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RESUMO

Título: Reologia e Magnetização de Emulsões Diluídas de Ferrofluido
Autor: Victor Guinancio e Abicalil
Orientador: Taygoara Felamingo de Oliveira
Programa de Pós-Graduação em Ciências Mecânicas
Brasília, 2 de agosto de 2020

Este trabalho apresenta um estudo acerca da reologia e magnetização de emulsões diluí-
das de ferrofluido, quando submetidas a escoamentos cisalhantes simples e oscilatórios e à
ação de campos magnéticos externos. Para tal, são realizadas simulações numéricas de uma
gota de ferrofluido imersa em um fluido de fase contínua, assumindo que ambos os fluidos
são Newtonianos, imiscíveis e de mesma viscosidade, que o ferrofluido é superparamagné-
tico, e que o problema magnético pode ser tratado como magnetostático. As simulações
foram realizadas com a utilização do código computacional FENRir, desenvolvido para este
trabalho, em que o escoamento dos fluidos é calculado com base em um discretização em di-
ferenças finitas de segunda ordem das equações de Navier-Stokes incompressíveis, com um
método de projeção de segunda ordem para a discretização temporal e o método de Level
Set para captura da posição da interface entre os dois fluidos. De modo a permitir a solução
eficiente dos sistemas lineares associados à resolução do problema, são utilizadas rotinas
de solução direta por análise de Fourier e o método dos Gradientes Conjugados com um
precondicionador Multigrid. São apresentados resultados tanto para gotas não-magnéticas
quanto gotas de ferrofluido, para os casos de escoamentos cisalhantes simples e oscilatórios,
e sujeitas a campos magnéticos externos de diferentes direções e intensidades. Para o caso de
escoamentos cisalhantes simples, são apresentados dados de morfologia da emulsão, repre-
sentados pela deformação e ângulo de inclinação da gota, dados de reologia, representados
pela viscosidade reduzida e primeira e segunda diferenças normais de tensão, e dados de
magnetização, representados por sua magnitude e direção. Apesar de a gota ser considerada
superparamagnética, as deformações induzidas pelo escoamento cisalhante fazem com que
sua magnetização não seja perfeitamente alinhada ao campo magnético externo, induzindo
um torque magnético no sistema, o qual é neutralizado por um torque hidrodinâmico oposto
de igual magnitude, garantindo a conservação de momento angular em regimes de esco-
amento de Stokes. Para o caso de escoamentos cisalhantes oscilatórios, são apresentados
valores para os módulos de perda e armazenamento, correspondentes aos comportamentos
viscosos e elásticos da emulsão, respectivamente.

Palavras-chave: Reologia, Magnetização, Emulsão de Ferrofluido, Análise Numérica.



ABSTRACT

Title: Rheology and Magnetization of Dilute Ferrofluid Emulsions
Author: Victor Guinancio e Abicalil
Supervisor: Taygoara Felamingo de Oliveira
Graduate Program in Mechanical Sciences
Brasília, August 2nd, 2020

This works presents an investigation regarding the rheology and magnetization of dilute
ferrofluid emulsions, when subjected to simple and oscillatory shear flows and to external
magnetic fields. To this end, numerical simulations of a ferrofluid droplet immersed in a
continuous fluid phase are performed, with both fluids assumed to be Newtonian, immiscible
and of the same viscosity, the ferrofluid assumed to be superparamagnetic and the magnetic
problem assumed to be magnetostatic. Simulations were performed using the computational
code FENRir, developed for this work, in which the fluid flow problem is solved by using
a second-order, finite difference discretization of the incompressible Navier-Stokes equa-
tions, alongside a second-order projection method for temporal discretization and the Level
Set method to capture the position of the interface between the two fluids. To allow for an
efficient solution of the linear systems of equations associated to the solutions of the gov-
erning equations, the computational code uses direct solution via Fourier analysis and the
Conjugate Gradient method with Multigrid preconditioning. Results are presented both for
non-magnetic and ferrofluid droplets, subjected to simple shear and oscillatory shear flows
and to external magnetic fields of varying intensities and directions. In the case of simple
shear flows, results are presented for the emulsion’s morphology, represented by the droplet’s
deformation and inclination angle, for the emulsion’s rheology, represented by the reduced
viscosity and the first and second normal stress differences, and for it’s magnetization, rep-
resented by it’s magnitude and direction. Despite the superparamagnetic assumption for the
ferrofluid phase, shear-induced droplet deformations cause the emulsion’s magnetization to
not perfectly align to the external magnetic field, giving rise to a magnetic torque in the sys-
tem, which is then counteracted by an equal and opposite hydrodynamic torque, ensuring the
conservation of angular momentum in the Stokes flow regime. For oscillatory shear flows,
results are presented for the storage and loss moduli, corresponding to the elastic and viscous
behaviours of the emulsion, respectively.

Keywords: Rheology, Magnetization, Ferrofluid Emulsion, Numerical Analysis.
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INTRODUCTION

1.1 CONTEXTUALIZATION

Emulsions are suspensions of one or more immiscible liquids, consisting of a matrix
and a dispersed phase, with microscopic droplets of the dispersed phase immersed in the
continuous matrix phase. Given the microscopic size of the droplets, buoyancy effects are
minimal, so that these suspensions take a very long time to settle, or do not settle at all.
Additionally, since the length scales associated to the flow around the droplets are much
smaller than the length scales associated with flows in practical applications, emulsions can
usually be analyzed as a single fluid in a macroscopic scale, although one with complex
rheological behaviour, originating from the microscopic multi-phase flows and the effects of
surface tension.

Emulsions are present in a wide variety of applications, such as in the medical, food, and
cosmetic industries, and can be dilute, in which interactions between droplets are negligible,
or concentrated, in which interactions between droplets become significant. They can also
be characterized as monodisperse, in which all dispersed droplets have the same size, or
polydisperse, in which droplets have several different sizes.

Due to the effects of surface tension and droplet deformation, emulsions display a com-
plex, non-Newtonian behaviour. When subjected to simple shear flows, the droplets tend to
deform and align themselves with the flow, an effect that becomes more pronounced with
higher shear rates, and which causes a reduction in the viscosity of the emulsion. Thus, di-
lute emulsions usually display a shear-thinning behaviour. When subjected to unsteady shear
flows, emulsions display a viscoelastic behaviour. In this case, as surface tension forces at-
tempt to return a deformed droplet to a spherical shape, they introduce a stress component
which is dependent on strain, and thus an additional elastic behaviour. The relative mag-
nitude of the viscous and elastic effects depends on the frequency associated with the flow
and the relaxation time of the droplets, and, as such, emulsions can display widely different
behaviours depending on the characteristics of the flows they are subjected to.

Ferrofluids, meanwhile, are colloidal suspensions of ferromagnetic particles. Due to
the presence of such magnetic particles, the characteristics of a ferrofluid can be altered by
manipulating the magnetic fields which permeate them. This allows for an active control of
the fluid’s behaviour, and has given rise to several different possible applications, such as in
microfluidics, in the aerospace industry, where it could be used for spacecraft propulsion, for
example, and in the medical industry, where it could be used for targeted drug delivery or for
cancer treatments via hyperthermia.

1
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Recently, several works have focused on studying the behaviour of ferrofluid droplets
immersed in another liquid and subjected to a shear flow, in order to better understand the
behaviour of such droplets and how they affect the overall fluid flow. In the case of micro-
scopic droplets, this characterizes a dilute, monodisperse ferrofluid emulsion, i.e. an emul-
sion in which the dispersed phase is a ferrofluid. Such an emulsion, then, will have a very
complex behaviour, by combining the non-Newtonian characteristics of general emulsions
with the magnetic response and active control associated with ferrofluids.

In this context, the goal for this work is to study the rheological and magnetic behaviour
of dilute, monodisperse ferrofluid emulsions when subjected to an external magnetic field,
both under simple shear and oscillatory shear flows. This is accomplished by performing
numerical simulations of such emulsions and analyzing their response to the shear flows and
magnetic fields, in order to better understand the morphology, rheology and magnetization
of such emulsions and, ultimately, to determine the feasibility of controlling the rheology
and overall behaviour of such emulsions with the use of external magnetic fields.

1.2 BIBLIOGRAPHICAL REVIEW

The rheology of colloids has been a subject of active research for over a century, dating
back to the seminal work of Einstein [6] in 1906, which presented a theoretical prediction
for the viscosity of a suspension of solid spheres. This work was later expanded upon by
Taylor [2], in 1932, in which he presented a prediction for the viscosity of a suspension of
liquid spheres. The dynamics of a suspended droplet were further analyzed in [1], in which
Taylor presented experimental results on the deformation of droplets under simple shear and
extensional flows, alongside a theoretical model for droplet deformation in the limit of small
deformations. Since these seminal works of Taylor, a wide range of works have since been
published regarding the dynamics of suspended droplets, including theoretical, experimental,
and numerical results.

Some other early experimental works, investigating the behaviour of dilute emulsions
under simple shear flows, include those of Rumscheidt and Mason [7], Torza, Cox and Ma-
son [8], and Bentley and Leal [9], among others. More recent works include those of Sibillo
et al. [10] and Vananroye et al. [11, 12, 13], which investigated the influence of confinement
on the dynamics of droplets undergoing simple shear flows (a review regarding the effects
of confinement is presented in [14]), as well as those of Wannaborworn, Mackley and Re-
nardy [15], Cavallo, Guido and Simeone [16], and Janpaen et al. [17], which investigated
droplet deformation and breakup under oscillatory shear flows. Theoretical works, focusing
on the development of small deformation theories, include those of Schowalter, Chaffey and
Brenner [18], Barthes-Biesel and Acrivos [19], Grmela, Bousmina and Palierne [20], and
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Yu et al. [21], for simple shear flows, and those of Frankel and Acrivos [22], Palierne [23]
and Yu et al. [24] for oscillatory shear flows. A summary of small deformation theories
is presented by Rallison [25], and recent reviews regarding the rheology of emulsions are
presented by Derkach [26] and Pal [27].

Regarding the numerical simulation of dilute emulsions, several different methods have
been employed. One of the most common is the Boundary Integral method, since it allows for
a three-dimensional problem to be represented on a two-dimensional surface, and was used,
among others, by Rallison [28] and Kennedy, Pozrikidis and Skalak [29]. It is, however,
unable to solve the complete Navier-Stokes equations, being limited to the case of creeping
flow, and requires complex mesh recreation algorithms to be able to deal with problems
of droplet breakup. Extensions to the Boundary Integral method were also presented by
Janssen and Anderson [30], to allow for simulations of confined droplets, and by Cunha and
Couto [31], to allow for simulations of magnetic droplets. Other works have also been based
on the Volume of Fluid method, such as that of Li, Renardy and Renardy [32], the Front-
Tracking method, such as that of Li and Sarkar [33], and the Lattice-Boltzmann method,
such as those of Xi and Duncan [34] and Ioannou, Liu and Zhang [35]. Gounley et al. [36]
used a numerical method coupling the Boundary Element method with the Finite Element
method to investigate the influence of interfacial viscosity on droplet dynamics.

In the case of ferrofluids, a general review regarding possible applications currently un-
der research is presented by Torrez-Diaz and Rinaldi [37]. Since the pioneering works of
Sherwood [38] and Sero-Guillaume et al. [39], several studies have investigated the be-
haviour of ferrofluid droplets in quiescent flows when subjected to external magnetic fields,
with noteworthy works including those of Afkhami et al. [40], which presented a theo-
retical prediction for droplet deformation alongside matching numerical simulations, and of
Rowghanian, Meinhart and Campas [41], which analyzed numerical results for droplet shape
when compared to an ellipsoid.

The dynamics of a ferrofluid droplet when subjected to both an external magnetic field
and a shear flow, however, has only recently been investigated in the literature. Jesus, Roma
and Ceniceros [4] presented a small deformation theory alongside three-dimensional, highly
accurate numerical results based on the Immersed Boundary method, for external magnetic
fields parallel to the main velocity gradient direction. However, the numerical results fo-
cused on cases of small droplet deformation, with only few cases of moderate deformation
presented. Capobianchi, Lappa and Oliveira [42] presented three-dimensional results based
on a hybrid Level Set - Volume of Fluid method, for external magnetic fields parallel to the
main velocity gradient direction, with results focusing on the transient relaxation behaviour
of the droplets, in addition to it’s steady-state deformation and inclination angle.

Meanwhile, Hassan, Zhang and Wang [43] presented two-dimensional simulations of a
ferrofluid droplet, based on the Level Set method with a finite element discretization, and
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external magnetic fields in arbitrary directions. Although limited to two dimensions, the
results included cases of large droplet deformations, and spanned a wide range of magnetic
field orientations. The aforementioned results indicated that the droplets tend to align and
deform alongside the external magnetic field direction, with the amount of influence the shear
flow has on droplet shape being dependent on both the flow and magnetic field conditions.
The droplet deformation is largest for external magnetic fields in a 45◦ angle between the
main flow direction and the main velocity gradient direction, with magnetic fields parallel
to the main velocity gradient direction leading to larger deformations than magnetic fields
parallel to the main flow direction.

The aforementioned works, however, focused solely on the droplet’s shape. The work of
Cunha et al. [44], meanwhile, investigated the influence of an external magnetic field on the
emulsion’s rheology and on droplet breakup, using two-dimensional numerical simulations
based on the Level Set method. It found that external magnetic fields have a major influence
on the emulsion’s reduced viscosity, with fields parallel to the main flow direction leading to
significant decreases in viscosity, and fields parallel to the main velocity gradient direction
leading to significant increases in viscosity. Moreover, it also found that external magnetic
fields can be used to control the droplet’s breakup process, either promoting or preventing
it, depending on the magnetic field direction and intensity, as well as influencing the time
to breakup and the size and number of satellite droplets. This analysis of droplet breakup
was later extended by Hassan and Wang [45] to include a wider range of viscosity ratios and
magnetic field directions and intensities, although still in the two-dimensional case.

In a later work, Cunha et al. [46] presented a new formulation for the droplet’s particle
stress tensor, which accurately captures the magnetic forces acting on the droplet interface.
Based on this new formulation, the authors were able to further investigate the rheology of
the ferrofluid emulsion, presenting results for the first normal stress difference in addition
to the reduced viscosity. The authors also investigated the emulsion’s magnetization, and
found that a hydrodynamic torque is present in the system, counteracting a magnetic torque
that arises from the emulsion’s magnetization not perfectly aligning to the external magnetic
field.

This investigation regarding a ferrofluid emulsion’s rheology was then extended to the
three-dimensional case by Ishida and Matsunaga [3], which used numerical simulations
based on the Lattice-Boltzmann method to present results for the emulsion’s reduced vis-
cosity as well as it’s first and second normal stress differences, with external magnetic fields
in either of the three main orthogonal directions and for varying shear flow and magnetic
field intensities. Abicalil et al. [5] later extended the investigation regarding the emulsion’s
magnetization to the three-dimensional case, as well as to wider range of external magnetic
field intensities, with results based on numerical simulations using the Level Set method. The
authors observed qualitatively similar results to those of the two-dimensional case [46] for
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external magnetic fields parallel to the main flow and main velocity gradient directions, while
for external magnetic fields parallel to the main vorticity direction the emulsion’s magneti-
zation perfectly aligns to the external magnetic field, so that no magnetic or hydrodynamic
torques arise in the system.

To the best of the author’s knowledge, there hasn’t yet been any work published re-
garding the rheology of a ferrofluid emulsion subjected to an oscillatory shear flow. For
ferrofluid emulsions subjected to simple shear flows, the author is currently not aware of
any works presenting experimental results, or works investigating droplet breakup from a
three-dimensional perspective.

1.3 PROBLEM FORMULATION

1.3.1 Studied Flows

In this work, the rheological behaviour of ferrofluid emulsions is studied from a micro-
scopic point of view, through numerical simulations of shear flows, both steady and oscilla-
tory, with one droplet of the dispersed phase, assumed to be superparamagnetic, immersed
in the matrix fluid, assumed to be non-magnetic. Figure 1.1 presents a schematic of the
computational domain used for these simulations, with dimensions Lx × Ly × Lz and one
initially spherical droplet of radius a placed in its center. This system can then be subjected
to an externally applied, uniform magnetic field H0, parallel to either one of the Cartesian
axes. As the flow develops, the droplet is deformed and, thus, can be characterized based
on its length L, breadth B, and inclination angle θ1. The droplet deformation can then be
measured using Taylor’s deformation parameter D = (L−B)/(L+B).

The boundaries normal to the y axis are walls moving with velocities U/2 and −U/2
for the upper and lower ones, respectively. These walls have Dirichlet boundary conditions
for velocity, corresponding to the impenetrability and no-slip constraints, while all other
boundary conditions are periodic.

For oscillatory shear flows, the wall velocities follow a sinusoidal function given by
U = U0 sin (ωt), where U0 is the peak relative velocity between the walls, ω is the angular
velocity of oscillation and t is the elapsed time. For steady shear flows the wall velocities
are constant (U = U0). The peak average shear rate is then defined as γ̇0 = U0/LY . The
viscosities of the fluids are ηm and ηd, for the matrix and dispersed phases, respectively, and
both phases have an equal density ρ. The magnetic permeabilities of the fluids are µ0 for
the matrix phase, assumed to be equal to that of free space, and µd for the dispersed phase.
The interface between the two fluids is assumed to be clean, so that it has a constant surface

1L,B and θ are measured in the plane normal to the z axis that crosses the center of the droplet.
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Figure 1.1 – Schematic of a droplet immersed in a simple shear flow.

tension coefficient of σ.

The main nondimensional parameters that govern this flow are:

• The Reynolds number, Re, corresponding to the ratio between inertial and viscous
effects in the flow;

• The capillary number, Ca, corresponding to the ratio between viscous and surface
tension forces in the flow;

• The magnetic capillary number, Camag, corresponding to the ratio between magnetic
and surface tension forces in the flow;

• The viscosity ratio between the two fluids, λ; and

• The magnetic permeability ratio between the two fluids, ζ .

The Reynolds number can be defined as either Rem = ργ̇0a
2/ηm, based on the matrix

phase viscosity, or Red = ργ̇0a
2/ηd, based on the dispersed phase viscosity. The capillary

number can be defined as either Cam = ηmaγ̇0/σ, based on the matrix phase viscosity, or
Cad = ηdaγ̇0/σ, based on the dispersed phase viscosity. The magnetic capillary number,
viscosity ratio, and permeability ratio are defined as Camag = µ0a||H0||2/σ, λ = ηd/ηm and
ζ = µd/µ0, respectively.
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It is worth noting that such a flow has three main characteristic times: the droplet’s
relaxation time, related to surface tension forces (τσ = ηa/σ), the bulk flow characteristic
time, related to the shear rate (τu = 1/γ̇0), and the magnetic characteristic time, related to
magnetic forces (τmag = η/µ0||H0||2). In this way, the capillary number measures the ratio
between the droplet’s relaxation time and the bulk flow characteristic time, withCa = τσ/τu,
while the magnetic capillary number measures the ratio between the droplet’s relaxation
time and the magnetic characteristic time, with Camag = τσ/τmag. The capillary number
is also the ratio between stresses nondimensionalized using τσ and τu, respectively, with
Ca = σσ/σu.

1.3.2 Magnetic problem

The magnetic problem is assumed to be magnetostatic, such that relaxation times for the
magnetic field are assumed to be negligible when compared to the time scales associated
with fluid flow and droplet motion. In this case, and considering the absence of electric
fields and currents, Maxwell’s equations reduce to ∇ · B = 0 and ∇ × H = 0, where B

is the magnetic induction and H is the magnetic field. Assuming that the ferrofluid droplet
is superparamagnetic, with constant magnetic susceptibility χ, it’s magnetization M follows
the linear relation M = χH and, since the magnetic induction is composed of contributions
from the magnetic field and the local magnetization, it can be defined as B = µ0(M + H).

To generalize this definition to the entire domain, the permeability ratio is extended to the
entire domain as ζ(x), where x is the position vector of a given point, defined as ζ(x) = 1

in the non-magnetic matrix fluid, and ζ(x) = ζ = 1 + χ in the ferrofluid droplet. Using this
definition, the magnetic induction is defined as B = µ0ζ(x)H and, since the magnetic field
is irrotational, it can be defined as the gradient of a potential field ψ, such that H = ∇ψ.
Given that the magnetic induction B is solenoidal, the magnetic potential can be obtained
from the relation [44]

∇ · (µ0ζ(x)∇ψ) = 0 , (1.1)

with boundary conditions representing the external magnetic field. These correspond to
imposing Neumann boundary conditions on all domain boundaries, defined as ∇ψ · n̂ =

H0 · n̂, with n̂ the unit vector normal to the boundary.

1.3.3 Hydrodynamic problem

The flows studied in this work are all assumed to be incompressible, and so are governed
by the incompressible Navier-Stokes equations [44]

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P +∇ ·

[
η(x)(∇u +∇uT )

]
+ Fs + Fmag , (1.2)
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∇ · u = 0 , (1.3)

with the addition of the body force terms Fs and Fmag, which account for the surface tension
in the droplet surface and for the magnetic forces, respectively. In the above equations, u is
the velocity field, P is the pressure field, and η(x) is the viscosity, and, since both fluids are
assumed to have equal densities, gravitational effects are not considered. The surface tension
force term, derived from the Young-Laplace equation, is Fs = −σκδ̂(x − xΓ)n̂, where κ is
the local mean curvature of the interface, n̂ is the unit vector normal to the interface, δ̂ is the
Dirac delta function, and xΓ is the position of the interface, and the magnetic force term is
Fm = µ0(ζ(x)− 1)H · ∇H.

Defining the nondimensional variables ũ = u/γ̇a, t̃ = tγ̇, x̃ = x/a, P̃ = P/ρa2γ̇2,
η̃(x) = η(x)/ηm, and H̃ = H/|H0|, and dropping the tilde in nondimensional variables to
alleviate the notation, the Navier-Stokes equations can be rewritten in nondimensional form
as

∂u

∂t
+ u · ∇u = −∇P +

1

Rem
∇ ·
[
η(x)(∇u +∇uT )

]
− 1

RemCam
κδ̂(x− xΓ)n̂ +

Camag
RemCam

(ζ(x)− 1)H · ∇H ,

(1.4)

∇ · u = 0 . (1.5)

When using the droplet viscosity ηd instead of the matrix fluid viscosity ηm as a charac-
teristic viscosity, the only difference in Eq. 1.4 is that Rem and Cam are replaced by Red
and Cad, respectively. This alternative formulation is extremely useful when performing nu-
merical simulations of emulsions with a high viscosity ratio, since it avoids large jumps in
nondimensional viscosity across the droplet interface that could otherwise lead to numerical
instabilities.
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DISCRETIZATION OF THE GOVERNING
EQUATIONS

2.1 PROJECTION METHODS

2.1.1 General Description

When solving the incompressible Navier-Stokes equations, one of the main difficulties
arises from the accurate calculation of the pressure term, since there isn’t a thermodynamic
equation of state for it such as in the case of compressible flows, as well as from the require-
ment of imposing the incompressibility constraint. One alternative would be to solve the
incompressible Navier-Stokes equations as a coupled system [47], but this would incur in sig-
nificant computational costs. Another alternative, although limited to some two-dimensional
flows, is to use the vorticity-streamfunction formulation [48].

