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Resumo

Aplicações que empregam sistemas globais de navegação por satélite, do inglês Global
Navigation Satellite Systems (GNSS) para prover posicionamento acurado estão sujeitos a
degradação drástica não só por intereferências eletromagnéticas, como também componentes
de multipercurso causados por reflexões e refrações no ambiente. Aplicações de segurança
crítica como veículos autonômos e aviação civil, e aplicações de risco crítico como gestão de
pesca, pedágio automático, e agricultura de precisão dependem de posicionamento acurado
sob cenários complicados. Tipicamente quanto mais agrupamento ocorre entre o compo-
nente de linha de visada, do inglês line-of-sight (LOS) e componentes de multipercurso ou
não-linha de visada, do inglês non-line-of-sight (NLOS), menos acurada é a estimação da
posição. Abordagens tensorials estado da arte para receptores GNSS baseado em arranjos
de antenas utilizam processamento tensorial de sinais para separar o componente LOS dos
componentes NLOS, assim mitigando os efeitos destes, utilizando decomposição em val-
ores singulares multilinear, do inglês multilinear singular value decomposition (MLSVD)
para gerar um autofiltro de order superior, do inglês higher-order eigenfilter (HOE) com
pré-processamento por média frente-costas, do inglês forward-backward averaging (FBA),
e suavização espacial expandida, do inglês expanded spatial smoothing (ESPS), estimação
de direção de chegada, do inglês direction of arrival (DoA) e fatorização Khatri-Rao, do
inglês Khatri-Rao factorization (KRF), estimação de Procrustes e fatorização Khatri-Rao
(ProKRaft), e o sistema semi-algébrico de decomposição poliádica canônica por diagonal-
ização matricial simultânea, do inglês semi-algebraic framework for approximate canonical
polyadic decomposition via simultaneous matrix diagonalization (SECSI), respectivamente.
Propomos duas abordagens de processamento para estimação de atraso, do inglês time-delay
estimation (TDE). A primeira é a abordagem em lotes utilizando dados de vários períodos
do sinal. Usando estimação em lotes propomos duas abordagens algébricas para TDE, em
que diagonalizaçao é efetivada por decomposição generalizada em autovalores, do inglês
generalized eigenvalue decomposition (GEVD), das primeiras duas fatias frontais do ten-
sor núcleo do tensor de dados, estimado por MLSVD. Esta primeira abordagem, como os
métodos citados, na quais simulações foram feitas com 1 componente LOS e 1 componente
NLOS, assim os dados observados tem posto cheio em todos seus modos, não faz suposições
sobre o posto do tensor de dados. A segunda abordagem supõe cenários nos quais mais de
1 componente NLOS está presente e são agregados (clustered em inglês), assim vários ve-
tores de uma das matrizes-fator que formam o tensor de dados são altamente correlaciona-

iii



dos, resultando num tensor de dados que é de posto deficiente em pelo menos um modo.
Os esquemas algébricos baseados em tensores propostos utilizam a decomposição poliádica
canônica por decomposição generalizada em autovalores, do inglês canonical polyadic de-
composition via generalized eigenvalue decomposition (CPD-GEVD), e a decomposição em
termos de posto-(Lr, Lr, 1) por decomposição generalizada em autovalores, do inglês de-
composition in multilinear rank-(Lr, Lr, 1) terms via generalized eigenvalue decomposition
((Lr, Lr, 1)-GEVD) para melhorar a TDE do componente LOS sob cenários desafiadores. A
segunda é a abordagem de processamento adaptativo de amostras individuais utilizando ras-
treamento de subespaço a cada período de código, epoch em inglês. Usando processamento
adaptativo propomos duas abordagem, uma aplicando FBA expandido (EFBA) e ESPS ao
dados e estimando um HOE, e outra usando usa estimação paramétrica para estimar a DoA.
Estendendo o modelo para um arranjo retangular uniforme, do inglês uniform rectangular
array (URA), o fluxo de dados são tensores de terceira ordem. Para este modelo propomos
três abordagens para TDE baseado em HOE, CPD-GEVD, e ESPRIT tensorial, respectiva-
mente e empregando uma estratégia de truncamento sequencial para reduzir a quantidade de
operações necessárias para cada modo do tensor.



Abstract

Applications employing Global Navigation Satellite Systems (GNSS) to provide accu-
rate positioning are subject to drastic degradation not only due to electromagnetic inter-
ference, but also due to multipath components caused by reflections and refractions in the
environment. Safety-critical applications such as autonomous vehicles and civil aviation,
and liability-critical applications such as fisheries management, automatic tolling, and preci-
sion agriculture depend on accurate positioning under such demanding scenarios. Typically,
the more clustering occurs between the line-of-sight (LOS) component and multipath or
non-line-of-sight (NLOS) components, the more inaccurate is the estimation of the position-
ing. State-of-the-art tensor based approaches for antenna array-based GNSS receivers apply
tensor-based signal processing to separate the LOS components from NLOS components,
thus mitigating the effects of the latter, using the multilinear singular value decomposition
(MLSVD) to generate a higher-order eigenfilter (HOE) with forward-backward averaging
(FBA) and expanded spatial smoothing (ESPS) preprocessing, direction of arrival (DoA) es-
timation and Khatri-Rao factorization (KRF), Procrustes estimation and Khatri-Rao factor-
ization (ProKRaft), and the semi-algebraic framework for approximate canonical polyadic
decomposition via simultaneous matrix diagonalization (SECSI), respectively. These ap-
proaches use filtering, parameter estimation and filtering, iterative algebraic factor matrix
estimation and filtering, and algebraic factor matrix estimation, respectively. We propose
two processing approaches to time-delay estimation (TDE). The first is batch processing
taking data from several signal periods. Using batch processing we propose two algebraic
approaches to TDE, in which diagonalization is achieved using the generalized eigenvalue
decomposition (GEVD) of the first two frontal slices of the measurement tensor’s core tensor,
estimated via MLSVD. The former approach, like the cited methods, in which simulations
were performed with 1 LOS component and 1 NLOS component, and thus the measured data
has full-rank tensor in all its modes, makes no assumption about the rank of the measure-
ment tensor. The latter approach assumes scenarios in which more than 1 NLOS component
is present and these are clustered, thus several vectors of one of the factor matrices which
forms the tensor data are highly correlated, resulting in a rank-deficient measurement tensor
in at least one mode. These proposed algebraic tensor-based schemes utilize the canonical
polyadic decomposition via generalized eigenvalue decomposition (CPD-GEVD) and the de-
composition in multilinear rank-(Lr, Lr, 1) terms via generalized eigenvalue decomposition
((Lr, Lr, 1)-GEVD) in order to improve the TDE of the LOS component in challenging sce-
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narios. The second approach is adaptive processing of individual samples utilizing subspace
tracking to iteratively estimate the subspace at each epoch. Using adaptive processing we
propose two approaches, one applying FBA and ESPS to the data and estimating a higher-
order eigenfilter, and the other using a parametric approach using DoA estimation. By ex-
tending the data model for an uniform rectangular array, we have a data stream of third-order
tensors. For this model we propose three approaches to TDE based on HOE, CPD-GEVD,
and standard tensor ESPRIT, respectively and employing a sequential truncation strategy to
reduce the amount of operations necessary for each tensor mode.
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Chapter 1

Introduction

In this chapter we present a brief overview of global navigation satellite system (GNSS)
and some of the concepts involved in time-delay estimation in Section 1.1. The notation used
through and tensor algebra is presented in Section 1.2.

1.1 Global Navigation Satellite Systems

GNSS receivers combine ephemeris data and timing from several satellites to accurately
estimate their positions. Accurate TDE is essential for safety-critical applications such as
autonomous vehicles [1, 2] and civil aviation [3], and liability-critical applications such as
such as fisheries management [4, 5], automatic tolling [6], and precision agriculture [7].
Since errors are proportional to the speed of light, small degradations can be decisive to
applications which risk loss of life or property.

Code division multiple access (CDMA) exploiting direct sequence spread spectrum
(DSSS) [8] allows long distance data transmission and separation of each satellite using its
own pseudo-random sequence (PRS). In this sense, since the same frequency band is shared
by the satellites, the time-delay estimation is based on the autocorrelation function of each
known PRS [9].

Accordingly, the line-of-sight (LOS) signal from each satellite is separated from the sig-
nal from the other satellites using DSSS. However, the NLOS components caused by reflec-
tions and refractions in the environment are pernicious, since they have the same PRS of
the LOS signal [10–12]. Single-antenna state-of-the-art GNSS receivers suffer significant
degradation in time-delay estimation under multipath propagation [13,14]. One of the moti-
vations of this work is filtering and mitigating the effect of NLOS components using tensor
techniques before applying time-delay estimation.

The use of tensor techniques for signal processing is desirable because tensors provide a
more “natural” fit to the received data, e.g. signals from a multidimensional array, a tensor
has greater identifiability because its (tensor) rank can be greater than its multilinear ranks,
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factor matrices can be separated from one another without imposing additional restrictions,
and “tensor gain” resulting from exploiting its multidimensional structure.

In scenarios with non-clustered NLOS components, traditional antenna array-based sig-
nal processing techniques can significantly mitigate the degradation. Particularly robust solu-
tions can be accomplished by using a tensor-based receiver that combines data from multiple
sensors and sampling periods. By applying multilinear algebra to filter the desired LOS
components of the multiple satellites, we can facilitate TDE [15, 16].

There are several state-of-the-art tensor based approaches for antenna array-based GNSS
receivers considering different scenarios and requirements. One such approach is based on
the HOE [16], which creates a filter based on the rank-1 multilinear singular value decom-
position (MLSVD) [17, 18]. This approach has low computational complexity and does
not require knowledge of the model order but has low precision subject to a bell-shaped
performance curve depending on LOS/NLOS correlation. HOE-based filtering can also be
augmented by applying pre-processing techniques such as FBA [19] and ESPS [20, 21].

Another approach is based on parameter estimation using estimation of parameters via
rotational invariance technique (ESPRIT) [22] to approximate the array response factor ma-
trix, followed by least-squares Khatri-Rao factorization (LSKRF) [23] to estimate the code
factor matrix from which the time-delay can be estimated [24]. This approach has consis-
tent performance but requires previous knowledge of the model order [25–27] and can suffer
degradation under realistic conditions such as a poorly-calibrated receiver array [28].

Another approach estimates the tensor factor matrices by repeatedly applying a known
solution to the orthogonal Procrustes problem (OPP) [29], followed by LSKRF (or another
Khatri-Rao factorization approach such as Average Vector and Hadamard Ratio Rank One
Approximation [30]) to iteratively refine [31] estimates of the array response and complex
amplitude factor matrices [32]. This approach has slightly better performance but one of
its assumptions is invalidated if more than one NLOS component is present, degrading its
performance.

Other state-of-the-art approaches are based on algebraic estimation of the factor matrices,
such as CPD-GEVD [33] and the SECSI [34]. These approaches directly estimate the code
factor matrix to perform time-delay estimation [28, 35, 36] and thus are robust against array
imperfections but require prior knowledge of the model order, can have high computational
cost, and are vulnerable to rank deficiencies in the factor matrices when NLOS component
are clustered [37].

Another algebraic approach assumes a particular type of block term decomposition
(BTD) [38] known as (Lr, Lr, 1)-term decomposition [39], in which multipath components
cluster together [40] and share similar characteristics, resulting in a rank deficiency in one of
its factor matrices. This is resolved with a more balanced variant of the CPD-GEVD which
also determines how these components are clustered [37].
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1.1.1 Ranging

Ranging is the act of measuring distance between two points. It can be performed directly
by measuring the length between two points as well as indirectly by measuring another pa-
rameter from which the range can be derived. A well-known example of this is measuring
the difference in time between lightning and thunder to estimate the distance to the observer.

When lightning strikes, we can see the light emitted from it and the time it takes to reach
the observer is

tlight =
d

c
+ ε,

where d is the distance to the observer, c is the speed of light, and ε is a measurement error.
After a delay, we hear the thunder, and the time it takes to reach the observer is

tsound =
d

vsound
+ ε

where vsound is the speed of sound and ε is the measurement error, assumed here to be the
same as before.

By taking the difference between tlight and tsound we can estimate the time-delay between
the observer and the lightning strike as

∆t = tsound − tlight

=
d

vsound
+ ε−

(
d

c
+ ε

)
=

d

vsound
− d

c
.

Since d� c, ∆t ≈ tsound and we can range the distance to target

d̂ = vsound ·∆t.

This introduces the concept of time-delay estimation and ranging.

1.1.2 Positioning

Positioning consists of determining (relative) position. An excellent example of two-
dimensional positioning is presented in [41] and is partially recreated here to introduce the
concept of positioning using time-delay estimation.

This example begins by introducing ranging. A seaman is attempting to determine his
vessel’s position using a foghorn whistle that sounds every minute. It is assumed both
the vessel and the foghorn clocks are synchronized. The seaman measures the time-delay

3



elapsed from the minute until he hears the whistle. With only one foghorn, the seaman can
only estimate his range. This is shown in Figure 1.1.

Foghorn 1

R1

Figure 1.1: Ranging with one source.

So far the vessel’s position can only be narrowed down to the circle of R1 radius with
the foghorn in its center. By simultaneously measuring the time-delay of two foghorns, it is
possible to estimate two possible positions A and B at the intersections of the circle radii R1

and R2 of the two foghorns. This is shown in Figure 1.2.

Foghorn 1

R1 Foghorn 2

R2

A

B

Figure 1.2: Ranging with two sources.

To resolve this ambiguity a third time-delay measurement would be required. This is
shown in Figure 1.3.
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Foghorn 1

R1 Foghorn 2

R2

Foghorn 3

R3

A

Figure 1.3: Ranging with three sources.

With three time-delay measurements, three circle radii can be estimated, and two-
dimensional positioning can be performed without ambiguity. Positioning as performed by a
GNSS functions in a similar manner. Satellites are used instead of foghorns and positioning
is performed in three dimensions by intersecting spheres rather than circles.

It possible for a GNSS to perform three-dimensional positioning (on Earth) using only
three satellites despite there being an intersection ambiguity as this is easily resolvable, un-
like in Figure 1.2, since one candidate position will be located on Earth while the other one
will be located in outer space. This is, however, not done in practice because GNSS client
receivers employ low-cost crystal oscillator clocks which deviate from satellite clocks. Thus
measurements from four or more satellites are used in to accurately determine timing and
position. Because of this, real-world GNSS have satellite constellations with orbits designed
to keep at least 6 satellites in view of the user at all times [42].

1.1.3 GNSS signals

GNSS signals are designed to deliver a data payload, which includes ephemeris data
containing information on the position and velocity of each satellite, and separation and
identifiction of each satellite’s signal using CDMA [43] (and frequency division multiple
access in the case of global´naya navigatsionnaya sputnikova sistema (GLONASS) [44]), a
DSSS technique.

In Figure 1.4, the data message D is spread using a spreading code C by applying an
exclusive or (XOR) operation, denoted by ⊕, resulting in C ⊕ D, which is then modulated
by a binary phase-shift keying (BPSK) carrier.
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C

D

C ⊕D

Carrier

Final
Signal

Figure 1.4: GNSS signal example.

CDMA not only allows the satellites to be individually identified, it also spreads power
spectrally, as can be seen in the PSD in Figure 1.5 where the message m(t) is spread using
code c(t). Spreading also allows correlation-based time-delay estimation to be performed.

Figure 1.5: PSD of message m(t) and spreading code c(t).

The spreading code is also referred to as PRS, or pseudo-random noise (PRN), as it is
intentionally chosen to be highly correlated with itself when it is synchronized (not shifted),
thus its auto-correlation peaks when the same PRS is temporally aligned with itself, and
lowly correlated with other sequences, thus its cross-correlation is small. An example of this
are Gold codes [45] used in second generation global positioning system (GPS) and Weil
sequences [46] used in third generation GPS.

1.1.4 Time-delay estimation via correlator bank

A method for time-delay estimation uses a correlator bank to calculate an autocorrelation
function [47] which is then interpolated to estimate the time-delay.

Given a PRS vector c[τ ] ∈ RN of known sequence and delay τ , we can make a correlator
bank of matched signal correlators with Q taps by shifting the copies of the known PRS. For
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a signal sampled with N samples, the correlator bank is

Q =
[
c[τ1] · · · c[τQ]

]
∈ RN×Q. (1.1)

For a PRS with chip time Tc, a typical value for τ1 and τQ is ∓Tc as that contains the
range in which the initial signal acquisition time-delay estimate varies [9].

The auto-correlation is calculated by left-multiplying the transpose of the correlator bank
Q with the code c[τ ],

q =
∣∣QT · c[τ ]

∣∣ ∈ RQ. (1.2)

A cubic spline interpolation [48] is then applied to eq. (1.2), generating a interpolated
auto-correlation function f(τ). The time-delay is then estimated as

τ̂ = arg
τ

max f(τ). (1.3)

In Figure 1.6, the auto-correlation q, interpolated auto-correlation function f(τ), and
estimated time-delay τ̂ is shown for a correlator bank with Q = 11 taps and PRS c[τ ] with
delay τ = −0.5299 · Tc and estimated time-delay τ̂ = −0.5305 · Tc, resulting in a ranging
error of 0.1903 m.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

Tc

q
f(τ)
τ̂

Figure 1.6: Autocorrelation q (normalized), interpolated autocorrelation function f(τ), and
estimated τ̂ = −0.5305 · Tc.

It is common for reflections and refractions to occurs in urban environments [49, 50],
adding non-line-of-sight components to a received GNSS signal. This is shown in Figure 1.7
where a LOS signal with time-delay τLOS and a NLOS signal with time-delay τNLOS, resulting
from reflection off a building, arrive at the same receiver.
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Figure 1.7: NLOS component resulting from reflection on a building.

In such cases, the NLOS signal is delayed and attenuated relative to the LOS signal. This
can be seen in Figure 1.8, where the NLOS signal is delayed by τNLOS − τLOS = 0.5 · Tc
and attenuated by 5 dB relative to the LOS signal. The correlation of both signals are shown
separately.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

Tc

qLOS
qNLOS

Figure 1.8: Autocorrelations qLOS and qNLOS (normalized).

Since a receiver will receive the sum of both signals, the result is the distorted auto-
correlation function shown in Figure 1.9, with estimated time-delay τ̂ = −0.4318 · Tc, re-
sulting in a ranging error of 33.3014 m.
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−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

Tc

q
f(τ)
τ̂

Figure 1.9: Distorted autocorrelation q (normalized), interpolated autocorrelation function
f(τ), and estimated τ̂ = −0.4318 · Tc.

Applying the correlator bank directly will also correlate the noise, coloring it [15,24,47].
This can be resolved by compressing the correlator bank. Compression is performed by ap-
plying a “thin” singular value decomposition (SVD) to the correlator bank, which preserves
its information while making it unitary,

Q = Q̃ ·Σ ·VT, (1.4)

and the correlator bank Q ∈ RN×Q is decomposed into a “compressed” correlator bank (left
singular values matrix) Q̃ ∈ RN×Q (using the full SVD would create an N × N matrix),
singular values matrix Σ ∈ RQ×Q, and right singular vectors matrix V ∈ RQ×Q.

Q̃ is defined as the compressed correlator bank and ΣVT is defined as the remainder of
the correlator bank. Because Q̃ is unitary, performing correlation with it will not color the
noise.

Observed data can then be correlated using Q̃, followed by signal processing. After
signal processing has been applied the correlation is completed by multiplying the results
with the remainder of the correlator bank, ΣVT.

1.2 Notation and Tensor Algebra

Scalars are indicated by italics, with uppercase denoting constants, e.g. L, while variables
(and iterators) are denoted by lowercase, e.g. `. Vectors are denoted by lowercase bold
letters, e.g. a, while matrices are denoted by uppercase bold letters, e.g. A.

