,

0.86]);

aux = Z_m + m;

plot(t, m,’-’,’Color’,color1,’LineWidth’,largura_linha);
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grid on

grid minor

hold on;

plot(t, m_hat,’:’,’Color’,color2,’LineWidth’, largura_linha);

plot(t, 0.5*aux - 0.7,’-’,’Color’,color3,’LineWidth’, largura_linha);

ylim([-1 1.2])

h=legend(’Original message’, ’Decoded message’, ’Encoded message’,’

Location’,’northeast’);

set(h,’FontSize’,fonte);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylabel(’$m_3(t), \hat{m}_3(t), 0.5{\cdot}s_3(t) - 0.7$’,’Interpreter’,’

Latex’,’Fontsize’,fonte);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_3, format1);

saveas(gcf, nome_3, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.055, 0.135, 0.93,

0.86]);

plot(t,merror,’LineWidth’, largura_linha);

grid on

grid minor

h=legend(’$\tilde{m}_3(t)$’,’Interpreter’,’Latex’,’Location’,’northeast’)

;

set(h,’FontSize’,fonte);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylim([-0.55 0.45]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_4, format1);

saveas(gcf, nome_4, format2);

close(fig)

A.3.3 Codes used for simulations corresponding to Figures 6.3 - 6.22 and Table
6.1

Listing A.30 – Main.m

clear %limpa variáveis anteriores

clc %limpa o que estava escrito no terminal

x0_mestre = [0.01 0.01 0 0.01];

x0_escravo = [-0.2 -0.2 0.1 0];

psi = 60; %Ganho do controle subatuado

%IMPORTANTE: Coloque a mensagem igual a zero nos estados atuados, pois

esses estados

%são importantes para a correta sincronização dos sistemas mestre e
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escravo

t_fim = 10; %Tempo em que a simulação termina

options = odeset(’RelTol’, 1e-10,... %configurações da simulação

’AbsTol’, 1e-10,...

’MaxStep’,0.001);

t_ciclo = [0 t_fim]; %coloca-se o tempo inicial e final da simulação em

um vetor

x0(1) = x0_mestre (1); %repassando as condições iniciais para variáveis

escalonadas

x0(2) = x0_mestre (2);

x0(3) = x0_mestre (3);

x0(4) = x0_mestre (4);

x0(5) = x0_escravo(1);

x0(6) = x0_escravo(2);

x0(7) = x0_escravo(3);

x0(8) = x0_escravo(4);

[t, x] = ode45(@Esquema, t_ciclo, x0, options, psi);

%realiza a simulação e salva os resultados

aux = size(t);

msg = zeros(aux(1), 4);

for i = 1:aux(1)

tempo = t(i,1);

msg_aux = Mensagens(tempo);

msg(i,:) = msg_aux’;

end

Xmaster_sem_msg = x(:, 1:4);

Xmaster = x(:, 1:4) + msg(:, 1:4);

Xslave = x(:, 5:8);

clearvars -except t Xmaster_sem_msg Xmaster Xslave msg

e1 = Xslave(:,1) - Xmaster_sem_msg(:,1);

e2 = Xslave(:,2) - Xmaster_sem_msg(:,2);

e3 = Xslave(:,3) - Xmaster_sem_msg(:,3);

e4 = Xslave(:,4) - Xmaster_sem_msg(:,4);

e1_m = Xslave(:,1) - Xmaster(:,1);

e2_m = Xslave(:,2) - Xmaster(:,2);

e3_m = Xslave(:,3) - Xmaster(:,3);

e4_m = Xslave(:,4) - Xmaster(:,4);

merror1 = Xmaster(:,1) - Xslave(:,1) - msg(:,1);

merror2 = Xmaster(:,2) - Xslave(:,2) - msg(:,2);

221



merror3 = Xmaster(:,3) - Xslave(:,3) - msg(:,3);

merror4 = Xmaster(:,4) - Xslave(:,4) - msg(:,4);

%Repassou-se os resultados para vetores mais simples de serem impressos

em gráficos

%Xmaster_sem_msg como o nome sugere é o estado mestre sem a presença da

mensagem

%Xmaster é a mensagem codificada ou criptografada (com a presença da

mensagem)

e = [e1 e2 e3 e4];

serror1 = size(e1);

serror2 = size(e2);

serror3 = size(e3);

serror4 = size(e4);

serror = size(e);

fileID = fopen(’./Tables/Table.txt’,’w’);

fprintf(fileID,’Root Mean Square of State Errors\n\n’);

fprintf(fileID,’e_1_{rms} \t %f \n’, norm(e1)/sqrt(serror1(1)));

fprintf(fileID,’e_2_{rms} \t %f \n’, norm(e2)/sqrt(serror2(1)));

fprintf(fileID,’e_3_{rms} \t %f \n’, norm(e3)/sqrt(serror3(1)));

fprintf(fileID,’e_4_{rms} \t %f \n’, norm(e4)/sqrt(serror4(1)));

fprintf(fileID,’e_{rms} \t %f \n\n’, norm(e)/sqrt(serror(1)));

fclose(fileID);