One of the most popular alternatives, however, is the use of so-called projection methods,
which are used in this work. These methods, initially proposed by Chorin [49], consist,
essentially, in splitting the solution of the Navier-Stokes equations, first by using an absent or
approximate pressure term to calculate a tentative velocity field u∗, which is not divergence-
free, then by calculating a pressure field which would render this tentative velocity field
incompressible, and, finally, updating the tentative velocity field to obtain the final velocity
field. As a basic example, consider the Navier-Stokes equations for a single Newtonian fluid
and, for the sake of simplicity, approximate the time derivative by an explicit Euler scheme:

un+1 − un

∆t
= −un · ∇un −∇P n +

1

Re
∇2un . (2.1)

Splitting the solution, and ignoring the pressure term when calculating the tentative ve-
locity field, the scheme becomes

u∗ − un

∆t
= −un · ∇un +

1

Re
∇2un , (2.2)

un+1 − u∗

∆t
= −∇P n , (2.3)

where it is clear that the sum of Eqs. 2.2 and 2.3 is equal to Eq. 2.1. Finally, by taking
the divergence of Eq. 2.3 and imposing the incompressibility constraint, an equation for
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Pressure can then be obtained as

∇2P n =
1

∆t
∇ · u∗ , (2.4)

aptly named the Pressure Poisson Equation. Note that this formulation imposes the incom-
pressibility constraint on every time step, ensuring that the flow doesn’t violate this constraint
due to an accumulation of numeric errors across several steps. It is also worth noting that an
approximate pressure term P̃ , usually extrapolated from previous time steps, can be included
in Eq. 2.2. With such a term, the resulting projection method would be defined as

u∗ − un

∆t
= −un · ∇un −∇P̃ 1

Re
∇2un , (2.5)

un+1 − u∗

∆t
= −∇P n +∇P̃ , (2.6)

∇2P n =
1

∆t
∇ · u∗ +∇2P̃ . (2.7)

Due to the presence of the approximate pressure term, such methods are referred to as
incremental pressure projection methods. Note that, in this case, u∗ is a close approximation
of un+1, whereas the u∗ defined in Eq. 2.1 is not. This difference in u∗ means that care
must be taken when imposing boundary conditions, in order to ensure that such conditions
are sufficiently accurate for the tentative velocity field, but it does not decrease the overall
accuracy of the method. In the case of incremental pressure projection methods, u∗ is such
an accurate approximation of the true velocity field, in fact, that the errors associated with it
are similar to those associated with un+1 [50], with u∗ not being divergence-free and un+1

having inexact boundary conditions.

Finally, it is essential to note that the formulations previously described are not complete,
since they lack the required boundary conditions for Eq. 2.4. Additionally, such a boundary
condition is not present in the physical description of the problem, since it only involves
the no-slip velocity boundary conditions, and an inexact boundary condition can lead to
the creation of numeric boundary layers which reduce the accuracy of the solution method.
Then, what boundary conditions can one use to solve the Pressure Poisson Equation? This
is one of the major issues of projection methods, and has been extensively discussed in
the literature and led to several different methods. Excellent reviews of different projection
methods, as well as their advantages and disadvantages, are presented in [51] and [50].
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2.1.2 The Pojection Method of Kim and Moin

In this work, the Navier-Stokes equations are solved using the projection method pro-
posed by Kim and Moin in [52]. This method, expected to be second order accurate in time,
is based on a Crank-Nicolson scheme for the time discretization, with implicit treatment
of the viscous term, and uses an auxiliary, pressure-like scalar field P, instead of the true
pressure P . Note that this method can also be used with other time-stepping schemes. This
scheme, assuming constant viscosity, can be defined as

u∗ − un

∆t
= −(u · ∇u)n+ 1

2 +
1

2Re
(∇2u∗ +∇2un) + Fn+ 1

2 , (2.8)

un+1 − u∗

∆t
= −∇Pn+1 , (2.9)

∇2Pn+1 =
1

∆t
∇ · u∗ , (2.10)

where F is a generic forcing term, extrapolated from previous iterations as Fn+ 1
2 = 3

2
Fn −

1
2
Fn−1, with the nonlinear advective term extrapolated in a similar way. As such, the current

method requires the solution of four elliptic partial differential equations on each time step,
one Helmholtz equation for each component of u and one Poisson equation for P. Since
P is an auxiliary variable, the exact instant in which it is defined is arbitrary, and does not
alter the resulting computational code. Thus, although defining it at the instant n+ 1

2
would

be more consistent with the Crank-Nicolson scheme, in this work it is defined at the instant
n+ 1 solely for ease of notation. The actual pressure P , if required, can be calculated by the
relation

P n+ 1
2 = Pn+1 +

∆t

2Re
∇2Pn+1 , (2.11)

obtained by taking the sum of Eqs. 2.8 and 2.9, substituting u∗ = ∆t∇Pn+1 + un+1,
commuting the gradient and laplacian operators, and comparing the result to a similar Crank-
Nicolson discretization of the Navier-Stokes equations, without a projection method

un+1 − un

∆t
= −∇P n+ 1

2 − (u · ∇u)n+ 1
2 +

1

2Re
(∇2un+1 +∇2un) + Fn+ 1

2 . (2.12)

Note that P n+ 1
2 , as defined in Eq. 2.11, is a first order in time approximation of P n+1. In

order to solve Eqs. 2.8 and 2.10, boundary conditions for u∗ and P are required. Accurate
boundary conditions for u∗ can be obtained by using Eq. 2.9 and the corresponding boundary
conditions for u, using the extrapolation Pn+1 = 2Pn−Pn−1. For the boundary conditions
for P, it is evident from Eq. 2.11 that they do not enforce a boundary condition for P ,
and it can be seen in the boundary conditions for u∗ that the boundary conditions for P

also do not influence the boundary conditions of u. As such, boundary conditions for P
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are arbitrary, and thus can be set as the homogeneous Neumann condition of (∇P) · n̂ = 0,
where n̂ is a unit vector normal to the boundary, for convenience and to simplify the boundary
conditions for u∗. It is worth noting that, although the above method should obtain second
order accuracy for both u and P , numerical experiments presented in [51] for a very similar
method displayed a deterioration to first order accuracy for P near the boundaries. However,
since the current work doesn’t require accurate values of P , especially near the boundaries,
and this numerical boundary layer doesn’t cause a deterioration of accuracy for u, such a
deterioration of accuracy, if present, would not be an issue.

In order to extend this method to the case of variable viscosity, as is the case when λ 6= 1,
one can simply substitute the viscous term 1

Re
∇2u with 1

Re
∇ · (η(x)(∇u + ∇uT )), where

u can represent un, un+1 or u∗. This, however, would result in variable coefficients when
the corresponding Helmholtz equations are discretized, which would require recalculating
the coefficients on every time step, as well as making the equations harder to solve. One
solution to this problem is to use the semi-implicit treatment of the viscous term proposed in
[53], which consists in extrapolating the true viscous term while adding the term 1

2Re
(∇2u∗−

∇2ũn+1) to Eq. 2.8, with ũn+1 extrapolated from previous values as ũn+1 = 2un − un−1.
The resulting method thus consists in substituting Eq. 2.8 for

u∗ − un

∆t
= −(u·∇u)n+ 1

2 +
1

Re
∇·(η(x)(∇u+∇uT ))n+ 1

2 +
1

2Re
(∇2u∗−∇2ũn+1)+Fn+ 1

2 ,

(2.13)
while the rest of the method remains unchanged. The resulting method will still have some
stability requirements associated with the viscous forces, since the viscous term is not treated
in a fully implicitly fashion, but these requirements are significantly less strict than those
associated with an explicit treatment of the viscous term. In order to better understand this,
consider the following split of the viscous term:

∇ · (η(x)(∇u +∇uT )) = η(x)∇ · (∇u +∇uT ) + (∇η(x)) · (∇u +∇uT ) . (2.14)

Since∇·u = 0, we have that∇· (∇uT ) = 0, such that the viscous term can be rewritten
as

∇ · (η(x)(∇u +∇uT )) = η(x)∇2u + (∇η(x)) · (∇u +∇uT ) , (2.15)

where it can be seen that the aforementioned semi-implicit scheme treats the first component
of the viscous term implicitly, which is the one associated with the strictest stability require-
ments. Thus, the resulting method will not be subject to the strict stability requirements
associated with the first component, but will still be subjected to the less strict requirements
associated with the second component. It is worth noting that, for flows of variable density,
a similar semi-implicit scheme can also be applied [54, 55].
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2.2 LEVEL-SET METHOD

2.2.1 General Description

In addition to solving the Navier-Stokes equations, the modelling of multiphase flows
also requires the use of a method to accurately determine the position and motion of the in-
terface between the two fluids, as well as the interface’s geometric properties that determine
the surface tension forces. Such methods can be split into two main categories: interface
tracking methods, in which the position of the interface is determined explicitly based on a
Lagrangian approach, using surface-fitted meshes, and interface capturing methods, in which
the position of the interface is inferred based on some auxiliary variable, which is defined on
the same Eulerian mesh used for the Navier-Stokes equations. Examples of interface track-
ing methods include the Boundary Integral method [56] and Immersed Boundary methods
[57], while examples of interface capturing methods include Volume of Fluid methods [58],
Phase-Field methods [59], and Level Set methods [60], each having distinct advantages and
disadvantages. For example, it is quite complicated to deal with drastic geometry changes,
such as droplet breakup and coalescence, when using interface tracking methods, since it
essentially requires the creation of a new mesh, while such phenomena are dealt with auto-
matically by interface capturing methods. Determining the interface’s geometric properties
is not trivial when using Volume of Fluid methods, but is so when using Level Set meth-
ods. Level Set methods, meanwhile, have the downside of requiring constant reinitialization,
among other considerations. It is worth mentioning that it is also possible to combine the
aforementioned methods, such as in the coupled Level Set and Volume of Fluid method pre-
sented in [61] and the hybrid Level Set and Immersed Boundary method presented in [62].

In this work, the Level Set method is used to capture the interface’s position and motion.
Initially proposed in [63], this method consists in creating a scalar function, referred to as the
Level Set function and defined in the entire computational domain, and defining a surface as
the set of points in which this function has a specific value. In this work, one of the most
common alternatives is used, in which the Level Set function φ is initially defined as a signed
distance function to the interface, with negative values inside the droplet and positive values
outside it. Thus, the interface is then defined as the set of points in which the function has
a value of zero. Furthermore, geometric properties of the interface can also be determined
based on the Level Set function. Given that φ = 0 throughout the interface, it is clear
that the unit vector normal to it can be defined as n̂ = ∇φ/|∇φ|, since the components of
∇φ tangential to the interface are all zero. The interface’s curvature can then be defined as
κ = ∇ · n̂ [64] or, assuming a constant |∇φ|, as κ = ∇2φ/|∇φ|. Note that, in this way, n̂
and κ can be defined across the entire domain, and not only strictly at the interface, which is
essential for the Level Set implementation used in this work, as will be discussed in section
2.2.3.

13



With this definition of the Level Set function, the Heaviside function H(φ) can then be
defined as

H(φ) =


0, if φ < 0,

1
2
, if φ = 0,

1, if φ > 0,

(2.16)

with a corresponding one-dimensional Dirac Delta function defined as δ(φ) = dH(φ)
dφ

. The
viscosity and permeability for a given point can then be determined by using the following
relations [65]:

η(φ) = λ+ (1− λ)H(φ) , (2.17)

ζ(φ) = ζ + (1− ζ)H(φ) . (2.18)

In order to accurately determine the interface’s motion, note that, locally, the interface
can only move in the normal direction, and with the same velocity as the underlying fluid
flow, given that no particles can cross the interface. The interface’s motion is then governed
by the Level Set equation [66]:

∂φ

∂t
+ u · n̂|∇φ| = 0 , (2.19)

or, alternatively [67]:
∂φ

∂t
+ u · ∇φ = 0 . (2.20)

Notice that Eq. 2.20 is the conservation equation Dφ
Dt

= 0, ensuring that values of φ
remain constant for a given fluid particle as it is transported by the flow. One consequence
of this is that, unless the velocity fields are uniform or strictly tangential to the interface, the
Level Set function φ will diverge from a signed distance function, as the trajectories of fluid
particles outside the interface move them closer or further from it. In the continuous case this
is negligible, but, for the discrete, practical implementations of the method, this becomes a
major issue, for reasons that will be discussed in section 2.2.3.

2.2.2 Surface Tension Forcing Term

With the curvature of the interface κ and normal unit vector n̂ already defined in the
previous section, the only term of the surface tension body force not yet fully defined in
this Level Set implementation is the Dirac delta function, i.e. how to represent δ̂(d), with
d = x − xΓ, using the Level Set function φ. First, note that the delta function δ̂ is the
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directional derivative of the Heaviside function H in the normal direction [64]:

δ̂(d) = ∇H(φ(d)) · n̂ . (2.21)

Then, by applying the chain rule, and recalling the definition of n̂ in the Level Set formula-
tion:

∇H(φ(d)) · n̂ =
dH(φ)

dφ
∇φ · ∇φ

|∇φ|
= δ(φ)|∇φ| , (2.22)

Thus, the surface tension term in Eq. 1.4 can be rewritten, using the Level Set function
φ, as

Fs = − 1

ReCa
κδ(φ)|∇φ|n̂ , (2.23)

or, recalling the definition of n̂, as [60]:

Fs = − 1

ReCa
κδ(φ)∇φ (2.24)

2.2.3 Interface Thickness

When considering the implementation of the methodology described previously, it is
clear that it would not work adequately in a discrete setting. The sudden jumps in fluid
properties would lead to numerical instabilities and, more importantly, the delta function
would fail to correctly impose the stress jump due to surface tension where the interface does
not exactly coincide with a mesh point. One solution to this issue, first presented in [60] and
later updated in [65], is to smooth the interface, so that it has a finite thickness, larger than
the spacing between mesh points. This is accomplished by using smoothed versions of the
Heaviside and delta functions, with the smoothed Heaviside function Hε defined as

Hε(φ) =


0, if φ < −ε,
1
2
[1 + φ

ε
− 1

π
sin(πφ/ε)], if |φ| ≤ ε,

1, if φ > ε,

(2.25)

with ε an arbitrary value, set as ε = 1.5∆x in this work. The corresponding smoothed delta
function is then defined as δε = dHε(φ)

dφ
. In this formulation, it is clear that the interface’s

thickness depends on the gradient of φ near the interface. In fact, the thickness is equal to
2ε/|∇φ|, assuming that |∇φ| is constant in the normal direction. Thus, as φ deviates signifi-
cantly from a signed distance function, i.e. |∇φ| deviates significantly from 1, the interface’s
thickness also diverges significantly from its expected value of 3∆x. Such variations in in-
terface thickness can cause a loss of stability and accuracy of the method, and so must be
avoided. In order to do so, the Level Set equation must be kept close to a signed distance
function, at least near the interface. This can be achieved by a process called reinitialization,
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which is discussed in detail in section 2.2.4.

As a remark, it is worth mentioning that it is possible to have a sharp interface using
Level Set methods, such as with the Ghost-Fluid method [68]. Such an approach is not
straightforward, however, and is not used in this work.

2.2.4 Level Set Reinitialization

As previously mentioned, it is essential to the stability and accuracy of the numerical
scheme that the Level Set function φ remains a good approximation of a signed distance
function. The main solution to this issue is to periodically reinitialize the Level Set function,
such that it becomes a close approximation to a signed distance function while preserving the
interface’s position, although it is possible to implement Level Set formulations that don’t
require reinitialization [69]. Reinitialization can be performed in several different ways, such
as by solving a reinitialization equation [60], by using Fast Marching Methods [70] or Fast
Sweeping Methods [71], or using a novel approach based on the Hopf-Lax formula [72].

In this work, reinitialization is performed by solving the reinitialization equation

∂φ

∂τ
+ S(φ)(|∇φ| − 1) = 0 , (2.26)

where S(φ) is a signum function and τ is a virtual time. It clear that such an equation
preserves the position of the interface, since ∂φ

∂τ
= 0 if φ = 0, and that it’s steady-state

solution, with ∂φ
∂τ

= 0 everywhere, results in φ being a signed distance function. Additionally,
note that the reinitialization equation can be rewritten as the advection equation

∂φ

∂τ
+ w · ∇φ− S(φ) = 0 , (2.27)

with
w = S(φ)

∇φ
|∇φ|

. (2.28)

In this advective formulation, it is clear that the reinitialization equation is, effectively,
propagating information away from the interface, with a velocity of 1 and in the direction
normal to the interface. As a result, it quickly reaches steady-state in regions close to the
interface. This is a major advantage, since φ only needs to be a signed distance function in
regions close to the interface, which is quickly accomplished by the reinitialization equation,
without the need to actually reach steady-state across the entire domain.

Similarly to what is used for the Heaviside and delta functions, it is also essential to
define a smoothed signum function Sε(φ), in order to ensure that it is suitable for a discrete
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implementation. In this work, the smoothed signum function is defined as [73]

Sε(φ) =
φ√

φ2 + |∇φ|2ε2
, (2.29)

with ε = ∆x. Note that, in this definition, Sε(φ) is not simply a smoothed version of the
traditional sharp signum function, with it’s values varying with |∇φ| in such a way that it
speeds up convergence of the reinitialization equation when the Level Set function is flat
(|∇φ| < 1), and dampens it when the Level Set function is steep (|∇φ| > 1). The result
is a more consistent reinitialization procedure, avoiding the slow convergence that would
otherwise be associated with a flat Level Set function, as well as the possible instabilities
and numerical errors that would otherwise be associated with a steep Level Set function.

When performing reinitialization on a discrete setting, however, numerical errors can lead
to changes in the interface’s position and, in turn, to unphysical variations in droplet volume.
In order to counteract this issue, Sussman and Fatemi [74] presented an updated version of
the reinitialization equation, which imposes a local conservation of droplet volume on each
reinitialization step. This conservation is imposed by ensuring that

∂

∂τ

∫
Ω

Hε(φ)dV = 0 , (2.30)

where Ω is an arbitrary, fixed domain. In order to effectively enforce this conservation, the
reinitialization equation is modified to

∂φ

∂τ
+ L(φ)− λf(φ) = 0 , (2.31)

L(φ) = Sε(φ)(|∇φ| − 1) , (2.32)

with the parameter λ defined as being only a function of time inside the domain Ω, and f(φ)

an arbitrary function.

From Eq. 2.30, we have that

∂

∂τ

∫
Ω

Hε(φ)dV =

∫
Ω

H ′ε(φ)
∂φ

∂τ
dV =

∫
Ω

H ′ε(φ)(−L(φ) + λf(φ))dV = 0 , (2.33)

and, since λ is only a function of time inside Ω, we have that

λ =

∫
Ω
H ′ε(φ)L(φ)dV∫

Ω
H ′ε(φ)f(φ)dV

. (2.34)
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The arbitrary function f(φ) can then be defined as [74]

f(φ) = H ′ε(φ)|∇φ| , (2.35)

ensuring that this volume-preserving correction is only applied at the interface. Note that
H ′ε(φ) = δε(φ). When implementing a discrete version of this correction scheme, the domain
Ω is set as an individual grid cell, so that any interface displacement is corrected locally.

2.2.5 Local Level Set

As evidenced by the definitions of the smoothed Heaviside and delta functions, the actual
shape of the Level Set function is only important on a narrow band around it’s zero level set,
corresponding to the thickness of the smoothed interface, and so it’s shape outside of this
region is unimportant. Thus, accurately solving the Level Set’s transport and reinitialization
equations across the entire domain would be a significant waste of computational time, given
that they only need to be accurately solved in a narrow region around the interface. In order
to take advantage of this, and drastically reduce the cost of using Level Set methods, Peng et
al. [73] proposed a fast local Level Set method.

This local Level Set scheme consists in, first, defining two band thickness parameters ε2
and ε3, in addition to the interface thickness ε, with ε < ε2 < ε3. These parameters are then
used to define two bands in the domain, an inner one defined by φ < ε2, in which the Level
Set function is accurately determined, and an outer one, defined by ε2 < φ < ε3, which
acts as a transition layer between the inner band, where the Level Set function is accurately
calculated, and the outer region in which the Level Set function is not calculated at all. Note
that the interface is entirely contained inside the inner band. Based on these parameters, the
method then introduces a cutoff function C(φ), defined as

C(φ) =


1, if |φ| ≤ ε2,

(|φ| − ε3)2(2|φ|+ ε3 − 3ε2)/(ε3 − ε2)3, if ε2 < |φ| ≤ ε3,

0, if |φ| > ε3.

(2.36)

In [73], the authors suggest different different values of ε2 and ε3 depending on the size
of the stencil used to calculate the derivatives of φ. For a fifth-order WENO scheme, as is
the case in this work, the band thicknesses are defined as ε2 = 3∆x and ε3 = 6∆x. Using
this cutoff function, the Level Set advection equation is then rewritten as:

∂φ

∂t
+ C(φ)u · ∇φ = 0 , (2.37)

ensuring that no numerical errors arise due to sharp transitions between the accurately up-
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dated band and the outer region where the Level Set function is not updated. For the reini-
tialization equation, a cutoff function is not necessary, since information propagates strictly
away from the interface, and values of the Level Set function outside of the inner band do
not affect the reinitialization of the values inside it. The Level Set function is then defined
outside of the outer band as

φ =


−ε3, if φ < −ε3,

φ, if |φ| ≤ ε3,

ε3, if φ > ε3.

(2.38)

2.2.6 Surface and Volume Integrals

In applications containing interfaces, it is often necessary to evaluate volume integrals
over the region bounded by the interface, or surface integrals over the interface. When using
Level Set methods, both can be evaluated in a fairly straightforward way. To evaluate an
arbitrary function F over the region Ωi bounded by the interface, one can simply use the
identity [64] ∫

Ωi

FdV =

∫
V

FHε(−φ)dV , (2.39)

where V is the entire domain. Alternatively, for an integral over the region Ωo outside of the
interface: ∫

Ωo

FdV =

∫
V

FHε(φ)dV . (2.40)

For surface integrals over the interface Γ, these can be evaluated as∫
Γ

FdS =

∫
V

Fδε(φ)|∇φ|dV . (2.41)

2.3 FINITE DIFFERENCE DISCRETIZATION

In this work, the governing equations are discretized using a finite difference scheme,
with derivatives approximated by differences between the values of a variable on given grid
points. As an example, consider a one dimensional arbitrary variable ξ, defined in a grid with
N points (x1,x2,...,xN ), with uniform spacing ∆x. For a given point xi, the first derivative
of this function can be approximated with either a forward difference

dξ(xi)

dx
=
ξ(xi+1)− ξ(xi)

∆x
+O(∆x) , (2.42)
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or a backward difference

dξ(xi)

dx
=
ξ(xi)− ξ(xi−1)

∆x
+O(∆x) , (2.43)

both with first order accuracy in respect to ∆x, or with a centered discrete derivative

dξ(xi)

dx
=
ξ(xi+1)− ξ(xi−1)

2∆x
+O(∆x2) , (2.44)

with second order accuracy in respect to ∆x, albeit with a larger stencil. This derivative
can also be approximated with second order accuracy and a smaller stencil, defined at the
midpoint between two grid points as

dξ(xi+ 1
2
)

dx
=
ξ(xi+1)− ξ(xi)

∆x
+O(∆x2) , (2.45)

which also has a smaller error when compared to the approximation with a larger stencil. To
obtain an approximation for the second derivative, one can take the finite difference between
the first derivatives on the two adjacent midpoints xi− 1

2
and xi+ 1

2
, defined as

d2ξ(xi)

dx2
=
ξ′(xi+ 1

2
)− ξ′(xi− 1

2
)

∆x
+O(∆x2) , (2.46)

d2ξ(xi)

dx2
=
ξ(xi+1)− 2ξ(xi) + ξ(xi−1)

∆x2
+O(∆x2) . (2.47)

Partial derivatives of multidimensional functions can be approximated analogously, and higher
order approximations are possible, albeit with larger stencils.