The domain and size (of each mode) of a given vector or matrix is denoted by a ∈ CM

and A ∈ RM×N , respectively. The m,n-th element of A is denoted by A(m,n), while
individual elements are indicated lowercase italics and subscript indexes such as am,n. The
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m-th row and n-th column are denoted by A(m, ·) and A(·, n), respectively. The compo-
sition of a matrix in in terms of its vectors is denoted by column concatenation like such
A =

[
a1, . . . , aN

]
∈ CM×N , with each vector an ∈ CM , n = 1, . . . , N .

The M ×M identity matrix is denoted by IM . The M ×N rectangular matrix with ones
in its diagonal is denoted by IM×N . The all-zeros and all-ones vectors of size N are denoted
by 0N and 1N , respectively. The canonical basis vector of size P with 1 in its first position
is indicated by eP while the canonical basis vector of size P with 1 in its p-th position is
indicated by ep.

The inverse, pseudoinverse, transpose, inverse transpose, conjugation, and conjugate
transpose (Hermitian) are denoted by −1, †, T, −T, ∗, and H, respectively. The operator
dediag {v} creates a (square) diagonal matrix from the vector v and the operator diag {V}
extracts the diagonal elements from the matrix V, forming a vector. The operator Dm {Γ}
extracts the k-th row of Γ and creates a diagonal matrix with the extracted row such that

Γ =


γ1,1 · · · γ1,L

...
...

...

γK,1 · · · γK,L

 ∈ CK×L, (1.5)

Dk {Γ} =


γk,1 0 · · · 0

0 γk,2 · · · 0
...

...
. . .

...

0 0 · · · γk,L

 ∈ CL×L. (1.6)

The outer product, Hadamard product, Kronecker product, and Khatri-Rao (or column-
wise Kronecker) product are indicated by ◦, �, ⊗, and �, respectively.

Tensors are represented by bold calligraphic letters, e.g. A ∈ CM1×M2×...×MN is theN -th
order tensor of size Mn in each n-th mode, n = 1, . . . , N . Tensor concatenation along the
n-th mode is denoted by tn.

The third-order tensor T composed by factor matrices A, B, and C of sizes I×R, J×R,
and K × R, respectively is denoted by [51] T = JA,B,CKR ∈ CI×J×K . If R ≤ I, J,K,
the tensor T can be decomposed into a sum of R rank-1 outer products of the columns of A,
B, and C,

T = JA,B,CKR =
R∑
r=1

ar ◦ br ◦ cr, (1.7)

when R is the minimum amount of rank-1 outer products whose summation compose T .
This is known as the canonical polyadic decomposition.

Tensor unfolding, or matricization, is denoted by [·](n), with n being the unfolding mode.
Unfolding an N -th order tensor is performed by extracting the tensor fiber resultant from
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fixing the n-th index while iterating through the indexes of the the remaining N − 1 modes
in reverse order, such that

T = JA,B,CKR ∈ CI×J×K ,

[T ](1) =
[
T (·, 1, 1) T (·, 1, 2) · · · T (·, 1, K) T (·, 2, 1) T (·, J,K)

]
∈ CI×JK ,

[T ](2) =
[
T (1, ·, 1) T (1, ·, 2) · · · T (1, ·, K) T (2, ·, 1) T (I, ·, K)

]
∈ CJ×KI ,

[T ](3) =
[
T (1, 1, ·) T (1, 2, ·) · · · T (1, J, ·) T (2, 1, ·) T (I, J, ·)

]
∈ CK×IJ .

The n-mode product between a tensor T ∈ CM1×M2×···×MN and a matrix M ∈ CN×Mn

is equivalent to unfolding T in its n-th mode and left-multiplying by M, such that
[T ×n M](n) = M · [T ](n), then refolding back into a tensor of size M1 × M2 × · · · ×
Mn−1 ×N ×Mn+1 × · · · ×MN .

The composition of anN -order tensor T can be represented in terms of n-mode products
of an N -th order identity tensor IN×R ∈ RR×···×R core and factor matrices An such that

T = JA1,A2, . . . ,AN−1,ANKR ∈ CM1×M2×···×MN−1×MN ,

= IN,R ×1 A1 ×2 A2 · · · ×N−1 AN−1 ×N AN .

Unfoldings can be also represented in terms of Kronecker products of the factor matrices
of a tensor, continuing from above,

[T ](n) = An [IN,R](n) (A1⊗ · · ·⊗An−1⊗An+1⊗ · · ·⊗AN)T ,

= An [IN,R](n)

 N
⊗
m=1
m 6=n

Am

T

∈ C
Mn×

∏N
m=1
m6=n

Mm

.

If the tensor core is an identity tensor, the unfolding can be represented in terms of
Khatri-Rao products of the factor matrices,

[T ](n) = An (A1 � · · · �An−1 �An+1 � · · · �AN)T ,

= An

(
N�
m=1
m6=n

Am

)T

.

The n-mode unfolding is a particular case of the generalized unfolding of a tensor in
which indexes {1, . . . , N} are partitioned into two ordered subsets of indexes [52]. The
unfolding [X ](S1;S2) has the general formula

[X ](S1;S2) =

(
�

n∈S1
An

)(
�

m∈S2
Am

)T

∈ C
∏

n∈S1
Mn×

∏
m∈S2

Mm . (1.8)
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1.3 Work Division

This work is divided into 5 chapters, including this introduction which presents GNSS
and a brief theoretical presentation of related concepts, the notation used throughout, and
tensor algebra. Of import is time-delay estimation performed using a compressed correlator
bank as this is used frequently in this work.

Chapter 2 presents batch tensor-based time-delay estimation in an environment which
signals are well separated (non-clustered). Data from several observation periods are col-
lected and processed using parametric and algebraic tensor processing techniques with a
comparison of each technique’s advantages over the state-of-the-art and each other.

Chapter 3 presents batch tensor-based time-delay estimation in an environment in which
signals are clustered. This is due to multipath signal components which are appear in clus-
ters [12, 40] and have similar characteristics, resulting in an observation tensor that is rank-
deficient in one of its modes. Data from several observation periods are collected processed
using parametric and algebraic tensor processing techniques with a comparison of each tech-
nique’s advantages over the state-of-the-art and each other.

Chapter 4 presents adaptive tensor-based time-delay estimation in an environment which
signals are well separated. Processing is performed over each observation period to itera-
tively improve subspace estimates used in tensor processing techniques.

Chapter 5 extends adaptive processing to a higher-order model and employs sequential
truncation strategies to minimize computation cost when estimating the subspaces from each
dimension.

12



Chapter 2

Tensor-Based Time-Delay Estimation for
Batch Processing in Lowly Correlated
Scenarios

In this chapter, we introduce the tensor data model for sampled GNSS signals introduced
in [15] with some modification, review the state-of-the-art tensor-based schemes for batch
time-delay estimation, and present the proposed CPD-GEVD tensor-based schemes for time-
delay estimation. Finally, numerical simulations are performed comparing the state-of-the-
art performance against the proposed schemes.

2.1 Data Model

The data model is similar to the one found in [16] with the difference that the modes are
ordered in such a way as to correspond to the “classical” model [53]

X = A · Γ · ST + N ∈ CM×N , (2.1)

where A ∈ CM×d is the array response matrix and S ∈ CN×d is the signal matrix for d
signals (model order [54, 55]). Furthermor, a diagonal matrix Γ = dediag {γ} ∈ Cd×d is
the (diagonal) complex amplitude (power) matrix, which scales and adds a complex phase to
each column of A and S, while N ∈ CM×N is additive noise.
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2.1.1 Pre-Correlation Data Model

At each k-th period of the PRS, N samples of GNSS data from L signal components (1
LOS component and L− 1 NLOS components) are collected in

X[k] = A diag {γ[k]}CT + N[k] ∈ CM×N , (2.2)

in which the matrix A ∈ CM×L collects the array response from the L signals impinging on
M sensors in an array, such that

A =
[
a1 · · · aL

]
=
[
a(φ1) · · · a(φL)

]
, (2.3)

and a` = a(φ`) ∈ CM is the array response vector for a given direction of arrival (DoA)
φ`, ` = 1, . . . , L. The vector

γ[k] =


γ1[k]
...

γL[k]

 ∈ CL (2.4)

collects the complex amplitudes, and

C =
[
c1 · · · cL

]
=
[
c[τ1] · · · c[τL]

]
∈ RN×L (2.5)

collects all L sampled PRS c[τ`] ∈ RN , such as GPS coarse acquisition (C/A) code, each
with delay τ`, ` = {1, . . . , L}. N[k] is white Gaussian noise.

Collecting the complex amplitudes from K periods in a matrix

Γ =
[
γ[1] · · · γ[K]

]T
=
[
γ1 · · · γL

]
∈ CK×L (2.6)

with

γ` =


γ`[1]
...

γ`[K]

 ∈ CK , ` = 1, . . . , L. (2.7)

We can rewrite eq. (2.2) as

X[k] = A · Dk {Γ} ·CT + N[k]. (2.8)
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Collecting all K observations into a matrix X, by vertically stacking these, we have

X =


X[1]
...

X[K]

 =


A · D1 {Γ} ·CT

...

A · DK {Γ} ·CT

+


N[1]
...

N[K]

 =


AD1 {Γ}

...

ADK {Γ}

CT + N. (2.9)

Since each k-th matrix product ADk {Γ} ∈ CM×L scales each column of A, by vertically
stacking all K products, we have the Khatri-Rao product Γ �A ∈ CKM×L and eq. (2.9) can
be more compactly written as

X = (Γ �A) CT + N ∈ CMK×N , (2.10)

which can be interpreted as the (2, 1; 3)-mode unfolding of a tensor X ∈ CM×K×N ,

[X ](2,1;3) = (Γ �A) CT + N = [X 0](2,1;3) + [N ](2,1;3) (2.11)

The noiseless tensorX 0 has the following canonical polyadic decomposition (CPD) [56]:

X 0 =
L∑
`=1

A(·, `) ◦ Γ(·, `) ◦C(·, `),=
L∑
`=1

a` ◦ γ` ◦ c`. (2.12)

Equation (2.12) can be rewritten in terms of n-mode products in the following fash-
ion [57–59]:

X 0 = I3,L ×1 A×2 Γ×3 C ∈ CM×K×N . (2.13)

2.1.2 Post-Correlation Data Model

The correlator bank Q =
[
c[τ1], . . . , c[τQ]

]
∈ RN×Q with Q taps can be applied directly

to eq. (2.2), resulting in the correlating the sampled PRS with the known PRS taps in the
correlator bank

Y[k] = X[k] ·Q = A · Dk {Γ} ·CT ·Q + N[k] ·Q ∈ CM×Q, (2.14)

but this will color the noise [32]. To overcome this problem, the correlator bank can be
compressed, preserving its information while becoming unitary, using the “thin” SVD [47]

Q = Q̃ ·Σ ·VT ∈ RN×Q, (2.15)

where Q̃ ∈ RN×Q contains the left singular vectors, Σ ∈ RQ×Q is a diagonal matrix contain-
ing the singular values, and VT ∈ R contains the right singular vectors of Q, respectively. Q̃

is defined as the compressed correlator bank and ΣVT ∈ RQ×Q is defined as the remainder
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of the correlator bank.

To apply the compressed correlator bank to eq. (2.13), we apply its transpose toX using
the n-mode product in the third mode,

Y = X ×3 Q̃T = (X 0 +N )×3 Q̃T, (2.16)

= (I3,L ×1 A×2 Γ×3 C +N )×3 Q̃T, (2.17)

= I3,L ×1 A×2 Γ×3 Q̃TC + Ñ , (2.18)

= I3,L ×1 A×2 Γ×3 C̃ + Ñ ∈ CM×K×Q, (2.19)

and the noiseless correlated signal tensor has canonical polyadic decomposition

Y0 =
L∑
`=1

A(:, `) ◦ Γ(:, `) ◦ C̃(:, `), (2.20)

=
L∑
`=1

a` ◦ γ` ◦ c̃`. (2.21)

An example of a post-correlation data tensor of size M = 8, K = 30, and Q = 11 is
visualized as voxels [60] in Figure 2.1. Color intensity is based on absolute (normalized)
magnitude of each element of the data.
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Figure 2.1: Voxel visualization of 3rd-order tensor Y ∈ C8×30×11

2.2 State-of-the-Art Tensor-Based Time-Delay Estimation

This sections reviews the state-of-the-art tensor-based schemes for time-delay estimation,
namely the HOE [15] with FBA [19] and ESPS [20,61], DoA/KRF [24], ProKRaft [32], and
SECSI [35].

2.2.1 Higher-order eigenfilter (HOE)

The higher-order eigenfilter utilizes the rank-1 MLSVD [17] to calculate the primary
singular vectors of Y

Y ≈ s · u1 ◦ u2 ◦ u3 ∈ CM×K×Q, (2.22)

(2.23)

where u1 ∈ CM , u2 ∈ CK , and u3 ∈ CQ are the rank-1 (left) singular vectors of the SVD in
each mode, and s ∈ C is a scalar.

The conjugate transpose first- and second-mode singular vectors are used to filter the
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LOS signal from the data

ˆ̃cLOS =
[
Y ×1 uH

1 ×2 uH
2

]
(3)
∈ CQ. (2.24)

Since c̃LOS = Q̃TcLOS, the correlation is completed by left-multiplying the remainder of
the correlator bank from eq. (2.15) with the estimated LOS vector and taking the absolute
value, we have the auto-correlation vector

q̂ =
∣∣∣(ΣVT)T · ˆ̃cLOS

∣∣∣ =
∣∣∣VΣ · ˆ̃cLOS

∣∣∣ ∈ RQ. (2.25)

A cubic spline interpolation (CSI) is applied to q̂ to estimate the time delay [16].

The HOE can also be combined with FBA [19] and ESPS [20] preprocessing to increase
accuracy. Given the first-mode unfolding of Y

Y1 = [Y ](1) = A
(
Γ � C̃

)T
+
[
Ñ
]

(1)
∈ CM×KQ, (2.26)

which is left-multiplied by the array response matrix, and exchange matrices ΠM ∈ RM×M

and ΠKQ ∈ RKQ×KQ,

ΠM =



0 0 · · · 0 1

0 0 · · · 1 0
...

...
...
...

...

0 1 · · · 0 0

1 0 · · · 0 0


∈ RM×M , (2.27)

ΠKQ =



0 0 · · · 0 1

0 0 · · · 1 0
...

...
...
...

...

0 1 · · · 0 0

1 0 · · · 0 0


∈ RKQ×KQ, (2.28)

with ΠM ·ΠM = IM and ΠKQ ·ΠKQ = IKQ, the forward-backward averaged first-mode
unfolding of Y is

Y1,FBA =
[
Y1 ΠM ·Y∗1 ·ΠKQ

]
∈ CM×2KQ, (2.29)

the concatenation of Y1 and ΠM ·Y∗1 ·ΠKQ, which is Y1 conjugated and flipped along is
horizontal and vertical axes.

If only FBA were applied, eq. (2.29) would be folded back into a tensor YFBA ∈
CM×2K×Q. To apply ESPS using Ls subarrays and Ms = M − Ls + 1 elements in each
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subarray, we utilize selection matrices J`s , `s = 1, . . . , Ls,

J`s =
[
0Ms,`s−1 IMs 0Ms,Ls−`s

]
∈ RMs×M , (2.30)

to apply spatial smoothing (SPS) to eq. (2.29),

Y1,FBA+SPS =
[
J1 ·Y1,FBA J2 ·Y1,FBA · · · JLs ·Y1,FBA

]
∈ CMs×2LsKQ. (2.31)

If SPS were applied, eq. (2.31) would be folded back into a tensor YFBA+SPS ∈
CMs×2LsK×Q. ESPS takes advantage of the increased information by folding eq. (2.31) into
a fourth-order tensor YFBA+ESPS ∈ CMs×Ls×2K×Q. The rank-1 MLSVD is

YFBA+ESPS = su1 ◦ u2 ◦ u3 ◦ u4 ∈ CMs×Ls×2K×Q (2.32)

and the HOE with FBA and ESPS preprocessing is

ˆ̃c =
[
YFBA+ESPS ×1 uH

1 ×2 uH
2 ×3 uH

3

]
(4)
∈ CQ, (2.33)

and we proceed by estimating the cross correlation vector described in eq. (2.25) followed
by CSI to estimate the time delay.

The HOE+FBA+ESPS approach is illustrated as a block diagram in Figure 2.2.

Y FBA and ESPS
pre-processing

rank-one
MLSVD

×n×

cubic spline
interpolation

VΣ

τ̂LOS

Y1 YFBA+ESPS

uH
1

uH
2

uH
3

ˆ̃c

q̂

Figure 2.2: Block diagram of the state-of-the-art higher-order eigenfilter with FBA and ESPS
preprocessing TDE approach

2.2.2 Direction of Arrival and Khatri-Rao factorization (DoA/KRF)

The DoA/KRF approach also utilizes the first-mode unfolding to expose the array re-
sponse matrix. A low-rank SVD of rank L is then used to estimate the signal subspace

Y1 = Us ·Σs ·VH
s , (2.34)

with Us ∈ CM×L, Σs ∈ CL×L, and Vs ∈ CKQ×L.
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Since Us spans the same column space as A there exists a nonsingular transform matrix
T ∈ CL×L such that A = Us·T. This can be used to exploit the shift invariance property [22]
to estimate the spatial frequencies then the directions of arrival. Considering the relation with
the rows of A with the greatest overlap [62]

Afirst = A(1 : (M − 1), ·) ∈ CM−1,L (2.35)

Alast = A(2 : M, ·) ∈ CM−1,L (2.36)

the following relation holds

Afirst diag

{[
ejµ1 · · · ejµL

]T
}

= AfirstΦ = Alast. (2.37)

Replacing A with Us ·T

Us,first ·T ·Φ = Us,last ·T (2.38)

and changing the order of the products

T ·Φ ·T−1 = U†s,first ·Us,last = Ψ ∈ CL×L (2.39)

which is an eigenvalue problem in which the estimated complex exponential spatial frequen-
cies ejµ ∈ CL are the eigenvalues of Ψ

µ = arg (diag {Φ}) ∈ RL. (2.40)

With the estimated spatial frequencies, assuming a perfectly calibrated uniform linear
array (ULA), the DoAs can be calculated

φ̂ = arcsin
(µ
π

)
=
[
φ̂1 · · · φ̂L

]T
∈ RL. (2.41)

With the estimated DoAs, the array response matrix is rebuilt

Â =
[
a(φ̂1) · · · a(φ̂L)

]
∈ CM×L (2.42)

and its pseudoinverse is used to estimate the Khatri-Rao product of Γ and C̃(
Â† ·Y1

)T
= Γ̂ � ˆ̃C, (2.43)

and apply LSKRF [23], shown in Algorithm 1, to estimate Γ and C̃.

With the estimates of A, Γ, and C̃, the LOS component can be selected by selecting
the column of Γ̂ with greatest 2-norm [24] or estimating all delays calculating the auto-
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Algorithm 1 Least-Squares Khatri-Rao factorization (LSKRF)
Input: K = Γ � C̃ =

[
k1, . . . ,kL

]
∈ CKQ×L, sizes K and Q.

Output: estimated factor matrices Γ ∈ CK×L and C̃ ∈ CQ×L

1: for ` = 1 to L do
2: Calculate the rank-1 SVD of

unvec
Q×K

{k`} = u` · s · vH
` = c̃` · γT

`

3: Estimate c̃` and γ`

ˆ̃c` =
√
s · u`

ˆ̃γ` =
√
s · v∗`

4: end for
5: Rebuild Γ̂ and ˆ̃C

Γ̂ =
[
γ̂1 · · · γ̂L

]
∈ CK×L

ˆ̃C =
[
ˆ̃c1 · · · ˆ̃cL

]
∈ CQ×L

correlation matrix

Q̂ =
∣∣∣VΣ · ˆ̃C

∣∣∣ ∈ CQ×L (2.44)

and applying CSI to all columns of ˆ̃Q to estimate all time-delays and selecting the promptest
[24], or using all estimated factor matrices to calculate the CPD component amplitudes [35,
36, 63] and selecting the component with greatest absolute amplitude.

