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RESUMO

Título: Run-time Reconfiguration for Efficient Tracking of Implanted Magnets with a Myoki-
netic Control Interface applied to robotic hands
Autor: Sergio Andres Pertuz Mendez
Orientador: Prof. Dr. Daniel Mauricio Muñoz Arboleda
Coorientador: Prof. Dr. Carlos Humberto Llanos Quintero
Programa de Pós-Graduação em Sistemas Mecatrônicos
Brasília, 5 de abril de 2021

Este trabalho introduz a aplicação de soluções de aprendizagem de máquinas visado ao
problema do rastreamento de posição do antebraço baseado em sensores magnéticos. Especi-
ficamente, emprega-se uma estratégia baseada em dados para criar modelos matemáticos que
possam traduzir as informações magnéticas medidas em entradas utilizáveis para dispositivos
protéticos. Estes modelos são implementados em FPGAs usando operadores customizados
de ponto flutuante para otimizar o consumo de hardware e energia, que são importantes em
dispositivos embarcados. A arquitetura de hardware é proposta para ser implementada como
um sistema com reconfiguração dinâmica parcial, reduzindo potencialmente a utilização de
recursos e o consumo de energia da FPGA. A estratégia de dados proposta e sua implemen-
tação de hardware pode alcançar uma latência na ordem de microssegundos e baixo consumo
de energia, o que encoraja mais pesquisas para melhorar os métodos aqui desenvolvidos para
outras aplicações.

Palavras-chave: RBFNN, Reconfiguração parcial dinâmica, FPGA, Interface de controle
myokinetica.



ABSTRACT

Title:
Author: Sergio Andres Pertuz Mendez
Supervisor: Prof. Dr. Daniel Mauricio Muñoz Arboleda
Co-Supervisor: Prof. Dr. Carlos Humberto Llanos Quintero
Graduate Program in Mechatronic Systems
Brasília, April 5th, 2021

This work introduces the application of embedded machine learning solutions for the
problem of magnetic sensors-based limb tracking. Namely, we employ a data-driven strat-
egy to create mathematical models that can translate the magnetic information measured to
usable inputs for prosthetic devices. These models are implemented in FPGAs using cus-
tomized floating-point operations to optimize hardware and energy consumption, which are
important in wearable devices. The hardware architecture is proposed to be implemented as a
dynamically partial reconfigured system, potentially reducing resource utilization and power
consumption of the FPGA. The proposed data-driven strategy and its hardware implementa-
tion can achieve a latency in the order of microseconds and low energy consumption, which
encourages further research on improving the methods herein devised for other applications.

Keywords: RBFNN, Dynamic partial reconfiguration, FPGA, Myokinetic control interface.
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INTRODUCTION

1.1 CONTEXTUALIZATION

Upper limb amputation deprives individuals of their innate ability to manipulate objects.
Prosthetic devices and control-strategies are among the primary goals in rehabilitation engi-
neering, whose main goal is to restore dexterous motor functions after amputation. However,
the quest for a human-machine interface (HMI) that allows for arbitrary and physiologically
appropriate control over multiple degrees of freedom is still far from being completed. Be-
sides commercial solutions that exploit external EMG signals to control the prosthesis [22],
researchers are investigating alternative approaches that take advantage of different biologi-
cal sources. For instance, solutions that exploit implanted electrodes have been proposed to
record muscle activity, such as intramuscular [96] and epymisial electrodes [68], and neural
electrodes to record peripheral information [62].

An alternative solution recently introduced by Tarantino et al. [88] exploits magnet track-
ing for controlling a prosthesis. The authors proposed a new HMI dubbed the myokinetic
control interface. This interface derives information about muscle contractions from perma-
nent magnets implanted into the amputee’s forearm muscles. Indeed, localizing the magnets’
position is equivalent to measuring the contraction/elongation of the muscle. This informa-
tion can be used to interpret the voluntary movement of the subject. In [88], magnets were
analytically modeled as point dipoles, and localization was obtained through the Leven-
berg–Marquardt (LM) optimization algorithm. The output of the optimization problem is a
functioning solution to the inverse problem of magnetostatics. The LM algorithm does not
provide a fixed time-execution, making the solution unreliable considering real-time con-
straints.

In this context, a vital research venue is to create efficient algorithms to estimate the
magnets’ position. The faster the estimation algorithm can provide an output, the more fine-
grained control can be achieved for the prosthetic device. The design of a position transducer
based on the magnetic sensor information should consider the compromise of precision,
accuracy, and execution time. With more time-dense inputs, the control algorithm will have
more fine-grained information to perform trajectory tracking, making it easier to represent
human-like behavior. In this view, the latency of the algorithm (i.e., the time needed for
localizing the magnets once the measurements are available) has to be short enough to ensure
real-time tracking. In [91], the authors showed that the latency of algorithms that exploit an
analytic representation of the magnets could be reduced by computing the analytic gradient
of such representation. In [88], the tracking algorithm could not provide estimations as fast
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as the sensor could provide information. More specifically, while sensors could provide
∼75 samples per second (one sample every 13 ms), 45 ms were needed for localizing four
magnets. In a more recent study [17], a fully embedded system was presented, which proved
capable of tracking up to five magnets in less than ∼4 ms using 32 magnetic field sensors.
In this case, the time needed for sampling the sensors readings (one sample every ∼21 ms)
and sending them to the computation unit (∼24 ms) represented the actual bottleneck of
the system. Thus, the system architecture proposed in [17] could be optimized in terms of
acquisition and data-transfer times to boost the system performance.

To this end, this work proposes the use of artificial neural networks to perform accurate
estimations of individual muscle contractions based on offline collected measurements. Ac-
cording to their universal approximation property [70], and inherent parallel structure [14],
it is hypothesized that artificial neural networks can lead to a better compromise between ac-
curacy, computational implementation, and energy consumption for the tracking of several
magnets.

Machine learning models have been fruitfully applied to various problems involving
sensing, control, and estimation in biomedical applications, including interpreting biological
signals to generate actionable commands. In this context, cases in which real-time response
is required and solved by hardware implementations often involve such data-driven methods.
In the scope of pneumatic muscles, ANNs have been implemented to dynamic modeling in
[86] while in [92] a nonlinear proportional-integral-derivative ANN controller has been de-
vised. ANNs have also been used for controlling wearable exoskeletons, in [98] to improve
the torque estimation required by the apparatus and in [99] to perform adaptive control con-
cerning parametric uncertainties and unknown disturbances, and in [8] for controlling grasp
and lift of a cable-driven soft hand. In the case of prosthetic hands, in [87], the authors inves-
tigate the use of convolutional ANNs embedded in microcontrollers to classify hand gestures
by interpreting EMG signals. In [20], the authors employ a dataset aggregation strategy for
creating deep ANNs for processing EMG data to perform prosthetic limb control. As can
be seen from this recent literature review, machine learning has shown great applicability
for creating models that interpret complex biosignals. Moreover, such mathematical abstrac-
tions favor efficient hardware implementations due to their structure, composed of simple
entities, such as neurons or support vectors.

The neural networks’ inherent parallel architecture can be exploited with Field Pro-
grammable Gate Arrays (FPGAs). These devices are flexible logic structures that allow
data processing with high-speed performance in parallel on a single device. A recent review
on the topic of ANNs embedded solutions on FPGAs and their advantages to other hetero-
geneous computing platforms is given in [33]. Recently, FPGA solutions of deep artificial
neural networks have also been studied for both training and inference stages. In [83], the
authors report the most important features and advantages of hardware implementations for
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deep ANNs, namely lower power consumption and inherent reconfigurability. In [35], sev-
eral activation functions are mapped and improve software, and GPU-based deployments,
similar to [40], mainly due to its parallel dataflow characteristic. Hardware implementation
of ANN for sensor-driven position estimation, such as the proposal of this work, has been
previously used in [11, 69]. An interesting type of ANN is the Radial Basis Function Neu-
ral Network (RBFNN), which has an inherently parallel architecture and is usually imple-
mented using Gaussian activation functions. Most recent works that focus on implementing
RBFNNs on hardware can be found in [2, 64] and references therein [25, 15, 23, 50, 105].
In [2] new architectures for RBFNN were proposed with customized floating-point precision
enabling hardware and energy consumption optimization. RBFNNs are relatively easy to
design and training, besides dealing with linear and nonlinear problems relatively well. Fur-
thermore, it has a solid tolerance for input noise, and even when the problem’s complexity is
significant [104].

On the other hand, FPGAs for robotic hand control have already been used for imple-
menting algorithms with parallel motion control of fingers for piano playing [55]. Another
example [37], asserts the importance of the usage of parallelism for tactile sensing in robotic
hands application. Most recently [71], it was implemented a parallel System-on-Chip (SoC)
approach that carries out, in parallel, the data acquisition and control of a robotic hand’s
multiple Degrees of Freedom (DoFs) developed at the University of Brasilia. The latter
work compares with other software-based platforms to test its computational and energy
performance with outstanding results.

Nonetheless, FPGAs have some drawbacks like hardware resource utilization and power
consumption. The former is an issue considering that the reconfigurable hardware inside an
FPGA is not limitless. Not every architecture will fit into a specific device. So, if the solu-
tion to that problem is to get a bigger FPGA, the latter drawback comes into play, and as a
consequence, a larger device or architecture will draw more power. Several solutions might
come into mind for these problems, like architecture optimization or better resource utiliza-
tion; however, there are limitations regarding the available resources and the real advantages
of optimizing the architecture. To meet these strict requirements of embedded applications
in terms of performance, power consumption, and physical dimensions, one novel solution
that gets beyond the previously mentioned is the implementation of dynamically partially
reconfigurable (DPR) systems.

Most FPGAs devices are hardware devices that have to be reconfigured when powered-
up; others have non-volatile Flash memory that can configure the FPGA on start-up. For
either case, this is called static reconfiguration. However, some FPGAs allow run-time re-
configuration, often referred to as dynamic reconfiguration, which can be divided into two
categories: full and partial. The first one considers dynamic reconfiguration of all the hard-
ware, where previous features are erased and reconfigured. On the other hand, the second
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case is a technique that allows the device’s partial reconfiguration, leaving the remainder of
the circuit intact and even able to continue operation while the other part is reconfiguring
itself [79].

DPR can potentially be used for SoCs-based solution architectures, like the one proposed
in this work, due to the combination of HW/SW co-design flexibility and performance. This
is because the partial reconfiguration (PR) technology currently allows the software to trigger
reconfiguration directly.

1.2 PROBLEM DEFINITION AND MOTIVATIONS

Human hands have an estimate of 27 degrees of freedom (DoF). Robotic hands should
ideally emulate all of that; however, this achievement has proven very difficult due to space,
energy, and other physical restrictions. A solution to this problem have involved reducing
the number of fingers [54] or reduce the number of DoF [18, 26, 89, 61, 45, 9]. Whatever
the case, most robotic hands and prostheses have more than two DoF [90].

The LEIA robotic hand [71] has a total of 7 DoF. Once it is decided that each DoF should
be controlled by a different muscle in the hand/wrist, the proposed solution’s computational
complexity will likely require more computational effort, making it harder to maintain de-
terminism with a reasonable output rate.

In this context, there is a need for implementing computationally efficient inversion meth-
ods to obtain accurate estimations of individual muscle contractions based on the myokinetic
proposed sensing devices [88]. This work proposes using artificial neural networks to esti-
mate individual muscle contractions based on offline collected measurements accurately.
Also, for developing a fast-enough embedded system for the localization of the muscle move-
ments and the control of the robotic hand, using a single chip, the development of a DPR
system might show some advantages over classical approaches.

Nevertheless, the development of DPR systems is currently not an easy task. Even with
the advantages DPR systems have over those with static logic, their complexity is a signifi-
cant drawback in their implementation. The recurrent issue designers must deal with when
projecting DPR systems is the difficulty to assert its behavioral characteristics in the appli-
cation domain, such as the reconfiguration time, performance, and its impact on the device
as a whole.

On the other hand, even when the FPGA manufacturers fully support the feature, i.e.,
Xilinx Inc., synthesis and implementation tools such as Vivado heavily rely on graphical
programming design script-based approach to build them. Few attempts have been carried
out to consolidate a high-level tool that aides the design of SoC-based DPR systems. Usually,
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works aimed at dynamic reconfiguration applications have little to zero focus on the design
tools and methodologies used during the design process.

Recently, a cooperation between the University of Brasilia (Brasilia, Brazil), the KTH
Royal Institute of Technology (Stockholm, Sweden), and Saab ab (Linköping, Sweden) have
boarded this issue. Initially, the project started as a design tool for fault-tolerant methodolo-
gies in autonomous aircraft applications, eventually evolving as a high-level modeling tool
for DPR SoCs, named after RTRLib [43].

In this context, the present work aims at the promotion of three issues: (1) The develop-
ment of computationally efficient AI models capable to accurately translate individual mus-
cle contractions from the myokinetic interface developed by the MYKI project [88]; (2) To
propose an SoC FPGA-based controller able to both collect the forearm’s sensory data and
control a robotic hand, using Xilinx’s DPR features to reduce the area and power consump-
tion of the controller; and (3) To improve the RTRLib tool used to perform DPR systems,
break out from some of its current limitations, presented further ahead, to later be used for
the last goal.

1.3 OBJECTIVES

This work’s general objective is to develop an FPGA-based SoC for multi-magnet track-
ing of a myokinetic interface with adaptive capabilities using dynamic partial reconfigura-
tion. The developed models will translate the myokinetic interface data to proper setpoints
for driving a prosthetic robotic hand.

1.3.1 Specific Objectives

The following are the specific Objectives:

• To build data-driven soft-sensors, using black-box system-identification machine learn-
ing models, able to translate the myokinetic sensor information to identify the volun-
tary motor and force commands on a forearm muscle.

• To improve the functionalities of the RTRLib, aiming to obtain a high-level design tool
that, under specific conditions, aids the design flow of dynamically partially reconfig-
urable systems.

• To design a novel DPR hardware implementation to pursue cheaper and more energy-
efficient myokinetic transducers used in prosthetic hand control.
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1.4 CONTRIBUTIONS

There are three types of contributions expected from this research work: (i) Technologi-
cal, (ii) Scientific, and (iii) Academic contributions. They are listed below:

• Scientific:

– Implementation of novel black-box system-identification machine learning mod-
els, such as neural networks, solve the inverse magnetism problem of the myoki-
netic interface. The benefits of this are its computational efficiency, accuracy and
that the system’s little knowledge to implement them allows for a more flexible
transducer of the system. Thus facilitating its real implementation on different
patients.

• Technological:

– Improvement of the RTRLib’s current limitations, such as floorplanning, Linux
applications, decoupling, computation of the reconfiguration time, and integra-
tion with the RTRLib design flow.

– To upgrade the robotic hand developed in the LEIA lab for compatibility with the
MYKI data, improving its dexterity.

• Academic:

– To begin a collaboration between the Biorobotics Institute at the Sant’Anna School
of Advanced Studies about the MYKI Project.

– Continuation of the collaboration between the University of Brasilia (UnB), Royal
Institute of Technology (KTH), and the Saab ab company.

– Collaboration through a signed agreement with the University of Pamplona, Colom-
bia, promoting research internships at the University of Brasilia.

• Journal Articles

– A Parallel System-on-Chip Approach for Impedance Controller for a 7-DoF Robotic
Hand. Sergio A. Pertuz, Carlos Llanos, Cesar A. Peña, Daniel Muñoz. ANALOG
INTEGRATED CIRCUITS AND SIGNAL PROCESSING. Qualis B1. Submit-
ted: October 2019. Status: second-round review completed.

– Development of a robotic hand using bioinspired optimization for mechanical
and control design: UnB-Hand. Sergio A. Pertuz, Carlos Llanos, Daniel Muñoz.
IEEE Access. Qualis A2. Accepted: March 2020. Status: Accepted.
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– Efficient Data-driven Real-time Magnetic Tracking for Myokinetic Control Inter-
faces. Sergio Pertuz, Marta Gherardini, Gabriel Vidigal de Paula Santos, Daniel
Muñoz, Helon Vicente Hultmann Ayala, Christian Cipriani. MECHATRONICS
(OXFORD). Qualis A1.

• Conference Papers

– A Modular and Distributed Impedance Control Architecture on a Chip for a
Robotic Hand. Sergio A. Pertuz, Carlos Llanos, Cesar A. Peña, Daniel Muñoz.
2018 31st Symposium on Integrated Circuits and Systems Design (SBCCI). Sta-
tus: Published.

– Simulation and Implementation of Impedance Control in a Robotic Hand. Ser-
gio A. Pertuz, Carlos H. llanos, Daniel M. Muñoz. 24th ABCM International
Congress of Mechanical Engineering (COBEM 2017). Status: Published.

– Run-time Reconfiguration for EfficientTracking of Implanted Magnets with a
Myokinetic Control Interface. Sergio A. Pertuz, Daniel M. Muñoz. International
Conference on Field-Programmable Logic and Applications (FPL 2021). Status
Submitted.

1.5 TEXT STRUCTURE

The rest of this document is constructed as follows: Chapter 2 comprises the theoretical
foundation that starts from the definition of aspects of reconfigurable systems, presenting
relevant concepts of partial reconfiguration, a review of robotic hands and robotic prosthe-
ses, and the definition of the model predictors that are going to be used. Chapter 3 does
a quick literature review to substantiate the later choices and descriptions for more in-deep
contextualization. Chapter 4 presents the methods of this work, including experimental setup
at the Sant’Anna Institute and UnB, and a formal presentation of RTRlib is formally filed,
describing it through its proposed methodology, limitations, and functionalities. Following
is Chapter 5 introduces the results of the hardware implementation of the ML models im-
plemented. Chapter 6 presents the training of the models using five magnets simultaneously,
and finally, Chapter 7 presents the DPR system for the MYKI interface and its validation.
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THEORETICAL FOUNDATION

2.1 REGRESSION USING BLACK-BOX DATA-DRIVEN MODELS

Model identification consists of discovering a good model architecture that may result in
a fitting solution that accurately represents a system. Let that model architecture be f [·] as
general nonlinear function mappings from the model inputs to the predicted output, denoted
by x̂ ∈ Rn where n is the total number of input values. Fitting a model architecture to a
system (parameter estimation) is usually a small difficulty problem, as long as it is a suitable
model.

The more complicated issue is deciding what architecture to use. Determining a model
architecture is the most critical part and depends on prior knowledge and physical insight
into the system. Typically, according to the amount of knowledge previously amassed of a
system, three types of model architectures exist and are color-coded [84].

• White-Box models: When the designer fully knows the system’s physical behavior, it
is possible to model it purely from this prior insight.

• Grey-Box models: When the designer has some physical insight into the model, but
the parameters remain unknown, being necessary to determine them by observing the
system.

• Black-Box models: When no physical insight is known, the system’s measured data’s
behavior is nonlinear.

This work considers black-box models. Black-box model regression usually consists of
obtaining a model architecture’s parameters based on measured input and output data. It
amounts thus to build flexible function surfaces to fit the acquired data [58]. For this, a
system, given in Figure 2.1, can be defined with a set of measured inputs (x) and outputs (y).
Where the different inputs measured at a given time instant are organized in columns, e.g.
x ∈ Rn×m, where m is the ammount of measurements. For Black-Box Identification, it is
assumed that both these quantities are possible to be measured and are available.
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Modelx y(x)f(x)System
Figure 2.1 – Description of the system, detailing the notation for the input and output: x and
y(x), respectively.

The black-box model regression procedure is an iterative and experimental task, and its
flowchart is depicted in Fig. 2.2 [67].

1. Acquire data

2: Define model

3: Estimate parameters

4: Validate model

Start

Model OK?End

Use another dataset

Yes

Use other model

Use other estimation algorithm

Change validation metric

No

Figure 2.2 – System identification procedure. Adapted from [67]

According to Fig. 2.2:

1. Acquire data: The acquisition of the input/output data is critical given that if the system
is excited in a way that non-informative data is generated, the built model will not
represent the system adequately. Badly designed experiments lead to bad models.
Hence, the designed input must be persistently exciting the system. For linear systems,
it is said that the input should excite all the frequencies of interest, while in nonlinear
the designed input ought to extend not only the bandwidth but also the full amplitude
range of the system. [5].

2. Define model: The first definition is whether to go for linear and nonlinear model ar-
chitectures. If the model is linear, well-known error prediction identification methods
may be employed to estimate the parameters once the order is set. Linear models are
not only straightforward to build but also easier to control. However, their accuracy
may not be sufficient for a given application, and nonlinear models may be an option
if the validation fails for linear models. The parsimony principle [59] states that there
is no reason to use nonlinear models if the linear model can perform well. Moreover,
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if the settled model is nonlinear, the following step is to set the structure. For this,
frequently, the designer does this by trial-and-error.

3. Estimate the model parameters: Machine learning community often refers to this step
as training or learning. Additionally, the estimation problem is termed as an opti-
mization procedure to minimize metrics, such as the One-Step-Ahead (OSA) residuals
prediction or evolutionary algorithms.

4. Validate the model: Validation is used to check if the model is suitable for its intended
use. The most common quantitative way to do this is to analyze the resulting model’s
residuals and statistical properties. In this step, if the model is not valid, the designer
should go backward in the procedure and overhaul one of the previous steps.

In the last step depicted in Figure 2.2, the designer faces whether the built model is going
to be used or if it should be necessary to perform again one of the steps presented. In order
to evaluate a model, some ways are more or less advisable, depending on the purpose of the
model.

The most common measure to evaluate the models is the prediction error (or residuals).
It is common to distinguish types of residuals according to the prediction horizon. According
to such criterion, ξs is defined as the OSA prediction error. The Free-Run simulation (FR)
simulation error is calculated according to

ξs = y(x)− ŷs(x) (2.1)

, where ŷs(t) is the estimated output of the system considering the autoregressive part of
the model’s inputs as the corresponding previously predicted values (e.g. ŷs(x) = F (·)).
The OSA prediction errors are used in the estimation procedure as an optimization task for
convexity and computational complexity reasons. Most supervised estimation algorithms
thus use the OSA prediction error to estimate the model’s parameters.