Although a discretization with all variables co-located on the same grid points may seem
more straightforward, such an arrangement proves to be troublesome when used to solve the
Navier-Stokes equations [75, 76]. The reason for this is that, when calculating the pressure
gradient for the momentum equations or the divergence of the velocity for the continuity
equation on co-located grids, derivatives with an enlarged (2∆x) stencil must be used. Since
these derivatives only use the two adjacent points in its calculation (xi−1 and xi+1), they
can remain oblivious to massive oscillations. For example, if P = 100 on even points and
P = 300 on odd points, such a derivative would indicate that ∇P = 0 across the entire
domain. This, in turn, can lead to the accumulation of numerical errors and result in unstable
and/or inaccurate solutions.

One solution to this issue, which is commonly employed when discretizing simple ge-
ometries and is used in this work, is to use a staggered, rather than co-located arrangement
of variables. This staggered arrangement is commonly referred to in the literature as Marker
and Cell (MAC), in reference to the scheme presented in [77] which first introduced it, and
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consists in dividing the domain in cells, with scalar variables located on cell centers and com-
ponents of vector variables located on the center of cell faces normal to their directions. In
this arrangement, Eq. 2.45 can be used to calculate the pressure gradient for the momentum
equations, since the velocities are defined in the midpoints between pressure grid points, and
to calculate the divergence of the velocity field for the continuity equation, since pressure
is defined in the midpoints between velocity grid points. Although this arrangement works
well for simulations involving simple geometries, the increased discretization complexity is
not well-suited for simulations involving complex geometries, and so different solution must
be employed when dealing with such cases.

In this work, both the Navier-Stokes equations and the magnetic potential equation are
discretized with the second order, centered derivatives previously described, with the ex-
ception of the velocity derivatives for the advective term u · ∇u, which use a second order
Essentially Non-Oscillatory (ENO) scheme with upwinding, presented in Section 2.4. This,
however, is not a requirement for flows with low Reynolds numbers, since the large vis-
cous diffusion stabilizes the solution. When required, values located between grid points are
approximated using linear interpolation.

Special attention must be given to the discretization of the curvature term in Eq. 1.4. It
can be calculated as κ = ∇ · (∇φ/|∇φ|), without any further assumptions. However, this
requires approximating a first derivative twice with Eq. 2.44, which results in an enlarged
stencil. An alternative is to calculate the curvature as κ = ∇2φ/|∇φ|, assuming that |∇φ| is
locally constant. This results in a smaller stencil, approximating the second derivatives with
Eq. 2.47, at the cost of reduced stability and generality. In this work the first approach is
used, as it offers better stability and generality, although the second is used on some particular
cases, which are specified accordingly.

When discretizing the terms of the type ∇ · (ζ(x)∇ψ), special care must be taken to
ensure that it does not use an extended stencil. To this end, the term ζ(x)∇ψ must be
evaluated in the midpoints between grid points of ψ, so that the stencil only encompasses the
points adjacent to the central one. In the one dimensional case, this results in

d

dx

(
ζ(xi)

dψ(xi)

dx

)
≈
ζ(xi+ 1

2
)ψ′(xi+ 1

2
)− ζ(xi− 1

2
)ψ′(xi− 1

2
)

∆x

≈ 1

∆x

[
ζ(xi+ 1

2
)

(
ψ(xi+1)− ψ(xi)

∆x

)
− ζ(xi− 1

2
)

(
ψ(xi)− ψ(xi−1)

∆x

)]
,

(2.48)

with a straightforward extension to the multidimensional case. Note, however, that ζ might
not be defined in xi+ 1

2
, requiring some interpolation procedure. A simple linear interpolation

may be adequate for some particular cases, such as when simulating flows with bubbles [78],
although it is not, in general, well suited for this purpose.

An improved alternative is the one presented in [76], which is based on ensuring a con-
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stant flux Φ = ζ∇ψ between grid cells. In the one dimensional case, and assuming a sharp
transition between ζ(xi) and ζ(xi+1) in the midpoint between the cells, such a conservation
of flux can be represented as

Φ = ζ(xi)

(
ψ(xi+ 1

2
)− ψ(xi)

0.5∆x

)
= ζ(xi+1)

(
ψ(xi+1)− ψ(xi+ 1

2
)

0.5∆x

)
, (2.49)

for both half-cells individually, or, combined, as

Φ = ζ(xi+ 1
2
)

(
ψ(xi+1)− ψ(xi)

∆x

)
. (2.50)

Equations 2.49 and 2.50 can be solved as a system of equations, resulting in

2

ζ(xi+ 1
2
)

=
1

ζ(xi)
+

1

ζ(xi+1)
, (2.51)

which corresponds to the harmonic mean between the two adjacent grid points. Thus, har-
monic means are used when estimating values of ζ (and η, analogously) between grid points,
rather than arithmetic means, which would correspond to a linear interpolation. It is worth
mentioning that this scheme was first introduced for the solution of the heat equation, al-
though it is well suited for other applications. A more complex scheme, made specifically
for the case of viscous stresses, is presented in [79], although such an approach was not
pursued in this work.

2.4 DISCRETIZATION OF THE LEVEL SET EQUATIONS

Due to the advective nature of the Level Set transport and reinitialization equations, a
simple central differencing discretization scheme would result in an unphysical downwind
transport of information and in an unstable numerical solution. Furthermore, since numerical
errors in the solution of these equations can lead to a loss of droplet volume, it is desirable
that their solution is highly accurate. Thus, the Level Set equations are discretized with high-
order schemes developed for hyperbolic conservation laws, commonly found in the solution
of compressible flows [80, 81]. This section presents a general description of the methods
used to solve the Level Set equations in this work, although an in-depth and comprehensive
review of such methods is outside the scope of this work.

The time-stepping of the transport and reinitialization equations is performed with a
third-order, Strong Stability Preserving (SSP)1 explicit Runge-Kutta scheme [82]. Explicit

1SSP Runge-Kutta schemes were previously referred to as TVD (Total Variation Diminishing) Runge-Kutta
schemes
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methods are ideal in this case, since neither of the equations are stiff, as they are computa-
tionally cheaper than implicit methods, which would require the solution of linear systems
of equations on each time step, and allow for a straightforward implementation of upwinding
schemes. Strong Stability Preserving schemes are a special class of Runge-Kutta schemes,
developed for the solution of hyperbolic conservation laws, aimed at ensuring the stability of
the solution even if it has discontinuities.

Consider a generic hyperbolic conservation law

∂φ

∂t
= L(φ, t) , (2.52)

with L a term containing the PDE’s spacial derivatives. For example, L(φ, t) = −u(t) · ∇φ
for the Level Set transport equation, and L(φ, t) = Sε(φ)(1 − |∇φ|) for the reinitialization
equation. Using the method of lines, this conservation law can be represented as a semi-
discrete system of ordinary differential equations (ODEs)

∂φ

∂t
= L(φ, t) , (2.53)

with L a discrete approximation of L. With a first-order explicit Euler scheme for time-
stepping, this results in

φn+1 = φn + ∆tL(φn, tn) , (2.54)

for an arbitrary instant n.

Although such a scheme can be stable even in the case of a discontinuous solution if a
proper discretization is used for the derivatives, it is only first order accurate in time. To
obtain higher order schemes in time, while still preserving stability, Shu and Osher [83]
devised SSP Runge-Kutta schemes consisting of convex linear combinations of explicit Euler
steps. The third-order scheme, used in this work, can be written as

φ1 = φn + ∆tL(φn, tn) ,

φ2 =
3

4
φn +

1

4
φ1 +

1

4
∆tL(φ1, t1) ,

φn+1 =
1

3
φn +

2

3
φ2 +

2

3
∆tL(φ2, t2) ,

(2.55)
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where φ1 and φ2 are auxiliary intermediate variables, or, alternatively, as

φ̃n+1 = φn + ∆tL(φn, tn) ,

φ̃n+2 = φ̃n+1 + ∆tL(φ̃n+1, tn + ∆t) ,

φ̃n+ 1
2 =

3

4
φn +

1

4
φ̃n+2 ,

φ̃n+ 3
2 = φ̃n+ 1

2 + ∆tL(φ̃n+ 1
2 , tn +

1

2
∆t) ,

φn+1 =
1

3
φn +

2

3
φ̃n+ 3

2 ,

(2.56)

where the tilde is used to indicate auxiliary intermediate variables.

For the time-stepping of the Level Set transport equation, ∆t is the same one set for
Navier-Stokes equations, and it will always be enough to ensure stability, since both equa-
tions are subject to similar CFL constraints, with the Navier-Stokes equations subject to
stricter constraints arising from the magnetic and surface tension forcing terms. In the case
of the reinitialization equation, however, the time steps are completely independent, since it
is evolved in the virtual time τ . From Eq. 2.28, the characteristic propagation speed of the
reinitialization equation is |w| = 1, resulting in a Courant number

C =
|w|∆τ

∆x
=

∆τ

∆x
. (2.57)

Since C ≤ 0.5 ensures that the scheme is stable and monotone [73], the time step can then
be set as ∆τ = 0.5∆x.

As previously mentioned, the SSP Runge-Kutta scheme will result in a stable solution,
provided that an appropriate discretization is used for the spacial derivatives. Several differ-
ent schemes satisfy this condition, generally referred to as shock capturing schemes [84, 85],
due to their distinct ability to deal with discontinuities in the solution. One of the most promi-
nent classes of such methods are ENO (Essentially Non-Oscillatory) and WENO (Weighted
ENO) schemes, using polynomials that fit the data to approximate the derivatives.

There are, however, different possible polynomials for a given stencil. The ENO scheme,
then, chooses the smoothest one, to avoid crossing a discontinuity while approximating a
derivative. The WENO scheme, though, instead considers all possible polynomials, approx-
imating the derivative with a dynamically weighted, convex combination of the polynomials
[86]. If all polynomials are smooth, the weights are chosen such as to maximize the order
of accuracy, which will be higher than that of an ENO scheme of equal stencil. If strong os-
cillations appear in one or more polynomials, however, their respective weights are reduced,
resulting in a lower order of accuracy but ensuring the stability of the solution. In the worst
case scenario, the WENO scheme reverts to the ENO scheme of equal stencil.

For the discretization of the advective term of the Navier-Stokes equations, a second
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order ENO scheme is used, as presented in [64]. Although the implementation of higher-
order schemes would be straightforward, the additional computational cost would not be
justified, given that all other terms are discretized with second order schemes. Using an
auxiliary variable m, defined as m = i− 1 when calculating the backward derivative φ−x , or
asm = iwhen calculating the forward derivative φ+

x , the first and second divided differences
can be calculated as

D1
m+ 1

2
=
φm+1 − φm

∆x
,

D2
m =

φm+1 − 2φm + φm−1

2∆x2
,

D2
m+1 =

φm+2 − 2φm+1 + φm
2∆x2

.

(2.58)

A second auxiliary variable c is then introduced, defined as c = D2
m if |D2

m| ≤ |D2
m+1, or

as c = D2
m+1 if |D2

m+1| < |D2
m|. Note that this choice of c, opting for the divided difference

of least magnitude, ensures that the derivative is approximated using the smoothest of the
available polynomials. The second order accurate derivative is then approximated as

φx = D1
m+ 1

2
+ c(2(i−m)− 1)∆x . (2.59)

For the discretization of the Level Set transport and reinitialization equations, a fifth
order WENO scheme is used. Initially proposed in [87] for derivatives approximated at
the midpoint between grid points, and later extended for derivatives approximated on grid
points in [88], this method approximates the derivatives as a convex combination of the three
possible approximations of the third order ENO scheme of equal stencil. Rewritten in the
form presented in [64], the scheme is as follows. When calculating a backward derivative
φ−x , first set the parameters

v1 =
φi−2 − φi−3

∆x
,

v2 =
φi−1 − φi−2

∆x
,

v3 =
φi − φi−1

∆x
,

v4 =
φi+1 − φi

∆x
,

v5 =
φi+2 − φi+1

∆x
.

(2.60)
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When calculating a forward derivative φ+
x , these parameters are otherwise defined as

v1 =
φi+3 − φi+2

∆x
,

v2 =
φi+2 − φi+1

∆x
,

v3 =
φi+1 − φi

∆x
,

v4 =
φi − φi−1

∆x
,

v5 =
φi−1 − φi−2

∆x
.

(2.61)

With these parameters set, the rest of the scheme becomes identical for both backward
and forward derivatives. For an ENO scheme of equal stencil, the three possible derivatives
are

φ1
x =

v1

3
− 7v2

6
+

11v3

6
,

φ2
x = −v2

6
+

5v3

6
+
v4

3
,

φ3
x =

v3

3
+

5v4

6
− v5

6
,

(2.62)

and the resulting WENO derivative, a convex combination of these three ENO derivatives, is
defined as

φx = ω1φ
1
x + ω2φ

2
x + ω3φ

2
x , (2.63)

with the optimal weights of ω1 = 0.1, ω2 = 0.6 and ω3 = 0.3 resulting in fifth order accuracy.
Simply using these weights would lead to unstable approximation on non-smooth regions,
however, so that the weights must be dynamically calculated in order to ensure a balance
between stability and accuracy of the approximation. To this end, smoothness coefficients
associated with each of the three derivatives are calculated as

S1 =
13

12
(v1 − 2v2 + v3)2 +

1

4
(v1 − 4v2 + 3v3)2 ,

S2 =
13

12
(v2 − 2v3 + v4)2 +

1

4
(v2 − v4)2 ,

S3 =
13

12
(v3 − 2v4 + v5)2 +

1

4
(3v3 − 4v4 + v5)2 ,

(2.64)
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which in turn are used to calculate the parameters

α1 =
0.1

(S1 + ε)2
,

α2 =
0.6

(S2 + ε)2
,

α3 =
0.3

(S3 + ε)2
,

(2.65)

with ε = 10−6. The weights for Eq. 2.63 are then defined as the normalized parameters

ω1 =
α1

α1 + α2 + α3

,

ω2 =
α2

α1 + α2 + α3

,

ω3 =
α3

α1 + α2 + α3

,

(2.66)

with ω1 + ω2 + ω3 = 1. Note that, if all three smoothness coefficients have similar values,
the weights for Eq. 2.63 assume the optimal values for a fifth order accurate derivative.

For the advective terms of the Navier-Stokes equations and the Level Set transport equa-
tion, the choice of which derivative to use is straightforward, using a simple upwinding
scheme. Since the velocity field u is previously known and continuous, the derivatives can
simply be chosen as φ−x if u ≥ 0 or φ+

x if u < 0, and similarly for the other directions. For
the Level Set reinitialization equation, however, the propagation velocity S(φ)∇φ/|∇φ| is
discontinuous across the interface, where it changes sign. Thus, in order to obtain an ac-
curate and stable solution, a more elaborate scheme must be used. There are two canonical
monotone schemes which are adequate for this case [73], the Engquist-Osher scheme [63]
and Godunov’s scheme [89], the latter of which is used in this work. Since a lengthier dis-
cussion regarding such methods is outside the scope of this work, only a brief description of
Godunov’s scheme, as applied to the Level Set reinitialization equation, is presented here.

When discretizing an advective term of the type a∇φ ·∇φ, the characteristic propagation
velocity is a∇φ, with a an arbitrary scalar. With an upwinding scheme, ∇φ can be approxi-
mated with either backward or forward derivatives, so that there are two possible propagation
velocities in each direction, for example aφ−x and aφ+

x in the x direction. If both velocities
have the same sign, then use of upwinding is straightforward, since both alternatives indicate
the use of the same derivative. An issue arises, however, if the two velocities have different
signs, since it is not clear which derivative should be used. In this case, the core idea of
Godunov’s scheme is to choose the most meaningful solution.

If aφ−x < 0 and aφ+
x > 0, this indicates an expansion, with information flowing from a

grid point in both directions. In this case, Godunov’s scheme sets φ as being locally flat, with
φx = 0. On the other hand, if aφ−x > 0 and aφ+

x < 0, this indicates coalescing characteristics,
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with information flowing towards a grid point from both directions. In this case, Godunov’s
scheme assumes that the grid point reacts to the information that first reaches it, and thus
approximates φx with the largest in magnitude between φ−x and φ+

x . This scheme can be
elegantly represented as [90]

φ2
x =

max (max(φ−x , 0)2,min(φ+
x , 0)2) , if a > 0 ,

max (min(φ−x , 0)2,max(φ+
x , 0)2) , if a < 0 .

(2.67)

In the case of the Level Set reinitialization equation, a = S(φ)/|∇φ|, so that, assuming a
nonzero |∇φ|, a > 0 if φ > 0 and a < 0 if φ < 0.

2.5 GENERAL DESCRIPTION OF THE COMPLETE METHOD

With all components of the numerical scheme presented in the previous section, this sec-
tion aims to describe how all the methods are combined in a computational code. In this
work, the aforementioned methods are combined in the computational code FENRir (Fer-
rofluid Emulsion Numerical Rheometer), as described in Algorithm 1. The solution methods
employed to solve the linear systems of equations are described in Chapter 3. Note that, since
the Level Set function is extrapolated for the calculation of the forcing terms in Eq. 2.8, it is
reinitialized on every iteration, in order to avoid extrapolating across a discontinuity.
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Algorithm 1: General description of the computational code FENRir
1 Read simulation parameters from a configuration file
2 Allocate and initialize all variables, including the Level Set function in accordance

to the initial droplet shape
3 Define the interface location and flatten the Level Set function, as described in

Sec. 2.2.5
4 if ferrofluid droplet then
5 Solve the magnetic potential equation (Eq. 1.1)
6 Calculate the magnetic field from the magnetic potential

7 for it = 1 to nit do
8 Solve the equations for the tentative velocity field (Eq. 2.8)
9 Solve the pressure Poisson equation (Eq. 2.10)

10 Perform the projection step to determine the final velocity field (Eq. 2.9)
11 Advect the Level Set function with Eq. 2.20)
12 Reinitialize the Level Set function with Eq. 2.31
13 Update the interface location and flatten the Level Set function, as described

in Sec. 2.2.5
14 if ferrofluid droplet then
15 Solve the magnetic potential equation (Eq. 1.1), using

ψ̃ = 2ψit − ψit−1 as an initial approximation of the solution
16 Calculate the magnetic field from the magnetic potential

17 If applicable, perform any post-processing routines to extract flow data, and
write relevant data to output files
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DISCRETE EQUATION SOLVERS

This chapter presents a general outline of the solvers used in this work, ranging from basic
relaxation methods, such as Jacobi and Gauss-Seidel, to more advanced and efficient solvers,
such as Conjugate Gradients, Fast Poisson Solvers, and Multigrid methods. Also included
are discussions regarding the implementation of these different solvers, and a comparison
of their performances. When discretized, the corresponding partial differential equations
become linear systems of equations, which can be written in matrix form as

Ax = b . (3.1)

In order to test the accuracy of a given solution x̃, one can define the residual as

r = b− Ax̃ , (3.2)

and accept x̃ as a solution if the residual is sufficiently small. Note that, as the residual
approaches zero, the solution x̃ approaches the exact solution x. The definition of what is a
sufficiently small residual is entirely arbitrary, but one of the most usual alternatives, which
is the one used in this work, is to check if the L2 (Euclidean) norm of the residual is smaller
than a given value, referred to as the tolerance.

3.1 BASIC RELAXATION METHODS

Relaxation methods include some of the simplest solvers for the discrete elliptic equa-
tions described in the previous chapter, such as the Jacobi and Gauss-Seidel methods, which
consist of very simple iterative procedures. In order to describe these methods, let the matrix
A in Eq. 3.1 be split into a lower triangular component L, an upper triangular component A,
and a diagonal component D, such that A = L+D+U . Let also the individual components
of A be referred to as ai,j , the individual components of x be referred to as xi, and the indi-
vidual components of b be reffered to as bi. Then, for a given approximate solution xn, the
Jacobi iteration can be defined in matrix form as [91]

xn+1 = D−1(b− (L+ U)xn) , (3.3)
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where the inversion of the diagonal matrix D is trivial, or, alternatively, in element-based
form as

xn+1
i =

1

ai,i

(
bi −

∑
j 6=i

ai,jx
n
j

)
. (3.4)

It can be seen that, for computational implementations of the Jacobi method, an addi-
tional array is required to store the values of xn+1, since the values of xn cannot be over-
written until the entire iteration is complete. The Gauss-Seidel method is very similar to the
Jacobi method, and can be defined as [91]

xn+1 = (L+D)−1(b− Uxn) , (3.5)

or, in element-based form, as

xn+1
i =

1

ai,i

(
bi −

∑
j<i

ai,jx
n+1
j −

∑
j>i

ai,jx
n
j

)
. (3.6)

It can be seen that, unlike the Jacobi method, the computations of a Gauss-Seidel itera-
tion must be made in a specific order, which makes parallelization, although still possible,
more complicated and inefficient, whereas the Jacobi method is easily and efficiently paral-
lelizable. The advantages of the Gauss-Seidel method, however, are that it does not require
an additional array, since the values of xn can be overwritten by the values of xn+1 as they
are computed, and that it usually has faster convergence. It is important to note, however,
that the Gauss-Seidel method has a preferential direction of information transfer, which,
whenever possible, should be aligned with the preferential direction of information trans-
fer of a given problem, in order to accelerate convergence. When a given problem doesn’t
have a clear preferential direction of information transfer, it can be advantageous to perform
Gauss-Seidel iterations using alternating directions.

Both of the iterative methods previously discussed can be improved upon by using a
weighting parameter, ω, in order to obtain more desirable convergence properties. For the
case of the Jacobi method, this results in the weighted, or damped, Jacobi method [91]:

xn+1
i = (1− ω)xni +

ω

ai,i

(
bi −

∑
j 6=i

ai,jx
n
j

)
, (3.7)

and, for the Gauss-Seidel method, this results in Successive Over-Relaxation (SOR) [91]:

xn+1
i = (1− ω)xni +

ω

ai,i

(
bi −

∑
j<i

ai,jx
n+1
j −

∑
j>i

ai,jx
n
j

)
. (3.8)
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Note that, when ω = 1, the damped Jacobi reduces to the standard Jacobi method, and
SOR reduces to the standard Gauss-Seidel method. It is clear that different values of ω
can have significant impacts on the convergence properties of the aforementioned methods,
and, thus, an appropriate choice of this relaxation parameter is essential. In the case of
the damped Jacobi method, it is usual to have ω < 1 when it is used as a smoother for
multigrid methods [91] since, although it decreases the overall convergence speed, it does
improve the smoothing properties of the method. In the case of SOR, significant performance
improvements can be obtained with 1 < ω < 2, with the optimal value of ω depending on
the problem. For Poisson equations, this optimal value is ωopt = 2/(1 + sin(πh)), where h
is the mesh spacing of the corresponding problem [92].

