

Universidade de Brasília – UnB Instituto de Geociências Programa de Pós-Graduação em Geologia

EVOLUÇÃO CRUSTAL DO LIMITE ORIENTAL DA FAIXA PARAGUAI: SIGNIFICADO TECTÔNICO DA GRANITOGÊNESE DE HIGH Ba-Sr E SUAS ROCHAS HOSPEDEIRAS

CRUSTAL EVOLUTION OF THE EASTERN BOUNDARY OF PARAGUAY BELT: TECTONIC SIGNIFICANCE OF THE HIGH Ba-Sr GRANITOGENESIS AND THEIR HOST ROCKS

Amanda Figueiredo Granja Dorilêo Leite

TESE DE DOUTORADO Nº 182

Brasília, DF

Novembro de 2021

Universidade de Brasília – UnB Instituto de Geociências Programa de Pós-Graduação em Geologia

EVOLUÇÃO CRUSTAL DO LIMITE ORIENTAL DA FAIXA PARAGUAI: SIGNIFICADO TECTÔNICO DA GRANITOGÊNESE DE HIGH BA-SR E SUAS ROCHAS HOSPEDEIRAS

Amanda Figueiredo Granja Dorilêo Leite

TESE DE DOUTORADO Nº 182

Orientador: Prof. Dr. Reinhardt Adolfo Fuck (UnB);
Co-orientador: Prof. Dr. Elton Luiz Dantas (UnB);
Co-orientador: Prof. Dr. Amarildo Salina Ruiz (UFMT).

Banca Examinadora:

Prof. Dr. Reinhardt Adolfo Fuck (Orientador); Prof^a. Dr^a. Natalia Hauser (Interno); Prof^a. Dr^a. Mônica da Costa Pereira Lavalle Heilbron (UERJ); Prof. Dr. Jean Michel Lafon (UFPA); Prof. Dr. Federico Alberto Cuadro Jiménez (Suplente interno).

Brasília, DF, novembro de 2021

Ficha catalográfica elaborada automaticamente, com os dados fornecidos pelo(a) autor(a)

FL533e	Figueiredo Granja Dorilêo Leite, Amanda Evolução crustal do limite oriental da Faixa Paraguai: significado tectônico da granitogênese de high Ba-Sr e suas rochas hospedeiras / Amanda Figueiredo Granja Dorilêo Leite; orientador Reinhardt Adolf Fuck; co-orientador Elton Luiz Dantas Brasília, 2021. 233 p.					
	Tese (Doutorado - Doutorado em Geologia) Universidade de Brasília, 2021.					
	1. Gondwana Ocidental. 2. Faixa Paraguai. 3. Granitoides de alto Ba-Sr. 4. Proveniência Sedimentar. 5. Evolução Crustal. I. Fuck, Reinhardt Adolf , orient. II. Dantas, Elton Luiz , co-orient. III. Título.					

Dedicado a Jeanine e Carlos, aqueles que me ensinaram que tudo aquilo que podemos sonhar, conseguimos realizar.

AGRADECIMENTOS

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001. Agradeço ao suporte financeiro que me foi oferecido pela CAPES e o Instituto Nacional de Ciência e Tecnologia – Estudos Tectônicos (INCT - ET).

Agradeço a minha família, por todo apoio e carinho, ofertando-me palavras sábias nos momentos de fragilidade. Aos meus pais e à minha irmã, por serem a minha base, por me passarem uma visão otimista da vida, sendo essenciais na minha caminhada até aqui. Ao meu companheiro de vida, por todo apoio e amor, e por me mostrar sempre uma visão mais justa do mundo. Vocês que me motivaram, quando eu já não tinha mais força, que me inspiraram e foram exemplos para continuar nessa jornada.

Sou grata às pessoas que colaboraram, de alguma forma, com a troca de conhecimento, com todo o tipo de ajuda que generosamente me ofereceram nesses quase quatro anos de trabalho. Aos professores Amarildo, Fuck e Elton, pela dedicação e tempo destinado às correções e orientações. Estendo os agradecimentos a todos os professores que passaram pelo meu caminho nas universidades federais que freequentei, por todo conhecimento destinado a mim. À equipe do Laboratório de Geocronologia da UnB pelo suporte fornecido. Ao professor Patrick Monié da *Geosciences Montpellier* pelo acolhimento no seu laboratório e por ter lutado junto comigo pela realização das análises ⁴⁰Ar/³⁹Ar.

E obrigada Deus, e a qualquer nome que se possa dar a essa energia e/ou ligação quântica que possa existir nesse mundo, por nunca ter soltado da minha mão nos momentos.

SUMÁRIO

LI	STA I	DE FIGURAS	ii			
LI	STA I	DE TABELAS	xi			
RJ	ESUM	0	18			
A 1	SLD	ACT	18			
AI	551K		10			
1.	INT	IRODUÇAO	20			
	1.1.	Apresentação do tema	20			
	1.2.	Relevância e objetivos da tese	22			
	1.3.	Localização e vias de acesso	25			
	1.4.	Estrutura da tese	26			
2.	RE	FERENCIAL TEÓRICO E REVISÃO BIBLIOGRÁFICA				
	2.1.	A evolução do magmatismo terrestre	28			
	2.2.	O supercontinente Gondwana e suas fases finais de fechamento	32			
	2.3.	O Lineamento Transbrasiliano-Kandi e a Tectônica strik-slip	41			
3.	MA	TERIAIS E MÉTODOS	45			
	31	Etana Prá-Campo	45			
	3.1.	Etapa i re-Campo Etapa de amostragem				
	3.3.	Etapa de preparação de amostras				
	3.4.	Análises Petrográficas				
	3.5.	Análises Litoquímicas				
	3.6.	Análises Geocronológicas e geoquímica isotópica	47			
1	٨D		50			
4.	АЛ					
	4.1.		54			
	4.2.	GEOLOGICAL SETTING				
	4.3.	MATERIALS AND METHODS				
	4.4.	KESUL IS				
	4.4.	1. Geology and Petrography	04			
	4	4.1.1. The qz-monzoaranite suite				
	4	2 Lithochemical Data	60			
	4.4. 11	 Lunochemica Data				
	т.т. Д	4 3 1 The az-monzodiorite/granodiorite suite				
		4 3 ? The monzogranite suite	90			
	4.4.	4. Sm-Nd isotone data of whole-rock samples				
	4.5.	DISCUSSION				
	4.5.	1. Interpretation of U-Pb data				
	4	.5.1.1. Magma temperatures	94			
	4.5.	2. Type of Magmatism				
	4.5.	3. Petrogenesis of the qz-monzodiorite/granodiorite suite				
	4	.5.3.1. The qz-monzodiorite facies: evidence of appinitic affinity	101			
	4	.5.3.2. Cogeneticity of qz-monzodioritic and granodioritic rocks	101			

4.5.4.	Petrogenesis of the monzogranite suite	
4.5.5.	Tectonic interpretations	
4.5.	5.1. The qz-monzodiorite/granodiorite suite	
4.5.	5.2. The monzogranite suite	
4.5.6.	Sanukitoids and high Ba-Sr connections	
4.6. C	CONCLUSION	
REFER	ENCES	
ANEXO	S AR TIGO 1	
5. ARTI	GO 2	
ABSTRA	АСТ	
5.1. II	NTRODUCTION	
5.2. G	GEOLOGICAL SETTING	
5.3. N	IATERIALS AND METHODS	
5.4. R	RESULTS	
5.4.1.	Field observations and Petrography	146
5.4.2.	U-Pb geochronology of detrital zircon grains	
5.4.3.	Sm-Nd isotope data of whole-rock samples	
5.4.4.	⁴⁰ Ar/ ³⁹ Ar data	174
5.5. D	DISCUSSION	
5.5.1.	Age of sedimentation and depositional setting	176
5.5.2.	Most probable source areas	179
5.5.3.	Record of thermal conditions	
5.5.	3.1. Constraining an igneous cooling	
5.5.	3.2. Country rocks metamorphic evolution	184
5.5.4.	Evolution of the Paraguay Belt	
5.5.5.	West Gondwana assembly at Cambrian times	190
5.6. C	CONCLUSION	
REFER	ENCE	
ANEXOS A	ARTIGO 2	
Supplem	netary Table 5.1	
6. CONS	SIDERAÇÕES FINAIS	
7. REFE	RÊNCIAS	

LISTA DE FIGURAS

Figura	1.1 – Mapa de localização e vias de acesso à área de pesquisa, localizada a
	aproximadamente 47 km do município de Barra do Garças - MT, divisa com Goiás26
Figura	2.1 – Mapa da configuração do supercontinente em 500 Ma (extraído de Schmitt et al.,
	2018)
Figura	2.2 - Configuração do Gondwana mostrando a distribuição dos orógenos tardios
	(extraído de Zhao et al. 2018)
Figura	2.3 - Esquema tectônico ilustrando os principais blocos e cinturões orogênicos na
	América do Sul e África, incluindo a localização da região de fechamento do orógeno
	West Gondwana (extraído de Oriolo et al., 2017)
-	

- Figure 4.1– Geological and geotectonic context of the study area: (A) geotectonic context of the formation of the Tocantins Province during the Brasiliano Orogeny. Cratons are shown in dark gray. AM: Amazonian, WA: West Africa; CO: Congo; SF: São Francisco; KA: Kalahari; RP: Rio de la Plata; PP: Paranapanema; RA: Rio Apa. The red rectangle refers to the investigated region in the context of the Brasiliano Pan-African Orogeny (modified from Vaughan and Pankhurst, 2008); (B) location of the Tocantins Province in the Brazilian territory. The red rectangle comprises the Paraguay Belt shown in (C) Simplified geological map of the Paraguay Belt and Brasília Belt (modified after

Ruiz et al., 2010; Pimentel et al., 2000). Red numbers related to the respective granitic intrusions in the Paraguay Belt: 1- Araguaiana; 2- Lajinha; 3- São Vicente; 4- Sonora; 5- Coxim; 6- Rio Negro; 7- Taboco; (D) simplified geological map of the study area.

- **Figure 4.4** The continuous and dotted lines correspond to studies related to high Ba-Sr magmatism used for comparison. Distribution of representative analytical points of the investigated magmatism in the diagrams: (A) Na2O+K₂O-CaO versus SiO₂ proposed by Frost et al. (2001); (B) AFM diagram of Irvine and Baragar (1971); (C)

- **Figure 4.10** U-Pb geochronological diagrams for the granodiorite facies, sample AL01. The spots of 30 µm are represented as white circles. (A) Distribution of all 51 U–Pb data in

- Figure 4.12 Age (Ga) vs. ε_{Nd} diagram for samples from the studied high Ba-Sr intrusions. For comparison, values from the Neoproterozoic granitic province of the Paraguay Belt are also plotted. Data from Ferreira (2009), Godoy et al., (2010) and Pinho (2001). ..92
- Figure 4.14 Schematic model for the evolution of the investigated high Ba–Sr intrusions and the generation of two contrasting groups at post-collisional scenario. See text for discussions. (A) new accretion stage with onset at ca. 590 Ma; (B) late- to postcollisional stage with the petrogenetic model for the older suite: 1) lithospheric mantle enriched by subducted slab-derived fluid and/or melt; 2) mafic magma rich in LREE

- Figure 5.1 Geological sketch of the study area: (A) geotectonic context of the formation of the Tocantins Province during the Brasiliano Orogeny. Cratons are shown in dark gray (modified from Vaughan and Pankhurst, 2008); (B) location of the Tocantins Province in the Brazilian territory; (C) simplified geological map of the Paraguay Belt (modified from Ruiz et al., 2010). Red polygons indicate geochronologically different portions of the Paraguay Belt. Black letters in Region 2 indicate previous investigations in the upper Cuiabá Group (Mata-Mata unit): a- Pelosi (2017); b- Vasconcelos (2018); c- phyllite samples McGee et al. (2018); (D) simplified geological map of the investigated area

(modified from CPRM, 2017). Corrigir na legenda: Post-tectonic granites; Jacadigo and Boqui groups; Granulite terrains; falta arco magmático de C e D; Granite-gneiss139

- Figure 5.2 Schematic model illustrating the stratigraphic column of the northern segment of the Cuiabá Group (modified after Manoel et al. 2020). The unit numbers correspond to the subunits of Luz et al. (1980). The syn-rift formations are composed of the units 1 and 2: intercalated pelites and carbon-rich pelites, marbles and metagreywacke; The passive margin formations comprise the units 3 to 8. Unit 3 and 5: metaconglomerates, metarenites and graded phyllites, meta-arkose and quartzite; Unit 4: metadiamictites (Engenho Facies) and psammitic to pelitic metarhythmites with dropstones (Cangas Facies); Units 6, 7 and 8: phyllites, metadiamictites, quartzites (Mata-Mata Facies) and marbles (Guia Facies). The ages (Ma) represent U-Pb detrital zircon ages of each unit, the youngest concordant age of which is interpreted as maximum depositional age: (a) Babinski et al., (2018); (b) Batalha (2017); (c) Pelosi (2017); (d) Vasconcelos (2018).
- Figure 5.4 (A) macroscopic field aspect of the laminated structure, that corresponds to bedding planes and compositional variation and rhythmic alternation between quartzite and phyllite (B) photomicrography of of muscovite-chlorite phyllite with foliations highlighted and layers of polycrystalline quartz intercalated with mica; (C) photomicrography of muscovite-biotite schist. Oriented and metamorphic mica reach up to the biotite zone sample AL019; (D) photomicrography of the quarzite portion of

- Figure 5.6 Backscattered images of some representative grains from the analyzed samples. U-Pb measurement spots are indicated in white circles with 30 μ m. See text for details.

- Figure 5.7 (A) weighted mean average plot of 104 analyzed concordant grains of sample AL18; (B) probability density diagrams showing ²⁰⁶Pb/²³⁸U age spectra of the concordant analyzed grains of the sample AL18; (C) weighted mean average plot of 64 analyzed concordant grains of sample AL06; (D) probability density diagrams showing ²⁰⁶Pb/²³⁸U age spectra of the concordant analyzed grains of the sample AL06; 171
- Figure 5.8 Distribution of probability density diagrams using weighted mean average calculation of samples AL11 and AL31. Some of the analyses were automatically rejected during the Concordia age plotting. (A) weighted mean average plot of 104 analyzed concordant grains of sample AL11; (B) probability density diagrams showing ²⁰⁶Pb/²³⁸U age spectra of the concordant analyzed grains of the sample AL11; (C) weighted mean average plot of 64 analyzed concordant grains of sample AL31; (D)

- Figure 5.10 (A) Hand specimen of granodiorite highlighting the weak schistosity marked by oriented mafic minerals. The plutonic body was emplaced in the investigated metasedimentary rocks and the analyzed biotite grains presented orientation parallel to the Transbrasiliano Lineament trend; (B) result of the Ar-Ar analyses performed on biotite and respective plateau ages segments of age spectra; (C) photomicrograph of mica schist, highlighting a muscovite porphyroblast; (D) result of the Ar-Ar analyses performed on white micas and respective plateau (and pseudo-plateau) ages segments of age spectra.
- Figure 5.11 Distribution of the youngest dated grains, which vary between 600 and 512 Ma.
- Figure 5.12 (A) summary plot of variation of the difference between the measured crystallization age for a detrital zircon grain and the depositional age of the succession in which it occurs, based on cumulative proportion curves of Cawood et al. (2012) for the four samples of this study. A: convergent basins (red field); B: collisional basins (blue field); C: extensional basins (green field); (B) plot of cumulative proportion as function of different curves related to foreland data from five locations established by Cawood et al. (2012).

LISTA DE TABELAS

Table 4.1 – Summary of U-Pb, Sm-Nd and tectonic environment data available in the literature
on Neoproterozoic magmatism of the Paraguay Belt
Table 4.2 – Results of the whole rock geochemical analyses of the investigated rocks
Table 4.3 - Data of U-Pb analyses performed through LA-ICP-MS on zircon from the
investigated magmatism
Table 4.4 - Sm-Nd isotope results
Table 4.5 – Worldwide documented appinitic rocks associated to high Ba-Sr magmatism
generated at the end of the Proterozoic and beginning of the Phanerozoic
Table 5.1- Maximum depositional ages and summary of tectonic interpretations from the U-
Pb detrital zircon data in the center-south portion of the Paraguay Belt (Region 2)Erreur !
Signet non défini.
Table 5.2 – Summary of the deformation phases in the investigated area. 150
Table 5.3 - Descrição
Table 5.4 – Sm-Nd analytical data for the metasedimentary rocks. 173
Table 5.5 – Summary of Ar-Ar data available in the Araguaia, Paraguay and Pampean belts,
along the Clymene Ocean corridor
Table 5.6 – Evidence of Clymene Ocean existence and/or closure in the Paraguay Belt190

Supplemetary	Table	4.1 – U-Pb	general	conditions	at	Laboratory	of	Geochronology	and
Isotope Geoche	mistry c	of the Univers	sidade d	e Brasília -	Un	В			.125

Supplemetary Ta	ble 4.2 - Data of U-	Pb analyses performe	d through LA-ICP-MS on zircon
from 91500			
Supplemetary Ta	ble 4.3 - Calculation	of zircon saturation	temperatures (T _{ZR} .sat.C) of the Zr
concentrations for	both suites		

RESUMO

As faixas móveis mais recentes da Plataforma Sul-Americana correspondem a regiões que registram intensa atividade tectônica, formadas durante a Orogenia Brasiliana. A Província Tocantins é considerada um mosaico composto pelas Faixas móveis Paraguai, Araguaia e Brasilia, geradas entre os crátons Amazônico e São Francisco. Esta tese de doutorado busca contribuir na compreensão da evolução geotectônica da região oriental da Faixa Paraguai a partir do estudo de granitóides e rochas metassedimentares encaixantes. A região de estudo é localizada quase nas imediações do contato com o Lineamento Transbrasiliano (LTB), que faz limite com o Arco Magmático Arenópolis, Faixa Brasília. A área de interesse é constituída por sequência supracrustal metamorfisada em fácies xisto verde e por corpos graníticos pouco estudados, tipicamente associados ao magmatismo neoproterozoico da Faixa Paraguai. Parte das rochas estudadas apresentam deformação superimposta transcorrente, relacionada evolução do Sistema Direcional do Lineamento Transbrasiliano. Os granitóides estudados compreendem duas suítes que cristalizaram com aproximadamente 40 Ma de diferença entre si. Ambas as suítes apresentam elevados teores de Ba (~1430 ppm), Sr (~800 ppm), K₂O (~4 wt%), LREE e LILE. Os valores negativos de $\varepsilon_{Nd}(T)$ (-6,32 e -6,65), associados a conteúdos elevados de elementos incompatíveis, indicam evolução a partir da fusão parcial do magma derivado do manto, que foi previamente metassomatizado por fluidos vindos da placa subductante. Foram obtidas idades de cristalização de 557±5,7 Ma e 554±2,9 Ma para a suite mais antiga, que apresenta caráter cálcio-alcalino e alto K. Esta suíte evoluiu de magma apinítico com alto conteúdo de Cr, V e Ni, derivado do manto, para magma contemporâneo granodioritíco a partir de cristalização fracionada acompanhada de pequena contaminação crustal. A suite mais nova, de 515±3,6 Ma, é representada por monzogranitos isotópicos de alto K e concentração elevada de alguns HFSE, mostrando afinidade álcali-cálcica. O modelo petrológico proposto para as duas suítes baseia-se no mecanismo de slab break-off e posterior delaminação litosférica após

40 Ma. O estudo de proveniência sedimentar foi aplicado nas rochas metassedimentares encaixantes dos granitoides. A utilização de zircão detrítico com a aplicação do método U-Pb permitiu estabelecer espectro de idades distribuídas desde o fim do Ediacarano até o Arqueano, sendo ~60% dos grãos analisados são derivados de fontes ediacarano-criogenianas. A idade máxima de deposição da bacia é definida em ca. 594 Ma, limitada pelos pico principal de zircões mais jovens. O caráter sin-orogênico da bacia é definido pelo fato de que mais de 50% dos grãos apresentam idades próximas da idade máxima de sedimentação da bacia. O maior pico de idades U-Pb de zircão é registrado em torno de 620 Ma, indicando um evento de sedimentação sin-colisional relacionado à atividade de um arco magmático contemporâneo à deposição. O desenvolvimento dessa margem ativa teria acontecido após ca. 620 Ma e se encerrado em 594 Ma com a deposição da bacia. A idade ⁴⁰Ar-³⁹Ar de 536±4 Ma obtida para o metamorfismo das rochas encaixantes a continuação temperatura indica da de aproximadamente 400 °C até o Cambriano. Pode-se sugerir também a presença de alguns plutons que não afloram na área que causou o aquecimento da área neste período. A taxa rápida de 25°C/Myr indica a taxa de resfriamento do pluton granodiorítico, associação às falhas transcorrentes relacionadas ao Lineamento Transbrasiliano. Os dados geoquímicos e geocronológicos U-Pb do magmatismo e de zircão detrítico, associado ao contexto tectônico e metamórfico, indicam que a evolução da porção central do Gondwana Oriental ultrapassou os 600 Ma e, possivelmente, um oceano mais jovem foi consumido, o Oceano Clymene.

Palavras-chave: Gondwana Ocidental; Faixa Paraguai; Granitoides de alto Ba-Sr; Petrogênese; Proveniência Sedimentar; Evolução Crustal.

ABSTRACT

The youngest mobile belts of the South-American Platform correspond to regions that record intense tectonic activity and were formed during the Brasiliano Orogeny. The Tocantins Province is a mosaic composed of three mobile belts located between the Amazonian and São Francisco cratons. This Ph.D. thesis presents the advance of the studies regarding the geotectonic evolution of the eastern region of the Paraguay Belt, located almost on its limit with the Arenópolis Magmatic Arc of the Brasília Belt. The study area is composed of a supracrustal sequence metamorphosed to the greenschist facies and granitic bodies associated with the Neoproterozoic magmatism of the Paraguay Belt. Superimposed deformation was produced by transcurrent faults related to the Transbrasiliano Lineament (LTB). The granitoids of the study area belong to two suites that crystallized with an approximately 40 Ma age difference from one another. Both suites present high Ba (~1430 ppm), Sr (~800 ppm), K₂O (~4 wt%), LREE and LILE contents. Negative $\varepsilon_{Nd}(T)$ values (-6.32 and -6.65 respectively) associated with high incompatible-element contents indicate magmatic evolution from partial melting of a previously metasomatized mantle by fluids coming from a subducting plate. Crystallization ages of 557 ± 5.7 Ma and 554 ± 2.9 Ma were obtained for the older, high-K, calc-alkaline suite. This suite evolved from a mantle-derived, appinitic magma with high Cr, V, and Ni contents to a coeval granodioritic magma via fractional crystallization accompanied by minor crustal contamination. The younger suite of 515 ± 3.6 Ma of age is represented by high-K monzogranites with high concentrations of some HFSE, indicating alkali-calcic affinity. The petrologic model proposed for both hybrid suites is based on the slab break-off mechanism followed by lithospheric delamination after 40 Ma. Sedimentary provenance of the metasedimentary rocks that host the granitoid bodies was investigated. Detrital zircon U-Pb geochronology helped establish an age spectrum from the beginning of the Cambrian to the Archean, in which ~60% of the zircon grains derived from Ediacaran-Cryogenian sources. The

maximum deposition age is defined at ca. 594 Ma, constrained by the main peak youngest zircon grains. The syn-orogenic character of the sedimentary basin is inferred by the fact that the ages obtained for more than 50% of the grains are close to the maximum sedimentation age obtained for the basin. The highest zircon U-Pb age peak is recorded around 620 Ma, indicating a syn-collisional sedimentation event related to the activity of a magmatic arc coeval to deposition. The development of this active margin may have taken place after ca. 620 Ma and ended at ca. 594 Ma. The 40 Ar- 39 Ar age of 536 ± 1.83 Ma obtained for the metamorphism of the host rocks indicates the maintenance of a temperature of approximately 400 °C until the Cambrian or may indicate the presence of plutons that not cropped out, yielding the heating in the area. A 25°C/Myr cooling rate is estimated for the granodioritic magma – the fast magma emplacement takes place possibly associated with transcurrent faults related to the Transbrasiliano Lineament. The assembly of the data presented here highlight the fact that the study area was a tectonically active region from the late Ediacaran to the beginning of the Cambrian. The geochronological U-Pb data from detrital zircon and magmatic rocks, associated to the tectonic and metamorphic context, indicate that the evolution of the central portion of West Gondwana has overtaken 600 Ma. Possibly, a younger ocean was consumed for generation of this rocks, the Clymene Ocean.

Keywords: West Gondwana; Paraguay Belt; High Ba-Sr granitoids; Petrogenesis; Sedimentary Provenance; Crustal Evolution.

1. INTRODUÇÃO

1.1.Apresentação do tema

As causas e relações entre as mudanças que ocorreram no planeta durante a Era Neoproterozoica (1000-540 Ma) têm sido abordadas em muitas pesquisas interdisciplina res (Stern, 1994). Extensas zonas de cisalhamento transpressionais e cinturões móveis com volumoso magmatismo orogênico foram eventos marcantes que se consolidaram nas fases finais de importantes orogenias neoproterozoicas (Unrug, 1992; Meert, 2001; Cordani *et al.*, 2013). O entendimento da paleogeografia e tectônica da Plataforma Sul-Americana baseia-se no esclarecimento de fases de amálgama do Gondwana, último grande evento que registra formação de cadeias de montanhas e fechamento de bacias oceânicas e intracontinentais no final do Pré-Cambriano. A aglutinação do Supercontinente Pannotia-Gondwana originou-se no Neoproterozoico durante a Orogenia Brasiliana-Pan-Africana (Kennedy, 1964; Kröner, 1984, Roggers, 1996, Meert, 1999 entre outros), que amalgamou os grandes crátons Amazônico, São Francisco-Congo, Kalahari, Rio de la Plata, metacraton do Sahara e outros pequenos fragmentos crustais.

Em visão geral de Gondwana, algumas peças constituintes foram posteriormente aglutinadas ao longo de colisões diacrônicas no final do Neoproterozóico e início Fanerozóico (~575-480 Ma). Esse intervalo é caracterizado por abundante consumo de litosfera oceânica em todos os sectores do supercontinente, visto que a distribuição global de zircão detrítico datados em 600–500 Ma são recorrentes nos terrenos de toda extensão do supercontinente Gondwana (Kennedy, 1964; Meert, 1999, 2001; Veevers, 2004; Meert e Lieberman, 2008; Meredith *et al.*, 2017). A fase final de aglutinação de Gondwana Ocidental é tradicionalmente registrada pelos eventos colisionais gerados pela aproximação dos crátons Amazônico, São Francisco-Congo,

Rio de la Plata e do Bloco Paranapanema, que indicam o fechamento do grande oceano Goiás-Farusiano até 620 Ma (Kröner e Cordani, 2003; Cordani *et al.*, 2009, 2013; Della Giustina *et al.*, 2009, 2011). Porém, um outro modelo de evolução vem sendo apresentado e a integração de dados paleomagnéticos do Gondwana Ocidental e diversos eventos tectono-termais cronocorrelatos entre as Faixas Araguaia, Paraguai e Pampeana, sugerem o fechamento de oceano cambriano denominado de Clymene (Trindade *et al.*, 2003, 2006; Tohver *et al.*, 2010, 2012; Tohver e Trindade, 2014).

No contexto de aglutinação de supercontinentes, margens continentais passivas se tornam margens ativas, originando faixas móveis. A Província Tocantins é formada por um conjunto de blocos tectônicos agregados durante a Orogenia Brasiliana, formando extenso mosaico orogênico no centro do Brasil. A Faixa Paraguai constitui parte dessa rede de orógenos neoproterozoicos e é alvo de diversos questionamentos a respeito da evolução geotectônica e paleogeográfica do Gondwana Ocidental.

A área foco do presente trabalho situa-se no limite leste da Faixa Paraguai, onde o Lineamento Transbrasiliano (LTB) separa o extremo leste da Faixa Paraguai da extensão meridional do Arco Magmático de Goiás, da Faixa Brasília. O LTB é entendido como uma megafeição continental resultante de deslocamentos laterais, durante e/ou após a colisão envolvendo massas continentais como os crátons Amazônico, São Francisco-Congo, Rio de La Plata e o bloco Paranapanema (Pimentel e Fuck, 1992; Fuck *et al.*, 2013).

O presente trabalho busca evidências a partir de dados geoquímicos e isotópicos/geocronológicos do magmatismo e de rochas supracrustais expostas em uma área muito pouco estudada, situada na região limítrofe da Faixa Paraguai com o Arco Magmático Arenópolis, da Faixa Brasília. Os dados apresentados buscam contribuir para a compreensão da evolução geotectônica da Faixa Paraguai, e assim, melhorar o entendimento da fase final de

aglutinação do Gondwana Ocidental. A integração dos elementos obtidos permitiu analisar de forma ampla o cenário tectônico que gerou as rochas investigadas e assim, correlacioná-lo com a possível existência de oceano mais recente no centro do Gondwana Ocidental.

1.2.Relevância e objetivos da tese

Muitos trabalhos têm sido desenvolvidos para esclarecer a história do amálgama de Gondwana (Stern, 1994; Meert, 2001, 2003; Collins e Pisarevisky, 2005; Pisarevisky *et al.*, 2008; Schmitt *et al.*, 2018), incorporando evidências de eventos colisionais a partir de dados estruturais, termais, magmáticos, geocronológicos e deformacionais entre pequenos continentes durante o Neoproterozoico. Indícios sobre a existência de oceano de idade ediacarana a cambriana tem sido sugerida, cuja destruição gerou rochas orogênicas no fim do Neoproterozoico, implicando em importantes discussões tectônicas sobre a amalgamação da porção oeste do supercontinente Gondwana. Neste sentido, a região do extremo leste da Faixa Paraguai constitui um objeto ideal para o estudo da presença desse tipo de eventos evolucionais tardios no Gondwana Ocidental.

A área foco deste trabalho é constituída por sequência supracrustal tipicamente descrita como pertencente ao Grupo Cuiabá, zona interna da Faixa Paraguai, e por intrusões graníticas (Seer, 1985; Seer e Nilson, 1985). Não há dados geocronológicos e geoquímicos disponíveis para essas rochas, que permitam definir idade e ambiente geotectônico e relacioná-las com a geologia regional da Faixa Paraguai e/ou da Província Tocantins. Logo, por falta de dados, tem-se uma área que é pouco considerada quando é abordada a evolução Brasiliana, não havendo consenso sobre a origem das rochas aflorantes. Seer (1985) atribui a unidade ao Grupo Cuiabá e CPRM (2017) a define como prolongamento da Sequência Metavulcano-sedimentar Nova

Xavantina, exposta a norte da região de estudo. Além disso, trabalhos iniciais identificaram os corpos intrusivos estudados e sugeriram que a gênese destes corpos seria possivelmente correlacionada com o evento magmático neoproterozoico descrito na Faixa Paraguai (Seer, 1985; Seer e Nilson, 1985; Godoy *et al.*, 2007, 2010).

A leste da área investigada, as rochas estudadas apresentam deformação superimpos ta pelas falhas transcorrentes associadas ao Lineamento Transbrasiliano (LTB). A zona de descontinuidade transcorrente na região de Bom Jardim de Goiás é exposta em sua fase rúptildúctil e nomeada como Lineamento Serra Negra (Curto *et al.*, 2014, 2015). Tendo em vista a grande relevância do Lineamento Transbrasiliano na história geológica de estabilização da Província Tocantins, torna-se de extremo interesse científico melhor compreensão do seu papel na estruturação termal e deformacional nos terrenos que são afetados pela mega-estrutura continental, e assim entender a possível associação com o magmatismo aparentemente influenciado pela acomodação do TLB e suas falhas interconectadas.

O presente trabalho visa contribuir para o avanço do conhecimento sobre a evolução tectônica da região central da Província Tocantins e elucidação da evolução crustal neoproterozoica tardia do Gondwana Ocidental. Este estudo se mostra relevante, principalmente, em termos de registro de material juvenil adicionado à crosta continent al durante os eventos finais de aglutinação. Este registro pode ser detectado a partir de métodos como geoquímica de rocha total e geoquímica isotópica, podendo desvendar processos episódicos de extração de material juvenil e assim, indicar processos geodinâmicos para a área de estudo. Ademais, a utilização do método U-Pb em zircão detrítico permite definir a idade de formação da bacia a partir das idades dos grãos mais jovens e detectar possíveis áreas fontes. Estudos isotópicos com foco em análise de proveniência sedimentar é comumente utilizado para definir a idade máxima de deposição, que ocorre necessariamente após a cristalização do grão em terrenos já consolidados.

Assim, este trabalho tem como objetivos gerais: (i) caracterização de duas suites magmáticas cristalizadas com 40 Ma de diferença entre si; (ii) compreensão da história evolucional das rochas metassedimentares encaixantes das intrusões. Para tanto, dois artigos de cunho geotectônico são apresentados, com os seguintes objetivos específicos:

- Artigo 1: O foco do artigo é a definição da idade de cristalização das rochas ígneas e estabelecer a fonte (mantélica ou fusão parcial de crosta continental preexistente?), assim como definir padrões de cristalização fracionada. O estabelecimento de origem e evolução do magma contribui para a elucidação do ambiente tectônico de geração dessas rochas, assim como dos principais processos petrogenéticos e geodinâmicos. Um dos objetivos específicos consiste em compreender a contribuição do Lineamento Transbrasiliano para a evolução e a colocação dos corpos graníticos, assim como sugerir o papel dos magmatismos de high Ba-Sr na aglutinação neoproterozoica tardia dos terrenos envolvidos na estabilização do Gondwana Ocidental.

- Artigo 2: O objetivo geral do artigo é compreender os dados de proveniência sedimentar de um orógeno neoproterozoico, assim como adicionar novos dados referentes à região investigada, antes não estudada com a aplicação do método U-Pb em zircão detrítico. Sabe-se que bacias desenvolvidas em ambiente colisional tendem a apresentar maiores conteúdos de idades próximas à deposicional, com variações por volta de 50% dos grãos com idades até 150 Ma mais antigas que a idade deposicional, refletindo magmatismo pré a sin-colisional de terrenos acrescidos ao orógeno. O objetivo principal é a associação de dados isotópicos U-Pb e Ar-Ar para a elucidação da história evolutiva das rochas metassedimentares, definindo idade de deposição, idade de metamorfismo/deformação e taxa de resfriamento.

1.3.Localização e vias de acesso

A área de estudo localiza-se no limite entre os estados de Mato Grosso e Goiás, englobando as cidades de Torixoréu, em Mato Grosso e Baliza e Bom Jardim de Goiás, em Goiás, abrangendo parte da folha SE.22-V-B (Iporá – CPRM, 2017). O acesso, partindo de Cuiabá-MT (Figura 1.1), foi feito pela BR-251 por 68 km até a cidade de Chapada dos Guimarães, por mais 58 km até o trevo que liga a MT-344 para chegar em Campo Verde (12 km a partir do Trevo). A partir de Primavera do Leste, é necessário percorrer a BR-070 por 324 km passando por General Carneiro e Barra do Garças. Desta última cidade até Bom Jardim de Goiás trafega-se mais 47 km pela BR-158. Para chegar à cidade de Baliza-GO, percorre-se 42 km a partir de Bom Jardim de Goiás pela GO-421. O trajeto todo totaliza 580 km de Cuiabá até a área de estudo.

Figura 1.1 – Mapa de localização e vias de acesso à área de pesquisa, localizada a aproximadamente 47 km do município de Barra do Garças - MT, divisa com o estado de Goiás.

1.4.Estrutura da tese

A tese encontra-se organizada em sete (7) Capítulos. Após este tópico introdutório do capítulo 1, segue-se revisão teórica no capítulo 2, que trata de questões relativas à formação das principais ideias quanto a orogênese e formação de supercontinentes, com foco no Gondwana, assim como evolução de ambientes tectônicos pós-colisionais e magmatismos associados. Os materiais e métodos utilizados durante o doutorado são apresentados no Capítulo 3, incluindo preparação pré-campo e etapas laboratoriais.

Os capítulos 4 e 5 apresentam os resultados obtidos em forma de dois artigos científicos, sendo o primeiro publicado e o segundo submetido:

- O Capítulo 4 contém o artigo aceito para publicação no periódico *Lithos* do mês de junho de 2021, intitulado: *Appinitic and high Ba–Sr magmatism in central Brazil: Insights into the late accretion stage of West Gondwana.*
- 2) O capítulo 5 compreende o artigo submetido recentemente (outubro de 2021) ao periódico Gondwana Research, O artigo é intitulado: Tectonic significance of the early-Cambrian syn-orogenic basin in the easternmost portion of Paraguay Belt, Tocantins Province, central Brazil.

O Capítulo 6 expõe as considerações finais dessa tese, incluindo a síntese conclusiva da a partir dos dados apresentados nos dois artigos, destacando a história evolutiva integrada da região de estudo em relação ao Gondwana Ocidental. Finalmente, o Capítulo 7 contém as referências bibliográficas utilizadas nos capítulos 1 a 3 desta Tese.

2. REFERENCIAL TEÓRICO E REVISÃO BIBLIOGRÁFICA

O registo de crescimento continental permanece sendo tópico de discussões, pois os processos orogênicos conduzem frequentemente a reciclagem significativa do material continental. No sentido de contextualizar o que será discutido nos artigos científicos apresentados nos capítulos seguintes, este tópico apresenta revisão geral das principais temáticas envolvidas ao longo do doutorado. Será apresentada visão geral sobre a evolução do magmatismo ao longo da história tectônica da terra e o significado do magmatismo de alto Ba-Sr moderno e suas correlações com os sanukitoides de 2.5 Ga. Conceitos de formação de orógenos, assim como as principais características que definem a formação do supercontinente Gondwana também serão comentados. Além disso, o último tópico aborda conceitos sobre o Lineamento Transbrasiliano no Gondwana. Os principais trabalhos consultados acerca do tema da tese estão inseridos no corpo do texto e as referências estão inclusas no último tópico da tese (capítulo 7).

2.1.A evolução do magmatismo terrestre

Como pioneiro no assunto, Wilson (1966) apresentou a Teoria da Tectônica de Placas, expondo-a como proposta para explicar os processos de deriva continental e expansão dos fundos oceânicos. Gastil (1960) desenvolveu a ideia de que os processos ocorrem de forma episódica e não contínua. Atualmente, há consenso de que as massas da terra se amalgamam quase periodicame nte em supercontinentes, interpretados como super-placas rígidas, marcadas essencialmente por limites tectônicos ativos e exibindo pequenas interações internas de litosfera-manto (Nance *et al.*, 2014; Pastor-Gálan *et al.*, 2018). Os limites tectônicos são identificados graças às assinaturas e características marcantes das rochas geradas durante as orogenias. A investigação das orogenias colisionais e acrescionárias se mostra, portanto, de extrema importância uma vez que são a chave das configurações de antigos continentes e supercontinentes (Hoffman, 1989).

A formação e ruptura de supercontinentes são fortemente ligadas às mudanças globais de nível do mar, ciclos biogênicos, mudanças climáticas, sedimentação de margens continentais, grandes províncias ígneas, circulação do manto profundo, assim como dinâmica do núcleo exterior e campo magnético da terra (Rogers, 1996; Meert, 1999). A formação de supercontinentes ocorre associada a crescimento da crosta terrestre, visto que os principais processos geológicos ocorrem em margens convergentes. Os picos de idades de grãos detríticos de zircão apontam excelentes correlações com a formação dos continentes, refletindo a preservação de rochas juvenis e crustais retrabalhadas durante as orogenias (Cawood *et al.*, 2007, 2012; Pereira *et al.*, 2021).

Crescimento e evolução da crosta continental através do tempo geológico resultam de equilíbrio entre a extração magmática do material juvenil do manto e o retorno do material continental ao manto por meio da subducção de sedimentos, erosão por subducção e/ou delaminação (Laurent *et al.*, 2014; Moyen *et al.*, 2017). A assinatura geoquímica de rochas ígneas pode ser considerada como indicador útil de reciclagem da crosta continental no manto litosférico subcontinental durante as diferentes fases do processo de subducção. Este processo registra diferentes condições de fusão parcial e de anatexia crustal em ambiente tectônico sin-a pós-colisional, contribuindo para a evolução do planeta terra.

A evolução do registro magmático da Terra evolui do Arqueano até os tempos modernos como reflexo de seu resfriamento e da evolução dos processos tectonomagmáticos (Moyen e Laurent, 2017 e referências contidas). Granitoides representam a crosta continental recémformada, e evoluíram de TTGs arqueanos, formados por fusão parcial direta da crosta máfica, passando por sanukitoides e rochas relacionadas ao Neoarqueano e Paleoproterozóico que

carregam a assinatura de uma cunha de manto primitiva, e finalmente, para granodioritos e granitos com composições de magma de arco (os equivalentes plutônicos de BADR – basalto– andesito–dacito–riolito; Martin, 1987, 1988, 1993, 1999; Martin *et al.*, 2005; Moyen e Martin, 2012). Muitas questões fundamentais permanecem em aberta quando fala-se sobre processos tectonomagmáticos da Terra, o crescimento da crosta continental e a transição para a tectônica dirigida por subducção. Algumas questões podem ainda serem abordadas com uma compreensão mais completa dos tempos e proporções da gênese do magma granitoide.

Há consenso que o mecanismo terrestre de formação de magmatismo atual da Terra é associado a um modelo de geração de rochas diferente daquele inferido para o Arqueano. A diferença aponta para mudança importante em determinados aspectos do funcionamento das placas tectônicas. Durante o Arqueano, o processo de fusão de crosta oceânica subductada em profundidade rasa gerava importantes volumes de TTG, que formaram a grande maioria das crostas continentais juvenis antigas (Martin, 1985; Martin *et al.*, 2005, 2009). A diminuição progressiva da taxa de produção de magmas TTGs resulto em aumento eficiente no processo de hibridização na cunha do manto e diminuição na fusão direta da placa subductante descendente (Martin, 1993, 1999). Este processo marca o momento em que o fluxo de calor terrestre era alto o bastante para induzir a desidratação da crosta oceânica, mas suficientemente baixo para gerar pouca quantidade de fusão parcial da placa subductante. O produto é então inteiramente consumido por processos de hibridização na cunha de manto sobrejacente (Martin, 1993; Martin *et al.*, 2005; Moyen e Martin, 2012).

Os sanukitoides, além de apresentar características transitórias em termos de idade, também são intermediários em termos de composição química entre as séries de TTGs arqueanos e granitóides tidos como modernos (que ocorrem após 2.5 Ga). Tipicamente, a assinatura dos elementos traços dos exemplos mundiais os aproximam de TTGs, enquanto sua composição em elementos principais (principalmente K₂O e Na₂O) está claramente mais

próxima dos granitóides cálcio-alcalinos pós-arqueanos (Martin *et al.*, 2005). Stern *et al.* (1989) mostraram que é física e quimicamente impossível gerar magmas com as assinaturas de elementos traços de sanukitoides por fusão parcial de peridotito não enriquecido, que apresente composição idêntica ao manto primitivo, por exemplo. Assim, a fonte é claramente manto enriquecido, resultante de interação entre peridotito, por um lado, e um componente rico em elementos incompatíveis por outro lado (Shireye e Hanson, 1984; Martin, 1988; Stern *et al.*, 1989; Stern e Hanson, 1991). Outros trabalhos também atestam alterações das assinaturas geoquímicas de rochas magmáticas após 2.5 Ga, indicando transição entre a geração de magma tipo TTG e geração de magmatismo do tipo sanukitoide (Stern e Hanson, 1991; Steverson *et al.*, 1999; Martin *et al.*, 2009). Com isso, o período de transição entre Arqueano e Paleoproterozoico foi consagrado como marco para o mecanismo global de geração de rochas, em que parte da crosta continental juvenil moderna é gerada em subducção pela fusão parcial da cunha de manto, cuja composição foi previamente modificada por fluidos liberados por desidratação das placas subductadas (Moyen e Martin, 2012).

Os granitos de alto Ba-Sr correspondem a distinto grupo de rochas que são consideradas ter sido formadas em ambientes de subducção com significativa entrada de material mantélico (Tarney e Jones, 1994). A conexão genética entre os sanukitoides e granitoides de alto Ba-Sr é uma discussão recente sobre a relação entre mecanismo de crescimento da crosta continent al registrados em 2.5 Ma e em tempos modernos (Fowler e Rollinson, 2012). O persistente padrão geoquímico registrado nos granitoides de alto Ba-Sr revelam significativa similaridade com aqueles descritos para os sanukitoides arqueanos após 2.5 Ma. Portanto, é proposto que a formação dos dois grupos de rocha, mesmo que distantes na história da Terra, podem ser associados pelos mesmos processos tectonomagmáticos e pela reincidência dos mecanismos que permitem a ocorrência de tal assinatura híbrida (Heilimo *et al.*, 2010; Fowler e Rollinson, 2012). A fonte mais provável corresponde a manto enriquecido, como um peridotito, e por outro

lado, a um componente rico em elementos incompatíveis (Shirey & Hanson, 1984; Stern et al., 1989; Stern & Hanson, 1991).

Os estudos sobre a ocorrência dos magmas de alto Ba-Sr no Fanerozoico indicam eventos metassomáticos e contextos geodinâmicos específicos na tectônica recente, como o mecanismo de *slab break-off* e a consequente subida da astenosfera em ambientes de subducção e/ou subducção tardia (Tarney e Jones, 1994; Fowler *et al.*, 2001, 2008; Fowler e Rollinson, 2012). A ocorrência de rochas com esse tipo de assinatura geoquímica pode ser utilizada como indicador de reciclagem da crosta continental no manto litosférico subcontinental durante as fases finais do processo de subducção. Por fim, este processo registra diferentes condições de fusão parcial e de anatexia crustal no cenário sin- a pós-colisional, contribuindo para a evolução do planeta terra até os tempos Phanerozoicos.

2.2.O supercontinente Gondwana e suas fases finais de fechamento

A formação de supercontinentes é comumente explicada pela coalescência de numerosos fragmentos continentais ao longo de suturas formadas pelo fechamento de bacias oceânicas (Unrug, 1992; Pastor-Gálan *et al.*, 2018). Hoffman (1991) sugeriu pela primeira vez que a fragmentação do supercontinente Rodínia envolveu peças continentais se afastando de Laurentia e colidindo para formar Gondwana. O supercontinente Gondwana foi o produto de eventos convergentes diacrônicos durante o Neoproterozoico, que tiveram sua fase final de aglutinação no começo do Paleozoico (Collins & Pisarevsky, 2005; Meert & Lieberman, 2008; Schmitt *et al.*, 2018). Pisarevsky *et al.* (2008) indicam que a dinâmica de montagem completa desse supercontinente abrangeu o intervalo de tempo entre 900 e 500 Ma. O início da formação se deu a partir da aglutinação de duas massas continentais na porção Ocidental (África-América do Sul) e na Oriental (Índia-Austrália-Antártica), ao longo do cinturão Moçambique

(McWillians e McElhinny, 1980; McWillians, 1981; Stern, 1994; Figura 1). Este argumento foi baseado na extensão deste cinturão a norte, no escudo Arabian-Nubian e a partir disso, ocorreram as orogêneses neoproterozoicas entre os fragmentos cratônicos (Harris, 1994). Diversos outros pequenos fragmentos também seriam incorporados à Ásia, Europa e América do Norte (Schmitt *et al.*, 2018; Figura 2.1).

Figura 2.1 – Mapa da configuração do supercontinente há 500 Ma (extraído de Schmitt et al., 2018).

O nome Gondwana foi sugerido para denominar uma sequência de rochas sedimentares não marinhas. O nome proveio de uma antiga tribo aborígene, que se acredita ter habitado na parte central da Índia, onde estas rochas foram encontradas (Melicott e Blandford, 1879). O intervalo de tempo exato da montagem do Gondwana sobrepõe o período de rápida diversificação de vida no planeta Terra e segue intervalo de resfriamento global em evento de *Snowball Earth* (Meert & Torsvik, 2003; Valentine, 2002). Muitos modelos têm sido
gerados para a montagem e melhor compreensão desse supercontinente, cuja primeira ideia surgiu com observações de padrões de distribuição de sedimentos glaciais, fósseis de plantas e outras características do Permo-Carbonífero (Danziel, 1975). A partir disso, estabeleceu-se que o Gondwana teve muitos processos de acresção no Pre-Cambriano e a sua fragmentação da grande Pangea se deu no Mesozoico tardio (Danziel, 1975; Meert, 1999; Cawood *et al.*, 2005).

Dois estágios principais de amálgama são indicados por Schmitt *et al.* (2018) no Gondwana, entre 670 e 575 Ma e entre 575 e 480 Ma, representando os períodos de colisões mais abundantes em todos os setores. O primeiro estágio gerou cerca de 40 orógenos e o mais novo, cerca de 15 faixas móveis. O período mais longo de amálgama foi entre 670 e 480 Ma (Schmitt *et al.*, 2016, 2018), no qual diversos oceanos foram consumidos para a formação do supercontinente Gondwana (Moçambique, Adamastor, Goiás-Farusiano) e outros foram abertos (Iapetus, Paleo-Asian, Tornquist) entre os continentes Laurentia, Baltica, Siberia, Gondwana e outros blocos cratônicos (Meert, 2001; Meert & Torsvik, 2003; Collins & Pisarevsky, 2005; Li *et al.*, 2008).

Os orógenos finais do Gondwana, também chamados de "orógenos internos" (como Búzios, Damara, Saldania, Paraguai, Araguaia, Malagasy, entre outros), se desenvolver a m incialmente devido às configurações convergentes das margens recém-formadas, influenciando os "orógenos externos" eocambrianos-ordovicianos (a exemplo do Pampeano, Ross, Delamerian, Bhimphedian; Rapela *et al.*, 1998, 2011; Schmitt *et al.*, 2004). Há diversas interpretações sobre a natureza dos orógenos finais do Gondwana. Uma das hipóteses é de que são produto do fechamento de largo oceano, culminando com a agregação de vários paleocontinentes distantes entre si (Oceano Clymene, Tohver *et al.*, 2010, 2012; Oceano Adamastor, Heilbron *et al.*, 2008; Oceano Moçambique, Stern, 1994; Boger & Miller, 2004). Outro ponto de vista sugere que esses orógenos foram produtos de rifteamentos intracontinentais e inversão de bacias entre blocos que nunca foram distantes (Cinturão

Araguaia, Cordani et al., 2013; Cinturão Damara, Nascimento et al., 2017; Cinturão Ribeira, Meira et al., 2015).

Em uma visão geral, algumas peças constituintes de Supercontinente Gondwana foram acrescidas tardiamente ao longo de colisões diacrônicas no final do Neoproterozóico e início do Cambriano (575-480 Ma; Meert, 2001). Este intervalo é caracterizado por abundante de consumo tardio de oceanos em todos os setores, assim como por ampla reativação tectono-térmica anteriormente afetadas pelas orogenias acrecionarias, colisionais ou intracontinenta is neoproterozoicas (Kennedy, 1964; Meert, 2001; Meredith *et al.*, 2017; Schmitt *et al.*, 2018). No Gondwana Oriental, registra-se neste período a Orogenia Kuunga (Figura 2.2; Meert *et al.*, 2003), em que margens convergentes evoluem de forma contemporânea à aproximação dos blocos da Índia, Austrália e Mawson, implicando no fechamento do oceano Mawson entre 570 e 500 Ma e na geração de extenso arco magmático (Meert *et al.*, 2003; Collin & Pisarevsky, 2005).

Já o orógeno Damara, na Namibia, reflete a convergência dos crátons Rio de La Plata, Congo e Kalahari e consiste na junção tríplice de três cinturões móveis, Damara Kaoko e Gariep (Hoffinan *et al.*, 1994). O maior período de aproximação dos blocos foi entre 655 e 600 Ma, com o fechamento final do Oceano Adamastor em 540 Ma (Gray *et al.*, 2008). O Cinturão Damara foi limitado ao intervalo 570-500 Ma, com grande metamorfismo e magmatismo em torno de 540-530 Ma e intrusões pós-cinemáticas de granitos tipo A entre 495 e 486 Ma (McDermott *et al.*, 2000; Frimmel *et al.*, 2011; Goscombe *et al.*, 2007, 2017). A Faixa Móvel Kaoko contém intrusões pós-tectônicas entre 535 e 505 Ma (Goscombe *et al.*, 2007) e o cinturão Gariep, os granitos pós-orogênicos registrados entre 547 e 529 Ma (Frimmel & Frank, 1998). A parte ocidental do Cinturão de Kaoko na África, definida como Coastal Terrain e tomada como um domínio exótico, aglutinado tardiamente ao orógeno já consolidado (Goscombe *et al.*, 2007).

O período de aglutinação entre o Ediacarano e Cambriano é também vastamente registado no Gondwana Ocidental, tal como as rochas metamórficas descritas em fase de subducção tardia no domínio oriental do Cinturão Ribeira, Orógeno Búzios, que se desenvolve u relacionado a uma colisão continental em 570-520 Ma (Schmitt *et al.*, 2004, 2008; Faleiros *et al.*, 2011). No Orógeno Araçuaí, a Formação de Salinas representa um conjunto de rochas sedimentares acumuladas até 551 Ma e é interpretada como uma bacia remanescente formada em cenário de sin-colisão (Castro *et al.*, 2020).

