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Prediction is very difficult,
especially if it’s about the future.
(Niels Bohr)



Resumo

Prediction Markets (Mercados Preditivos, em tradugao livre) sio mercados em que ativos
relacionados ao acontecimento de eventos especificos sao vendidos. Mercados do tipo
sao utilizados no mundo empresarial para a previsao da receita de determinado produto
ou cumprimento de metas. Esta dissertacao apresenta um modelo baseado em agentes,
denominado LMSR-ASM, para a avaliacdo de mercados preditivos. Com a capacidade
de testar diferentes tipos de Automated Market Makers (Formadores de Mercado Auto-
maticos, em tradugdo livre), que sao fungdes matemaéticas ou algoritmos computacionais
necessarios para o fornecimento de liquidez em Mercados Preditivos, o modelo apresentado
elucida questoes sobre a decisao de parametros relacionados a criagdo de um Mercado
Preditivo, assim como a capacidade de geracao de lucro desses mercados. E possivel simular
diferentes tipos de trajetéria probabilistica de eventos, diferentes formadores de mercado e
comportamento dos agentes. Esta dissertacdo também analisa uma série de questoes sobre
Mercados Preditivos, demonstrando o impacto da escolha de pregos iniciais no lucro do
mercado e as oportunidades de receita na implementacao computacional dos Formadores
de Mercado Automaticos. O trabalho demonstra que o LMSR-ASM pode ser utilizado
para encontrar os valores que maximizam lucro para diferentes parametros. O modelo
também é utilizado para mostrar o comportamento de diferentes Formadores de Mercado

Automaticos sob diversas configuragoes.

Palavras-chave: Mercados Preditivos. Automated Market Makers. Modelos Baseados em

Agentes.



Abstract

Prediction Markets (PMs) are exchanges in which agents trade event contingent assets.
Many enterprises use PMs as a forecasting tool for a product’s revenue and project deadlines.
This dissertation presents an Agent-based model, called LMSR-ASM, to evaluate Prediction
Markets. Capable of testing different types of Automated Market Makers (AMMs), which
are mathematical functions or computational mechanisms needed to provide liquidity in
Prediction Markets, the model presents insights into how to set parameters in a PM, as
well as how profits react to different settings and AMMs. The model is able to simulate
different probability processes, different AMMs and agent behavior. This dissertation also
utilizes the LMSR-ASM to evaluate the impact of choosing initial prices in profits and
revenue opportunities regarding AMM computational implementation. We show that the
LMSR~ASM can be used to find optimal parameters for maximizing profits in PMs and

how different AMMSs affect market results under a variety of settings.

Keywords: Prediction Markets. Automated Market Makers. Agent-Based Modeling
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1 Introduction

Prediction Markets (PMs), also called Idea Futures or Information Markets (HAN-
SON;, 1996), are forums for trading contracts that yield payments based on the outcome of
uncertain events (ARROW et al., 2008). A more intuitive explanation for a PM is a market
for assets that pay depending on the realization of a certain event. Examples of possible
PMs are "Will it rain next month?" or "Who will be elected president in X country?', in
which assets are "Yes" and "No" for the former and one for each candidate, for the latter.
A binary PM is a market for an event with two possible options. PMs can be created for

any event with finite outcomes.

Prediction Markets are extensively used in corporations, regarding the amount of
sales of a determined product, future revenue and whether projects will be finished in the
proposed timeline, with great success (see Arrow et al. (2008) for examples and Cowgill
and Zitzewitz (2015) for an evaluation). There are also sites available to the general public
such as Predictlt, the lowa Electronic Markets and Betfair, with multiple markets, mostly
related to politics. There are DeFI' apps that make it possible for users to create their

own PMs, using the Augur and Gnosis protocols, working on the Ethereum blockchain.

Prediction Markets in general have few participants, which makes liquidity a
hindrance to trade and, therefore, to aggregate forecasts. Continuous double auctions (a
system that executes trades by matching compatible sell and buy orders in terms of price
(DAS et al., 2001)), and order books (a collection of price contingent buy and sell orders
(ROsU, 2009)), as used by traditional stock exchanges (PENNOCK, 2004), would only be
efficient in a market with a volume of trades most PMs do not have. Likewise, the use
of human market makers would raise costs for the operation of PMs. Thus, Prediction
Markets need a cost effective way to create liquidity for its assets. This necessity leads to
Automated Market Makers (AMMs), which are mathematical functions or computational
mechanisms capable of providing liquidity automatically, handling buy and sell orders in a

market.

Two AMMs are the focus of this dissertation, the Logarithmic Market Scoring
Rule (LMSR), defined in Hanson (2007) and an extension in which one is allowed to vary
liquidity, the Liquidity Sensitive Logarithmic Market Scoring Rule (LS-LMSR), defined in
Othman et al. (2013). Since the outcomes presented in a PM are exhaustive, prices reflect
the relative probability of each result. Therefore, they serve as a proxy for the probability
of each outcome (WOLFERS; ZITZEWITZ, 2006). Some AMMs, such as the Dynamic

1

A Decentralized Finance (DeFi) Application is, as defined by Wang (2020), a smart contract stored in
a public distributed ledger (such as a blockchain). It is possible to automate the execution of financial
instruments and digital assets using these smart contracts.


predicit.org
https://iemweb.biz.uiowa.edu/
Betfair.com
https://augur.net/
https://gnosis.io/
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Pari-Mutuel Market, presented in Agrawal et al. (2009) do not reflect probabilities in
prices. PMs using LMSR can have prices interpreted as probabilities, while the LS-LMSR
does not directly do so, but presents a range of possible probabilities related to prices.
Slamka, Skiera and Spann (2013) present a review of some AMMs and their characteristics,

describing how they vary in parameters, arbitrage conditions and design.

In this dissertation, we design an agent-based computational framework for simu-
lating prediction markets?, the Logarithmic Market Scoring Rule Artificial Stock Market
(LMSR-ASM), using the Santa-Fe Institute Artificial Stock Market (SFI-ASM) as a start-
ing point. Similar works with PMs and agent based models include Slamka, Skiera and
Spann (2013), Klingert and Meyer (2018) and Brahma et al. (2012). Our approach differs
from theirs due to being the only one evaluating LS-LMSR, as well as adding probability
shifts in each period of simulation and offering multiple options for agent behaviors. The
LMSR-~ASM is capable of simulating a market with two stocks, representing a binary PM,
for different AMMs, types of agents and probability trajectories of the underlying event.