The DoA/KRF approach to time-delay estimation is illustrated as a block diagram in
Figure 2.3.

Y DoA
estimation

×

Khatri-Rao
factorization

×VΣ

cubic spline
interpolation

LOS
selection τ̂LOS

Y1

Â†

ˆ̃C

Q̂

τ̂

Γ̂

Figure 2.3: Block diagram of the state-of-the-art DoA/KRF TDE approach
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2.2.3 Procrustes estimation and Khatri-Rao factorization (ProKRaft)

Using the third-mode unfolding of Y

Y3 = [Y ](3) = C̃ (Γ �A)T +
[
Ñ
]

(3)
∈ CQ×MK , (2.45)

to calculate the multimode covariance matrix Rmm [31, 64]

Rmm =
1

N
YT

3 ·Y∗3, (2.46)

= (A � Γ)
1

N
· C̃T · C̃∗ (A � Γ)H , (2.47)

= (A � Γ) RC̃ (A � Γ)H ∈ CMK×MK , (2.48)

where RC̃ ∈ RL×L is the code covariance matrix.

Considering RC̃ ≈ IL, the multimode covariance matrix is

Rmm ≈ (A � Γ) (A � Γ)H , (2.49)

which allows a Hermitian-symmetric unfolding

Rmm = R
1
2
mm

(
R

1
2
mm

)H
, (2.50)

defined by root-square factor matrix R
1
2
mm ∈ CMK×L.

R
1
2
mm can be estimated using the the left-hand singular vectors and singular values which

span the signal subspace of Rmm, and a unitary rotation matrix WH

Rmm = UR ·ΣR ·VH
R, (2.51)

R̂
1
2
mm = UR ·Σ

1
2
R ·W

H. (2.52)

Since R
1
2
mm = A � Γ, we have

R̂
1
2
mm = UR ·Σ

1
2
R ·W

H = A � Γ. (2.53)

Estimating the orthogonal matrix WH which maps URΣ
1
2
R to A �Γ is known as the OPP

and has a known solution [29]

(A � Γ)H
(
UR ·Σ

1
2
R

)
= UP ·ΣP ·VH

P , (2.54)

ŴH = UP ·VH
P . (2.55)

By initializing WH
0 = IL, then alternating between applying Khatri-Rao factorization
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(KRF) to eq. (2.53) to update Â and Γ̂, and updating WH using the known OPP solution, we
can iteratively update estimates of A and Γ.

With eq. (2.45) and the estimates of A and Γ, we can estimate C̃

ˆ̃C = Y3

((
Â � Γ̂

)T
)†
. (2.56)

LOS selection and time-delay estimation is performed as described previously in Sec-
tion 2.2.2.

The ProKRaft approach to time-delay estimation is illustrated as a block diagram in
Figure 2.4.

Y multimode
cov. matrix ProKRaft

×

×VΣ

cubic spline
interpolation

LOS
selection τ̂LOS

Y3 Rmm

((Â � Γ̂)T)†

ˆ̃C

Q̂

τ̂

Figure 2.4: Block diagram of the state-of-the-art ProKRaft TDE approach

2.2.4 Semi-algebraic framework for approximate canonical polyadic
decomposition via simultaneous matrix diagonalization (SECSI)

It is possible to calculate a low multilinear rank approximation (LMLRA) [65,66] of the
tensor Y via a truncated MLSVD of rank L

Y ≈ S ×1 U1 ×2 U2 ×3 U3, (2.57)

with core tensor S ∈ CL×L×L, and singular vector matrices U1 ∈ CM×L, U2 ∈ CK×L, and
U3 ∈ CQ×L. Equation (2.57) holds exactly in the absence of noise.

Since A, Γ, and C̃ span the same column space as U1, U2, and U3 respectively, there
exists nonsingular transformations matrices T1, T2, and T3 such that A = U1 · T1, Γ =

U2 ·T2, and C̃ = U3 ·T3.
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Placing the above relations into eq. (2.16) and disregarding noise,

Y0 = I3,L ×1 U1 ·T1 ×2 U2 ·T2 ×3 U3 ·T3, (2.58)

= (I3,L ×1 T1 ×2 T2 ×3 T3)×1 U1 ×2 U2 ×3 U3, (2.59)

= S ×1 U1 ×2 U2 ×3 U3, (2.60)

with equality holding since noise is absent. Moreover, it is clear that the core tensor has the
following decomposition

S = I3,L ×1 T1 ×2 T2 ×3 T3 (2.61)

and therefore T−1
1 , T−1

2 , and T−1
3 diagonalizes the core tensor

S ×1 T−1
1 ×2 T−1

2 ×3 T−1
3 = I3,L. (2.62)

The third-mode product of eq. (2.62) and C̃ is

I3,L ×3 C̃ = S ×1 T−1
1 ×2 T−1

2 ×3 T−1
3 ×3 C̃, (2.63)

= S ×1 T−1
1 ×2 T−1

2 ×3 C̃ ·T−1
3 , (2.64)

= S ×1 T−1
1 ×2 T−1

2 ×3 U3 ·T3 ·T−1
3 , (2.65)

= S ×1 T−1
1 ×2 T−1

2 ×3 U3 ∈ CL×L×Q. (2.66)

Selecting the q-th slice of the 3rd mode of eq. (2.66)

I3,L ×3 C̃×3 eT
q = S ×1 T−1

1 ×2 T−1
2 ×3 U3 ×3 eT

q ∈ CL×L. (2.67)

Using the first-mode unfolding to extract the selected slice[
I3,L ×3 C̃×3 eT

q

]
(1)

=
[
S ×1 T−1

1 ×2 T−1
2 ×3 U3 ×3 eT

q

]
(1)
, (2.68)[

I3,L ×1 IL ×2 IL ×3 C̃×3 eT
q

]
(1)

= T−1
1

[
S ×3 U3 ×3 eT

q

]
(1)

T−T
2 , (2.69)

IL

(
IL � C̃(q, ·)

)T
= T−1

1 · S3,q ·T−T
2 = Dq

{
C̃
}
, (2.70)

and therefore S3,q = T1 · Dq
{

C̃
}
·TT

2 , which is an asymmetric diagonalization problem.

To make this a symmetric diagonalization problem, we first define a matrix S3,p = T1 ·
Dp
{

C̃
}
·TT

2 , and use its inverse, S−1
3,p = T−T

2 · Dp
{

C̃
}−1

·T−1
1 , to make a right-hand side
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(rhs) symmetric diagonalization problem

Srhs
3,q = S3,q · S−1

2,p = T1 · Dq
{

C̃
}
·TT

2 ·T−T
2 · Dp

{
C̃
}−1

·T−1
1 , (2.71)

= T1 · Dq
{

C̃
}
· Dp

{
C̃
}−1

·T−1
1 , (2.72)

= T1 · C̃D,p
i ·T−1

1 , C̃D,p
i = Dq

{
C̃
}
· Dp

{
C̃
}−1

. (2.73)

The tensor slice p used to make the diagonalization problem in eq. (2.73) symmetric
is the called the “pivot” slice [67]. To ensure the pivot slice is well-conditioned [68], the
third-mode slice of eq. (2.66) with smallest condition number is selected

p = arg
q

min cond {S3,q} . (2.74)

The result is a set ofQ−1 matrices whose diagonalization yield the estimate of T1 which
simultaneously diagonalizes the entire set, and is also the nonsingular transformation matrix
which estimates A,

Srhs
3,1 = T1 ·CD,p

1 ·T−1
1 , (2.75)

Srhs
3,1 = T1 ·CD,p

2 ·T−1
1 , (2.76)

... (2.77)

Srhs
3,Q = T1 ·CD,p

Q ·T
−1
1 . (2.78)

With T̂1, A can be estimated

Â = U1 · T̂1, (2.79)

whose pseudoinverse left-multiplying the first-mode unfolding of Y yields the Khatri-Rao
product of Γ and C̃

Γ̂ � ˆ̃C =
(
Â ·Y1

)T
(2.80)

which are then estimated using least-squares Khatri-Rao factorization described in Algo-
rithm 1.

The tensor-based approach to time-delay estimation using SECSI is illustrated as a block
diagram in Figure 2.5.
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Figure 2.5: Block diagram of the state-of-the-art SECSI TDE approach

2.3 Proposed Tensor-Based Time-Delay Estimation

In this section the proposed tensor-based time-delay estimation scheme is presented,
along with a variant that utilizes a more balanced approach.

2.3.1 Canonical polyadic decomposition via generalized eigenvalue de-
composition

Similarly to SECSI-based TDE, described in Section 2.2.4, CPD-GEVD-based TDE also
utilizes joint diagonalization to estimate factor matrices. Unlike SECSI, it utilizes the gen-
eralized eigenvalue decomposition or exact joint diagonalization [69] of the first two slices
of the core tensor obtained via the truncated MLSVD and does not perform any n-mode
product of the core tensor with any of the singular values matrices.

Continuing from eq. (2.61) and utilizing the notation S` to represent the `-th third-mode
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slice of the core tensor S

S` = S(·, ·, `), (2.81)

=
[
S ×3 eT

`

]
(1)
, (2.82)

=
[
I3,L ×1 T1 ×2 T2 ×3 eT

`T3

]
(1)
, (2.83)

= [I3,L ×1 T1 ×2 T2 ×3 T3(`, ·)](1) , (2.84)

= T1 (T2 �T3(`, ·))T , (2.85)

= T1 (T2 · D` {T3})T , (2.86)

= T1 · D` {T3} ·TT
2 , (2.87)

we calculate the generalized eigenvalue decomposition of the transposed first two slices of
the core tensor S, the matrix pencil [70] (ST

1 ,S
T
2)

ST
1 ·R = ST

2 ·R ·D (2.88)

where R ∈ CL×L is the (right) eigenvectors matrix and D ∈ CL×L is the eigenvalues matrix.

Changing the order of the products in eq. (2.88)

S−T
2 · ST

1 = R ·D ·R−1 (2.89)

S1 · S−1
2 = R−T ·D ·RT (2.90)

= T1 · D1 {T3} · D2 {T3}−1 ·T−1
1 (2.91)

we have estimates

T̂1 = R−T, T̂−T
1 = R, (2.92)

while allowing trivial scaling ambiguities and Â = U1 · T̂1 = U1 ·R−T.

With the estimate T̂−T
1 = R we can make an estimate of the transpose pseudoinverse of

the array response factor matrix A

(
Â†
)T

=

((
U1 · T̂1

)†)T

(2.93)

=
(
T̂−1

1 ·U
†
1

)T
(2.94)

=
(
T̂−1

1 ·UH
1

)T
(2.95)

= U∗1 · T̂−T
1 (2.96)

= U∗1 ·R. (2.97)
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Multiplying the transpose of the first-mode unfolding of Y , YT
1 by eq. (2.97)

YT
1 ·U∗1 ·R =

(
Γ � C̃

)
AT
(
ÂT
)†

(2.98)

= Γ̂ � ˆ̃C ∈ CKQ×L, (2.99)

with which we can estimate Γ̂ and ˆ̃C utilizing LSKRF described above in Algorithm 1.

LOS selection and time-delay estimation is performed as described previously in Sec-
tion 2.2.2.

2.3.2 Dual eigenvector matrix variant CPD-GEVD

While the approach described in Section 2.3.1 only utilizes the right eigenvector matrix
of the generalized eigenvalue decomposition (GEVD), it is possible to both left and right
eigenvector matrices.

Following the LMLRA of Y

Y = S ×1 U1 ×2 U2 ×3 U3, (2.100)

S = I3,L ×1 T1 ×2 T2 ×3 T3, (2.101)

we calculate the GEVD of the matrix pencil of (S1,S2).

Using the left eigenvector matrix L,

LH · S1 = D · LH · S2, (2.102)

S1 · S−1
2 = L−H ·D · LH, (2.103)

= T1 · D1 {T3} · D2 {T3}−1 ·T−1
1 , (2.104)

and therefore we have an estimate of T1,

T̂1 = L−H. (2.105)

Using the right eigenvector matrix R,

S1 ·R = S2 ·R ·D, (2.106)

S−1
2 · S1 = R ·D ·R−1, (2.107)

ST
1 · S−T

2 = R−T ·D ·RT, (2.108)

= T2 · D1 {T3} · D2 {T3}−1 ·T−1
2 , (2.109)
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and therefore we have an estimate of T2,

T̂2 = R−T. (2.110)

The transform matrix T3 is estimated using the third-mode unfolding of the core tensor
S and the previously estimated transformation matrices T1 and T2,

T̂3 = [S](3)

((
T̂1 � T̂2

)T
)†
, (2.111)

= T3 (T1 �T2)T
((

T̂1 � T̂2

)T
)†
, (2.112)

≈ T3. (2.113)

The factor matrices are then estimated by expanding the previously estimated subspaces
in eq. (2.57) using each respective transformation matrix

Â = U1 · T̂1, (2.114)

Γ̂ = U2 · T̂2, (2.115)
ˆ̃C = U3 · T̂3. (2.116)

2.4 Numerical Simulation Results

In this section we perform numerical simulation and corresponding results using the
proposed approaches compared with the state-of-the art approaches. The generation of each
of the factor matrices which form the data tensor is detailed in Sections 2.4.1 to 2.4.3. The
scenario is detailed in Section 2.4.4, with the parameters used for the simulation.

2.4.1 Array response matrix generation

The simulations with a perfectly calibrated array, spacing between array elements are an
exact half-wavelength, thus the array response matrix, A ∈ CM×L, is a left Π real symmetric
matrix, that is, given an exchange matrix,

Π =



0 0 · · · 0 1

0 0 · · · 1 0
...

...
...
...

...

0 1 · · · 0 0

1 0 · · · 0 0


∈ RM×M , (2.117)
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with Π ·Π = IM , the following relation holds

ΠA∗ = A. (2.118)

A separation angle ∆φ between the L signals can be enforced, thus avoiding the possi-
bility of rank deficiency. This may help avoid the ill-posedness of the CPD [71, 72] without
completely ruling it out.

For the simulation with an imperfect array, a random shift is added to the spacing of each
array element, thus the array is no longer calibrated. These element placement errors impacts
array response.

2.4.2 Complex amplitude matrix generation

The complex amplitude matrix Γ ∈ CK×L collects the complex amplitudes (magnitude
and phase shift) of the L signals during the K epoch sampling interval.

The magnitudes are kept constant during sampling for each `-th signal while the phase
shifts are drawn from ∼ U [0, 2π). Because the phase shifts are iid this ensures Γ is almost
surely full-rank.

2.4.3 Code (PRS) matrix generation

Each `-th column of C ∈ RN×L represents a same PRS temporally shifted by a delay τ`.
The first delay is the LOS delay, which is drawn from τLOS ∼ U [−TC , 0], in which TC is the
time length of one chip period of the PRS.

For L = 2, there is only one NLOS time-delay τNLOS. For simulation purposes τNLOS is
selected with a delay relative to τLOS so that

τNLOS = τLOS + ∆τ. (2.119)

Details on the implementation of the signal generator are found in Appendix A.

2.4.4 Simulation scenario

A 2000 realization Monte Carlo simulation is performed to compare performance in time-
delay estimation and tensor reconstruction, given the estimated factor matrices.

The array is a Vandermonde left centro-hermitian uniform linear array with M = 8

elements. An azimuth separation angle of ∆φ = π/6 between LOS and NLOS signals is
enforced to avoid the possibility of rank deficiency in the array response matrix. This can
help avoid the ill-posedness of the CPD [71, 72] without completely ruling it out.
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The PRS used is GPS C/A code from satellite no. 17 with bandwidth B = 1.023 MHz,
epoch duration t = 1 ms, chip period TC = 1/B ≈ 978 ns, sampled at Ts = 1/2B resulting
in N = 2046 samples/epoch, transmitted with carrier frequency fc = 1575.42 MHz.

The correlator bank is equally spaced between [−TC , TC ] with Q = 11 taps.

Sampling occurs over a K = 30 epoch sampling period in which the signal phases
arg{γk,`} ∼ U [0, 2π). The carrier-to-noise ratio is C/N0 = 48 dB-Hz, resulting in a
pre-correlation signal-to-noise ratio (SNR) of approximately −15 dB, and a post-correlation
SNR of approximately +15 dB, and a signal-to-multipath ratio (SMR) of 5 dB.

2.4.5 Perfectly calibrated array

In this section simulations are performed assuming a perfectly calibrated array. The array
response matrix is a left Π real symmetric matrix, as explained above.

2.4.5.1 Time-delay estimation performance

In this section, performance is measures in terms of time-delay estimation. The figure of
merit is the root-means squared error (RMSE) of the time-delay estimation multiplied by the
speed of light c = 299.792.458 m/s. For I realizations, the RMSE is

RMSE = c ·

√√√√1

I

I∑
i=1

(τ̂i − τi)2 (m). (2.120)

LOS selection is performed by choosing the promptest delay [24] for the DoA/KRF,
SECSI, and CPD-GEVD approaches. Maximizing CPD amplitudes is for the ProKRaft ap-
proach. This is also used for the CPD-GEVD (dual) approach.

Filtering with a priori knowledge of the factor matrices A and Γ is used to estimate the
time delay. The PRS code factor matrix is estimated using

ˆ̃C = [Y ](3)

(
(A � Γ)T

)†
, (2.121)

and its first column is used to estimate the time delay. This is used as a baseline comparison.

In Figure 2.6 we see the TDE results for all methods in the presence of 1 LOS and 1

NLOS component, L = 2.
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Figure 2.6: Time-delay estimation error in meters for L = 2.

In Figure 2.7, the HOE+FBA+ESPS and ProKRaft TDE approaches are omitted to
clearly demonstrate the performance differences between the DoA/KRF, SECSI, and CPD-
GEVD TDE approaches. Here the performance of the SECSI-based approach to TDE fol-
lows the performance of the CPD-GEVD approach closely. The DoA/KRF approach shows
consistent performance, with CPD-GEVD matching its performance when ∆τ/TC ≥ 0.6,
and it is outperformed by CPD-GEVD (dual) when ∆τ/TC ≥ 0.5.
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Figure 2.7: Time-delay estimation error in meters for L = 2, HOE+FBA+ESPS and
ProKRaft omitted.

2.4.5.2 Reconstruction error performance

In this section, performance is measured in terms of root-means squared (RMS) relative
reconstruction error. The relative reconstruction error at realization i is

ei =

∥∥∥Y i − Ŷ i∥∥∥
F

‖Y i‖F
. (2.122)

and its RMS is

RMS =

√√√√1

I

I∑
i=1

e2
i . (2.123)

In Figure 2.8, we see the relative reconstruction error for all methods in the presence of
1 LOS and 1 NLOS component.

The reconstruction error is greatest for the higher-order eigenfilter. This is expected since
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it applies a rank-1 MLSVD to data from 2 sources. The ProKRaft shows better results as the
delay increases, consequently decreasing correlation between LOS and NLOS signal.
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Figure 2.8: Relative reconstruction error for L = 2.

In Figure 2.9, the HOE+FBA+ESPS and ProKRaft approaches were omitted to clearly
demonstrate the performance differences between the DoA/KRF, SECSI, and CPD-GEVD
approaches. Relative reconstruction error does not necessarily track with TDE performance.

Reconstruction error for these approaches are consistent and do not correlate with the
increase in TDE performance as separation between LOS and NLOS signals increases, nor
are these ranked in the same order as TDE performance.
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Figure 2.9: Relative reconstruction error for L = 2, HOE+FBA+ESPS and ProKRaft omit-
ted.

