UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM NANOCIÊNCIA E NANOBIOTECNOLOGIA

SÍNTESE E CARACTERIZAÇÃO DE NANOPARTÍCULAS MAGNÉTICAS COM REVESTIMENTO DUPLO DE SÍLICA E DIÓXIDO DE TITÂNIO COM ELEVADA ATIVIDADE FOTOCATALÍTICA PARA DEGRADAÇÃO DO CORANTE AZUL DE METILENO

Ítalo Lacerda Fernandes

Orientador: Prof. Dr. José Antonio Huamaní Coaquira

Brasília - DF Dezembro de 2021 Ítalo Lacerda Fernandes

SÍNTESE E CARACTERIZAÇÃO DE NANOPARTÍCULAS MAGNÉTICAS COM REVESTIMENTO DUPLO DE SÍLICA E DIÓXIDO DE TITÂNIO COM ELEVADA ATIVIDADE FOTOCATALÍTICA PARA DEGRADAÇÃO DO CORANTE AZUL DE METILENO

Tese de doutorado apresentado ao Programa de Pós-Graduação *Stricto Sensu* em Nanociência e Nanobiotecnologia do Instituto de Ciências Biológicas - Universidade de Brasília, como requisito parcial para obtenção do título de Doutor em Nanociência e Nanobiotecnologia.

Orientação: Prof. Dr. José Antonio Huamaní Coaquira

Linha de Pesquisa: Síntese e caracterização de complexos nanoestruturados

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS Programa de Pós-Graduação em Nanociência e Nanobiotecnologia

Tese de Doutorado Ítalo Lacerda Fernandes

Título:

SÍNTESE E CARACTERIZAÇÃO DE NANOPARTÍCULAS MAGNÉTICAS COM REVESTIMENTO DUPLO DE SÍLICA E DIÓXIDO DE TITÂNIO COM ELEVADA ATIVIDADE FOTOCATALÍTICA PARA DEGRADAÇÃO DO CORANTE AZUL DE METILENO

Comissão Examinadora:

Prof. Dr. José Antonio Huamaní Coaquira Presidente/Orientador - IF/UnB

Prof. Dr. Alex Fabiano Cortez Campos Membro titular interno não vinculado ao PPG Faculdade UnB Planaltina - FUP/UnB Prof^a. Dr^a. Eloiza da Silva Nunes Viali Membro titular externo não vinculado ao PPG IF Goiano - Campus Rio Verde

Prof^a. Dr^a. Araceli Aparecida Seolatto Membro titular externo não vinculado ao PPG Instituto de Química - UFG Prof. Dr. Juliano Alexandre Chaker Membro suplente interno vinculado ao PPG Faculdade de Ceilândia - FCE/UnB

Brasília – DF, _____ de dezembro de 2021

AGRADECIMENTO

A Deus, por sempre me dar forças e coragem para me reerguer e vencer;

À minha família, em especial: à minha esposa, Jéssica, pelo amor incondicional, paciência e compreensão, sempre me enobrecendo, incentivando e me ajudando a guiar nossas vidas; à minha filha Maria Júlia por alegrar nossas vidas; aos meus pais, Sebastião e Irene, e aos meus irmãos, Ismael, Isaura e Isabel Cristina, por sempre estarem ao meu lado, independente das circunstâncias;

Ao Instituto Federal Goiano e ao Campus Posse, por proporcionar políticas de incentivo à qualificação dos servidores, à bolsa de doutorado e à concessão do afastamento parcial para capacitação; Políticas se tornaram reais quando realmente eram necessárias para continuidade da capacitação em serviço.

À Universidade de Brasília, ao Decanato de Pós Graduação, ao Instituto de Biologia, à Secretaria de Pós-Graduação, à Coordenação do PPGNano;

A todos os colegas que ajudaram direta e indiretamente para execução deste e aos meus amigos, por partilhar os momentos de alegria e de tristeza;

Ao Prof. Dr. Marcelo Henrique Sousa (FCE/UnB), pelas discussões e colaboração; Ao Prof. Dr. Sebastião William da Silva (IF/UnB) pela colaboração para as medidas ópticas e de Raman; Ao Prof. Dr. Marcos Juliano Prauchner (IQ/UnB) pela colaboração para as medidas de adsorção/dessorção de N₂.

Ao LabMic-UFG pelas análises de microscopia eletrônica;

Aos membros avaliadores da banca, que se dispuseram a julgar e contribuir com esse trabalho, provocando discussões e reflexões para a evolução acadêmica;

Ao meu Orientador, Prof. Dr. José Antonio Huamaní Coaquira, pelas valorosas orientações, por ser paciente, compreensível e tolerante nos momentos mais difíceis, pela contribuição ímpar para execução desse trabalho;

À CAPES.

RESUMO

Nanocompósitos multifuncionais baseados em núcleos magnéticos estão sendo amplamente estudados atualmente com foco em aplicações biomédicas, ambientais e de engenharia. Neste estudo, sintetizamos, pelo método solvotermal, nanopartículas magnéticas (NPM) com revestimento duplo para obter um nanocompósito do tipo NPM@SiO2@TiO2. As NPM foram revestidas com uma casca de sílica usando o método sol-gel. Além disso, a hidrólise e condensação de isopropóxido de titânio foi usada para uma segunda camada de revestimento de TiO₂ em SiO₂. Diversas técnicas foram utilizadas para caracterizar as propriedades do nanocompósito NPM@SiO2@TiO2. A Microscopia de Força Atômica revelou NPM da ordem de 5 nm, coerentes com as tamanho estimado das NPM individuais por Microscopia Eletrônica de Transmissão. Por outro os agregados quase esféricos formados pelas NPM apresentam tamanho médio de 116 nm; o revestimento estimado pela mesma técnica foi da ordem 15 nm e o revestimento de dióxido de titânio foi da ordem 34 nm. Os padrões de difração de raios X evidenciaram a formação de TiO₂ anatase, sem as fases cristalinas rutilo ou brookita. A área superficial estimada foi de 167 m²g⁻¹ para NPM@SiO₂@TiO₂. A excelente atividade fotocatalítica de NPM@SiO₂@TiO₂ foi demonstrada pela degradação do corante azul de metileno sob luz ultravioleta. Os resultados indicam que o nanocompósito sintetizado reduziu em 95% a concentração do corante nos primeiros 30 minutos, o que é maior que os 47% obtidos quando o TiO₂ comercial, Degussa P25. Os resultados indicam que os primeiros 120 minutos são suficientes para obter 99,9% de redução fotocatalítica. Até onde sabemos, não há nenhum outro material que mostre essa forte ação fotocatalítica contra o corante azul de metileno. As propriedades magnéticas da amostra NPM@SiO2@TiO2 mostram que este nanocompósito pode ser facilmente separado da solução usando um campo magnético externo. Nossos resultados indicam que sua atividade fotocatalítica estável é garantida, pelo menos quatro vezes, sem qualquer perda significativa de atividade. Os resultados indicam que o nanocompósito NPM@SiO2@TiO2 obtido com sucesso é interessante para aplicações de tratamento de efluentes e apresenta-se promissor para degradar outros contaminantes da água.

ABSTRACT

Multifunctional nanocomposites based on magnetic cores are being extensively studied currently focusing biomedical, environmental and engineering applications. In this study, we synthesized double-coated magnetic nanoparticles (MNP) by the solvothermal method to obtain the MNP@SiO₂@TiO₂ nanocomposite. The MNP were coated with a silica shell using the sol-gel method. Additionally, the hydrolysis and condensation of titanium (IV) isopropoxide was used for a second coating layer of TiO_2 on SiO_2 . Several techniques were used to characterize the properties of MNP@SiO2@TiO2 nanocomposite. Atomic Force Microscopy showed NPM of the order of 5 nm, consistent with the estimated size of individual NPM by Transmission Electron Microscopy. On the other hand, the almost spherical aggregates formed by NPM have an average size of 116 nm; the coating estimated by the same technique was of the order 15 nm and the titania coating was of the order 34 nm. X-ray diffraction patterns showed the formation of TiO₂ anatase, without rutile or brookite. The estimated surface area was 167 m^2g^{-1} for MNP@SiO₂@TiO₂. The excellent photocatalytic activity of MNP@SiO₂@TiO₂ was demonstrated by degrading methylene blue (MB) dye under UV irradiation. Results indicate that the synthesized nanocomposite reduced the 95% the MB dye concentration in the first 30 minutes, which is larger than the 47% obtained when the commercial TiO₂, Degussa P25, was tested. Results indicate that the first 120 minutes are enough to get 99.9% of photocatalytic reduction. To our knowledge, there is no other material showing that strong photocatalytic action against methylene blue dye. The magnetic properties of MNP@SiO₂@TiO₂ shows that this nanocomposite can easily be separated from the solution using an external magnetic field. Our results indicate that its stable photocatalytic activity is warranted, at least four times, without any significant loss of activity. The results indicate that the successfully obtained MNP@SiO₂@TiO₂ nanocomposite is interesting for wastewater treatment applications and it features promising to degradate other water contaminants.

LISTA DE FIGURAS

Figura 1: a) Esquema linear de processos de tratamento de água e efluentes. b) Esquema circular sugestivo para processos de tratamento de água e efluentes. Traduzido e adaptado pelo autor. [44]
Figura 2: Representação do número de oxidação do carbono em compostos inorgânicos (CO_2 e CO_3^{2-}) e em compostos orgânicos (H_2CO , -(CH_2)-, CH_4)
Figura 3: Estruturas tetragonais de formas cristalinas do TiO_2 rútilo, anatase e brookita. Esferas vermelho: átomos de oxigênio; esferas cinzas: titânio [56]
Figura 4: Ilustração esquemática de vários processos que ocorrem após fotoexcitação de TiO ₂ puro com luz UV. BC (ou cb): banda de condução; BV (ou vb): banda de valência [54]13
Figura 5: Célula unitária cristalográfica de diferentes óxidos de ferro: (a) α -Fe ₂ O ₃ , (b) γ -Fe ₂ O ₃ , (c) Fe ₃ O ₄ e (d) FeO [66]15
Figura 6: Rotas de síntese para a preparação de nanoestruturas <i>core</i> @SiO ₂ @TiO ₂ [2]18
Figura 7: Fórmula estrutural simplificada para o tetraetilortosilicato – TEOS (esquerda), isopropóxido de titânio IV – TIP (centro) e butóxido de titânio IV – TBT (direita)
Figura 8: Etapas de preparação das amostras NPM@SiO ₂ @TiO ₂ 22
Figura 9: Esquerda: Esquema do aparelho experimental para os testes de fotodegradação. Direita: Caixa de madeira, agitador magnético, lâmpada de vapor 80 W Hg modificada, tubo coletor, barra de agitação diamagnético
Figura 10: Padrão de DRX da Fe ₃ O ₄ pelo método coprecipitação (CP) e solvotermal (ST)29
Figura 11: Espectro de infravermelho da Fe ₃ O ₄ pelos métodos coprecipitação e solvotermal. K L
Figura 12: Imagens de MEV das amostras de Fe ₃ O ₄ sintetizada pelo método solvotermal [Lote 1:(a); Lote 2 (b) e (c); Lote 3 (d)] e pelo método co-precipitação (e,f)
Figura 13: Imagens de MET das amostras de Fe ₃ O ₄ sintetizada pelo método solvotermal [Lote 1:(a) e (b)] e pelo método co-precipitação (c,d). (a=L, b=R, c-d=K)32
Figura 14: Padrão de DRX da Fe ₃ O ₄ pelo método coprecipitação(CP) e solvotermal(ST) antes e após o tratamento para revestimento com dióxido de titânio
Figura 15: Imagens de MEV das amostras de (a) $Fe_3O_4(ST)$ e (b) $Fe_3O_4(CP)$ após o tratamento para revestimento com dióxido de titânio. Os pontos (pt) indicam onde realizou-se a leitura de EDS (composição % em massa)
Figura 16: Imagens de MET das amostras de (a) $Fe_3O_4(ST)$ e (b) $Fe_3O_4(CP)$ após o tratamento para revestimento com dióxido de titânio. (a=J, c,d=I)

Figura 19: Espectro de IV da SiO_2 e da $Fe_3O_4(ST)$ antes e após o tratamento para revestimento com sílica pelos métodos solvotermal adaptado e pelo método de Stöber.......37

Figura 24: Imagens de MET da Fe₃O₄(ST) [Lote 2 (**a**)] e da Fe₃O₄@SiO₂ [Lote S1: (**b**) e (**c**); Lote S2: (**d**)] com revestimento com sílica pelo método de Stöber modificado 2......41

Figura 28: Espectro de IV da $Fe_3O_4(ST)$; $Fe_3O_4@SiO_2(W)$; $Fe_3O_4@SiO_2@TiO_2$ (L) pelo método termal e $Fe_3O_4@SiO_2@TiO_2(L)$ seguido por calcinação a 450 °C por 2 h......45

Figura 31: Espectro de IV da Fe₃O₄(ST); Fe₃O₄@SiO₂(W); Fe₃O₄@SiO₂@TiO₂-N......47

Figura 32: Espectro de IV da Fe₃O₄(ST); Fe₃O₄@SiO₂(W); Fe₃O₄@SiO₂@TiO₂-N-Fe antes **Figura 33:** Imagem MEV (esquerda) e do espectro de EDS (direita) da Fe₃O₄@SiO₂@TiO₂-Figura 34: Espectro de IV da Fe₃O₄(ST); Fe₃O₄@SiO₂(W); Fe₃O₄@SiO₂@TiO₂-N-Fe.49 Figura 35: Imagem MEV (esquerda) e do espectro de EDS (direita) da Fe₃O₄@SiO₂@TiO₂-Figura 36: Imagem de varredura de composição elementar por EDS da amostra $Fe_3O_4@SiO_2@TiO_2-N-Fe e espectro EDS.$ 50 Figura 37: Imagens de MFA das NPM sintetizada pelo método solvotermal com a) vista Figura 38: Imagens de MET das NPM sintetizada pelo método solvotermal com foco para a) distribuição dos agregados; c) agregados individuais; d) HRTEM com a medida do espaço planar de uma NPM. b) Histograma da distribuição de frequências do diâmetro dos Figura 40: a) Imagem de MET das NPM@SiO₂; b) Histograma da distribuição de frequências do diâmetro das NPM@SiO₂, com modelagem log-normal (linha sólida)......53 Figura 41: a) Imagem de MET das NPM@SiO₂@TiO₂; b) Histograma da distribuição de frequências do diâmetro das NPM@SiO₂@TiO₂, com modelagem log-normal (linha sólida). Figura 42: a) Imagem de HRTEM das NPM@SiO₂@TiO₂ com as medidas do espaço planar; b) Imagem de difração de elétrons da área selecionada (SAED) para a NPM@SiO₂@TiO₂..54 Figura 43: a) Imagem de MET das NPM@SiO₂@TiO₂; com identificação das áreas selecionadas para medida da quantificação pontual realizada por EDS; b) Espectro EDS do área 1; c) Espectro EDS do área 2.....55 Figura 44: Padrão de DRX para a) NPM (linha preta); b) NPM@SiO₂ (linha vermelha); c) NPM@SiO₂@TiO₂ (linha azul); d) Ampliação e sobreposição para comparação em $15^{\circ} < 2\theta$ < 30°. As cartas padrão das fases espinélio (linha azul marinho) e anatase (linha cinza) também estão incluídas......57 Figura 45: Curvas de histerese, magnetização (M) versus campo magnético (H) para NPM ($-\blacksquare$ preto), NPM@SiO₂ ($-\blacktriangle$ vermelho), NPM@SiO₂@TiO₂ ($-\bullet$ azul) a a) 300 K e a d) 2K. Ampliação as regiões centrais das curvas de histereses, observação em c) -500 < H <500 (300 K) e em e) -1000 < H < 1000 (2 K). b) Resposta magnética das NPM@SiO₂@TiO₂ Figura 46: Curvas ZFC e FC para as NPM (■ preto); NPM@SiO₂ (• vermelho) e

Figura 54: Teste de reutilização do fotocatalisador NPM@SiO2@TiO2 sob irradiação UV..71

LISTA DE TABELAS

Tabela 1 : Propriedades físicas da magnetita e da magnemita <i>bulk</i> [67]	
Tabela 2: Diâmetro médio de partículas de Fe ₃ O ₄ calculado pela equação de Sch	errer30
Tabela 3: Parâmetros texturais estimados.	65
Tabela 4: Comparação da eficiência do fotocatalisador NPM@SiO ₂ @TiO ₂ reportados na literatura para a degradação do corante azul de metileno	com outros

Tabela A1: Resumo dos métodos utilizados para as sínteses dos nanofotocatatlisadores	87
Tabela A2: Quantificação dos parâmetros das curvas de absorção espectrofotométricas.	95
Tabela A3: Dados para calibração utilizando o método dos mínimos quadrados	96

LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS

AOAC	Association of Official Agricultural Chemists		
BET	Brunauer, Emmet e Teller		
BJH	Barrett-Joyner-Halenda		
CAS	Chemical Abstract Service		
D_0	Diâmetro amostral		
DRS	Diffuse Reflectance Spectroscopy (Espectroscopia de Refletância Difusa)		
DRX	Difração de Raios X		
e _{bc}	Elétrons da banda de condução		
e _{bv}	Elétrons da banda de valência		
EDS/EDX/ED XS	Energy-dispersive X-ray spectroscopy (Espectroscopia de Dispersão e Energia de Raios X)		
EEC	European Economic Community		
Embrapa	Empresa Brasileira de Pesquisa Agropecuária		
ETA	Estação de Tratamento de Água		
ETE	Estação de tratamento de Efluente		
EtOH	Etanol		
FC	Field cooled		
FCE	Faculdade de Ceilândia (UnB)		
FTIR	<i>Fourier-Transform Infra-Red</i> (Espectroscopia de Infravermelho por transformada de Fourier)		
FUP	Faculdade UnB Planaltina		
FWHM	Full-width at half maximum		
GHS	Globally Harmonized System		
$h^{+}_{ m bv}$	"buraco" de elétrons da banda de valência		
H _c	Campo coercitivo		
HRTEM	High Resolution Transmission Electron Microscopy		
IB	Instituto de Ciências Biológicas (UnB)		
ICDD	International Centre for Diffraction Data		
IF	Instituto de Física		

IF Goiano	Instituto Federal Goiano	
INMETRO	Instituto Nacional de Metrologia	
LabMic	Laboratório Multiusuário de Microscopia de Alta Resolução (UFG)	
LD	Limite de detecção	
LD50	Median lethal dose	
LMCN	Laboratório Multiusuário de Ciências Naturais (IF Goiano)	
LMM	Laboratório de Microscopia e Microanálise (UnB)	
LNano	Laboratório de Nanobiotecnologia (Empraba)	
LSNCM	Laboratório de Síntese de Nanomateriais e Caracterização Magnética (IF/UnB)	
LQ	Limite de quantificação	
MET	Microscopia Eletrônica de Transmissão	
MEV	Microscopia Eletrônica de Varredura	
MFA	Microscopia Força Atômica	
M _{sat}	Magnetização de Saturação	
NaAc	Acetato de sódio	
Nox	Número de oxidação	
NPM	Nanopartículas magnéticas	
OMS	Organização Mundial da Saúde	
PEG	Polietilenoglicol	
POA	Processos Oxidativos Avançados	
PPG	Programa de Pós Graduação	
SAED	Selected Area Electron Diffraction	
SQUID	Superconducting Quantum Interference Device	
TBT	Tetrabutyl titanate (Butóxido de titânio)	
TB	Bemperatura de bloqueio	
TEOS	Tetraetilortosilicato	
TIP/TISOP	Titanium(IV) isopropoxide (Isopropóxido de titânio IV)	
UFG	Universidade Federal de Goiás	
UnB	Universidade de Brasília	

USEPA	United States Environmental Protection Agency
UV-Vis	Espectroscopia no Ultravioleta e Visível
VSM	Vibrating Sample Magnetometer
ZFC	Zero-field-cooled
λ	Comprimento de onda da radiação eletromagnética
ν	Frequência

SUMÁRIO

RESUMO	IV
ABSTRACT	V
LISTA DE FIGURAS	VI
LISTA DE TABELAS	X
LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS	XI
1. INTRODUÇÃO	1
2. OBJETIVOS	4
2.1. Objetivo Geral	4
2.1. Objetivos Específicos	4
3. REVISÃO BIBLIOGRÁFICA	5
3.1 Corante azul de metileno	6
3.2 Tecnologias para tratamento de água/efluentes	8
3.3 Processos de Oxidação Avançada (POAs)	9
3.4 Fotocatálise heterogênea	10
3.5 TiO ₂ fotocatalisador	11
3.5.1 Limitações do TiO ₂ fotocatalisador	13
3.6 Materiais magnéticos para nanofotocatalisadores	15
4. MATERIAIS E MÉTODOS	21
4.1 Materiais	21
4.2 Métodos	21
4.2.1 Síntese	21
4.2.2 Técnicas de Caracterização	23
4.2.2.1 Microscopia Eletrônica de Varredura (MEV)	23
4.2.2.2 Microscopia Força Atômica (MFA)	23
4.2.2.3 Microscopia Eletrônica de Transmissão (MET)	23
4.2.2.4 Difração de Raios X (DRX)	25
4.2.2.5 Medidas de propriedades magnéticas (SQUID-VSM)	25
4.2.2.6 Espectroscopia de Infravermelho por Transformada de Fourier (FTIR)	26
4.2.2.7 Espectroscopia no Ultravioleta e Visível com refletância difusa (U	V-Vis –
DRS)	26

4.2.2.8 Análise porosimétrica e da área superficial por adsorção e dessorção de N_22	27
4.2.3 Ensaio fotocatalítico	27
4.2.4 Análise dos produtos de reação	28
5. ESTUDO PRELIMINAR DAS NANOESTRUTURAS	29
5.1 Caracterização das nanoestruturas de magnetita, Fe ₃ O ₄	29
5.2 Caracterização das nanoestruturas de magnetita revestidas com dióxido de titâni Fe ₃ O ₄ @TiO ₂	.o, 33
5.3 Caracterização das nanoestruturas de magnetita revestidas com sílica, Fe ₃ O ₄ @SiO ₂ 3	35
5.3.1 Revestimento de sílica por solvotermal adaptado.	35
5.3.2 Revestimento de sílica pelo método de Stöber	36
5.3.3 Revestimento de sílica pelo método de Stöber modificado 1	37
5.3.4 Revestimento de sílica pelo método de Stöber modificado 2	38
5.4 Caracterização das nanoestruturas de magnetita revestidas com sílica e dióxido o titânio, Fe ₃ O ₄ @SiO ₂ @TiO ₂	de 41
5.4.1 Revestimento de dióxido de titânio sintetizada em reator termal	42
5.4.2 Revestimento de dióxido de titânio sintetizada em reator termal com baixo volum de etanol	ne 44
5.5 Caracterização das nanoestruturas de magnetita revestidas com sílica e dióxido o titânio dopado, Fe ₃ O ₄ @SiO ₂ @TiO ₂ -X, sendo X=N ou X=N-Fe	de 46
5.5.1 Revestimento de dióxido de titânio-nitrogênio	46
5.5.2 Revestimento de dióxido de titânio-nitrogênio-ferro	47
5.5.3 Revestimento de dióxido de titânio-nitrogênio-ferro 2	48
6. RESULTADOS E DISCUSSÃO DA NANOESTRUTURA NPM@SiO ₂ @TiO ₂	51
6.1 Caracterização	51
6.1.1 Microscopia de Força Atômica (MFA)	51
6.1.2 Microscopia Eletrônica de Transmissão (MET)	51
6.1.3 Difração de Raios X (DRX)	55
6.1.4 Medidas de Magnetização	57
6.1.5 Espectroscopia no Infravermelho com Transformada de Fourier (FTIR)	50
6.1.6 Espectroscopia no Ultravioleta e Visível com refletância difusa (UV-Vis – DRS) e	52
6.1.7 Propriedades Texturais	54
6.2 Eficiência fotocatalítica	56
7. CONCLUSÕES E PESPECTIVAS	73

REFERÊNCIAS BIBLIOGRÁFICAS	76
APÊNDICES	87
Apêndice A: Rotas de síntese preliminares	87
Apêndice B: Cinética de fotodegradação	91
B1 - Estudo de ordem zero	91
B2 - Estudo de primeira ordem	92
B3 - Estudo de segunda ordem	93
Apêndice C: Validação de metodologia para quantificação do azul de metile espectrofotometria UV-Vis	eno por 95
Apêndice D: Artigo original publicado em periódico especializado de cin internacional com qualis CAPES na área interdisciplinar igual à A1	rculação 98

1. INTRODUÇÃO

Nanopartículas magnéticas (NPM) têm sido estudadas extensivamente nas últimas décadas com múltiplos interesses, o conhecimento fundamental de novas estruturas em nanoescala, aplicações médicas, aplicações ambientais como tratamento de água para consumo humano, remediação de águas contaminadas e efluentes industriais ou domésticos [1]–[4]. NPM de óxido de ferro, especialmente magnetita (Fe₃O₄) e maghemita (γ-Fe₂O₃) exibem propriedades magnéticas atraentes. Sabe-se que esses óxidos ferrimagnéticos com tamanho de partícula da ordem de 20 nm adquirem propriedades superparamagnéticas [5]. Vários métodos podem ser usados para produzir NPM, síntese sol-gel, microemulsões, síntese fotoquímica, hidrotérmica e solvotermal, decomposição térmica, entre outros [6], [7].

No método hidrotermal as reações são conduzidas em reator ou autoclave em solução aquosa, mantendo a pressão superior a 2.000 psi e a temperatura acima de 200 °C [8]. Altas temperaturas implicam em rápida nucleação e crescimento acelerado de partículas recémformadas, levando à formação de NPM. A oxidação ou neutralização e hidrólise de hidróxidos metálicos são duas vias principais para a formação de óxidos de ferro via reações hidrotermais [6]. Mecanismos similares ocorrem em reações solvotermais com o ambiente isento de água, reações solvotermais [9]–[11]. O crescimento das partículas pode ser controlado utilizando polióis, p. ex. etilenoglicol, o qual geralmente oferece boas propriedades: sua constante dielétrica alta (comparado à outros solventes orgânicos) o torna o solvente ideal para composto inorgânico [12]; seu ponto de ebulição relativamente alto permite trabalhar em uma ampla faixa de temperatura [12]; pode ser usado para reduzir o estado de valência de íons metálicos [13].