Other standard metrics are also based on the residuals used in the present work scope to
evaluate the models. The Mean Squared Error (MSE) is defined as

MSE =
1

N

N∑

t=1

[ξs(x)]2 (2.2)

, where N is the total number of samples considered. Whereas the MSE is used to measure
fit quality, other metrics may be used to evaluate it, not case-dependent. Specifically, metrics
that are normalized in some sense provide results that are not dependent on the amplitude of
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the output. The normalized error, denoted by e, is given as

e =

(∑N
t=1 ξs(x)2∑N
t=1 y(x)2

)1/2

(2.3)

, and the multiple correlation coefficient (R2) defined as

R2 = 1−
∑N

t=1 [ξs(x)]2∑N
t=1 [y(x)− y]2

(2.4)

, The upper bar denotes the mean value of the sequence and can also measure the model qual-
ity based on the prediction residuals. As mentioned before, the advantage of these metrics is
that they are not dependent on the amplitude of the quantity one is measuring. It is important
to recall that R2 = 1 means perfect data reconstruction and R2 > 0.9 is considered sufficient
for most applications [82].

Typical choices for the mapping function F [·] are higher degree polynomial functions,
ANNs, fuzzy systems, splines, etc. As the purpose of the function mapping F [·] is to obtain
an accurate approximation of y(x). It is not easy to make a difference between black-box
functions as they can approximate functions arbitrarily well. However, the model should
represent the dynamics of the system under study and thus should make possible the required
analysis. ANNs are an excellent choice in this subject as they are more transparent than other
black-box nonlinear mappings, which is the focus of the following section.

2.2 ARTIFICIAL NEURAL NETWORKS - ANN

An important class of nonlinear models is Artificial Neural Networks (ANNs). ANNs are
learning architectures interconnected by simpler processing units (neurons) inspired by the
human brain’s behavior and how it learns by correcting errors. The interconnected neurons
are associated synapses with defined weights between its connection [67].

An important novel structure called perceptron was introduced in [78]. After that, in
[63] the authors discussed the limitations of the present abstraction proposed for the ANN,
following a period of inactivity in the area. It became active again with the results reported
in [38], which created the now famously known Hopfield networks. Following that, the well-
known backpropagation algorithm was devised, and people found out that the doctoral work
of [97] was actually the first to introduce algorithms of this type, of which backpropagation
was a particular case [36].

Important ANN examples are the MultiLayer Perceptron (MLP), support vector ma-
chines, and Radial Basis Neural Networks (RBFNNs) [36]. Despite their differences, all
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ANNs have essentially the same functions and elements: they are formed by simpler el-
ements, the neurons, which build a more complex structure that takes a set of inputs and
produce a correspondent set of outputs (approximations) – all ANNs can thus be seen as
vector mappings.

In [4] pros and cons of using ANNs for system identification are presented. As advan-
tages, one may say that ANNs are simple structures, conceptually easy to understand and
defined with a couple of equations. There are many tools available to perform the estimation
of the model-related parameters and have good approximation properties. On this last topic,
some ANNs, including the RBFNNs, which will be given in detail next, are proven to be
global approximators. This means that they can approximate arbitrarily well any continuous
function. In the context of system identification, this means that, after choosing an appropri-
ate set of candidate lags for the input and output, one should define the ANN with a complex
enough architecture in order to identify the system at hand. This is one reason why input
selection is important. After the successful completion of this step, it is known that it is pos-
sible to capture the dynamics of the underlying system provided the input and output data
are informative enough; however, if the lags chosen are not correct, then even if the MSE of
the model is optimized throughout the learning task – as the ANNs are able to fit continuous
functions – there might be still dynamics present in the residuals as the correlations may
show. Another advantage is that the field of ANNs is very active, which means that many
concepts, theories, and algorithms may be used in the context of system identification (as the
universal function approximation property, which was just mentioned).

One important drawback that the user faces when using black-box structures such as
ANNs is that the models are not easy to understand and sometimes so complex that it is
impossible to write them down, and making them difficult to analyze. In the case of ANNs,
one can say that they are good models in the sense that they are able to approximate well, but
they are often very complicated to the point that it may be impossible to analyze each term
if something is going wrong with the model.

In the following, MLP and RBFNN (of the most widely used ANNs) is formally stated.
Details are given about its mathematical formulation, training algorithms, and how it fits
in the context of system identification. The latter, is the scope of this work, motivates its
implementation in reconfigurable hardware by its relatively simple structure described next.

2.2.1 Multilayer Perceptron - MLP

Figure 2.3 depicts a multilayer perceptron’s architecture with two hidden layers and an
output layer. The network shown here is fully connected to set the stage for a description of
the multilayer perceptron in its general form. This means that a neuron in any network layer
is connected to all the neurons (nodes) in the previous layer. Signal flow through the network
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Figure 2.3 – MLP architecture.

progresses in a forward direction, from left to right, and on a layer-by-layer basis.

Such signals are called function signals and are defined as input signal (stimulus) that
comes in at the input end of the network, propagates forward (neuron by neuron) through
the network, and emerges at the network’s output end an output signal. These signals are
presumed to perform a useful function at the output of the network. Similarly, for each
neuron of the network through which a function signal passes, the signal is calculated as a
function of the inputs and associated weights applied to that neuron.

The output neurons constitute the output layer of the network. The remaining neurons
constitute hidden layers of the network. The first hidden layer is fed from the input layer
made up of sensory units (source nodes); the resulting outputs of the first hidden layer are in
turn applied to the next hidden layer, and so on.

Each hidden or output neuron of a multilayer perceptron is designed to perform two
computations:

1. the computation of the function signal appearing at the output of each neuron, which is
expressed as a continuous nonlinear function of the input signal and synaptic weights
associated with that neuron; and

2. the computation of an estimate of the gradient vector (i.e., the gradients of the error
surface with respect to the weights connected to the inputs of a neuron), which is
needed for the backward pass through the network.

The computation of the neuron’s output (δ) for each neuron of the multilayer perceptron
requires knowledge of the derivative of the activation function (φ(·)) associated with that
neuron. For this derivative to exist, we require the function φ(·) to be continuous. In basic
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terms, differentiability is the only requirement that an activation function has to satisfy. An
example of a continuously differentiable nonlinear activation function commonly used in
multilayer perceptrons is sigmoidal nonlinearity, described as

φ(l) =
1

1 + e−al
, a > 0 (2.5)

, where a is an adjustable positive parameter and l is an input.

A multilayer perceptron may be viewed as a practical vehicle for performing a nonlin-
ear input-output mapping of the function F [·]. To be specific, the network’s input-output
relationship defines a mapping from an N -dimensional Euclidean input space to an M -
dimensional Euclidean output space, which is infinitely continuously differentiable when
the activation function is likewise.

2.2.2 Radial Basis Artificial Neural Networks - RBFNN

Motivated by their relatively simple architecture and property of universal approxima-
tion, RBFNNs have been applied to a wide range of problems like the identification of non-
linear systems and control of dynamical systems. They were originally proposed by Broom-
head [6] and have been proven to be global approximators. It means that the RBFNN is able
to approximate arbitrarily well any continuous function, given that enough number of neu-
rons are allowed in the architecture. One important feature of RBFNNs is that the weighting
coefficients of the output layer are linear-in-the-parameters, what constitutes one advantage
of the RBFNN architecture when compared to multilayer perceptrons. This results in faster
learning algorithms for those of which make use of this mathematical property. The RBFNN
architecture is also simpler when compared to the multilayer perceptrons [36].

RBFNNs comprise three layers: input, hidden, and output layers, see Fig. 2.4. The
input layer receives data from the environment and delivers it to the hidden layer without
weighing them, i.e., the inputs excite the neurons directly. The neurons are in the hidden
layer and are activated by a radial basis function, such as thin-plate-spline, multi quadratic,
inverse multi quadratic, and Gaussian functions. In the output layer, each neuron output is
weighted and summed. This sum is the final RBFNN approximation (output). Each layer in
the RBFNN was designed to have different and specific roles. The input layer, composed of
source nodes, makes the connection of the NN with the environment. The inputs are passed
directly to the second layer – the hidden layer with the processing units with radial basis
functions activation functions. A nonlinear transformation is applied from the input to the
hidden space, which is followed by a linear one from the hidden to the output space [36].
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Figure 2.4 – RBFNN architecture.

Equation 2.6 defines an RBFNN mathematically:

ŷ(k) = F [xxx(k)] =
M∑

m=1

wmφ(xxx(k), cccm, σm), (2.6)

where M ∈ N+ is the number of neurons in the hidden layer, ŷ(k) ∈ R and xxx(k) ∈ Rnvar

are respectively the network predicted output and the input vector at a given instant k ∈ N+,
cccm ∈ Rnvar and σm ∈ R+ are respectively the center and the width (or variance) of the m-th
hidden node of the ANN. Each of the output weights is given by wm ∈ R

The function φ(·) is the radial basis activation function previously mentioned. The one
that is the most frequently used is the Gaussian RBF, given by

φ(xxx(k), cccm, σm) = exp

(
−‖xxx(k)− cccm‖2

2σ2
m

)
= exp

(
− 1

2σ2
m

nvar∑

i=1

(xi(k)− cm,i)2
)

(2.7)

.

For the RBFNN model, the tunable parameters are the number of neurons in the hidden
layer, the center’s position and widths of the RBFs, and the output weights. The RBFNNs’
complexity depends on the number of neurons and the system’s number of inputs, which
is fixed. However, setting the latter to solve an arbitrary approximation problem, though a
fundamental question, is still an unsettled issue. After defining the number of neurons on the
hidden layer, the training strategy most widely used is divided into a two-stage procedure:
(i) locate the centers through unsupervised learning and (ii) supervised learning to define the
output weights.
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Other typical activation functions for RBFNN are:

1. Inverse multiquadratic:

φ(l) =
1√

l2 + σ2
, (2.8)

2. Linear
φ(l) = l, (2.9)

3. Cubic
φ(l) = l3, (2.10)

4. Multiquadratic
φ(l) =

√
l2 + σ2, (2.11)

5. Thin-plate spline

φ(l) =
l2

σ
log

(
l

σ

)
(2.12)

2.3 RECONFIGURABLE HARDWARE AND FPGAS

Reconfigurable hardware mixes programmability after fabrication with the spatial (par-
allel) computing style of Application Specific Integrated Circuits (ASICs). ASICs are com-
monly more efficient than the temporal computing style (sequential) of instruction flow pro-
cessors. Reconfigurable hardware offers an excellent balance between efficiency and flex-
ibility for the implementation of application systems. Nowadays, complex systems often
require high flexibility; these systems require devices that can adapt to ever-changing oper-
ating environments and conditions of the application they address. On the other hand, these
solutions often demand power consumption and performance efficiency. ASICs are not suit-
able for the type of problem where certain flexibility is required, but reconfigurable hardware
presents an exciting option for these cases [60].

Field Programmable Gate Arrays (or FPGA) are reconfigurable hardware devices. Its
internal architecture is defined by its granular components, referring to the smallest block
the device is built upon; these blocks are called Configurable Logic Blocks (CLB). In de-
vices with fine-grained architectures, the CLBs are composed of memories based on LUTs
(Lookup Tables) that implement combinatorial functions and some flip-flops, which can be
programmed for simple sequential logic functions. FPGAs contain thousands, and some-
times millions, of these CLBs and are interconnected through a programmable network and
can operate at frequencies up to 500 MHz.

Besides the CLBs, an FPGA is also composed of other components (see Fig. 2.5):
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Figure 2.5 – Internal composition of an FPGA

a I/O blocks: Are Registers used to store information of the exterior logic pins.

b Routing element: Are part of the programmable network mentioned before. They are
programmable blocks connected to different paths, allowing neighboring CLBs to be con-
nected if desired.

c Switching matrix: They are also part of the programmable network. It provides pro-
grammable routing between the routing elements, allowing connections between CLB to
CLB, CLB to other elements, and any connection between the programmable logic ele-
ments.

d Special circuits: FPGAs can include some ASICs for systems with high complexity, such
as DSPs, RAM, PLLs, ADC, and others. Some even include Embedded processors such as
the Xilinx 7-Series FPGAs; these devices are often referred to as System on Chip (SoC).

2.3.1 FPGA’s Design Flow

When a designer describes a complex behavior or architecture of some sort, the logic
synthesizer implements it by connecting these CLBs in a specific way. Fig. 2.6 describes the
design-flow of logic systems on an FPGA [102]:
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Figure 2.6 – Design Flow of an FPGA’s hardware system development (adapted from [102]).

1. System Design Entry: It comprises the high-level (c++, system-c, and others) or low-
level (VHDL, Verilog, and others) design description. In this step, the functional char-
acterization of the system considering the area and performance restrictions is devel-
oped. After that, the code is synthesized as a netlist containing a Boolean register-
based logic and an RTL logic diagram.

2. Implementation: In this phase, the logic and physical constraints, such as I/O ports
localization and clock frequencies, are assigned. With that, the circuit netlist is refined,
producing a list of logic elements and their connections. Later, the circuit mapping
and placement are carried out where the logic functions are mapped and placed into
the FPGA’s available elements. Finally, the routing of the mapped elements is made,
enabling to move to the next phase.

3. Design Verification: This part is shared between the previous ones. In the Behavioral
simulation step, the circuit behavior can be analyzed from the hardware description
before implementing it. The Timing simulation allows timing analysis to verify and
detect timing failures of the circuit being implemented. Finally, the Functional simula-
tion includes the behavioral and timing simulations considering physical constraints of
the placed and routed circuit components in the FPGA, ensuring the circuit’s operation.

4. Hardware Bring-Up Validation. In this phase, the bitstream generation for in-circuit
validation is performed. A bitstream is a file that contains the information extracted
from the implementation phase (placement and routing) coded as a bitstream that is
understandable by the configuration logic of the FPGA. The bitstream is used to con-
figure the FPGA for further physical validation of the system.
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The first three phases are carried out in a synthesis tool, usually provided by the FPGA’s
manufacturer company. It ordinarily contains a text editor for the hardware description, the
synthesis, implementation, bitstream generation tools, and a connection manager to send the
bitstream to the FPGA.

2.3.2 Configuration Mechanism of an FPGA

In the last phase, the bitstream file can be delivered to the FPGA by an In-Circuit Ver-
ification interface (see Fig. 2.7). An FPGA can be partitioned into the configurable and
non-configurable areas. The former is the part described in Fig. 2.5, the latter consist of the
configuration interface and configuration logic (it may also include embedded processors in
FPGA-based SoCs). In reconfiguration mode, the configuration logic gets the configuration
bitstream from the interface circuit and writes it into proper configuration memory locations.

Configuration Logic
Interface ProgrammableareaFPGA

bit file

Figure 2.7 – FPGA’s reconfiguration scheme.

The memory can be visualized as a rectangular array of bits, and it controls the FPGA’s
internal connections and the elements’ settings.

Depending on the FPGA’s manufacturer, different types of configuration interfaces are
used for different purposes and characteristics. The following are Xilinx FPGAs available
external interfaces (when the reconfiguration is controlled outside the chip) [101]:

• JTAG: Is initially designed for testing purposes. It provides a mechanism to shift
testing vectors into the device I/O ports and shift circuit responses from the I/O ports.
It also enables Boundary-Scan Chain.

• Select-MAP: or Select Memory Read Procedure, it loads the data at a rate of one or
two-byte per clock cycle. It is desirable when configuration speed is a concern. In this
interface, an external clock is needed.
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• Master/Slave-Serial: Loads data at a rate of one-bit per clock cycle and uses an external
clock. Slave mode, additionally, allows daisy-chain configuration.

In Xilinx FPGA-based SoCs, it is also possible to control the reconfiguration process
internally. The interfaces to make this possible are:

• ICAP: Or internal configuration access port, is essentially an internal version of the
SelectMAP interface.

• PCAP: Or processor configuration access port, is similar to the ICAP and is the pri-
mary port used for configuring a Zynq-7000 SoC devices.

2.4 DYNAMIC PARTIAL RECONFIGURATION

Dynamic Partial Reconfiguration (DPR) is a design process that allows a limited prede-
fined logic portion of an FPGA to be reconfigured by downloading partial bit files. At the
same time, the remainder of the device continues to operate without interruption. The use of
PR can allow designers to:

• A more efficient use of available board space by only loading only the functionality
that is needed at any point in time,

• By the reduced logic count, it is possible to move to fewer or smaller devices, poten-
tially cheapening the implementation of a system,

• Similarly, the reduction of a system allows to reduce its power consumption, and

• Because the reconfiguration being "on-the-go" the system upgradability can be im-
proved.

Additionally, DPR is used in applications where:

1. there is a necessity of in-the-field hardware upgrades and updates to remote sites,

2. the runtime reconfiguration is imperative,

3. there is a need for strategies used for fault recovering or fault-tolerant systems,

4. there are adaptive hardware algorithms, and

5. it is required to bring the end-user continuous service.
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Fig. 2.8 depicts a DPR application. When implementing DPR systems, the chip layout
is partitioned into static logic and reconfigurable partitions (RP). RPs may contain several
reconfigurable modules (RM) and communicate with other parts, both static and reconfig-
urable. Another important characteristic of DPR systems is that the design’s static logic can
not rely on the state of the RM while reconfiguration is taking place.
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Figure 2.8 – Partial reconfiguration concept description

2.4.1 DPR Design Flow

Producing partial reconfiguration (PR) systems demands a slightly different design flow.
Fig 2.9 depicts this new process where, even though it differs from the typical workflow, the
phases are the same with extra steps.

1. System Design Entry: Here, the static logic, RPs, and RMs must be defined. Later on,
a bottom-up synthesis must be performed, referring to synthesize the different modules
separately. In Vivado Design Suite, this is named out-of-context (OOC) synthesis. The
generate files ensure that the optimizations occur across the RP boundaries.

2. Implementation: Manages the floorplanning of the RPs, i.e., designate the resources
to be reconfigured by selecting the regions that will host the RPs. Thenceforth the
placing and routing of the design configurations are performed for every static-RM
combination.

3. Hardware Bring-Up Validation: This step validates that the placement and routing
results of all the systems, including the static implementation and interfaces to the
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Figure 2.9 – Overview of Xilinx partial reconfiguration design flow for DPR. Adapted from
[100]

RP, are consistent across all configurations. Finally, the bitstream files are generated.
This phase generates a full bitstream file and partial bitstream files, unlike the standard
design flow.

Even though there are many similarities in PR and non-PR system design, there are
some premises this type of project requests to work correctly, such as the common logic
between all the designs (static-RM combinations) must be identical. Other considerations
are formulated in the next subsection.

2.4.2 Design Considerations

Before even evaluating if a PR system will behave correctly, firstly, the designer must
meet some premises that constraints its synthesizing feasibility [100], some of them are:

1. Static-RP interfacing compatibility: This constraint outlines that the logical and phys-
ical interface of an RP must remain consistent for all the RMs implementation. It is
carried out using different partition interfaces:

• A bus-macro that creates a pair of LUTs and connects through fixed wires. One
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LUT is positioned in the static region and the other one in the reconfigurable
region. (NOT USED ANYMORE)

• A proxy logic inserts a single LUT element for each partition pin that has to be a
fixed interface.

• Partition pins are the logical, physical connection between the RP and the static
logic, automatically created for all reconfigurable partition ports. With this op-
tion, it is important to pay attention to the consistency of each part’s active logic
levels.

2. Decoupling: During the PR process, the outputs of the RP interface may be unstable,
representing non-valid data and potentially triggering static logic improperly. Conse-
quently, the static logic must ignore these unstable signals from the RP until Partial
Reconfiguration is complete and the RM is reset. This action is called decoupling, and
a way to implement this is by registering the output signals (on the static side of the
interface) from the RP, using an enable signal to isolate the logic until it is completely
reconfigured.

3. Routing isolation: Upon developing a fault-tolerant system, it is crucial to provide
spatial detachment between functions to secure that a failure in one will not propagate
to the other. Isolating tasks within a single chip is done by using a "fence" logic. It is
a set of unused tiles with no present logic functions.

4. Dedicated initialization isolation: if this feature is used, the static logic must be kept
out of the RP.

5. RP resource utilization: The logic and routing of an RM must be fully contained within
the physical region that includes the RP, which is then translated into a partial bit-
stream. When selecting the RP space, the designer must consider if the chosen area
has enough resources (CLBs, special circuits, and others) to receive the RMs.
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STATE OF THE ART

Over the past four decades, there have been significant contributions in computer science,
artificial intelligence, robotics, and other related fields. This progress has allowed the de-
velopment of robotic systems that are more capable and sophisticated, such as biomimetic
robotics [94].

There is also much effort towards building biomimetic robotic hands, which have con-
tributed to a better understanding of implementing a human hand into dexterous prostheses,
widening its applications through improved sensors and mechanisms and HMIs [74]. One
of these improvements is tactile sensing, which uses physical signals to identify the phases
of object manipulation, namely: (a) non-contact to contact, (b) rotation, and (c) sliding [61].
For the application of robot hands, these phases translate into object recognition, force con-
trol, and grasp. Tactile sensors can measure different magnitudes, such as force vectors,
vibrations, and contact actions. On the other hand, signal-processing techniques and mod-
eling improve these measurements or even estimate others when sensors cannot read them
directly. Such measures are then used for control schemes that perform grasping tasks [48].

Some works have accomplished these aspects by clustering several data processing de-
vices in parallel. Table 3.1 presents a summary of some of those works with their main
characteristics and achievements. The table includes the following key points: (1) control
scheme or strategy for grasping, (2) finger gear or type of transmission used for the fingers
movement, (3) the type of actuators used, (4) the quantity and type of sensors used, (5) the
CU or computational control unit, (6) the control loop refresh frequency in Hz, and (7) the
number of DoF. It is worth noticing that only works that included the actuators either in
the palm or the finger were considered; i.e., robotic hands with actuators in the forearm or
outside the hand were not considered.

Table 3.1 indicates that some implementations use PID for force control [54, 9, 45].
Although this solution is simple, efficient, and easy to tune, it does not control the dynamics
of the contact between the manipulator and object. The impedance controller cannot only do
this but also performs well at exerting forces on the environment and achieve good robustness
at handling flexible components with unknown stiffness.