Os eventos por volta de 500 Ma, demoninados de Pampeano-Ross-Delamariano, correspondem a um dos exemplos de orógenos tardios (Rapela *et al.*, 1998). As atividades tectônicas tardias seriam relacionadas com extensão nos estágios finais da montagem do Gondwana, produto do colapso orogênico e/ou reflexo da orogenia Pampeano-Ross-Delamariano, sendo os orógenos resultantes classificados também como paleozoicos (Figura 2.2; Rapela *et al.*, 1998; Cordani *et al.*, 2009; 2013; Zhao *et al.*, 2018). O padrão e período de colisão dos orógenos formados no fim do Gondwana indicam que as causas de fechamento de muitas bacias e desenvolvimento de arco magmático ocorreram até o começo do Ediacarano, e podem, em muitos casos, serem considerados como registros da sutura final do Supercontinente Gondwana.

Figura 2.2 – Configuração de Gondwana mostrando a distribuição dos orógenos tardios (extraído de Zhao *et al.* 2018).

Amalgamação do Gondwana Ocidental.

O período de aumento de crescimento crustal no Gondwana Ocidental resultou da adição de crosta continental juvenil ao longo de margens convergentes (Condie, 2001; Kröner & Cordani, 2003). O amálgama do Gondwana Ocidental foi contemporâneo ao último evento de fragmentação de Rodínia, relacionado com a abertura do Oceano Ipetus, em 610-600 Ma (Cawood *et al.*, 2001, 2007; Li *et al.* 2008). O Gondwana Ocidental é marcado pela colisão entre os crátons Rio de La Plata, Congo-São Francisco, África Ocidental e Amazônico por volta de 630-600 Ma, configurando a instalação dos orógenos da Orogenia Brasiliana-Pan-Africa na (Figura 2.3; Oriolo *et al.*, 2017).

A colisão brasiliana no Continente Sul-Americano ocorreu em diversos eventos diacrônicos, que evoluíram relacionados a processos de fechamento de oceanos e colisões

continentais, resultando nos sistemas orogênicos neoproterozoicos Mantiqueira, Tocantins e Borborema (Hasui *et al.*, 1980; Hasui, 2010). O evento compressional de maior expressão envolveu a aglutinação do Cráton São Francisco e o Maciço de Goiás entre 670 e 620 Ma (Pimentel and Fuck, 1987), possibilitando o fechamento do grande oceano Goiás-Farusia no (Kröner & Cordani, 2003; Cordani *et al.*, 2009, 2013). O fechamento do oceano Goiás-Pharusiano, por volta de 620 Ma, é registrado pelas rochas relacionadas à evento de subducção ao longo dos orógenos e pela ocorrência de unidades oceânicas (Ganade de Araujo *et al.*, 2014). A existência de mar epicontinental ediacarano ao longo das margens dos crátons Amazônico e Rio de la Plata, representado pelos grupos Corumbá e Arroyo delSoldado (Gaucher *et al.*, 2003), depositados em bacia de antepaís, indicam o fechamento do oceano Goiás-Farusiano.

Figura 2.3 - Esquema tectônico ilustrando os principais blocos e cinturões orogênicos na América do Sul e África, incluindo a localização da região de fechamento do orógeno West Gondwana (extraído de Oriolo *et al.*, 2017). As marcações em amarelo correspondem aos principais pontos de aglutinação.

A existência de oceano separando um bloco a oeste (Laurentia), composto pelos crátons Amazônicos, Oeste Africano e Pampia, de um bloco a leste, composto pelos crátons/terrenos localizados a leste do Cráton Amazônico é um tema amplamente discutido. A existência do Oceano Clymene é apontada por autores que afirmam que esses dois conjuntos de terrenos teriam colidido no intervalo de 550-525 Ma, como produto da orogênese Pampeana-Araguaia (Meert, 2003; Trindade *et al.*, 2003; Trindade *et al.*, 2006. Tohver *et al*, 2012). Trindade *et al.* (2006) sugerem que o bloco Amazônico-Pampeano só colidiu com o proto-Gondwana no início do Cambriano, formando extensa zona de sutura composta pelos cinturões orogênicos Araguaia, Paraguai e Pampeano (Figura 2.4). Esta proposta destaca características que apontam evidências contrárias ao modelo anterior, visto que os eventos tardios não seriam mais interpretados como de caráter locais, mas sim como representantes da principal orogênese que modelou o Gondwana Ocidental.

O trabalho que iniciaram as discussões da existência do Oceano Clymene se baseou em dados paleomagnéticos das rochas pós-glaciais do Grupo Araras, setor norte da Faixa Paraguai (Trindade *et al.*, 2003). Os dados obtidos apontam que durante a deformação das rochas carbonáticas, estimada como ocorrida entre 550 e 525 Ma, o Cráton Amazônico e a plataforma cratônica relacionada à deposição desses sedimentos cratônicos, estava em baixas latitudes (Trindade *et al.*, 2003). Esta posição seria diferente daquelas dos blocos a leste no mesmo período, que, segundo os modelos de reconstrução estavam em altas latitudes nesse período (Morel, 1981; D'Agrella Filho *et al.*, 1998). Portanto, as massas continentais localizadas a leste do Craton Amazônico, representadas pelos crátons São Francisco-Congo, Kalahari e Rio de La Plata, já estavam reunidas no período entre 550 e 525 Ma, porém em posição polar e consequentemente distantes do Cráton Amazônico, em posição subequatorial (Figura 2.4; Trindade *et al.*, 2003, 2006).

Posteriormente, Tohver *et al.* (2010, 2012) corroboram o modelo com dados paleomagnéticos e geocronológicos que indicam o fechamento do Oceano Clymene.

Figura 2.4 – Modelo tectônico proposto para o Gondwana Ocidental no fim do Neoproterozoico a partir de dados paleomagnéticos (extraído de Trindade *et al.*, 2006).

A evolução tardia do Gondwana Ocidental foi sugerida também a partir de dados de proveniência sedimentar na zona externa/plataformal da Faixa Paraguai (Grupo Alto Paraguai). Os dados indicam fonte majoritariamente neoproterozoica ou mesmo da própria Faixa Paraguai, cuja idade máxima de sedimentação é registrada no Cambriano devido ao consumo do Oceano Clymene (McGee *et al.*, 2015). No trabalho de Oriolo *et al.* (2017), dados isotópicos de Hf indicam que crescimento crustal proveniente de adição de crosta continental juvenil ao longo de margens convergentes foi dominante desde o Toniano tardio em muitas regiões do Gondwana Oriental. Portanto, segundo Oriolo *et al.*, (2017), muitos oceanos tonianos-

criogenianos entre os blocos já estavam fechados durante a aglutinação, o que pode ser explicado como o resultado de isolamento de muitos crátons durante a amálgama de Rondínia. O tema da existência ou não de uma evolução entre o Neoproterozoico tardio e o Cambriano é amplo e passível de discussão, visto que os modelos são escassos, locais e pouco robustos.

2.3.0 Lineamento Transbrasiliano-Kandi e a Tectônica strik-slip

O processo de acomodação dos esforços colisionais na fase final de aglutinação do Gondwana promoveu a geração de longo corredor alinhado ao longo de megazonas de cisalhamento na África e na América do Sul. Trata-se de um dos maiores exemplos mundiais de *intracontinental strike slip deformational system* (Fuck *et al.*, 2013), chamado de Lineamento Transbrasiliano-Kandi, que, juntamente com seu prolongamento na África, totaliza mais de 9.000 km de extensão (Fairhead e Maus, 2003; Cordani *et al.*, 2013; Fuck *et al.*, 2013). O Lineamento Transbrasiliano-Kandi transecta pelo menos as províncias Tocantins (cinturões Brasília, Araguaia e Paraguai) e Borborema, e os cinturões Dahomey e Hogar, os dois últimos na África Ocidental, e representa um ambiente de subducção de longa duração (Fairhead e Maus, 2003). O Lineamento Transbrasiliano (LTB) é a parte que transecta a Plataforma Sul-Americana, separando as unidades tectônicas relacionadas aos crátons Amazônico e São Francisco (Cordani *et al.*, 2009), e mais a sul, separa o cráton Rio de La Plata do terreno Pampia (Figura 2.5; Ramos *et al.*, 2010).

Figura 2.5 - Localização do Lineamento Transbrasiliano (LTB) no contexto das grandes unidades geológicas da América do Sul. O retângulo vermelho representa a área de estudo (Modificado de Fairhead e Maus, 2003; Ramos *et al.*, 2010).

Os corredores de cisalhamento podem registrar deslocamentos quilométricos e deformação intracratônica em processos orogênicos finais de um orógeno, associados a escape tectônico lateral e a estruturas de transcorrência (Dantas *et al.*, 2017). O arranjo final da geometria observada nas zonas de cisalhamento do LTB é diretamente influenciado pelo tipo de acomodação da deformação e pelo deslocamento relativo de cada bloco envolvido (Fuck *et al.*, 2013; Dantas *et al.*, 2017). A região de descontinuidade crustal que caracteriza o LTB é

reconhecida no Brasil com direção predominante N20°-30°E, sendo composta por diversas zonas de cisalhamento dúcteis-rúpteis de dimensões variáveis e histórias evolutivas diferentes (Dantas *et al.*, 2017). Ao longo da trajetória, os traçados dos cisalhamentos podem se unir em feixes menores e/ou se interconectar em feições secundárias, não podendo ser apresentadas com um traçado único (Dantas *et al.*, 2017), como foi primeiramente exposto (Marini *et al.*, 1984). A deformação predominante se dá em condições de facies xisto verde baixo, zona da clorita e biotita (Dantas *et al.*, 2007).

A maioria dos sistemas tipo *strike-slip* em escala intracontinental se estende direcionalmente por centenas ou milhares de quilômetros e dezenas de quilômetros de extensão lateral. Os sistemas de cisalhamento dúcteis, paralelos e conectados indicam que eram antigas zonas de falhas geradas em situação intraplaca, caracterizadas por deformações das antigas margens dos crátons, sugerindo que o corredor começou a se formar posteriormente às colisões das placas litosféricas (Fuck *et al.*, 2013). As tensões ao longo do sistema transcorrente de falhas são raramente resultantes de deslocamento puramente lateral, podendo desenvolver-se em curvas ao longo de sua extensão, gerando compressões ou extensões locais, como no caso típico dos cinturões orogênicos de Tianshan e Altai, no noroeste da China (Pirajno, 2010). Sistema semelhante ocorre no continente Asiático, onde é descrito grande sistema de falhas transcorrentes, resultante do fechamento dos oceanos Paleo e Neotethys (Windley *et al.*, 2007; Xiao e Kusky, 2009).

Na Província Tocantins o LTB é bem caracterizado por foliações, lineações de estiramento e eixos de alongamento maior de *boudins* dispostos no plano da foliação milonítica (Dantas *et al.*, 2007). O sistema na Província Tocantins apresenta-se subparalelo a mais de 10 faixas miloníticas entrelaçadas com largura que varia de 250 a 50 km e *trend* unidirecional N45-60E (Dantas *et al.*, 2017). Curto *et al.* (2015) observaram que as falhas de transcorrência do LTB em níveis rasos são associadas a zonas de cisalhamento em profundidade que atingem

níveis da crosta até aproximadamente 20 km. As extensas zonas de fraquezas crustais podem facilitar a ascensão e alojamento de granitos pós-orogênicos no embasamento (Curto *et al.*, 2014, 2015).

Muitos autores consideram a instalação de uma zona de cisalhamento *strike-slip* e granitogênese associada como resultado de processos pós-colisionais (Vaughan & Sacrow, 2003; Seifert, 2008; Pirajno, 2010). Ganade de Araujo *et al.* (2014) relacionam evento de formação de zonas de cisalhamento e acentuada granitogênese, entre 580 e 550 Ma, ao desenvolvimento do LTB. A partir da análise de leucossoma sin-transcorrente na Serra Azul, Fuck *et al.* (2013) sugeriram que Sistema *Strike-Slip* Transbrasiliano-Kandi possui história dúctil em torno de 540 Ma e que, portanto, esteve ativo durante o Cambriano. Na região de Campo Grande, Mato Grosso do Sul, o LTB exerce forte controle na intrusão de granitos pós-colisionais (Coxim, Sonora e Taboco), relacionados ao magmatismo neoproterozoico da Faixa Paraguai (Godoy *et al.*, 2007, 2010). Esses corpos ocorrem bordejando o bloco crustal do Rio Apa e formam uma calha orientada ao longo do LTB (Dantas *et al.*, 2017).

3. MATERIAIS E MÉTODOS

Os métodos utilizados para execução desta pesquisa são compostos basicamente por: atividades pré-campo, amostragem, preparação de amostras, análises de amostras, tratamento dos dados, apresentação e interpretação dos dados.

3.1. Etapa Pré-Campo

Durante esta etapa foi feito o levantamento, compilação e interpretação de dados disponíveis que auxiliaram na definição dos alvos amostrais e técnicas a serem utilizadas, facilitando e direcionando a aquisição de dados e amostras que fornecessem respostas aos objetivos do projeto.

3.2. Etapa de amostragem: trabalhos de campo

Durante a etapa de campo foram coletadas amostras litológicas e dados de campo em 43 pontos de exposições rochosas tidas como pertencentes ao Grupo Cuiabá e à granito gêse relacionada à Zona Interna da Faixa Paraguai. Nos pontos, sempre que possível, foram coletadas amostras para petrografia, geoquímica e geocronologia, além do registro fotográfico e de localização utilizando o Datum: SIRGAS2000 zona 22S. Os trabalhos de campo foram realizados em duas etapas: 23/10 a 29/10/2018 e 04/02 a 11/02/2019, todas partindo de Cuiabá-MT.

3.3. Etapa de preparação de amostras

Durante a etapa de preparação as amostras foram fotografadas e separadas em grupos litológicos com base em sua descrição macroscópica e localização. Amostras representativas das principais unidades litológicas e setores estruturais da Faixa Paraguai foram selecionadas. Destas, 25 foram britadas e moídas no Laboratório de Preparação de Amostras do Instituto de Geociências da Universidade de Brasília e após este processo, foram separadas alíquotas para envio para a análise litoquímica e isotópica, e para concentração de grãos de zircão.

As frações corretas foram encaminhadas para concentração e catação de minera is pesados em bateia, separador isodinâmico Frantz e lupas binoculares, instalados no Laboratório de Geoquímica Isotópica e Geocronologia da Universidade de Brasília, onde foram confeccionados 8 *mounts* para análises U-Pb. As amostras destinadas a análises isotópicas pelo método Sm-Nd foram retiradas da mesma porção daquelas destinadas às análises geoquímicas, totalizando 14 amostras.

3.4. Análises Petrográficas

As análises petrográficas consistiram inicialmente em estudos macroscópicos, que fundamentaram a seleção de amostras para confecção de lâminas delgadas. Foram feitas 20 seções delgadas de todos os litotipos encontrados na área, descritas opticamente considerando os principais aspectos como texturas, composição mineralógica, processos de alteração, dentre outros. As seções delgadas foram produzidas no Laboratório de Laminação do Instituto de Geociências da Universidade de Brasília. As fotomicrografias das seções delgadas foram obtidas com polarizadores paralelos e cruzados, com objetivas de aumento 2,5, 4 e 10x, usando uma câmera ZEISS acoplada ao microscópio óptico binocular *Olympus*, modelo BX50.

3.5. Análises Litoquímicas

Para o estudo litoquímico 20 amostras mais representativas do magmatismo da área foram selecionadas e moídas em moinho de panela do Laboratório de Preparação de amostras do Instituto de Geociências da UnB e posteriormente encaminhadas para o Laboratório *ALS Minerals* (Goiânia – GO – Brasil). As análises dos elementos maiores e menores foram feitas com o emprego da técnica Fluorescência de Raio-X (XRF) depois das amostras serem diluídas em um fluxo de metaborato/tetraborato de lítio. Os elementos traços, incluindo terras raras, foram analisados com a técnica espectrometria de emissão óptica com plasma acoplado induzido (ICP-OES - *Inductively Coupled Plasma for Optical Emission Spectroscopy*). As amostras foram enviadas para ALS Brasil Ltda, Goiânia, para análise na ALS em Vancouver, Canadá. Cerca de 0,1 g das amostras foram diluídas em um fluxo de metaborato/tetraborato de lítio. O pó depois foi dissolvido em 100 mL de ácido nítrico a 4%/ácido clorídrico a 2% e aquecido em 1000°C por hora. A descrição completa dos métodos analíticos está disponível na página da ALS Chemex: (www.alsglobal.com). Foi utilizado para o tratamento dos dados o *software* GCDkit (versão 2.3, *Geochemical Data Toolkit for Windows*) e Microsoft Excel.

3.6. Análises Geocronológicas e Geoquímica Isotópica

Considerando as amostras mais representativas, sua distribuição na área de estudo, diversidade textural e mineralógica, foram separados também exemplares para análises isotópicas e geocronológicas pelos métodos U-Pb em zircão por LA-ICP-MS e Sm-Nd em rocha total, que foram analisados no Laboratório de Estudos Geodinâmicos e Ambientais da Universidade de Brasília. A análise Ar-Ar foi realizada no Laboratório de *Gaz Rare* no *Géoscience Montepllier*, Universidade de Montpellier, França. Para informações mais

detalhadas sobre os métodos analíticos utilizandos, conferir nos tópicos *Materials and Methods* dos respectivos artigos apresentados nos capítulos seguintes (4 e 5).

• U-Pb em zircão

A preparação das amostras foi realizada de acordo com o procedimento convencio nal com técnicas gravimétricas e magnéticas do Laboratório de Geoquímica Isotópica e Geocronologia da Universidade de Brasília (UnB). Após a separação, os cristais de zircão foram selecionados para a montagem dos *mounts*, em resina epóxi, desgastados e polidos para a exposição do interior dos grãos, e a limpeza feita com banho de HNO3 diluído (2%). Para investigar a estrutura interna dos cristais, imagens de *Backscattered* foram confeccionadas.

As análises isotópicas U-Pb foram feitas em cristais detríticos de zircão de 10 amostras, usando o Thermo-Finnigan NEPTUNE MC-ICP-MS acoplado com o *Laser Ablation New Wave* YAG UP213, também no Laboratório de Geocronologia da UnB. As condições de operação e ajustes do NEPTUNE e Laser Ablation New Wave durante as seções do processo analítico estão descritas em Matteini *et al.*, (2010). As análises de U-Pb foram realizadas pelo método de *bracketing* (Albarède *et al.*, 2004) de amostra-padrão usando o zircão padrão GJ-1 e 91500 (Jackson *et al.*, 2004), a fim de quantificar a quantidade de fracionamento do ICP-MS. As massas sintonizadas foram 238, 207, 206, 204 e 202. O tempo de integração foi de 1 segundo e o tempo de ablação foi de 40 segundos.

As análises foram feitas utilizando feixe com diâmetro de spot de 30 µm e o ajuste do laser foi de 10 Hz e 2-3 J/cm², posicionado preferencialmente no núcleo dos cristais, evitando locais que apresentassem características internas e/ou externas que indicassem alterações químicas que pudessem interferir na qualidade dos dados. As relações ²⁰⁶Pb/²⁰⁷Pb e ²⁰⁶Pb/²³⁸U foram corrigidas no tempo. Em cristais de zircão menores (cerca de 50 µm), o fracionamento

da razão 206Pb / 238U induzido por laser foi corrigido usando o método de regressão linear (Košler et al., 2002). A redução de dados foi realizada utilizando o software Chronus no Laboratório de Geoquímica Isotópica e Geocronologia da UnB (Oliveira, 2015) e os índices foram corrigidos. Em gráficos que utilizam idades aparentes foram utilizadas idades ²⁰⁶Pb/²³⁸U para grãos mais jovens que 1000 Ma e ²⁰⁷Pb/²⁰⁶Pb para grãos mais antigos.

• Sm-Nd em rocha total

As análises isotópicas Sm-Nd foram realizadas no Laboratório de Geocronologia da Universidade de Brasília, seguindo o método descrito por Gioia e Pimentel (2000). Aproximadamente 50 mg de amostra pulverizada são misturados a uma solução de ¹⁴⁹Sm e ¹⁵⁰Nd e dissolvida em cápsulas Savillex® por meio de ataques ácidos em HF, HNO3 e HCl. Os conteúdos de Sm e Nd são extraídos por meio de colunas de troca catiônica, confeccionadas em teflon e depositados em filamentos duplos de rênio com ácido nítrico para evaporação.

Foram realizadas leituras das medidas em espectrômetro de massa multicoletor, *Finnigan* MAT 262 em modo estático. As incertezas para as razões Sm/Nd e ¹⁴³Nd/¹⁴⁴Nd são inferiores a $\pm 0,5\%$ (2 σ) e $\pm 0,005\%$ (2 σ), baseadas em repetidas análises dos padrões internacionais BHVO-2 e BCR-1. As razões ¹⁴³Nd/¹⁴⁴Nd foram normalizadas em função da razão ¹⁴⁶Nd/¹⁴⁴Nd de 0,7219. Os valores de idades modelo (T_{DM}) foram calculados usando o modelo de De Paolo (1981).

• ⁴⁰Ar/³⁹Ar

As análises de ⁴⁰Ar/³⁹Ar foram realizadas durante estágio de doutorado no órgão de pesquisa francês CNRS (*Centre National de la Recherche Scientifique*). Todas as etapas foram realizadas com o auxílio dos pesquisadores e técnicos locais, sob supervisão do responsável pelo laboratório, Professor Patrick Monié. As análises foram conduzidas no *Laboratoire de*

Gases Rares juntamente com a equipe "*Dynamique de la Lithosphère*" no Géoscience Montpellier, que reúne recursos de pesquisa e ensino no campo das Ciências da Terra na Université de Montpellier 2. Os procedimentos realizados iniciaram com a seleção das melhores amostras e montagem dos *mounts*, que foram posteriormente enviados para irradiação em reator nuclear. O objetivo da irradiação é transformar uma pequena proporção de ³⁹K em ³⁹Ar pela interação com nêutrons rápidos. A etapa de irradiação foi realizada na Itália, em Pavia, no núcleo do reator nuclear Triga Mark II. Posteriormente, as análises foram realizadas na nova geração do espectrômetro de massa multicoletor (Thermo Scientific Argus VI MS) da Géosciences Montpellier, cuja resolução nominal de massa é de ~200 e sensibilidade para medições de argônio é de $3.55 \times 10-17$ moles/fA at 200 µA. O espectrômetro de massas acomoda uma fonte do tipo Nier e uma matriz fixa de cinco detectores Faraday e um detector Compact Discrete Dynode (CDD).

Para o processamento dos dados foi utilizado o software padrão do laboratório para a redução e plotagem, o ArArCalc software© v2.5.2 (Koppers, 2002). Todos os dados são corrigidos por sistemas de brancos, decaimento radioativo, interferências isotópicas e discriminação de massa. As idades platôs são definidas como incluindo mais de 50% do total de ³⁹Ar liberado, distribuídas em pelo menos 3 etapas contíguas de aquecimento, com proporções de ⁴⁰Ar/³⁹Ar de acordo com a média no nível de confiança de 95%. As idades calculadas são relatadas no nível 2σ e incluem incertezas nos valores J, mas excluem erros associados à idade do monitor de fluxo e às constantes de decaimento.

O método geocronológico ⁴⁰Ar/³⁹Ar tem sido comumente utilizado na compreensão do momento geológico em que terrenos metamórficos são exumados, permitindo quantificar taxas e escalas de tempo de diversos processos tectônicos e geodinâmicos. O método deriva diretamente do método convencional ⁴⁰K/⁴⁰Ar, cujo objetivo é estimar a acumulação do elemento filho, o ⁴⁰Ar radiogênico, a partir da desintegração natural do elemento pai, no caso o

⁴⁰K, seguindo os conceitos fundamentais dos demais métodos geocronológicos radiogênicos. O método ⁴⁰Ar/³⁹Ar apresenta algumas diferenças em relação ao método pioneiro ⁴⁰K/⁴⁰Ar, pois é baseado na formação não-espontânea de ³⁹Ar, utilizando irradiação em reator nuclear. Em suma, a premissa do método baseia-se na substituição do ⁴⁰K por ³⁹Ar do método K-Ar convencional. A irradiação tem com objetivo a ativação por fluxo de nêutrons suficientemente elevados, que induz a desintegração/decaimento do ³⁹K e formação do ³⁹Ar.

O processo de análise se inicia com a *incremental heating technique*, na qual a extração do gás Ar é feita em etapas sucessivas de aquecimento por um laser CO_2 em situ no material analisado. Cada etapa de aquecimento fornece uma idade independente. Sabendo-se que a razão 40 K/ 39 K representa uma proporção natural constante, a medida do 39 Ar vai substituir a do 40 K do método K-Ar convencional. A equação radiométrica final para o cálculo da idade baseia-se na razão 40 Ar/ 39 Ar da amostra analisada e de um padrão com idade K-Ar conhecida (Monié 1984).

4. ARTIGO 1

Appinitic and high Ba–Sr magmatism in central Brazil: Insights into the late accretion stage of West Gondwana. 2021. Lithos, 10633, 398-399.

Artigo científico aceito para publicação no dia 28 de junho de 2021, com o seguinte DOI: <u>10.1016/j.lithos.2021.106333</u>

	LITHOS 398-399 (2021) 106333	
	U THOSE	
	LITHOS	-
ELSEVIER	journal homepage: www.elsevier.com/locate/lithos	
Research Article		
Appinitic and high	Ba—Sr magmatism in central Brazil: Insights into the	Oberta for spotation
late accretion stage	e of West Gondwana	
Amanda Figueiredo Gra Amarildo S. Ruiz ^b	nja Dorilêo Leite ^{a,*} , Reinhardt A. Fuck ^a , Elton L. Dantas ^a ,	
* Instituto de Geociencias, Universidade de ¹⁶ Faculdade de Geociencias, Universidade	e Brazilia (UnB), Brazilia (DF), Brazil Federal de Mato Grosso (UFMT), Cuiabà (MT), Brazil	
ARTICLE INFO	ABSTRACT	
Keywords: West Gondwana Tocantina Province High Ba-Ge magnatism Petrogenesis Post-collisional setting Cardwards	Large amounts of high Ba—Sr magmatism can be produced as the result of late accretion o final stages of continental arc evolution in orogenic systems and leads to continental crust magmatism often occurs associated with mega-shear zones and displays geochemical s' magmas deriving from the melting of enriched lithospheric mantle. Such enrichment m slab-derived fluid and/or melt interaction, released from subducted material. The high F Brasiliano Paraguay Belt, Tocantins Province, central Brazil, comprise two suites that cry	or decompression in the tal growth. This type of ignatures that indicate any be an indication of 8a—Sr granitoids of the stallized approximately

Amanda Figueiredo Granja Dorilêo Leite^{1*} (amandafgdleite@gmail.com), Reinhardt A. Fuck¹(reinhardt@unb.br), Elton L. Dantas¹(elton@unb.br), Amarildo S. Ruiz² (asruiz@gmail.com)

¹Instituto de Geociências, Universidade de Brasília (UnB), Brasília (DF), Brazil.

²Faculdade de Geociências, Universidade Federal de Mato Grosso (UFMT), Cuiabá (MT), Brazil.
*Corresponding author

ABSTRACT

Large amounts of high Ba-Sr magmatism can be produced as the result of late accretion or decompression in the final stages of continental arc evolution in orogenic systems and leads to continental crustal growth. This type of magmatism often occurs associated with mega-shear zones and displays geochemical signatures that indicate magmas deriving from the melting of enriched lithospheric mantle. Such enrichment may be an indication of slab-derived fluid and/or melt interaction, released from subducted material. The high Ba-Sr granitoids of the Brasiliano Paraguay Belt, Tocantins Province, central Brazil, comprise two suites that crystallized approximately 40 My apart from each other. Both suites are composed of metaluminous to slightly peraluminous rocks (ASI = 0.64-1.01) with magnesian character, and present high Ba (~1430 ppm), Sr (~800 ppm), K₂O (~4 wt.%), LREE and LILE contents. The negative $\varepsilon_{Nd}(T)$ values (-6.32 and -6.65) associated with high contents of incompatible elements indicate an evolution from partial melting of mantle-derived magma previously metasomatized by subducted slab fluids. Crystallization ages of 557±5.7 Ma and 554±2.9 Ma have been obtained for the older, high Mg-K calc-alkaline suite. It evolved from high Cr and Ni mantle-derived appinitic magma to coeval granodiorites by crystal fractionation accompanied by minor crustal contamination. The younger, 515±3.6 Ma-old suite displays an elevated concentration in some HFSEs, show alkali-calcic affinity and is represented by high-K monzogranites. A model proposed for the two hybrid suites is based on a slab break-off and a subsequent lithospheric delamination after 40 My, where the heat flux generated by mantle upwelling led to a partial melting of the enriched subcontinental lithospheric mantle beneath the continental crust. The older calc-alkaline suite represents the end process of magmatic arc accretion in the central

Tocantins Province after ca. 600 Ma. The younger one is compatible with a transitional shoshonitic to A-type affinity, associated to post-collisional collapse stage of the orogen at Cambrian times. The petrogenesis of the investigated rocks requires an ocean closure phase at ca. 590 Ma, which could be linked to the consumption of the Clymene Ocean toward Amazonian Craton, recording a new collisional event in the central West Gondwana.

Keywords: West Gondwana; Tocantins Province; High Ba-Sr magmatism; Petrogenesis; Postcollisional setting; Geochronology.

4.1.INTRODUCTION

Post-collisional, high Ba-Sr magmatism provides important insights into modifications of the crust and mantle characteristics, such as those caused by reworking, metasomatism, and melting of sub-continental lithospheric mantle above a subducting lithosphere slab (e.g., Fowler *et al.*, 2008). Ba- and Sr-rich granitoids, besides Ba+Sr contents >1000 ppm, present relatively weak negative Eu anomalies, high mg#, Cr, V and Ni contents, LREE and LILE enrichment, and relatively low HFSE contents (Tarney and Jones, 1994). These high Ba-Sr granites are generated in extensional or non-compressional tectonic settings, usually related to lithospheric extension by gravitational collapse or post-orogenic subduction associated with later episodes of crustal thickening (Fowler and Henney, 1996; Fowler *et al.*, 2001; Moyen *et al.*, 2017).

High Ba-Sr granites present a dual, mantle-crust chemical signature. Deep asthenospheric-sourced magmas can accumulate in the upper mantle as a consequence of partial melting of the metasomatized enriched lithospheric mantle (e.g., Tarney and Jones, 1994). These magmas subsequently differentiate at shallow depths, generating granitic liquids containing juvenile components (Fowler *et al.*, 2001, 2008; Fowler and Rollinson, 2012).

Fowler and Henney (1996) and Fowler *et al.* (2001, 2008) enhance that high Ba-Sr granites display evidence of mingling, and are most likely products of AFC involving mantle components, such as the appinitic magmas (Murphy, 2013).

Appinitic suites range in age from Late Archean to Recent (Murphy, 2013) and are commonly found as mafic stocks, sheets and dykes that mainly occur as small satellite bodies in relation to large granodiorite batholiths (Fowler *et al.*, 2001, 2008). The appinites emplacement can be related to deep crustal faults associated with post subduction slab break-off and/or delamination during the late stages of an orogeny (Ye *et al.*, 2008; Heilimo *et al.*, 2010; Murphy, 2013).

The production of high Ba-Sr melts starts in the Late Archean and persists in the Phanerozoic (Tarney and Jones, 1994). Ediacaran high Ba-Sr granites associated with precursor appinitic magmas are well represented by examples in the British Caledonian Province (Fowler *et al.*, 2008) and in the Tibetan Plateau (Ye *et al.*, 2008), where the recurrence of late subduction along shear zones after the main tectonic event is notable. Moreover, asthenosphere upwelling, and partial melting of enriched lithospheric mantle represent the main processes involved in high Ba-Sr magma genesis (Fowler *et al.*, 2008; Ye *et al.*, 2008).

The analogous tectonomagmatic circumstances in which high Ba-Sr granites and Archean sanukitoids are generated have been the focus of many debates, since both rock types highlight the importance of crust-mantle mixing to explain juvenile additions to crust formation (Heilimo *et al.*, 2010; Fowler and Rollinson, 2012). Archean sanukitoids are formed at the Archean-Proterozoic boundary and record the transition to deep subduction such that melting conditions migrated through the slab, yielding the beginning of subcontinental lithospheric mantle melting in the modern plate-tectonic regime (Martin *et al.*, 2009; Heilimo *et al.*, 2010; Laurent *et al.*, 2014a).

During the lithospheric convergence in the modern Earth, the lithospheric mantle is recycled through foundering in primitive mantle domains, that can effectively contribute to crustal growth. Late- to post-orogenic settings can be pointed out as dominated by hybrid environment, with different proportions of interacting mantle and crustal melts (Liégeois *et al.*, 1998; Bonin, 2004; Moyen *et al.*, 2017). Orogenic terrains contain a large variety of magmatic activity characterized by bimodal potassic to ultrapotassic rocks, associated to heat sources linked to large movement along mega-shear zones and/or preceding subduction stages (Tarney and Jones, 1994; Brito Neves and Fuck, 2013).

The Brasiliano-Pan-African orogeny yielded a global network of Neoproterozoic orogenic belts, which record important tectonic events during the agglutination of terranes. A large-scale example of an intracontinental strike-slip fault system, the Transbrasilia no Lineament, separates large continental masses of West Gondwana and represents significant influence in Ediacaran/Cambrian late magmatism throughout the Tocantins Province (Brito Neves and Fuck, 2013; Cordani *et al.*, 2013; Fuck *et al.*, 2013; Curto *et al.*, 2014).

The generation of Late Neoproterozoic-Early Phanerozoic high Ba-Sr granitoids, the nature of their source, and their global significance are the focus of this paper. These rocks intruded metasedimentary rocks of the Eastern Paraguay Belt, at the boundary with the Neoproterozoic Arenópolis Magmatic Arc, Brasília Belt, in central Brazil (Seer, 1985; Pimentel and Fuck, 1987). The integration and interpretation of new geochemical and geochronological (Sm-Nd and U-Pb) data allowed a better understanding of the geodynamic context of the final phase of the Tocantins Province evolution, as well as of West Gondwana stabilization.

4.2.GEOLOGICAL SETTING

The Brasiliano-Pan-African Orogeny (Figure 1A; Almeida, 1984) took place in response to the fragmentation of the Rodinia Supercontinent and the assembly of Gondwana between 900 and 600 Ma (Brito Neves, 2013). The Tocantins Province represents a group of orogens comprising the Araguaia, Paraguay and Brasília belts (Figure 1B), which developed due to the amalgamation of the Amazonian, São Francisco/Congo, West African/São Luís, Parnaíba and Paranapanema cratons, resulting in the West Gondwana assembly (Almeida, 1984; Pimentel, 2016 and references therein).

The Paraguay Belt is affected by Ediacaran-early Cambrian deformation and metamorphism (Geraldes *et al.*, 2008), and is divided into northern and southern sectors by the Pantanal and Paraná basins (Figure 4.1C). The stratigraphic units of the Paraguay Belt progressively pass from sedimentary sequences overlying the Amazonian Craton to folded and metamorphosed metasedimentary sequences, trending to turbiditic environments away from the craton (Alvarenga and Trompette, 1993).

Figure 4.1– Geological and geotectonic context of the study area: (A) geotectonic context of the formation of the Tocantins Province during the Brasiliano Orogeny. Cratons are shown in dark gray. AM: Amazonian, WA: West Africa; CO: Congo; SF: São Francisco; KA: Kalahari; RP: Rio de la Plata; PP: Paranapanema; RA: Rio Apa. The red rectangle refers to the investigated region in the context of the Brasiliano Pan-African Orogeny (modified from Vaughan and Pankhurst, 2008); (B) location of the Tocantins Province in the Brazilian territory. The red rectangle comprises the Paraguay Belt shown in (C) Simplified geological map of the Paraguay Belt and Brasília Belt (modified after Ruiz *et al.*, 2010; Pimentel *et al.*, 2000). Red numbers related to the respective granitic intrusions in the Paraguay Belt: 1- Araguaiana; 2- Lajinha; 3- São Vicente; 4- Sonora; 5- Coxim; 6- Rio Negro; 7- Taboco; (D) simplified geological map of the study area.

The Paraguay Belt collisional event is mainly recorded in well exposed rocks of the internal zone, which is represented by the metasedimentary Cuiabá Group (Almeida, 1984).

Provenance studies based on detrital zircon U-Pb ages suggested that the main sources of the Cuiabá Group were in the Amazonian Craton (Babinski *et al.*, 2018) and that the Cuiabá sediments were deposited in a passive margin setting (Dantas *et al.*, 2009). The maximum sedimentation age is Late Ediacaran (652 ± 5 Ma), implying the existence of a post-Sturtian basin in the internal zone (Babinski *et al.*, 2018).

The final phase and last metamorphic event in the Paraguay Belt are marked by Ar-Ar analyses of micas from the Nova Xavantina Metavolcano-Sedimentary Sequence, suggesting the interval from 541 to 531 Ma (Geraldes *et al.*, 2008). The Neoproterozoic magmatism is also related to the final phase and comprises distinct granitic intrusions (Godoy *et al.*, 2010). The granitoids located in the southern portion of the belt yield crystallization ages around 540 Ma, while those of the northern portion are dated around 509 Ma ago (Table 4.1; Godoy *et al.*, 2010; Ferreira, 2009; McGee *et al.*, 2012).

 Table 4.1 – Summary of U-Pb, Sm-Nd and tectonic environment data available in the literature

 on Neoproterozoic magmatism of the Paraguay Belt.

	Granite	U-Pb (Ma)	$\varepsilon_{\rm Nd}(0)$	ε(0,54Ga)	T _{DM} (Ga)	Tectonic setting		
	Taboco	546 ± 4 *	-11,52*	-7,72*	1,97 */**	syn-colisional		
		540 ± 4.7 **	-11,5**	-7,4**				
	Rio Negro	549 ± 5 *	-13,37*	-7,86*	1,59*/**	pre-	to syn-	
		547 ± 4.9 **	-13,4**	-7,4**		colisional		
South								
	Coxim	542 ± 4 *	-	-6,24*	1,74*/**	pre-	to syn-	
		540 ± 3.6 **	10,3*/**	-5,9**		colisional		
	Sonora	549 ± 5 *	-8,86*	-	-	syn-colisional		

	São Vicente	521 ± 8*	-12,93*	-6,26*	1,33*	syn- to post-orogenic
		$504\pm8.9^{**}$	-9,07**	-2,26**	1,16**	
		518 ± 4☆			1,07	
North	Lajinha	512 ± 7 *	-13,4*	-8,18*	1,66*	intraplate
		509,4 ±4.1 **	-11,3**	-5,87**	1,50**	
	Araguaiana	$534 \pm 3*$	-9,82*	-4,0*	1,27*	late- to post-colisional
		$505,4 \pm 4.2 **$	-11,7**	-5,47**	1,37**	

548 ± 5.9 **	-	-7.0**

*Ferreira (2009) ** Godoy *et al.* (2010) \triangle Pinho (2001) \bigstar McGee *et al.* (2012)

The igneous bodies of the easternmost part of the Paraguay Belt (Figure 4.1D) are located near the Serra Negra discontinuity, which is a transcurrent shear zone that marks the tectonic contact between two different terranes (Seer, 1985; Curto *et al.*, 2014). The western block comprises the Paraguay Belt that overlies the Amazonian Craton (Azevedo *et al.*, 2015), and the eastern terrane includes the Arenópolis Magmatic Arc, which is the southern segment of the Goiás Magmatic Arc system, Brasília Belt (Pimentel and Fuck, 1987; Pimentel *et al.*, 1999; Pimentel, 2016).

The Serra Negra fault is a prominent magnetic anomaly of the Transbrasilia no Lineament (Curto *et al.*, 2014), which formed and evolved to accommodate the stresses from the collision of large continental masses in West Gondwana (Fuck *et al.* 2008; Brito Neves and Fuck, 2013). The sigmoidal structures in the Bom Jardim de Goiás region are interpreted from magnetic anomaly maps and are associated with intrusive bodies. The strike-slip faults are generally related to shear zones that can reach up to 20 km of depth, causing dextral ductile-plastic deformations in the country rocks (Curto *et al.*, 2014).

The Goiás Magmatic Arc comprises a Neoproterozoic complex multiple intraoceanic island arc developed between ca. 900 and 620 Ma, during the Brasiliano Orogeny (Pimentel and Fuck, 1987, Pimentel, 2016). The southern segment, the Arenópolis Magmatic Arc, consists of a mosaic of dioritic-tonalitic-granitic orthogneisses with calcic to calc-alkaline composition, exposed between bands of volcano-sedimentary sequences (Figure 4.1C; Pimentel and Fuck, 1987; Pimentel, 2016; Marques *et al.*, 2019).

The neighboring Bom Jardim metavolcanic-sedimentary sequence is usually compared to modern volcanic arcs (Seer, 1985), and displays a U-Pb age of 749 ± 6 Ma (Guimarães *et al.,* 2012). The last major metamorphic/deformation event recorded in the Arenópolis Magmatic Arc is represented by granite-gneisses that intruded the metavolcanic-sedimentary sequences around 630 Ma, which is compatible with the last regional metamorphic evidence in the Brasília Belt (Pimentel and Fuck, 1987; Della Giustina *et al.,* 2011; Pimentel, 2016 and references therein).

Seer (1985) described granitic intrusions in the metasedimentary rocks of the Cuiabá Group in the easternmost portion of the Paraguay Belt (Figure 4.1D), e.g., the SW Serra Verde Granite (an isotropic, porphyritic, medium- to coarse-grained pink granite; Balieiro and Cunha, 1974 *in* Seer, 1985), and a small quartz-diorite body. The third intrusive body in the area corresponds to the voluminous Bom Jardim Granite, that was firstly classified by Coimbra (2015) as an I-type post-collisional calc-alkaline pluton, with occurrences of xenoliths and enclaves, yielding a zircon U-Pb age of 550±12 Ma.

4.3.MATERIALS AND METHODS

Thirty-two outcrops were sampled for this study. The sampling strategy was based to cover the fresher outcrops distributed in the study area, focusing on the observed composition ranges. Thin sections were described considering the main features of the rock, such as texture and mineral composition. The petrographic classification was made considering the QAP classification diagram of Streckeisen (1974), using modal estimates, later checked with CIPW normative minerals obtained via the GCDkit software (version 2.3; Janousek *et al.*, 2006). Mineral abbreviations of Whitney and Evans (2010) were adopted in Figures 4.3, 4.5 and 4.6.

Twenty-six representative samples were selected for geochemical analyses. The samples were crushed in the UnB Sample Preparation Laboratory. Grinding, quartering and milling to 200 mesh were performed at the ALS Global Laboratory in Goiânia (Brazil), and analyzed in the ALS Global facilities in Vancouver (Canada). Loss on ignition (LOI) was estimated using a 1.0-g sample heated in an oven to 1000 °C for 1 h, then cooled and weighed. Analyses of major and minor elements were obtained by X-ray fluorescence (XRF) after melting the samples with lithium tetraborate. Trace elements were determined from melting 0.2-g samples with lithium metaborate/tetraborate, followed by digestion in nitric acid and analysis by Inductively Coupled Plasma for Optical Emission Spectroscopy (ICP-OES). Precious metals and base metals were determined after digestion of 0.5-g sample with Aqua Regia using the Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) technique. Full available descriptions of the analytical methods are on the ALS Global site (www.alsglobal.com). Microsoft Excel and GCDkit (Janousek et al., 2006; version 2.3) programs were used to process the data for geochemical interpretations.

Zircon crystals from representative samples were separated by density and magnetic separator before concentration by hand picking to assemble the grain mounts. The polished

zircon surfaces were imaged using cathodoluminescence (CL) and back-scattered electron microscopy (BSE), with a FEI QUANTA 450 scanning electron microscope (SEM) at the UnB Laboratory of Geochronology. The U-Pb isotopic analyses were performed on zircon grains at the UnB Laboratory of Geochronology (Supplementary Table 1), using a Thermo-Fisher Neptune HR-MC-ICP-MS instrument, coupled to a Nd:YAG UP213 New Wave laser ablation system. The standard sample bracketing method of Albarède *et al.* (2004) was applied in the U-Pb analyses using the GJ-1 zircon standard (Jackson *et al.*, 2004) in order to measure the ICP-MS fractionation. During the analytical sessions, reference zircon 91500 (Wiedenbeck *et al.*, 2004) was also analyzed as an external standard to evaluate the quality and reproducibility of the analyses (AL08: 1064 ± 5.4 Ma; AL01: 1064 ± 12 Ma; AL27: 1064 ± 5.6 Ma). The 91500 results are available in the Supplementary Table 2. Tuned masses were 238, 207, 206, 204 and 202. Integration time was one second, and ablation time was 40 seconds. The analyses were performed using a 30 µm-diameter laser spot and the laser was adjusted to 10 Hz and 2-3 J/cm². In addition, the $^{206}Pb/^{207}Pb$ and $^{206}Pb/^{238}U$ ratios were time-corrected.

Common ²⁰⁴Pb was monitored using the masses of ²⁰²Hg and (²⁰⁴Hg+²⁰⁴Pb). Common Pb corrections were not made, as the signals were exceptionally low (<30 cps) for ²⁰⁴Pb and high for ²⁰⁶Pb/²⁰⁴Pb ratios. Reported errors were propagated by the quadratic addition (2SD [^] 2 + 2SE [^] 2) ¹/₂ (SD = standard deviation; SE = standard error) for external reproducibility and performance accuracy. External reproducibility was represented by the standard deviation obtained from repeated analyses (n=20, ~1.1% for ²⁰⁷Pb/²⁰⁶Pb and up to ~2% for ²⁰⁶Pb/²³⁸U) of the GJ-1 zircon standard during the analytical sessions and execution accuracy is the standard error calculated for each analysis. More details about the applied methods can be found in Bühn *et al.* (2009). The raw data were processed off-line and reduced using an Excel worksheet (Bühn *et al.*, 2009). Concordia diagrams, probability density plots, and weighted average ages were calculated using the Isoplot-3/Ex software (Ludwig, 2012).

Whole-rock Sm-Nd isotopic analyses were performed using the same samples analyzed by the U-Pb method, following the procedures described by Gioia and Pimentel (2000), also carried out at the UnB Laboratory of Geochronology. Approximately 50 mg of each representative sample powders were mixed with ¹⁴⁹Sm/¹⁵⁰Nd spike solution and dissolved in Savillex capsules. Sm and Nd contents were extracted via conventional cation exchange chromatography technique, with Teflon columns containing LN-Spec resin (HDEHP – diethylhexyl phosphoric acid supported on PTFE powder). Sm and Nd fractions were loaded on Re evaporation filaments of double filament assemblies, and the measurements were performed on a multicollector TRITON thermal ionization mass spectrometer (TIMS) in static mode. The uncertainties of Sm/Nd and ¹⁴³Nd/¹⁴⁴Nd ratios were better than ±0.1% (2 σ standard error) and ±0.0015% (1 σ), respectively, according to repeated analyses of the international rock standard BHVO-1. The ¹⁴³Nd/¹⁴⁴Nd ratios were normalized to ¹⁴⁶Nd/¹⁴⁴Nd=0.7219, and the decay constant used was (σ) 6.54×10⁻¹². The T_{DM} values were calculated using the model proposed by DePaolo (1981).

4.4.RESULTS

4.4.1. Geology and Petrography

The investigated igneous bodies crop out as stocks and plutons in an area of 1,400 km² (Figure 2). Host rocks are schists and phyllites related to the Cuiabá Group, and are exposed in the internal zone of the Paraguay Belt. Small band of thermal metamorphism produced albite-epidote hornfels (distal) and hornblende hornfels (proximal to the intrusions) paragenesis in the host rocks. The primary N30°E orientation of the Transbrasiliano Lineament can be well recognized in the Cuiabá Group metasedimentary rocks.

The investigated granitic rocks were divided into two groups, on the basis of lithological and petrographic parameters. The first group corresponds to a large granodiorite pluton and a small quartz monzodiorite stock that occur in the NE of the study area. The second group includes mostly monzogranite outcrops that constitute a pluton in the SW of the study area (Figure 4.2).

Figure 4.2 – Geological map of the study area (modified from CPRM, 2017). MS – monzogranite suite; QMF – qz-monzodiorite facies; GF - granodiorite facies.

The first group, here named qz-monzodiorite/granodiorite suite, is dominantly correlated with the calc-alkaline granodioritic trend of the Lameyre and Bowden (1982) evolutionary magmatic series (Figure 4.3A). The second group is the monzogranite suite – the

samples plot in the field between calc-alkaline and monzonitic/shoshonitic trends of Lameyre and Bowden (1982; Figure 4.3A).

4.4.1.1.The qz-monzodiorite/granodiorite suite

First described by Seer (1985) as quartz diorite, the stock of approximately 30 km^2 in area corresponds to the least evolved igneous body of the Paraguay Belt. The stock is a small satellite body (Figure 2) essentially composed of plagioclase (oligoclase to andesine, An₁₄₋₃₆, 44-42%), hornblende (17-14%), quartz (12-10%), biotite (11-9%), augite (7-6%), and microcline (5-6%). The rock is greenish-gray (Figure 3B), from fine- to very-fine grained (0.1 to 1 mm), and displays porphyritic to glomeroporphyritic texture. Hornblende is the main mafic mineral and occurs both as phenocrysts (0.5 to 1 mm) and in the matrix (up to 0.3 mm in size). The glomeroporphyritic texture is represented by clustered amphibole, plagioclase and pyroxene (Figure 3C). The accessory minerals (<5%) include titanite, apatite, zircon and monazite, and alteration products are sericite, epidote and opaque minerals. Uralitization by late magmatic fluids is intense and is evidenced by augite enveloped by hornblende.

Figure 4.3- Petrographic aspects of the investigated rocks: (A) QAP classification diagram of Streckeisen (1974) showing CIPW normative compositions for the studied rocks. Evolutionary trend for magmatic series of Lameyre and Bowden (1982); (B) hand specimen of quartz monzodiorite showing porphyritic texture and very fine- to fine-grained, dark greenish-grey matrix; (C) photomicrograph of quartz monzodiorite showing porphyritic to

glomeroporphyritic texture and very fine-grained matrix mainly formed of plagioclase. Augite is enveloped by hornblende rims; (D) granodiorite sample showing weak foliation resulting from the orientation of mafic minerals; (E) photomicrograph of granodiorite showing discrete orientation, formed of plagioclase, hornblende, biotite, titanite and opaque minerals; (F) hand specimen of monzogranite showing porphyritic texture, in which pinkish K-feldspar phenocrysts stand out from a dark-grey matrix of plagioclase, quartz and biotite; (G) photomicrograph of monzogranite showing inequigranular, xenomorphic texture and graphic intergrowth. Photomicrographs taken under crossed polarizers. Mineral abbreviations are after Whitney and Evans (2010).

The granodiorite facies was firstly described by Coimbra (2015) and is characteristic of a larger pluton located SW of Bom Jardim de Goiás (Figure 4.2). It is essentially composed of plagioclase (44-40%), quartz (22-17%), hornblende (16-14%), biotite (13-8%) and microcline (10-8%). Plagioclase varies from oligoclase to andesine (An₁₉₋₃₂). Accessory minerals are apatite, titanite, allanite, zircon and opaque minerals; alteration minerals are clinozoisite/zoisite and clay minerals. The rocks exhibit equigranular (~0.8 mm) to inequigranular (1 to 2.5 mm) textures, formed of subhedral feldspar and amphibole phenocrysts in hypidiomorphic to xenomorphic matrix. Incipient foliation resembling schistosity is defined by the orientation of biotite and hornblende aggregates, following the regional trend characteristic of the Transbrasiliano Lineament (Figure 4.3D). Hornblende can be partially to totally replaced by biotite, and is usually associated with titanite, allanite and opaque minerals (Figure 4.3E).

4.4.1.2. The monzogranite suite

Pinkish to gray, isotropic granite crops out south of Baliza, Mato Grosso (Figure 4.2). The rock is fine- to coarse-grained, varying from equigranular (\sim 1 mm) to inequigranular (0.12 to 8 mm), and displays porphyritic texture with a matrix of up to 0.4 mm in grain size (Figure 4.3F). The rock-forming minerals are plagioclase (41-36%), classified as oligoclase (An₂₁₋₂₉),

K-feldspar (29-24%), quartz (28-18%), and euhedral to subhedral biotite (7-5%), which characterizes the monzogranitic composition. Accessory minerals are titanite, zircon and apatite. Alteration phases are chlorite, muscovite and opaque minerals. Plagioclase (0.1 to 5 mm) can either compose the matrix or form twinned phenocrysts containing biotite inclusions. Graphic intergrowth of vermicular quartz is commonly found in K-feldspar grains (Figure 4.3G). Perthitic intergrowth is also common, with the sodic phase arranged as films and grains. Quartz can be vermicular, cuneiform or lobate in perthitic orthoclase, characterizing the micrographic intergrowth.

4.4.2. Lithochemical Data

Twelve representative samples of the qz-monzodiorite/granodiorite suite were analyzed, among which three of the qz-monzodiorite facies (SiO₂ ~56 wt.%) and nine of the granodiorite facies (58.8-65.3 wt.% SiO₂). Ten samples of the monzogranite suite (SiO₂ 65.6-71.2 wt.%) were analyzed. High MgO contents were obtained for the qz-monzodiorite/granodiorite suite, resulting in high mg# values (56.09 to 39.58; Table 4.2), which decrease in the monzogranite suite (36.37> mg# >27.16). Geochemical data (major elements) published by Manzano (2009) for other granitic bodies intruded into the Cuiabá Group, Paraguay Belt, are presented for comparison. Major, minor and trace element data of this study are listed in Table 4.2.