NPM são normalmente revestidas para melhorar a estabilidade coloidal, aumentar dispersão em água e facilitar a funcionalidade química com a ligação de outras moléculas [1]. Para fotocatálise de tratamento de água ou remediação ambiental, o revestimento do núcleo magnético é recomendado para formar estruturas núcleo-casca, de forma que efeitos negativos possam ser evitados durante uma aplicação específica, por exemplo, na fotocatálise com o TiO₂ na camada mais externa, a recombinação de elétrons do núcleo com o TiO₂ não é desejada, principal para não se utilizar uma estrutura tipo NPM@TiO₂. Um dos materiais de revestimento mais promissores é a sílica mesoporosa, a qual proporciona elevada área superficial com tamanho e formato de poros bem definidos, evita a formação de agregados

sem sacrificar muito a magnetização do núcleo [2]. Estruturas compostas por núcleo magnético e revestimento de sílica já foram testadas experimentalmente para o acoplamento a diversos ligantes específicos [14]. O método sol-gel é um dos métodos mais utilizados para a síntese de partículas de sílica. O processo Stöber é um desses processos em que ocorre a hidrólise de alquil silicatos em soluções alcoólicas e, posteriormente, a condensação do ácido silícico, a reação é catalisada por amônia [15].

Por outro lado, o TiO_2 tem sido amplamente estudado pela comunidade científica devido à possibilidade de reutilização como catalisador, operação em ampla faixa de pH, estável e de baixo custo. Como fotocatalisador, pode degradar com eficiência um amplo espectro de contaminantes quando ativado por luz ultravioleta [16]. Nanopós de TiO₂, dopados ou não, em suspensão em água, aumentam a probabilidade de contato do catalisador. No entanto, a separação das fases é um processo caro que requer várias etapas, a principal desvantagem para uso em larga escala [17].

Em relação à síntese, a formação do TiO₂ nanoestruturado é obtida por vários métodos, por exemplo, pirólise por spray de chama, hidrotérmica, solvotérmica, sonoquímica, sol-gel e outros [18]. Usando o método sol-gel pode-se controlar o crescimento e reprodutibilidade das nanopartículas [19]. De acordo com a literatura, foram produzidas estruturas *core-shell-shell*, tendo um núcleo magnético, um revestimento de sílica e uma camada externa de um agente fotocatalisador, como o dióxido de titânio [20]–[23]. Lv *et al.* (2020) usaram uma estrutura Fe₃O₄@SiO₂@ZnO:La e observaram a degradação de 81 a 94% de azul de metileno [24]. Da mesma forma, Fe₃O₄ / SiO₂ mesoporosa / TiO₂, com um tamanho médio de aproximadamente 450 nm, chegou a degradar de 90 a 95% da laranja de metila em 120 minutos [25].

O uso de estruturas *core-shell-shell* magnéticas podem facilitar significativamente a separação do fotocatalisador do meio em um campo magnético externo. Além disso, o reaproveitamento de nanopartículas magnéticas é uma alternativa ecologicamente correta e econômica para o tratamento de efluentes [26].

Gómez-Pastora et al. (2017) concluíram em seu estudo de revisão sobre nanofotocatalisadores magnéticos para o tratamento da água que a recuperação dos catalisadores ainda é um problema, principalmente em razão de aplicações limitadas, citam também que as pesquisas devem estar focadas em processo de sínteses com alto rendimento e consiga focar em ampliações para plantas piloto/industriais [2].

Acredita-se que esses novos materiais *core-shell-shell* ainda não estejam amplamente sendo utilizados com o potencial máximo em razão do pouco conhecimento sobre os mesmos, além das limitações de rendimento, reprodutibilidade do método de síntese, estabilidade do nanocompósito final, capacidade de recuperação eficaz, possibilidade de reutilização por longos períodos, dentre outros. Além disso, relatos na literatura mencionam que a deposição de TiO₂ sobre NPM@SiO₂ apresenta baixa atividade fotocatalítica devido à natureza amorfa dos precipitados [27].

2. OBJETIVOS

2.1. Objetivo Geral

O objetivo do presente trabalho foi sintetizar e caracterizar nanoestruturas fotocatalisadoras e magnéticas, do tipo *core-shell-shell* de NPM@SiO₂@TiO₂, visando aplicação no aprimoramento das tecnologias avançadas de tratamento de água para remoção de contaminantes orgânicos. Este trabalho tem ênfase na degradação do azul de metileno em água para testar a atividade fotocatalítica das nanoestruturas.

2.1. Objetivos Específicos

- Sintetizar nanopartículas magnéticas (NPM) de magnetita (Fe₃O₄) e/ou maghemita (γ-Fe₂O₃) para atuarem como núcleo magnético das nanoestruturas;
- Recobrir as NPM com óxido de silício (SiO₂) para formar estruturas *core-shell* do tipo NPM@SiO₂;
- Sintetizar uma terceira camada com óxido de titânio (TiO₂), para formar estruturas do tipo *core-shell-shell*, NPM@SiO₂@TiO₂;
- Caracterizar as nanoestruturas sintetizadas para elucidar composição, estrutura, fases cristalinas, morfologia, propriedades óticas, texturais e resposta magnética;
- Testar a atividade fotocatalítica das NPM@SiO₂@TiO₂, em reator de bancada, frente a fotodegradação de corante orgânico como molécula teste;
- Definir o modelo cinético de fotodegradação das NPM@SiO2@TiO2
- Testar a regeneração e reuso das NPM@SiO₂@TiO₂.

3. REVISÃO BIBLIOGRÁFICA

A Organização Mundial da Saúde (OMS) explica que a água é essencial para sustentar a vida e deve estar disponível a todos de modo adequado, seguro e acessível. Nas diretrizes para a qualidade da água potável, *Guidelines for drinking-water quality*, todo esforço deve ser realizado para alcançar os níveis de potabilidade da água [28].

Quando consideramos a disponibilidade de água segura ao homem ou ao meio ambiente é perceptível que a escassez da água é um problema cada vez mais recorrente, alguns fatores são destaque: aumento do crescimento populacional associado ao aumento da perspectiva de vida da população; aumento da demanda de alimentos; aumento de demanda por bens manufaturados; aumento da poluição; perdas de água tratada nos centros urbanos [29].

Sadoff *et al.* (2015) apresentam a distribuição global da ameaça da poluição no mundo, os perigos da poluição agregada já são reais e com alta ameaça em diversas regiões da Europa, Índia, China, Estados Unidos, México, Brasil, Argentina, África do Sul dentre outros. O índice considera carga de nitrogênio, fósforo, mercúrio, pesticidas, poluentes orgânicos, corantes, acidificação e carreamento de sedimentos [30].

Muniyandi *et al.* (2021) explica que a poluição ambiental pode ser definida pela introdução de qualquer substância no meio ambiente que causem sérios efeitos adversos sobre os organismos vivos. Os autores ainda expõem que as causas básicas para a poluição ambiental estão relacionadas a revolução tecnológica industrial urbana, a exploração crescente de cada dos recursos naturais, a explosão populacional, à alta tecnologia e estilos de vida sofisticados, à ignorância das pessoas sobre a retenção do equilíbrio ecológico, a sede insaciável de riqueza, juntamente com o menor esforço na gestão de resíduos e subprodutos [31].

Mahanta *et al.* (2022) descorrem que a devido à rápida industrialização nos últimos séculos, o meio ambiente recebe cada vez mais uma alta diversidade de poluentes orgânicos nocivos. Os corantes orgânicos são destaques entre as categorias de poluentes, são frutos principalmente do processamento de madeira, têxteis, da fabricação de papel, de tinta e outras industriais similares [32].

3.1 Corante azul de metileno

A síntese do azul de metileno foi reportado pela primeira vez em 1876 pelo químico alemão Heinrich Caro [33], antes dele a anilina púrpura, originalmente denominada *Mauveine*, foi o primeiro corante a ser sintetizado na história, descoberto pelo químico Willian Henry Perkinn, em 1856 [34], e partir desses a produção em escala industrial expandiu.

No Quadro 01 é transcrito as principais informações e propriedades físico-químicas do corante azul de metileno.

CAS	61-73-4
Fórmula Molecular	$C_{16}H_{18}ClN_3S$
Massa Molecular	319,9 g.mol ⁻¹
Solubilidade em água (à 25°C)	43,6 g/L
рКа	3,14
Absorção máxima do Espectro UV-Vis	655 – 675 nm
Ponto de Fusão	100 to 110 °C (com decomposição)
Métodos para identificação em laboratório	USEPA 425.1 – Colorimétrico (1983) AOAC 923.11 – Titulométrico (2008) US <i>Pharmacopeia</i> – FTIR ou Colorimétrico em 663 nm (2008)
Classificação GHS	Corrosivo; irritante H302: Prejudicial se ingerido. Atenção: Toxicidade aguda, oral. H318: Causa danos oculares graves. Perigo: Danos oculares graves/irritação;
Efeitos Agudos	Toxicidade: LD50 = 1,18 g/kg (rato) Dermatite e outras: Dose 28 μL/kg (homem) Cianose: Dose 15 mg/kg (bebês)
Cor aparente	Cristais verdes escuros em pó; em solução, cor azul profunda.
Estrutura Molecular	N + CI-

Quadro 1: Informações e propriedade do corante azul de metileno [35].

Além de pigmento corante, o azul de metileno tem outras finalidades, por exemplo, na medicina é usado como medicamento indicado para tratamento metemoglobinemia adquirida (doença que afeta a hemoglobina), para melhoria do quadro de hipotensão, como antisséptico em infecções urinárias, em cirrose hepática, em síndrome hepatopulmar grave, entre outras [35]. Como corante, também tem aplicações nas Ciências da Saúde, seja em procedimentos histológicos ou em laboratórios de biologia molecular. É adequado para uso como uma coloração de ácido nucleico para agarose e eletroforese em gel. Foi usado em estudos de metástases para corar células tumorais, é indicado como um agente de diagnóstico que melhora a visualização de lesões colorretais [36].

O azul de metileno é um corante orgânico, de caráter alcalino, pertence à classe das fenotiazinas, aromático, heterocíclico, solúvel em água, produz cátions de cor azul (corante catiônico). Enquanto corante as aplicações estão principalmente do processamento de madeira, têxteis (tingimento de algodão e lãs), fabricação de papel, tinturas temporárias de cabelo, industrias de tintas e outras semelhantes [32]. Apesar de ser um corante bem comum, amplamente utilizado no mundo, é bem perigoso [31].

Karaca *et al.* (2004) escrevem que os corpos d'água são muito sensíveis à contaminação por corantes pois, uma quantidade muito pequena do poluente é suficiente para alterar a estética e a qualidade da água, além de que ingestão pode produzir efeitos nocivos [37]. Mahanta *et al.* (2022) complementam quem o azul de metileno não é biodegradável e permanece no ambiente por longos tempos [32]. Assim, o azul de metileno, em função de todas as suas características, pode ser classificado como um poluente em potencial de difícil tratamento [38].

Recentemente, Moorthy *et al.* (2021) concluíram que o corante azul de metileno é classificado como tóxico para o organismo aquático, de acordo com os parâmetros da Diretiva da União Europeia 93/67/EEC/1996. A toxicidade de curto prazo do azul de metileno cria uma convulsão metabólica em microalgas do tipo *Chlorella vulgaris* e *Spirulina platensis*, além de suprimir o crescimento de algas principalmente devido aos seus efeitos inibitórios na fotossíntese. Os autores também concluíram que o azul de metileno leva à redução da oxigenação da água devido à inibição da fotossíntese, que pode levar à instabilidade e eutrofização dos ecossistemas aquáticos [39].

De modo complementar Oliveira (2012) cita que o azul de metileno é um composto modelo para estudar a remoção de contaminantes orgânicos em solução aquosa. Inúmeros trabalhos nos últimos anos foram relatados usando o azul de metileno como molécula teste em ensaios de fotodegradação de poluentes orgânicos [31], [32], [40]–[43]

3.2 Tecnologias para tratamento de água/efluentes

Taheran *et al.* (2018) citam que os processos convencionais de tratamento de água e efluentes seguem um modelo linear (Figura 1a), em que a captação ocorre em fontes superficiais ou subterrâneas, alimenta as Estações de Tratamento de Água (ETA) e as indústrias, em seguida os efluentes são tratados e a fração considerada tratada retorna para uma matriz superficial que não represente ameaça aguda para as habitações próximas [44].

Figura 1: a) Esquema linear de processos de tratamento de água e efluentes. b) Esquema circular sugestivo para processos de tratamento de água e efluentes. Traduzido e adaptado pelo autor. [44].

Resíduos de produtos de cuidado pessoal são frequentemente detectados em fontes de água potável, em estações de tratamento de efluentes (ETEs) e em ETAs, devido ao consumo universal, baixa capacidade metabólica e descarte inadequado. Há de se considerar que os metabólitos secundários afetam negativamente as plantas de tratamento biológico e que as ETEs convencionais são insuficientes para remoção desses [45]. Rejeitos de ETEs das regiões da Ásia, Europa e América do Norte apresentam a ocorrência de pelo menos 60 contaminantes emergentes [46].

Assim Taheran et al. (2018) sugerem a adoção de um esquema circular, ao invés do linear, para os processos de tratamento de águas e efluentes (Figura 1b). Na estratégia circular, um novo processo é implantando antes do efluente tratado retornar às águas superficiais. Com essa etapa a água é completamente reciclada, assim o conceito de ciclo fechado é necessário para alcançar uma gestão sustentável das águas urbanas, ação na qual mitiga os efeitos da competição entre homem e meio ambiente por fontes limitadas de água doce e alimentos [44].

3.3 Processos de Oxidação Avançada (POAs)

As tecnologias mais atraentes e promissoras para tratamento de águas residuais, subterrâneas ou superficiais são os Processos de Oxidação Avançada (POAs), os quais consistem em produzir *in situ* fortes agentes oxidantes, como os radicais hidroxilas (HO[•]), para iniciar e propagar uma sequência de reações que decompõem compostos orgânicos em compostos menores e menos ofensivos, como ácidos orgânicos de cadeia curta, CO_2 e H₂O [2], [47].

Vale lembrar que os processos de oxidação convencional são diferentes, pois o convencional envolve a adição de um oxidante à água para reagir diretamente com o contaminante alvo, incluem cloro, dióxido de cloro, permanganato de potássio e peróxido de hidrogênio. Por outro lado, a oxidação avançada é diferente em diversos aspectos: não são adicionados os reagentes oxidantes e sim espécies capazes de produzir o agente oxidante; é altamente reativa e não é seletiva [48].

Segundo Howe et al. (2017) praticamente qualquer espécie reduzida pode ser oxidada pelo radical hidroxila, quase todo produto orgânico sintético, que são espécies reduzidas (baixo número de oxidação - Nox), pode ser oxidada para espécies inorgânicas, como CO_2 e CO_3^{2-} (alto Nox). A Figura 2 exemplifica espécies de carbono inorgânica e orgânicas com seus respectivos números de oxidação.

Figura 2: Representação do número de oxidação do carbono em compostos inorgânicos ($CO_2 e CO_3^{2-}$) e em compostos orgânicos (H_2CO , -(CH_2)-, CH_4).

Processos avançados de oxidação são apresentados na literatura como eficientes na degradação de contaminantes. No entanto, existe uma lacuna significativa no conhecimento relacionada ao desenvolvimento industrial ou ao escalonamento do processo [49].

3.4 Fotocatálise heterogênea

Entre os POAs a fotocatálise de semicondutores emergiu como uma técnica promissora para mineralização total dos poluentes orgânicos e de metais tóxicos [50]. Um catalisador acelera a velocidade de uma reação introduzindo novos caminhos com energia de Gibbs de ativação inferior. Se este estiver presente em uma fase diferente daquela dos reagentes são chamados catalisadores heterogêneos [51]. A única diferença entre a catálise convencional e a fotocatálise é o modo de ativação do catalisador, na fotocatálise a ativação é realizada por fótons, ao invés da ativação térmica. De modo clássico e geral a fotocatálise heterogênea em meio líquido pode ser desdobrada em cinco etapas independentes:

- 1. Transferência dos reagentes na fase líquida para a superfície do catalisador;
- 2. Adsorção dos reagentes;
- 3. Reação, na fase adsorvida;
- 4. Dessorção do(s) produto(s);
- 5. Remoção do(s) produto(s) da região da interface [52].

Uma série de reações está presente no mecanismo de fotocatálise. Um catalisador semicondutor possui bandas de valência e de condução separadas por uma banda proibida, *band-gap*. Quando fótons (hv) irradiam um semicondutor, com uma energia igual ou superior a energia do *band-gap*, os elétrons da banda de valência (e_{bv}) são excitados e promovidos para a banda de condução (e_{bc}) em femtosegundos, 10^{-15} s. Assim uma banda de valência fica deficiente em elétrons, e⁻, gerando um "buraco" denotado por h_{bv}^+ . Se o retorno do elétron excitado for evitado em razão da adsorção dos reagentes na superfície do semicondutor, inicia-se uma série de reações, como por exemplo as descritas nas Equações 1 - 7 [50]:

Fotoexcitação:	semicondutor + $h\nu \rightarrow e_{bc}^{-} + h_{bv}^{+}$	(1)
Aprisionamento (pr) de elétrons livres:	$e^{bc} \rightarrow e^{pr}$	(2)

Aprisionamento de buracos:
$$h^+_{bv} \rightarrow h^+_{pr}$$
 (3)

Recombinação de portadores de carga: $e_{\rm F}$	$_{\rm br} + h^+_{\rm bv} \rightarrow e^{\rm bc} + {\rm calor}$ (4)
--	---

- Captura de elétrons fotoexcitada: $O_{2adsorvido} + e^- \rightarrow O_2^{-\bullet}$ (5) Oxidação de hidroxilas: $OH^- + h^+ \rightarrow HO^{\bullet}$ (6)
- Fotodegradação por radicais HO[•]: $R H + HO^• \rightarrow R^• + H_2O$ (7)

3.5 TiO₂ fotocatalisador

O TiO₂ vem sendo estudado pela comunidade científica nas últimas décadas e ganhou interesse devido à possibilidade de reutilização como catalisador, capacidade de operar em ampla faixa de pH, ser um óxido metálico não maligno, biocompatível, abundantemente disponível, altamente estável e de baixo custo. Como fotocatalisador tem a capacidade de degradar eficientemente um largo espectro de contaminantes [16]. A forma cristalina do dióxido de titânio, TiO₂, apresenta três poliformos: anatase, rutilo e brookita, Figura 3.

O TiO₂ é um semicondutor do tipo n, devido a deficiência intrínseca de ânions oxigênios, possui *bandgap* de 3,2 eV para anatase, 3,0 eV para rutilo, e \sim 3,2 eV para brookita [53], [54].

O mecanismo de reação fotocatalítica do TiO₂, por exemplo em poluentes orgânicos em águas residuais, pode ser reescrito além da forma geral das Equações 1 - 7, conforme as Equações de 8 - 14. Sob irradiação da luz na superfície do TiO₂ são gerados elétrons na banda

de condução (e_{bc}^{-}) e buracos positivos na banda de valência (h_{bv}^{+}) de acordo com a Equação 8. Os h_{bv}^{+} podem reagir com as moléculas de água adsorvidas e/ou com hidroxilas de superfície para formar radicais hidroxila (Equações 9 e 10) e os e_{bc}^{-} na presença de oxigênio podem gerar radicais de oxigênio, superóxidos (Equação 11), os quais serão fundamentais para as reações radicalares de degradação de compostos orgânicos. Figura 4. Tanto os e_{bc}^{-} quanto os h_{bv}^{+} podem reagir diretamente com as moléculas orgânicas, Equações 12 a 14 [55].

Figura 3: Estruturas tetragonais de formas cristalinas do TiO_2 rútilo, anatase e brookita. Esferas vermelho: átomos de oxigênio; esferas cinzas: titânio [56].

O processo é realizado normalmente em condições ambientais, tendo o oxigénio atmosférico como oxidante, importante para reagir com os elétrons foto-gerados (Equação 11), e assim submeter compostos orgânicos a completa mineralização, tendo o dióxido de carbono CO_2 como produto final [55], [57].

$$\mathrm{TiO}_2 + hv \to e^-_{bc} + h^+_{bv} \tag{8}$$

$$h^+_{bv} + OH^-_{superficie} \rightarrow HO^{\bullet}$$
 (9)

$$h^{+}_{bv} + H_2 O_{adsorvida} \rightarrow HO^{\bullet} + H^{+}$$
 (10)

$$e_{bc}^{-} + O_{2ads} \rightarrow O_2^{-\bullet}$$
(11)

 $h^+_{bv} + \text{orgânico} \rightarrow \text{produtos de oxidação}$ (12)

 $OH' + orgânico \rightarrow produtos de degradação$ (13)

$$e_{bc}^{-} + \operatorname{organico} \rightarrow \operatorname{produtos} \operatorname{de} \operatorname{redução}$$
(14)

Figura 4: Ilustração esquemática de vários processos que ocorrem após fotoexcitação de TiO_2 puro com luz UV. BC (ou cb): banda de condução; BV (ou vb): banda de valência [54].

3.5.1 Limitações do TiO₂ fotocatalisador

A qualidade do fotocatalisador, a natureza dos poluentes, a distância e a fonte de radiação são fatores que afetam a eficiência da fotocatálise e a aplicação bem sucedida do TiO₂ [57]. Um estudo com 160 publicações mostrou que as principais limitações descritas pelos autores são: Alta energia de *band-gap* do fotocatalisador TiO₂ (34%); Limitação de transferência de pares de elétrons e buracos (27%); Agregação de nanopartículas de TiO₂ (13%); Condições de dispersão das nanopartículas de TiO₂ (11%); Baixa afinidade dos fotocatalisadores TiO₂ em relação aos poluentes orgânicos (8%); Dificuldade de recuperação e regeneração de nanopartículas de TiO₂ (8%).

A alta atividade fotocatalítica de partículas de TiO₂ é limitada à excitação dos elétrons da banda de valência com radiação no ultravioleta próximo, $\lambda \leq 387$ nm, o que equivale a uma fração de 3 – 5 % do espectro solar [53], [54], [58]. Consequentemente, a aplicação de TiO₂ não modificado pode não ser viável do ponto de vista prático, com essa perspectiva para obter a eficiência com com luz visível, vários metais, sulfetos, nitretos e óxidos de metal são incorporados ou combinados com estruturas do TiO₂ para melhorar o desempenho fotocatalítico [43]. Em razão da limitação da radiação UV do espetro solar e evitando usar fontes externas de luz UV, modificações da estrutura do TiO₂ foram fortemente estudadas com o propósito de promover a ativação na região visível do espectro, de modo geral considera-se as modificações morfológicas, como aumento da área de superfície e porosidade, ou as modificações químicas, pela incorporação de componentes adicionais na estrutura do TiO₂. A morfologia de TiO₂ mais comumente usada é a de nanopartículas monodispersas. Dopagem não metálica e/ou metálica (cobalto, prata, ouro, etc), grafeno ou sensibilização de corantes (azul de metileno, azure, etc.), acoplamento de semicondutores, são exemplos das diferentes estratégias de modificar o TiO₂ para utilização mais eficaz com a luz visível [53], [59].

Dentre a dopagem não metálica, que revela-se bastante promissora, podemos considerar a incorporação dos elementos N, F, C ou S. Além da co-dopagem, como por exemplo, N-F. Dentre diversos estudos o nitrogênio mostrou-se ser bastante promissor [60]–[62].

Kumaravel et al. (2019) explicam que as modificações eletrônicas e estruturais para diminuição do *band-gap* do TiO₂, nesse caso particular para produção de H₂ a partir de H₂O, ocorrem em razão dos dopantes atuarem como captadores de elétrons, melhorando a transferência / migração / separação dos "buracos" eletrônicos, o que altera a absorção do *band-gap* para a luz visível, fornecendo locais ativos adicionais para as reações fotoquímicas [63].

Nanopós de TiO_{2} , dopados ou não, suspensos em meio aquoso, aumentam a probabilidade de contato do catalisador, no entanto, a separação das fases é um processo oneroso que consome múltiplas etapas, sendo a principal desvantagem do processo [17].

Diversas pesquisas têm sido realizadas para resolver o problema da separação, no sentido de imobilização das partículas de TiO_2 sobre diferentes substratos, evitando o estágio de recuperação do material. Citam-se os suportes: de vidro, películas poliméricas, areia, carvão ativado e argila, além das tentativas de recuperação com filtração por membranas ou ainda, reatores fotocatalíticos de membrana sintetizadas com TiO₂ [64], [65].

No entanto, as configurações citadas acima reduzem a quantidade de sítios ativos do catalisador, levando a uma redução na eficácia fotocatalítica destes materiais em comparação com os nanocatalisadores não suportados. Uma abordagem promissora para resolver o

problema de recuperação de nanofotocatalisadores em sistemas de suspensão é o uso de nanofotocatalisadores magnéticos em processos de tratamento de água [2].

3.6 Materiais magnéticos para nanofotocatalisadores

Após a descoberta de semicondutores colóidais, a formulação de nanopartículas em multicamadas tornou-se uma área de pesquisa bastante expressiva na área de química de materiais. Nos anos 90, nanopartículas semicondutoras de multicamadas concêntricas foram desenvolvidas, assim surgiu o termo *core-shell*. Essas consistem em um material interno como núcleo (*core*) e uma (ou mais) camada(s) (*shell*) externas. Nanoestruturas com o núcleo de magnetita foram estudadas exclusivamente pelo fato do núcleo auxiliar na separação magnética do nanocompósito do meio aquoso [50].

A magnetita, Fe₃O₄, é um dos materiais magnéticos mais abundantes na natureza. A α -Fe₂O₃, a maghemita, γ -Fe₂O₃ e a wustita (FeO) são os demais óxidos de ferro comumente encotrados na natureza, Figura 5. A forma Fe₂O₃ existe em outras fases polimórficas além das fases α e γ [7], [66].

Figura 5: Célula unitária cristalográfica de diferentes óxidos de ferro: (a) α -Fe₂O₃, (b) γ -Fe₂O₃, (c) Fe₃O₄ e (d) FeO [66]

Quanto às propriedades estruturais da magnetita, observa-se a constituição de um óxido de ferro com valência mista, equivalente a Fe^{II}O•Fe^{III}₂O₃, um espinélio inverso, em que os íons de Fe²⁺ estão localizados em sítios octaédricos e os íons de Fe³⁺ estão tanto em sítios tetraédricos como em sítios octaédricos. Nanopartículas de magnetita e de maghemita têm seus spins fortemente alinhados, mesmo em temperatura ambiente, comportamento típico de

um sistema com ordem ferrimagnética¹ [67]. Nanopartículas magneticamente ordenados com tamanho menor que de 10 a 20 nm exibem uma forma inimitável de magnetismo, ou seja, superparamagnetismo [8]. A Tabela 1 apresenta as propriedades gerais da magnetita e de maghemita.