To demonstrate the capabilities of the LMSR-ASM, we present the results of
simulations regarding the sensitivity of profits in relation to market characteristics, such as
the number of participants, as well as choices made by the creator of a prediction market,
such as rounding methods, and parameter values. We answer five research questions: how
to find optimal parameters for market creation; how profits differ under different AMMs;
how rounding floating point calculations affects results; how initial price setting can change
market outcomes and how the sum of prices changes in relation to outstanding quantities
in LS-LMSR. We replicate expected behavior but also produce novel results. We find that
under certain circumstances, the LS-LMSR can be less profitable than the LMSR. We also
find that the LMSR~-ASM can aid in finding optimal parameters for profit maximizing a
PM. The model also shows that different rounding choices can increase profits without
hindering market activity. The LMSR-ASM provides a variety of settings to enable further

research.

The second chapter introduces essential ideas on Prediction Markets and Automated
Market Makers. The third chapter presents the LMSR-ASM and the the Santa Fe Institute
Artificial Stock Market, which we used as a basis for our work. Chapter four explains tests

applied and their results. The fifth chapter concludes.

2 The source code for the model can be found at <https://github.com/Athosvec/LMSR-ASM>. A user
guide and class descriptions are presented in the appendix, for further comprehension of the code.


https://github.com/Athosvcc/LMSR-ASM
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2 Prediction Markets and Automated Market
Makers

2.1 Prediction Markets

Prediction Markets encounter difficulties in knowledge aggregation' due to low
liquidity, which leads to the necessity of a market maker, willing to buy or sell stocks
at any time for a determined price. This chapter discusses Automated Market Makers,
mathematical functions or computational mechanisms capable of providing liquidity

automatically.

2.2 Automated Market Makers (AMMs)

To deal with the low liquidity problem, there is a variety of Automated Market
Makers, with the most relevant being the Logarithmic Market Scoring Rule (LMSR).
A modification of the LMSR, the Liquidity Sensitive Logarithmic Market Scoring Rule
(LS-LMSR) has relevant aspects in relation to their use in Prediction Markets. This chapter
presents a discussion of the characteristics and differences of both AMMs. There are other
AMMs, for instance, the Dynamic Pari-Mutuel Market (PENNOCK, 2004), and Constant
Product AMMs (WANG, 2020), both of which are outside of the scope of this dissertation.

2.2.1 Market Scoring Rules

Scoring rules are functions designed to elicit probability estimates from agents, by
rewarding given probabilities in relation to their distance to real outcomes. In a Proper
Scoring Rule, as defined by Bickel (2007), an agent maximizes their expected score by
revealing their truthful probability expectation. Proper Scoring Rules are efficient in
aggregating information regarding probabilities from a single individual. However, joining

estimates made by different individuals is not trivial.

Hanson (2003) introduces Market Scoring Rules (MSRs), functions which pool
probability estimates from different agents. MSRs work as sequentially shared scoring
rules. At any time, agents can decide to interact with the scoring rule by paying the last
person who used it. Interpreting a MSR as an automated market maker, this means the
last person to interact with the function (buying stock) changes the price of the asset,

therefore, in a sense, paying the previous user, which can sell his stocks at the new price.

L Knowledge aggregation refers to the use of a price system as a mechanism for communicating dispersed

information, as shown in Hayek (1945).
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A market maker using a MSR in fact only pays the last trader and receives payment from
the first trader (CHEN; PENNOCK, 2012).

2.2.1.1 The Logarithmic Market Scoring Rule (LMSR)

The LMSR is a Market Scoring Rule formulated in Hanson (2007), widely used in
PMs, due to the property of all prices summing to unity.

The general formula for the LMSR is a cost function of the total of assets in the
PM, given by:
C(q) =blog (zn: eqj/b) , (2.1)
j=1
with g being a vector of quantities, b being a strictly positive parameter which controls
liquidity in the market, and n being the number of assets (outcomes) in the market. This

cost function represents the total amount of money spent on buying or selling all shares
available in the market (SLAMKA; SKIERA; SPANN, 2013).

The derivative of the cost function returns the price function for infinitesimal

quantities, given by:

—_ 2.2
Z?Zl edi/q (2:2)

pi(q) =

Since a unit of an asset does not usually approach an infinitesimal part of all
outstanding quantities, the derivative of the cost function may not be a good approximation
for prices. Prices are then given by subtracting cost functions evaluated at two different
quantity vectors. As an example, consider a prediction market with a binary outcome,
in which there are two stocks, called Y and N. Y is a Yes stock, in other words, the
stock pays $1 if the underlying event happens, and N is a No stock, which pays $1 if the
underlying event does not happen. In this market, the cost function at an initial quantity
vector q is

C(q) =blog (eqTY + 6%]) (2.3)

and the price for one Yes stock is the difference between cost functions, as follows
py = C((g+ v, ax) — Clay, an)- (2.4)

The creator of a PM sets variable b, which represents the liquidity of the market.
The higher b is, the less a fixed value investment moves prices. Market maker’s loss is a
function of this parameter, with a worst case loss of blogn (HANSON, 2007). The LMSR
is modular, being able to handle stocks with an arbitrary number of outcomes, from binary
markets to combinatorial ones, with its only requirement being that assets represent all
possible final states. Maximum loss in LMSR is achieved when the market for an event
converges to a corner value before market closure. In less extreme cases, market maker

loss is given by the difference between the entropies of the initial and final distributions.
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Due to consistent losses for the market maker, it is not ideal to use the LMSR in
for-profit exchanges. It is possible to avoid losses by imposing costs on transactions, for
instance, charging for buy and sell orders or cashing in profits. These costs distort the
interpretation of prices as forecasts of the probability of each outcome, since agents factor

these fees in their behavior.

2.2.2 A Liquidity Sensitive LMSR (LS-LMSR)
2.2.2.1 Market Maker Properties

Othman et al. (2013) presents three desirable characteristics in a pricing rule:

1. Path independence: the cost of changing the quantity vector from ¢° to q' depends

only on ¢" and g', not on the path between them
2. Translation Invariance: prices always sum to unity

3. Liquidity Sensitivity: liquidity changes according to the number of outstanding

quantities

Path independence guarantees the market maker cannot become a money pump:
any sequence of trades results in the same overall cost, so agents are not able to generate
profits only by placing a set of trades. Translation invariance makes it so prices can be
directly interpreted as probabilities and liguidity sensitivity replicates the behavior of stock
markets regarding outstanding quantities, the more available stocks a market has, the less

a fixed value investment moves prices.