%clearvars -except t Xmaster_sem_msg Xmaster Xslave msg

save ./Saved_Data/Data.mat

%Graphs

clc

function y = Esquema(t, x, psi)

eq_mestre = Sistema(x(1),...

x(2),...

x(3),...

x(4)); %equação do sistema mestre

eq_escravo = Sistema(x(5),...

x(6),...

x(7),...

x(8)); %equação sistema escravo

y(1:4, 1) = eq_mestre;

y(5:8, 1) = eq_escravo + controle(x, psi) + disturb(t);

%O resultado dos sistema mestre e escravo

end

function controle = controle(x, psi)
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controle = [0; %estrutura do controle

-1*(psi*(x(6) - x(2)));

0;

0];

end

function disturb = disturb(t) %distúrbios, caso queira coloca-los

if t>=0 %Início dos distúrbios a partir de 5

segundos

disturb = 0.02*[sin(5*t);

1.1*cos(3*t);

0.8*sin(3*t);

0.1*sin(6*t)];

end

end

Listing A.31 – Sistema.m

function equation = Sistema(x, y, z, w)

a = 15;

b = 5;

c = 10;

d = 1;

equation = [a*(y - x); %coloque aqui a estrutura do seu sistema dinâ

mico

c*y - 25*x*z + w;

25*x*y - b*z;

z - d*w];

end

Listing A.32 – Mensagens.m

function msg = Mensagens(t)

msg = 0.04*[0.5*sin(3*t) + 0.2*sin(20*t); %coloque aqui a estrutura do

seu sistema dinâmico

0; %0.6*sin(2*t) + 0.2*cos(15*t) + 0.1*cos(30*t)

0.6*sin(5*t) + 0.3*sin(15*t);

0.05*square(5*t) + 0.01*sin(20*t)];

end

%Mensagens enviadas (devem ser no maximo 5% do valor maximo atingido pelo

estado)

%Entenda como msg1 uma mensagem presente no primeiro estado, por exemplo

%Não coloque mensagens em estados onde o controle esta presente

%IMPORTANTE: Coloque a mensagem igual a zero nos estados atuados, pois

esses estados

%são importantes para a correta sincronização dos sistemas mestre e

escravo
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Listing A.33 – Graphs.m

format1 = ’jpeg’;

format2 = ’epsc’;

fSize = 38;

axesSize = 38;

lSize = 2;

dvlsize = 2;

dhlsize = 2;

fonte = 38;

largura_linha = 2;

color1 = [0 0.4470 0.7410];

color2 = [0.8500 0.3250 0.0980];

color3 = [0.4660 0.6740 0.1880];

nome_1 = ’./Figures/FIG_5_2’;

nome_2 = ’./Figures/FIG_5_3’;

nome_3 = ’./Figures/FIG_5_4’;

nome_4 = ’./Figures/FIG_5_5’;

nome_5 = ’./Figures/FIG_5_6’;

nome_6 = ’./Figures/FIG_5_7’;

nome_7 = ’./Figures/FIG_5_8’;

nome_8 = ’./Figures/FIG_5_9’;

nome_9 = ’./Figures/FIG_5_10’;

nome_10 = ’./Figures/FIG_5_11’;

nome_11 = ’./Figures/FIG_5_12’;

nome_12 = ’./Figures/FIG_5_13’;

nome_13 = ’./Figures/FIG_5_14’;

nome_14 = ’./Figures/FIG_5_15’;

nome_15 = ’./Figures/FIG_5_16’;

nome_16 = ’./Figures/FIG_5_17’;

nome_17 = ’./Figures/FIG_5_18’;

nome_18 = ’./Figures/FIG_5_19’;

nome_19 = ’./Figures/FIG_5_20’;

nome_20 = ’./Figures/FIG_5_21’;

set(0,’DefaultAxesFontSize’,axesSize);

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.055, 0.135, 0.93,

0.845]);

plot(t,Xmaster_sem_msg(:,1),t, Xslave(:,1),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$x_m(t)$’,’$x_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.44 0.8]);
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set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_1, format1);

saveas(gcf, nome_1, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.055, 0.135, 0.93,

0.86]);

plot(t,Xmaster_sem_msg(:,2),t, Xslave(:,2),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$y_m(t)$’,’$y_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.48 0.92]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_2, format1);

saveas(gcf, nome_2, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.045, 0.135, 0.94,

0.86]);

plot(t,Xmaster_sem_msg(:,3),t, Xslave(:,3),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$z_m(t)$’,’$z_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.04 1.04]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_3, format1);

saveas(gcf, nome_3, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.045, 0.135, 0.94,