Figure 3.1 – Convergence of Jacobi, Gauss-Seidel, and SOR methods.

Figure 3.1 presents a comparison of the convergence speeds for the Jacobi, Gauss-Seidel
and SOR methods for a 2D Poisson problem, on a 64 × 64 grid with homogeneous Dirich-
let boundary conditions and random initial conditions. Note that, even for the faster SOR
method, convergence still requires a large number of iterations for this simple model prob-
lem. As a remark, it should be noted that over-relaxation implies that ω > 1, with the cases
when ω < 1 being referred to as under-relaxation. Additionally, it can be seen that SOR
(and thus also Gauss-Seidel) iterations are not a symmetric procedure. They can be made a
symmetric process, however, simply by performing two iterations with opposing directions,
one forward and one backward (i.e. switching L and U in Eq. 3.5), resulting in Symmetric
SOR (SSOR).
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3.2 KRYLOV SUBSPACE METHODS

Krylov subspace methods are a class of highly successful iterative solvers for large lin-
ear algebra problems, based on the use of Krylov subspaces [93]. Some of the most suc-
cessful modern methods for the solution of large systems of linear equations are Krylov
subspace methods, such as Conjugate Gradient (CG) [94], Biconjugate Gradient Stabilized
(Bi-CGSTAB) [95] and Generalized Minimal Residual (GMRES) [96], as well as variations
and further developments of such methods. Since an in-depth discussion on Krylov subspace
methods is outside the scope of this work, this section only presents a brief discussion regard-
ing the Conjugate Gradient method and it’s preconditioned version, which were implemented
for the solution of linear systems of equations.

3.2.1 Conjugate Gradient

The Conjugate Gradient method is one of the most popular iterative methods for the
solution of large, sparse linear systems of equations, defined as Ax = b and with an exact
solution x∗, an initial approximation x0, and A a symmetric and positive definite matrix. In
order to solve the system, the method attempts to minimize the quadratic function

f(x) =
1

2
xTAx− xTb , (3.9)

since the minimum of this function is located on the exact solution of the linear system of
equations. Note that the gradient of this quadratic function is∇f(x) = Ax−b = −r. To this
end, the method iteratively seeks the minimum of the function alongside a search direction
d, such that, for a given approximate solution xi, the next approximation is obtained as
xi+1 = xi + αidi, with αi a scalar defined such that xi+1 is the location of the minimum
of f(x) alongside the search direction. Substituting the expression for xi+1 in Eq. 3.9 and
minimizing it with respect to αi, one finds that

αi =
dTi ri
dTi Adi

. (3.10)

By substituting the expression for xi+1 in the definition of the residual, one also finds that
ri+1 = ri − αiAdi , a definition that reduces the demand for matrix-vector products, since
Adi is previously computed for αi.

For the first iteration, it is natural to choose the search direction as the opposite of the
gradient of f(x), so that d0 = r0. For the following iterations, however, the method imposes
that the search directions must be A-orthogonal. This ensures that the method converges in,
at most, n iterations for an n×n matrix A. To this end, the search directions are constructed
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by conjugation of the residuals using the Gram-Schmidt process, with the fact that the search
directions are conjugated gradients giving rise to the method’s name. The search directions
are then defined as

di+1 = ri+1 +
i∑

k=0

βikdk , (3.11)

with

βik = − rTi Adk
dTkAdk

. (3.12)

However, due to the orthogonality relations between r and d, this reduces to

di+1 = ri+1 + βi+1di , (3.13)

βi+1 =
rTi+1ri+1

rTi ri
. (3.14)

The resulting method is described in Algorithm 2 (see [97] for a detailed description).

Algorithm 2: Conjugate Gradient method
1 r = b− Ax
2 d = r
3 δnew = rT r; δold = δnew
4 while

√
δnew > tolerance do

5 q = Ad
6 α = δnew/d

Tq
7 x = x + αd
8 δold = δnew, δnew = rT r
9 β = δnew/δold

10 d = r + βd

3.2.2 Preconditioned Conjugate Gradient

When using the Conjugate Gradient method to solve large linear systems, it is often de-
sirable to use preconditioning, in order to accelerate the convergence. With preconditioning,
the linear system then becomes

M−1Ax = M−1b , (3.15)

for a given preconditioner matrix M . The matrix M should be an approximation of A but
easier to invert, in such a way that the work performed in the preconditioning step is offset
by the faster convergence of the Conjugate Gradient method.
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Assuming that M is a constant, symmetric and positive-definite matrix, the precondi-
tioned Conjugate Gradient method is then described in Algorithm 3 [97].

Algorithm 3: Preconditioned Conjugate Gradient method
1 r = b− Ax
2 d = M−1r
3 δnew = rTd, δold = δnew
4 while

√
δnew > tolerance do

5 q = Ad
6 α = δnew/d

Tq
7 x = x + αd
8 s = M−1r
9 δold = δnew, δnew = rT s

10 β = δnew/δold
11 d = s + βd

In this algorithm, s = M−1r corresponds to applying the preconditioner to r. Although
this step is represented in matrix form, it does not necessarily need to be applied this way.
This algorithm also requires that M is a constant, symmetric and positive-definite matrix,
although preconditioners that don’t satisfy these requirements are possible with the use of
Flexible Conjugate Gradients [98], which allow for variable and even non-symmetric pre-
conditioners [99]. Several different preconditioners are possible, such as SSOR, incomplete
Cholesky factorization [100] and multigrid methods (see Sec. 3.4).

Figure 3.2 – Convergence of the unpreconditioned Conjugate Gradient method and the Con-
jugate Gradient method with SSOR preconditioning.

Figure 3.2 presents a comparison of the convergence speeds for the unpreconditioned
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Conjugate Gradient method and the Conjugate Gradient method with SSOR preconditioning
for a 2D Poisson problem, on a 64×64 grid with homogeneous Dirichlet boundary conditions
and random initial conditions. Note that, for the same model problem, the unpreconditioned
Conjugate Gradient converges in fewer iterations than the SOR method with optimal relax-
ation (Fig. 3.1), and that SSOR preconditioning provides a major increase in convergence
speed. It can also be seen that, in contrast to the relaxation methods previously discussed,
Conjugate Gradient methods do not lead to monotonic decreases in the norm of the residual.

3.3 DIRECT SOLUTION VIA FOURIER ANALYSIS

In the context of solving discrete elliptic equations, one of the most efficient classes of
solvers available are those based on Fourier analysis, requiring O(N logN) operations to
solve equations with N unknowns. For example, in [101], a solver of this class was found to
be around 5 times faster than a multigrid solver, with other publications reporting even larger
performance increases [55]. Since these solvers were initially developed to solve Poisson’s
equation, they are often referred to as Fast Poisson Solvers, although they are not limited
to this class of equations, and can also be used to solve Helmholtz equations, for example.
Given their extremely high efficiency in solving Poisson equations, solvers of this class are
often a core part of programs designed for Direct Numerical Simulation of turbulent flows
[102, 103].

These methods can be used to solve the governing equations in one of two ways: either
by performing Fourier analysis on the discretized equations, as will be presented here, or by
using a pseudo-spectral method, in which Fourier analysis is performed on the continuous
equations (see e.g. [104] for a brief description of this method). For brevity, a deduction
of the solver used in this work is presented only for the two-dimensional case, given that
the extension to three spatial dimensions is straightforward. For this section, i is reserved to
represent the imaginary unit.

A general linear system of equations, arising from a finite difference discretization of the
2D governing equations, can be written in stencil form as

ap,qup−1,q + bp,qup,q−1 + cp,qup,q + dp,qup+1,q + ep,qup,q+1 − fp,q = 0 , (3.16)

for p = [1, P ], q = [1, Q], and the discrete inverse Fourier transform, in one direction, is
defined as

up =
1

M

M−1∑
m=0

ûme
i 2π
M
mp , (3.17)

with M = P .

36



It is worth noting that some Fourier transform algorithms use a slightly different defini-
tion, with m varying between 1 and M , and the m term in the exponential substituted by
m − 1. The following deduction is also applicable to these cases, with only the small asso-
ciated change in the exponential functions. By applying an inverse Fourier transform in the
x direction to Eq. 3.16, and assuming that all coefficients (a, b, c, d, e) are constant in the
transform direction, we get

1

M

M−1∑
m=0

(
aqûm,qe

i 2π
M
m(p−1) + bqûm,q−1e

i 2π
M
mp + cqûm,qe

i 2π
M
mp + dqûm,qe

i 2π
M
m(p+1)

+eqûm,q+1e
i 2π
M
mp − f̂m,qei

2π
M
mp
)

= 0 .

(3.18)

Thus, for m = [0,M − 1], q = [1, Q], we have that

aqûm,qe
i 2π
M
m(p−1) + bqûm,q−1e

i 2π
M
mp + cqûm,qe

i 2π
M
mp + dqûm,qe

i 2π
M
m(p+1)

+eqûm,q+1e
i 2π
M
mp = f̂m,qe

i 2π
M
mp .

(3.19)

Splitting the exponential functions in the terms containing aq and dq, respectively, we
have that

ei
2π
M
m(p−1) = ei

2π
M
mpe−i

2π
M
m ,

ei
2π
M
m(p+1) = ei

2π
M
mpei

2π
M
m ,

(3.20)

and, by imposing that aq = dq, we find that

aqûm,qe
i 2π
M
m(p−1) + dqûm,qe

i 2π
M
m(p−1) = aqûm,qe

i 2π
M
mp
(
e−i

2π
M
m + ei

2π
M
m
)
. (3.21)

Finally, using Euler’s equation and recalling that cosines and sines are even and odd
functions, respectively, we have that

e−i
2π
M
m + ei

2π
M
m = cos

(
−2π

M
m

)
+ i sin

(
−2π

M
m

)
+ cos

(
2π

M
m

)
+ i sin

(
2π

M
m

)
,

e−i
2π
M
m + ei

2π
M
m = cos

(
2π

M
m

)
− i sin

(
2π

M
m

)
+ cos

(
2π

M
m

)
+ i sin

(
2π

M
m

)
,

e−i
2π
M
m + ei

2π
M
m = 2 cos

(
2π

M
m

)
.

(3.22)

Substituting Eq. 3.22 in Eq. 3.21, we find that

aqûm,qe
i 2π
M
m(p−1) + dqûm,qe

i 2π
M
m(p−1) = 2aq cos

(
2π

M
m

)
ûm,qe

i 2π
M
mp , (3.23)
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and, by substituting this result in Eq. 3.19, we find that

ei
2π
M
mp

(
2aq cos

(
2π

M
m

)
ûm,q + bqûm,q−1 + cqûm,q + eqûm,q+1

)
= f̂m,qe

i 2π
M
mp . (3.24)

Thus, the original system of equations is reduced to the following set of tridiagonal sys-
tems of equations:

bqûm,q−1 +

(
2aq cos

(
2π

M
m

)
+ cq

)
ûm,q + eqûm,q+1 = f̂m,q . (3.25)

In order to solve the above tridiagonal system of equations, one can use the following
methods:

1. Apply a Fourier transform in the y direction, in a similar way to what was previously
described, with similar restrictions to the coefficients. This reduces the problem to a
set of diagonal systems of equations, with trivial solution.

2. Solve the system by using Thomas’ algorithm for tridiagonal matrices, which is a sim-
plified form of Gaussian elimination. This alternative is more efficient than employ-
ing an additional Fourier transform and doesn’t impose such strict restrictions on the
coefficients of the linear system, and is thus used in this work. Although Thomas’ al-
gorithm is not universally stable, it is so under some specific conditions, such as when
the matrix associated to the linear system is symmetric positive definite [105]. All
corresponding systems of equations in this work satisfy these stability requirements.

As such, the solution process of the method described above is:

1. Apply a Fourier transform in the x direction to the right-hand side of Eq. 3.16

2. Solve theM tridiagonal systems described in Eq. 3.25, in order to determine the values
of û

3. Apply an inverse Fourier transform in the x direction to û, in order to determine the
values of the original unknowns u.

When solving three-dimensional systems of equations, the above procedure can be ex-
tended simply by performing an additional Fourier transform in the z direction and perform-
ing the analogous simplifications. It is important, however, to add some remarks with regards
to the implementation of such an algorithm, and to the associated boundary conditions of the
solution. The Fourier transform of real values is always symmetric, and some efficient Fast
Fourier Transform (FFT) algorithms take advantage of this by only outputting half of the
transform (the non-redundant part), thereby saving the additional storage space that would
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otherwise be required to accommodate the full complex-valued transform. This also means
that, when performing an inverse Fourier transform, the output will be real if, and only if, the
complex input data possesses this same symmetry. As such, when using one of these FFT al-
gorithms, it is not necessary to unpack the data (fill-in the redundant parts of the transform).
Rather, it is more efficient to use the output from the transform directly, and only solve half
of the tridiagonal systems, which are those associated with the non-redundant part of the
transform.

With regards to the boundary conditions of the solutions, it must be noted that the Fourier
transform assumes that the data is periodic and, thus, the resulting solution of the method
described above will be periodic in the directions in which a Fourier transform is applied.
Boundary conditions in the final direction, associated to the tridiagonal systems, is arbitrary
and determined by the coefficients of the corresponding linear systems. As such, since the
linear systems associated to the velocities and pressure field are periodic in the x and z

directions, with either Neumann or Dirichlet boundary conditions in the y direction, using
the method described above, with Fourier transforms in the x and z directions, and solving
tridiagonal systems in the y direction, is ideal. In this way, it allows for a single solver to be
used for all of the corresponding systems. Since the system of equations associated with the
magnetic field doesn’t have constant coefficients, the Fourier analysis algorithm presented
here is not applicable to it. It is worth mentioning that different boundary conditions for the
solution can be obtained by using different transforms, such as sine and cosine transforms
instead of the Fourier transform (see e.g. [106, 104]), and that it is possible to increase the
efficiency of the solver by performing cyclic reduction before the Fourier analysis, resulting
the FACR algorithm [106]. However, such an improvement was deemed unnecessary for this
work, and is thus not presented.

3.4 MULTIGRID METHODS

3.4.1 General outline

When direct solution via Fourier Analysis is unfeasible, such as when variable coeffi-
cients are required, multigrid methods present themselves as one of the most efficient classes
of solvers for general elliptic equations, capable of solving discrete equations with N un-
knowns in O(N) operations. It is worth noting that, although multigrid methods scale better
than Fast Poisson Solvers, they are not faster for usual values of N . For example, if we as-
sume that, for constant CM and CF , a multigrid solver requires CMN operations and a Fast
Poisson Solver requiresCFN logN , we have that, for practical values ofN , CM > CF logN

[107].
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The core idea of multigrid methods arises from observing the behaviour of traditional
basic relaxation methods, such as Jacobi and Gauss-Seidel, when solving elliptic equations.
Although these methods initially have fast convergence, this quickly deteriorates, leading
to a very large number of iterations being required before a reasonably small residual can
be achieved. Upon closer examination, one can see that this behaviour is due to the diffuse
nature of these methods, which quickly reduce the high frequency components of the residual
but struggle to reduce the the low frequency components. This behaviour can be seen clearly
in Fig. 3.3, which presents a comparison of residuals before and after 3 iterations of the
Gauss-Seidel method.

(a) (b)

Figure 3.3 – Residuals for a 2D Poisson problem with homogeneous Dirichlet boundary
conditions on a 64 × 64 grid. Represented are the residuals before (a) and after 3 iterations
of the Gauss-Seidel method (b).

The key realization is that, as the high frequency components of the residual vanish, it
becomes smooth, and, if the residual is smooth, it can be represented on a coarser grid with-
out significant loss of information. Furthermore, components of the residual that had lower
frequencies in the finer grid become of proportionately higher frequency when represented
on a coarser grid, meaning that the traditional relaxation methods become more efficient in
reducing them, while also having much cheaper iterations due to the reduced number of un-
knowns. This process can then be applied recursively, until the lowest frequency components
of the residual are eliminated. Such a recursive process is the essence of multigrid methods.

It is worth noting that, on a sufficiently coarse grid, a solution of the problem can be
obtained with minimal computational cost. Once a solution is obtained on the coarsest grid,
this solution can then be interpolated to the finer grids, in order to obtain a final solution in
the original (finest) grid, while also performing additional iterations of a relaxation method
on each finer grid, in order to ensure than any higher frequency components that may have
arisen are reduced.

In the context of multigrid methods, the relaxation methods (or any other method with
similar characteristics) are referred to as smoothers, the representation of a residual on a
coarser grid is referred to as restriction, and the interpolation of a solution to a finer grid
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is referred to as prolongation. Using these terms, a general outline of a multigrid solver is
then described in Algorithm 4. Note that this algorithm uses the simplest possible multigrid
schedule, referred to as a V-cycle. Other schedules are possible, and are briefly discussed
later in this section.

Algorithm 4: General outline of a multigrid V-cycle
1 while solution not satisfactory do
2 while coarsest grid not reached do
3 Perform n1 smoothing iterations (pre-smoothing)
4 Restrict the solution to a coarser grid

5 Solve the problem on the coarsest grid
6 while finest grid not reached do
7 Prolongate the solution to a finer grid
8 Perform n2 smoothing iterations (post-smoothing)

3.4.2 Specifics

When implementing a multigrid solver, several choices must be made with regards to
each component of the method, including

• Which method to use as a smoother, and the number of iterations for pre-smoothing
and post-smoothing

• Which restriction and prolongation operators to use

• How to define the system coefficients on the coarser grids

• How many coarse grids to use, and how to solve the problem on the coarsest one

• On what schedule the different grids are visited

This section presents a discussion regarding each of these topics, as well as detailing the
fundamental aspects of the method. The discussions presented here are, however, limited
to the implementations used in this work. More advanced aspects of multigrid, such as it’s
application to anisotropic equations and the use of adaptive methods, can be found in e.g.
[108]. It is also worth mentioning that everything discussed in this work is regarding ge-
ometric multigrid, i.e. multigrid methods which are based on the geometric characteristics
of the problem, which is discretized on each of the different grids. In contrast to geometric
multigrid, there are the algebraic multigrid (AMG) methods, which rely solely on the prob-
lem coefficients (the matrixA for the systemAx = b), and thus do not rely on any geometric
characteristics of the problem [109]. Thus, Algebraic Multigrid methods, are more general
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and more robust, although at the cost of a reduced efficiency. Since all linear systems solved
in this work are defined on structured Cartesian grids, with solvers designed specifically for
a given problem, the use of geometric multigrid is more appropriate.

With regards to the choice of smoothers, the most common choices are basic relaxation
methods, although the use of more complex methods is possible, such as incomplete LU
decomposition [108]. Since the smoothers do not solve the problem directly, the choice of
smoother should not be based on their convergence properties, but rather on their smooth-
ing properties, i.e. how much they smooth the residual, rather than how much they reduce
the residual. Some insight regarding the smoothing characteristics of a given method can
be gained by performing a smoothing analysis, such as via local mode analysis [110]. The
most common smoother alternatives are damped Jacobi, lexicographic Gauss-Seidel, and
red-black Gauss-Seidel. Lexicographic corresponds to the traditional Gauss-Seidel method,
in which operations are performed on points adjacent to each other, following a given direc-
tion. Red-black, on the other hand, corresponds to a Gauss-Seidel method in which opera-
tions are performed in a checkerboard pattern, first for all points corresponding to cells of one
color, and then for all points corresponding to cells of the other color. With this ordering of
operations, red-black Gauss-Seidel becomes well suited for parallelization, since operations
on points of the same color are order-independent, whereas the lexicographic Gauss-Seidel
is not well suited for parallelization, since the only order-independent operations are located
on a single diagonal line [108]. This altered order of operations, however, can hinder com-
piler optimizations such as cache prefetching, a topic that is further discussed in section
3.5. Damped Jacobi is trivially parallelizable, since all operations are order-independent,
although the Gauss-Seidel alternatives offer better smoothing characteristics.

In two spacial dimensions, red-black Gauss-Seidel also displays significantly better smooth-
ing properties when compared to the lexicographic version, in addition to being better suited
for parallelization. This large difference in smoothing is not present in two spacial dimen-
sions, however, although it is mentioned in [108] that red-black Gauss-Seidel with over-
relaxation can lead to significant improvements in smoothing characteristics for 3D prob-
lems. With regards to the number of pre- and post-smoothing iterations, the most straight-
forward approach is simply to test different parameters and choose the ones that result in
the best performance. It is also possible to perform additional local smoothing on known
problematic areas, improving the smoothness of the residuals while avoiding the overhead
of performing additional smoothing iterations across the entire computational domain.

When defining the prolongation and restriction operators, special attention must be given
to the type of grid used in the discretization. With the domain divided in cells, the discretiza-
tion can be either vertex-centered, with the variables defined on the edges of the cells, or
cell-centered, with the variables defined at the center of the cells. Since the coarser grids
must use the same type of discretization as the finer ones, the inter-grid operators must be
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defined accordingly [111]. Note that, with the staggered grids used in this work, the velocity
components are vertex-centered in one direction and cell-centered on the others, and so the
inter-grid operators must be specifically defined for each one of them. The pressure and the
magnetic potential, meanwhile, use the standard cell-centered discretization.

(a) (b)

Figure 3.4 – Grid point location on fine and coarse grids for vertex-centered (a) and cell-
centered (b) discretizations. Grey circles represent grid point locations on the fine grid,
while black circles represent grid point locations on the coarse grid.

Figure 3.4 presents the grid point locations for the fine and coarse grids for vertex-
centered and cell-centered discretizations. For vertex-centered grids, the description of the
inter-grid operators is simpler, since coarse grid points coincide with fine grid points, with
only one fine grid point situated between coarse grid points in each direction. For cell-
centered grids, meanwhile, the coarse grid points don’t align with any fine grid points, and
there are two fine grid points situated between coarse grid points in each direction.

For the restriction operator, the simplest possible choice is to use a piecewise constant
restriction, whereby vertex-centered coarse grid points are simply assigned the value of the
fine grid point in the same location, and cell-centered coarse grid points are assigned the
average value of the neighbouring fine grid points. This simple operator, however, is only
first order accurate. Higher-orders of accuracy can be obtained by defining the restriction
operator as the adjoint of a higher-order prolongation operator, such as a linear interpolation,
which is of second order accuracy. Defining the restriction operator as the adjoint of the
prolongation operator, the influence that each fine grid point has on a given coarse grid point
during restriction is directly proportional to the influence that this coarse grid point has on
the respective fine grid points during prolongation. For example, in the two-dimensional,
vertex-centered case, the influence that a given coarse grid point has on the neighbouring
fine grid points on a bi-linear prolongation is represented by the stencil

P h
2h =

1

4

1 2 1

2 4 2

1 2 1


h

2h

, (3.26)
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with the central value 4 corresponding to the fine grid point with the same location of the
coarse grid point. Defining a restriction operator as the adjoint of the aforementioned pro-
longation, it’s stencil representation is then

R2h
h =

1

16
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1 2 1


2h

h

. (3.27)

In the case of a cell-centered discretization, the bi-linear prolongation operator is
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with the corresponding adjoint restriction operator defined as
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with the ∗ representing the location of the coarse grid point.