Table 4.2 – Results of the whole rock geochemical analyses of the investigated rocks.

	Granodiorite							Quartz Monzodiorite				
Elements	AL01	AL02	AL03	AL04-A	AL21	AL22	AL23	AL24	AL25	AL05-A	AL05-B	AL08
SiO ₂	58.8	62.5	63.9	65.3	61.3	59.1	62.6	63.4	63.4	56.9	56.8	56.8
Al ₂ O ₃	15.15	15.45	15.25	15.05	15.3	15.15	16.05	15.5	15.55	14	14	13.95
Fe2O3	7.98	6.23	5.59	5.62	6.15	6.96	5.91	6.33	5.96	7.59	7.73	7.57
------------------	--------	--------	--------	--------	-------	--------	-------	--------	--------	--------	--------	-------
FeO	7.18	5.61	5.03	5.06	5.54	6.26	5.32	5.70	5.36	6.83	6.96	6.81
MnO	0.1	0.07	0.07	0.08	0.08	0.1	0.06	0.11	0.1	0.12	0.12	0.14
MgO	5.17	2.68	2.31	2.27	2.96	4.6	2.89	2.14	2.19	5.44	5.47	5.28
CaO	6.24	4.78	4.1	3.72	4.65	5.88	4.75	4.1	4.34	6.63	6.73	6.56
Na2O	3.4	3.96	3.69	3.6	3.62	3.59	3.94	3.76	3.75	3.29	3.29	3.27
K2O	2.23	2.61	3.17	3.2	3.08	3.1	3.2	3.31	3.17	3.71	3.7	3.71
TiO ₂	0.94	0.78	0.72	0.65	0.86	0.88	0.8	0.77	0.77	1.04	1.05	1.04
P2O 5	0.34	0.23	0.2	0.19	0.25	0.3	0.28	0.24	0.24	0.51	0.52	0.52
LOI	1.33	0.97	0.87	1.09	0.88	1.41	0.71	1.07	0.65	0.58	0.65	0.53
Total	101.97	100.47	100.06	100.94	99.35	101.35	101.5	100.92	100.31	100.41	100.69	99.99
Ba	1210	893	885	835	1095	1230	1515	885	888	3190	3290	3210
Ga	21.1	22.1	21.4	21	20.5	20.5	21.2	21.2	21.2	21.2	21.8	20.1
Hf	5.9	5.9	5.6	6.1	5.7	5.6	5.3	5.4	5.8	7	7.1	7.3
Nb	14.1	18	15.2	15.2	17.2	17.1	21.3	13.9	16.2	21.2	21.1	20
Rb	68.5	86.6	111	116	103	107	90.4	123	119	126.5	121.5	118
Sr	979	803	657	586	721	990	1035	697	725	1845	1830	1755
Та	1.1	2	1.4	1.7	1.7	1.7	2	1.6	1.6	1.6	1.7	1.6
Th	22.7	16.8	18.35	18.75	19.1	27.6	19.35	15.6	15.65	52.3	53.3	53.6
Y	26.6	20.1	27.7	20	23.8	24.5	23.9	22	23.3	31.1	31.6	32.3
Zr	239	217	211	209	204	216	207	210	206	273	273	267
La	70.6	58.7	45.3	46.6	59.9	81.5	77.2	52.7	53.9	159.5	158	156.5
Ce	147.5	120.5	91.6	93.6	124.5	163	148.5	107.5	109	309	311	305
Pr	17.75	13.95	10.7	10.35	14.1	18.45	16.7	12.15	12	34.2	33.8	34
Nd	71.3	52.8	39.7	39.9	52.6	69.7	62.2	46.6	48	126.5	128.5	128

Sm	12.95	10.05	7.86	7.47	9.96	11.45	10.7	8.61	8.97	21.2	21	20.9
	2.50	2.10	1.60	1.55		0.65	0.14	2.02			1.22	1.1.5
Eu	2.69	2.18	1.68	1.66	2.22	2.65	2.46	2.03	2.1	4.31	4.33	4.46
Gd	8.14	6.72	5.96	5.06	6.77	7.84	6.72	5.76	5.83	12.05	12.35	11.9
Ть	1.07	0.93	0.91	0.75	0.9	0.98	0.89	0.8	0.81	1.41	1.47	1.39
Dy	5.55	4.73	5.08	4	5.07	5.25	4.97	4.71	7.73	6.91	7.28	7.35
Но	0.88	0.76	0.88	0.74	0.88	0.86	0.74	0.83	0.87	1.08	1.11	1.16
Er	2.63	1.99	2.8	2.19	2.47	2.33	2.4	2.22	2.66	2.84	2.96	2.73
Tm	0.35	0.32	0.36	0.29	0.33	0.37	0.33	0.36	0.37	0.36	0.4	0.41
Yb	2.2	1.75	2.47	1.73	2.07	1.99	2.06	2.06	2.06	2.27	2.17	2.5
Lu	0.36	0.24	0.35	0.28	0.3	0.32	0.34	0.33	0.32	0.33	0.37	0.35
Eu/Eu*	0.75	0.77	0.72	0.78	0.78	0.81	0.83	0.83	0.84	0.76	0.76	0.79
mg#	53.59	43.40	42.42	41.86	46.18	54.09	46.57	37.60	39.58	56.09	55.78	55.42
(La/Yb) _N	22.9	23.9	13.1	19.2	20.6	29.2	26.7	18.2	18.7	50.1	51.9	44.6
(Gd/Yb) N	3.0	3.1	2.0	2.4	2.7	3.2	2.7	2.3	2.3	4.3	4.6	3.9
(Nb/Ta) _N	0.72	0.51	0.61	0.50	0.57	0.57	0.60	0.49	0.57	0.75	0.70	0.70
(Zr/Hf) _N	1.12	1.02	1.04	0.95	0.99	1.07	1.08	1.08	0.98	1.08	1.06	1.01
A/CNK	0.78	0.86	0.90	0.93	0.86	0.76	0.86	0.90	0.89	0.65	0.65	0.65

]	Monzog	granite				
Dements	AL26	AL27	AL28	AL28-B	SE-05	SE-27	SE-25	SE-38	SE-48	AL-30
SiO 2	65.6	67.3	71	71.2	64.4	64.4	69	68	69.3	65.8
Al ₂ O ₃	15.5	14.9	13.6	13.7	14.85	14.9	14.1	14.05	14.1	14.7
Fe ₂ O ₃	4.67	3.75	3.03	3.06	4.44	4.49	3.69	4.13	3.6	3.97
FeO	4.20	3.38	2.73	2.75	4.00	4.04	3.32	3.72	3.24	3.57
MnO	0.08	0.07	0.05	0.05	0.08	0.09	0.07	0.08	0.07	0.07

MgO	1.36	1.06	0.65	0.64	1.32	1.44	1.1	1.28	1.05	1.12
CaO	2.49	2.13	1.61	1.65	2.39	2.5	1.49	2.15	1.85	2.53
Na ₂ O	3.71	3.75	3.36	3.42	3.57	3.62	3.66	3.72	3.69	4.1
K2O	5.06	4.68	4.91	4.85	5.28	5	4.79	4.41	4.54	4.2
TiO 2	0.75	0.61	0.48	0.47	0.73	0.74	0.54	0.66	0.54	0.66
P2O 5	0.31	0.23	0.13	0.15	0.3	0.27	0.21	0.26	0.22	0.25
LOI	0.93	0.72	0.69	0.75	0.96	0.99	0.7	0.62	0.78	0.93
Total	100.69	99.41	99.67	100.1	98.57	98.67	99.5	99.54	99.9	98.5
Ba	1480	1315	980	1030	1695	1440	1085	1095	987	1080
Ga	19.1	17.8	16.4	17.1	18.3	19.8	20.5	21	20.6	22.8
Hf	10.3	7.4	6.6	6.4	9.9	11	8.5	9.5	7.2	8.8
Nb	53.6	48.8	49.9	51.6	54	57	57.9	56.7	51.5	56.9
Rb	158	162	136.5	154	158.5	172.5	174	162.5	165	150
Sr	582	508	384	419	568	572	346	471	360	497
Та	3.8	3.5	5.3	5.7	3.5	3.7	4.7	3.9	4.2	4.2
Th	32.5	25.9	22	22.9	27.4	31.2	32.8	1.15	1.08	1.05
Y	29.8	23.6	36.2	40.9	31.9	28.7	64.6	35.1	33	31.4
Zr	400	308	245	274	441	448	356	385	315	365
La	90.4	65.9	80.4	88.8	88.6	123.5	105	101.5	90.3	86.5
Ce	177.5	141.5	161.5	177	180.5	206	172.5	188	160.5	176
Pr	19.15	15.2	18.25	19.2	19.35	19.75	19.4	19.3	16.2	17.7
Nd	64.6	52.6	66.3	73.3	70.9	67.6	67.7	69.4	56.7	64.6
Sm	10.65	8.35	12	13.75	11.5	10.15	11.6	11.15	9.2	10.25
Eu	2.05	1.63	1.88	1.85	1.93	1.69	1.72	1.63	1.47	1.78
Gd	7.45	5.56	9.57	9.01	7.74	6.8	9.4	7.71	6.91	6.78

Tb	1.06	0.82	1.41	1.35	1.22	1	1.54	1.15	1.08	1.05
Dy	6.2	4.54	8.32	8.38	6.11	5.66	9.27	6.23	6.36	6.01
Но	0.98	0.83	1.42	1.46	1.15	0.96	1.86	1.18	1.11	1.06
Er	3.32	2.68	4.11	3.81	3.2	2.94	5.51	3.25	3.52	3.05
Tm	0.45	0.4	0.56	0.6	0.52	0.45	0.74	0.54	0.48	0.44
Yb	3	2.81	3.3	3.25	2.83	2.7	4.55	3.24	3.19	2.89
Lu	0.46	0.38	0.46	0.44	0.45	0.5	0.67	0.5	0.48	0.42
Eu/Eu*	0.67	0.69	0.52	0.48	0.59	0.59	0.49	0.51	0.54	0.62
mg#	34.17	33.50	27.66	27.16	34.64	36.37	34.70	35.59	34.21	33.46
(La/Yb) _N	11.7	10.9	18.1	12.8	21.5	16.7	17.4	19.5	22.3	32.6
(Gd/Yb) N	2.0	1.6	2.4	2.3	2.2	2.1	1.7	1.9	1.8	1.9
(Nb/Ta)n	0.79	0.79	0.53	0.51	0.87	0.87	0.69	0.82	0.69	0.76
(Zr/Hf)N	1.07	1.15	1.03	1.18	1.23	1.13	1.16	1.12	1.21	1.15
A/CNK	0.96	0.99	0.99	0.99	0.93	0.94	1.01	0.95	0.98	0.93

In the Na₂O+K₂O-CaO *vs.* SiO₂ diagram of Frost *et al.* (2001), the qzmonzodiorite/granodiorite suite samples plot exclusively within the calc-alkaline field, while the monzogranite suite samples plot mainly in the alkali-calcic domain (Figure 4.4A). The magmatism that originated both suites is classified as non-tholeiitic in the AFM diagram of Irvine and Baragar (1971), modified by Nardi (2016; Figure 4.4B). The FeO_{tot}/(FeO_{tot}+MgO) *vs.* SiO₂ diagram of Frost *et al.* (2001) shows that both suites display an exclusively magnesian signature (Figure 4.4C).

The A/CNK vs. A/NK diagram proposed by Maniar and Piccoli (1989; Figure 4.4D), indicates the metaluminous to slightly peraluminous (A/CNK = 0.64-1.01) nature of both suites.

The K_2Ovs . SiO₂ diagram of Peccerillo and Taylor (1976; Figure 4.4E) indicates shoshonitic affinity for the qz-monzodiorite facies and high-K calc-alkaline affinity for the granodiorite facies of the qz-monzodiorite/granodiorite suite. The monzogranite suite also displays mainly ultrapotassic affinity.

Figure 4.4 - The continuous and dotted lines correspond to studies related to high Ba-Sr magmatism used for comparison. Distribution of representative analytical points of the investigated magmatism in the diagrams: (A) Na2O+K₂O-CaO versus SiO₂ proposed by Frost et al. (2001); (B) AFM diagram of Irvine and Baragar (1971); (C) FeOtot/(FeOtot+MgO) versus SiO₂ proposed by Frost et al. (2001); (D) A/CNK versus A/NK by Maniar and Picolli (1989); (E) K₂O versus SiO₂ of Peccerillo and Taylor (1976).

Harker diagrams (Figure 4.5) show that SiO₂ in both suites correlates negatively with MgO, CaO, P₂O₅, TiO₂ and FeO_{tot}, whereas K₂O is rather scattered in most of the analyzed samples. Convex downward patterns are notable for Al₂O₃ and Na₂O with increasing SiO₂ in the qz-monzodiorite/graniodiorite suite samples. Trace element distribution indicates negative correlations between SiO₂ and Ba, Sr, Cr and Ni contents. Cr and Ni contents show an almost constant trend for the monzogranitic samples (Figure 4.6A). Bivariant plots between trace elements in logarithmic diagrams (Ba-Sr, Cr-Ni-V and Ce-Zr) can be used to provide information about the crystal fractionation arrays by comparing the studied mineral trend retention with the model mineral fractionation vector based on the Rayleigh fractionation in equation used by Fowler *et al.* (2001, 2008). From these diagrams, separation of plagioclase, biotite, amphibole, and some accessory minerals (mainly titanite and zircon) are well observed (Figure 4.6B).

Figure 4.5– Harker diagrams with the distribution of major elements (in ppm) data. Each rock mineralogical composition allows qualitative assessment of possible crystal fractionation and the major elements distribution set up pathways which is represented by vectors from parental appinite to granodiorite. Mineral abbreviations are after Whitney and Evans (2010).

Figure 4.6 – (A) harker diagrams with the distribution of some trace elements (in ppm) data; (B) selected bivariant trace element diagrams for studied suites. Mineral abbreviations are after Whitney and Evans (2010).

Chondrite-normalized REE data (Evensen 1978; Figure 4.7) indicate depletion of HREE in relation to LREE, as HREE concentrations average around 10x chondrite values. The qzmonzodiorite/granodiorite suite presents the highest LREE values, with $[La/Yb]_N = 44-51$ in the qz-monzodiorite facies, and $[La/Yb]_N = 18-29$ in the granodiorite facies (Figure 7A). $[La/Yb]_N$ varies from 11 to 22 in the monzogranite suite (Figure 4.7B). The qzmonzodiorite/granodiorite suite exhibits slightly negative Eu anomalies, with (Eu/Eu*) ranging between 0.75 and 0.89. The most pronounced negative Eu anomalies occur in the monzogranite suite, with (Eu/Eu*) ranging between 0.51 and 0.74. The monzogranite suite displays a less depleted HREE pattern, with (Gd/Yb)_N of ~2 (Figure 7B).

Figure 4.7 - Rare earth elements patterns of the investigated rocks, normalized to the chondritic values of Evensen (1978), compared to high Ba-Sr granites (Fowler *et al.*, 2008) and to monzogranite values of Matok Pluton (Laurent *et al.*, 2014b).

The multielement diagrams show notable depletions in Nb, Ta, P and Ti in both suites (Figure 4.8). The qz-monzodiorite/granodiorite suite shows more pronounced positive Ba (~3230 ppm) and Th (~53 ppm) anomalies (Figure 4.8A). The monzogranite suite shows considerably less depletion in HSFE (Yb, Y, Nb, Ta, Zr and Hf), with relatively high Zr/Hf (~41) and Nb/Ta (~13) ratios (Figure 4.8B). Besides, subparallel patterns with weak depletion of Nb–Ta [(Nb/Ta)_N =0.51–0.87] and Zr–Hf [(Zr/Hf)_N =1.07–1.23] are observed in the monzogranite suite.

Figure 4.8 – Multi-element distribution patterns of analyzed samples normalized to primitive mantle values (Thompson, 1982), compared to high Ba-Sr granites (Fowler *et al.*, 2001) and to monzogranite values of Matok Pluton (Laurent *et al.*, 2014b).

4.4.3. Zircon U-Pb Geochronology

Representative samples of both suites were analyzed by means of the zircon U-Pb method. The location of the samples in the study area is shown on the map of Figure 4.2. The few Meso- and Paleoproterozoic ages obtained from some zircon grains were excluded from the U-Pb calculations, for not presenting acceptable analytical errors and concordance (Table 4.3).

							AL	08 (quart	z monz	odior	ite facies						
SAMPLE													Арра	arent ag	ges		
	f				err		err		err								conc
	206	Th/	²⁰⁶ Pb/	²⁰⁷ Pb/	(%)1	²⁰⁷ Pb/	(%)1	²⁰⁶ Pb/	(% 1	Rho	²⁰⁷ Pb/	26	²⁰⁷ Pb/	26	²⁰⁶ Pb/	26	(%)
GRAIN	(%)	U	²⁰⁴ Pb	²⁰⁶ Pb	б	²³⁵ U	б	²³⁸ U	б		²⁰⁶ Pb		²³⁵ U		²³⁸ U		(79)
003-ZR1	0.23	2.18	6740	0.06	0.74	0.76	1.18	0.09	0.84	0.71	599.99	31.82	564.18	9.03	571.38	10.25	98.74
009-ZR37	0.05	2.75	28433	0.06	2.35	0.74	3.23	0.09	2.19	0.68	570.51	100.55	559.00	23.47	561.31	27.71	99.59
031-ZR25	0.09	1.23	17294	0.06	0.50	0.72	1.75	0.09	1.64	0.94	566.96	21.49	549.45	17.22	552.90	14.85	99.38
024-ZR20	0.00	1.14	478980	0.06	0.61	0.71	1.18	0.09	0.94	0.80	543.46	26.40	547.62	9.90	546.85	9.96	100.14
006-ZR4	0.03	0.51	49418	0.06	0.77	0.85	1.26	0.10	0.93	0.74	666.55	32.93	613.72	10.88	625.14	625.14	98.17
007-ZR5	0.75	2.27	2084	0.06	2.75	0.77	3.08	0.09	1.33	0.43	643.02	116.21	563.15	14.31	579.31	27.01	97.21
012-ZR10	0.03	0.82	52608	0.06	0.90	0.96	1.47	0.11	1.11	0.75	704.56	38.03	676.44	14.19	683.01	14.59	99.04
020-ZR16	0.02	0.79	84172	0.06	0.45	0.88	0.82	0.10	0.58	0.70	679.32	19.33	631.11	6.96	641.77	7.82	98.34
021-ZR17	0.03	0.48	59457	0.06	1.09	0.90	1.36	0.11	0.71	0.53	674.97	46.28	645.32	8.78	651.99	13.00	98.98
023-ZR19	1.13	0.09	1379	0.06	2.87	0.74	3.06	0.09	1.00	0.33	552.20	123.00	562.83	10.78	560.76	26.24	100.37
027-ZR21	0.02	0.60	74612	0.06	0.94	0.83	1.39	0.10	0.95	0.69	643.55	40.14	602.95	10.98	611.59	12.73	98.59
006-ZR34	0.03	2.19	56288	0.06	1.50	0.75	2.26	0.09	1.65	0.73	615.22	64.32	554.93	17.53	566.94	19.57	97.88
007-ZR35	0.03	2.59	45611	0.06	2.01	0.68	2.45	0.09	1.35	0.55	505.62	87.37	531.93	13.73	527.02	20.04	100.93
016-ZR12	0.01	0.34	206622	0.06	0.49	1.02	0.99	0.12	0.79	0.79	731.14	20.49	710.80	10.56	715.75	10.19	99.31
018-ZR14	0.01	0.44	140522	0.07	0.92	1.09	1.50	0.12	1.13	0.75	829.02	38.03	723.49	15.50	749.81	15.89	96.49

Table 4.3 - Data of U-Pb analyses performed through LA-ICP-MS on zircon from the investigated magmatism.

022-ZR18	0.00	0.36	399685	0.07	1.94	1.28	2.92	0.13	2.15	0.74	921.64	78.59	804.55	32.51	836.35	32.99	96.20
017-ZR43	0.23	0.32	6646	0.07	0.94	1.15	2.21	0.12	1.96	0.89	885.91	38.82	737.64	27.27	775.49	23.78	95.12
017-ZR13	0.01	0.45	199908	0.06	0.97	0.83	1.27	0.10	0.73	0.57	564.79	42.09	625.06	8.68	612.21	11.65	102.10
005-ZR33	0.03	2.36	60919	0.06	1.63	0.70	2.09	0.09	1.26	0.60	453.79	71.34	555.90	13.42	536.33	17.34	103.65
008-ZR6	0.00	0.20	585513	0.08	0.44	2.19	0.89	0.20	0.68	0.76	1180.60	17.40	1177.30	14.68	1178.51	12.42	99.90
033-ZR27	0.00	0.05	686217	0.08	0.48	2.24	1.01	0.20	0.80	0.80	1269.53	18.76	1154.39	16.99	1195.17	14.12	96.59
035-ZR29	0.00	0.24	730690	0.13	0.45	7.18	0.82	0.40	0.58	0.70	2101.02	15.89	2167.09	21.20	2133.42	14.59	101.58
036-ZR30	0.47	0.39	3225	0.13	0.59	6.68	1.02	0.37	0.75	0.73	2125.12	20.76	2015.58	25.84	2070.32	18.02	97.36
004-ZR2	0.02	1.36	101802	0.06	0.96	0.71	2.91	0.08	2.72	0.94	673.69	40.66	517.42	27.05	547.33	24.48	94.54
028-ZR22	0.04	1.85	35695	0.05	3.53	0.65	3.68	0.09	0.99	0.27	287.70	157.31	560.95	10.67	510.04	29.31	109.98
032-ZR26	0.02	0.66	86699	0.05	4.05	0.59	4.17	0.09	0.91	0.22	196.29	183.07	532.35	9.30	473.33	31.31	112.47
034-ZR28	0.02	2.08	81747	0.05	2.19	0.68	2.33	0.09	0.70	0.30	378.19	97.12	559.19	7.48	524.89	19.01	106.53
008-ZR36	0.03	2.09	46722	0.07	2.15	0.86	2.77	0.08	1.71	0.62	1049.27	85.55	522.50	17.13	632.76	25.94	82.57
012-ZR40	0.73	2.77	2141	0.07	2.27	0.83	2.72	0.09	1.45	0.53	887.54	92.39	542.61	15.10	614.17	24.91	88.35
015-ZR41	0.80	2.88	1945	0.07	3.03	0.84	3.52	0.08	1.76	0.50	969.06	121.17	525.44	17.73	617.03	32.30	85.16
029-ZR23	0.33	1.51	4740	0.07	1.26	0.87	1.96	0.09	1.46	0.74	928.19	51.42	557.13	15.56	636.24	18.49	87.57
008-ZR6	0.00	0.20	585513	0.08	0.44	2.19	0.89	0.20	0.68	0.76	1180.60	17.40	1177.30	14.68	1178.51	12.42	99.90
003-ZR31	0.35	1.60	4429	0.07	5.81	0.80	5.89	0.09	0.91	0.15	827.12	233.59	539.21	9.37	597.90	52.59	90.18
004-ZR32	7.93	1.70	196	0.21	4.53	3.79	4.78	0.13	1.48	0.31	2881.96	143.36	802.88	22.37	1589.62	75.34	50.51
005-ZR3	5.20	0.44	300	0.10	4.51	1.24	4.89	0.09	1.84	0.38	1644.53	162.94	550.81	19.36	820.52	54.27	67.13
009-ZR7	12.43	2.26	125	0.19	1.26	3.11	1.66	0.12	1.01	0.61	2749.45	41.28	719.19	13.73	1434.15	25.35	50.15
010-ZR38	4.46	0.53	349	0.09	8.89	1.38	9.58	0.11	3.54	0.37	1428.31	321.72	677.22	45.48	879.02	109.66	77.04
010-ZR8	1.67	2.51	933	0.06	1.25	0.81	1.81	0.09	1.26	0.70	745.76	52.26	566.49	13.68	603.68	16.42	93.84
011-ZR39	12.85	1.90	121	0.25	6.32	3.79	7.11	0.11	3.25	0.46	3186.06	193.21	672.22	41.44	1591.04	111.23	42.25
I	I					1					1						

011-ZR9	6.61	0.29	236	0.11	1.98	1.48	2.28	0.10	1.06	0.46	1770.81	71.56	610.49	12.34	923.54	27.46	66.10
015-ZR11	6.15	2.07	252	0.45	4.52	10.11	5.42	0.16	2.97	0.55	4098.87	131.28	964.94	53.11	2445.05	97.85	39.46
016-ZR42	1.60	0.97	973	0.11	6.45	1.83	7.64	0.12	4.08	0.53	1808.52	225.80	729.91	56.13	1055.41	97.91	69.16
019-ZR15	3.01	2.25	518	0.08	2.61	1.04	2.71	0.09	0.64	0.24	1251.53	100.52	563.45	6.95	721.90	27.86	78.05
030-ZR24	23.23	2.42	67	0.48	6.68	12.87	7.33	0.19	3.00	0.41	4185.61	190.64	1142.19	62.69	2670.26	133.63	42.77

								AL01 (g	ranod	iorite	facies)						
SAMPLE													Арра	arent aç	ges		
	f 206 (%)	Th/	²⁰⁶ Pb/	²⁰⁷ Pb/	err (%)1 6	²⁰⁷ Pb/	err (%)1 6	²⁰⁶ Pb/	err (%	Rho	²⁰⁷ Pb/	26	²⁰⁷ Pb/	26	²⁰⁶ Pb/	26	conc. (%)
GRAIN		U		PD		1000		0	16		10090		0		1000		
031-ZR24	0.01	0.83	148663	0.06	0.85	0.71	1.33	0.09	0.96	0.72	529.88	36.85	546.61	10.06	543.41	11.18	100.59
015-ZR11	0.12	1.06	13495	0.06	0.94	0.74	1.39	0.09	0.95	0.69	557.43	40.65	565.36	10.31	563.82	11.97	100.27
024-ZR20	0.01	2.26	172151	0.06	0.41	0.71	0.85	0.09	0.64	0.76	535.64	18.01	548.12	6.75	545.74	7.15	100.44
023-ZR19	0.02	2.63	75083	0.06	0.51	0.72	0.84	0.09	0.56	0.66	549.25	22.13	551.29	5.87	550.92	7.13	100.07
021-ZR17	0.03	0.54	49858	0.06	0.57	0.73	0.93	0.09	0.64	0.68	557.14	24.90	555.53	6.79	555.88	7.98	99.94
056-ZR45	0.00	1.10	331040	0.06	0.28	0.74	0.78	0.09	0.63	0.80	562.04	12.00	560.73	6.73	561.02	6.70	99.95
047-ZR38	0.00	0.69	331751	0.06	0.42	0.73	0.77	0.09	0.53	0.69	542.75	18.19	560.10	5.64	556.72	6.56	100.61

053-ZR42	0.01	2.58	277694	0.06	0.61	0.73	0.88	0.09	0.52	0.59	536.89	26.45	562.18	5.57	557.22	7.53	100.89
054-ZR43	0.01	0.61	147350	0.06	0.40	0.71	0.85	0.09	0.66	0.77	521.48	17.30	550.24	6.97	544.71	7.19	101.01
008-ZR6	0.25	2.25	6357	0.06	1.20	0.72	1.41	0.09	0.64	0.45	549.80	51.86	548.41	6.72	548.71	11.89	99.95
058-ZR47	0.02	1.27	87875	0.07	0.30	1.17	0.67	0.13	0.47	0.70	776.42	12.69	792.27	7.04	788.17	7.35	100.52
010-ZR8	0.01	1.09	199701	0.06	0.40	0.72	1.05	0.09	0.90	0.86	533.71	17.45	555.89	9.59	551.59	8.94	100.78
055-ZR44	0.00	0.23	518606	0.06	0.27	0.71	0.71	0.09	0.54	0.76	531.90	11.92	548.02	5.63	544.94	5.95	100.57
034-ZR27	0.00	0.23	527233	0.06	0.28	0.75	0.67	0.09	0.47	0.71	534.71	12.45	573.27	5.21	565.60	5.77	101.36
040-ZR31	0.01	0.48	151840	0.06	0.84	0.75	1.11	0.09	0.63	0.56	540.09	36.58	571.99	6.89	565.65	9.64	101.12
059-ZR48	0.01	2.37	207549	0.06	0.49	0.69	1.03	0.09	0.83	0.80	539.50	21.48	534.21	8.48	535.25	8.57	99.81
061-ZR50	0.01	0.63	123313	0.06	0.50	0.83	0.86	0.10	0.59	0.69	605.00	21.52	613.70	6.91	611.88	7.86	100.30
036-ZR29	0.01	0.26	166007	0.06	0.69	0.774	1.33	0.10	1.07	0.81	530.75	30.02	594.90	12.17	581.79	11.71	102.25
003-ZR1	0.01	1.49	225844	0.06	0.77	0.75	1.19	0.09	0.83	0.70	524.82	33.46	580.67	9.19	569.47	10.33	101.97
011-ZR9	0.07	0.14	21283	0.13	0.27	7.06	1.09	0.39	0.99	0.91	2103.18	9.59	2135.07	35.84	2118.93	19.29	100.76
022-ZR18	0.13	2.57	12257	0.06	0.64	0.76	0.91	0.09	0.53	0.59	607.26	27.36	566.52	5.76	574.75	7.95	98.57
060-ZR49	0.00	0.77	475923	0.06	0.42	0.73	0.74	0.09	0.49	0.66	526.47	18.48	561.14	5.24	554.36	6.35	101.22
009-ZR7	0.39	2.25	3967	0.06	0.83	0.761	1.05	0.09	0.53	0.50	677.82	35.28	548.77	5.59	574.57	9.22	95.51
017-ZR13	0.65	1.01	2408	0.06	1.12	0.823	1.58	0.09	1.05	0.66	711.81	47.45	582.52	11.70	609.69	14.46	95.54
027-ZR21B	0.46	1.82	3415	0.06	1.66	0.790	1.81	0.09	0.62	0.34	697.34	69.75	564.16	6.68	591.43	16.12	95.39
028-ZR21N	1.13	2.06	1374	0.07	2.85	0.805	3.07	0.08	1.06	0.34	932.45	114.99	515.69	10.48	599.92	27.59	85.96
032-ZR25	0.04	0.38	40736	0.07	0.85	0.863	1.26	0.09	0.85	0.67	928.74	34.76	552.06	8.94	631.87	11.78	87.37
035-ZR28	2.31	0.30	676	0.07	2.43	0.870	2.97	0.09	1.67	0.56	918.81	98.33	558.77	17.81	635.53	27.85	87.92
039-ZR30	0.39	1.36	4007	0.06	0.88	0.752	1.37	0.09	0.99	0.72	646.49	37.53	550.03	10.43	569.22	11.94	96.63
	l					l					l						l

041-ZR32	0.74	2.22	2103	0.08	2.00	0.968	2.09	0.09	0.50	0.24	1074.79	79.20	575.15	5.45	687.50	20.78	83.66
042-ZR33	0.20	1.94	7858	0.06	0.88	0.761	1.28	0.09	0.85	0.67	696.23	37.22	544.09	8.87	574.43	11.18	94.72
043-ZR34	0.02	1.75	78195	0.05	1.63	0.664	1.78	0.09	0.59	0.33	359.12	72.96	553.63	6.26	517.19	14.35	107.05
044-ZR35	1.01	1.25	1543	0.07	1.38	0.861	1.62	0.09	0.76	0.47	807.50	57.37	582.45	8.48	630.69	15.18	92.35
046-ZR37	0.01	2.67	166762	0.06	2.36	0.698	2.47	0.09	0.65	0.26	414.36	103.67	566.84	7.02	537.43	20.53	105.47
016-ZR12	0.00	2.24	438962	0.06	1.76	0.734	1.93	0.09	0.69	0.36	512.13	76.64	570.14	7.49	558.69	16.51	102.05
005-ZR3	0.92	1.56	1696	0.07	4.20	0.893	4.25	0.09	0.55	0.13	970.27	166.65	559.57	5.85	648.20	40.30	86.33
020-ZR16	0.02	2.09	100448	0.05	9.04	0.646	9.09	0.09	0.86	0.09	265.17	390.28	560.90	9.18	506.08	71.16	110.83
029-ZR22	0.01	2.35	143179	0.04	34.77	0.425	34.83	0.09	1.93	0.06	-679.04	1524.57	539.12	20.00	359.97	200.84	149.77
030-ZR23	0.00	2.99	438419	0.06	1.63	0.730	1.75	0.09	0.50	0.29	495.22	71.09	571.65	5.51	556.58	14.91	102.71
033-ZR26	1.67	1.82	935	0.07	4.57	0.854	4.79	0.09	1.40	0.29	907.83	182.76	551.70	14.76	626.77	44.33	88.02
045-ZR36	0.01	2.08	274189	0.04	15.41	0.565	15.48	0.09	1.42	0.09	-67.68	677.99	564.49	15.39	454.82	110.47	124.11
048-ZR39	0.01	2.73	161751	0.04	15.89	0.543	15.91	0.09	0.65	0.04	-211.15	715.38	574.32	7.18	440.37	110.62	130.42
051-ZR40	0.14	2.55	10833	0.09	5.44	1.194	5.53	0.10	0.95	0.17	1383.11	202.05	605.02	10.97	797.99	60.26	75.82
052-ZR41	0.00	2.71	324362	0.01	134.93	0.116	134.97	0.08	2.95	0.02	-8349.10	12717.82	521.12	29.52	111.37	266.46	467.91
057-ZR46	1.28	1.12	1217	0.05	4.92	0.615	5.23	0.08	1.72	0.33	346.79	215.36	516.76	17.05	486.60	40.03	106.20
007-ZR5	4.39	0.36	355	0.12	0.53	1.094	1.15	0.07	0.95	0.83	1904.42	18.96	424.46	7.81	750.48	12.16	56.56
018-ZR14	2.92	1.33	532	0.30	2.58	5.448	2.84	0.13	1.13	0.40	3483.00	78.74	791.33	16.87	1892.37	48.20	41.82
019-ZR15	5.11	1.84	305	0.11	7.43	1.619	7.45	0.11	0.42	0.06	1811.98	258.26	649.48	5.21	977.59	91.41	66.44
012-ZR10	0.02	0.20	61663	0.13	1.05	8.433	3.08	0.46	2.87	0.93	2143.79	36.36	2432.00	115.84	2278.72	55.14	106.73
004-ZR2	0.14	0.25	11491	0.05	3.17	0.658	3.26	0.09	0.67	0.20	351.54	140.27	550.40	7.05	513.37	26.13	107.21
	I					l					l						

006-ZR4	0.02	2.33	79704	0.05	3.43	0.620	3.55	0.09	0.84	0.24	244.94	154.28	543.73	8.81	489.84	27.42	111.00

		AL27 (monzogranite)															
SAMPLE													Арра	arent aç	ges		
GRAIN	f 206 (%)	Th/ U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	err (%)1 6	²⁰⁷ Pb/ ²³⁵ U	err (%)1 6	²⁰⁶ Pb/ ²³⁸ U	err (% 1 6	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	26	²⁰⁷ Pb/ ²³⁵ U	26	²⁰⁶ Pb/ ²³⁸ U	26	conc. (%)
047-ZR37	0.02	1.31	67904	0.06	0.64	0.65	1.09	0.08	0.80	0.73	524.40	28.15	507.72	7.76	510.79	8.72	99.40
024-ZR19	0.02	0.51	103381	0.06	0.52	0.67	1.09	0.08	0.88	0.81	523.43	22.71	519.66	8.81	520.39	8.85	99.86
048-ZR38	0.03	0.53	58649	0.06	1.06	0.67	1.55	0.08	1.07	0.69	488.32	46.45	525.85	10.76	518.91	12.54	101.34
032-ZR24	0.03	1.49	49986	0.06	1.09	0.64	1.50	0.08	0.96	0.64	499.47	47.84	505.91	9.30	504.77	11.90	100.22
007-ZR5	0.06	0.64	24180	0.06	1.92	0.67	2.13	0.08	0.84	0.39	494.05	83.74	523.05	8.44	517.71	17.22	101.03
008-ZR6N	0.01	0.83	117520	0.06	2.03	0.67	2.30	0.08	1.01	0.44	534.09	87.79	514.10	10.01	517.82	18.58	99.28
020-ZR15	0.03	0.59	52362	0.06	0.43	0.69	1.08	0.09	0.92	0.85	545.12	18.73	529.63	9.38	532.59	8.96	99.44
044-ZR34	0.05	0.87	33468	0.06	0.87	0.71	1.40	0.09	1.04	0.74	545.86	37.78	544.71	10.84	544.96	11.81	99.95
045-ZR35	0.03	1.09	55020	0.06	0.81	0.66	1.36	0.08	1.03	0.76	579.88	34.96	502.57	10.00	516.77	11.03	97.25
043-ZR33	0.36	0.91	4281	0.06	1.38	0.73	1.60	0.09	0.71	0.45	502.31	60.18	566.63	7.72	554.01	13.59	102.28
035-ZR27	0.02	1.20	67684	0.06	0.64	0.71	1.07	0.09	0.78	0.73	593.62	27.42	534.17	7.99	545.63	9.03	97.90
046-ZR36	0.02	0.88	87706	0.06	1.75	0.61	1.94	0.08	0.76	0.39	448.73	76.79	494.24	7.27	486.27	14.97	101.64
018-ZR13	0.18	0.77	8558	0.06	5.94	0.69	6.03	0.09	0.98	0.16	526.38	250.13	535.60	10.07	533.88	49.44	100.32
003-ZR1	0.61	0.89	2566	0.10	1.38	0.17	12.59	0.01	12.51	0.99	1707.14	50.20	75.62	18.79	159.56	36.83	47.39

004-ZR2	0.36	1.48	4314	0.08	6.11	1.01	6.28	0.09	1.44	0.23	1237.01	230.51	554.07	15.29	709.09	63.15	78.14
009-ZR6B	0.04	0.66	35867	0.05	5.26	0.55	5.47	0.08	1.44	0.26	209.19	235.35	491.20	13.63	444.49	39.01	110.51
011-ZR8	0.54	0.76	2912	0.06	4.35	0.72	4.47	0.08	0.96	0.22	669.36	180.77	519.01	9.57	547.82	37.47	94.74
018-ZR13	0.18	0.77	8558	0.06	5.94	0.69	6.03	0.09	0.98	0.16	526.38	250.13	535.60	10.07	533.88	49.44	100.32
023-ZR18	0.05	0.46	30499	0.04	24.24	0.46	24.27	0.09	1.10	0.05	-591.82	1112.55	562.39	11.80	383.60	149.43	146.61
028-ZR21	0.23	1.30	6634	0.07	4.75	0.78	4.82	0.08	0.74	0.15	920.23	189.49	500.19	7.10	583.03	42.34	85.79
030-ZR23N	0.08	1.42	19339	0.06	6.62	0.62	6.69	0.07	0.94	0.14	671.86	271.14	452.90	8.22	490.84	51.45	92.27
031-ZR23B	0.02	0.71	80498	0.05	8.99	0.49	9.07	0.08	1.18	0.13	-18.11	408.28	480.94	10.92	403.64	59.53	119.15
015-ZR10	3.54	0.83	440	0.22	6.75	1.61	6.94	0.05	1.59	0.23	3013.41	208.72	326.98	10.13	974.44	85.15	33.56
016-ZR11	2.47	0.72	631	0.15	4.68	2.08	4.98	0.10	1.66	0.33	2363.72	155.59	612.99	19.43	1143.86	67.26	53.59
019-ZR14	18.27	0.34	85	0.24	4.08	1.14	4.46	0.03	1.77	0.40	3113.18	126.89	218.67	7.59	771.07	47.59	28.36
034-ZR26	1.51	0.89	1035	0.03	32.17	0.38	32.21	0.08	1.48	0.05	-884.29	1488.67	512.98	14.58	323.89	171.22	158.38
041-ZR31	5.63	0.83	275	0.34	7.64	8.96	7.91	0.19	2.01	0.25	3679.77	224.00	1116.18	41.04	2334.14	139.62	47.82
042-ZR32	3.49	0.50	447	0.04	4.74	0.49	4.79	0.08	0.59	0.12	-206.96	229.97	524.27	5.91	407.99	31.96	128.50
005-ZR3	0.60	0.78	2565	0.11	1.35	2.68	1.83	0.18	1.17	0.64	1799.77	48.82	1048.43	22.62	1322.77	26.83	79.26
036-ZR28	0.33	0.55	4718	0.07	1.66	0.70	2.08	0.08	1.19	0.57	813.56	68.71	479.17	11.00	541.57	17.37	88.48
040-ZR30	0.49	1.04	3169	0.07	1.43	0.82	1.67	0.08	0.78	0.47	949.37	57.99	523.00	7.88	610.36	15.29	85.69
039-ZR29	0.03	0.98	57237	0.06	1.21	0.63	1.84	0.08	1.34	0.73	641.89	51.71	468.50	12.06	499.11	14.47	93.87
006-ZR4	0.02	1.53	66887	0.06	1.00	0.63	1.52	0.08	1.08	0.71	415.76	44.50	515.11	10.65	497.27	11.89	103.59
010-ZR7	0.02	1.44	81312	0.05	2.82	0.66	3.00	0.09	0.97	0.32	373.67	124.42	543.56	10.12	512.07	24.01	106.15
012-ZR9	0.07	0.88	23072	0.06	2.25	0.67	2.54	0.08	1.11	0.44	624.27	95.73	498.96	10.63	522.06	20.62	95.58
017-ZR12	0.25	0.82	6260	0.07	1.82	0.80	2.18	0.09	1.15	0.53	818.21	75.07	537.98	11.87	594.89	19.57	90.43
021-ZR16	0.24	1.31	6587	0.07	1.18	0.81	1.43	0.09	0.72	0.51	813.74	48.94	549.08	7.62	603.57	13.00	90.97
022-ZR17	0.09	0.70	17437	0.06	0.76	0.66	1.25	0.08	0.93	0.74	590.31	32.62	498.33	8.88	515.15	10.09	96.74
						•											

027-ZR20	0.02	1.25	64281	0.06	0.83	0.69	1.26	0.08	0.87	0.69	621.88	35.72	515.63	8.66	535.68	10.49	96.26
029-ZR22	0.59	1.10	2636	0.07	1.83	0.74	2.03	0.08	0.78	0.38	859.72	75.20	494.34	7.40	564.82	17.48	87.52
033-ZR25	0.01	0.49	188757	0.06	2.26	0.68	2.95	0.09	1.85	0.63	420.92	99.36	555.05	19.68	529.54	24.16	104.82

4.4.3.1.The qz-monzodiorite/granodiorite suite

The qz-monzodiorite facies

Sample AL08 zircon crystals are generally subhedral, translucent to brownish yellow, and range in size from 60 to 140 μ m. Most of the crystals display short bipyramidal prismatic habits and are less commonly elongated, showing length/width ratios around 2:1. The crystals are generally fractured, and inclusions are rare. Out of a total of 44 analyzed grains (Figure 4.9A), 18 grains yielded concordance between 95.12 and 100.93 % and a lower intercept age of 560 ± 34 Ma (2σ error ellipses; Figure 4.9B). The lower intercept ages were obtained on zircon cores showing typical magmatic characteristics, such as regular concentric zonation and high Th/U ratios ranging from 1.1 to 2.7 (always more than 1). The older concordant grains show Th/U values between 0.3 and 0.8. Zircon crystal ZR12 (711±11 Ma) is the largest crystal analyzed (130 µm) and displays a darker core.

The analyses of rims of core-free zircon grains displaying faint to moderate oscillatory zoning clustered around 560 Ma. A concordia age of 557±5.7 Ma (MSWD of 1.3), considered to be the quartz monzodiorite crystallization age, was calculated using four grains with concordance between 99.4 and 100.1% (Figure 4.9C). Analyses with concordance around 96-98 % and 101-102 % were not considered due to extremely high MSWD.

Figure 4.9- U-Pb geochronological diagrams for the qz-monzodiorite facies, sample AL08. The spots of 30 μ m are represented as white circles. (A) Distribution of all the 44 U–Pb data in the Wetherill Concordia Diagram; (B) U-Pb concordant isotope analyses of sample AL08 from the qz-monzodiorite facies with BSE images of zircon grain ZR12 showing upper intercept of 1035 ± 120 Ma; (C) concordia diagram (557±5.7 Ma) for the U-Pb analysis and CL image of representative zircon ZR20 and ZR1.

The granodiorite facies

Sample AL01 zircon grains are colorless to dark- to light-yellow, and range in size from 50 to 130 μ m, with a few grains reaching up to 150 μ m. The most abundant are subhedral and show prismatic and sometimes rounded habits. The oscillatory zoning develops as alternating

CL intensities with variable banded shapes, mainly corresponding to the concordant analyses that clustered around 550 Ma.

Out of 51 analyzed zircon crystals (Figure 4.10A), 17 grains with the $^{206}Pb/^{238}U$ age spectrum indicating concordance between 99.81 and 101.36% yielded an upper intercept of 719±80 Ma and a lower intercept of 594±33 Ma, with MSWD of 5.8 (Figure 4.10B). Some analyses with concordance of 98.6% and around 100.8-102.7% were discarded, as they did not yield acceptable MSWD. The oldest concordant age (792±7 Ma – ZR47) was obtained on a small (90 µm) zircon grain of low core-luminosity (Figure 4.10B).

Six different crystals showing 99.9-100.4 % concordance yielded a concordia age $(2\sigma$ error ellipses) of 554±2.9 Ma, with MSWD of 0.34 (Figure 4.10C), considered as the granodiorite crystallization age. This zircon population yielded high Th/U ratios of 0.5 to 2.6.

Figure 4.10 – U-Pb geochronological diagrams for the granodiorite facies, sample AL01. The spots of 30 μ m are represented as white circles. (A) Distribution of all 51 U–Pb data in the Wetherill Concordia Diagram; (B) U-Pb isotope analysis of sample AL01 from the granodiorite facies with upper intercept age of 719±80 Ma; (C) concordia diagram (554±2.9 Ma) for the U-Pb analysis and CL images of representative ZR19 and ZR45 zircon grains.

4.4.3.2.The monzogranite suite

Sample AL27 zircon crystals range in size from 120 to 260 µm, are semitransparent to light yellow, and are usually euhedral with prismatic habit and well-defined pyramidal terminations. The crystals are elongated, with length/width ratios of 3:1. The zircon population preserves regular parallel bands of alternating light CL patches, and many grains contain well outlined cores. Out of 41 analyzed crystals (Figure 4.11A), 13 yielded concordance between 99 and 101% and an upper intercept of 527±86 Ma, with MSWD of 2.8 (Figure 4.11B). Zircon grain ZR33 yielded the oldest concordant age of 567±8 Ma (concordance of 102.3%), and shows a darker, low-intensity core in the CL image (Figure 4.11B) with a Th/U ratio of 0.9.

Six zircon grains yielded concordance between 99.2 and 101.3% and a concordia age of 515 ± 3.6 Ma (Figure 4.11C; MSWD = 0.0018), considered as the monzogranite crystallization age. High Th/U ratios predominate in these zircon grains, ranging from 0.5 to 1.4. Some analyses with concordance around 97 to 101% were discarded during concordia age calculations, because of inacceptable errors.

Figure 4.11- U-Pb geochronological diagrams for the monzogranite, sample AL27. The spots of 30 µm are represented as white circles. (A) Distribution of al0 47 U–Pb data in the Wetherill Concordia Diagram; (B) U-Pb concordant isotope analyses of monzogranite sample AL27; CL images of zircon grains showing upper intercept ages older than 527±86 Ma; (C) concordia diagram (515±3.6 Ma) for the U-Pb analyses and CL images of representative zircon grains ZR06N, ZR24 and ZR5.

4.4.4. Sm-Nd isotope data of whole-rock samples

The Sm-Nd isotope analysis of the qz-monzodiorite sample AL08 yielded a negative ϵ_{Nd} value of -6.65, when recalculated with the crystallization age of 557 Ma, and Mesoproterozoic T_{DM} model age of 1.53 Ga. Granodiorite sample AL01 produced a negative

 ϵ_{Nd} (-6.62) and a T_{DM} model age of 1.47 Ga. Monzogranite sample AL27 yielded a negative ϵ_{Nd} value of -6.32 and a Mesoproterozoic T_{DM} model age of 1.34 Ga (Table 4.4; Figure 4.12).

The T_{DM} model ages of the granitic province of the Paraguay Belt (Godoy *et al.*, 2007; 2010) vary from 1.97 to 1.07 Ga (Ferreira, 2009; Pinho, 2001), and the $\varepsilon_{Nd}(T)$ values are also negative (Figure 4.12).

Figure 4.12 – Age (Ga) vs. ε_{Nd} diagram for samples from the studied high Ba-Sr intrusions. For comparison, values from the Neoproterozoic granitic province of the Paraguay Belt are also plotted. Data from Ferreira (2009), Godoy *et al.*, (2010) and Pinho (2001).

Sample		Sm (ppm)	Nd (ppm)	¹⁴⁷ Sm/ ¹ ⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	εNd(T) min	SiO2	εNd(T) máx	T _{DM} (Ga)	U-Pb (Ma)
MS	AL27	9.464	63.040	0.0908	0.511957+/-13	-13.28	64%	-6.32	1.34	515
GF	AL01	19.934	117.543	0.1025	0.511959+/-4	-13.25	59%	-6.62	1.47	554
QMF	AL08	19.123	105.596	0.1095	0.511979+/-9	-12.86	56%	-6.65	1.53	558

Table 4.4 - Sm-Nd isotope results.

4.5.DISCUSSION

4.5.1. Interpretation of U-Pb data

Crystallization ages obtained for the qz-monzodiorite/granodiorite suite are 557 ± 5.7 Ma (qz-monzodiorite facies) and 554 ± 2.9 Ma (granodiorite facies), and for the monzogranite suite, 515 ± 3.6 Ma. There is a distinct temporal gap of ca. 40 My between the two suites, which raises the doubt of a petrogenetic link between them.

For both suites, the pattern of concordant analytical ages is associated with clear oscillatory zoning in zircon grains, which may have developed due to the kinematics of large-scale magma mixing, which causes periods of Zr sub-saturation in the liquid (Corfu *et al.*, 2003).

Regarding the qz-monzodiorite/granodiorite suite, from the association of ages with zircon internal structures, we found out that older crystals that did not plot within the cluster of ~550 Ma ages (mostly defined by granodiorite sample AL01) seldom display luminescent cores and more likely represent inherited crystals. In turn, the zircon grains that yielded the oldest concordant ages of 711±11 Ma (e.g., ZR12 – Figure 9B) and 792±7 Ma (e.g., ZR47 – Figure 10B) can be taken as evidence of involvement of older units as zircon sources. The nearby Bom Jardim volcano-sedimentary sequence, which yields U-Pb ages of 749±6 Ma (Guimarães *et al.*, 2012), is here pointed out as a possible source of these inherited crystals. Other possibility sources are the orthogneisses of the Arenópolis Magmatic Arc emplaced from ca. 899 to 636 Ma; Pimentel *et al.*, 1999), which was already accreted for a certain time when the qz-monzodiorite/granodiorite suite was emplaced.

We may also assume that the host Cuiabá Group could have participated in the incorporation of components inherited from the root of the continental crust during the final phase of magmatic evolution of the older studied suite, since the distribution of ages of sedimentary provenance determined by Leite *et al.* (in prep.) includes 68% of Cryogenian/Ediacaran zircon crystals for the Cuiabá Group in this portion of the Paraguay Belt. The monzogranite suite sample zircons crystals did not yield concordant ages older than 567 Ma (Figure 11B), indicating lesser inherited components, differently from those zircon grains observed in the qz-monzodiorite/granodiorite suite samples.

Although the geochemical data of the Paraguay Belt magmatic province (Manzano, 2009; Godoy *et al.*, 2010) and of the suites investigated here point to distinct petrological evolutions, the crystallization ages allow to make correlations regarding the post-collisional phase of the Brasiliano-Pan-African Orogeny in the Tocantins Province. The geochronological data obtained for the qz-monzodiorite/granodiorite suite are comparable with the less evolved intrusions dated between 540 and 549 Ma (Manzano, 2009). The age obtained for the monzogranite suite sample correlates well with a younger group of intrusions of the Paraguay Belt magmatic province, typically dated between 504 and 521 Ma (Manzano, 2009; Godoy *et al.*, 2010).

4.5.1.1.Magma temperatures

U and Th concentrations in magmatic zircon change with increasing temperature, increasing Th contents relative to U contents in the magma (Xiang *et al.*, 2011). The high Th/U ratios (up to 2.7) obtained for both suites suggest that liquid disequilibrium and temperatures were elevated during zircon crystallization (Kirkland et al., 2015).

94

Zircon saturation thermometry (TZr) can contribute with the estimating of magma temperatures, using the associations between zircon solubility, temperature and major element composition of the melt (Watson and Harrison, 1983). The calculated zircon saturation temperature (Watson and Harrison, 1983; Supplementary Table 4.3) from the qz-monzodiorite/granodiorite suite ranges from 729 °C to 790 °C, while the monzogranite suite rocks display zircon saturation temperature always higher that 800 °C (ranging from 806 to 870 °C).

According to Miller *et al.* (2003), T_{Zr} higher than 800 °C indicates that hot magma can dissolve zircon crystals into a hydrated melt, leading to Zr-rich (>200 ppm) and inherited zircon-poor granitic liquids. Thus, the high magma temperature can well explain why it was not possible to find inherited zircon grains in the investigated monzogranite sample (AL27). It suggests convective heat transfer from the mantle for the monzogranite suite generation, which triggered a temperature increase in the lithosphere.