0.86]);

plot(t,Xmaster_sem_msg(:,4),t, Xslave(:,4),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$w_m(t)$’,’$w_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.02 0.54]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_4, format1);

saveas(gcf, nome_4, format2);

close(fig)
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fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.07, 0.135, 0.915,

0.845]);

plot(t,e1,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$e_1(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.22 0.03]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_5, format1);

saveas(gcf, nome_5, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.07, 0.135, 0.915,

0.86]);

plot(t,e2,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$e_2(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.22 0.025]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_6, format1);

saveas(gcf, nome_6, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.061, 0.135, 0.924,

0.86]);

plot(t,e3,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$e_3(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.01 0.11]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_7, format1);

saveas(gcf, nome_7, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.085, 0.135, 0.90,

0.845]);

plot(t,e4,’LineWidth’,lSize);

grid on

grid minor
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h=legend(’$e_4(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.011 0.01]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_8, format1);

saveas(gcf, nome_8, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.055, 0.135, 0.93,

0.845]);

plot(t,Xmaster(:,1),t, Xslave(:,1),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$x_m(t)$’,’$x_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.44 0.8]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_9, format1);

saveas(gcf, nome_9, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.045, 0.135, 0.94,

0.86]);

plot(t,Xmaster(:,3),t, Xslave(:,3),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$z_m(t)$’,’$z_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.05 1.1]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_10, format1);

saveas(gcf, nome_10, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.045, 0.135, 0.94,

0.86]);

plot(t,Xmaster(:,4),t, Xslave(:,4),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$w_m(t)$’,’$w_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.02 0.54]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);
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saveas(gcf, nome_11, format1);

saveas(gcf, nome_11, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.068, 0.135, 0.917,

0.86]);

plot(t,e1_m,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$e_1(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.22 0.06]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_12, format1);

saveas(gcf, nome_12, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.07, 0.135, 0.915,

0.86]);

plot(t,e3_m,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$e_3(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.035 0.105]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_13, format1);

saveas(gcf, nome_13, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.085, 0.135, 0.9,

0.86]);

plot(t,e4_m,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$e_4(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.013 0.012]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_14, format1);

saveas(gcf, nome_14, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.092, 0.135, 0.893,
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0.86]);

aux = Xmaster(:,1) - Xslave(:,1);

plot(t,msg(:,1),’-’,’Color’,color1,’LineWidth’,largura_linha);

grid on

grid minor

hold on;

plot(t, aux,’:’,’Color’,color2,’LineWidth’, largura_linha);

plot(t, 0.05*Xmaster(:,1) - 0.007,’-’,’Color’,color3,’LineWidth’,

largura_linha);

ylim([-0.035 0.215])

h=legend(’Original message’, ’Decoded message’, ’Encoded message’,’

Location’,’northeast’);

set(h,’FontSize’,fonte);

xlabel(’$$t[s]$$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylabel(’$$m_1(t), \hat{m}_1(t), 0.05{\cdot}s_1(t) - 0.007$$’,’Interpreter

’,’Latex’,’Fontsize’,fonte);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_15, format1);

saveas(gcf, nome_15, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.1, 0.135, 0.885,

0.86]);

aux = Xmaster(:,3) - Xslave(:,3);

plot(t,msg(:,3),’-’,’Color’,color1,’LineWidth’,largura_linha);

grid on

grid minor

hold on;

plot(t, aux,’:’,’Color’,color2,’LineWidth’, largura_linha);

plot(t, 0.05*Xmaster(:,2) - 0.007,’-’,’Color’,color3,’LineWidth’,

largura_linha);

ylim([-0.105 0.075])

h=legend(’Original message’, ’Decoded message’, ’Encoded message’,’

Location’,’northeast’);

set(h,’FontSize’,fonte);

xlabel(’$$t[s]$$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylabel(’$$m_3(t), \hat{m}_3(t), 0.05{\cdot}s_3(t) - 0.007$$’,’Interpreter

’,’Latex’,’Fontsize’,fonte);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_16, format1);

saveas(gcf, nome_16, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.115, 0.135, 0.87,

0.86]);

aux = Xmaster(:,4) - Xslave(:,4);

plot(t,msg(:,4),’-’,’Color’,color1,’LineWidth’,largura_linha);
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grid on

grid minor

hold on;

plot(t, aux,’:’,’Color’,color2,’LineWidth’, largura_linha);

plot(t, 0.05*Xmaster(:,4) - 0.02,’-’,’Color’,color3,’LineWidth’,

largura_linha);

ylim([-0.02 0.013])

h=legend(’Original message’, ’Decoded message’, ’Encoded message’,’

Location’,’northeast’);

set(h,’FontSize’,fonte);

xlabel(’$$t[s]$$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylabel(’$$m_4(t), \hat{m}_4(t), 0.05{\cdot}s_4(t) - 0.02$$’,’Interpreter’