On the other hand, Table 3.1 also shows that the computational unit (CU) of some ap-
proaches [54, 95, 53] use several components to achieve the required parallelism of the con-
trollers by using well-known micro-controllers. However, it results in an ample physical
space required by the CU and demands implementing communication strategies between
the processing devices. Lastly, as expected, more components mean an increase in energy
consumption.
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Table 3.1 – Comparison with some other robotic hand implementations

Author Control scheme Finger gear Actuators Sensors CU Freq. (Hz) DoF

Robotic
Hand
(This
Work)

Impedance control
Four-bar linkage
and worm gear

7 DC motors
7 angular position, 7
current sensors

SoC ARM
+ FPGA

>25000 7

KITECH-
Hand
[54]

PID current control Spur gears
16 DC mo-
tors

16 angular position, 16
current sensors

µCU ma-
trix (16)

333 16

Calderon
et al. [9]

PID control Four-bar linkage 5 DC motors 5 force sensors PC - 5

Jeong et
al. [45]

Neural Networks for
position estimation
and PID current con-
trol

Four-bar linkage 6 DC motors 5 position sensors PC - 6

Wang et
al. [95]

Impedance control
with internal PID
position control

Four-bar linkage 5 DC motors
5 Encoders; 5 hall posi-
tion; 5 torque sensors

Multiple
DSP (2)

10 - 40 5

LMS
Hand
[21],[32]

Force control with
Neural Networks
and PID position
control

Wire-driven
16 DC mo-
tors

16 encoders (for mo-
tors), 16 absolute en-
coders (for joints)

PC 50 16

Lee et al.
[55]

Hybrid PD posi-
tion/force

Four-bar linkage 9 DC motors
9 incremental en-
coders, 4 resistive
force sensors

PC - 9

HIT/DLR
Prosthetic
Hand
[107],[41]

Impedance control
and PD position
control

Four-bar linkage 3 DC motors
3 encoders, 3 hall posi-
tion, 3 torque, 3 force
sensors on fingertips

Multiple
DSP (2)

1000 3

HIT/DLR
Prosthetic
Hand II
[57],[53]

Impedance control
and PD position
control

Wire-driven
15 Brushless
DC motors

15 position, 15 torque,
5 force on fingertips,
10 temperature sensors,
tactile sensors.

Multi-
processor
DSP+FPGA
(6 DSP &
6 FPGA)

- 20

KNU
Hand
[16],[44]

Position control
with sliding detector

Worm gear and
four-bar linkage

2 DC motors 2 position sensors DSP - 6

Many of the implementations depicted so far include simplifying the complexity of the
human hand to achieve embedding. Field Programmable Gate Arrays (FPGAs) are a good
match in pursuing this motivation. Additionally, these devices can be fundamental in the
simultaneous control and processing of several actuators and sensors that must be handled
synchronously. In conventional processors, the correct synchronization can be hampered
by the serial nature of executing instructions in von Neumann-based architectures. In this
way, FPGA-based platforms allow the designer to implement efficient digital architectures
capable of reading signals, in parallel, from multiple sensors. They generate many output
signals processed by complex models, sometimes driven by machine learning algorithms
such as artificial neural networks.

In [2], the authors provided new hardware architectures for FPGA implementation of
artificial neural networks with custom floating-point precision. The gains were in the order
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of hundreds compared to a serial solution at the same clock rate. Otherwise, the imple-
mentations of radial basis function artificial neural networks (RBFNNs) on hardware are
not numerous in the literature, as summarized below. In [13] the authors implemented an of-
fline trained RBFNN for nonlinear channel equalization mapped on a Xilinx Virtex-2 FPGA,
where the exponential function was approximated by a 4th order Taylor expansion. A scheme
for RBFNN evaluation and online training based on fuzzy c-means and recursive least mean
square algorithms are implemented on an FPGA in [25]. The authors use benchmarks for
classification problems to evaluate an Altera Cyclone III EP3C120 FPGA implementation
and calculate the exponential function with the floating-point Altera mega function. An
FPGA architecture for RBFNN is investigated in [15] when applied to uncertainty detection
for online controller tuning of a permanent-magnet synchronous motor and tested through
co-simulation using Simulink and ModelSim tools. The exponential function is calculated
according to a 12th order Taylor expansion, and the data types are set in the Q15 format with
16 bits and two complements.

In [23], the authors propose the online training of RBFNNs using the least mean square
algorithm, which was tested with the XOR problem and sine function approximation in a
Xilinx Virtex-6 FPGA. The authors analyze fixed-point operations using hardware, circuit
frequency, and output accuracy, varying the word length. The XOR problem is again used
to test an RBFNN implementation with 32-bits floating-point operations in FPGAs with
online backpropagation learning in [50], where the Taylor series approximation was used for
implementing the Gaussian function. It is possible to see that the cited works lack to compare
the impact of the word length on the precision and hardware consumption for floating-point
operations according to a given task in order to establish an optimal compromise between
hardware resources and accuracy. Moreover, none of them make use of the original modular
architecture of the RBFNN presented in [2] to provide solutions with the same word length
but with fewer hardware resources.

Among the most important factors when implementing ANNs on FPGA hardware, one
may cite [39]: data representation, inner-product calculation, implementation of the activa-
tion function, storage, and update of the weights. Concerning data representation, precision
should be considered as it will directly affect the accuracy. Note, however, that the resources
needed in the hardware will increase together with the precision. On this matter, floating-
point representations present advantages over fixed-point [85] given that a fixed-point rep-
resentation would require a more extensive word or a truncate of the value range to obtain
the same precision. Floating-point representation has an extended dynamic range with high-
resolution [28]. Nonetheless, there is no extensive support for designers on floating-point
arithmetics in FPGAs [80].

On the other hand, the limited resources of an FPGA and the necessity of embedding
complex algorithms and systems with performance and power consumption requirements
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bring the scientific community to use partial dynamic reconfiguration for multitasking, power-
efficient systems. Embedded systems implementation in FPGAs using DPR is an endeavor
useful for several fields, such as security, fault-tolerant systems, machine learning, and
Internet-of-Things (IoT), among other applications. A first example [46] exploits DPR’s
readiness to bring in-the-field hardware upgrades and updates to remote sites and end-user
continuous service to implement a lightweight cryptographic security protocol with Phys-
ically Unclonable Function (PUF) circuits. Another example [49] takes advantage of one
of DPR implementation’s most significant claims, energy efficiency. The work introduces a
reconfigurable architecture for Reduced Instruction Set Computing (RISC) processor to sup-
port IoT applications with different performance and energy trade-off requirements. On the
other hand, [81] performs a similar approach to achieve energy-efficiency in IoT embedded
applications by implementing a secure encryption protocol.

DPR systems can also be exploited for real-time applications such as those reported in
[73]. In that work, hardware accelerators were used to implement computationally intensive
tasks in real-time to capitalize on DPR’s capabilities to replace accelerators that are no longer
needed with new ones, leading to more efficient utilization of hardware resources. Similarly,
[12] performs real-time image processing of earth hyperspectral using FPGA with DPR.
The approach extracts the end members of a hyperspectral image using the Modified Vertex
Component Analysis (MVCA) algorithm, implemented in FPGA with adjustable execution
time performance thanks to DPR.

On the other hand, FPGAs were also used to be a viable alternative to Graphical Process-
ing Units (GPUs) for machine learning algorithms, such as NN implementations, especially
according to applications with strict power performance constraints. In [42] the authors
built a dynamic multi-classifier architecture used to process bioinformatics data. The im-
plemented classifiers were SVMs and KNN combined. The two classifiers were too big to
be implemented, and DPR enabled even improving performance when compared with static
solutions of either. Furthermore, [10] implemented an Ensemble Machine Learning in an
FPGA using DPR showing improvements in resources utilization, reconfiguration speed,
power consumption, and maximum clock frequency.

Deep Learning algorithms can also take advantage of DPR features, like in [103], where
a Convolutional Neural Network (CNN) hardware accelerator is carried out. Given that the
different network models, such as AlexNet, VGG, SSD, and YOLO, have different operators,
DPR comes in handy when creating a coprocessor that can implement a set of different
CNNs online, allowing to use any only when it is needed. Coprocessors in FPGAs are
commonly used with a bigger processor and communicate through a bus, often referred
to as Hardware/Software codesign. This was implemented in [52] where a CNN is also
implemented on an FPGA-based SC with DPR.

The implementation of all these applications does not have a standard methodology, and

27



most of them use custom DPR controller IPs that difficult the system implementation for
non-expert designers and early-entry users of DPR. For that, this work aims to develop a tool
that can be used, even by non-expert users, to develop DPR systems. However, this endeavor
has already been pursued by previous researchers. Table 3.2 evidence this by depicting six
other frameworks that closely relate to this work’s objective. It also summarizes the tools’
features compared to RTRLib’s current capacities and the ones proposed by this work.

Table 3.2 – Comparison of the main PR design tools. * are features under development

Interface PR-PR GUI RM HDL HLS Fault App IDE Platform
Bus Generator Tolerace Generator

Recobus Various × X × X × × ISE Virtex II,
Builder [51] & macro (XDL) Spartan 3
GoAhead [3] Direct X X × × × × ISE Virtex II

wire (XDL) Spartan 6
RePaBit [77] Bus × × × × × × VIVADO Zynq SoC

macro (TCL)
IMPRESS [106] Virtual X × × × × × VIVADO Zynq SoC

interface (TCL)
FASTER [75] N/A × N/A × X × X VIVADO Virtex 5,

(TCL) Zynq SoC
CAOS [76] N/A × X HLS X × X VIVADO UltraScale

(TCL) VU9P
RTRLib [43] Partition X* X Structural X Hardware Baremetal, VIVADO Zynq SoC

pins and HLS * redundancy FreeRTOS, (TCL)
Linux *

Recobus-builder [51] introduces point-to-point PR-Static communication links to auto-
mate the design steps required to construct DPR systems. It permits a flexible integration
of multiple modules using I/O bars, ideal for data streaming. Moreover, GoAhead [3] pro-
vides static/partial decoupling. (a goal of this work), hierarchical reconfiguration, and re-
configurable region crossing. Additionally, RepaBit [77] produces relocatable, one and two-
dimensional, partial bitstreams for Xilinx Zynq devices. RepaBit uses the Xilinx Isolation
Design Flow (IDF) to avoid feed-through routes. IMPRESS [106] implements a custom
virtual interface based on fixed nodes shared between the static logic and the RPs. It also
supports relocatable bitstreams avoiding feed-through routes and uses the AXI interface to
communicate different parts. The FASTER tool [75] framework that allows the development
of reconfigurable heterogeneous MPSoC systems. The user provides a C-based application,
an XML file with information about the target architecture and the HDL implementations
for the hardware cores. Also, FASTER implements high-level analysis, region optimiza-
tions, compile-time scheduling, and mapping into reconfigurable regions. Finally, CAOS
[76] adopts HPRC (High-Performance Reconfigurable Computers) systems which compre-
hend the full process of application optimization; from the identification and optimization of
the kernel functions to the generation of the runtime management for the target system, at
the implementation of DPR systems.

RTRLib is a high-level modeling tool that automatically provides
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• VIVADO-compatible TCL scrips for developing DPR systems on Xilinx Zynq devices,

• Early estimation of the resource utilization, latency, and reconfiguration time of each
RM.

Which can guide the designer concerning technical issues such as the size of each RP, the
communication interface between RPs, and the reconfiguration process. The features men-
tioned above are possible because the RTRLib is a platform-based design tool that uses the
semi-formal refinement-by-replacement methodology, allowing users to interconnect func-
tional blocks as a network process to express a specific behavior. Thus, each functional block
is refined and replaced by previously characterized IP-cores that deliver the HDL code. In
the case of hardware redundancy schemes for fault-tolerant systems, the tool also estimates
the failure rate and reliability of each RM.
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METHODS

4.1 MYKI PROJECT - SANT’ANNA

The experimental setup for this work is divided into two parts. The MYKI Project that
aims to develop a new myokinetic HMI that detect the position of the multiple implanted
magnets to control a robotic hand and the previously developed robotic hand already built in
the LEIA group.

The present work has a chapter in collaboration with the researchers involved with the
ERC-funded project titled "A BIDIRECTIONAL MYOKINETIC IMPLANTED INTER-
FACE FOR NATURAL CONTROL OF ARTIFICIAL LIMBS" (MYKI) together with the
Biorobotics Institute at the Scuola Superiore Sant’Anna - SSSA and Prof. Helon Ayala from
the Pontificia Universidade Catolica do Rio de Janeiro - PUC-Rio [93]. MYKI aims at de-
veloping and clinically evaluating a dexterous hand prosthesis with tactile sensing, which
is naturally controlled and perceived by the amputee. This will be possible by overcoming
the conventional approaches based on recording electrical signals from the peripheral ner-
vous system (nerves or skeletal muscle) through the development of a radically new Human-
Machine Interface (HMI) based on magnetic field principles, embracing the idea of sensing
the magnetic field of implanted magnetic markers (MMs), able to both decode voluntary
motor and force commands of an individual. During isotonic contractions, the deformation
of the muscles is axial (they shrink). During isometric contractions (i.e., when the muscle
generates force because the distal end is blocked), the muscle deforms in the radial direction
(i.e., it bulges). By monitoring both these (radial and axial) deformations, in principle, it is
possible to retrieve information on the force exerted by the muscle and on the joint position
[93, 88].

To test the concept of the myokinetic interface, together with its design features, an
anatomically equivalent forearm mockup is developed, see Fig. 4.1. The mockup is designed
to replicate the anatomical placement and contraction movements of the extrinsic muscles of
the hand. In particular, the mounted MMs emulates the Flexor Pollicis Longus (FPL -MM0),
the first two compartments of the Flexor Digitorum Superficialis (FDS1 and FDS2 - MM2

and MM3) and on the Abductor Pollicis Longus (APL - MM1). These MMs are linked to
the flexion control of the thumb, index, and middle fingers and the abduction of the thumb,
respectively. The mockup was used to experimentally assess the accuracy, repeatability, and
response time of the myokinetic HMI interface prototype.

The concept of said HMI to track the muscle contractions with implanted permanent
magnets, using magnetic field sensors, was proposed in [88] in the scope of the MYKI
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Figure 4.1 – Experimental Mockup setup. On the left is depicted forearm mockup with im-
planted magnets (MMs). The mockup reproduces natural position and orientation of forearm
muscles, in addition to their deformation due to contraction. Adapted from [88]

project. In this work, the authors present the concept, features, and a demonstration of a pro-
totype which exploits one of the four sensors’ PCBs to localize a single magnet implanted
in the mockup, for the control of a dexterous hand prosthesis [88]. Figure 4.2 presents the
developed concept.
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Figure 4.2 – Description of the current embedded architecture of the control interface for a
prosthetic hand. The magnetic field is acquired by a matrix of sensors ("S" on the acquisition
unit) to compute (computation unit) their position. For the target application (a prosthetic
hand) this information could be used to control its movements with physiological accuracy.
Notice that the red lines denote the microprocessors spatial limits. Adapted from [17]
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4.1.1 Experiments Data Acquisition
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Figure 4.3 – Mockup Schematic. It simulates the movements of the hand’s 17 degrees of
freedom, for a total of 17 wires, although only one is currently being used. Muscles were
modeled using a wire attached on one side to a servo motor (housed in a remote actuation
unit) and on the other side to counterweight to maintain tension. Adapted from [88]

For the sake of these tests, two datasets are acquired, one with the displacement of one
magnet and the other with five magnets (each representing one finger’s movement of flexion-
extension). The magnets are driven by servo motors, and the displacement of the magnets is
adequately driven to achieve a maximum translation of the wire (i.e., of the muscle) of ∼10
mm. A total of eleven datasets are acquired (six using one magnet and five using five mag-
nets), giving a new input to the servos at a Ts = 50 ms sample-rate. The input displacement
(target) provided to the servos is used as a ground-truth for analyzing the accuracy of the
retrieved magnet displacement.

The magnetic fields are sampled through four custom printed circuit boards (PCB), each
equipped with 32 three-axis magnetic field sensors (Fig. 4.3). For every PCB, the sen-
sors were laid out on orthogonal 8×4 grids. A 9 mm gap separates each column and row.
The PCBs are spatially centered on four opposite sides of a parallelepiped enclosing the
workspace (100 mm × 54 mm × 100 mm) (two on the XZ plane and two on the XY plane,
see Fig. 4.3). The PCBs send to a PC (Windows 7, Intel i7-6700 CPU running at 3.4 GHz, 32
GB of RAM) the readouts from the sensors at a rate of 20 Hz, through a serial bus (RS-485).
The collected signals are stored to be used for offline processing.

4.1.1.1 Description of Data - 1 Magnet

In particular, for one magnet, the following datasets were used as target:
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• One multisine data set, for creating the model. It is composed by a sum of sinusoid
signals as

yk =
A

2M

{
M∑

i=1

[sin (2πfitsk + φi)] + 1

}
, (4.1)

where yk denotes the servo command used as output for the model at discrete time
k = 0, 1, ..., N , A is the desired amplitude for yk in the range [0, A], M is the total
number of sinusoids in the equally spaced range for f1, f2, . . . , fM , and φ1, φ2, . . . , φM

are uniformly random phases in the range [0, 90◦]. The multisine is able to excite
the system in an specific range and also is able to reveal if the dynamic relationship
between the input and the output of the system should be taken into account.

Figure 4.4 – Measured dataset with the multisine excitation signal (left) and zoomed around
20 seconds (right). The sensors readings are the magnetic fields in Gauss.

For the acquisitions, it is used A = 10 mm, as it is the range of operation for the
mockup, M = 10 sine waves, and frequencies f1, ..., fM equally distributed in a range
between 0.1 and 0.5 Hz (see Fig. 4.4).

• Four ramps and one sequence of steps, for testing the models. Ideally, a data-driven
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model should be tested with a different dataset than used to train it. To this end, it is
used ramp and step signals datasets that are relevant for the application of trajectory
tracking using the myokinetic interface. The ramps are configured with positive and
negative slopes with different speeds during 20, 40, 60, and 80 seconds. The steps
were equally divided into twenty levels, ranging from the minimum (0 mm) to the
maximum (10 mm) servo displacement, and were applied sequentially. The sequence
of ramps and steps is given in Fig. 4.5.

(a) (b)

Figure 4.5 – Measured dataset for (a) the ramp excitation signal with 80 seconds total dura-
tion and (b) the step excitation signal.

From the plots in Fig. 4.4–4.5 it can see that there is a cause-effect relationship between
the measured magnetic field and the output displacement. This observation is confirmed
in Fig. 4.6, which plots the normalized histogram of the Pearson cross-correlation for the
magnetic sensors data and the output displacement, ordered by groups of the amplitude of
R in ascending order. It is possible to see that many sensors are linearly correlated with the
output muscle deflection (positively and negatively), which indicates that machine learning
models can represent the measured displacement based on the magnetic field data.
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Figure 4.6 – Distribution of the cross-correlation among the magnetic sensors time series and
the muscle’s output displacement. Note that many measurements are directly or inversely
linearly correlated with the output deflection.

4.1.1.2 Description of Data - 5 Magnets

For five magnets, the following datasets were used as a target:

• One multisine data set for creating the models. It is composed of a sum of sinusoid
signals similar to Eq. 4.1. The multisine can excite the system in a specific range and
reveal if the dynamic relationship between the input and the system’s output should be
taken into account. This can be more relevant when having many magnets since every
magnet’s magnetic field can overlap with the others and make the process of model
estimation more complex.

Similarly, for the five magnets dataset, a maximum distance of 10 mm was used, and
the same range frequencies between 0.1 and 0.5 Hz (see Fig. 4.7).

• Four ramps, for testing the models. The ramps are also configured with positive and
negative slopes with different speeds during 20, 40, 60, and 80 seconds for every mag-
net. In these datasets, every magnet was moved individually. Like this, the accuracy
can be tested for the movements of every finger individually. The sequence of ramps
are given in Fig. 4.8.
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Figure 4.7 – Measured dataset for five magnets with the multisine excitation signal (left) and
zoomed around 20 seconds (right). The sensors readings are the magnetic fields in Gauss.

(a) (b)

Figure 4.8 – Measured dataset for (a) the ramp excitation signal with 40 seconds total dura-
tion and (b) other with 80 seconds.
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Somewhat different from the plots with one magnet in the previous section, the cause-
effect relationship between the measured magnetic fields and the output displacement of
every magnet is subtler now. This observation is confirmed in Fig. 4.9, which plots the
normalized histogram of the Pearson cross-correlation for the magnetic sensors data and the
displacement of the output, similar to Fig. 4.6. It is possible to see few sensors linearly
correlate with the output of each magnet deflection, which indicates that simpler machine
learning models may not represent the measured displacement correctly. It makes then that
more adaptive models, such as ANN, may be more effective. Thus, they can then be imple-
mented on hardware for fast and energy-efficient solutions, as devised in the next section.
The challenge was to design offline a model that can be embedded as a general architecture
that delivers better timing results than those available in the literature.
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of 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#4
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Magnet #5
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Figure 4.9 – Distribution of the cross-correlation among the magnetic sensors time series and
the muscle’s output displacement with five magnets. Note that here, few measurements are
directly or inversely linearly correlated with the output deflection.

4.2 ROBOTIC HAND TESTBENCH - UNB

Figure 4.10 depicts the robotic hand used in this work to validate the proposed FPGA-
based localizer-controller. The complete system is composed of 7 DoF, each actuated by a
DC motor, seven analog rotational position sensors, and seven motor current sensors [71].

In total, there are five fingers in the robot. The thumb and index fingers’ configurations
have extra actuated joints for their aa movements. This project proposes three different finger
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configurations (see Fig. 4.10(a) for viewing the joints), as follows:

1. Configuration 1 (Thumb): 2 DoF (aa and fe) and 3 joints,

2. Configuration 2 (Index): 2 DoF (aa and fe) and 4 joints, and

3. Configuration 3 (Remaining fingers): 1 DoF (fe) and 3 joints.

(a) (b) (c)

θi,MCP_aa

θi,MCP_fe

θi,PIP_fe

θi,DIP_fe

θm,MCP_fe

θr,MCP_fe

θl,MCP_fe

θm,PIP_feθr,PIP_fe

θl,PIP_fe

θm,DIP_feθr,DIP_fe

θl,DIP_fe

θt,TMC_aa θt,MCP_fe

θt,DIP_fe

Conf. 1:
Thumb
Actuators

Conf. 2:
Index 
Actuators

Conf. 3:
Remaining
Fingers
Actuators

Figure 4.10 – Robotic Hand. (a) Kinematic structure of 7 DoF simplified robotic hand. Ac-
tuated joints are highlighted in red, the other ones are sub-actuated. (b) Render of assembled
robotic hand with the locations of the actuators and extra DoF of the index and thumb. (c)
Real picture of the assembled robotic hand.