These inter-grid operators can also be used to determine the coarse-grid coefficient matrix
A2h, using the Galerkin coarse grid operator A2h = R2h

h A
hP h

2h. This, however, leads to an
increased stencil for A2h and, in turn, to reduced performance. As discussed in [112], this
problem is even more pronounced in the case of cell-centered discretizations, although it
can be alleviated with the use of inter-grid operators with a reduced stencil, such as the one
presented in [113]. A more efficient alternative is to discretize the governing equations on
the coarser grids, in the same way that was performed on the finest grid. Although this
requires code adaptations for each specific implementation, it preserves the stencil sizes of
A, resulting in a more efficient algorithm.

In order to solve the problem on coarser grids, multigrid methods rely on the residual
equation. With the residual defined as r = b− Ax, it can be shown that

Ae = r , (3.30)

using the error vector e = x∗ − x, corresponding to the error between an approximate
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solution x and the exact solution x∗. Referred to as the residual equation, it is clear that
Eq. 3.30 does not directly help with the solution of the problem, since solving it would still
require inverting the matrixA. This equation does, however, provide a basis for the multigrid
algorithm. The basic, two-grid version of this algorithm is presented in Algorithm 5 [110].

Algorithm 5: Basic two-grid cycle
1 Relax Ax = b on the fine grid with the pre-smoother
2 Calculate the residual r = b− Ax
3 Restrict the residual to the coarse grid
4 Solve the residual equation A2he2h = r2h on the coarse grid
5 Prolongate the error to the fine grid
6 Update the fine grid solution as x← x + e

To extend the two-grid cycle for an arbitrary number of grids, one can simply recursively
use this two-grid algorithm when solving A2he2h = r2h. When the coarsest grid is reached,
the residual equation is then solved exactly (or nearly exactly), using an arbitrary solver.
If a sufficiently coarse grid is reached, the smoothers themselves can be used to solve the
residual equation, due to how computationally inexpensive each iteration becomes. The
optimal number of grids is dependent on a wide variety of factors, including characteristics
of both the problem and the solver. Thus, the most straightforward way to find an optimal
value is to test several different alternatives and choose the one with the best performance.
Note that the maximum number of grids allowed is determined by the grid size of the finest
grid, with multiples of large powers of two being ideal.

The aforementioned recursive application of the two-grid scheme results in a multigrid
algorithm that only visits each grid once during the coarsening and refining parts of the
algorithm. If plotted with respect to time, with the coarsest grid on the bottom, this schedule
would result in a V shape. Thus, it is referred to as the V-cycle, and is the simplest possible
multigrid schedule. More complex schedules exist, and may lead to improved performance.
The W-cycle revisits the different grids several times during both the coarsening and refining
parts of the algorithm, while the F-cycle is a hybrid, using the V-cycle schedule during the
coarsening part of the algorithm and the W-cycle schedule during the refining part. The
interested reader is referred to [108], Section 2.4, for a more detailed description of the three
different cycles.

Another important aspect of multigrid methods is the accurate treatment of boundary
conditions, both with regards to how they affect the restriction and prolongation operators,
and with regards to how the boundary conditions are transported to the coarse grid problems.
In order to accurately define the restriction and prolongation operators on the domain bound-
aries, these operators must be modified in accordance to the boundary conditions imposed on
the given boundaries [108]. This can be performed in a straightforward fashion with the use
of ghost grid cells located outside the domain. If values assigned to the ghost cells reflect the
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imposed boundary conditions, the same restriction and prolongation operators used inside
the domain can be accurately used on the domain boundaries, with the ghost cells included
as part of the stencil.

Boundary conditions on the coarse grids are of the same type of the corresponding fine
grid boundary conditions, but homogeneous since they are applied to the residuals, and not
to the solution itself. The reasoning for this is clearer in the case of Dirichlet boundary con-
ditions, given that the residual of a given grid point is equal to zero if the value of this grid
point is the exact solution of the problem, and Dirichlet boundary conditions impose this on
the boundary. An analogous reasoning is also used in the case of Neumann boundary condi-
tions. Thus, inhomogeneous Dirichlet boundary conditions become homogeneous Dirichlet
boundary conditions on the coarse grids, and inhomogeneous Neumann boundary conditions
become homogeneous Neumann boundary conditions on the coarse grids. Periodic boundary
conditions remain periodic boundary conditions across all grids.

Special attention must be given in the case of singular problems. Singular problems
arise if some partial differential equations, such as Poisson’s equation, are only subjected to
Neumann and/or periodic boundary conditions. If a given problem of the type Ax = b is
singular, it does not have a single, exact solution. It may not have a solution at all, or, if∑

b = 0, it has infinitely many solutions, which can only be determined up to an arbitrary
constant. In order to ensure that a solution exists, one alternative is to solve the approximate
problem [108]

Ax = b̃ , (3.31)

b̃ = b− 1

N

∑
b , (3.32)

where N is the number of grid points in the domain. Since N is inversely proportional to the
grid spacing h, with 1

N
∝ h2 and 1

N
∝ h3 in two and three spacial dimensions, respectively,

the solution of this approximate problem will be a solution to the original problem up to
discretization error, if a second-order discretization is used.

3.4.3 Conjugate Gradient acceleration of Multigrid

One powerful class of solvers arises from the combination of multigrid and Krylov sub-
space methods, referred to either as Krylov subspace acceleration of multigrid or as multigrid
preconditioning for a Krylov subspace method. Although such methods do not lead to in-
creased performance if an optimal multigrid algorithm is used, they do lead to a significantly
improved robustness [108]. Thus, such methods are especially well-suited for the solution
of complex problems for which the development of optimal multigrid solvers would be dif-
ficult, since Krylov subspace acceleration allows for simple multigrid algorithms to achieve
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similar levels of performance. The reasoning for this is that, in such complex cases, spe-
cific error components arise that are not reduced by either the smoothing or the coarse grid
correction of a simple multigrid algorithm, leading to substantial reductions in performance
or even an outright failure to converge to a solution. Since these specific components will
be the largest ones after a multigrid cycle, they are then the first ones targeted by methods
such as Conjugate Gradients. Thus, by combining the two methods, their characteristics are
leveraged in a way that they compliment each other, resulting in robust, high-performance
solvers.

Since, in this case, multigrid methods are used as preconditioners, they must fulfill the
preconditioner requirements for the specific method they are used alongside of. In the case of
the Conjugate Gradient method, these requirements are that the preconditioner matrix must
be constant, symmetric and positive-definite, as discussed in section 3.2.2. Note that, in this
case, the preconditioning step s = M−1r in Algorithm 3 consists in performing one multi-
grid iteration on the system of equations As = r, with zero initial guess and homogeneous
boundary conditions [114]. The necessary requirements that a multigrid cycle must satisfy
in order to be a valid preconditioner for the Conjugate Gradient method were first described
in [115]. A sufficient, but not exhaustive set of conditions is that [116]:

• The restriction and prolongation operators are the adjoint of one another

• The multigrid schedule is symmetric, i.e. either a V-cycle or a W-cycle

• The pre- and post-smoothers use the same method and number of iterations, and are
performed in opposite directions. For the lexicographic Gauss-Seidel method, for ex-
ample, this means that if the pre-smoother is applied in the forward direction, the post-
smoother must be applied in the backward direction. Jacobi methods are unaffected
by this condition, since they are order-independent.

• The coarse grid solution must either be exact, or be obtained by a method that approx-
imates the inverse of the coefficient matrix A, on the coarsest grid, as a symmetric and
definite matrix.

The multigrid solver used in this work uses Conjugate Gradient acceleration, and is based
on the algorithm presented in [116], using a V-cycle multigrid preconditioner. Tests were per-
formed with different iteration numbers for damped Jacobi and lexicographic Gauss-Seidel
for the pre- and post-smoothers, with a single iteration of the Gauss-Seidel method resulting
in the best performance. The coarse grid solution is obtained using the unpreconditioned
Conjugate Gradient method, which is an efficient solver for the smaller coarse grid problems
and results in the solver achieving peak performance with a reduced number of coarse grids
(3, for grid sizes in the order of 128 × 128 × 128). The prolongation operator is a trilinear
interpolation, with the restriction operator defined as it’s adjoint. In case the solver is used
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for a singular problem, the preconditioning step is changed from s = M−1r to s = M−1r̃,
in accordance to Eqs. 3.31 and 3.32.

Due to the far simpler boundaries used in this work in comparison to the use cases pre-
sented in [116], the boundary smoothing proposed in the aforementioned work did not result
in any improvements in convergence. However, a similar reasoning behind the procedure
was employed in the form of interface smoothing, whereby additional smoothing iterations
are performed on grid points neighbouring the droplet’s interface, obtained from the Local
Level Set scheme presented in section 2.2.5. A slight improvement in performance was ob-
served with interface smoothing consisting of a single Gauss-Seidel iteration, once after the
main pre-smoother and once before the main post-smoother, and in opposite directions, in
order to maintain the symmetry of the multigrid preconditioner.

3.5 IMPLEMENTATION AND OPTIMIZATION

Given the high computational cost associated with three-dimensional modelling of fluid
flows, code optimization is very important, since it can provide savings in computational
time that can amount to several days or weeks, and, depending on the optimization strategy,
be simple to implement. This section presents a brief discussion regarding some of these
strategies, but, since it is not the primary focus of this work, it is by no means extensive.
Rather, it is only an introduction to the interested reader. More in-depth information is
readily available in the internet, such as in the computer science literature and compiler
documentations, for example.

In order to understand the reasons behind program bottlenecks, optimization strategies
and, ultimately, program performance, one must first understand the fundamental concepts
regarding how a modern computer works. All instructions, including data computations, are
executed by the Central Processing Unit (CPU, or processor), but, since the CPU itself does
not store data, it must be stored in a separate location. Unused data is placed on a storage de-
vice, typically either a Hard Disk Drive (HDD) or Solid State Drive (SSD), which possesses
very high capacity, but only provides slow access to the data. When executing a program,
relevant data is moved to memory (RAM), which has lower capacity, but provides much
faster access to data, i.e. it has a much larger bandwidth. When executing an instruction, the
CPU will read the required data from the memory, execute the instruction and then replace
the corresponding data on memory with the newly computed one.

Although the data transfer speed from memory to processor is fast, it is finite, and can
become a bottleneck for fast processors. In order to alleviate possible bottlenecks, modern
processors introduce a cache, similar to memory but located on the CPU chip itself and with
much faster access speeds, but with small capacity. The core idea to the use of cache is that,
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when performing several instructions on a small set of data, it can be stored in cache, so that
computations are not limited by memory speed. Some processors also possess more than one
cache, described by levels. Level 1 cache is closest to the actual processing cores, and is the
fastest to access, lowest capacity one. The following levels of cache will be progressively
slower to access and have higher capacities. As an example, the computer in which most
of the simulations presented in this work were performed (with an AMD Ryzen 7 4800h
processor) possesses 32KB of Level 1 data cache per core, 512KB of Level 2 cache per core,
and 8MB of Level 3 cache shared among 8 cores, with 16GB of RAM. For reference, a single
128× 128× 128 array of double-precision variables (64 bits or 8 bytes each) requires 16MB
of memory.

When running programs that require several instructions executed on a small data set,
cache implementations are extremely effective, and allow for processors to achieve peak
performance without being limited by memory bandwidth. However, when using data sets
larger than the cache, and performing few instructions per data point, memory bandwidth be-
comes a significant bottleneck, and limits program performance to a fraction of what would
be possible based on processor performance alone. In such cases, great care must be taken
with managing data access patterns, in order to minimize memory bandwidth bottlenecks
and maximize code performance, and a failure to do so can result in a program that is several
times slower than it potentially could have been.

In order to determine whether a given program is compute-bound (limited by processor
performance) or memory-bound (limited by memory bandwidth), one can use a Roofline
Model [117]. Figure 3.5 presents a Roofline Model of the program developed in this work,
obtained using the Intel® Advisor profiling tool. The horizontal axis is the ratio between
number of compute operations and memory access required, and the vertical axis is the
number of compute operations per second. The diagonal line that bounds the left side of
the colored region represents memory bandwidth, and the horizontal line that bounds the
right side of the colored region represents maximum compute performance of the processor.
Colored circles represent the more time-consuming loops of the program, with the red ones
the most time consuming (where optimization efforts should be focused) and the green ones
the least time-consuming. The black cross represents the program as a whole. Loops in the
region bounded by the diagonal line are memory-bound, while loops in the region bounded
by the horizontal line are compute-bound, and it is clear that the program is fundamentally
memory-bound. Note that, due to cache effects, some loops are able to achieve performances
that exceed the memory bandwidth limit.

Since program performance is limited by memory bandwidth rather than computational
power, optimization efforts must be directed towards improving memory usage, rather than
reducing operation count or parallelization, especially in the case of shared-memory paral-
lelization, i.e. when different processor cores share the same memory. Note that reductions
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Figure 3.5 – Roofline model of the program developed for this work.

in operation count could lead to improved performance if they also result in fewer memory
accesses. Distributed memory parallelization could be profitable, given that it essentially
increases memory bandwidth by using different memory systems in parallel, as well as GPU
(Graphics Processing Unit) offloading, since GPU memory usually has much higher band-
width than standard system memory (RAM). However, neither of these options were feasible
due to hardware availability and time constraints.

The most basic optimization of memory usage is to ensure that, whenever cache opti-
mization strategies don’t dictate otherwise, data is accessed, as much as possible, in unit
strides, i.e. moving between adjacent points in an array, since it allows for faster fetching of
data from memory. One must keep in mind, however, that multidimensional arrays are stored
linearly in memory, and that different programming languages have different rules regarding
the order in which such arrays are stored. In Fortran, arrays are stored in column-major order,
with the first index being contiguous in memory. For example, in a Ni × Nj × Nk array u,
u(2,1,1) is a single stride away from u(1,1,1), while u(1,2,1) is Ni strides away
from u(1,1,1), and u(1,1,2) is Ni × Nj strides away from u(1,1,1). In C, on the
other hand, arrays are stored in row-major order, so u(1,1,2) is adjacent to u(1,1,1).

One further way to optimize memory access patterns is through cache blocking, in which
loops are rearranged so as to access data in blocks small enough to fit in cache and perform-
ing all operations required for such block while it remains in cache, exploiting the benefits
of data locality and reducing RAM access requirements. The more traditional form of cache
blocking is the spatial one, in which blocking is performed during a single loop through

50



data. However, due to the very small amount of operations per loop required for each data
point, spatial cache blocking is not effective for stencil operations [118], and can even de-
crease program performance due to increased loop overheads and hindering other compiler
(or hardware) optimizations, such as prefetching, which moves data from memory to cache
before the processor actually requires it, in order to avoid cache misses (when data the pro-
cessor needs is not present in the cache).

A more modern approach to cache blocking, which does work well for stencil operations,
is temporal blocking. It consists in attempting to reuse previously cached data not only
during a single loop through data, but across multiple loops. For example, in the case of
Jacobi or Gauss-Seidel iterations, this strategy performs multiple iterations over a single
block of points, before moving over to a different block. Although such an approach may
seem counter-intuitive at first, since updating one component to the instant n+2 requires that
other components in the array have already been updated to the instant n + 1, upon closer
examination it is clear that this requirement does not apply to the entire array, but only to the
neighbours of this given component. This, in turn, makes it possible that, after updating a
block to the instant n + 1, most of the components inside the block can already be updated
to the instant n+ 2, with the exception of some components located in the boundaries, while
they are still stored in the cache. Such a process can also be applied recursively across several
iterations, and has been shown to be efficient for stencil operations [119, 120]. However,
since none of the stencil operations performed in the program developed in this work are
repeated, such an approach is not applicable to it. Additionally, peak performance requires
tailoring the algorithm to a specific processor architecture, and poor implementations can
even cause a reduction in overall code performance [121].

Outside of memory access pattern optimization, there are also other optimization strate-
gies which can be beneficial, such as, for example, function inlining and loop unrolling, in
which functions and loops are written explicitly, rather than using calls, in order to save
overheads. Note that both of these optimizations may be implemented automatically by the
compiler without any changes to the source code, depending on the compiler settings. If
the code is well suited for SIMD (single instruction, multiple data) operations, vectorization
may provide major performance improvements, if the processor supports it. Vectorization
allows for instructions to be performed on multiple elements of an array concurrently, rather
than performing them on one element at a time, and may be performed automatically by the
compiler, if it is informed that the target processor supports it. Support for vector operations
is included on instruction sets available on most modern processors, such as SSE (Streaming
SIMD Extensions) and AVX (Advanced Vector Extensions). Finally, further performance
improvements may be obtained by eliminating unnecessary operations, such as some array
reinitializations, for example. Another example of unnecessary operations is in the solution
of the linear system for the magnetic field potential. Although the system’s coefficients are
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not constant in space, an so would, in principle, need to be stored as arrays covering the en-
tire domain, they are constant (and equal, in the case of equally-spaced meshes) throughout
most of the domain, outside of the droplet interface, and in these cases it is unnecessary to
fetch individual coefficients from memory.

3.6 PERFORMANCE COMPARISON

This section presents a comparison between the performance of some of the methods
previously discussed, namely the Conjugate Gradient method with SSOR preconditioning
(PCG-SSOR), the Conjugate Gradient method with multigrid preconditioning (PCG-MG),
and direct solution via Fourier analysis (Fast Poisson Solver, FPS-FFT). This is performed
based on solution times for the pressure Poisson equation (Eq. 2.10), which is the most
costly of the linear systems solved in this work.

Experiments were performed for a test case using a 10×10×10 domain, withRe = 0.01,
Ca = 0.15, λ = 1, Camag = 8, ζ = 2 and ∆t = 0.002. Results are for a Fortran code
compiled with the Intel Fortran Compiler, running on a single thread on an AMD Ryzen
4800h processor, equipped with dual-channel, 3200MHz DDR4 RAM. FFTs are performed
using Intel’s Math Kernel Libraray (MKL).

Grid size 64× 64× 64 96× 96× 96 128× 128× 128 160× 160× 160
PCG-SSOR 0.65s 2.87s 7.94s 17.5s
PCG-MG 0.22s 0.76s 1.75s 3.54s
FPS-FFT 0.0156s 0.0312s 0.0625s 0.115s

Table 3.1 – Solution times for the pressure Poisson equation, for different solvers and grid
sizes.

The results of these experiments are presented in Table 3.1, with solution times relative to
the first program iteration, averaged across 5 different runs. It can be seen that the Conjugate
Gradient solver with SSOR preconditioning is significantly slower than the one with multi-
grid preconditioning, and that it does not scale well with increasing numbers of grid points.
The solution times for the PCG-MG solver, meanwhile, scale linearly with the number of
grid points, indicating that the solver is, indeed, converging in O(N) operations, which is
the optimal convergence rate. Despite the efficiency of the PCG-MG solver, however, it’s
solution times are still a full order of magnitude slower than the Fast Poisson Solver. It also
appears to have scaling superior to the optimal O(N), whereas the method is expected to
solve the problem in O(N logN) operations. This, however, is likely due to optimizations
in the FFT, performed with an external library, or even to inaccuracies in the CPU time
measurements, given how quickly solutions are obtained.
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Since the FPS-FFT is the only solver that benefits from external libraries, with the two
other solvers entirely self-written, it is very likely that part of it’s performance advantage is
due to additional optimizations. However, due to how significant this performance advantage
is, it is clear that it is not only due to further optimizations, but also due to the algorithm’s
exceptional efficiency. Thus, the Fast Poisson Solver should be the preferred choice when-
ever it is applicable, especially given that it is a far simpler algorithm than a multigrid solver,
for example. In cases where the Fast Poisson Solver is not applicable, such as in the solution
of the magnetic potential equation, the PCG-MG solver is preferable.
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DROPLET DYNAMICS, RHEOLOGY AND
MAGNETIZATION

This chapter presents the results of the numerical simulations performed. Unless otherwise
specified, all results are for Re = 0.01, λ = 1 and ζ = 2, and simulations are performed on a
10×10×7.5 domain, discretized with a 128×128×96 grid. This results in a dispersed phase
volume fraction of β ≈ 0.56%, well within the dilute regime where interactions between
droplets are negligible. In order to ensure mesh convergence and that confinement effects
are negligible, tests were performed for a simple shear flow with an external magnetic field
in the main velocity gradient direction, Ca = 0.15 and Camag = 12, using a finer mesh
and maintaining domain size, and increasing domain size and maintaining mesh density.
Maintaining domain size and comparing the results to those with a 192 × 192 × 144 mesh,
relative errors for inclination angle, droplet deformation and dispersed phase shear stress
σd
yx were of 3% or less. Maintaining mesh density and comparing the results to those with

a 15 × 15 × 11.25 domain, relative errors for inclination angle, droplet deformation and
normalized dispersed phase shear stress σd

yx/β were less than 1%. Considering that this is
a case of very high droplet deformation, mesh convergence can be considered as very good,
and confinement effects can be assumed to be negligible. Effects of ∆t were found to be
negligible provided that it is small enough to ensure stability, indicating that the solution is
dominated by spacial discretization errors. Changes in droplet volume, which can arise from
numerical errors in the Level Set formulation, were monitored and generally kept to within
3%, although increases in droplet volume of up to 8% were observed for oscillatory shear
flows in the limit of low oscillation frequency and high magnetic capillary number.

4.1 NON-MAGNETIC DROPLET IN SIMPLE SHEAR FLOWS

The simplest case studied in this work is that of a non-magnetic droplet subjected to a
simple shear flow. In the limit of Re → 0 and in the absence of confinement effects, the
flow regime is then governed by the capillary number and the viscosity ratio between the
dispersed and continuous phases. The droplet’s geometry can be defined by it’s deformation
parameter D = L−B

L+B
and it’s inclination angle θ, as described in Fig. 1.1. Here, both the

droplet’s deformation and inclination angle are determined based on the droplet’s inertia
tensor. The inclination angle is obtained as the angle between the droplet’s longest principal
axis (the one with the smallest associated moment of inertia), and the deformation is obtained
by fitting the three principal moments of inertia to those of an ellipsoid. It has been shown
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in [122] that the droplet’s shape closely resembles an ellipsoid up until it is close to the point
of breakup, and this measurement method has been previously validated in [123].

(a) (b)

Figure 4.1 – Non-magnetic droplet deformation (a) and inclination angle, in degrees (b), as a
function of capillary number. The small deformation theory of Taylor [1] in (a) corresponds
to D = (35/32)Ca.

Figure 4.1 presents the droplet deformation and inclination angle as a function of cap-
illary number, alongside some results available in the literature, for validation. These in-
clude the small deformation theory of Taylor [1], with D = (35/32)Ca, the Volume of Fluid
(VOF) results of Li et al. [32], the experimental and Boundary Integral Method (BIM) results
of Vananroye et al. [13], and the Lattice-Boltzmann Method with Color Gradient (LBM-CG)
results of Ioannou et al. [35]. It can be seen that, although there is some significant varia-
tion between the different results, there is an agreement between the present results and the
theoretical, experimental and numerical results available in the literature, indicating that the
methodology presented in this work is accurate in the case of non-magnetic droplets.

With regards to the droplet geometry, it can be seen that, in the limit of Ca → 0, the
droplet is nearly spherical, with D → 0, and has an inclination angle of θ → 45◦. This
elongation in a ≈ 45◦ angle is characteristic of any system subjected to a shear stress, and
can also be seen in solids, for example [124]. However, as the capillary number increases and
the droplet is further stretched by the shear stresses, the inclination angle decreases, as the
droplet is rotated by the shear flow. Figure 4.2 presents the pressure field for the flow around
a droplet with Ca = 0.3, where the droplet’s shape can be clearly identified by the jump in
pressure across the interface, caused by the surface tension stresses. Note that the droplet is
significantly deformed by the shear flow, and that it’s inclination angle is also significantly
smaller than 45◦. It can also be seen that, due to the smeared interface used by the Level Set
method, the pressure jump is not sharp, with the pressure field instead displaying abrupt but
continuous changes across a thin band containing the interface (zero level set of φ).