4.5.2. Type of Magmatism

The suites investigated in this study are represented by two distinct trends, according to of Lameyre evolutionary magmatic series and Bowden (1982): the the qzmonzodiorite/granodiorite suite follows the granodioritic calc-alkaline trend, and the monzogranite suite displays a shoshonitic sub-alkaline trend (Figure 3A). Whole-rock analyses indicate high K contents, magnesian and metaluminous to slightly peraluminous signatures (A/CNK index < 1.1), and LILE and LREE enrichment (between 100 and 1000x chondrite values). Regarding Sr and Ba content, the samples of both suites plot within the high Ba-Sr discriminant field in the Sr-Rb-Ba ternary diagram of Tarney and Jones (1994; Figure 4.13A), similarly to the Scottish Caledonian high Ba-Sr granitoids (Tarney and Jones, 1994).

The high Ba-Sr content is suggestive of magma generation from partial melting of subducted oceanic crust in island arc setting, melting of lower crust triggered by underplated mafic magma, and mainly by partial melting of enriched lithospheric mantle followed by fractional crystallization and minor interaction with crustal material (Tarney and Jones, 1994; Fowler *et al.*, 2001; Atherton and Ghani, 2002; Ren *et al.*, 2018). Fowler *et al.* (2008) proposed that the high Ba-Sr signature of Northern Highlands granitoids occurred intimately related to partial melting of an early appinitic underplate with involvement of enriched mantle-derived magma and/or lower crustal material. Appinitic rocks preserve evidence of mantle processes that produce voluminous late- to post-collisional granitoid batholiths by fractionation mechanisms (Fowler and Henney, 1996; Murphy, 2013, 2019). Late Neoproterozoic and Early Cambrian high Ba-Sr granitoids associated with appinitic rocks are detailed in several studies of post-collisional settings along orogenic belts worldwide (see Table 4.5).

Table 4.	5 – 1	Worldwide	documented	appinitic	rocks	associated	to high	Ba-Sr	magmatism
generated	at th	e end of the	e Proterozoic	and begin	ning o	f the Phane	rozoic.		

Reference	Na	ame of	Age (Ma)/		Characteristics		
	Magmat	ism/Region	Geochronologic	с			
			method				
Ghani and Atherton	Late	Caledonian	407–402/U-Pb	in	monzogranites	and	
(2006)	Donegal	Granites	zircon		granodiorites	and	
	and Ap	opinites/Late			minor	quartz	
	Caledonia	an, Ireland			monzodiorites.		

Fowler et al. (2008)	Appinite-granite	425±4/Rb-Sr	granite, granodiorite,		
	suite/British	whole rock	diorite and ultramafic		
	Caledonian		rock.		
	Province, Scotland				
Ye et al. (2008)	High Ba-Sr appinite-	430 Ma/ SHRIMP	alkaline feldspar		
	granites/NW of Tibet	U–Pb in zircon	granites with coeval		
	Plateau		appinite enclaves.		
Zhang <i>et al.</i> (2014)	Appinitic	320–317 Ma – LA	hornblende diorites,		
	intrusions/Northern	– ICPMS zircon	diorites and		
	China craton	U-Pb	monzodiorites		
Lara <i>et al.</i> (2017)	Uruguayan HiBaSr	634–597 Ma/ LA-	quartz monzonite,		
	granitoids/Dom	ICPMS zircon U-	granodiorite and		
	Feliciano Belt -	Pb	monzogranite		
	Brazil				
Ren et al. (2018)	Intrusions in the	439-429/LA-	diorite and quartz		
	North Qinling	ICPMS zircon U-	diorite.		
	terrane/China	Pb			
Corrales <i>et al.</i>	Marceleza and	650-600/ LA-	gabbros, dioritic		
(2020)	Leopoldina	ICPMS zircon U-	gabbros, tonalites and		
	stocks/Ribeira Belt-	Pb	granodiorites, besides		
	Brazil		rocks of the		
			monzonitic series.		

Low Sr/Y ratios (Figure 4.13B) preclude any relation to adakite-like granitoids, as the rocks of this study display higher Y and Yb contents. In the Th/Yb vs. Nb/Yb diagram of Pearce and Peate (1995; Figure 4.13C), both suites plot within the continental arc field, which can have developed from the accretion of an oceanic arc to a continental margin (Condie and Kröner, 2013). Granitoids with a continental arc-like signature can also be generated when an accreted

ocean arc becomes thicker and starts to melt from its roots in response to delamination processes, leading to a delayed interaction of the subcontinental mantle wedge and deeper material. High Th/Yb values suggest involvement of crustal material at the metasomatized source (Figure 4.13D). The post-collisional nature of both suites is supported by the Rb vs. (Y + Nb) discriminant diagram of Pearce *et al.* (1984, 1996; Figure 4.13E) and the high (Zr + Nb + Ce + Y) contents of the analyzed monzogranite suite samples point to the within-plate character of this suite (Whalen *et al.*, 1987; Figure 4.13F).

Figure 4.13 - (A) Discrimination diagram for high Ba-Sr intrusions (Tarney and Jones, 1994); (B) Sr/Y versus Y proposed by Fowler *et al.* (2008); (C) Th/Yb vs. Nb/Yb diagram proposed by Pearce and Peate (1995), with the boundary between felsic igneous rocks from oceanic and continental arcs adapted from Condie and Kröner (2013);

(D) Ba/La vs. Th/Yb proposed by Woodhead et al. (2001); (E) Rb versus Ta+Yb of Pearce *et al.* (1984), modified by Pearce *et al.* (1996); (F) FeOt/MgO versus Zr + Nb + Ce + Y proposed by Whalen *et al.* (1987).

The negative $\varepsilon_{Nd}(T)$ values between -6.32 and -6.65 for the respective U-Pb crystallization ages indicate significant contribution of older crustal components in the magma genesis. The $\varepsilon_{Nd}(T)$ values suggest that both suites are unlikely to have solely resulted from mantle-derived melt or from crustal materials, supporting the idea of an enriched mantle source. The narrow range of T_{DM} from 1.34 to 1.53 Ga reflects reworking of Mesoproterozoic material that contributed significatively to the investigated rocks petrogenesis. The $\varepsilon_{Nd}(T)$ and the model ages patterns indicates that their protoliths could have been affected by an old metasomatic event during Mesoproterozoic times, or by young metasomatism controlled by older crustal materials.

4.5.3. Petrogenesis of the qz-monzodiorite/granodiorite suite

The qz-monzodiorite/granodiorite suite includes a hypabyssal satellite stock (qzmonzodiorite facies) and a voluminous pluton (granodiorite facies).

The presence of dark microgranular enclaves hosted in granitic plutons commonly indicate interaction of a mantle-derived mafic magma with a felsic magma (Roberts and Clemens, 1993). Fowler *et al.* (2008) report this type of evidence of mixing and mingling in the Caledonian high Ba-Sr granites and argue that they can be an indicator for high Ba-Sr magmatism. Although such enclaves were not observed in the studied outcrops during field work, Coimbra (2015) described mafic enclaves and xenoliths in the investigated granodiorite facies. Further geochemical studies focusing on these enclaves may contribute to our hypothesis.

4.5.3.1. The qz-monzodiorite facies: evidence of appinitic affinity

The qz-monzodiorite facies is characterized by ~56 wt.% SiO₂, high mg# (~56), and relatively high Ni (~115 ppm), V (~163 ppm), and Cr (~225 ppm) contents, sufficiently high to point to a mantle-derived signature for their parental source. The higher amount of Ba+Sr (~5000 ppm), K₂O (~3.7%) and Th (~53 ppm) and significantly negative anomalies of Nb and Ta relative to La of the qz-monzodiorite facies (Nb/La ~0.13; Figure 4.8) strongly reinforce the model of lithospheric mantle enrichment by interaction with dehydration-derived fluids from the subducted slab, allowing for large input of volatile content in the magmatic system. Such features, associated with the peripheric character and small volume of the facies, as well as the occurrence of hornblende phenocrysts, strongly direct us to the Caledonian appinites of Scotland, which are intimately related to coeval voluminous high Ba-Sr granites (Fowler and Henney, 1996; Fowler et al., 2008).

Appinitic rocks occur mainly in the earliest magmatic stages and correspond to a group of dark-colored plutonic and/or hypabyssal rocks, in which hornblende occurs as large prismatic phenocrysts in a finer-grained matrix (Murphy, 2013). The dominance of hornblende as mafic mineral is evidence of an anomalous water-rich magma. Magmas with increased water content reach the hornblende stability field, which expands relatively to the olivine and pyroxene fields. The viscosity of the melt is diminished, enhancing rapid hornblende growth (Mysen, 1990).

4.5.3.2. Cogeneticity of qz-monzodioritic and granodioritic rocks

The granodioritic samples display higher SiO₂ (~62%), Na₂O and Al₂O₃ contents, and medium Mg# (37–50), Cr (~ 90 ppm) and Ni (~37 ppm) amounts. The major elements occupy slightly distinct fields on Harker diagrams (Figure 5), in which the two main evolutionary trends

could be linked by fractional crystallization processes. The first and less evolved trend is essentially related to the decreasing of major MgO, FeOt, TiO₂ and CaO towards higher Si₂O content, which is consistent with progressive removal of observed mafic minerals (clinopyroxene, amphibole and biotite) from the appinitic mantle-derived parental magma (Figure 5 and 6). The transition for the second evolutionary pattern is well demonstrated in the convex-upward distribution of Al₂O₃ and Na₂O, with a broad inflection at ca. 60 wt% Si₂O, suggesting an important shift in the liquid-mineralogy from biotite- and amphibole-dominated to feldspar-dominated crystallization. The former trend is related to the qz-monzodioritic mineral fractionation and the latter to the granodiorite mineral phase separation (Figure 5 and 6).

Through trace elements bivariant relations, the plots of Ba-Sr fractionation vectors favor mainly the control of feldspar and biotite separation, while Cr-Ni indicate retention of clinopyroxene, biotite and amphibole during melt evolution (Figure 4.6B). Accessory minerals such as titanite, zircon, apatite and allanite are shown broadly fractionated in the Zr-Ce correlation (Figure 4.6B). Such data strongly indicate that the appinitic magma could have had a significant role as a mantle-derived component in the granodiorite rock formation, providing evidence of both temporal and genetic relationship. The further coherent and parallel array of REE patterns also confirm the cogenetic nature of the suite components and provide further evidence for crystal fractionation, since the highest [La/Yb]_N ratios (44 to 52) are concentrated in the qz-monzodiorite facies samples and systematically decrease toward the more evolved granodioritic samples.

The strike-skip faults associated to the large Transbrasiliano Lineament system played an important role in the older suite development, which would facilitate the emplacement to higher structural levels working as a conduit. We suggest that this suite was originated at deeper depth from hydrous mafic magma, which was trapped by deep-seated faults and underwent

102

stages of crystal fractionation in agreement with different phases of removing elements and crustal levels. The parental magma tends to be much more voluminous at depth than its surface representation would suggest, since the felsic magma rises along faults to shallower levels and forms a kind of rheological barrier to the subsequent ascent of mafic magma (Murphy *et al.*, 2019). Such a system explains the peripheric position of the appinitic rocks in relation to the granodiorite pluton, which may be related to the possibility of preventing or reducing early mafic intrusions in the study area.

The radiogenic isotopes signature is clearly linked to a long-term incompatible element enrichment of the parental source, compatible with subduction-derived fluids interaction coupled with minor assimilation-contamination processes within the overlying lower crust. Such magma type suggests potential calc-alkaline lamprophyres (or phlogopite-bearing metasomatized magma) as a mafic parental source at depth, that became enriched in LILEs by water-rich magma (Rock, 1991; Roberts and Clemens, 1993; Fowler and Henney, 1996). This process can cause a replacement of olivine and pyroxene by hornblende and biotite (phlogopite) as the magma ascends to higher levels (Pitcher *et al.*, 1997; Atherton and Ghani, 2002; Murphy, 2013, 2019). Since no pyroxene has been observed in thin sections of the granodioritic rocks, fractionation of hornblende, rather than pyroxene, was likely dominant in the magmatic evolution.

4.5.4. Petrogenesis of the monzogranite suite

Some of the geochemical features of the monzogranite suite dated at 515 ± 3.6 Ma are similar to those of the qz-monzodiorite/granodiorite suite, such as high LILE, LREE enrichment and Nd isotopic compositions, although the suites are set apart by ca. 40 My. The correlations observed in the Harker diagrams reflect a significant role of fractional crystallization processes

(mainly biotite and feldspar) during the magmatic evolution, since the overall plotted elements display negative correlation with the Si₂O index, with the exception of an absence of pattern for K2O distribution (Figure 4.5). Such pattern can be explained by the input of enriched fluid or melt during crystallization. The monzogranite suite can be related to a higher degree of fractionation, marked also by the more pronounced negative Eu, Sr, Zr, P, and Ti anomalies, indicating the dominance of retention of feldspar and accessory phases such as apatite, zircon and titanite (Figures 4.5, 4.6). Its lower Ni and Cr contents could be related to the advanced degree of crystal fractionation or to a major crustal contamination rate.

The petrogenetic differences between the two investigated suites are marked by a lower mg# (27–36) and Ba+Sr of the younger one, as well as by larger negative Eu anomaly pattern, which requires melting of source rock within or above the stability field of the plagioc lase phase. The alkali-calcic character, higher zirconium saturation temperature and relatively larger retention of some HFSE (Zr + Nb + Ce + Y) also highlights the contrast with the older suite, pointing to an increase of the within-plate component towards the monzogranitic suite (Pearce *et al.*, 1984; Whalen *et al.*, 1987; Figure 4.13E and 4.13F).

The higher FeOt/(FeOt+MgO) and lower [La/Yb]_N data, associated to the features pointed out above, lead to propose a transitional shoshonitic to A-type affinity to the monzogranite suite (Whalen et al., 1987; Laurent et al., 2014b; Figure 4.13F). A similar transitional scenario is described by Laurent et al. (2014b) to explain the contrast between Mg-K and Fe-K potassic suites. Following this idea, we suggest the interaction of two magmatic components: metasomatized subcontinental lithospheric mantle-derived magma and another that would include some component of a hot rising magma derived from asthenospheric mantle. The geochemistry signature led us to consider a widespread and ubiquitous passive OIB-affinity component or an alkaline-type enrichment of the thermal boundary layer between the lowest

lithosphere and upper asthenosphere, leading to a net veined subcontinental lithospheric mantle (Black and Liégeois, 1993; Bonin, 2004).

The magmatic evolution scenario implies an elevation of temperature to provide enough heat and generate partial melting of a hybridized lithospheric mantle, which subsequently underwent high degree of fractional crystallization to remove mineral phases (mainly biotite and feldspar as primary association) during the ascent, generating water-bearing magmas as end members (Bonin, 2004). Such a process could be accompanied also by lower crust material interaction during wall-rock reactions.

4.5.5. Tectonic interpretations

The U-Pb ages (~555 and 515 Ma) determined for the investigated suites indicate that their generation does not relate to the last regional closure stages of the Goiás Magmatic Arc at ca. 630 Ma (Della Giustina *et al.*, 2011). The main point for the establishment of the tectonic setting is that the generation of the older suite needs the former existence of an important subduction phase to produce its enriched source (Tarney and Jones, 1994; Fowler *et al.*, 2001, 2008; Murphy *et al.*, 2013). Such subduction event mainly takes place ca. 40 My before this magma type generation (Atherton and Ghani, 2002), leading us to suggest a new subduction event at ca. 590 Ma (Figure 4.14A).

Considering the tectonic context of the time period around 590 and 540 Ma in Brasiliano-Pan-African orogeny, the magmatic arcs occurred mainly interconnected to transform zones systems that evolved to accretion stages, triggering the emplacement of postcollisional high-K calc-alkaline to alkaline granitoids (Boullier *et al.*, 1986; Black and Liégeois, 1993; Dantas and Fuck, 2017). As a result of this process in West Gondwana, the late collision
of the Amazonian Craton and eastern cratons or terranes/blocks led to the closure of the Clymene Ocean (Tohver *et al.*, 2010, 2012; Dantas and Fuck, 2017 and references therein). The subduction stage proposed at ca. 590 Ma in this work appears to corroborate the existence of an oceanic crust between the Amazonian Craton (beneath the Paraguay Belt) and the western boundary of Goiás Magmatic Arc, that started to be consumed only after 600 Ma.

4.5.5.1.The qz-monzodiorite/granodiorite suite

Appinitic magmatism typically takes place after a collisional process, such as cessation of subduction and consume of oceanic crust (Murphy, 2013, 2019). We suggest a late- to post-collisional magmatic event at ca. 557 Ma (Figure 9A), when the subducted oceanic slab possibly underwent slab break-off, inducing the upwelling of the asthenosphere by isostasy. Such a tectonic setting could have supplied enough energy to initiate melting of the overlying subcontinental lithospheric mantle, that was previously metasomatized by subducted slab fluids, generating the appinitic signature at ca. 557 Ma (Figure 4.14B).

Slab break-off mechanism is related to a buoyancy-driven detachment of the subducted oceanic lithosphere from the light continental lithosphere at the end of a collision event (Davies and von Blanckenburg, 1995). The continued deep return flow can cause slow heat and partial melting of the enriched underplated basic material, as well as the subsequent crystal fractionation, yielding the bimodal signature magmatism (Black and Liégeois, 1993; Atherton and Ghani, 2002). The subsequent fractionation process during the magma ascends triggered mafic (hornblende), accessory minerals (e.g., titanite, apatite and allanite) and subsequent feldspar crystallization (Figure 4.6) and led to the generation of a voluminous granodioritic pluton at ca. 554 Ma (Figure 4.14B).

The appinitic rocks mainly occur where a subduction zone was replaced by an active transform fault system, which would facilitate the emplacement of water-rich enigmatic magmas in higher structural levels in the post-collisional setting (Murphy, 2013, 2019). The final closure of the central Tocantins Province between the Amazonian and eastern paleocontinents occurred with the development of extensive N–NE trending shear zones related to the Transbrasiliano Lineament (Cordani *et al.*, 2013; Curto *et al.*, 2014). We propose that in the study area, the Transbrasiliano Lineament faults system worked as a weakness zone to accommodate the subduction effort, which would also contribute to the complex array of mantle material, as well as with the metasomatic and hybrid character of the older suite.

Figure 4.14 - Schematic model for the evolution of the investigated high Ba–Sr intrusions and the generation of two contrasting groups at post-collisional scenario. See text for discussions. (A) new accretion stage with onset at ca. 590 Ma; (B) late- to post-collisional stage with the petrogenetic model for the older suite: 1) lithospheric mantle enriched by subducted slab-derived fluid and/or melt; 2) mafic magma rich in LREE and LILE derived from partial melting of the enriched lithospheric mantle; 3) magma mixing between the mafic magma from the enriched lithospheric mantle and the silicic magma from partial melting of the overlying lower crust, that has been passing though degrees of crystal fractionation to generate the older suite; (C) transitional to within-plate stage which generated the younger suite: 1) metasomatized lithospheric mantle; 2) magma rich in LREE, LILE and some HFSE derived from partial melting of enriched lithospheric mantle; 3) hybridized magma and differentiation at the mechanical boundary level to form the hybridized granitic signature. CC – Continental crust; OC – Oceanic crust; SCLM – Subcontinental lithospheric mantle; TBL – Transbrasiliano Lineament.

4.5.5.2. The monzogranite suite

The subducted slab derived fluid can continue to much greater depth and over a lateral extent, providing variable degrees of melting that could permeate large areas of the lithospheric mantle (Tarney and Jones, 1994). The precedent late-to post-collisional high Mg-K calc-alkaline magmatism at ca. 555 Ma indicates a tectonic setting related to a slab break-off mechanism, that played an important role in providing the favorable lithospheric mantle enrichment conditions beneath the upper plate, leading to a long duration of post-collisional setting. Thus, the younger magma formation occurred related to the preceding collisional event, justifying the use of the expression "post-collisional" for both investigated suites.

The geochemical features of the studied younger suite indicate an intermediate rock composition between sanukitoids and ferroan, likely "A-type" granites affinities, showing an increase of the within-plate components. Therefore, we suggest an emplacement position more distant from the oceanic trench for this suite at ca. 515 Ma (Figure 4.14C). The generation of

the monzogranite suite can be related to the mobility of an alkaline-type enrichment component at the base of recently enriched subcontinental lithospheric mantle, that could be explained by a "lithospheric reworking" process (Liégeois *et al.*, 1998; Laurent *et al.*, 2014b). The interaction between these magmas in the thermal boundary layer would particularly takes place at the very end of a collisional stage, when deep lithospheric weaknesses induce local lithospheric mantle delamination, allowing the upper asthenospheric component to rise (Black and Liégeois, 1993; Liégeois *et al.*, 1998; Gao *et al.*, 2004; Bonin, 2004).

In consequence of lithospheric delamination, the thermal anomaly and decompression stage generated the partial melting of both recently enriched lithospheric mantle and the uprising alkaline asthenosphere component, as well as can triggered some degree of hybridization with the overlying continental crust. The generation of a magma with temperature higher than 800°C requires heating influx of the asthenosphere source component (Miller *et al.*, 2003) to melt the most fusible part of lithospheric mantle and to support the crustal mix at lower levels, contributing to the generation of high K alkali-calcic magmas in the extensional collapse stage (Bonin, 2004).

4.5.6. Sanukitoids and high Ba-Sr connections

The persistence of high Ba-Sr magmas worldwide in the Phanerozoic characterizes large juvenile contributions to granitoid genesis, giving rise to the recognition and discussions about continental growth mechanisms in the modern Earth. The distinctive geochemistry of the investigated high Ba-Sr suites provides similarities with Archean sanukitoids, since both groups of rocks present links with the intermediate chemistry found between Archean TTG and modern arc granites (Fowler and Henney, 1996; Stem *et al.*, 1989; Martin *et al.*, 2009). The transition

to sanukitoid magmatism has been interpreted to reflect stabilization of cratons and the increase of crustal thickness, allowing subduction driven tectonics to take place (Martin and Moyen, 2005; Sizova *et al.*, 2010). The sanukitoids commonly range from diorite/monzodiorite to granodiorite/granite by AFC mechanism and display high Ba, Sr and other LILEs, fractionated REE patterns and negative Nb anomalies (Martin and Moyen, 2005; Martin *et al.*, 2009). The hybrid source of the sanukitoids results from the moment in the ancient Earth when heat flow is so low that the direct slab melting is precluded, recording interactions at mantle wedge levels between upwelling mafic magmas and a component rich in incompatible elements, either a melt or a fluid from metabasalts or metasedimentary rocks, derived from subduction events (Martin *et al.*, 2009; Heilimo *et al.*, 2010; Fowler and Rollinson, 2012). Thus, there is a consensus on a sediment-metasomatized mantle source for the emergence of sanukitoids, which become a kind of chronological marker of the onset of crustal material recycling into the mantle (Martin and Moyen, 2005; Martin *et al.*, 2009; Heilimo *et al.*, 2014).

The formation of Archean sanukitoids and high Ba-Sr granites can be well explained by the recurrence of tectonomagmatic processes, linked to similar mechanisms and thermal context of generation (Heilimo *et al.*, 2010; Fowler and Rollinson, 2012; Laurent *et al.*, 2014a). The similar signature is marked essentially by two metasomatic events, the first of which is linked to enrichment of lithosphere mantle by subduction-related fluids and the second one to the fluids/melts deriving from upwelling asthenospheric mantle at the end of an orogenic event (Heilimo *et al.*, 2010). The slab break-off and lithosphere delamination mechanisms have been responsible for the thermal flux that causes asthenospheric mantle uprising and partial melting in the mantle wedge, generating the parental magmas of sanukitoids and high Ba-Sr granites (Liégeois et al., 1998; Gao et al., 2004; Bonin, 2004; Fowler et al., 2001, 2008; Heilimo et al., 2010).

The diagrams proposed by Laurent *et al.* (2014a) confirm the affinities of the investigated appinitic qz-monzodiorite/granodiorite suite with Archean sanukitoids (Figure 4.14), suggesting a close petrogenesis association with this rock type. The younger monzogranite suite plotted in the same diagrams (Figure 15) show a similar trend to the hybridized granites field and partially overlaps the sanukitoids domain, which can have resulted from interaction of a K-rich mafic magma with higher amount of crustal material (Laurent *et al.*, 2014a). The younger investigated suite is compositionally close, but not analogous to the sanukitoid series, differing in the higher K and FeOt/(FeOt+MgO) contents and lower Mg, Ni and Cr values. The generation of this signature could be seen as a transition feature between high K calc-alkaline (including sanukitoids) to alkaline and A-type granites affinity, which has been well recorded in Archean (e.g. Laurent *et al.*, 2014b), Proterozoic (e.g. Bersan *et al.*, 2021) and Mesozoic-Paleozoic terrains (e.g. Boullier *et al.*, 1986). This context is related to the decrease of the orogen thickness at very end of orogeny, recording magmatic episodes during which the continental lithosphere becomes more and more depleted and dehydrated by repetitive generation of water-bearing magmas.

Figure 4.15 - Distribution of representative analytical points of the studied rocks in the diagrams proposed by Laurent *et al.* (2014a): (A) ternary diagram ((Na₂O/K₂O)–2*A/CNK (molar Al₂O₃/[CaO+Na₂O+K₂O])–2 *[(FeOt+MgO) wt.% * (Sr+Ba) wt.%]=FMSB) of sanukitoids and high-K anatectic granites; (B) ternary diagram Al₂O₃/(FeOt+MgO)–3* CaO–5* (K₂O/Na₂O); (C) Plots of incompatible element contents (Sr+Ba) plotted as a function of FeOt+MgO (wt.%) concentrations.

The geodynamic model presented in Figure 4.14 for the investigated suites indicates that the asthenospheric upwelling would first trigger heat flux and partial melting of the subcontinental enriched mantle lithosphere, generating the high Mg-K older suite (sanukitoids affinity). The subsequent ca. 40 Ma later evolution yielded the mixing of two different mantle sources (lithospheric and asthenospheric) and their melting product trigger the Fe-K younger suite. Emerging of these rock types with such geochemical signatures is a useful indicator of crustal recycling into the mantle during distinct stages of the subduction process, also recoding different melting and crustal anatexis conditions in a common syn-to post-collisional setting.

4.6.CONCLUSION

The qz-monzodiorite/granodiorite and monzogranite suites intrude metasedimentary units of the Brasiliano Paraguay Belt, central Brazil, during a late-to post-collisional stage, separated in time by ca. 40 My. The extremely LREE and LILE enrichment relative to HFSE depletion supports the petrogenetic association with magma derived from melting of an enriched lithospheric mantle. A regional-scale strike-slip fault linked to the Transbrasilia no Lineament system could have facilitated the petrological evolution. Some of the main conclusions of this work are:

- (1) The older high K-Mg older suite is associated to coeval appinitic rocks, considered as compositionally viable mantle-derived components for the evolved granodiorite, with crystallization ages constrained between 557 and 554 Ma by zircon U-Pb dating. Petrogenesis is similar to what has been found in Archean sanukitoids.
- (2) The Nd negative isotopic signature identified in both suites confirm an important contribution of ancient crustal material in the process of mantle metasomatism.
- (3) The younger high K younger suite crystallized at ca. 515 Ma shows a transitional shoshonitic/A-type signature, with enrichment in LILE and LREE and some HFSE, formed by hybridization of enriched lithospheric mantle and asthenosphere upwelling component.

113

- (4) The tectonic scenario allows the process of slab break-off in the end of the subduction phase and subsequent lithospheric delamination ca. 40 My later in a collapse transitional stage of the orogen.
- (5) A new magmatic arc period occurred in the central Tocantins Province related to the consumption of the Clymene Ocean toward the Amazonian Craton (beneath the Paraguay Belt), recording the last magmatic episode associated to a final tectonic configuration within West Gondwana after 600 Ma.

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Finance Code 001. The authors wish to thank the Instituto Nacional de Ciência e Tecnologia – Estudos Tectônicos (INCT-ET, CNPq grant 46.5613/2014-4, FAPDF grant 193.001.263/2017) for financial support, and once again CAPES (grant 88887.137872/2017-00) for the Ph.D. scholarship granted to the first author. The first author also acknowledge the support of the Laboratório de Geocronologia (Universidade de Brasília). RAF, ELD and ASR are grateful to CNPq for the research fellowships. The authors would like to thank Prof. M. Fowler and the anonymous reviewer for their helpful corrections and suggestions on the former version of this manuscript, and to M. Roden for the editorial handling.

REFERENCES

- Albarède, F., Telouk P., Blichert-Toft, J., Boyet, M., Agranier, A., Nelson, B., 2004. Precise and accurate isotopic measurements using multiple collector ICPMS. Geochimica et Cosmochimica Acta 68, 2725-2744.
- Almeida, F.F.M., 1984. Província Tocantins, setor sudoeste. In: Almeida, F.F.M. de, Hasui, Y., 1984. O Pré-Cambriano do Brasil. São Paulo, Edgard Blücher 265-281.

114

- Alvarega, C.J.S., Trompette R., 1993. Evolução Tectônica Brasiliana da Faixa Paraguai: a estruturação da região de Cuiabá. Revista Brasileira de Geociências 23, 18-30.
- Atherton, M.P., Ghani, A.A., 2002. Slab breakoff: a model for Caledonian, Late Granite syncollisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. Lithos 62, 65–85.
- Azevedo, P. A. de, Rocha, M. P., Soares, J. E.P., Fuck., R.A., 2015. Thin lithosphere between the Amazonian and São Francisco Cratons, in Central Brazil, revealed by seismic Pwave tomography. Geophysical Journal International 201, 61–69.
- Babinski, M., McGee, B. Tokashiki, C.C., Tassinari, C.C.G., Saes, G.S., Pinho, F.E.C., 2018. Comparing Two Arms of an Orogenic Belt during Gondwana Amalgamation: Age and Provenance of the Cuiabá Group, Northern Paraguay Belt, Brazil. Journal of South American Earth Sciences 85, 6–42.
- Bersan, S.M., Dandefer, A., Storey, C., Bruno, H., Moreira, H., Abreu, F., Lana, C., Gonçalves,
 L., Nahas, I., 2021. A perspective on potassic and ultrapotassic rocks: Constraints on
 the Paleoproterozoic late to post-collisional event in the São Francisco paleocontinent.
 Geoscience Frontiers, <u>https://doi.org/10.1016/j.gsf.2021.101179</u>.
- Black, R., Liégeois, J.-P., 1993. Cratons, mobile belts, alkaline rocks and continental lithospheric mantle: the Pan-African testimony. Journal of the Geological Society of London 150, 89–98.
- Brito Neves, B.B., Fuck, R.A., 2013. Neoproterozoic evolution of the basement of the South-American platform. Journal of South American Earth Sciences 47, 72-89.
- Bonin, B., 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78 (1), 1–24.

- Boullier, A.M., Liégeois, J.P., Black, R., Fabre, J., Sauvage, M., Bertrand, J.M., 1986. Late Pan-African tectonics marking the transition from subduction-related calc- alkaline magmatism to within-plate alkaline granitoids (Adrar des Iforas Mali). Tectonophys 132, 233–246.
- Bühn, B., Pimentel, M.M., Matteini, M., Dantas, E.L., 2009. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Annals of the Brazilian Academy of Sciences 81, 99-114.
- Coimbra, K.T.O., 2015. Petrologia do Plutão Bom Jardim de Goiás (PBJG): implicação na evolução neoproterozoica da Província Tocantins. MSc dissertation, Universidade Federal do Rio Grande do Norte, Natal-RN.
- Condie, K.C., Kröner, A., 2013. The building blocks of continental crust: Evidence fora major change in the tectonic setting of continental growth at the end of the Archean. Gondwana Research 23, 394–402.
- Cordani, U.G., <u>Pimentel, M.M.</u>, Araújo, C.E.G., Fuck R.A., 2013. The significance of the Transbrasiliano-Kandi tectonic corridor for the amalgamation of Western gondwana. Brazilian Journal of Geology 43, 583-597.
- Corrales, F.F.P., Dussin, I.A., Heilbron, M., Bruno, H., Bersan, S., Valeriano, C.M., Pedrosa-Soares, A.C., Tedeschi, M., 2020. Coeval high Ba-Sr arc-related and OIB Neoproterozoic rocks linking precollisional magmatism of the Ribeira and Araçuaí orogenic belts, SE-Brazil. Precambrian Research 337, 105476.
- CPRM., 2017. Carta Geológica-Geofísica Folha SE.22-V-B-I Bom Jardim de Goiás. Programa gestão estratégica da geologia, da mineração e da transformação mineral carta Geológica - Geofísica escala 1:100.000.

- Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry 53, 469–500.
- Curto, J.B., Vidotti R.M., Fuck, R.A., Blakel, R.J. 2014., The tectonic evolution of the Transbrasiliano Lineament in northern Paraná Basin, Brazil, as inferred from aeromagnetic data. Journal of Geophysical Research 119, 1544–1562.
- Dantas, E. L., Alvarenga, C.J.S., Santos, R.V.and Pimentel, M.M., 2009. Using Nd Isotopes to Understand the Provenance of Sedimentary Rocks from a Continental Margin to a Foreland Basin in the Neoproterozoic Paraguay Belt, Central Brazil. Precambrian Research 170, 1–12.
- Dantas, E.L., Fuck, R.F., 2017. Peri-gondwana terranes in central Brasil. Willian Smith Meeting, Plate Tectonic at 50, 128.
- Davies, J.H., von Blankenburg, F., 1995. Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters 129, 85–102.
- Della Giustina, M.E.S., Pimentel, M.M., Ferreira Filho, C.F., Holanda, M.H.B.H., 2011. Dating coeval mafic magmatism and ultrahigh temperature metamorphism in the Anápolis Itaucú Complex, central Brazil. Lithos, 124, 82-201.
- DePaolo, D.J., 1981. A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. Jounal Geophysical Research, 86, 10470-10488.
- Evensen, N.M, Hamilton, P.J., O'Nions, R.K, et al., 1978. Rare-earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta 42, 1199–1212.
- Ferreira, C.O., 2009. A Extensão do Arco Magmático de Goiás ao longo do Lineamento Transbrasiliano: estudo baseado na aplicação dos métodos U-Pb e Lu-Hf por LA-MC-ICP-MS, MSc Dissertation, Universidade de Brasília. 76 p.

- Fowler, M.B., Henney, P.J., 1996. Mixed Caledonian appinite magmas: implications for lamprophyre fractionation and high Ba–Sr granite genesis. Contributions to Mineralogy and Petrology 126, 199–215.
- Fowler, M. B., Henney, P. J., Darbyshire, D. P.F. and Greenwood. P. B., 2001. Petrogenesis of High Ba-Sr Granites: The Rogart Pluton, Sutherland. Journal of the Geological Society, London 158, 521–534.
- Fowler, M. B., Kocks, H., Darbyshire, D. P.F. and Greenwood, P. B., 2008. Petrogenesis of High Ba-Sr Plutons from the Northern Highlands Terrane of the British Caledonian Province. Lithos 105, 129–148.
- Fowler, M., Rollinson, H., 2012. Phanerozoic Sanukitoids from Caledonian Scotland: Implications for Archean Subduction. Geology 40, 1079–82.
- Frost, B. R., Arculus R. J., Barnes C. G., Collins W. J., Ellis D. J., Frost C. D., 2001. A geochemical classification of granitc rocks. Journal of Petrology 42, 2033-2048.
- Fuck R. A., Brito Neves B.B., Schobbenhaus C., 2008. Rodinia descendants in South America. Precambrian Research 160, 108-126.
- Fuck R. A., Dantas E. L., Vidotti R. M., Roig H. L., Almeida T., 2013. Deformação intracontinental em sistemas transcorrentes: o caso do Lineamento Transbrasiliano: geometria, idade e significado. Anais do XIV Simpósio Nacional de Estudos Tectônicos – SNET. Mato Grosso.
- Gao, S., Rudnick, R.L., Yuan, H.L., Liu, X.M., Liu, Y.S., Xu, W.L., Ling, W.L., Ayers, J., Wang, X.C., Wang, Q.H., 2004. Recycling lower continental crust in the North China craton. Nature 432, 892–897.
- Geraldes, M. C., Tassinari, C. C.G., Babinski, M., Martinelli, C. D., Iyer, S. S., Barboza, E. S., Pinho, F. E.C., Onoe, A. T., 2008. Isotopic Evidence for the Late Brasiliano (500-550

Ma) Ore-Forming Mineralization of the Araés Gold Deposit, Brazil. International Geology Review 50, 177–90.

- Ghani, A.A., Atherthon, M.P., et al., 2006. The chemical character of the Late Caledonian Donegal Granites, Ireland, with comments on their genesis. Transactions of the Royal Society of Edinburgh: Earth Sciences 97, 437–454.
- Gioia, S.M.C.L., Pimentel, M.M., 2000. The Sm–Nd isotopic method in the Geochronology Laboratory of the University of Brasília. Anais Academia Brasileira de Ciências 72, 219–245.
- Godoy, A. M., Pinho, F. E. C., Manzano, J. C., de Araújo, L. M. B., da Silva, J. A., Figueiredo,
 M., 2010. Estudos isotópicos das rochas granitóides neoproterozoicas da Faixa de
 Dobramento Paraguai. Revista Brasileira de Geociências 40, 380–391.
- Guimarães, S. B., Moura, M. A., Dantas, E. L., 2012. Petrology and geochronology of the Bom Jardim de Goiás copper deposit (GO). Revista Brasileita de Geologia 42, 841-862.
- Heilimo, E., Halla, J., and Hölttä, P., 2010, Discrimination and origin of the sanukitoid series:Geochemical constraints from the Neoarchean western Karelian Province (Finland).Lithos 115, 27–39.
- Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523-547.
- Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211, 47-69.
- Janousek, V., Farrow, C.M., Erban, V., 2006. Interpretation of Whole-rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology 47, 1255-1259.

- Kirkland, C., Smithies, R.H., Taylor, R.J.M., 2015. Zircon Th-U ratios in magmatic environs. Lithos 212-215, 397-414.
- Lameyre, J. & Bowden, P., 1982. Plutonic rock type series: discriminations of various granitoid series and related rocks. Journal of Volcanology and Geothermal Research 14, 169-186.
- Lara, P., Oyhantçabal, P., Dadd, K., 2017. Post-collisional, late Neoproterozoic, high-Ba- Sr granitic magmatism from the Dom Feliciano Belt and its cratonic foreland, Uruguay: Petrography, geochemistry, geochronology, and tectonic implications. Lithos 277, 178– 198.
- Laurent, O., Martin, H., Moyen, J. F., and Doucelance, R., 2014a. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of 'Modern-Style' Plate Tectonics between 3.0 and 2.5 Ga. Lithos 205, 208–35.
- Laurent, O., Rapopo, M., Stevens, G., Moyen, J.F., Martin, H., Doucelance, R., Bosq, C., 2014b. Contrasting petrogenesis of Mg–K and Fe–K granitoids and implications for postcollisional magmatism: case study from the Late-Archean Matok pluton (Pietersburg block, South Africa). Lithos 196-197, 131–149.
- Liégeois, J.P., Navez, J., Hertogen, J. and Black, R., 1998. Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic versus Alkaline and Peralkaline Granitoids. The Use of Sliding Normalization. Lithos 45 (1–4), 1–28.
- Ludwig, K.R., 2012. Isoplot 3.75 A geochronological Toolkit for Microsoft Excel, vol. 4. Special Publication, Berkeley Geochronology Center, p. 75.
- Maniar, P. D. & Piccoli, P. M., 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635-643.
- Manzano J.C., 2009. Caracterização dos Granitóides Brasilianos da Faixa de Dobramento Paraguai, MT e MS. MSc dissertation. Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, p. 99.

- Marques, G.C., Oliveira, C.G., Espada, E., <u>Dantas, E.L., 2019</u>. The Fazenda Nova gold deposit, Goiás Magmatic Arc: Late Neoproterozoic intrusion-related auriferous mineralization controlled by intracontinental strike-slip faulting. Ore Geology 107, 546-572.
- Martin, H., Moyen, J. F., 2005. The Archaean-Proterozoic transition: sanukitoid and Closepet type magmatism. Mineralogical Society of Poland Special Papers 26, 57–68.
- Martin, H., Moyen, J.F., Rapp, R., 2009. The sanukitoid series: magmatim at the Archean-Proterozoic transition. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 100, 15–33.
- McGee B., Collins A. S., and Trindade R. I. F., 2012. G'day Gondwana, the final accretion of a supercontinent: U/Pb ages for the post-orogenic São Vicente Granite, northern Paraguay Belt, Brazil. Gondwana Research 21, 316–322.
- Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geological Society of America 31 (6), 529–532.
- Moyen, J.F., Laurent, O., Chelle-Michou, C., Couzinié, S., Vanderhaeghe, O., Zeh, A., Villaros,A. & Gardien, V., 2017. Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos 277, 154-177.
- Murphy, J.B., 2013. Appinite suites: A record of the role of water in the genesis, transport, emplacement and crystallization of magma. Earth-Science Reviews 119, 35–59.
- Murphy, J.B., 2019. Appinites suites and their genetic relationship with coeval voluminous granitoid batholiths. International Geology Review, 65, 683-713.
- Mysen, B.O., 1988. Relationship between silicate melt structure and petrologic processes. Earth-Sciences Reviews 27 (4), 281-365.
- Pankhurst, R.J., Vaughan, A.P.M., 2008. Tectonic overview of the West Gondwana margin. Gondwana Research 13:2, 150–162.

121

- Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology 25 (4), 956-983.
- Pearce, J.A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences 23, 251–285.
- Peccerillo, A. & Taylor, S. R., 1976. Geochemistry of the Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology 58, 63–81.
- Pimentel, M.M., Fuck, R.A., 1987. Origem e evolução das rochas metavulcânicas e metaplutônicas da região de Arenópolis (GO), Revista Brasileira de Geociências 17, 2-14.
- Pimentel, M.M., Fuck, R.A., Botelho, N.F., 1999. Granites and the geodynamic history of the neoproterozoic Brasília belt, Central Brazil: a review. Lithos 46, 463-483.
- Pimentel, M.M., 2016. The tectonic evolution of the Neoproterozoic Brasília Belt, central Brazil: a geochronological and isotopic approach. Brazilian Journal of Geology 46, 67-82.
- Pinho, M. A. S. B., 2001. Petrografia geoquímica e geocronologia do Magmatismo Bimodal paleoproterozóico ocorrente no Norte do Estado de Mato Grosso. Tese (Doutorado em Geociências) – Instituto de Geociências, Universidade Federal do Rio Grande Do Sul. Porto Alegre. p. 162.
- Pitcher, W.S., 1997. The Nature and Origin of Granite, 2nd edition. Chapman and Hall, London 395.
- Ren, L., Liang, H., Bao, Z., Zhang, J., Li, K., Huang, W., 2018. The petrogenesis of early Paleozoic high Ba-Sr intrusions in the North Qiling terrane, China, and tectonic implications. Lithos 314-315, 534-550.

- Roberts M.P., Clemens J.D., 1993. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21, 825-828.
- Rodrigues, J.B., Gioia, S.M.C., Pimentel, M.M., 1999. Geocronologia e geoquímica de ortognaisses da região entre Iporá e Firminópolis: Implicações para a evolução do Arco Magmático de Goiás. Revista Brasileira de Geociências 29(2): 207-216.
- Ruiz, A.S., Matos, J.B, Sousa, M.Z.A., Lima, G.A., Batata, M.E.F., et al., 2010. Mapeamento Geol'ogico e Levantamento de Recursos Minerais da Folha Santa B'arbara (SD.21-Y-C-V). Conv^enio CPRM-UFMT. Programa Geologia do Brasil, Relat'orio Etapa de Mobilizaç~ao 1–35.
- Seer H.J., 1985. Geologia, deformação e mineralização de cobre no complexo vulcanosedimentar de Bom Jardim de Golás. MSc Dissertation, UnB, Brasilia, 190 p.
- Sizova, E., Gerya, T., Brown, M., Perchuk, L.L., 2010. Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116, 209–229.
- Streckeisen, A., 1974. Classification and Nomenclature of Plutonic Rocks. Geologische Rundschau 63, 773–786.
- Tarney, J., Jones, C.E., 1994. Trace Element Geochemistry of Orogenic Igneous Rocks and Crustal Growth Models. Journal of the Geological Society, London 151, 855–868.
- Tohver, E., Trindade, R. I. F., Solum, J. G., Hall, C. M., Riccomini, C., and Nogueira, A. C., 2010. Closing the Clymene Ocean and Bending a Brasiliano belt: Evidence for the Cambrian formation of Gondwana from southeast Amazon Craton. Geology, 38, 267–270.
- Tohver, E., Cawood, P. A., Rossello, E. A., and Jourdan, F., 2012. Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: Evidence from the Sierras Australes of the southernmost Rio de la Plata Craton, Argentina. Gondwana Research 21, 394–405.

- Thompson, R.N., 1982. Magmatism of the British tertiary volcanic province. Scot. J. Geol. 18, 49–107.
- Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64, 295-304.
- Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contribution to Mineralogy and Petrology 95, 407– 419.
- Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.P., Greenwood, R.C., Hinton, R., Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli, P.M., Rhede, D., Satoh, H., Schulz-Dobrick, B., Skår, O., Spicuzza, M.J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q., Zheng, Y.F., 2004. Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research 28, 9–39.
- Woodhead, J.D., Hergt, J.M, Davidson, J.P., Eggins, S.M., et al., 2001. Hafnium Isotope Evidence for 'conservative' Element Mobility during Subduction Zone Processes. Earth and Planetary Science Letters. 192, 331–346.
- Ye, H.M., Li, X.H., Li, Z.X., Zhang, C.L., 2008. Age and origin of high Ba–Sr appinite–granites at the northwestern margin of the Tibet Plateau: Implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic belt. Gondwana Research 13, 126– 138.
- Xiang, W., Griffin, W.L., Jie, C., Pinyun, H., Xiang, L., 2011. U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: improved zircon-melt distribution coefficients. Acta Geologica Sinica 85 (1), 164–174.

Zhang, X., Gao, Y., Wang, Z., Liu, H., Ma, Y., et al., 2012. Carboniferous appinitic intrusions from the northern North China craton: geochemistry, petrogenesis and tectonic implications. Journal of the Geological Society, London 169, 337–351.

ANEXOS ARTIGO 1

Supplemetary Table 4.1 – U-Pb general conditions at Laboratory of Geochronology and Isotope Geochemistry of the Universidade de Brasília - UnB.

Laboratory and Sample Preparation										
Laboratory name	Laboratory of Geochronology and Isotope									
	Geochemistry of the Brasilia University-UnB.									
Sample type/mineral	Zircon									
Sample preparation	Conventional mineral separation, 0.5 cm resin									
	mount, 1 µm polish to finish									
Imaging	BSE, FEI Quanta 450, 10 nA, 20kV, 13.8 mm									
	working distance									
Laser ablation system										
Make, Model and type	ESI/New Wave Research, UP-213, Nd:YAG									
Ablation cell and volume	Low volume cell, ca. 4 cm ³									
Laser wavelength (nm)	213 nm									
Pulse width (ns)	3 ns									
Fluence (J cm ⁻²)	3.0 - 3.5 J cm ⁻²									
Repetition rate (Hz)	10 Hz (U-Pb) and 7 Hz (Lu-Hf)									
Spot size	25 μm (U-Pb), 40 μm (Lu-Hf)									
Sampling mode / pattern	single spot analyses									
Carrier gas	100% He, Ar make-up gas combined using a Y-									
	piece along the sample transport line close to the									
	torch.									

Pre-ablation laser warm-up	10 s										
(background collection)											
Ablation duration (s)	40 s										
Wash-out delay	20 s										
Ablation pit depth / ablation	~10 µm pit depth										
rate											
Cell carrier gas flow (I min-1)	0.40 I min ⁻¹ He										
ICP-MS Instrument											
Make, Model and type	Thermo-Fischer, Neptune, MC-ICP-MS										
Sample introduction	Ablation aerosol										
RF power (W)	1050 W										
Make-up gas flow (I min ⁻¹)	0.7 l min ⁻¹										
Detection system	mixed Faraday cups and multiple ion counting										
	(MIC) array										
Masses measured for U-Pb	Faraday ²³² Th, ²³⁸ U and ²⁰⁶ Pb; MIC ²⁰² Hg, ²⁰⁴ Pb,										
	²⁰⁷ Pb and ²⁰⁸ Pb										
Masses measured for Lu-hf	Faraday 171, 173, 175, 176, 177, 178, 179, 180										
methodology											
Integration time per	#N.A.										
peak/dwell times (ms);											
quadrupole settling time											
between mass jumps											
Total integration time per	1.049 s										
output data point (s)											
Dead time (ns)	#N.A.										
	Data Processing										
Gas blank	20 s										
Calibration strategy	GJ1 used as primary reference material,										
	TEMORA used as secondary/validation										

Reference Material info	GJ1 (Jackson et al. 2004, Horstwood et al. 2016)
	Wiedenbeck et al., 1995, 2004
Data processing package	Inhouse U-Pb table (Buhn et al., 2009) and Lu-Hf
used / Correction for LIEF	table (Matteini et al., 2010)
Mass discrimination	Standard-sample bracketing with ²⁰⁷ Pb/ ²⁰⁶ Pb and
	²⁰⁶ Pb/ ²³⁸ U ratios normalized to reference material
	GJ1
Common-Pb correction,	none
composition and uncertainty	
Uncertainty level and	Ages are quoted at 2s absolute, propagation is
propagation	by quadratic addition. Excess variance and age
	uncertainty of reference material are propagated
	where appropriate.
Quality control / Validation	0
	Systematic uncertainty for propagation is 1%
	(2 <i>s</i>).

		91500																	
SAMPLE											Apparent ages								
GRAIN	f 206 (%)	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	err 1 б (%)	²⁰⁷ Pb/ ²³⁵ U	err 1 6 (%)	²⁰⁶ Pb/ ²³⁸ U	err 1 6 (%)	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	26	²⁰⁶ Pb/ ²³⁸ U	26	²⁰⁷ Pb/ ²³⁵ U	26	conc (%)		
	Sample AL08 -91500																		
003-91500	0.0127	0.240	122581	0.07503	0.42	1.724	0.87	0.1667	0.67	0.76	1069	17	994	12	1018	11	97.7		
005-91500	0.0151	0.241	103085	0.07502	0.53	1.691	0.97	0.1634	0.73	0.75	1069	21	976	13	1005	12	97.1		
006-91500	0.0052	0.242	300079	0.07459	0.46	1.754	0.84	0.1705	0.60	0.71	1057	18	1015	11	1028	11	98.7		
007-91500	0.0153	0.240	101233	0.07532	0.38	1.759	0.84	0.1694	0.66	0.78	1077	15	1009	12	1031	11	97.9		
008-91500	0.0136	0.239	114232	0.07490	0.50	1.699	0.89	0.1645	0.63	0.71	1066	20	982	11	1008	11	97.4		
009-91500	0.0149	0.245	104077	0.07498	0.51	1.741	0.90	0.1684	0.65	0.71	1068	21	1003	12	1024	12	98.0		
010-91500	0.0215	0.242	72045	0.07450	0.46	1.772	0.87	0.1725	0.64	0.73	1055	19	1026	12	1035	11	99.1		
011-91500	0.0182	0.244	85056	0.07521	0.38	1.756	0.81	0.1693	0.61	0.75	1074	15	1008	11	1029	10	98.0		
012-91500	0.0068	0.241	227540	0.07471	0.51	1.720	0.92	0.1670	0.67	0.73	1061	21	995	12	1016	12	98.0		
017-91500	0.0147	0.224	105306	0.07461	0.48	1.826	0.96	0.1775	0.74	0.77	1058	19	1053	14	1055	13	99.8		
018-91500	0.0137	0.226	113166	0.07423	0.48	1.812	0.90	0.1770	0.67	0.75	1048	19	1051	13	1050	12	100.1		
019-91500	0.0102	0.225	151987	0.07520	0.46	1.802	0.89	0.1738	0.66	0.74	1074	19	1033	13	1046	12	98.7		
020-91500	0.0143	0.224	108158	0.07448	0.47	1.769	0.84	0.1722	0.59	0.70	1054	19	1024	11	1034	11	99.1		
021-91500	0.0147	0.224	105751	0.07480	0.54	1.794	0.91	0.1739	0.62	0.69	1063	22	1034	12	1043	12	99.1		

Supplemetary Table 4.2 - Data of U-Pb analyses performed through LA-ICP-MS on zircon from 91500.