2.4.6 Imperfect Array

In this section an imperfect array is assumed. This is expected in more realistic scenarios
in which array calibration is not ensured [61].

To control for error we define the array error as the absolute difference between a position
x from its expected position x̄ and assume it has a Gaussian distribution, e = |x− x̄| ∼
N (x̄, σ2), and define a probability p that the array error will exceed a half-wavelength

p = Pr
(
e >

λ

2

)
, (2.124)

= Pr
(
|x− x̄| > λ

2

)
, (2.125)

= Pr
(
x− x̄ < −λ

2
∪ x− x̄ > λ

2

)
, (2.126)
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since x− x̄ < −λ/2 and x− x̄ > λ/2 are disjoint sets

p = Pr
(
x− x̄ < −λ

2

)
+ Pr

(
x− x̄ > λ

2

)
. (2.127)

Expressing the above in terms of a normalized Gaussian rv Z = (x− x̄)/σ

p = Pr
(
x− x̄
σ

< − λ

2σ

)
+ Pr

(
x− x̄
σ

>
λ

2σ

)
, (2.128)

= Pr
(
Z < − λ

2σ

)
+ Pr

(
Z >

λ

2σ

)
, (2.129)

= 1− Pr
(
Z > − λ

2σ

)
+ Pr

(
Z >

λ

2σ

)
, (2.130)

which can be expressed in terms of the Q-function

p = 1−Q

(
− λ

2σ

)
+ Q

(
λ

2σ

)
, (2.131)

= 1−
(

1−Q

(
λ

2σ

))
+ Q

(
λ

2σ

)
, (2.132)

= 2 Q

(
λ

2σ

)
. (2.133)

Resolving for σ

p

2
= Q

(
λ

2σ

)
, (2.134)

Q−1
(p

2

)
=

λ

2σ
, (2.135)

∴σ =
λ

2 Q−1
(
p
2

) . (2.136)

2.4.6.1 Time-delay estimation performance

Simulations were performed with the same parameters as previously with the exception
the array response which is now for an imperfect array. Results for all methods is shown in
Figure 2.10.

TDE error for HOE+FBA+ESPS and ProKRaft approaches remain unchanged compared
to the results where a perfect array is assumed. This is expected as these do not rely on the
array response or its parameters to perform TDE.
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Figure 2.10: Time-delay estimation error in meters for L = 2 with an imperfect array with
p = Pr (e > λ/2) = 10−30.

In ?? the TDE results for HOE+FBA+ESPS and ProKRaft approaches have been omitted
for clarity. While the algebraic approaches have yielded similar results as previously, the
DoA/KRF approach now displays not only a worse but also inconsistent performance, with
a bell-shaped error curve.

37



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

∆τ/TC

R
M

SE
(m

)
Known A and Γ

DoA/KRF
SECSI

CPD-GEVD
CPD-GEVD (dual)

Figure 2.11: Time-delay estimation error in meters for L = 2 with an imperfect array with
p = Pr (e > λ/2) = 10−30, HOE and ProKRaft performance omitted.

2.4.6.2 Reconstruction error performance

In Figure 2.12, we see the relative reconstruction error for all methods in the presence of
1 LOS and 1 NLOS component.

Again relative reconstruction error is greatest for the higher-order eigenfilter and the
ProKRaft approach has a decreasing curve, similarly to the results of the simulation using a
perfect array.

For the other approaches there is an increase in relative reconstruction error. This is
particularly evident for the DoA/KRF approach, which suffers greater errors in its DoA
estimation and consequently reconstruction of the array response factor matrix.
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Figure 2.12: Relative reconstruction error for L = 2 with an imperfect array with p =
Pr (e > λ/2) = 10−30.

In Figure 2.13, the HOE+FBA+ESPS and ProKRaft approaches have been omitted for
clarity. There was a slight increase in reconstruction error for the algebraic approaches,
and a large increase for the DoA/KRF approach. In the previous section, the reconstruction
error for the DoA/KRF approach was between that of the CPD-GEVD approaches, now it is
greater than both.
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Figure 2.13: Relative reconstruction error for L = 2 with an imperfect array with p =
Pr (e > λ/2) = 10−30, HOE and ProKRaft performance omitted.
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Chapter 3

Tensor-Based Time-Delay Estimation for
Batch Processing in Clustered Scenarios

When the model order L > 2, we have 1 LOS signal component and more than 1 NLOS
signal components. Under the assumption these multipath components are clustered [40],
have similar timings and are therefore highly correlated, resulting in the pre- and post-
correlation PRS matrix, C and C̃, being rank-deficient.

In previous publications [28] which followed the data model in [16], the presence of
rank deficiencies in the second mode resulted in poor results in the presence of clustered
components. This motivated the change in the order in which the factor matrices compose
the data tensor.

In this chapter we present a data model which takes into account the rank deficiency of the
PRS matrix, compare it to the data model presented previously, and propose a batch tensor-
based scheme for clustered scenarios [37]. Finally, numerical simulations are performed to
compare performance with the present state of the art.

3.1 Generalized Data Model

For scenarios with more than one multipath component (L > 2) present, similar NLOS
component timings result in highly correlated columns in the code factor matrix, resulting in
a rank-deficient factor matrix.

In this section, a generalized data model for clustered (NLOS) components is presented.
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3.1.1 Multilinear Rank-(Lr, Lr, 1) GNSS Data Model for Clustered
Multipath Components

Continuing from eq. (2.21), when the NLOS components have similar timings, that is
c̃2 = c̃[τNLOS] ≈ c̃3 ≈ . . . ≈ c̃L, c̃` is approximately equal for ` = 2, . . . , L,

Y0 = a1 ◦ γ1 ◦ c̃1 +
L∑
`=2

(a` ◦ γ`) ◦ c̃[τNLOS]. (3.1)

This superposition of clustered components impacts time-delay estimation greatly com-
pared to the case where the NLOS components are uncorrelated and can be easily separated.

Continuing from eq. (3.1),

Y0 = a1 ◦ γ1 ◦ c̃1 +
(
A2 · ΓT

2

)
◦ c̃NLOS (3.2)

where A2 =
[
a2, . . . , aL

]
∈ CM×(L−1) and Γ2 =

[
γ2, . . . ,γL

]T ∈ CK×(L−1).

To take into account the rank deficiency of the code factor matrix C, when L > 2 a
specific type of BTD [38], the decomposition in multilinear rank-(Lr, Lr, 1) terms [73, 74]
is proposed for the GNSS data model. The resulting multilinear rank-(Lr, Lr, 1) term repre-
sentation of eq. (2.21) is

Y0 =
2∑
r=1

(
Ar · ΓT

r

)
◦ c̃r ∈ CM×K×Q, (3.3)

which is a decomposition in multilinear rank-(Lr, Lr, 1) terms with R = 2, and r = 1 for
the LOS component with L1 = 1 and

A1 = a1 ∈ CM , (3.4)

Γ1 = γ1 ∈ CK , (3.5)

c̃1 = c̃[τLOS] ∈ RQ, (3.6)

and r = 2 for the NLOS components with L2 = L− 1, thus

A2 =
[
a2 · · · aL

]
∈ CM×(L−1), (3.7)

Γ2 =
[
γ2 · · · γL

]
∈ CK×(L−1), (3.8)

c̃2 = c̃[τ̄NLOS] ∈ RQ. (3.9)
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3.1.2 PARAFAC and multilinear rank-(Lr, Lr, 1) terms model compar-
ison

The multilinear rank-(Lr, Lr, 1) term representation in eq. (3.3) can be represented as a
Tucker-3 model [65]

Y0 = I(R) ×1 A×2 Γ×3 C̃(R) (3.10)

in which the core tensor is I(R) ∈ RL×L×2, and C̃(R) =
[
c̃1, c̃2

]
∈ RQ×2.

The Tucker-3 model in Equation (3.10) can be expressed as a parallel factors (PARAFAC)
model in which a combination matrix P ∈ R2×L is applied through the third-mode product to
the identity tensor, combining its last L−1 third-order slices into the second slice to take into
account the contribution of only a single LOS component and a single NLOS component,

Y0 = (I3,L ×3 P)×1 A×2 Γ×3 C̃(R), (3.11)

= I3,L ×1 A×2 Γ×3 C̃(R) ·P. (3.12)

The combination matrix P has structure

P =

[
1 0T

L−1

0 1T
L−1

]
∈ R2×L, (3.13)

and its pseudoinverse

P† =
1

L− 1

[
L− 1 0

0L−1 1L−1

]
∈ RL×2. (3.14)

The connection between the original correlated code factor matrix C̃ and the 2-
component factor matrix C̃(R) can be performed by applying P in the third mode of the
identity tensor, and replacing C̃(R) = C̃P† in Equation (3.12),

Y0 = (I3,L ×3 P)×1 A×2 Γ×3 C̃ ·P†, (3.15)

= I3,L ×1 A×2 Γ×3 C̃ ·P† ·P. (3.16)

Note that the multiplication of C̃ by P† does not affect the first column and averages the
remaining L− 1 columns in to a single column, as observed in eqs. (3.6) and (3.9).

The data model in multilinear rank-(Lr, Lr, 1)-terms is thus expressed in Equation (3.16)
as a PARAFAC model.
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While P†P does not equal identity unless L = 2, its structure is

P† ·P =


1 0 · · · 0

0 1
L−1

· · · 1
L−1

...
... · · ·

...

0 1
L−1

· · · 1
L−1

 . (3.17)

By multiplying C̃ by P† ·P we have

C̃ ·P† ·P =
[
c̃1 c̃2 · · · c̃L

]
·P† ·P, (3.18)

=
[
c̃1 c̃avg · · · c̃avg,

]
(3.19)

where

c̃avg =
1

L− 1
·
[
c̃2 · · · c̃L

]
1L−1 ∈ RQ (3.20)

being, therefore the average of
[
c̃2, . . . , c̃L

]
across the second dimension. For NLOS com-

ponents with τ2 ≈ . . . ≈ τL, c̃` ≈ c̃avg, for ` = 2, . . . , L.

3.2 Decomposition in multilinear rank-(Lr, Lr, 1) terms via
generalized eigenvalue decomposition

The decomposition in multilinear rank-(Lr, Lr, 1) terms via generalized eigenvalue de-
composition ((Lr, Lr, 1)-GEVD) approach to TDE assumes a data model with clustered
components in the code factor matrix. Like the CPD-GEVD approach to TDE described
previously in Section 2.3.1, the (Lr, Lr, 1)-GEVD approach to TDE begins with a LMLRA
of Y ,

Y = I3,L ×1 A×2 Γ×3 C̃ +N , (3.21)

≈ S ×1 U1 ×2 U2 ×3 U3, (3.22)

and the GEVD of the matrix pencil (ST
1 ,S

T
2) to initialize an estimate of transformation matrix

T1,

ST
1 ·R = ST

2 ·R·D, (3.23)

resulting in T̂1 = R−T (or equivalently T̂−1
1 = R).

Since estimating T2 and T3 via LSKRF is subject to rank deficiencies in the second and
third mode [28], the (Lr, Lr, 1)-GEVD approach uses a more balanced approach to estimate
T2 and T3.
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To estimate T2 we utilize the transpose of the first core tensor slice and the previous
result of the GEVD, the right generalized eigenvector matrix R ∈ CL×L,

T̂2 = ST
1 ·R, (3.24)

= T2 · D1 {T3} ·TT
1 · T̂−T

1 , (3.25)

= T2 · D1 {T3} , (3.26)

is equal to T2 with trivial scaling ambiguities.

The third-mode transformation matrix T3 is estimated using the third-mode unfolding of
the core tensor S

[S](3) = T3 (T1 �T2)T (3.27)

and the previous estimates of T1 and T2

T̂3 = [S](3)

((
T̂1 � T̂2

)T
)†

(3.28)

≈ T3. (3.29)

With the estimates of T1, T2, and T3, we can estimate the factor matrices by expanding
the corresponding singular vector matrices

Â = U1 · T̂1, (3.30)

Γ̂ = U2 · T̂2, (3.31)
ˆ̃C = U3 · T̂3. (3.32)

For clustered NLOS components, we have the relation from eq. (3.12)

C̃ = C̃(R) ·P, (3.33)

where P ∈ R2×L is the combination matrix described in Section 3.1.2.

To estimate P, clustering is applied to eq. (3.32) to select the component of ˆ̃C most likely
to be least correlated (and therefore less highly correlated) component of C̃. We propose a
clustering method based on Euclidian distance.

Given an estimated code factor matrix ˆ̃C, we calculate theQ distances between each q-th
row of C̃ in a distance matrix Dq for q = {1, . . . , Q}, and square it using the Hadamard
product of its conjugate

Dq = 1L · ˆ̃C(q, ·)−
(
1L · ˆ̃C(q, ·)

)T
∈ CL×L (3.34)

D2
q = Dq �D∗q ∈ RL×L. (3.35)
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We then sum all Q row distances

D2 =

Q∑
q=1

D2
q ∈ RL×L, (3.36)

then take the average square distance across its rows

d2
avg =

1

L
D2 · 1L ∈ RL. (3.37)

Finally, the least correlated component is selected based on the average squared Euclidian
distance

` = arg
`

max d2
avg(`) (3.38)

The proposed clustering method and combination matrix reconstruction is summarized
in Algorithm 2 is used to select the LOS component and estimate P, after the columns of ˆ̃C

are normalized.

Estimating the combination matrix P implicitly selects the LOS component since esti-
mating C̃(R)

ˆ̃C(R) = ˆ̃C · P̂† ∈ CQ×2, (3.39)

compresses ˆ̃C and places the column most likely to be the LOS component in the first column
of ˆ̃C(R).

The auto-correlation vector can then be estimated

q̂ =
∣∣∣VΣ · ˆ̃C(R)(·, 1)

∣∣∣ ∈ RQ, (3.40)

followed by cubic spline interpolation for time-delay estimation.

The (Lr, Lr, 1)-GEVD approach is illustrated as a block diagram in Figure 3.1.
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Algorithm 2 Proposed single outlier selection clustering

Input: ˆ̃C ∈ CQ×L

Output: Estimated combination matrix P̂

1: Calculate absolute squared distances
2: for q = 1 to Q do

Dq = 1L · ˆ̃C(q, ·)−
(
1L · ˆ̃C(q, ·)

)T
∈ CL×L

D2
q = Dq �D∗q ∈ RL×L

3: end for
4: Sum squared distances

D2 =

Q∑
q=1

D2
q ∈ RL×L

5: Calculate average squared distance

d2
avg =

1

L
D2 · 1L ∈ RL

6: Select greatest average squared distance

` = arg
`

max d2
avg(`)

7: Construct P̂

P̂ =

[
0T
`−1 1 0T

L−`+1

1T
`−1 0 1T

L−`+1

]
∈ R2×L
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Algorithm 3 Proposed decomposition in multilinear rank-(Lr, Lr, 1) terms via GEVD TDE
approach
Input: tensor Y ∈ CM×K×Q, multilinear ranks LLOS = 1 and LNLOS = L− 1.
Output: estimated time-delay τLOS, (optionally) factor matrices

1: Estimate LMLRA of Y using truncated MLSVD

Y ≈ S ×1 U1 ×2 U2 ×3 U3 ∈ CI×J×K .

2: Calculate GEVD of matrix pencil (ST
1 ,S

T
2)

ST
1 ·R = ST

2 ·R ·D.

3: Estimate T1 and T2

T̂1 = R−T, T̂2 = ST
1 ·R.

4: Estimate T3 and C̃

T̂3 = [S](3)

((
T̂1 � T̂2

)T
)†
,

ˆ̃C = U3 · T̂3 = ˆ̃C(R) ·P.

5: Normalize the columns of ˆ̃C

ˆ̃Cnorm. = ˆ̃C
{

1T
R

(
ˆ̃C� ˆ̃C∗

)}− 1
2

.

6: Use single outlier detection clustering to classify ˆ̃Cnorm. into 2 clusters and estimate
combination matrix P (see algorithm 2)

7: Calculate ˆ̃C(R)

ˆ̃C(R) = ˆ̃C · P̂†.

8: Calculate auto-correlation vector

q̂ =
∣∣∣VΣ · ˆ̃C(R)(·, 1)

∣∣∣ ∈ RQ.

9: Apply cubic spline interpolation to the auto-correlation vector q to estimate time-delay
[16].
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Figure 3.1: Proposed decomposition in multilinear rank-(Lr, Lr, 1) terms via GEVD TDE
approach block diagram

3.3 Dual eigenvector matrix variant CPD-GEVD and
(Lr, Lr, 1)-GEVD

While the approaches described in Section 3.2 only utilize the right eigenvector matrix
of the GEVD, it is possible to use both left and right eigenvector matrices. This allows
estimating (the inverse of) both transform matrices in a single (GEVD) operation and this
more balanced approach allows more accurately estimating the (third mode) code factor
matrix.

Following the LMLRA of Y

Y = S ×1 U1 ×2 U2 ×3 U3, (3.41)

S = I3,L ×1 T1 ×2 T2 ×3 T3, (3.42)

we calculate the GEVD of the matrix pencil of (S1,S2).
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Using the left eigenvector matrix L,

LH · S1 = D · LH · S2, (3.43)

S1 · S−1
2 = L−H ·D · LH, (3.44)

= T1 · D1 {T3} · D2 {T3}−1 ·T−1
1 , (3.45)

and therefore we have an estimate of T1

T̂1 = L−H. (3.46)

Using the right eigenvector matrix R

S1 ·R = S2 ·R ·D, (3.47)

S−1
2 · S1 = R ·D ·R−1, (3.48)

ST
1 · S−T

2 = R−T ·D ·RT, (3.49)

= T2 · D1 {T3} · D2 {T3}−1 ·T−1
2 , (3.50)

and therefore we have an estimate of T2

T̂2 = R−T. (3.51)

The transform matrix T3 is estimated the same as in (Lr, Lr, 1)-GEVD using eq. (3.28),
and the factor matrices estimated by expansion using eqs. (3.30) to (3.32). This is a variant
of CPD-GEVD.

The variant of (Lr, Lr, 1)-GEVD proceeds from here like the proposed (Lr, Lr, 1)-
GEVD by applying column normalization to ˆ̃C to estimate P, and consequently select the
LOS component and ˆ̃C(R).

3.4 Computational Cost

For both the state-of-the-art CPD-GEVD and the proposed (Lr, Lr, 1)-GEVD approaches
the primary defining factor in the computational cost is the model order, L. For a typi-
cal simulation scenario with M = 8, K = 30, and Q = 11 [16, 24, 28, 32, 35, 36], the
computational cost of the CPD-GEVD approach,in floating point operations (FLOPS), is
2L3 + 2978L2 + 6720L, and the computational cost of the proposed (Lr, Lr, 1)-GEVD ap-
proach is 2L4+4L3+2714L2+23L. For these simulation parameters, the proposed approach
has a lower cost than the state-of-the art CPD-GEVD up to L = 17.

To compare the computational cost we have created three heat maps in which one of
the parameters M , K, or Q is fixed, while the other two vary, which shows the Lmax, given
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(M,K,Q), for which the cost of the proposed (Lr, Lr, 1)-GEVD approach is greater than
that of the CPD-GEVD approach [28].

In Figures 3.2 to 3.4, the value of M , K, and Q is fixed at M = 8, K = 30, and Q = 11,
respectively, while the remaining parameters vary between 2 and 30. In all three figures we
have marked the point corresponding to M = 8, K = 30, Q = 11 with ◦, which are the
values of M , K, and Q used in the numerical simulations in Section 2.4.
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Figure 3.2: Values of L for which the computational complexity of the proposed (Lr, Lr, 1)-
GEVD approach to TDE is greater than that of the CPD-GEVD approach. Number of array
sensors M = 8, epochs K = 2, . . . , 30, and correlator bank taps Q = 2, . . . , 30.
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Figure 3.3: Values of L for which the computational complexity of the proposed (Lr, Lr, 1)-
GEVD approach to TDE is greater than that of the CPD-GEVD approach. Number of array
sensors M = 2, . . . , 30, epochs K = 30, and correlator bank taps Q = 2, . . . , 30.
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Figure 3.4: Values of L for which the computational complexity of the proposed (Lr, Lr, 1)-
GEVD approach to TDE is greater than that of the CPD-GEVD approach. Number of array
sensors M = 2, . . . , 30, epochs K = 1, . . . , 30, and correlator bank taps Q = 11.