The authors provide proof that a cost function satisfying all three characteristics
does not exist. In order to create a liquidity sensitive market maker, one of the other
two properties should be abandoned, which leads to the Liquidity Sensitive Logarithmic
Market Scoring Rule (LS-LMSR), a market maker presenting path independence and

liquidity sensitivity, relaxing the translation invariance property.

Keeping path independence is important to guarantee that, theoretically, the market
maker cannot become a money pump. Path independence also ensures what Othman et al.
(2013) calls a minimum representation state, meaning any possible market condition can

be represented only by the respective quantity vector.

2.2.2.2 Adding Liquidity Sensitivity to the LMSR

In order to add variations in liquidity, the LS-LMSR turns the parameter b of the
original LMSR into a function of the outstanding quantities. This way, the original LMSR
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equation becomes:

C(q) = b(q) log (Enj eqj/b(")) : (2.5)

=0
where

blg) =ad a (2.6)

with a being a strictly positive parameter set by the owner of the PM.

Due to the relaxation of translation invariance, prices in LS-LMSR do not sum to
unity. Instead, at any quantity vector, the sum of all prices follows strict lower and upper

bounds:

1 <> pi(g) <1+ anlogn (2.7)

The sum of all prices approaches the lower bound when ¢; — 0o and ¢; = 0 for

1 # j. The upper bound is reached when all quantities are equal, ¢ = k; for any k;.

Othman et al. (2013) shows relaxing translation invariance makes it so prices in
LS-LMSR do not directly translate to probabilities. When the sum of prices reaches its
upper bound, any probability between % —a(n —1)logn and % + a(n — 1) logn would be

consistent with current prices.

2.2.2.3 Choosing the parameter «

The choice for the parameter a can follow an intuition from traditional betting
markets. Since the sum of prices is dependent on «, the creator of the market can set an
upper bound for its possible maximum commission, also called vigorish, or the vig. For any
desired vig v, we can guarantee that maximum commission does not exceed v by setting

the parameter « as follows:
v

o =

= . 2.8
nlogn (28)

As an example, for a maximum vig of 20%, common in bookmaker markets (SMITH;

PATON; WILLIAMS, 2006), and a PM with two possible outcomes, the parameter «

should be set to
0.2

= ~ (.1442.
“ 2log?2

2.2.2.4 Market Maker Revenue and Loss

Like the original LMSR, the LS-LMSR exhibits bounded loss, but instead of nlogn,
it is given by the cost function at initial quantities C'(g®). This means the market maker

can lower their losses by setting initial quantities as low as is desired. This has a trade-off
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in initial market liquidity. In a market with o = 0.05 and with only one outstanding
quantity, an initial bet would cost over $0.95 (OTHMAN et al., 2013), so even though it

is possible to make worst case loss approach zero, making it so might discourage trading.

Regarding revenue, for markets with the same worst case loss, the LS-LMSR
generates equal or more revenue than the LMSR for the same set of trades, no matter the
outcome or outstanding quantities. Worst case revenue can be presented in closed form

and is given by the equation

R(q) = C(q) —maxq; — C(q°). (2.9)

Thus, the appeal of the LS-LMSR also comes from achieving profits more frequently
in relation to the original LMSR, in exchange for a marginal loss in the interpretation of

prices as probabilities, being a better choice when running for-profit Prediction Markets.
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3 The LMSR-ASM Agent-Based Model

This chapter presents the Santa-Fe Institute Artificial Stock Market (SFI-ASM),
which is used as a basis for the LMSR-ASM. We then relate the SFI-ASM with our model.

3.1 The Santa-Fe Institute Artificial Stock Market

The Santa-Fe Institute Artificial Stock Market (SFI-ASM) is an agent-based model
for stock market simulations, originally described in the 1989 paper "Artificial economic
life: a simple model of a stock market" (PALMER et al., 1994). In Lebaron (2002), Blake
D. LeBaron, one of the model’s creators, presents a history of the design of the SFI-ASM,
as well as a review of early stock market agent-based models. Johnson (2005) presents a
repository with information on different versions of the SFI-ASM. In the website, there
are versions made in Objective-C (by Brandon Weber and Paul Johnson) and Java (by

José Manuel Galédn and Luis R. Izquierdo), using the Swarm toolkit.

For Prediction Market simulations, we adapted the version created by Ehrentreich

(2008), developed in Java using the Repast library.

3.1.1 Basic Structure

In Norman Ehrentreich’s version of the SFI-ASM, there is an arbitrary number of
traders, chosen at the beginning of the simulation, each holding one unit of risky stock
and 20,000 units of cash. At each period, traders make investment decisions, choosing how
much to invest in stocks and how much to keep in cash, which yields a risk-free rate of

return ry.

Agents are myopic, meaning they only consider prices for the next period. They
are also homogeneous with respect to their utility function, determining their optimal
stock holdings at each period by maximizing a constant absolute risk aversion (CARA)
utility, in the form:

U(Wiyy1) = —e MWirs, (3.1)

where A is a strictly positive parameter, representing the degree of risk aversion, and W 441
is the expected wealth of agent ¢ for the next period. Agents face the following budget
constraint:

Wittt = Tig(Peg1 + dir) + (L 4+ 7)) (Wi — peiy), (3.2)

where p; is price at time ¢, x;, is the amount of stock held by agent ¢ at period ¢, and d;yy

is a stochastic dividend which the stock pays, given by a mean-reverting autoregressive
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Ornstein-Uhlenbeck process, of the form

dt+1 = 8 + p(dt - 8) + €t41, (33)
where d is the dividend mean, p is the speed of mean reversion and € are stochastic shocks
following N (0, o2,).

The solution to the utility maximization returns the optimal risky stock holding at

any period, which is given by the equation

_ Eipt1 +dea] — (L +7y)

Tit =
)\Ufp+d ’

(3.4)

with o2 . being the empirically observed variance of the stock’s price plus dividend time
t,p+d

series, E; ¢[pr+1+di1] being agent 4’s expectation of next period’s stock price and dividend.

Traders derive their expectations by a set of trading rules, which are conditions
unique to each agent, with each condition based either in fundamental or technical analysis

of the dividend process. Example of a fundamental rule would be "dividend—price ratio is

I
2

the stock price is greater than the current price'. According to these Boolean conditions,

under ;" and an example of a technical rule would be "the 25-period moving average of
together with fitness values for each rule, agents make their forecasts. Different expectations
represent the way different agents process the same information set available to all traders.
In the SFI-ASM, agents can learn, changing their trading rules by feedback learning,
observing which rules produce better forecasts over time, and a genetic algorithm, which

enables agents to change rules via mutation and cross-over processes.