,’Latex’,’Fontsize’,fonte);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_17, format1);

saveas(gcf, nome_17, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.06, 0.135, 0.925,

0.86]);

plot(t,merror1,’LineWidth’, largura_linha);

grid on

grid minor

h=legend(’$$\tilde{m}_1(t)$$’,’Interpreter’,’Latex’,’Location’,’northeast

’);

set(h,’FontSize’,fonte);

xlabel(’$$t[s]$$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylim([-0.008 0.225]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_18, format1);

saveas(gcf, nome_18, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.068, 0.135, 0.917,

0.845]);

plot(t,merror3,’LineWidth’, largura_linha);

grid on

grid minor

h=legend(’$$\tilde{m}_3(t)$$’,’Interpreter’,’Latex’,’Location’,’northeast

’);

set(h,’FontSize’,fonte);

xlabel(’$$t[s]$$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylim([-0.11 0.02]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_19, format1);

saveas(gcf, nome_19, format2);

close(fig)
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fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.085, 0.135, 0.9,

0.86]);

plot(t,merror4,’LineWidth’, largura_linha);

grid on

grid minor

h=legend(’$$\tilde{m}_4(t)$$’,’Interpreter’,’Latex’,’Location’,’northeast

’);

set(h,’FontSize’,fonte);

xlabel(’$$t[s]$$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylim([-0.01 0.011]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_20, format1);

saveas(gcf, nome_20, format2);

close(fig)

A.3.4 Simulink plant used for simulations corresponding to Figures 7.24 - 7.31
and Table 7.2

Figure A.4 – Simulink of comparison.

A.3.5 Codes used for simulations corresponding to Figures 7.12 - 7.23 and Table
7.1

Listing A.34 – Main.m

clc %limpa o que estava escrito no terminal

addpath(’./Circuit_Simulation/’);

proj = openProject("D:/Doutorado/Tese de doutorado/

Tese_Doutorado_180007220_2021/Chapter_6/Simulations5");

model = ’CircuitSimulation.slx’;

open_system(model,’loadonly’); %load simulink model

modelname = ’CircuitSimulation’;

set_param(modelname,’SolverType’,’Variable-step’...

,’Solver’,’ode15s’...

,’RelTol’,’1e-8’...
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,’AbsTol’,’1e-8’...

,’MaxStep’,’0.01’...

,’StopTime’,’0.03’...

,’ScreenColor’,’white’...

,’TimeSaveName’,’t’);

save_system(’CircuitSimulation.slx’);

sim(model); %Descomente para simular

close_system(model, 0); %Close the simulink model, 1 to save, 0 to not

save

merror2 = master(:,2) - slave(:,2) - m2;

merror3 = master(:,3) - slave(:,3) - m3;

e1 = slave(:,1) - master(:,1);

e2 = slave(:,2) - master(:,2);

e3 = slave(:,3) - master(:,3);

e4 = slave(:,4) - master(:,4);

e = [e1 e2 e3 e4];

serror1 = size(e1);

serror2 = size(e2);

serror3 = size(e3);

serror4 = size(e4);

serror = size(e);

fileID = fopen(’./Tables/Table.txt’,’w’);

fprintf(fileID,’Root Mean Square of State Errors\n\n’);

fprintf(fileID,’e_1_{rms} \t %f \n’, norm(e1)/sqrt(serror1(1)));

fprintf(fileID,’e_2_{rms} \t %f \n’, norm(e2)/sqrt(serror2(1)));

fprintf(fileID,’e_3_{rms} \t %f \n’, norm(e3)/sqrt(serror3(1)));

fprintf(fileID,’e_4_{rms} \t %f \n’, norm(e4)/sqrt(serror4(1)));

fprintf(fileID,’e_{rms} \t %f \n\n’, norm(e)/sqrt(serror(1)));

fclose(fileID);

save ./Saved_Data/Data.mat

Graphs

%close(proj);

clc

Listing A.35 – LoadWorkspace.m

clear;

load(’Workspace.mat’);

clc;

Listing A.36 – MessageGenerator2.m
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function [sys,x0,str,ts] = MessageGenerator2(t,x,u,flag)

x_out = 0;

switch flag

%%%%%%%%%%%%%%%%%

% Inicialização %

%%%%%%%%%%%%%%%%%

case 0

sizes = simsizes;

sizes.NumContStates = 0; %Número de estados constantes

sizes.NumDiscStates = 0; %Número de estados discretos

sizes.NumOutputs = 1; %Número de saídas

sizes.NumInputs = 0; %Número de entradas

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=[]; %Condições iniciais

str=[];

ts=[0 0];

case 3

if(t>=0.000) && (t<0.003)

x_out = 0;

end

if(t>=0.003) && (t<0.006)

x_out = 0.05;

end

if(t>=0.006) && (t<0.009)

x_out = 0.0;

end

if(t>=0.009) && (t<0.012)

x_out = 0.05;

end

if(t>=0.012) && (t<0.015)

x_out = 0;

end

if(t>=0.015) && (t<0.018)

x_out = 0;

end

if(t>=0.018) && (t<0.021)

x_out = 0.05;

end

if(t>=0.021) && (t<0.024)

x_out = 0.05;

end

if(t>=0.024) && (t<0.027)

x_out = 0;
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end

if(t>=0.027) && (t<0.030)

x_out = 0.05;

end

sys = x_out;