	Sistema cristalino	Tamanho da célula (nm)	Cor	Magnetização de saturação (emu.g ⁻¹) em temp. ambiente	Temp. de Curie (K)
Magnetita	Cúbico	a = 0,839	Preto	90 - 98	850
Maghemita	Cúbico ou Tetragonal	a = 0,834	Marrom	76 - 81	820 - 986

 Tabela 1: Propriedades físicas da magnetita e da magnemita bulk [67].

Em materiais não nanométricos a magnetização de saturação da magnetita é superior a maghemita, por esse motivo o uso da Fe_3O_4 é preferível por diversos autores para implantação em estruturas *core-shell*, haja visto que o compósito formado poderá ser separado magneticamente de modo mais fácil, viabilizando a recuperação e reciclagem. Em atmosfera com oxigênio gasoso a magnetita facilmente se oxida a maghemita (Reação 16), uma outra limitação da magnetita é quando é submetida à ambientes com pH < 4, haja visto que ocorre a digestão do mineral [68], [69].

A síntese de nanopartículas de óxido de ferro pode ser realizada por diversos métodos, tais como químicos úmidos, processos secos ou técnicas microbiológicas. De modo geral, os métodos podem ser separados quanto sua natureza: físico, químico ou biológico. Os métodos de preparo químicos são largamente utilizados (90%), pois, em tese, são simples e eficientes, permitem o controle do tamanho, da composição e até mesmo da forma das nanopartículas. Nesse método o tamanho, a forma e a composição dependem do tipo de sal utilizado, da relação Fe²⁺ e Fe³⁺, do pH e da força iônica do meio [8].

O método clássico, co-precipitação, descreve a formação de magnetita com a seguinte equação:

$$Fe^{2+} + 2 Fe^{3+} + 8 OH^{-} \rightarrow Fe_{3}O_{4} + 4 H_{2}O$$
 (15)

¹ Ferrimagnetismo: ordem magnética na qual os spins dos átomos estão acoplados antiparalelamente, mas com o módulo desses spins de valor diferente [67].

Contudo a magnetita é facilmente convertida para maghemita [70]:

$$2 \operatorname{Fe}_{3} \operatorname{O}_{4} + {}^{1} /_{2} \operatorname{O}_{2} \to \gamma \operatorname{-Fe}_{2} \operatorname{O}_{3}.$$
(16)

A literatura não apresenta claramente os mecanismos para formação de magnetita no processo solvotermal, no entanto, pode-se destacar as Equações 17-20 inerentes ao processo.

$$FeCl_3 + 3 Na(CH_3COO) \rightarrow Fe(CH_3COO)_3 + 3 NaCl$$
 (17)

$$H-(-OCH_2CH_2-)_n-OH \to \to HOCH_2CH_2OO^-$$
(18)

$$HOCH_2CH_2OH \rightarrow CH_3COH + H_2O$$
(19)

$$Fe^{2+} + 2 Fe^{3+} + 8 OH^{-} \rightarrow Fe^{II}Fe_{2}^{III}(OH)_{8} \rightarrow$$
(20)

nucleação e desidratação
$$\rightarrow$$
 Fe₃O₄(s) + x H₂O

Destacam-se alguns pontos: o acetato de sódio é fundamental para precipitação e controle de crescimento das partículas, a formação do acetato de ferro III (Equação 17) altera a superfície reativa, a eletricidade estática gera repulsão entre as partículas [11]; a presença de poliós, como o polietilenoglicol, podem produzir glicolatos (Equação 18), a desprotonação do etilenoglicol produz etanal (Equação 19), ambos os produtos podem reduzir o Fe³⁺ para Fe²⁺ [71]; com a temperatura em 200 °C, sob pressão elevada, contendo PEG como surfactante [72], etilenoglicol (EG) como solvente, em presença de acetato de sódio, como uma fonte alcalina e estabilizador eletrostático [9], o hidróxido complexo de ferro sofre nucleação e desidratação formando a magnetita (Equação 20) [71].

Mamba Mishra (2016) explica que uma estruturas do tipo *core-shell*, tendo a magnetita como núcleo e um fotocatalisador na camada externa, como TiO_2 , eficiência fotocatalítica do semicondutor pode ser suprimida pois, o *core* atuará como um centro de recombinação para os elétrons [68].

A configuração mais amplamente recomendada para nanofotocatalisadores que visam ter um núcleo de óxido de ferro e dióxido de titânio na camada mais externa, deve considerar uma estrutura com duplo revestimento, do tipo *core-shell-shell* (núcleo-casca-casca), em que geralmente o *core* é recoberto por uma camada de revestimento de sílica e um revestimento externo de dióxido de titânio, Figura 7 [2].

Figura 6: Rotas de síntese para a preparação de nanoestruturas core@SiO₂@TiO₂ [2].

Entre os materiais de revestimento propostos na literatura, a sílica mesoporosa é um dos materiais mais promissores. Proporciona alta área superficial com tamanho e forma de poros bem definidos e evita atrativos magnéticos entre os núcleos magnéticos sem sacrificar muito a magnetização [73]. Estruturas com núcleo magnético e revestidas com sílica já foram provadas experimentalmente para acoplamento a vários ligantes específicos [14].

O método sol-gel é o mais utilizado para síntese de nanopartículas de sílica. Consiste na hidrólise monomérica envolvendo um precursor metal alcóxido (p. ex., Si(–O–CH₂CH₃)₄, tetraetilortosilicato – TEOS) catalisadas por ácido mineral (p. ex., HCl) ou base (p. ex., NH₃) [74].

As reações gerais para descrever o processo podem ser escritas conforme as Equações 21 a 24. A partir da reação geral observa-se que razão molar entre a água e o silício é, $[H_2O]$:[Si] = 4:1, no entanto a razão 2:1 já seria suficiente para produzir sílica anidra (Equação 25). Para fins práticos, a literatura sugere que deve-se considerar que a reação não é completamente favorecida em razão do equilíbrio e das possíveis reações reversíveis de esterificação, alcoólise e hidrólise, que podem retornar a formação das ligações Si–O–R dos alcoóxidos, por esse motivo é comum considerar a razão >> 4 [75], [76].

Hidrólise:	$\equiv Si-O-R + H_2O \rightarrow \equiv Si-O-H + R-OH$	(21)
------------	---	------

Condensação alcoólica:	$\equiv Si-O-R + H-O-Si \equiv \rightarrow \equiv Si-O-Si \equiv + R-OH$	(22)
Desidratação:	$\equiv Si-O-H + H-O-Si \equiv \rightarrow \equiv Si-O-Si \equiv + H_2O$	(23)
Reação geral:	$Si(-O-R)_4 + 4 H_2O \rightarrow Si(OH)_4 + 4 R-OH$	(24)
Reação mínima:	$Si(-O-R)_4 + 2 H_2O \rightarrow SiO_2 + 4 R-OH$	(25)

A formação do TiO₂ nanoestruturado é relatada por vários métodos, pirólise por spray de chama, sonoquímica [18], hidrotérmica [17], sol-gel [77], [78], solvotérmica [23] entre outras. Katta e Dubey (2020) citam que o método sol-gel apresenta crescimento controlado e reprodutibilidade de nanopartículas [19]. O mecanismo é similar a formação de SiO₂, a partir do TEOS, o precursor metal alcóxido possui Ti⁴⁺ ao invés do Si⁴⁺. As fórmulas estruturais do tetraetilortosilicato (TEOS), do isopropóxido de titânio IV (TIP) e do butóxido de titânio (TBT) são apresentados na Figura 7, precursores comumente usados em métodos sol-gel. O precursor é dissolvido em meio alcoólico e adiciona-se água para induzir a hidrólise em hidróxido complexo de titânio, seguido pela condensação alcoólica e desidratação [17] similar as Equações 22 e 23.

Figura 7: Fórmula estrutural simplificada para o tetraetilortosilicato – TEOS (esquerda), isopropóxido de titânio IV – TIP (centro) e butóxido de titânio IV – TBT (direita).

Poucos trabalhos têm sido reportados com estruturas do tipo Fe₃O₄@SiO₂@TiO₂dopado ou não, com resultados satisfatórios o suficiente para promoção dos experimentos em escala piloto. Conforme relatado por Rodriguez-Narvaez et al. (2017) há apenas um número limitado de estudos que foram realizados no sentido de desenvolvimento industrial ou escalonamento de processos para tratamento avançado de água e remoção de contaminantes emergentes [49].

Ressalta-se que os resultados devem considerar: i) a eficiência de degradação das espécies orgânicas no meio; ii) as condições energéticas do meio; iii) a capacidade de recuperação das nanopartículas; iv) o número de ciclos de um catalisador e a sua performance; v) a reprodutibilidade da síntese; vi) a possibilidade de expansão para escala piloto; vii) a possibilidade de trabalhar com plataformas móveis; viii) modos de degradação e/ou de inativação dos nanocompositos ix) toxicidade das nanopartículas; ix) efeito sinergético de múltiplos contaminantes; x) o estudo em fontes naturais e/ou efluentes industriais; xi) estudos dos produtos de degradação, entre outros aspectos.

A literatura sugere múltiplos campos de estudo com o fito de aperfeiçoar o processo tecnológico de tratamento água com nanopartículas de TiO₂. Citam-se pontos a otimizar: rotas
de síntese; diminuição de polidispersão; influência do tamanho da nanopartícula; razão diâmetro do *core* e espessura do *shell*; razão molar Fe^{2+}/Fe^{3+} no *core*. Em especial, cita-se que o estudo da razão molar Fe/TiO₂, a melhoria da eficiência fotocatalítica e os estudos das condições de operação dos reatores em batelada e de fluxo contínuo.

Nesse contexto novas oportunidades de desenvolvimentos tecnológicos para processos avançados de tratamento de água e efluentes domésticos ou industriais podem ser obtidos com a inserção da nanotecnologia avançada à engenharia de processo tradicional [79]. Os processos altamente eficientes, habilitados pela nanotecnologia devem ser projetados para fornecer soluções de tratamento de água e esgoto de alto desempenho considerando um preço acessível e que dependam de infraestruturas menores [80].

4. MATERIAIS E MÉTODOS

4.1 Materiais

Cloreto de ferro (III) hexa-hidrato de (FeCl₃·6H₂O), ortossilicato de tetraetila 98% (TEOS) e isopropóxido de titânio (IV) 97% (TIP) foram adquiridos da Aldrich. Etanol anidro (EtOH 99,5%) e etilenoglicol foram adquiridos da Vetec / Sigma-Aldrich. Hidróxido de amônio ~ 28%, polietilenoglicol (Massa molar média de 6000 g.mol⁻¹) (PEG), ureia e acetato de sódio trihidratado (NaAc·3H₂O) foram fornecidos pela Synth (Brasil). Todos os outros produtos químicos eram de grau analítico e usados diretamente sem purificação adicional. Água ultrapura foi obtida usando o Simplicity® Water Purification System (Merck Millipore) e usada como solvente com uma resistividade de 18,2 MΩcm.

4.2 Métodos

4.2.1 Síntese

As rotas de sínteses foram aprimoradas ao longo do desenvolvimento deste, considerando principalmente o estudo bibliográfico e os resultados em bancada, inerentes às observações preliminares e ao julgamento inicial do autor. Os melhores resultados foram selecionados para constar nesse produto final. Alguns foram desconsiderados pelo estudo morfológico, não sendo investido mais recursos para comprovar que a rota de síntese deveria ser aperfeiçoada ou desconsiderada. A Figura 8 apresenta um esquema em etapas para a síntese das amostras. Um quadro com alguns estudos preliminares consta no Apêndice A. Os resultados prévios dessa etapa estão descritos na

NPM: As nanopartículas magnéticas (NPM) foram sintetizadas pelo método solvotérmico com adaptações da literatura (ZHANG, Lianjie *et al.*, 2016). Resumidamente, 10 mmol de Fe³⁺ foram solubilizados em 80 mL de etilenoglicol com agitação mecânica a 70 °C. Na solução, 2,0 g de PEG e 50 mmol de acetato de sódio foram solubilizados. Em um copo de Teflon selado por uma autoclave, a mistura foi aquecida a 200 °C por 10 h. Os produtos foram lavados com água e EtOH. As NPM foram dispersos em EtOH, na concentração de 90,7 mg.mL⁻¹.

Figura 8: Etapas de preparação das amostras NPM@SiO₂@TiO₂.

NPM@SiO₂: O método de Stöber foi usado com adaptações para a formação de estruturas *core-shell* [81]. Anteriormente, o NPM foi estabilizado com citrato [82]. 2 mL da suspensão de NPM foram dispersos em 50 mL de citrato de sódio 0,5 mol.L⁻¹, solução aquosa, com banho de ultrassom, seguido por 6 h de agitação mecânica com aquecimento a 60 °C. Os produtos foram lavados com água, EtOH e acetona. As NPM estabilizados com citrato foram dispersos em uma mistura EtOH:água (80 mL:20 mL) em banho de ultrassom com agitação mecânica, seguido da adição de 3,4 mL de NH₄OH. 1,0 mL de TEOS foi diluído em 10 mL de EtOH e transferido gota a gota (1 mL.min⁻¹) para a suspensão anterior. A agitação mecânica e o aquecimento a 50 °C foram mantidos durante 6 h. Os produtos foram lavados com EtOH e água.

NPM@SiO₂@TiO₂: NPM@SiO₂ foi estabilizado com citrato da mesma forma acima [82]. As NPM estabilizados foram dispersos em 80 mL de EtOH em banho de ultrassom com agitação mecânica, seguido da adição de 3,4 mL de NH₄OH. 1,0 mL de TIP foi diluído em 20 mL de EtOH e foi transferido gota a gota (1 mL.min⁻¹) para a suspensão anterior. A agitação

mecânica e o aquecimento a 50 °C foram mantidos durante 24 h. Os produtos foram separados por decantação com atração magnética, lavados com EtOH e água e secos a 105 ° C por 12 h.

4.2.2 Técnicas de Caracterização

4.2.2.1 Microscopia Eletrônica de Varredura (MEV)

O estudo morfológico e de distribuição de tamanhos das nanopartículas foi realizado previamente por MEV, em um Microscópio Jeol, modelo JEM-2100, operando com aceleração do feixe de elétrons em 15,0 kV, disponível no Laboratório de Microscopia e Microanálise (LMM) do Instituto de Ciências Biológicas (IB) da Universidade de Brasília (UnB). Para a varredura as amostras dispersas em etanol foram previamente submetidas a banho de ultrassom por 15 min, em seguida 5 μ L de amostra foram transferidos para uma fita de carbono dupla face, Koch Instruments, prefixada no *stub*, secas em temperatura ambiente por 24 h. A identificação pontual dos elementos químicos de superfície das nanopartículas foi realizada por um Espectrômetro de Dispersão de Energia (EDS), Thermo Scientific, acoplado ao equipamento. Essa identificação foi determinante no estudo e aprimoramento da técnica e das rotas de síntese.

4.2.2.2 Microscopia Força Atômica (MFA)

As imagens das nanopartículas magnéticas (NPM) foram realizadas em um Microscópio de Força Atômica, marca Shimadzu, modelo SPM 9600, disponível no Laboratório de Nanobiotecnologia (LNANO), Embrapa Recursos Genéticos e Biotecnologia (Cenargen). As condições de análise foram: *Scanner* de 125x125 μ m, operação em modo dinâmico, cantilever retangular com ponteira de silício. A amostra dispersa em etanol foi submetida previamente a banho de ultrassom por 15 min, em seguida 5 μ L de amostra foram transferidos para a fita de muscovita e secas em temperatura ambiente.

4.2.2.3 Microscopia Eletrônica de Transmissão (MET)

As análises de tamanho, homogeneidade e morfologia das nanopartículas foram determinados por microscopia eletrônica de transmissão de alta resolução, do inglês *High*

Resolution Transmission Electron Microscopy (HRTEM). As amostras dispersas em etanol foram previamente submetidas a banho de ultrassom por 15 min, em seguida 1 μ L de amostra foi transferido para uma grade de cobre de 100 mesh, previamente depositada de um filme de formivar. Após secagem em temperatura ambiente por 24 h as análises foram conduzidas em um microscópio eletrônico, Jeol, modelo JEM-2100 equipado com Espectrômetro de Dispersão de Energia (EDS) Thermo Scientific, disponível no Laboratório Multiusuário de Microscopia de Alta Resolução – LABMIC, IF/UFG.

Inicialmente o diâmetro médio foi estimado usando o *software* ImageJ [83]. Os histogramas foram construídos considerando o número de classes conforme estabelecido por Sturges, H. (1926), conforme equação:

$$C = 1 + 3,322 \times \log N \tag{26}$$

em que C representa o número de classes e N o tamanho da população amostral [84].

Os histogramas foram modelados com uma distribuição log-normal

$$f(D) = \frac{1}{\sigma D \sqrt{2\pi}} e^{-\left[\frac{Ln^2(D/D_0)}{2\sigma^2}\right]}$$
(27)

em que D_0 é o diâmetro amostral, σ é o grau de polidispersão, o diâmetro médio é $\overline{D} = D_0 e^{(\sigma^2/2)}$ e o desvio padrão da distribuição de tamanho é $\sigma_D = \overline{D}\sqrt{e^{\sigma^2} - 1}$ [85].

O padrão de difração de elétrons da área selecionada, do inglês, *Selected Area Electron Diffraction* (SAED), foi calculado medindo o diâmetro dos anéis no espaço reciproco, em nm⁻¹, para se obter o raio do anel no espaço reciproco, então convertido ao raio real, em nm, e por fim, comparado com o valores de raio (em nm) do banco de dados do Centro Internacional para Dados de Difração, do inglês *International Centre for Diffraction Data* (ICDD) e/ou com o banco de dados da *American Mineralogist Crystal Structure Database* [86].

4.2.2.4 Difração de Raios X (DRX)

A difração de Raios X foi usada para a caracterização das fases cristalinas e para estimar o tamanho médio do cristalito das nanopartículas nas diferentes etapas de síntese, NPM, NPM@SiO₂ e NPM@SiO₂@TiO₂. Previamente as amostras sólidas foram secas em estufa à vácuo à 60 °C por 12h, pulverizadas em almofariz de ágata e prensadas em um portaamostra de silício. As leituras foram realizadas em um difratômetro de raios X, Rigaku, modelo Miniflex 600, com corrente de 30 mA, sob tensão de 40 kV, usando a radiação K α de Cu com comprimento de onda λ =1,54056 Å, selecionada com um monocromador de grafite. As condições de varredura para construção dos difratogramas considerou o intervalo de 15 a 90° do ângulo 2 θ , a velocidade do difratômetro foi de 3°.min⁻¹ ao passo de 0,05°. Estas medidas foram realizadas no Laboratório de Nanobiotecnologia, FCE/UnB.

O diâmetro médio do cristalino das NPM (núcleo) foi estimado através da equação de Scherrer:

$$D_{hkl} = \frac{K.\lambda}{\beta.\cos(\theta)}$$
(28)

em que a constante K considera o formato das partículas, utilizamos no presente estudo K = 0,94 por considerar partículas esféricas, λ é o comprimento de onda da radiação eletromagnética (λ = 0,154056 nm), θ o ângulo de difração em radianos e β expressa a largura a meia altura do pico de difração, do inglês *full-width at half maximum* (FWHM). O valor do D_{hkl} utilizou a média dos dez picos mais intenso [87].

4.2.2.5 Medidas de propriedades magnéticas (SQUID-VSM)

As propriedades magnéticas foram determinadas usando um magnetômetro de amostra vibratória, do inglês *Vibrating Sample Magnetometer* (VSM) que utiliza como sensor um dispositivo supercondutor de interferência quântica acoplado, do inglês *Superconducting Quantum Interference Device* (SQUID). As medidas foram realizadas utilizando um equipamento da marca Quantum Design, modelo MPMS3, no Laboratório de Síntese de Nanomateriais e Caracterização Magnética (LSNCM), no Núcleo de Física Aplicada do IF/UnB. A faixa de temperatura foi de 2 a 300 K e os campos magnéticos aplicados de 0 a \pm 70 kOe. As curvas de *zero-field-cooled* (ZFC) e *field cooled* (FC) foram obtidas na faixa de 5

a 300 K campo magnético de 30 Oe. O *software* OriginPro 9 foi utilizado para confecção das imagens, cálculo do parâmetros magnético campo coercitivo (H_c) e magnetização de saturação (M_{sat}).

4.2.2.6 Espectroscopia de Infravermelho por Transformada de Fourier (FTIR)

A caracterização por espectroscopia de absorção na região do infravermelho com transformada de Fourier, inglês *Fourier-Transform Infra-Red* (FTIR) foi realizada em um equipamento da marca Perkin Elmer, modelo Spectrum Two, no Laboratório Multiusuário de Ciências Naturais – LMCN do Instituto Federal Goiano – Campus Posse. As amostras foram secas em estufa à 105 °C por 12 h, dispersas em KBr, 1% (m/m), maceradas e os espectros foram obtido na região do infravermelho médio, de 4000 a 400 cm⁻¹, com 32 leituras e resolução de 4 cm⁻¹.

4.2.2.7 Espectroscopia no Ultravioleta e Visível com refletância difusa (UV-Vis – DRS)

As medidas de absorção foram realizadas em espectrômetro UV-Vis, disponível no Laboratório de Espectroscopia Ótica, Núcleo de Física Aplicada, (IF/UnB) medindo-se a refletância espectral difusa, do inglês *Diffuse Reflectance Spectroscopy* (DRS), marca Shimadzu, modelo UV-2600, utilizando esfera de integração e tendo BaSO₄ como padrão de refletância.

Para estimar a energia do band-gap (Eg), foi utilizado o método proposto por J. Tauc, de acordo com a teoria desenvolvida por P. Kubelka e F. Munk [78], [88]. A seguinte equação foi considerada:

$$(\alpha h\nu)^{1/2} = A. \left(h\nu - E_g\right) \tag{29}$$

onde \Box é a absorbância, *h* é a constante de Planck, v é a frequência do fóton, E_g é a energia do gap, *A* é uma constante em relação ao material. A extrapolação linear para $(\alpha hv)^{1/2} = 0$ determina o valor da Energia do *gap* [89].

4.2.2.8 Análise porosimétrica e da área superficial por adsorção e dessorção de N2

As propriedades texturais (área superficial, distribuição, tamanho e volume dos poros) foram determinadas no equipamento da marca Micromeristic, modelo ASAP 2020, disponível na Central Analítica do Instituto de Química da UFG, utilizando os métodos de Brunauer, Emmet e Teller (BET) e de Barrett-Joyner-Halenda (BJH) [90], por adsorção e dessorção de nitrogênio como gás adsorbato de análise, sob vácuo, à 77 K.

4.2.3 Ensaio fotocatalítico

Os testes de fotodegradação do azul de metileno foram realizados em um reator caseiro, conforme mostrado na Figura 9, usando condições de controle previamente testadas. Tipicamente, 28,0 mg de NPM@SiO₂@TiO₂ (ou dos outros catalisadores) foram dispersos em 50 mL de solução aquosa de azul de metileno, 1.10^{-5} mol.L⁻¹. Foi utilizada uma lâmpada de vapor de Hg de 80 W de potência, sem o bulbo de vidro revestido com pó de fósforo fluorescente, situada a 15 cm da superfície da solução, irradiando uma superfície de 78,5 cm². A dispersão foi mantida em agitação com uma barra zincada (diamagnética) revestida com Teflon. Um par de ventiladores foi instalado para trocar a atmosfera gasosa. O pH natural da solução, ~ 7, foi mantido em todos os experimentos. A temperatura da solução foi monitorada e estabilizada a 30 ° C. Nos respectivos tempos de reação de 0, 5, 15, 30, 60, 90 e 120 min, foram coletados 1,5 mL da amostra, filtrada em filtro de seringa de 0,22 µm [91].

Figura 9: Esquerda: Esquema do aparelho experimental para os testes de fotodegradação. Direita: Caixa de madeira, agitador magnético, lâmpada de vapor 80 W Hg modificada, tubo coletor, barra de agitação diamagnético.

Os experimentos foram realizados em triplicata. Para os ensaios de reuso do catalisador, após o uso, as NPM@SiO₂@TiO₂ foram colocadas em 40 mL de etanol: água (1:1) e agitados a 200 rpm durante 2 horas. Em seguida, as NPM@SiO₂@TiO₂ foram separadas magneticamente, lavadas com água e secas à 105 °C durante 12 horas. O catalisador recuperado foi e regenerado e reutilizado quatro vezes.

4.2.4 Análise dos produtos de reação

A concentração residual do azul de metileno foi quantificada por espectroscopia no UV-Vis, no espectrômetro da marca Drawell, modelo DU-8200, no Laboratório Multiusuário de Ciências Naturais – LMCN do Instituto Federal Goiano – Campus Posse, com comprimento de onda em 665 nm. O método foi validado pelo autor pelos parâmetros preconizados pela orientação sobre validação de métodos analíticos [92] e foram suportados com os parâmetros reportados pela literatura [93]–[95]. O Apêndice C detalha a validação de metodologia.

5. ESTUDO PRELIMINAR DAS NANOESTRUTURAS

5.1 Caracterização das nanoestruturas de magnetita, Fe₃O₄

A caracterização de Fe_3O_4 sintetizadas preliminarmente foi realizada por DRX, FTIR, MEV, MET e AFM conforme as Figuras 10, 11, 12, 13 e 14.

Figura 10: Padrão de DRX da Fe₃O₄ pelo método coprecipitação (CP) e solvotermal (ST).

Os picos de difração de raios X, Figura 10, com ângulo $2\theta = 30,2^{\circ}, 35,5^{\circ}, 43,1^{\circ}, 53,5^{\circ}$ e 57,1° podem ser atribuídos aos planos cristalinos 220, 311, 400, 511 e 400 de magnetita, JCPDS 89-0691 [96]. O diâmetro médio cristalino das partículas foi estimado através da equação de Scherrer, Tabela 2. Em razão das rotas de sínteses serem bem distintas para ambos os métodos são esperadas diferenças de tamanho de partícula, até porque o mecanismo de formação pelo método solvotermal ainda não são completamente compreendidos pela literatura. Por outro lado, o diâmetro médio de 2,4 nm para o método coprecipatação e de 15,0 nm para o método solvotermal foram bastante satisfatórios, com esse tamanho médio acreditase que as nanopartículas apresentem propriedades de superparamagnetismo.

Método	Posição (°)	Intensidade (u.a.)	FWHM (°)	Diâmetro médio (nm)
$Fe_3O_4(CP)$	35,54	56003	3,69	2,4
$Fe_3O_4(ST)$	35,51	$1,0447.10^5$	0,58	15,0

Tabela 2: Diâmetro médio de partículas de Fe₃O₄ calculado pela equação de Scherrer.

