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Abstract: In recent years there has been an increasing use of satellite Earth observation (EO) data in
dengue research, in particular the identification of landscape factors affecting dengue transmission.
Summarizing landscape factors and satellite EO data sources, and making the information public are
helpful for guiding future research and improving health decision-making. In this case, a review of the
literature would appear to be an appropriate tool. However, this is not an easy-to-use tool. The review
process mainly includes defining the topic, searching, screening at both title/abstract and full-text
levels and data extraction that needs consistent knowledge from experts and is time-consuming and
labor intensive. In this context, this study integrates the review process, text scoring, active learning
(AL) mechanism, and bidirectional long short-term memory (BiLSTM) networks, and proposes a
semi-supervised text classification framework that enables the efficient and accurate selection of the
relevant articles. Specifically, text scoring and BiLSTM-based active learning were used to replace
the title/abstract screening and full-text screening, respectively, which greatly reduces the human
workload. In this study, 101 relevant articles were selected from 4 bibliographic databases, and a
catalogue of essential dengue landscape factors was identified and divided into four categories: land
use (LU), land cover (LC), topography and continuous land surface features. Moreover, various
satellite EO sensors and products used for identifying landscape factors were tabulated. Finally,
possible future directions of applying satellite EO data in dengue research in terms of landscape
patterns, satellite sensors and deep learning were proposed. The proposed semi-supervised text
classification framework was successfully applied in research evidence synthesis that could be easily
applied to other topics, particularly in an interdisciplinary context.

Keywords: dengue; landscape; satellite Earth observation; deep active learning; natural
language processing

1. Introduction

According to the World Health Organism (WHO), dengue affects over half of the global population,
with an estimated 100–400 million infections each year worldwide [1]. In recent years, dengue has
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been transmitted to new geographical areas in the world, and dengue epidemics are increasing in
frequency and magnitude [2].

The spatial concentration and diffusion of dengue vectors/cases can be affected by weather
conditions and landscape factors (e.g., vegetation, transport, urbanization) at different spatial scales
(e.g., global, regional, and local scales) [3–5]. The advances in satellite Earth observation (EO) readily
benefit the identification of dengue landscape factors by providing a better monitoring of the Earth’s
surface at different spatio-temporal scales, and entomological/epidemiological dengue risk mapping
benefits from the use of satellite EO data [5]. In practice, satellite EO data, combined with weather
data, can be used to predict the likelihood of future dengue epidemics so that preventative measures
can be taken in advance, such as eliminating mosquito-breeding sites. Compared with weather factors,
landscape factors are often more complex as landscape is often related to the vectorial capacity through
vector resting and breeding sites, human–vector encounters or human mobility in different geographic
contexts and at different spatial scales [6]. Several important reviews have covered such information,
for example, Parselia et al. [7] proposed a scoping review that identified studies using satellite EO
data for epidemiological modeling of malaria, dengue and West Nile Virus (WNV) published from
2012 to 2018. However, only 15 studies were identified for dengue where satellite EO data were used
to identify meteorological and environmental factors. Sallam et al. [8] proposed a systematic review
that summarized land cover, meteorological and socioeconomic factors of Aedes habitats, referring to
dengue vectors. Moreover, our previous mapping review [9] focused on the dengue transmission in
urban landscapes, and urban landscape factors derived from satellite EO data, Geographic Information
System (GIS) techniques and survey questionnaires; spatial scales and dengue–landscape relationships
were identified from 78 relevant studies published from inception to 31 December 2019. Despite all
this, there is still a lack of overview on satellite EO data and landscape factors that could be of benefit
to science and society by guiding future studies of disease risk prediction and improving health
decision-making at different spatial scales (e.g., from global to local).

Information updates can be simply conducted by re-running the process of review, which would
mainly include defining the research question, searching for and removing duplicates, title abstract
screening, full-text eligibility and inclusion [10,11]. However, the selection of relevant studies is
time-consuming and is highly dependent on the perception of reviewers, especially for title abstract
screening and full-text eligibility. Under such constrained circumstances, text classification appears
particularly relevant. As a typical topic in natural language processing (NLP), multiple algorithms
in text classification have proved to be efficient in replacing the manual evaluation of bibliographic
records (e.g., titles and/or abstracts) and reducing human workload, such as term weighting [12] and
multiple machine learning (ML) algorithms [13–15]. Recent advances in deep learning (DL) based on
convolutional neutral networks (CNNs) and recurrent neural networks (RNNs) have been used in
text classification [16–18]. Since text classification can be considered as one sequential modelling task,
RNNs have been used more frequently because of their specificity for sequential modelling tasks [16].
One kind of RNN, the long short-term memory (LSTM) performs well in text classification because
it can effectively solve the problems of exploding and vanishing gradients and capture long-term
dependencies in text [19]. The bidirectional LSTM (BiLSTM) is a development of the LSTM and
combines forward hidden and backward hidden layers that often work better than LSTM in text
classification [16]. However, when applying the algorithms above, we need to label sufficiently
good-quality samples for training and validating models, which is quite time-consuming. However,
deep active learning (DAL), integrating active learning (AL) in DL architecture, is able to achieve text
classification based on few labelled data which can minimize the work of human labelling [20–22].
It would seem to be more appropriate to implement text classification based on a new bibliographic
dataset for selecting relevant records, while the labelled data derived from active learning could be
used as training data to train the DL architecture [22].

In this context, focusing on landscape factors affecting dengue transmission and satellite EO
data currently used for identifying landscape factors, this study proposes to build a semi-supervised
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classification framework of literature by integrating the review process and text classification algorithms
and provides an overview of dengue landscape factors and satellite EO data. The proposed
framework allows for rational and effective selection of literature relevant to our objective from
bibliographic databases.

2. Towards a Semi-Supervised Classification Framework of Literature

The framework of semi-supervised text classification integrating the review process and
semi-automatic text classification (Figure 1), includes: (1) defining the research question and specifying
the inclusion criteria (Section 2.1); (2) conducting a board search and removing the duplicates
(Section 2.2); (3) screening titles and abstracts based on text scoring (Section 2.3); (4) preparing relevant
and irrelevant samples, and conducting the BiLSTM-based active learning (Section 2.4); (5) verifying
the performance of text scoring and BiLSTM-based active learning (Section 2.5); and (6) extracting
dengue landscape factors and satellite EO data and charting the results (Section 2.6).

To implement the text scoring in step 3, it is necessary to remove the records that are definitively
irrelevant to our topic, which also reduces the amount of data for the BiLSTM-based active learning
in step 4. It should be noted that the BiLSTM model was developed and implemented based on
titles and abstracts that are different from the full-text assessment in the eligibility step of the review.
The detailed information is presented hereafter and no ethics approval is needed as this method is
based on published journal articles.

