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Resumo

Nos últimos anos, o grafeno vem promovendo inúmeros avanços tecnológicos e cien-

tíficos. Entretanto, o material não apresenta um valor de bandgap diferente de zero. Por isso,

a aplicação de grafeno puro em dispositivos semicondutores é inviável. Uma possível alterna-

tiva reside na produção de nanofitas de grafeno, ou graphene nanoribbons (GNR) em inglês.

Nesse sentido, um estudo recente descreve a síntese de uma geometria inédita de GNR. Con-

hecida como, cove-type GNR, ou CGNR, essa molécula apresenta diversas propriedades em sua

síntese que indicam um potencial uso em produção industrial. Todavia, pouco se sabe das po-

tencialidades em conduzir mudanças em sua rede. Neste trabalho, investigamos as propriedades

estruturais e eletrônicas ao conduzir dois tipos de transformações: aumento de largura e vari-

ação da distância entre os anéis de borda (λ). O estudo será feito através de simulações com-

putacionais com base no modelo Su-Schrieffer-Heeger (SSH) bi-dimensional estendido, com

acoplamento elétron-fónon. Resultados mostram que o CGNR permite uma calibração suave

e monotônica no gap, seja mudando a sua largura, ou λ. Tal propriedade, não observada em

nanofitas ordinárias até então, indica um potêncial latente superior. O trabalho também aborda

as caracteristicas das redes associadas com cada transformação. Os resultados mostram que o

CGNR é um forte candidato a ser tornar um material base na optoeletrônica no futuro.
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Abstract

Over the past years, graphene is driving numerous theoretical and technological break-

throughs. However, it presents no bandgap. Because of that, the use of graphene in semicon-

ductor applications is diminished. An alternative is to rely on the so-called graphene nanorib-

bons (GNRs). In that sense, a recent study described a new GNR type, known as cove-type

GNR (CGNR), with a synthesis route suitable for large-scale production. Still, little is known

about the potential in modifying CGNR’s lattice. In this work, we investigated the structural

and electronic properties in change the CGNR lattice by two transformations: changes in the

width and the distance between the uppermost rings in the edge (λ). The study will unravel

through computational simulations using the 2-D extended Su-Schrieffer-Heeger (SSH) model

with electron-phonon constant. Results show that the CGNR can endure a monotonic gap decay

tuning process by varying the width or λ. Such attribute was not observable in other GNRs so

far. This study also discusses the lattice’s characteristics associated with each transformation.

In conclusion, the results show that the CGNR is a strong candidate to become a fundamental

material in future optoelectronics.
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CHAPTER 1

INTRODUCTION

1.1 Graphene

Since its isolation in 2004 [1], graphene is displaying boundless potential in materials

science. Much of the attention regarding this one-atom-thick carbon allotrope lies on its unique

physicochemical properties [2, 3]. Among other facets, its mechanical, optical, and thermal

[4, 5] responses have special relevance. Unlike many other organic materials, graphene is able

to endure intense mechanical stress [6] while being extremely light-weighted. In addition, this

transparent material [7, 8] can efficiently conduct heat at wide temperature regimes [9]. Besides,

the electronic properties are even more promising. Unlike any other material in nature, graphene

presents a linear band structure [10]. This attribute allows, at least theoretically, massless charge

carriers. As a consequence, charge transport in graphene is incredibly favored. This material

can potentially change fundamental aspects of our society and current state technology.

Compared with other carbon allotropes, graphene-oriented research is relatively new.

Regardless, its applicability already branches many fields. Currently, there are reports of engi-

9



neering efforts based on its mechanical proprieties [11, 12], the development of sensing devices

[13], biomedical solutions [14], and especially electronic apparatus [15, 16, 17].

Besides all prospects, graphene is a semi-metal, having no bandgap [10]. This property

greatly limits its use in nanoelectronics. Currently, there are several techniques focused on

opening the gap. Among them, two procedures have special relevance. The doping approach

[18] consists of inserting non-carbon atoms in the lattice. This structural change enforces a

symmetry break, giving rise to a non-zero gap. In most cases, the elements chosen are oxygen,

nitrogen, or boron. The inclusion of each doping constituent can tailor the material towards

specific applications [19]. At this moment, doping is promoting the development of diverse

applications in electrochemical energy storage [20, 21], gas and optical sensing [22, 23], and

photovoltaics [24]. However, the strategy bears limitations. Some syntheses rely on the grafting

process, which inevitably depletes the mobility [25].

1.2 Graphene nanoribbons (GNRs)

The electronic confinement offers a more elegant way to open the gap by shaping the

lattice into nanoribbons. The so-called graphene nanoribbons (GNRs) [26, 27, 28] are quasi-

one-dimensional nanoestructures that provide a strong alternative for future optoelectronics.

Being a derivative of graphene, GNRs share many characteristics with its parent-material [29].

Among others, the nanoribbons present high mechanical strength [30], high charge mobility

[31, 32] and favorable thermal properties [33]. Besides, GNRs have an ultrahigh surface area

[34, 29] and the possibility of tuning its electronic properties [35, 36, 37]. The latter attribute
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allows highly customized materials, opening a wide range of design possibilities as well as

applicability.

1.2.1 Some Types

The electronic response of a GNR is mainly dictated by its edge shape. Nanoribbons

with different edges might display entirely distinct properties. There are three main classes,

armchair (AGNR), zig-zag (ZGNR), and chiral (chGNR). Each one refers to a different length

axis. Figure 1.1 illustrates all edge shape classes along their respective axes. The diversity

inside each class is growing every day through the emerging sub-classes.

Figure 1.1: Schematic illustration of the three main GNR’s classes: armchair (red), zig-zag (blue) and chiral
(green). Each type branches in several sub-classes geometries, which display widely distinct physical properties.
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Armchair Graphene Nanoribbons (AGNRs)

The armchair class is a type of GNR with edges resembling an armchair. It is one

of the first synthesized GNRs. Currently, most of the effort concentrates on investigating this

nanoribbon. Its pure form has three width families, 3N, 3N+1, and 3N+2, where N is the number

of sites along the width axis [26, 28]. AGNRs that belong to families 3N and 3N+1 have an

appreciable gap. Inversely, the specimens in the 3N+2 family behave as semi-metals. By far,

the AGNR type is the one with the most number of sub-classes. Here we mention the chevron

[38, 39], and the heterojunctions [40].

Zig-zag Graphene Nanoribbons (ZGNRs)

Unlike AGNRs, pure zig-zag nanoribbons do not group up in width families. Regard-

less of the width size, these materials behave as semi-metals. Although this attribute diminishes

the applicability in optoelectronics, ZGNRs have an important role in others fields, such as

spintronics [41, 42]. However, it is worth mention that, just like in graphene, doping ZGNRs

allows its use in semiconducting applications [43].

Interestingly, the ZGNR contains a subclass of nanoribbons with a finite gap. Firstly

synthesized in 2014, they are known as cove-type graphene nanoribbons (CGNR) [44, 31]. The

chemical diagrams of some CGNRs are illustrated in figure 1.2. Just like in AGNRs, the CGNRs

have specimens with different widths. Throughout this work, we will label them as N-CGNR,

where N is the number of carbon sites along the width axis. Besides the energy bandgap, the

reports indicate the existence of superior attributes in both production and performance. The

synthesis is a liquid-based bottom-up process. That means that the material arises from smaller
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chemical precursors and supports large-scale production. Consequently, the specimens have

almost no defects. Besides the high quality, the nanoribbon is unusually long, extending up

to 200 nm. All these attributes strengthen the potential of this sub-class. Therefore, studying

such material can impact both theoretical and technological fields of low-dimensional organic

semiconductors.

Figure 1.2: Chemical diagram of CGNRs with different width sizes. Throughout this work, we are going to follow
the labeling convention of this figure.