022-91500	0.0127	0.223	121819	0.07477	0.40	1.770	0.81	0.1717	0.59	0.73	1062	16	1022	11	1035	10	98.7
023-91500	0.0120	0.219	129780	0.07503	0.34	1.725	0.75	0.1668	0.56	0.74	1069	14	994	10	1018	10	97.7
024-91500	0.0159	0.225	97552	0.07465	0.52	1.786	0.90	0.1735	0.63	0.70	1059	21	1031	12	1040	12	99.1
025-91500	0.0200	0.225	77708	0.07474	0.44	1.776	0.78	0.1723	0.53	0.67	1062	18	1025	10	1037	10	98.9
026-91500	0.0164	0.224	94377	0.07518	0.69	1.772	1.01	0.1709	0.64	0.63	1073	28	1017	12	1035	13	98.3
032-91500	0.0094	0.243	164143	0.07514	0.31	1.895	0.69	0.1829	0.49	0.71	1072	12	1083	10	1079	9	100.3
033-91500	0.0105	0.245	147579	0.07528	0.32	1.911	0.73	0.1841	0.54	0.74	1076	13	1089	11	1085	10	100.4
034-91500	0.0109	0.244	142008	0.07483	0.30	1.892	0.67	0.1833	0.48	0.71	1064	12	1085	10	1078	9	100.7
035-91500	0.0070	0.242	221600	0.07487	0.38	1.858	0.76	0.1800	0.55	0.72	1065	15	1067	11	1066	10	100.0
036-91500	0.0135	0.242	114468	0.07486	0.29	1.860	0.69	0.1802	0.50	0.73	1065	12	1068	10	1067	9	100.1
037-91500	0.0098	0.242	158887	0.07503	0.31	1.836	0.76	0.1775	0.59	0.77	1069	13	1053	11	1059	10	99.5
038-91500	0.0070	0.242	221435	0.07432	0.32	1.842	0.76	0.1798	0.58	0.77	1050	13	1066	11	1061	10	100.5
039-91500	0.0109	0.242	141615	0.07486	0.33	1.847	0.77	0.1790	0.59	0.77	1065	13	1061	12	1062	10	99.9
040-91500	0.0127	0.240	121590	0.07516	0.35	1.825	0.74	0.1761	0.53	0.72	1073	14	1045	10	1054	10	99.2
Sample AL01 -91500																	
004-91500	0.0054	0.231	285937	0.07498	0.30	1.830	0.66	0.1770	0.46	0.70	1068	12	1050	9	1056	9	99.4
005-91500	0.0060	0.234	258132	0.07469	0.35	1.807	0.78	0.1755	0.59	0.75	1060	14	1042	11	1048	10	99.4
006-91500	0.0061	0.234	252746	0.07502	0.39	1.823	0.75	0.1762	0.52	0.70	1069	15	1046	10	1054	10	99.3
007-91500	0.0058	0.237	267191	0.07492	0.41	1.800	0.72	0.1743	0.47	0.65	1066	16	1036	9	1046	9	99.0
008-91500	0.0073	0.236	213102	0.07511	0.48	1.807	0.79	0.1745	0.50	0.63	1071	19	1037	10	1048	10	98.9
009-91500	0.0079	0.207	197178	0.07485	0.46	1.809	0.81	0.1753	0.56	0.69	1065	18	1041	11	1049	11	99.3
010-91500	0.0079	0.229	197414	0.07507	0.43	1.786	0.79	0.1725	0.55	0.69	1070	17	1026	10	1040	10	98.6
011-91500	0.0061	0.244	254683	0.07493	0.52	1.782	0.88	0.1725	0.62	0.70	1067	21	1026	12	1039	11	98.7
012-91500	0.0059	0.244	262961	0.07503	0.39	1.764	0.84	0.1705	0.64	0.77	1069	16	1015	12	1032	11	98.3

017-91500	0.0141	0.233	110158	0.07498	0.30	1.784	0.70	0.1726	0.52	0.74	1068	12	1026	10	1040	9	98.7
018-91500	0.0138	0.234	112417	0.07489	0.34	1.778	0.74	0.1722	0.54	0.73	1066	14	1024	10	1038	10	98.7
019-91500	0.0136	0.231	114290	0.07548	0.36	1.760	0.74	0.1691	0.53	0.72	1081	14	1007	10	1031	10	97.7
020-91500	0.0121	0.232	127751	0.07531	0.37	1.779	0.72	0.1713	0.50	0.69	1077	15	1019	9	1038	9	98.2
021-91500	0.0145	0.230	106746	0.07492	0.39	1.761	0.72	0.1704	0.49	0.67	1066	16	1014	9	1031	9	98.4
022-91500	0.0217	0.238	71419	0.07488	0.49	1.745	0.83	0.1690	0.56	0.67	1065	20	1006	10	1025	11	98.2
023-91500	0.0136	0.236	113632	0.07505	0.33	1.733	0.72	0.1675	0.52	0.72	1070	13	998	10	1021	9	97.8
024-91500	0.0151	0.236	102479	0.07532	0.45	1.769	0.78	0.1703	0.52	0.67	1077	18	1014	10	1034	10	98.0
025-91500	0.0144	0.236	107537	0.07489	0.40	1.758	0.73	0.1703	0.48	0.66	1065	16	1014	9	1030	9	98.4
026-91500	0.0155	0.236	99905	0.07464	0.47	1.759	0.79	0.1709	0.53	0.66	1059	19	1017	10	1031	10	98.7
Sample AL27 -91500																	
004-91500	0.0114	0.247	136201	0.07530	0.39	1.824	0.82	0.1756	0.62	0.75	1077	16	1043	12	1054	11	99.0
005-91500	0.0096	0.248	161572	0.07483	0.34	1.832	0.71	0.1775	0.50	0.70	1064	14	1053	10	1057	9	99.7
006-91500	0.0183	0.251	84761	0.07496	0.27	1.879	0.72	0.1817	0.55	0.77	1067	11	1076	11	1074	9	100.3
008-91500	0.0176	0.254	88252	0.07504	0.36	1.871	0.74	0.1808	0.53	0.72	1070	15	1071	10	1071	10	100.1
009-91500	0.0189	0.256	81995	0.07474	0.43	1.842	0.77	0.1787	0.52	0.68	1062	17	1060	10	1061	10	100.0
010-91500	0.0114	0.255	136415	0.07463	0.28	1.816	0.68	0.1765	0.50	0.73	1059	11	1048	10	1051	9	99.7
011-91500	0.0129	0.256	120416	0.07431	0.41	1.824	0.79	0.1780	0.57	0.72	1050	16	1056	11	1054	10	100.2
012-91500	0.0149	0.255	103816	0.07501	0.44	1.864	0.76	0.1803	0.50	0.65	1069	18	1068	10	1069	10	100.0
017-91500	0.0126	0.260	123213	0.07456	0.54	1.803	1.02	0.1754	0.78	0.76	1057	22	1042	15	1047	13	99.5
018-91500	0.0186	0.263	83167	0.07479	0.50	1.803	0.82	0.1748	0.53	0.65	1063	20	1039	10	1047	11	99.2
019-91500	0.0079	0.265	196975	0.07515	0.35	1.808	0.73	0.1745	0.52	0.72	1073	14	1037	10	1048	10	98.9
020-91500	0.0164	0.264	94570	0.07514	0.42	1.807	0.79	0.1744	0.56	0.71	1072	17	1036	11	1048	10	98.9
021-91500	0.0139	0.250	111332	0.07480	0.36	1.807	0.73	0.1752	0.51	0.71	1063	14	1041	10	1048	10	99.3
						1											

023-91500	0.0158	0.262	97860	0.07491	0.43	1.777	0.78	0.1720	0.53	0.68	1066	17	1023	10	1037	10	98.7
024-91500	0.0130	0.266	118941	0.07489	0.36	1.837	0.73	0.1779	0.51	0.71	1065	14	1056	10	1059	10	99.7
025-91500	0.0157	0.263	98512	0.07495	0.46	1.816	0.84	0.1757	0.60	0.71	1067	18	1044	11	1051	11	99.3
026-91500	0.0150	0.264	103167	0.07464	0.44	1.823	0.77	0.1771	0.52	0.67	1059	18	1051	10	1054	10	99.8
032-91500	0.0103	0.273	150461	0.07493	0.34	1.791	0.81	0.1734	0.63	0.78	1067	14	1031	12	1042	10	98.9
033-91500	0.0113	0.272	137110	0.07501	0.34	1.801	0.76	0.1741	0.57	0.75	1069	14	1035	11	1046	10	98.9
034-91500	0.0115	0.271	134741	0.07503	0.37	1.798	0.77	0.1737	0.57	0.74	1069	15	1033	11	1045	10	98.9
036-91500	0.0156	0.259	99568	0.07487	0.43	1.844	0.83	0.1786	0.60	0.73	1065	17	1059	12	1061	11	99.8
037-91500	0.0130	0.270	119170	0.07450	0.50	1.840	0.88	0.1791	0.63	0.71	1055	20	1062	12	1060	12	100.2
038-91500	0.0014	0.273	1082114	0.07503	0.37	1.830	0.86	0.1769	0.68	0.79	1069	15	1050	13	1056	11	99.4
039-91500	0.0090	0.271	173075	0.07444	0.40	1.842	0.79	0.1795	0.57	0.72	1053	16	1064	11	1061	10	100.3
040-91500	0.0085	0.270	182361	0.07524	0.35	1.859	0.84	0.1792	0.66	0.79	1075	14	1062	13	1067	11	99.6

Supplemetary Table 4.3 - Calculation of zircon saturation temperatures $(T_{ZR}.sat.C)$ of the Zr concentrations for both suites.

	Samples	М	Zr.obs	Zr.sat	T _{Zr} .sat.C
	AL02	2.467356	217	259	735.8
	AL03	2.073568	211	185.3	760.6
	AL04-A	1.915619	209	162	771.1
QMF	AL21	1.818216	204	149.2	776.1
	AL22	2.07834	216	186.1	762.3
	AL23	2.507025	207	267.9	729.5
	AL24	2.079105	210	186.2	759.9
	AL25	1.948298	206	166.6	767.5
	AL05-A	1.965681	273	169.1	790.4
GF	AL05-B	3.032926	273	418.8	716.4
	AL08	3.069688	267	432.1	712.4
	AL26	3.012537	400	411.7	747.7
	AL27	1.744673	308	140.1	818.2
	AL28	1.631925	245	127.3	806
	AL28-B	1.534001	274	117.1	823.9
MS	SE-05	1.536531	441	117.4	870
	SE-27	1.793394	448	146	849.8
	SE-25	1.787714	356	145.3	828.3
	SE-38	1.548344	385	118.6	855.4
	SE-48	1.682702	315	132.9	825.2
	AL30	1.592928	365	123.2	846.5

5. ARTIGO 2

Tectonic significance of the early-Cambrian syn-orogenic basin in the easternmost portion of the Paraguay Belt, Tocantins Province, central Brazil.

Artigo submetido no dia 28 de outubro de 2021 na revista Gondwana Research. *Status atual: Under review*.

Amanda Figueiredo Granja Dorilêo Leite^{1*} (amandafgdleite@gmail.com), Reinhardt A. Fuck¹(reinhardt@unb.br), Elton L. Dantas¹(<u>elton@unb.br</u>), Amariklo S. Ruiz² (<u>asruiz@gmail.com</u>), Patrick Monié³(<u>patrick.monie@umontpellier.fr</u>), Arthur Iemmolo³ (arthur.iemmolo@umontpellier.fr)

¹Instituto de Geociências, Universidade de Brasília (UnB), Asa Norte, Brasília, DF, 70910, Brazil.

²Faculdade de Geociências, Universidade Federal de Mato Grosso (UFMT), Avenida Fernando Correa da Costa, 2367, Boa Esperança, Cuiabá, MT, 78060-900, Brazil.

³Géosciences Montpellier, Université de Montpellier, CNRS, Université des Antilles, UMR5243, F-34095 Montpellier, France.

*Corresponding author

ABSTRACT

Sedimentary provenance studies using detrital zircon U-Pb ages represent an important tool to investigate evolution of orogenic basins and to suggest tectonic setting reconstructions. Synorogenic basins worldwide are characterized by a large proportion of zircon with ages close to the maximum depositional period, reflecting the proximity of recently formed magmatic rocks. In this work, we combine field observations, U-Pb detrital zircon ages, Sm-Nd whole rock and Ar-Ar in mica isotopic analyses to constrain the final tectonic evolution of a restricted basin located in a poorly studied region at the easternmost limit to the Paraguay Belt, Tocantins Province, central Brazil. The investigated area corresponds to the boundary sector with the Brasília Belt, which is also transected by the strike-slip fault system associated to the large Transbrasiliano Lineament. We provide 465 new detrital zircon U-Pb data with ages distributed from early Cambrian to Archean, of which approximately 60% of analyzed grains are derived from Ediacaran-Cryogenian sources. The maximum depositional age of the basin is defined at ca. 594 Ma, constrained by the youngest age peak. The syn-orogenic character of the basin is inferred based on the main peak of the detrital zircon population ages around 620 Ma, which is very close to the maximum depositional period and points to a short time between erosion, deposition, and burial processes. The ⁴⁰Ar/³⁹Ar muscovite age of 536-546 Ma obtained for the muscovite-schist metamorphosed under greenschist facies conditions indicates that the regional thermal regime was maintained up to the early-Cambrian in the area. The minimum fast cooling rate of 25°C/Myr defined in the investigated area is constrained by the ⁴⁰Ar/³⁹Ar biotite analysis $(549.2 \pm 3.9 \text{ Ma})$ from a syn-to late- kinematic granodiorite intrusion. The very rapid magma emplacement occurred into relatively shallow crustal levels through the associated strike-slip faults. The Transbrasiliano Lineament would have facilitated the rapid unroofing of the study area and thus, the syn-orogenic deposition in a foreland domain at the final phase of West Gondwana amalgamation. The data provide evidence of a late convergent basin that was formed

coevally to the growth of a contemporaneous magmatic arc and active margin between the Amazonian Craton and the eastern blocks/cratons (São Francisco-Congo and Rio de la Plata cratons and Paranapanema Block) to Cambrian times. Our results support the existence of the younger Clymene Ocean and subsequent Cambrian final assembly of West Gondwana.

Keywords: West Gondwana; Sedimentary provenance; Syn-orogenic basin; Thermal conditions; Tocantins Province; Paraguay Belt; Clymene Ocean.

5.1.INTRODUCTION

Collisional orogens result from a complex geological and dynamic process, which is essential to understand in the frame of the plate tectonic theory (Wilson, 1966). The rocks caught between colliding blocks record remarkable features during and after the convergent phase, which are often related to uplift, erosion, deposition, magmatism, and metamorphism. During tectonically active periods, the large debris accumulation from the same terrain is often linked to the uplift event of such source area (Ring *et al.*, 1999; Cawood *et al.*, 2012). The synorogenic basins are examples of the sedimentation that occurs coevally with an accretionary event, deposited frequently in the foreland domain of the orogen (Ingersoll *et al.*, 1995, 2013). Among the different tools used to investigate the syn-orogenic basins, the sedimentary provenance study appears to combine a large spectrum of geological data, so that the age spectra of detrital zircon from sedimentary packages can reflect the tectonic setting of the basin in which they were deposited (Hawkesworth *et al.*, 2009).

The relationships between source rocks and detrital zircon age populations are central to unravel the sedimentary recycling pathways and paleogeography through orogenic terrains and constrain basin depositional processes (Hawkesworth *et al.*, 2009; Cawood *et al.*, 2012).

High nearby uplifted mountain ranges and rapid weathering processes are the main mechanisms that control the sedimentation of a basin that displays more than 50% of a single population of zircon ages (Cawood *et al.*, 2012). Thus, recently formed magmatic arcs in a convergent boundary are more likely to undergo fast erosion, loading a syn-magmatic/orogenic sedimentary basin (Stern, 1994; Cawood *et al.*, 2012). The worldwide depositional systems that well represent this depositional system type are the Himalaia-Bengal, Appalachian-Ouac hita and Caledonides areas (Dewey and Kidd, 1974; Graham *et al.*, 1975; Moiola and Shanmugam, 1984; Ingersoll *et al.*, 1995, 2003; Murphy *et al.*, 2019).

The Late-Ediacaran and Early Cambrian assembly periods of Gondwana are still matter of debate, since this interval corresponds to recurring late consumption of local oceans and collision processes of small blocks and/or terrains (Meet, 2003; Pisarevsky *et al.*, 2008; Cordani *et al.*, 2013; Schmitt *et al.*, 2018). In the South American context, the traditional view of the West Gondwana final amalgamation phase is typically associated to the closure of the longlived Goiás-Pharusian ocean at ca. 620 Ma as the result of the assembly of the Amazonian-West African, São Francisco-Congo, Rio de la Plata cratons and Paranapanema Block (Kröner and Cordani, 2003; Cordani *et al.*, 2009, 2013).

Alternatively, the last closure of West Gondwana has been also linked to the consumption of a younger ocean between the Amazonian-West Africa and proto-Gondwana, labelled as Clymene Ocean (Trindade *et al.*, 2003, 2006), which can have generated several magmatic arcs along the Araguaia-Paraguay-Pampean belts, constrained with a series of 555-500 Ma syn-to late tectonic granitoids from the Araguaia (Moura *et al.*, 1993; Gorayeb *et al.*, 2013; Alves *et al.*, 2019) and Paraguay (Godoy *et al.*, 2010; Leite *et al.*, 2021) belts and western Argentina (Rapela *et al.*, 1998, 2007). Paleomagnetic, seismic, magnetotelluric and gravimetric evidence also remark the existence of such a Clymene Ocean, that would have shaped the fin al stage of West Gondwana assembly along a younger orogenic corridor (D'Agrella-Filho *et al.*,

136

1998, 2000; Soares *et al.*, 2006; Bologna *et al.*, 2011; Perarnau *et al.*, 2012; Assumpção *et al.*, 2013; Tohver *et al.*, 2010; Wen *et al.*, 2020).

The Paraguay Belt corresponds to a sequence of folded sedimentary rocks formed on a passive margin of the Amazonian Craton, which was thought to be the most obvious source area when considering potential sediment provenance (Alvarenga & Trompette, 1992). In this new contribution, we combined U-Pb, Sm-Nd and ⁴⁰Ar/³⁹Ar isotopic analyses to clarify several aspects of the tectonic evolution of the easternmost portion of the Paraguay Belt, located close to the boundary of the Goiás Magmatic Arc, Brasília Belt. The main goals of this paper are to (1) obtain further information on maximum depositional ages of the metasedimentary rocks; (2) provide insights on the source areas from which the sediments have been shed; (3) give constraints on the thermal history on this portion of the Paraguay Belt, and finally, (4) discuss the existence of the Clymene Ocean at the onset of Cambrian times in the Tocantins Province, central Brazil.

5.2.GEOLOGICAL SETTING

The Paraguay Belt is an extensive geotectonic unit that belongs to a group of orogens formed during the Brasiliano-Pan-African Orogeny (Kennedy, 1964; Almeida, 1984), as a result of the amalgamation of Gondwana (Rogers, 1996) between 900 and 600 Ma (Brito Neves and Fuck, 2013; Figure 5.1A), after the fragmentation of the Rodinia supercontinent. Located in the central part of Western Gondwana, the Paraguay Belt, together with the Araguaia and Brasília belts, constitutes the Tocantins Province, formed in response to the assembly of the Amazonian and São Francisco cratons and the Rio Apa, Parnaíba and Paranapanema blocks (Almeida, 1984; Brito Neves and Fuck, 2013; Figure 5.1B).

The belt which is located on the outskirts of the Amazonian Craton is divided into northern and sourthern sectors by Cenozoic sediments of the Pantanal Basin as well as into lithotectonic domains. Structural analyses allow to characterize three structural domains in the Paraguay Belt (Figure 5.1C): internal, external and platform domains (Alvarenga and Trompette, 1993). Established stratigraphy and correlations indicate a gradual transition from a glacio-marine environment in the platform zone and glacio-marine with turbidity currents to a turbiditic environment in its innermost zone (Alvarenga, 1990; Alvarenga and Saes, 1992; Alvarenga & Trompette, 1993). Deformation and metamorphism intensity in the different units of the belt decreases toward the southern margin of the Amazonian Craton (Alvarenga, 1990; Tohver *et al.*, 2006). Different processes occur simultaneously in the northern and southern arms as results of the final stages of the belt evolution (Campanha *et al.*, 2011; Babinski *et al.*, 2018).

Figure 5.1 - Geological sketch of the study area: (A) geotectonic context of the formation of the Tocantins Province during the Brasiliano Orogeny. Cratons are shown in dark gray (modified from Vaughan and Pankhurst, 2008); (B) location of the Tocantins Province in the Brazilian territory; (C) simplified geological map of the Paraguay Belt (modified from Ruiz et al., 2010). Red polygons indicate three different regions in the Paraguay Belt; (D) simplified geological map of the investigated area, which corresponds to the Region 3 in the Figure 1C.

The Nova Xavantina metavolcanic sedimentary sequence, described as basement of the Cuiabá Group, records the initial stages of sedimentation associated to the rupture of the Rodinia Supercontinent. This unit shows a W-E trend and is characterized as a basal volcano-sedimentary succession related to initial seafloor spreading or retro-arc basin (Pinho, 1990; Lacerda Filho *et al.*, 2004). The 822, 771 and 750 Ma Tonian U-Pb ages for the metavolcanic rocks of the Nova Xavantina unit can be associated to the first sedimentary deposits in the

Paraguay Belt (Dantas *et al.*, 2007; Silva, 2018; Silva *et al.*, 2020). The analyzed black slate in the Planalto da Serra region was associated to strong weathering of juvenile material that provided a Re-Os age of 784 ± 8 Ma (Manoel *et al.*, 2020). Such data indicate a potential link with the early rifting of the Rondinia supercontinent.

The internal zone is essentially represented by the Cuiabá Group, described as the basal folded sequence, followed by the Puga Formation and by the Araras Group carbonate deposits in the proximity of the external/plataformal zone. The platform units of the external zone occur over the cratonic area and attest to the existence of a foreland basin, comprising the sedimentary rocks of the Alto Paraguay Group, which records exhumation and final sedimentation at 541 ± 7 Ma using the U-Pb method in detrital zircon grains (Figure 5.1C; Alvarenga & Saes, 1992; Tokashiki & Saes, 2008; Bandeira *et al.*, 2012). The late stages of the belt evolution are associated with a series of granitic intrusions into the Cuiabá Group, dated between 558 and 509 Ma and showing syn- to late-collisional signatures (Godoy *et al.*, 2010; McGee *et al.*, 2012; Leite, *et al.*, 2021). Ages of metamorphism within the core of the Paraguay Belt range from ca. 540 to 490 Ma (Gerakles *et al.*, 2008; Tohver *et al.*, 2010).

The Cuiabá Group

The Cuiabá Group (Figure 5.2) comprises a sedimentary succession that records the development of a passive margin on the southeastern Amazonian Craton, and a greenschist facies metamorphism related to the main collisional event (Almeida, 1984; Lacerda Filho *et al.*, 2004). The Cuiabá Group is stratigraphically divided into three formations: Campina de Pedra Formation, Acorizal Formation and the upper Coxipó Formation (Tokashiki & Saes, 2008). The rocks at base of the Cuiabá Group are typically described in the Region 1 of the belt (Figure 5.1C) and display detrital zircon ages varying from ca. 900 Ma to 1860 Ma of the Campina de

Pedra and Acorizal formations, dominantly derived from Mesoproterozoic sources (1200 to 1250 Ma; Babinski *et al.*, 2018).

Figure 5.2 - Schematic model illustrating the stratigraphic column of the northern segment of the Cuiabá Group (modified after Manoel *et al.* 2020 and Tokashiki and Saes, 2008). The unit numbers correspond to the subunits of Luz *et al.* (1980). The syn-rift formations are composed of the units 1 and 2: intercalated pelites and carbon-rich pelites, marbles and metagraywackes; The passive margin formations comprise the units 3 to 8. Unit 3 and 5: metaconglomerates, metarenites and graded phyllites, meta-arkoses and quartzites; Unit 4: metadiamictites (Engenho Facies) and psammitic to pelitic metarhythmites with dropstones (Cangas Facies); Units 6, 7 and 8: phyllites, metadiamictites, quartzites (Mata-Mata Facies) and marbles (Guia Facies). The ages (Ma) represent U-
Pb detrital zircon ages of each unit, the youngest concordant age of which is interpreted as maximum depositional age: (a) Babinski *et al.*, (2018); (b) Batalha (2017).

The Coxipó Formation, defined as the upper Cuiabá Group, records the maximum depositional age with the younger detrital zircon analyses at 923 Ma (Batalha, 2016). Babinski *et al.* (2018) reported U-Pb zircon ages from the same formation and dated the youngest sediment input throughout the Cuiabá Group at 652±5 Ma, interpreted as a post-Sturtian deposition. Samples of the Cuiabá Group exposed in the center-south of the Paraguay Belt (south of the São Vicente Granite and vicinity of the Paraná Basin; Region 2; Figure 5.1C) have a maximum depositional age of 602±13 Ma (Pelosi, 2017) and 523±5 Ma (Vasconcelos, 2018), and display ca. 60-70% of the zircon grains derived from Neoproterozoic sources.

The data presented in this work correspond to the poorly investigated metasedimentary rocks in the easternmost part of the Paraguay Belt (Figure 5.1D). The Cuiabá Group in the vicinity of Bom Jardim de Goiás (Region 3) comprises fine-grained metasedimentary rocks, such as phyllites and schists associated with fine-grained quartzite lenses (Seer, 1985; Pimentel and Fuck, 1987). The Transbrasiliano Transcontinental Lineament (TBL) has behaved as a major zone of weakness to accommodate the Neoproterozoic collisional stress at the end of the Brasiliano Orogeny (Fuck *et al.* 2008; Brito Neves and Fuck, 2013; Curto *et al.*, 2014, 2015). The strike-slip fault system related to TBL in the studied area corresponds to the contact between the southwestern segment of the Goiás Magmatic Arc, Brasília Belt and the Paraguay Belt (Seer, 1985; Guimarães *et al.*, 2012; Curto *et al.*, 2014, 2015; Leite *et al.*, 2021). In the Tocantins Province, the large TBL affects part of the three mobile belts, the Paraguay, Araguaia, and Brasília belts, reworking different protoliths along large dextral mylonitic shear zones and their ramifications (Dantas *et al.*, 2007; Fuck *et al.* 2008; Cordani *et al.*, 2013).

Seer (1985) described the occurrence of different granitic bodies intruding the metasedimentary host rocks of the Cuiabá Group in the study region and recently, Leite *et al.* (2021) associated their evolution to the activity of the Transbrasiliano Lineament fault system and last compressional constraints. The present study seeks to present the source-to-sink relationship in the Region 3 (Figure 5.1C) through the determination of detrital zircon populations U-Pb ages, as well as to define the probable depositional setting. The investigated area is a key portion of the Paraguay orogen, where the low-grade metamorphic rocks contain micas suitable for ⁴⁰Ar/³⁹Ar dating, by contrast with the Cuiabá Group formations elsewhere that are mostly mica free. The combination of U-Pb and Ar-Ar isotopic methods is an effective tool to constrain the orogenic evolution of the study area, providing substantial clues to terra ins sources, thermal history, and tectonic evolution in the central Tocantins Province.

5.3.MATERIALS AND METHODS

The four collected samples for U-Pb LA-ICP-MS isotopic analyses are located in different portions of the investigated area (see Figure 5.3). The samples were mechanically crushed and subsequently sieved. The fraction smaller than 500 µm was panned in order to obtain a heavy mineral separate, which was submitted to a Franz magnetic separator. Under binocular lenses a concentrate of zircon was prepared and subsequently mounted in epoxy. These mounts were polished to expose the interior of the grains and carefully cleaned with diluted HNO₃. The polished zircon surfaces were imaged using backscattered electron microscopy (BSE; Figure 6), with a FEI QUANTA 450 scanning electron microscope (SEM) at the same laboratory. The U-Pb isotopic analyses were performed on zircon grains at the UnB Laboratory of Geochronology (Supplementary Table 5.1), using a Thermo-Fisher Neptune HR-MC-ICP-MS coupled with an Nd:YAG UP213 New Wave laser ablation system. The zircon

isotopic analyses were carried out by the standard-sample bracketing method (Albarède *et al.*, 2004), using the GJ-1 standard zircon (Jackson *et al.*, 2004) in order to quantify the amount of ICP-MS fractionation. During the analytical sessions, the zircon standard 91500 (Wiedenbeck *et al.*, 2004) was also analyzed as an external standard. The tuned masses were 238, 207, 206, 204 and 202, and the integration time was one second and the ablation time was 40 seconds. 30 μ m spot size was used and the laser setting was 10 Hz and 2-3 J/cm². The ²⁰⁶Pb/²⁰⁷Pb and ²⁰⁶Pb/²³⁸U ratios were time-corrected. Helium mixed with argon was used to flow the gas inside the equipment. Corrections of common Pb were not necessary due to low signals of ²⁰⁴Pb (<30 cps) and high ²⁰⁶Pb/²⁰⁴Pb ratios, but their values were taken into account to select only results with discordance of less than 10% for U-Pb plots. For plots of apparent ages, ²⁰⁶Pb/²³⁸U ages from grains younger than 1000 Ma were used, and ²⁰⁷Pb/²⁰⁶Pb ages from grains older than 1000 Ma. The raw data were processed using the Chronus version 2.0 (Oliveira *et al.*, 2015) and the concordia diagrams (2 σ error ellipses), probability density plots, and weighted average ages were calculated using the Isoplot-3/Ex software (Ludwig, 2008).

Eight samples were analyzed by the Sm-Nd method, and of these samples, four correspond to those analyzed by the U-Pb method (see Figure 3). The whole rock Sm-Nd isotopic analyses were carried out at the Laboratory of Geochronology at Universidade de Brasília, following the procedures described by Gioia and Pimentel (2000). Approximately 50 Mg of powder sample were mixed with ¹⁴⁹Sm-¹⁵⁰Nd spike solution and dissolved in Savillex capsules by means of acid attacks with HF, HNO₃ and HCl. Sm and Nd extraction of whole rock samples followed conventional cation exchange techniques by using Teflon columns containing LN-Spec resin (HDEHP-diethylhexyl phosphoric acid supported on PTFE powder). The samples were loaded with nitric acid on Re double evaporation filaments assemblies and the isotopic measurements were carried out on a multi-collector Finnigan MAT 262 mass spectrometer in static mode. The uncertainties for Sm-Nd and ¹⁴³Nd/¹⁴⁴Nd ratios were lower

than $\pm 0.5\%$ (2 σ) and $\pm 0.005\%$ (2 σ), respectively, based on repeated analyses of international BHVO-1 and BCR-1 rock standards. The ¹⁴³Nd/¹⁴⁴Nd ratios were normalized to ¹⁴⁶Nd/¹⁴⁴Nd ratio of 0.7219, and the decay constant used was 6.54x10-12a⁻¹. The T_{DM} values were calculated using the model proposed by De Paolo (1981) and the procedure blanks for Nd were higher than 100 pg.

For ⁴⁰Ar/³⁹Ar analyses, the samples preparation was performed without chemical treatment to avoid any impact on the structure of the minerals. Biotite and muscovite grains were carefully handpicked under a stereo microscope in the 80-130 µm fractions and conditioned in aluminium pockets. Samples were irradiated for 20 h in the core of the TRIGA Mark-II reactor of Pavia University (Italy), with several aliquots of the Taylor Creek sanidine standard (28.61±0.32 Ma; Renne, 2011) as flux monitor. Argon isotopic interferences on K and irradiation KF Ca were obtained by of and CaF_2 (correction factors: $({}^{40}\text{Ar}/{}^{39}\text{Ar})_{\rm K} = 0.00969 \pm 0.00038$ $({}^{38}\text{Ar}/{}^{39}\text{Ar})_{\rm K} = 0.01297 \pm 0.00045$, $({}^{39}\text{Ar}/{}^{37}\text{Ar})_{\text{Ca}} = 0.0007474 \pm 0.000021$ and $({}^{36}\text{Ar}/{}^{37}\text{Ar})_{\text{Ca}} = 0.000288 \pm 0.000016)$. The ${}^{40}\text{Ar}/{}^{39}\text{Ar}$

 $(5^{\circ}Ar)^{5^{\circ}}Ar)_{Ca}=0.0007474\pm0.000021^{\circ}$ and $(5^{\circ}Ar)^{5^{\circ}}Ar)_{Ca}=0.00028\pm0.000016$). The $(5^{\circ}Ar)^{5^{\circ}}Ar$ dating was performed at Géosciences Montpellier, Université de Montpellier, France. Mass discrimination was calculated using a value of $^{40}Ar/^{36}Ar$ ratio of 298.6. The analytical procedure consists of an i) IR-CO₂ laser of 100 kHz used at 5-15% for 60 seconds of heating at variable power; (ii) a lens system for beam focusing; (iii) a steel chamber, maintained at $10^{-8}-10^{-9}$ mbar, with a drilled copper plate; (iv) an inlet line for purification of gases including two Zr-Al getters and a nitrogen cold finger and (v) a multi-collector mass spectrometer (Argus VI from Thermo-Fisher). The collector system is composed of 5 10^{12} ohm Faraday cups (for ^{39}Ar to ^{37}Ar) and one CDD (Compact Discrete Dynode) detector for accurate measurement of ^{36}Ar . One blank analysis was performed every three samples to measure the argon background within the system. A custom-made software (Labview) was used to control the laser intensity, the timing of extraction/purification and the data acquisition. The Logiciel ArArCalc software@ v2.5.2

(Koppers, 2002) was used for data reduction and plotting. The plateau criteria involved at least 50% of the ³⁹Ar released in three or more contiguous steps, with ages that agree within two sigma errors and include the error on the irradiation factor J. A complete set of isotopic results is given in the Supplementary Table 2.

5.4.RESULTS

5.4.1. Field observations and Petrography

The investigated detrital rocks crop out in the vicinity of Bom Jardim de Goiás and occur sometimes covered by sandstones of the Devonian Furnas Formation of the Paraná Basin (Figure 5.3). A sequence of very fine- to fine-grained foliated layers of meta-pelites intercalated with pure or micaceous meta-psammites were observed. The alternating greenish and gray centimeter-thick folded layers generate a laminated structure (Figure 5.4A), corresponding to compositional variation of mudstone and sandstone in well-marked bedding planes. The most abundant lithofacies are labeled as muscovite-chlorite phyllite (Figure 5.4B) and muscovite-biotite schist (Figure 5.4C). Subordinately, fine-grained quartzites are mainly composed of angular to sub-rounded grains of polycrystalline quartz in addition to very fine-grained muscovite (Figure 5.4D).

Figure 5.3 - Geological map of the study area (modified from CPRM, 2017). Colored dots indicate the samples localities. Circled numbers refer to granitoids: 1 – monzogranite (Leite *et al.*, 2021); 2- granodiorite and quartz-monzodiorite (Leite *et al.*, 2021); 3- Macacos syenogranite (Seer, 1987); 4- Serra Negra syenogranite (Guimarães, 2012); 5- Indaiá tonalite (CPRM, 2017). See text for details.

The mineralogical composition of the studied rocks is basically quartz, mica (muscovite, biotite), chlorite and feldspar (microcline and plagioclase), while tourmaline, apatite, sericite and zircon are accessory minerals. The quartz grains are subhedral, up to 0.5 mm in size, while the phyllosilicates are not larger than 0.3 mm. The mineral paragenesis testifies essentially to greenschist metamorphic conditions in the area, varying from the chlorite up to the biotite zone. The local occurrence of coarser-grained sillimanite-cordierite schist correspond to the presence of a hornfels aureole surrounding the granodiorite plutons (Figure 5.4E-F).

Figure 5.4 – (A) macroscopic field aspect of the laminated structure, that corresponds to bedding planes and compositional variation and rhythmic alternation between quartzite and phyllite; (B) photomicrography of muscovite-chlorite phyllite with foliations highlighted and layers of polycrystalline quartz intercalated with mica; (C) photomicrography of muscovite-biotite schist. Oriented and metamorphic mica reach up to the biotite zone – sample AL019; (D) photomicrography of the quarzite portion of polycrystalline quartz and well-marked open folds; (E) photomicrography of schist with cordierite and sillimanite – sample AL06; (F) hand specimen of dark-colored fine to medium-grained schist – sample AL06. Mineral abbreviations are after Whitney and Evans (2010). Pt= perthite.

The first F_1 deformational phase generated the regional foliation S_1 (parallel to S_0) and is associated with west verging tectonic structures of crenulation cleavage. The second F_2 phase yielded soft and open folds (D2), the axial-planes of which are orthogonal to $S_0//S_1$ and parallel to S_2 (Figure 5.4C-D, 5.5A). The easternmost portion of the area records the ductile-brittle influence of the TBL and is taken as the F_3 deformational phase (Table 5.1). The strike-slip dextral deformation along the TBL overprinted the older structures, transposing axial planes of D2 (Figure 5.5B). The mylonitic foliation is characterized by rotated sigmoidal quartz and feldspar porphyroclasts (Figure 5.5C). Following the mylonite classification of Sibson (1977), we recognized criteria of chlorite-muscovite mylonite and chlorite-muscovite ultramylonite (Figure 5.5D; sample AL18).

Figure 5.5 – (A) photography of open fold with deformation phases highlighted; (B) photography of the preserved axial planes of the D2, resulting in relict axial planes S1 foliation overprinted by TBL; (C) outcrop photography representing the TBL trend in the rocks and the rotated porphyroclasts with sigmoidal structures; (D) photomicrography showing mylonitic foliation with rotated quartz phenoclast – sample AL18.

	Foliation	Preferential	Deformational characteristics	Associated
	type	orientation		fold
	crenulation	N42E/82NW	recrystallization and flattening of	
F_1 - $S_0 / / S_1$	cleavage	N50E/60NW	quartz grains and formation of	-
		N42E/78NW	granoblastic and lepidoblastic	
			texture. Biotite metamorphic zone.	
	slate	N45W/75NE	intracrystalline deformation in quartz	Open
	cleavage	N33W/60NE	grains and orientation of	folds (D2)
F_2-S_2		N21W/71NE	phyllosilicates	with axial
				plane
				orthogonal
				to S1
	slate	N28E/21SW	granolepidoblastic texture forming	Overprint
	cleavage	N40E/35SW	in phyllosilicate-rich layers that	D2, S1 and
F ₃ - TBL	and	N35E/17SW	surround mantled quartz	S2.
	mylonitic		porphyroclasts. Dextral sense.	
	foliation			

Table 5.1 – Summary of the deformation phases and general structural characteristics in the investigated area.

5.4.2. U-Pb geochronology of detrital zircon grains

The four analyzed samples with the LA-ICP-MS technique were collected from finegrained banded phyllites and schists. Samples AL18 and AL11 are located in the easternmost portion of the area, while samples AL06 and AL31 were collected in the north and west, respectively (e. g. Figure 5.3). The results of 465 U-Pb dating spots on detrital zircon grains are presented in Table 5.2. Out of these 465 U-Pb dating analyses, 140 zircon grains were excluded from the calculation due to their high age discordance (outside of the 96-103% interval) and/or high common Pb. The analyzed detrital zircon grains are colorless or display light yellow or brown colors and subhedral to euhedral shapes. Their grain size varies from 50 to 320 μ m in length and length/width ratios mostly of ca. 2 to 3. In general, the youngest analyzed grains (up to 700 Ma) present smaller size, while the older ones, recording Paleoproterozoic and Archean ages, are larger-sized grains (Figure 5.6).

SAMPI F									AL1	8							
													Арра	irent ag	jes		
	f				err		err		err								conc
	206	Th/	²⁰⁶ Pb/	²⁰⁷ Pb/	(%)1	²⁰⁷ Pb/	(%)1	²⁰⁶ Pb/	(% 1	Rho	²⁰⁷ Pb/	26	²⁰⁶ Pb/	26	²⁰⁷ Pb/	26	(0/)
GRAIN	(%)	U	²⁰⁴ Pb	²⁰⁶ Pb	б	²³⁵ U	б	²³⁸ U	б		²⁰⁶ Pb		²³⁸ U		²³⁵ U		(70)
047-ZR88	0,015	0.322	101051	0,057	0,847	0,651	1,241	0,083	0,828	0,667	498,052	37,109	511,575	8,145	509,140	9,918	100.48
028-ZR72	0,038	0.810	40867	0,061	0,958	0,800	1,644	0,096	1,283	0,781	623,346	41,070	589,640	14,450	596,675	14,778	98.82
124-ZR148	0,008	0.809	201532	0,061	0,609	0,805	1,229	0,096	1,002	0,815	637,127	26,088	589,796	11,289	599,692	11,106	98.35
122-ZR146	0,013	0.421	122769	0,061	0,760	0,805	1,326	0,096	1,021	0,770	627,651	32,588	592,430	11,557	599,811	11,976	98.77
116-ZR140	0,013	0.799	124218	0,061	0,488	0,807	0,962	0,097	0,742	0,771	623,582	20,973	594,512	8,421	600,620	8,704	98.98
072-ZR107	0,030	0.488	51548	0,062	0,980	0,816	1,541	0,096	1,129	0,733	656,957	41,779	592,272	12,772	605,881	14,011	97.75
121-ZR145	0,018	0.298	85206	0,061	0,651	0,817	1,138	0,097	0,857	0,753	647,096	27,837	595,626	9,746	606,482	10,366	98.21
115-ZR139	0,006	0.611	256428	0,060	0,802	0,807	1,189	0,097	0,795	0,669	609,473	34,486	598,402	9,084	600,753	10,751	99.61
023-ZR18	0,027	0.797	58162	0,060	1,136	0,807	1,438	0,098	0,800	0,556	603,458	48,780	599,931	9,162	600,703	12,998	99.87
070-ZR105	0,021	0.731	74044	0,060	0,674	0,812	1,078	0,098	0,755	0,701	615,348	28,980	600,116	8,652	603,348	9,783	99.46
055-ZR44	0,084	0.106	18489	0,061	0,573	0,817	1,417	0,098	1,242	0,876	628,373	24,618	600,735	14,242	606,593	12,905	99.03
051-ZR40	0,007	0.872	235773	0,061	0,464	0,820	0,914	0,098	0,695	0,760	634,269	19,921	600,914	7,975	607,986	8,348	98.84
031-ZR75	0,052	0.818	30152	0,061	1,273	0,830	1,718	0,098	1,093	0,636	648,494	54,232	603,978	12,595	613,468	15,764	98.45
030-ZR74	0,023	0.547	66458	0,061	0,633	0,824	1,084	0,098	0,799	0,737	628,318	27,145	605,593	9,230	610,443	9,924	99.21
017-ZR12	0,036	0.385	43322	0,061	0,804	0,823	1,159	0,099	0,748	0,645	624,293	34,500	606,100	8,651	609,988	10,603	99.36

Table 5.2 - Data of U-Pb analyses performed through LA-ICP-MS on detrital zircon from the investigated metasedimentary rocks.

117-ZR141	0,026	0.442	59805	0,062	1,010	0,841	1,555	0,099	1,122	0,722	665,037	42,975	607,366	13,003	619,741	14,372	98.00
092-ZR121	0,037	1.291	42096	0,060	1,054	0,817	1,666	0,099	1,236	0,742	603,075	45,275	607,447	14,318	606,558	15,156	100.15
062-ZR51	0,012	0.483	131286	0,061	0,510	0,833	1,134	0,099	0,943	0,832	638,781	21,848	609,004	10,959	615,387	10,444	98.96
060-ZR49	0,017	0.498	90426	0,060	1,025	0,816	1,339	0,099	0,777	0,580	592,393	44,153	609,013	9,025	605,538	12,175	100.57
106-ZR132	0,016	0.596	98507	0,062	0,802	0,846	1,152	0,099	0,740	0,642	667,614	34,156	609,719	8,603	622,182	10,692	98.00
054-ZR92	0,023	0.354	68330	0,060	0,834	0,818	1,231	0,099	0,826	0,671	591,577	35,949	610,944	9,625	606,881	11,214	100.67
059-ZR48	0,019	1.556	82939	0,062	1,201	0,846	1,568	0,099	0,937	0,597	664,400	51,058	611,210	10,920	622,674	14,544	98.16
030-ZR23	0,007	0.338	213582	0,061	0,381	0,840	0,813	0,100	0,615	0,757	647,058	16,310	611,517	7,175	619,164	7,521	98.76
004-ZR2	0,020	0.409	78057	0,061	0,770	0,843	1,164	0,100	0,791	0,679	645,900	32,908	613,801	9,255	620,727	10,783	98.88
043-ZR34	0,026	0.646	60377	0,061	0,961	0,841	1,484	0,100	1,069	0,720	638,382	41,073	614,453	12,522	619,621	13,721	99.17
061-ZR50	0,013	0.639	119700	0,060	0,521	0,832	0,919	0,100	0,660	0,718	605,592	22,441	617,013	7,765	614,608	8,454	100.39
056-ZR94N	0,018	0.641	85255	0,061	0,627	0,848	0,986	0,101	0,665	0,674	645,900	26,816	617,594	7,826	623,732	9,168	99.02
012-ZR61	0,052	0.976	29806	0,060	3,888	0,837	5,388	0,101	3,711	0,689	603,709	######	621,154	43,876	617,446	49,247	100.60
019-ZR14	0,003	0.061	572782	0,060	0,276	0,840	0,647	0,101	0,454	0,701	609,701	11,896	621,436	5,372	618,949	5,991	100.40
008-ZR6	0,013	0.521	116535	0,061	1,014	0,851	1,225	0,101	0,579	0,473	639,376	43,302	621,531	6,859	625,426	11,405	99.38
103-ZR129	0,008	0.493	206449	0,062	0,641	0,866	1,018	0,101	0,699	0,687	676,088	27,288	621,572	8,281	633,489	9,575	98.12
017-ZR64	0,037	0.738	42270	0,060	0,691	0,843	1,120	0,102	0,800	0,714	611,966	29,703	623,368	9,500	620,946	10,376	100.39
105-ZR131	0,047	0.657	33414	0,061	1,221	0,857	1,793	0,102	1,260	0,702	646,132	52,054	623,806	14,969	628,689	16,740	99.22
009-ZR7	0,021	1.009	72980	0,059	1,001	0,833	1,478	0,102	1,023	0,692	575,335	43,215	625,893	12,200	615,085	13,595	101.76
065-ZR100	0,009	1.424	183045	0,061	0,527	0,854	0,947	0,102	0,694	0,733	626,805	22,627	626,955	8,290	626,957	8,839	100.00
041-ZR82	0,006	0.471	254817	0,061	0,455	0,857	0,883	0,102	0,660	0,747	630,476	19,549	627,708	7,896	628,345	8,261	99.90
011-ZR60	0,028	2.434	56144	0,061	0,761	0,859	1,137	0,102	0,759	0,668	636,087	32,576	627,762	9,079	629,609	10,640	99.71
052-ZR41	0,004	0.387	379113	0,061	0,326	0,860	0,767	0,102	0,587	0,766	639,032	13,981	627,810	7,027	630,289	7,192	99.61
057-ZR94B	0,051	0.349	30567	0,062	1,054	0,877	1,283	0,102	0,632	0,492	677,705	44,719	628,682	7,566	639,491	12,140	98.31
I					ļ					ļ							

83-ZR116	0,074	0.660	21000	0,061	1,071	0,856	1,594	0,103	1,121	0,703	623,490	45,878	629,223	13,434	628,012	14,879	100.19
96-ZR124B	0,039	0.086	40161	0,063	0,460	0,885	1,046	0,103	0,864	0,825	691,651	19,569	629,933	10,360	643,590	9,951	97.88
040-ZR81B	0,017	0.589	93136	0,062	0,840	0,876	1,234	0,103	0,825	0,669	666,407	35,762	630,797	9,916	638,658	11,670	98.77
063-ZR52	0,007	0.520	216328	0,060	0,386	0,852	1,065	0,103	0,920	0,865	607,926	16,652	630,884	11,059	625,934	9,925	100.79
054-ZR43	0,005	0.442	299333	0,060	0,835	0,850	1,316	0,103	0,948	0,720	597,281	35,952	631,962	11,408	624,475	12,242	101.20
019-ZR66	0,019	1.258	83676	0,060	0,829	0,853	1,384	0,103	1,045	0,755	604,157	35,666	632,179	12,582	626,126	12,899	100.97
039-ZR81N	0,042	0.439	36675	0,062	0,749	0,891	1,107	0,104	0,726	0,656	677,865	31,842	638,097	8,822	646,962	10,565	98.63
104-ZR130	0,045	0.445	34314	0,060	1,463	0,862	2,085	0,104	1,439	0,690	606,273	62,678	638,316	17,477	631,340	19,515	101.10
016-ZR63	0,019	0.450	80940	0,061	0,834	0,872	1,312	0,104	0,942	0,718	627,673	35,755	639,403	11,462	636,858	12,373	100.40
052-ZR90B	0,002	0.027	897666	0,062	0,362	0,899	0,763	0,105	0,561	0,735	667,515	15,451	646,448	6,898	651,194	7,326	99.27
021-ZR68N	0,032	1.837	49320	0,061	1,029	0,896	1,505	0,107	1,035	0,687	636,395	43,974	653,481	12,853	649,693	14,398	100.58
016-ZR11B	0,051	0.513	30466	0,063	0,495	0,944	0,890	0,108	0,640	0,719	713,188	20,980	663,748	8,067	675,144	8,758	98.31
077-ZR110	0,016	0.357	98291	0,061	0,517	0,920	1,006	0,109	0,780	0,775	648,933	22,110	666,216	9,866	662,324	9,765	100.59
078-ZR111	0,038	0.256	41003	0,061	1,700	0,939	2,074	0,111	1,129	0,544	648,187	72,180	679,792	14,562	672,545	20,298	101.08
118-ZR142	0,032	0.472	49334	0,063	1,023	1,001	1,779	0,115	1,407	0,791	721,690	43,130	698,977	18,626	704,428	17,992	99.23
055-ZR93	0,051	0.309	30303	0,063	0,818	0,995	1,440	0,115	1,125	0,782	705,112	34,602	699,899	14,921	701,176	14,527	99.82
058-ZR47	0,028	0.503	55651	0,063	0,841	0,998	1,248	0,115	0,844	0,676	708,552	35,586	700,731	11,202	702,631	12,618	99.73
015-ZR11N	0,009	0.773	167703	0,064	0,353	1,007	0,823	0,115	0,644	0,783	729,055	14,947	700,806	8,555	707,598	8,371	99.04
035-ZR79	0,031	0.315	50681	0,062	0,950	0,994	1,313	0,116	0,827	0,630	681,602	40,339	706,737	11,063	700,789	13,249	100.85
042-ZR83	0,038	0.583	40887	0,063	0,915	1,011	1,227	0,117	0,729	0,594	700,472	38,731	712,427	9,831	709,592	12,494	100.40
012-ZR10	0,008	0.624	193129	0,064	0,482	1,052	0,845	0,119	0,587	0,695	737,543	20,330	727,550	8,071	730,043	8,778	99.66
020-ZR67	0,054	0.342	28956	0,063	2,031	1,035	2,983	0,120	2,153	0,722	700,573	85,325	728,091	29,615	721,420	30,578	100.92
005-ZR55	0,019	0.475	83519	0,063	0,710	1,032	1,044	0,120	0,670	0,641	692,216	30,138	728,528	9,222	719,723	10,737	101.22
027-ZR71	0,007	0.747	226991	0,064	0,453	1,064	0,986	0,121	0,793	0,804	734,474	19,144	736,343	11,031	735,920	10,295	100.06
	I				Į					Į							

006-ZR4	0,012	0.669	129270	0,064	0,472	1,086	1,064	0,122	0,878	0,825	756,498	19,871	743,165	12,319	746,536	11,213	99.55
006-ZR56	0,014	0.468	111274	0,065	0,600	1,104	1,037	0,124	0,760	0,733	758,129	25,203	754,458	10,822	755,424	11,020	99.87
95-ZR124N	0,144	0.739	10799	0,067	0,530	1,173	0,884	0,127	0,602	0,682	832,180	22,024	772,695	8,770	788,203	9,667	98.03
097-ZR125	0,011	0.095	138256	0,066	0,566	1,171	0,963	0,128	0,685	0,712	812,165	23,567	778,200	10,043	787,078	10,517	98.87
073-ZR108	0,040	0.257	38624	0,065	0,681	1,160	1,470	0,129	1,249	0,850	779,138	28,502	782,728	18,405	781,838	15,972	100.11
023-ZR69	0,022	0.379	71533	0,066	0,760	1,180	1,141	0,130	0,767	0,672	796,209	31,707	789,418	11,386	791,237	12,506	99.77
079-ZR112	0,028	0.267	55387	0,066	0,898	1,200	1,798	0,131	1,513	0,841	813,834	37,339	795,548	22,629	800,416	19,819	99.39
071-ZR106	0,014	0.419	109512	0,067	0,498	1,213	1,060	0,131	0,860	0,811	835,709	20,685	795,973	12,865	806,551	11,767	98.69
046-ZR87	0,087	0.389	17871	0,067	1,280	1,225	1,833	0,132	1,258	0,686	852,189	52,764	797,583	18,867	812,167	20,394	98.20
004-ZR54	0,016	0.224	94955	0,065	0,608	1,195	1,038	0,134	0,756	0,728	769,676	25,487	808,643	11,485	798,378	11,448	101.29
074-ZR109	0,008	0.263	200595	0,065	0,769	1,242	1,598	0,139	1,351	0,845	773,558	32,186	836,840	21,185	819,766	17,895	102.08
008-ZR58	0,011	0.301	144583	0,069	0,722	1,323	1,461	0,139	1,215	0,832	893,176	29,670	841,153	19,156	855,627	16,830	98.31
060-ZR97	0,016	0.631	100154	0,069	1,008	1,408	1,386	0,147	0,876	0,632	909,404	41,231	885,589	14,492	892,470	16,391	99.23
007-ZR5	0,001	0.026	1675040	0,071	0,852	1,508	1,340	0,155	0,966	0,721	947,867	34,669	927,289	16,672	933,449	16,293	99.34
015-ZR62	0,013	0.249	119556	0,072	0,520	1,724	0,900	0,173	0,634	0,704	991,737	21,080	1029,303	12,053	1017,406	11,530	101.17
045-ZR36	0,011	0.221	137196	0,079	0,539	2,097	0,962	0,193	0,706	0,734	1164,527	21,273	1138,702	14,734	1147,677	13,189	99.22
098-ZR126	0,008	0.754	194708	0,082	0,557	2,417	0,910	0,214	0,617	0,678	1246,781	21,747	1248,315	13,987	1247,806	13,030	100.04
048-ZR89	0,006	0.275	243798	0,083	0,543	2,445	0,908	0,215	0,627	0,690	1260,896	21,149	1252,811	14,264	1255,843	13,048	99.76
110-ZR136	0,011	0.298	145538	0,084	0,691	2,477	1,122	0,213	0,802	0,715	1302,286	26,726	1243,536	18,130	1265,278	16,161	98.28
051-ZR90N	0,008	0.598	197155	0,085	0,484	2,385	0,967	0,204	0,751	0,776	1315,022	18,701	1194,265	16,359	1238,080	13,787	96.46
003-ZR1	0,013	0.448	122467	0,086	0,747	2,711	1,304	0,228	1,003	0,769	1340,331	28,741	1325,936	24,010	1331,506	19,256	99.58
053-ZR91	0,006	0.408	245662	0,094	0,437	3,184	0,818	0,247	0,584	0,714	1501,302	16,484	1420,720	14,890	1453,372	12,608	97.75
094-ZR123	0,008	0.364	190714	0,095	0,471	3,590	0,920	0,275	0,698	0,759	1521,059	17,702	1566,461	19,389	1547,289	14,554	101.24
010-ZR59B	0,004	0.450	433849	0,108	0,417	4,842	0,817	0,325	0,597	0,731	1768,867	15,186	1812,239	18,856	1792,222	13,707	101.12
I					I					Į							