O espectro de infravermelho (IV), Figura 11, apresenta as principais absorções nas regiões em torno 3400, 1600, 1000 e 600 cm⁻¹ indiferente do método. Os picos acentuados em 591 cm⁻¹ (ST) e 587 cm⁻¹ (CP) são atribuído as vibrações de Fe–O em Fe₃O₄ [9], [97]. A banda larga em torno de ~ 3400 cm⁻¹ pode ser atribuída a moléculas de água adsorvidas [97]. Os espectros IV apresentaram diferenças pouco significativas entre os métodos, observa-se no método coprecipitação um pico acentuado em 1399 cm⁻¹, característico da ligação COO–Fe, o qual pode ser atribuído as reações dos radicais hidróxidos da superfície da Fe₃O₄ com os íons carboxílicos do citrato de sódio utilizado na síntese [98], assim como as bandas 1639 cm⁻¹ e 1627 cm⁻¹ foram associadas com os modos de estiramento C=O [99].

Figura 11: Espectro de infravermelho da Fe₃O₄ pelos métodos coprecipitação e solvotermal. K L

O estudo da morfologia por MEV evidenciou que os métodos produzem partículas com diferentes agregados. Percebe-se de princípio que o método solvotermal produz microesferas com 535 nm (\pm 20,4 nm, n=89, α =0,05), Figura 12a (primeiro lote de síntese) Por outro lado, a reprodutibilidade do método resultou em uma amostra, de três, com morfologia diferente, Figura 12b e 12c (segundo lote de síntese). A composição percentual mássica do terceiro lote de síntese foi de 73,15:26,85 (Fe:O), bem próximo teórica 72,4:27,6 (Fe:O). Esse lote apresentou morfologia similar ao Lote 1, Figura 12d. O método

coprecipitação não apresentou regularidade na investigação morfológica por MEV, Figuras 12e e 12f.

Figura 12: Imagens de MEV das amostras de Fe_3O_4 sintetizada pelo método solvotermal [Lote 1:(**a**); Lote 2 (**b**) e (**c**); Lote 3 (**d**)] e pelo método co-precipitação (**e,f**).

A microscopia eletrônica de transmissão (MET) elucidou alguns pontos em contraste com a MEV. Pela sua natureza, os materiais magnéticos possuem elevada facilidade de formar agregados, Figura 13a: $Fe_3O_4(ST)$ e Figura 13c: $Fe_3O_4(CP)$, por outro lado, a medida que a observação torna-se em escala nanométrica observa-se nanopartículas da ordem de 5 a 20 nm, Figuras 13b e 13d, referente tanto aos métodos ST quanto CP, respectivamente.

Os valores inferidos na MEV se destoaram completamente dos valores inferidos pela MET e dos calculados pela equação de Scherrer. Essa discrepância de valores estimada pelas diferentes técnicas pode ser explicada pela alta agregação da magnetita, formando assim materiais micrométricos a partir de nanopartículas. As Figuras 13a e 13b sustentam essa hipótese, observa-se uma organização esférica de até ~ 0,5 μ m de diâmetro na Figura 14a enquanto na Figura 14b observa-se nanopartículas < 20 nm formando agregados.

Figura 13: Imagens de MET das amostras de Fe_3O_4 sintetizada pelo método solvotermal [Lote 1:(**a**) e (**b**)] e pelo método co-precipitação (c,d). (a=L, b=R, c-d=K)

A MEV também apresentou agregados micrométricos para o método coprecipitação, como pode ser observado nas Figuras 12e e 12f. Esses agregados também são formados por

nanopartículas < 20 nm, conforme identificação da MET, Figuras 13c e 13d. Bastões também são observados na Figura 13c, esses podem ser sais de óxido de ferro e/ou sais utilizados na síntese que foram arrastados pelas partículas de magnetita.

5.2 Caracterização das nanoestruturas de magnetita revestidas com dióxido de titânio, Fe₃O₄@TiO₂

De princípio os dois métodos de síntese de magnetita, ST e CP, estavam em estudo e eram promissores para seguir com os métodos de formação do *shell*, no entanto observou-se que as investigações de revestimento da NPM com dióxido de titânio não evidenciaram efetiva formação de estruturas *core-shell*, Figuras 14, 15 e 16.

Figura 14: Padrão de DRX da Fe_3O_4 pelo método coprecipitação(CP) e solvotermal(ST) antes e após o tratamento para revestimento com dióxido de titânio.

Para que os padrões de DRX confirmassem a presença TiO_2 anatase eram esperados picos principalmente nas posições 25,5°(alta intensidade), 37,7° e 47,9° [100], no entanto, nenhum desses picos foi observado na Figura 14, indicando assim que não houve formação de estruturas Fe₃O₄@TiO₂.

A análise EDS das imagens MEV proporcionou pontualmente a composição percentual mássica. A partir da suposição de não formação de estruturas $Fe_3O_4@TiO_2$ da Figura 16, confirmou-se que não houve ligação dos sítios externos de magnetita com a dióxido de titânio, pois os resultados de EDS indicaram traços de titânio nas amostras, tabelas da Figura 15. Não foram observadas alterações morfológicas por MEV antes e após o tratamento para revestimento com TiO₂.

Comparando-se aos pares as Figuras 12b e 16a e as Figuras 12c e 16b percebe-se que o tratamento para revestimento com TiO₂ também não evidenciou indícios de alterações morfológicas.

Figura 15: Imagens de MEV das amostras de (a) $Fe_3O_4(ST)$ e (b) $Fe_3O_4(CP)$ após o tratamento para revestimento com dióxido de titânio. Os pontos (pt) indicam onde realizou-se a leitura de EDS (composição % em massa).

Figura 16: Imagens de MET das amostras de (a) $Fe_3O_4(ST)$ e (b) $Fe_3O_4(CP)$ após o tratamento para revestimento com dióxido de titânio. (a=J, c,d=I)

5.3 Caracterização das nanoestruturas de magnetita revestidas com sílica, Fe₃O₄@SiO₂

Algumas rotas reportadas na literatura foram inspirações para síntese das nanoestruturas

5.3.1 Revestimento de sílica por solvotermal adaptado.

O método solvotermal foi inspirado na rota de Zhang et al. (2016) [101] em que utiliza-se um reator termal para formação de óxido metálico como revestimento das NPM de magnetita.

Na Figura 17 se apresenta os espectros FTIR. Como se observa, a banda larga e intensa na região de ~ 1200 a ~ 1100 cm⁻¹ correspondem a vibração do SiO₂, alongamento assimétrico devido a forte ligação Si–O–Si, assim como a pico fraco em 802,7 cm⁻¹ corresponde ao alongamento simétrico Si–O–Si [102]. Na comparação entre os espectros pode-se observar em Fe₃O₄(ST)@SiO₂ a diminuição da intensidade do pico na região de 591 cm⁻¹ característicos da Fe₃O₄. Por outro lado, na Figura 20 se apresentam os difratogramas de raios X da amostra Fe₃O₄(ST) antes e após o tratamento para revestimento com sílica, que não confirmam a suposição apresentada pela Figura 19.

Figura 17: Espectro de IV da SiO₂ e da $Fe_3O_4(ST)$ antes e após o tratamento para revestimento com sílica pelo método solvotermal adaptado.

Figura 18: Padrão de DRX do silício e da $Fe_3O_4(ST)$ antes e após o tratamento para revestimento com sílica pelo método solvotermal adaptado.

Como se observa na Figura 18 a difração de raios X sugere a formação da estrutura SiO₂ coligada às estruturas de magnetita, haja visto que o pico larga e fraco é observado em $2\theta = 23^{\circ}$, indicando a presença de sílica amorfa [102].

5.3.2 Revestimento de sílica pelo método de Stöber

O método de Abramson et al. (2009) [103] para síntese do revestimento de sílica utiliza o método de Stöber clássico. Na Figura 19 mostram-se os espectros FTIR da amostra $Fe_3O_4(ST)$ antes e após o tratamento para revestimento com sílica. A partir do espectro de IV percebe-se que os picos de Fe_3O_4 e de SiO₂ se somaram em $Fe_3O_4@SiO_2(A)$, principalmente na região da banda larga e intensa de ~1060 cm⁻¹ correspondente a vibração do SiO₂ [102].

Na Figura 20, apresentam-se os difratogramas da amostra $Fe_3O_4(ST)$ antes e após o tratamento para revestimento com sílica usando a rota de Stöber. De modo antagônico ao determinado para a amostra sintetizada usando a rota solvotermal adaptada, descrito anteriormente, o padrão de DRX não evidenciou com a mesma clareza a presença de sílica amorfa na amostra. A suposição de SiO₂ que poderia ser apresentada pela DRX na amostra é contraditório a confirmação por FTIR, esse antagonismo pode ser explicado em função de haver traços de SiO₂, oriundo da hidrólise do TISOP, misturados com as NPM, esses seriam efetivamente detectados por FTIR.

Figura 19: Espectro de IV da SiO_2 e da $Fe_3O_4(ST)$ antes e após o tratamento para revestimento com sílica pelos métodos solvotermal adaptado e pelo método de Stöber.

Figura 20: Padrão de DRX do silício e da $Fe_3O_4(ST)$ antes e após o tratamento para revestimento com sílica pelo método de Stöber.

5.3.3 Revestimento de sílica pelo método de Stöber modificado 1

O método utilizado por Deng et al. (2008) [104] é uma modificação do método de Stöber, em que as NPM são tratadas primeiro em meio ácido e posteriormente são submetidas a uma mistura etanol/agua (4:1) como solvente reacional. Na Figura 21 mostram-se os espectros FTIR. A partir destes espectros pode concluirse que não houve formação de $Fe_3O_4@SiO_2$, pois os picos de Fe_3O_4 e de SiO_2 não se somaram, como era esperado.

Figura 21: Espectro de IV da SiO₂ e da Fe₃O₄(ST) antes e após o tratamento para revestimento com sílica pelos métodos de Deng et al. (2008). L P SiO2

5.3.4 Revestimento de sílica pelo método de Stöber modificado 2

O método de utilizado por Wang et al. (2015) [81] utilizou como solvente etanol/água (3:1). Nas Figuras 22, 23 e 24 são mostrados os resultados obtidos por FTIR, MEV e MET.

Figura 22: Espectro de IV da SiO_2 e da $Fe_3O_4(ST)$ antes e após o tratamento para revestimento com sílica pelo método de Stöber modificado 2.

O espectro IV de $Fe_3O_4@SiO_2(W)$ na Figura 22 levantou uma indicação positiva para formação de sílica sobre as NPM de magnetita. Essa suposição foi melhor investigada por MEV (Figura 23) e MET (Figura 24).

Na primeira rodada da síntese, chamada de Lote S1, apesar do *core* de magnetita utilizado não apresentar esferas perfeita (Figura 23a e 24a) observa-se que foram revestidas regularmente com uma camada espessa de sílica (Figura 23b, 24b e 24c), o diâmetro interno do *core* foi de ~ 125 nm e do *shell* ~ 60 nm (Figura 23c), similar aos dados reportados por Wang et al. (2017).

A composição percentual mássica indicou a presença significativa de Si e O, além de uma inferência de Fe que pôde ser aferida em razão de poros no revestimento ou de partículas com camadas irregulares, tabela da Figura 23c. O segundo lote de síntese, Lote S2 (repetição de S1), Figura 23d, também evidenciou estruturas *core-shell*, melhor visualizado em Figura 24d. O terceiro lote de síntese, Lote S3, foi realizado com um nova modificação, aumento em 40 % (m/m) a quantidade de magnetita, assim esse não foi reprodutível como os Lotes S1 e S1, Figura 23f.

Figura 23: Imagens de MEV da $Fe_3O_4(ST)$ [Lote 2 (a) e Lote 3 (e)] e da $Fe_3O_4@SiO_2$ [Lote S1: (b) e (c); Lote S2: (d); Lote S3: (f)] com revestimento com sílica pelo método de Stöber modificado 2. Os pontos (pt) indicam onde realizou-se a leitura de EDS (composição % em massa);

Figura 24: Imagens de MET da $Fe_3O_4(ST)$ [Lote 2 (a)] e da $Fe_3O_4@SiO_2$ [Lote S1: (b) e (c); Lote S2: (d)] com revestimento com sílica pelo método de Stöber modificado 2.

5.4 Caracterização das nanoestruturas de magnetita revestidas com sílica e dióxido de titânio, Fe₃O₄@SiO₂@TiO₂

Uma vez definido que o método de Wang é o método mais eficaz para revestimento das nanopartículas de magnetita com sílica, procedeu-se com o estudo para formação da segunda camada formada por TiO₂, dopado ou não.

5.4.1 Revestimento de dióxido de titânio sintetizada em reator termal

O método proposto por Zhang et al. (2016) para hidrólise de compostos organotitanatos sugere a utiliza um reator termal para sintetizar o TiO_2 . A Figuras 25 mostra os resultados obtidos por FTIR.

Figura 25: Espectro de IV da $Fe_3O_4(ST)$; $Fe_3O_4@SiO_2(W)$ antes e após o tratamento para revestimento com dióxido de titânio sintetizada em reator termal.

Esse método não foi eficaz para montar uma segunda camada de nanopartículas sobre $Fe_3O_4@SiO_2$. O espectro de IV, Figura 25, não evidenciou as bandas características do TiO₂: pico em ~ 1380 cm⁻¹ [106]; pico intenso na região de ~ 690 cm⁻¹ [107] referente ao modo vibracional da ligação Ti–O. O pico centrado em ~ 1630 cm⁻¹ poderia ser um indicativo da ligação Ti–OH, no entanto é mais provável que refere-se a água de hidratação ou umidade, assim como em ~ 3450 cm⁻¹ [107] observado nos três espectros.

Apesar da suposição inicial no FTIR não apresentar evidências de óxido de titânio as amostras foram levadas para MEV e MET para confirmação. Observou-se que o método alterou consideravelmente a morfologia das estruturas *core-shell* Fe₃O₄@SiO₂(W) usadas para revestimento com TiO₂, como observado na comparação das Figuras 23c e 24c com as Figuras 26a e 27a, imagens pré e pós tratamento para síntese de dióxido de titânio com segunda camada.

Antes da caracterização inicial os produtos obtidos nessa etapa foram tratados em duas linhas em paralelo: i) em meio alcalino a 120 °C em reator hidrotermal por 2 h; ii) calcinados a 350 °C por 2 h, o que promoveu a oxidação da nanopartículas de Fe_3O_4 para γ - Fe_2O_3 [105]. As Figuras 26b e 26c (MEV) e 27b e 27c (MET) apresentam os resultados finais dos tratamentos.

Figura 26: Imagens de MEV da (a) $Fe_3O_4@SiO_2(W)$ após o tratamento para revestimento com dióxido de titânio sintetizada em reator termal; (b) produtos tratados em meio alcalino à 120°C em reator fechado por 2 h; (c) produtos calcinados a 350 °C por 2h; (d) $Fe_3O_4(ST)$ calcinado a 350 °C o que resultou em γ -Fe₂O₃. Os pontos (pt) indicam onde realizou-se a leitura de EDS (composição % em massa).

Figura 27: Imagens de MET da (a) $Fe_3O_4@SiO_2(W)$ após o tratamento para revestimento com dióxido de titânio sintetizada em reator termal; (b) produtos tratados em meio alcalino à 120°C em reator fechado por 2 h; (c) produtos calcinados a 350 °C por 2h; (d) $Fe_3O_4(ST)$ calcinado a 350 °C o que resultou em γ -Fe₂O₃.

5.4.2 Revestimento de dióxido de titânio sintetizada em reator termal com baixo volume de etanol

O método utilizado por Li et al. (2018) segue o mesmo princípio de Zhang et al. (2016), no entanto com volume de etanol reduzido. A Figura 28 apresenta o espectrograma de IV comparativo. A banda larga entre ~600 e ~700 cm⁻¹ foi associado aos estiramentos de Ti– O do TiO₂ e é coerente com os dados reportados na literatura [108]. Esta banda apresentou-se mais regular após a calcinação, essa ocorrência pode ser relacionada ao aumento da cristalinidade da estrutura de TiO₂ após a calcinação, que por sua vez altera o arranjo e os modos vibracionais do composto [109].

Figura 28: Espectro de IV da $Fe_3O_4(ST)$; $Fe_3O_4@SiO_2(W)$; $Fe_3O_4@SiO_2@TiO_2$ (L) pelo método termal e $Fe_3O_4@SiO_2@TiO_2(L)$ seguido por calcinação a 450 °C por 2 h.

As imagens MEV apresentadas na Figura 29 evidenciam estruturas irregulares. Confirmou-se a presença TiO₂ na superfície da estruturas, no entanto acredita-se que algumas regiões tenham sido recobertas com camadas muito fina, haja visto que a quantificação pontual evidenciou a presença de Fe e de Si, que em tese estariam recobertos com TiO₂. Por outro lado, a calcinação pode ter ajudado a fixação do TiO₂ na superfície das estruturas, pois todas as leituras feitas na amostra pós calcinação apresentaram traços de Fe e Si, tabela da Figura 29b. Ressalta-se que com a calcinação das nanopartículas ocorreu oxidação do núcleo de magnetita para maghemita [105].

Figura 29: Imagens de MEV da (a) $Fe_3O_4@SiO_2@TiO_2(L)$ pelo método método termal; e (b) $Fe_3O_4@SiO_2@TiO_2(L)$ seguido por calcinação a 450 °C por 2 h. Os pontos (pt) indicam onde realizou-se a leitura de EDS (composição % em massa).

As imagens de MET, Figura 30, evidenciam um processo de coalescência, principalmente nos contornos das partículas, formando partículas maiores e facilitando a agregação, principalmente devido à deposição de um novo material sobre a estrutura anterior. As imagens sugerem indícios que a morfologia das partículas sofreu alterações pelo efeito da calcinação. Santos (2017) explica que após a calcinação as partículas podem apresentar diâmetro médio maior em razão do processo de coalescência por difusão de partículas menores (mais instáveis) [110].

Figura 30: Imagens de MET da (a) $Fe_3O_4@SiO_2@TiO_2(L)$ pelo método de termal; e $Fe_3O_4@SiO_2@TiO_2(L)$ seguido por calcinação a 450 °C por 2 h.

5.5 Caracterização das nanoestruturas de magnetita revestidas com sílica e dióxido de titânio dopado, Fe₃O₄@SiO₂@TiO₂-X, sendo X=N ou X=N-Fe

5.5.1 Revestimento de dióxido de titânio-nitrogênio

Marques et al. (2019) [111] utiliza como solvente água:isopropanol (9:1) para hidrólise do TISOP e ureia como fonte de nitrogênio. A Figura 33 apresenta os espectros IV comparativos.

O método não apresentou indícios da formação de TiO_2 sobre as estruturas $Fe_3O_4@SiO_2$ pelo FTIR. A partir destes espectros pode concluir-se que não houve formação

de TiO₂-N, pois os picos de Fe₃O₄@SiO₂ não se somaram com os picos característicos de TiO₂, como era esperado.

Figura 31: Espectro de IV da Fe₃O₄(ST); Fe₃O₄@SiO₂(W); Fe₃O₄@SiO₂@TiO₂-N

5.5.2 Revestimento de dióxido de titânio-nitrogênio-ferro

Kaur, Kaur Shahi e Singh (2015) [112] fizeram um comparativo da atividade fotocatalítica do TiO_2 e concluíram que a dopagem simultânea com N e Fe foi mais eficaz na degradação do corante reativo azul 4 (CAS 13324-20-4) com luz visível.

Na Figura 32 mostram-se os espectros de FTIR e na Figura 33 mostra-se uma imagem MEV. Em tese, as medidas obtidas de FTIR não indicaram a formação de TiO_2 sobre as estrutura de Fe₃O₄@SiO₂. Por outro lado, percebe-se diferenças significativas no espectro do TiO₂ calcinado e não calcinado (similar a ocorrência relatada em 5.4.1).

Figura 32: Espectro de IV da $Fe_3O_4(ST)$; $Fe_3O_4@SiO_2(W)$; $Fe_3O_4@SiO_2@TiO_2$ -N-Fe antes e após a calcinação a 400 °C.

Figura 33: Imagem MEV (esquerda) e do espectro de EDS (direita) da Fe₃O₄@SiO₂@TiO₂-N-Fe.

Apesar dos resultados obtidos por MEV confirmar a presença de TiO_2 também foram usados outros métodos de síntese para comparação.

5.5.3 Revestimento de dióxido de titânio-nitrogênio-ferro 2

Ferreira-Neto et al. (2019) [77] investigaram a formação de TiO₂ sobre sílica alterando a concentração de solventes e concluem que o melhor método para síntese de dióxido de titânio sobre SiO₂ é utilizando etanol/isopropanol na proporção 3:1. Assim procedeu-se mantendo a dopagem de N e Fe conforme o método de Kaur, Kaur Shahi e Singh (2015) [112]. Na Figura 34 mostram-se os espectros FTIR.

Figura 34: Espectro de IV da Fe₃O₄(ST); Fe₃O₄@SiO₂(W); Fe₃O₄@SiO₂@TiO₂-N-Fe.

Figura 35: Imagem MEV (esquerda) e do espectro de EDS (direita) da Fe₃O₄@SiO₂@TiO₂-N-Fe.

Pode-se perceber por meio do FTIR que a inferência de TiO_2 sobre a estrutura $Fe_3O_4@SiO_2$ foi bem significativa em relação aos métodos anteriores, isso em razão do banda larga na região de ~600 a ~700 cm⁻¹. Essa forte suposição foi confirmada com a quantificação pontual através de medidas EDS, Tabela da Figura 35b

Os limites do equipamento e da técnica foram atingidos sem conseguir confirmar a formação de uma terceira camada de dióxido de titânio, no entanto, se fez uma análise de varredura por EDS, Figura 36, para checar a distribuição espacial do Ti sobre as estruturas anteriores. Calculou-se 48,14 % de Ti, 27,59 % de O, 21,71 % de Fe e 2,56 % de Si (% em massa), e observou-se uma distribuição regular do titânio sobre as partículas. Nota-se que a

quantificação de Fe foi elevada em função da dopagem de Fe ocorrida juntamente com a hidrólise do TISOP.

Figura 36: Imagem de varredura de composição elementar por EDS da amostra $Fe_3O_4@SiO_2@TiO_2-N-Fe$ e espectro EDS.

Os ensaios de bancada, juntamente com a observação intrínseca à olho nú, associados aos fatores morfológicos (pelas técnicas de MEV e MET) e os estudos de composição (EDS e FTIR) das nanoestruturas foram fundamentais para definir os parâmetros de sucesso na síntese para obtenção das estruturas core-shell-shell, conforme escrito em 4.2.2.

6. RESULTADOS E DISCUSSÃO DA NANOESTRUTURA NPM@SiO₂@TiO₂

6.1 Caracterização

6.1.1 Microscopia de Força Atômica (MFA)

Uma investigação do tamanho das partículas das amostras NPM por Microscopia de Força Atômica revelou partículas da ordem de 5 nm, Figura 37. Observa-se numa área de 25 µm² uma boa dispersão das nanopartículas de magnetita.

Figura 37: Imagens de MFA das NPM sintetizada pelo método solvotermal com a) vista superior e b) magnificação em 3D.

6.1.2 Microscopia Eletrônica de Transmissão (MET)

As Figura 38a, 38c e 38d apresentam as imagens típicas de MET das nanopartículas magnéticas (NPM) obtida pelo método solvotermal. As nanoestruturas apresentam morfologia multi *core* de nanoflores, de acordo com o esperado para este método de síntese [113]. Podem ser observadas nanopartículas com tamanho da ordem de 5 nm formando agregados quase esféricos maiores que 100 nm, similar aos dados já reportados [104]. A análise do histograma, Figura 38b, construído a partir de 128 nanopartículas, seguiu o método de Sturges [84], mostrou que os NPM têm um tamanho médio de 116,4 \pm 6,3 nm. O espaço planar determinado a partir da imagem HRTEM de 0,253 nm (Figura 38d) é consistente com o plano

cristalino 311 da magnetita. A imagem de difração de elétrons da área selecionada (SAED)

também corrobora com os planos cristalinos da magnetita (Figura 39).

Figura 38: Imagens de MET das NPM sintetizada pelo método solvotermal com foco para **a**) distribuição dos agregados; **c**) agregados individuais; **d**) HRTEM com a medida do espaço planar de uma NPM. **b**) Histograma da distribuição de frequências do diâmetro dos agregados, com modelagem log-normal (linha sólida).

Figura 39: Imagem de difração de elétrons da área selecionada (SAED) para a NPM.

Após o método revestimento das NPM com sílica, observou com clareza uma camada amorfa com espessura média da ordem de 15 nm recobrindo os núcleos magnéticos, demonstrando o sucesso da formação de NPM@SiO₂ *core-shell* (Figura 40a). Esse resultado é consistente com outros relatos da literatura, por exemplo, Hui *et al.* (2011) relataram camadas de revestimento com espessura na faixa de 12,5 a 45 nm, obtidas modificando o método solgel [14]. Deng *et al.* (2008) obtiveram camadas de sílica de núcleos de magnetita com revestimento de 20 nm de espessura [104]. Estima-se que o diâmetro médio das nanopartículas de NPM@SiO₂ foi de 148,0 \pm 6,0 nm, o qual foi determinado a partir de 106 amostras (Figura 40b).

Figura 40: a) Imagem de MET das NPM@SiO₂; **b)** Histograma da distribuição de frequências do diâmetro das NPM@SiO₂, com modelagem log-normal (linha sólida).

A Figura 41a mostra uma imagem MET das NPM@SiO₂@TiO₂ sintetizada pelo método de hidrólise e condensação do alcóxido metálico. Observa-se a formação de uma camada de óxido de titânio crescida sobre a camada de sílica. O compósito final apresenta forma aproximada de esfera com um diâmetro médio de 216,0 \pm 5,9 nm determinado a partir da análise do histograma montado 116 nanopartículas (Figura 41b). A espessura média estimada da camada de dióxido de titânio foi de ~ 34 nm, calculada pela diferença do diâmetro médio das NPM@SiO₂. Os planos cristalinos 311 da magnetita e 101 do TiO₂ anatase foram confirmados com as medidas do espaço planar pela HRTEM, Figura 42a. O SAED confirma os planos cristalinos de anatase 103, 200 e 211, consistentes com o gráfico ICDD 21-1272, Figura 42b.

Figura 41: a) Imagem de MET das NPM@SiO₂@TiO₂; **b)** Histograma da distribuição de frequências do diâmetro das NPM@SiO₂@TiO₂, com modelagem log-normal (linha sólida).