Regarding the physical properties, CGNRs also deliver promising results. UV-vis spec-
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trum reveals an optical gap of 1.88 eV. This is an adequate value for electronics [28]. Moreover,

terahertz spectroscopy measurements point out an unusually high intramolecular mobility in

CGNRs of up to 15 000 cm2/Vs [31]. This outstanding value, almost 10 % of pure graphene’s

mobility [45, 46], has no comparable counterpart among the semiconducting GNRs. These

properties reinforce the potential around the CGNRs and justify further investigation of its elec-

tronic nature.

Chiral Graphene Nanoribbons (chGNRs)

The chiral border is a convolution of segments from the previous classes. Different

chGNR specimens are often classified by the angle between their edges and the zig-zag axis

[47]. These materials have a characteristic low bandgap due to a high degree of aromaticity

and an electron delocalization [29, 48]. Besides, controlling the proportion of each segment has

proven to be a potential strategy for fine-tuning designs [49].

1.3 Applicability of GNRs

The participation of GNRs in technological applications is diverse. As stated earlier,

the edge shape plays a definitive role in the ultimate electronic, mechanical and thermal proper-

ties. For that reason, different GNRs often are suitable to perform entirely distinct tasks. Here,

we emphasize two prominent fields: optoelectronics and bio-medicine.
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1.3.1 Optoelectronics

In optoelectronics, organic semiconductors have an important role in almost any po-

tential device. In the case of GNR, its use in organic field-effect transistors (OFETs) presents

formidable prospects. The atomically thin body, possibility of gap modularization, and the high

on-current density of semiconducting AGNRs turn them into candidates for ultra-scaled FETs

[50, 51]. Experimental measurements show that, on many definitive properties, GNR-based

OFETS overcome state-of-the-art technologies [51]. Moreover, unlike their current counter-

parts, nanoribbons can endure intense mechanical stress, as stated earlier. This feature allows

the production of flexible electronic components for wearable applications [29, 51, 52]. Further-

more, others devices integrate GNRs in gas sensing [53, 54] and in photovoltaic cells [55, 56].

1.3.2 Biomedical Devices

The versatility of GNR’s geometries permits the use in diagnosis, treatment, and re-

search on several biomedical fields. Most of the effort is focused on biosensing-oriented devices

[29]. Recent reports indicate the possibility of using GNRs to detect many biological markers,

such as glucose [57, 58], DNA [59], and amino acids [60]. Biosensing strategies are also em-

ployed in cancer therapy, as an effective monitoring tool [61]. The incredible surface area also

permits use in other applications like drug delivery and photothermal therapy [62].

University of Brasília p. 15



1.4 Objective

Considering the latent potential of the CGNR, we propose to investigate this material

employing a theoretical model known as the SSH model. The study evaluates the physical

consequences of performing a unique border transformation. The project’s specific objectives

can be summarized in:

1. Evaluate the gap response due to the edge change;

2. Investigate the effects in the lattice as the design strategy is enforced;

3. Identify the technique’s potential when compared with other established gap-changing

structure strategies.

The text is organized into three chapters. Chapter 1 delivers a broad introduction to the

GNRs and their place in materials science. Next, chapter 2 develops the theoretical background

needed to simulate GNRs in the SSH model framework. Finally, chapter 3 addresses the study

of edge changes in the CGNR as a gap-tuning strategy.
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CHAPTER 2

THEORETICAL MODELING

Atomic species with sp2 hybridization present three orbitals arranged in a plane and

one pz-type perpendicular to them. The overlapping of the planar atomic orbitals creates the

σ-orbitals. In the same fashion, π-orbitals emerge from the superposition of two neighboring

orbitals perpendicular to the plane. Electrons that occupy σ orbitals are related with stronger

bonds than the ones in π. As a result, materials that exhibit such hybridization through its

entire extension have a valence band with fully occupied σ orbitals and half-filling π orbitals.

Moreover, the π-electrons become delocalized. A precise physical description of such systems

would require the accountability of each electron. Unfortunately, this restriction turns the ap-

proach impracticable to large systems such as linear polymers or graphene.

As an alternative, we can rely in simple model Hamiltonians which, although requiring

strong approximations, preserve the system’s fundamental characteristics. Here we initially as-

17



sume two simplifications. The first one is to restrict the physical description only to low-energy

excitations. By doing that, the electronic description will be mediated only by π-electrons. The

second approximation is to ignore any long-range electron hopping, while using the a linear

combination of atomic orbitals as basis. The combination of these two assumptions can be

accommodated in the tight-binding (TB) model.

However, in spite of its undeniable importance in quantum chemistry, the pure TB

model is not suitable to simulate extended organic π-conjugated systems, such as the poly-

acetylene [63]. Such limitation encouraged Su, Schrieffer and Heeger to come up with an better

modeling that would be later known as the Su-Schrieffer-Heeger (SSH) model [63, 64]. Here,

we are going to use this development to investigate the GNRs. Historically, the formalism was

initially applied to a simple system: the linear polymer. We chose to start our development

in the same ground. Gradual enhancements are carried out until an adequate description for

graphene-based materials arise.

2.1 1-D Generalized Hamiltonian for a Chain via SSH model

Under the approximations regarding the SSH model, the Hamiltonian of a chain fol-

lows [63, 65, 66, 64]:

H = Htb +Hlattice. (2.1)

Here, Htb is the Hamiltonian term representing the electronic description mediated by

the π-electrons, grounded in the tight-binding model, while Hlattice accounts for the inter-site

University of Brasília p. 18



lattice interaction. As stated before, the model assumes a low-energy regime. Consequently,

the amplitude of the lattice movement should be modest. Past works corroborate this assump-

tion [67]. Under reasonable conditions, conjugated polymers have lattice distortions around

3% around the equilibrium bond length [68]. Similar behavior is shared with graphene-based

systems. This setting encourages us to model the lattice phenomena under a simple harmonic

approximation. Let un be the relative position of the n-th site with respect to its undistorted

position, as depicted in figure 2.1, then

Hlattice =
1

2

∑
n

Mu̇n
2 +

∑
n

K

2
(un+1 − un)2. (2.2)

The first term accounts for the kinetic part, while the latter is the potential one. M and K are

the site mass and the Hook’s constant, respectively.

Figure 2.1: Chemical diagram of the polyacetylene, a representative of the linear polymers. The variable un
represents the relative position of the n-th site.

As mentioned before, the SSH assumption considers only the hopping between first

neighbors. Therefore, Htb in the second quantization formalism reads

Htb = −
∑
n,s

tn+1,n(C
†
n+1,sCn,s + C†n,sCn+1,s), (2.3)

in which C†n+1,s is the creation operator. Thus, its application creates a π-electron in the n+1-th

site with spin s. Accordingly, Cn,s is the destruction operator. When acted in a given state, this
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operator annihilates a π-electron with spin s from the n-th site. tn+1,n is the so-called hopping

integral. It is associated with the amplitude probability of a π electron jump. Early devel-

opments treated tn+1,n as a constant regardless of the lattice spatial displacement. For some

systems, such approximation produces good results. However, as it is well known, transport in

graphene-based materials has a paramount influence of quasiparticles [69, 70, 71, 72]. These in-

dividuals rise from the interplay of the electronic and lattice phenomena. Therefore, refinement

of the hopping integral is a mandatory step to simulate more complex systems.