009-ZR59N	0,010	0.675	149530	0,109	0,413	4,827	0,810	0,321	0,589	0,728	1781,488	15,022	1796,389	18,471	1789,567	13,572	100.38
112-ZR138	0,006	0.519	257594	0,112	0,531	4,567	0,931	0,296	0,670	0,719	1830,047	19,182	1671,651	19,710	1743,223	15,459	95.89
033-ZR77	0,013	0.634	117322	0,115	0,418	5,497	0,865	0,346	0,660	0,763	1882,176	15,034	1916,348	21,863	1900,058	14,805	100.86
024-ZR19	0,003	0.393	541517	0,120	0,483	5,384	1,214	0,324	1,050	0,865	1962,711	17,194	1810,252	33,101	1882,342	20,683	96.17
069-ZR104	0,016	1.354	94236	0,122	0,856	5,752	1,386	0,341	1,026	0,740	1987,950	30,283	1893,671	33,632	1939,146	23,845	97.65
059-ZR96	0,003	0.557	451110	0,125	0,540	6,070	0,897	0,351	0,613	0,683	2034,035	19,054	1940,095	20,513	1986,018	15,578	97.69
039-ZR30	0,005	0.214	325816	0,129	0,626	7,002	1,300	0,394	1,077	0,829	2084,166	21,934	2139,972	39,167	2111,712	22,963	101.34
010-ZR8	0,015	0.502	101943	0,129	0,678	6,506	1,137	0,366	0,835	0,734	2084,775	23,755	2008,936	28,784	2046,669	19,922	98.16
041-ZR32	0,008	0.488	199439	0,130	0,620	6,689	0,979	0,375	0,660	0,675	2091,285	21,728	2050,759	23,174	2071,111	17,218	99.02
080-ZR113	0,011	0.626	142048	0,131	0,415	6,844	0,943	0,379	0,762	0,807	2109,504	14,542	2072,936	26,978	2091,407	16,649	99.12
068-ZR103	0,003	0.418	446544	0,134	0,392	6,950	0,806	0,376	0,599	0,743	2153,864	13,659	2055,283	21,067	2105,023	14,262	97.64
003-ZR53	0,003	0.278	480954	0,135	0,469	7,444	0,816	0,401	0,555	0,681	2159,345	16,314	2173,517	20,474	2166,304	14,552	100.33
046-ZR37	0,009	0.910	163237	0,135	0,539	7,312	0,910	0,393	0,633	0,695	2164,334	18,753	2135,537	22,987	2150,318	16,199	99.31
082-ZR115	0,007	0.738	221147	0,159	0,463	9,570	0,835	0,436	0,587	0,703	2445,545	15,640	2334,271	22,978	2394,247	15,289	97.50
093-ZR122	0,007	0.394	219857	0,162	0,362	10,448	0,839	0,466	0,660	0,787	2481,164	12,168	2467,963	27,050	2475,279	15,491	99.70
034-ZR78	0,020	0.651	73743	0,163	0,548	10,761	0,995	0,477	0,743	0,747	2492,105	18,390	2515,667	30,920	2502,720	18,398	100.52
119-ZR143	0,005	0.439	322272	0,165	0,399	10,400	0,974	0,458	0,807	0,829	2502,606	13,401	2432,702	32,663	2471,045	17,956	98.45

SAMPLE									AL	06							
0, 22													Арра	irent ag	es		
	f				err		err		err								
	206	Th/	²⁰⁶ Pb/	²⁰⁷ Pb/	(%)1	²⁰⁷ Pb/	(%)1	²⁰⁶ Pb/	(% 1	Rho	²⁰⁷ Pb/	26	²⁰⁶ Pb/	26	²⁰⁷ Pb/	26	conc.
GRAIN	(%)	U	²⁰⁴ Pb	²⁰⁶ Pb	б	²³⁵ U	б	²³⁸ U	б		²⁰⁶ Pb		²³⁸ U		²³⁵ U		(%)
011-ZR7	0.03	1.00	59256	0.06	0,992	0,687	1,438	0,085	0,972	0,676	539,944	43,118	528,737	9,868	530,881	11,855	99.60
094-ZR72	0.03	0.39	54737	0.06	1,884	0,743	2,136	0,091	0,936	0,438	570,540	80,936	562,534	10,079	564,156	18,405	99.71
047-ZR36	0.06	0.76	27618	0.06	1,817	0,795	2,402	0,096	1,526	0,635	607,506	77,639	590,692	17,213	594,211	21,493	99.41
018-ZR12	0.06	1.09	25257	0.06	2,049	0,824	3,009	0,097	2,172	0,722	653,202	86,729	598,818	24,821	610,345	27,420	98.11
044-ZR33	0.01	1.05	116727	0.06	0,444	0,797	0,989	0,097	0,803	0,811	597,500	19,174	594,276	9,110	594,979	8,888	99.88
072-ZR54	0.03	1.03	46866	0.06	0,821	0,816	1,145	0,097	0,708	0,618	649,064	35,048	594,534	8,037	606,024	10,426	98.10
036-ZR27	0.01	0.84	143522	0.06	0,646	0,809	1,141	0,097	0,865	0,758	615,908	27,767	598,423	9,886	602,121	10,343	99.39
082-ZR62	0.06	1.82	25346	0.06	1,341	0,793	1,610	0,098	0,810	0,503	565,653	57,881	600,166	9,285	593,029	14,413	101.20
004-ZR1B	0.15	0.04	10192	0.06	0,677	0,824	1,048	0,099	0,709	0,677	609,767	29,119	610,081	8,253	610,049	9,588	100.01
056-ZR43	0.01	0.94	131478	0.06	0,798	0,832	1,221	0,100	0,847	0,693	612,747	34,288	615,305	9,932	614,793	11,230	100.08
029-ZR20	0.23	0.43	6832	0.06	1,339	0,858	1,679	0,101	0,943	0,561	667,166	56,828	618,138	11,110	628,798	15,681	98.30
111-ZR86	0.01	0.64	305058	0.06	0,785	0,839	1,118	0,101	0,705	0,630	622,882	33,703	617,547	8,298	618,727	10,338	99.81
035-ZR26	0.02	0.78	73450	0.06	0,720	0,841	1,248	0,101	0,950	0,761	619,457	30,908	619,640	11,222	619,635	11,545	100.00
097-ZR75	0.03	0.91	61966	0.06	0,818	0,846	1,156	0,101	0,728	0,630	621,950	35,082	622,255	8,637	622,224	10,727	100.00
007-ZR3B	0.09	0.01	18185	0.06	0,482	0,865	0,854	0,102	0,600	0,702	661,060	20,597	625,164	7,149	633,030	8,033	98.76
126-ZR99	0.03	0.63	50257	0.06	1,076	0,889	1,492	0,103	0,965	0,647	691,298	45,558	632,568	11,628	645,602	14,209	97.98
049-ZR38	0.03	0.34	59439	0.06	0,488	0,861	0,992	0,103	0,780	0,786	623,595	20,979	632,504	9,391	630,595	9,295	100.30
	I					I					I						I

092-ZR70	0.01	1.26	110407	0.06	0,794	0,888	1,152	0,105	0,748 0,649	655,434	33,880	642,028	9,139	645,039	10,971	99.53
061-ZR47B	0.02	0.00	63147	0.06	0,675	0,897	1,085	0,105	0,764 0,704	676,171	28,736	642,434	9,335	649,993	10,386	98.84
067-ZR49	0.02	1.16	97428	0.06	0,406	0,869	1,075	0,105	0,924 0,859	607,016	17,502	642,633	11,297	634,837	10,122	101.23
058-ZR45	0.02	0.55	100734	0.06	0,676	0,875	1,129	0,105	0,824 0,730	620,163	29,035	643,290	10,089	638,223	10,666	100.79
109-ZR84B	0.00	0.00	713528	0.06	0,364	0,897	0,768	0,107	0,565 0,736	641,152	15,633	652,759	7,018	650,197	7,361	100.39
012-ZR8	0.02	0.53	94446	0.06	0,776	0,895	1,078	0,107	0,650 0,603	622,669	33,299	656,653	8,116	649,080	10,314	101.17
068-ZR50	0.03	0.77	50652	0.06	0,580	0,914	1,099	0,109	0,857 0,780	642,965	24,817	664,133	10,811	659,373	10,630	100.72
125-ZR98	0.01	0.33	255800	0.06	0,458	0,919	1,025	0,109	0,838 0,818	636,937	19,651	669,414	10,657	662,061	9,943	101.11
055-ZR42	0.05	0.37	31613	0.06	1,530	0,979	2,266	0,111	1,630 0,719	745,421	64,011	677,110	20,939	693,160	22,639	97.68
106-ZR82	0.02	0.42	74312	0.06	0,415	1,006	1,054	0,113	0,896 0,850	755,409	17,453	691,457	11,741	706,729	10,708	97.84
098-ZR76	0.02	0.39	90723	0.06	0,924	0,992	1,405	0,117	0,991 0,705	657,318	39,385	712,892	13,366	699,681	14,154	101.89
009-ZR5	0.86	1.13	1806	0.07	1,427	1,095	1,775	0,122	0,988 0,557	780,675	59,427	740,912	13,821	750,914	18,752	98.67
015-ZR9	0.01	0.72	271637	0.06	0,610	1,080	1,246	0,122	1,022 0,820	744,453	25,676	743,049	14,332	743,439	13,095	99.95
050-ZR39	0.02	0.46	69781	0.06	0,526	1,073	1,055	0,124	0,836 0,793	708,054	22,279	751,111	11,854	740,418	11,062	101.44
103-ZR79	0.02	0.58	80622	0.06	1,111	1,108	1,374	0,126	0,720 0,524	735,452	46,678	764,569	10,374	757,228	14,617	100.97
023-ZR16	0.01	0.30	172731	0.07	0,605	1,154	1,017	0,128	0,728 0,716	786,009	25,301	776,748	10,656	779,184	11,032	99.69
003-ZR1N	0.21	0.55	7430	0.07	0,861	1,174	1,385	0,128	1,020 0,736	819,343	35,759	777,730	14,942	788,609	15,138	98.62
005-ZR2	0.01	0.41	136221	0.07	0,580	1,171	1,065	0,130	0,813 0,763	777,133	24,295	790,611	12,087	787,133	11,630	100.44
031-ZR22	0.03	0.60	55399	0.07	0,406	1,192	0,786	0,131	0,561 0,714	811,463	16,954	791,916	8,364	797,100	8,661	99.35
075-ZR57	0.04	0.18	43727	0.06	1,027	1,162	1,304	0,131	0,714 0,547	750,375	43,074	794,208	10,665	782,829	14,185	101.45
008-ZR4	0.02	0.29	86125	0.06	0,684	1,191	1,050	0,133	0,705 0,671	771,525	28,671	805,315	10,668	796,439	11,557	101.11
096-ZR74	0.06	0.31	27749	0.07	0,419	1,274	0,850	0,137	0,640 0,753	855,600	17,343	826,254	9,929	834,291	9,650	99.04
010-ZR6	0.06	0.61	27454	0.07	0,660	1,390	1,264	0,144	1,013 0,801	922,671	27,011	869,399	16,463	884,603	14,877	98.28
027-ZR18	0.00	0.33	388767	0.07	0,452	1,395	0,874	0,149	0,650 0,743	861,137	18,717	897,183	10,883	886,887	10,315	101.16
					I					I						

030-ZR21	0.01	0.48	109271	0.07	0,848	1,567	1,307	0,158	0,923	0,706	987,194	34,321	943,942	16,205	957,064	16,140	98.63
118-ZR91	0.01	0.31	136719	0.07	0,510	1,730	0,891	0,171	0,629	0,707	1027,094	20,543	1016,155	11,828	1019,677	11,427	99.65
087-ZR67	0.07	0.35	21247	0.08	0,722	1,812	1,092	0,172	0,731	0,669	1100,418	28,735	1025,314	13,844	1049,625	14,235	97.68
037-ZR28	0.01	0.27	203458	0.08	0,862	1,937	1,412	0,179	1,055	0,747	1164,135	33,991	1059,036	20,585	1094,011	18,823	96.80
117-ZR90	0.01	0.33	225694	0.08	0,508	2,339	1,233	0,211	1,060	0,860	1208,244	19,925	1233,306	23,784	1224,272	17,461	100.74
016-ZR10	0.01	0.27	192805	0.09	0,427	2,645	0,997	0,221	0,821	0,824	1357,198	16,438	1286,471	19,144	1313,289	14,644	97.96
038-ZR29	0.05	0.52	31209	0.09	1,006	2,849	1,598	0,230	1,185	0,742	1419,130	38,221	1336,263	28,575	1368,534	23,882	97.64
048-ZR37	0.01	0.10	165770	0.09	0,532	3,390	1,173	0,262	0,977	0,833	1506,314	20,047	1498,960	26,103	1502,068	18,305	99.79
127-ZR100	0.00	0.37	682299	0.10	0,442	4,216	0,906	0,298	0,699	0,771	1670,625	16,288	1682,245	20,673	1677,142	14,814	100.30
017-ZR11	0.01	0.41	118990	0.11	0,541	4,702	0,956	0,313	0,695	0,727	1781,375	19,678	1755,967	21,357	1767,664	15,945	99.34
095-ZR73	0.01	1.12	294871	0.11	0,476	5,125	0,890	0,324	0,654	0,735	1875,790	17,101	1808,997	20,613	1840,319	15,059	98.30
124-ZR97	0.01	0.65	114816	0.11	0,765	5,144	1,333	0,330	1,027	0,770	1848,321	27,552	1838,943	32,819	1843,410	22,543	99.76
060-ZR47N	0.01	0.68	253679	0.12	0,377	6,420	0,807	0,377	0,610	0,756	2009,586	13,354	2060,166	21,501	2035,068	14,137	101.23
123-ZR96	0.01	1.03	290296	0.12	0,413	5,881	1,038	0,356	0,877	0,845	1954,731	14,729	1961,808	29,625	1958,432	17,932	100.17
020-ZR14	0.04	0.86	34683	0.13	0,896	6,566	1,448	0,365	1,075	0,743	2106,196	31,278	2003,916	36,979	2054,841	25,354	97.52
112-ZR87	0.01	0.70	104628	0.14	0,647	7,127	1,057	0,380	0,749	0,708	2175,794	22,462	2077,481	26,572	2127,368	18,737	97.65
053-ZR40	0.01	0.79	130059	0.13	0,409	7,252	0,949	0,392	0,772	0,813	2153,379	14,244	2131,841	27,979	2142,895	16,859	99.48
045-ZR34	0.01	0.49	243596	0.14	0,413	7,613	0,787	0,399	0,558	0,709	2208,300	14,314	2163,024	20,507	2186,415	14,086	98.93
019-ZR13	0.01	0.85	128942	0.14	0,499	7,603	0,864	0,401	0,600	0,695	2194,165	17,286	2175,501	22,139	2185,189	15,443	99.56
034-ZR25	0.02	0.45	60291	0.14	0,649	7,809	2,176	0,411	2,044	0,939	2200,450	22,443	2218,562	76,500	2209,228	38,801	100.42
119-ZR92	0.00	0.58	301125	0.14	0,378	7,945	0,946	0,418	0,784	0,829	2199,470	13,107	2252,377	29,791	2224,848	17,000	101.24
059-ZR46	0.01	0.47	119806	0.20	0,395	15,092	1,257	0,540	1,135	0,903	2848,311	12,832	2782,865	51,194	2821,038	23,808	98.65

	E AL11																
SAMPLE	Apparent ages f err err																
	f 206	Th/	²⁰⁶ Pb/	²⁰⁷ Pb/	err (%)1	²⁰⁷ Pb/	err (%)1	²⁰⁶ Pb/	err (% 1	Rho	²⁰⁷ Pb/	26	²⁰⁶ Pb/	26	²⁰⁷ Pb/	26	conc. (%)
GRAIN	(%)	U	²⁰⁴ Pb	²⁰⁶ Pb	б	²³⁵ U	б	²³⁸ U	б		²⁰⁶ Pb		²³⁸ U		²³⁵ U		
051-ZR37	0.03	0.85	50112	0.06	0,650	0,787	1,185	0,095	0,918	0,775	595,145	28,061	587,735	10,311	589,295	10,565	99.74
098-ZR75	0.05	1.15	28583	0.06	1,202	0,787	1,858	0,096	1,367	0,736	583,522	51,781	590,673	15,424	589,232	16,544	100.24
060-ZR44	0.01	0.76	120811	0.06	0,724	0,797	1,230	0,096	0,923	0,750	602,180	31,204	593,261	10,453	595,147	11,050	99.68
049-ZR35	0.01	0.74	252302	0.06	1,756	0,793	2,003	0,098	0,890	0,444	562,369	75,627	601,192	10,210	593,155	17,920	101.35
059-ZR43	0.02	0.75	84369	0.06	1,130	0,791	1,480	0,097	0,881	0,595	565,301	48,861	598,789	10,068	591,876	13,235	101.17
093-ZR70	0.00	0.58	340417	0.06	0,557	0,820	0,954	0,098	0,681	0,713	628,050	23,906	602,813	7,834	608,177	8,715	99.12
119-ZR92	0.04	1.14	40031	0.06	0,904	0,809	1,484	0,098	1,117	0,753	589,190	38,973	604,941	12,896	601,668	13,430	100.54
069-ZR50	0.01	0.83	183560	0.06	0,370	0,848	0,875	0,101	0,701	0,801	642,515	15,876	618,261	8,269	623,526	8,141	99.16
048-ZR34	0.01	1.88	218821	0.06	1,042	0,841	1,496	0,101	1,007	0,673	624,224	44,620	618,104	11,868	619,453	13,825	99.78
019-ZR11	0.01	0.40	225939	0.06	0,394	0,849	0,924	0,101	0,750	0,811	631,439	16,905	621,688	8,887	623,829	8,599	99.66
025-ZR17	0.01	0.29	156515	0.06	0,619	0,870	1,233	0,102	1,000	0,811	674,803	26,351	624,231	11,893	635,318	11,612	98.25
080-ZR59	0.01	0.18	105807	0.06	0,894	0,849	1,378	0,102	0,981	0,712	620,695	38,350	624,945	11,678	624,061	12,807	100.14
087-ZR66	0.01	0.36	111821	0.06	0,498	0,848	1,067	0,102	0,869	0,814	616,345	21,428	625,223	10,346	623,339	9,921	100.30
012-ZR8	0.04	0.55	38795	0.06	1,143	0,868	1,667	0,102	1,156	0,693	660,764	48,608	627,406	13,809	634,736	15,673	98.85
075-ZR56	0.01	0.34	139737	0.06	0,579	0,854	1,040	0,102	0,780	0,750	629,199	24,846	626,141	9,308	626,839	9,703	99.89
						I					l						l

057-ZR41	0.01	0.71	184597	0.06	0,472	0,861	1,009	0,103	0,811	0,804	630,546	20,249	630,356	9,740	630,433	9,454	99.99
084-ZR63	0.02	1.25	78974	0.06	0,679	0,886	1,250	0,103	0,982	0,786	676,883	28,887	634,741	11,872	644,098	11,891	98.55
099-ZR76	0.02	1.05	73442	0.06	0,621	0,860	1,064	0,104	0,781	0,734	608,168	26,739	635,904	9,456	629,884	9,967	100.96
032-ZR20	0.01	0.44	294261	0.06	0,398	0,883	1,213	0,104	1,084	0,894	656,798	17,043	638,423	13,175	642,522	11,519	99.36
018-ZR10	0.01	0.93	193691	0.06	0,434	0,866	0,907	0,104	0,705	0,778	607,254	18,704	640,530	8,598	633,265	8,530	101.15
076-ZR57	0.03	0.49	47157	0.06	1,134	0,867	1,971	0,105	1,569	0,796	599,850	48,742	643,841	19,218	634,206	18,513	101.52
092-ZR69	0.01	0.27	208124	0.06	0,404	0,898	0,751	0,105	0,513	0,683	672,313	17,246	644,290	6,293	650,582	7,203	99.03
068-ZR49	0.02	0.88	71369	0.06	1,647	0,884	2,140	0,106	1,315	0,615	629,372	70,190	647,194	16,189	643,274	20,294	100.61
045-ZR31	0.05	0.14	28774	0.06	2,931	0,885	3,472	0,106	1,822	0,525	623,441	######	649,704	22,505	643,901	32,840	100.90
050-ZR36	0.03	0.30	56943	0.06	0,876	0,881	1,275	0,106	0,849	0,666	606,999	37,650	651,217	10,519	641,441	12,090	101.52
070-ZR51	0.03	0.33	55810	0.06	0,525	0,914	0,988	0,107	0,751	0,760	667,792	22,382	656,689	9,371	659,235	9,559	99.61
008-ZR5N	0.01	0.67	109170	0.06	0,762	0,910	1,103	0,107	0,706	0,640	658,075	32,523	657,028	8,820	657,300	10,649	99.96
009-ZR5B	0.01	0.41	106073	0.06	0,496	0,909	0,840	0,108	0,569	0,677	639,427	21,245	661,391	7,149	656,468	8,110	100.75
064-ZR47	0.00	0.07	550136	0.06	0,367	0,926	1,001	0,108	0,854	0,854	673,536	15,655	663,159	10,761	665,559	9,748	99.64
026-ZR18	0.10	0.40	15797	0.06	0,691	0,947	1,581	0,109	1,373	0,868	710,988	29,223	666,447	17,375	676,742	15,559	98.48
034-ZR22	0.02	0.34	91500	0.06	0,710	0,924	1,303	0,109	1,028	0,789	657,567	30,315	666,682	13,013	664,642	12,672	100.31
094-ZR71	0.02	0.34	73630	0.06	0,575	0,952	1,233	0,110	1,025	0,832	707,705	24,382	670,673	13,054	679,269	12,174	98.73
106-ZR81	0.03	0.42	61238	0.06	0,564	0,965	1,185	0,110	0,973	0,822	731,247	23,821	671,879	12,415	685,720	11,777	97.98
112-ZR87	0.01	0.18	104027	0.06	0,626	0,945	0,984	0,110	0,663	0,673	687,046	26,612	672,136	8,459	675,610	9,689	99.49
115-ZR88	0.01	1.06	282086	0.06	0,456	0,953	1,194	0,110	1,040	0,871	701,348	19,351	673,234	13,288	679,777	11,802	99.04
085-ZR64	0.02	0.38	103107	0.06	0,754	0,961	1,444	0,111	1,175	0,813	703,658	31,933	677,507	15,103	683,625	14,321	99.11
109-ZR84	0.01	0.66	145971	0.06	0,399	0,960	0,837	0,111	0,635	0,759	692,164	16,986	680,555	8,206	683,294	8,309	99.60
052-ZR38	0.12	1.34	13498	0.06	2,356	1,007	3,350	0,113	2,352	0,702	763,242	97,793	690,059	30,745	707,533	33,854	97.53
083-ZR62	0.00	0.05	554315	0.06	0,627	1,000	1,050	0,115	0,756	0,720	709,115	26,556	702,302	10,060	703,965	10,635	99.76
					I					I							

036-ZR24	0.01	0.13	137739	0.06	0,247	0,992	0,707	0,116	0,549	0,777	668,537	10,561	709,469	7,375	699,759	7,137	101.39
108-ZR83	0.01	0.32	195884	0.06	0,688	1,019	1,074	0,116	0,738	0,687	722,923	29,040	710,210	9,918	713,311	10,981	99.57
103-ZR78	0.01	0.71	244432	0.06	0,574	1,068	1,077	0,119	0,832	0,773	770,263	24,083	727,154	11,441	737,841	11,263	98.55
116-ZR89	0.01	0.30	105492	0.07	1,215	1,111	2,120	0,123	1,697	0,801	794,432	50,545	746,545	23,901	758,675	22,528	98.40
056-ZR40	0.02	0.56	66648	0.06	4,742	1,098	4,931	0,125	1,300	0,264	733,050	######	759,028	18,608	752,517	51,746	100.87
082-ZR61	0.06	0.40	26240	0.06	2,664	1,096	3,131	0,125	1,602	0,512	723,073	######	760,905	22,981	751,407	32,974	101.26
118-ZR91	0.01	0.48	168221	0.07	0,461	1,146	0,990	0,125	0,793	0,802	816,391	19,215	761,381	11,391	775,547	10,706	98.17
125-ZR98	0.01	0.36	110443	0.06	0,672	1,116	1,233	0,126	0,965	0,783	753,689	28,252	763,475	13,890	761,028	13,164	100.32
081-ZR60	0.01	0.32	118454	0.06	0,541	1,148	1,038	0,129	0,805	0,775	759,285	22,718	782,096	11,848	776,242	11,232	100.75
044-ZR30	0.02	0.28	93803	0.06	0,704	1,180	1,355	0,132	1,097	0,809	765,978	29,543	800,556	16,509	791,516	14,848	101.14
071-ZR52	0.04	0.29	39903	0.07	1,206	1,238	1,663	0,134	1,083	0,652	835,565	49,850	811,202	16,507	817,781	18,593	99.20
121-ZR94	0.01	0.95	194160	0.07	0,506	1,283	0,899	0,139	0,643	0,716	839,513	21,000	837,868	10,107	838,361	10,230	99.94
105-ZR80	0.01	0.33	142457	0.07	0,539	1,419	0,961	0,148	0,704	0,732	916,072	22,119	889,305	11,686	897,063	11,417	99.14
022-ZR14	0.01	0.07	221074	0.07	0,348	1,453	0,706	0,149	0,489	0,693	947,675	14,234	896,109	8,181	911,166	8,471	98.35
091-ZR68	0.01	0.14	179328	0.07	0,469	1,553	0,893	0,159	0,663	0,743	954,012	19,120	950,684	11,724	951,735	11,001	99.89
107-ZR82	0.00	0.15	521829	0.07	0,351	1,581	0,785	0,160	0,596	0,760	975,663	14,285	957,061	10,600	962,765	9,740	99.41
122-ZR95	0.02	0.83	99884	0.07	0,481	1,658	0,962	0,164	0,746	0,776	1019,763	19,421	980,562	13,567	992,792	12,151	98.77
040-ZR28	0.00	0.51	321755	0.07	0,339	1,710	0,800	0,172	0,623	0,778	986,202	13,782	1024,486	11,795	1012,404	10,230	101.19
072-ZR53	0.01	0.81	236662	0.08	0,403	1,911	0,794	0,183	0,575	0,724	1086,561	16,134	1083,792	11,467	1084,762	10,559	99.91
033-ZR21	0.01	0.56	183869	0.07	0,369	1,842	1,533	0,183	1,441	0,940	1010,799	14,933	1084,656	28,736	1060,445	20,074	102.28
039-ZR27	0.01	0.63	138613	0.07	0,490	1,873	1,161	0,186	0,985	0,849	1015,165	19,773	1099,671	19,910	1071,732	15,315	102.61
086-ZR65	0.01	0.24	196450	0.08	0,663	2,032	0,966	0,188	0,598	0,618	1155,496	26,195	1111,250	12,193	1126,371	13,110	98.66
095-ZR72	0.06	0.74	25098	0.08	2,196	2,253	2,971	0,197	1,967	0,662	1268,907	84,550	1158,465	41,650	1197,649	41,368	96.73
043-ZR29	0.01	0.71	239889	0.08	0,559	2,372	1,950	0,206	1,831	0,939	1279,638	21,729	1208,185	40,290	1234,149	27,672	97.90

003 0.27 15433 0.86 0.465 2.523 0.855 0.20 0.71 1270.62 18.101 128.321 14.273 1276.85 12.73 1270.85 12.73 1270.85 12.73 1270.85 12.73 1270.85 12.73 1270.85 12.73 120.	097-ZR74	0.04	0.43	34753	0.08	0,511	2,340	0,954	0,208	0,716	0,750	1240,112	19,971	1215,488	15,850	1224,446	13,534	99.27
1242R970.010.29188340.090.6292.7811.0310.2340.7280.781134.9892.420135.9821.747135.3315.3315.330057R580.060.400.410.4110.091.3322.9402.3580.2421.8660.79138.9802.402138.9903.505139.234.6831392.393.5421.0100057R580.020.176.86310.090.3653.3600.7990.2570.6660.7591492.40213.7991475.3215.91142.39912.4159.9230747R580.020.32798780.100.7593.5741.2690.2671.4620.8531564.933.043153.2622.5001543.612.0039.9231042R790.010.721442260.110.5954.9861.0120.3710.7720.741863.792.38417.47136.341.747136.341.7473.93.41.7473.93.41.7473.93.41.7473.93.41.7473.93.41.7473.93.41.7473.93.41.7473.93.41.7473.93.41.7473.93.41.7473.93.41.7473.93.41.7473.93.41.7473.93.41.7473.93.41.7473.93.41.7473.93.41.7473.93.41.7473.93.41.7413.93.41.7413.93.41.7413.93.41.7413.93.41.741	003-ZR1	0.01	0.27	154333	0.08	0,465	2,523	0,855	0,220	0,614	0,718	1270,629	18,101	1283,321	14,273	1278,638	12,390	100.37
077-ZR570.690.49341170.091.3930.4940.2580.2421.8660.7911831.9965.3651392.926.8631392.345.4221.043076-ZR580.000.17688310.100.8163.3660.7990.2670.6060.7591492.40213.7991475.211.597142.3912.4159.925074-ZR580.020.32798780.100.7893.5691.7150.2671.4620.8531564.90330.421526.5673.9601542.7702.0109.925104-ZR790.010.721442260.110.7593.5671.0470.3160.7710.7461586.792.189176.882.969154.6101.7569.977011-ZR790.010.244922890.110.5951.9660.3510.7770.721846.3140.25176.762.969164.611.7689.776012-ZR790.011.5238350.110.535.6671.0470.330.741.769149.5314.751.98.9149.5314.95149.5314.95149.59149.5314.95149.5914.9514	124-ZR97	0.01	0.29	188346	0.09	0,629	2,781	1,031	0,234	0,728	0,706	1345,998	24,208	1352,982	17,747	1350,334	15,339	100.20
005-ZR3N0.010.261916090.090.3663.3660.7990.2570.6060.7591492.4021.3791475.311.5711.482.3991.24159.952074-ZR550.020.17688310.100.8163.5691.7150.2671.4620.8531564.90330.4321526.56739.6801542.77027.01998.95102-ZR930.020.32798780.100.7593.5741.2690.2680.9470.7461558.71928.3401532.85225.801543.61820.03099.29104-ZR790.010.721.442.600.110.5954.9861.0430.7170.7260.7461658.71928.3401532.8522.5801543.61820.03099.29104-ZR790.010.721.442.600.110.5954.9861.0430.7750.732169.63314.025157.6128.94186.946417.28910.066088-ZR670.041.52383580.110.6185.6661.0580.3110.7560.735169.63314.62187.57628.94180.45619.513184.43315.2515.03010.160.3160.7561.7560.756169.63169.6319.65517.6561.69167.6319.65517.6561.6916.75616.95316.6516.751.6916.7516.7516.7516.7516.7516.7516.7516.7516.75	037-ZR25	0.05	0.40	34117	0.09	1,393	2,940	2,358	0,242	1,866	0,791	1381,996	53,050	1399,023	46,853	1392,349	35,420	100.48
074-ZR550.020.17688310.100.8163.5691.7150.2671.4620.8581564,933.0421526,5673.680154,7702.7199.835120-ZR930.020.32798780.100.7593,5741.2690.2680.9470.7461558,71928,3011532,85225,0001543,81620,30399.29104-ZR730.010.721442260.110.5954,9861.0430.3170.720.7411683,57921,3891776,8823,9641816,91717,56397.77031-ZR190.000.24492890.110.5951,9671,0170,3380,8140,1921863,85721,985187,67628,0491863,46417,289100.66088-ZR670.041.52383580.110,6185,5661,0580,3150,7571,282187,68021,95193,95825,930191,65918,16417,289100.66088-ZR670.041.41164940.110,5535,5630,9140,3190,6260,6851869,83319,869178,5619,51318,45419,15318,45419,15315,45319,16314,22915,45319,15315,45319,15315,45315,45319,16315,45319,16314,15314,15314,15314,15314,15314,15314,15314,15314,15314,15314,15314,15314,15314,153 </td <td>005-ZR3N</td> <td>0.01</td> <td>0.26</td> <td>191609</td> <td>0.09</td> <td>0,365</td> <td>3,306</td> <td>0,799</td> <td>0,257</td> <td>0,606</td> <td>0,759</td> <td>1492,402</td> <td>13,799</td> <td>1475,321</td> <td>15,971</td> <td>1482,399</td> <td>12,415</td> <td>99.52</td>	005-ZR3N	0.01	0.26	191609	0.09	0,365	3,306	0,799	0,257	0,606	0,759	1492,402	13,799	1475,321	15,971	1482,399	12,415	99.52
120-ZR930.020.32798780.100.7593.5741.2690.2680.9470.7461558,71928.3011528,2528.3011543,8120.30199.29104-ZR790.010.721442260.110.5954.9861.0430.3170.7720.741863,57921.3891776,38823.9641816,91717.58397.77031-ZR190.000.244922890.110.3895.2671.0170.3880.6460.4991849,63814.0251875,6128.9041863,46417.269100.66088-ZR670.041.52383580.110.6185.5661.0560.510.7750.721879.68022.1951939,5825.930191.05915.42097.82100-ZR770.010.141649410.110.5535.0300.9140.3190.6260.681869,89319.8691784,5619.511824,32915.42097.82111-ZR860.030.165.62110.120.9044.9732.2220.3071.968169.5314.622195.3217.74197.6913.18810.15111-ZR860.010.56156560.416.0790.7600.5600.561169.5314.622198.3217.74197.6913.18810.15127-J27-J281.4140.415.551.3440.3490.5240.78116.85318.6418.7492.9	074-ZR55	0.02	0.17	68831	0.10	0,816	3,569	1,715	0,267	1,462	0,853	1564,903	30,432	1526,567	39,680	1542,770	27,019	98.95
104-ZR790.010.72144260.110.5954,9861,0430,3170,7720,7411863,57921,3891776,38823,964186,1711,756397.77031-ZR190.000.244922890.110,3895,2671,0170,3380,8440,8491489,63814,0251875,6128,0941863,64617,289100.66088-ZR670.041.52383580.110,6185,5661,0580,3190,7750,7221879,68022,1951939,58825,9301910,85918,14337,22917,623100-ZR770.010.411649410.110,5535,0300,9140,3190,6260,6851869,89319,8691784,56819,5131824,32915,42097.82111-ZR800.030.16542110.120,9044,9732,2220,3071,9661665519,65314,622198,82317,74197.69337.2595.12103-ZR760.010.56156560.120,7600,7600,5611,665196,95314,622198,8231,774197.69313,18100.55127-J27-<	120-ZR93	0.02	0.32	79878	0.10	0,759	3,574	1,269	0,268	0,947	0,746	1558,719	28,340	1532,852	25,800	1543,816	20,030	99.29
031-ZR190.000.24492890.110,3895,2671,0170,3380,8640,8491402514075187,76128,0941863,46417,289101.068088-ZR670.041.52383580.110,6185,5661,0580,3510,7750,7221879,68022,1951939,58825,3031910,59318,1021910,59318,103101.0100-ZR770.010.411649410.110,5535,0300,9140,3190,6260,6851869,89319,8691726,55460,3021814,73337,22597,223101-ZR760.030.16542110.120,9044,9732,2220,3071,9660,8981917,75632,2591726,25460,3021814,73337,22595,12103-ZR760.010.5650,4116,0070,7600,3600,5210,6851969,53314,622198,82317,7741976,90113,188100.35127-127-127-127-127-127-127-127-127-127-127-127-128,92314,77316,35317,7613,1818,64319,78418,8641874,91626,2031924,53317,76799,42177-ZR900.000.8438728760.130,3566,7791,3180,3881,2140,2112,54212,54213,64326,17326,37826,17826,37826,37826,37826,378 </td <td>104-ZR79</td> <td>0.01</td> <td>0.72</td> <td>144226</td> <td>0.11</td> <td>0,595</td> <td>4,986</td> <td>1,043</td> <td>0,317</td> <td>0,772</td> <td>0,741</td> <td>1863,579</td> <td>21,389</td> <td>1776,388</td> <td>23,964</td> <td>1816,917</td> <td>17,563</td> <td>97.77</td>	104-ZR79	0.01	0.72	144226	0.11	0,595	4,986	1,043	0,317	0,772	0,741	1863,579	21,389	1776,388	23,964	1816,917	17,563	97.77
088-ZR670.041.52383580.110,6185,5661,0580,3510,7750,7321879,68022,1951939,58825,9301910,85918,136101.50100-ZR770.010.411649410.110,5535,0300,9140,3190,6261668,98319,8691784,56819,5131824,32915,4209,726111-ZR860.030.16542110.120,9044,9732,2220,3071,9960,8981917,75632,2591726,25460,3021814,73337,22595,12063-ZR460.010.561565360.120,4116,0070,7600,3600,5210,6881969,53314,6221983,82317,7741976,90113,188100.35127-5,5550,5151,0340,7600,3680,7801978,27318,8641874,91626,2031924,53317,77697.422R1000.015,531447720,120,5315,6551,0340,3380,8060,7801978,27318,8641874,91626,2031924,53317,7697.42117-ZR900.000.84388728760.130,3496,3950,7310,3680,5240,7182042,43012,3052020,90418,1792031,64012,79199.47042-ZR20.000.37469970.130,3566,7791,3180,3881,2140,9242054,1	031-ZR19	0.00	0.24	492289	0.11	0,389	5,267	1,017	0,338	0,864	0,849	1849,638	14,025	1875,761	28,094	1863,464	17,289	100.66
100-ZR770.010.411649410.110,5535,0300,9140,3190,6260,6851869,89319,8691784,56819,5131824,32915,42097.82111-ZR860.030.16542110.120,9044,9732,2220,3071,9960,8081917,75632,2591726,25460,3021814,73337,22595.12063-ZR460.010.561565360.120,4116,0070,7600,3600,5210,6851969,53314,6221983,82317,7741976,90113,188100.35127-77777777797.42117117197.9213,188100.35117-ZR900.010.531447720.120,5315,6551,0340,3880,5240,71818,8641874,91626,2031924,53317,76797.42117-ZR900.000.84388728760.130,3496,3950,7310,3680,5240,71812,3052020,90418,1792031,64012,79199.47104-ZR20.000.37469970.130,3566,7791,3180,3881,2140,9212054,17212,5422112,25443,6402083,05023,189101.43079-ZR580.000.637190620.170,34012,1470,9860,5110,8482680,76111,3442661,11736,9432615,7881	088-ZR67	0.04	1.52	38358	0.11	0,618	5,566	1,058	0,351	0,775	0,732	1879,680	22,195	1939,588	25,930	1910,859	18,136	101.50
111-ZR86 0.03 0.16 54211 0.12 0,904 4,973 2,222 0,307 1,996 0,898 1917,756 32,259 1726,254 60,302 1814,733 37,225 95.12 063-ZR46 0.01 0.56 156536 0.12 0,411 6,007 0,760 0,360 0,521 0,685 1969,533 14,622 1983,823 17,774 1976,901 13,188 100.35 127-	100-ZR77	0.01	0.41	164941	0.11	0,553	5,030	0,914	0,319	0,626	0,685	1869,893	19,869	1784,568	19,513	1824,329	15,420	97.82
063-ZR46 0.01 0.56 156536 0.12 0,411 6,007 0,760 0,360 0,521 0,685 1969,533 14,622 1983,823 17,774 1976,901 13,188 100.35 127- 7 7 1976,901 13,188 100.35 117-74 1976,901 13,188 100.35 ZR100 0.01 0.53 144772 0.12 0,531 5,655 1,034 0,338 0,806 0,780 1978,273 18,864 1874,916 26,203 1924,533 17,774 1976,901 12,797 97.42 117-ZR90 0.00 0.84 38872876 0.13 0,349 6,395 0,731 0,368 0,524 0,718 12,305 1202,904 18,179 2031,640 12,791 99.47 104-ZR2 0.00 0.37 469977 0.13 0,366 0,511 0,924 2054,172 12,542 2112,254 43,640 2083,050 23,189 101.43 079-ZR58 0.00 0.63 719062 0.17 0,340 12,147 0,986 0,511	111-ZR86	0.03	0.16	54211	0.12	0,904	4,973	2,222	0,307	1,996	0,898	1917,756	32,259	1726,254	60,302	1814,733	37,225	95.12
127-127-1447720.120.535.6551.0340.3380.8060.7801978.27318.8641874.91626.2031924.53317.76797.42117-ZR900.000.84388728760.130.3496.3950.7310.3680.5240.7182042.43012.3052020.90418.1792031.64012.79199.47004-ZR20.000.637190620.170.3406.7791.3180.3881.2140.9212054.17212.5422112.25443.6402083.05023.189101.40079-ZR580.000.637190620.170.34012.1470.9860.5110.8480.8602580.76111.3442661.11736.9432615.78818.424101.73	063-ZR46	0.01	0.56	156536	0.12	0,411	6,007	0,760	0,360	0,521	0,685	1969,533	14,622	1983,823	17,774	1976,901	13,188	100.35
ZR100 0.01 0.53 144772 0.12 0,531 5,655 1,034 0,338 0,806 0,780 1978,273 18,864 1874,916 26,203 1924,533 17,767 97.42 117-ZR90 0.00 0.84 38872876 0.13 0,349 6,395 0,731 0,368 0,524 0,718 2042,430 12,305 2020,904 18,179 2031,640 12,791 99.47 004-ZR2 0.00 0.37 469997 0.13 0,356 6,779 1,318 0,388 1,214 0,921 2054,172 12,542 2112,254 43,640 2083,050 23,189 101.40 079-ZR58 0.00 0.63 719062 0.17 0,340 12,147 0,986 0,511 0,848 0,860 2580,761 11,344 2661,117 36,943 2615,788 18,424 101.73	127-																	
117-ZR90 0.00 0.84 38872876 0.13 0,349 6,395 0,731 0,368 0,524 0,718 2042,430 12,305 2020,904 18,179 2031,640 12,791 99.47 004-ZR2 0.00 0.37 469997 0.13 0,356 6,779 1,318 0,388 1,214 0,921 2054,172 12,542 2112,254 43,640 2083,050 23,189 101.40 079-ZR58 0.00 0.63 719062 0.17 0,340 12,147 0,986 0,511 0,848 0,860 2580,761 11,344 2661,117 36,943 2615,788 18,424 101.73	ZR100	0.01	0.53	144772	0.12	0,531	5,655	1,034	0,338	0,806	0,780	1978,273	18,864	1874,916	26,203	1924,533	17,767	97.42
004-ZR2 0.00 0.37 469997 0.13 0,356 6,779 1,318 0,388 1,214 0,921 2054,172 12,542 2112,254 43,640 2083,050 23,189 101.40 079-ZR58 0.00 0.63 719062 0.17 0,340 12,147 0,986 0,511 0,848 0,860 2580,761 11,344 2661,117 36,943 2615,788 18,424 101.73	117-ZR90	0.00	0.84	38872876	0.13	0,349	6,395	0,731	0,368	0,524	0,718	2042,430	12,305	2020,904	18,179	2031,640	12,791	99.47
079-ZR58 0.00 0.63 719062 0.17 0,340 12,147 0,986 0,511 0,848 0,860 2580,761 11,344 2661,117 36,943 2615,788 18,424 101.73	004-ZR2	0.00	0.37	469997	0.13	0,356	6,779	1,318	0,388	1,214	0,921	2054,172	12,542	2112,254	43,640	2083,050	23,189	101.40
	079-ZR58	0.00	0.63	719062	0.17	0,340	12,147	0,986	0,511	0,848	0,860	2580,761	11,344	2661,117	36,943	2615,788	18,424	101.73

SAMPLE	AL31																
								Apparent ages									
	f 206	Th/	²⁰⁶ Pb/	²⁰⁷ Pb/	err (%)1	²⁰⁷ Pb/	err (%)1	²⁰⁶ Pb/	err (% 1	Rho	²⁰⁷ Pb/	26	²⁰⁸ Pb/	26	²⁰⁷ Pb/	26	conc. (%)
GRAIN	(%)	U	²⁰⁴ Pb	²⁰⁶ Pb	б	²³⁵ U	б	²³⁸ U	б		²⁰⁶ Pb		²³⁸ U		²³⁵ U		(
085-ZR67	0.01	1.16	198732	0.06	0,462	0,780	1,087	0,093	0,911	0,839	634,716	19,820	572,610	9,982	585,308	9,646	97.83
090-ZR70	0.05	0.93	30977	0.06	1,386	0,806	2,017	0,096	1,418	0,703	633,108	59,135	591,790	16,022	600,447	18,204	98.56
103-ZR81	0.04	0.64	43489	0.06	0,483	0,824	1,108	0,098	0,926	0,836	643,327	20,687	601,524	10,628	610,402	10,139	98.55
092-ZR72	0.02	0.56	74713	0.06	0,492	0,815	1,191	0,098	1,020	0,856	621,817	21,154	601,009	11,700	605,422	10,837	102.71
044-ZR36	0.01	0.58	196819	0.06	0,355	0,807	0,934	0,097	0,780	0,836	615,690	15,286	596,918	8,893	600,879	8,452	99.34
033-ZR27	0.03	0.40	61973	0.06	1,286	0,797	1,537	0,098	0,756	0,492	557,453	55,577	605,065	8,732	595,166	13,795	101.66
080-ZR62	0.02	1.15	102512	0.06	0,749	0,823	1,192	0,099	0,851	0,714	619,042	32,148	607,195	9,858	609,739	10,902	99.58
011-ZR9	0.02	0.61	66662	0.06	0,580	0,837	1,011	0,100	0,741	0,733	627,858	24,909	614,498	8,681	617,393	9,335	99.53
102-ZR80	0.01	0.21	134226	0.06	0,527	0,847	1,026	0,101	0,798	0,778	637,405	22,615	619,090	9,413	623,074	9,529	102.30
096-ZR76	0.01	0.44	192951	0.06	0,351	0,859	1,075	0,101	0,946	0,880	663,208	14,991	620,374	11,183	629,708	10,060	105.32
118-ZR94	0.09	0.06	17000	0.06	0,912	0,867	1,393	0,102	0,985	0,707	672,750	38,789	623,255	11,700	634,091	13,095	106.10
020-ZR16	0.04	0.56	35681	0.06	1,628	0,841	1,774	0,101	0,602	0,339	607,509	69,617	622,747	7,145	619,504	16,391	100.52
022-ZR18	0.01	0.73	172956	0.06	0,492	0,848	0,906	0,102	0,665	0,734	609,785	21,180	627,153	7,946	623,431	8,426	100.60
107-ZR85	0.01	0.62	197894	0.06	0,326	0,860	0,897	0,102	0,749	0,835	636,566	14,004	628,104	8,964	629,982	8,405	99.70
											1						

052-																	
ZR41B	0.01	0.40	211735	0.06	0,631	0,858	1,133	0,102	0,865	0,764	630,848	27,059	628,474	10,354	629,025	10,596	99.91
083-ZR65	0.01	0.50	183330	0.06	0,503	0,853	0,986	0,103	0,762	0,774	611,252	21,648	630,304	9,154	626,203	9,191	97.61
034-ZR28	0.01	0.83	160082	0.06	0,492	0,863	0,972	0,103	0,752	0,774	634,054	21,104	631,177	9,041	631,841	9,124	99.89
054-ZR42	0.01	0.66	132763	0.06	0,743	0,881	1,397	0,103	1,123	0,804	669,612	31,634	633,265	13,545	641,315	13,239	104.41
035-ZR29	0.03	1.66	55531	0.06	0,942	0,873	1,459	0,103	1,050	0,720	650,712	40,202	633,456	12,669	637,282	13,764	102.11
079-ZR61	0.00	0.37	517121	0.06	0,321	0,876	0,801	0,103	0,634	0,791	653,097	13,767	634,445	7,655	638,584	7,583	99.35
124-																	
ZR100	0.01	0.63	144666	0.06	0,583	0,875	1,112	0,103	0,872	0,784	653,897	24,912	633,707	10,518	638,182	10,511	102.46
006-ZR4	0.01	1.31	158785	0.06	0,326	0,882	0,791	0,104	0,618	0,782	662,850	13,925	636,271	7,488	642,178	7,514	99.08
007-ZR5	0.16	0.66	9921	0.06	0,432	0,886	0,884	0,104	0,676	0,765	673,732	18,413	636,077	8,191	644,448	8,416	98.70
042-ZR34	0.00	0.05	547959	0.06	0,295	0,875	0,909	0,104	0,776	0,854	644,000	12,669	636,766	9,410	638,394	8,601	99.74
109-ZR87	0.01	0.19	250059	0.06	0,448	0,870	0,949	0,104	0,750	0,790	625,982	19,274	638,532	9,110	635,809	8,947	100.43
010-ZR8	0.01	0.50	112234	0.06	0,510	0,868	1,053	0,105	0,843	0,801	608,691	21,981	641,480	10,290	634,312	9,907	101.13
005-ZR3	0.04	0.54	35799	0.06	1,699	0,849	2,539	0,102	1,849	0,728	625,774	72,440	623,606	21,961	624,109	23,534	100.27
057-ZR45	0.26	0.14	5931	0.06	0,522	0,888	1,842	0,105	1,728	0,938	648,820	22,326	644,118	21,163	645,198	17,519	100.56
121-ZR97	0.02	0.55	72800	0.06	0,705	0,907	1,187	0,105	0,881	0,742	690,016	29,920	645,649	10,819	655,641	11,438	105.24
004-ZR2	0.00	0.48	459552	0.06	0,415	0,890	0,843	0,105	0,633	0,751	645,031	17,789	646,386	7,782	646,120	8,040	99.83
015-ZR11	0.04	1.04	41784	0.06	1,166	0,875	1,531	0,106	0,920	0,601	608,923	50,033	646,814	11,316	638,477	14,460	95.37
053-																	
ZR41N	0.00	0.62	935085	0.06	0,263	0,898	0,842	0,107	0,708	0,842	644,700	11,288	652,494	8,788	650,785	8,071	99.07
056-ZR44	1.10	0.55	1410	0.06	1,804	0,893	2,259	0,108	1,309	0,579	608,735	77,048	659,173	16,394	647,918	21,528	93.95
119-ZR95	0.02	0.73	70690	0.06	0,714	0,928	1,185	0,108	0,871	0,735	681,166	30,347	662,059	10,954	666,450	11,552	102.21
063-ZR49	0.01	0.38	185166	0.06	0,522	0,915	0,982	0,108	0,745	0,758	646,404	22,364	663,605	9,387	659,744	9,507	97.98
					l					l						I	

104-ZR82	0.02	1.49	70523	0.06	0,880	0,959	1,236	0,109	0,785	0,635	733,015	37,044	667,706	9,960	682,871	12,253	107.34
106-ZR84	0.01	0.95	143569	0.06	0,363	0,954	0,833	0,111	0,652	0,782	686,507	15,452	678,193	8,385	680,158	8,239	100.93
110-ZR88	0.01	0.73	222542	0.06	0,325	0,941	1,235	0,111	1,132	0,917	649,761	13,932	680,675	14,619	673,579	12,124	96.46
017-ZR13	0.03	0.39	47127	0.06	0,710	0,970	1,165	0,112	0,846	0,726	701,125	30,107	684,227	10,976	688,218	11,613	101.88
098-ZR78	0.03	0.67	56391	0.06	0,746	0,991	1,254	0,113	0,938	0,748	726,303	31,472	691,079	12,284	699,456	12,640	103.84
069-ZR55	0.01	0.47	242410	0.06	0,450	1,004	1,120	0,115	0,956	0,854	727,200	19,024	699,290	12,664	705,988	11,361	103.00
123-ZR99	0.01	0.44	267904	0.06	0,611	0,991	1,224	0,115	0,994	0,812	691,981	25,955	701,695	13,211	699,426	12,340	98.94
027-ZR21	0.03	0.18	44491	0.07	0,460	1,116	1,172	0,123	1,012	0,864	801,501	19,220	747,411	14,274	761,136	12,512	105.30
021-ZR17	0.01	0.30	178088	0.07	0,373	1,165	0,851	0,129	0,669	0,786	785,802	15,623	783,713	9,876	784,298	9,280	100.19
122-ZR98	0.01	0.70	263057	0.06	0,418	1,168	0,894	0,131	0,698	0,781	761,636	17,580	794,138	10,428	785,694	9,759	96.94
116-ZR92	0.02	0.31	94098	0.07	0,844	1,210	1,314	0,133	0,937	0,713	808,465	35,134	803,647	14,149	804,967	14,560	100.43
077-ZR59	0.01	0.38	163544	0.07	0,355	1,536	0,921	0,155	0,764	0,830	980,410	14,431	929,770	13,227	944,972	11,292	105.44
030-ZR24	0.01	0.11	223990	0.07	0,535	1,477	0,861	0,151	0,563	0,654	952,812	21,821	907,691	9,528	920,986	10,394	103.46
086-ZR68	0.00	0.34	386094	0.07	0,421	1,543	0,879	0,153	0,676	0,770	1015,443	17,005	918,561	11,575	947,573	10,795	108.44
089-ZR69	0.00	0.52	383049	0.07	0,352	1,589	0,946	0,158	0,796	0,842	1016,141	14,217	943,707	13,972	965,758	11,756	102.46
071-ZR57	0.00	0.82	333651	0.07	0,547	1,653	0,902	0,163	0,614	0,680	1032,812	22,036	971,727	11,066	990,702	11,379	102.71
051-ZR40	0.00	0.42	769122	0.07	0,402	1,609	1,274	0,163	1,151	0,903	976,606	16,352	972,612	20,757	973,885	15,894	105.39
093-ZR73	0.01	1.01	144701	0.07	0,606	1,668	0,975	0,165	0,668	0,685	1020,914	24,449	985,259	12,201	996,420	12,344	93.66
082-ZR64	0.01	0.48	231745	0.07	0,306	1,702	0,974	0,168	0,848	0,870	1031,917	12,338	998,672	15,677	1009,182	12,426	101.53
060-ZR48	0.01	1.13	106613	0.07	0,381	1,664	1,231	0,168	1,110	0,902	983,499	15,472	1000,132	20,557	994,983	15,556	101.70
095-ZR75	0.01	0.53	104008	0.07	0,563	1,719	0,939	0,169	0,654	0,697	1031,217	22,671	1008,291	12,205	1015,592	12,021	102.30
094-ZR74	0.02	0.52	67383	0.07	0,587	1,764	1,551	0,176	1,387	0,894	1000,715	23,759	1047,059	26,789	1032,206	20,008	105.32
117-ZR93	0.01	0.33	104120	0.08	1,137	2,149	2,012	0,201	1,617	0,804	1132,687	44,950	1182,072	34,891	1164,804	27,690	98.06
045-ZR37	0.01	1.12	111826	0.08	0,596	2,378	1,099	0,216	0,846	0,769	1195,438	23,438	1259,483	19,341	1236,110	15,656	106.10
																I	

009-ZR7	0.00	0.52	663882	0.12	0,418	5,409	0,910	0,328	0,719	0,790	1952,807	14,878	1826,257	22,841	1886,243	15,538	100.27
029-ZR23	0.00	0.21	889878	0.12	0,350	5,927	0,724	0,353	0,514	0,710	1983,742	12,446	1947,593	17,253	1965,242	12,537	97.81
065-ZR51	0.01	0.88	147681	0.13	0,345	6,367	0,837	0,356	0,667	0,796	2094,470	12,110	1962,761	22,552	2027,771	14,646	101.05
105-ZR83	0.01	0.25	250370	0.12	1,217	6,193	1,944	0,367	1,469	0,756	1988,719	42,990	2017,560	50,799	2003,411	33,700	100.29
032-ZR26	0.00	0.22	333042	0.14	0,283	7,141	0,707	0,378	0,531	0,752	2190,244	9,823	2066,405	18,771	2129,196	12,552	97.61
019-ZR15	0.01	0.80	154609	0.13	0,303	7,060	0,911	0,390	0,775	0,851	2113,055	10,623	2125,058	28,038	2119,031	16,145	100.35
018-ZR14	0.00	0.33	1042470	0.17	0,724	10,089	1,172	0,439	0,843	0,720	2525,433	24,225	2345,100	33,108	2443,008	21,535	104.41

The backscattered (BSE) images reveal that the zircon grains of the four representative samples show oscillatory zoned cores, with some also marked bright rims, although some crystals display homogeneous sectors. In general, the crystals preserve parallel bands of alternating light BSE patches in the rims, some of which were not dated due to analytic al limitations (Figure 5.6). The oscillatory zoning is a typical feature of primary magmatic growth (Corfu *et al.*, 2003). The Th/U ratios are majoritarian higher than 0.1, highlighting the magmatic origin of the zircon grains (Hanchar and Rudnick, 1995; Corfu *et al.*, 2003; Rubato, 2017). Few zircon crystals (~1%) record rims ages varying from 610 to 652 Ma and showing low Th/U ratios (< 0.1), which probably reflect its metamorphic origin (Figure 5.6).