%%%%%%%%%

% End %

%%%%%%%%%

case {1,2,4,9}

sys = []; % Não faz nada

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

Listing A.37 – MessageGenerator3.m

function [sys,x0,str,ts] = MessageGenerator3(t,x,u,flag)

a0 = -0.001811;

a1 = 0.09614;

b1 = -0.08111;

a2 = -0.002126;

b2 = -0.002561;

a3 = 0.01418;

b3 = 0.03685;

a4 = 0.0004152;

b4 = -0.002264;

a5 = -0.01999;

b5 = -0.0121;

a6 = 7.883e-05;

b6 = -0.0008134;

a7 = 0.002927;

b7 = -0.0009047;

a8 = -3.586e-05;

b8 = -0.0008205;

w = 0.15*6278;

switch flag

%%%%%%%%%%%%%%%%%

% Inicialização %

%%%%%%%%%%%%%%%%%

case 0

sizes = simsizes;

sizes.NumContStates = 0; %Número de estados constantes

sizes.NumDiscStates = 0; %Número de estados discretos

sizes.NumOutputs = 1; %Número de saídas

sizes.NumInputs = 0; %Número de entradas

sizes.DirFeedthrough = 1;
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sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=[]; %Condições iniciais

str=[];

ts=[0 0];

case 3

x_out = 0.5*(-0.2 + 1*(a0 + a1*cos(t*w) + b1*sin(t*w) + a2*cos(2*t*w)

+ b2*sin(2*t*w) + a3*cos(3*t*w) + b3*sin(3*t*w) + a4*cos(4*t*w) + b4*

sin(4*t*w) + a5*cos(5*t*w) + b5*sin(5*t*w) + a6*cos(6*t*w) + b6*sin(6*

t*w) + a7*cos(7*t*w) + b7*sin(7*t*w) + a8*cos(8*t*w) + b8*sin(8*t*w)))

;

sys = x_out;

%%%%%%%%%

% End %

%%%%%%%%%

case {1,2,4,9}

sys = []; % Não faz nada

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

Listing A.38 – Graphs.m

format1 = ’jpeg’;

format2 = ’epsc’;

fSize = 38;

axesSize = 38;

lSize = 2;

dvlsize = 2;

dhlsize = 2;

fonte = 38;

largura_linha = 2;

color1 = [0 0.4470 0.7410];

color2 = [0.8500 0.3250 0.0980];

color3 = [0.4660 0.6740 0.1880];

nome_1 = ’./Figures/FIG_6_11’;

nome_2 = ’./Figures/FIG_6_12’;

nome_3 = ’./Figures/FIG_6_13’;

nome_4 = ’./Figures/FIG_6_14’;

nome_5 = ’./Figures/FIG_6_15’;

nome_6 = ’./Figures/FIG_6_16’;

nome_7 = ’./Figures/FIG_6_17’;

nome_8 = ’./Figures/FIG_6_18’;

nome_9 = ’./Figures/FIG_6_19’;

nome_10 = ’./Figures/FIG_6_20’;

nome_11 = ’./Figures/FIG_6_21’;
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nome_12 = ’./Figures/FIG_6_22’;

set(0,’DefaultAxesFontSize’,axesSize);

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.053, 0.135, 0.92,

0.86]);

plot(t, master(:,1),t, slave(:,1),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$x_m(t)$’,’$x_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-1.4 0.7]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_1, format1);

saveas(gcf, nome_1, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.055, 0.135, 0.919,

0.86]);

plot(t,master(:,2),t, slave(:,2),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$y_m(t)$’,’$y_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-2.4 1.1]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_2, format1);

saveas(gcf, nome_2, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.025, 0.135, 0.948,

0.86]);

plot(t,master(:,3),t, slave(:,3),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$z_m(t)$’,’$z_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.1 4.6]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_3, format1);

saveas(gcf, nome_3, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.032, 0.135, 0.942,
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0.86]);

plot(t,master(:,4),t, slave(:,4),’:’,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$w_m(t)$’,’$w_s(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-8.8 0.6]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_4, format1);

saveas(gcf, nome_4, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.055, 0.135, 0.92,

0.795]);

plot(t,e1,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$e_1(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.001 0.0014]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_5, format1);

saveas(gcf, nome_5, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.035, 0.135, 0.94,

0.795]);

plot(t,e2,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$e_2(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.009 0.015]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_6, format1);

saveas(gcf, nome_6, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.035, 0.135, 0.94,