2.1.1 Electron-phonon Coupling Inclusion

There is not an analytical way to determine tn+1,n. However, it is possible to find an

approximated expression based on the type of system considered [73]. As stated before, the

distance between sites in conjugated polymers and graphene-based materials oscillate modestly

around the undistorted bond length value. Therefore, we are inclined to expand tn+1,n around

this reference distance [64]. In other words:

tn+1,n = t0 − α(un+1 − un). (2.4)

α is the electron-phonon coupling constant [67, 74]. As the name suggests, it dictates the lattice

influence over the electronic phenomena (and vice-versa). Each material presents a distinct

response. Therefore, α must be evaluated individually for every system. In this work, we

carried a tuning procedure based on the optical bandgap. The method is described in section

3.2.1.
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Here, we emphasize that the expected qualitative behavior holds. Given two adjacent

sites, tn+1,n must decrease as the inter-site distance grows. This is so because the more dis-

tant the sites are, the weaker the overlap between their pz orbitals will be. Thus, the hopping

becomes more difficult. In that sense, shrinking the distance must cause the inverse effect: an

increase in hopping rates. Furthermore, tn+1,n must return to a constant value (t0) in the absence

of distortions.

2.1.2 Solving the Electronic Hamiltonian

We initiate the solving procedure by the stationary case. For now, any site motion will

be discarded. Therefore,

u̇n = 0 ∀n. (2.5)

This condition translates into

H = −
∑
n,s

tn+1,n(C
†
n+1,sCn,s + C†n,sCn+1,s) +

∑
n

K

2
(un+1 − un)2. (2.6)

Our objective is to diagonalize this operator. Because the Hamiltonian does not present any

term that couples electrons with a different spin, we can carry the diagonalization separately for

each spin s. Suppose that {ak,s} are the diagonalizing operators. Then,

H =
∑
k,s

Ek,sa
†
k,sak,s. (2.7)

University of Brasília p. 21



In order to explicitly find the diagonal form of Eq. 2.7 we must relate {Cn,s} and

{ak,s}. This is done by introducing a transformation such that

ak,s =
∑
n

bnksCn,s,

a†k,s =
∑
n

b∗nksC
†
n,s.

(2.8)

The coefficients must preserve probability. This forces us to also enforce unitary. Then,

for every eigenstate set with spin s,

b†b = 1, (2.9)

where each element in 1 holds, individually,

1n′n =
∑
k

(b)n′k(b
†)kn =

∑
k

(b)∗nk(b)n′k = δn′n,

1k′k =
∑
n

(b†)k′n(b)nk =
∑
n

(b)∗nk′(b)nk = δk′k.

(2.10)

Using these relations permit reverse Equation 2.8, leading to:

Cn,s =
∑
k

b∗nksak,s,

C†n,s =
∑
k

bnksa
†
k,s.

(2.11)
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Substitution in Eq. 2.6 gives

Hele = −
∑
n,s

∑
k,k′

[tn+1,nbn+1ksb
∗
nk′s + t∗n+1,nbnksb

∗
n+1k′s]a

†
k,sak′,s

=
∑
k,s

Ek,sa
†
k,sak′,s =

∑
k,k′,s

Ek,sδk,k′a
†
k,sak′,s

(2.12)

After reordering the summation indices and inserting 1 in the last equation, we get

−tn+1,nbn+1ks − t∗n,n−1bn−1ks = Eksbnks. (2.13)

The boundary terms require special care. Enforcing a periodic boundary relationship leads to

t0,n = tN,n,

tN+1,n = t1,n,

tn,0 = tn,N ,

tn,N+1 = tn,1.

(2.14)

Now, we are able to write the electronic Hamiltonian in matrix notation. Combining Eq. 2.13
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and 2.14 we have, for each spin s,



0 t2,1 0 · · · t∗1,N

t∗2,1 0 t3,2 · · · 0

0 t∗3,2 0 · · · 0

... . . .

t1,N 0 · · · t∗N,N−1 0





b1ks

b2ks

b3ks

...

bNks


= Eks



b1ks

b2ks

b3ks

...

bNks


. (2.15)

2.1.3 Solving Lattice

In principle, the only task that remains is to diagonalize the matrix in Eq. 2.15. How-

ever, we recall Eq. 2.4. Each hopping term will depend on the site’s spatial coordinates. There-

fore, in other words, to numerically evaluate the matrix requires knowledge of the stationary

state from the start. We can crack this apparent loophole by solving the lattice first.

In view of the Ehrenfest theorem [75], the Euler-Lagrange equations with respect to the

relative displacement {ui}must hold when calculated with expected the value of the Lagrangian

(〈L〉) [71, 76]. Then,

d

dt

(
∂ 〈L〉
∂u̇i

)
=
∂ 〈L〉
∂ui

, (2.16)

for a given state |ψ〉. Here we choose a Slater determinant composed of the occupied orbitals

from the diagonalizing ({ak}) basis. In other words,

|ψ〉 = |1, 2, · · · , N〉 = a†1a
†
2 · · · a

†
N | 〉 . (2.17)
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Let V and T be, respectively, the expected value of the potential and kinetic energy.

Recalling the stationary approximation, we have

〈L〉 = 〈T 〉 − 〈V 〉 = −〈V 〉 ,

〈L〉 = 〈ψ|

[∑
n,s

tn+1,n(C
†
n+1Cn + C†nCn+1)−

∑
n

K

2
(ηn)

2

]
|ψ〉 ,

〈L〉 =
∑
n,s

tn+1,n(〈C†n+1Cn〉+ 〈C†nCn+1〉)−
∑
n

K

2
(ηn)

2.

(2.18)

Where, for convenience, we label ηi = ui+1 − ui. From Eq. 2.11 and 2.17

∑
s

〈C†n+1,sCn,s〉 = 〈ψ|
∑
k,k′,s

bn+1ksb
∗
nk′sa

†
k,sak′,s |ψ〉 ,

=
∑
k,k′,s

bn+1ksb
∗
nk′s 〈 | a1 · · · aN(a

†
k,sak′,s)a

†
1 · · · a

†
N | 〉 ,

=
∑′

k,s

bn+1ksb
∗
nks ≡ Bn+1n,

(2.19)

in which the prime sign indicates a summation over only the occupied orbitals. Then, rewriting

〈L〉 with this new notation gives

〈L〉 =
∑
n

tn+1n(Bn+1n +B∗n+1n)−
∑
n

K

2
(un+1 − un)2,

=
∑
n

(t0 − αηn)(Bn+1n +B∗n+1n)−
∑
n

K

2
(ηn)

2.

(2.20)

Taking the derivative of 〈L〉 with respect to an arbitrary ηn′ , and carrying out the sums leads to

∂ 〈L〉
∂ηn′

= −α(Bn′+1n′ +B∗n′+1n′)−Kηn′ . (2.21)
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Since we are in the stationary case [72, 71],

d

dt

(
∂ 〈L〉
∂η̇n′

)
= 0, (2.22)

leading to

Kηn = −α(Bn+1n +B∗n+1n). (2.23)

2.1.4 Stationary Algorithm

Eq. 2.23 relates the lattice and the electronic parts apart from the Schrodinger equation.

Now, we are able to find a set of {η} to be used in the Hamiltonian of Eq. 2.15. With that, the

electronic part can be solved through the lattice and vice-versa. The self-consistent algorithm

can be summarized by the following steps:

1. Guess a set of {η};

2. Build the electronic Hamiltonian of Eq. 2.15;

3. Diagonalize Eq. 2.15;

4. Calculate the {Bn+1n};

5. Find a new set of {ηnew} via Eq. 2.23;

6. Under a convergence criterion, {ηnew} is equal to {η}?

• If so, returns {ηnew} and the {bk,s} as the stationary configuration;

• If not, go back to step 1. using {ηnew} as the initial guess.