4.2.1 Design Overview of Robotic Hand

The selection of the DoF used for this robotic hand was not trivial, and the reader is
refered to [72] for a detailed description of the design and optimization of the robotic hand.
The importance of these DoF in reference to others in a human hand can be quantified. For
example, the thumb adaptation of the well-known Kapandji clinical test [47] can be used for
this goal. This test assesses the thumb’s opposition by checking its ability to touch a specific
part of the hand. They are ten tests/positions in increasing difficulty, with the easiest consists
of touching the proximal phalanx of the index finger and the hardest is to touch the distal
palmar crease. Fig. 4.11 depicts two of the most representative Kapandji tests (six and ten)
validating this work’s thumb opposable ability by achieving the most challenging position.
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(a) (b)

Figure 4.11 – Kapandji Test for robotic hand. (a) Position six: thumb touches the little finger.
(b) Position ten: thumb touches distal palmar crease.

Additionally, another important aspect of this robotic hand is that electronics are embed-
ded in the palm and located in a custom PCB, except for the position sensor. Figure 4.12
illustrates the schematic of the controller dividing it into two parts the Acquisition Unit (AU)
and the Controller Part (CU). The signals are accessed from the CU through an IDC 34-pin
header that connects to the controller device. AUCU

Arty Z720 IDCBusZYNQ7000 Custom PCB
DRV8833Motor DriverACS712CurrentSensor

Index FingerIC
Rem. FingersICDRV8833Motor DriverACS712CurrentSensor

DC motor MURATAPosition SensorIndex FingerRobotic Hand Palm
Figure 4.12 – Schematic diagram the Robotic Hand Acquisition Unit (AU) and Controller
Unit (CU). The entire AU is embedded in the palm while the CU is the Arty board that is
located outside. On the south-west corner is a photo of the custom PCB of robotic hand.
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The AU includes the motor drivers (DRV8833), the current sensors (ACS712), and some
other power regulation ICs (Integrated Circuits). It also has connection pins for the IDC
breakthrough and sockets for the DC motors, and the analog angular position sensors. The
PCB has dimensions of approximately 80 × 52mm and has an irregular form designed to
fit in the palm (See Fig. 4.12). The CU consists of the Arty Z7-20 development board. It
contains an XC7Z010 SoC (System on a Chip) that includes a Zynq®-7000, an Artix™-7
FPGA (Field Programmable Gate Arrays), and a Dual-Core ARM®Cortex®-A9 at 667MHz.
The chip also includes a XADC (Analog to Digital Converter) necessary for the current and
position sensors.

4.2.2 Description of Controller Scheme

This work implementes an impedance controller that is executed in a decoupled form,
meaning that the action of every DoF does not have effects on the others. Thus, an analysis
of the system is more straightforward, being possible to implement the controllers separately.

The robotic hand aims to embed the low-level control algorithms and its novelty is that
it does this as a HW/SW codesign. The filtering process and the impedance controller are
implemented as reconfigurable architecture in an FPGA/SoC device. Doing so enables im-
plementing computing-intensive functions in parallel, in a single chip, with little compromise
to time-execution performance and energy consumption.

Net Interfacin
g Control InterfaceControl Type 17 17

17
Filtering Process

DoF_1 DoF_2 DoF_3 DoF_4 DoF_5 DoF_6 DoF_712bit1 MSPSADCdataready

USBLAN

161717
Motor DriverPWMGenerator

AXI4 Interface
171717

m17

m17ROBOTICHAND m17

ZYNQ7000 SoC

Figure 4.13 – Internal architecture of the CU. The Filtering Process block is replicated for
the same amount of DoF (Degrees of Freedom) in the robotic hand. These blocks, including
the Motor Driver, are controlled and synchronized via the AXI interface with the PS-part.
The PS-part also executes the impedance controller algorithm and the control interface.
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The Filtering Process block (presented in Fig. 4.13) is the most expensive part of the con-
trol scheme. So, this part is determined to be described in VHDL (VHSIC "Very High-Speed
Integrated Circuit" Hardware Description Language) on the CU’s FPGA (i.e. Programmable
Logic Part / PL-part). It is essential to point out that hardware implementation has some
advantages, like a logic architecture’s intrinsic parallelism. On the other hand, a drawback is
that the designer must be mindful not to surpass the number of logical resources on the chip.

Moreover, the Impedance Controller block in Fig. 4.15 is executed in the CU’s Processor
Unit (Programmable Software Part / PS-part). The composition of the CU’s architecture and
the dataflow is described in Fig. 4.13. Similarly, the robotic hand Control Interface block is
implemented in the PS-part. It can switch the control technique between manual, position,
and impedance control; this is described more thoroughly in the following subsection.

The AXI interconnect block, is a proprietary microcontroller bus that allows the connec-
tion between both the PS and the PL parts. This bus behaves as a two-way channel that
allows the ARM to read and write the PL modules (supervisory task). The filtered data is
forwarded to the PS-Part, which calculates the action of the impedance control. Finally, the
Motor Driver module sends, in a parallel fashion, PWM (Pulse Width Modulation) signals
to the motor drivers.

The PS-Part is also in charge of the connectivity of the system and as medium as Human-
Machine Interface (HMI).It uses a text-based visual interface (see Fig. 4.14) that enables the
user to control the robotic hand. The interface allows setting a series of predefined control
values (̂i1,..., 7) for different grasps and manually controlling each finger separately. The “***”
below the fingers’ names indicates the currently controlled one. The control variable of that
finger can be increased or decreased. The user can also declare which control variable will
be adjusted between three options by overriding it in the impedance controller dataflow. This
circumvention of the dataflow is depicted in Fig. 4.15 with the red, green and blue lines for
i∗, θ∗ and m∗ respectively. Resuming the control can be done with three strategies:

1. MANUAL_MOTORS mode overrides the m∗ variable (Seen as "Volt" on Fig. 4.15),
allowing to control the voltage of the motors of the robotic hand manually; and hence,
the flexion-extension movements of every finger. It sends a constant pulse to the mo-
tors vetoing the output of the proportional gain.

2. P_ONLY: Bypasses the desired position of a finger (θ∗k and shown as “setP”on Fig.
4.15). Setting this control variable makes it possible to set a finger in the desired
position, nullifying the impedance controller’s action. Since the output of the MIKY
interface are percentil flexion/extension of the fingers, this mode is what will be used
in this work.

3. FULL_IMPEDANCE: Is the full proposed impedance controller scheme. It updates
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the control variable i∗ (“setC” in Fig. 4.15) into the impedance controller. It feeds the
desired current for grasping objects.

Figure 4.14 – Robotic hand visual interface. It illustrates some relevant data for the sensors
calibration and filters parameters. It also shows sensors and control data: setP and Pos
are the desired and filtered angular position of a finger, Volt is the voltage of a finger’s
motor, and Curr and setC are the filtered sensor and desired current respectively. Finally,
it also specifies the current control strategy for testing (MANUAL_MOTORS, P_ONLY or
FULL_IMPEDANCE).

The dataflow diagram for controlling each DoF is depicted in Fig. 4.15. Note that this
control scheme also identifies which parts are in the PS and which ones are in the PL. It can
be observed that the Filtering Process is fully implemented for each DoF in the PL part, and
the same is replicated seven times (see Fig. 4.13). In this way, each Filtering Process circuit
receives each pair θk and ik from the finger sensors and calculates each estimated pair θ̂k/ω̂k
(using the KF) and also the ik from a low-pass filter, as will be explained below.

mk kkk

+ ++
DiscreteIntegrator
+ + 

DiscreteIntegrator +kkk

Simularor
Figure 4.15 – Dataflow of finger simulator impedance controller (k=1 to 7). The colored
lines highlight the data-path that the control interface override for testing (See 4.14).
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4.2.3 Robotic Hand Design Validation

The present work can simulate human grasping motion despite DoF reduction (Degrees
of Freedom). This is proved, doing experiments with the The Cutkosky taxonomy [19],
which is a human grasping classification that has been extensively used for manipulation
and machining tasks. The different types of grasping poses are classified into power and
precision grasps. The experiments are executed by this work’s robotic hand by maintaining
an object’s static grasping pose from the taxonomy.

Figure 4.16 shows the robotic hand performing some poses from said taxonomy. The
robotic hand can perform five power-grasp and four precision-grasp successfully, demon-
strating its ability to grasp and manipulate some objects, enabling a vast amount of applica-
tions. These results also show the relevance of the TMC_aa for most grasping poses.Power Grasp Precision GraspLateral Pinch Prismatic Circular Prismatic Circular

Large Diameter Medium Diameter Small Diameter Thumbw/4 fingers Thumbw/2 fingers Thumb w/Index finger

Figure 4.16 – Robotic hand performing grasping poses according to the Cutkosky taxonomy.
See video

4.2.4 Integration of Robotic Hand and MYKI Interface

The goal of the integration of these experimental setups is to control the robotic hand
developed in the LEIA lab with the MYKI interface data. A SoC-based solution to integrate
the acquisition unit of the MYKY interface to the FPGA-based models to track the magnets
was already developed and will be presented in Chapter 5.

A technical visit to the Biorobotics Institute at the Scuola Superiore Sant’Anna will allow
for implementing the integration proposal, performing experiments and collecting new data.
Initially, some data have been collected from the mockup to develop the initial models de-
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scribed in Chapter 5. They are six datasets that comprise the movements of a single magnet
at a 50 ms sample-rate. Four of them are ramp movements; this is, the magnet is driven to
its maximum length (approximately 10 mm) forward and back once for each dataset, during
20, 40, 60, and 80 seconds. The fifth dataset is a sequence of 10 steps across the traveling
distance of the magnet. Finally, the last one is more complex; it is a movement that follows a
composed sine wave; it was composed of 10 waves of different amplitudes and frequencies
ranging from 0.1 to 0.5 Hz.

The previous datasets are artificial movements to tests the MYKI interface; however, to
test the integration of the interface with the LEIA robotic hand, other datasets are meant to
be taken. As an aditional (optional) contribution it is also planned to sample the movements
of the magnets for when a hand is grasping various objects with different geometries using
an electronic glove that tracks the actions of the fingers. The data obtained from the glove is
translated to the forearm mockup and collect the reading of the magnetic field sensors. This
data is meant to be collected offline. Finally, the MMs data is interpreted by the localizer with
the implemented models and will be used to control the robotic hand. It must be considered
that this task will be performed only if the time during the visit allows to do this.

4.3 RTRLIB

RTRLib is a model-based platform-oriented design tool for DPR systems. The tool is
developed in Matlab/Simulink as a high-level development framework allowing a more flex-
ible design of DPR systems. RTRLib exploits Simulink’s "Variant Systems" functionality
granting non-expert users the possibility to produce DPR solutions, see Fig 4.17, [43].

Figure 4.17 – Some Functional Blocks of RTRlib in Simulink using it “Variant Systems”
feature. Adapted from [43]

The tool is based on semi-formal refinement-by-replacement methodology introduced in
[1], enabling to simulate and analyze at design time the behavior of the system during the
reconfiguration process. Furthermore, RTRLib provides a script generator that allows some
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DPR solution to be mapped automatically on FPGA-based System-on-Chips (SoCs), specif-
ically for the Xilinx Zynq 7010 and Zynq 7020 devices. The generator is based on several
pre-characterized IP-Cores available on the FPLib [66, 66]. Therefore, to estimate the size
of each Reconfigurable Part (RP), the designer must implement the high-level description of
the Reconfigurable Modules (RMs) using the available IP-Cores. Thus, the tool translates
the content of the RMs into its HDL description.

The tool has been tested with Matlab (2016a) and Vivado (2016.4/2017.4). Figure 4.18
shows a block diagram of the main flow phases; each one of them will be depicted within
this section.

4.3.1 RTRLib Workflow

The design flow of RTRLib has four phases: highlevel framework, hardware redundancy

design methodology, PR hardware design flow, and PR software design flow. Figure 4.19
illustrates the overall RTRLib design flow.

Figure 4.18 – DPR methodological work-flow diagram using RTRLib. “RTRLib modules”
refers to the parts of the work-flow that are part of the RTRLib tool.

The first is where the system’s high-level description is developed. Here, the designer
must provide all the details related to the desired system. It is possible to model hardware-

45



only systems as well as SoC solutions using the ARM Cortex A9 processor embedded in
the supported Zynq devices. In this phase, the user must instantiate and configure the Top
Module Block, selecting the target board (Zedboard or Zybo) and the reconfiguration strategy
between these three options:

• PRC (Partial Reconfigurable Controller) + ICAP: This strategy uses the PRC IP. It
works with physical triggers to indicate an event, thus pulling the partial bitstreams
from memory, delivering through ICAP.

• PCAP + ARM: This strategy implements software-only triggers events. In this case,
the ARM controls the reconfiguration process through the PCAP.

• Manual: For this case, the reconfiguration is controlled using the Vivado Hardware
Manager Tool through JTAG without intermediate controllers.

Figure 4.19 – Overview of the RTRlib design flow. Blue rectangles represent high-level
models. Green squares represent fault-tolerant models. Tasks related to the design transfor-
mation and characterization, such as the automatic VHDL code generation, are depicted by
gray boxes. Finally, the output files are highlighted in magenta.

For the hardware redundancy design phase, RTRLib implements a fault-tolerant design
methodology based on the structural design of an NMR solution [24]. The designer provides
the application details, such as the target FPGA platform and the mission time. With this
data and the resource utilization estimation of each RP, the system reliability is projected
and delivered by the tool. Two bio-inspired methodologies (mono and multi-objective) are in
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charge of finding the optimum redundancy level for each stage assessing the optimal number
of replicas for each redundant module.

Consequently, and unconstrained by the existence of redundancy, the built model is
dragged from the previous phases to the next one initiating the PR hardware design flow.
The main output of this phase is a TCL-script that is later used in the Vivado TCL con-
sole environment. The script assembles the low-level system automatically according to the
specifications provided by the designer.

Lastly, the PR software design flow phase is triggered if the solution requires a soft-
ware part. For the exploitation of the software part of the Zynq SoC, RTRlib currently
contemplates two choices when developing an application: C/C++ standalone and Xilinx-
compatible FreeRTOS823. The user must select which software option will be used in the
first phase, in the configuration of the RTRLib ARM block. Depending on the chosen alterna-
tive, the output of this phase may be a template that allows the partial reconfiguration through
software triggers (C/C++ standalone). However; if the user decided to use FreeRTOS, early
in the process, RTRLib provides a visual interface to assemble personalized applications.

4.3.2 Limitations of RTRLib

Table 4.1 – Limitations of the RTRLib. * Are limitations improved in the scope of this work

Hardware Features Hardware script generalization X
RPs AXI-Lite interface generator and IP packing X
RPs AXI-Stream interface generator
and IP packing
RMs IPs automatic synthesis X
Floorplanning X
IO mapping constraints X
Power estimation
HDL generation for RMs
Resources Estimation X

Software Features Software script generator X
Application Type Selection X
Standalone application generator X
FreeRTOS application generator X
Linux application generator

PR Features Decoupling * X
Isolation
Relocation
Bitstream Compressing
Computation of the reconfiguration time * X
Data dependency between RPs

FT Methodology Integration with the RTRLib Design Flow * X
SEU Estimation

RTRLib is still under development; currently, it works under particular conditions for
some applications, and some functionalities are not yet enabled. Table 4.1 presents a set of
some functionalities that are not yet implemented on the RTRLib, as well as the features
that were already implemented. It is the aim of this work to improve some of RTRLib’s
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limitations, such as: a) AXIStream and AXIDMA for IP packaging; b) Estimation of the
reconfiguration time.

4.3.3 RTRLib on MYKI localization problem

Figure 4.2, depicts the myokinetic current data acquisition and localization scheme. As
mentioned earlier, the PIC µcontroller takes 21.0 ms to collect 96 sensor readings sequen-
tially. This is relatively slow given that the MAG3110 is rated to feed data at 12.5 ms [29].
Thus, if the AU could be rearranged in a way to have more i2c lines, changing, without
compromising the number of devices involved, the full data rate of the sensors could be ex-
ploited, see Fig 4.20. Taking into account these timing restrictions, as well as the timing
specifications of the prosthetic hand, the control algorithm executed by the control unit and
the number of i2c lines must be selected to optimize the overall execution time and power
consumption of the system.
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Figure 4.20 – Acquisition Unit with several i2c lines and a new.

In that context, a DPR solution can be used for different purposes:

a. Switching between different control strategies of the prosthetic hand. Currently, the LEIA
robotic hand can be controlled using different control strategies, such as impedance con-
troller, PID, and manual control (and other strategies that can be implemented in the
future)—being the first, the more complex, with more prominent resource utilization than
the others. Switching between these architectures, sacrificing some control efficiency
could potentially reduce the power consumption of the FPGA-based control system when
needed.

b. Swapping the myokinetic interface machine learning models. The goal of the myokinetic
interface is to track a minimum of 5 magnets (5 DoF), every implanted magnet will need
a model predictor, and these can be different. It is planned to train every magnet individu-
ally an together to extract a model to localize each. Because the five models may not fit in
the FPGA, if implemented using static configuration, a solution for this problem could be
the swapping between the models using DPR, potentially being able to move to a smaller,
with less energy consumption, cheaper FPGA.
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c. Adapting the myokinetic interface according to the timing constraints of the acquisition
board and robotic hand controller unit. The hardware predictor models’ execution per-
formance depends on their complexity, and all of its computational power may not bee
needed at some circumstances. It is proposed to switch to less complex architectures when
the systems require a solution with less energy consumption. For example, reconfigure
to a linear model with fewer operators leads to a smaller throughput, but fewer resources
lead to the use of less energy.
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MACHINE LEARNING MODELS
IMPLEMENTATION ON HARDWARE

This section describes the results on the implementation of machine learning models for
magnet localization in the MIKY project, namely, a Neural Network and Linear Regressors,
which were implemented as hardware co-processors in an FPGA device. The following
subsections define the mathematical formulation of the proposed models.

Both models are designed automatically with VHDL code generator tools (pLinRgen

and vRBFgen) develop in MATLAB to easily producing different models. The tools receive
configuration parameters that set the model’s architecture composition, characterizing the
number of arithmetical operators and the connections in between. The arithmetical operators
are customized floating-point modules previously developed by Muñoz et al. [65, 66].

The models are trained with the composed sine wave movement dataset mentioned in
Chapter 4. The reason this dataset is selected is that it contains the most important informa-
tion about the system. The linear model is trained using the linear least-squares regression
method [36] to determine its intersection and coefficients. On the other hand, the RBFNN
is trained using the k-means optimization algorithm [36] to determine the RBF centers and
the weights of the outputs neurons. The number of neurons was set to eight; after that, the
model’s accuracy did not appear to increase in the tests.

The description of the models and the configuration parameters are detailed in the fol-
lowing subsections.

5.1 LINEAR MODEL - PLINRGEN

The linear model predictor is implemented in FPGA as a combination of FSM (Finite
State Machine) and pipeline architectures. It calculates the following equation.

ŷk = c1 · x1,k + c2 · x2,k + ... + cnvar · xnvar,k + b (5.1)

where c1, c2, ..., cnvar and b are the coefficients of the model, ŷk is the prediction, and x1,k, x2,k, ..., xnvar,k

are the input variables in the instant k.

The code generator configuration parameters are:

1. nbits: Is the bit-width of the floating point representation for the arithmetical operators
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(adders and multipliers).

2. nvar: Indicates the number of variables the linear model has.

3. c1, ..., cnvar and b: see Eq. 5.1

4. nop: Is the number of operators executed in parallel. The number of stages of the
pipeline architecture and the arrangement of the operators depends on this parameter
(see Fig 5.1(b)).

The input/output ports of the linear model predictor are depicted in Fig. 5.1(a). As
expected, the quantity of inputs depends on the nop parameter. On the other hand, Fig. 5.1(b)
illustrates a possible configuration for the linear model predictor with nop = 4 and 4 levels
of deepness (nstages). The latter parameter can be determined by the following equation:

nstages = log2(nop) + 2 (5.2)

(a) (b)Linear Model Predictor Linear Modelready_inx[1]...x[n    ]c[1]...c[n    ]op
op
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++ + +x1
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Figure 5.1 – Linear Model Predictor on FPGA. (a) Top level view of system. (b) Internal
pipe-lined architecture of “Linear Model” block.

The “Data FSM” block is a finite state machine that synchronously feeds the variables
and coefficients to the “Linear Model” block. When nvar > nop the FSM feeds the data in
the correct sequence for ncycles = nvar/nop, being the number of cycles necessary to carry
out a prediction. This sequence is illustrated in Fig. 5.2 as a timing diagram with the states
of the values for the inputs and outputs of the “Linear Model” block.

The latency in the diagram is depicted as the measured time between the first start pulse
(“ready_in”) and the first output ready pulse (“ready_out”) of the system. It can be calculated
as stated in equation 5.3, where Tclock is the global clock period, and the latency is measured
in µseconds.

Latency = ncycles · nstages · top (5.3)
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where top is the time the operator modules require to carry out a result and is expressed as
2 · Tclock.

Figure 5.2 – Input/Output data time diagram of linear model in FPGA. The “ready_in” input
signals the start of the process ncycles-times. The “ready_out” output signal announce when
a prediction is calculated.

Similarly, the throughput is the output data rate and can be measured in MFLOPS (Mil-
lion of Floating Operations per Second). It is estimated as the inverse time between two
consecutive output ready pulse (“ready_out”). However, because this hardware model has an
FSM and a pipelined architecture working together, the traditional estimation of the through-
put for a pipeline, equals to 1

2·Tclock , does not reflect the real rate of this particular case. For
this case, the throughput depends on the nvar and nop variables and is estimated by the equa-
tion 5.4.

Throughput =
1

(ncycles · nstages − nstages + 1) · top
(5.4)

The latency and throughput are used to measure the computational performance in the
following sections.

52



5.2 RADIAL BASIS FUNCTIONS ARTIFICIAL NEURAL NETWORK
(RBFNN) MODEL - VRBFGEN

The RBFNN model is also implemented as a hardware architecture in FPGA using a FSM
described in VHDL. The output of the RBFNN is mathematically defined in equation 2.6.
The code generator implements the RBFNNs with the following configuration parameters:

1. nbits: Is the bit-width of the floating point representation for the arithmetical opera-
tors.

2. nvar: Is the number of inputs.

3. M : Is the number of neurons.

4. ccc: Is an M × nvar matrix with the centers for every neuron.

5. δ: Is an M × 1 array with the neurons’ spreads, 1/(2σ2) for this case, see Eq. 2.7.

6. w: Is an M × 1 array with the output layer weights.