In addition to the droplet’s geometry, another area of interest is in characterizing the
stress system of the two-phase flow, since it is the average of this stress system that governs
the behaviour of the corresponding emulsions. The average stresses acting on the two-phase

55



Figure 4.2 – Pressure field for a non-magnetic droplet with Ca = 0.3.

system can be decomposed into two parts, one associated to the viscosity and pressure field
of the continuous phase, and thus Newtonian in this case, and one associated to the stresses
induced by the presence of the droplet. This characterization of the stress system was first
proposed in [125], with the latter, non-Newtonian component of the stresses referred to as
the particle stress tensor. In the case of an emulsion of ferrofluid droplets, the particle stress
tensor can be calculated by the surface integral [46]

S =
1

V

∫
Γ

1

Ca

[
κxn̂− Camag

2
(ζ − 1)|H|2xn̂ + (λ− 1)(un̂ + n̂u)

]
dS, (4.1)

where V is the total volume of the two phases and Γ is the droplet surface. In the right-hand
side of Eq. 4.1, the first term corresponds to the stresses induced by surface tension, the sec-
ond term corresponds to stresses induced by magnetic forces, and the third term corresponds
to stresses induced by changes in viscosity between the dispersed and continuous phases. In
the case of a non-magnetic droplet with the same viscosity of the continuous phase, only the
first term in the right hand size is non-zero, since ζ − 1 = 0 and λ− 1 = 0, and thus the only
non-Newtonian stresses acting in the system are those arising from surface tension.

In the context of the rheology of emulsions, there are three quantities associated with the
particle stress tensor that can be measured experimentally, and thus are the most relevant to
rheological research, in the case of simple shear flows [126]. These are the shear stress Syx,
the first normal stress difference N1 = Sxx − Syy, and the second normal stress difference
N2 = Syy − Szz. Note that the rheology of the emulsion is dependent on the droplet’s
geometry [21], and it was suggested in [127] that N1 = 2 cot(2θ)Syx.

Figure 4.3 presents the shear stress component of the particle stress tensor Syx normal-
ized by the volume fraction β, a quantity that is often referred to as the reduced viscosity
of the emulsion, and Fig. 4.4 presents the first and second normal stress differences, also
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Figure 4.3 – Shear stress component of the particle stress tensor as a function of capillary
number. The no-deformation prediction of Taylor [2] corresponds to Syx/β = 7/4.

normalized by β. The results of the Grmela-Bousmina-Palierne (GBP) model [20, 21], the
BIM results of Kennedy et al. [29] and the Front-Tracking Method (FTM) results of Li and
Sarkar [33] are also presented alongside the present results. Figure 4.3 also presents the no-
deformation prediction of Taylor [2] that Syx/β = 7/4. The GBP model predicts that, for
z = (35/16)Ca,

Syx
β

=
7

4(z2 + 1)
, (4.2)

which converges to the no-deformation prediction of Taylor in the limit of Ca→ 0, and that

N1

β
=

245Ca

32(z2 + 1)
, (4.3)

N2

β
= −0.5

N1

β
. (4.4)

It can be seen in Figs.4.3 and 4.4 that, although there is some divergence between the
numerical results and GBP model, there is close agreement between the present results and
the BIM and FTM results, indicating that the rheological measurements presented in this
work are accurate for non-magnetic droplets. Note that the low capillary number results of
Kennedy et al. presented may not be accurate, due to difficulties in extracting the data points
from the original figures.

In Fig. 4.3, it can be seen that the shear stress, and thus the emulsion’s viscosity, is at
it’s maximum for Ca → 0, since a nearly spherical droplet offers the most resistance to the
fluid flow. However, as the capillary number increases and the droplet’s morphology displays
higher deformations and smaller inclination angles, the droplet offers progressively less re-
sistance to the fluid flow, leading to reductions in the shear stress. This reduction in shear
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(a) (b)

Figure 4.4 – First (a) and second (b) normal stress differences as a function of capillary
number.

stress corresponds to a decrease in the emulsion’s viscosity, and leads to the characteristic
shear-thinning behaviour of dilute emulsions.

With regards to the first and second normal stress differences, presented in Fig. 4.4, it
can be seen that N1 is always positive, while N2 is negative and smaller in magnitude. For
the capillary number ranges tested both normal stress differences monotonically increase in
magnitude with larger values of Ca, and it can be seen that the values of N1 calculated with
the geometric relationship presented in [127] are in excellent agreement with the values of
N1 obtained directly for the particle stress tensor. The reason for the existence of these two
stress differences is the distribution of capillary forces across the droplet surface.

In the case of nearly spherical droplets, the capillary forces are mostly uniform, and thus
N1, N2 → 0 with Ca → 0. As the droplet gets deformed, however, it’s surface assumes
larger curvatures on the droplet tips, resulting in larger capillary forces, and, due to the
reduced inclination angles, the main component of these larger capillary forces acts in the
x direction. The result is that this additional compression in the x direction, caused by
the larger capillary forces at the droplet tips, causes an increase in Sxx. Meanwhile, the
surface curvature reaches a minimum roughly in regions normal to the y direction, while
regions normal to the z direction have intermediate values of curvature. Thus, the droplet’s
deformation and rotation towards the flow direction creates an anisotropy of stresses, with
Sxx > Szz > Syy, leading to positive and negative values of N1 and N2, respectively. In
loose terms, these values of N1 and N2, characteristic of dilute emulsions, indicate that the
shear flow generates an additional compression in the y direction, such that a normal force
must be exerted on the upper and lower walls in order to maintain the shear flow [126].

In contrast to the rheological measurements presented here, characteristic of dilute emul-
sions, Newtonian fluids display a constant viscosity and no normal stress differences. Since
in the cases presented in this section both fluids are Newtonian and of equal viscosities, all
the non-Newtonian effects described are caused solely by the presence of surface tension in
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the droplet interface.

4.2 NON-MAGNETIC DROPLET IN OSCILLATORY SHEAR FLOWS

In addition to the steady-state simple shear flow analyzed previously, another important
experiment in the field of rheology is the case of oscillatory shear flows. In this case, rather
than subjecting the fluid to a constant shear rate γ̇0, the fluid is subjected to an oscillatory
shear rate γ̇ = γ̇0 cos(ωt). Since the behaviour of non-Newtonian fluids is often not depen-
dent solely on the instantaneous shear rate, but also on other parameters, such as the shear
strain γ, the stress system in the fluid may not be perfectly in phase with the imposed shear
rate. Thus, the shear response of the system is characterized by a storage modulus G′, in
phase with the shear strain γ, and a loss modulus G′′, in phase with the shear rate γ̇, rather
than by a single viscosity value [126]. Since the storage modulus is associated to stresses
that are in phase with the strain, it corresponds to an elastic behaviour of the fluid, while the
loss modulus corresponds to a viscous behaviour, resulting in a viscoelastic behaviour of the
fluid.

In the case of emulsions, since the non-Newtonian behaviour is strongly associated to
the surface tension forces acting on the droplet surface, the stresses acting in the system
are dependent on the droplet’s deformation. Since the surface tension forces are always
attempting to return the droplet to a spherical shape, it is clear that shear stresses arising
from surface tension will be at their peak when the droplet is in it’s most deformed state.
Since the droplet deformation is not only dependent on the instantaneous shear rate, but also
on the imposed strain, the viscoelastic behaviour of the emulsion is associated with the phase
angle between the droplet deformation and the imposed shear rate. Thus, disregarding the
constant loss modulus associated with the viscosity of the Newtonian continuous phase, the
stress response of the emulsion can be described as [126]

Syx = G′uγ0 sin(ωt) +G′′uγ0 cos(ωt) , (4.5)

where γ0 = γ̇0/ω is the strain amplitude, and G′u and G′′u are the storage and loss moduli
nondimensionalized using the shear rate characteristic time. Note that Eq. 4.5 is only valid
in the case of small amplitude oscillations, where the system response is linear and higher
order harmonics are not present. These nonlinear behaviours can be studied with the use of
large amplitude oscillatory shear (LAOS) and more complex material functions [128, 129],
although such an analysis is outside the scope of this work.

In the analysis of the oscillatory response of an emulsion, great care must be taken with
regards to the characteristic time scales used in the nondimensionalization. This is especially
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true in the present work, since the solution methodology is implemented using the shear rate
characteristic time τu = 1/γ̇0, while results for the oscillatory behaviour of emulsions are
usually based on the droplet interface characteristic relaxation time τσ = ηa/σ. In this case,
the two characteristic times are related by the capillary number, with τσ = Caτu, and the
particle stress based on the interface relaxation time can be calculated as Sσ = CaS.

For the results presented in this section, the shear amplitude is fixed as γ0 = 0.2, which is
achieved by fixing the shear rate-based angular velocity ω = 5. In order to obtain the desired
oscillation angular velocity normalized by the interface relaxation time ωσ, the capillary
number is set according to Ca = ωσ/ω. The storage and loss moduli normalized by the
interface relaxation time can then be obtained from Eq. 4.5, using G′ = CaG′u and G′′ =

CaG′′u. In the case of oscillatory shear flows, test cases include a wide range of values for
Ca, and thus it is necessary to also vary the values of the Reynolds number, to ensure that
it is sufficiently small both to ensure that viscous dissipation maintains a constant shear rate
across the emulsion, and to ensure that all terms in the right-hand side of Eq. 1.4, inversely
proportional toReCa, are much larger than those on the left-hand side, so that inertial effects
are negligible. Thus, the Reynolds number is set as Re = min(10−3, 10−4/Ca).

(a) (b)

Figure 4.5 – Droplet deformation (a) and inclination angle, in degrees (b), for a droplet
under oscillatory shear flow. Vertical lines separate the periods of the shear rate. γ0 = 0.2,
ωσ = 0.4.

Figure 4.5 presents the droplet deformation and inclination as a function of time in the
case of ωσ = 0.4. It can seen that, after an initial start-up period, the droplet deformation
follows the norm of a sinusoid, since it cannot assume negative values. Thus, a droplet with
near zero deformation will then be deformed by the shear flow moving in one direction,
reach a maximum, and then return to a nearly spherical shape before being deformed in the
opposite direction as the shear rate reverses direction. The inclination angle, meanwhile,
reaches it’s peak as soon as the droplet starts to be deformed, then gradually decreases as the
droplet is further deformed and rotated by the shear flow, before changing sign as the droplet
deformation reverses orientation. Note that the periods of the shear rate are represented in the
figures by the vertical lines, with both the droplet deformation and inclination angle being

60



out of phase with the shear rate.

(a) (b)

Figure 4.6 – Shear stress component of the particle stress tensor as a function of time (a) and
angular velocity (b). Vertical lines in (a) separate the periods of the shear rate. Note that in
(b) the transient start-up period is discarded, so that only the stationary regime is represented.
γ0 = 0.2,ωσ = 0.4.

With regards to the shear stress, Fig. 4.6 presents the shear stress component of the par-
ticle stress tensor both as a function of time and as a function of the angular velocity of the
signal components, obtained by performing a Fast Fourier Transform on the original, time-
based signal. In order to accurately decompose the stress signal with the Fourier transform,
the transient start-up period must be discarded, so that only the stationary regime is consid-
ered, and the data points must perfectly represent an integer number of shear rate periods.
Note that the shear stress is not in phase with the shear rate, but it is in phase with the droplet
deformation, and that this signal only has a single component, with no higher order har-
monics. By comparing Eq. 4.5 to the definition of the Fourier transform, it can be seen that
the peak in the real component of the decomposed signal corresponds to G′′γ0/Ca and the
negative peak in the imaginary component corresponds to −G′γ0/Ca. Note that both peaks
occur at the exact excitation angular velocity ω = 5.

Figure 4.7 presents the values of G′ and G′′ as a function of ωσ, alongside the results
of the model of Palierne [23]. For emulsions with λ = 1, Palierne’s model reduces to
G∗ = G′+ iG′′ = 28G∗c/(35G∗c + 16), where G∗c = 0 + iωσ is the complex shear modulus of
the continuous phase. It can be seen that there is an overall excellent agreement between the
present results and those predicted by the model, indicating that the results presented here
are accurate. Although there is some significant deviation between the present results and the
model in the case of G′′ for ωσ > 3, the values of G′′ in this range are an order of magnitude
smaller than those of G′, and thus this deviation does not significantly affect the behaviour
of the emulsion, since in this regime it is dominated by G′.

It can be seen in Fig. 4.7 that both moduli present equal magnitudes around ωσ = 0.4,
which is also around the peak value of G′′, with G′ > G′′ for higher oscillation frequencies
and G′′ > G′ for lower frequencies. With decreasing oscillation frequencies, the storage
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Figure 4.7 – Storage and loss moduli as a function of the oscillation angular velocity ωσ. The
dotted line corresponds to G/β = 2ωσ.

modulus quickly decays, such that the particle stress behaviour becomes dominated by the
loss modulus for ωσ < 0.1. In this regime, the droplet relaxation time is far smaller than
the oscillation periods, and thus the droplet’s shape becomes more dependent on the in-
stantaneous shear rate than the shear strain, since it has plenty of time to relax during the
oscillation cycles, resulting in a particle stress behaviour that is mostly viscous. In fact, in
the limit of ωσ → 0, the flow would become a simple shear flow, where the shear stresses
become governed solely by the viscosity G′′/ωσ. Although not confirmed by the results pre-
sented in Fig. 4.7, the results do indicate this trend, with values of G′ quickly decaying and
values of G′′ asymptotically approaching a line of constant viscosity with G′′ ∝ ωσ.

In the case of ωσ > 0.4, it can be seen in Fig. 4.7 that values ofG′′ steadily decrease while
values ofG′ increase until reaching a plateau around ωσ = 2. In these regimes of ωσ > 2, the
droplet relaxation time is longer than the oscillation periods, so that, with minimal relaxation,
the droplet’s shape becomes more dependent on the shear strain than on the instantaneous
shear rate. This is reflected in the particle stress behaviour, which becomes mostly elastic,
with G′′ → 0 in the limit of ωσ →∞. The dependence of the particle stress on shear strain,
rather than shear rate, is also evidenced by the values of G′ becoming independent of the
oscillation frequency.

4.3 FERROFLUID DROPLET IN QUIESCENT FLOWS

In the case of ferrofluid droplets under the effect of an external magnetic field, the sim-
plest possible case is that of droplets immersed in a quiescent flow. In this case, the system
dynamics are governed solely by the magnetic and capillary forces, since fluid flow is limited
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to that caused by changes in the droplet’s shape. Thus, the steady-state droplet dynamics are
governed solely by the magnetic capillary number. Here, two quantities are of interest: the
droplet’s deformation, caused by the magnetic forces and resisted by capillary forces, and
the bulk magnetization of the emulsion, defined as [46]

〈M〉 =
1

V

∫
V

(ζ(φ)− 1)HdV . (4.6)

Note that, as evidenced by Eq. 4.6, the non-magnetic continuous phase does not contribute
to the bulk magnetization, since ζ(φ)− 1 = 0 outside the ferrofluid phase.

Figure 4.8 – Magnetic field for a ferrofluid droplet in a quiescent flow, Camag = 12.

Figure 4.8 presents the magnetic field for a ferrofluid droplet in a quiescent flow, for
Camag = 12. It can be seen that the presence of the droplet, due to it’s higher magnetic
permeability, affects the magnetic field outside of it, attracting the field lines and increasing
the magnitude of H near the droplet tips. Inside the droplet, meanwhile, the magnetic field is
mostly uniform, with field lines parallel to the external field direction, and a lower magnitude
of H, resulting in a jump in field intensity across the interface. In accordance to Eq. 1.4,
this jump in magnetic field intensity across the interface gives rise to magnetic forces, which
effectively pull on the interface, stretching the droplet in the magnetic field direction.

Based on Eqs. 1.1 and 1.4, it can be expected that the magnetic field is dependent on
the droplet’s permeability ratio and shape, while the magnetic forces acting on the interface
are dependent on the permeability ratio, field intensity jump, and magnetic capillary number.
Note, however, that, while the droplet’s shape is dependent on the magnetic forces, it also
influences the magnetic field, which in turn determines the magnetic forces. Thus, the actual
system behaviour becomes non-linear. In order to exemplify this, Fig. 4.9 presents the
magnetic field for a droplet with ζ = 5 and Camag = 3, such that the product (ζ − 1)Camag
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Figure 4.9 – Magnetic field for a ferrofluid droplet in a quiescent flow, Camag = 3, ζ = 5.

is constant between Figs. 4.8 and 4.9. Despite this similarity, the results are significantly
different. It can be seen that, for ζ = 5, the higher permeability ratio causes the droplet’s
influence on the magnetic field to be more significant, leading to larger field line deflections
and changes in field intensity (note the different scales between both figures). This results
in a larger field intensity jump in the case of ζ = 5, and, in turn, in a much larger droplet
deformation. An analysis on the influence of ζ on the emulsion’s dynamics is not the focus
of this work, however, and thus will not be investigated in further detail.

As previously mentioned, the two quantities of interest in the case of ferrofluid droplets in
quiescent flows are the droplet deformation, to investigate how the magnetic forces influence
the droplet shape, and the bulk magnetization, to investigate how changes in droplet shape
affect the magnetic behaviour of the emulsion. Figure 4.10 presents both quantities as a
function of magnetic capillary number, alongside the models of Afkhami et al. [40] and Jesus
et al. [4], and the Lattice-Boltmann Method with Phase-Field results of Ishida and Matsunaga
[3] for the droplet deformation. The model of Afkhami et al. predicts the magnetic capillary
number based on the droplet’s deformation, with

Camag = 2

(
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ζ − 1
+ k

)2(
1 +D

1−D

) 1
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. (4.9)
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The model of Jesus et al., meanwhile, is a small deformation theory for droplets subjected
to both an external magnetic field in the y direction and a simple shear flow, with the case of
quiescent flows represented by Ca = 0. It predicts that, for λ = 1 and ζ = 2,

D =

√
[(35/16)Ca]2 + [(9/128)Camag]2

2 + (3/128)Camag
. (4.10)

It can be seen in Fig. 4.10 that, up to Camag = 16, there is close agreement between
both models and the present results, with higher values of Camag leading to some divergence
between the models, with the present results remaining close to the model of Afkhami et al.
It can also be seen that there is a nearly exact match between the present results and those of
Ishida and Matsunaga.

(a) (b)

Figure 4.10 – Droplet deformation (a) and bulk emulsion magnetization (b) as a function
of magnetic capillary number. The dashed line in (b) corresponds to |M|/β = 0.7712 +
0.0094Camag. Quiescent flow.

Since the aforementioned models have previously been validated against numerical and
experimental results [40, 4, 43], this close agreement to the present results indicates that
the magnetic components of the methodology presented in this work are accurate. As pre-
viously discussed, the droplet deformation is calculated based on the assumption that the
droplet has an ellipsoidal shape. This has been shown to be the case for small and moderate
droplet deformations [41], while droplets exhibiting large deformations start to deviate from
an ellipsoid due to sharply increased curvatures on the droplet tips. This sharp increase in
curvature has not been observed in the present results, even in the case of Camag = 22. In
fact, this is not clearly seen even in the case of higher permeability ratio presented in Fig. 4.9,
which has a deformation of D = 0.635, significantly larger than any of the cases presented
in Fig. 4.10.

In the case of droplet deformation, it can be seen that the droplet deformation mono-
tonically increases with capillary number. For Camag < 10, this increase is mostly linear.
However, for larger magnetic capillary numbers, magnetic effects start to display some sat-
uration, with a decreasing slope of the droplet deformation curve. The curve for bulk mag-
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netization also follows a similar trend, albeit with a non-zero value at the limit Camag → 0,
following the linear relationship |M|/β = 0.7712 + 0.0094Camag for Camag < 10. In the
limit of Camag → 0, where the droplet is mostly spherical, this relationship approaches the
bulk magnetization of a sphere, given by |M|/β = 3(ζ − 1)/(ζ + 2) = 0.75. Since the bulk
magnetization is only a function of permeability ratio and droplet shape, this indicates that
the magnetization increases with the droplet’s length alongside the external field direction.

4.4 FERROFLUID DROPLET IN SIMPLE SHEAR FLOWS

After investigating the effects of an external magnetic field on a ferrofluid droplet im-
mersed in a quiescent flow in the previous section, this section now investigates the case of a
ferrofluid droplet under the combined action of an external magnetic field and a simple shear
flow. In this case, magnetic and shear effects can have additive or opposed effects, leading
to a far more complex behaviour, dependent on the capillary number, the magnetic capillary
number, and the external magnetic field direction.

4.4.1 Droplet shape

The first step to analyzing the behaviour of the system is to investigate how the shear
flow and external magnetic field influence the droplet’s shape, as represented by it’s defor-
mation and inclination angle. To this end, Fig. 4.11 presents the droplet deformation and
inclination angle for external magnetic fields in the x (main flow), y (main velocity gradient)
and z (main vorticity) directions. In the case of external magnetic fields in the x and y di-
rections, droplet deformation and inclination angle are calculated in the same way described
previously, based on the droplet’s inertia tensor. For external magnetic fields in the z direc-
tion, however, as the droplet is stretched in the direction of the external field, it’s longest axis
becomes the one normal to the shear plane. This causes the aforementioned methodology, as
implemented, to fail to accurately measure the droplet’s deformation and inclination angle,
which by definition must be measured on the shear plane that crosses the droplet center. In
order to accurately measure the droplet’s deformation and inclination angle in this case, an
ellipse is fitted to the droplet shape in the shear plane using an image recognition algorithm
[130].

In addition to the present results, Fig. 4.11 also presents the Lattice-Boltzmann Method
with Phase Field results of Ishida and Matsunaga [3], and the model of Jesus et al. [4] for
Ca = 0.05 and external magnetic fields in the y direction. It can be seen that the model of
Jesus et al. performs remarkably well up to Camag = 16, after which it diverges from the
present results, similarly to what was observed for the same model in the case of quiescent
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11 – Droplet deformation and inclination angle, in degrees, as a function of mag-
netic capillary number, for external magnetic fields in the x direction - (a) and (b), in the y
direction - (c) and (d), and in the z direction - (e) and (f). Crosses correspond to Ca = 0.05,
circles correspond to Ca = 0.1, squares correspond to Ca = 0.15, and triangles correspond
to Ca = 0.2. Red markers correspond to the present results and black markers correspond
to the results of Ishida and Matsunaga [3]. The dashed line in (c) corresponds to the model
of Jesus et al. [4] for Ca = 0.05. Blue markers represent results obtained with an alternative
interface curvature calculation.
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flows (Fig. 4.10). There is also, in general, a close agreement between the present results
and those of Ishida and Matsunaga, save for a few exceptions. These disagreements are
mostly restricted to limit cases where there was droplet breakup in the present results, but
not in those of Ishida and Matsunaga, and in the case of inclination angles for external
magnetic fields in the z direction. For the latter, the results of Ishida and Matsunaga display
a discontinuity around Camag = 3, which is also around where the droplet’s longest axis
becomes the one in the z direction. This raises the possibility that this disagreement is due
to failures in the measurements of Ishida and Matsunaga in these particular cases.