University of Brasília p. 26



2.2 Generalization for 2-D Systems

Up to this point, all theoretical development described refers to one-dimensional poly-

mer chains. We now focus on adapting the preceding theory to two dimensional systems. In

order to do that, we must rewrite the Hamiltonian in Equation 2.1 considering the new lattice

profile. Unlike on the 1-D case, now each site may have up to three first neighbors. As a

consequence, the Hamiltonian turns into [71, 77, 78, 37, 79]

H = −
∑

<i,j>,s

(t0 − αηi,j)(C†i,sCj,s + h.c.) +
∑
i

P 2
i

2M
+
∑
<i,j>

K

2
η2i,j, (2.24)

in which the index < i, j > refers to sums over the first neighbors, as illustrated in Figure

2.2. Comparing with the one-dimensional case, the pair-wise sum is the only change. Then,

all previous approaches are still suitable to this new operator. Not surprisingly, we are going to

reapply the solving methods of the previous sections. All algorithms will remain valid, apart

from changes in the expressions used.

Figure 2.2: Index scheme used in the 2-D extension of the SSH Hamiltonian.
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2.2.1 Stationary States

Recalling section 2.1.3, one must find the equations of motion of the generalized coor-

dinates to obtain stationary states. In a analogous procedure that ends in the Eq. 2.23, we reach

ηi,j = −
α

K
(Bi,j + h.c.), (2.25)

where Bi,j is defined according to Eq. 2.19. The solving procedure is analogous to the one

described for one-dimensional chains.
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CHAPTER 3

EDGE ENGINEERING IN COVE-TYPE GRAPHENE

NANORIBBONS

3.1 The Problem

Physicists and chemists are on the hunt to extend the properties of the cove-shaped

GNR [44] for future GNRs. This trend occurs because of the remarkable synthesis attributes

involved in this nanoribbon. Recent procedures enabled the production of CGNRs with different

widths via similar approaches. Now, as an additional step, one must find a way to explore one

of the most pertinent features of the GNRs: the striking dependence between the edge shape

and the physical properties [80]. Such a trait has a direct impact on future developing efforts. In

optoelectronics, the material’s usability depends on how easily its attributes can be mold, since

industrial demands can be highly particular, requiring fine adjustments. In that sense, finding a

precise way to tailor the physical properties of the CGNRs is a key task.

In most semiconductor-based devices, the energy bandgap is a decisive physical prop-

29



Figure 3.1: Illustration of the edge change strategy studied in this chapter. The approach consists in increasing the
proportion of zig-zag chains in the original cove-type GNR [44] by varying parameter λ.

erty. Different applications often require distinct gap values. In that sense, modify a GNR’s

bandgap by simple edge changes impacts the applicability. As well documented in the litera-

ture, AGNRs allow gap tuning through width changes [26, 70]. However, this procedure leads

to non-smooth gap variations. For instance, the energy difference between the bandgaps of 3-

AGNR and 4-AGNR is 0.18 eV [26], while the same variation for the 4-AGNR and 5-AGNR is

about 2 eV. This kind of sharp drop turns the process complex. Therefore, a smooth strategy to

tune the energy bandgap can contribute to the inclusion of CGNRs in real applications.

A possible gap tuning route for CGNRs relies on an unique feature of its shape. Cove-
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shaped edges arise from the superposition of AGNR’s and ZGNR’s borders. As well known,

these two primordial GNRs may present opposite electronic properties [26, 28]. Because of

that, varying the proportion of each edge-shape should affect GNR’s gap. Figure 3.1 displays

this strategy. Unlike the width change approach, such a simple edge change does not alter the

nanoribbon’s quantum confinement degree. Therefore, it would likely drive minor disturbances

at the electronic properties. All the potential aside, this tuning strategy was not tested, until

now.

In this chapter, we present the results regarding the investigation of the aforementioned

edge change strategy in cove-type GNRs. Firstly, we estimate 4-CGNR’s α through a semi-

empirical approach. Then, the stationary algorithm is applied to CGNRs with different zig-

zag chain extensions. Each simulated specimen had its bandgap evaluated. In this study, we

considered four CGNRs types: 2-CGNR, 4-CGNR, 6-CGNR, and 8-CGNR. Results show a

smooth monotonic gap decay due to the increasing of zig-zag edges proportion. This declining

trend allows to smoothly reach band gaps between 0 eV to almost 3 eV. Also, we describe in

detail the effects of this approach on CGNR’s lattice. We observed that changing the proportion

of AGNR and ZGNR on the cove-edge modifies the conjugation rate. As a direct response, the

bond length distribution becomes significantly more disperse, translating into a morphological

spreading. The corresponding published paper of this work is located in the appendix section 4.
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3.2 Results

3.2.1 α-tuning

Estimating the electron-phonon coupling is a mandatory step to model GNRs over the

described SSH Hamiltonian model. However, one can not directly determine it [73]. Each

nanoribbon displays a distinct lattice-electronic response due to its shape. Thus, different spec-

imens might possess a unique α. This limitation obliges us to use a tuning procedure. In other

words, the optimal α will be the one that best reproduces some reliable electronic measure.

Here, we choose the optical bandgap as this experimental reference. Figure 3.2(a) shows the

energy bandgap as a function of α. Reports indicate that 4-CGNR has a gap of 1.88 eV [44].

Consequently, the correspondent α value is 4.6 eV/Å. Similar measurements for AGNRs found

α around 3.5 and 5.5 eV/Å [81], indicating that both GNRs types might present akin lattice-

electronic coupling.

Beyond α estimation, the profile of electronic energy states can effectively characterize

quantum-confined materials [82, 66]. Figure 3.2(b) depicts this graph for the 4-CGNR. The set

of lines below 0 eV represents the valence band, while the one above 0 eV is known as the

conduction band. The energy shift between the highest occupied molecular orbital (HOMO)

and the lowest unoccupied molecular orbital (LUMO) is the optical bandgap of 1.88 eV. The

correspondent density of states (DOS) plot is located on the right side of Figure 3.2(b). Here,

each energy state contributes to the distribution. The overall DOS behavior relates to other

quantum confined materials. No π-electron can access the region delimited by HOMO and

LUMO orbitals. That happens because cove-shaped edges provoke a lattice symmetry break,
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Figure 3.2: Electronic profile of the 4-CGNR. (a) shows the gap dependence over the electron-phonon coupling
constant. As α increases, the gap rises accordingly. This happens since strong couplings make any electronic
phenomena more energetically expensive. Therefore, the energy cost to promote a π-electron from HOMO to
LUMO also grows. (b) displays the electronic band structure with the adequate α. In the upper side, this is shown
via the density of the states. Below this graph, we display the respective energy levels.
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which makes a non-zero gap emerge. In addition, the number of states around HOMO and

LUMO increases. Similar behavior occurs in dimerized linear polymers and some AGNRs [63,

83, 74]. As for energies away from the forbidden region, the density grows notably higher, like

in AGNRs. That said, preliminary analysis infers that 4-CGNR has similar electronic behavior

to other GNRs.

3.2.2 λ gap tuning strategy

Once α is determined, we now proceed to investigate the previously discussed edge

change. As stated before, zig-zag and armchair bonds are the building blocks of the cove-

shaped edges. In that sense, we introduce a parameter that controls their proportion in the

CGNR. Throughout this work, λ will refers to the distance between two adjacent armchair-like

blocks. Increasing λ is the same as enforcing 4-CGNR to become more similar to ZGNRs. As

a result, the nanoribbon preserves its cove-type edge, but some physical properties will change.

Figures 3.3 and 3.4 show the gap response over two tuning strategies: λ variation and width

changes. In figure 3.3, 2, 4, 6, and 8-CGNR responses are shown in orange, red, green, and

blue, respectively. One can notice a common qualitative profile shared by all specimen when λ

increases: a smooth monotonic gap decay that converges to 0 eV. That happens because rising

λ makes CGNR resemble gradually more to zig-zag GNRs. Since ZGNRs present negligible

energy bandgap, the resultant nanoribbon reproduce this trend.