The construction of the RBFNN Model Predictor is described in Fig. 5.3(a) exhibiting:
1) The input layer composed by a “Register Array” block where the inputs are stacked, and
a “ROM” block with the coefficients c(M × nvar); 2) The hidden layer with M -neurons
working in parallel; and 3) the output layer that is integrated by an FSM, a ROM (containing
the weight coefficients) and some operators in charge of calculating a prediction by weighing
the neurons’ outputs φ. Every “Neuron” block implements a Gaussian kernel, as seen in
Eq. 2.7, using three operators: 1) an adder, 2) a subtractor, and 3) an exponential operator,
differently from the Linear Model that only uses the former two. The latter is implemented
as a CORDIC (Coordinate Rotation in a Digital Compute) algorithm [65]. The composition
of this block is depicted in Fig. 5.3(b) and is also implemented using an FSM that controls
the operations.

Since the RBFNN model and the NN blocks consist only of FSMs, its latency and
throughput are equal. As said before, the NN blocks are implemented in parallel (one for
every neuron of the model), and its total of inner operators are kept the same no matter the
number of inputs; hence, the latency depends on the number of inputs and can be obtained
using by

Latency = nvar · tfsm + tcordic + (M + 1) · tfsm (5.5)

, where tfsm is the time the multiplier, adder and substractor require to execute an operation
in an FSM and tcordic is the time the CORDIC algorithm takes to perform an exponential
operation.
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Figure 5.3 – RBFNN Model Predictor on FPGA. (a) Top level view of the system. (b)
Internal FSM of radial based kernel of “Neuron” block.

The throughput is calculated using the latency with

Throughput =
1

Latency
(5.6)

5.3 INTEGRATION WITH THE ACQUISITION BOARD

In previous work [17], the acquisition board or “Localizer” involves two main parts; the
Acquisition Unit (AU) and the Computation Unit (CU), see Fig. 5.4(a). The AU contains
a 16-bit micro-controller that acquires data from an array of 32 three-axis magnetic field
sensors through an I2C interface. The CU consists of an iMX RT1050 Processor that draws
the data from the AU via UART RS-485 and makes the prediction by implementing a set
of 96 equations (32 sensors × 3 axis) and solve it using a Levenberg–Marquardt algorithm
(LMA) [56].

This work proposes to reduce the “Localizer” by joining the CU and the AU. Rather
than using two Controller-Processor chip components, it is introduced a Zynq-7020 SoC that
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integrates a dual-core, 650 MHz, ARM Cortex-A9 processor (Programmable Software - PS)
with a Xilinx 7-series FPGA (Programmable Logic - PL). Fig. 5.4(b) depicts the proposed
architecture, which is implemented in the PL-part of the SoC using a custom µBlaze (32-
bit RISC processor) as a master to manage the I2C interface and the model block (Linear
or RBF) through AXI (AMBA eXtensible Interface - AXI is an on-chip bus architecture).
Furthermore, the PS-part will use the predictions for prostheses control and AI algorithms,
and, for this, the µBlaze is also connected to it over a non-exclusive FIFO mailbox block that
allows bi-directional communication between the PS and PL parts.
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ŷ

Model Predictor
Linear/RBFNN

start

varx[1:n     ]
ŷ
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Figure 5.4 – Localizer for embedded MIKY sensoring system. (a) Is the overview of the
architecture previously considered in [17]. The AU contains the matrix of the “S” magnetic
sensors and a 16-bit µController, while the CU contains the ARM processor in charge of
the prediction. (b) Depicts the proposed architecture of this article. The Acquisition and
Computation are included in the same SoC chip. Note that the red lines denote a chip’s
spatial limits.

5.4 FPGA UTILIZATION VS BIT-WIDTH

The FPGA’s hardware resources, such as DSP, look-up tables (LUT), and registers, are
limited. In the case of this work, the FPGA’s utilization changes following the complexity of
the architecture and bit-width of the models’ operators. Tables 5.2 to 5.1 describe the hard-
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ware consumption of the Linear and RBFNN model predictors implemented with different
bit-width.

Table 5.1 – Hardware utilization of the extra blocks for the integration scheme.

Block LUT DSP SR BRAM
(53200) (220) (106400) (144)

MicroBlaze 700 0 334 8
(1.31%) () (0.3%) (5.5%)

i2c Master 179 0 250 0
(0.3%) () (0.2%) ()

Fifo Mailbox 239 0 199 0
(0.4%) () (0.2%) ()

AXI-4 Lite 471 0 576 0
(0.9%) () (0.5%) ()

Table 5.2 – Hardware utilization and estimation error varying the floating-point bit-width of
linear model using 8 and 128 operators (less is better in all columns)

LUTs (53200) DSP (220) SR (106400) MSE [dB]bits 8 ops 128 ops 8 ops 128 ops 8 ops 128 ops
20 2126 31640 8 128 1829 27997 -69.860

(3.9%) (59.5%) (3.6%) (58.2%) (1.7%) (26.3%)
27 3340 51420 8 128 2419 37227 -99.845

(6.3%) (96.6%) (3.6%) (58.2%) (2.3%) (34.9%)
32 3532 82021 16 160 2869 44278 -129.987

(6.6%) (154.2%) (7.3%) (72.7%) (2.7%) (41.6%)
38 4971 158651 32 160 3415 52743 -166.450

(9.3%) (298.2%) (14.5%) (72.7%) (3.2%) (49.6%)
42 5569 206715 32 160 3775 58383 -190.136

(10.5%) (388.6%) (14.5%) (72.7%) (3.5%) (54.9%)
45 6382 232451 32 160 4045 62613 -208.556

(12.0%) (436.9%) (14.5%) (72.7%) (3.8%) (58.8%)
64 9097 504736 72 160 5665 87874 -304.454

(17.1%) (948.7%) (32.7%) (72.7%) (5.3%) (82.6%)

Additionally, the precision of the floating-point numeric representation depends on the
used bit-width. Thus, since it is essential to preserve both a good precision error and a
minimum hardware consumption, a compromise must be made between these two aspects.
The numeric error of every case and model can be seen in the previous Tables and Fig. 5.5.

It was decided to proceed with the 27 bit-width of the floating-point operators, pointing
out the following reasons:

1. Because, as seen in Fig. 5.5, after 27 bit-width, there is not much improvement in the
MSE for the RBFNN model.

2. Similarly, the architecture with a bit-width greater than 27 does not fit in the selected
Xilinx 7-series FPGA.
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Table 5.3 – Hardware utilization and estimation error varying the floating-point bit-width of
RBFNN model with 8 parallel neurons (less is better in every column)

bits LUTs DSP SR MSE [dB]
(53200) (220) (106400)

20 50327 9 13443 37.636
(94.6%) (4.1%) (12.6%)

27 67065 9 16936 -56.858
(126.1%) (4.1%) (15.9%)

32 78877 18 19442 -85.826
(148.3%) (8.2%) (18.3%)

38 93481 36 22435 -100.046
(175.7%) (16.4%) (21.1%)

42 103385 36 24451 -99.926
(194.3%) (16.4%) (23.0%)

45 111770 36 25952 -99.909
(210.1%) (16.4%) (24.4%)

64 163417 81 35451 -99.906
(307.2%) (36.8%) (33.3%)
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Figure 5.5 – MSE (Medium Square Error) in dB vs Bit-width for the RBFNN and Linear
models

Lastly, Fig. 5.6 illustrates a prediction example of a 20 seconds ramp movement using
both models.
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Figure 5.6 – Prediction error for RBFNN and Linear prediction models implemented on the
FPGA using 27 bits.

5.5 MODEL TIME PERFORMANCE RESULTS

Table 5.4 compares the execution-time performance results of the models. The Linear
Model compares three different layouts according to the nop configuration parameter due
to it being the only parameter that affects the timing. Differently, as said previously, the
RBFNN model only has a single configuration timing considering that the only parameter
that affects its timing is the number of inputs nvar (see Eq. 5.5).

Table 5.4 – Execution Time of Model Predictors

Model Type Nop Neurons Execution Time Throughput

Latency [µs] [MFLOPS]

Linear 2 - 11.52 0.09

Linear 8 - 4.80 0.21

Linear 128 - 0.54 2.63

RBFNN - 8 12.07 0.08

In Table 5.4 it can be seen that the 128Nop-Linear Model dramatically outperforms the
RBFNN Model. We can consider this a fair comparison since the hardware consumption of
both models is similar according to Tables 5.2 and 5.3.

Nevertheless, another outstanding result is the 2Nop-Linear Model due to its similar tim-
ing performance with the RBFNN Model using much fewer hardware resources. This result
is remarkable because it is a much more suitable approach for this system, given that the
sensory data comes from a serial RS-485 port; so, it makes more sense to deal with the data
at the same pace it is being fed from the source.
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The 8Nop-Linear Model would not correspond to the previous reasoning; however, this
solution could also be noteworthy if the sensory board could feed the data more than a single
line. If, for example, it could be feed from eight data lines, the full potential of this model
could be exploited.

Moreover, these results and models are implemented to localize a single magnet. The
linear regressor’s superior performance could be reversed when introducing several magnets
and moving them at the same time. The interference of different magnetic fields could diffi-
cult for the linear model to pinpoint separate magnets. It is expected that the RBFNN model
will prove its flexibility to detect several magnets in the following experiments accurately.

5.6 POWER CONSUMPTION AND IMPLEMENTATION FEASIBIL-
ITY

In order to test the feasibility of the models, Fig. 5.7 represents the chip utilization of the
implemented models.

(a) (b)

Model Linear/RBFNN

μBlaze

Axi4-Lite i2c Master

FIFO Mailbox

Figure 5.7 – Device overview of the FPGA utilization for both models of the complete system
depicted in Fig. 5.1. Every module is highlighted with a different color. (a) RBFNN Model
(M = 8). (b) Linear Model (Nop = 8).

Finally, the models’ power consumption estimation is described in Table 5.5. The extra
blocks are included, and they do not change as they are independent of the models. At the
left of the table is the total consumption of all the systems.
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Table 5.5 – Power consumption of prediction models scheme.

µBlaze Axi4 Mbox i2c Crtx-A9 Sensors Model Total

[mW] [mW] [mW] [mW] [mW] [mW] [mW] [mW]

Linear 18 5 1 2 628 200 39 893

RBFNN 332 1186

5.7 CHAPTER CONCLUSIONS

In this chapter, it was validated the hypothesis that machine learning can be used for de-
veloping data-driven magnet localization approaches, as both models presented results with
R2 close to unity. The linear model presented overall better results in terms of accuracy and
hardware consumption compared to the RBFNN model regarding model prediction accu-
racy. However, the RBFNN model showed a smaller static error, critical for such biosignal
interpretation models.

The linear model demands significantly fewer hardware resources when we optimize
the architecture by taking advantage of the model’s inherently parallel structure. Hardware
optimization was further applied for both models by tuning the bit-width numerical represen-
tation for the floating-point operations on hardware, highlighting the importance of ad-hoc
floating-point precision hardware architectures. Similarly, more results are needed to test
the adherence of machine learning models for more complex behavior observed when using
several magnets for tracking different muscles at the same time.
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TRACKING OF FIVE MAGNETS USING
PROPOSED ARCHITECTURES

Indeed, the next natural step to test is the localization of many magnets concomitantly. The
last chapter proved that it is possible to use machine learning to localize a single magnet.
To do so, we need to perform experiments with more than one magnet and evaluate the
data-driven models’ accuracy in this more challenging scenario. This section describes the
implementation of the previous chapter’s machine learning models for several magnet lo-
calization in the MYKI project, specifically five magnets, each representing each finger’s
flexion-extension movements. The following subsections define how the experiments’ data
is pre-processed to improve the implemented ML models. This is done by performing a
transformation of the data using Principal Component and Covariance Analysis. The models
are then trained with the five-magnet composed sine wave movement dataset mentioned in
Chapter 4.1. The training methods, as well as the model training parameters, are maintained
in this chapter. However, another ML model, namely a Multilayer Perceptron (MLP), is also
tested in this analysis for comparison purposes and further implementation. The dimension-
ality analysis and the models’ training results and parameters are detailed in the following
subsections.

6.1 GENERATED MODELS WITH UNPROCESSED RAW DATA

It is decided to make a different model for every magnet since it eases this system’s im-
plementation. The models are initially trained using the unprocessed input from the sensors.
This is done to test how the trained models with reduced inputs perform against those who
use all inputs. In this experiment, a new model is introduced: a Multilayer Perceptron (MLP)
neural network. This model’s architecture is two hidden layers where the first layer uses a
tangential-sigmoid activation function and the second a linear activation function. The MLP
also implements four neurons for this test, and it is trained with the Levenberg-Marquardt
backpropagation algorithm that updates weight and bias values according to Levenberg-
Marquardt optimization.

The MSE and R2 values obtained after training the modes resulted in the following table.
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Table 6.1 – MSE [dB] andR2 rated error for models trained with raw input data. Highlighted
cells represet the models that perform the best for each magnet localization prediction

Models Linear RBFNN MLP

Magnets R2 MSE [dB] R2 MSE [dB] R2 MSE [dB]

1 0.3006 -8.0078 0.8075 -13.6105 -0.9555 -3.5425
2 0.9863 -25.0856 0.8933 -16.1724 0.7492 -12.4624
3 0.9841 -24.4320 0.3095 -8.0632 0.9607 -20.5142
4 0.8214 -13.9363 0.8132 -13.7416 0.9013 -16.5111
5 0.9726 -22.0707 -3.1683 -0.2554 0.8146 -13.7748

Table 6.1 shows that some magnets localization is predicted better with a particular model
while with others, the performance is terrible (i.e., models with negative values in R2). This
again reinsures the importance of using different types of models for this problem.

6.2 DIMENSIONALITY REDUCTION OF MAGNETIC SENSOR FEA-
TURES USING PCA

Feature extraction techniques can reduce the number of inputs to the model, potentially
reducing the hardware implementation’s complexity. That could potentially reduce FPGA
resource utilization and improve computational performance. The data exploration results
show that a smaller amount of magnetic information can be used to create the models, which
should also be tested in the multi-magnet scenario.

6.2.1 Principal Component Analysis

Principal components analysis (PCA) is based on Singular Value Decomposition (SVD),
a crucial computational matrix factorization technique. SVD provides a systematic way to
determine a low-dimensional approximation to high-dimensional data in terms of dominant
patterns. This technique is data-driven because such patterns are discovered purely from data,
without the addition of expert knowledge or intuition. It is numerically stable and provides
a hierarchical representation of the data in terms of a new coordinate system defined by
dominant correlations within the data and is guaranteed to exist for any matrix or dataset
[7]. The SVD is a unique matrix decomposition that exists for every complex-valued matrix
X ∈ Cn×m:

X = UΣV T (6.1)
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, where U ∈ Un×n and V ∈ Cm×m are unitary matrices with orthonormal columns, and
Σ ∈ Rn×m is a matrix with real, non-negative entries on the diagonal and zeros off the
diagonal.

PCA provides a data-driven, hierarchical coordinate system to represent high-dimensional
correlated data. This coordinate system involves the matrices described in Eq. 6.1. Impor-
tantly, PCA pre-processes the data by mean subtraction and setting the variance to unity
before performing the SVD. The resulting coordinate system’s geometry is determined by
principal components (PCs) that are uncorrelated (orthogonal) to each other but have a max-
imal correlation with the measurements. This theory was developed in [30].

As mentioned in Chapter 4.1, several magnetic field measurements were collected with
different movements for five magnets. These measurements are as arranged into a row vec-
tor in a large matrix X . There are multiple challenges with this type of data, namely the
high dimension of the data features. However, after implementing PCA to the five-magnet
multisine dataset, we see from Fig 6.1 that there is significant variance captured in the first
few PCA modes. Said another way, the magnetic field data is highly correlated, so that many
sensors have significant overlap in their measurements from different magnets.

(a) (b)

0 100 200 300 400r10-40
10-30
10-20
10-10
100

Singular valu
e,  r2

0 100 200 300 400r0.50.550.60.650.70.750.80.850.90.951
Cumulative V

ariance

Figure 6.1 – Singular values for the five-magnet multisine dataset.

6.3 PRINCIPAL COMPONENTS TRUNCATION AND GENERATED
MODELS

Deciding how many Principal Components (PCs) values to keep, i.e., where to trun-
cate, is one of the most critical and contentious decisions when using PCA. There are many
factors, including specifications on the system’s desired rank, the magnitude of noise, and
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the distribution of the PCs. Often, one truncates the PCs at a rank r that captures a pre-
determined amount of the variance or energy in the original data, such as 90% or 99% trun-
cation. For this case, the first 5 and 12 PCs represent the 90% and 99% variance, respectively.
Although crude, this technique is commonly used.

Other techniques involve identifying “elbows” or “knees” in the PCs distribution, which
may denote the transition from PCs representing important patterns from those that represent
noise. Truncation may be viewed as a hard threshold on PCs, where values larger than a
threshold are kept while remaining PCs are truncated.

Also, the alignment of data significantly impacts the rank of the PCA approximation.
The PCA essentially relies on a separation of variables between the columns and rows of a
data matrix. In many situations, such as when analyzing traveling waves or misaligned data,
this assumption breaks down, resulting in artificial rank inflation.

In order to avoid this problem, given that we have several outputs for the same readings,
a third approach is implemented for the PCs’ ranking by correlation with each input. After
calculating each PC’s absolute correlation with every output (i.e., magnet displacement), the
ranking is different and is depicted in Fig. 6.2.

Absolute Nor
malized Corr

elation
2 1 7 17 3 8 15 21 19 3700.20.40.60.81 Magnet No. 1

5 4 3 2 18 13 11 1 19 1400.20.4
0.60.8
1 Magnet No. 2

Principal Component4 5 3 2 1 15 17 21 16 1900.20.40.60.81 Magnet No. 3
1 3 32 23 18 29 14 6 26 2000.20.40.60.81 Magnet No. 4
7 5 4 2 9 3 13 6 12 100.20.40.60.81 Magnet No. 5

Figure 6.2 – Principal Component ranked by absolute correlation to each magnets displace-
ment.

This individual ranking by correlation aids in selecting the most important PCs for every
magnet. For example, if it is desired to train the models for Magnet No. 1 using 5 PCs, The
selected PCs will be PC2, PC1, PC7, PC17 and PC3. The experiments using both the PCs
with and without sorting resulted in an improved result of the selected models.

After that ranking, several implementations with different truncate k values of the PCs
are performed. Several tests using k = [5 10 25 50 100 150 200] and their calculated the R2

and MSE[dB] errors for all models are compared with the best result of the raw input models
presented in Table 6.1. The results are in the following figures (the striped line indicates the
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model’s error trained with all raw inputs without PCA).

5 10 25 50 100 150 200-0.6-0.4-0.200.20.40.60.81
Error 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(Higher 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(Lower is better)Magnet No. 1
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Error Value

5 10 25 50 100 150 200-25
-20
-15Magnet No. 3

5 10 25 50 100 150 2000.70.750.80.850.90.95

Error 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No. 4
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Principal Components

Error 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Principal 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LinearRBFNNMLPBest for every PCA truncateGlobal BestGlobal Best with raw inputs

Figure 6.3 – Error-values of ML models using different truncated PC for every magnet.
The x-axis represents the number of PCs used for said model (Linear, RBFNN, and MLP)
represented by a symbol (4, ©, and � respectively). The dotted magenta line represents
the model that performed the best for each number of used PCs. Finally, the big red circle
indicates the best model using PCA.
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By analyzing Fig. 6.3, it can be concluded that the best model architecturefor every
magnet is as the following list:

• Magnet No. 1: RBFNN with 100 PCs.

• Magnet No. 2: MLP with 200 PCs.

• Magnet No. 3: MLP with 150 PCs.

• Magnet No. 4: MLP with 100 PCs.

• Magnet No. 5: Linear with 25 PCs.

6.4 CHAPTER FINAL REMARKS

In this chapter, the models subject to use for implementation are selected. The num-
ber of inputs is reduced for each magnet through a preprocessing technique using Principal
Component Analysis and correlation matrixes.

It is important to point out that, in some cases, this preprocessing reduces the number
of inputs and also improves the accuracy of the model. Namely, Magnets No. 1, 4, and 5
improve the model’s accuracy using the raw inputs. The reason for this can be that PCA
not only aids in the dimensionality reduction of a problem but also reduces unrepresentative
information in signals such as white noise and others.

On the other hand, even though the selected models in the previous section’s list effec-
tively reduces the number of inputs of all models by at least half (The total number of inputs
is 384). Models with much fewer PCs already perform with acceptable accuracy (R2 ≥ 0.9).
With this in mind, these models become more interesting for implementation, given that the
number of inputs significantly increases the complexity of the models.

With that in mind, because this work’s final goal is to implement efficient hardware ar-
chitectures that replicate these models, these solutions with lower PCs are preferred over the
best performing models with bigger PC use. The final list of selected models for implemen-
tation is the following:

• Magnet No. 1: RBFNN with 25 PCs.

• Magnet No. 2: Linear with 5 PCs.

• Magnet No. 3: Linear with 5 PCs.

• Magnet No. 4: FFNN with 10 PCs.
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• Magnet No. 5: Linear with 25 PCs.

The prediction performance of these models can be seen in the next Figure 6.4.
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Figure 6.4 – Prediction of the selected models for hardware implementation.
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DPR IMPLEMENTATIONS FOR MAGNET
TRACKING

7.1 LINEAR REGRESSOR FOR DIFFERENT LATENCY MODELS

In this case, the scenario where the models must be adapted according to the acquisition
board’s timing constraints and the robotic hand controller unit is considered. The hardware
predictor models’ execution performance depends on their complexity, and all of its compu-
tational power may not be needed in some circumstances. Here, it is proposed to switch to
less complex architectures when the systems require a solution with less energy consump-
tion. For example, reconfiguring to a linear model with fewer operators leads to a smaller
throughput, but fewer resources lead to less energy.

For this first approach in implementing the model predictor of the MYKI interface, dif-
ferent linear regressors are loaded into one RP, allowing the execution time of the position
estimation process to be adjusted. The VHDL code of the two different linear models was
generated using the pLinRgen tool, one with Nop = 4 and the other with Nop = 8. This
approach selected the reconfiguration strategy using the PRC and RP connected to the ARM
processor through the AXI-Lite Interconnect. The ARM processor sends the RP input data
through AXI-Lite, and, in the opposite direction, the ARM reads the result of the opera-
tions through the AXI. The system is prepared to perform reconfiguration by hardware and
software triggers through PRC, which controls the ICAP. Figure 7.1 RTRLib’s the system’s
high-level model, with the connections between the RP and the ARM processor.