In Figure 3.2, bothK andQ contribute evenly to Lmax. For smallK andQ, Lmax is small.
The dashed line delineates the values for which Lmax ≤ 4.

In Figures 3.3 and 3.4, Q and K, respectively, contribute predominantly to Lmax. In both
Figures Lmax ≤ 4.

Details on computational cost of the operations used above are found in Appendix B.

3.5 Numerical Simulation Results

In this section numerical results are presented comparing results with the state-of-the-
art and previously presented techniques. The generation of the code factor matrix in the
clustered scenario is detailed in Section 3.5.1.

3.5.1 Code (PRS) matrix generation

For L > 2, there’s more than a single time-delay. For simulation purposes, the average
NLOS delay τ̄NLOS is selected with a delay relative to τLOS so that

τ̄NLOS = τLOS + ∆τ. (3.52)
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For an average NLOS time-delay τ̄NLOS, each `-th delay can be calculated as

τ` = τ̄NLOS +

(
`− 1− L

2

)
∆T, ` = {2, . . . , L}, (3.53)

resulting in

L = 3, τ2 = τ̄NLOS −
1

2
∆T, τ3 = τ̄NLOS +

1

2
∆T, (3.54)

L = 4, τ2 = τ̄NLOS −∆T, τ3 = τ̄NLOS,

τ4 = τ̄NLOS + ∆T, (3.55)

L = 5, τ2 = τ̄NLOS −
3

2
∆T, τ3 = τ̄NLOS −

1

2
∆T,

τ4 = τ̄NLOS +
1

2
∆T, τ5 = τ̄NLOS +

3

2
∆T, (3.56)

ensuring an average time-delay τ̄NLOS.

For small values of ∆T , NLOS timings are very similar, resulting in similar time-delays
for c`, ` = {2, . . . , L}, consequently both C and C̃ are rank-deficient.

3.5.2 Simulation scenario

The simulation scenario is the same as described previously in Section 2.4.4, except
the NLOS components are temporally separated by ∆T = TC/(fc/B) ≈ 634.75 ps, or
19.03 cm, such that the average timing difference between LOS and NLOS components is
consistent as described above.

3.5.3 Perfectly calibrated array

In this section simulations are performed assuming a perfectly calibrated array. The array
response matrix has perfect Vandermonde structure.

3.5.3.1 Time-delay estimation performance

In Figure 3.5 we see the TDE results for all methods in the presence of 1 LOS and 2

NLOS components, L = 3.

TDE performance for the HOE+FBA+ESPS, ProKRaft, and SECSI approaches have de-
graded considerably with the increase in model order. The considerable degradation in per-
formance for the ProKRaft approach is due to one of its core assumptions, that the core
covariance matrix being close to identity no longer being correct [32, 75].
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Figure 3.5: Time-delay estimation error in meters for L = 3.

In Figure 3.6, the HOE+FBA+ESPS, ProKRaft, and SECSI TDE approaches were omit-
ted to clearly demonstrate the performance differences between the DoA/KRF, CPD-GEVD,
and (Lr, Lr, 1)-GEVD TDE approaches.

The DoA/KRF approach shows very consistent performance for all ∆τ/Tc. The perfor-
mance of the (Lr, Lr, 1)-GEVD and both dual eigenvector matrix variants are better than the
CPD-GEVD approach and have overlapping performances. This is expected as these three
approaches employ essentially equivalent algebraic methods.
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Figure 3.6: Time-delay estimation error in meters for L = 3, HOE+FBA+ESPS, ProKRaft,
and SECSI omitted.

In Figure 3.7 the model order has been increased to 4, with 1 LOS and 3 NLOS compo-
nents. TDE performance is shown for all methods.

The ProKRaft approach has failed as expected, and the performance curve for
HOE+FBA+ESPS has further increased to nearly 5 m at its peak.

In Figure 3.8, the HOE+FBA+ESPS, ProKRaft, and SECSI TDE approaches were omit-
ted to clearly demonstrate the performance differences between the DoA/KRF, CPD-GEVD,
and (Lr, Lr, 1)-GEVD TDE approaches. The performance of the (Lr, Lr, 1)-GEVD and both
dual eigenvector matrix variants have overlapping performance.

Again the DoA/KRF approach has shown consistent performance and the (Lr, Lr, 1)-
GEVD and both dual eigenvector variants performances overlap and are slightly better than
the CPD-GEVD approach.
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Figure 3.7: Time-delay estimation error in meters for L = 4.
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Figure 3.8: Time-delay estimation error in meters for L = 4, HOE+FBA+ESPS, ProKRaft,
and SECSI omitted.

3.5.3.2 Reconstruction error performance

In Figure 3.9, we see the relative reconstruction error for all methods in the presence of
1 LOS and 2 NLOS components. Construction of Y0 using eq. (3.16) has been added as a
baseline comparison. Its error at iteration i is

ei =

∥∥∥Y0,i − Ŷ0,i

∥∥∥
F

Y0,i

(3.57)

with Ŷ0,i = I3,L ×1 Ai ×2 Γi ×3 C̃i ·P† ·P.
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Figure 3.9: Relative reconstruction error for L = 3.

The HOE+FBA+ESPS approach has the largest reconstruction error. This is expected as
it is a rank-1 reconstruction. The ProKRaft approach has the second largest reconstruction
error. This is also expected as with a model order L = 3 one of its premises, that the code
covariance matrix is similar to an identity matrix, is violated. The baseline has a very low
error because it uses a priori information about the tensor.

In Figure 3.10, the (Lr, Lr, 1) construction, HOE+FBA+ESPS, ProKRaft, and
(Lr, Lr, 1)-GEVD (dual) approaches have been omitted.
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Figure 3.10: Relative reconstruction error for L = 3, (Lr, Lr, 1) construction,
HOE+FBA+ESPS, ProKRaft, and (Lr, Lr, 1)-GEVD (dual) omitted.

Comparing only the approaches above, we see there is little correlation between recon-
struction performance and time-delay estimation performance. This is especially notable
when comparing the DoA/KRF and CPD-GEVD (dual) approaches, in which the algebraic
approach has better reconstruction performance than the parametric approach but the para-
metric approach has better time-delay performance.

In Figure 3.11, we see the relative reconstruction error for all methods in the presence of
1 LOS and 3 NLOS components.
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Figure 3.11: Relative reconstruction error for L = 3, (Lr, Lr, 1) construction,
HOE+FBA+ESPS, ProKRaft, and (Lr, Lr, 1)-GEVD (dual) omitted.

Again for the HOE+FBA+ESPS and ProKRaft approaches have the worst reconstruction
performance.

In Figure 3.12, the (Lr, Lr, 1) construction, HOE+FBA+ESPS, ProKRaft, and
(Lr, Lr, 1)-GEVD (dual) approaches have been omitted.
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Figure 3.12: Relative reconstruction error for L = 4.

The difference in reconstruction performance has become more narrow but there is still
little correlation between reconstruction and time-delay estimation performance.

3.5.4 Imperfect Array

In this section, the proposed approaches are tested in the presence of an imperfect array.

3.5.4.1 Time-delay estimation performance

In Figure 3.13 we see the TDE results for all methods in the presence of 1 LOS and 2

NLOS components.
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Figure 3.13: Time-delay estimation error in meters for L = 3 with an imperfect array with
p = Pr (e > λ/2) = 10−30.

The HOE+FBA+ESPS, ProKRaft, and SECSI approaches have slightly worse perfor-
mance when compared to a perfect array. The other algebraic approaches and the DoA/KRF
approach have better performance.

In Figure 3.14 these approaches have been omitted for clarity.
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Figure 3.14: Time-delay estimation error in meters for L = 3 with an imperfect array with
p = Pr (e > λ/2) = 10−30. HOE+FBA+ESPS, ProKRaft, and SECSI omitted.

It is clear that the presence of an imperfect array has not only worsened performance
for the DoA/KRF approach, it now has a bell shape. The other algebraic approaches have
performance consistent with the prior scenario.

In Figure 3.15 we see the TDE results for all methods in the presence of 1 LOS and 3

NLOS components, L = 4.
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Figure 3.15: Time-delay estimation error in meters for L = 4.

The ProKRaft approach has failed and presents performance worst than all other ap-
proaches.
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Figure 3.16: Time-delay estimation error in meters for L = 4, HOE+FBA+ESPS, ProKRaft,
and SECSI omitted.

Again the time-delay estimation performance for the parametric approach has become
worse, though it consistently retains a bell-like curve. The other algebraic approaches have
maintained a more performance under this scenario.

3.5.4.2 Reconstruction error performance

In Figure 3.9, reconstruction error performance is shown for all approaches, for L = 3.
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Figure 3.17: Relative reconstruction error for L = 3.

The HOE+FBA+ESPS and ProKRaft approaches still retain the worst reconstruction per-
formances.

In Figure 3.10, the (Lr, Lr, 1) construction, HOE+FBA+ESPS, ProKRaft, and SECSI
approaches have been omitted.
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Figure 3.18: Relative reconstruction error for L = 3, (Lr, Lr, 1) construction,
HOE+FBA+ESPS, and ProKRaft omitted.

The lack of correlation between reconstruction and time-delay estimation performance
still stands. The reconstruction error has also increased for the (Lr, Lr, 1)-GEVD (dual)
approach but this did not impact time-delay estimation performance. Notably, the DoA/KRF
has the worst performance but its curve is not bell-shaped.

In Figure 3.11, reconstruction error performance is shown for all approaches, for L = 4.
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Figure 3.19: Relative reconstruction error for L = 4.

Again reconstruction performance for the (Lr, Lr, 1)-GEVD (dual) approach has been
impacted without affecting time-delay estimation performance.

In Figure 3.12, the (Lr, Lr, 1) construction, HOE+FBA+ESPS, ProKRaft, and SECSI
approaches have been omitted.
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Figure 3.20: Relative reconstruction error for L = 4, (Lr, Lr, 1) construction,
HOE+FBA+ESPS, and ProKRaft omitted.

Reconstruction error for the (Lr, Lr, 1)-GEVD (dual) approach has become even greater
than for DoA/KRF, yet is is not impacted as significantly.
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Chapter 4

Tensor-Based Time-Delay Estimation
with Adaptive Processing

In this chapter, adaptive processing is considered. The data model is reinterpreted looking
at a scenario in which the factor matrices can change from an epoch to another and processing
occurs per-epoch instead of all at once (batch).

While it is convenient to process a large amount of data in batch mode, it is computation-
ally demanding and is poorly-adapted to scenarios in which data is continuously received,
so-called on-line applications. A well-known solution to processing data in an on-line appli-
cation is to adaptively estimate the subspace(s) of the incoming data.

A class of RLS filters solve this problem by iteratively minimizing the error between
the input vector x[k], at instant k, and the filter’s output for an estimated subspace Û[k].
Figure 4.1 shows the general RLS filter updating estimates of the signal subspace Û[k] given
an input vector x[n].

One of the most popular algorithms for subspace estimation is projection approximation
subspace tracking (PAST) [76], which treats estimation of the signal subspace as the solution
to an unconstrained minimization problem in which the the incoming data and its projection
[77] are (assumed to be) approximately equal. This results in a low-complexity (O

(
nr
)

for
an input vector of length n and model order r) algorithm with tracking capability comparable
to batch eigenvalue decomposition [78], or iterative singular value decomposition (iSVD),
of complexity O

(
n3
)
.

PAST has been employed for 1-D harmonic retrieval [77], and has also been extended
to the tensor case [79, 80] for R-D harmonic retrieval [81]. Other subspace tracking (ST)
algorithms include fast approximate power iteration (FAPI) [82] and generalized yet another
subspace tracker (GYAST) [83, 84], both have complexity O

(
nr
)
. The pseudocode for all

four algorithms, iSVD, PAST, FAPI, and GYAST are found in Appendix C.
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Figure 4.1: General RLS filter with input x[k].

4.1 Time-Varying Data Model

The previously presented post-correlation data model is

Y = I3,L ×1 A×2 Γ×3 C̃ + Ñ , (4.1)

with fixed parameters DoA (azimuth) φ ∈ RL for the array response matrix A ∈ CM×L,
absolute magnitude |γ| ∈ RL for complex amplitude matrix Γ ∈ CK×L, and time-delay
τ ∈ RL for PRS matrix C ∈ CN×L (and C̃ ∈ CQ×L). This assumes a scenario in which the
factor matrices do not change, or changes only slightly, during the sampling period.

Reinterpreting this data model as a second mode concatenation [85] of several temporal
slices across all K epochs,

Y = [Y [1] t2 Y [2] t2 . . . t2 Y [k] t2 . . . t2 Y [K − 1] t2 Y [K]] , (4.2)

where Y [k] is

Y [k] = I3,L ×1 A[k]×2 Γ(k, ·)×3 C̃[k] + Ñ (·, k, ·) ∈ CM×1×Q. (4.3)

Considering a change in the array response matrix or the PRS matrix at the k-th period
and using the more compact notation Γ(k, ·) = Γ[k] ∈ C1×L and Ñ (·, k, ·) = Ñ [k] ∈
CM×1×Q, the above becomes

Y [k] = I3,L ×1 A[k]×2 Γ[k]×3 C̃[k] + Ñ [k], (4.4)

and the parameters representing all L signal components at all K possible epochs are the
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matrices

Φ =
[
φ[1] · · · φ[K]

]T
∈ RK×L, (4.5)

|Γ| =
[
|γ[1]| · · · |γ[K]|

]T
∈ RK×L, (4.6)

Θ =
[
τ [1] · · · τ [K]

]T
∈ RK×L, (4.7)

of note is that the absolute amplitude parameter matrix, |Γ|, is the absolute value of the
complex amplitude factor matrix itself. Thus, the complex amplitude factor matrix is its own
parameter matrix.

4.2 Proposed Tensor-Based Adaptive Processing Time-
Delay Estimation

To adaptively process an input tensor under changing conditions, ST is employed to
iteratively estimate the signal subspaces of the data tensor at each sampling epoch k. A
HOE-based approach is described in section 4.2.1, while a parametric approach is described
in section 4.2.2.

For the sake of convenience, the second and third modes of Y [k] are permuted, so the
singleton dimension remains in the last mode, thus Y [k] ∈ CM×Q×1.

4.2.1 Subspace Tracking HOE+EFBA+ESPS

The Subspace Tracking HOE+EFBA+ESPS (ST-HOE+EFBA+ESPS ) approach to adap-
tive time-delay estimation takes data Y [k] ∈ CM×Q at each epoch and extends it dimen-
sionally by applying expanded forward-backward averaging (EFBA) and ESPS to add more
dimensions to the data. Similarly to HOE used previously [15], only the dominant singular
vectors are tracked, thus eschewing the necessity of having prior knowledge of the model
order.

The ST-HOE+EFBA+ESPS TDE update is shown in Algorithm 4, and the whole algo-
rithm is shown in Algorithm 5. The function titled “Subspace Tracking update” represents
the application of a subspace tracking algorithm, which can be via iSVD, PAST, FAPI or
GYAST.

4.2.2 Subspace Tracking DoA

Performing adaptive time-delay estimation using DoA estimation (ST-DoA) only re-
quires tracking the first-mode subspace of Y [k].
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Algorithm 4 ST-HOE+EFBA+ESPS update
Input: Y [k] ∈ CM×Q×1, number of subarrays (Ls), previous subspace vectors û1[k − 1] ∈
CMs , û2[k− 1] ∈ C2, and û3[k− 1] ∈ CLs , previous eigenvalues vector λ̂[k − 1] =

[
λ̂1[k−

1], λ̂2[k − 1], λ̂3[k − 1],
]T ∈ R3, and forgetting factor 0 < β ≤ 1.

Output: estimated time-delay τLOS.
1: Apply EFBA and ESPS to Y [k]
2: for m = 1 to 3 do
3: function SUBSPACE TRACKING UPDATE(

[
Ỹ [k]

]
(n)

, ûn[k − 1], λ̂n[k − 1], β)

4: return ûn[k], λ̂n[k]
5: end function
6: end for
7: Calculate auto-correlation vector

q[k] = |Y [k]×1 û1[k]×2 û2[k]×3 û3[k]| (4.8)

and apply cubic spline interpolation to estimate the time-delay.

Algorithm 5 ST-HOE+FBA+SPS
Input: Y =

[
Y [1]t3 . . .t3Y [K]

]
, number of subarrays Ls, and forgetting factor 0 < β ≤ 1.

Output: estimated time-delays τLOS =
[
τLOS[1], . . . , τLOS[K]

]
∈ RK .

1: Initialize subspace vectors

û1[0] = eMs , û2[0] = e2, û3[0] = eLs .

2: Initialize eigenvalues

λ̂[0] = 13.

3: for k = 1 to K do
4: function ST-HOE+FBA+SPS UPD.(Y [k], ûn[k − 1] for n = 1, . . . , 3, λ̂[k − 1])
5: return τLOS[k], ûn[k] for n = 1, . . . , 3, λ̂[k]
6: end function
7: end for
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The ST-DoA/KRF update algorithm is shown in Algorithm 6, while the whole algorithm
is shown in Algorithm 7.

Algorithm 6 ST-DoA update
Input: Y =

[
Y [1], . . . ,Y [K]

]
∈ CM×K×Q, and forgetting factor 0 < β ≤ 1.

Output: estimated time-delay τLOS.
1: Update subspace estimate
2: function SUBSPACE TRACKING UPDATE(

[
Ỹ [k]

]
(1)

, Û[k − 1], P̂[k − 1], β)

3: return Û[k], P̂n[k]
4: end function
5: Estimate spatial frequencies

Ψ =
(
J1 · Û[k]

)†
J2 · Û[k] = T ·Φ ·T−1,

µ̂ = ∠ diag {Φ} .

6: Rebuild array response matrix using estimated spatial frequencies µ̂.
7: Estimate code factor matrix

ˆ̃C[k] = [Y [k]](2) ·
(
Â[k]T

)†
8: Finish correlation

q[k] = VΣ · ˆ̃C[k](·, sLOS).

9: Apply cubic spline interpolation to estimate time-delay.

4.3 Numerical Simulation Results

As in previous sections, a 1000 realization Monte Carlo simulation is performed to
measure time-delay estimation performance. Learning rate βiSVD = 0.95, βPAST = 0.75,
βFAPI = 0.75, and βGYAST = 0.75 were used.

A benchmark method, with known A has been added for comparison. At each k-th epoch
the PRS code factor matrix is estimated

ˆ̃C[k]Known = [Y [k]](3)

(
A[k]T

)†
. (4.9)

Results are in terms of mean absolute error (MAE) multiplied by the speed of light. For
I Monte Carlo realization, the MAE is

MAE = c · 1

I

I∑
i=1

|τLOS − τ̂LOS| . (4.10)

74



Algorithm 7 ST-DoA
Input: Y =

[
Y [1]t3 . . .t3Y [K]

]
, number of subarrays Ls, and forgetting factor 0 < β ≤ 1.

Output: estimated time-delays τLOS =
[
τLOS[1], . . . , τLOS[K]

]
∈ RK .

1: Initialize subspace estimate

Û[0] = IM×L.

2: Initialize covariance matrix

P̂[0] = IL.