The overall concordant ages vary from ca. 590 to 2848 Ma, and ca. 70% of the zircon crystals display Neoproterozoic ages, clustering mainly around the Ediacaran-Cryogenian interval. Essentially, the major peak constrained for each sample was found to be around 620 Ma. The Concordia age of each sample was found to be around 600 Ma by weighted mean of the youngest concordant population of zircon, while the subordinate nearest young population is dated around 620 Ma (Figures 5.6 and 5.7).

Figure 5.6 – Backscattered images of some representative grains from the analyzed samples. U-Pb measurement spots are indicated in white circles with 30 μ m. See text for details. C= Core; R= Rim

The sample AL18 is mainly characterized by N30E mylonitic foliation, related to Transbrasiliano Lineament overprint (e.g. Figure 5.5B). Out of 165 analyzed grains, 104 detrital zircon crystals yielded concordant ages with discordance of less than 10%. The concordant ages range from 512 to 2503 Ma, of which 74% are Neoproterozoic, and of these, 61% correspond to the Ediacaran-Cryogenian interval (Figure 5.7A). The dominant clustered ages between 590 and 650 Ma generated the major peak at ca. 620 Ma, while subordinate minor peaks (< 10 zircon grains) at ca. 720 Ma, ca. 800 Ma and ca. 2127 Ma are observed (Figure 5.7B). The scattered and single youngest zircon grain is dated at 512 ± 8 Ma.

The sample AL06, a schist with cordierite and sillimanite, is located near Bom Jardim de Goiás and underwent thermal metamorphism due to intrusion of the granodiorite pluton (e.g. Figure 5.4F). Of the 104 analyzed grains, 64 presented concordances between 97 and 101%, ranging from 529 to 2821 Ma in age. Most of the zircon grains display Th/U ratios between 0.3 and 1.8. It is noteworthy that low Th/U ratios (<0,1) of some grains with 206 Pb/ 238 U between 610 and 642 Ma were only recorded on crystal rims, suggesting that these grains underwent metamorphism. Main provenance points to Neoproterozoic sources, consisting in 67% of the analyzed grains, of which 47% are of Ediacaran-Cryogenian ages (Figure 5.7C). The contribution of grains dated between 591 and 648 Ma yielded the major peak at ca. 618 Ma (Figure 5.7D). Minor prominent peaks are observed at ca. 776 Ma and 2178 Ma, while the youngest crystal is dated at 529±10 Ma.

Figure 5.7 - (A) weighted mean average plot of 104 analyzed concordant grains of sample AL18; (B) probability density diagram showing 206 Pb/ 238 U age spectra of the concordant analyzed grains of sample AL18; (C) weighted mean average plot of 64 analyzed concordant grains of sample AL06; (D) probability density diagram showing 206 Pb/ 238 U age spectra of the concordant analyzed grains of sample AL06.

The zircon crystals from the samples AL31 and AL11 show smaller grain size, ranging between 50 and 180 μ m (e.g. Figure 5.6), which is linked to the phylitic lithofacies. Of the 103 analyzed zircon crystals from the sample AL11, 81 yielded concordant ages with concordance between 93 and 101%. The spectrum of ages ranges from 588 to 2581 Ma, of which 69% are from Neoproterozoic sources, and of these, 53% correspond to the Ediacaran-Cryogenian age interval. Mesoproterozoic grains represent 12% of the grains and Paleoproterozoic grains 9% (Figure 5.8C). The dominant clustered 206 Pb/ 238 U ages range between 588 Ma and 667 Ma,

171

yielding the major peak at ca. 628 Ma (Figure 5.8D). Subordinate peaks (< 13 zircon grains) at ca. 750 Ma and ca. 1955 Ma are observed. The sample AL31 is located in the westernmost portion of the studied area and of the 102 analyzed grains, 66 returned ages with less than 10% of discordance, with an age spectrum from 573 to 2525 Ma. Of these concordant ages, 78% are from Neoproterozoic sources, 64% being of Ediacaran/Cryogenian ages (Figure 5.8A). The large contribution of grains dated between 573 and 672 Ma yielded the major peak at ca. 623 Ma (Figure 5.8B).

Figure 5.8 - Distribution of probability density diagrams using weighted mean average calculation of samples AL11 and AL31. Some of the analyses were automatically rejected during the Concordia age plotting. (A) weighted mean average plot of 104 analyzed concordant grains of sample AL11; (B) probability density diagram showing ²⁰⁶Pb/²³⁸U age spectra of the concordant analyzed grains of sample AL11; (C) weighted mean average

plot of 64 analyzed concordant grains of sample AL31; (D) probability density diagram showing ²⁰⁶Pb/²³⁸U age spectra of the concordant analyzed grains of sample AL31.

5.4.3. Sm-Nd isotope data of whole-rock samples

The investigated metasedimentary rock samples yielded similar values of 147 Sm/¹⁴⁴Nd ratios, which range from 0.11 to 0.12, with T_{DM} model ages between 1.37 and 1.76 (Figure 5.9). The $\varepsilon_{Nd}(590)$ values are always negative, varying between -4.02 and -8.70 (Table 5.3).

Table 5.3 – Sm-Nd analytical data for the metasedimentary rocks.

							T _{DM}
Sample	Sm (ppm)	Nd (ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	ε Nd(0)	εNd(540)	(Ga)
AL18	4.732	23.957	0.1194	0.512128+/-7	-9.95	-4.62	1.46
AL06	7.332	38.655	0.1147	0.511870+/-7	-14.98	-9.33	1.76
AL31	5.664	27.711	0.1236	0.512042+/-8	-11.63	-6.59	1.66
AL11	7.072	37.065	0.1153	0.512040+/-5	-11.67	-6.06	1.53
AL4B	6.725	35.416	0.1148	0.511873+/-9	-14.92	-9.28	1.76
AL07	3.051	15.481	0.1191	0.512191+/-8	-8.72	-3.37	1.37
AL09B	2.267	12.587	0.1089	0.512087+/-16	-10.75	-4.70	1.38
AL38	11.385	62. 499	0.1101	0.512029+/-9	-11.88	-5.91	1.48

Figure 5.9 - Sm-Nd plots for metasedimentary rocks of the studied rocks in comparison with Nd values of likely source areas of the nearby Goiás Magmatic Arc, Paraguay Belt and Brasília Belt. See text for detailed discussions.

5.4.4. ${}^{40}Ar/{}^{39}Ar data$

The results of 40 Ar/ 39 Ar step-heating data for the representative samples AL01 and AL19 are shown in Supplementary Table 5.2. The K/Ca and Cl/K spectra for each sample are shown homogeneously distributed along all the step heating ages. Sample AL01 corresponds to a syn-to late-collisional granodiorite pluton, genetically associated to an appinitic suite (Leite *et al.*, 2021). The intrusion into the low-grade metasedimentary rocks generated a local metamorphic contact aureole. This sample AL01 is located in the northern part of the pluton and displays an incipient schistosity defined by the orientation of biotite and hornblende aggregates, following the regional characteristic trend of the Transbrasiliano Lineament (Figure 5.10A). The analyzed biotite sample yielded a flat spectrum for nearly 57% of 39 Ar released in the mid-temperature range, which generated a statistically valuable plateau age of 549.2 ± 3.9

Ma (MSWD=2.06; Figure 5.10B). The last heating increments provide slightly younger ages while the first heating steps give evidence of argon loss, probably due to weathering effects that are significant throughout the region. For this reason, the total gas age of 539.4 ± 3.8 Ma can be considered as the minimum cooling age for this biotite.

The sample AL19 is located far from the granodiorite intrusion and its contact aureole (e.g. Figure 5.3) and corresponds to a muscovite schist metamorphosed under greenschist facies conditions (Figure 5.10C). The muscovite grains from this sample released about 70% of their argon in three steps that correspond to a plateau age of 536 ± 4.1 Ma, with MSDW=1.17 (Figure 5.10D), in agreement with the total gas fusion age (539 ± 1.2 Ma). The final portion of the age spectrum displays slightly older ages, possibly related to the polyphased tectonic activity in the studied area. However, these ages do not significantly influence the total gas age of this sample (539 ± 1.2 Ma) which is in agreement with the plateau age defined by the first heating steps.

Figure 5.10 – (A) Hand specimen of granodiorite highlighting the weak schistosity marked by oriented mafic minerals. The plutonic body was emplaced in the investigated metasedimentary rocks and the analyzed biotite grains presented orientation parallel to the Transbrasiliano Lineament trend; (B) age spectrum of biotite from this granodiorite; (C) photomicrograph of mica schist, highlighting a muscovite porphyroblast; (D) age spectrum of white micas from this mica schist.

5.5.DISCUSSION

5.5.1. Age of sedimentation and depositional setting

The overall distribution of ages of the detrital zircon ages is assumed to reflect the ages of the sources that have contributed material to the sedimentary basin, basically from recycling of older rocks (Dickinson and Gehrels, 2009). The maximum deposition age of a sedimentary rock can be constrained via the youngest statistical population of U-Pb ages of detrital zircon (Coutts *et al.*, 2019). The 25 youngest analyzed grains correspond to 7,7% of the concordant zircon grains, clustered between 600 and 512 Ma, and generate a major statistical peak at ca. 594 Ma (Figure 5.11). Of these 25 zircon grains, 21 vary from 588 to 600 Ma, while the four isolated youngest grains display a scattered age decrease pattern, ranging from 573 to 512 Ma.

We assumed that the four scattered youngest zircon ages accumulated between the late Ediacaran/early Cambrian likely reflect contaminated grains or even indicate common Pb loss. According to Andersen *et al.* (2019), concealed ancient lead loss and over-correction for commom ²⁰⁷Pb may create false indications of the maximum sedimentary period. Moreover, to calculate the maximum depositional age just from one or two youngest grains should be avoided (Sharman and Malkowski, 2020). Thus, for discussions, we assume that the final sedimentary deposition period is related to the main youngest peak, constrained at ca. 594 Ma.

Figure 5.11 – Distribution of the youngest dated grains, which vary between 600 and 512 Ma.
The source-to-sink relationship provides essential information to the sedimentary basin investigation, concerning the paleoenvironment at the time of deposition (Cawood *et al.*, 2012). The euhedral to subhedral morphology features, 1-3 aspect ratios, concentric oscillatory zoning and mainly high Th/U ratios of the analyzed detrital zircon grains (e.g. Figure 5.5) allow to suggest a magmatic origin and a short-distance sediment transportation (Pupin *et al.*, 1980; Hanchar and Rudnick, 1995; Corfu *et al.*, 2003). The Ediacaran-Cryogenian age population represents approximately 60% of the concordant grains and displays the smallest grain size (up to 90 μ m), as well as does not show a wide variation in terms of morphologies and internal zonation (e.g. Figure 5.5). These features strongly support the idea that the narrow range of zircon ages indicates a restricted sedimentary provenance, probably coming from the same terrain/formation.

The major peak defined for the four analyzed samples is constrained at ca. 620 Ma, with zircon ages ranging between 590 and 650 Ma, while the maximum time of sedimentation is constrained by the youngest zircon grains at ca. 594 Ma. According to the model proposed by Cawood *et al.* (2012), an age distribution in which more than 50% of zircon grains have ages close to that of the depositional age reflects tectonic collisional and/or accretionary settings of basins located nearby contemporaneous magmatic arcs (Figure 5.12A). The adjoining magmatic arc denudation triggers a syn-collisional sedimentation, in which most of the curves in the Cawood *et al.* (2012) diagram represent clear similarities with the unimodal detrital zircon population pattern observed in foreland basins (Figure 5.12B). The investigated samples plot in the field described by Cawood *et al.* (2012) as F-land 2, associated to the Appalachian Orogen (United States) and as in the F-land 3, that is correlated to the Grenville Orogen (Canada, Scotland and United States). As a result of a foreland setting, there is an extremely rapid sedimentation to form basins within an active continental margin in the final stage of an orogenic system (Miall, 1995; Ingersoll *et al.*, 2003).

178

Figure 5.12 – (A) summary plot of variation of the difference between the measured crystallization age for a detrital zircon grain and the depositional age of the succession in which it occurs, based on cumulative proportion curves of Cawood et al. (2012) for the four samples of this study. A: convergent basins (red field); B: collisional basins (blue field); C: extensional basins (green field); (B) plot of cumulative proportion as function of different curves related to foreland data from five locations established by Cawood et al. (2012).

5.5.2. Most probable source areas

The major peak, constrained around 620 Ma, represents a basin sedimentation that evolved in relation to a coeval magmatic arc that lasted active up to ca. 594 Ma. We can account that this period differs from the most likely magmatic source in the regional context, the nearby Goiás Magmatic Arc within the Brasília Belt since it was already fully stabilized at ca. 630 Ma in the center of the Tocantins Province (Della Giustina *et al.*, 2009, 2011). The existence of a younger active magmatic arc continental margin was previously suggested by Leite *et al.* (2021) based on petrological studies of high Ba-Sr granitoids, that intruded the investigated metasedimentary strata. The generation of the appinitic suite at ca. 555 Ma strongly required the existence of a subduction stage around 590 Ma in the studied area (Leite *et al.*, 2021).

To the north, in the Araguaia Belt, the Porangatu Granulite Complex is dated at 580 ± 7 Ma and also indicates a younger orogenic evolution in the center of the Tocantins Province (Gorayeb *et al.*, 2017). Soares *et al.* (2006) postulated from seismic refraction features that the Porangatu metamorphic region corresponds to an active seismic portion associated with a Neoproterozoic mantle in central Brazil. Our U-Pb zircon detrital data corroborate these interpretations and constrain a syn-collisional sedimentation event related to an arc-related activity, developed after ca. 620 Ma, the end of which took place approximately at ca. 594 Ma (e.g. Figure 5.11). Thus, it is possible to indicate that the zircon grains dated after the stabilization of the Goias Magmatic Arc at ca. 620 Ma were most likely derived from the rocks generated from the advance of this active margin. The remaining elements that record this young magmatic arc margin may be hidden by the Phanerozoic cover and/or possibly have been carried bellow the orogenic wedge.

The subordinate zircon grains sourced in Cryogenian and Tonian terrains may have been eroded from the supracrustal formations, igneous and meta-igneous stabilized terrains within the Brasília, Araguaia and Paraguay fold belts (Pimentel *et al.*, 1996, 1999, 2003; Laux *et al.*, 2004; Matteini *et al.*, 2010). The remaining older zircon grains with ages between Neoarchean (2.5 - 2.8 Ga) and Meso- to Paleoproterozoic ages represent 26% of the concordant ages, and the most appropriate candidates for their source area are the adjacent provinces of the Amazonian Craton (1.3 to 2.5 Ga; Tassinari and Macambira, 1999). The oldest zircon could be correlated to the terranes of Carajás Province (>2.3 Ga), such as the Plaquê Intrusive Suite (2700 Ma, Araujo *et al.*, 1988), emplaced in the Carajás-Iricoumé Block, Central Amazon Province.

The Paleoproterozoic-Archean allocthonous cratonic fragments within the Brasília Belt constitute the Goiás Massif Terrane (Tomazzoli, 1992; Jost *et al.*, 2013) and could be also considered as a possible ancient source. In same reasoning, the Paleoproterozoic layered mafic-

ultramafic complexes at the boundary of Araguaia and Brasília belts may also be pointed out as a possible sources (Gorayeb *et al.*, 2000). The more distant ancient terrains are not considered as likely sources. The cratonic terrains located in the east of the Brasília Belt, as the São Francisco Craton and/or the Paranapanema Block, are less likely to be taken as a possible source, since the debris coming from the east tend to be deposited in the large and in the then still open Goiás-Pharusian Ocean (Cordani *et al.*, 2009, 2013).

The Neodymium isotopic signature attested by the T_{DM} ages (1.37 to 1.76 Ma) suggest that the basin was filled by combinations between reworked older material (Archean and/or Paleo- to Mesoproterozoic) and younger (Neoproterozoic) sedimentary debris. The most natural candidate for the Cuiabá Group would be the Amazonian Craton, however, to explain such a young T_{DM} , a contribution from a younger source is required. The negative ε_{Nd} (-3.37 to -9.33) values are most likely to be compared to some units of the Goiás Magmatic Arc, the Araguaia Belt and to the Paraguay Belt itself (see Figure 5.9). Few zircon grains that display low Th/U ratios (0.003 to 0.027) in their rims record the ${}^{206}U/{}^{238}Pb$ ages between 610 and 646 Ma (see Figure 5.6). When associated to the similar Sm-Nd signature (see Figure 5.9), these features could point to the Neoproterozoic high-grade mafic-ultramafic complexes of the Brasília Belt (Piuzana *et al.*, 2003; Della Giustina *et al.*, 2009, 2011) as a possible source area.

5.5.3. Record of thermal conditions

The plateau ages of the micas from the calc-alkaline granodiorite pluton and its host lowgrade metamorphic schists record robust evidence of low-to-intermediate P/T metamorphic conditions in the investigated area. The mineral ages acquired from argon isotopic data are interpreted as the record of the last cooling event through each mineral closure temperature relatively to the cumulative ³⁹Ar release. Based on the model of Dodson (1973), the Ar diffusion parameters for biotite and muscovite are traditionally determined from the experiments of Harrison *et al.* (1985, 2009), respectively. The stipulated nominal Ar closure temperatures of 300°C and 400°C, respectively, are used to define the approximate cooling path for these minerals.

5.5.3.1.Constraining an igneous cooling

The 40 Ar/ 39 Ar step-heating data of the oriented biotite from a late-tectonic granodiorite yielded a plateau age of 549.2±3.9 Ma (Figure 5.10A) that can be compared to the U-Pb zircon age of 554.0±2.9 Ma (Leite et al., 2021) of the pluton interpreted as a crystallization age associated with the syn- to late-kinematic igneous emplacement of the pluton. The local occurrence of a contact aureole with sillimanite-cordierite-bearing assemblages (Figure 5.4E) suggests that this emplacement took place under a MT-LP gradient (P<4 kbar, 550<T<600°C; Harte and Hudson, 1979; Hodges and Crowley, 1985; Jamieson *et al.*, 1998).

The low-pressure mineral paragenesis of the contact aureole suggests heat transference in the middle/upper transitional crust, pointing to a middle metamorphic grade event at shallow crustal level. The U-Pb and 40 Ar/ 39 Ar data indicate very rapid magmatic heat dissipation, recording cooling from about 600°C to 320°C (i.e. the closure temperature for argon in biotite, Harrison *et al.*, 1985) in a mean time interval of 5 Ma (Figure 5.13). Considering the error margins on the ages, it is possible to suggest a minimum cooling rate of ca. 25°C/Myr for the 554-549 Ma period.

Figure 5.13 - P-T-t schematic illustration of the cooling path evolution of sample AL01 (granodiorite pluton).

The rapid cooling rate recorded in the analyzed pluton indicates that the magma unroofing occurred almost simultaneously with its crystallization. According to Leite *et al.* (2021), the granodiorite is petrogenetically associated to the less evolved appinitic rocks by fractional crystallization processes. This magmatic suite developed in relation to the Transbrasiliano Lineament strike-slip faults (Leite *et al.*, 2021), which have provided a pathway for ascent of the appinitic magma and a mechanism of emplacement at higher crustal levels (Hutton and Reavy, 1992; Murphy, 2013; Leite *et al.*, 2021). The fast-cooling rate obtained for the pluton can be used to demonstrate that the area has undergone a rapid uplift event up to the end of the Ediacaran. The syn-orogenic depositional character highlighted by the distribution of the U-Pb ages requires that the unroofing of the orogen must have occurred just after or almost concomitantly with the sedimentation period.

This interpretation is consistent with the fast cooling-fast uplift model proposed for the syn-to late granitic-appinitic suites in the Scottish Caledonides, which has been related specifically to the closure of the Iapetus Ocean crust through strike-slip weakness zones during

the subduction beneath Laurentia (Fowler and Henney, 1996; Atherton and Ghani, 2002; Murphy *et al.*, 2019). In such context, between the converging plates, the Caledonian terranes were accreted, and deformed together with the forelands (Hutton and Reavy, 1992).

5.5.3.2. Country rocks metamorphic evolution

The argon closure temperature of muscovite (~400°C; Harrison *et al.*, 2009) is analogous to the metamorphic temperature experienced by the metasedimentary country rocks of the plutons, which record regional greenschist facies conditions (biotite zone; Figure 5.4C). The 40 Ar/ 39 Ar muscovite age at 536.3±4.1 Ma (Figure 5.10B) reported in this study would suggest that the metasedimentary rocks remained at ~400°C for approximately 10 to 25 m.y. after the metamorphic and/or collisional peak in the region, which is recorded by the latekinematic pluton age at 554.0±2.9 Ma (Leite *et al.*, 2021).

We assume that the Ar-Ar step-heating pleateau age from the country rocks represent the last thermal record in the study area. This age can also indicate the presence of an unknown late-to post-orogenic plutons in the area, that is not exposed but could have heat the country rocks. It is noteworthy that the age spectrum of the dated muscovite displays older ages of ca. 546 Ma at the end of degassing (Figure 5.10B), that are similar to the biotite age of the latekinematic pluton and that can suggest a continuum of dissolution-recrystallization effects over 10 Ma since the first episode of deformation. Thus, the orogenic activity could have lasted more than previously thought in the internal zone of the Paraguay Belt.

The presented ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ plateau ages are compatible with the early Cambrian/late Ediacaran ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ ages previously recorded in the corridor of the Araguaia, Paraguay and Pampean belts (Table 4; Rapela *et al.*, 1993, 2007; Geraldes *et al.*, 2008, 2010; Tohver *et al.*,

2010, 2012; Piacentini *et al.*, 2013; McGee *et al.*, 2014, 2015). They corroborate several models proposing a large oceanic corridor that only closed in Cambrian times.

Table 5.4 – Summary of 40 Ar/ 39 Ar, K-Ar and U-Pb data available in the Araguaia, Paraguayand Pampean belts, along the Clymene Ocean corridor.

Mobile belt	Unit/Region	Author	Metamorphic	Mineral/Method		
			ages (Ma)			
	Estrondo Group	Macambira (1983)	553±17	biotite (mica		
Araguaia Belt				schists)/K-Ar		
	Xambioá	Pinheiro (2016)	504 ± 6	amphibole/Ar-		
	Formation			Ar		
	Puncoviscana	Adams <i>et al.</i>	535-540	mica schists/K-		
	Formation	(1990)		Ar		
Pampean belts	metaluminous	Rapela et al.	525 to 515	metamorphic		
	calc-alkaline	(1998)		zircon/U-Pb		
	magmatism					
	Nova Xavantina	Geraldes et al.	541 to 531	biotite/Ar-Ar		
	Metavolcano-	(2008)				
	sedimentary					
	Sequence					
	Alto Paraguay	McGee et al.	544±7	muscovite		
Paraguay Belt	Group/Northern	(2015)		(detrital)/Ar-Ar		
	portion					
	Urucum banded	Piancentini et al.	547 to 513±3	braunite/Ar-Ar		
	iron formation/	(2013)				
	Southern portion					
	Cuiabá	Tohver <i>et al.</i>	496 to 500	Illite/Ar-Ar		
	Group/São	(2010)				
	Vicente region					

5.5.4. Evolution of the Paraguay Belt

The internal zone of the Paraguay Belt is basically composed of a set of metasedimentary sequences traditionally taken as deposited on a passive margin setting and attributed to glacio-marine deposits grading upwards into turbidites and mud flows (Alvarenga, 1990; Alvarenga and Trompette, 1993; Alvarenga and Saes, 1992). The Cuiabá Group exposed in the Region 1 (Figure 5.1C) exhibits Mesoproterozoic maximum depositional age, with sedimentary provenance typically coming from the Amazonian Craton – 1.2 to 2.5 Ma and deposited on a continental margin (Figure 14A; Dantas *et al.*, 2009; Batalha, 2016; Babinski *et al.*, 2018). However, our U-Pb isotopic data of detrital zircon grains appear to demonstrate an evident provenance shift in detrital input of the Cuiabá Group, varying from Paleo- and Mesoproterozoic cratonic sources to Neoproterozoic magmatic arc terrains, especially from Ediacaran-Cryogenian sources (Figure 5.14C).

The presented clear unimodal provenance spectrum of detrital zircon is very close to the data obtained in the center-southern Paraguay Belt, which show maximum depositional age of 602±13 Ma (Pelosi, 2017) and 523±5 Ma (Vasconcelos, 2018), with also dominantly Neoproterozoic sources. The combination of these data with the study area features constrains an important geodynamic change from passive margin to compressional setting in the eastern Paraguay Belt. We establish that the typical record of oversized clasts such as dropstone or icerafted debris typically described in the Cuiabá Group is replaced by a syn-orogenic sedimentation. The investigated debris are more likely to be deposited in a relatively calm marine sedimentation, which comes particularly from an associated uplifted mountain belt.

The external zone of the Paraguay Belt shows the same sedimentary dynamic of evident basin inversion toward the upper Alto Paraguay Group units (Bandeira *et al.*, 2012; McGee *et al.*, 2014). The investigated rocks show maximum depositional age similar to the upper Alto 186

Paraguay Group, constrained at 541 ± 7 Ma and deposited in a foreland basin (McGee *et al.*, 2014). Then, it is possible to infer that the studied rocks and the upper Alto Paraguay Group are contemporary, and these sedimentary records may represent the event of final evolution phase of the Paraguay Belt in Cambrian times. Recently, based on high resolution airborne geophysical data in the Nova Xavantina region, to the north of the study area, Silva *et al.* (2020) stated that the Amazonian Craton served as backstop for the formation of a foreland basin in response to the flexural subsidence due to the tectonic inversion of the basin.

Figure 5.14 – Histogram illustrating the probability density of detrital zircon ages in the three different regions of the Cuiabá Group, Paraguay Belt: (A) provenance age pattern of rocks considered as typical Cuiabá Group in the core of the Paraguay Belt (Region 1 - Baixada Cuiabana); (B) provenance age pattern of the center-southern sector (Region 2) of the Cuiabá Group; (C) provenance age pattern of the eastern sector of the Paraguay Belt (Region 3).

The investigated lithofacies are restricted to interbedded pelagic sediments with minor micaceous sandstone, which is likely to be compared to the fans generated typically from deposition of debris in deep water (Moiola and Shanmugam, 1984; Ingersoll *et al.*, 2003). The submarine fans that represent from passive margin to collisional stage are commonly described in large accumulations of sediments on Earth, which are subsequently deformed and incorporated into the orogenic belts as collisional foreland basin (Ingersoll *et al.*, 1995, 2003). It is known that during the active thrusting processes and crustal thickening processes, the initial load of the growing orogenic wedge could have promoted subsidence in the foreland setting, accommodating early pelagic foredeep deposits by gravity flow (Covey, 1986; Catuneanu, 2001, 2004; Mutti *et al.*, 1992). The considerable amount of K-feldspar and plagioclase reveals the low maturity of the sedimentary rock and the accelerated rate of erosion, also pointing to a deposition period during a proximal orogenic unroofing (Haughton *et al.*, 1991; Dickinson and Sczek, 1979). Further studies based on sequence stratigraphy are needed to better constrain and perhaps separate the studied lithologies from the set of Cuiabá Group passive margin formations.

The available structural data of the typical Cuiabá Group (Region 1) show greater structural complexity that is not recorded in the investigated rocks, presenting recumbent and close to isoclinal folds (D1) as the primary deformation phase (Barboza, 2008; Vasconcelos *et al.*, 2015). The investigated area registers essentially a scenario of slight compressional thrusts with open folds and a set of brittle-ductile components related to dextral transcurrent faults of the Transbrasiliano Lineament. The syn-orogenic turbidite deposition is often influenced by a transcontinental transform fault system at the end of the tectonic activity (Mutti *et al.* 1999), which could also allow the last pulse of sedimentation in a late compressional effort. We assume that the internal accommodation of the strike-slip fault system in the region becomes essential to the maintenance of the collisional attempt and the continuous sedimentary deposition up to the Late Ediacaran.

5.5.5. West Gondwana assembly at Cambrian times

The combination of evidence from our new U-Pb and 40 Ar/ 39 Ar data from the easternmost region of the Paraguay Belt agree with a tectonic scenario that accomodate continuous deposition in a foreland basin, that developed contemporaneously with the deformation, metamorphism and magmatism during the late Ediacaran (Leite *et al.*, 2021). The main point assumed in this work is that the final evolution of the Paraguay Belt is not linked to the closure of the Goiás-Pharusian ocean, since the terrains that registered this older ocean closure were already built up and uplifted around 620 Ma (Cordani *et al.*, 2009, 2013; Della Giustina *et al.*, 2009, 2011). The tectonic model proposed by McGee *et al.* (2014) for the northern Paraguay Belt and McGee *et al.* (2018) for the southern part point to a hypothesis of a late collisional event related to the closure of the Clymene Ocean in West Gondwana. The presented data also support an indicative of a late orogenic evolution. Moreover, this statement has been previously supported by other lines of evidence in the northern and southern Paraguay Belt (Table 5.5).

Table 5.5 – Evidence	of Clymene	Ocean existence	and/or closure	in the	Paraguay	Belt.
----------------------	------------	-----------------	----------------	--------	----------	-------

Author			Unit/portion of	Obtained data	Interpretations
			the belt		
					paleocenographic
Nogueira	et	al.	Araras	carbon and strontium	changes and
(2007)			Group/northern	isotopes in carbonate	paleoenvironmental
				plataform	

					evolution at the
					Neoproterozoic end
					change in
					sedimentary
Dantas	et	al.	Cuiabá Group	Nd isotopes of overall	provenance from an
(2009)			and carbonate	belt	Amazonian source to
			units/northern		a source from within
					the belt itself for the
					upper carbonate
					successions
					metamorphic peak
					between 496 and 484
Tohver	et	al.	Cuiabá Group/	Paleomagnetic and	Ma and 90°
(2010)			northern	geochronological data	clockwise rotation of
					the east-west limb
					after ca. 528 Ma
			Diamantino and	U-Pb ages of detrital	last marine deposits
			Sepotuba	zircon grains younger	representing the final
Bandeira	et	al.	formations –	than 541 Ma	basin and restricted
(2012)			Alto Paraguay		sea associated to
			Group/ northern		progradation of
					deltaic lobes
McGee	et	al.	São Vicente	crystallization age of	minimum age of
(2012)			Granite/northern	post-tectonic granite	contractional
				at 518 Ma	deformation
McGee	et	al.	Diamantino	⁴⁰ Ar- ³⁹ Ar of 544 Ma	Cambrian
(2015)			Forrmation –	from detrital	metamorphic age for
			Alto Paraguay	muscovite	orogenesis within the
			Group/northern		Paraguay Belt
				youngest U-Pb ages of	final sedimentation
McGee	et	al.	Jacadigo and	detrital zircon grains	record transitio n
(2018)			Corumbá	between 566 and 543	from passive margin
			groups/southern	Ma	

environment to	a
collisional setting	

The first model of the Clymene Ocean was proposed by Trindade *et al.* (2003, 2006), who argued that the Amazonian Craton was separated from the proto-Gondwana (eastern terrains/cratons) by a younger ocean up until the Cambrian and its closure gave rise to the NNE-SSW belt corridor in the West Gondwana. In the context of the Tocantins Province, we propose that the length of Clymene Ocean is restricted roughly along the Transbrasiliano Linearnent shear zone corridor, where the exposed rocks record a late Ediacaran/early Cambrian evolution. It is known that the final evolution phase of the Araguaia and Paraguay belts is constrained by ca. 550 Ma syn-to late tectonic granitoids, emplaced near or along the Transbrasiliano Linearnent (Alves *et al.*, 2019; Arcanjo *et al.*, 2013; Goyareb *et al.*, 2013; Leite *et al.*, 2021). Such late-tectonic magmatic rocks that intruded the investigated metasedimentary rocks evolved associated to the transcurrent strike-slip system and may also record the consumption of an oceanic lithosphere after 590 Ma between the Amazonian Craton and the western Goiás Magmatic Arc (Leite *et al.*, 2021).

The Gondwana agglutination during the Neoproterozoic represents a stepping stone on the path from Rodinia breakup to Pangea assembly (Cawood *et al.*, 2021). The later consumption of oceans during the Gondwana amalgamation reflects a common event in the final process of assembly, also registered in the largest worldwide orogeneses (Kennedy, 1964; Collins and Pisarevsky, 2005; Merdith *et al.*, 2017). The existence of the Clymene Ocean between Rodinia and proto-Gondwana was also suggested by further isotopic, geophysical and paleomagnetic data (Trindade *et al.*, 2003, 2006; Rapela *et al.*, 2007; Geraldes *et al.*, 2008; Tohver *et al.*, 2010, 2012; Tohver and Trindade, 2014; Schmitt *et al.*, 2018; McGee *et al.*, 2018; Wen *et al.*, 2020), in contrast with the view of a united and synchronous West Gondwana (Cordani *et al.*, 2009, 2013). Within that tectonic context, our data provide a key scenario in the Tocantins Province that envolved from the Rodinia-Gondwana supercontinental transition, after final Rodinia breakup (Laurentia separating from Baltica and Amazonia) and prior to Gondwana amalgamation (Tohver *et al.*, 2012). Therefore, we propose that West Gondwana was completely assembled only in the end of Ediacaran (590 Ma), when the Amazonian Craton collided with its eastern terrains/cratons neighbors (Brasília Belt, Parapanapena Block, São Francisco and Rio de la Plata cratons).

5.6.CONCLUSION

Based on field, U-Pb, Sm-Nd and ⁴⁰Ar/³⁹Ar data, it is possible to conclude that the easternmost metasedimentary rocks of the Paraguay Belt show very distinct provenance and tectonic signatures when compared to the typical Cuiabá Group exposed in the central portion of the belt. Further structural and stratigraphic detailed investigations will be crucial, in the future, to support more enhanced discussion of this sedimentary record.

Specifically, the main contributions are:

- (1) The new obtained U-Pb detrital zircon data highlight that the rocks previously interpreted as being part of the Mesoproterozoic passive margin succession of the Cuiabá Group (Seer, 1987) are actually part of a syn-orogenic basin, with maximum depositional age constrained at ca. 594 Ma.
- (2) Approximately 60% of the analyzed detrital zircon grains are sourced in Ediacaran-Cryogenian terrains with the major peak around 620 Ma, indicating a syn-orogenic sedimentation character. The distribution pattern of detrital zircon indicates that the accumulation of sediments is directly linked to the continuous growth of an adjoining

coeval magmatic arc within an active orogenic system. We infer that the basin was filled coevally with the Brasiliano granitoids generation, in a context of final compressional effort.

- (3) The syn-collisional deposition developed associated to extremely fast erosion of sources associated to a nearby mountain belt. The rapid unroofing and orogenic character of the area is confirmed by the ⁴⁰Ar/³⁹Ar age of biotite from the granodiorite pluton, pointing to a rapid maximum cooling rate of ca. 25°C/Myr. The studied area is overprinted by the Transbrasiliano Lineament, which could have worked as a corridor of accommodation within the active margin. The collisional phase occurred contemporary or immediately after deposition.
- (4) The investigated rocks are classified as a syn-orogenic succession deposited in a foreland basin, which was probably being simultaneously thrusted over the Amazonian Craton during the last orogenic phase registered in West Gondwana.
- (5) The model outlined in this work precludes the notion of a united West Gondwana at ca. 620 Ma and strongly suggests that the Amazonian Craton was separated from the proto-Gondwana (eastern terrains/cratons) up to the end of Ediacaran by the Clymene Ocean, as the presented data record a late sedimentary and orogenic effort in West Gondwana.

Acknowledgments

This study was financed in part by the *Coordenação de Aperfeiçoamento de Pessoal de Nível Superior* (CAPES) – Finance Code 001. The authors wish to thank *Instituto Nacional de Ciência e Tecnologia – Estudos Tectônicos* (INCT-ET, CNPq grant 46.5613/2014-4, FAPDF grant 193.001.263/2017) for financial support, and once again CAPES (grant 88887.137872/2017-00) for the PhD scholarship granted to the first author Leite, A.F.G.D. The first author also acknowledges the support of the Laboratory of Geochronology of *Universidade*

de Brasília and the Noble Gas Laboratory of *Géosciences Montpellier*. RAF, ELD and ASR are grateful to CNPq for research fellowships.

REFERENCE

- Adams, C., Miller, H. & Toselli, A. J., 1990. Nuevas edades de metamorfismo por el método K-At de la Formacibn Puncoviscana y equivalentes, NW de Argentina. In: ACENOLAZA et al. q.v., 209-219.
- Andersen, T., Elburg., M.A., Lagwaza, B.N. 2019. Sources of bias in detrital zircon geochronology: Discordance, concealed lead loss and common lead correction. Earth Science Review 197 (102899).
- Albarède, F., Telouk P., Blichert-Toft, J., Boyet, M., Agranier, A., Nelson, B., 2004. Precise and accurate isotopic measurements using multiple collector ICPMS. Geochimica et Cosmochimica Acta 68, 2725-2744.
- Almeida, F.F.M., 1984. Província Tocantins, setor sudoeste. In: Almeida, F.F.M. de, Hasui, Y., 1984. O Pré-Cambriano do Brasil. São Paulo, Edgard Blücher 265-281.
- Alvarenga C.J.S., 1990. Phénomènes sédimentaires, estructuraux et circulation de fluides developpés à la transition chaine-craton: exemple de la chaine Paraguay d'age protérozoique supérieur, Mato Grosso, Brésil. PhD thesis, University of Marseille.
- Alvarenga, C. J. S., Saes, G. S., 1992. Estratigrafia e sedimentologia do Proterozóico Médio e Superior da região sudeste do Cráton Amazônico. Revista Brasileira de Geociências, São Paulo, 22, 493-499.
- Alvarega, C.J.S., Trompette R., 1993. Evolução Tectônica Brasiliana da Faixa Paraguay : a estruturação da região de Cuiabá. Revista Brasileira de Geociências 23, 18-30.
- Alves, P.V.F.S., Botelho, N.F., Dantas, E.L., Cuadros, F.A. 2019. The Cambrian peraluminous Santa Luzia granite suite in the Araguaia Belt, central Brazil: Evidence for closure of

the Clymene Ocean based on zircon and monazite U-Pb data. Journal of South American Earth Sciences 92, 116-133.

- Atherton, M.P., Ghani, A.A., 2002. Slab breakoff: a model for Caledonian, Late Granite syncollisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. Lithos 62, 65–85.
- Araújo, O.J.B., Maia, R., Jorge João, X.S., Costa, J.B.S., 1988. A Megaestruturação arqueana
 da Folha Serra dos Carajás. VII Congresso Latino Americano De
 Geologia, Extended Abstracts. Anais, 324-333.
- Arcanjo, S.H.S., Abreu, F.A.M., Moura, C.A.V., 2013. Evolução geológica das sequências do embasamento do Cinturão Araguaia na região de Paraíso do Tocantins (TO), Brasil.
 Brazilian Journal of Geology, São Paulo. 43 (3), 501–514.
- Assumpção, M., Sacek, V., 2013. Intra-plate seismicity and flexural stresses in central Brazil. Geophysical Research Letters, 40, 487-491.
- Brito Neves, B.B., Fuck, R.A., 2013. Neoproterozoic evolution of the basement of the South-American platform. Journal of South American Earth Sciences 47, 72-89.
- Babinski, M., McGee B., Tokashiki, C.C., Tassinari, C.C.G., Saes, G.S., Pinho, F.E.C., 2018. Comparing two arms of an orogenic belt during Gondwana amalgamation: Age and provenance of the Cuiabá Group, northern Paraguay Belt, Brazil. Journal of South American Earth Sciences, 85 (2018) 6–42.
- Bandeira, J., McGee B., Nogueira A.C.R., Collins A.S., Trindade R., 2012. Sedimentological and provenance response to Cambrian closure of the Clymene Ocean: the upper Alto Paraguay Group, Paraguay belt, Brazil. Gondwana, 21, 324-340.
- Batalha, R.S., 2016. Estudo de Minerais Pesados, Análise Morfológica e Datação U-Pb por ICPMS-LA de Zircão Detrítico Proveniência dos Metassedimentos do Grupo Cuiabá,

Faixa Paraguay Norte-MT. Dissertação de mestrado, Universidade Federal de Mato Grosso, Cuiabá.

- Bologna, M. S., Nunes, H. O., Padilha, A. L., Vitorello, I., and Pádua, M. B., 2013. Anomalous electrical structure in the northwestern Paraná Basin, Brazil, observed with broadband magnetotellurics. Journal of South American Earth Sciences, 42, 74–82.
- Cawood, P.A., Hawkesworth, C.J., Dhuime, B., 2012. Detrital zircon record and tectonic setting. Geology, 40, 875-878.
- Cawood, P.A., Martin, E.L., Murphy, J.B., Pisarevsky, S.A. 2021. Gondwana's interlinked peripheral orogens. Earth and Planetary Science Letters, 568, 117057.
- Collins, A.S, Pisarevsky, S.A. 2005. Amalgamating eastern Gondwana: the evolution of the Circum-Indian Orogens. Earth-Sci Rev 71: 229–270.
- Catuneanu, O., 2001. Flexural partitioning of the Late Archaean Witwatersrand foreland system, South Africa. Sed. Geol. 141–142, 95–112.
- Catuneanu, O., 2004. Retroarc foreland systems evolution through time. J. Afr. Earth Sc. 38, 225–242.
- Cordani U. G., Teixeira W., D'Agrella-Filho M. S., Trindade R. I., 2009. The position of the Amazonian Craton in supercontinentes. Gondwana Research, 15, 396–407.
- Cordani, U. G., Pimentel, M. M., De Araujo, C. E., Basei, M. a. S., Fuck, R. A., Girardi, V. A. V., 2013. Was there na Ediacaran Clymene Ocean in central South America? American Journal of Science 313, 517-539.
- Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of zircon textures. Rev. Mineral. Geochem. 53, 469–500.
- Covey, M., 1986. The evolution of foreland basins to steady state: evidence from the Western Taiwan foreland basin. In: Allen, P.A., Homewood, P. (Eds.), Foreland Basins, vol. 8. International Association of Sedimentologists, pp. 77–90.

- Curto, J.B., Vidotti R.M., Fuck, R.A., Blakel, R.J., 2014. The tectonic evolution of the Transbrasiliano Lineament in northern Paraná Basin, Brazil, as inferred from aeromagnetic data. J. Geophys. Res. 119, 1544–1562.
- Curto, J., Vidotti R.M., Blakely, R.J., Fuck, R.A. 2015. Crustal framework of the northwest Paraná Basin, Brazil: insights from joint modeling of magnetic and gravity data. Tectonophysics 655, 58-72.
- Coutts, D.S., Matthews, W.A., Hubbard, S.M. 2019. Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geosciences Frontiers 10, 1421-1435.
- Dantas, E.L., Armstrong, R., Pimentel, M.M., Fuck, R.A., Martinelli, C.D., Silva, M.F., Laux, J.H., 2007. 800 Ma rifting in the Paraguay Belt, central Brazil: U-Pb SHRIMP age determination, Rodinia break-up and implications for a connection with avalonian Peri-Gondwana Terranes. Geological Society of America Annual Meeting.
- Dantas, E.L., Alvarenga, C.J.S. de, Santos, R.V., Pimentel, M.M., 2009. Using Nd isotopes to understand the provenance of sedimentary rocks from a continental margin to a foreland basin in the Neoproterozoic Paraguay belt, Central Brazil. Precambrian Research 170, 1-12.
- D'agrella Filho M.S., Trindade R.I.F., Siqueira R., Ponte-Neto C.F., Pacca I.I.G., 1998. Paleomagnetic Constraints on the Rodinia Supercontinent: Implications for tis Neoproterozoic Break-up and the formation of Gondwana. International Geology Review, 40, 171-188.
- Della Giustina, M. E. S., Oliveira, C. G., Pimentel, M. M., and Buhn, B., 2009. Neoproterozoic magmatism and high-grade metamorphism in the Goia's Massif: new LA-MC-ICMPS U–Pb and Sm–Nd data and implications for collisional history of the Brasília Belt. Precambrian Research, 172, 67–79.)

- Della Giustina, M.E.S., Pimentel, M.M., Ferreira Filho, C.F., Holanda, M.H.B.H., 2011. Dating coeval mafic magmatism and ultrahigh temperature metamorphism in the Anápolis Itaucú Complex, central Brazil. Lithos, 124, 82-201.
- DePaolo, D.J., 1981. A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. Jounal Geophysical Research, 86, 10470-10488.
- Dickinson, W.R., Gehrels, G.E., 2009. Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters 288, 115–125.
- Dickinson, W.R., Suczek, C.A., 1979. Plate tectonics and sandstone composition. Am. Assoc. Pet. Geol. Bull. 63, 2164–2172.
- Dodson, M.H., 1973. Closure temperature in cooling geochronological and petrological systems. Contrib. Miner. Petrol. 40 (3), 259–274.
- Fowler, M.B., Henney, P.J., 1996. Mixed Caledonian appinite magmas: implications for lamprophyre fractionation and high Ba–Sr granite genesis. Contributions to Mineralogy and Petrology 126, 199–215.
- Fuck R. A., Brito Neves B.B., Schobbenhaus C., 2008. Rodinia descendants in South America. Precambrian Research 160, 108-126.
- Geraldes, M. C., Tassinari, C. C.G., Babinski, M., Martinelli, C. D., Iyer, S. S., Barboza, E. S.,
 Pinho, F. E.C., Onoe, A. T., 2008. Isotopic Evidence for the Late Brasiliano (500-550
 Ma) Ore-Forming Mineralization of the Araés Gold Deposit, Brazil. International
 Geology Review 50, 177–90.
- Gioia, S.M.C.L., Pimentel, M.M., 2000. The Sm–Nd isotopic method in the Geochronology Laboratory of the University of Brasília. Anais Academia Brasileira de Ciências 72, 219–245.

- Godoy, A. M., Pinho, F. E. C., Manzano, J. C., de Araújo, L. M. B., da Silva, J. A., Figueiredo,
 M., 2010. Estudos isotópicos das rochas granitóides neoproterozoicas da Faixa de
 Dobramento Paraguay . Revista Brasileira de Geociências 40, 380–391.
- Gorayeb, P.S.S., Chaves, C.L., Moura, C.A.V., Lobo, R.L.S. 2013. Neoproterozoic granites of the Lajeado intrusive suite, north-center Brazil: a late Ediacaran remelting of a Paleoproterozoic crust. Journal of South American Earth Science, 45, 278–292.
- Gorayeb, P.S.S., Costa, J.R.C., Cruz, D.J.N., 2017. A Suíte Máfica Conceição-Santana do Araguaia (feixe de diques de diabásios e gabros), fronteira Pará Tocantins. In: SBG-NO, Anais XV Simpósio de Geologia da Amazônia, Belém, pp. 292–296.
- Gorayeb, P.S.S., Cordani, U.G., Silva Neto, J.J.A., Sato, K., Maurer, V.C. 2020. U–Pb SHRIMP zircon ages of Ediacaran-Cambrian granitic bodies in central Brazil: Implications for the tectonic evolution of the Araguaia belt. Journal of South American Earth Sciences, 104, 102804.
- Gorayeb P.S.S., Moura C.A.V., Barros G.R. 2000. Pb-Pb zircon ages of the Porto Nacional high-grade metamorphic terrain, northern portion of the Goiás Massif, Central Brazil. Revista Brasileira de Geociências, 30:190-194
- Graham, S. A., Dickinson, W. R., and Ingersoll, R. V., 1975, Himalayan- Bengal model for flysch dispersal in Appalachian-Ouachita system. Geological Society of America Bulletin 86, 273-286.
- Guimarães, S. B., Moura, M. A., Dantas, E. L., 2012. Petrology and geochronology of the Bom Jardim de Goiás copper deposit (GO). Revista Brasileita de Geologia 42, 841-862.
- Hanchar, J.M., and Rudnick, R.L. 1995. Revealing hidden structures: the application of cathodoluminescence and back-scattered electron imaging to dating zircons from lower crustal xenoliths. Lithos, 36, 289–303.