Figure 7.1 – High-level model of linear model predictor DPR implementation (A) Detail of
the system-level model using the RTRLib, showing the RP, AXI, and the connections. The
RP data input is sent to the ARM processor through the UART port (not depicted in the
Figure). (B) Reconfigurable Modules of 4 and 8 operators.
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Figure 7.2 shows the block design created through the script generated using RTRLib,
which has the IPs related to the RPs, the ARM-Core processor IP, PRC, and the AXI Inter-
connect. Figure 7.3 shows the obtained circuit layout with four operators in the RP.

Figure 7.2 – Vivado block-based overview of the implemented system illustrating the RP,
PRC, AXI interconnect and Zynq Processing System.

Figure 7.3 – Device implementation view of the DPR system including the static and re-
configurable partitions. The in this view the RP details the Nop = 4 version of the linear
regressor.

7.2 TRUNCATED PCA MODELS FOR FIVE MAGNETS

In this case, the previously developed models with dimension reduction are implemented
using DPR to swap the different ML models to track five magnets simultaneously on the
target device PYNQ-Z1. As seen in the previous chapter, every implanted magnet will need
a different model predictor. After training the models separately, they will be implemented
separately, and the generated architectures will be used to localize each magnet in real-

69



time. Because the five architectures may not fit in the FPGA if implemented using static
configuration, a solution for this problem is swapping between them using DPR, potentially
consuming hardware resource and energy.

Firstly, it must be mentioned that some modules have not been implemented up to this
point. These modules are built using Vivado HLS with half-precision floating-point repre-
sentation. They will briefly be described next. The first one is the architecture to accelerate
the matrix multiplication used to calculate each measurement’s PC components. This archi-
tecture subtracts the mean of each measurement and multiplies the result to the truncated UΣ

matrix described in Eq. 6.1. This is implemented as a pipeline in order to reuse operators in
the FPGA. On the other hand, this architecture remains in the static area of the FPGA.

The other module is the MLP model. This module is implemented with a similar architec-
ture to the RBF (See Fig. 2.4), where the neurons are implemented in parallel. Additionally,
similar to the RBFNN custom architecture, it is also implemented using state machines. This
module is implemented in HLS.

Table 7.1 – Hardware utilization of modules for the five-magnet tracking system.

Block LUT DSP SR BRAM
(53200) (220) (106400) (144)

AXI-4 Lite 471 0 576 0
(0.9%) () (0.5%) ()

i2c Master 179 0 250 0
(0.3%) () (0.2%) ()

Decoupler 10 0 0 0
(0.0%) () (0.0%) ()

DMA 1598 0 1975 0
(3.0%) () (1.9%) ()

SMC 1598 0 1975 0
(4.6%) () (1.9%) ()

Matrix Mult. 630 4 1086 0
(1.2%) (1.8%) (1.0%) ()

R
ec

on
fig

ur
ab

le
M

od
ul

es

Magnet No. 1 10616 9 2969 0
RBFNN 25 PCs (19.9%) (4.1%) (2.8%) ()
Magnet No. 2 2736 8 1880 0
Linear 5 PCs (5.1%) (3.6%) (1.8%) ()

Magnet No. 3 2721 8 1856 0
Linear 5 PCs (5.1%) (3.6%) (1.7%) ()

Magnet No. 4 7188 16 6354 0
MLP 10 PCs (13.5%) (7.3%) (6.0%) ()

Magnet No. 5 2779 8 1924 0
Linear 25 PCs (5.1%) (3.6%) (1.8%) ()

On the other hand, the custom RBFNN and Linear architectures were implemented using
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the code generator depicted in Chapter 5. This time, the used custom floating-point repre-
sentation was 21 bits. After a precision analysis, this value is decided after it was proved that
it provided the best accuracy/resource ratio that allowed the modules’ to fit in a single clock
region, a critical design parameter to DPR design. The implementation result of the modules
is depicted in Table 7.1.

7.2.1 DPR Implementation in RTRLib

In RTRLib, the DPR system design looks like this:

(a) (b)

Figure 7.4 – High-level model of the models for the five magnets using DPR. (a) Detail of
the system-level model using the RTRLib, showing the RP, AXI, and the connections. (b)
Describes the reconfigurable modules for the five magnets.

After the implementation in Vivado, the results are depicted in the Figure 7.5.

(a) (b) (c)

Figure 7.5 – Device implementation view of the DPR system for five magnets including the
static and reconfigurable partitions. Each frame is different on every reconfigurable partition.
(a) RBFNN Model (Magnet 1), (b) MLP model (Magnet 4), and (c) Linear model (Magnets
2,3, and 5).
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7.2.2 Performance Results of DPR solution

The performance analysis will be considered three values: Reconfiguration time, time-
execution, and energy consumption of the modules.

The first refers to the amount of time needed by the FPGA to perform the dynamic recon-
figuration. It is the time needed to load a Reconfigurable Module (RM) into a Reconfigurable
Partition (RP), moving its partial bitstream file from memory, particularly the DDR3 memory
of the board platforms supported by RTRLib, to the reconfiguration memory of the FPGA.

The reconfiguration time depends on the amount of logic that will be written (size of
the partial bitstream) and the reconfiguration method (discussed in Chapter 2). In particular,
for this work, the Processor Configuration Access Port (PCAP) is used to reconfigure the
Programmable Logic (PL) using a software application running on the Processing System
(PS). On the other hand, it is essential to point out that the size of the partial bitstream
includes the complete Reconfigurable Partition (RP) and not only the Reconfigurable Module
(RM), as stated in [27]. The relationship between the reconfiguration time, using PCAP, and
the bitstream file is linear and is modeled like

Treconf = 7.7e− 3bitsize (7.1)

, where bitsize is the partial bitstream size in bytes and Treconf is the reconfiguration time in
seconds.

Additionally, to verify the RTRLib’s estimation of the reconfiguration time, it is also
properly measured using one of the ARM Cortex CPU hardware timers. The same timer is
used to measure the time-execution of each module. Considering that the data transaction
between the PS and PL is also taken in this measurement, these values might differ from the
estimated values depicted in Table 5.4. The timing results are depicted in Table 7.2

Table 7.2 – Timing result of five-magnet tracking DPR system.

Magnet (Measured) Reconf. time
1 2 3 4 5 Estimated Measured

Time [µ] 12.07 5.1 5.1 7.5 6.1 4740.8 4742.3

Finally, the energy consumption measurement reported the results listed in Table 7.3.

Table 7.3 – Energy consumption of DPR system (measured).

Configuration
Static Reconfigurable

ARM PL Static RBFNN MLP Linear

Energy [mW] 1514 162 12 23 8
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7.3 CHAPTER FINAL REMARKS

In this section, the full DPR system for five-magnet tracking is implemented. The system
is tested on the target device PYNQ-Z1. The results of the estimators produced by the devel-
opment board were saved and compared against the software implementation. This allows
us to compare the results against the golden estimator implemented in software using double
floating-point precision. The results of the hardware models using less bit-width precision
were acceptable, giving a median of R2 = 0.98101 and MSE[dB] = −22.603 for the test
datasets.

As seen in Table 7.2, the modules’ execution-time combined with the reconfiguration
time still meet the real-time requirement of the MYKI interface. The sensory data of the
MYKI interface comes from an IIC serial line at a fixed rate of 12.5 ms (80 Hz), the NXP
magnetic field sensor’s maximum feed rate, which is the system’s real-time requirement.
An average person flex and extend his fingers no faster than 2 Hz [34] and highly skilled
individuals, i.e., piano players, do it at 10.5 Hz at most [31]. Consequently, based on the
Nyquist–Shannon sampling theorem, the sensors’ feed rate can faithfully identify human
finger gestures. If we consider that the RP must be reconfigured twice for every iteration, the
total time-execution is

ttotal = TM1 + Treconf + TM2 + TM3 + TM5 + Treconf + TM4 (7.2)

, where T(Mi) is the reconfiguration time of every magnet module.

The last equation can assume that the total execution time is ≈ 9.5ms. Keep in mind
that Magnets 2, 3, and 5 uses the same RM; it is not necessary to reconfigure to calculate
these results. This execution time complies with the real-time requirements of the MIKY
interface.

Finally, results showed that the proposed system is more power-efficient in contrast to
the previous work [17]. In that case, the AU’s power consumption was 550 mW, and that
of the CU was 430 mW, resulting in total consumption of 980 mW. Our solution effectively
reduced power to less than 20% of that (if the ARM processor is not considered).
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CONCLUSION AND FUTURE WORKS

This work efficiently built data-driven soft-sensors, using black-box system-identification
machine learning models to translate the myokinetic sensor information to identify the vol-
untary motor and force commands on a forearm muscle. It dealt with it by applying machine
learning algorithms to perform input selection and related model parameters for black-box
nonlinear system identification. The selected models to be tested were implemented as ad-
hoc hardware accelerators for magnet localization in the context of myokinetic prosthetic
control. Experiments to gather relevant data of the system were carried out, and this massive
data is processed for transforming and dimensionality reduction using PCA. The implemen-
tation of PCA resulted in that the first 20 principal components amassed more than 99% of
the variance, which suggested a high overlapping and correlation of the data, which permit-
ted the variable reduction on the trained models.

Since the interface’s goal is to control at least five fingers, five predictors were imple-
mented using machine learning techniques. By this, it was validated the hypothesis that
machine learning can be used for developing data-driven magnet localization approaches.
The models used in this work were artificial neural networks (RBFNN and MLP) and a sim-
ple linear regressor. The models presented results with R2 close to unity. The linear model
presented overall better results in accuracy and hardware consumption than the RBFNN and
MLP. However, the RBFNN model showed a minor static error, critical for such biosignal
interpretation models. The linear model does not perform as well for all magnets, i.e., mag-
nets 1 and 4 perform poorly with a linear regressor, making the ANN architectures more
necessary for this problem.

These models’ architecture was implemented with custom floating-point operators, and
the code generators implemented in Matlab generate the hardware description files automat-
ically, complying with real-time and resource utilization constraints. After implementing the
models, an efficient, partially reconfigurable system could fit in a single device, reusing the
same logic to implement the different models. This DPR system is also more power-efficient
than the previous work, effectively reducing power consumption to less than 20% of that (if
the ARM processor is not considered).

The DPR system was implemented using RTRLib, a tool that aims to become a high-
level design tool for DPR systems design under specific conditions and platforms. Some
functionalities of the RTRLib were improved in this work, such as decoupling, computation
of the reconfiguration time, the integration of Matlab with the RTRLib design flow, and the
inclusion of AXIStream and AXIDMA for IP packaging.

Finally, as part of this work, a biomimetic robotic hand was improved using an FPGA/SoC-
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based (Field Programmable Gate Arrays / System on a Chip) approach using a Zynq chip
Xilinx. The biomimetic hand’s mechanical design contains 7 DoF (Degrees of Freedom)
compared to the 24 an actual human hand has. The robotic hand’s number and specific joints
were selected according to the most significant DoF and how well they perform gripping ob-
jects. The robotic hand prototype could grasp objects with different geometries with power
and precision grip, highlighting the robotic hand’s dexterity and flexibility.

8.1 FUTURE WORKS

It was possible to highlight future research fronts to build more accurate models and
computationally efficient algorithms to improve the myokinetic interface during the present
work development. There is a need to develop methods and algorithms that could automate
building models such that it is possible to make use of the current computational power
available. The gains in time consumed for completing tasks are apparent and even more
critical when the systems’ complexity increases.

In future works, the following topics will be pursued concerning the procedures for im-
proving the models of the MYKI interface:

• Compare the implemented HLS MLP neural networks with the one implemented at
Master level in PPMEC.

• Optimize models using different construction and feature selection tools such as inter-
active stepwise regression, parameter estimation using the elastic net regularization, or
Ridge regression for the linear model.

• For the ANN algorithms, weight optimization techniques may also bring better results.

• It is also of interest using other models including state-of-the-art solutions [35, 40, 11,
69].

• Create a training framework for new patients. It will be necessary to retrain the archi-
tectures for every new user or patient. It is then of importance for a framework that
allows this for actual patients of the MIKY interface.

• Perform the technical visit to Sant’Anna to integrate the forearm mockup to the devel-
oped robotic hand.

Concerning RTRlib
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• Include relocation on RTRlib in collaboration with TU-Dresden ADS group. This
group has a custom relocation and partial reconfiguration controller added to RTRLib
in collaboration with the University of Brasilia.

• Generate compressed bitstreams: RTRLib does not compress the partial bitstream; an
eventual redundancy in the architecture of a given RM is not exploited to reduce the
size of the reconfiguration packet sent to the reconfiguration memory of the PL. Thus,
reducing reconfiguration time.
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Abstract Robotic hands tend to have a high number
of sensors and actuators in a small space, whose su-

pervising and control must be performed at the same
time with precision and, in some cases, at high speed.
Usually, a grid of Micro-Processors-Units (MPUs) or

Micro-Controller-Units (MCUs) is employed to solve
this problem, given the ease of programming. However,
this solution can carry some drawbacks like the neces-
sity of more space for computer resources. This work in-

troduces a System-on-Chip (SoC) based approach that
carries out the control of a robotic hand with multiple
Degree of Freedom (DoF). In order to justify its ad-

vantages, the proposed solution was tested in a robotic
hand and compared against other implementations on
(a) an ATMEL microcontroller, (b) an ARM proces-

sor, and (c) a full-dedicated hardware architecture on
FPGA. Comparisons were made in terms of perfor-
mance, computational resources, and power consump-
tion. Additionally, our results showed an improvement

over a previous MCU-Grid-based hand controller that
achieved a control loop frequency of 1 KHz. In con-
trast, the proposed SoC approach achieved a 47.26 kHz

frequency, showing the advantages of using our param-
eterizable floating-point arithmetic cores, which allow
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the designer to adjust the word-width to optimize both
the hardware resources and energy consumption.

Keywords FPGA · Impedance Controller · Kalman
Filter · Modular Architecture · Robotic Hand ·
SoC-System on a Chip

1 INTRODUCTION

Over the past four decades, there have been significant
contributions in the field of computer science, artifi-

cial intelligence, robotics, and other related fields. This
progress has allowed the development of robotic sys-
tems that are more capable and sophisticated, such as

biomimetic robotics. Such robots are regularly more
capable, robust, and efficient than other types of con-
ventional robots when used in unstructured workplaces

[25]. In this context, the field of robotic hand control is a
sub-topic of biomimetic robotics approached by many
researchers achieving significant advances in the last
decade.

Robotic hands can be used as prosthetics hands,
like the i-limb [24], the Taka-Hand [23], the Michelan-
gelo hand [16], and the bebiobic [15]. Normally, these

systems need to be sturdy for durability and, for that,
they have few functions and components.

Otherwise, robotic hands used as end-effectors, e.g.,
KITECH-Hand [12], Prensilia-Hand [20], the Jeong-

hand [9]Shadow-hand [22], DLR-hand [11] and the Schu-
nk-hand [21], are more sophisticated and have more
functions due to the high quantity of components, sen-

sors, and actuators. Given the complexity of the overal
system, sometimes a Micro Processor Unit (MPU) or
Micro-Controller-Unit (MPU) is not enough to meet

the required processing speed to reproduce a desired
action or control. Because of this, in order to embed
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the low-level control, some designers choose to develop
a grid of multiple MCUs in a multi-DoF (Degree of
Freedom) robotic hand [12].

In contrast, other approaches exploit the advantages
of FPGAs (Field-Programmable Gate Arrays) to per-

form parallel processing to implement parallel control
loops at high-frequency rates [11, 13, 27]. The bene-
fits of this second approach are that, unlike having a

large number of MPUs, an FPGA can implement var-
ious architectures simultaneously, consuming less en-
ergy and achieving similar or even better control fre-
quencies. Besides, FPGAs allow overcoming the syn-

chronization problems between different controllers im-
plemented over a set of independent processors, e.g.,
each one generating a specific control law.

For a robotic hand, being able to perform grasps or

manipulation of objects, some force/torque control is
necessary. This type of control usually is more effective
when combined with some feedback information from

different sensors [4,10]. This work is dedicated to imple-
ment an impedance control, which is a type of control
that aims to control the dynamics of a robot when it in-
teracts with its environment. This is done by modeling

the contact of the robot with an object, for example,
as a mass-spring-damper system. This control has pre-
viously been used in robotic hands [27] and is typically

represented using the equation:

Mxθ̈(t) +Bxθ̇(t) +Kxθ(t) = T (t), (1)

where T is the resulting torque of the system, M , B
and K are mass, damping, and spring coefficients, re-

spectively, and x represents the displacement of the
robot [8].

The impedance controller is relatively simple on its
own; however, the complexity can increase when added
to the necessary sensors to deal with a robot with sev-

eral DoF. Besides the control, another issue that must
be addressed is the sensory management and filtering.
Similar to the control system, the management and fil-

tering process must be performed at a required min-
imum frequency. This issue has been previously ap-
proached using FPGAs [26].

In this work, parallel Kalman filters were imple-
mented to estimate the position and velocity of the fin-

gers of a 7 DoF robotic hand. A linear Kalman Filter
(KF) is an algorithm that works in a two-step process.
In the prediction step, the KF estimates the current

state variables (from a process model), along with their
uncertainties. In the estimation step, the measurement
system provides, from the sensors, corrupted signals

with some amount of error (Gaussian noise), and the
estimates are updated using a weighted average of the

state variables, with more weight being given to esti-

mates with higher certainty. The algorithm is recursive,
and it can run in real-time, using only the present in-
put measurements and the previously calculated state

and its uncertainty matrix [7]. The estimation of state
variables using the KF tends to be more accurate than
an estimation using a single measurements.

Algorithm 1 describes a canonical KF. In there, the
estimated state variable vector is x̂, A and B are the
discrete space state linear model, u is the control sig-

nal, ẑ is the measurements vector, P is the estimate
of the covariance (with Gaussian probability distribu-
tion), and K is the Kalman gain (�estimated state vari-
able vector is x̂, A and B are the discrete space state

linear model, u is the control signal, ẑ is the mea-
surements vector, P is the estimate of the covariance
(with Gaussian probability distribution), and K is the

Kalman gain (S is used to calculate K). The outputs
of the system are calculated from ŷ = Hx̂. In our case

the state variable vector is x̂k =
[
θ̂ ω̂
]T

, where θ̂ and

ω̂ are the position and angular velocity, respectively.
The x̂k vector is calculated a priori in line 2 (predic-
tion step) and a posteriori in line 7 (estimation step).
Pk denotes the covariance of the estimation error (for

θ̂ and ω̂) which also is calculated a priori and a pos-
teriori in lines 3 and 8, respectively. Note that ε (line
4) represents the measurement residual, that is the dif-

ference between the noisy measurements (z) and the
vector Hx̂.

Algorithm 1 Linear Kalman Filter (KF) Algorithm

1: function Basic-Kalman-filter(zk)
2: x̂k|k−1 = Akx̂k−1|k−1 + Bkuk

3: Pk|k−1 = AkPk−1|k−1AT
k + Qk

4: ε̃k = zk − Hkx̂k|k−1

5: Sk = Rk + HkPk|k−1HT
k

6: Kk = Pk|k−1HT
k S−1

k
7: x̂k|k = x̂k|k−1 + Kkỹk

8: Pk|k = (I − KkHk)Pk|k−1

Predict

Estimate

This work aims to implement an impedance con-

trol loop [19] for a previously developed 7 DoF robotic
hand [17] using an SoC (System on Chip), specifically
a Zynq-7020c chip (from Xilinx), to perform grasping

tasks. The prototype can perform different types of
grasp; such as power and precision grasp, with a single
finger and the full hand for objects of different shapes.

The proposed system combines the use of an MPU to
synchronize the functions of several filtering modules.

It is important to point out that the main novelty of

this work is that no similar work exists combining hard-
ware architectures and MPU to perform an impedance
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control of a robotic hand. In [18] it was proposed a HW-
SW approach for the impedance control of a robotic fin-
ger. In this work the proposed approach was extended
for a 7-DoF robotic hand performing some power and

precision grasps with all its fingers. Similarly, a nu-
merical comparison with MCU-based solutions reported
in previous work is addressed in terms of performance

(loop control frequency), energy consumption, scalabil-
ity, and area (onboard) consumption. Additionally, this
work includes a solution with a Petalinux OS connected

with the programmable hardware, improving the flexi-
bility and enabling the development of user applications
with suitable connection capabilities.

The proposed solution outperforms previous related

works in the following aspects: (a) the filtering pro-
cesses from all sensors and the loop control were im-
plemented on a single chip in contrast to the solutions
of a grid of FPGAs/MCU used in [11,12]; (b) the loop

control frequency of 47.26 KHz was improved if com-
pared with [11, 12], allowing the development of high-
dynamic robotic hands [14]; (c) the use of parameter-

izable floating-point arithmetic cores enabling the de-
signer to adjust the word-width in order to optimize the
precision and hardware and energy consumption.

2 ROBOTIC HAND

Fig. 1 depicts the robotic hand used in this work to val-

idate the proposed FPGA-based grasping controllers.
The complete system is composed of 7 DoF each actu-
ated by a DC motor, 7 analog rotational position sen-

sors, and 7 motor current sensors [17].

Fig. 1 Robotic hand performing a grasp action

In total there are five fingers in the robot. Some
actuated by two Dof and others by one:

1. The thumb and index have 2 DoF (aa and fe); and
2. The remaining fingers have 1 DoF.

The controller will be executd in a decoupled form,
meaning that it asumes the action of every DoF does

not have actions on the others. Thus, an analysis of the
system is more straightforward, and it will be possible
to implement the controllers separately.

This project explores the implementation of a hy-
brid controller using a hardware-software codesign ap-
proach. For the full hand, depicted in the previous fig-
ure, the high-level controller is described in Fig.2. In

the PL-part (Programmable Logic), position and cur-
rent sensors of the robotic hand are read through the
on-chip 12-bits ADC. The data from sensors are syn-

chronously fed to the Filtering Process block (θ1-θ7 for
position and i1-i7 for current), in which there are seven
parallel submodules, one for each DoF, that filter the

sensors data.
The filtered data is forward to the MPU, in the PS-

part (Programmable-Software), that calculates the ac-
tion of the impedance control. Finally, the Motor Driver

module send, in a parallel fashion, PWM (Pulse Width
Modulation) signals to the motor drivers.

The MPU is also in charge of the conectivity of the

system and behaves as a supervisor. The AXI intercon-
nect block, is a proprietary microcontroller bus that
allows the connection between both the PS and the PL
(Programmable-Logic) parts. This bus behaves as a two-

way channel that allow the MPU to read and write the
PL modules (supervisory task).