Besides the similarities, each nanoribbon specimen experiences a unique decay rate.

For instance, 2-CGNR exhibits gaps around 2.9-0.68 eV, while the 4-CGNR decay process

begins in 1.88 and goes to about 0.04 eV. The other CGNRs share similar results. Such behavior
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Figure 3.3: Gap response over λ variation. Each color/curve represents a CGNR specimen with a different width
value. Orange, red, green and blue tones refers to 2-CGNR, 4-CGNR, 6-CGNR, and 8-CGNR, respectively. Re-
gardless the nanoribbon width, all of them exhibit a smooth monotonic gap decay. Inset displays the characteristic
length λ0 fitted as a parameter of exponential function.

is due to quantum confinement effects. Among all specimen, 2-CGNR is the narrowest. Because

of that, π-electrons will experience more intense quantum confinement. Hence, the gap rises.

As a result, further λ increments will compete with more intense confinement, leading to a

modest decay. Such behavior enforces smoother gap changes for narrower nanoribbons. This

effect is better visualized by fitting the gap response (Egap) in the following exponential decay

function:

Egap = E0 exp(−λ/λ0), (3.1)

in which E0 is the gap for the lowest λ and λ0 is a characteristic length that measures the decay

intensity. The bigger λ0 is, smoother the gap will drop. The inset of figure 3.3 shows the fitted

parameter values for each CGNR width. As the width grows, λ0 decreases. Therefore, narrower

nanoribbons might present more abrupt gap variations. Moreover, results suggest that CGNR’s
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Figure 3.4: Influence of width changes in the electronic bandgap of cove-type GNRs. Each color indicates a
different λ value. In all geometries, gap decays monotonically. Although width changes lead to similar outcomes,
its decaying process is lesser smooth than λ tuning.

width restricts the tuning smoothness.

Figure 3.4 shows the results of another tuning strategy: width change for a given λ.

Four λ cases are displayed, 7.34 Å, 9.84 Å, 12.30 Å and 14.76 Å. All curves present a monotonic

gap decay as width increases. This behavior is a consequence of the weakening of quantum

confinement effects. The wider a nanoribbon is, the narrower will be the energy shift between

valence and conductance bands, translating into a decreasing bandgap. However, controlling

the width leads to way less fluid gap transitions. For example, the λ = 7.34 Å case goes from

3 eV to almost 1 eV in only four steps, while 2-CGNR shows similar decay by transitioning

through 10 steps. Therefore, the conventional width tuning strategy is not as smooth as the

proposed λ procedure.

Throughout this work, ZGNRs present no bandgap due to the absence of spin-polarized
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effects in our model [84, 85, 86]. The inclusion of such phenomena can induce gap opening

[84, 85, 87, 26], although we expect no substantial changes in the results. In that scenario, given

sufficient λ, each CGNR should converge to its correspondent ZGNR gap value. Regardless,

the profile of each nanoribbon will remain the same: a smooth monotonic gap decay.

The presented results show accordance with previous works. Until now, most of the

efforts aimed at the CGNR geometries with λ = 7.38Å [56, 35]. DFT-based investigations re-

ports 6-CGNR and 8-CGNR with a gap of 1.508 [88] and 1.24∓ 0.03 eV [44], respectively. On

the other hand, our method gives a gap of 1.394 eV for the former and 1.104 eV for the latter.

Such tight agreement is expected since similar approaches for other GNRs produce comparable

accuracy. For instance, simulations via local-density approximation (LDA) for the 5, 6, and

7-AGNRs estimate their gaps in 0.5, 1.1, and 1.65 eV, respectively [28, 26]. The same geome-

tries present gaps of 0.55, 1.75, and 1.78 eV when our methodology is applied. This steady

accordance trend, despite the nanoribbon type, reinforces the adequacy of our investigation

approach.

3.2.3 The effects of gap tuning on the lattice

Although the effects of λ tuning on electronic properties are now clear, its influence

on the lattice remains unknown. Figure 3.5 presents the 4-CGNR spatial profile as λ grows.

In the left side, heat maps of bond length distortion for λ = 7.38 Å (a), 9.84 Å (b), 12.3 Å (c)

and 14.76 Å (d) are displayed. Hot colors represent stretched bonds, while cold tones illustrate

shrieked lengths. We measure the bond bend degree with respect to the equilibrium inter-site

distance in graphene (1.41 Å). The respective bond length distribution of each nanoribbon is on
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Figure 3.5: Collection of bond length heatmaps and their respective histograms for 4-CGNR geometries with (a)
λ = 7.38 Å, (b) 9.84 Å, (c) 12.3 Å, and (d) 14.76 Å. Hot and cold colors indicate stretching and compression
of bonds with respect to symmetric bond length, respectively. The histograms reveal that increases in λ induces
changes in conjugation degree and increases the morphological spreading

the right side. Nonetheless, the distortion’s magnitude is significantly smaller than the lattice

parameter, regardless of the λ value. In all cases, deformities not greater than 4 × 10−2 Å

occur. This magnitude represents less than 3 % of the equilibrium separation distance, which

corroborates previous works [73, 89]. Moreover, these results reinforce the suitability of the

harmonic approximations.

The bond pattern of the original 4-CGNR (λ = 7.38 Å) consists of two arrangements:

a contraction-expansion alternation in the edges and a flower-like structure in the nanoribbon’s

core. In the edges, the proportion of contracted-type bonds outnumbers expanded-type ones.
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Conversely, the core contains a significant amount of undistorted and stretched bonds. In this

region, the aromatic rings surround every flower aggregate. The contribution of these two parts

results in the histogram located on the right side. One can notice four prominent peaks: a green

one located around the equilibrium bond length, a blue one centering in about 1.36 Å and two

red-like ones in 1.45 and 1.485 Å. The green peak is the greatest of all four and represents

almost 40 % of the lattice. The significant presence of undistorted bonds is due mostly to the

aromatic rings in the core. Contrastingly, the blue peak results solely from the contracted bonds

in the edges. As for the two hot-colored peaks, their origins differ. The more distorted one

emerges from the expanded-type edges bonds, while the other rises from the flower structure.

As λ grows, the distortion profile changes accordingly. Notable differences already

appear in the next configuration λ = 9.84 Å. The edge bonds still have an alternation pat-

tern. However, undistorted bonds also appear between two adjacent armchair-like structures.

Moreover, the flower-shaped pattern in the core disappears. Now, in this region, most of the

edges become slightly stretched or contracted. As a result, these bonds move away from the

aromatic length. Comparison with the corresponding histogram and the previous one reinforces

this observation. The four prominent peaks are converted into seven timid crests. This disper-

sion increase changes the conjugation degree. Therefore, results suggest that injecting zig-zag

chains in cove-type edges modifies lattice’s conjugation.

As the final discussion, we are going to address the effects of width changes in cove-

shaped GNRs. Figure 3.6 displays lattice distortion heatmaps for the 2-CGNR (a), 4-CGNR

(b), 6-CGNR (c), 8-CGNR (d) for λ = 7.38Å. In the same fashion of Figure 3.5, hot and cold

colors represent bond stretching and contraction, respectively. Moreover, each respective bond
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Figure 3.6: Lattice effects due to width changes in the CGNR. Sub-figures a, b, c, and d display the bond heatmap
of 2, 4, 6, and 8-CGNR. The associated bond length distribution of each heatmap locates on its right side.
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length distribution locates on the nanoribbon’s right side. To some extent, all heatmaps present

a similar appearance. In (a), edge bonds coordinate themselves in an alternation of contraction

and stretching. Such pattern repeats in all simulated specimen. As for the core, we observe an

interchanging pattern of green and red colored bonds. The associated distribution shows the

lattice degree of distortion. One can see four peaks: a prominent one in the blue region, a minor

crest centered close to 1.41 Å and two timid red peaks away from the aromatic length zone.