2.1. Research Question and Inclusion Criteria

The objective of this study is to provide an overview on landscape factors related to dengue
transmission and satellite EO data used in the identification of dengue landscape factors. Relevant
records should satisfy the following criteria: (1) being an original journal article published in English;
(2) highlighting landscape factors derived from satellite EO data or geographic information system
(GIS) techniques; (3) being applied to dengue cases or dengue vectors; (4) modelling or correlating
dengue with landscape factors. These were defined based on our objective and expert knowledge,
and were used for text scoring and record sample selection for BiLSTM models.

2.2. Board Searches and Removal of Duplicates

The searches were performed from inception to 31 December 2019 in four databases: Science
Direct, Web of Science, PubMed and Scopus, by considering the titles and abstracts of English journal
articles. The queries were formed by combining dengue-related terms (i.e., dengue and Aedes) and
the words related to “remote sensing”, “landscape” and “weather” (i.e., remote sensing, satellite,
earth observation, landscape, land cover, land use, household, dwelling, habitation, precipitation and
temperature) using the Boolean operator “AND” (see more details in Table A1). All search records were
combined together and the duplicate records were removed using the MySQL database. The remaining
records were organized in alphabetical order for further analysis.

2.3. Text Scoring

To efficiently eliminate the definitely-irrelevant records, we used text weighting and text scoring
for ranking all the records. First, we pre-set some terms KEYi (i = 1, . . . , m) and their priority levels
(i.e., high, medium and low) (Table 1) according to the criteria in Section 2.1. Each of them was
randomly assigned a weight value WEIGHTi (i = 1, . . . , m) from the interval of weights that was set
according to its priority level. The higher the priority level of a term, the greater its weight value.
We then extracted the key terms Kj (j = 1, . . . , n) and their corresponding weight values Wj (j = 1, 2,
. . . , n) from the title and abstract using the Natural Language Toolkit (NLTK) in Python. If Kj contains
pre-set terms in KEYi, we calculated the score of a record as Score =

∑
WEIGHTi∗Wj (i = 1, . . . , m;

j = 1, . . . , n). For example, through keyword extraction using NLTK, a bibliographic record has two
key terms “dengue” and “satellite”, and their weights are W(dengue) and W(satellite). According to
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Table 1, the weights of these two terms were randomly assigned to 8 and 5. In this case, the score of
this text is W (dengue)*8 + W (satellite)*5.Int. J. Environ. Res. Public Health 2020, 17, x 2 of 4 
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Table 1. Pre-set terms and priority levels for titles and abstract scoring.

Priority Levels Pre-Set Terms (KEYi) Included for Text Scoring Interval of Weights

High

dengue, environment, landscape, land cover, land use,
vegetation, tree, water, built, road, residential, commercial,
industrial, normalized difference vegetation index (NDVI),
normalized difference water index (NDWI), elevation

[7,10]

Medium remote sensing, satellite, earth observation [4,7]
Low temperature, precipitation [1,4]

All the records were then ranked in decreasing order according to the scores, and the top
1000 records were selected and merged into a subset denoted as Uk. Finally, we iterated the second step
20 times, and the records in the 20 subsets Uk (k = 1, . . . , 20) were combined together, and were used
for the next analysis. It should be noted that random assignment of weights allows multiple iterations
of text scoring that should make the results more reliable.

2.4. BiLSTM-Based Active Learning

To efficiently and accurately select relevant records in the absence of sufficient labelled samples,
we performed a BiLSTM-based active learning based on the titles and abstracts of the records derived
from text scoring (Figure 1).

Prior to training the BiLSTM model (see more details in Appendix C) [23], we created an initial
training dataset by selecting 15 relevant samples and 30 irrelevant samples from the results of
text scoring based on the criteria in Section 2.1. The initial training dataset was used to train the
BiLSTM model.

Based on the word embedding derived from the unlabelled data using the Word2Vec CBOW
model [24] (see more details in Appendix B), the BiLSTM model was used to identify the “potential”
records from unlabelled data, which were then manually labelled as either relevant or irrelevant based
on the four criteria in Section 2.1. Meanwhile, we improved the training dataset by combining the
selected relevant records and previous relevant samples, and randomly selected irrelevant records from
the results of text scoring in order to keep the ratio of relevant and irrelevant samples at 1:2. Finally,
the BiLSTM model was re-trained using the new training dataset to identify the potential citations
from the remaining unlabelled data. The parameters of the BiLSTM architecture were updated by
training the results from the previous round. BiLSTM learning and active learning were alternately
implemented until we could not find any relevant records.

2.5. Inclusion, Perfomance and Rationality

Because all the algorithms were implemented based on the titles and abstracts, we evaluated the
full-texts of the records derived from BiLSTM-based active learning for final inclusion of the articles
that met the criteria in Section 2.1. In fact, bibliographic databases might misclassify some records as
English journal articles and store their English titles and abstracts.

To verify the performance of the algorithms of text scoring and BiLSTM-active learning,
we randomly selected 10% of unlabelled records derived from BiLSTM-based active learning and
manually interpreted them as either relevant or irrelevant. This step was iterated three times. Moreover,
to verify the rationality of text scoring and BiLSTM-based active learning, we computed the number
of relevant records per score rank interval. Generally, the more relevant a record is to the topic in
question, the greater the possibility it will receive a high score.

2.6. Information Extraction and Analysis

The satellite EO data and landscape factors were extracted manually and synthesized narratively
in two ways: (1) charting the dengue landscape factors and their typologies in order to appraise the
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current situation, regardless of the differences in study areas, methods and materials; (2) tabulating the
key characteristics of satellite EO data.

3. Results and Discussions

3.1. Semi-Supervised Text Classification

Table 2 presents the number of records for each step of semi-supervised text classification. A total
of 13,893 bibliographic records were obtained after the broad search, and 7696 records were included
after the removal of duplicates. Then, based on text scoring, we identified 2034 possible records,
and 131 records were included after the BiLSTM-based active learning that met the inclusion criteria in
Section 2.1. Finally, by reading the full texts, we included 101 articles (see more details in Appendix C).
The non-English articles (e.g., Chinese, Spanish and Portuguese) and non-journal articles (e.g., book
chapters, reviews or conference papers) were excluded.

Table 2. Number of records derived from each step of semi-supervised text classification.

No. Semi-Supervised Text Classification Processes Number of Records

1 Board searches 13,893
2 Removal of duplicates 7696
3 Text scoring 2034
4 Bidirectional long short-term memory (BiLSTM) active learning 131
5 Inclusion 101

Table 3 presents the results of each cycle of BiLSTM-based active learning. Evidently, all the
relevant records were identified after the fourth cycle. Throughout the process of semi-supervised text
classification, we manually evaluated 1056 titles/abstracts (Table 3).

Table 3. Relevant and unlabeled records derived from BiLSTM-based active learning.