3.2 The LMSR-ASM

The LMSR-~ASM is an adaptation for Prediction Market simulations of Norman
Ehrentreich’s Java version of the SFI-ASM (NESFI-ASM), as presented in Ehrentreich
(2008). The model utilizes RepastJ 1.4, a Java library for creating agent-based models.

As stated in Section 3.1.1, simulations start with a previously selected number of
agents, carrying a predetermined quantity of cash. At each period, agents update their
optimal demand for stocks by maximizing a constant absolute risk aversion (CARA) utility.
The agents buy or sell stocks according to the difference between their optimal demand,

resulting from the maximization problem, and the number of stocks they currently have.

Event probability is either arbitrarily chosen at the beginning of a simulation, or
defined by one of the generative processes available, which will be explained in Section
3.2.1. Each agent has a forecast of the probability of the underlying event. This forecast
is based on the probability of the event, given by the simulation, plus a random element
unique to each agent, following N(0,0.05), as defined in Slamka, Skiera and Spann (2013).
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This variation models the fact that agents form beliefs according to noisy signals, particular

to each one. These signals follow a Gaussian distribution, as presented in Das (2005).

A simulation run has the following workflow: either LMSR or LS-LMSR is selected
as the AMM and, in the first period, initial quantities are created as arbitrarily set, either
to create liquidity, when in LS-LMSR, or to adjust initial prices, in both cases. These
initial quantities are artificial stocks. The market maker holds these stocks and, since
they’re not paid at the end of the simulation, they do not affect profits. The LS-LMSR
presents liquidity problems without initial quantities, with the function being undefined
for ¢ = (0,0) and one-unit bet prices being costly at the point of discouraging trades (see
Othman et al. (2013)), making these artificial stocks necessary to kickstart the market.
Regarding price adjustment, initial stocks are created until the point when first-unit bets
reach the chosen value. Stock creation is a practical way to affect prices without changing

the behavior of cost functions.

After this first period, agents can trade stocks according to their own personal
forecasts and, at the last period, the underlying event is performed: the Automated Market
Maker closes the market paying the agents with winning stocks according to their holdings.
The following section explains stock behavior and how agents make their decisions. Figure

1 summarizes the how the model works.

Start

User settings: LMSR or LS-LMSR; number of agents; o and b values; initial price, probabilities
and shock period

- l

Period O Artificial Stock creation

Pre-simulation

Y

Agents update their forecasts and trade

Period 1 until the end according to their optimal holdings

Last period The event is realized, agents are paid

Figure 1 — Flowchart of the LMSR-ASM.
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3.2.1 Stock Characteristics and Behavior

There are two types of stocks, one paying $1 if the underlying event happens, which
we will refer to as Yes stocks, and another, which pays $1 if the underlying event does not

happen, which we will refer to as No stocks.

Both stocks are related to an event, with probability set at the beginning of the
simulation. The market maker can also set an initial price for the stocks, achieved by the
creation of artificial stocks, as explained before. Besides probability, stocks have a liquidity
parameter, b for LMSR or « for LS-LMSR.

Stock prices in LMSR sum to 1, while in LS-LMSR, the sum of the two stocks vary
according to outstanding quantities, with an upper limit of 1 + anlogn, as presented in
Chapter 2. Since the event simulated only has two possible outcomes, this upper limit is
1+ ax2xlog2.

It is also possible to include a probability shock at an arbitrary period, in which
the probability of the event changes to a preset value. During the rest of the simulation,

stock probability can follow three types of movement chosen at will:

» Fixed: the underlying probability does not change unless a shock is specified

o Random Walk: at every step, the event’s probability changes in relation to a random
shock following A/(0,0.05)

» Logit: the probability of the event is updated following a Logit generative process,

explained later in this section

Figure 2 illustrates how each probability setting behaves in a 100 period run. The
simulation starts at 0.7 and drops to 0.3, after a shock at period 50.

0.8
0.7
z 06
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Logit
] 20 40 80 80 100
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Figure 2 — A demonstration of how different probability processes vary over time.

The shock represents a situation in which probabilities change drastically, for

example, the probability of a football team winning a two-game series after losing the
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first game. The Fixed setting is useful to model the behavior of a stable event, e.g., the
probability of a candidate being elected, considering a week with no important news
regarding the race. Random walk and Logit options are able to simulate more complex

processes if desired.

At the final period, the market closes according to the following rule: if probability
> 0.5, Yes stocks pay out; otherwise, No stocks pay out. Therefore, stock behavior is
defined as follows:

o At the start of the simulation, quantities are created to set initial prices and liquidity

» Exchanges follow either LMSR or LS-LMSR, as predetermined, with parameters b

or
« Probability is updated at every step according to the process chosen

o At a set period, the underlying event’s probability changes from its previous value

to another predetermined one

o At the end, the underlying event is performed and agents receive their payments

The logit generated process is given by the equation

log () = Bz, (3.5)

1—m

as described in Fokianos and Kedem (2003), where B} is a vector of time-invariant

parameters and z(;_p) is a covariate process.

Since it is useful for the process to be defined in terms of characteristics in the
simulation, the vector z;_ is given as zy_1) = (t,m_1,m_2). This makes the generated
sequence highly persistent, but betas and the covariate process can be changed in the

source code if an arbitrary sequence of probabilities is desired.

To supply the model with a vector of parameters related to a real event, we
ran a beta regression on data from polls regarding Brazil’s 2018 election, taken from
Poder360 (2021). The betas used are 8] = (0.02044511, —1.21038522, —1.50537449) and
the independent variables are as defined by the vector z;_;. Figure 3 shows poll data, the

predicted fit of the model and the generative process created using the betas given.
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Figure 3 — Poll data, Model Fit and Generated Data from Beta Regression.

Each blue dot represents the results of a different poll, with higher periods meaning
polls made later in time. The probability axis shows the surveyed percentage for the
candidate with the highest vote intention, with the complementary event being the election
of any other candidate. Orange dots are the model’s fit, using values from the original
table and estimated betas from the regression. Green dots are values generated by using
the process shown in Equation (3.5), along with a random generator for the data, which
follows NV(0,0.1). As explained before, since the independent variables used were only the
period and lagged values, the model’s fit and generated data are highly persistent. This
effect can also be observed in Figure 2, where the logit generated probabilities do not
change greatly after a 1-period probability shock. If this characteristic is unwanted, other

covariate processes might be better suited for simulation of probability processes.