0.795]);

plot(t,e3,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$e_3(t)$’,’Location’,’northeast’);
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set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.007 0.015]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_7, format1);

saveas(gcf, nome_7, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.033, 0.135, 0.942,

0.795]);

plot(t,e4,’LineWidth’,lSize);

grid on

grid minor

h=legend(’$e_4(t)$’,’Location’,’northeast’);

set(h,’Interpreter’,’Latex’,’FontSize’,fSize);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-0.0055 0.0019]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_8, format1);

saveas(gcf, nome_8, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.1, 0.135, 0.875,

0.86]);

aux = master(:,2) + m2;

plot(t, m2,’-’,’Color’,color1,’LineWidth’,largura_linha);

grid on

grid minor

hold on;

plot(t, m2_hat,’:’,’Color’,color2,’LineWidth’, largura_linha);

plot(t, 0.05*aux + 0.06,’-’,’Color’,color3,’LineWidth’, largura_linha);

ylim([-0.06 0.12])

h=legend(’Original message’, ’Decoded message’, ’Encoded message’,’

Location’,’northeast’);

set(h,’FontSize’,fonte);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylabel(’$m_2(t), \hat{m}_2(t), 0.05{\cdot}s_2(t) + 0.06$’,’Interpreter’,’

Latex’,’Fontsize’,fonte);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_9, format1);

saveas(gcf, nome_9, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.1, 0.135, 0.875,

0.86]);

aux = master(:,3) + m3;

plot(t, m3,’-’,’Color’,color1,’LineWidth’,largura_linha);

238



grid on

grid minor

hold on;

plot(t, m3_hat,’:’,’Color’,color2,’LineWidth’, largura_linha);

plot(t, 0.05*aux - 0.2,’-’,’Color’,color3,’LineWidth’, largura_linha);

ylim([-0.21 0.025])

h=legend(’Original message’, ’Decoded message’, ’Encoded message’,’

Location’,’northeast’);

set(h,’FontSize’,fonte);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylabel(’$m_3(t), \hat{m}_3(t), 0.05{\cdot}s_3(t) - 0.2$’,’Interpreter’,’

Latex’,’Fontsize’,fonte);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_10, format1);

saveas(gcf, nome_10, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.07, 0.135, 0.905,

0.845]);

plot(t,merror2,’LineWidth’, largura_linha);

grid on

grid minor

h=legend(’$\tilde{m}_2(t)$’,’Interpreter’,’Latex’,’Location’,’northeast’)

;

set(h,’FontSize’,fonte);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylim([-0.055 0.01]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_11, format1);

saveas(gcf, nome_11, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.06, 0.135, 0.915,

0.845]);

plot(t,merror3,’LineWidth’, largura_linha);

grid on

grid minor

h=legend(’$\tilde{m}_3(t)$’,’Interpreter’,’Latex’,’Location’,’northeast’)

;

set(h,’FontSize’,fonte);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fonte);

ylim([0.03 0.18]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_12, format1);

saveas(gcf, nome_12, format2);

close(fig)
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A.3.6 Codes used for simulations corresponding to Figures 7.24 - 7.31 and Table
7.2

Listing A.39 – Main.m

clc %limpa o que estava escrito no terminal

model = ’Comparison.slx’;

open_system(model,’loadonly’); %load simulink model

modelname = ’Comparison’;

set_param(modelname,’SolverType’,’Variable-step’...

,’Solver’,’ode15s’...

,’RelTol’,’1e-8’...

,’AbsTol’,’1e-8’...

,’MaxStep’,’0.1’...

,’StopTime’,’10’...

,’ScreenColor’,’white’...

,’TimeSaveName’,’t’);

save_system(’Comparison.slx’);

sim(model); %Descomente para simular

close_system(model, 0); %Close the simulink model, 1 to save, 0 to not

save

e1 = slave(:,1) - master(:,1);

e2 = slave(:,2) - master(:,2);

e3 = slave(:,3) - master(:,3);

e4 = slave(:,4) - master(:,4);

e1_c = slave_original(:,1) - master(:,1);

e2_c = slave_original(:,2) - master(:,2);

e3_c = slave_original(:,3) - master(:,3);

e4_c = slave_original(:,4) - master(:,4);

e = [e1 e2 e3 e4];

serror1 = size(e1);

serror2 = size(e2);

serror3 = size(e3);

serror4 = size(e4);

serror = size(e);

fileID = fopen(’./Tables/Table.txt’,’w’);

fprintf(fileID,’Root Mean Square of State Errors\n\n’);

fprintf(fileID,’e_1_{rms} \t %f \n’, norm(e1)/sqrt(serror1(1)));

fprintf(fileID,’e_2_{rms} \t %f \n’, norm(e2)/sqrt(serror2(1)));

fprintf(fileID,’e_3_{rms} \t %f \n’, norm(e3)/sqrt(serror3(1)));

fprintf(fileID,’e_4_{rms} \t %f \n’, norm(e4)/sqrt(serror4(1)));

fprintf(fileID,’e_{rms} \t %f \n\n’, norm(e)/sqrt(serror(1)));
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fclose(fileID);

save ./Saved_Data/Data.mat

Graphs

clc

Listing A.40 – Master Plant.m

function [sys,x0,str,ts] = Master_Plant(t,x,u,flag)