Cycles BiLSTM
Active Learning

Rest Records
Relevant Unlabeled

Before – – – 2034

1st 599 88 511 1435
2nd 323 39 284 1112
3rd 72 3 69 1036
4th 42 1 41 994
5th 20 0 20 974

Total 1056 131 925 0

Moreover, the accurate and rational identification of relevant records can be indicated by the
following two facts. First, no relevant records were found by manually evaluating the records
selected randomly from the unlabelled dataset (i.e., 925 records after BiLSTM-based active learning).
This indicated a good performance of the semi-supervised text classification. Second, although each
record probably received different scores in 20 text scoring experiments, the number of relevant records
per score rank interval showed a consistent decreasing trend (Figure 2). This indicated the rationality
of text scoring using the preset terms and priority levels, that is, the more relevant a record is to the
topic question, the greater the possibility it will receive a high score.
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score interval.

The accurate and rational identification of relevant records can be explained by the facts: (1) A clear
topic was defined. In fact, modelling or correlating dengue epidemiological or entomological
variables with landscape factors in different geographic contexts often includes the identification
of landscape factors, landscape characterization and spatio-temporal analysis of dengue cases or
vectors. This interdisciplinary topic provides evident features that meet the definition of appropriate
inclusion criteria. These criteria then help to define terms and priority levels for text scoring and active
learning. (2) The union of the results of 20 text scoring experiments enable the inclusion of potential
records as much as possible, and greatly exclude the irrelevant records. (3) BiLSTM has proved to be
especially useful in understanding the context of words [23], and active learning based on clear and
appropriate inclusion criteria allows for the accurate selection of relevant records and for the control of
the balance of positive and negative samples in training datasets for each cycle in BiLSTM learning.
Moreover, it should be noted that other models are possible, such as BiLSTM with attention mechanism
(AC-BiLSTM) [16] or a combination of CNN and LSTM (C-LSTM) [25], which might generate a high
accuracy of text classification.

3.2. Dengue Landscape Factors

Due to the different study objectives, study areas and spatio-temporal scales, it is difficult to
compare the 101 selected studies to find any underlying common viewpoints on the role of landscape
factors in dengue transmission. The detailed landscape factors for each study are listed in Table A2.
Here, we simply grouped these landscape factors into four categories according to the study [26]
(Figure 3):

1. Land cover (LC) refers to the physical and biological cover over the land surface, including
built-up areas, vegetation, water/wetlands, open land and savannah. Among them, vegetation
often has an association with the vectors’ behaviours and biological cycles, which could be linked
with the spatial and temporal dynamics of vectors or the potential resting and breeding sites.
Water and wetlands often provide information of places of stagnant water, which are potential
breeding sites for dengue vectors.

2. Land use (LU) refers to a territory characterized by current and future planned functional or
socio-economic purposes, including agricultural areas, commercial areas, construction areas,
industrial areas, ponds, religious areas, residential areas, transport, unused areas, urban areas
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and rural areas. LU types not only indicate whether the areas are favourable to vector breeding,
but also provide information of human behaviour and activities in the areas, the levels of
human–Aedes encounters, dispersal of mosquitoes and people movement, which are significantly
related to dengue epidemics.

3. Topographic factors may provide a proxy of habitat suitability or climate conditions, including
elevation, aspect, slope, drainage network, and flow accumulation.

4. Spatially continuous land surface features include spectral indices of vegetation, water and
built-up areas (e.g., normalized difference vegetation index (NDVI), enhanced vegetation index
(EVI), vegetation fraction index (VFC), normalized difference water index (NDWI), and normalized
difference built-up index (NDBI)). Moreover, land surface temperature (LST) refers to a measure
of radiative skin temperature of the land surface, which is a significant factor affecting the
dengue transmission.

3.3. Satellite Earth Observation Data

Among the 101 included articles, only 64 studies used satellite EO data. Table 4 presents the satellite
EO sensors, derived products and spatio-temporal resolutions used for identifying dengue landscape
factors in selected studies. Evidently, for LU/LC mapping, most studies used very fine (i.e., pixel
size < 10 m) and fine (i.e., 10 m ≤ pixel size < 100 m) spatial resolution data, including multi-spectral
bands derived from Landsat 4 Thematic Mapper (TM), Landsat 5 TM, Landsat 7 Enhanced Thematic
Mapper (ETM+), Landsat 8 Operational Land Imager (OLI), Indian Remote-Sensing Satellite-P6
(IRS-P6), Satellite Pour l’Observation de la Terre 4 (SPOT-4), Sentinel-2, GaoFen-1, SPOT-5, Advanced
Land Observing Satellite (ALOS), IKONOS and Quickbird. For topographic factors, two global scale
and freely available digital elevation models (DEMs) at resolutions of 30 m and 90 m from the Shuttle
Radar Topography Mission (SRTM) and the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) mission were used to extract topographic features. For continuous land surface
features, moderate resolution imaging spectroradiometer (MODIS) products with coarse resolution (i.e.,
1000 m ≤ pixel size < 10,000 m) and moderate resolution (i.e., 100 m ≤ pixel size < 1000 m) were widely
used to characterize them. In addition, some EO data with fine resolution (i.e., 10 m ≤ pixel size < 100
m) have also made a contribution, such as data from Landsat 5, 7 and 8, SPOT 5 and GeoFen-1.

Although satellite EO sensors and products are pointed out, we do not explain what should be
considered while choosing satellite EO data, and making effective use of them. This is an important
issue, especially for non-specialized users. Hamm et al. [26] proposed that spatio-temporal scales,
uncertainty, spatial quality of EO data and the interaction between uncertainty in EO and disease
data should be considered when using EO data for the study of neglected tropical diseases (NTD)
(e.g., echinococcosis, schistosomiasis and leptospirosis). This is useful for evaluating EO data in
dengue research.
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Table 4. Satellite Earth observation sensors and derived products used for identifying dengue landscape factors. Information on spatial and temporal resolution was
taken from Huete et al. [27], Hamm et al. [26] and Marti et al. [9].