The bonds in the edges contribute to the blue and the rightmost red peaks. Accordingly, the

green and the leftmost red peaks account for the core bonds. We placed black dashed guidelines

centering on each peak in (a) to aid association with the other distributions.

Figures 3.6(b)-(d) shows the effects of increasing the width in cove-type GNRs. In

3.6(b), the 4-CGNR lattice profile is displayed. As discussed previously, this specimen has

a characteristic bond profile in the edges and the core. The former consists of an alternation

of deformed bonds like in the 2-CGNR. However, the increase in the width entirely changes

the bonds located in the core region. Now, a distinctive flower-like structure appears along

with aromatic rings. The rising of these core bonds dramatically changes the bond distribution.

There are still four peaks, but their position and intensities are different. In this case, we have

a prominent green, a blue one close to the aromatic length, and two red crests. As one can

observe, the proportion of green and light-red bonds grows at the expense of blue ones. That

happens due to the contribution of the core bonds. The existence of the flower structure and the

adjacent green bonds shifts the balance of the bond population.

Further width increases will intensify this trend. As can be seen in 3.6(c) and 3.6d),

enlarging the nanoribbon causes two substantial changes: an increase of core bonds and a weak-
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ening of the deformations in the flower structure. As a result, lightly stretched and undistorted

bonds contribute more to the distribution. Then, the bond distribution tends to concentrate

around the green region. This trend remains until the width becomes so large that the edge

bonds contribution turns negligible. At that stage, CGNRs exhibit a profile similar to pure zig-

zag GNRs. In addition, λ tuning seems to provoke a more deep morphological alteration in the

CGNRs.

3.3 Conclusion

In this work, we studied a potential edge change strategy that allows gap tuning in the

CGNR. The simulations were carried via the SSH model that accounts for the coupling between

lattice and electronic phenomena. Before digging into the problem, we first determined the

suitable electron-phonon coupling constant (α) for the CGNR to be 4.6 eV/Å. Comparison with

later reports confirms that CGNRs and AGNRs have a similar lattice-electronic response.

Next, we proceeded to carry the edge change modifications. Results show that increas-

ing the proportion of zig-zag edges in CGNR leads to a smooth gap drop. This conclusion

becomes even more evident when compared with width-change strategies. Therefore, due to

the unique shape of the CGNRs, they can endure a gap-tuning procedure more efficiently than

standard tuning approaches, showing smooth access to 40 gap values lying within the range of

0-3 eV. This feature contributes to the potential of such GNRs since it allows deeper tailoring

of the physical properties.

In addition, we also investigated the changes in the lattice as the tuning procedure
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unravels. We found that increasing the proportion of zig-zag edges leads to a systematic mor-

phological spreading in the bond length distribution. On the other hand, changes in the width

of the CGNR provoke distinct effects. As the width increases, the bond length distribution be-

comes more concentrated around the aromatic bond length. Thus, both strategies are physically

different.

The results obtained indicate that carrying such structural changes in the CGNR may

produce new materials with interesting electronic properties. As possible extension to this work,

we intend to explore the charge transport in the transformed morphology through dynamical

simulations of charged states. By doing that, we hope to characterize the charged quasiparticles

and their role in the transport, as well as the effects of structural changes in the phenomena.
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Smooth gap tuning strategy for cove-type
graphene nanoribbons

Tiago de Sousa Araújo Cassiano, a Fábio Ferreira Monteiro, a Leonardo Evaristo
de Sousa,b Geraldo Magela e Silvaa and Pedro Henrique de Oliveira Neto *a

Graphene is a carbon-based material with an extensive range of promising properties. Since it does not

present a bandgap, graphene is not suitable for optoelectronic applications. One possible way to open

a gap is achieved by reducing graphene to its nanoribbon (GNR) form. Recently, a GNR with well defined

cove-type periphery proper for large-scale production was synthesized showing an energy bandgap of

1.88 eV. In this work, we propose an edge termination strategy that allows for smoothly tuning the

energy bandgap of cove-type GNRs by systematically changing the periodicity with which armchair-like

and zigzag-like edges alternate. Using an extended two-dimensional Su–Schrieffer–Heeger tight-

binding model we compare the effects of this edge termination process on lattice deformation with

those arising from changes in nanoribbon width. Results show that modifications to the edges of cove-

type GNRs are able to smoothly reduce energy bandgaps at the expense of losses in conjugation and

increased morphological spreading. Energy band gap values starting from z3 eV to almost 0 eV were

obtained. The flexibility provided by this gap tuning procedure places the cove-type GNR as an

interesting candidate material for optoelectronic applications.

I. Introduction

Graphene is a two-dimensional system composed of honey-
comb lattices of carbon atoms. It hosts a broad set of interesting
physical properties,1–5 resulting in the development of many
graphene based applications.6–9 A drawback prevents the use of
these materials in optoelectronic devices: the absence of an
energy bandgap, which is the hallmark of semiconductor
materials. However, bandgap opening can be achieved by
means of several approaches, such as a doping procedures,10–12

which consist in the addition of non-carbon atoms into the
lattice. The injection of these atoms induces a symmetry break
in the system, leading to the appearance of a gap. Another way
to engineer a gap opening is through the reduction in one of the
dimensions of the graphene sheet until it reaches atomic scales
(several angstroms). These quasi one-dimensional graphene
strips are known as graphene nanorribons (GNRs).13,14 Due to
their limited size, quantum connement effects may arise,
resulting in larger bandgaps. It is expected that GNRs will begin
the next generation of semiconductor applications.15–17

The properties of GNRs are directly related to their geome-
tries, with edge structure and width extension playing a key role
on the electronic properties.18 Two edge shapes, known as
zigzag (ZGNR) and armchair (AGNR) are specially relevant.

These AGNRs are usually classied by the number Na of atoms
along their width (Na-AGNR) and may be divided in three
families. These families are dened by Na ¼ 3p + 2, 3p + 1 and
3p, where p is a positive integer. Importantly, ZGNRs and
AGNRs from the 3p + 2 family do not present appreciable
bandgaps, but, on the other hand, AGNRs from 3p and 3p + 1
show semiconductor properties.13

Recently, a graphene nanoribbon with a new edge termina-
tion was synthesized using a bottom-up liquid-phase proce-
dure.19 The resultant GNR presented a cove-shaped edge (Fig. 1),
which may be seen as a combination of the armchair and zigzag
borders. Fig. 1(a) highlights examples of both border types
inside the CGNR, with a sample of an armchair and zigzag
border highlighted in red and blue, respectively. The synthesis
technique employed relies on the use of smaller compounds
through chemical reactions allowing an atomically precise
design that mitigates structural defects and controls the
proportion of each edge type. Known as cove-type GNR, or
CGNR, this new nanoribbon architecture was reported as
structurally well-dened and unusually long (>200 nm).19

Gap tuning can be performed by modifying the AGNR's
width.13,20,21 However, since each AGNR family presents
a particular gap dependence, this tuning procedure becomes
complex. For instance, the difference between the energy
bandgap of a 3-AGNR and 4-AGNR is about 0.18 eV.13 On the
other hand, the gap variation between 4-AGNR and 5-AGNR is
approximately 2 eV. As such, a smooth gap tuning procedure
based on width changes in AGNRs is not possible.
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Another possible strategy to tune energy gap relies on edge
changes. The literature provides several successful attempts
based on morphological transformation.22–25 Nanopores placed
on GNR's lattice are an example.26 The defect produced by the
hole induces the formation of V-shaped edges. This new border
is a hybridization of armchair-like and zig-zag structures and
controlling their relative amounts enables a smooth tuning
procedure to be undertaken. As mentioned before, CGNRs can
have its edge modied by a similar strategy. The question then
arises as to how such changes may affect the electronic prop-
erties of these nanoribbons, as this could constitute a reliable
method for gap tuning in GNRs.