Figura 42: a) Imagem de HRTEM das NPM@SiO₂@TiO₂ com as medidas do espaço planar; **b)** Imagem de difração de elétrons da área selecionada (SAED) para a NPM@SiO₂@TiO₂.

As medições de EDS foram realizadas pontualmente próximo a extremidades e ao centro da NPM@SiO₂@TiO₂, Figura 43a. Os resultados indicam a presença de óxido de ferro majoritariamente na região central (Figura 43c) e de dióxido de titânio e sílica na região da casca (Figura 43b).

Figura 43: a) Imagem de MET das NPM@SiO₂@TiO₂; com identificação das áreas selecionadas para medida da quantificação pontual realizada por EDS; **b**) Espectro EDS do área 1; **c**) Espectro EDS do área 2.

6.1.3 Difração de Raios X (DRX)

Na Figura 44 são mostrados os padrões de difração de raios X das amostras sintetizadas. Conforme observado na Figura 44a, todas as reflexões cristalinas correspondem
à estrutura de espinélio da magnetita (ICCD n° 19-629) com uma constante de rede de a=8,347 Å. Este valor é ligeiramente inferior ao esperado para a magnetita a granel (8,396 Å) e pode estar relacionado a uma oxidação parcial dos íons Fe²⁺, afetando principalmente a região da superfície da partícula. Além disso, usando a meia altura do pico de difração (FWHM) das reflexões de Bragg e a equação de Scherrer [87] para os dez picos mais intensos das NPM puras (Figura 44a), o tamanho médio de cristalito foi estimado, resultando em D_{hkl} = 30,3 ± 5,8 nm. Portanto, o tamanho médio do cristalito do NPM produzido pelo método solvotérmico é significativamente menor do que o obtido a partir de imagens MET (D_{MET} = 116,4 ± 6,3 nm). Essa discrepância reflete a natureza multicore da amostra [114] e confirma a tendência de agrupamento de nanopartículas de magnetita formando agregados. Além disso, este resultado revelou uma ampla distribuição de cristalitos de magnetita de acordo com o observado na análise de imagens HRTEM.

No padrão de DRX das NPM, Figura 44a, observa-se que os picos de difração centrados em $2\theta = 18,55^{\circ}$, $30,3^{\circ}$, $35,5^{\circ}$, $37,25^{\circ}$, $43,25^{\circ}$, $53,6^{\circ}$, $57,1^{\circ}$, $62,7^{\circ}$, $71,1^{\circ}$ e $74,1^{\circ}$ foram atribuídos aos planos cristalinos 110, 220, 311, 222, 400, 422, 511, 440, 620 e 533 da magnetita, conforme ICCD n° 19-629 [115]. Esses planos cristalinos são consistentes com os resultados do SAED, Figura 39.

O mesmo conjunto de reflexões de Bragg das NPM nuas foram determinados para a amostra NPM@SiO₂, Figura 44b. A presença de sílica em NPM@SiO₂ é indicada pelo pico fraco e largo em $2\theta = 23^{\circ}$ (Figura 44d), indicando a natureza amorfa da sílica [102].

O padrão de DRX do nanocompósito NPM@SiO₂@TiO₂ é mostrado na Figura 44c. Além do conjunto de reflexões de Bragg correspondentes à estrutura espinélica observa-se as reflexões de Bragg centradas em $2\theta = 25,33^{\circ}, 37,82^{\circ}, 48,08^{\circ}, 53,93^{\circ}, 55,12^{\circ}$ e 62,75° podem ser atribuídas respectivamente aos planos cristalinos de dióxido de titânio anatase, 101, 004, 200, 105, 211 e 204, em consistência com o gráfico ICDD 21-1272. O plano cristalino 101 do dióxido de titânio anatase, $2\theta = 25,33^{\circ}$, é coerente com a distância interplanar de 0,352 nm, determinada a partir de imagens HRTEM (ver Figura 42b). Além disso nenhuma evidência das fases rutilo ou brookita de TiO₂ foi determinada. Ressaltamos que na síntese do nosso fotocatalisador, nenhuma etapa de calcinação foi realizada. Conforme observado, a intensidade dos picos de difração de NPM nuas foram reduzidas após o revestimento de TiO₂, o efeito protetor das camadas de sílica e dióxido de titânio e a profundidade de penetração do feixe explicam esse fato [22], [25].

Figura 44: Padrão de DRX para **a**) NPM (linha preta); **b**) NPM@SiO₂ (linha vermelha); **c**) NPM@SiO₂@TiO₂ (linha azul); **d**) Ampliação e sobreposição para comparação em $15^{\circ} < 2\theta < 30^{\circ}$. As cartas padrão das fases espinélio (linha azul marinho) e anatase (linha cinza) também estão incluídas.

6.1.4 Medidas de Magnetização

A Figura 45 mostra as curvas de histerese (magnetização *versus* campo magnético) de NPM, NPM@SiO₂ e NPM@SiO₂@TiO₂ obtidas a 300 K (Figura 45a) e 2 K (Figura 45d).

O campo coercitivo e a magnetização remanescente nas curvas de histerese à 300 K é próximo de zero, dentro do erro experimental, tanto para as NPM, quanto para NPM@SiO₂ e NPM@SiO₂@TiO₂, sugerindo a ocorrência de estados de relaxamento térmico de momentos magnéticos (comportamento superparamagnético) que são preservados após o revestimento (Figura 45c). No entanto, em 2 K, Figura 45e, as curvas de histerese mostram os campos coercivos diferentes de zero, Hc \approx 190 Oe para NPM nuas, permanecendo inalterado após o revestimento único e duplo. A magnetização de saturação, M_{sat}, das NPM nuas foi M_{sat}, _{2 K} = 88 emu.g⁻¹ e M_{sat}, _{300 K} = 78 emu.g⁻¹. O valor em baixa temperatura representar ~ 90% do valor relatado para magnetita *bulk* (92-100 emu.g⁻¹) [116]. Essa redução na M_{sat} pode estar associada às contribuições da anisotropia de superfície magnética, devido ao tamanho da

partícula, à oxidação parcial do íons Fe²⁺, à cristalização incompleta da magnetita após a síntese [117].

Figura 45: Curvas de histerese, magnetização (M) *versus* campo magnético (H) para NPM ($-\bullet-$ preto), NPM@SiO₂ ($-\bullet-$ vermelho), NPM@SiO₂@TiO₂ ($-\bullet-$ azul) a **a**) 300 K e a **d**) 2K. Ampliação as regiões centrais das curvas de histereses, observação em **c**) -500 < H < 500 (300 K) e em **e**) -1000 < H < 1000 (2 K). **b**) Resposta magnética das NPM@SiO₂@TiO₂ em água após 30s de aplicação de um campo magnético externo.

A magnetização de saturação das amostras revestidas, NPM@SiO₂ e NPM@SiO₂@TiO₂, são consideravelmente mais baixas, $M_{sat, 300 \text{ K}} = 21,3 \text{ emu.g}^{-1}$ e $M_{sat, 300 \text{ K}} = 14,0 \text{ emu.g}^{-1}$, respectivamente. O menor valor determinado para NPM@SiO₂@TiO₂ está relacionado ao incremento de massa não magnética em comparação com a amostra

NPM@SiO₂ [118]. Mesmo considerando as contribuições não magnéticas, as magnetização de saturação encontradas nesse estudo são superiores há alguns relatados na literatura [25], [119], [120] Usando os valores de magnetização de saturação determinados em 300K, podemos estimar a quantidade de 72,6% de sílica na amostra NPM@SiO₂ e 82% de material não magnético (SiO₂ e TiO₂) na amostra NPM@SiO₂@TiO₂. No entanto, após o revestimento de SiO₂ e SiO₂@TiO₂, o campo coercivo não muda significativamente. Embora as NPM@SiO₂@TiO₂ mostrem uma redução de 82,1% no M_{sat} elas podem ser facilmente separadas usando um campo externo em curvo intervalo de tempo, conforme ilustrado na inserção, Figura 45b.

Na Figura 46 são apresentadas as curvas de magnetização em função da temperatura, *Zero Field Cooled* (ZFC) e *Field Cooled* (FC), obtidas com o campo magnético de 30 Oe. Essas curvas ZFC e FC das amostras NPM, NPM@SiO₂ e NPM@SiO₂@TiO₂ revelaram que os momentos magnéticos permanecem em estados bloqueados mesmo em 300 K, essa condição tem sido atribuído a alta agregação das partículas, o que favorece a interação interpartículas, levando a um tamanho magnético efetivo maior do que o tamanho físico e a uma temperatura de bloqueio mais elevada.

Figura 46: Curvas ZFC e FC para as NPM (\blacksquare preto); NPM@SiO₂ (\bullet vermelho) e NPM@SiO₂@TiO₂ (\blacktriangle azul).

A curva ZFC, das NPM, mostra uma tendência crescente com a temperatura até 300K. Além disso, o rápido acréscimo da magnetização em ~ 20K é observado, o que pode estar relacionado ao relaxamento térmico de partículas magnéticas menores que não interagem. A curva FC, das NPM, mostra uma tendência independente da temperatura. A irreversibilidade entre as curvas ZFC / FC até 300K indica nanopartículas magnéticas de forte interação, o que é consistente com os agregados observados em imagens TEM. A agregação de nanopartículas favorece a interação interpartícula e pode levar a um tamanho magnético efetivo maior que o tamanho físico, cuja temperatura de bloqueio (TB) deve ocorrer acima de 300K

As curvas ZFC e FC das amostras NPM@SiO₂ e NPM@SiO₂@TiO₂ mostram características semelhantes em relação à amostra nua. Isso implica que a extensão da agregação não é essencialmente modificada com os revestimentos. Embora seja esperado uma TB acima de 300K, observa-se um ombro largo na curva ZFC das NPM, o que sugere a presença de uma ampla distribuição de momentos magnéticos ou uma ampla distribuição de temperaturas de bloqueio. Este cenário permanece o mesmo para as NPM@SiO₂ e para NPM@SiO₂@TiO₂.

É importante notar que nenhuma evidência de transição Verwey é determinada para as NPM ou para as revestidas. De acordo com a literatura, a ocorrência de agregados ou processos de relaxação térmica dificultam a observação da transição de Verwey em cristalitos de pequeno porte devido à grande relação superfície-volume [121]. Embora a caracterização magnética indique NPM interagindo nas amostras nuas e revestidas, a ocorrência de agregados que levam a momentos magnéticos bloqueados à temperatura ambiente não apresenta nenhum obstáculo à aplicação fotocatalítica.

6.1.5 Espectroscopia no Infravermelho com Transformada de Fourier (FTIR)

As propriedades vibracionais foram determinadas por meio de medições de absorção no infravermelho. Na Figura 47 são mostrados os espectros de FTIR. Observa-se que as principais absorções localizam-se nas regiões em torno de 3400, 1600, 1100, 800 e 600 cm⁻¹. O espectro das NPM (linha sólida preta) mostra uma banda larga em torno de 3437 cm⁻¹, atribuída aos estiramentos de superfícies do OH (FeOOH) [97], [122]. A banda em 1628 cm⁻¹ pode estar associada à HO– fora do plano de moléculas de água residual ou aos modos de vibrações assimétricos da carbonila, v_{as} (COO–) [99], enquanto que a banda discreta em 1435 cm⁻¹ está associada aos modos de vibração simétricos, v_s (COO–), característica da ligação COO-Fe, aos quais podem ser atribuídos às reações de hidróxidos na superfície do óxido de ferro com os íons carboxílicos do acetato e/ou citrato usados na síntese [98].

De acordo com Nakamoto (2006) [123], a posição dos modos COO– pode ajudar a determinar o tipo de interação entre a cabeça do carboxilato e do íon metálico [123]–[126]. Consequentemente, determinamos uma separação por número de onda, $\Delta = v_{as}(COO-) - v_s(COO-) \approx 195 \text{ cm}^{-1}$. Este valor é bem próximo do esperado para a interação covalente em ponte bidentada ($\Delta = 140-190 \text{ cm}^{-1}$) e em monodentada ($\Delta = 200-320 \text{ cm}^{-1}$) entre o grupo COO– e os íons Fe na superfície da partícula, sugerindo que ocorram ambas as interações.

Figura 47: a) Espectro FTIR para as NPM (preto), NPM@SiO₂ (vermelho) e NPM@SiO₂@TiO₂ (azul). b) Faixa intermediária do número de onda e c) Faixa baixa do número de onda.

É determinada uma banda larga em ~ 580 cm⁻¹ (ver Figura 22c) que foi atribuída às ligações Fe-O [9], [97]. De acordo com a literatura, a magnetita em massa apresenta modos característicos localizados em $v_1 = 570$ e $v_2 = 370$ cm⁻¹ [127], [128], que correspondem à vibração de alongamento v_1 (Fe-O) em sítios tetraédricos e octaédricos e à vibração de alongamento v_2 (Fe-O) para o modo de vibração torcional em sítios octaédricos [129]. A mudança do modo v_1 (Fe-O) em relação à magnetita em massa é consistente com a interação de grupos carboxilato com íons Fe na superfície da partícula [130], como discutido acima. Além disso, uma banda nítida é observado nesta região centrada em 630 cm⁻¹, o que sugere a presença de modos vibracionais atribuídos à presença da fase maghemita (γ -Fe₂O₃), ou a uma magnetita deficiente em íons Fe²⁺ na superfície das nanopartículas, que mimetizam uma fase maghemita [131], [132].

Para o composto NPM@SiO₂ (linha sólida vermelha) são notados modos vibracionais provenientes do núcleo magnético, NPM, e dos modos relacionados à SiO₂. Os modos relacionados ao núcleo magnético são fortemente enfraquecidos (Figura 22c) devido à presença de revestimento de sílica. A banda larga e intensa em ~ 1100 cm⁻¹ corresponde à vibração do SiO₂ [102]. As bandas em 1200 e 1100 cm⁻¹ podem ser atribuídas à vibração de alongamento assimétrico de Si–O–Si [133]. As bandas em 798 e 562 cm⁻¹ correspondem aos modos de alongamento simétrico, a banda em 469 cm⁻¹ corresponde à deformação angular, a banda localizada a 953 cm⁻¹ foi relacionada ao modo de alongamento assimétrico das ligações Si–OH [76]. Para a amostra NPM@SiO₂@TiO₂ (linha sólida azul), a característica mista da amostra pura de NPM e os modos vibracionais de SiO₂ foram observadas conforme anteriormente. Como esperado, os modos de sílica mostram menor intensidade devido ao revestimento de dióxido de titânio adicional. Além disso, observa-se a banda larga na região de 845-630 cm⁻¹, a qual foi atribuída à vibração de alongamento do Ti–O–Ti, confirmando a presença de dióxido de titânio [134].

6.1.6 Espectroscopia no Ultravioleta e Visível com refletância difusa (UV-Vis – DRS)

A Figura 23 mostra os espectros de absorção na região do UV-VIS obtidos pela refletância difusa para NPM nuas, NPM@SiO₂, NPM@SiO₂@TiO₂ e para TiO₂ Degussa P25, usado como referência. A amostra NPM@SiO₂@TiO₂ mostra um aumento de absorção na região dos comprimentos de onda abaixo de ~ 750 nm. Tendência semelhante é observada para a amostra NPM@SiO₂. São determinados dois ombros largos centrados em ~ 420 nm e ~

490 nm. Enquanto isso, o primeiro ombro pode ser atribuído às transições eletrônicas de TiO₂, de acordo com a curva de absorção mostrada pela amostra de TiO₂, P25, o segundo ombro pode provavelmente ser associado às ligações Fe–O–Si na superfície do núcleo magnético , de acordo com a literatura [14], [135]. As características de absorção observadas na região de maiores comprimentos de onda (que atingem a região da luz visível) estão relacionadas à contribuição do núcleo de magnetita, uma vez que o espectro correspondente ao NPM nua mostra uma forte absorção em toda a faixa, o que está de acordo com relatórios na literatura [136]. As tentativas de estimar a Energia do gap (Eg) do nanocompósito NPM@SiO₂@TiO₂ e TiO₂, P25, foram realizadas usando o gráfico de Tauc (Equação 18), de acordo com a teoria desenvolvida por P. Kubelka e F. Munk [88] e considerando que o TiO₂ mostra uma transição eletrônica indireta de banda para banda [78], [137].

Os gráficos de Tauc são mostrados na inserção da Figura 23. Embora um bom valor de intervalo de banda (Eg \approx 2,95 eV) tenha sido determinado para o TiO₂ P25 comercial, nenhum sucesso foi obtido para o nanocompósito NPM@SiO₂@TiO₂ como mostrado na inserção. Essa impossibilidade de determinar o valor Eg de TiO₂ a partir do espectro de UV-Vis do nanocompósito NPM@SiO₂@TiO₂ foi atribuída à presença de outros componentes, principalmente SiO₂, que mostra banda de absorção nesta região, conforme discutido acima. Uma análise adicional considerando uma transição direta de banda para banda fornece um segundo gap de banda com Eg \approx 1,9 eV. Embora a origem desse segundo *band gap* ainda não esteja clara e sejam necessários estudos adicionais para esclarecer essa questão, acreditamos que esteja relacionado a outros componentes, provavelmente SiO₂ ou mesmo o núcleo magnético. Xue *et al.* (2013) sugere a absorção de energia na região espectro visível de partículas como a sintetizadas aqui podem indicar ser mais facilmente adequadas para ter alta eficiência fotocatalítica na região do espectro visível [136].

Figura 48: Espectro de absorção de UV-VIS de NPM (linha tracejada vermelha), NPM@SiO₂ (linha pontilhada preta), NPM@SiO₂@TiO₂ (linha azul). Para comparação, o espectro de TiO₂ Degussa P25 está incluído (linha tracejada verde). Na inserção é mostrado o gráfico de Tauc usado para estimar a Energia do gap (Eg).

6.1.7 Propriedades Texturais

As isotermas de adsorção e dessorção de nitrogênio à 77 K são mostradas na Figura

Figura 49: Isotermas de adsorção (linha preta) e dessorção (linha vermelha) de nitrogênio a 77 K.

De acordo com a classificação de Webb e Orr [90], as isotermas correspondem às isotermas do tipo II, que são típicas de um sólido não poroso. Porém, uma pequena histerese

de adsorção pode ser identificada, mostrando que o formato do poro pode levar a processos de adsorção e dessorção semelhantes [138]. Conforme observado na Figura 49a, há um rápido aumento na adsorção de gás até aproximadamente $P/P_0 = 0,2$. Acima disso, torna-se mais lento à medida que aumenta a pressão relativa. De acordo com Texeira *et al.* (2001) esse fenômeno ocorre devido à forte interação entre a primeira camada de gás e os sítios mais ativos e, posteriormente, os sítios de baixa energia [139]. No final da curva, a condensação subsequente gera um aumento na adsorção devido à alta pressão relativa [90], [138].

A área de superfície específica do nanocompósito NPM@SiO₂@TiO₂ foi determinada a partir de medições de adsorção e dessorção de nitrogênio em baixa temperatura (77 K), de acordo com o método Brunauer-Emmet-Teller (BET). A quantificação do tamanho médio e do volume de poro foi estimado pelo método de Barrett-Joyner-Halenda (BJH). Os valores para os parâmetros são apresentados na Tabela 3.

Tabela 3: Parâmetros text	urais	estimados.
---------------------------	-------	------------

Amostra	$ \begin{array}{c} {\rm \acute{A}rea\ superficial\ (BET)} \\ (m^2g^{^{-1}}) \end{array} $	Tamanho do poro (BJH desorção) (nm)	Volume do poro (BJH desorção) (µLg ⁻¹)
NPM@SiO ₂ @TiO ₂	167	4,3	59
TiO ₂ Degussa P25	54	1,7	288

A área de superfície específica calculada de NPM@SiO₂@TiO₂ é substancialmente maior quando comparada aos valores relatados na literatura. A caracterização do TiO₂ Degussa P25 é consistente com outros trabalhos relatados [140]–[142]. Os parâmetros determinados a partir das curvas de absorção/dessorção de N₂ de Degussa P25 estão incluídos na Tabela 3 para comparação. Embora o TiO₂ comercial apresente um volume de poro maior do que aquele para NPM@SiO₂@TiO₂, a área de superfície é maior em relação ao TiO₂ P25.

Um compósito semelhante ao NPM@SiO₂@TiO₂ sintetizado por outras técnicas (coprecipitação e sol-gel em meio ácido) relatado na literatura, indicou uma área superficial BET de 19 a 83 m²g⁻¹ [26]. As técnicas sonoquímicas de hidrólise de TBT para TiO₂ atingiram no máximo 7,8 m²g⁻¹ [119] e sonoquímicas em meio básico relataram uma área superficial de 22 m²g⁻¹ [18]. Ferreira-Neto *et al.* (2019) [77] sintetizou nanopartículas de SiO₂@TiO₂ com um tamanho médio de cerca de 200 nm e relatou uma área de superfície BET entre 47-115 m²g⁻¹ [77].

O tamanho de poro mostrado na Tabela 3, calculado usando a equação:

Tamanho do poro =
$$\frac{4 \times \text{volume}}{\text{área}}$$
 (19)

Os dados de isoterma de dessorção BJH fornecem um tamanho de poro de 4,3 nm para NPM@SiO₂@TiO₂. Este valor pode ser melhor estimado considerando uma distribuição do tamanho médio do poro determinado usando o método BJH aplicado à isoterma de dessorção, Figura 50.

Figura 50: Distribuição do tamanho médio dos poros usando o método BJH aplicado à isoterma de dessorção.

Conforme observado, há uma população concentrada de tamanho de poro na faixa de 2 a 6 nm. Esta população fornece um valor médio de 4,8 nm e a média dos três primeiros quartis é 4,3 nm (coincidente com o valor determinado pela dessorção de BJH). Podemos concluir que o valor do tamanho do poro determinado a partir da dessorção BJH está próximo do valor determinado a partir da distribuição do tamanho de poros (Figura 50).

6.2 Eficiência fotocatalítica

Testes de atividade fotocatalítica das nanoestruturas sintetizadas foram realizados para a degradação do corante azul de metileno com e sem radiação ultravioleta. Foi observada uma boa dispersão das nanopartículas na solução aquosa de azul de metileno. Os espectros de absorção de UV-Vis da solução de azul de metileno em função do tempo de reação usando o fotocatalisador NPM@SiO₂@TiO₂ são mostrados na Figura 51.

Figura 51: Espectros de absorção de UV-VIS do azul de metileno com diferentes tempos de fotodegradação usando NPM $@SiO_2@TiO_2$.

Como observado, as bandas de absorção do MB apresentam uma tendência decrescente com o tempo de reação sob irradiação de luz ultravioleta, o que foi atribuído à fotodegradação do azul de metileno com o passar do tempo.

Na Figura 52 é mostrada a concentração relativa de azul de metileno, C_t / C_0 , em função do tempo, para as diferentes amostras. Na ausência de catalisador e apenas sob irradiação, a concentração relativa de MB cai para 81,4%, ou seja, a fotólise representa 18,6% (-•- pontos de cor vermelha). O TiO₂ Degussa P25 comercial foi usado como fotocatalisador de referência para os testes. Observa-se que, na primeira hora, o TiO₂ provoca uma degradação bem linear do azul de metileno, até que a concentração relativa do atinja 13,4% do azul de metileno em solução. Após esse tempo, a degradação diminui e a concentração de azul de metileno restante atinge até 3,4% com 120 min de reação (-•-

No entanto, o nanocompósito NPM@SiO₂@TiO₂ provoca uma rápida redução da concentração relativa de MB atingindo até 68,7% em 5 min sem irradiação ultravioleta. Após esse tempo, a redução da concentração de MB torna-se mais lenta e a concentração relativa atinge 58,1% em 120 min ($-\nabla$ - pontos de cor magenta). Essa redução é atribuída ao efeito adsorvente das nanoestruturas (Tabela 3 e Figura 49) conforme já reportado na literatura [26], [52].

Figura 52: Razão de concentração do azul de metileno em função do tempo com diferentes fotocatalisadores.

Nessas condições, não há fotodegradação do contaminante devido à ausência de fótons UV. Em outras palavras, a adsorção de MB foi de 41,9% ao longo de 2 h. Por outro lado, com a irradiação ultravioleta, o NPM@SiO₂@TiO₂ provoca uma rápida redução da concentração de azul de metileno, reduziu-se 94,8 % em 30 min e 99,9% ao final de 120 min de reação. ($-\blacktriangle$ – pontos de cor azul). Esse resultado foi atribuído à adsorção do contaminante seguida pela fotodegradação provocada pela camada de TiO₂. Esse resultado foi atribuído à adsorção do contaminante seguida pela reação fotocatalítica que ocorre na superfície do catalisador. Essa forte ação fotocatalítica que obtivemos neste trabalho é maior do que os valores relatados na literatura para um nanocompósito núcleo-casca semelhante. Um valor de 90% é relatado para partículas de Fe₃O₄-SiO₂-TiO₂ sob irradiação UV após 180 min [136]. Em um trabalho recente, uma taxa de fotodegradação de 97% foi relatada para uma nanoestrutura Fe₃O₄ / SiO₂ / TiO₂ após os primeiros 60 min [41], que é alta, mas ainda inferior à obtida para nossa nanoestrutura núcleo-casca (99% após 60 min).

De acordo com a literatura, a cinética de fotodegradação pode ser modelada com o modelo de Langmuir-Hinshelwood [143], [144]. Para uma reação de primeira ordem, a concentração de um contaminante segue a expressão:

$$\ln(C_t/C_0) = k.t \tag{20}$$

aqui, k é a constante de velocidade aparente, t é o tempo, C_0 é a concentração inicial de azul de metileno e C_t é a concentração de azul de metileno no tempo t. Detalhes dos modelos cinéticos estão disponível no Apêndice B.

A Figura 53 mostra o gráfico de $\ln(C_t/C_0)$ em função do tempo para os fotocatalisadores. Uma boa correlação linear é identificada para o processo de fotólise (• vermelho) e para TiO₂ P25 (• preto), com o coeficiente de correlação (R²) de 0,99 para ambos. Esses valores indicam que o modelo cinético de fotodegradação do azul de metileno segue uma reação de primeira ordem, de acordo com o modelo de Langmuir-Hinshelwood. Por outro lado, para a NPM@SiO₂@TiO₂ o R² = 0,93, indicando que apenas 93% da variação de $\ln(C_t/C_0)$ seja explicada por uma relação linear em função do tempo de reação. Assim, pode-se sugerir que as NPM@SiO₂@TiO₂ tenham atividade fotocatalítica sob irradiação UV (▲ azul) seguindo um modelo específico e complexo.