Sensors/Products Variables Spatial Resolution Temporal Resolution Launched/End of Mission

MODIS

MOD11C3 LST 5.5 km Monthly 2000-02-01 to Present
MOD13C2 NDVI, VFC 5.5 km Monthly 2000-02-01 to Present
MYD11C3 nLST, dLST 5.5 km Monthly 2002-07-01 to Present
MYD11A1 LST 1 km Daily 2002-07-04 to Present
MOD11A2 LST, nLST, dLST 1 km 8 days 2000-02-18 to Present
MOD13A3 NDVI, VFC 1 km Monthly 2000-02-01 to Present
MOD13C1 NDVI, EVI 500 m 16 days 2000-02-18 to Present
MCD12Q1 LC 500 m Yearly 2001-01-01 to 2018-12-31
MxD09A1 NDVI 250 m 8 days
MOD09Q1 NDWI 250 m 8 days 2000-02-24 to Present
MOD13Q1 NDVI, EVI, LC 250 m 16 days 2000-02-18 to Present
MYD09GQ EVI 250 m Daily 2002-07-04 to Present

AVHRR/2 LST 1.1 km Daily 1981-06 to 1986-06

SRTM SIR-C SRTM
DEM

Elevation, aspect, slope, drainage,
flow accumulation and steam
feature

30 m/90 m - Released in 2000

ASTER GDEM Elevation, drainage 30 m -
Released in 2009 (v1)
Released in 2011 (v2)
Released in 2019 (v3)

Landsat 4 TM LU/LC 30 m 16 days 1982-07 to 1993-12

Landsat 5 TM LU/LC, TCB, TCW, TCG, LST,
NDVI 30 m 16 days 1984-03 to 2013-06

Landsat 7 ETM+
LU/LC, NDVI, LST, B, G, R, NIR,
SWIR1, SWIR2, thermal band 30 m 16 days 1999-04 to Present

Landsat 8 OLI LU/LC, NDVI, NDWI, NDBI, LST 30 m 16 days 2013-02 to Present

IRS-P6 LC 24 m 5 days 2003-10 to 2013-09

SPOT 4 LU/LC 20 m 2–3 days 1998-03 to 2013-06

Sentinel-2 LC 10 m 10 days 2015-06 to Present (2A)
2017-03 to Present (2B)
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Table 4. Cont.

Sensors/Products Variables Spatial Resolution Temporal Resolution Launched/End of Mission

GaoFen-1 LC, NDWI 16 m ≤ 4 days 2013-04 to Present

SPOT 5 LU/LC, NDVI, NDWI 2.5 m, 5 m/10 m 2–3 days 2002-05 to 2015-03

ALOS AVNIR-2 LU/LC 10 m 14 days 1996-08 to 2011-05

ZY-3 LU/LC 2.1 m/5.8 m 5 days 2012-01 to Present

IKONOS LU 4 m Approximately 3 days 1999-09 to 2015-03

Quickbird LU/LC 2.4 m/0.6 m 1–3.5 days 2001-10 to 2015-01

Worldview-2 LC 0.5 m/1.8 m 1.1 days 2009-10 to Present

MODIS: Moderate Resolution Imaging Spectroradiometer; LST: Land Surface Temperature; NDVI: Normalized Difference Vegetation Index; NDBI: Normalized Difference Built-up Index;
NDWI: Normalized Difference Water Index; VFC: Vegetation Fractional Coverage; EVI: Enhanced Vegetation Index; AVHRR: Advanced Very High Resolution Radiometer; SRTM: Shuttle
Radar Topography Mission; SIR-C: Spaceborne Imaging Radar-C; DEM: Digital Elevation Model; ASTER: Advanced Spaceborne Thermal Emission and Reflection Radiometer; GDEM:
Global Digital Elevation Model; TM: Thematic Mapper; ETM+: Enhanced Thematic Mapper; OLI: Operational Land Imager; LU: Land Use; LC: Land Cover; TCB: Tasseled Cap Brightness;
TCW: Tasseled Cap Wetness; TCG: Tasseled Cap Greenness; B: Blue band; G: Green band; R: Red band; NIR: Infrared Band; SWIR: Short-wave infrared band; ZY-3: Ziyuan 3; IRS-P6: Indian
Remote-Sensing Satellite-P6; SPOT: Satellite Pour l’Observation de la Terre; ALOS: Advanced Land Observing Satellite; AVNIR-2: Advanced Visible and Near Infrared Radiometer type 2.
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with coarse resolution (i.e., 1000 m ≤ pixel size < 10,000 m) and moderate resolution (i.e., 100 m ≤ pixel 

size < 1000 m) were widely used to characterize them. In addition, some EO data with fine resolution 

(i.e., 10 m ≤ pixel size < 100 m) have also made a contribution, such as data from Landsat 5, 7 and 8, 

SPOT 5 and GeoFen-1. 

Figure 3. Overview of essential dengue landscape factors derived from the selected articles.

4. Possible Future Directions: Landscape Patterns, Satellite Sensors and Deep Learning

4.1. In Terms of Landscape Patterns

More in-depth landscape features (e.g., compositional and configurational patterns) could be
explored in future studies. Our previous studies characterized forest/non-forest landscapes by
computing various landscape metrics and established their links with malaria cases for understanding
the contribution of Amazon deforestation on human–vector contact [28,29]. We found very few
examples that used landscape metrics in dengue epidemiology, although these metrics have been
widely applied in the assessment of LULC changes.

4.2. In Terms of Satellite Sensors

LU/LC mapping has continued to be an important research area in recent years, in particular
urban LU/LC mapping. Gong et al. [30] proposed the two-level essential urban land use categories
(EULUC) and archived the preliminary results of 30 m in China for 2018 using Sentinel-2 images, Luojia
night time light data, mobile phone locating request data and point of interests (POI) data. According
to our findings (Figure 3), EULUC classes were mostly related to dengue transmission (e.g., residential,
commercial, industrial and transportation). Global essential urban land use maps with fine spatial
resolution could be useful for landscape-related studies of dengue. Moreover, developing LU/LC
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maps and integrating them for dengue research in tropical and subtropical regions is difficult due to
the presence of clouds and cloud shadows. Synthetic aperture radar (SAR) images could penetrate
such barriers and have recently been used for vector-borne disease application [31,32]. However,
we found no specific study that used SAR data in dengue research. Third, deep learning frameworks
have been increasingly used to predict dengue outbreaks. Many studies have used weather data
(e.g., temperature, wind speed, precipitation, humidity), population data and previous dengue cases
in deep learning models [33,34].

4.3. In Terms of Deep Learning

More recently, one study extracted landscape features (e.g., building, roads, trees, crops, waterway
and standing water) from high resolution satellite EO data using CNN models and transfer learning,
and added them into time series prediction of dengue outbreaks based on weather data and population
density for improving the performance of prediction [35]. This would be a new direction that is practical
for identifying the landscape factors with limited labelled data, understanding the landscape–dengue
relationships or improving the deep learning-based temporal prediction of dengue risk.

5. Conclusions

Satellite EO has been increasingly used in dengue research over the past years, especially for
the identification of dengue landscape factors. During that time, various types of landscape factors
were considered while the study areas and research objectives have become more complex, and the
variety and volume of satellite EO data have been growing over these years. There is an increasing
need to know what dengue landscape factors have been studied and what dengue landscape factors
have been derived from satellite EO data during the past years. In this study, by integrating the
review process, AL mechanism, text scoring and BiLSTM model, we propose a semi-supervised text
classification framework that enables the efficient evaluation of bibliographic records derived from
bibliographic databases and accurately selects the articles relevant to the research objective. In this
study, 101 relevant articles were efficiently selected from bibliographic databases using the proposed
approach. Among them, 64 articles used satellite EO data. Valuable information on dengue landscape
factors and current satellite EO data was reported. A catalogue of essential dengue landscape factors
were identified that were divided into four categories: LU, LC, topography and continuous land
surface features. These factors were considered as the direct or indirect proxies of Aedes breeding and
resting sites, human–Aedes encounters, human mobility and virus replication in dengue transmission.
Moreover, future research directions on how to integrate satellite EO data in dengue research were
proposed in terms of landscape patterns, satellite sensors and deep learning. This study is an important
step towards an efficient method for research evidence synthesis that could be easily applied to other
topics, particularly in an interdisciplinary context.
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Appendix A. Board Searches

Table A1. Search terms and number of records derived from bibliographic databases.