To address the aforementioned issue, in this work, we
simulated several cove-edge terminations to investigate both
energy bandgap and conjugation changes in CGNRs. The
nanoribbons were modelled using a two dimensional Su–
Schrieffer–Heeger (SSH) model Hamiltonian. By means of a self
consistent eld approach, we evaluated the bond length
distribution taking into consideration both electronic and
phonon degrees of freedom. Our results show that changes in
a single parameter that characterizes edge terminations leads to
a monotonically decrease in the energy bandgap. By relating the
bond length distribution pattern with the energy gap, this
phenomenon is shown to be a consequence of the superposi-
tion of armchair and zigzag architectures. Gap values ranging
from z3 eV to almost 0 eV were reached, showing that this
method may be suitable for tailoring GNRs for very specic
applications.

II. Methods

The methodology applied in this work is similar to the meth-
odology used in previous works of our group.27–30 The GNRs are
simulated through the two dimensional extended SSH model,
which starts with a Hamiltonian H ¼ Hlatt + Htb, where Hlatt

refers to the lattice Hamiltonian and Htb corresponds to the
electronic part. The lattice term reads

Hlatt ¼ K

2

X
hi;ji

hi;j
2 þ 1

2M

X
i

Pi
2; (1)

where i and j index neighboring sites, K is the harmonic oscil-
lator constant, Pi is the momentum of i-th site, M is the site's
mass and hi,j is the relative displacement between the i and j
neighboring sites (Fig. 1(b)). This means that, for instance, the
distance between the site i and site j is l0 + hi,j, in which l0 is the
bond length of a fully symmetric lattice (1.41 Å). The h i,j i term
within the summation indicates a pair-wise sum.

As can be seen, the lattice part of the Hamiltonian corre-
sponds to classical harmonic approximation. This is adequate
since typical bond length variations in GNRs are usually not
greater than 2%.29 On the other hand, the electronic terms are
treated quantum mechanically by means of the second quan-
tization formalism, modelling the p-electrons in a tight-binding
approach. This electronic Hamiltonian is given by

Htb ¼ �
X
hi;j;si

��
t0 � ahi;j

�
C

†
i;sCj;s þ h:c

�
; (2)

where the operator C†
i;s is the creation operator of p-electron in i-

th site with spin s. Ci,s is the corresponding annihilation oper-
ator. The lattice and electronic parts of the model are connected
by the inclusion of an electron–phonon coupling (a) in the tight-
binding's hopping term, in which t0 is the hopping integral for
a symmetric lattice. The coupling between the electronic and
lattice parts allows a more accurate description of these
materials.

The description of our system is based on the set {hi,j} and
the eigenvectors of H, {jk(i)}. However, these very set are
required to evaluate the equations of motion. The problem can
be solved by employing a self-consistent approach. An initial
guess of {hi,j} (usually {hi,j} ¼ 0) is chosen. Then, the Hamilto-
nian can be numerically calculated. With this procedure, the
Schrödinger equation turns into an eigenvalue problem. The
diagonalization process yields the eigenvectors {jk(i)}. The ex-
pected value of Lagrangian, hLi ¼ hJ|L|Ji, where |Ji is the
Slater determinant is used in the Euler–Lagrange equation,

d

dt

�
vhLi
vh

�

i;j

�
¼ vhLi

vhi;j

: (3)

The solutions of these equations yield a new set of {hi,j}. The
process is repeated. Once the iteration converges, the nal set of
{hi,j}, along with the associated eigenvectors and eigenvalues
give the stationary state of the CGNR.

The Hamiltonian's parameters were chosen in accordance
with previous works, for which t0¼ 2.7 eV (ref. 31) and K¼ 21 eV

Fig. 1 (a) Chemical structure of a 4 atoms wide cove-type GNR. The
armchair-like and zigzag-like edges are highlighted in red and blue,
respectively. (b) Site indexation used in the two-dimensional SSH
model.
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Å�2.32 As for the electron–phonon constant, its evaluation is
done through a semi-empirical procedure which will be
described in the results session. Finally, as the number of
carbon atoms on the width classies armchair graphene
nanoribbons, the same criterion will be applied throughout this
work. For instance, the CGNR from Fig. 1(a) exhibits four
carbons along the width axis, therefore, we refer to it as 4-CGNR.
For the length direction, periodic boundary conditions are
employed.

III. Results

As mentioned before, the electron–phonon constant a connects
the dynamics of the p electrons with that of the lattice, affecting
the energy bandgap. However, a cannot be easily measured
directly,28 thus requiring an indirect method for its evaluation.
Since the energy bandgap can be effectively determined exper-
imentally, the appropriate electron–phonon constant is then
determined to be the one that reproduces the experimental
measure. For the cove-type 4-CGNR illustrated in Fig. 1(a), the
optical bandgap is reported to be 1.88 eV.19 The gap is deter-
mined by the energy difference of eigenvalues of CGNR in
a neutral state, which amounts to the optical gap. The forma-
tion of excitons is not considered as no relaxation process takes
place. Fig. 2(a) shows the dependence between a and the energy

bandgap, from which a coupling of 4.6 eV Å�1 is found to best
reproduce the experimental results. AGNRs, for instance,
present acceptable couplings values that range from 3.5 to
5.5 eV Å�1.33 Since the CGNR's a lies within this interval, the
coupling between the lattice and electrons is observed to be
roughly the same as in AGNRs.

The nanoribbon represented in Fig. 1(a) has its energy levels
shown in Fig. 2(b). Where the valence and conduction bands
consists of all lines below and above 0 eV, respectively. The
highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) are highlighted in red,
from which the 1.88 eV bandgap is obtained. It can be seen that
some regions in the spectrum present an accumulation of
energy levels in close proximity. This is better visualized by
calculating the density of states as a function of energy (DOS).
The DOS of the 4-CGNR of Fig. 1(a) is displayed on the right side
of Fig. 2(b). Within the gap region, the DOS is identically zero.
This forbidden zone arises as a result of the symmetry break
induced by the edge termination of the cove-type GNR. The
same effect occurs, for example, in polyacetylene, where the gap
opens when a dimerized conguration is enforced. Further-
more, the appearance of an energy gap changes the prole of
allowed states as well, with an increase in the number of energy
levels near the HOMO and LUMO. This translates into the
appearance of a peak close to those states, as seen in Fig. 2(b).
Additionally the DOS tends to present high values even for
energies away from the gap region. This behavior is shared with
semiconductor AGNRs.34

Once the electron–phonon coupling has been determined,
we may explore possible means of edge termination in CGNRs.
As we have seen, the cove shaped edges are formed by alter-
nating armchair and zigzag bond types. The periodicity of such

Fig. 2 (a) Energy bandgap of the 4-CGNR of Fig. 1(a) as a function of
the electron–phonon coupling constant (a). The coupling that coin-
cides with the experimentally measured energy bandgap is the one
which best represents the CGNRs. (b) Energy levels and corresponding
density of states of a 4-CGNR with a ¼ 4.6 eV Å�1. (c) Example of the
edge termination process. l indicates the periodicity of the alternation
between armchair and zigizag-like edges.