For the cases of droplet breakup, however, further investigations would be required to
determine the reasons for the disagreement. In the case of Ca = 0.2 and Camag = 8, there
was a droplet breakup in simulations performed with the standard curvature calculation,
although the droplet did not breakup when calculating the curvature with the reduced stencil
scheme presented in section 2.3. This, however, resulted in a larger droplet deformation and
smaller inclination angle, indicating that the droplet is closer to break-up than that reported
by Ishida and Matsunaga. In the case of Ca = 0.15 and Camag = 16, both curvature
calculations resulted in droplet breakup. Despite the aforementioned disagreements, the
overall close agreement between both results indicate that the present results are accurate, at
least excluding the cases of droplet breakup which are not presented.

For external magnetic fields in the x direction, it can be seen in Fig. 4.11 that increases
in magnetic capillary number lead to monotonic increases in droplet deformation and mono-
tonic decreases in inclination angle. This is due to magnetic forces stretching the droplet
in the external field direction. Thus, stronger magnetic fields stretch the droplet further, in-
creasing it’s deformation and, since it is stretched in the x direction, reducing it’s inclination
angle. It is worth mentioning that shear effects are still present, and can be seen both in
the case of droplet deformation and inclination angle. In the case of droplet deformation,
larger capillary numbers lead to larger droplet deformations, as expected. However, this
effect becomes less pronounced as the magnetic capillary number increases and magnetic
effects start to dominate the system’s response. This effect is also compounded by the fact
that the magnetic-induced droplet deformations reduce the droplet’s length in the y direction,
confining it to regions of lower velocity flow and thus reducing the effective shear to which
it is subjected to. For Camag → 0, different capillary numbers lead to significantly differ-
ent droplet deformations, while changes in droplet deformation due to changes in capillary
number are only minor for Camag = 22.

In the case of inclination angle, larger capillary numbers lead to smaller inclination an-
gles in the case ofCamag → 0, as previously discussed in the case of a non-magnetic droplet.
As the magnetic capillary number increases, however, this trend reverses, so that larger cap-
illary numbers lead to larger inclination angles for Camag > 4. The reason for this is that,
in the absence of a shear flow, the droplet would perfectly align to the external field, with
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θ = 0. However, the presence of a shear flow causes some deformation in the 45◦ direction,
preventing the droplet from perfectly aligning to the external magnetic field. For lower cap-
illary numbers, this shear-induced deformation is less significant in the system’s dynamics,
leading to lower inclination angles, while the opposite is true for higher capillary numbers,
which lead to more significant shear-induced deformations and, in turn, to larger inclination
angles.

Figure 4.12 – Shape of a ferrofluid droplet in the shear plane. External magnetic field in the
x direction, Ca = 0.15, Camag = 12.

Figure 4.12 presents the droplet shape in the case of an external magnetic field in the x
direction, with Ca = 0.15 and Camag = 12. It can be seen that the droplet is significantly
deformed and nearly aligned to the external field direction, indicating that, as previously
discussed, the system’s response is mostly dominated by magnetic effects.

For external magnetic fields in the y direction, Fig. 4.11 shows that increases in magnetic
capillary number again lead to monotonic increases in droplet deformation. In this case, how-
ever, the influences of capillary number remain significant regardless of magnetic capillary
number, indicating that magnetic effects never dominate the system’s response. The reason
for this is that, as the droplet is stretched in the y direction by magnetic forces, it encoun-
ters higher velocity flows and is thus subjected to a stronger effective shear, which further
deforms the droplet and increases the relevance of the capillary number on the system’s re-
sponse. The droplet’s inclination angle also reflects these same effects, with influences of
capillary number remaining relevant across the entire magnetic capillary number range. In
this case, as the magnetic forces attempt to align the droplet to the external field, they cause
an increase in inclination angle up to around Camag = 8. For higher magnetic capillary
numbers, however, the stronger effective shears associated to the larger droplet deforma-
tions counteract the aligning effects of the stronger magnetic forces. For Ca = 0.05 and
Ca = 0.1, this results in mostly constant inclination angles for Camag > 12. For Ca = 0.15
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and Ca = 0.2, however, the increase in relevance of the shear effects causes a reduction in
inclination angle and, eventually, an earlier onset of droplet breakup.

Figure 4.13 – Shape of a ferrofluid droplet in the shear plane. External magnetic field in the
y direction, Ca = 0.15, Camag = 12.

Figure 4.13 presents the droplet shape in the case of an external magnetic field in the y
direction, with Ca = 0.15 and Camag = 12. It can be seen that the droplet is significantly
deformed but not aligned to the external magnetic field, instead presenting an inclination
angle of θ = 58◦. In this case, it is clear that both magnetic and shear effects are relevant in
the system’s response.

In the case of external magnetic fields in the z direction, it can be seen in Fig. 4.11
that changes in magnetic capillary number lead to far less significant changes in droplet
deformation and inclination angle, when compared to the previous two cases. In fact, the
droplet deformation presents the opposite behaviour of the previous cases, with increases in
magnetic capillary number leading to decreases in droplet deformation. The reason for this
is that, in this case, the magnetic forces stretch the droplet in a direction normal to the shear
plane, where droplet deformation and inclination angle are measured. Thus, the magnetic-
induced deformations cause a reduction in the droplet’s cross-sectional area in the shear
plane, due to the conservation of the droplet’s volume. This causes an increase in curvature
and, in turn, of surface tension. Furthermore, this reduction in cross-sectional area also
confines the droplet to regions of lower velocity flow, reducing the effective shear to which
it is subjected to. Both of these effects represent a decrease in effective capillary number,
leading to decreases in droplet deformation and slight increases in inclination angle.

Figure 4.14 presents the droplet shape in the shear plane, in the case of an external mag-
netic field in the z direction, with Ca = 0.15 and Camag = 12. It is clear that the droplet’s
cross-sectional area is far smaller than the two previous cases (Figs. 4.12 and 4.13), and
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Figure 4.14 – Shape of a ferrofluid droplet in the shear plane. External magnetic field in the
z direction, Ca = 0.15, Camag = 12.

also smaller than that of a non-magnetic droplet (Fig. 4.2). Despite this reduction in cross-
sectional area, the droplet’s shape, in the shear plane, is otherwise similar to that of a non-
magnetic droplet, with a moderate deformation and an inclination angle θ = 38◦. Note that,
in this case, the droplet is significantly stretched in the z direction, although this is not visible
in Fig. 4.14.

One interesting aspect of external magnetic fields in the z direction, however, is that
shear-induced and magnetic-induced deformations happen in different planes, with shear
stresses stretching the droplet in the xy plane while magnetic forces stretch the droplet in the
z direction. In cases where both deformations are large and of similar magnitude, this can
lead to droplets of a distinct, disc-like shape. One such case is presented in Fig. 4.15, for
Ca = 0.6 and Camag = 16.

4.4.2 Rheology

With the effects of external magnetic fields on the droplet shape investigated in the previ-
ous section, this section now investigates how these effects influence the system’s rheology.
Similar to the case of a non-magnetic droplet, the three main quantities of interest are the
shear stress component of the particle stress tensor and the first and second normal stress
differences of the system. Starting this investigation with the shear stress component of the
particle stress tensor, Fig. 4.16 presents Syx as a function of magnetic capillary number,
for various capillary numbers and external magnetic field directions, as well as a compar-
ison to some of the results of Ishida and Matsunaga [3]. The comparison between both
results is similar to the case of droplet deformation and inclination angle, displaying a close
agreement, with the exception of one case of droplet breakup. As discussed in the previous
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Figure 4.15 – Three-dimensional view of a ferrofluid droplet subjected to an external mag-
netic field in the z direction, Ca = 0.6, Camag = 16. Slices of planes crossing the droplet
center are projected to the domain boundaries, with velocity streamlines present in the shear
plane. Reproduced from Phys. Fluids 33, 053313 (2021), with the permission of AIP Pub-
lishing [5].
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section, a steady-state solution for this particular case could be obtained by using an alter-
native interface curvature calculation, although the results of this simulation are not as close
to the results of Ishida and Matsunaga. However, since there is a close agreement for all
remaining results, this indicates that the results presented, which exclude this breakup case,
are accurate.

(a) (b)

(c) (d)

Figure 4.16 – Shear stress component of the particle stress tensor as a function of magnetic
capillary number, for external magnetic fields in the x direction (a), y direction (b), and z
direction (c), as well as aggregate results for Ca = 0.2 (d). In (d), circles correspond to
external fields in the x direction, squares correspond to external fields in the y direction,
and triangles correspond to external fields in the z direction. Red markers correspond to the
present results and black markers correspond to the results of Ishida and Matsunaga [3]. The
blue marker represents a result obtained with an alternative interface curvature calculation.

In the case of external magnetic fields in the x direction, it can be seen in Fig. 4.16 that
increases in magnetic capillary number lead to major decreases in the emulsion’s viscos-
ity. The reason for this is that, as the magnetic forces stretch the droplet in the x direction,
they significantly reduce the droplet’s length in both the y and z directions. By reducing
the droplet’s length in the y direction, they reduce the effective shear to which the droplet
is subjected, and by reducing it’s length in the z direction, they reduce the droplet’s cross-
sectional area relative to the flow direction. Both of these effects reduce the resistance the
droplet imposes to the flow, thereby significantly reducing the emulsion’s viscosity. Addi-
tionally, in this case magnetic torques attempt to rotate the droplet towards the main flow
direction, which also reduces the resistance it imposes to the flow. It is interesting to note
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that, around Camag = 8, the emulsion switches from a shear-thinning behaviour to a slightly
shear-thickening one, although this effect is barely noticeable due to the dominance of mag-
netic effects in the higher magnetic capillary number range. For lower magnetic capillary
numbers, the emulsion presents the characteristic shear-thinning behaviour, similar to that of
a non-magnetic one. However, for larger magnetic capillary numbers, increases in capillary
number lead to increases in inclination angle, as previously discussed and shown in Fig. 4.11.
This increase in inclination angle causes the droplet to present slightly more resistance to the
shear flow, thereby increasing the emulsion’s viscosity.

For external magnetic fields in the y direction, however, increases in magnetic capillary
number lead to major increases in the emulsion’s viscosity. In this case, as the magnetic
forces stretch the droplet in the y direction, they significantly increase the effective shear to
which the droplet is subjected, while also counteracting the shear flow’s tendency to rotate
the droplet towards the main flow direction. The result is that, in this case, the droplet offers
significantly more resistance to the shear flow, thereby increasing the emulsion’s viscosity. It
can also be seen that, for Camag > 8, the emulsion’s behaviour switches from the character-
istic shear-thinning behaviour to a shear-thickening one. In this case, increases in capillary
number lead to increases in droplet deformation and decreases in inclination angle, as shown
in Fig. 4.11. This is qualitatively similar to the case of a non-magnetic droplet, which results
in a shear-thinning emulsion. Thus, the droplet’s shape alone does not provide a clear ex-
planation for this shear-thickening behaviour. In this case, the magnetic torque attempting to
rotate the droplet towards the y direction is the most probable cause for the shear-thickening
behaviour. This magnetic torque will be investigated in detail in a later section, and it’s
effects on the emulsion’s viscosity have been studied in detail in [46].

In the case of external magnetic fields in the z direction, increases in magnetic capillary
number lead to slight decreases in the emulsion’s viscosity since, as the droplet is stretched
in the external field direction, it’s cross-sectional area in the shear plane is reduced along
with the effective shear to which it is subjected to. This decrease in viscosity is, however,
far smaller than the one observed for external magnetic fields in the x direction. The reason
for this is that, in this case, the increase in surface curvature leads to an increase in capillary
forces, and that the droplet’s deformation in the z direction actually increases the droplet’s
cross-sectional area relative to the flow direction, both of which contribute to an increase in
the emulsion’s viscosity. However, since the reduction in the droplet’s cross-sectional area
on the shear plane has the most significant effects, the emulsion’s viscosity is reduced. In
this case, the emulsion retains the characteristic shear-thinning behaviour across the entire
magnetic capillary number range.

In addition to the emulsion’s viscosity, external magnetic fields also have an influence on
the emulsion’s first and second normal stress differences. In order to compare the present
results to those available in the literature, Fig. 4.17 presents results ofN1 andN2 as a function

74



(a) (b)

Figure 4.17 – First (a) and second (b) normal stress differences as a function of magnetic
capillary number, for Ca = 0.2. Circles correspond to external fields in the x direction,
squares correspond to external fields in the y direction, and triangles correspond to external
fields in the z direction. Red markers correspond to the present results and black markers
correspond to the results of Ishida and Matsunaga [3]. The blue marker represents a result
obtained with an alternative interface curvature calculation, and the green markers represent
values for the first normal stress difference calculated as N1 = 2 cot(2θ)Syx.

of magnetic capillary number for Ca = 0.2, with the present results displayed alongside
those of Ishida and Matsunaga [3]. For N1, there is still a good agreement between both
results, although not as close as the results for droplet shape and emulsion viscosity. For
N2, there is a good agreement for external magnetic fields in the x and y directions, although
there is a significant disagreement between both results in the case of external magnetic fields
in the z direction. This is likely due to the high sensitivity of the normal stress differences
to numerical errors, since they are the difference of two much larger quantities. Thus, in
the absence of other results for comparison, no conclusion can be made with regards to
accuracy in this particular case. It is worth mentioning, however, that the results of Ishida and
Matsunaga were obtained with significantly finer meshes than the present ones, and therefore
this disagreement could be due to a lack of sufficient refinement in the meshes used in this
work, given the higher sensitivity to numerical errors of the normal stress differences when
compared to other quantities, such as the reduced viscosity. Despite this disagreement, both
results present the same qualitative trends.

Fig. 4.17 also presents the approximation proposed in [127], that N1 = 2 cot(2θ)Syx. In
the case of external magnetic fields in the z direction, it works remarkably well, even though
it was not developed for ferrofluid emulsions. For external magnetic fields in the x and y
directions, however, it fails to account for magnetic forces which have a direct influence on
N1, and thus was omitted from the figure.

In the case of external magnetic fields in the x direction, Fig. 4.18 presents N1 and N2

as a function of magnetic capillary number, for varying capillary numbers. In can be seen
that increases in magnetic capillary number lead to monotonic decreases in N1, up to the
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(a) (b)

Figure 4.18 – First (a) and second (b) normal stress differences as a function of magnetic
capillary number, for external magnetic fields in the x direction.

point of sign reversal in some cases, and to monotonic decreases in magnitude of N2. In the
absence of an external magnetic field, as previously discussed, the increased capillary forces
at the droplet tips, the largest component of which is in the x direction, causes an increase in
Sxx and positive values of N1. When an external magnetic field in the x direction is applied,
one could expect that this would cause an increase in N1, since it decreases the inclination
angle and, in turn, increases the component of capillary forces on the droplet tips in the x
direction. This, however, is not the case, since the magnetic forces stretching the droplet in
the x direction counteract the capillary forces attempting to restore the droplet to a spherical
shape, reducing the values of N1 and even changing it’s sign on some cases. For N2, the
main component of the magnetic forces, acting on the x direction, has little direct effect.
The magnetic forces do, however, have an indirect effect. As the droplet is stretched and
becomes nearly parallel to the x direction, the differences in capillary forces in the y and
z directions are reduced, since the droplet approaches an axisymmetric shape around the x
axis. This leads to a reduction in magnitude of N2, approaching zero for Camag →∞.

(a) (b)

Figure 4.19 – First (a) and second (b) normal stress differences as a function of magnetic
capillary number, for external magnetic fields in the y direction.

For external magnetic fields in the y direction, it can be seen in Fig. 4.19 that increases
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in magnetic capillary number lead to increases in magnitude for both N1 and N2. In this
case, the magnetic forces stretching the droplet in the y direction overcome the additional
capillary forces, caused by the increase in inclination angle, and cause a reduction in Syy,
thereby increasing the positive values of N1 and decreasing the negative values of N2. It is
interesting to note that, for Camag > 4, the largest magnitudes of N2 occur for Ca = 0.05,
whereas this capillary number would result in the smallest magnitude of N2 for Camag → 0,
and that such a drastic change in N2 with increasing values of magnetic capillary number, or
a similar reversal in behaviour, are not observed for the other values of capillary number.

(a) (b)

Figure 4.20 – First (a) and second (b) normal stress differences as a function of magnetic
capillary number, for external magnetic fields in the z direction.

In the case of external magnetic fields in the z direction, Fig. 4.20 shows that increases
in magnetic capillary numbers lead to decreases in N1. Since the main component of the
magnetic forces, in the z direction, has little direct effect on N1, this reduction is caused by
the decrease in droplet deformation and increase in inclination angle. For N2, however, the
magnetic forces have a significant effect since, as they stretch the droplet in the z direction,
they cause a reduction in Szz. This, in turn, leads to marked increases in N2 and even to a
reversal of it’s sign, particularly for lower capillary numbers.

4.4.3 Magnetization

In addition to the emulsion’s rheology, it is also interesting to study it’s bulk magnetiza-
tion, in order to understand how different capillary and magnetic capillary numbers influence
the magnetic properties of the emulsion. According to Eq. 4.6, the emulsion’s bulk mag-
netization is directly dependent on the magnetic field inside the ferrofluid droplet. To better
understand how the magnetic field behaves inside the droplet, and how it is influenced by the
droplet shape, Fig. 4.21 presents a shear plane view of the droplet and the magnetic field, for
Ca = 0.15, Camag = 12, and external magnetic fields in the x and y directions.

In Fig. 4.21, it can be seen that the magnetic field inside the droplet is mostly uniform,
such that the bulk magnetization direction, represented by the red arrows, is parallel to the
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(a) (b)

Figure 4.21 – Shear plane view of a droplet subjected to external magnetic fields in the x
(a) and y (b) directions, for Ca = 0.15 and Camag = 12. Red arrows correspond to the
bulk magnetization direction. Reproduced from Phys. Fluids 33, 053313 (2021), with the
permission of AIP Publishing [5].

magnetic field direction. However, despite the assumption that the ferrofluid is superparam-
agnetic, the magnetic field inside the droplet does not perfectly align to the external magnetic
field, instead displaying a tendency to align itself to the droplet’s long axis, leading to a mis-
alignment angle θmag between the bulk magnetization direction and the external magnetic
field direction. This misalignment angle is present both in the case of external magnetic
fields in the x direction and in the case of external magnetic fields in the y direction, al-
though it is significantly smaller for external magnetic fields in the x direction.

The reason for this difference in misalignment angle is that the droplet’s long axis is
nearly aligned to the external magnetic field direction in the case of external fields in the
x direction, leading to smaller misalignment angles, whereas the droplet’s long axis has
a significant misalignment to the external field direction in the case of external magnetic
fields in the y direction, leading to larger misalignment angles. It is also interesting to note
that the regions of highest field intensity jump across the interface, which are where the
droplet surface is perpendicular to the external magnetic field and near the droplet tips, are
not perfectly aligned. Since the magnetic forces act in an outward direction, normal to the
droplet surface, this offset in the magnetic forces gives rise to magnetic torques in the system.

In order to better understand how the droplet shape, and thus how different values of cap-
illary and magnetic capillary numbers influence the bulk magnetization’s misalignment, Fig.
4.22 presents this misalignment angle as a function of magnetic capillary number, for exter-
nal magnetic fields in the x and y directions and for varying capillary numbers. It can be seen
that, for external magnetic fields in the x direction, increases in magnetic capillary number
lead to monotonic decreases in misalignment angle, and increases in capillary number lead
to monotonic increases in misalignment angle. The reason for this is that the stronger mag-
netic forces associated with higher magnetic capillary numbers cause the droplet to become
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Figure 4.22 – Misalignment angle, in degrees, between the bulk magnetization and external
magnetic field directions as a function of magnetic capillary number, for external magnetic
fields in the x (a) and y (b) directions.

more aligned to the external magnetic field, with smaller inclination angles, while the larger
shear-induced deformations associated with higher capillary numbers lead to increases in
droplet inclination angle, as shown in Fig. 4.11 for Camag > 4.

For Camag < 4, however, the aforementioned correlation between the inclination and
misalignment angles is not as clear, and is in fact reversed for Camag → 0. The reason for
this is that, in such cases, the magnetic forces are not as significant, and, for lower capillary
numbers, the droplet is nearly spherical. In this case, the droplet’s long axis is nearly the
same length as it’s short axis, which results in smaller deflections of the magnetic field and,
in turn, in smaller misalignment angles. Thus, it can be concluded that misalignment angles
are dependent not only on droplet inclination angle, but also on droplet deformation, with
more deformed droplets having a larger influence on the magnetic field direction. Therefore,
for Camag → 0, even though larger capillary numbers lead to smaller inclination angles, they
lead to larger misalignment angles, due to the larger droplet deformations.

In the case of external magnetic fields in the y direction, it can be seen that, similar to
the case of external magnetic fields in the x direction, increases in capillary number lead to
increases in misalignment angle, due to the increases in droplet deformation and the shear
flow’s effect of rotating the droplet away from the external magnetic field direction. How-
ever, opposite to the case of external magnetic fields in the x direction, increases in magnetic
capillary number lead to monotonic increases in misalignment angle. The reason for this is
that, in this case, despite the magnetic forces attempting to align the droplet to the external
magnetic field direction, increases in magnetic capillary number do not lead to monotonic
increases in inclination angle, as can be seen in Fig. 4.11 (in this case, the droplet would be
aligned to the external magnetic field with an inclination angle of θ = 90◦). Thus, with these
less significant changes in inclination angle, the increases in droplet deformation associated
with larger magnetic capillary numbers lead to increases in misalignment angle.

79



For external magnetic fields in the z direction, misalignment angles are always equal to
zero, up to numerical accuracy of the results. In this case, the external magnetic field is
normal to the shear plane, and thus shear-induced deformations do not rotate the droplet’s
long axis, which is always parallel to the external magnetic field.

In addition to the misalignment angle, another important property of the emulsion’s bulk
magnetization is it’s magnitude |M|. As discussed in section 4.3, the magnitude of the mag-
netization is dependent on the droplet’s shape, with increases in droplet length alongside the
external magnetic field direction leading to increases in magnetization magnitude. Therefore,
it is to be expected that the shear flow has an influence on magnetization magnitude, since
it leads to changes in the droplet’s shape. To investigate this influence, Fig. 4.23 presents
the magnitude of the emulsion’s magnetization as a function of magnetic capillary number,
for varying capillary numbers and external magnetic fields in the x, y and z directions. It
can be seen that, regardless of external magnetic field direction and capillary number, all
curves have a very similar behaviour to that of a ferrofluid droplet immersed in a quiescent
flow. However, changes in capillary number do have an influence in the magnetization’s
magnitude, which varies depending on external magnetic field direction.

(a) (b)

(c)

Figure 4.23 – Bulk emulsion magnetization as a function of magnetic capillary number, for
external magnetic fields in the x (a), y (b) and z (c) directions.

For external magnetic fields in the x direction, it can be seen that increases in capillary
number lead to increases in magnetization magnitude, although this effect is reduced with
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increases in magnetic capillary number. In this case, due to the small inclination angles
assumed by the droplet, increases in shear-induced deformation, associated with higher cap-
illary numbers, lead to increases in the droplet’s length alongside the x axis, while changes
in inclination angle don’t have a significant effect on this length.