No. Search Terms WS SD Scopus PubMed

1 dengue AND dwelling 266 7 66 19
2 dengue AND earth observation 13 0 4 3
3 dengue AND habitation 37 3 22 11
4 dengue AND household 618 54 101 282
5 dengue AND land cover 114 4 31 20
6 dengue AND land use 1164 15 120 35
7 dengue AND landscape 179 11 101 70
8 dengue AND precipitation 238 30 175 125
9 dengue AND remote sensing 117 10 56 25

10 dengue AND satellite. 112 11 56 41
11 dengue AND temperature 1976 145 1120 748
12 Aedes AND dwelling 733 8 139 52
13 Aedes AND earth observation 11 1 3 2
14 Aedes AND habitation 88 3 38 14
15 Aedes AND household 551 31 430 187
16 Aedes AND land cover 266 4 46 39
17 Aedes AND land use 3232 19 203 46
18 Aedes AND landscape 295 9 153 95
19 Aedes AND precipitation 332 21 197 127
20 Aedes AND remote sensing 133 0 54 24
21 Aedes AND satellite 124 13 68 46
22 Aedes AND temperature 3443 171 1616 824

Appendix B. Word Embedding

Word2Vec [24] is based on deep learning, which could learn grammar and semantic information
from a large amount of unlabelled data. Word2Vec Continuous Bag-Of-Words Model (CBOW) model
maps each word to a V-dimensional word vector by training, and can calculate the similarity between
word vectors to represent the semantic similarity of the text. Word2Vec CBOW architecture predicts the
current word based on the context. The input layer here is composed of one-hot encoded input contexts
X1,...,Xc, where the window size is C, the glossary size is V and the hidden layer is an N-dimensional
vector. The final output layer is the output word y that is also encoded by one-hot. The input vector
encoded by one-hot is connected to the hidden layer by a V × N-dimensional weight matrix W and the
hidden layer is connected to the output layer by an N × V weight matrix W′.
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Appendix C. Bidirectional Long Short-Term Memory Model

Generally, LSTM-based RNNs consist of three gates: one input gate it with corresponding weight
matrix Wxi, Whi, Wci, bi; one forget gate ft with corresponding weight matrix Wxf, Whf, Wcf, bf ; one output
gate ot with corresponding weight matrix Wxo, Who, Wco, bo. The operation can be summarized as the
process of forgetting old information and memorizing new information in the state of the cell, so that
information useful for subsequent process operations is passed, and useless information is discarded.
The hidden layer state hi is output at each time step. In the process, all gates are set to generate some
parameters, using current input xi, the state hi-1 that the previous step generated, and current state of
this cell ci-1 (peephole), for the decisions whether to take the inputs, forget the memory stored before,
and output the state generated later. The computation can be explained by the following equations:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (A1)

ft = σ
(
Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(A2)

gt = tanh(Wxcxt + Whcht−1 + Wccct−1 + bc) (A3)

ct = itgt + ftct−1 (A4)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (A5)

ht = ottanh(ct) (A6)

The BiLSTM uses two independent LSTMs to process the data in both directions and then connects
the two final output vectors from both directions.
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Appendix D. List of Articles Derived from the Semi-Supervised Text Classification Framework. Reference List was Alphabetized by the Last Name of
the First Author of Each Work. References by the Same Author were Listed Chronologically with the Earliest Work First

Table A2. Satellite EO data and dengue landscape factors extracted each of the 101 relevant articles derived from the semi-supervised framework of literature.

ID [Ref.] First Author/Year Title EO Data Landscape Factors

1 [36] Acharya et al., 2018 Temporal Variations and Associated Remotely Sensed Environmental
Variables of Dengue Fever in Chitwan District, Nepal

MODIS MOD13C25 NDVI, EVI
MODIS MYD11C3 nLST, dLST

9 [37] Acharya et al., 2018
Modeling the spatially varying risk factors of dengue fever in Jhapa
district, Nepal, using the semi-parametric geographically weighted

regression model

Landsat 8 OLI/TIRS Thermal band LST

Landsat 8 OLI/TIRS G, R, NIR, SWIR NDVI, NDWI, NDBI

2 [38] Akter et al., 2017 Socio-demographic, ecological factors and dengue infection trends in
Australia - -

3 [39] Albrieu-Llinas et al., 2018
Urban environmental clustering to assess the spatial dynamics of Aedes

aegypti breeding sites
SPOT 5 Spectral bands Bare soil, Water, Wetlands,

Grass, Tree, Built-up
Landsat NIR, SWIR, TIR NBRT

4 [40] Ali and Ahmad, 2018
Using analytic hierarchy process with GIS for Dengue risk mapping in

Kolkata Municipal Corporation, West Bengal, India

SRTM (SIR-C) SRTM DEM Elevation

Sentinel 2 Spectral bands Bare soil, Water, Vegetation,
Built-up

Landsat 7 ETM+ Thermal band LST

5 [41] Anno et al., 2015 Space-time clustering characteristics of dengue based on ecological,
socio-economic and demographic factors in northern Sri Lanka ALOS/AVNIR-2 B, G, R, NIR Urbanization ratio

6 [42] Araujo et al., 2014 Sao Paulo urban heat islands have a higher incidence of dengue than
other urban areas

Landsat 5 TM Thermal band LST
Landsat 5 TM NIR Vegetation

7 [43] Arboleda et al., 2009
Mapping Environmental Dimensions of Dengue Fever Transmission

Risk in the Aburra Valley, Colombia

SRTM (SIR-C) SRTM DEM Elevation, Aspect, Slope
Landsat 7 ETM + R, NIR NDVI

Landsat 7 ETM + Spectral bands B, G, R, NIR, SWIR1, SWIR 2,
Thermal band

8 [44] Arboleda et al., 2011 Spatial and temporal dynamics of Aedes aegypti larval sites in Bello,
Colombia

SRTM (SIR-C) SRTM DEM Slope, Aspect, Slope
Landsat 7 ETM + R, NIR NDVI

Landsat 7 ETM + Spectral bands B, G, R, NIR, SWIR1, SWIR 2,
Thermal band

10 [45] Ashby et al., 2017
Niche Modeling of Dengue Fever Using Remotely Sensed

Environmental Factors and Boosted Regression Trees

MODIS MYD11A1 nLST, dLST
MODIS MYD09GQ EVI

SRTM (SIR-C) SRTM DEM Elevation

MODIS MCD12Q1
Bare soil, Cropland, Forest,
Savanna, Urban, Wetlands,

Shrubland
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Table A2. Cont.