%Extract from [20]

%[20] C. Zhou, C. Yang, D. Xu , and C. Chen, "Dynamic Analysis and Finite

-

%Time Synchronization of a New Hyperchaotic System With Coexisting

%Attractors," IEEE Access, vol. 7, pp. 52896-52902, Apr. 2019.

a = 20;

b = 32;

c = 3;

d = 1;

k = -1;

switch flag

case 0

sizes = simsizes;

sizes.NumContStates = 4;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 4;

sizes.NumInputs = 0;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=[1 1 1 1]; %initial conditions

str=[];

ts=[0 0];

case 1 %System

sys = [a*(x(2) - x(1)) - x(4);

b*x(1) - x(1)*x(3) - x(2);

x(1)*x(2) - c*x(3);

d*x(1)*x(3) - k*x(4)];

case 3

sys = x;

case {2,4,9}

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end
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Listing A.41 – Slave Plant.m

function [sys,x0,str,ts] = Slave_Plant(t,x,u,flag)

a = 20;

b = 32;

c = 3;

d = 1;

k = -1;

beta = 1;

switch flag

case 0

sizes = simsizes;

sizes.NumContStates = 4;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 4;

sizes.NumInputs = 4;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=[20 15 15 -200]; %initial conditions

str=[];

ts=[0 0];

case 1

h = 0;

if(t > 3)

h = beta;

end

sys = [a*(x(2)-x(1)) - x(4) + u(1); %System

b*x(1) - x(1)*x(3) - x(2) + u(2);

x(1)*x(2) - c*x(3) + u(3);

d*x(1)*x(3) - k*x(4) + u(4)]...

+ h*[0.3*exp(5*10^(-5)*x(1)^2); %disturbances

0.2*exp(10^(-5)*x(2)^2);

3*sin(3*t) + cos(20*t);

5*sin(10*t) + 10*cos(t)];

case 3

sys = x;

case {2,4,9}

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

Listing A.42 – Synchronizer Comparison.m

function [sys,x0,str,ts] = Synchronizer_Comparison(t,x,u,flag)
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psi1 = 100;

psi2 = 10000;

psi3 = 100;

switch flag

case 0

sizes = simsizes;

sizes.NumContStates = 4;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 4;

sizes.NumInputs = 8;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=zeros(4,1);

str=[];

ts=[0 0];

case 1

sys = [0;

0;

0;

0];

case 3

sys = [- psi1*(u(5) - u(1)) - psi2*(u(5) - u(1))*(u(8) - u(4))^2;

0;

0;

- psi3*(u(8) - u(4))];

case {2,4,9}

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

Listing A.43 – Synchronizer Original.m

function [sys,x0,str,ts] = Synchronizer_Original(t,x,u,flag)

switch flag

case 0

sizes = simsizes;

sizes.NumContStates = 4;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 4;

sizes.NumInputs = 8;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);
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x0=zeros(4,1);

str=[];

ts=[0 0];

case 1

sys = [0;

0;

0;

0];

case 3

sys = [56*(u(1) - u(5)) + (abs(u(1) - u(5))^0.5)*sign(u(1) - u(5))

;

26*(u(2) - u(6)) + (abs(u(2) - u(6))^0.5)*sign(u(2) - u(6))

;

43*(u(3) - u(7)) + (abs(u(3) - u(7))^0.5)*sign(u(3) - u(7))

;

56*(u(4) - u(8)) + (abs(u(4) - u(8))^0.5)*sign(u(4) - u(8))

];

case {2,4,9}

sys = [];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

Listing A.44 – Graphs.m

format1 = ’jpeg’;

format2 = ’epsc’;

fSize = 38;

axesSize = 38;

lSize = 2;

dvlsize = 2;

dhlsize = 2;

fonte = 38;

largura_linha = 2;

color1 = [0 0.4470 0.7410];

color2 = [0.8500 0.3250 0.0980];

color3 = [0.4660 0.6740 0.1880];

nome_1 = ’./Figures/FIG_6_23’;

nome_2 = ’./Figures/FIG_6_24’;

nome_3 = ’./Figures/FIG_6_25’;

nome_4 = ’./Figures/FIG_6_26’;

nome_5 = ’./Figures/FIG_6_27’;

nome_6 = ’./Figures/FIG_6_28’;

nome_7 = ’./Figures/FIG_6_29’;

nome_8 = ’./Figures/FIG_6_30’;
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set(0,’DefaultAxesFontSize’,axesSize);