3.2.2 Agent Characteristics and Behavior

The model also has three distinct types of agents:

o Ideal: a perfect foresight agent, used as a baseline. It has the capability of knowing
the probability of the underlying event and buys stock until the price matches the
probability

« Logit: the agent creates forecasts according to a unique logit model of the probability

process

o Random Walk: the agent creates forecasts according to noisy signals they receive
regarding the event, given by the real probability adjusted by a random variable
unique to each agent, which follows A(0,0.05)

Logit and Random Walk agents are utility maximizing, buying and selling stocks

only until their current stock holding equals their optimal holdings.
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Following the SFI-ASM specification in Section 3.1.1, agents are myopic, meaning
they only consider prices for the next period, and homogeneous with respect to their
utility function, determining their optimal stock holdings at each period by maximizing a

constant absolute risk aversion (CARA) utility, shown in Eq. (3.1).

Due to Prediction Market stocks not paying dividends, the budget constraint of

the agents differs from what we see in Eq. (3.2), now being as follows:
Wistr = peaziy + (L + 1) (Wip — piwiy), (3.6)

where p; is price at time ¢, z;; is the amount of stock held by agent 7 at period ¢, and 7/
is the risk free rate of return. By solving the utility maximization problem, we find the

optimal risky stock holding at any period, which is given by the equation:

Bl = Eiilpeia] —pe(1+ Tf)7 (3.7)

D)
)\atyp

with az , being the variance of the stock, which follows a Bernoulli distribution and E;i[pis]

being agent i’s forecast®.

Since optimal stock holdings are dependent only on the difference between their
forecast and the current price, both of which have an upper bound of 1, due to being
related to probabilities, agent’s demands rarely exceed 2. In the edge case, with price 0

and an agents forecast of 1, the optimal stock holdings for an agent with A = 0.3 would

be 0%551 = 3.3. This does not seem to affect convergence, even though it can make prices

volatile in a simulation with a small number of agents, due to few outstanding stocks.

If the agent’s forecast of the probability of the underlying event is higher than the
current stock price and it does not hold No stocks, it buys Yes stocks according to its
optimal demand. If the agent’s forecast of the probability of the underlying event is lower
than the current stock price and it does not hold Yes stocks, it buys No stocks according
to its optimal demand. Even though prices in the LS-LMSR do not sum to unity, since the
payoff is still $1, each agent’s expected return remains unchanged. Therefore, changing
AMNMSs does not change how agents make choices. In case the agent’s prediction is not in
agreement with its stock holdings, the agent sells the stocks it currently holds until prices
change to match its forecast or it holds no stocks. The following table summarizes agent

behavior.

Table 1 — Agent Behavior in the LMSR-ASM

forecast > price forecast < price
buys "Yes’ according to
optimal demand

holds "Yes’ stocks sells all "Yes’ stocks

buys 'No’ according to

holds 'No’ stocks sells all 'No’ stocks )
optimal demand

1 Since prices can be interpreted as probabilities, the term represents the agent’s probability forecast as

well as its expectations of the price for the next period
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3.3 Automated Market Maker

Users can select either LMSR or LS-LMSR, and choose each AMMs parameters, b
or a.. At each period, agents are activated one at a time, determine their demands as shown
previously and then interact with the market maker. Agents can only buy integer stocks,
which many times lead to the necessity of rounding prices. Rounding is also necessary
due to floating point imprecision. If the float cost was used directly, it could be possible
for the market maker to be used as a money pump. Using floating point values is also a

possibility in the model, even though it would not be advisable in a real setting.

In the model, rounding can be done in two ways: either the cost of an order is
approximated to the nearest 2 or, as used in Berg and Proebsting (2009), the nearest 6
decimal digits. The market described by Berg and Proebsting has a distinct transaction
interface, with agents investing determined values and in return receiving a rounded
number of stocks. In my model, agents order the number of stocks they demand and pay
accordingly. This means that when rounding prices to the nearest 6 decimal digits, agents
many times pay fractions of a cent. In a real setting this could be handled by showing
users balances rounded down to the nearest cent but using the actual values of 6 decimal

digits during transactions.

The AMM handles selling and buying differently, rounding prices down when agents
are selling and up when they’re buying. This can be seen either as a form of "breakage" or
as a bid-ask spread in the AMM. The rounding behavior helps to offset part of the market
maker’s loss. With breakage, there is a change in the path independence characteristic
of LMSR. While ideally an agent could buy and immediately resell their shares without

incurring losses, in the model this action possibly leads to small losses.

3.4 World settings and Repast

Additional settings that can be chosen in the simulation are the risk-free rate of
return and the number of periods for simulation. A deeper explanation of the Repast
interface can be found in the appendix, as well as other important information about the

source code.
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4 Results

This chapter presents the results of a series of simulations using the LMSR-ASM.
We run simulations in order to answer five research questions:
o What are the ideal values for o and 0?7
o What are the profit differences between LMSR and LS-LMSR market makers?
o How much do rounding types affect profits?
o How much do initial prices affect profits?
o How the sum of prices vary according to outstanding quantities in LS-LMSR?
Each setting is used in 100 runs, for simulations involving stochastic factors. This
value is used so simulations do not take a long time, while simultaneously producing
credible results. Outcomes do not vary greatly with a higher number of runs and the

analysis remains the same. Only one run for each setting is executed when simulations are

deterministic, as is the case with Ideal agents.

Over all following simulations, unless otherwise stated, values set in the LMSR-ASM

are:

o Number of periods = 100

« Probability process is Fixed

e a=0.04 and b= 76.13

e Initial price = 0.5

o Initial quantities = (50, 50)

o Initial probability = 0.8

« Probability shock in period 50

« Probability after shock = 0.2

» Interest rate = 0.0

e Risk aversion = 0.3
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The fixed probability process shows how AMMs and agents behave in an ideal
market, so it is possible to analyze market characteristics independently of random shocks.
The same rationale applies to the interest rate: since the analysis is on PM trading and
AMDMs, not portfolio decisions, a zero interest rate focuses simulations to the desired

behavior.

The planned shock at period 50 enables understanding of a market’s reaction in
relation to a sudden change in probabilities, after values have already stabilized regarding
previous knowledge. Probability values are distant to each other and the initial price to
highlight the movement of price convergence in relation to probability. Risk aversion is as
set in Ehrentreich (2008), the Santa-Fe Institute Artificial Stock Market used as basis for
the LMSR-ASM.

Values for b = 76.13 and a = 0.04 are equivalent in respect to losses, as they lead
to equal worst case loss of ~ 52.77. As shown in Section 4.1, we use a = 0.04 since it is
the value that maximizes profits under the parameters given. The maximum wvig possible
is 0.04 x 2 x log 2 ~ 0.0554, =~ 5.54% of the market’s revenue. Batch files and simulation

data can be provided upon request.