ID [Ref.] First Author/Year Title EO Data Landscape Factors

11 [46] Attaway et al., 2016 Risk analysis for dengue suitability in Africa using the ArcGIS predictive
analysis tools (PA tools) - - -

12 [47] Aziz, S. et al. (2014) Spatial density of Aedes distribution in urban areas: A case study of
Breteau index in Kuala Lumpur, Malaysia SPOT 5 -

Water, Built-up, Sparse
vegetation, Dense vegetation,

Cleared area

13 [48] Beilhe, Leila Bagny et al.
(2012)

Spread of invasive Aedes albopictus and decline of resident Aedes
aegypti in urban areas of Mayotte 2007–2010 - - -

14 [49] Bett, Bernard et al. (2019) Spatiotemporal analysis of historical records (2001–2012) on dengue fever
in Vietnam and development of a statistical model for forecasting risk. MODIS MCD12Q1 Forest, Woodland, Grass, Shrub,

Cropland, Built-up, Wetlands

15 [50] Bhardwaj et al. (2012) Developing a statistical dengue risk prediction model for the state of
Delhi based on various environmental variables Landsat 7 ETM+ - Built-up, Vegetation

16 [51] Buczak et al. (2012) A data-driven epidemiological prediction method for dengue outbreaks
using local and remote sensing data MODIS - NDVI, EVI

17 [52] Buczak et al. (2014) Prediction of High Incidence of Dengue in the Philippines MODIS - NDVI, EVI

18 [53] Butt et al. (2019) Towards a Web GIS-based approach for mapping a dengue outbreak

Landsat 5 TM TIR LST
Landsat 5 TM R, NIR NDVI

Landsat 5 TM Spectral bands Built-up, Vegetation, Water,
Bare soil, Mixed areas

19 [54] Cao et al. (2017)
Individual and Interactive Effects of Socio-Ecological Factors on Dengue

Fever at Fine Spatial Scale: A Geographical Detector-Based Analysis
MODIS MOD13A3 NDVI, VFC

Landsat 8 OLI/Quickbird - Urban villages

20 [55] Carbajo et al. (2001) Dengue transmission risk maps of Argentina - - -

22 [56] Chen et al. (2018) Neighborhood level real-time forecasting of dengue cases in tropical
urban Singapore - - -

21 [57] Chen et al. (2019) Spatiotemporal Transmission Patterns and Determinants of Dengue
Fever: A Case Study of Guangzhou, China SPOT 5/Baidu map Panchromatic and

spectral bands
Road, Subway, Ponds,

Residential areas

23 [58] Cheong et al. (2014) Assessment of land use factors associated with dengue cases in Malaysia
using Boosted Regression Trees Landsat 7 ETM +/SPOT 4 -

Residential areas, Agricultural
areas, Forest, Water, Mixed

horticulture, Open land,
Rubber, Oil palm, Swamp
forest, Mining, Orchard

24 [59] Chiu et al. (2014) A probabilistic spatial dengue fever risk assessment by a
threshold-based-quantile regression method - - -

25 [60] Chuang et al. (2018) Epidemiological Characteristics and Space-Time Analysis of the 2015
Dengue Outbreak in the Metropolitan Region of Tainan City, Taiwan - - -

26 [61] Cox et al. (2007) Habitat segregation of dengue vectors along an urban environmental
gradient Landsat 7 ETM + -

Urban, Suburban, Rural, Forest,
High density housing, Low

density housing
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Table A2. Cont.

ID [Ref.] First Author/Year Title EO Data Landscape Factors

27 [62] Dhewantara, Pandji
Wibawa et al. (2019)

Spatial and temporal variation of dengue incidence in the island of Bali,
Indonesia: An ecological study ASTER GDEM Elevation

28 [63] Dom et al. (2013) Coupling of remote sensing data and environmental-related parameters
for dengue transmission risk assessment in Subang Jaya, Malaysia IKONOS -

Residential areas, Industrial
areas, Commercial areas, Open

area

30 [64] Espinosa et al.(2016)
Temporal Dynamics and Spatial Patterns of Aedes aegypti Breeding
Sites, in the Context of a Dengue Control Program in Tartagal (Salta

Province, Argentina)
SPOT 5 Spectral bands

Water, High vegetation, Low
vegetation, Cropland, Bare soil,

Urban area

29 [65] Espinosa et al., 2018 Operational satellite-based temporal modelling of Aedes population in
Argentina

MODIS MOD13Q1 NDVI, NDWI
MODIS MOD11A2 dLST, nLST

31 [66] Estallo et al. (2016)
MODIS Environmental Data to Assess Chikungunya, Dengue, and Zika

Diseases Through Aedes (Stegomia) aegypti Oviposition
Activity Estimation

MODIS MOD13Q1 NDVI

MODIS MOD11A2 dLST

32 [67] Fareed et al. (2016) Spatio-Temporal Extension and Spatial Analyses of Dengue from
Rawalpindi, Islamabad and Swat during 2010–2014

ASTER GDEM Elevation, Drainage network

Landsat 4 TM,
Landsat 5 TM,

Landsat 7 ETM+,
and Landsat 8 OLI

Spectral bands Bare soil, Built-up, Water,
Vegetation, Construction area

33 [68] Fatima, Syeda Hira et al.
(2016)

Species Distribution Modelling of Aedes aegypti in two dengue-endemic
regions of Pakistan

SRTM (SIR-C) SRTM DEM Elevation

Landsat 8 OLI - Vegetation, Water, Built-up,
Road

35 [69] Fuller et al. (2009) El Nino Southern Oscillation and vegetation dynamics as predictors of
dengue fever cases in Costa Rica. MODIS MOD13C1 EVI, NDVI

34 [70] Fuller et al. (2010) Dengue vector (Aedes aegypti) larval habitats in an urban environment
of Costa Rica analysed with ASTER and QuickBird imagery Quickbird - Built-up, Tree

36 [71] Garcia et al. (2011)
An examination of the spatial factors of dengue cases in Quezon City,

Philippines: A Geographic Information System (GLS)-based approach,
2005–2008

- - -

37 [72] German et al. (2018)
Exploring satellite based temporal forecast modelling of Aedes aegypti

oviposition from an operational perspective
MODIS MOD13Q1 NDVI, NDWI,
MODIS MOD11A2 nLST, dLST

38 [73] Hira et al. (2018)
Patterns of occurrence of dengue and chikungunya, and spatial

distribution of mosquito vector Aedes albopictus in Swabi district,
Pakistan

SRTM (SIR-C) SRTM DEM Elevation
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Table A2. Cont.