Os dados experimentais ajustados considerando apenas a primeira região de 30 min forneceram uma constante cinética, $k = 0,148 \text{ min}^{-1}$ para o NPM@SiO₂@TiO₂ (\blacktriangle azul) e k =0,061 min⁻¹, se considerarmos toda a faixa de tempo de irradiação (120 min). Isso significa que a taxa de reação do nosso compósito NPM@SiO₂@TiO₂ é superior em comparação com a obtida para o TiO₂ P25 comercial (0,028 min⁻¹), nas mesmas condições. TiO₂ Degussa P25 já foi relatado na literatura para a fotodegradação do azul de metileno, em condições semelhantes $k = 0,0167 \text{ min}^{-1}$ ([P25] = 0,5 g.L⁻¹ e [MB] = 5 mg.L⁻¹) [145], outro trabalho relatou um valor inferior $k = 0,0089 \text{ min}^{-1}$ ([P25] = 0,5 gL⁻¹ e [MB] = 10 mg.L⁻¹) [146] e para reações assistidas com H₂O₂ valores entre 0,0174 e 0,053 min⁻¹ foram calculados [147].

Figura 53: Modelo cinético de Langmuir-Hinshelwood para fotodegradação do azul de metileno

Esse importante resultado obtido para o NPM@SiO₂@TiO₂ contra TiO₂ P25 pode ser atribuído ao efeito positivo dos três componentes e a alta área de superfície. O núcleo magnético deve desempenhar um papel fundamental durante a irradiação. Parte da luz ultravioleta pode atingir a região do núcleo passando pela camada de SiO₂, excitando elétrons do núcleo de magnetita. Isso está de acordo com o espectro de absorção mostrado pelo composto NPM@SiO₂@TiO₂ (mostrado na Figura 48). Há uma probabilidade de que esses elétrons excitados venham do túnel do núcleo magnético através da camada de SiO₂ devido à falta de homogeneidade levando a regiões de camada mais finas provavelmente formadas durante a síntese, e eles alcançam a banda de condução da camada externa de TiO₂. Esses elétrons excitados podem aumentar a carga necessária para aumentar a geração de espécies reativas para interagir com as moléculas azul de metileno, Figura 54. Por outro lado, devido à grande área superficial, é plausível que a camada de sílica possa adsorver oxigênio [148], que estará disponível para a geração de espécies reativas, maximizando então a fotodegradação das moléculas de azul de metileno.

Figura 54: Hipótese do mecanismos de fotodegradação do azul de metileno (AM) sobre as NPM@SiO₂@TiO₂ sob irradiação UV [149].

Os testes de reutilização de NPM@SiO₂@TiO₂ sob a irradiação UV são mostrados na Figura 55.

Figura 55: Teste de reutilização do fotocatalisador NPM@SiO₂@TiO₂ sob irradiação UV.

A eficiência na atividade do fotocatalisador foi superior a 99,6% em todos os quatro testes de reutilização com 120 min de atividade. Observa-se que a principal diferença entre os testes de reúso é a taxa de degradação. Nos primeiros 5 min, a redução foi de 73,0% para o primeiro uso; entretanto, atinge uma redução de 38,6% no quarto uso com 5 min. Esse fato foi atribuído à redução de sítios ativos com o uso recorrente. Os pontos podem ser observados pelo estudo cinético também, Figura 56, destaque que após o 4 ciclo o pontos se ajustam melhor ao modelo de primeira ordem, com $R^2 = 0,99$ e com redução do k, 0,051 min⁻¹. Apesar desta diminuição, nenhuma outra diferença significativa na atividade fotocatalítica foi determinada após 2 horas de reação.

Uma comparação do desempenho fotocatalítico de vários fotocatalisadores para degradação do poluente corante azul de metileno é mostrada na Tabela 4. Pode-se observar que a intensidade da luz, as concentrações de fotocatalisador e de corante azul de metileno que foram usados neste estudo é semelhante aos reportados na literatura. Por outro lado, a eficiência fotocatalítica de nosso material foi significativamente maior do que o relatado anteriormente. Evidência observada também pelo valor superior do parâmetro cinético, k. Esses resultados estão associados ao controle exaustivo da síntese, os quais indicam a capacidade do fotocatalisador sintetizado em trabalhar com alta eficiência em um tempo

reduzido, o que implica em menores custos operacionais e maior facilidade para aplicações em larga escala.

Figura 56: Modelo cinético para teste de reutilização do fotocatalisador NPM@SiO2@TiO2 sob irradiação UV.

Material usado	Fonte de	Catali- sador	Corante	m _{Corante} / m _{Cat.}	Eficiência	Tempo	k	Referências
	radiação	(g.L ⁻¹)	(mg.L ⁻¹)	(mg.g ⁻¹)	(%)	(min.)	(min. ⁻¹)	
NPM@SiO ₂ @ TiO ₂	UV 365 nm, 80 W, Hg	0.56	3.2	5,7	94.8	30	0.0606	Este trabalho
$\begin{array}{l} Fe_{3}O_{4}@SiO_{2}@\\ mSiO_{2}@TiO_{2} \end{array}$	UV 365 nm, 125 W, Hg	0.5	3.2	6,4	~ 48	30	0.0359	[95]
$\frac{\text{Fe}_3\text{O}_4@\text{SiO}_2@}{\text{TiO}_2}$	UV 365 nm, 6x8 W	1	2	2,0	95	90	0.035	[26]
TiO ₂ /Fe ₃ O ₄ / SiO ₂	UV 365 nm, 36 W	0.4	1	2,5	~ 91.8	30	NC	[42]
γ-Fe ₂ O ₃ /SiO2/ C-TiO ₂	Luz solar	3.5	5	1,4	96.8	180	0.0191	[150]
γ-Fe ₂ O ₃ /SiO2/ C-TiO ₂	UV	3.5	5	1,4	77.1	180	0.0082	[150]
ZnTcPc-g-FST- g-PNIPAM*	Vis 300 W	0.16	3.2	20	87.7	60	NC	[151]
γ-Fe ₂ O ₃ /SiO ₂ / GSs/ TiO ₂	UV, 125 W, Hg	0.04	20	500	66	30	NC	[152]

Tabela 4: Comparação da eficiência do fotocatalisador NPM@SiO₂@TiO₂ com outros reportados na literatura para a degradação do corante azul de metileno.

 $* zinco-tetra carboxil-ftalocianina-g-Fe_{3}O_{4}@SiO_{2}@TiO_{2}-g-poli(N-isopropil acrilamida)$

7. CONCLUSÕES E PESPECTIVAS

Sintetizou-se com sucesso as nanopartículas magnéticas (NPM) de Fe_3O_4/γ - Fe_2O_3 atuantes como núcleo magnético das nanoestruturas revestidas utilizando precursores apenas de Fe^{3+} (dispensando o uso de sais de Fe^{2+}) em meios de solvente etilenoglicol, na presença de acetato de sódio;

O aperfeiçoamento inerente à síntese foi observado mantendo as NPM em meio alcoólico e sempre submetendo-as em imersão de banho ultrassónico antes do recobrimento. Concluiu-se que as etapas de estabilização com citrato de sódio e que o processo contínuo, conforme Figura 8, evidenciou nanoestruturas mais reprodutíveis e homogêneas;

As modificações do método de Stöber estudadas e implantadas apresentaram reprodutibilidade e estabilidade para o recobrimento de sílica amorfa sobre as NPM, bem como o controle dos parâmetros no processo de hidrólise e condensação de isopropóxido de titânio (IV) foi fundamental para realização do duplo revestimento;

As técnicas de microscopia foram valorosas no estudo morfológico das amostras sintetizadas, foram as primeiras a evidenciar sucesso na formação *core@shell* e *core@shell@shell*. A Microscopia de Força Atômica revelou NPM da ordem de 5 nm, coerentes com as tamanho estimado das NPM individuais por Microscopia Eletrônica de Transmissão (MET). Os agregados quase esféricos formados pelas NPM apresentam tamanho médio de 116 nm nas observações da MET. O revestimento estimado pela mesma técnica foi da ordem 15 nm para sílica e de 34 nm para dióxido de titânio;

O sucesso na composição da estrutura NPM@SiO₂@TiO₂ foi indicado pelas medições por Espectroscopia de Dispersão e Energia de Raios X (EDS), as quais evidenciaram a presença de óxido de ferro majoritariamente na região central e de dióxido de titânio e sílica na região da casca;

Os padrões de difração de raios X (DRX) evidenciaram que todas as reflexões cristalinas da NPM correspondem à estrutura de espinélio da magnetita, com uma constante de rede de a = 8,347 Å. O padrão de DRX do nanocompósito NPM@SiO₂@TiO₂ evidenciou os planos cristalinos de dióxido de titânio anatase, sem a presença da fase rutilo ou brookita. A área superficial estimada foi de 167 m²g⁻¹ para NPM@SiO₂@TiO₂, muito superior ao valor encontrado para TiO₂ Degussa P25, 54 m²g⁻¹.

A magnetização de saturação das NPM nuas (88 emu.g⁻¹ à 2 K) sugere que o núcleo de magnetita houve oxidação parcial dos íons Fe²⁺, formando frações de maghemita, pois o valor relatado para magnetita *bulk* é da ordem de 92-100 emu.g⁻¹; O incremento de massa não magnética utilizado nas NPM, tanto de sílica quanto de sílica e dióxido de titânio, reduziu consideravelmente os valores de magnetização de saturação (21,3 emu.g⁻¹ e 14,0 emu.g⁻¹.em 300 K para NPM@SiO₂ e NPM@SiO₂@TiO₂, respectivamente)

As curvas ZFC e FC das amostras NPM@SiO₂ e NPM@SiO₂@TiO₂ mostram características semelhantes em relação à amostra nua. Isso mostrou que a extensão da agregação não é essencialmente modificada com os revestimentos. Embora a caracterização magnética indicou que as NPM interagindo nas amostras nuas e revestidas, a ocorrência de agregados levam a momentos magnéticos bloqueados indicando que não há comportamento superparamagnético, em temperatura ambiente; Ainda assim, não há nenhum obstáculo evidente para à aplicação fotocatalítica proposta.

As propriedades vibracionais sugerem a presença de modos vibracionais atribuídos à presença da fase maghemita (γ -Fe₂O₃), ou à uma magnetita deficiente em íons Fe²⁺ na superfície das nanopartículas, que mimetizam uma fase maghemita. Os modos relacionados ao núcleo magnético são fortemente enfraquecido evidenciando o sucesso no revestimento dos núcleos magnéticos com sílica. Isto ficou claro para a amostra NPM@SiO₂@TiO₂ para a qual, os modos de sílica e das NPM mostram menor intensidade o que foi atribuído ao revestimento adicional com camada de dióxido de titânio. Além disso, a presença de dióxido de titânio foi corroborada ao observa-se o modo vibracional de alongamento do Ti–O–Ti na amostra.

As transições eletrônicas de TiO₂, em NPM@SiO₂@TiO₂, foram observadas na região de absorção de ~ 420 nm, enquanto a absorção em ~ 490 nm indicaram as ligações de Fe–O–Si na superfície do núcleo magnético. Esse último proporcionou um aumento de absorção na região espectro visível. A Energia do gap não pode ser calculada para a mesma amostra devido atribuída à presença de outros componentes, principalmente SiO₂, que mostra banda de absorção nesta região.

Os poros das NPM@SiO₂@TiO₂ pode levar a processos de adsorção e dessorção semelhantes, em função dos resultados das isotermas de fisissorção do N₂. A área superficial

estimada foi de 167 m²g⁻¹ (BET), bem superior a outros trabalhos que obtiveram 7,8, 22 ou 19-83 m²g⁻¹.

A atividade fotocatalítica de NPM@SiO₂@TiO₂ foi demonstrada pela degradação em 95% a concentração do corante azul de metileno nos primeiros 30 minutos, o que é maior que os 47% obtidos quando o TiO₂ comercial, e também superior aos outros reportados, na literatura no mesmo tempo, ~ 48, ~ 92 e 66%, por exemplo. Os resultados indicam que a atividade fotocatalítica estável é garantida, pelo menos quatro vezes, sem qualquer perda significativa de atividade.

Os resultados indicam que o nanocompósito NPM@SiO₂@TiO₂ obtido com sucesso é interessante para aplicações de tratamento de efluentes e apresenta-se promissor para degradar outros contaminantes da água.

Com os resultados da pesquisa concluídos, os seguintes trabalhos futuros são sugeridos:

O processo de fotodegradação seja expandido para outras moléculas orgânicas, persistentes, emergentes, não-biodegradáveis e à sistemas mistos com mais de um tipo de contaminantes; O estudo do produtos de degradação por LC-MS para investigar as moléculas intermediárias da reação;

Escalonamento para testes pilotos seja realizado levando em consideração fatores reais, que as plantas que utilizam desinfecção com luz UV possam associar nanofotacatalisadores, como o NPM@SiO₂@TiO₂, em seus processos, e que esses possam ser reutilizados e recuperados eficientemente com a aplicação de um campo magnético externo de baixo custo

O estudo de toxicidade in vitro seja realizado com os nanocompósito NPM@SiO₂@TiO₂ e que ensaios de decomposição sejam realizados com o fito de inativar as nanoestruturas sintetizadas.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] L. Mohammed, H. G. Gomaa, D. Ragab, e J. Zhu, "Magnetic nanoparticles for environmental and biomedical applications: A review", *Particuology*. 2017, doi: 10.1016/j.partic.2016.06.001.
- [2] J. Gómez-Pastora, S. Dominguez, E. Bringas, M. J. Rivero, I. Ortiz, e D. D. Dionysiou, "Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment", *Chem. Eng. J.*, vol. 310, p. 407–427, fev. 2017, doi: 10.1016/j.cej.2016.04.140.
- [3] J. Ge, Y. Zhang, Y.-J. Heo, e S.-J. Park, Advanced Design and Synthesis of Composite Photocatalysts for the Remediation of Wastewater: A Review, vol. 9, n° 2. 2019.
- [4] Y. Zhang *et al.*, "Nanomaterials-enabled water and wastewater treatment", *NanoImpact*, vol. 3–4, p. 22–39, jul. 2016, doi: 10.1016/j.impact.2016.09.004.
- [5] D. Stanicki, L. Vander Elst, R. N. Muller, e S. Laurent, "Synthesis and processing of magnetic nanoparticles", *Current Opinion in Chemical Engineering*, vol. 8. Elsevier Ltd, p. 7–14, 2015, doi: 10.1016/j.coche.2015.01.003.
- [6] S. Laurent *et al.*, "Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications", *Chem. Rev.*, vol. 108, n° 6, p. 2064–2110, jun. 2008, doi: 10.1021/cr068445e.
- [7] E. A. Campos, D. V. B. Stockler Pinto, J. I. S. de Oliveira, E. da C. Mattos, e R. de C. L. Dutra, "Synthesis, Characterization and Applications of Iron Oxide Nanoparticles a Short Review", *J. Aerosp. Technol. Manag.*, vol. 7, nº 3, p. 267–276, set. 2015, doi: 10.5028/jatm.v7i3.471.
- [8] A. Ali *et al.*, "Synthesis, characterization, applications, and challenges of iron oxide nanoparticles", *Nanotechnol. Sci. Appl.*, vol. Volume 9, p. 49–67, ago. 2016, doi: 10.2147/NSA.S99986.
- [9] W. Zhang, F. Shen, e R. Hong, "Solvothermal synthesis of magnetic Fe 3O 4 microparticles via self-assembly of Fe 3O 4 nanoparticles", *Particuology*, vol. 9, n° 2, p. 179–186, 2011, doi: 10.1016/j.partic.2010.07.025.
- [10] F. Ooi *et al.*, "A Facile Solvothermal Synthesis of Octahedral Fe3O4 Nanoparticles.", *Small*, vol. 11, n° 22, p. 2649–2653, 2015, doi: 10.1002/smll.201401954.
- [11] Y. Huang, L. Zhang, W. Huan, X. Liang, X. Liu, e Y. Yang, "A study on synthesis and properties of Fe3O4 nanoparticles by solvothermal method", *Glas. Phys. Chem.*, vol. 36, n° 3, p. 325–331, jun. 2010, doi: 10.1134/S1087659610030090.
- [12] L. H. Reddy, J. L. Arias, J. Nicolas, e P. Couvreur, "Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications", *Chem. Rev.*, vol. 112, nº 11, p. 5818–5878, nov. 2012, doi: 10.1021/cr300068p.
- [13] A. H. Oh, H. Y. Park, Y. G. Jung, S. C. Choi, e G. S. An, "Synthesis of Fe3O4 nanoparticles of various size via the polyol method", *Ceram. Int.*, vol. 46, n° 8, p. 10723–10728, jun. 2020, doi: 10.1016/j.ceramint.2020.01.080.
- [14] C. Hui *et al.*, "Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds", *Nanoscale*, vol. 3, n° 2, p. 701–705, 2011, doi: 10.1039/c0nr00497a.
- [15] W. Stöber, A. Fink, e E. Bohn, "Controlled growth of monodisperse silica spheres in the

micron size range", J. Colloid Interface Sci., vol. 26, n° 1, p. 62–69, jan. 1968, doi: 10.1016/0021-9797(68)90272-5.

- [16] C. Byrne, G. Subramanian, e S. C. Pillai, "Recent advances in photocatalysis for environmental applications", *J. Environ. Chem. Eng.*, vol. 6, n° 3, p. 3531–3555, jun. 2018, doi: 10.1016/J.JECE.2017.07.080.
- [17] R. Liang, A. Hu, M. Hatat-Fraile, e N. Zhou, "Development of TiO2 Nanowires for Membrane Filtration Applications", Springer, Cham, 2014, p. 47–77.
- [18] P. M. Álvarez, J. Jaramillo, F. López-Piñero, e P. K. Plucinski, "Preparation and characterization of magnetic TiO2 nanoparticles and their utilization for the degradation of emerging pollutants in water", *Appl. Catal. B Environ.*, vol. 100, n° 1–2, p. 338–345, out. 2010, doi: 10.1016/j.apcatb.2010.08.010.
- [19] K. V. Katta e R. S. Dubey, "Comparative study of doped-TiO2 nanocrystals prepared by solgel and solvothermal approaches", *Mater. Today Proc.*, jun. 2020, doi: 10.1016/j.matpr.2020.05.099.
- [20] A. Pourzad, H. R. Sobhi, M. Behbahani, A. Esrafili, R. R. Kalantary, e M. Kermani, "Efficient visible light-induced photocatalytic removal of paraquat using N-doped TiO2@SiO2@Fe3O4 nanocomposite", J. Mol. Liq., vol. 299, 2020, doi: 10.1016/j.molliq.2019.112167.
- [21] Z. Dai *et al.*, "Preparation of porphyrin sensitized three layers magnetic nanocomposite Fe3O4@SiO2@TiO2 as an efficient photocatalyst", *Mater. Lett.*, vol. 241, p. 239–242, abr. 2019, doi: 10.1016/j.matlet.2019.01.126.
- [22] M. A. Habila, Z. A. ALOthman, A. M. El-Toni, J. P. Labis, e M. Soylak, "Synthesis and application of Fe3O4@SiO2@TiO2 for photocatalytic decomposition of organic matrix simultaneously with magnetic solid phase extraction of heavy metals prior to ICP-MS analysis", *Talanta*, vol. 154, p. 539–547, jul. 2016, doi: 10.1016/j.talanta.2016.03.081.
- [23] W. Szeto, J. Li, H. Huang, J. Xuan, e D. Y. C. Leung, "Novel urchin-like Fe2O3@SiO2@TiO2 microparticles with magnetically separable and photocatalytic properties", *RSC Adv.*, vol. 5, n° 68, p. 55363–55371, 2015, doi: 10.1039/c5ra08070c.
- [24] X. Lv et al., "Preparation and photocatalytic activity of Fe3O4@SiO2@ZnO:La", J. Rare Earths, abr. 2020, doi: 10.1016/j.jre.2020.04.007.
- [25] Q.-Y. Li *et al.*, "Preparation and enhanced photocatalytic performance of a novel photocatalyst: Hollow network Fe3O4/ mesoporous SiO2/TiO2 (FST) composite microspheres", *Microporous Mesoporous Mater.*, vol. 265, n° June 2017, p. 18–25, jul. 2018, doi: 10.1016/j.micromeso.2017.12.012.
- [26] S. Teixeira *et al.*, "Photocatalytic degradation of recalcitrant micropollutants by reusable Fe3O4/SiO2/TiO2particles", *J. Photochem. Photobiol. A Chem.*, vol. 345, p. 27–35, 2017, doi: 10.1016/j.jphotochem.2017.05.024.
- [27] C.-C. Wang e J. Y. Ying, "Sol-Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals", 1999, doi: 10.1021/cm990180f.
- [28] WHO, Guidelines for drinking-water quality: fourth edition incorporating the first addendum., World Heal. Geneva, 2017.
- [29] J. A. B. DE MACÊDO, "REVISÃO DISPONIBILIDADE DE ÁGUA X DEMANDA = CRISE, REÚSO DE ÁGUA", CRQ-IV, 2016.

https://www.crq4.org.br/sms/files/file/artigo_agua_jorge_macedo_2016.pdf.

- [30] C. W. Sadoff *et al.*, *Securing Water*, *Sustaining Growth: Report of the GWP/OECD Task Force* on Water Security and Sustainable Growth, n° 70. University of Oxford, UK, 2015.
- [31] M. Muniyandi, P. Govindaraj, e G. Bharath Balji, "Potential removal of Methylene Blue dye from synthetic textile effluent using activated carbon derived from Palmyra (Palm) shell", *Mater. Today Proc.*, vol. 47, p. 299–311, 2021, doi: 10.1016/j.matpr.2021.04.468.
- [32] U. Mahanta, M. Khandelwal, e A. S. Deshpande, "TiO2@SiO2 nanoparticles for methylene blue removal and photocatalytic degradation under natural sunlight and low-power UV light", *Appl. Surf. Sci.*, vol. 576, n° PA, p. 151745, 2022, doi: 10.1016/j.apsusc.2021.151745.
- [33] Heinrich Caro, "Verfahren zur darstellung blauer farbstoffe aus dimethylanilin und anderen tertiaeren aromatischen monaminen", DE1886C, 1877.
- [34] K. Hübner, "150 Jahre Mauvein", Chemie unserer Zeit, vol. 40, nº 4, p. 274–275, ago. 2006, doi: 10.1002/ciuz.200690054.
- [35] PubChem, "Bethesda: National Library of Medicine (US), National Center for Biotechnology Information; 2004", *PubChem Compound Summary for CID 6099*, 2021. https://pubchem.ncbi.nlm.nih.gov/compound/Methylene-blue (acessado nov. 29, 2021).
- [36] S. Aldrich, "Methylene Blue hydrate", *Merck*, 2021. https://www.sigmaaldrich.com/BR/pt/product/sigma/m4159?context=product.
- [37] S. Karaca, A. Gürses, e R. Bayrak, "Effect of some pre-treatments on the adsorption of methylene blue by Balkaya lignite", *Energy Convers. Manag.*, vol. 45, n° 11–12, p. 1693–1704, 2004, doi: 10.1016/j.enconman.2003.09.026.
- [38] F. M. Oliveira, "Resíduos agroindustriais como adsorventes para remoção de azul de metileno em meio aquoso", *Diss. (Mestrado em Química) Univ. Fed. Goiás*, p. 163, 2016.
- [39] A. Krishna Moorthy, B. Govindarajan Rathi, S. P. Shukla, K. Kumar, e V. Shree Bharti, "Acute toxicity of textile dye Methylene blue on growth and metabolism of selected freshwater microalgae", *Environ. Toxicol. Pharmacol.*, vol. 82, n° March 2020, p. 103552, fev. 2021, doi: 10.1016/j.etap.2020.103552.
- [40] P. R., S. S., K. T., M. Faruq, e S. Suresh, "Highly effective photocatalytic degradation of methylene blue using PrO2–MgO nanocomposites under UV light", *Optik (Stuttg).*, vol. 206, n° January, p. 2–8, 2020, doi: 10.1016/j.ijleo.2020.164318.
- [41] C. I. Tarcea *et al.*, "Photocatalytic Degradation of Methylene Blue Dye Using {TiO}2 and Fe3O4/{SiO}2/{TiO}2 as Photocatalysts", vol. 877, p. 12008, jul. 2020, doi: 10.1088/1757-899x/877/1/012008.
- [42] D. F. F. Brossault, T. M. McCoy, e A. F. Routh, "Self-assembly of TiO2/Fe3O4/SiO2 microbeads: A green approach to produce magnetic photocatalysts", J. Colloid Interface Sci., vol. 584, p. 779–788, fev. 2021, doi: 10.1016/j.jcis.2020.10.001.
- [43] N. Raza *et al.*, "Solar-light-active silver phosphate/titanium dioxide/silica heterostructures for photocatalytic removal of organic dye", *J. Clean. Prod.*, vol. 254, p. 120031, 2020, doi: 10.1016/j.jclepro.2020.120031.
- [44] M. Taheran, M. Naghdi, S. K. Brar, M. Verma, e R. Y. Surampalli, "Emerging contaminants: Here today, there tomorrow!", *Environ. Nanotechnology, Monit. Manag.*, vol. 10, n° February,

p. 122-126, dez. 2018, doi: 10.1016/j.enmm.2018.05.010.