Fig. 2 Control System of the full hand DoF.

The dataflow diagram for controlling each DoF is

depicted in Fig. 3. Note that this control scheme also
identifies which parts are in the PS and which ones are
in the PL. It can be observed that the Filtering Process

is fully implemented for each DoF in the PL part, and
the same is replicated seven times (see Fig. 2). In this
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way, each Filtering Process circuit receives each pair
θk and ik from the finger sensors and calculates each
estimated pair θ̂k/ω̂k (using the KF) and also the ik
from a low-pass filter, as will be explained below.

Fig. 3 Control scheme for a finger. It should be notice that
the motor shaft torque in Eq.1 is proportional to the motor
current (k=1 to 7)

The contents of the Filtering Process (DoF1 toDoF7

in Fig. 5 and impedance controller blocks are described
in the following subsections.

2.1 PS part: Impedance Controller Scheme

In this work, a decoupled and linear behavior is consid-
ered, where every finger has an independent controller
with torque and position feedback for the robotic fin-
gers. Fig. 4 depicts the impedance model for each finger.

Fig. 4 Impedance Model for Robotic Finger

The implementation of the impedance controller is
depicted in Fig. 3 (see PS part). This implementation

is based on the use of a discrete integration method [3],
as described in the following three steps:

1. Discretize Eq. 1 as follows:

α∗(k + 1) = (M)−1(i(k) −K θ(k) −B ω(k)), (2)

where the torque T on Eq. 1 is replaced by the track-

ing motor current error (i(k)) at a moment k, θ(k)
is the tracking position error, and ω is the tracking
angular speed error.

2. The result of the previous step is the target angu-
lar acceleration at the next step (α∗(k + 1)), which
must be integrated to obtain the tracking angular
velocity,

ω∗(k + 1) =

∫ k

k−1
α∗(k + 1)dk (3)

3. Finally, the tracking angular position, θ∗(k + 1), is

obtained integrating the tracking angular velocity,

θ∗(k + 1) =

∫ k

k−1
ω∗(k + 1)dk (4)

A 2nd order Euler’s integration method was adopted
to estimate Eqs. 3 and 4. It is important to highlight

that the impedance controller scheme is required for
each DoF and will be executed on the MPU of the SoC
device.

2.2 PL part: Filtering Process

This block is composed of a Kalman filter module used
for two tasks: (a) estimation of the velocity and position
of the finger’s first joint; (b) implementation of a low-
pass filter for the current sensor. This block is depicted

in Fig. 5, being required for each DoF, as depicted in
figures 2 and 3 (see PL part). In this way, this circuit is
replicated seven times, each one for each DoF, in order

to exploit the intrinsic parallelism of the solution in the
FPGA.

Fig. 5 presents the hardware architecture for the

Predict, update x̂ and update P stages of the Kalman
filter algorithm (see Alg. 1). It additionally depicts the
architecture of the 1st order low-pass discrete filter for

the current sensor, given by Eq. 5. In addition, State
1-5 perform the prediction step; State 6-10 update θ̂, ω̂
and î; and State 11-14 update P . Two adders, one mul-

tiplier, and one divider are shared between the states.
Dotted lines represent internal registers.
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Fig. 5 FILTERING PROCESS : Hardware architecture for es-
timating current using a low-pass filter and, position and
velocity of the finger’s first joint using Kalman Filter. Two
adders, one multiplier, and one divider are shared between
the states.

From Algorithm 1: x̂ =

[
θ̂
ω̂

]
, A =

[
1 dt
0 1

]
and B =

[
0
0

]
, u = 0, ẑ =

[
θ
ω

]
where dt is the filter estimation

period.

î(k + 1) = b0i(k) + b1i(k − 1) − a1î(k) (5)

where b0, b1, a1 are the filters coefficient.
The proposed architecture is based on custom 27

bits floating-point operators [6]. This resolution was

chosen because it preserves the best resources/precision
ratio for the selected FPGA device. The architectures
were implemented using Finite State Machines (FSMs)

for controlling the arithmetic operators. The outputs
of the architecture are the registers îk, θ̂k and ω̂k for
estimated position, velocity and current, respectively.

3 PARALLEL ARCHITECTURE OF
CONTROL SCHEME

Fig. 6 Device utilization of proposed SoC-based architecture
for the impedance control scheme for 7 DoF (5 fingers): (a) Is
the hybrid solution using the Zynq-7010c and, (b) is the full-
architecture implementation using Zynq-7020c device. The
same color caption is used for both figures.

The Arty/Zynq-7020c SoC platform was used to imple-
ment the proposed control scheme. This platform al-
lows the PS and PL parts of the Zynq to be connected

through an AXI bus protocol (Advanced eXtensible In-
terface). In addition, the AXI permits to easily add a
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custom IP (Intellectual Property core) in a system to-
gether with the ARM-CortexA9 (MPU) of the PS and
the XADC (Xilinx Analog to Digital Converter) avail-
able on-chip.

This is done the Xilinx Vivado interface, where it

is possible to connect the PS (Programmable Software)
and PL (Programmable Logic) via proprietary AXI bus
protocol (Advanced eXtensible Interface). This proto-

col permits to easily add a custom IPs (semiconductor
Intellectual Property core) in a system together with
the ARM-Cortex9 and the XADC available in the chip.

Fig. 6(a) presents the chip utilization allowing to
analyze the hardware resources used by the proposed

SoC-based architecture. It can be seen that the chip’s
logic slices are almost fully used for the Zynq-7010.

For comparison purposes, Fig. 6(b) depicts the full-
logic architecture architecture mapped on a Zynq-7020.
It can be seen that it would not fit on the Zynq-7010 de-

vice. Table 1 describes the resourses utilization for both
chips, and demonstrates that the proposed SoC-based
architecture is optimized in terms of hardware resources
on the Zynq-7010. At this end, it is important to analyse

the power consumption and the performance in terms
of loop control frequency of the proposed solution.

Table 1 Utilization Report in terms of Slice LUTs (LUT),
Slice Registers (SR) and DSPs (DSP) consumption

Z7010 Hybrid Sol. Z7020 Full Logic
Resource [%] Resource [%]

LUT 13,295 76 22,521 42
(17,600) (53,200)

SR 4,632 13 25,702 24
(35,200) (106,400)

DSP 16 20 21 10
(80) (220)

The on-chip power consumption for the designed ar-
chitecture is presented in Fig. 7. It can be seen that,

as expected, most of the system dynamic power (92%)
is consumed by the MPU (presented as PS7 on Fig-
ure). The rest of the logic components mentioned in
the report compose the sensor filtering modules and

consume 4% of the dynamic power. In total, the sys-
tem has a power consumption of 1.582Watts at stan-
dard voltage levels (V ccint = 1V , V ccaux = 1.8V and

V cco33 = 3.3V ).

In comparison, the ATMega microcontroller chip

has a rated power consumption of approximately 410
mW [1]. If desired to implement the robot with 7 DoF,
a grid of 7 MCUs would be required, similar to the

Kitech-hand [12], summing up to 2.87W ; almost double
the power needed for the implemented hybrid system.

Fig. 7 On-chip power consumption of the proposed SoC-
based solution for 7 DoF (5 fingers).

3.1 Control System Implementation Approaches.

For comparison purposes, the controller is implemented
as three different types of structures, exploiting the

modules proposed in the previous subsection as follows:
(1) the architectures named as software-only, performs
the overall control system using only software, without

exploiting the parallel logic modules for sensing and
control (inside an MPU or MCU); (2) similarly, the
architectures named as logic-only performs the over-
all control system in hardware by mapping the overall

structure in the FPGA; (3) finally, there is also a hy-
brid architecture that uses programmable software and
logic to implement the system, exploiting both software

and some logic modules in an SoC (a hardware/software
co-design approach, such as proposed in Fig. 2).

Table 2 lists the different types of proposed imple-
mentations. The first column shows the type of im-
plementation. For instance, PS-Arduino means that all

control system has been implemented only in software
using the Arduino platform. On the other hand, PS-
ArtyBM describes a system implementation in soft-

ware, using the platform ARTY/Zynq-7020c (in the
MPU), without operating system (bare-metal), while
PS-ArtyLnx represents a software implementation with
Petalinux operating system [5]. In addition, it is also

evaluated an implementation where all the control was
implemented in the FPGA (see entry PL-Arty). Finally,
the hardware/software codesign approaches are in the

last two lines of Table 2, for bare-metal and for Petal-
inux.
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Table 2 Control system implementation on different plat-
forms.

ID Type of Platform OS Clock
Arch Frequency

PS-Arduino Software ATmega2560 Bare 16 MHz
-Only Cortex-A9 metal

PS-ArtyBM Software ARM Bare 650 MHz
-Only Cortex-A9 metal

PS-ArtyLnx Software ARM PLinux 650 MHz
-Only Cortex-A9

PL-Arty Logic XC7Z020 N/A 100 MHz
-Only

PS/PL-ArtyBM Hybrid ARM Cortex-A9 / Bare 650 MHz /
1CLG400C metal 100 MHz

PS/PL-ArtyLnx Hybrid ARM Cortex-A9 / PLinux 650 MHz /
1CLG400C 100 MHz

In total, six approaches were performed in this work,
including the implementation of the controller in an Ar-
duino (ATmega2560) microcontroller for a perspective

on how a cheaper solution delivers. The comparison
consists of executing the control loop and measuring
the execution time for one DoF and then for the seven

DoF. Table 3 lists the results for every architecture.

Table 3 Control system implementation on different plat-
forms. t indicates the control execution time in microseconds.
Freq indicates the calculated control loop frequency in Hertz.

1 DoF 7 DoF
ID t[us] Freq[kH] t[us] Freq[kH]
PS-Arduino 1017.00 0.98 7219.00 0.14
PS-ArtyBM 5.24 190.84 32.92 30.38
PS-ArtyLnx 13.72 72.88 87.80 11.39
PL-Arty 1.20 830.00 1.44 692.52
PSPL-ArtyBM 3.38 303.03 21.16 47.26
PSPL-ArtyLnx 5.85 170.94 39.00 25.64

4 RESULTS AND DISCUSSIONS

The proposed SoC-based solution was compared with
two previous approaches where the control scheme was
implemented in a ATmega2560 microcontroller of an
Arduino Mega and in a fully dedicated architecture us-

ing a Arty/Zynq-7020c platform. In the latter all the
functional blocks in Fig. 3 were implemented using the
programmable logic of the FPGA without using the on-

chip MPU. Additionally, in this work, different hybrid
implementations are carried out to compare the execu-
tion time performance of the control algorithm for the

complete robotic hand.
The performance of the approaches using software-

only are better on bare-metal than with Petalinux-OS.
Nevertheless, the hybrid system of Petalinux with PL

(PSPL-ArtyLnx ) stretches this difference in the execu-
tion time.

For a single finger, the proposed SoC-based solution

achieved a maximum control loop frequency of 47.26
KHz using a clock of 667 MHz on the PS and 100 MHz

on the PL. In contrast, the fully dedicated architec-

ture (using the Zedboard) achieved a maximum control
loop frequency of 830 KHz with a clock of 100 MHz,
whereas the ATMEL-2560 achieves a maximum con-

trol loop Frequency of 0.98 KHz operating with a clock
of 16 MHz.

The maximum control loop time accepted to an im-
plementation be considered feasible for the robotic hand
is aproximately 1 KHz, which depends on: (a) the sys-

tem’s parameters, (b) the response time of the motors
and, (c) sensors and XADC latency. It should be noted
that the execution in the ATmega2560 is sequential;

that is, in order to control seven DoFs (five fingers)
the expected control loop frequency using Arduino is
around 0.14 KHz. Therefore, the implementation on the
Arduino board does not meet this design parameter to

control the hands 7 DoF of the robotic hand.

On the other hand, the SoC-based and fully ded-
icated solutions explore the parallelism achieving high
control loop frequencies, enabling its application on high-
speed dynamic robotic hands.

The control response of the finger using the pro-

posed SoC-based architecture is similar to those imple-
mented previously in the Arduino Mega and in the Zed-
board (using the fully dedicated architecture). Fig. 8
illustrates the robotic hand performing a grasping task

with a finger.

Fig. 8(a)-(c) shows the behavior of the controller
and the filters grasping a semi-spherical object with 8.0
cm diameter. It can be seen that the filters reduce a lot
of the sensor’s noise, and although the position sensor

does not have much noise in contrast with the current
sensor, the velocity estimation is smoothed accurately
which would be a result hard to achieve if not for the

Kalman filter. Furthermore, the tracking current signal,
shown as a yellow line, is corrected in a limited way.
This indicates sub-damping of the controller which is a

problem intended to be corrected in future works.

Initially, the controller was being implemented on a

Zybo-board with a Z7010 chip. However, the implemen-
tation for the full hand could not be possible because
this board does not have the necessary ADC breakout

pins for the sensors. The used Arty-based board pro-
vides several ADC channels that allows controlling the
five fingers of the robotic hand simultaneously, enabling
to perform experiments grasping several objects. Fig. 9

illustrates the grasping of three objects.
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Fig. 8 Control behavior of impedance controller of one finger.
(a) Current vs Time, (b) Position vs Time, (c) Velocity vs
Time. Readers are addressed to https://youtu.be/kGw9jN-
9ns8 to see a short video demonstrating the robotic hand in
action.

Fig. 9(a)-(b) shows the robotic hand performing power

and precision grasps. The former is a circular grasp for a
spherical object, whereas the latter is a prismatic grasp
of a cylindrical object. Fig. 9(c) illustrates a precision
grasp using the thumb and index finger.

These experiments demonstrate the ability of the

robotic hand control algorithms to perform some power
and precision grasps.

5 CONCLUSIONS AND FUTURE WORKS

In this work, a novel parallel SoC-based impedance con-

troller solution was proposed and implemented on Xil-
inx Zynq devices for performing grasping tasks using

(a) (b)

(c)

Fig. 9 (a)-(c) Robotic hand performing grasp on various ob-
jects.

a robotic hand. The suitability of the proposed SoC
solution to implement force/torque control, where the
problems of performance, parallelism, and synchroniza-

tion can be solved, was validated using a real robotic
hand with 7 DoF. Performance comparisons in terms
of execution time and control loop frequency were con-

ducted for different approaches: PS-Arduino, PS-Arty-
BM, PS-ArtyLnx, PL-Arty, PSPL-ArtyBM.

Those different approaches have each its advantages.
On one hand, the applications in Bare-Metal (PS-Arty-
BM and PSPL-ArtyBM ) guarantee the correct execu-

tion of the controller at a fixed frequency. On the other
hand, although the solutions using the Petalinux (PS-
ArtyLnx and PSPL-ArtyLnx ) do not guarantee real-

time, they provide more flexibility for interfacing and
networking. Connectivity for this project is essential
given that this work is intended as part of a much bigger

application, where several elements need to communi-
cate with each other. Finally, the HW/SW approaches
(PSPL-ArtyBM and PSPL-ArtyLnx ) improved the PS-
only maximum control loop frequency, and although

the PL-only max frequency was not improved, the PL-
only requires a bigger chip (Zynq-7020 ) and consumes
more energy, whereas the HW/SW design can be im-

plemented on a cheaper device (Zynq-7010 ). It is im-
portant to highlight that even though the achieved fre-
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quencies are not required for the current system, this ar-
chitecture opens a path for other platforms with faster
dynamics.

A relevant achievement of this implementation is
that the power consumption of this solution improved
a proposed MCU grid alternative using ATMega2560

(1.5W vs. 2.8W for 7 DoF). Another advantageous char-
acteristic of this work is that it is scalable without com-
promising too much energy consumption. If the robot
uses more DoFs, for the MCU grid, then more MCU

are needed increasing the power linearly, whereas for
this work’s hybrid implementation only a few more mW
would be added for every new module on the FPGA.

As future works, it is proposed to improve the sub-
damping of the controller. Also, conduct more exper-
iments on grasping tasks and manipulation to better

test the dexterous of the robotic hand in combination
with the control algorithm. As the covariance matrix of
the KF was set empirically, another solution that will

be further sought is to dynamically set these values as
shown in [2]. Moreover, the authors will focus on the
development of a GUI interface connected to Ethernet

and WIFI, taking advantage of the PetaLinux flexibil-
ity, to compose a better interaction of the robotic hand
with the final user.
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ABSTRACT For the last four decades, the development of robotic hands has been the focus of several
works. However, a small part of those approaches consider the exploitation of parallelism of FPGA-
based (Field Programmable Gate Arrays) systems or discuss how using bioinspired optimization algorithms
could improve the mechanical and controller components. This work considers developing a bioinspired
robotic hand that achieves motion and force control with a logic hardware architecture implemented
in FPGA intended to be replicated and executed with suitable parallelism, fitting a single device. The
developed robotic hand prototype has five fingers and seven DoF (Degrees of Freedom). Using bioinspired
optimization, such as PSO (Particle Swarm Optimization), both the rigid finger mechanism and the
impedance controller were optimized and incorporated the results in several practical grasping experiments.
The validation of this work is done with the Cutkosky grasping taxonomy and some grasping experiments
with interference. The tests proved the proficiency of this works for a wide range of power and some
precision grasp. The reader can see the experiments in the attached videos.

INDEX TERMS Bioinspired optimization, FPGA, Grasping taxonomy, Impedance controller, Robotic
hand, SoC

INTRODUCTION

OVER the past four decades, there have been significant
contributions in the field of computer science, artificial

intelligence, robotics, and other related fields. This progress
has allowed the development of robotic systems that are more
capable and sophisticated, such as biomimetic robotics. Such
robots are more skilled, robust, and efficient than other types
of conventional robots when used in unstructured workplaces
[1].

There is also much effort towards building biomimetic
robotic hands, which have contributed to a better understand-
ing of implementing a human hand into a dexterous grip-
per/manipulation robot, widening its applications through
improved sensors and mechanisms [15]. One of these im-
provements is tactile sensing, which uses physical signals
to identify the phases of object manipulation, namely: (a)
non-contact to contact, (b) rotation, and (c) sliding [16].
For the application of robot hands, these phases translate

into object recognition, force control, and grasp. Tactile
sensors can measure different magnitudes, such as force
vectors, vibrations, and contact actions. On the other hand,
signal-processing techniques and modeling improve these
measurements or even estimate others when sensors can-
not read them directly. Such measures are then used for
control schemes that perform grasping tasks [17]. Efficient
grasping techniques have proven to be complicated on both
implementation and computational issues, considering that
the diverse robotic hands’ components must be controlled
and supervised in parallel and real-time. Some works have
accomplished these aspects by clustering several data pro-
cessing devices in parallel. Table 1 presents a summary of
some of those works with their main characteristics and
achievements. The table includes the following key points:
(1) control scheme or strategy for grasping, (2) finger gear or
type of transmission used for the fingers movement, (3) the
type of actuators used, (4) the quantity and type of sensors
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TABLE 1. Comparison with some other robotic hand implementations

Author Control scheme Finger gear Actuators Sensors CU Freq.
(Hz)

DoF

Robotic
Hand (This
Work)

Impedance control Four-bar linkage
and worm gear 7 DC motors 7 angular position, 7 cur-

rent sensors
SoC
ARM+FPGA >25000 7

KITECH-
Hand [2] PID current control Spur gears 16 DC motors 16 angular position, 16

current sensors
µCU matrix
(16) 333 16

Calderon et
al. [3] PID control Four-bar linkage 5 DC motors 5 force sensors PC - 5

Jeong et al.
[4]

Neural Networks for
position estimation and
PID current control

Four-bar linkage 6 DC motors 5 position sensors PC - 6

Wang et al.
[5]

Impedance control with
internal PID position
control

Four-bar linkage 5 DC motors 5 Encoders; 5 hall posi-
tion; 5 torque sensors

Multiple
DSP (2) 10 -

40
5

LMS Hand
[6], [7]

Force control with Neu-
ral Networks and PID
position control

Wire-driven 16 DC motors
16 encoders (for motors),
16 absolute encoders (for
joints)

PC 50 16

Lee et al. [8] Hybrid PD
position/force Four-bar linkage 9 DC motors 9 incremental encoders, 4

resistive force sensors PC - 9

HIT/DLR
Prosthetic
Hand [9],
[10]

Impedance control and
PD position control Four-bar linkage 3 DC motors

3 encoders, 3 hall position,
3 torque, 3 force sensors
on fingertips

Multiple
DSP (2) 1000 3

HIT/DLR
Prosthetic
Hand II
[11], [12]

Impedance control and
PD position control Wire-driven 15 Brushless

DC motors

15 position, 15 torque,
5 force on fingertips, 10
temperature sensors, tac-
tile sensors.

Multi-
processor
DSP+FPGA
(6 DSP & 6
FPGA)

- 20

KNU Hand
[13], [14]

Position control with
sliding detector

Worm gear and
four-bar linkage 2 DC motors 2 position sensors DSP - 6

used, (5) the CU or computational control unit, (6) the control
loop refresh frequency in Hz, and (7) the number of DoF. It
is worth noticing that only works that included the actuators
either in the palm or the finger were considered; i.e., robotic
hands with actuators in the forearm or outside the hand were
not considered.

Table 1 indicates that some implementations use PID for
force control [2]–[4]. Although this solution is simple, ef-
ficient, and easy to tune, it does not control the dynamics
of the contact between the manipulator and object. The
impedance controller cannot only do this but also performs
well at exerting forces on the environment and achieve good
robustness at handling flexible components with unknown
stiffness.

On the other hand, Table 1 also shows that the compu-
tational unit (CU) of some approaches [2], [5], [12] use
several components to achieve the required parallelism of the
controllers by using well-known micro-controllers. However,
it results in a large physical space required by the CU and
demands implementing communication strategies between
the processing devices. Lastly, as expected, more components
mean an increase in energy consumption.

Many of the implementations depicted so far include
simplifying the complexity of the human hand to achieve
embedding. This work’s motivation follows that path by scal-
ing down the robotic system’s dimensions and complexity,
enclosing the CU in a single device or chip. This device

should execute complex algorithms fast enough to attend to
the control loop and real-time grasping and manipulation re-
quirements. As mentioned before, integrating and centraliz-
ing the CU also avoids communication lag between different
devices. Finally, reducing the number of components can
also aim for a more cheap and energy-efficient robotic hand
solution.