Fig. 3 (a) Bandgaps as a function of l for CGNRs of several widths.
Each symbol represents a width and the lines are fits to the data
considering an exponential decay. The inset highlights the behavior of
the decay constant for each width. (b) Bandgap dependence on width
for fixed l values. Lines are guides for the eye.
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alternation is measured by the parameter l, which corresponds
to the distance between two neighboring armchair-like edges
(Fig. 2(c)). An increase in l is equivalent to an increase in the
proportion of zigzag to armchair edges. This zigzag bond
injection procedure maintains the GNR with a cove-type
periphery, but modies its properties. Fig. 3(a) exhibits the
effect of zigzag bond injection on the energy bandgap of CGNRs
of different widths as a function of the parameter l. As l

increases, the gap decays monotonically for all widths. This
stems from the fact that as l increases, the resultant nano-
ribbon resembles progressively more a pure zigzag GNR, which
is known to present no energy bandgap. As such, the modi-
cation of the parameter l in cove-type GNRs allows for a smooth
and almost continuous gap tuning procedure.

The general decay prole of bandgaps with l is shared by all
widths. However, the decay rates are different for each CGNR,
which results in different ranges of allowed gaps. For instance,
2-CGNR presents gaps ranging from about 0.68 eV to 2.90 eV.
On the other hand, 4-CGNR starts at 1.88 eV and decays until
nearly 0.04 eV. A steeper decay trend is seen for the broader
nanoribbons, with 8-CGNR showing bandgaps that range from
1.10 eV until 0.00 eV. All of them converge close to 0 eV given
a sufficiently long zig-zag edge chain. Pure ZGNRs present
almost no gap when spin-polarization effects are not taken into
account.35–37 Thus, the CGNR exhibits no signicant additional

contribution when it reaches the asymptotic region. This
systematic decrease in gap magnitude is due to the reduction in
quantum lateral connement that takes place when nano-
ribbon width is increased.38 This effect can be quantied by
tting the data in Fig. 3(a) with a function Egap ¼ E0 exp(�l/l0),
where l0 is a characteristic length. This l0 parameter is shown
in the inset of Fig. 3(a) and decreases with nanoribbon width.
Larger values of l0 indicate the possibility of smoother tuning of
the energy bandgap. As such, nanoribbon width may become
a limiting factor for this tuning procedure.

Our model does not consider spin-polarized effects. This
choice may have an direct inuence on ZGNRs13,35,36,39 since
spin-polarized simulations report this nanoribbon to be
a semiconductor with magnetic properties.37 The width of each
ZGNR inside the CGNR changes the gap value reached on the
asymptotic regime, and it is reasonable to infer that the addi-
tion of spin-polarization will contribute to enlarger the nal
gap. Each CGNR converges to a specic gap value, depending on
its width.

Density functional theory (DFT) studies regarding CGNRs are
mostly concerned with geometries with l ¼ 7.38 Å.40,41 The gap
values found in these works are in agreement with our results.
For instance, 6-CGNR calculates a gap of 1.508 eV (ref. 42) while
our simulated tight-binding model presented a gap of 1.394 eV.
8-CGNR's bandgap is estimated as 1.24� 0.03 eV.43 On the other

Fig. 4 Bond length distortion heatmap and their corresponding histograms for 4-CGNR geometries with (a) l¼ 7.38 Å, (b) l¼ 9.84 Å, (c) l¼ 12.3
Å, and (d) l ¼ 14.76 Å. Hot and cold colors indicate stretching and compression of bond lengths with respect to 1.41 Å, respectively. The
histograms indicate that increases in l induces changes in conjugation and increased morphological spreading.
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hand, our calculations showed a gap of 1.104 eV. This accor-
dance trend is shared with AGNR as well. For instance, LDA
calculations show 5, 6, and 7-AGNR with, respectively, z0.5,
1.1, 1.65 eV.13,21 Our method evaluates the gap from the same
geometries, respectively, 0.55, 1.75, 1.78 eV. This visible agree-
ment shows the suitability of the presented methodology.

The effects of varying nanoribbon width for a given l can be
seen in Fig. 3(b). In wider nanoribbons, quantum connement
effects become weaker, reducing energy bandgaps accordingly.
A similar dependence between gap and width size has been
observed in AGNRs as well.13 However, it is also clear that
changes in width do not produce bandgap reductions as
smooth as those observed by increasing l. This is so because, by
preserving the edge structure, changes in width do not translate
into a transformation from armchair-like to zigzag-like nano-
ribbons, which possess completely different bandgap proper-
ties. As such, controlling nanoribbon width does not constitute
a tuning procedure as effective as controlling l.

Modications in energy bandgap are associated with struc-
tural changes in graphene nanoribbons. In this sense, it is
worth looking into how the edge termination described here
affects the nanoribbon's morphology. Fig. 4 presents on the le
heatmaps corresponding to bond length distortions for four 4-
CGNRs of different l (l ¼ 7.38, 9.84, 12.3 and 14.76 Å). Hot and
cold colors indicate, respectively, stretching and contraction of
bond lengths with respect to the 1.41 Å carbon–carbon bond
length found in graphene. The magnitude of bond distortions
reaches at most 0.04 Å, or roughly 3% of the original bond

length, in agreement with similar works.28,44 On the right of
Fig. 4, histograms present the distribution of bond lengths in
each CGNR.

Results for the original 4-CGNR (Fig. 4(a)) are characterized
by four well dened peaks in the histogram, which are marked
by vertical dashed lines for the sake of comparison with the
other cases. As it can be seen, this histogram indicates that
almost 40% of the bonds in this nanoribbon do not suffer
signicant distortion. These bonds correspond mostly to the
aromatic rings that lie at the center of the ower-like pattern
seen in the heatmap on the le. These ower-like structures
result from the stretching of the bonds between the aromatic
rings and the exterior carbons. On the other hand, the edge
bonds are seen to contract strongly, corresponding to the le-
most peak observed in the histogram.

As l increases, variation ensues. The well dened peak
structure is seen to spread, with bond lengths being distributed
more uniformly as l grows larger (Fig. 4(b)–(d)). Although the
behavior of edge bonds remains the same for all cases, the
ower-like structures are no longer seen as the number of
hexagonal rings diminishes. In fact, these structures are
observed only in middle of regions whose edges are armchair-
like. As such, we associate modications in l to changes in
the conjugation of CGNRs.

Finally, we perform a similar analysis considering increases
in nanoribbon width for a xed l. Fig. 5 conrms the afore-
mentioned relationship between conjugated bonds and the
presence of armchair-like edges, as the ower-like structures are

Fig. 5 Bond length distortion heatmap and their corresponding histograms for (a) 2-CGNR, (b) 4-CGNR, (c) 6-CGNR and (d) 8-CGNR. All CGNRs
shown here have l ¼ 7.38 Å. The histograms show that conjugation is preserved with width changes.
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seen in all cases but the rst, for which border effects are
dominant. In addition, the histograms indicate that width
increases may shi the position of the peaks, but do not
produce the morphological spreading observed in the cases of
varying l. These results demonstrate that the edge termination
process produces much more profound changes in the CGNR's
properties, beyond bandgap modulation.

IV. Conclusions

In conclusion, we have determined the electronic and
morphological structures of cove-type GNRs by means of a two-
dimensional extented SSH model. Comparing simulations with
experimental results, it was possible to determine the electron–
phonon coupling in this kind of nanoribbon to be 4.6 eV Å�1.
An edge termination procedure was investigated and it was
determined to constitute a smooth and nearly continuous gap
tuning scheme as long as nanoribbon width is kept sufficiently
small. Furthermore, it was demonstrated that this termination
procedure leads to increases in morphological spreading
accompanied by reduction in the conjugation of the nano-
ribbons. Finally, it was determined that even though width
modications do not result in morphological disorder, they are
not as effective a tool for gap tuning.

Throughout this work, no heterogeneous cases were held.
Thus, the real effects of the studied edge change are unknown to
us. However, considering the results obtained, we may expect
no substantial changes. The entire geometry will lose its
symmetry but, locally, every combination of armchair–zigzag–
armchair structures will remain itself as a cove-shaped edge.
The tuning procedure will remain available. As for the lattice
distortion prole, we would expect changes on the histogram
peaks.
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