ID [Ref.] First Author/Year Title EO Data Landscape Factors

39 [74] Huang et al. (2018) Spatial Clustering of Dengue Fever Incidence and Its Association with
Surrounding Greenness MODIS MxD09A1 NDVI

40 [75] Husnina et al. (2019) Forest cover and climate as potential drivers for dengue fever in Sumatra
and Kalimantan 2006–2016: a spatiotemporal analysis - - -

41 [76] Kesetyaningsi et al. (2018) Determination of environmental factors affecting dengue incidence in
Sleman District, Yogyakarta, Indonesia Quickbird - Vegetation

43 [77] Khalid and Ghaffar. (2014) Dengue transmission based on urban environmental gradients in
different cities of Pakistan

SRTM (SIR-C) SRTM DEM Flow accumulation, Stream
feature, Drainage density

SPOT 5/Landsat TM Spectral bands

Urban area, Bare soil, Forest,
Water, Vegetation, Wedged land,

Waterlogged land, Dry bare
land, Rocky bare land,

Deserted land

42 [78] Khalid and Ghaffar. (2015) Environmental risk factors and hotspot analysis of dengue distribution
in Pakistan SRTM (SIR-C) SRTM DEM Drainage

44 [79] Khormi and Kumar.
(2011)

Modeling dengue fever risk based on socioeconomic parameters,
nationality and age groups: GIS and remote sensing based case study SPOT 5 - Quality of neighborhood

45 [80] Koyadun et al. (2012) Ecologic and sociodemographic risk determinants for dengue
transmission in urban areas in Thailand. - - -

46 [81] Lana et al. (2017) The introduction of dengue follows transportation infrastructure
changes in the state of Acre, Brazil: A network-based analysis - - -

47 [82] Landau and Leeuwen.
(2012)

Fine scale spatial urban land cover factors associated with adult
mosquito abundance and risk in Tucson, Arizona

NAIP aerial image/LiDAR
elevation Spectral bands

Bare soil, Pavement, Structure,
Pool, Water (ponds and lakes),

Grass, Shrub, Tree

48 [83] Lee et al. (2019) Human Activities Attract Harmful Mosquitoes in a Tropical Urban
Landscape. - - -

49 [84] Li et al. (2013) Abiotic Determinants to the Spatial Dynamics of Dengue Fever in
Guangzhou MODIS MOD13Q1

Cropland, Built-up,
Construction area, Vegetation,

Water

50 [85] Lian, Cheah Whye et al.
(2006)

Spatial, environmental and entomological risk factors analysis on a rural
dengue outbreak in Lundu District in Sarawak, Malaysia - - -

51 [86] Lippi et al. (2019)
Geographic shifts in Aedes aegypti habitat suitability in Ecuador using
larval surveillance data and ecological niche modeling: Implications of

climate change for public health vector control
- - -

52 [87] Little et al. (2011) Co-occurrence Patterns of the Dengue Vector Aedes aegypti and Aedes
mediovitattus, a Dengue Competent Mosquito in Puerto Rico WorldView 2 Spectral bands Bare soil, Grass, Scrub, Tree,

Urban area
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ID [Ref.] First Author/Year Title EO Data Landscape Factors

53 [88] Little et al. (2017)
Local environmental and meteorological conditions influencing the

invasive mosquito Ae. albopictus and arbovirus transmission risk in
New York City

- - -

54 [89] Little et al. (2017) Socio-Ecological Mechanisms Supporting High Densities of Aedes
albopictus (Diptera: Culicidae) in Baltimore, MD Landsat R, NIR NDVI

55 [90] Liu et al. (2018) Spatiotemporal patterns and determinants of dengue at county level in
China from 2005–2017 - - -

56 [91] Lozano-Fuentes et al.
(2012)

The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in
Mexico - - -

57 [5] Machault et al., 2014
Mapping Entomological Dengue Risk Levels in Martinique Using

High-Resolution Remote-Sensing Environmental Data
Geoeye-1 Spectral bands NDVI, MNDWI, ANDWI

Geoeye-1 Spectral bands Sparsely vegetated soil, Grass,
Asphalt

58 [92] Mahabir et al. (2012) Impact of road networks on the distribution of dengue fever cases in
Trinidad, West Indies - - -

59 [93] Mahmood et al. (2019) Spatiotemporal analysis of dengue outbreaks in Samanabad town,
Lahore metropolitan area, using geospatial techniques - - -

60 [94] Mala and Jat. (2018) Implications of meteorological and physiographical parameters on
dengue fever occurrences in Delhi

Landsat 7 ETM+, Landsat
8 OLI,

IRS-P6, Sentinel-2

Panchromatic and
spectral bands Built-up, Water, Vegetation

61 [95] Martinez-Bello et al.
(2017)

Spatiotemporal modeling of relative risk of dengue disease in Colombia MODIS MOD11A2 LST
MODIS MOD13Q1 NDVI

62 [96] Martinez-Bello et al.
(2017)

Relative risk estimation of dengue disease at small spatial scale MODIS MOD11A2 LST
Landsat 7 ETM+, Landsat

8 OLI R, NIR NDVI

63 [97] McClure et al. (2018)
Land Use and Larval Habitat Increase Aedes albopictus (Diptera:

Culicidae) and Culex quinquefasciatus (Diptera: Culicidae) Abundance
in Lowland Hawaii

Quickbird - Developed land

64 [98] Messina et al. (2019) The current and future global distribution and population at risk of
dengue - - -

65 [99] Murdock et al. (2017)
Fine-scale variation in microclimate across an urban landscape shapes
variation in mosquito population dynamics and the potential of Aedes

albopictus to transmit arboviral disease
- - -

66 [100] Nakhapakorn and
Tripathi. (2005)

An information value based analysis of physical and climatic factors
affecting dengue fever and dengue haemorrhagic fever incidence Landsat TM - Agricultural areas, Forest,

Water, Built-up
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ID [Ref.] First Author/Year Title EO Data Landscape Factors

67 [101] Nejati et al. (2017) Potential Risk Areas of Aedes albopictus in South-Eastern Iran: A Vector
of Dengue Fever, Zika, and Chikungunya

ASTER ASTER DEM Elevation
Landsat 8 OLI R, NIR NDVI

Landsat 8 OLI Spectral bands Water, Urban area (residential),
Rural area (residential)

68 [102] Nitatpattana et al. (2007) Potential association of dengue hemorrhagic fever incidence and remote
senses land surface temperature, Thailand, 1998

National Oceanic and
Atmospheric

Administration-14
- LST

69 [103] Ogashawara et al. (2019) Spatial-Temporal Assessment of Environmental Factors Related to
Dengue Outbreaks in São Paulo, Brazil

Landsat 8 TIRS Thermal bands LST
Landsat 8 OLI Spectral bands NDVI, NDWI, NDBI

70 [104] Pineda-Cortel et al. (2019)
Modeling and predicting dengue fever cases in key regions of the