3: for k = 1 to K do
4: function ST-DOA UPD.(Y [k], Û[k − 1], P̂[k − 1])
5: return τLOS[k], Û[k], P̂[k].
6: end function
7: end for

4.3.1 Static simulation

Adaptive processing under a static scenario with the same simulation parameters used
in previous numerical simulations. Unlike previous simulations, each figure is for a given
LOS-NLOS delay difference of ∆τ and the x-axis is temporal. Simulations were performed
for L = 2 and L = 3. A forgetting factor of β = 0.97 was used.

4.3.1.1 Static simulation, L = 2

In Figures 4.2 to 4.11 time-delay estimation performance is shown for ∆T/Tc from 0.1

to 1.0 for L = 2 (1 LOS component, 1 NLOS component).
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Figure 4.2: Time-delay estimation error in meters for L = 2, ∆τ = 0.1Tc.

In Figure 4.2 the performance of the eigenfiltering approaches not only outperforms fil-
tering with prior knowledge of the factor matrix A, they also outperform the parametric
approaches with the exception of iSVD-DoA. Since iSVD directly estimates the covariance
matrix and uses this to calculate the subspace via eigendecomposition, subspace estimation
is especially precise and this behavior is consistent for other ∆τ .
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Figure 4.3: Time-delay estimation error in meters for L = 2, ∆τ = 0.2Tc.

In Figure 4.3 we have increased separation between LOS and NLOS components, con-
sequently the performance of the ST-HOE+EFBA+ESPS approaches has started to de-
crease and the performance of the ST-DoA approaches improved. In the case of iSVD-
HOE+EFBA+ESPS, it becomes less consistent with each epoch. This is due to the iSVD
only tracking a rank-1 subspace.
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Figure 4.4: Time-delay estimation error in meters for L = 2, ∆τ = 0.3Tc.

In Figure 4.4, after the first epoch, all parametric approaches outperform the eigenfilter-
based approaches. The iSVD-DoA approach has performance nearing filtering with a priori
knowledge while the other DoA approaches have lesser but consistent performance. The
PAST, FAPI, and GYAST eigenfilter approaches have performance consistent and nearly
matching performance. The iSVD-HOE+EFBA+ESPS approach again diverges with time.
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Figure 4.5: Time-delay estimation error in meters for L = 2, ∆τ = 0.4Tc.

In Figure 4.5 performance for the parametric approaches has remained consistent with
Figure 4.4 while the eigenfilter-based approaches has deteriorated further.
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Figure 4.6: Time-delay estimation error in meters for L = 2, ∆τ = 0.5Tc.

In Figures 4.6 to 4.8 performance for all approaches has remained consistent with Fig-
ure 4.5 with slight increases in performance for the parametric approaches and an increase
for the eigenfiltering approach in Figure 4.8.
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Figure 4.7: Time-delay estimation error in meters for L = 2, ∆τ = 0.6Tc.
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Figure 4.8: Time-delay estimation error in meters for L = 2, ∆τ = 0.7Tc.

In Figures 4.9 to 4.11 performance improves for all approaches with the eigenfiltering
approaches nearly matching the performance of the parametric approaches. In all cases, the
iSVD-HOE+EFBA+ESPS approach increasingly diverges with the passage of time.

82



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

6

7

8

9

10

11

12

13

14

15

16

17

Epoch

M
A

E
(m

)
Known A and Γ

iSVD-HOE+EFBA+ESPS
PAST-HOE+EFBA+ESPS
FAPI-HOE+EFBA+ESPS

GYAST-HOE+EFBA+ESPS
iSVD-DoA
PAST-DoA
FAPI-DoA

GYAST-DoA

Figure 4.9: Time-delay estimation error in meters for L = 2, ∆τ = 0.8Tc.
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Figure 4.10: Time-delay estimation error in meters for L = 2, ∆τ = 0.9Tc.
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Figure 4.11: Time-delay estimation error in meters for L = 2, ∆τ = 1.0Tc.

In all nearly all simulations, the parametric approach outperforms the eigenfiltering ap-
proaches and the rank-1 iSVD subspace tracking causes the eigenfiltering approach to de-
crease in performance with increasing epochs. The exception is in Figure 4.2, where the
LOS and NLOS components are clustered, resulting in a rank-deficient factor matrix.

4.3.1.2 Static simulation, L = 3

In Figures 4.12 to 4.21 time-delay estimation performance is shown for ∆T/Tc from 0.1

to 1.0 for L = 3 (1 LOS components and 2 NLOS components).
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Figure 4.12: Time-delay estimation error in meters for L = 3, ∆τ = 0.1Tc.

In Figure 4.12, where the components are the most clustered, and similarly to the case
where L = 2, the eigenfiltering approaches outperform the parametric approaches and even
filtering with a priori knowledge. The loss in performance due to NLOS clustering is present
for all ∆τ .
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Figure 4.13: Time-delay estimation error in meters for L = 3, ∆τ = 0.2Tc.

In Figures 4.13 to 4.18, similarly to the L = 2 case, there’s a performance decrease as
∆τ increases for the eigenfiltering approaches. The parametric approaches also suffer from
a decrease in performance but the impact is less severe. For ∆τ = 0.7Tc the iSVD-DoA
approach has outperformed the eigenfiltering approaches.
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Figure 4.14: Time-delay estimation error in meters for L = 3, ∆τ = 0.3Tc.
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Figure 4.15: Time-delay estimation error in meters for L = 3, ∆τ = 0.4Tc.
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Figure 4.16: Time-delay estimation error in meters for L = 3, ∆τ = 0.5Tc.
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Figure 4.17: Time-delay estimation error in meters for L = 3, ∆τ = 0.6Tc.
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Figure 4.18: Time-delay estimation error in meters for L = 3, ∆τ = 0.7Tc.
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Figure 4.19: Time-delay estimation error in meters for L = 3, ∆τ = 0.8Tc.

In Figures 4.19 to 4.21, performance improves with increasing ∆τ for the eigenfiltering
approaches, with the iSVD-DoA approach outperforming the eigenfiltering approaches for
∆τ = 0.8Tc and 0.9Tc but not ∆τ = 1.0Tc.
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Figure 4.20: Time-delay estimation error in meters for L = 3, ∆τ = 0.9Tc.
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Figure 4.21: Time-delay estimation error in meters for L = 3, ∆τ = 1.0Tc.

Like the case for L = 2, the eigenfiltering approaches suffer a decrease then increase in
performance as ∆τ increases, similarly to the bell-shaped performance observed previously
[16]. Again iSVD subspace tracking presents poor performance when tracking a rank-1
subspace.

In all cases the clustered NLOS components cause a rank deficiency that negatively im-
pacts performance for nearly all approaches for all ∆τ , the exception being when ∆τ =

0.1Tc, where all components are clustered, thus resembling the rank-1 case.
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Chapter 5

Tensor-Based Time-Delay Estimation via
Sequentially Truncated Subspace
Tracking

In this chapter we propose adaptive tensor-based schemes for time-delay estimation using
different subspace tracking algorithms and a sequential truncation strategy. The data model
is extended to an uniform rectangular array considering a dynamic scenario.

We propose three tensor-based adaptive processing schemes for GNSS third-order tensor
stream. All utilize a truncation strategy [18] applied to subspace tracking to reduce the
amount of data that needs to be processed for each mode.

The first is a modification of the HOE with EFBA and ESPS. Rank-1 subspace tracking
is performed iteratively by unfolding each mode and applying the n-mode product of the
conjugate transpose (Hermitian) of the estimated subspace vector to compress the data before
proceeding to the next mode.

The second is based on the variant canonical polyadic decomposition via generalized
eigenvalue decomposition using both left and right eigenvector matrices. Subspace tracking
is performed iteratively by unfolding each mode n-mode product of the conjugate transpose
(Hermitian) of the estimated subspace to compress the data before proceeding to the next
mode.

The third is based on subspace tracking via Kronecker-structured projections [79, 81] to
estimate the improved signal subspace used in standard tensor ESPRIT [86] with a sequential
truncation strategy to compress the amount of data for each mode.

All three proposed schemes are tested using four subspace tracking algorithms, iSVD,
PAST, FAPI, and GYAST. The iSVD subspace tracking is used as a baseline.
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5.1 Fourth-order Time-Varying Data Model

The data model considered is similar to the data model in Chapter 4 but for a uniform
rectangular array (URA) with array response matrices Ax[k] ∈ CMx×L and Ay[k] ∈ CMy×L

and complex amplitude in the last mode.

Both array response matrices have direction of arrival parameters azimuth θ[k] ∈ RL and
elevation φ[k] ∈ RL. Their respective spatial frequency vectors are

µx[k] = 2π · ∆x

λ
cosθ[k]� sinφ[k] ∈ RL, (5.1)

µy[k] = 2π · ∆y

λ
sinθ[k]� sinφ[k] ∈ RL, (5.2)

and assuming a perfectly calibrated array (∆x = ∆y = λ/2) we have

µx[k] = π · cosθ[k]� sinφ[k] ∈ RL, (5.3)

µy[k] = π · sinθ[k]� sinφ[k] ∈ RL. (5.4)

The complex amplitude matrix is placed in the last mode to not leave any singleton
dimension in the first three modes

Y [k] = I4,L ×1 Ax[k]×2 Ay[k]×3 C̃[k]×4 Γ(k, ·) + Ñ (·, ·, ·, k), (5.5)

= I4,L ×1 Ax[k]×2 Ay[k]×3 C̃[k]×4 Γ[k] + Ñ [k] ∈ CMx×My×Q×1. (5.6)

5.2 Proposed Sequentially Truncated Subspace Tracked
Higher-Order Eigenfilter for Time-delay Estimation
(ST-ST-HOE)

The proposed approach begins by applying pre-processing to the received data tensor
Y [k]. EFBA is performed by concatenating in the fourth mode the data tensor with the n-
mode product of the conjugate of the data tensor and the corresponding exchange matrix in
each mode,

Y [k]EFBA =
[
Y [k] t4 Y [k]∗ ×1 ΠMx ×2 ΠMy

]
∈ CMx×My×Q×2, (5.7)

and permuting the last two dimensions, resulting in Y [k]EFBA ∈ CMx×My×2×Q.

For expanded SPS, the number of subarrays, Ls, for both array response matrices has to
be the same. Thus, for M =

[
Mx,My

]T, the number of subarrays, Ms =
[
M

(s)
x ,M

(s)
y

]T is

Ms = M− Ls + 1. (5.8)
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Expanded SPS is performed by concatenating in the fifth mode the data tensor with the
Ls n-mode products of the data tensor and corresponding exchange matrices in each mode
and subarray,

Y [k]EFBA+ESPS =
[
Y [k]EFBA t5 Y [k]EFBA ×1 J

M
(s)
x ,1
×2 J

M
(s)
y ,1
t5 · · ·

· · · t5 Y [k]EFBA ×1 J
M

(s)
x ,Ls

×2 J
M

(s)
y ,Ls

]
∈ CM

(s)
x ×M

(s)
x ×2×Q×Ls , (5.9)

and again permuting the last two dimensions, resulting inY [k]EFBA+ESPS ∈ CMx×My×2×Ls×Q.

The higher-order eigenfilter at each k-th iteration is updated by iterating from the first to
the fourth mode, estimating the rank-1 subspace vector of the mode unfolding via ST, then
performing the corresponding n-mode product of the conjugate transpose of the subspace
vector.

We initialize this process by copying the data in Y [k]EFBA+ESPS in Ỹ [k]. Starting with the
first mode, we estimate the subspace vector using a subspace tracking function1 S.T. (·)2.
The estimated subspace vector is used to compress the data in Ỹ [k]

Ỹ [k]← Y [k]EFBA+ESPS ∈ CM
(s)
x ×M

(s)
y ×2×Ls×Q, (5.10)

û1[k] = S.T.

([
Ỹ [k]

]
(1)

)
∈ CM

(s)
x , (5.11)

Ỹ [k]← Ỹ [k]×1 û1[k]H ∈ C1×M(s)
y ×2×Ls×Q, (5.12)

we then continue this estimate subspace vector and compress process with the second mode,

û2[k] = S.T.

([
Ỹ [k]

]
(2)

)
∈ CM

(s)
y , (5.13)

Ỹ [k]← Ỹ [k]×2 û2[k]H ∈ C1×1×2×Ls×Q, (5.14)

then the third mode,

û3[k] = S.T.

([
Ỹ [k]

]
(3)

)
∈ C2, (5.15)

Ỹ [k]← Ỹ [k]×3 û3[k]H ∈ C1×1×1×Ls×Q, (5.16)

and finally the fourth mode,

û4[k] = S.T.

([
Ỹ [k]

]
(4)

)
∈ CLs , (5.17)

Ỹ [k]← Ỹ [k]×4 û4[k]H ∈ C1×1×1×1×Q. (5.18)

The auto-correlation vector is calculated by discarding the singleton dimensions of

1Each mode’s corresponding eigenvalue is also updated but is omitted here for brevity.
2Subspace tracking algorithms can be found in Appendix C.
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eq. (5.18) (squeeze in MATLAB) by applying a vectorization operator, completing the
correlation, and taking the absolute value

q[k] =
∣∣∣VΣ · vec

{
Ỹ [k]

}∣∣∣ ∈ RQ, (5.19)

followed by cubic spline interpolation to estimate the LOS time-delay.

The sequentially truncated HOE+FBA+SPS update algorithm at each k-th iteration is
shown in Algorithm 8 and the whole algorithm is shown in Algorithm 9. The block diagram
is shown in Figure 5.1.

Algorithm 8 Sequentially Truncated HOE+FBA+SPS update
Input: Y [k] ∈ CMx×My×Q, number of subarrays Ls, previous subspace vectors û1[k − 1] ∈
CM

(s)
x , û2[k − 1] ∈ CM

(s)
y , û3[k − 1] ∈ C2, and û4[k − 1] ∈ CLs , previous eigenvalues

vector λ̂[k − 1] =
[
λ̂1[k − 1], λ̂2[k − 1], λ̂3[k − 1], λ̂4[k − 1]

]T ∈ R4, and forgetting factor
0 < β ≤ 1.
Output: estimated time-delay τLOS[k], updated subspace vectors û1[k] ∈ CM

(s)
x , û2[k] ∈

CM
(s)
y , û3[k] ∈ C2, and û4[k] ∈ CLs , and updated eigenvalues vector λ̂[k].

1: Apply expanded FBA and SPS to Y [k]
2: Store pre-processed tensor

Ỹ [k]← Y [k]EFBA+ESPS.

3: for n = 1 to 4 do
4: function SUBSPACE TRACKING UPDATE(

[
Ỹ [k]

]
(n)

, ûn[k − 1], λ̂n[k − 1], β)

5: return ûn[k], λ̂n[k]
6: end function
7: Compress tensor data

Ỹ [k]← Ỹ [k]×n ûn[k]H.

8: end for
9: Calculate auto-correlation vector

q[k] =
∣∣∣VΣ · vec

{
Ỹ [k]

}∣∣∣ ∈ RQ,

and apply cubic spline interpolation to estimate time-delay.
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Algorithm 9 Sequentially Truncated HOE+FBA+SPS
Input: Y =

[
Y [1]t4 . . .t4Y [K]

]
, number of subarrays Ls, and forgetting factor 0 < β ≤ 1.

Output: estimated time-delays τLOS =
[
τLOS[1], . . . , τLOS[K]

]
∈ RK .

1: Initialize subspace vectors

û1[0] = e
M

(s)
x
, û2[0] = e

M
(s)
y
, û3[0] = e2, û4[0] = eLs .

2: Initialize eigenvalues

λ̂[0] = 14.

3: for k = 1 to K do
4: function ST-HOE+FBA+SPS UPD.(Y [k], ûn[k − 1] for n = 1, . . . , 4, λ̂[k − 1])
5: return τLOS[k], ûn[k] for n = 1, . . . , 4, λ̂[k]
6: end function
7: end for

Y EFBA+ESPS
Preprocessing

Store
n-mode

unfolding

×n
Subspace
tracking

vec {·}

×VΣ | · |

cubic spline
interpolation τ̂LOS

For n = 1 to 4

Ỹ[k]

[
Ỹ[k]

]
(n)

ûn[k]H

Ỹ[k] ∈ C1×1×1×1×Q

q[k]

Figure 5.1: ST-ST-HOE block diagram.
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5.3 Proposed Sequentially Truncated Core Tensor Estima-
tion Dual Eigenvector Matrix CPD-GEVD for Time-
delay Estimation (ST-CPD)

The proposed approach uses a sequential truncation strategy [18] to estimate the core
tensor used in dual eigenvector CPD-GEVD at each epoch k.

Instead of applying MLSVD to each unfolding, subspace tracking is used to estimate the
subspace, followed by the n-mode product of the tensor data and the conjugate transpose of
the estimated subspace matrix.

We initialize this process by copying Y [k] in Ŝ[k]. Starting with the third mode, we es-
timate the subspace using a subspace tracking.3 The estimated subspace is used to compress
the data in Ŝ[k]

Ŝ[k]← Y [k] ∈ CMx×My×Q, (5.20)

Û3[k] = S.T.

([
Ŝ[k]

]
(3)

)
∈ CMx×L, (5.21)

Ŝ[k]← Ŝ[k]×3 Û3[k]H ∈ CMx×My×L, (5.22)

we then continue the process of subspace and core estimation,

Û2[k] = S.T.

([
Ŝ[k]

]
(2)

)
∈ CMy×L, (5.23)

Ŝ[k]← Ŝ[k]×2 Û2[k]H ∈ CMx×L×L, (5.24)

and finally the first mode,

Û1[k] = S.T.

([
Ŝ[k]

]
(1)

)
∈ CMx×L, (5.25)

Ŝ[k]← Ŝ[k]×1 Û1[k]H ∈ CL×L×L, (5.26)

and the core tensor is estimated.

As seen in Section 2.3.2, applying the generalized eigenvalue decomposition to the ma-
trix pencil formed by the first two slices of the estimated core tensor allows estimation of the
transformation matrices of the corresponding subspaces.

The correlated code factor matrix is estimated

ˆ̃C[k] = Û3[k] · T̂3[k], (5.27)

3Each mode’s corresponding covariance matrix is also updated but is omitted here for brevity.
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and the auto-correlation vector is estimated

q[k] =
∣∣∣VΣ · ˆ̃C[k](·, sLOS)

∣∣∣ , (5.28)

followed by cubic spline interpolation to estimate the time-delay.

The sequentially truncated core tensor estimation dual eigenvector matrix CPD-GEVD
for time-delay estimation update algorithm is shown in Algorithm 10 and the whole algo-
rithm is shown in Algorithm 11. The block diagram is shown in Figure 5.2.

Y Store
n-mode

unfolding

×n
Subspace
tracking

CPD-
GEVD

LOS
selection

×VΣ
cubic spline
interpolation τ̂LOS

For n = 3 to 1

Ŝ[k]

[
Ŝ[k]

]
(n)

Ûn[k]H

Ŝ[k] ∈ CL×L×L

Figure 5.2: ST-CPD block diagram.

5.4 Proposed Sequentially Truncated TeTraKron and Ten-
sor ESPRIT (ST-TTK)

The proposed approach utilizes a truncation strategy to estimate the improved signal
subspace [86] without using the core tensor by using the estimated subspaces as projection
matrices [79, 81].

5.4.1 Tensor subspace tracking via Kronecker structured projections

Consider a linear mixture of D sources superimposed by additive noise

X = A · ST + N ∈ CM×N . (5.29)
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Algorithm 10 Sequential Truncated CPD-GEVD2 update

Input: Y [k] ∈ CMx×My×Q, previous subspace matrices Û1[k − 1] ∈ CMx×L, Û2[k − 1] ∈
CMy×L, and Û3[k−1] ∈ CQ×L, previous covariance matrices R̂1[k−1] ∈ CL×L, R̂2[k−1] ∈
CL×L, and R̂3[k − 1] ∈ CL×L, and forgetting factor 0 < β ≤ 1.
Output: estimated time-delay τLOS[k], updated subspace matrices Û1[k] ∈ CMx×L, Û2[k] ∈
CMy×L, and Û3[k] ∈ CQ×L, and updated covariance matrices R̂1[k], R̂2[k], and R̂3[k].