- [45] Y. Yang, Y. S. Ok, K. H. Kim, E. E. Kwon, e Y. F. Tsang, "Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review", *Sci. Total Environ.*, vol. 596–597, p. 303–320, 2017, doi: 10.1016/j.scitotenv.2017.04.102.
- [46] N. H. Tran, M. Reinhard, e K. Y. H. Gin, "Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review", *Water Res.*, vol. 133, p. 182–207, 2018, doi: 10.1016/j.watres.2017.12.029.
- [47] M. J. Rivero *et al.*, "Kinetic analysis and biodegradability of the Fenton mineralization of bisphenol A", J. Chem. Technol. Biotechnol., vol. 89, n° 8, p. 1228–1234, 2014, doi: 10.1002/jctb.4376.
- [48] K. J. Howe, D. W. Hand, J. C. Crittenden, R. R. Trussell, e G. Tchobanoglous, *Princípios de Tratamento de Água*, Cengage. São Paulo, 2017.
- [49] O. M. Rodriguez-Narvaez, J. M. Peralta-Hernandez, A. Goonetilleke, e E. R. Bandala, "Treatment technologies for emerging contaminants in water: A review", *Chem. Eng. J.*, vol. 323, p. 361–380, 2017, doi: 10.1016/j.cej.2017.04.106.
- [50] S. N. Ahmed e W. Haider, "Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review", *Nanotechnology*, vol. 29, n° 34, p. 342001, ago. 2018, doi: 10.1088/1361-6528/aac6ea.
- [51] D. F. 1934-(Duward F. . Shriver e P. W. 1940-(Peter W. Atkins, *Química inorgânica*. Porto Alegre: Bookman, 2008.
- [52] J. Herrmann, "Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants", *Catal. Today*, vol. 53, n° 1, p. 115–129, out. 1999, doi: 10.1016/S0920-5861(99)00107-8.
- [53] M. Pelaez *et al.*, "A review on the visible light active titanium dioxide photocatalysts for environmental applications", *Appl. Catal. B Environ.*, vol. 125, p. 331–349, ago. 2012, doi: 10.1016/j.apcatb.2012.05.036.
- [54] S. Banerjee, D. D. Dionysiou, e S. C. Pillai, "Self-cleaning applications of TiO2 by photoinduced hydrophilicity and photocatalysis", *Appl. Catal. B Environ.*, vol. 176–177, p. 396–428, out. 2015, doi: 10.1016/J.APCATB.2015.03.058.
- [55] D. Chen *et al.*, "Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review", *J. Clean. Prod.*, p. 121725, abr. 2020, doi: 10.1016/j.jclepro.2020.121725.
- [56] E. Baranowska-Wójcik, D. Szwajgier, P. Oleszczuk, e A. Winiarska-Mieczan, "Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—a Review", *Biol. Trace Elem. Res.*, p. 1–12, abr. 2019, doi: 10.1007/s12011-019-01706-6.
- [57] M. R. Al-Mamun, S. Kader, M. S. Islam, e M. Z. H. Khan, "Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review", J. Environ. Chem. Eng., vol. 7, n° 5, p. 103248, out. 2019, doi: 10.1016/j.jece.2019.103248.
- [58] X. Li, L. Shi, D. Wang, Q. Luo, e J. An, "Visible light photocatalytic activity of TiO2/heattreated PVC film", J. Chem. Technol. Biotechnol., vol. 87, n° 8, p. 1187–1193, 2012, doi:

10.1002/jctb.3747.

- [59] P. Rokicka-Konieczna, A. Markowska-Szczupak, E. Kusiak-Nejman, e A. W. Morawski, "Photocatalytic water disinfection under the artificial solar light by fructose-modified TiO2", *Chem. Eng. J.*, vol. 372, p. 203–215, set. 2019, doi: 10.1016/J.CEJ.2019.04.113.
- [60] B. Zhao, X. Wang, Y. Zhang, J. Gao, Z. Chen, e Z. Lu, "Synergism of oxygen vacancies, Ti3+ and N dopants on the visible-light photocatalytic activity of N-doped TiO2", J. Photochem. Photobiol. A Chem., vol. 382, p. 111928, set. 2019, doi: 10.1016/j.jphotochem.2019.111928.
- [61] Z. Barbieriková *et al.*, "N-Doped titanium dioxide nanosheets: Preparation, characterization and UV/visible-light activity", *Appl. Catal. B Environ.*, vol. 232, p. 397–408, set. 2018, doi: 10.1016/J.APCATB.2018.03.053.
- [62] X. Tang, Z. Wang, e Y. Wang, "Visible active N-doped TiO2/reduced graphene oxide for the degradation of tetracycline hydrochloride", *Chem. Phys. Lett.*, vol. 691, p. 408–414, jan. 2018, doi: 10.1016/j.cplett.2017.11.037.
- [63] V. Kumaravel, S. Mathew, J. Bartlett, e S. C. Pillai, "Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances", *Appl. Catal. B Environ.*, vol. 244, p. 1021– 1064, maio 2019, doi: 10.1016/J.APCATB.2018.11.080.
- [64] E. Bet-moushoul, Y. Mansourpanah, K. Farhadi, e M. Tabatabaei, "TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes", *Chem. Eng. J.*, vol. 283, p. 29–46, jan. 2016, doi: 10.1016/j.cej.2015.06.124.
- [65] S. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang, e H. Wang, "TiO2 based photocatalytic membranes: A review", J. Memb. Sci., vol. 472, p. 167–184, 2014, doi: 10.1016/j.memsci.2014.08.016.
- [66] W. Zhu *et al.*, "Atomic Structural Evolution during the Reduction of α-Fe 2 O 3 Nanowires", J. Phys. Chem. C, vol. 120, n° 27, p. 14854–14862, jul. 2016, doi: 10.1021/acs.jpcc.6b02033.
- [67] H. E. Toma, Nanotecnologia Molecular Materiais e Dispositivos, v6 ed. São Paulo, 2016.
- [68] G. Mamba e A. Mishra, "Advances in Magnetically Separable Photocatalysts: Smart, Recyclable Materials for Water Pollution Mitigation", *Catalysts*, vol. 6, n° 6, p. 79, 2016, doi: 10.3390/catal6060079.
- [69] L. Blaney, "Magnetite (Fe3O4): Properties, sinthesis, and applications", *Lehigh Rev.*, vol. 15, p. 32–81, 2007, [Online]. Available at: http://preserve.lehigh.edu/cas-lehighreview-vol-15/5.
- [70] A. L. Drummond *et al.*, "Reducing size-dispersion in one-pot aqueous synthesis of maghemite nanoparticles", *J. Nanosci. Nanotechnol.*, vol. 12, n° 10, p. 8061–8066, 2012, doi: 10.1166/jnn.2012.6614.
- [71] M. Su, C. He, e K. Shih, "Facile synthesis of morphology and size-controlled α-Fe2O3 and Fe3O4 nano-and microstructures by hydrothermal/solvothermal process: The roles of reaction medium and urea dose", *Ceram. Int.*, vol. 42, n° 13, p. 14793–14804, 2016, doi: 10.1016/j.ceramint.2016.06.111.
- [72] M. Abbas, B. Parvatheeswara Rao, S. M. Naga, M. Takahashi, e C. Kim, "Synthesis of high magnetization hydrophilic magnetite (Fe3O 4) nanoparticles in single reaction - Surfactantless polyol process", *Ceram. Int.*, vol. 39, n° 7, p. 7605–7611, set. 2013, doi: 10.1016/j.ceramint.2013.03.015.

- [73] Z. Karimi, L. Karimi, e H. Shokrollahi, "Nano-magnetic particles used in biomedicine: Core and coating materials", *Mater. Sci. Eng. C*, vol. 33, n° 5, p. 2465–2475, jul. 2013, doi: 10.1016/J.MSEC.2013.01.045.
- [74] C. J. Brinker e G. W. Scherer, *Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing*. Elsevier Inc., 1990.
- [75] D. R. Vollet, J. P. Scalari, D. A. Donatti, e A. Ibañez Ruiz, "A thermoporometry and smallangle x-ray scattering study of wet silica sonogels as the pore volume fraction is varied", J. *Phys. Condens. Matter*, vol. 20, n° 2, p. 025225, jan. 2008, doi: 10.1088/0953-8984/20/02/025225.
- [76] M. Zaharescu, V. Badescu, A. Vasilescu, e A. Jitianu, *Emerging Fields in Sol-Gel Science and Technology*. Boston, MA: Springer US, 2003.
- [77] E. P. Ferreira-Neto *et al.*, "Solvent-controlled deposition of titania on silica spheres for the preparation of SiO 2 @TiO 2 core@shell nanoparticles with enhanced photocatalytic activity", *Colloids Surfaces A Physicochem. Eng. Asp.*, vol. 570, n° March, p. 293–305, 2019, doi: 10.1016/j.colsurfa.2019.03.036.
- [78] Y. Zhao *et al.*, "Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites", *Nanoscale*, vol. 8, p. 5313–5326, 2016, doi: 10.1039/c5nr08624h.
- [79] I. Gehrke, A. Geiser, e A. Somborn-Schulz, "Innovations in nanotechnology for water treatment", *Nanotechnol. Sci. Appl.*, vol. 8, p. 1, jan. 2015, doi: 10.2147/NSA.S43773.
- [80] X. Qu, P. J. J. Alvarez, e Q. Li, "Applications of nanotechnology in water and wastewater treatment", *Water Res.*, vol. 47, n° 12, p. 3931–3946, 2013, doi: 10.1016/j.watres.2012.09.058.
- [81] J. Wang *et al.*, "Synthesis of Fe3O4@SiO2@ZnO–Ag core–shell microspheres for the repeated photocatalytic degradation of rhodamine B under UV irradiation", *J. Mol. Catal. A Chem.*, vol. 406, p. 97–105, set. 2015, doi: 10.1016/j.molcata.2015.05.023.
- [82] F. Behrad, M. Helmi Rashid Farimani, N. Shahtahmasebi, M. Rezaee Roknabadi, e M. Karimipour, "Synthesis and characterization of Fe3O4/TiO2 magnetic and photocatalyst bifunctional core-shell with superparamagnetic performance", *Eur. Phys. J. Plus*, vol. 130, n^o 7, p. 144, jul. 2015, doi: 10.1140/epjp/i2015-15144-y.
- [83] W. S. Rasband, "ImageJ". U. S. National Institutes of Health, Bethesda, Maryland, USA, 2018, [Online]. Available at: https://imagej.nih.gov/ij.
- [84] H. A. Sturges, "The Choice of a Class Interval", J. Am. Stat. Assoc., vol. 21, nº 153, p. 65–66, mar. 1926, doi: 10.1080/01621459.1926.10502161.
- [85] L. León-Félix *et al.*, "Synthesis and characterization of uncoated and gold-coated magnetite nanoparticles", *Hyperfine Interact.*, vol. 224, n° 1–3, p. 179–188, jan. 2014, doi: 10.1007/s10751-013-0857-y.
- [86] R. T. Downs e M. Hall-Wallace, "The American Mineralogist Crystal Structure Database", Am. Mineral., vol. 88, p. 247–250, 2003, Acessado: mar. 09, 2020. [Online]. Available at: http://rruff.geo.arizona.edu/AMS/amcsd.php.
- [87] F. T. L. Muniz, M. A. R. Miranda, C. Morilla dos Santos, e J. M. Sasaki, "The Scherrer equation and the dynamical theory of X-ray diffraction", *Acta Crystallogr. Sect. A Found. Adv.*, vol. 72, nº 3, p. 385–390, maio 2016, doi: 10.1107/S205327331600365X.

- [88] P. Makuła, M. Pacia, e W. Macyk, "How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra", J. Phys. Chem. Lett., vol. 9, nº 23, p. 6814–6817, dez. 2018, doi: 10.1021/acs.jpclett.8b02892.
- [89] J. Tauc, R. Grigorovici, e A. Vancu, "Optical Properties and Electronic Structure of Amorphous Germanium", *Phys. status solidi*, vol. 15, n° 2, p. 627–637, 1966, doi: 10.1002/pssb.19660150224.
- [90] P. A. Webb e C. Orr, *Analytical Methods in Fine Particle Technology*, 5th ed. Norcross, GA, USA: Micromeritics Instruments Corp., 1997.
- [91] L. Yu, D. Wang, e D. Ye, "Solar photocatalytic ozonation of emerging contaminants detected in municipal wastewater treatment plant effluents by magnetic MWCNTs/TiO 2 nanocomposites", *RSC Adv.*, vol. 5, n° 117, p. 96896–96904, 2015, doi: 10.1039/C5RA18752D.
- [92] INMETRO, "Orientação sobre validação de métodos analíticos DOQ-CGCRE-008, revisão 08, Abril", *Inst. Nac. Metrol. Qual. e Tecnol.*, p. 30, 2020, [Online]. Available at: http://www.inmetro.gov.br/Sidoq/Arquivos/Cgcre/DOQ/DOQ-Cgcre-8_08.pdf.
- [93] Q. Zhang, G. Meng, J. Wu, D. Li, e Z. Liu, "Study on enhanced photocatalytic activity of magnetically recoverable Fe3O4@C@TiO2 nanocomposites with core-shell nanostructure", *Opt. Mater. (Amst).*, vol. 46, p. 52–58, 2015, doi: 10.1016/j.optmat.2015.04.001.
- [94] N. Abbas, G. N. Shao, S. M. Imran, M. S. Haider, e H. T. Kim, "Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse", *Front. Chem. Sci. Eng.*, vol. 10, n° 3, p. 405–416, 2016, doi: 10.1007/s11705-016-1579-x.
- [95] J. Ma, N. Sun, C. Wang, J. Xue, e L. Qiang, "Facile synthesis of novel Fe3O4@SiO2@mSiO2@TiO2core-shell microspheres with mesoporous structure and their photocatalytic performance", J. Alloys Compd., vol. 743, p. 456–463, 2018, doi: 10.1016/j.jallcom.2018.02.005.
- [96] H. Qi, B. Yan, W. Lu, C. Li, e Y. Yang, "A Non-Alkoxide Sol-Gel Method for the Preparation of Magnetite (Fe3O4) Nanoparticles", *Curr. Nanosci.*, vol. 7, nº 3, p. 381–388, jun. 2011, doi: 10.2174/157341311795542426.
- [97] Y. Tian, B. Yu, X. Li, e K. Li, "Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents", *J. Mater. Chem.*, vol. 21, n° 8, p. 2476, 2011, doi: 10.1039/c0jm02913k.
- [98] Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, e X. Deng, "Synthesis of Fe3O4 Nanoparticles and their Magnetic Properties", *Procedia Eng.*, vol. 27, n° 2011, p. 632–637, 2012, doi: 10.1016/j.proeng.2011.12.498.
- [99] J. R. Silva, L. R. Guilherme, M. G. Braga, M. A. L. Peres, e J. de O. Silva, "Preparation of Magnetic Fluid in Magnetic Nanoparticles Base", *Ensaios e Ciência Ciências Biológicas, Agrárias e da Saúde*, vol. 18, nº 1, p. 19–24, 2014, [Online]. Available at: http://www.redalyc.org/articulo.oa?id=26037787003.
- [100] B. Downs, "Anatase R060277 RRUFF Database: Raman, X-ray, Infrared and Chemistry", *RRUFF Project, Department of Geosciences, University of Arizona*, 2019. http://rruff.info/Anatase/R060277 (acessado ago. 07, 2019).
- [101] L. Zhang *et al.*, "Preparation of magnetic Fe 3 O 4 /TiO 2 /Ag composite microspheres with enhanced photocatalytic activity", *Solid State Sci.*, vol. 52, p. 42–48, fev. 2016, doi:

10.1016/j.solidstatesciences.2015.12.006.

- [102] E. S. D. T. de Mendonça *et al.*, "Effects of silica coating on the magnetic properties of magnetite nanoparticles", *Surfaces and Interfaces*, vol. 14, p. 34–43, mar. 2019, doi: 10.1016/j.surfin.2018.11.005.
- [103] S. Abramson, L. Srithammavanh, J. M. Siaugue, O. Horner, X. Xu, e V. Cabuil, "Nanometric core-shell-shell γ-Fe2O3/SiO 2/TiO2 particles", J. Nanoparticle Res., vol. 11, n° 2, p. 459–465, fev. 2009, doi: 10.1007/s11051-008-9484-y.
- [104] Y. Deng, D. Qi, C. Deng, X. Zhang, e D. Zhao, "Superparamagnetic High-Magnetization Microspheres with an Fe 3 O 4 @SiO 2 Core and Perpendicularly Aligned Mesoporous SiO 2 Shell for Removal of Microcystins", J. Am. Chem. Soc., vol. 130, nº 1, p. 28–29, jan. 2008, doi: 10.1021/ja0777584.
- [105] F. Wang *et al.*, "Corn-like, recoverable γ-Fe2O3@SiO2@TiO2 photocatalyst induced by magnetic dipole interactions", *Sci. Rep.*, vol. 7, n° 1, p. 6960, 2017, doi: 10.1038/s41598-017-07417-z.
- [106] A. León *et al.*, "FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol", *Appl. Sci.*, vol. 7, n° 1, p. 49, 2017, doi: 10.3390/app7010049.
- [107] M. Al-Amin, S. Chandra Dey, T. U. Rashid, M. Ashaduzzaman, e S. M. Shamsuddin, "Solar Assisted Photocatalytic Degradation of Reactive Azo Dyes in Presence of Anatase Titanium Dioxide", *Int. J. Latest Res. Eng. Technol. (IJLRET*, vol. 2, p. 14–21, 2016, Acessado: ago. 08, 2019. [Online]. Available at: www.ijlret.com/www.ijlret.com.
- [108] NIST Chemistry WebBook, "Titanium dioxide (anatase)", NIST Standard Reference Database, 2018. https://webbook.nist.gov/cgi/cbook.cgi?ID=C13463677&Type=IR-SPEC&Index=0#IR-SPEC (acessado ago. 08, 2019).
- [109] G. L. DE OLIVEIRA, "Síntese de TiO2 com diferentes características físicas e químicas e sua aplicação como foto-catalisador no tratamento de efluentes", UNIVERSIDADE DE SÃO PAULO, 2018.
- [110] L. M. DOS SANTOS, "Síntese e caracterização de TiO2 com modificações superficiais para aplicação em fotocatálise heterogênea Síntese e caracterização de TiO2 com modificações superficiais para aplicação em fotocatálise heterogênea", UNIVERSIDADE FEDERAL DE UBERLÂNDIA, 2017.
- [111] J. Marques, T. D. Gomes, M. A. Forte, R. F. Silva, e C. J. Tavares, "A new route for the synthesis of highly-active N-doped TiO2 nanoparticles for visible light photocatalysis using urea as nitrogen precursor", *Catal. Today*, vol. 326, n° September 2018, p. 36–45, abr. 2019, doi: 10.1016/j.cattod.2018.09.002.
- [112] N. Kaur, S. Kaur Shahi, e V. Singh, "Synthesis, characterization and photocatalytic activity of magnetically separable γ -Fe 2 O 3 /N,Fe codoped TiO 2 heterojunction for degradation of Reactive Blue 4 dye", *RSC Adv.*, vol. 5, n° 76, p. 61623–61630, 2015, doi: 10.1039/C5RA07812A.
- [113] M. Saeed *et al.*, "Controllable synthesis of Fe3O4 nanoflowers: Enhanced imaging guided cancer therapy and comparison of photothermal efficiency with black-TiO2", *J. Mater. Chem. B*, vol. 6, n° 22, p. 3800–3810, 2018, doi: 10.1039/c8tb00745d.
- [114] H. Gavilán et al., "Formation Mechanism of Maghemite Nanoflowers Synthesized by a Polyol-

Mediated Process", ACS Omega, vol. 2, nº 10, p. 7172–7184, jul. 2017, doi: 10.1021/acsomega.7b00975.

- [115] M. Yamaura e D. A. Fungaro, "Synthesis and characterization of magnetic adsorbent prepared by magnetite nanoparticles and zeolite from coal fly ash", J. Mater. Sci., vol. 48, n° 14, p. 5093–5101, 2013, doi: 10.1007/s10853-013-7297-6.
- [116] R. M. Cornell e U. Schwertmann, "Electronic, Electrical and Magnetic Properties and Colour", in *The Iron Oxides*, Wiley, 2003, p. 111–137.
- [117] W. M. Daoush, "Co-Precipitation and Magnetic Properties of Magnetite Nanoparticles for Potential Biomedical Applications", J. Nanomedicine Res., vol. 5, nº 3, p. 3–8, abr. 2017, doi: 10.15406/jnmr.2017.05.00118.
- [118] K. V. Jardim *et al.*, "Novel magneto-responsive nanoplatforms based on MnFe2O4 nanoparticles layer-by-layer functionalized with chitosan and sodium alginate for magnetic controlled release of curcumin", *Mater. Sci. Eng. C*, vol. 92, n° May, p. 184–195, nov. 2018, doi: 10.1016/j.msec.2018.06.039.
- [119] K. Kang *et al.*, "Preparation and characterization of magnetic-core titanium dioxide: Implications for photocatalytic removal of ibuprofen", *J. Mol. Catal. A Chem.*, vol. 390, p. 178–186, ago. 2014, doi: 10.1016/j.molcata.2014.03.023.
- [120] K. Zhou, M. Yang, Q. Sun, e Z. Z. Yang, "Preparation and Surface Modification of Fe₃O₄@Sio₂ Composite Microspheres", *Adv. Mater. Res.*, vol. 455–456, n° Ame, p. 115–120, jan. 2012, doi: 10.4028/www.scientific.net/AMR.455-456.115.
- [121] M. Bohra, N. Agarwal, e V. Singh, "A Short Review on Verwey Transition in Nanostructured Fe 3 O 4 Materials", J. Nanomater., vol. 2019, p. 1–18, mar. 2019, doi: 10.1155/2019/8457383.
- [122] M. Gotić e S. Musić, "Mössbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions", J. Mol. Struct., vol. 834–836, n° SPEC. ISS., p. 445–453, maio 2007, doi: 10.1016/j.molstruc.2006.10.059.
- [123] K. Nakamoto, "Infrared and Raman Spectra of Inorganic and Coordination Compounds. Handbook of Vibrational Spectroscopy", *Handb. Vib. Spectrosc.*, p. 1872–1892, 2006, doi: 10.1002/9780470027325.s4104.
- [124] L. Zhang, R. He, e H. C. Gu, "Oleic acid coating on the monodisperse magnetite nanoparticles", Appl. Surf. Sci., vol. 253, n° 5, p. 2611–2617, dez. 2006, doi: 10.1016/J.APSUSC.2006.05.023.
- [125] J. Simon-Kutscher, A. Gericke, e H. Hühnerfuss, "Effect of bivalent Ba, Cu, Ni, and Zn cations on the structure of octadecanoic acid monolayers at the air-water interface as determined by external infrared reflection-absorption spectroscopy", *Langmuir*, vol. 12, n° 4, p. 1027–1034, 1996, doi: 10.1021/la950731q.
- [126] J. J. Atoche-Medrano *et al.*, "Magnetite-based nanobioplatform for site delivering Croton cajucara Benth essential oil", *Mater. Chem. Phys.*, vol. 207, p. 243–252, mar. 2018, doi: 10.1016/j.matchemphys.2017.12.058.
- [127] R. D. Waldron, "Infrared Spectra of Ferrites", Phys. Rev., vol. 99, nº 6, p. 1727–1735, set. 1955, doi: 10.1103/PhysRev.99.1727.
- [128] F. Y. Zhao, Y. L. Li, e L. H. Li, "Preparation and Characterization of Magnetite

Nanoparticles", Appl. Mech. Mater., vol. 618, p. 24–27, ago. 2014, doi: 10.4028/www.scientific.net/AMM.618.24.

- [129] M. Ishii, M. Nakahira, e T. Yamanaka, "Infrared absorption spectra and cation distributions in (Mn, Fe)3O4", Solid State Commun., vol. 11, nº 1, p. 209–212, jul. 1972, doi: 10.1016/0038-1098(72)91162-3.
- [130] Y. A. Urian, J. J. Atoche-Medrano, L. T. Quispe, L. León Félix, e J. A. H. Coaquira, "Study of the surface properties and particle-particle interactions in oleic acid-coated Fe3O4 nanoparticles", J. Magn. Magn. Mater., vol. 525, n° August 2020, p. 167686, maio 2021, doi: 10.1016/j.jmmm.2020.167686.
- [131] L. Slavov *et al.*, "Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids", *J. Magn. Magn. Mater.*, vol. 322, n° 14, p. 1904–1911, jul. 2010, doi: 10.1016/j.jmmm.2010.01.005.
- [132] M. Ma, Y. Zhang, W. Yu, H. Shen, H. Zhang, e N. Gu, "Preparation and characterization of magnetite nanoparticles coated by amino silane", *Colloids Surfaces A Physicochem. Eng. Asp.*, vol. 212, n^o 2–3, p. 219–226, jan. 2003, doi: 10.1016/S0927-7757(02)00305-9.
- [133] S. R. Darmakkolla, H. Tran, A. Gupta, e S. B. Rananavare, "A method to derivatize surface silanol groups to Si-alkyl groups in carbon-doped silicon oxides", *RSC Adv.*, vol. 6, n° 95, p. 93219–93230, 2016, doi: 10.1039/C6RA20355H.
- [134] F. Hayati, A. A. Isari, M. Fattahi, B. Anvaripour, e S. Jorfi, "Photocatalytic decontamination of phenol and petrochemical wastewater through ZnO/TiO₂ decorated on reduced graphene oxide nanocomposite: influential operating factors, mechanism, and electrical energy consumption", *RSC Adv.*, vol. 8, n° 70, p. 40035–40053, 2018, doi: 10.1039/C8RA07936F.
- [135] S. A. Kulkarni, P. S. Sawadh, e P. K. Palei, "Synthesis and Characterization of Superparamagnetic Fe3O4@SiO2 Nanoparticles", J. Korean Chem. Soc., vol. 58, n° 1, p. 100– 104, fev. 2014, doi: 10.5012/jkcs.2014.58.1.100.
- [136] C. Xue *et al.*, "High Photocatalytic Activity of Fe 3 O 4-SiO 2-TiO 2 Functional Particles with Core-Shell Structure", *J. Nanomater.*, vol. 2013, 2013, doi: 10.1155/2013/762423.
- [137] K. Madhusudan Reddy, S. V Manorama, e A. Ramachandra Reddy, "Bandgap studies on anatase titanium dioxide nanoparticles", *Mater. Chem. Phys.*, vol. 78, n° 1, p. 239–245, fev. 2003, doi: 10.1016/S0254-0584(02)00343-7.
- [138] P. Klobes, K. Meyer, e R. G. Munro, "Porosity and Specific Surface Area Measurements for Solid Materials", *Natl. Inst. Stand. Technol.*, vol. 960–17, p. 79, 2006.
- [139] V. G. Teixeira, F. M. B. Coutinho, e A. S. Gomes, "Principais métodos de caracterização da porosidade de resinas à base de divinilbenzeno", *Quim. Nova*, vol. 24, nº 6, p. 808–818, dez. 2001, doi: 10.1590/S0100-40422001000600019.
- [140] Z. Rui, S. Wu, C. Peng, e H. Ji, "Comparison of TiO2 Degussa P25 with anatase and rutile crystalline phases for methane combustion", *Chem. Eng. J.*, vol. 243, p. 254–264, 2014, doi: 10.1016/j.cej.2014.01.010.
- [141] J. Gomes, M. Roccamante, S. Contreras, F. Medina, I. Oller, e R. C. Martins, "Scale-up impact over solar photocatalytic ozonation with benchmark-P25 and N-TiO2for insecticides abatement in water", J. Environ. Chem. Eng., vol. 9, nº 1, 2021, doi: 10.1016/j.jece.2020.104915.
- [142] E. Han, K. Vijayarangamuthu, J. sang Youn, Y. K. Park, S. C. Jung, e K. J. Jeon, "Degussa P25

TiO 2 modified with H 2 O 2 under microwave treatment to enhance photocatalytic properties", *Catal. Today*, vol. 303, n° August 2017, p. 305–312, 2018, doi: 10.1016/j.cattod.2017.08.057.