- Harrison, T.M., Duncan, I., McDougall, I., 1985. Diffusion of 40Ar in biotite: temperature, pressure and compositional effects. Geochim. Cosmochim. Acta 49 (11), 2461–2468.
- Harrison, T.M., Célérier, J., Aukman, J.H., Heizler, M.T., 2009. Diffusion of 40Ar in muscovite. Geochimiar et Cosmochimica Acta 73, 1038-1051.
- Harte, B. & Hudson, N. F. C, 1979. Pelite facies series and the temperature and pressures of Dalradian metamorphism in E Scotland. In: Harris, A. L., Holland, C. H. & Lealce, B. E. (eds) The Caledonidts of the British Isles: Reviewed. Geological Society of London Special Publication 8, 323-33.
- Haughton, P. D. W., Todd, S. P., Morton, A. C. 1991. Geological Society, London, Special Publications, 57, 1-11.
- Hawkesworth, C., Cawood, P., Kemp, T., Storey, C., and Dhuime, B., 2009. A matter of preservation. Science 323, 49–50.
- Hodges, K. V. & Crowley, P. D., 1985. Error estimation and empirical geothermobarometry for pelitic systems. American Mineralogist 70, 702-709.
- Hutton, D.H.W., Reavy, R.J. 1992. Strike-slip tectonics and granite petrogenesis. Tectonics, 11, 5, 960-967.
- Ingersoll, R.V., Graham, A., Dickinson, W.R., 1995. Remnant ocean basins. In: Busby, C., Ingersoll, R.V. (Eds.), Tectonics of Sedimentar Basins. Blackwell Science, Oxford, pp. 363–391.
- Ingersoll, R.V., Dickinson, W.R., Graham, A., 2003. Remnant-ocean submarine fans: Largest sedimentary system on Earth. In: Chan, M.A., Archer, A.W. (Eds.), Extreme Depositional Environments: Mega End Members in Geologic Time. Geological Society of America Special Paper 370, 191–208.

- Ingersoll, R.V., 2012. Tectonics of sedimentary basins, with revised nomenclature. In: Busby, C., Azor, A. (Eds.), Tectonics of Sedimentary Basins: Recent Advances. Blackwell, Oxford, pp. 3–43.
- Jamieson, R.A., Beaumont, C., Fullsack, P., Lee, B., 1998. <u>Barrovian regional metamorphism:</u> <u>Where's the heat?</u> Geological Society, London, Special Publications 138 (1), 23-51.
- Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211, 47-69.
- Kennedy, W. Q. 1964. The structural differentiation of Africa in the Pan-African (±500 m.y.) tectonic episode. Research Institute Afr. Geol. University of Leeds, 48-49.
- Koppers, A.A.P., 2002. ArArCALC- software for 40Ar/39Ar age calculations. Computer and Geosciences, 28, 605-619.
- Lacerda Filho, J. V. Filho, W. A., Valente, C. R., Oliveira, C. C., Albuquerque, M. C. 2004.
 Geologia e Recursos Minerais do Estado de Mato Grosso. Programa Integração,
 Atualização e Difusão de Dados da Geologia. Goiânia. Escala 1:1.000.000.: CPRM.
 200p.
- Laux, J.H., Pimentel, M.M., Dantas, E.L., Armstrong, R., Junges, S.L., 2005. Two Neoproterozoic crustal accretion events in the Brasília Belt, Central Brazil. Journal of South American Earth Sciences 18, 183–198.
- Leite, F.G.D.L., Fuck, R.A., Dantas, E.L., Ruiz, A.S., 2021. Appinitic and high Ba-Sr magmatism in central Brazil: insights into the late accretion stage of West Gondwana. Lithos, 398-399, 106333.
- Lo, C.H, Onstott, T.C. 1989. 39Ar recoil artefacts in chloritized biotite. Geochim Cosmochim Acta 53:2697–2711.

- Ludwig, K.R., 2012. User's Manual for Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 5, 75.
- Luz J.S.; Oliveira A.M.; Souza J.O.; Motta J.F.M.; Tanno L.C.; Carmo L.S.; Souza N.B., 1980. Projeto Coxipó. Relatório Final. Goiânia, DNPM/CPRM, 1, 136.
- Macambira, J.B., 1983. Geologia e ocorrências minerais da braquianticlinal do Lontra (GO). Master Dissertation. Universidade Federal do Pará.
- Matteini, M., Junges, S.L., Dantas, E.L., Pimentel, M.M., Buhn, B., 2010. In situ zircon U–Pb and Lu–Hf isotope systematic on magmatic rocks: insights on the crustal evolution of the Neoproterozoic Goiás Magmatic Arc, Brasília belt, Central Brazil. Gondwana Research 17 (1), 1–12.
- Manoel, T.N., Selby, D., Galvez, M.E., Leite, J.A.D., Figueiredo, L.N. 2020. A pre-Sturtian depositional age of the lower Paraguay Belt, western Brazil, and its relationship to western Gondwana magmatism. Gondwana Research 89, 238-246.
- McGee, B., Collins, A. S., Trindade, R. I. F. 2012. G'day Gondwana, the final accretion of a supercontinent: U/Pb ages for the post-orogenic São Vicente Granite, northern Paraguay Belt, Brazil. Gondwana Research, 21, 316–322.
- McGee, B., Collins, A.S., Trindade, R.I.F., Payne, J. 2014. Age and provenance of the Cryogenian to Cambrian passive margin to foreland basin sequence of the northern Paraguay Belt, Brazil. GSA Bulletin, 127, 76-86.
- McGee, B., Collins, A.S., Trindade, R.I.F., Jourdan, F., 2015. Investigating mid-Ediacaran aciation and final Gondwana amalgamation using coupled sedimentology and 40Ar/39Ar detrital muscovite provenance from the Paraguay Belt, Brazil. Sedimentology 62, 130–154.

- McGee, B., Babinski, M., Trindade, R., Collins, A.S., 2018. Tracing final Gondwana assembly: Age and provenance of key stratigraphic units in the southern Paraguay Belt, Brazil. Precambrian Research 307, 1-33.
- Merdith, A.S., Williams, S.E., Müller, R.D., Collins, A.S. 2017. Kinematic constraints on the Rodinia to Gondwana transition. Precambrian Research 299, 132–150.
- Moiola, R.J., Shanmugam, G., 1984. Submarine fan sedimentation, Ouachita Mountains, Arkansas and Oklahoma. AAPG Database, Gulf Coast Association of Geological Societies Transactions 34, 175–182.
- Moura, C.A.V., Macambira, M.J.B., Armstrong, R., 2008. U-Pb Shrimp zircon age of the Santa Luzia Granite: constraints on the age of metamorphism of the Araguaia belt, Brazil. In: VI South American Symposium on Isotope Geology, San Carlos de Bariloche. Book of Abstracts CD-ROM, Buenos Aires.
- Mutti, E., 1992. Turbidite sandstone. San Donato Milanese, AGIP, Instituto di Geologia, Università di Parma (275 p.).
- Murphy, J.B., Nance, R.D., Gabler, L.B., Martell, A., Archibald., 2019. Age, Geochemistry and Origin of the Ardara Appinite Plutons, Northwest Donegal, Ireland. Geosciences Canada 46, 1, 31–48.
- Murphy, J.B. 2019. Appinites suites and their genetic relationship with coeval voluminous granitoid batholiths. Int. Geol. Rev. 65, 683–713.
- Mutti, E., Tinterri, R., Remacha, E., Mavilla, N., Angella, S., Fava, L., 1999. An introduction to the analysis of Ancient Turbidite Basins from an outcrop perspective. AAPG Continuing Education Course Note, 39 (74 p.).
- Mutti, E., Bernoulli, D., Lucchi, F.R., Tinterri, R. 2009. Turbidites and turbidity currents from Alpine 'flysch' to the exploration of continental margins. Sedimentology, 56, 267-318.

- Nogueira A.C.R., Riccomini C., 2007. O Grupo Araras (Neoproterozoico) na parte norte da Faixa Paraguai e Sul do Cráton Amazônico, Brasil. Revista Brasileira de Geociências, 36, 576-587.
- Pelosi, G. F. F. 2017. Age, Provenance and Tectonic Setting from Southern Portion of the Cuiabá Group: Implications for the Evolution of the Paraguai Belt. Master Dissertation. University of Mato Grosso.
- Perarnau, M., Gilbert, H., Alvarado, P., Martino, R., and Anderson, M., 2012. Crustal structure of the Eastern Sierras Pampeanas of Argentina using high frequency local receiver functions. Tectonophysics, 580, 208–217.
- Piacentini, T., Boggiani, P., Yamamoto, J. K., Freitas, B. T., Campanha, G. A. C. 2017. Formação ferrífera bandada associada à sedimentação glaciogênica da formação Puga (Marinoano) na Serra da Bodoquena, MS. Revista Brasileira de Geociências, v. 37, p. 530-541.
- Pimentel, M.M., Fuck, R.A., Alvarenga, C.J.S., 1996. Post-Brasiliano (Pan African) high-K granitic magmatism in central Brazil: the role of late Precambrian/early Paleozoic extension. Precambrian Research, 80, 217–238.
- Pimentel, M.M., Fuck, R.A., Botelho, N.F., 1999. Granites and the geodynamic history of the neoproterozoic Brasília belt, Central Brazil: a review. Lithos 46: 463-483.
- Pimentel, M.M., Dantas, E.L., Fuck, R.A., Armstrong, R. A., 2003. Shrimp and conventional U-Pb age, Sm-Nd isotopic characteristics and tectonic significance of the k-rich Itapuranga Suite in Goiás, Central Brazil. Annals of the Brazilian Academy of Sciences. 75, 97-108.
- Pinho, M. A. S. B., 2001. Petrografia geoquímica e geocronologia do Magmatismo Bimodal paleoproterozóico ocorrente no Norte do Estado de Mato Grosso. Tese (Doutorado em

Geociências) – Instituto de Geociências, Universidade Federal do Rio Grande Do Sul. Porto Alegre. p. 162.

- Pinheiro, B.L.S., Moura, C.A.V., Gorayeb, P.S.S. 2011. Proveniência das rochas metasedimentares do Cinturão Araguaia com base em datações Pb-Pb em zircão e idadesmodelo Sm-Nd. Rev. Bras. Geociencias 41, 304–318.
- Piuzana, D., Pimentel, M.M., Fuck, R.A., Armstrong, R., 2003a. Neoproterozoic granulite facies metamorphism and coeval granitic magmatism in the Brasilia Belt, Central Brazil: regional implications of new SHRIMP U–Pb and Sm–Nd data. Precambrian Research 125, 245–273.
- Pupin, J.P., 1980. Zircon and granite petrology. Contrib. Mineral. Petrol. 73, 207-220.
- Rapela, C. W., Pankhurst, R. J., Casquet, C., Baldo, E., Saavedra, J., Galindo, C., and Fanning, C. M., 1998. The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Co´rdoba, in Pankhurst, R. J., and Rapela, C. W., editors, The Proto-Andean Margin of Gondwana: Geological Society, London, Special Publications, 142, 181–217.
- Rapela, C.W., Pankhurst, R.J., Casquet, C., Fanning, C.M., Baldo, E.G., González-Casado,
 J.M., Galindo, C., Dahlquist, J., 2007. The Río de la Plata craton and the assembly of
 SW Gondwana. Earth-Science Reviews 83, 49–82.
- Rogers, J.J.W., 1996. A history of the continents in the past three billion years. Journal of Geology 104, 91–107.
- Rubatto, D. 2017. Zircon: The Metamorphic Mineral: Methods and Applications. Petrochronology
- Schmitt, R.S., Fragoso, R.A., Collins, A.S. 2018. Suturing Gondwana in the Cambrian: Orogenic Events of the Final Amalgamation. Springer International Publishing AG, part

of Springer Nature 2018 S. Siegesmund et al. (eds.), Geology of Southwest Gondwana, Regional Geology Reviews.

- Seer H.J., 1985. Geologia, deformação e mineralização de cobre no complexo vulcanosedimentar de Bom Jardim de Golás. MSc Dissertation, UnB, Brasilia, 190 p.
- Silva, M.F., 2018. Evolução Tectônica de Rift para Margem Passiva da Faixa Paraguay -Mato Grosso, Brasil Central. Instituto de Geociências. Universidade de Brasília. Tese de Doutorado 144 (1v), 198p.
- Silva, M.F., Dantas, E.L., Vidotti, R.M. Shortening history of the Neoproterozoic oroclinal bending in Paraguay belt, Central Brazil, based on structural interpretation of field work and high resolution aerogeophysical data. Journal of South American Earth Sciences 103, 103043, 2020.
- Soares, J. E., Berrocal, J., Fuck, R. A., Mooney, W. D., Ventura, D. B. R., 2006. Seismic characteristics of central Brazil crust and upper mantle: A deep seismic refraction study. Journal of Geophysical Research, Solid Earth, 111, 12302.
- Stern, R.J. 1994. Arc-assembly and continental collision in the Neoproterozoic African orogen: implications for the consolidation of Gondwanaland. Annu. Rev. Earth Planet Sci. 22, 319–351.
- Suriano, J., Limarino, C.O., Tedesco, A.M., Alonso, M.S. 2014. Sedimentation model of piggyback basins: cenozoic examples of san juan precordillera, Argentina. Geological Society of London Special Publications 399, 221–244.
- Tassinari, C.C.G., Macambira, M.J.B., 1999. Geocronological provinces of the Amazonian Craton. Episodes 22,174-182.
- Tohver, E., D'Agrella-Filho, M.S., Trindade, R.I.F., 2006. Paleomagnetic record of Africa and South America for the 1200–500 Ma interval, and evaluation of Rodinia and Gondwana assemblies. Precambrian Research 147, 193–222.

- Tohver, E., Trindade, R. I. F., Solum, J. G., Hall, C. M., Riccomini, C., and Nogueira, A. C., 2010. Closing the Clymene Ocean and Bending a Brasiliano belt: Evidence for the Cambrian formation of Gondwana from southeast Amazon Craton. Geology, 38, 267– 270.
- Tohver, E., Cawood, P. A., Rossello, E. A., and Jourdan, F., 2012. Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: Evidence from the Sierras Australes of the southernmost Rio de la Plata Craton, Argentina. Gondwana Research, 21, 394–405.
- Tohver E., Trindade R.I.F., 2014. Comment on "Was there na Ediacaran Clymene Ocean in central South America?" By Umberto Giuseppe Cordani, Marcio Martins Pimentel, Carlos Eduardo Ganade de Araújo, Miguel Angelo Stipp Basei, Reinhardt Adolfo Fuck, and Vicente Antonio Vitório Girardi. American Journal of Science, 313, 517-539.
- Trindade, R. I. F., Font, E., D'Agrella-Filho, M. S., Nogueira, A. C. R., and Riccomini, C., 2003. Low-latitude and multiple geomagnetic reversals in the Neoproterozoic Puga cap carbonate, Amazon Craton. Terra Nova, 15, 441–446.
- Trindade, R. I. F., D'Agrella-Filho, M. S., Epof, I., and Brito Neves, B. B., 2006. Paleomagnetism of Early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana. Earth and Planetary Science Letters, 244, 361–377.
- Tokashiki, C. C. & Saes, G. S. 2008. Revisão estratigráfica e faciologia do Grupo Cuiabá no alinhamento Cangas-Poconé, baixada Cuiabana, Mato Grosso. Revista Brasileira de Geociências 38, 661-675.
- Vasconcelos, B.R. 2018. Proveniência sedimentar do Grupo Cuiabá na Faixa Paraguay meridional. Dissertação de doutorado. Instituto de Geociências. Universidade de Brasília.

- Wen, B., Evans, D.A.D., Anderson, R.P., McCausland, P.J.A., 2020. Late Ediacaran paleogeography of Avalonia and the Cambrian assembly of West Gondwana. Earth Planet. Sci. Lett.552, 116591.
- Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.P., Greenwood, R.C., Hinton, R., Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli, P.M., Rhede, D., Satoh, H., Schulz-Dobrick, B., Skår, O., Spicuzza, M.J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q., Zheng, Y.F., 2004. Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research 28, 9–39.

Wilson, J.T., 1966. Did the Atlantic close and reopen? Nature 211 (81), 254-271, 676.

ANEXOS ARTIGO 2

Supplemetary Table 5.1 – U-Pb general conditions at Laboratory of Geochronology and Isotope Geochemistry of the Universidade de Brasília - UnB.

Laboratory and Sample Preparation							
Laboratory name	Laboratory of Geochronology and Isotope						
	Geochemistry of the Brasilia University-UnB.						
Sample type/mineral	Zircon						
Sample preparation	Conventional mineral separation, 0.5 cm resin						
	mount, 1 µm polish to finish						
Imaging	BSE, FEI Quanta 450, 10 nA, 20kV, 13.8 mm						
	working distance						
Laser ablation system							
Make, Model and type	ESI/New Wave Research, UP-213, Nd:YAG						

Ablation cell and volume	Low volume cell, ca. 4 cm ³
Laser wavelength (nm)	213 nm
Pulse width (ns)	3 ns
Fluence (J cm ⁻²)	3.0 - 3.5 J cm ⁻²
Repetition rate (Hz)	10 Hz (U-Pb) and 7 Hz (Lu-Hf)
Spot size	25 μm (U-Pb), 40 μm (Lu-Hf)
Sampling mode / pattern	single spot analyses
Carrier gas	100% He, Ar make-up gas combined using a Y-
	piece along the sample transport line close to the
	torch.
Pre-ablation laser warm-up	10 s
(background collection)	
Ablation duration (s)	40 s
Wash-out delay	20 s
Ablation pit depth / ablation	~10 µm pit depth
rate	
Cell carrier gas flow (I min-1)	0.40 I min ⁻¹ He
	ICP-MS Instrument
Make, Model and type	Thermo-Fischer, Neptune, MC-ICP-MS
Sample introduction	Ablation aerosol
RF power (W)	1050 W
Make-up gas flow (I min ⁻¹)	0.7 l min ⁻¹
Detection system	mixed Faraday cups and multiple ion counting
	(MIC) array
Masses measured for U-Pb	Faraday ²³² Th, ²³⁸ U and ²⁰⁶ Pb; MIC ²⁰² Hg, ²⁰⁴ Pb,
	²⁰⁷ Pb and ²⁰⁸ Pb
Masses measured for Lu-hf	Faraday 171, 173, 175, 176, 177, 178, 179, 180
methodology	

Integration time per	#N.A.
peak/dwell times (ms);	
quadrupole settling time	
between mass jumps	
Total integration time per	1.049 s
output data point (s)	
Dead time (ns)	#N.A.
	Data Processing
Gas blank	20 s
Calibration strategy	GJ1 used as primary reference material,
	TEMORA used as secondary/validation
Reference Material info	GJ1 (Jackson et al. 2004, Horstwood et al. 2016)
	Wiedenbeck et al., 1995, 2004
Data processing package	Inhouse U-Pb table (Buhn et al., 2009) and Lu-Hf
used / Correction for LIEF	table (Matteini et al., 2010)
Mass discrimination	Standard-sample bracketing with ²⁰⁷ Pb/ ²⁰⁶ Pb and
	²⁰⁶ Pb/ ²³⁸ U ratios normalized to reference material
	GJ1
Common-Pb correction,	none
composition and uncertainty	
Uncertainty level and	Ages are quoted at 2s absolute, propagation is
propagation	by quadratic addition. Excess variance and age
	uncertainty of reference material are propagated
	where appropriate.

Supplementary Table 2 - ⁴⁰Ar/³⁹Ar step-heating analytical results of biotite and muscovite separates from samples AL01 and AL19, respectively.

Sample AL01- biotite

Cum.

 $(J Value = 0.00204249 \pm 0.07)$

Step	% ³⁹ A	40 Ar* (fA ± %1 σ)	$^{39}Ar_k$ (fA ± %1 σ)	38 Ar _{cl} (fA ±%1 σ)	³⁷ Ar	ca (f	Α ± %1σ)	³⁶ Ar _{atr}	$m (fA \pm \% 1\sigma)$	K/Ca	t (±2σ)	% ⁴⁰ Ar*			Age ±	2σ
	r												⁴⁰ Ar*/ ³⁹	PAr (±2σ)	(Ma)
1	4.15	977.358 ± 0.02	7.159 ± 0.29	0.500 ± 3.62	0.003	5 ±	>100%	0.0455	± 1.12	1071	±>100%	98.62	136.504	± 0.801	444.68	± 2.32
2	9.53	2740.071 ± 0.01	$16.458~\pm~0.11$	$1.204 ~\pm~ 1.95$	0.002	6 ±	>100%	0.0189	± 2.77	3256	±>100%	99.79	166.485	± 0.378	529.25	± 1.04
3	3.60	969.277 ± 0.34	$6.213 \hspace{0.1in} \pm \hspace{0.1in} 0.74$	0.526 ± 3.83	0.098	2 ±	30.76	6.2778	± 0.13	34	± 21	34.09	156.006	± 2.527	500.14	± 7.08
4	4.82	1421.283 ± 0.12	$8.322~\pm~0.51$	$0.631 \hspace{.1in} \pm \hspace{.1in} 4.50$	0.025	9 ±	>100%	1.1814	± 0.39	170	$\pm > 100\%$	80.11	170.785	± 1.798	541.06	± 4.93
5	5.53	1642.938 ± 0.07	$9.555~\pm~0.44$	$0.683 \hspace{0.1 cm} \pm \hspace{0.1 cm} 2.85$	0.000	0 ±	0.00	0.6429	± 0.45	/	± /	89.53	171.934	± 1.527	544.21	± 4.17
6	9.52	2858.894 ± 0.04	16.439 ± 0.26	1.229 ± 2.33	0.000	0 ±	0.00	0.4639	± 0.64	/	± /	95.37	173.905	± 0.906	549.59	± 2.47
7	6.19	1862.706 ± 0.06	$10.694~\pm~0.40$	$0.782 \ \pm \ 2.83$	0.000	0 ±	0.00	0.1192	± 2.15	/	± /	98.12	174.166	± 1.398	550.30	± 3.81
8	8.93	2667.023 ± 0.04	15.423 ± 0.28	1.090 ± 2.26	0.000	0 ±	0.00	0.1146	± 2.231	/	± /	98.73	172.915	± 0.966	546.89	± 2.64
9	13.68	4138.081 ± 0.03	23.632 ± 0.19	1.734 ± 1.72	0.000	0 ±	0.00	0.1116	± 2.38	/	± /	99.19	173.681	± 0.655	548.98	± 1.79

212

10	12.69	3813.823	± 0.02	21.92 ⁴ ± 0.11	1.586 ±	1.70	0.0242 0	±	71.04	0.0878	± 1.98	479	±>100%	99.31	173.955	± 0.383	549.72	± 1.04
11	9.68	2884.097	± 0.02	16.721 ± 0.15	1.209 \pm	1.97	0.0000	±	>100%	0.0337	± 4.79	/	± /2	99.65	172.475	± 0.522	545.69	± 1.43
12	3.88	1148.879	± 0.05	$6.703 ~\pm~ 0.33$	0.444 ±	4.57	0.0646	±	22.40	0.0135	± 12.44	55	± 25	99.65	171.394	± 1.140	542.73	± 3.12
13	6.67	1971.451	± 0.03	11.524 ± 0.21	$0.799 \ \pm$	2.87	0.0449	±	36.16	0.0179	± 9.09	136	± 98	99.72	171.070	± 0.709	541.84	± 1.94
14	0.93	282.834	± 0.20	1.606 ± 1.42	$0.103 \ \pm$	13.56	0.0146	±	98.32	0.0041	± 38.03	58	$\pm > 100\%$	99.56	176.049	± 5.029	555.42	± 13.66
15	0.20	51.494	± 1.07	0.350 ± 7.03	$0.000 \pm$	00.00	0.0532	±	26.92	0.0002	±>100%	3	± 2	99.87	147.022	± 20.920	474.80	± 59.42

Sample AL19 – muscovite

 $(J Value = 0.00185630 \pm 0.00000297)$

	Cum.															
Step	% ³⁹ A	40 Ar* (fA ± %	1σ) ³⁹ Ar _k (fA ± %1 σ)	38 Ar _{cl} (fA ±%1 σ)	37 Ar _{ca} (fA ± %1 σ)	$^{36}Ar_{atm}$ (fA ± %1 σ)	K/Ca (±2σ)	% ⁴⁰ Ar*		$Age\pm 2\sigma$						
	r								$^{40}{\rm Ar}^{*/39}{\rm Ar}$ (±2 σ)	(Ma)						
1	0.92	124.141 ± 0.20	$5 0.618 \ \pm \ 3.21$	0.000 ± 0.00	0.0000 ± 0.00	0.0977 ± 1.04	/ ±/	80.96	200.657 ± 12.923	572.50 ± 31.61						
2	46.40	5823.883 ± 0.0	$1 31.313 \pm 0.10$	0.000 ± 0.00	0.2006 ± >100%	0.1859 ± 0.59	82.7 ±>100%	99.05	185.989 ± 0.385	536.26 ± 0.96						
3	10.77	1352.571	± 0.07	$7.272 ~\pm~ 0.30$	0.000 ± 0.00	0.0000	± 0.00	0.0207	± 2.13	/	± /	99.54	186.007	± 1.138	536.31	± 2.84
----	-------	----------	------------	--	------------------	--------	---------	--------	---------	------	---------------	-------	---------	---------	--------	---------
4	12.31	1545.393	± 0.06	8.307 ± 0.18	0.000 ± 0.00	0.1010	± >100%	0.0189	± 3.18	43.6	$\pm > 100\%$	99.63	186.043	± 0.722	536.40	± 1.80
5	10.21	1316.946	± 0.07	$6.890 \hspace{0.1in} \pm \hspace{0.1in} 0.23$	0.000 ± 0.00	0.0000	± 0.00	0.0416	± 2.12	/	± /	99.06	191.132	± 0.920	549.05	± 2.28
6	1.38	180.842	± 0.52	0.929 ± 1.97	0.000 ± 0.00	0.1128	± >100%	0.0019	± 22.83	4.4	± 14.2	99.69	194.658	± 7.930	557.77	± 19.55
7	3.13	393.635	± 0.24	2.113 ± 0.68	0.000 ± 0.00	0.0982	± >100%	0.0072	± 6.11	11.4	± 31.0	99.45	186.248	± 2.678	536.91	± 6.68
8	4.81	616.227	± 0.15	3.244 ± 0.54	0.000 ± 0.00	0.0000	± 0.00	0.0111	± 4.93	/	± /	99.46	189.930	± 2.136	546.07	± 5.30
9	3.03	384.426	± 0.24	2.048 ± 0.79	0.000 ± 0.00	0.0000	± 0.00	0.0030	± 15.13	/	± /	99.76	187.700	± 3.113	540.53	± 7.75
10	2.66	335.920	± 0.28	1.794 ± 0.93	0.000 ± 0.00	0.1094	± >100%	0.0027	± 22.92	8.7	± 25.5	99.75	187.159	± 3.641	539.18	± 9.07
11	1.40	170.573	± 0.55	0.945 ± 2.51	0.000 ± 0.00	0.0614	± >100%	0.0014	± 41.55	8.2	± 38.1	99.75	180.399	± 9.263	522.26	± 23.29
12	2.98	381.535	± 0.25	2.011 ± 0.75	0.000 ± 0.00	0.0226	± >100%	0.0027	± 16.69	47.1	±>100%	99.78	189.715	± 2.997	545.54	± 7.44

6. CONSIDERAÇÕES FINAIS

A partir da junção dos dados apresentados, é possível sugerir que o ambiente tectônico estabelecido é associado a um novo evento colisional na porção central da Província Tocantins, uma vez que não está ligado ao último evento de fechamento registrado em 620 Ma. Aproximadamente em 555 Ma, tem-se a cristalização da suíte quartzo monzodiorítica(apinítica)/granodiorítica, que apresenta características de magmas tipicamente gerados a partir do fim do evento de subducção (tipo de arco magmático), possibilitando magmatismo derivado do manto litosférico enriquecido por fluidos derivados da placa oceânica descendente. Por volta de 515 Ma, tem-se o alojamento de uma suíte monzogranítica proveniente do processo de delaminação litosférica em contexto de descompressão/colapso do orógeno.

O magma mais jovem representa transição entre um magma shoshonítico (high K) e um magma com afinidade tipo A (intra-placa). As duas suítes não apresentam petrogênse associada, porém ambas se desenvolvem relacionadas ao processo de fusão parcial do manto litosférico enriquecido. O enriquecimento em elementos incompatíve is ocorreu graças ao ambiente de subducção propício para a adição de fluidos derivados da placa descendente. Portanto, o evento tectônico que gerou a suíte mais antiga tem um importante papel em fornecer condições favoráveis de enriquecimento do manto litosférico da região, mesmo após 40 Ma.

As rochas metassedimentares também registram evento colisional pós 600 Ma, quando ocorre a deposição de unidade psamítica sin-orogênica em bacia de *foreland*. O maior pico de idades de zircão ocorre em 620 ± 30 Ma, representando aproximadamente 60% dos grãos analisados. Os sedimentos jovens e abundantes são interpretados como

215

sendo basicamente provenientes das unidades pertencentes principalmente ao Arco Magmático de Goiás (~610 – 800 Ma; Pimentel *et al.*, 1996, 1999, 2003; Laux *et al.*, 2004; Matteini *et al.*, 2010), complexos granulíticos da Faixa Brasília (630 e 660 Ma; Della Giustina *et al.*, 2009, 2011). A idade máxima de deposição da bacia é definida em 594 Ma, corroborando com o padrão distribuição de zircão detrítico típico de bacia synorogênica.

O Lineamento Transbrasiliano desempenha papel muito importante nos processos tectônicos observados na área. O sistema de falhas transcorrentes do LTB possivelme nte utilizou a zona de fraqueza da região para a implantação das falhas transcorrentes entre os dois terrenos tardiamente acrescidos. O alojamento da suíte apinítica ocorreu principalmente devido à substituição da zona de subducção/sutura pelo sistema de falhas transformantes, que facilitou a captura tardia de magmas mantélicos em maiores profundidades e a subida do manto subcontinental litosférico enriquecido. A rápida taxa de resfriamento (25°C/Myr) do pluton granodiorítico indica *uplift* associado a zona de fraqueza do LTB, que é descrita localmente como Falha Serra Negra (Curto *et al.*, 2014, 2015). A zona de falhas transcorrentes pode ter atuado também como potencializador do último pulso sedimentar que possibilitou a erosão e sedimentação dos grãos mais jovens obtidos, datados até o fim do Ediacarano (590 Ma), caracterizando a idade máxima de deposição destas rochas.

De maneira sintetizada, concluímos que as rochas magmáticas e metassedimentares investigadas registram ambiente suas gêneses em colisional/orogênico associado ao avanço do consumo do Oceano Clymene. A evidência da existência de um oceano que tem a sua evolução final no fim do Ediacarano se torna mais consistente, podendo-se inferir que se trata de oceano remanescente que foi consumido por volta de 590 Ma em um evento colisional tardio. Portanto, a gênese das

216

rochas estudadas não ocorre associada ao último evento previamente registrado em 620 Ma. Neste contexto, podemos sugerir que a região de *foreland* do orógeno Paraguai serviu como bacia que recebeu todo o material recém gerado pelo consumo do próprio oceano. Sugere-se um evento tardio de aglutinação após 600 Ma entre o paleo-Arco Magmático de Goiás (ou os terrenos a leste do Cráton Amazônico) e o Craton Amazônico na região central do Gondwana Oriental.

7. REFERÊNCIAS

- Almeida, F.F.M., 1984. Província Tocantins, setor sudoeste. In: Almeida, F.F.M. de; Hasui, Y. (Coord.). O Pré-Cambriano do Brasil. São Paulo, Edgard Blücher, 265-281.
- Alvarega, C.J.S., Trompette R., 1993. Evolução Tectônica Brasiliana da Faixa Paraguai: a estruturação da região de Cuiabá. Revista Brasileira de Geociências, 23, 18-30.
- Arcanjo, S.H.S., 2002. Evolução Geológica das seqüências do Embasamento na porção sul do Cinturão Araguaia–Região de Paraíso do Tocantins. Tese de Doutorado. Instituto de Geociências, Universidade Federal do Pará, Belém, 181 p.
- Arcanjo, S.H.S., Moura, C.A.V., 2000. Geocronologia das rochas do embasamento do setor meridional do Cinturão Araguaia na região de Paraíso do Tocantins (TO). Revista Brasileira de Geociências 30, 665-670.
- Boger, S.D., Miller, J.M., 2004. Terminal suturing of Gondwana and the onset of the Ross-Delamerian Orogeny: the cause and effect of an Early Cambrian reconfiguration of plate motions. Earth Planet Science Lett 219:35–48.
- Cawood, P.A., McCausland P.J.A. Dunning G.R., 2001. Opening Iapetus: constraints from the Laurentia margin in Newfoundland. Geol. Soc. Am. Bull., 113, 443–453.
- Cawood, P.A., 2005. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Review 69:249–279.
- Cawood, P. A., & Buchan, C., 2007. Linking accretionary orogenesis with supercontinent assembly. Earth Science Reviews, 82(3-4), 217-256.
- Collins, A.S., Pisarevisk, S.A., 2005. Amalgamating eastern Gondwana: The Evolution of the Circum-Indian Orogens. Earth-Science Reviews 71, 229-270.

218

- Condie, K.C., 2011. Earth as an Evolving Planetary System, Second Edition. Elsevier, Amsterdam. 558 pp.
- Cordani, U. G., Teixeira, W., D'Agrella-Filho, M. S., Trindade, R. I., 2009. The position of the Amazonian Craton in supercontinentes. Gondwana Research, 15, 396–407.
- Cordani U.G., Brito Neves B.B., Fuck R. A., Porto R., Thomaz Filho A., Cunha F.M.B., 2010. Estudo preliminar de integração do Pré-Cambriano com os eventos tectônicos das Bacias Sedimentares Brasileiras (Republicação). Boletim de Geociências da Petrobras, 17, 137-204
- Cordani, U.G., Pimentel, M.M., Araújo, C.E.G., Fuck R.A., 2013. The significance of the Transbrasiliano-Kandi tectonic corridor for the amalgamation of West Gondwana. Brazilian Journal of Geology 43, 583-597.
- CPRM. 2017. Carta Geológica-Geofísica Folha SE.22-V-B-I Bom Jardim de Goiás. Programa gestão estratégica da geologia, da mineração e da transformação mineral carta Geológica - Geofísica escala 1:100.000.
- Curto, J.B., Vidotti R.M., Fuck, R.A., Blakel, R.J., 2014. The tectonic evolution of the Transbrasiliano Lineament in northern Paraná Basin, Brazil, as inferred from aeromagnetic data. J. Geophys. Res. 119, 1544–1562.
- Curto, J., Vidotti R.M., Blakely, R.J., Fuck, R.A., 2015. Crustal framework of the northwest Paraná Basin, Brazil: insights from joint modeling of magnetic and gravity data. Tectonophysics 655, 58-72.
- D'agrella Filho M.S., Trindade R.I.F., Siqueira R., Ponte-Neto C.F., Pacca I.I.G., 1998. Paleomagnetic Constraints on the Rodinia Supercontinent: Implications for tis Neoproterozoic Break-up and the formation of Gondwana. International Geology Review, 40, 171-188.

- Dalziel, I. W. D., 1975. Scotia Arc Tectonics Project, 1969–1975. Antarct. J. U.S. 10 70– 81.
- Dalziel, I.W.D., 1997. Neoproterozoic Paleozoic geography and tectonics: Review, hypothesis and environmental speculation. Bull. Geol. Soc. Am. 109, 16 42.
- Dantas, E. L., Araujo Filho, J. O., Fuck, R., Oliveira, C., Chiarini. M.F., Almeida, T., 2007. O sistema de cisalhamento transcorrente Porangatu, Provincia Tocantins, XI SNET, Natal. p.199-201.
- Dantas, E.L., Alvarenga, C.J.S. de, Santos, R.V., Pimentel, M.M., 2009. Using Nd isotopes to understand the provenance of sedimentary rocks from a continental margin to a foreland basin in the Neoproterozoic Paraguay belt, Central Brazil. Precambrian Research, 170, 1-12.
- Dantas, E.L., Fuck, R.A., Vidotti, R.M., Roig, H.L., Almeida, T., 2017. Lineamento Transbrasiliano: A grande cicatriz da Plataforma Sul Americana. In: 15° Simpósio de Geologia da Amazônia, 2017, Belém. Anais. Belém: SBG Núcleo Norte, p. 18-21.
- Della Giustina, M.E., Oliveira, C.G., Pimentel, M.M., Melo, L., V., Fuck, R.A., Dantas, E.L., Buhn, B., 2009. U-Pb and Sm-Nd constraints on the nature of the Campinorte sequence and related Palaeoproterozoic juvenil orthogneisses, Tocantins Province, central Brazil. In: Palaeoproterozoic Supercontinents and Global Evolution. Geological Society, London, 323, 255-269.
- Della Giustina, M.E., Pimentel, M.M., Ferreira Filho, C.F., Holanda, M.H.B.H., 2011. Dating coeval mafic magmatism and ultrahigh temperature metamorphism in the Anápolis Itaucú Complex, central Brazil. Lithos, 124, 82-201.

- Fairhead, J.D., Maus S., 2003. Champ satellite and terrestrial magnetic data help define the tectonic model for South America and resolve the lingering problem of the pre-break-up fit of the South Atlantic Ocean. The Leading Edge, 22, 8, 779-783.
- Faleiros, F.M., Campanha, G.A.C., Martins, L., Vlach, S.R.F., Vasconcelos, P.M., 2011.
 Ediacaran high-pressure collision metamorphism and tectonics of the southern
 Ribeira Belt (SE Brazil): evidence for terrane accretion and dispersion during
 Gondwana assembly. Precambrian Res 189:263–291.
- Frimmel, H. E., Frank, W., 1998. Neoproterozoic tectono-thermal evolution of the Gariep Belt and its basement, Namibia and South Africa. PrecambrianResearch, 90, 1– 28.
- Frimmel, H.E., Basei, M.S., Gaucher, C., 2011. Neoproterozoic geodynamic evolution of SW-Gondwana: a southern African perspective. Int J Earth Sci 100:323–354.
- Fuck, R. A., Dantas, E.L.; Vidotti, R.M., Roig, H. L., Almeida, T., 2013. Deformação intracontinental em siste-mas transcorreentes: o caso do Lineamento Transbrasiliano, geometria, idade e significado, In: 140 Simpósio Nacional de Estudos Tectônicos. Chapada dos Guimarães. Sociedade Brasileira de Geologia. p. 1-3.
- Ganade de Araujo, C.E., Weinberg, R.F. Cordani, U.G., 2014. Extruding the Borborema Province (NE-Brazil): a two-stage Neoproterozoic collision process. Terra Nova, 26:157 - 168.
- Gastil, G., 1960. Continents and mobile belts in the light of mineral dating. 21st International Geological Convention, Norden, 1960. Proceedings part 9, 162-169.
- Gaucher, C., Boggiani, P. C., Sprechmann, P., Sial, A. N., Fairchild, T., 2003. Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumba groups

(Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Research, 120, 241-278.

- Godoy, A. M., Manzano, J. C., Ruiz, A. S., Araújo L. M. B., 2007. Os Granitóides Brasilianos da Faixa de Dobramentos Paraguai, MS e MT. Geologia USP, Série Científica, 7, 29–44.
- Godoy, A. M., Pinho, F. E. C., Manzano, J. C., de Araújo, L. M. B., da Silva, J. A., Figueiredo, M., 2010. Estudos isotópicos das rochas granitóides neoproterozoicas da Faixa de Dobramento Paraguai. Brazilian Journal of Geology, 40, 380–391.
- Goscombe, B., Gray, D. R., Armstrong, R., Foster, D. A., Vogl, J., 2005. Event geochronology of the Pan-African Kaoko Belt, Namibia. Precambrian Research, 140, 1–41.
- Goscombe, B., Gray, D.R., 2007. The Coastal Terrane of the Kaoko Belt, Namibia: outboard arc-terrane and tectonic significance. Precambrian Res 155:139–158.
- Goscombe, B., Foster, D.A., Gray, D., Wade, B., Marsellos, A., Titus, J., 2017. Deformation correlations, stress field switches and evolution of an orogenic intersection: the Pan-African Kaoko-Damara orogenic junction. Namibia, Geosci Front 8(6):1187–1232.
- Gray, D.R., Foster, D.A., Meert, J.G., Goscombe, B.D., Armstrong, R., Trouw, R.A.J., Passchier, C.W., 2008. A Damara orogen perspective on the assembly of southwestern Gondwana. Geol Soc Lond (Spec Publ) 294:257–278.
- Hasui, Y.; Tassinari, C.C.G.; Siga Jr, O.; Teixeira, W.; Almeida, F.F.M.; Kawashita, K.,
 1980. Idades Rb-Sr e K-Ar do Centro Norte do Brasil e seu significado geológicogeotectônico. Anais do congresso brasileiro de geologia. Pg. 2659.
- Hasui, Y., 2010. A grande colisão Pré-cambriana do sudeste brasileiro e a estruturação regional. Geociências, São Paulo, v. 29, n. 2, p. 141-169.

- Heilbron, M., Valeriano, C.M., Tassinari, C.C.G., Almeida, J., Tupinambá, M., Siga, O., Trouw, R., 2008. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions. Geololical Society of London (Special Publishes), 294:211–237.
- Hoffman, P. F., 1991. Science 252, 1409–1412.
- Hoffman, P. F., Kaufman, A.J., Halverson, G.P., Schrag, D.P., 1998. A Neoproterozoic Snowball Earth. Science, 1342.
- Kennedy, W. Q., 1964. The structural differentiation of Africa in the Pan-African (±500 m.y.) tectonic episode. Research Institute Afr. Geol. University of Leeds, 48-49.
- Kröner, A., Cordani, U., 2003. African, southern Indian and South American cratons were not part of the Rodinia supercontinent: evidence from field relationships and geochronology. Tectonophysics, 375, 325-352.
- Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waelea, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lul, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., Vernikov-sky, V., 2008. Assembly, configution, and break-up history of Rodinia: A synthesis. Precambrian Research 160: 179–210.
- Marini, O J.; Fuck, R. A.; Dardenne, M. A.; Danni, J.C.M., 1984. Província Tocantins-Setores Central e Sudeste. In: Almeida, F.F.M. & Hasui, Y. ed. O Pré-Cambriano do Brasil. São Paulo, Edgard Blucher. p. 205-264.
- Martin, H., 1987. Petrogenesis of Archaean trondhjemites, tonalites and granodiorites from eastern Finland: major and trace element geochemistry. Journal of Petrology 28 (5), 921-953.
- Martin, H., 1988. Archaean and modern granitoids as indicators of changes in geodynamic processes. Rev. Bras. Geocienc. 17, 360–365.

- Martin, H., 1993. The mechanisms of petrogenesis of the Archaean continental crust comparison with modern processes. Lithos 30, 373–388.
- Martin, H., 1999. The adakitic magmas: modern analogues of Archaean granitoids. Lithos 46 (3), 411-429.
- Martin, H., Smithies, R.H., Rapp, R., Moyen, J.-F., Champion, D., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relations hips and some implications for crustal evolution. Lithos 79, 1-24.
- Martin, H., Moyen, J.-F., 2002. Secular changes in TTG composition as markers of the progressive cooling of the Earth. Geology 30, 319–322.
- McDermott, F., Harris, N.B. W., Hawkesworth, C. J., 2000. Geochemical constraints on the petrogenesis of Pan-African A-type granites in the Damara Belt, Namibia. In:
 MILLER, R. MCG. (ed.) Henno Martin Commemorative Volume. Communications of the Geological Survey of Namibia, 12, 139–148.
- McGee, B., Collins, A.S., Trindade, R.I.F., Payne, J., 2015. Age and provenance of the Cryogenian to Cambrian passive margin to foreland basin sequence of the northern Paraguay Belt, Brazil. GSA Bulletin, 127, 76-86.
- McWilliams, M.O., McElhinny, M.W., 1980. Late Precambrian paleomagnetism in Australia in the Adelaide geosyncline. J. Geol. 88, 1 26.
- McWilliams, M.O., 1981. Palaeomagnetism and Precambrian tectonic evolution of Gondwana. In: Kro⁻ner, A. (Ed.), Precambrian Plate Tectonics. Elsevier, Amsterdam, pp. 649–687.
- Meert, J.G., 1999. Some perpectives on the assembly of Gondwana. Mem. Geol. Soc. India 44, 45 – 58.

- Meert, J.G., 2001. Growing Gondwana and rethinking Rodinia: a paleomagnetic perspective. Gondwana Research 4, 279–288.
- Meert J.G., 2003. A synopsis of events related to theassembly of eastern Gondwana. Tectonophysics, 362, 1-40.
- Meert, J.G., Torsvik, T.H., 2003. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 375, 261–288.
- Meert, J.G., Lieberman, B.S., 2008. The Neoproterozoic assembly of Gondwana and its relation to the Ediacaran-Cambrian radiation. Gondwana Research. 14 (5-21).
- Medlicott, H. B. and Blandford, W.T., 1879. A Manual of the Geology of India (Calcutta, Geol. Survey, India.
- Meira, V.T., Garcia-Casco, A., Juliani, C., Almeida, R.P., Schorscher, J.H.D., 2015. The role of intracontinental deformation in supercontinente assembly: insights from the Ribeira Belt, Southeastern Brazil (Neoproterozoic West Gondwana). Terra Nova, Vol 27, No. 3, 206–217.
- Merdith, A.S., Collins, A.S., Williams, S.E., Pisarevsky, S., Foden, J.D., Archibald, D.B.,
 Blades, M.L., Alessio, B.L., Armistead, S., Plavsa, D., Clark, C., Müller, R.D.,
 2017. A full-plate global reconstruction of the Neoproterozoic. Gondwana
 Research 50:84–134
- Moyen, J.F., Martin, H., 2012. Forty years of TTG research. Lithos 148, 312-336.
- Moyen, J.F., Laurent, O., Chelle-Michou, C., Couzinié, S., Vanderhaeghe, O., Zeh, A., Villaros, A. & Gardien, V., 2017. Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos 277, 154-177.
- Moyen, J.F., Laurent, O., 2017. Archaean tectonic systems: A view from igneous rocks. Lithos 302-303.

- Nance, D.R., Murphy, J.B, Santosh, M., 2014. The supercontinent cycle: A retrospective essay. Gondwana Research 25, 54-29.
- Nascimento, D.B., Schmitt, R.S., Ribeiro, A., Trouw, R.A.J., Passchier, C.W., Basei, M.S., 2017. Depositional ages and provenance of the Neoproterozoic Damara Supergroup (northwest Namibia): implications for the Angola-Congo and Kalahari cratons connection. Gondwana Research 52:153–171.
- Oriolo, S., Oyhantçabal, P., Wemmer, K., Siegesmund, S., 2017. Contemporaneous assembly of Western Gondwana and final Rodinia break-up: Implications for the supercontinent cycle. Geoscience Frontiers. 8 (1431-1445).
- Pastor-Galán, D., Nance, R.D., Murphy, J.B., Spencer, C.J., 2018. Supercontinents: Myths, mysteries and milestones. Geological Society London Special Publications, 470.
- Pereira, I., Storey, D.C., Darling, J.R., Moreira, H., Strachan, R.A., Cawood, P., 2021. Detrital rutile tracks the first appearance of subduction zone low T/P paired metamorphism in the Palaeoproterozoic. Earth and Planetary Sciences Letters 570, 117069.
- Pimentel, M.M.; Fuck, R.A., 1992. Neoproterozoic crustal accretion in central Brazil. Geology, 20:375-379.
- Pirajno, F., 2010. Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay-Sayan (Siberia). Journal of Geodynamics, 50:325-346.
- Pisarevsky S. A., Murphy J. B., Cawood P. A., and Collins A. S., 2008. Late Neoproterozoic and Early Cambrian palaeogeography: models and problems, in Pankhurst, R. J., Trouw, R. A. J., de Brito-Neves, Region. Geological Society, London, Special Publications, 294, 9–31.

- Ramos V.A., Vujovich G., Martino R., Otamendi J., 2010. Pampia: a large Crátonic block missing in the Rodinia supercontinent. Journal Geodynamics. 50, 243-255.
- Rapela, C.W., Pankhurst, R.J., Casquet, C., Baldo, E., Saavedra, J., Galindo, C., Fanning C.M., 1998. The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Cordoba. In: Pankhurst R.J., Rapela C.W., (eds.). The proto-Andean Margin of Gondwana. Geological Society of London Special Publication, 142, p. 181-217.
- Rapela, C.W., Fanning, C.M., Casquet, C., Pankhurst, R.J., Spalletti, L., Poiré, D., Baldo, E.G., 2011. The Rio de la Plata craton and the adjoining Pan-African/brasiliano terranes: their origins and incorporation into south-west Gondwana. Gondwana Research, 20:673–690.
- Rogers, J.J.W., 1996. A history of the continents in the past three billion years. Journal of Geology 104, 91–107.
- Schmitt, R.S., Trouw, R.A.J., Van Schmus, W.R., Pimentel, M.M. 2004. Late amalgamation in the central part of West Gondwana: new geochronological data and the characterization of a Cambrian collisional orogeny in the Ribeira Belt (SE Brazil). Precambrian Research, 133:29–61.
- Schmitt RS, Silva EA, Collins AS, Reeves C, Fragoso RA, Richetti PC, Fernandes GL de F, Benedek MR, Costa RL, Assis AP., 2016. Gondwana tectonic evolution recounted through the Gondwana map—IGCP-628. In: Abstracts 35th International Geological Congress, Cape Town.
- Schmitt, R.S., Fragoso, R.A., Collins, A.S., 2018. Suturing Gondwana in the Cambrian: Orogenic Events of the Final Amalgamation. Springer International Publishing AG, part of Springer Nature 2018 S. Siegesmund et al. (eds.), Geology of Southwest Gondwana, Regional Geology Reviews.

- Seer, H.J., Nilson, A. A., 1985. Contribuição à geologia das unidades Pré-Cambrianas da região de Bom Jardim de Goiás. In: Simpósio de Geologia do Centro-Oeste. Goiânia, 1985. SBG. p. 267-281.
- Seifert, Th., 2008. Metallogeny and Petrogenesis of Lamprophyres in the Mid-European Variscides. IOS Press, Amsterdam, 301 pp.
- Shirey, S.B., Hanson, G.N., 1984. Mantle-derived Archaean monzodiorites and trachyandesites. Nature 310, 222–224.
- Stern, R.A., Hanson, G.N., 1991. Archaean High-Mg granodiorites: a derivative of light rare earth enriched monzodiorites of mantle origin. Journal of Petrology 32, 201– 238.
- Stern, R.A., Hanson, G.N., Shirey, S.B., 1989. Petrogenenesis of mantle-derived, LILEenriched Archean monzodiorites and trachyandesites (sanukitoids) in southwestern Superior Province. Canadian Journal of Earth Sciences 26, 1688– 1712.
- Stern, R.J., 1994. Arc-assembly and continental collision in the Neoproterozoic African orogen: implications for the consolidation of Gondwanaland. Annu. Rev. Earth Planet Sci. 22, 319–351.
- Stevenson, R., Henry, P., Gariépy, C., 1999. Assimilation-fractional crystallization origin of Archaean sanukitoid suites: Western Superior Province, Canada. Precambrian Research 96, 83–99.
- Tohver, E., Cawood, P. A., Rossello, E. A., Jourdan F., 2012. Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: Evidence from the Sierras Australes of the southernmost Rio de la Plata Craton, Argentina. Gondwana Research, 21, 394-405. Tohver, E., Trindade, R. I. F., Solum, J. G., Hall, C. M., Riccomini, C., and Nogueira, A. C., 2010. Closing the Clymene

Ocean and Bending a Brasiliano belt: Evidence for the Cambrian formation of Gondwana from southeast Amazon Craton. Geology, 38, 267–270.

- Tohver, E., Cawood, P. A., Rossello, E. A., and Jourdan, F., 2012. Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: Evidence from the Sierras Australes of the southernmost Rio de la Plata Craton, Argentina. Gondwana Research, 21, 394–405.
- Tohver E., Trindade R.I.F., 2014. Comment on "Was there na Ediacaran Clymene Ocean in central South America?" By Umberto Giuseppe Cordani, Marcio Martins Pimentel, Carlos Eduardo Ganade de Araújo, Miguel Angelo Stipp Basei, Reinhardt Adolfo Fuck, and Vicente Antonio Vitório Girardi. American Journal of Science, 313, 517-539.
- Trindade, R. I. F., Font, E., D'Agrella-Filho, M. S., Nogueira, A. C. R., and Riccomini, C., 2003. Low-latitude and multiple geomagnetic reversals in the Neoproterozoic Puga cap carbonate, Amazon Craton. Terra Nova, 15, 441–446.
- Trindade, R. I. F., D'Agrella-Filho M. S., Epof I., and Brito Neves B. B., 2006. Paleomagnetism of Early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana. Earth and Planetary Science Letters, 244, 361–377.
- Unrug, R., 1992. The supercontinental cycle and Gondwanaland assembly: component cratons and the timing of su-turing events. Journal of Geodynamics, 16, 215–240.
- Valentine, J.W., 2002. Prelude to the Cambrian explosion. Annual Review of Earth and Planetary Sciences 30, 285-306.
- Veevers, J.J., 2004. Gondwanaland from 650-500Ma assembly through 320 Ma mergers in Pangea to 185-100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth Sci Rev 68: 1-132.

Wilson, J.T., 1966. Did the Atlantic close and reopen? Nature 211 (81), 254-271, 676.

- Windley, B.F., Alexeiev, D., Xiao, W.-J., Kröner, A., Badarch, G., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society of London 64, 31–47.
- Xiao, W.J., Kusky, T., 2009. Geodynamic processes and metallogenesis of the Central Asia and related orogenic belts. Gondwana Research 16, 167–169.
- Zhao, G., Wang, Y., Huang, B., Dong, Y., Li, S., Zhang, G., Yu. S., 2018. Geological reconstruction of the East Asian blocks: From the breakup of Rondinia to assembly of Pangea. Earth-Science Reviews.