1: Store tensor

Ŝ[k] = Y [k].

2: for n = 3 to 1 do
3: function SUBSPACE TRACKING UPDATE(

[
Ŝ[k]

]
(n)

, Ûn[k − 1], R̂n[k − 1], β)

4: return Ûn[k], R̂n[k].
5: end function
6: Compress core tensor

Ŝ[k] = Ŝ[k]×n Ûn[k]H.

7: end for
8: Apply GEVD to the matrix pencil formed by the first two slices of Ŝ[k], S1 =
Ŝ[k](·, ·, 1) and S2 = Ŝ[k](·, ·, 2), to calculate left- and right-hand generalized eigen-
vector matrices

LH · S1 = D · LH · S2, S1 ·R = S2 ·R ·D.

9: Estimate transformation matrices

T̂1 = L−H, T̂2 = R−T,

T̂3 =
[
Ŝ[k]

]
(3)

((
T̂1 � T̂2

)T
)†
.

10: Estimate code factor matrix

ˆ̃C[k] = Û3[k] · T̂3.

11: Complete the auto-correlation

q[k] =
∣∣∣VΣ · ˆ̃C[k](·, sLOS)

∣∣∣ ,
and apply cubic spline interpolation to estimate time-delay.
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Algorithm 11 Sequential Truncated CPD-GEVD2
Input: Y =

[
Y [1] t4 . . . t4 Y [K]

]
, and forgetting factor 0 < β ≤ 1.

Output: estimated time-delays τLOS =
[
τLOS[1], . . . , τLOS[K]

]
∈ RK .

1: Initialize subspace matrices

Û1[0] = IMx×L, Û2[0] = IMy×L, Û3[0] = IQ×L.

2: Initialize covariance matrices

R̂1[0] = IL, R̂2[0] = IL, R̂3[0] = IL.

3: for k = 1 to K do
4: function ST-CPD-GEVD2 UPD.(Y [k], Ûn[k − 1] and R̂n[k − 1] for n = 1, 2, 3)
5: return τLOS[k], Ûn[k] and R̂n[k] for n = 1, 2, 3.
6: end function
7: end for

X ∈ CM×N is the observations matrix from M channels during N time samples. A ∈
CM×D is the (unknown) mixing matrix, S ∈ CN×D contains the (unknown) source symbols,
and N ∈ CM×N is additive noise.

X can be approximated by a low-rank approximation (LRA) via SVD

X ≈ ÛS · Σ̂S · V̂H
S (5.30)

with ÛS ∈ CM×D, Σ̂S ∈ CD×D, and V̂S ∈ CN×D.

Since span
(
ÛS

)
= span (A) there exists non-singular matrix T ∈ CD×D such that

A = ÛS ·T and ÛS can be used as a signal subspace estimate.

Arranging the elements of X ∈ CM×N into aR+1 order tensorX ∈ CM1×M2×...×MR×N ,
with M =

∏
rMr,

X = A×R+1 S +N , (5.31)

whereA ∈ CM1×...×MR×D is the mixing tensor andN ∈ CM1×...×MR×N is the noise tensor.
Equation (5.29) and eq. (5.31) are linked by the following relations

[X ]T(R+1) = X, (5.32)

[A]T(R+1) = A, (5.33)

[N ]T(R+1) = N. (5.34)

An improved signal subspace estimate can be computed by finding Û such that A =
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Û ·T. This can be achieved via the LMLRA

X ≈ Ŝ ×R+1
r=1 Ûr = Û ×R+1 ÛR+1, (5.35)

thus, Û = Ŝ ×Rr=1 Ûr.

Equation (5.35) suggests the core tensor is necessary to track the improved signal sub-
space estimate. Consider the definition of the core tensor

Ŝ = X ×R+1
n=1 ÛH

r , (5.36)

and replacing it in eq. (5.35) we have

Û = X ×R+1
r=1 ÛH

r ×Rr=1 Ûr, (5.37)

= X ×Rr=1 ÛrÛ
H
r ×R+1 ÛH

R+1, (5.38)

We can interpret P̂r = ÛrÛ
H
r as a projection matrix which projects onto the space

spanned by the r-mode vectors [87] and we rewrite the above as

Û = X ×Rr=1 P̂r ×R+1 ÛH
R+1. (5.39)

We can exploit the relation [X ]T(R+1) = X by considering the transpose of the R + 1

mode unfolding of Û [
Û
]T

(R+1)
=
[
X ×Rr=1 P̂r ×R+1 ÛH

R+1

]T

(R+1)
, (5.40)

=

(
R
⊗
r=1

P̂r

)
[X ]T(R+1)

(
ÛH
R+1

)T
, (5.41)

=

(
R
⊗
r=1

P̂r

)
X · Û∗R+1, (5.42)

=

(
R
⊗
r=1

P̂r

)
ÛS · Σ̂S · V̂H

S · Û∗R+1, (5.43)

and since

[X ]T(R+1) =
[
Û ×R+1 ÛR+1

]T

(R+1)
= X, (5.44)

=
[
Û
]T

(R+1)
ÛT
R+1 = ÛS · Σ̂S · V̂H

S , (5.45)

therefore Û∗R+1 = V̂S and

[
Û
]T

(R+1)
=

(
R
⊗
r=1

P̂r

)
ÛS · Σ̂S. (5.46)

105



Since Σ̂S is merely a scaling factor, we can forego it [81] and[
Û
]T

(R+1)
=

(
R
⊗
r=1

P̂r

)
ÛS, (5.47)

is the improved signal subspace estimate calculated using Kronecker structured projections
instead of estimating the core tensor, reducing computational complexity.

Further reduction in complexity is achieved considering the fact that(
R
⊗
r=1

P̂r

)
=

(
R
⊗
r=1

Ûr · ÛH
r

)
, (5.48)

=

(
R
⊗
r=1

Ûr

)(
R
⊗
r=1

ÛH
r

)
, (5.49)

=

(
R
⊗
r=1

Ûr

)(
R
⊗
r=1

Ûr

)H

, (5.50)

thus (⊗Rr=1 Ûr) is only calculated once and the improved signal subspace estimate is

[
Û
]T

(R+1)
=

(
R
⊗
r=1

Ûr

)(
R
⊗
r=1

Ûr

)H

ÛS. (5.51)

5.4.2 Sequentially truncated TeTraKron

The sequentially truncated TeTraKron algorithm uses the sequential truncation strategy
presented previously to reduce computational complexity of subspace tracking by compress-
ing the amount of data used by subspace tracking algorithm and estimating the improved
signal subspace estimate.

For the data model in eq. (5.6), we have R = 2. We proceed in a similar fashion to
sequentially truncated core tensor estimation in Section 5.3.

We begin by storing the original tensor data in S[k]. Starting with the third mode, we es-
timate the subspace using subspace tracking. The estimate subspace is then used to compress
the data in Ŝ[k]

Ỹ [k] = Y [k] ∈ CMx×My×Q, (5.52)

Û3[k] = S.T.

([
Ŝ[k]

]
(3)

)
∈ CQ×L, (5.53)

Ŝ[k] = Ŝ[k]×3 Û3[k]H ∈ CMx×My×L, (5.54)

we continue with the second mode, estimating the subspace and compressing the data,

Û2[k] = S.T.

([
Ŝ[k]

]
(2)

)
∈ CMy×L, (5.55)

Ŝ[k] = Ŝ[k]×2 Û2[k]H ∈ CMx×L×L, (5.56)
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and finally estimate the subspace of the first mode,

Û1[k] = S.T.

([
Ŝ[k]

]
(2)

)
∈ CMx×L. (5.57)

To calculate the improved signal subspace estimate, we can take advantage of the fact
that

[Y [k]]T(3) = ÛS[k] · Σ̂S[k] · V̂S[k]H, (5.58)

and Û3[k]∗ = V̂S[k], thus

[Y [k]]T(3) · Û3[k]∗ = ÛS[k] · Σ̂S[k] · V̂S[k]H · V̂S[k], (5.59)

= ÛS[k] · Σ̂S[k], (5.60)

and we have an improved signal subspace estimate similar to eq. (5.46) without computing
ÛS[k],[

Û
]T

(3)
=
(
Û1[k]⊗ Û2[k]

)(
Û1[k]⊗ Û2[k]

)H
[Y [k]]T(3) · Û3[k]∗ ∈ CM×L. (5.61)

The improved signal subspace estimate is used by a tensor ESPRIT [86] to estimate the
spatial frequencies of Ax[k] and Ay[k].

Rebuilding Ax[k] and Ay[k], we estimate the correlated code factor matrix

ˆ̃C[k] = [Y [k]](3)

((
Âx[k] � Ây[k]

)T
)†
. (5.62)

The auto-correlation vector is then calculated

q[k] =
∣∣∣VΣ · ˆ̃C[k](·, sLOS)

∣∣∣ , (5.63)

followed by cubic spline interpolation to estimate the time-delay.

The sequentially truncated TeTraKron and tensor ESPRIT for time-delay estimation up-
date algorithm is shown in Algorithm 12 and the whole algorithm is shown in Algorithm 13.
The block diagram is shown in Figure 5.3.
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Algorithm 12 Sequential Truncated TeTraKron Tensor ESPRIT update

Input: Y [k] ∈ CMx×My×Q, previous subspace matrices Û1[k − 1] ∈ CMx×L, Û2[k − 1] ∈
CMy×L, and Û3[k−1] ∈ CQ×L, previous covariance matrices R̂1[k−1] ∈ CL×L, R̂2[k−1] ∈
CL×L, and R̂3[k − 1] ∈ CL×L, and forgetting factor 0 < β ≤ 1.
Output: estimated time-delay τLOS[k], updated subspace matrices Û1[k] ∈ CMx×L, Û2[k] ∈
CMy×L, and Û3[k] ∈ CQ×L, and updated covariance matrices R̂1[k], R̂2[k], and R̂3[k].

1: Store original tensor

Ŝ[k] = Y [k].

2: for n = 3 to 2 do
3: function SUBSPACE TRACKING UPDATE(

[
Ỹ [k]

]
(n)

, Ûn[k − 1], R̂n[k − 1], β)

4: return Ûn[k], R̂n[k]
5: end function
6: Compress data

Ŝ[k] = Ŝ[k]×n ÛH
n .

7: end for
8: function SUBSPACE TRACKING UPDATE(

[
Ỹ [k]

]
(1)

, Û1[k − 1], R̂1[k − 1], β)

9: return Û1[k], R̂1[k]
10: end function
11: Calculate improved signal subspace estimate[

Û
]T

(3)
=
(
Û1[k]⊗ Û2[k]

)(
Û1[k]⊗ Û2[k]

)H
[Y [k]]T(3) · Û3[k]∗ ∈ CM×L.

12: Apply tensor ESPRIT to estimate the spatial frequencies of the array response matrices.
13: Rebuild array response matrices Âx[k] and Ây[k].
14: Estimate code factor matrix

ˆ̃C[k] = [Y [k]](3)

((
Âx[k] � Ây[k]

)T
)†
.

15: Complete the auto-correlation

q[k] =
∣∣∣VΣ · ˆ̃C[k](·, sLOS)

∣∣∣ ,
and apply cubic spline interpolation to estimate time-delay.
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Algorithm 13 Sequential Truncated TeTraKron Tensor ESPRIT
Input: Y =

[
Y [1] t4 . . . t4 Y [K]

]
, and forgetting factor 0 < β ≤ 1.

Output: estimated time-delays τLOS =
[
τLOS[1], . . . , τLOS[K]

]
∈ RK .

1: Initialize subspace matrices

Û1[0] = IMx×L, Û2[0] = IMy×L, Û3[0] = IQ×L.

2: Initialize covariance matrices

R̂1[0] = IL, R̂2[0] = IL, R̂3[0] = IL.

3: for k = 1 to K do
4: function ST-TTK UPD.(Y [k], Ûn[k − 1] and R̂n[k − 1] for n = 1, 2, 3)
5: return τLOS[k], Ûn[k] and R̂n[k] for n = 1, 2, 3
6: end function
7: end for

Y Store
n-mode

unfolding

×n
Subspace
tracking

Subspace
store

TeTraKron[ · ](3)

Tensor
ESPRIT

(·)†

�×

×VΣ
cubic spline
interpolation τ̂LOS

For n = 3 to 1

Ŝ[k]

[
Ŝ[k]

]
(n)

Ûn[k]H

ˆ̃C[k]

Figure 5.3: ST-TTK block diagram.

5.5 Numerical Simulation Results

In this section Monte Carlo simulation is performed to measure time-delay estimation
tracking performance under a static and a dynamic scenario.

A benchmark method which estimates the code factor matrix using assuming known
channel state information has been added for comparison. It simply estimates the PRS code
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factor matrix directly,

C̃[k]Known = [Y [k]](3)

(
(Ax[k] �Ay[k])T

)†
∈ CQ×L, (5.64)

followed by completing the correlation and applying cubic spline interpolation to estimate
the time-delay.

5.5.1 Static scenario

In the static scenario, changes only occur in the phases of the complex amplitude matrix.
Direction of arrival, time-delays, and SNR remain unchanged during the K epochs.

Simulation parameters are similar to previous chapters, the most immediate difference
is the employment of a URA, thus there are two directions of arrival, an azimuth θ, and an
elevation (from the zenith) φ. A 4 × 4 URA is employed and angle separation of π/6 is
enforced between LOS and NLOS signal components.

For the ST-HOE technique expanded FBA and expanded SPS preprocessing was also
employed. Expanded FBA is similar to ESPS [61], in which the increase number of samples
are accumulated in a new dimension.

1000 Monte Carlo realizations were performed. Learning rate βiSVD = 0.85, βPAST =

0.45, βFAPI = 0.65, and βGYAST = 0.85 were used.

Results for ST-HOE are shown in Figure 5.4, for ST-CPD are shown in Figure 5.5, and for
ST-TTK are shown in Figure 5.6. In all figures, results for filtering with a priori knowledge
of the mixing matrices Ax[k] and Ay[k] is included as a baseline.
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Figure 5.4: ST-HOE+EFBA+SPS time-delay estimation error in meters for L = 2, ∆τ =
1.0Tc.

Only ST-HOE+EFBA+ESPS using the costly iterative SVD subspace tracking was able
to achieve consistent results during all epochs. Using the other subspace tracking algorithms
resulted in increased error as the number of epochs increased.
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Figure 5.5: ST-CPD time-delay estimation error in meters for L = 2, ∆τ = 1.0Tc.

ST-CPD results were closer to filtering with a priori knowledge and, in some cases, even
surpassing it. Results are similar, with ST-CPD using PAST showing a small loss relative to
using FAPI and GYAST. Both which tracked closely with using iterative SVD, with a slight
advantage to using GYAST.
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Figure 5.6: ST-TTK time-delay estimation error in meters for L = 2, ∆τ = 1.0Tc.

All ST-TTK using different subspace tracking methods tracked closely with the base-
line. ST-TTK using PAST took 7 epochs to reach the same performance as using the other
subspace tracking methods.

These results are somewhat similar to previous results, in which the parametric approach
(ST-TTK) has better performance than the algebraic approach (ST-CPD), which has better
performance than the eigenfilter approach (ST-HOE).

5.5.2 Dynamic scenario

Under the dynamic scenario, elevation to the satellite decreases (the angle from the hori-
zon increases), and the corresponding changes in directions of arrival, time-delays, and SNR
are simulated as well.
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Figure 5.7: Illustration of dynamic simulation scenario.

For GPS, the maximum elevation possible is φmax = π/3 radians [41] or, equivalently,
π/6 radians above the horizon. The angle α considered from the center of the Earth from the
zenith has a maximum αmax = 0.7706 rad, or 44.1513 deg.

Given a period of half a sidereal day, GPS satellites have an angular velocity of 0.1458×
10−3 rad/s. For an Earth radius Re = 6.37× 106 m and orbit radius Ro = 20.2× 106 m, this
results in a maximum distance dmax to the receiver of 16.247× 106 m.

The simulation parameters are modeled in the following fashion

ω = − 2π

86164/2
= −0.1458× 10−3 rad/s, (5.65)

α[k] = αmax + (k − 1)ω rad, (5.66)

d[k] = R2
e +R2

o − 2 ·Re ·Ro cosα[k] m, (5.67)

τLOS[k] = mod(d[k]/c, Tc)− Tc, (5.68)

PLOS[k] = |γLOS|
(
dmax

d[k]

)2

, (5.69)

PNLOS[k] = |γNLOS|
(
dmax

d[k]

)2

. (5.70)

Because the angular velocity is low most parameter change very smoothly, however even
the slight changes in timing cause the delay to change swiftly as each entire chip period is
shifted. The resulting time-delay is shown in Figure 5.8.
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Figure 5.8: Time-delay for dynamic scenario.

For the ST-HOE technique expanded FBA and expanded SPS preprocessing was also
employed.

1000 Monte Carlo realizations were performed. A forgetting factor β = 0.05 was used.

The results of this simulation can be seen in Figures 5.9 to 5.11, which displays the mean
absolute error (MAE) in meters at each epoch.
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Figure 5.9: Time-delay estimation error in meters for L = 2, ∆τ = 1.0Tc.

ST-HOE performance was consistent for over half the observation period then only re-
sults were more consistent than in the static scenario, where only iterative SVD susbpace
tracking maintains consistent results. These result suggests sequential truncation does not
benefit HOE unless a very robust (if costly) subspace tracking algorithm is employed. This
could also be mitigated by adaptive learning rate or using a different order in which the
estimation then truncation process is performed.
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Figure 5.10: Time-delay estimation error in meters for L = 2, ∆τ = 1.0Tc.

Unlike the static scenario, results were not close to the baseline, but were still consistent
for all subspace tracking methods employed.
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Figure 5.11: Time-delay estimation error in meters for L = 2, ∆τ = 1.0Tc.

The ST-HOE demonstrates the worst performance, and ST-CPD is slightly better. All ST-
TTK approaches demonstrated tracking consistent with having a priori channel information
with the exception of ST-TTK using PAST, which shows a spike in the very beginning before
achieving performance on par with the other subspace tracking algorithms.
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Chapter 6

Conclusion

We have reviewed the state-of-the-art tensor-based time-delay estimation batch process-
ing schemes for lowly correlated scenarios, when L = 2, and considered the case when more
than one multipath component is present, when L > 2, and these multipath components are
clustered.

We modified the data model such that the PRS code factor matrix is the third mode,
thus avoiding rank deficiencies in the first and second modes, and proposed an algebraic
tensor-based time-delay estimation scheme which utilizes CPD-GEVD to estimate the factor
matrices which are used in LOS selection and time-delay estimation. A variant CPD-GEVD
scheme which takes a more balanced approach was also proposed.

Simulations comparing the performance of the state-of-the-art tensor-based time-delay
estimation batch processing under lowly correlated scenarios were performed to compare
performance in terms of RMS time-delay estimation and reconstruction error. Under this
scenario, DoA/KRF showed the most consistent performance in time-delay estimation but
it is matched by SECSI and CPD-GEVD and is outperformed by variant CPD-GEVD as
LOS/NLOS correlation decreases. The variant CPD-GEVD approach has the lowest recon-
struction error performance which suggests it is a good method for algebraic factor matrix
estimation of third-order tensors. When a more realistic scenario is induced by simulating
the effect an imperfect array, in which case DoA/KRF time-delay estimation performance is
impacted even for a very low probability (p = 10−30) of array imperfections exceeding half a
wavelength, while SECSI and both GEVD methods performance remained fairly consistent
and in a few cases showed slight improvement relative to the baseline comparison.