In the case of external magnetic fields in the y direction, the opposite behaviour is ob-
served, with increases in capillary number leading to decreases in magnetization magnitude.
In this case, even though increases in capillary number lead to increases in droplet defor-
mation, they also lead to significant decreases in inclination angle, rotating the droplet away
from the y axis and, in turn, reducing the droplet’s length alongside the external magnetic
field direction. For external magnetic fields in the z direction, increases in capillary number
lead to minor decreases in magnetization magnitude, with small decreases in the droplet’s
length alongside the z direction caused by the conservation of volume, as the droplet is
stretched in the shear plane due to capillary effects.

It is interesting to note that, due to the misalignment between the external magnetic field
and the emulsion’s bulk magnetization, a magnetic torque arises in the system. This magnetic
torque is given by [131]

τmag =
Camag
Ca

〈M〉 ×H0 , (4.11)

where it is clear that τmag is directly proportional to both the sine of the misalignment angle
sin(θmag) and the bulk magnetization magnitude |M|. Moreover, the conservation of angular
momentum in the system dictates that an opposite hydrodynamic torque τhyd must arise in
the system, such that τmag+τhyd = 0. This hydrodynamic torque can be obtained by splitting
the particle stress tensor into a symmetric part Ss and an antisymmetric part Sa, which are
respectively referred to as the stresslet and couplet [125]. The hydrodynamic torque can then
be obtained as [46]

τhyd = −ε : Sa , (4.12)

where ε is the Levi-Civita permutation symbol.

Figure 4.24 presents the magnetic and hydrodynamic torques as a function of magnetic
capillary number, for Ca = 0.1 and external magnetic fields in the x and y directions. It
can be seen that there is a close agreement between τmag and −τhyd, indicating that both
magnetic and hydrodynamic measurements are accurate. It can also be seen that, follow-
ing the coordinate systems in Figs. 1.1 and 4.21, both torques act in the z direction, with
magnetic torques attempting to rotate the droplet into alignment with the external magnetic
field, while hydrodynamic torques attempt to rotate the droplet away from it. For external
magnetic fields in the z direction, both torques are always equal to zero, since 〈M〉 and H0

are always parallel.

To better understand the influence of different capillary numbers and external magnetic
field directions on the magnetic torques arising in the system, Fig. 4.25 presents such torques
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Figure 4.24 – Magnetic and hydrodynamic torques as a function of magnetic capillary num-
ber, for Ca = 0.1 and external magnetic fields in the x and y directions.

as a function of magnetic capillary number, for varying capillary numbers and external mag-
netic fields in the x and y directions. For external magnetic fields in the x direction, it can be
seen that magnetic torques are always negative, corresponding to a clockwise rotation in Fig.
4.21, and increase in magnitude up to Camag ≈ 12. In this regime, increases in magnetic
capillary number and in magnetization magnitude are more significant than the decreases in
misalignment angle, leading to increases in magnetic torque. For Camag > 12, however, the
decreases in misalignment angle become more significant, resulting in magnetic torques that
do not vary with magnetic capillary number, or even decrease in magnitude with increases
in Camag, especially for Ca = 0.05. It can also be seen that larger capillary numbers lead to
decreases in magnetic torque. Although larger capillary numbers are associated with larger
misalignment angles and magnetization magnitudes, these effects are not as significant as
the direct, inversely proportional role of the capillary number in Eq. 4.11.

(a) (b)

Figure 4.25 – Magnetic torques as a function of magnetic capillary number, for external
magnetic fields in the x (a) and y (b) directions.

In the case of external magnetic fields in the y direction, it can be seen that magnetic
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torques are always positive, corresponding to a counter-clockwise rotation in Fig. 4.21, and
that increases in magnetic capillary number lead to monotonic increases in magnetic torque,
with magnetic torques having up to ten times the magnitude of magnetic torques for external
magnetic fields in the x direction. In this case, in addition to the direct influence in Eq. 4.11,
increases in magnetic capillary number also lead to increases in magnetization magnitude
and to significant increases in misalignment angle, all of which have a compounding effect
on magnetic torque magnitude. It can also be seen that, although variations in capillary
number have little effect for Camag < 8, for Camag > 8 increases in capillary number lead
to increases in magnetic torque, opposed to what is observed for external magnetic fields in
the x direction. Here, the increases in misalignment angle are large enough to overcome the
reductions in magnetization magnitude and the direct influence of the capillary number in
Eq. 4.11.

4.5 FERROFLUID DROPLET IN OSCILLATORY SHEAR FLOWS

The last case studied in this work is that of a ferrofluid droplet immersed in oscillatory
shear flows, in order to investigate the influence of varying external magnetic field direc-
tions and intensities on the emulsion’s storage and loss moduli, G′ and G′′, respectively.
As discussed in section 4.2, the relationship between these two moduli is largely dependent
on the ratio between the droplet’s relaxation time and the shear flow’s frequency. It can
also be expected that external magnetic fields lead to significant increases or decreases in
the magnitude of both moduli, by increasing or decreasing the droplet’s overall influence
on the flow, in a similar way to that of ferrofluid droplets in simple shear flows discussed
in section 4.4.2. Thus, it is possible that external magnetic fields influence the emulsion’s
response to oscillatory shear flows both by changing the droplet’s overall influence on the
flow, and by changing the droplet’s relaxation time. All results presented in this section are
for the same flow parameters used in section 4.2, with a shear amplitude of γ0 = 0.2 and
Re = min(10−3, 10−4/Ca).

Figure 4.26 presents the storage and loss moduli as a function of the oscillatory flow’s
angular velocity, for varying magnetic capillary numbers and external magnetic fields in the
x direction, and Fig. 4.27 presents both moduli as a function of magnetic capillary number
for ωσ = 0.1 and ωσ = 10. It can be seen that increases in magnetic capillary number
lead to significant decreases in both the storage and loss moduli, across the entire range
of oscillation frequencies. This is analogous to the behaviour observed in section 4.4.2 for
the case of simple shear flows, and is due to similar reasons. As the external magnetic fields
stretch the droplet in x direction, the droplet’s length in both the y and z directions is reduced,
reducing it’s cross-sectional area relative to the flow direction and confining it to regions of
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Figure 4.26 – Storage modulus G′ (circles) and loss modulus G′′ (squares) as a function of
the oscillation angular velocity ωσ, for external magnetic fields in the x direction and varying
magnetic capillary numbers.

lower velocity flow. Both of these effects cause a reduction on the influence the droplet has
on the overall flow dynamics, and therefore also cause a reduction in the magnitude of the
shear component of the particle stress tensor. This, in turn, leads to the observed reductions
in the storage and loss moduli, both of similar magnitude.

(a) (b)

Figure 4.27 – Storage modulus G′ and loss modulus G′′ as a function of magnetic capillary
number, for ωσ = 0.1 (a) and ωσ = 10 (b). External magnetic fields in the x direction.

Another important characteristic of the emulsion is the crossover point, corresponding to
the oscillation frequency in which the storage modulus becomes larger than the loss mod-
ulus, and is thus associated to the change between the mostly viscous behaviour observed
for lower oscillation frequencies and the mostly elastic behaviour observed for higher fre-
quencies. For external magnetic fields in the x direction, this point moves from ωσ = 0.42

for Camag = 0 to ωσ = 0.37 for Camag = 16. Since this crossover point is associated to
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the oscillation frequency in which the time the droplet takes to relax from the shear-induced
deformations becomes larger than the oscillation period, the aforementioned changes in this
point indicate that, due to the additional deformations in the shear plane caused by the exter-
nal magnetic field, the droplet takes slightly more time to relax than that of the non-magnetic
case. However, this change in the crossover point is not particularly relevant when compared
to the range of oscillation frequencies observed and the magnitude of the changes observed
in the storage and loss moduli. Moreover, this change in the crossover point is smaller than
the intervals in angular velocity between the results presented and thus relies on interpolation
to be measured, rendering it more vulnerable to numerical and measurement errors.

Figure 4.28 – Storage modulus G′ (circles) and loss modulus G′′ (squares) as a function of
the oscillation angular velocity ωσ, for external magnetic fields in the y direction and varying
magnetic capillary numbers.

In the case of external magnetic fields in the y direction, it can be seen in Figs. 4.28 and
4.29 that increases in magnetic capillary number lead to significant increases in the storage
and loss moduli across the entire oscillation frequency range, opposite to what is observed
for external magnetic fields in the x direction. In this case, as the external magnetic fields
stretch the droplet in the y direction, it’s cross-sectional area relative to the flow direction
is increased and it interacts with regions of higher velocity flow, with both of these effects
leading to an increase in the influence the droplet has on the overall dynamics of the flow.
This behaviour is analogous to that of the simple shear case discussed in section 4.4.2, and
leads to increases in magnitude of the shear component of the particle stress tensor and, in
turn, to increases of similar magnitude in both the storage and loss moduli.

In this case, the presence of the external magnetic field has similar effects on the crossover
point to those for external magnetic fields in the x direction, with the crossover point again
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(a) (b)

Figure 4.29 – Storage modulus G′ and loss modulus G′′ as a function of magnetic capillary
number, for ωσ = 0.1 (a) and ωσ = 10 (b). External magnetic fields in the y direction.

moving from ωσ = 0.42 for Camag = 0 to ωσ = 0.37 for Camag = 16. Although the droplet
deformations for external magnetic fields in the x and y directions occur in different direc-
tions, the similar magnitude of these deformations results in similarly minor changes in the
time the droplet takes to relax, at least for the small amplitude flows analyzed in this sec-
tion. For both of these cases, the changes in the crossover point are far less significant than
the changes in magnitude observed for the storage and loss moduli, indicating that external
magnetic fields in the x and y directions can be used to control the magnitude of the emul-
sion’s response to an oscillatory shear flow, but not how this response varies across different
oscillation frequencies. In other words, this indicates that external magnetic fields in the x
and y directions can be used to control the emulsion’s storage and loss moduli for a given
flow condition, but not the relationship between them.

For external magnetic fields in the z direction, however, it can be seen in Figs. 4.30
and 4.31 that the effects of different magnetic capillary numbers on the storage and loss
moduli are completely different to those for external magnetic fields in the x and y directions.
Rather than leading to increases or decreases in the magnitude of the moduli across the entire
oscillation frequency range, increases in magnetic capillary number lead to decreases in both
moduli for lower frequencies, and to increases in both moduli for higher frequencies.

In the limit of ωσ → 0, the emulsion’s behaviour is similar to the simple shear case
discussed in section 4.4.2, with the reduction in the droplet’s cross-sectional area in the
shear plane, and the associated reduction in the effective shear the droplet is subjected to,
leading to decreases in the magnitude of the shear component of the particle stress tensor,
and in turn to decreases in both the storage and loss moduli. However, this behaviour changes
for ωσ > 0.2, with increases in magnetic capillary number leading to increases in the loss
modulus G′′, but to decreases in the storage modulus G′, and for ωσ > 0.8, with increases in
magnetic capillary number leading to increases in both moduli.

As previously discussed in section 4.4.2, the rheology of a ferrofluid emulsion subjected
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Figure 4.30 – Storage modulus G′ (circles) and loss modulus G′′ (squares) as a function of
the oscillation angular velocity ωσ, for external magnetic fields in the z direction and varying
magnetic capillary numbers.

(a) (b)

Figure 4.31 – Storage modulus G′ and loss modulus G′′ as a function of magnetic capillary
number, for ωσ = 0.1 (a) and ωσ = 10 (b). External magnetic fields in the z direction.
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to external magnetic fields in the z direction is significantly influenced by the reduction in the
droplet’s cross-sectional area in the shear plane, with two opposing effects: the confinement
of the droplet to regions of lower velocity flow, which leads to a decrease in the influence
the droplet has on the overall flow dynamics, and the increase in surface curvature, which
reduces the droplet’s deformation and increases the influence the droplet has on the flow
dynamics. In the simple shear case, and for oscillatory flows with ωσ < 0.2, the former
dominates, with increases in magnetic capillary number leading to decreases in the rheologi-
cal moduli. For higher oscillation frequencies, however, it is possible that the latter becomes
more dominant, leading to increases in magnetic capillary number causing increases in the
storage and loss moduli. The increase in the droplet’s length in the z direction, caused by the
external magnetic fields, is also expected to increase the influence the droplet has on the flow
dynamics, since it increases the droplet’s cross-sectional area relative to the flow direction.
However, further investigations would be required in order to confidently state the reasons
for such a peculiar behaviour.

It can also be seen that, in this case, increases in magnetic capillary number lead to
increases in the oscillation frequency of the crossover point, which moves from ωσ = 0.42

for Camag = 0 to ωσ = 0.62 for Camag = 16, a change that is far more significant than those
observed for external magnetic fields in the x and y directions. In this case, as the droplet is
stretched by the external magnetic field, it’s cross-sectional area in the shear plane is reduced,
reducing the time it takes to relax from the shear-induced deformations and leading to the
increase in the oscillation frequency of the crossover point. This indicates that, opposite to
the case of external magnetic fields in the x and y directions
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CONCLUSIONS

This work presented a numerical analysis of the rheological and magnetic behaviour of di-
lute ferrofluid emulsions, when subjected to an external, uniform magnetic field. Analyses
were performed for external magnetic fields parallel to the main flow direction (x), to the
main velocity gradient direction (y) and to the main vorticity direction (z), spanning several
different combinations of capillary and magnetic capillary numbers, and for simple shear
and oscillatory shear flows. A detailed description of the computational code FENRir, which
was developed to perform the simulations presented in this work, was also presented.

For the model problems studied in this work, both the continuous and dispersed phases
of the emulsion were assumed to be Newtonian fluids of the same viscosity and density,
with the continuous phase assumed to be non-magnetic and the dispersed phase assumed to
be superparamagnetic. The magnetic relaxation times were assumed to be negligible, such
that the magnetic problem could be treated as a magnetostatic one, governed by a magnetic
potential equation, and the fluid flow problem was modelled by solving the Navier-Stokes
equations with the addition of capillary and magnetic forcing terms.

The computational code FENRir is based on a second-order, finite difference discretiza-
tion of the governing equations, using a staggered (MAC), regular grid. The temporal dis-
cretization of the Navier-Stokes equations is based on the second-order Crank-Nicolson
scheme, coupled to a projection method to impose the incompressibility constraint, with
a semi-implicit (fully implicit for fluids of equal viscosity) treatment of the viscous term and
an explicit treatment of all other terms. The droplet interface is captured with the Level Set
method, using a fifth-order WENO scheme for spacial discretization and a third-order SSP
Runge-Kutta scheme for temporal discretization, with the Level Set function reinitialized by
solving the reinitialization equation with a volume-preserving constraint. Linear systems of
equations associated with the Navier-Stokes equations are solved directly by Fourier anal-
ysis, and the linear system of equations associated with the magnetic problem is solved by
the Conjugate Gradient method with Multigrid preconditioning. Since it uses the Level Set
method to capture the interface, the computational code FENRir is able to deal with problems
involving droplet breakup in an automatic fashion, although such results were not presented
in this work.

The results presented in this work first focused on the case of non-magnetic droplets un-
der simple shear and oscillatory shear flows, with regards to both the emulsion’s morphology,
defined by the droplet’s shape and inclination angle, and to it’s rheology. For simple shear
flows, it was observed that increases in capillary number lead to increases in droplet defor-
mation and decreases in inclination angle, which in turn lead to a reduction in the emulsion’s
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viscosity, giving it it’s characteristic shear-thinning behaviour. It was also observed that
increases in capillary number lead to increases in magnitude for both the positive first nor-
mal stress difference and the negative second normal stress difference. For oscillatory shear
flows, the storage and loss moduli were obtained as functions of the oscillation frequency,
with the emulsion displaying a mostly viscous behaviour for lower frequencies and a mostly
plastic behaviour for higher frequencies. All of the aforementioned behaviours are well es-
tablished in the literature, with the present results displaying an overall close agreement with
the results of previous works.

For ferrofluid droplets subjected to external magnetic fields, the first case studied was that
of droplets in quiescent flows, in order to focus on the magnetic effects. The droplets were
observed to stretch in the external magnetic field direction, with deformations proportional
to the magnetic capillary number, and displaying a close agreement to results of previous
works. It was also observed that increases in magnetic capillary number lead to increases in
the emulsion’s bulk magnetization, indicating that the magnetization is proportional to the
droplet’s length in the external magnetic field direction.

When also subjected to a simple shear flow, the ferrofluid emulsion’s behaviour varied
significantly with different external magnetic field directions. For external magnetic fields
in the x direction , increases in magnetic capillary number lead to increases in droplet defor-
mation and decreases in inclination angle, with the influence of varying capillary numbers
decreasing with increasing values of the magnetic capillary number. For higher magnetic
capillary numbers, it was also observed that increases in capillary number lead to increases,
rather than to decreases in inclination angle. For external magnetic fields in the y direction,
increases in magnetic capillary number lead to increases in droplet deformation and incli-
nation angle, with the influence of varying capillary numbers remaining relevant across the
entire magnetic capillary number range. It was also observed that the inclination angle, as
a function of magnetic capillary number, stabilizes in the higher magnetic capillary number
range, and that, for external magnetic fields in the y direction, the magnetic effects lead to
an earlier onset of droplet breakup. For external magnetic fields in the z direction, increases
in magnetic capillary number lead to slight decreases in droplet deformation and slight in-
creases in inclination angle. The present results were also found to be in close agreement to
other results available in the literature.

The aforementioned changes in the emulsion’s morphology, as well as the magnetic
forces that cause them, also lead to significant changes in the emulsion’s rheology. In the
case of the emulsion’s reduced viscosity, it was observed that, for external magnetic fields in
the x direction, increases in magnetic capillary number lead to significant decreases in the
emulsion’s viscosity, while for external magnetic fields in the y direction, increases in mag-
netic capillary number lead to significant increases in the emulsion’s viscosity. For external
magnetic fields in the z direction, however, increases in magnetic capillary number only lead
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to minor decreases in the emulsion’s reduced viscosity.

With regards to the first and second normal stress differences, however, the effects of the
external magnetic fields on the emulsion’s behaviour were observed to be more complex. For
external magnetic fields in the x direction, increases in magnetic capillary number lead to
significant decreases in the first normal stress difference, even changing it’s sign from pos-
itive to negative. The second normal stress difference reduces in magnitude with increases
in magnetic capillary number, although it’s sign always remains negative. For external mag-
netic fields in the y direction, increases in magnetic capillary number lead to significant in-
creases in magnitude of both normal stress differences, although they retain the positive and
negative signs for the first and second normal stress differences, respectively. Meanwhile, in
the case of external magnetic fields in the z direction, increases in magnetic capillary number
were observed to lead to decreases in magnitude of the first normal stress difference, and to
significant increases to the second normal stress difference, eventually causing it’s sign to
change from negative to positive. The present results for the emulsion’s reduced viscosity
and first normal stress difference were found to be in an overall close agreement with results
previously reported in the literature. Although the results for the second normal stress differ-
ence did not display such a close agreement, this is likely due to their sensibility to numerical
errors.

Similar to the case of ferrofluid droplets in quiescent flows, the magnitude of the emul-
sion’s bulk magnetization was found to increase with increases in magnetic capillary number,
although in this case the shear flow also has some influence on the magnetization magnitude.
This results in increases in capillary number leading to slight increases in magnetization
magnitude, in the case of external magnetic fields in the x direction, and to slight decreases
in magnitude in the case of external magnetic fields in the y direction. For external magnetic
fields in the z direction, the influence of the capillary number was found to be negligible. The
most interesting aspect, however, is that, when subjected to a shear flow, the emulsion’s mag-
netization does not perfectly align to the external magnetic field, even though the droplets are
assumed to be superparamagnetic, leading to the existence of a misalignment angle between
the bulk magnetization and the external magnetic field directions.

For external magnetic fields in both x and y directions, increases in capillary number
were found to lead to significant increases in misalignment angle, although the different
magnetic field directions display opposite behaviours with regards to the magnetic capillary
number. For external magnetic fields in the x direction, increases in magnetic capillary
number were found to lead to significant decreases in misalignment angle, while for external
magnetic fields in the y direction, increases in magnetic capillary number were found to lead
to significant increases in misalignment angle. For external magnetic fields in the z direction,
however, the emulsion’s bulk magnetization was found to always be parallel to the external
magnetic field direction.
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Due to the aforementioned misalignment between the bulk magnetization and the exter-
nal magnetic field, a magnetic torque is introduced in the system and, due to the conservation
of angular momentum, an equal and opposite hydrodynamic torque must also be present in
the system. Both torques were measured and found to be in very close agreement with
each other. For external magnetic fields in the x direction, the magnetic torque was found
to increase in magnitude with increases in magnetic capillary number, although this effect
plateaus at higher magnetic capillary numbers, and to decrease in magnitude with increases
in capillary number. For external magnetic fields in the y direction, the magnetic torques
were found to be much stronger than those observed for magnetic fields in the x direction,
and to increase with increases in both capillary and magnetic capillary numbers. For both
external magnetic field directions, the magnetic torque attempts to rotate the droplet into
alignment with the external magnetic field.

In the case of ferrofluid droplets immersed in oscillatory shear flows, it was found that
external magnetic fields in all three directions had distinct, but significant impacts on the
emulsion’s rheology. For external magnetic fields in the x directions, increases in magnetic
capillary number were found to lead to significant decreases in both the storage and loss
moduli across the entire oscillation frequency range, while external magnetic fields in the
y direction were found to have the opposite behaviour, with increases in magnetic capillary
number leading to increases in both moduli. In both cases, it was found that the crossover
point, in which the storage modulus becomes larger than the loss modulus, happens at lower
frequencies for higher magnetic capillary numbers, although this change in the crossover
point is far less significant than the changes observed for the storage and loss moduli.

For external magnetic fields in the z direction, the emulsion’s response was found to be
quite distinct from the other two cases. In the lower range of oscillation frequencies, in-
creases in magnetic capillary number were found to lead to decreases in both the storage and
loss moduli, similarly to the reduction in emulsion viscosity observed for the simple shear
case. In the higher range of oscillation frequencies, however, it was found that increases
in magnetic capillary number have the opposite effect, leading to increases in both moduli.
It was also found that the crossover point moves to higher oscillation frequencies with in-
creases in magnetic capillary number, indicating that that the magnetic-induced deformations
lead to a significant decrease in the time the droplet takes to relax from the shear-induced
deformations.

It is worth mentioning that there are plenty of further research possibilities arising from
the work presented here. Examples of such further developments include a more in-depth
analysis of a ferrofluid emulsion’s response in oscillatory shear flows, particularly with re-
spect to the emulsion’s bulk magnetization, as well as a detailed analysis of droplet breakup
and how it is affected by different magnetic field directions and intensities. Both of these
analyses could also be extended to the case of fluids with different viscosities, which could
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lead to interesting results, particularly in the case of high viscosity rations, in which the
droplet’s dynamics are significantly altered in the non-magnetic case. Despite the highly
efficient solvers already employed, there are still significant improvement opportunities in
the computational code FENRir, both with regards to computational efficiency and memory
allocation. One of the most prominent of these opportunities is the use of non-uniform grids
in the y direction, which is possible with both solvers currently employed, and would allow
for significantly finer grids in the droplet region while saving computational resources in the
monotonous areas closer to the domain walls.
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