4.1 Choosing o and b

To analyze optimal values for the AMMSs parameters o and b, we run simulations
varying both parameters, as well as the number of participants in a market. The parameter
b varies from 15 to 150, in increments of 15; the parameter « varies from 0.01 to 0.10,
in 0.01 increments. This variation is used to compare how volume of trades and market
profit vary in a range of values. A comparison between runs using different settings enables
understanding of how both the LMSR and LS-LMSR behave when their parameters

change.

The baseline, a LMSR simulation with ideal agents, returns an increase in the
volume of trades in relation to an increase in b, while market profit decreases with the
parameter. The results are invariant in relation to the number of participants because,
with ideal agents, the first agent is the only one who engages in trading. They are also
invariant to the number of periods, since convergence happens few periods after the shock
and does not change over time. Volume increases with b because, due to the increase in
liquidity, more trades are necessary to move prices to their equilibrium value. Market

profit decreases with b because LMSR worst case loss is given by b logn.
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Figure 4 — Parameter analysis in the LMSR model with Ideal agents. (a) Effect in trading
volume; (b) Effect in market profit.

Using random walk agents, results for the LMSR are more interesting. Figure 6
shows how liquidity and volume interact with a varying number of agents. Results are as
expected from Equation (2.1). Volume of trades increases both with b and the number of
agents, while market maker profit is decreasing in respect to b and increasing in the number
of participants. There is no optimal rule for choosing the parameter b: it is always possible
to increase profits by decreasing the parameter, but it might reduce liquidity so much
that prices are not indicative of underlying probability. Figure 5 shows a case where prices
do not converge to the probability due to low liquidity. Due to agents updating forecasts
every period following a Normal distribution with mean 0, simulating for longer periods
than 100 would not change the lack of convergence, prices just continue varying around
the true probability value, as shown in 5. Since buying a small number of stocks cause big
price increases, we see skips in price in relation to the changing perception of the agents.
Prices vary around the probability but do not converge and are highly volatile. Either
way, batch simulations can help market creators set their initial parameters, according to

desired volumes and profits.



Chapter 4. Results 29

A n

[
|I. i ]'llnﬁ'" |'"|| 'ﬂ'lll\ ]llllll I|'.IJlI 'ﬂ'll ‘WW\NM_NV
[

=
=]
L

Z

= |'

m 0.5 4

5 || —— Prabability

o Price of Yes Stock
E 04 —— Price of No Stock
w ) IH |n| |' l| nnAp ||-I ﬂl |'_|| iI Ih
g |"||IIL| |II' IlJ.l"“| Il—lI Illl ! |I|I|||
< 02 - w

|

Period

Figure 5 — A run showing lack of convergence to probability when liquidity is low. b = 2 is
used.

When the created market does not focus on profit, such as an internal PM created
by a company, knowledge aggregation is the most important factor in choosing a market’s
settings. This might mean that trading volume is the primary variable, to account for
small differences in agents’ perception of the underlying event’s probability. Play-money
markets can offset a higher liquidity by distributing more tokens to participants, thus,
being more efficient in relation to knowledge aggregation, with no drawbacks. For-profit
markets deal with the trade-off between volume, related to the liquidity parameter b, and
market profit. Especially when considering the LMSR, which rarely is profitable without
any additional fees, lower liquidities can completely hinder trade, since agents factor extra

costs into their expectations, distorting market prices and lowering overall participation.
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Figure 6 — Parameter analysis in the LMSR model with Random Walk agents. (a) Effect
in trading volume; (b) Effect in market profit.

Regarding the LS-LMSR, since liquidity and profits are directly interlinked by

the parameter «, there is an optimal choice for each market, a value which maximizes



Chapter 4. Results 30

market maker profit. Lower « values decrease worst case loss, but also decrease liquidity
to the point of reducing volume and market values, which in turn affect profits. However,
higher « values also decrease volume. Agents trade less because prices are not directly
translated to probabilities. As presented in the previous chapter, when the sum of prices
reaches its upper bound, given by 1+ anlogn, any probability between % —a(n—1)logn
and % + a(n — 1) logn would be consistent with stock prices. Figure 7 shows volume and

market maker profit for the simulated parameters, with Random Walk agents.
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Figure 7 — Parameter analysis in the LS-LMSR model with Random Walk agents. (a)
Effect in trading volume; (b) Effect in market profit.

Volumes increase with respect to the number of agents, and vary slightly regarding
a values, mostly due to different seeds in the Random Walk behavior of the agents. The
profits graph (Figure 7(b)) presents the behavior described previously. Market maker profit
increases with o until it reaches its maximum value, at a = 0.04. This value may not be
consistent with different types of agent or probability behavior, but it is useful for further
simulations and also to demonstrate the model’s capacity to find an optimal value under
a determined setting. The possibility of finding an optimal value for the parameter o
using simulated data is novel and enables PM creators to maximize profits by considering

expected market characteristics.

42 LMSR vs LS-LMSR

To evaluate the differences between LMSR and LS-LMSR, we vary the probability
after shock as well as the underlying probability, from 0.1 to 0.9, inclusive. This range
shows how the AMMs react under diverse situations, for the spectrum of possibilities. We
use ideal agents for baseline, and Random Walk agents to simulate a market with more

uncertainty.
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Figure 8 shows the results:
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Figure 8 — Comparison between LS-LMSR and LMSR AMMs. (a) Using Ideal agents; (b)
Using Random Walk agents. The dotted green line separates profits and losses.

Figure 8 shows that the LS-LMSR consistently presents higher profits than the
LMSR. However, in certain cases, LMSR and LS-LMSR profits converge. This happens
when after shock probabilities are similar to both initial probabilities and prices (the
middle of the graph). Due to the set of trades not being equal between simulations, in
some runs, the LMSR is more profitable than the LS-LMSR. It is possible for the LMSR
to be more profitable than the LS-LMSR when under these edge situations, due to changes
in behavior caused by the different liquidities. LS-LMSR revenue is always higher for an
equal set of trades, but since agent incentives are not the same under different AMMs,
trades are also not equal. For less edge cases, LS-LMSR not only presents higher profits,

but also reduces variance, increasing the predictability of a market’s result.