Philippines using remote sensing data
MODIS MOD11C3 nLST, dLST
MODIS MOD13Q1 NDVI

71 [105] Qu et al. (2018) Effects of socio-economic and environmental factors on the spatial
heterogeneity of dengue fever investigated at a fine scale - - -

72 [106] Qureshi et al. (2017) The distribution of Aedes aegypti (diptera, culicidae) in eight selected
parks of Lahore, using oviposition traps during rainy season - - -

73 [107] Rahm et al. (2016) Forecasting of Dengue Disease Incident Risks Using Non-stationary
Spatial of Geostatistics Model in Bone Regency Indonesia - - -

74 [108] Ren et al. (2019) Urban villages as transfer stations for dengue fever epidemic: A case
study in Guangzhou, China ZY-3 Panchromatic and

spectral bands

Normal construction areas,
Urban villages, Water,

Vegetation, Unused land

75 [109] Restrepo et al. (2014) National spatial and temporal patterns of notified dengue cases,
Colombia 2007–2010 - - -

76 [110] Richards et al. (2006) Spatial analysis of Aedes albopictus (Diptera: Culicidae) oviposition in
suburban neighborhoods of a piedmont community in North Carolina - - -

77 [111] Rogers et al. (2014) Using global maps to predict the risk of dengue in Europe MODIS - nLST, dLST

MODIS - NDVI, EVI

78 [112] Rosa-Freitas et al. (2010) Dengue and land cover heterogeneity in Rio de Janeiro - - -

79 [113] Rotela et al. (2007) Space-time analysis of the dengue spreading dynamics in the 2004
Tartagal outbreak, Northern Argentina

Landsat 5 TM Spectral bands Road, River, Street, Vegetation

Landsat 5 TM Spectral bands TCB, TCG, TCW, Landsat
bands (7 to 13)

80 [114] Saravanabavan et al.
(2019) Identification of dengue risk zone: a geo-medical study on Madurai city - - -

82 [115] Sarfraz et al. (2012)
Analyzing the spatio-temporal relationship between dengue vector

larval density and land-use using factor analysis and spatial ring
mapping

- - -
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81 [116] Sarfraz et al. (2014) Near real-time characterisation of urban environments: a holistic
approach for monitoring dengue fever risk areas ALOS AVNIR-2 Spectral bands

Built-up, Vegetation, Water,
Bare soil, Road, Institution,

Religious areas, Market

83 [117] Sarfraz et al. (2014)
Mapping urban and peri-urban breeding habitats of Aedes mosquitoes

using a fuzzy analytical hierarchical process based on climatic and
physical parameters

SRTM (SIR-C) SRTM DEM Elevation

MODIS MYD11C3 dLST, nLST

84 [118] Scavuzzo et al. (2018)
Modeling Dengue vector population using remotely sensed data and

machine learning
MODIS MOD13Q1 NDVI, NDWI
MODIS MOD11A2 nLST, dLST

85 [119] Shafie (2011) Evaluation of the Spatial Risk Factors for High Incidence of Dengue
Fever and Dengue Hemorrhagic Fever Using GIS Application - - -

86 [120] Sheela et al. (2015) Assessment of changes of vector borne diseases with wetland
characteristics using multivariate analysis IRSP6 LISSIII -

Wetlands, Inland areas, Inland
waterlogged areas, Inland river,
Inland man made ponds, Inland

reservoirs, Coastal lagoons,
Coastal beaches and creek,

Aquatic vegetation, Turbidity

87 [121] Sheela et al. (2017) Assessment of relation of land use characteristics with vector-borne
diseases in tropical areas - - -

88 [122] Stanforth et al., (2016) Exploratory Analysis of Dengue Fever Niche Variables within the Rio
Magdalena Watershed

MODIS MYD11A1 LST
MODIS MYD09GQ EVI

SRTM (SIR-C) SRTM DEM Elevation

MODIS MCD12Q1 Bare soil, Cropland, Forest,
Urban

89 [123] Tariq and Zaidi. (2019) Geostatistical modeling of dengue disease in Lahore, Pakistan SPOT 5 Spectral bands NDVI, NDWI
Landsat 5 TM Spectral bands LST

90 [124] Teurlai et al. (2015) Socio-economic and Climate Factors Associated with Dengue Fever
Spatial Heterogeneity: A Worked Example in New Caledonia - - -

91 [125] Tian et al. (2016) Surface water areas significantly impacted 2014 dengue outbreaks in
Guangzhou, China

Landsat 4 TM,
Landsat 5 TM,

Landsat 7 ETM+,
and Landsat 8 OLI

Spectral bands Water

92 [126] Tiong et al. (2015) Evaluation of land cover and prevalence of dengue in Malaysia - - -

93 [127] Tipayamongkholgul and
Lisakulruk. (2011)

Socio-geographical factors in vulnerability to dengue in Thai villages: a
spatial regression analysis - - -
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Table A2. Cont.

ID [Ref.] First Author/Year Title EO Data Landscape Factors

94 [128] Troyo et al. (2009) Urban structure and dengue fever in Puntarenas, Costa Rica.

MODIS - EVI
ASTER Spectral bands NDVI

Quickbird Panchrmatic and spectral
bands Built-up, Tree

95 [129] Tsuda et al. (2006)
Different spatial distribution of Aedes aegypti and Aedes albopictus
along an urban-rural gradient and the relating environmental factors

examined in three villages in northern Thailand
- - -

96 [130] Van Benthem et al. (2005) Spatial patterns of and risk factors for seropositivity for dengue infection Landsat 2000 - Vegetation, Built-up, Cropland

97 [131] Vanwambeke et al. (2006) Multi-level analyses of spatial and temporal determinants for dengue
infection Landsat 2000 - Orchard, Water, Bare soil,

Village areas, Agricultural areas

98 [132] Vezzani et al. (2005) Detailed assessment of microhabitat suitability for Aedes aegypti
(Diptera: Culicidae) in Buenos Aires, Argentina - - -

99 [133] Wiese et al. (2019)
Integrating environmental and neighborhood factors in MaxEnt
modeling to predict species distributions: A case study of Aedes

albopictus in southeastern Pennsylvania

MODIS MOD13Q1 EVI
MODIS MOD09Q1 NDWI

SRTM (SIR-C) SRTM DEM Elevation, Slope, Flow
accumulation

100 [134] Yue et al. (2018)
Spatial analysis of dengue fever and exploration of its environmental
and socio-economic risk factors using ordinary least squares: A case

study in five districts of Guangzhou City, China, 2014

GaoFen-1 Spectral bands NDWI
GaoFen-1 Spectral bands Water, Vegetation, Built-up
MODIS MOD11A2 nLST, dLST

101 [135] Zheng et al. (2019) Spatiotemporal characteristics and primary influencing factors of typical
dengue fever epidemics in China - - -
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