- [143] Y. Wang, Z. Xing, Z. Li, X. Wu, G. Wang, e W. Zhou, "Facile synthesis of high-thermostably ordered mesoporous TiO2/SiO2 nanocomposites: An effective bifunctional candidate for removing arsenic contaminations", J. Colloid Interface Sci., vol. 485, p. 32–38, 2017, doi: 10.1016/j.jcis.2016.09.022.
- [144] J. Song, L. Yan, J. Duan, e C. Jing, "TiO2 crystal facet-dependent antimony adsorption and photocatalytic oxidation", J. Colloid Interface Sci., vol. 496, p. 522–530, jun. 2017, doi: 10.1016/j.jcis.2017.02.054.
- [145] K. Dai, L. Lu, e G. Dawson, "Development of UV-LED/TiO2 device and their application for photocatalytic degradation of methylene blue", J. Mater. Eng. Perform., vol. 22, n° 4, p. 1035– 1040, 2013, doi: 10.1007/s11665-012-0344-7.
- [146] Y. Han, H. S. Kim, e H. Kim, "Relationship between synthesis conditions and photocatalytic activity of nanocrystalline TiO 2", *J. Nanomater.*, vol. 2012, 2012, doi: 10.1155/2012/427453.
- [147] G. M. Madhu, M. A. Lourdu Antony Raj, e K. Vasantha Kumar Pai, "Titamium oxide (TiO2) assisted photocatalytic degradation of methylene blue", J. Environ. Biol., vol. 30, n° 2, p. 259– 264, 2009.
- [148] Y. He, X. Hu, M. Xu, A. Man, C. Ng, e A. B. Djuri, "Mesoporous silica nanosphere-based oxygen scavengers", *Microporous Mesoporous Mater.*, vol. 327, n° September, 2021, doi: 10.1016/j.micromeso.2021.111426.
- [149] Í. Lacerda Fernandes *et al.*, "Synthesis and characterization of the MNP@SiO2@TiO2 nanocomposite showing strong photocatalytic activity against methylene blue dye", *Appl. Surf. Sci.*, vol. 580, n° December 2021, p. 152195, abr. 2022, doi: 10.1016/j.apsusc.2021.152195.
- [150] H. H. Mungondori, S. Ramujana, D. M. Katwire, e R. T. Taziwa, "Synthesis of a novel visible light responsive γ-Fe 2 O 3 /SiO 2 / C-TiO 2 magnetic nanocomposite for water treatment", *Water Sci. Technol.*, vol. 78, nº 12, p. 2500–2510, 2018, doi: 10.2166/wst.2019.004.
- [151] C. Liu, Y. Li, e Q. Duan, "Preparation of magnetic and thermal dual-responsive zinctetracarboxyl-phthalocyanine-g-Fe3O4@SiO2@TiO2-g-poly(N-isopropyl acrylamide) coreshell green photocatalyst", *Appl. Surf. Sci.*, vol. 503, n° April 2019, p. 144111, 2020, doi: 10.1016/j.apsusc.2019.144111.
- [152] D. Chen, Y. Chen, Y. Li, e S. Ye, "Preparation and photocatalytic properties of a visible light responsive and magnetically separated photocatalyst of γ-Fe2O3/SiO2/GSs/TiO2", *Micro Nano Lett.*, vol. 10, n° 5, p. 267–271, 2015, doi: 10.1049/mnl.2014.0673.
- [153] Z.-D. Li, H.-L. Wang, X.-N. Wei, X.-Y. Liu, Y.-F. Yang, e W.-F. Jiang, "Preparation and photocatalytic performance of magnetic Fe3O4@TiO2 core-shell microspheres supported by silica aerogels from industrial fly ash", J. Alloys Compd., vol. 659, p. 240–247, fev. 2016, doi: 10.1016/j.jallcom.2015.10.297.
- [154] D. Skoog, D. West, J. Holler, e S. Crouch, *Fundamentos de química analítica*, 2º ed. Cengage Learning, 2014.

APÊNDICES

Apêndice A: Rotas de síntese preliminares

As rotas aqui descritas foram exaustivamente estudados e aperfeiçoadas, considerando as disponibilidade de recursos para execução deste, até que produzissem os nanocompósitos NPM@SiO2@TiO2 com a estrutura definida, morfologia reprodutível e apresentassem elevada atividade fotocatalítica para a degradação do azul de metileno.

Tabela A1: Resumo dos métodos utilizados para as sínteses dos nanofotocatatlisadores

Síntese	Método [Referência]: Procedimento		
Fe ₃ O ₄	 Coprecipitação (CP) [82]: 2,786 g de FeSO₄.7H₂O e 5,421 g de FeCl₃.6H₂O dissolvidos em 50 mL H₂O UP; 25 mL de NH₄OH 28% diluídos para 100 mL, despejado gota-a-gota na solução de sais de ferro, à 75°C, mantendo agitação; Lavagem com H₂O UP; As NPM formadas foram agitadas por 6h à 50 °C em solução de citrato de sódio tribásico 0,5 mol.L⁻¹ (7,428 g de diluído para 50 mL); Produtos lavados com H₂O e acetona e secos a 60 °C em pressão reduzida por 12h. 		
	 Solvotermal (ST) [101]: 2,78 g de FeCl₃.6H₂O dissolvidos em 75 mL de etilenoglicol e agitação mecânica por 10 min à 70 °C; Solubilizou-se 2,09 g de PEG 6000² e 7,25 g de acetato de sódio tribásico; Produtos transferidos para um copo de teflon contido em um reator. O sistema fechado permaneceu à 200 °C por 10 h; NPM foram lavados com etanol e H₂O e secos a 60 °C em pressão reduzida por 12h. 		
Fe ₃ O ₄ @TiO ₂	 Hidrolise de TBOT [153]: 40 mg de Fe₃O₄ dispersas em etanol:acetonitrila (70:20 mL) com 15 min de banho de ultrassom e adicionou-se 0,5 mL NH₄OH 28%; 0,8 mL de TBOT³ foram dispersos em 20 mL de etanol com 10 min de banho de ultrassom. Esse foi adicionado ao sistema anterior gota-a-gota e permaneceu em agitação por 1,5 h; NPM foram lavados com H₂O e secos a 60 °C em pressão reduzida por 12h. 		

 ² PEG: Polietilenoglicol com massa molar média de 6000 g.mol⁻¹
 ³ TBOT: Tetrabutilortotitanato ou butóxido de titânio (IV)

Adaptações do Solvotermal [101]:

• 40 mg de Fe_3O_4 dispersas em 10 mL de isopropanol com 20 min de banho de ultrassom e levado ao copo

• Produtos transferidos para um copo de teflon contendo 20 mL de isoprapanol e 10 mL de DMF^4 .

 Adicionou-se 2 mL de TEOS⁵ e a mistura do reator permaneceu à 200 °C por 10 h;

• Os produtos foram lavados com acetona, etanol e H₂O e foram secos a 60 °C em pressão reduzida por 12h.

Stöber [103]:

• 40 mg de Fe_3O_4 dispersas em 100 mL de etanol com 10 min de banho de ultrassom e adicionou-se 2,5 mL de NH₄OH 28% e 2 mL de TEOS, seguido por 24 h de agitação mecânica.

 Os produtos foram lavados com H₂O e etanol e foram secos a 60 °C em pressão reduzida por 12h.

Stöber modificado [104]:

• 100 mg de Fe_3O_4 foram dispersas em 50 mL de HCl 0,1 mol.L⁻¹ com 10 min de banho de ultrassom seguido por lavagem com H₂O e etanol;

■ NPM dispersas em etanol/água (80:20 mL) segui-se com adição de 1 mL de NH₄OH 28% e agitação mecânica por 20 min;

 1 mL de TEOS foram dispersos em 10 mL de etanol e adicionou-se gota-a-gota ao dispersão anterior; seguiu-se por 8 h de agitação mecânica;

 Os produtos foram lavados com H₂O e etanol e foram secos a 60 °C em pressão reduzida por 12h.

Stöber modificado [81]:

 300 mg de Fe₃O₄ foram dispersos em etanol/água (150:50 mL) com agitação mecânica e 10 min de banho de ultrassom;

 Adicionou-se 3,5 mL de NH₄OH 28% com mais 10 min de agitação mecânica em banho de ultrassom;

 1 mL de TEOS foram dispersos em 10 mL de etanol e adicionou-se gota-a-gota ao dispersão anterior; seguiu-se por 6 h de agitação mecânica;

• Os produtos foram lavados com H₂O e etanol e foram secos a 60 °C em pressão reduzida por 12h.

Hidrólise e condensação [78]:

• 250 mg de $Fe_3O_4@SiO_2$ foram dispersos em 80 mL de etanol com banho de ultrassom;

• Adicionou-se 3,0 mL de NH₄OH 28% com mais 20 min de banho de ultrassom;

• 2 mL de TBOT foram dispersos em 40 mL de etanol com 5 min de banho de ultrassom e adicionou-se gota-a-gota ao dispersão anterior; seguiu-se por 20 h de agitação mecânica à 45 °C;

- Os produtos foram lavados com H_2O e etanol e foram secos a 60 °C em pressão reduzida por 12h.
- Uma fração de 100 mg do produto foi disperso em 10 mL de NaOH 1

 $Fe_3O_4@SiO_2\\$

Fe₃O₄@SiO₂@TiO₂

⁴ DMF: Dimetilformamida

⁵ TEOS: Tetraetilortosilicato

	mol.L ⁻¹ e transferidas para um copo de teflon contido em um reator. O sistema fechado permaneceu à 120 °C por 2 h; Os produtos foram lavados com H_2O e etanol e foram secos a 60 °C em pressão reduzida por 12h. Outra fração de 58 mg do produto foi calcinada a 350 °C por 2 h.
	Hidrólise e condensação [25]:
	 66,2 mg de Fe₃O₄@SiO₂ foram dispersos em 50 mL de etanol com 10 min de banho de ultrassom; 2 mL de TBOT foram adicionados gota-a-gota na mistura anterior com mais 20 min de agitação mecânica; Adicionou-se 1 mL de NH₄OH 28% se seguiu-se com 10 h de agitação; Os produtos foram lavados com H₂O e etanol e foram secos a 60 °C em pressão reduzida por 12h.
	Hidrólise e condensação [111]:
Fe ₃ O ₄ @SiO ₂ @TiO ₂ -N	 60 mg de Fe₃O₄@SiO₂ foram dispersos em 90 mL de água e 2 ml de TISOP foram dispersor em 10 mL de isopropanol com 10 min de banho de ultrassom; As soluções foram misturadas, adicionou-se 0,8 g de ureia e o sistema permaneceu à 45 °C por 3,5 h com min de agitação mecânica; Adicionou-se 1 mL de NH₄OH 28% se seguiu-se com 10 h de agitação; Os produtos secos a 105 °C em pressão atmosférica por 12h. Uma fração do produto seco foi calcinado à 400 °C por 2 h.
	Hidrólise e condensação [112]:
Fe ₃ O ₄ @SiO ₂ @TiO ₂ -N-Fe	 167 mg de Fe₃O₄@SiO₂ e 1,0 mL de ácido acético foram dispersos em 25 mL de etanol com 10 min de banho de ultrassom (solução A); Em paralelo 142 mg de ureia e 30 mg de FeCl₃.6H₂O foram dispersos em etanol/água/ácido acético (12:2:1 mL) (solução B); A solução B e 1 mL de TBOT foram separadamentes adicionados gota-a-gota à solução A e o sistema permaneceu em agitação mecânica por 3 h; Os produtos foram lavados com etanol e H₂O e foram secos a 105 °C em pressão atmosférica por 12h. Uma fração do produto seco foi calcinado à 400 °C por 3h.
	Hidrólise e condensação [77], [112]
	 100 mg de Fe₃O₄@SiO₂ foram dispersos em etanol/isopropanol (75:25 mL) com 30 min de banho de ultrassom (solução A); 1 mL de TISOP⁶ foram dispersos em etanol/isopropanol (7,5:2,5 mL) com 10 min de banho de ultrassom (solução B) A solução B foi vertida na solução A e permaneceu em agitação por 2 h; Em paralelo 0,399 g de ureia e 0,0285 g de FeCl₃.6H₂O foram dispersos em água/etanol/isopropanol (3,0:4,5:1,5 mL) (solução C); A solução C foi adicionada gota-a-gota na mistura AB e permaneceu em agitação por 2 h;

⁶ TISOP ou TTIP: Isopropoxido de titânio (IV) ou tetraisopropilortotitanato

Os produtos foram lavados com etanol/isopropanol (75:25 mL e transferidos com 35 mL de H₂O UP para o copo de teflon do reator, o qual foi mantido a 110 °C por 12h.
 Os produtos foram lavados com H₂O e foram secos a 60 °C em

• Os produtos foram lavados com H_2O e foram secos a 60 °C em pressão reduzida por 12h.

Apêndice B: Cinética de fotodegradação

B1 - Estudo de ordem zero

Considera-se que uma molécula A seja degradada em produtos conforme, $A \rightarrow produtos$, similar a comportamento apresentado na imagem seguinte. No tempo 0, $t_0=[A]_0$ e no tempo t, $t_t=[A]_t$.

Figura A1: Exemplificação de um comportamento típico de degradação de uma molécula A em função do tempo com cinética de ordem zero. As unidades para concentração de A, eixo y, e para o tempo, eixo x, são genéricas.

Tendo a velocidade de uma reação pode ser escrita: $v = \frac{-\Delta[A]}{\Delta t}$. Por outro lado, reações de ordem zero, podem ter também ser escritas como $v = k [A]^0 \rightarrow v = k$. Assim, igualando as equações, podemos reescrever os termos:

$$\frac{-\Delta[A]}{\Delta t} = k \quad \rightarrow \quad -\Delta[A] = k \,\Delta t \quad \rightarrow \quad \int_{[A]_0}^{[A]_t} d[A] = -k \int_0^t dt \quad \rightarrow \quad [A]_t - [A]_0 = -kt$$

A última expressão pode ser rearranjada em termos de uma equação geral de primeiro grau, y = ax + b,

$$[A]_t = -kt + [A]_0$$

em que *t* é uma variável, $[A]_t$ é uma função de *t*, *k* e $[A]_0$ são constantes. O gráfico para expressar o coeficiente angular, k, será o mesmo anterior, visto que não há transformação dos dados.
B2 - Estudo de primeira ordem

Considera-se que uma molécula A seja degradada em produtos conforme, $A \rightarrow produtos$, similar a comportamento apresentado na imagem seguinte. No tempo 0, $t_0=[A]_0$ e no tempo t, $t_t=[A]_t$.

Figura A2: Exemplificação de um comportamento típico de degradação de uma molécula A em função do tempo com cinética de primeira ordem. As unidades para concentração de A, eixo y, e para o tempo, eixo x, são genéricas.

Tendo a velocidade de uma reação pode ser escrita: $v = \frac{-\Delta[A]}{\Delta t}$. Por outro lado, reações de primeira ordem, podem ter também ser escritas como $v = k [A]^1$. Assim, igualando as equações, podemos reescrever os termos:

$$\frac{-\Delta[A]}{\Delta t} = k \ [A]^1 \quad \rightarrow \quad \frac{-\Delta[A]}{[A]} = k \ \Delta t \quad \rightarrow \quad \int_{[A]_0}^{[A]_t} \frac{d[A]}{[A]} = -k \int_0^t dt \quad \rightarrow \quad \ln[A]_t - \ln[A]_0 = -kt$$

A última expressão pode ser rearranjada em termos de uma equação geral de primeiro grau, y = ax + b,

$$\ln[A]_t = -kt + \ln[A]_0$$

em que t é uma variável, $\ln[A]_t$ é uma função de t, k e $\ln[A]_0$ são constantes.

Pode-se ainda usar as propriedades de log para reescrever a expressão anterior:

$$\ln\left(\frac{[A]_t}{[A]_0}\right) = -kt$$

O gráfico do coeficiente angular, k, será expresso de modo similar à:

Figura A3: Exemplificação de uma projeção para um coeficiente angular, k, em cinética de primeira ordem. A unidade para o tempo, eixo x, é genérica.

A equação anterior, também explica um decaimento exponencial em que:

$$[A]_t = [A]_0 \cdot e^{-kt} \quad \rightarrow \quad [A]_t = -[A]_0 \cdot e^{kt} \quad \rightarrow \quad \frac{[A]_t}{[A]_0} = -e^{kt} \quad \rightarrow \quad \ln\left(\frac{[A]_t}{[A]_0}\right) = -kt$$

B3 - Estudo de segunda ordem

Considera-se que uma molécula A seja degradada em produtos conforme, $A \rightarrow$ **produtos**. No tempo 0, $t_0=[A]_0$ e no tempo t, $t_t=[A]_t$.

Tendo a velocidade de uma reação pode ser escrita: $v = \frac{-\Delta[A]}{\Delta t}$. Por outro lado, reações de segunda ordem, podem ter também ser escritas como $v = k [A]^2$. Assim, igualando as equações, podemos reescrever os termos:

$$\frac{-\Delta[A]}{\Delta t} = k [A]^2 \quad \rightarrow \quad \frac{-\Delta[A]}{[A]^2} = k \,\Delta t \quad \rightarrow \quad \int_{[A]_0}^{[A]_t} [A]^{-2} d[A] = -k \int_0^t dt \quad \rightarrow$$
$$\rightarrow \quad \int_{[A]_0}^{[A]_t} \left(\frac{[A]^{-1}}{-1}\right) = -kt \quad \rightarrow \quad \frac{1}{[A]_t} - \frac{1}{[A]_0} = kt$$

A última expressão pode ser rearranjada em termos de uma equação geral de primeiro grau, y = ax + b:

$$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$$

em que *t* é uma variável, $1/\ln[A]_t$ é uma função de *t*, *k* e $1/\ln[A]_0$ são constantes. O gráfico do coeficiente angular, k, será expresso de modo similar à:

Figura A4: Exemplificação de uma projeção para um coeficiente angular, k, em cinética de segunda ordem. As unidades para o inverso concentração de A, eixo y, e para o tempo, eixo x, são genéricas.

Apêndice C: Validação de metodologia para quantificação do azul de metileno por espectrofotometria UV-Vis

Observaram-se os espectros de absorção de radiação visível das soluções aquosas de azul de metileno com diferentes concentrações:

Figura A5: Espectros de absorção de UV-Vis do azul de metileno com diferentes concentrações.

Utilizando o Software OriginPro 9.0 foram extraídos do gráfico acima os seguintes dados:

Concentração (µmol.L ⁻¹)	Início do pico (nm)	Final do pico (nm)	FWHM (nm)	Centro (nm)	Altura (u.a.)	Área (u.a.)
0,10	570	718	46,616	666	0,006	0,324
0,25	526	706	57,958	668	0,012	0,848
0,50	525	725	60,799	662	0,029	1,999
0,75	528	726	59,922	666	0,036	2,457
1,00	530	727	58,004	666	0,049	3,334
2,50	519	724	59,299	665	0,118	8,251
5,00	525	725	59,403	665	0,250	17,353
7,50	525	724	58,689	664	0,368	25,107
10,00	502	725	64,986	664	0,539	37,576

Tabela A2: Quantificação dos parâmetros das curvas de absorção espectrofotométricas.

Uma correlação forte e linear foi identificada para área do pico em função da concentração, conforme:

Figura A6: Correlação linear para área do pico em função da concentração da solução de azul metileno.

O cálculo do limite de detecção (LD) e do limite de quantificação (LQ) foram calculados com base nos parâmetros da curva analítica, utilizando o software Microsoft Excel (8), para tratamento dos dados, conforme [154]:

		Area (u.a.)						_
i	Xi	Yi	(Xi)²	(Yi)²	(Xi)x(Yi)	(Xi - Xm)²	(Yi-Ym)²	_
1	0,10	0,324	0,010	0,105	0,032	8,801	109,860	
2	0,25	0,848	0,063	0,720	0,212	7,934	99,145	
3	0,50	1,999	0,250	3,997	1,000	6,588	77,549	
4	0,75	2,457	0,563	6,036	1,843	5,367	69,697	
5	1,00	3,334	1,000	11,113	3,334	4,271	55,828	
6	2,50	8,251	6,250	68,078	20,627	0,321	6,525	
7	5,00	17,353	25,000	301,135	86,766	3,738	42,874	
8	7,50	25,107	56,250	630,349	188,301	19,654	204,528	
9	10,00	37,576	100,000	1.411,943	375,758	48,071	716,655	_
Soma	27,60	97,25	189,39	2433,48	677,87	104,75	1382,66	_
	(ΣXi)²	(ΣYi)²	_					-
	761,76	9457,33	-					
N	Xmédio	Ymédio	ΣXi²	ΣYi²	ΣΧίΥί	Sxx	Ѕуу	Sxy
9	3,07	10,81	189,39	2433,48	677,87	104,75	1382,66	379,6

 Conc (umol/11)
 Area (u.a.)

Em que Sxx e Syy representam a soma dos quadrados dos desvios em relação à média para valores individuais de x e y, pela seguinte expressão:

$$S_{xx} = \Sigma (x_i - \bar{x})^2 = \Sigma x_i^2 - \frac{(\Sigma x_i)^2}{N} \qquad \qquad S_{yy} = \Sigma (y_i - \bar{y})^2 = \Sigma y_i^2 - \frac{(\Sigma y_i)^2}{N}$$

Já a equação de Sxy é calculada conforme:

$$S_{xy} = \Sigma(x_i - \bar{x})(y_i - \bar{y}) = \Sigma x_i y_i - \frac{\Sigma x_i \Sigma y_i}{N}$$

As derivações de Sxx, Syy e Sxy são úteis para o cálculo do LD e do LQ, conforme:

Coeficiente angular	m=	"= Sxy / Sxx" 3,62445269	ou	"=INCLINAÇÃO(va 3,6	loresY;valo 244527	presX)" $m = \frac{S_{xy}}{S_{xx}}$	
Intercepto	b=	"= Ymédio – m* -0,30956713	'Xmédio'' ou	"=INTERCEPÇÃO(v -0,30	valoresY;va 095671	aloresX)" $b = \overline{y} - m\overline{x}$	
desvi. p. da regressão	Sr=	"=RAIZ((Syy - m 0,97561915	^2*Sxx)/(N-2))"		$s_{\rm r} = \sqrt{\frac{S_{yy} - m^2 S_{xx}}{N - 2}}$	
desvi. p. da inclinação	Sm=	"=RAIZ(Sr^2/Sx) 0,0953265	x)			$s_{ m m}=\sqrt{rac{s_i^2}{S_{xx}}}$	
desv. P. do intercepto	Sb=	"=Sr*RAIZ(1/(N· 0,43728562	-(ΣXi)²/Σxi²)	$s_{\rm b} = s_{\rm r} $	$\frac{\sum x}{N \sum x_i^2}$	$\frac{x_i^2}{-(\Sigma x_i)^2} = s_r \sqrt{\frac{1}{N - (\Sigma x_i)^2 / \Sigma x_i^2}}$	- 2 i
Limite de Detecção	LD =	"=3*Sb/m" 0,3619462	(µmol/L)	LD :	$=\frac{ks_{b}}{m}$ k:	=2 com nível de confiança 92,1% =3 com nível de confiança 98%	
Limite de Quantificação	LQ =	"=10*Sb/m" 1,20648732	(µmol/L)				

Conforme os cálculos apresentados, o LD foi de 0,362 $\mu mol.L^{\text{-1}}$ e LQ foi de 1,206 $\mu mol.L^{\text{-1}}.$

Apêndice D: Artigo original publicado em periódico especializado de circulação internacional com qualis CAPES na área interdisciplinar igual à A1.

Lacerda FERNANDES, Ítalo; Pereira BARBOSA, Danns; Botelho de OLIVEIRA, Sérgio; Antônio da SILVA, Valdeir; Henrique SOUSA, Marcelo; MONTERO-MUÑOZ, M.; A. H. COAQUIRA, José. Synthesis and characterization of the MNP@SiO₂@TiO₂ nanocomposite showing strong photocatalytic activity against methylene blue dye. Applied Surface Science, v. 580, n. December 2021, p. 152195, 2021. https://doi.org/10.1016/j.apsusc.2021.152195.

^a Instituto Federal Goiano - Campus Posse, 73.900-000, Posse-GO, Brazil
 ^b Pontifícia Universidade Católica de Goiás, 74605-010, Goiânia-GO, Brazil

^c Instituto de Química, Instituto Federal de Goiás, 74270-040, Goiânia-GO, Brazil

¹ Instituto Federal do Norte de Minas Gerais - Campus Arinos, 38680-000, Arinos-MG, Brazil ² Faculdade de Ceilàndia, Universidade de Brasília, 72220-140, Brasília-DF, Brazil

^f Núcleo de Física Aplicada, Instituto de Física, Universidade de Brasília, 70.910-900 Brasília-DF, Brazil

⁸ Universidade Federal de São Carlos, 13565-905, São Carlos- SP, Brazil

ARTICLE INFO

Keywords.

Magnetite

Hydrothermal

Photodegradation

Methylene blue dye

Silica

Titania

ABSTRACT

Multifunctional nanocomposites based on magnetic cores are being extensively studied in view of biomedical, environmental and engineering applications. In this study, we report the double-coated magnetic nanoparticles (MNP), MNP@SiO2@TiO2 - nanocomposites synthesize by solvothermal followed by sol-gel method. The obtained nanocomposites were characterize by several advanced photocatalytic techniques. The nanocomposites show an excellent photocatalytic activity reducing 95% methylene blue (MB) dye concentration within the first 30 min, which is double than the commercial TiO2, Degussa P25 (which has ability of only 47%). In addition to this, these nanocomposites can be easily separated in the application of magnetic field owing to the presence of magnetic cores. To our knowledge, there is no other material showing that strong photocatalytic action against methylene blue dye. Besides, our results indicate an stable photocatalytic activity, which is warranted, at least four times, without any significant loss of activity. Based on our results, we highly recommend MNP@SiO2@TiO2 nanocomposite for waste-water treatment and purify contaminants applications.

* Corresponding author.

E-mail addresses: coaquira.ja@gmail.com, coaquira@unb.br (J. A. H. Coaquira).

https://doi.org/10.1016/j.apsusc.2021.152195

Received 6 October 2021; Received in revised form 9 December 2021; Accepted 9 December 2021 Available online 18 December 2021 0169-4332/© 2021 Elsevier B.V. All rights reserved.