Simulations with Random Walk agents present higher profits than with Ideal agents
because the market maker revenue increases with the number of trades, which are higher in
Random Walk simulations due to agents constantly updating their forecasts. As explained
in the beginning of the chapter, for simulations involving stochastic factors, each setting is
used in 100 runs, while only one run for each setting is executed when simulations are
deterministic, as is the case with Ideal agents. Therefore, the Random Walk simulation
has 100 times more runs than the one with Ideal agents. Since the same settings are used,

the simulations are directly comparable.

4.3 Rounding and Profits

Due to floating point imprecision, cost calculations need to be adapted so the
market maker will not become a money pump (BERG; PROEBSTING, 2009). The way a
PM creator decides to make these adaptations can reflect on PM revenue. We evaluate

two different rounding methods, rounding costs up by the nearest of two decimal digits or
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by the nearest of six decimal digits, as used in Berg and Proebsting (2009). Even though
this difference in rounding does not affect behavior significantly, it has a discernible effect

in profits, especially when the amount of trading is large.

To test rounding effects in PM profit, we run the model under the same settings as
the previous test, with the probability after shock and underlying probabilities changing
from 0.1 to 0.9. Figure 9 shows the effects:
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Figure 9 — Evaluation of rounding methods: 2-digit rounding vs 6-digit rounding. (a)
LMSR; (b) LS-LMSR.

As expected, rounding to 2 decimal digits increases profits in both LMSR and
LS-LMSR. The LMSR varies more in general in relation to initial conditions, as shown
in Section 4.2. The LS-LMSR presents significantly less variance in profits in relation to
initial settings. Either way, rounding to 2 decimal digits presents a way to increase profits

that does not affect market participation greatly.

4.4 How important are initial prices

As presented in Hanson (2007), the expected cost of running a market is minimized
by setting the initial report (price) equal to the market creator’s beliefs. To evaluate the
impact of price setting, we run the model with a fixed probability, while varying initial
prices, as well as the probability after shock. The batch run used values of 0.1 to 0.9 for
both variables, using Ideal and Random Walk agents. Figure 10 shows the results:
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Figure 10 — How initial price setting affects profits. (a) With Ideal agents; (b) With
Random Walk agents.

The simulation shows that the LS-LMSR only presents higher profits than the
LMSR when prices are set to 0.5, which are the results in the middle of the graph. Positive
spikes are simulations in which the market maker sets initial prices to the correct probability
and negative spikes are simulations in which the opposite occurs. Simulations with Random
Walk agents confirm the phenomenon: when initial prices approach corner values, maximum
loss in LS-LMSR is greater than in the LMSR, with the opposite happening when initial
prices approach equality. This can be useful in PMs in which the market creator has strong
priors regarding the final probability. In these cases, using LMSR and setting initial prices
accordingly might increase profits. It is also of note that setting initial prices introduces
greater variance in profits. The possibility of the LMSR being more profitable then the
LS-LMSR when prices are not equal at the beginning is unexpected and a novel result,
showing how the LMSR-ASM can extend our understanding of AMM characteristics.

45 Sum of Prices and Quantities in LS-LMSR

The sum of prices in LS-LMSR reaches its maximum when the quantity of assets are
equal and approaches unity as the quantity of one of the stocks goes to infinity. Figure 11
demonstrates how the sum changes as the ratio between stocks changes, for three different
values of the parameter o, the upper and lower bounds used in previous simulations, and

the profit maximizing value of oo = 0.04:
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Figure 11 — Changes in the sum of prices in LS-LMSR, according to the ratio between
stocks, for different values of «.

The plotted values show another characteristic of the LS-LMSR and its sensitivity
regarding the choice of the parameter a: not only the parameter defines the maximum
profit possible, it also sets how relative quantities affect profitability. While a market with
a = 0.04 and a 2:1 ratio has almost converged to the lower bound of profitability, the same
quantities still lead to a vig of approximately 4% with o = 0.10. This leads to a rule of
thumb in market creation: when convergence to a corner price is expected, a higher alpha
is needed to generate consistent profits. Analysis of the underlying events are important

in market creation.
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5 Conclusion

Prediction Markets are efficient in aggregating information regarding the likelihood
of uncertain events. Due to liquidity problems, most PMs utilize Automated Market
Makers to guarantee agents can buy and sell shares at any moment in time. A variety of
AMNMs exist, with different cost functions and underlying behavior, which in turn affect
agent participation. The most studied mechanism is the Logarithmic Market Scoring Rule
(LMSR). The LMSR can be altered to be liquidity sensitive (LS-LMSR).

We adapted the Santa-Fe Institute Artificial Stock Market to run Prediction Market
simulations under different initial settings in order to address how agent behavior and

market structure change profits for different types of AMMs and their respective settings.

The model, called LMSR-ASM, demonstrates it is possible to set an optimal
parameter value for profit maximization when using the LS-LMSR, while LMSR parameters
depend on subjective evaluation of a market’s creator, due to a trade-off between profits
and market volume. Other results are that market maker loss is sensitive to initial prices,
making it worthwhile for owners of PMs to start markets with prices as close as the true
probability in case underlying events do not converge before realization. For some cases,
setting initial prices might increase profit variance and make the LS-LMSR less profitable
than the LMSR. We also address different calculation rounding options, showing that a
necessary solution to floating point imprecision can be used to increase profits without

affecting market behavior greatly.

The LMSR-ASM reproduces the expected behavior, showing how profits decrease
for higher values of the parameter b in LMSR and how the LS-LMSR is more profitable
under certain circumstances. In addition, the model also produces novel results, such as
showing the possibility of parameter optimization in LS-LMSR, and how the LS-LMSR,
reduces variance in profits when initial prices are $0.5, but can actually be less profitable,

for a range of other initial prices.

When using the LS-LMSR, a market creator can set liquidity in a way such that
profits are more likely, but ensuring profits can hinder the PMs capacity of aggregating
information, since transaction costs change agent behavior, leading to less convergence. In
play money markets losses are not undesirable, so liquidity should be set low enough that
agents can influence prices but at the same time not so low that prices change greatly with
small orders. This makes it so PM managers should evaluate parameters in a case by case
basis. The LS-LMSR has the highest capability of generating profits, when initial prices
are set to 0.50. On this setting, without any additional market fees, the LMSR generally

leads to losses for the market maker.
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The source code can be found at <https://github.com/Athosvee/LMSR-ASM >

and can be easily adapted for different types of agents, market makers, and events.


https://github.com/Athosvcc/LMSR-ASM
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APPENDIX A - Guide to the LMSR-ASM

A.1  What is the LMSR-ASM?

The LMSR~ASM is an adaptation for Prediction Market simulations of Norman
Ehrentreich’s Java version of the SFI-ASM (NESFI-ASM), as presented in Ehrentreich
(2008).