For tensor-based time-delay estimation batch processing schemes for clustered scenarios,
when L > 2, we proposed a data model based on a specific block term decomposition which
allows for rank deficiencies in the PRS factor matrix and proposed a tensor-based time-delay
estimation scheme based on (Lr, Lr−1)-GEVD (and a variant) which algebraically estimates
the factor matrices and utilizes a proposed Euclidean-distance based clustering scheme that
selects the LOS component. The proposed method and its variant has performance on par
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with the variant CPD-GEVD, and like the previously proposed methods, is robust against
array imperfections.

We have presented adaptive processing as an alternative to batch-mode processing which
offers an on-line solution to iteratively process data as it is received at the receiver which has
low complexity. Received data processing is done using both classical direction-of-arrival
estimation techniques to create a filter and tensor techniques which expand the data into
higher dimensions to create a higher-order rank-1 filter. Results for the higher order rank-1
filter were best when both LOS and NLOS components were clustered and thus its factor
matrix was rank deficient, otherwise a performance penalty occurs, this is very apparent
using the iterative SVD rank-1 subspace tracking, which tends to diverge with increasing
number of epochs. The parametric approaches can yield consistent results but requires a few
epochs to correctly track the subspace.

For the fourth-order data mode, where a tensor stream is available, we presented three
approaches, all three employing sequential truncation to reduce the amount of computa-
tions preformed by subspace tracking. While this does not impact the ST-CPD-GEVD2 or
ST-TTK approaches, it does affect the higher-order eigenfilter unless a high-cost subspace
tracking approach is employed. This can possibly be mitigated by simply changing the order
in which subspace estimation and compression occurs. This would require a scheme for se-
lecting the order in which truncation occurs. Another possible approach for mitigation could
be an adaptive forgetting factor. This would dynamically change the learning rate but would
also require some criterion under which is occurs.

6.1 Future works

Future works would include array interpolation to resolve calibration issues with the
array, present under realistic scenarios, and a sliding correlator bank, as is the case with a
delay-locked loop (DLL). Another avenue for future research is that of differential GNSS,
in which measurements under different baselines are combined to reduce propagation errors
and achieve higher accuracy time-delay estimation.

Further studies on different subspace tracking techniques, such as fast data projection
method (FDPM) could reveal more robust approaches to on-line time-delay estimation using
both parametric as well as algebraic approaches, along with studying the result of applying
not only an exponential window as well as a sliding window, and applications using adaptive
learning rates to better accommodate incoming data.
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Appendix A

Signal generator

A.1 Theory

Given a PRS c(t) with bandwidth B Hz, sequence time T s, with Nc = B × T chips (or
equivalently, chip rate, in chips per epoch), chip period Tc = 1/B, and delay τ , its sampled
output using N samples, with oversampling factor F = N/Nc, can be estimated from the
convolution of the pulse function p(t) with the PRS

s(t) = p(t) ∗ c(t− τ). (A.1)

Since it is expensive to calculate the convolution in the temporal domain, the Fourier
transformation can be applied such that

S(f) = P (f)C(f)e−j2πfτ , (A.2)

where P (f) = F {p(t)} and C(f)e−j2πfτ = F {c(t− τ)}.

Followed by conversion back into the temporal domain using the inverse Fourier trans-
formation

s(t) = F -1 {S(f)} = F -1
{
P (f)C(f)e−j2πfτ

}
= F -1 {F {p(t) ∗ c(t− τ)}} . (A.3)

A.2 Implementation

In practice, we’ll be working with discretized values are stored in vectors, such that
eq. (A.1) is expressed as

s = p ∗ c[−τ ] ∈ RN , (A.4)
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and eq. (A.2) is expressed as

sDFT = pDFT � cDFT � exp (−j2πfτ) = pDFT � cDFT � e ∈ CN , (A.5)

where f is the double-sided frequency sampling vector f defined as

f
4
=
[
−B −B + fb −B + 2fb · · · B − 2fb B − fb

]T
∈ RN , (A.6)

where fb is the basis frequency in Hz, for a sampling factor F , is calculated as

fb = F · B
N
. (A.7)

Equation (A.5) is then converted back into the temporal domain discarding any complex
components

s = <
{
F -1 {sDFT}

}
∈ RN . (A.8)

Pulse shape Fourier transform

The sampling vector is used such that the discretized pulse shape Fourier transform is
calculated using the frequency sampling vector f defined previously

pDFT = P (f) ∈ CN . (A.9)

Pseudorandom sequence Fourier transform

The Fourier transform of the PRS can be estimated by repeating the (known) sequence
F times. For F = 2,

cDFT = F
{

vec

{[
c[0] c[0]

]T
}}
∈ CN . (A.10)

Delay exponential

For a single delay τ the exponential vector is calculated using the frequency sampling
vector

e = exp (−j2πfτ) ∈ CN . (A.11)

For L delays in a vector τ =
[
τ1, . . . , τL

]T ∈ RL, an exponential delay matrix can be
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calculated

E = exp
(
−j2πfτ T) ∈ CN×L, (A.12)

in which case we calculate a signal matrix S ∈ RN×L. For this, the Fourier transforms of
both the pulse shape and the PRS have to be repeated across the second dimension L times
such that

CDFT =
[
cDFT · · · cDFT

]
∈ CN×L PDFT =

[
pDFT · · · pDFT

]
∈ CN×L (A.13)

and we calculate

SDFT = PDFT �CDFT � E (A.14)

finally resulting in

S = <
{
F -1 {SDFT}

}
= <

{
F -1 {PDFT �CDFT � E}

}
. (A.15)

A.2.1 GPS C/A Code

Second generation GPS uses C/A codes, also referred to as Gold codes, as spreading
sequences. Gold code generation is described in detail in [45].

This PRS is a known sequence with bandwidth B = 1.023 MHz, sequence time T =

1 ms, and chip rate Nc = 1.023× 106 · 1× 10−3 = 1, 023 chips/epoch. For an oversampling
factor F = 2, we have N = F ·Nc = 2 · 1, 023 = 2, 046 samples/epoch.

Pulse shape The pulse shape is a rectangular pulse shape defined as

p(t) = rect(t) =
1√
Tc

(
U

(
t+

Tc
2

)
− U

(
t− Tc

2

))
, (A.16)

where U(t) denotes the unit step function

U(t) =

0 t < 0

1 t ≥ 1
. (A.17)

This pulse shape has known Fourier transform

P (f) =

√
Tc sin(πfTc)

πfTc
=
√
Tc sinc(fTc), (A.18)
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and pDFT is calculated as

pDFT = P (f) =
√
Tc sinc(Tcf). (A.19)

Correlator bank

The correlator bank is formed by several delayed copies of the (sampled) PRS. Given
equally spaced delays τCB =

[
− Tc,−Tc + ∆T, . . . , Tc − ∆T, Tc

]
∈ RQ with ∆T =

2Tc/(Q− 1), the correlator bank Q is calculated as

Q = <
{
F -1

{
(pDFT � cDFT) 1T

Q � EQ

}}
∈ RN×Q, (A.20)

with EQ = exp
(
−j2πfτ T

Q

)
∈ CN×Q.

To not color the noise when performing correlation, the “thin” SVD is applied to Q to
make it unitary while preserving its information

Q = Q̃ΣVT ∈ RN×Q, (A.21)

with Q̃ ∈ RN×Q.
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Appendix B

Computational cost

B.1 Linear algebra operations

References in [70, 88–90].

Vectors

Given a ∈ CM and b ∈ CN

Operation Example Operations

Addition a + a∗ M

Subtraction b− b∗ N

Multiplication aT · a M2

Multiplication a · aT M2

Multiplication a · bT MN

Kronecker prod. a⊗b MN

Khatri-Rao prod. a � b MN

Outer prod. a ◦ b MN

Square matrices

Given square matrices A,B ∈ CM×M
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Operation Example Operations

Addition A + B M2

Subtraction A−B M2

Hadamard prod. A�B M2

Multiplication A ·B M3

Inversion A−1 M3

EVD A = EDE−1 M3

Generalized EVD
(right)

AR = BDR M3

Generalized EVD
(left)

LHA = DLHB M3

Khatri-Rao prod. A �B M3

Kronecker prod. A⊗B M4

Outer prod. A ◦B M4

Rectangular matrices

Given rectangular matrices A ∈ CM×R and B ∈ CN×R, and M > N > R

Operation Example Operations

Addition A + A∗ MR

Subtraction B−B∗ NR

Multiplication A ·BT MNR

SVD (Full) A = UΣVH MR2 +M2R

SVD (“thin”) A = UΣVH MR2

SVD (“thin”) A = UΣVH MR2

SVD (rank-1) A = usvH MR

Pseudoinverse A† = VΣ−1UH R3 + 2MR2 +R

Khatri-Rao prod. A �B MNR

Kronecker prod. A⊗B MNR2

Outer prod. A ◦B MNR2

LSKRF of A � B (via R
rank-1 SVDs)

bra
T
r = usvH (MN +M +N)R

Given rectangular matrices A ∈ CM×R and B ∈ CN×S

Operation Example Operations

Kronecker prod. A⊗B MNRS

Outer prod. A ◦B MNRS
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B.2 Multilinear algebra operations

Third-order tensors

Given T = JA,B,CKR = I3,R ×1 A×2 B×3 C ∈ CI×J×K

Operation Example Operations

1st-mode prod. I3,R ×1 A IR3

1, 2nd-mode prod. I3,R ×1 A×2 B IR3 + IJR2

1, 2, 3rd-mode prod. T = I3,R ×1 A×2 B×3 C IR3 + IJR2 + IJKR

MLSVD (“full”, no core
estimation)1

T = S ×1 U1 ×2 U2 ×3 U3 (I + J +K)IJK

Core estimation S = T ×1 UH
1 ×2 UH

2 ×3 UH
3 (I + J +K)IJK

MLSVD (trunc., no core es-
timation)

T = S ×1 U1 ×2 U2 ×3 U3 3IJKR2

Core estimation (rank-R)2 S = T ×1 UH
1 ×2 UH

2 ×3 UH
3 KR3 + JKR2 + IJKR

MLSVD (rank-1) T ≈ s(u1 ◦ u2 ◦ u3) 3IJK

Inner product T •3 T ∗ I2J2K

Outer product T ◦ T ∗ (IJK)2

1 It is assumed I < JK, J < IK,K < IJ generally, thus the “thin” SVD is used.
2 Assuming the n-mode product is calculate sequentially from 1 to 3. Note that it is possible
to reduce the number of operations by permuting the largest dimensions to the front of the
tensor, or performing the n-mode product from the largest to smallest mode [18].
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Appendix C

Subspace Tracking Algorithms

This appendix presents the update step of the subspace tracking algorithms used in this
work. They are iterative SVD [91], projection approximation subspace tracking [76,77], fast
approximate power iteration [82], and generalized yet another subspace tracking [84].

C.1 Iterative SVD

Algorithm 14 Iterative SVD update

Input: Input matrix X[k] ∈ CM×N , previous subspace estimate Û[k− 1] ∈ CM×L, previous
eigenvalue estimates λ̂[k − 1] ∈ CL and forgetting factor 0 < β ≤ 1.
Output: Updated subspace estimate Û[k], updated eigenvalue estimates λ̂[k].

1: Reconstruct covariance matrix

Ĉ[k − 1] = Û[k − 1] · dediag
{
λ̂[k − 1]

}
· Û[k − 1]H.

2: Update covariance matrix

Ĉ[k] = β · Ĉ[k − 1] + X[k] ·X[k]H

3: Perform eigendecomposition of the covariance matrix

Ĉ[k] = E ·Λ · EH

4: Truncate the leading eigenvectors and corresponding eigenvalues

Û[k] = Ê(1 : L, ·),

λ̂[k] = diag
{

Λ̂
}
.
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C.2 Projection Approximation Subspace Tracking (PAST)

Algorithm 15 Projection Approximation Subspace Tracking update

Input: Input matrix X[k] ∈ CM×N , previous subspace estimate Û[k− 1] ∈ CM×L, previous
covariance matrix Ĉ[k − 1] ∈ CL×L and forgetting factor 0 < β ≤ 1.
Output: Updated subspace estimate Û[k], updated covariance matrix Ĉ[k] ∈ CL×L λ̂[k].

1: Project the input data using the previous subspace estimate

Y = Û[k − 1]H ·X[k] ∈ CD.

2: Update covariance matrix

Ĉ[k] = β · Ĉ[k − 1] + Y ·YH.

3: Calculate gain matrix.

G = Ĉ[k]−1 ·Y.

4: Calculate projection error

E = X[k]− Û[k − 1] ·Y.

5: Update subspace estimate

Û[k] = Û[k − 1] + E ·G.
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C.3 Fast Approximate Power Iteration (FAPI)

Algorithm 16 Fast Approximate Power Iteration update

Input: Input matrix X[k] ∈ CM×N , previous subspace estimate Û[k− 1] ∈ CM×L, previous
precision matrix P̂[k − 1] ∈ CL×L and forgetting factor 0 < β ≤ 1.
Output: Updated subspace estimate Û[k], updated precision matrix P̂[k] ∈ CL×L.

1: for n = 1 to N do
2: if n = 1 then β′ = β
3: else β′ = 1
4: end if

x(n) = X(·, n) ∈ CM ,

y(n) = Û[k − 1]H · x(n) ∈ CD,

h(n) = P · y(n) ∈ CD,

g(n) =
h(n)

(β′ + y(n)H · h)
∈ CD,

ε(n) =
√
‖x(n)‖2 + ‖y(n)‖2,

τ(n) =
ε(n)2(

1 + ε(n)2 · ‖g(n)‖+
√

1 + ε(n)2 · ‖g(n)‖2
) ,

η(n) = 1− τ(n) · ‖h(n)‖,
y′(n) = η(n) · y(n) + τ · g(n) ∈ CD,

h′(n) = P̂[k − 1]H · y′(n) ∈ CD,

ε(n) =
τ(n)

η(n)
·
(
P̂[k − 1] · g(n)− (h′(n) · g(n)) · gH

)
∈ CD,

P̂[k] =
1

β′

(
P̂[k − 1]− g(n) · h′(n)H + ε(n) · g(n)H

)
∈ CD×D,

e(n) = η · x(n)− Û[k − 1] · y′(n) ∈ CM ,

Û[k] = Û[k − 1] + e(n) · g(n)H ∈ CM×D

5: end for
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C.4 Generalized Yet Another Subspace Tracker (GYAST)

Algorithm 17 Generalized Yet Another Subspace Tracker update

Input: Input matrix X[k] ∈ CM×N , previous subspace estimate Û[k− 1] ∈ CM×L, previous
precision matrix P̂[k − 1] ∈ CL×L, previous noise power estimate σn[k − 1], and forgetting
factor 0 < β ≤ 1.
Output: Updated subspace estimate Û[k], updated precision matrix P̂[k] ∈ CL×L, updated
noise power estimate σn[k].

1: for n = 1 to N do
2: if n = 1 then β′ = β

3: else β′ = 1

4: end if

x(n) = X(·, n) ∈ CM ,

y(n) = Û[k − 1]H · x(n) ∈ CD,

C′yy(n) = β′ · P̂[k − 1] + y(n) · yH(n) ∈ CD×D,

σ(n) =
√

x(n)H · x(n)− y(n)H · y(n),

z(n) = σ(n) · y(n) ∈ CD,

γ(n) = β′ · σn(n)2 + σ(n)2,

C̄yy(n) =

[
C′yy(n) z(n)

z(n)H γ(n)

]
∈ CD+1,D+1,

qn(n) =

[
q(n)

r(n)

]
= minor eigenvector of C̄yy(n) ∈ CD+1,

`(n) = 1/(1 + |r(n)|),
k(n) = r(n)/(|r(n)| · σ(n)),

e′(n) = Û[k − 1] · (`(n) · q(n)− k(n) · y(n)) + k(n) · x(n) ∈ CM ,

Û[k] = Û[k − 1]− e′(n) · q(n)H ∈ CM×D,

q′(n) = C′yy · q(n) ∈ CD,

C(n) =

(
r(n)

|r(n)|
z(n) + `(n)q′(n)

)
· q(n)H ∈ CD×D,

c(n) = `(n)2 · q(n)H · q′(n) + γ(n) + 2
`(n)

|r(n)|
·R
{
r(n) · q(n)H · z(n)

}
,

Cyy(n) = C′yy(n) + c(n)q(n) · q(n)H −C(n)−C(n)H ∈ CD×D,

λm(n) = Tr
{
C̄yy(n)

}
− Tr {Cyy(n)} ,

σn[k] = min
(√

λm(n), σn[k − 1]
)
.

5: end for

141


	Agradecimentos
	Dedicatória

	Sumário
	Lista de Figuras
	Lista de Abreviaḑões
	Introduction
	Global Navigation Satellite Systems
	Ranging
	Positioning
	GNSS signals
	Time-delay estimation via correlator bank

	Notation and Tensor Algebra
	Work Division

	Tensor-Based Time-Delay Estimation for Batch Processing in Lowly Correlated Scenarios
	Data Model
	Pre-Correlation Data Model
	Post-Correlation Data Model

	State-of-the-Art Tensor-Based Time-Delay Estimation
	Higher-order eigenfilter (HOE)
	Direction of Arrival and Khatri-Rao factorization (DoA/KRF)
	Procrustes estimation and Khatri-Rao factorization (ProKRaft)
	Semi-algebraic framework for approximate canonical polyadic decomposition via simultaneous matrix diagonalization (SECSI)

	Proposed Tensor-Based Time-Delay Estimation
	Canonical polyadic decomposition via generalized eigenvalue decomposition
	Dual eigenvector matrix variant CPD-GEVD

	Numerical Simulation Results
	Array response matrix generation
	Complex amplitude matrix generation
	Code (PRS) matrix generation
	Simulation scenario
	Perfectly calibrated array
	Imperfect Array


	Tensor-Based Time-Delay Estimation for Batch Processing in Clustered Scenarios
	Generalized Data Model
	Multilinear Rank-(Lr,Lr,1) GNSS Data Model for Clustered Multipath Components
	PARAFAC and multilinear rank-(Lr,Lr,1) terms model comparison

	Decomposition in multilinear rank-(Lr,Lr,1) terms via generalized eigenvalue decomposition
	Dual eigenvector matrix variant CPD-GEVD and (Lr,Lr,1)-GEVD
	Computational Cost
	Numerical Simulation Results
	Code (PRS) matrix generation
	Simulation scenario
	Perfectly calibrated array
	Imperfect Array


	Tensor-Based Time-Delay Estimation with Adaptive Processing
	Time-Varying Data Model
	Proposed Tensor-Based Adaptive Processing Time-Delay Estimation
	Subspace Tracking HOE+EFBA+ESPS
	Subspace Tracking DoA

	Numerical Simulation Results
	Static simulation


	Tensor-Based Time-Delay Estimation via Sequentially Truncated Subspace Tracking
	Fourth-order Time-Varying Data Model
	Proposed Sequentially Truncated Subspace Tracked Higher-Order Eigenfilter for Time-delay Estimation (ST-ST-HOE)
	Proposed Sequentially Truncated Core Tensor Estimation Dual Eigenvector Matrix CPD-GEVD for Time-delay Estimation (ST-CPD)
	Proposed Sequentially Truncated TeTraKron and Tensor ESPRIT (ST-TTK)
	Tensor subspace tracking via Kronecker structured projections
	Sequentially truncated TeTraKron

	Numerical Simulation Results
	Static scenario
	Dynamic scenario


	Conclusion
	Future works

	Bibliography
	Appendices
	Signal generator
	Theory
	Implementation
	GPS C/A Code


	Computational cost
	Linear algebra operations
	Multilinear algebra operations

	Subspace Tracking Algorithms
	Iterative SVD
	Projection Approximation Subspace Tracking (PAST)
	Fast Approximate Power Iteration (FAPI)
	Generalized Yet Another Subspace Tracker (GYAST)