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.045, 0.135, 0.94,

0.845]);

plot(t, master(:,1),’-’,’Color’,color1,’LineWidth’,lSize);

grid on

grid minor

hold on;

plot(t, slave(:,1),’--’,’Color’,color2,’LineWidth’,lSize);

plot(t, slave_original(:,1),’:’,’Color’,color3,’LineWidth’,lSize);

h=legend("$x_m(t)$","$x_s(t)$","$x_s(t)$ in [185]",’Interpreter’,’latex’,

’Location’,’northeast’,’Orientation’,’horizontal’);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-19 30]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_1, format1);

saveas(gcf, nome_1, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.045, 0.135, 0.94,

0.86]);

plot(t, master(:,2),’-’,’Color’,color1,’LineWidth’,lSize);

grid on

grid minor

hold on;

plot(t, slave(:,2),’--’,’Color’,color2,’LineWidth’,lSize);

plot(t, slave_original(:,2),’:’,’Color’,color3,’LineWidth’,lSize);

h=legend("$y_m(t)$","$y_s(t)$","$y_s(t)$ in [185]",’Interpreter’,’latex’,

’Location’,’northeast’,’Orientation’,’horizontal’);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-25 32]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_2, format1);

saveas(gcf, nome_2, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.037, 0.135, 0.948,

0.86]);

plot(t, master(:,3),’-’,’Color’,color1,’LineWidth’,lSize);

grid on

grid minor

hold on;

plot(t, slave(:,3),’--’,’Color’,color2,’LineWidth’,lSize);

plot(t, slave_original(:,3),’:’,’Color’,color3,’LineWidth’,lSize);

h=legend("$z_m(t)$","$z_s(t)$","$z_s(t)$ in [185]",’Interpreter’,’latex’,

’Location’,’northeast’,’Orientation’,’horizontal’);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);
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ylim([0 56]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_3, format1);

saveas(gcf, nome_3, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.06, 0.135, 0.925,

0.86]);

plot(t, master(:,4),’-’,’Color’,color1,’LineWidth’,lSize);

grid on

grid minor

hold on;

plot(t, slave(:,4),’--’,’Color’,color2,’LineWidth’,lSize);

plot(t, slave_original(:,4),’:’,’Color’,color3,’LineWidth’,lSize);

h=legend("$w_m(t)$","$w_s(t)$","$w_s(t)$ in [185]",’Interpreter’,’latex’,

’Location’,’northeast’,’Orientation’,’horizontal’);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-240 140]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_4, format1);

saveas(gcf, nome_4, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.038, 0.135, 0.947,

0.845]);

plot(t, e1,’-’,’Color’,color1,’LineWidth’,lSize);

grid on

grid minor

hold on;

plot(t, e1_c,’--’,’Color’,color2,’LineWidth’,lSize);

h=legend("$e_1(t)$","$e_1(t)$ in [185]",’Interpreter’,’latex’,’Location’,

’northeast’,’Orientation’,’horizontal’);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-2 20]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_5, format1);

saveas(gcf, nome_5, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.045, 0.135, 0.94,

0.845]);

plot(t, e2,’-’,’Color’,color1,’LineWidth’,lSize);

grid on

grid minor

hold on;

plot(t, e2_c,’--’,’Color’,color2,’LineWidth’,lSize);

h=legend("$e_2(t)$","$e_2(t)$ in [185]",’Interpreter’,’latex’,’Location’,
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’northeast’,’Orientation’,’horizontal’);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-12 15]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_6, format1);

saveas(gcf, nome_6, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.035, 0.135, 0.95,

0.845]);

plot(t, e3,’-’,’Color’,color1,’LineWidth’,lSize);

grid on

grid minor

hold on;

plot(t, e3_c,’--’,’Color’,color2,’LineWidth’,lSize);

h=legend("$e_3(t)$","$e_3(t)$ in [185]",’Interpreter’,’latex’,’Location’,

’northeast’,’Orientation’,’horizontal’);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-9 15]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_7, format1);

saveas(gcf, nome_7, format2);

close(fig)

fig=figure(’visible’,’off’, ’DefaultAxesPosition’, [0.06, 0.135, 0.925,

0.86]);

plot(t, e4,’-’,’Color’,color1,’LineWidth’,lSize);

grid on

grid minor

hold on;

plot(t, e4_c,’--’,’Color’,color2,’LineWidth’,lSize);

h=legend("$e_4(t)$","$e_4(t)$ in [185]",’Interpreter’,’latex’,’Location’,

’northeast’,’Orientation’,’horizontal’);

xlabel(’$t[s]$’,’Interpreter’,’Latex’,’Fontsize’,fSize);

ylim([-210 30]);

set(gcf,’units’,’normalized’,’outerposition’,[0 0 1 1]);

saveas(gcf, nome_8, format1);

saveas(gcf, nome_8, format2);

close(fig)
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