Simulations start with a previously selected number of agents, carrying a predeter-
mined quantity of cash. At each period, agents update their optimal demand for stocks by
maximizing a CARA utility (as shown in Ehrentreich (2008)). Agents buy or sell stocks
according to the difference between their optimal demand and the number of stocks they
currently have. Each agent has a forecast of the probability of the underlying event. This
forecast is based on the true probability of the stock plus a random element unique to
each agent, following N (0,0.05), as defined in Slamka, Skiera and Spann (2013).

A simulation run has the following workflow: either LMSR or LS-LMSR is selected
as the Automated Market Maker and, in the first period, initial quantities are created,
either to create liquidity, when in LS-LMSR, or to adjust initial prices, in both cases. These
initial quantities are artificial stocks, they are held by the Market Maker and therefore do
not affect profits. The LS-LMSR presents liquidity problems without initial quantities,
with the function being undefined for ¢ = (0,0) and one-unit bet prices being costly
at the point of discouraging trades (see Othman et al. (2013)), making these artificial
stocks necessary to kickstart the market. Regarding price adjustment, initial stocks are
created until the point when first-unit bets reach the determined value. Stock creation is a

practical way to affect prices without changing the behavior of cost functions.

After this first period, agents can trade stocks according to their own personal
forecasts and, at the last period, the underlying event is performed: the Automated Market

Maker closes the market paying the agents with winning stocks according to their holdings.

Simulations can also be run in batch mode, using parameter files as described in

the Repast guides. A sample batch parameter file is given at the end of this guide.

An in depth explanation of stock and agent behavior is presented in the paper "An

Agent-Based Framework for Prediction Markets".
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A.2 Dependencies

To run the LMSR-ASM.jar file, you need Java SE 8, the model might not work
with later editions. To compile the code, you will also need RepastJ 1.4 and jfreechart
0.9.10.

A.3 Repast GUI options and parameters

In the Repast GUI, users can set the following variables:

o NumberOfLMSRAgents: the number of agents in the simulation

o MarketMakerMethod: rounding methods for market maker settling. Round to 2

decimal digits, 6 decimal digits or use float values

o AgentType: how agents make purchase decisions and create forecasts, options are
Ideal, Logit and Random Walk

o NumberOfPeriods: the duration of simulation

o InterestRate: the risk-free rate of return

o LS-LMSR: changes from LMSR to LS-LMSR

o ShowDisplay: turns simulation graphs on or off

e RecordData: records simulation data to file

The Repast GUI also presents the following buttons, which open menus for other
settings:
o LMSRAgent: initial cash quantities and agent risk aversion settings

o LMSRStock: a variety of settings regarding event and stock behavior, explained in
detail below

o ObserverOptions: choose variables shown in graphs

o RecorderOptions: choose recorded variables and save file name
LMSRStock holds most of the simulation options offered, as follows:

o AlphalLS: sets the a parameter in the LS-LMSR function

« Bliq: sets the b parameter in the LMSR function
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o InitialPrice: controls the price of the first "Yes" stock offered

o InitialQuantity: the amount of artificial stocks created at the beginning of the
simulation; affects initial liquidity in LS-LMSR

o PeriodShock: sets at which period the probability of the stock changes. When set to

0 the probability never changes during the course of the simulation.
o ProbAfterShock: sets the probability after the shock
o Probability: sets the real probability of the stock

« ProbabilityProcess: a dropdown for choosing between Fixed, Logit and Random

Walk probability generating processes

A.4 Class Hierarchy

o AsmModel extends SimModellmpl
o Agent
o LMSRAgent extends Agent
o Asset
o LMSRStock extends Asset
« World
e Specialist
» ExecutePeriod
o ObserverOptions
e RecorderOptions

e RecorderParamFileReader

A5 Class descriptions

A51 World

« Creates agents, resets the simulation and gets wealth levels
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A.5.2 Agent

» executeOrder: settles buying and creation or destruction of both types of stock
o getEarningsAndPayTaxes: called in Execute Period, handles agent wealth updating

o setPayout: called in the last period of simulation, pays $1 to holders of the stock

conditional to the realization of the underlying event

« setDemandAndSlope: agent behavior is programmed. Agent’s forecasts are made

and optimal demand is calculated. ’executeOrder’ is called at the end of the process

 constrainDemand: prohibits agents from making orders larger than their cash holdings

A53 LMSRAgent

o Used for setting cash and risk aversion properties of agents

A5.4 LMSRStock

o liquiditySensitiveB: implements LS-LMSR’s «
o baseQLMSR: creates artificial stocks
« firstPrice: gets price of buying one stock

o InitLMSR: sets initial quantity of stocks according to price set in GUI. Creates
artificial stocks owned by the Market Maker, until the price of the marginal stock is

greater than the price set
» probShock: changes underlying event’s probability at chosen period

« updateProbability: handles probability updating between periods according to chosen

process

A.5.5 Specialist

o getCostLMSR: calculates the total price of an order using LMSR. The price for

buying is rounded up and the price of selling is rounded down.

o getLastPriceLMSR: calculates the price of the last stock in an order, used by agents

to determine order quantities

o adjustPricePrediction: handles updating the stock price shown in the display and

the price agents use to calculate their demand.
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A.5.6 ExecutePeriod

« Handles behavior at each period. Calls for probability updates and agents orders,

also updates graphs

A.6 Batch File Example

Here is an example file for running the model in batch mode. Batches can have
parameter ranges and these can also be nested, as present in the example. Further
explanations can be found in the repast guides.

runs: 1

NumberOfLMSRAgents {

set: 25

}

numberOfPeriods {
set: 100

}

interestRate {
set: 0.0

}

memory {
set: 2500

}

LS_LMSR {
set__boolean: false

}

showDisplays {
set__boolean: false
}
recordData {
set  _boolean: true
}
/%
If you want the model to start with identical random seeds, uncomment

the next section.

*/
//RngSeed {
// set: 1
//}
agentType {
set: 0
}
alphaLS {
set: 0.15
}
bLiq {
set: 87.13
}
initialPrice {
set: 0.5
}

initialQuantity {
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set: 50
}
periodShock {
set: 50.0
}
probAfterShock {
start: 0.1
end: 0.9
incr: 0.1
{
runs: 1
probability {
start: 0.1
end: 0.9
incr: 0.1
}
}
}
riskAversion {
set: 0.3
}
probabilityProcess {
set: 0
}

recorderOutputFile {
set_string: Asml.txt

}

recorderParamFile {

set_string: recorder.pf
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