Field Programmable Gate Arrays (FPGAs) are a good
match in pursuing this motivation. Additionally, these de-
vices can be fundamental in the simultaneous control of
several actuators that must be handled synchronously. In
conventional processors, the correct synchronization can be
hampered by the serial nature of executing instructions in
von Neumann-based architectures. In this way, FPGA-based
platforms allow the designer to implement efficient digital
architectures capable of reading signals in parallel from
multiple sensors and generating many output signals through
parallel processing. They have been used to implement al-
gorithms for parallel motion control of fingers for piano
playing [8]. Another example [18] asserts the importance of
the usage of parallelism for tactile sensing in robotic hand
applications. Other potential advantages of FPGAs, although
not guaranteed, are the possibility of achieving more energy-
efficient architectures that can be scalable to more complex
systems. Nevertheless, the main drawback of using FPGAs
to embed control algorithms is the necessity of proficiency in
hardware development from the designer and longer design
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time, which is greater than developing software.
This work’s primary goal is developing a bioinspired

robotic hand that achieves motion and force control based
on the previously developed logic hardware architecture vali-
dated for a single finger [19]. In this sense, this work explores
a suitable manner to parallelize the impedance controllers
for a complete 7-DoF robotic hand, fitting a single FPGA
device. The developed robotic hand prototype has five fingers
and seven DoF (Degrees of Freedom). The prototype consists
of seven DC motors, seven position-sensors, and six current
sensors processed in parallel.

This work’s contributions are the following: (a) A novel
experimental setup process for implementing a bioinspired
robotic hand with an embedded controller using reconfig-
urable hardware FPGA/SoC (System on a Chip). This ap-
proach’s main advantage is its capacity to control several
DoF in parallel using a single chip that’s relatively cheap and
energy-efficient, different from other works that need to use
a grid of micro-controllers or big processors. (b) The robotic
hand fingers are based on the novel bioinspired optimized
mechanism in [20], which was vital in reducing the number
of needed actuators and allow their inclusion in the palm.
Additionally, it also allowed incorporating the sensors and
electronics in the palm, avoiding external elements. (c) A new
approach for tuning an impedance controller’s parameters us-
ing a bioinspired Opposition-based learning Particle Swarm
Optimization algorithm (OPSO). We portray the OPSO tun-
ing methodology and believe that it be extended for other
applications where impedance control can be useful. There is
no literature about tuning impedance controllers using bioin-
spired algorithms to the best of our knowledge. In this work,
this controller is used to achieve the robotic hand’s dynamic
and force control to perform grasp without having tactile
sensors. (d) Finally, this work presents real experiments of
the proposed FPGA/SoC-based bioinspired robotic hand for
the first time. The conveyed experiments consisted of testing
several grasping positions using the Cutkosky taxonomy and
executing some of those grasps with external interference.
With these experiments, we successfully demonstrate the
robotic hand capabilities analytically and critically.

This paper is organized as follows: Section I describes the
robotic hand mechanical and electronic design, describing
the fingers’ optimization and listing the used electronic de-
vices. Section II depicts the impedance controller that imple-
ments the force control and its tuning using bioinspired algo-
rithms. Section III develops the embedded FPGA/SoC-based
system that executes this control, using hardware/software
co-design. Section IV unfolds a performance analysis of
the previously mentioned embedded system, comparing it to
other solutions. Finally, Section V describes the experiments
that were carried out to validate this work results.

I. HAND DESIGN
Human hands have 31 muscles and 19 articulations that
actuate at least 25 DoF (Degrees of Freedom) [21]: four
in every upper finger, of which three are responsible for

flexion-extension and one for adduction-abduction; four in
the thumb, where two are for flexion-extension and two for
opposability. The rests lay on the palm and wrist’s rotation
and translation.

X
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FIGURE 1. DoF of a human hand. Where DIP is Distal-Inter-Phalangeal joint,
PIP is Proximal-Inter-Phalangeal joint, MCP is MetaCarpal-Phalangeal joint,
TMC is CarpoMetaCarpal Joint, fe is flexion-extension, and aa is
abduction-adduction.

Fig. 1 illustrates the large number of joints or DoF of
a human hand. Ideally, a biomimetic hand should emulate
all DoF. However, this achievement has proven to be very
difficult due to space, energy, and other physical restrictions.
Recent solutions to this problem have involved reducing the
number of fingers [2], locating the actuators outside the hand
to achieve a similar amount of DoF in the robot [22], [23],
transforming and reducing the number of DoF [3], [4], [16],
[24].

For the final solution, this work takes advantage of the
fact that some joints in the human hand restrict the state
of others [21]. Therefore, their movement set is constrained
and defined mathematically regarding other joints. With this
in mind, different human hands’ DoF can be hierarchized
according to the relevance of its actions when performing
particular tasks, such as grasping [25]. Table 2 lists the most
relevant joints of the human hand, where aa and fe states the
movements of the MCP and TMC joints for the front and
thumb fingers, respectively. The joints with a “no” are sub-
actuated according to the others’ state, and yes indicates the
actuated joints. Table 3 defines the mathematical relation of
the constrained ones.

TABLE 3. Interphalangeal constraints for the actuated joints. Adapted from
Cobos [25]

Thumb Index Middle Ring Little
θt,TMC_aa

θi,MCP _aa

θt,MCP _fe ≈
4
5
θt,DIP _fe

θi,MCP _fe ≈
4
3
θi,PIP

θm,MCP _fe ≈
4
3
θm,PIP

θr,MCP _fe ≈
4
3
θr,PIP

θl,MCP _fe ≈
4
3
θl,PIP

θt,DIP
θi,PIP ≈
3
2
θi,DIP

θm,PIP ≈
3
2
θm,DIP

θr,PIP ≈
3
2
θr,DIP

θl,PIP ≈
3
2
θl,DIP

θi,DIP θm,DIP θr,DIP θl,DIP
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TABLE 2. Ten more relevant human hand joints when performing grasping
tasks. Refer to Fig. 1 for the positions of the joints. Adapted from Cobos [25]

No. Finger Articulation Is used in this work
1 Thumb θt,TMC_aa yes
2 Thumb θt,TMC_fe yes
3 Index θi,MCP _aa yes
4 Index θi,PIP _fe yes
5 Middle θm,MCP _fe yes
6 Middle θm,PIP _aa no
7 Ring θr,MCP _fe yes
8 Ring θr,PIP _aa no
9 Little θl,MCP _fe yes

10 Little θl,PIP _aa no

Figure 2 presents the proposed kinematic structure. It
depicts the five fingers and their joints as sixteen rotatory
joints, seven actuated while the rest behaves according to the
constraints seen in Table 3.

θi,MCP_aa

θi,MCP_fe

θi,PIP_fe

θi,DIP_fe

θm,MCP_fe

θr,MCP_fe

θl,MCP_fe

θm,PIP_feθr,PIP_fe

θl,PIP_fe

θm,DIP_feθr,DIP_fe

θl,DIP_fe

θt,TMC_aa θt,MCP_fe

θt,DIP_fe

FIGURE 2. Kinematic structure of 7 DoF simplified robotic hand. Actuated
joints are highlighted in red, the other ones are sub-actuated according to
Table 3

Table 4 shows the ranges of the joints and phalangeal
length of the fingers, which were established based on real
human hand for Latin-American individuals [26].

TABLE 4. Kinematic Parameters of Robotic Hand.

Joint Phalangeal lengths of the finger [mm] range [o]Thumb Index Middle Ring Little
MCP_aa - 17 - - - 0− 15
TMC_aa 38 - - - - 0− 90
MCP_fe 37.67 45.77 51.36 47.60 37.67 0− 90
PIP_fe - 25.75 30.30 29.51 20.84 0− 67.5
DIP_fe 20.84 18.20 20.02 19.90 18.36 0− 45

The parameters on Table 4 establish the robot’s workspace,
which is the total volume the fingertips can reach when
combining every possible joint configuration [27]. Fig. 3 ex-
hibits the proposed robotic hand workspace using a cloud of
fingertips’ points. It illustrates the intersections between the
upper fingers and the thumb, validating its opposability. This
figure also denotes that the middle, ring, and little fingers’
workspace is a 2-dimensional spline due to the single DoF
they possess. The following subsection describes the resulted
design for the fingers using a four-bar linkage mechanism and
how it was optimized to perform the constraints depicted in
Table 3.
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FIGURE 3. Robotic hand workspace.

A. MODELLING AND OPTIMIZATION OF ROBOTIC
FINGER MECHANISM
Pertuz et al. [20] proposed a robotic finger mechanism that
located the actuators in the palm of the robot hand, which
is useful when the robotic hand needs to be adapted to
larger and more complex systems [15]. The drawback of this
approach is that the space in the palm and finger of a human-
sized robot hand is minimal, thus the necessity of reducing
the number of DoF.

The fe movements of the fingers are sub-actuated with
1 DoF, i.e. they have a single motion input and the other
joints move at a certain proportion, through a four-bar linkage
mechanism. Fig. 4 presents the mechanism and its motion
path, the input of the mechanism is θ1 (from here onwards
the MCP, PIP, and DIP joints will be referred as θ1, θ2, and
θ3, see Fig. 1).

Fig. 4(c) also describes two fingertip trajectories: 1) the
one developed by the mechanism using trivial link lengths
named as mechanism’s fingertip path, and 2) the one gen-
erated by the constraints on Table 3 referred as desired
fingertip path. For both trajectories, the proximal, medial,
and distal phalanges have the values listed in Table 4. The
first path depends on the mechanism’s link lengths and is
expected to fit the second. The solution to this problem is not
straightforward; however, it can be seen as an optimization
problem where the variables are the link’s positions and the
objective is to fit the fingertip path.

TABLE 5. Optimized decision variables for the coupled 4-bar mechanisms of
the robotic hand for all fingers. Values are in mm.

Proximal-Medial Link Medial-Distal Link
Pa2 î Pa2ĵ La1 Lb1 Pa2 î Pa2ĵ La1 Lb1

Ring 3.26 3.44 46.09 5.98 3.12 3.44 27.64 6.59
Index 3.14 3 44.32 5.75 3 3 24.12 5.75
Middle 2 2 50.1 5.56 3.75 3.29 28.52 5.75
Little 2.56 2.93 35.95 6.33 4.1 2.82 17.64 6.14
Thumb 2.56 2.93 35.95 6.33

In order to optimize the four-bar mechanism, the bioin-
spired optimization algorithms PSO (Particle Swarm Opti-
mization) [28], DE (Differential Evolution) [29] and GA
(Genetic Algorithm) [30] were used. The results of each
algorithm were analyzed, compared, and selected for a final
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FIGURE 4. Coupled 4-bar mechanism. (a) Finger fully extended; due to the
mechanisms self-lock feature, in this position, it only allows counter-clock wise
movement input, (b) Finger upon input movement in θ1, and (c) Fully flexed
finger.

prototype. The optimization was performed for one finger
and adapted in proportion to the others. The decision vari-
ables are listed in Table 5 and Fig.5 illustrates the optimized
mechanism’s fingertip path for the index finger. The readers
are referred to [20] for more details regarding the mechanical
design optimization procedure.
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FIGURE 5. Optimized fingertip paths using PSO and DE

B. DESIGN AND ASSEMBLING
This project enclosed the novel four-bar finger mechanism
optimized in previous work [20]. It allowed to reduce the
DoF and thus the mechanical components of the flexion-
extension and adduction abduction movements, permitting
them to be enclosed in the palm. The robotic hand was
built using mainly 3D printed parts; however, we used other

manufacturing processes for the metallic pieces. The finger
mechanism depicted in the previous subsection is anthropo-
morphized for a better appearance, as shown in Fig. 6.

(a)

(b)

(c)

FIGURE 6. Antropomorphed index finger mechanism. (a) CAD with
transparent finger depicting the phalanges and the links of the mechanism,
and photos of (b) the proximal-medial and medial-distal links, and (c) the
assembled finger. Most of the robotic hand was 3D printed with ABS plastic
except for the worm gear and links that are fabricated in aluminum

The motors used in this project are low power brushed DC
motors (200 RPM and 0.28 Nm) and actuate the mechanism
through a worm gear to bring more grasping torque. The
worm mechanism also allows to rotate of the movement axis
90o, easing the location of the motors (see Fig. 6(c)).

The thumb and index fingers’ configurations have extra
actuated joints for their aa movements. This project proposes
three different finger configurations (see Fig. 2 for viewing
the joints), as follows. (1) Configuration 1 (Thumb): 2 DoF
(aa and fe) and 3 joints. (2) Configuration 2 (Index): 2 DoF
(aa and fe) and 4 joints. (3) Configuration 3 (Remaining
fingers): 1 DoF (fe) and 3 joints.

The extra DoF of the thumb and index fingers were added
as seen in Fig. 7(a). Fig. 7(b) also illustrates the prototype
robotic hand’s final result.

The thumb opposability of this work can be quantified
using an adaptation of the well-known Kapandji clinical test
[31]. This test assesses the thumb’s opposition by checking
its ability to touch a specific part of the hand. They are
ten tests/positions in increasing difficulty, with the easiest
consists of touching the proximal phalanx of the index finger
and the hardest is to touch the distal palmar crease. Fig. 8
depicts two of the most representative Kapandji tests (six
and ten) validating this work’s thumb opposable ability by
achieving the most challenging position.

C. ELECTRONICS
The robotic hand electronics are embedded in the palm and,
excepting the position sensor, are located in a custom PCB.
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(a) (b)

Conf. 1:
Thumb
Actuators

Conf. 2:
Index 
Actuators

Conf. 3:
Remaining
Fingers
Actuators

FIGURE 7. Assembled Robotic Hand. (a) Render of assembled robotic hand
with the locations of the actuators and extra DoF of the index and thumb. (b)
Real picture of the assembled robotic hand.

(a) (b)

FIGURE 8. Kapandji Test for robotic hand. (a) Position six: thumb touches the
little finger. (b) Position ten: thumb touches distal palmar crease.

The signals are accessed through an IDC 34-pin header that
connects to the controller device. Figure 9 illustrates the
schematic of the controller dividing it into two parts the
Acquisition Unit (AU) and the Controller Part (CU).

The AU includes the motor drivers (DRV8833), the current
sensors (ACS712), and some other power regulation ICs
(Integrated Circuits). It also has connection pins for the
IDC breakthrough and sockets for the DC motors, and the
analog angular position sensors. The PCB has dimensions
of approximately 80 × 52mm and has an irregular form
designed to fit in the palm (See Fig. 9). The CU consists of
the Arty Z7-20 development board. It contains an XC7Z010
SoC (System on a Chip) that includes a Zynq®-7000, an
Artix™-7 FPGA (Field Programmable Gate Arrays), and a
Dual-Core ARM®Cortex®-A9 at 667MHz. The chip also
includes a XADC (Analog to Digital Converter) necessary
for the current and position sensors.

II. DESIGN OF THE ROBOTIC FINGER FORCE
CONTROLLER
Several approaches can be implemented when attempting to
grasp with a robotic hand [32]. This work considers a scheme
that plans to grasp an object whose physical characteristics

AUCU
Arty Z720 IDCBusZYNQ7000 Custom PCB

DRV8833Motor DriverACS712CurrentSensor

Index FingerIC
Rem. FingersICDRV8833Motor DriverACS712CurrentSensor

DC motor MURATAPosition SensorIndex FingerRobotic Hand Palm
FIGURE 9. Schematic diagram the Robotic Hand Acquisition Unit (AU) and
Controller Unit (CU). The entire AU is embedded in the palm while the CU is
the Arty board that is located outside. On the south-west corner is a photo of
the custom PCB of robotic hand.

are unknown using only position and motor current to es-
timate the torque generated by the fingers, avoiding tactile
sensors. The amount of torque/force is controlled by the
algorithms in order to sustain a stable grasp. Previous works
have already considered this approach [33], [34].

F

M

B

K

r

θ

FIGURE 10. Schematic diagram of the impedance model in the robotic finger.

Impedance control is adopted to control the torque pro-
duced by DC motors of the fingers. An impedance controller
aims to control the dynamics a robot has when interact with
its environment [35], [36]. Fundamentally, the impedance
controller is defined as a second-order dynamic system, such
as a mass-damper-spring system, with adjustable parameters.
A decoupled and linear behavior is considered in this work,
i.e., every finger has an independent controller with torque
and position feedback, see Fig. 10. The controller is repre-
sented by Eq. 1

Mrθ̈(t) +Brθ̇(t) +Krθ(t) = F (t) (1)

, where F is the resulting force of the system, M , B and K
are mass, damping, and spring coefficients, respectively, and
r is the distance between the first joint and the fingertip.

The control parameters, M , B, and K, can have any
value; however, their tuning can be complicated for stable
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system response. The tuning of control parameters of several
types (PID, Neural Networks, and others) using bioinspired
optimization algorithms have been implemented in [37], [38].
This work proposes implementing an OPSO (Opposition-
based learning Particle Swarm Optimization) algorithm to
tune the impedance controller’s parameters with torque feed-
back and a closed-loop to achieve the desired response for a
step input.

A. IMPEDANCE CONTROLLER SCHEME AND
SIMULATION
The implementation of Eq. 1 as the controller of the system
is done using a discrete integration method [39]. This is
described through three steps:

1) Discretize Eq. 1 as follows:

α∗(t+1) = (Mr)−1(F (t)−Kr θ(t)−Br ω(t)) (2)

where the Force F on Eq. 1 is replaced with the Force
Error at a moment t, F (t), θ(t) is the tracking position
error and θ̇ is the tracking angular speed error.

2) The product of the previous step is the target angular
acceleration at the next step t + 1; θ̈∗(t + 1), which is
integrated to obtain the tracking angular velocity:

ω∗(t+ 1) =

∫ t

t−1
α∗(t+ 1)dθ (3)

3) Finally, the tracking angular position, θ∗(t + 1), is
obtained integrating the tracking velocity.

θ∗(t+ 1) =

∫ t

t−1
ω∗(t+ 1)dθ (4)

Fig. 11 presents the block diagram for the control scheme
for a k DoF and its data-flow. This model aims to detect
objects that obstruct the movement upon closing the finger
and maintain a desired gripping force i∗ (measured with the
motor current îk directly considering it is directly propor-
tional to the force F in Eq. 1).

mk kkk

+ ++
DiscreteIntegrator
+ + 

DiscreteIntegrator +kkk

Simularor
FIGURE 11. Dataflow of finger simulator impedance controller (k=1 to 7). The
colored lines highlight the data-path that the control interface override for
testing (See Chapter III.C).

The Robotic Finger Simulator Block includes the fric-
tion forces of the mechanism and the action of an object

that hampers its movement. The simulator was designed in
Matlab/Simulink and includes current, position, and speed
transducers. It performs a flexion movement with an object
that hampers its path. The simulator is better described in
[40].

B. OPTIMIZATION OF IMPEDANCE CONTROLLER
The tuning of the impedance controller parameters is a com-
plicated and expensive procedure. One of the main reasons
is that the designer must consider coupling effects between
multiple-joints. Tuning can become even more complex
when the robot dynamic has to behave with high-accuracy
and high speed. The reader is referred to [41]–[43] to find
several approaches for auto-tuning impedance controllers.
This problem can be addressed with bioinspired optimization
algorithms such as PSO (Particle Swarm Optimization), as
explored in this work’s mechanical design. Some related
applications of PSO tuning robots controllers can be found
in [44]–[46]. With these examples as a basis, it is possible to
extend PSO to tune impedance controllers with little effort.

Algorithm 1 Pseudo-code for the OPSO algorithm
1: function OPSO(S,N ,c1,c2,Maxiter ,OBLMaxiter ,threshold)
2: Start swarm;
3: iter = 1
4: OBLiter = 1
5: repeat
6: for i do 1 S
7: if f(xk)≤ f(yik) then
8: yik ← xk

9: OBLiter = 1

10: calculate ys using the S fitness values f(yik)
11: for i do 1 S
12: for j do 1 N
13: v

(t+1)
ij

← wv
(t)
ij

+ c1U1j(y
(t)
ij
− x

(t)
ij

) + c2U2j(y
(t)
sj
− x

(t)
ij

)

14: x
(t+1)
ij

← x
(t)
ij

+ v
(t+1)
ij

15: OBLiter = OBLiter + 1
16: ifOBLiter > OBLMaxiter then
17: x(t+1) ← a+ b− x(t)

18: OBLiter ← 1

19: iter = iter + 1
20: until (f(yys ) < threshold)||(Iter <= Maxiter)
21: return ybest

The central part of an optimization problem is the design
of the cost function. For this case, it is to track the desired
force i∗k with the decision variables being the controller’s
coefficients (M , B, and K). It is calculated by observing the
estimated motor current and extracting some characteristics
from the response, such as (a) the over-impulse percentage
(Oi), (b) the necessary time for the finger to reach collision
with the object (to), (c) the settling time after the collision is
reached (te) and, (d) the force tracking Mean Squared Error
(MSE). The selection of these criteria was made empirically
and are weighted according to the following equation

fcost = 0.05(Oi)+ 0.15(to)+ 0.15(te)+ 0.65(MSE) (5)

, where the weights were decided empirically.
Due to the lack of knowledge about the coefficients, a

random initial position is fed to the algorithm. OPSO is a
modification to the original PSO algorithm that attempts to
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avoid falling on local minimums. This diversification uses
the opposition based learning (OBL) method [47] when an
individual best is not improved after a certain quantity of
iterations. The following algorithm describes how the OPSO
works.

The minimum error achieved by the PSO after 500 itera-
tions was 0.0725 with the decision variables of K = 5.0774,
B = 0.3450 and M = 0.0052. Finally, the resulting coeffi-
cients were tested for the simulator’s controller with a colli-
sion time of 3.565seconds, a settling time of 0.335seconds,
and a steady-state error of 0.012.

III. IMPLEMENTATION OF THE EMBEDDED ROBOTIC
FINGER FORCE CONTROLLER

The robotic hand aims to embed the low-level control algo-
rithms. Some authors approach this issue by distributing the
computation between several devices to comply with real-
time constraints [2]. This work proposes, in novelty, imple-
menting the filtering process and the impedance controller as
a reconfigurable architecture in an FPGA/SoC device. Doing
so enables implementing computing-intensive functions in
parallel, in a single chip, with little compromise to time-
execution performance and energy consumption.

The Filtering Process block (presented in Fig. 12) is the
most expensive part of the control scheme. So, this part is
determined to be described in VHDL (VHSIC "Very High-
Speed Integrated Circuit" Hardware Description Language)
on the CU’s FPGA (Field Programmable Gate Arrays), from
now on referred to as the Programmable Logic Part / PL-
part). It is essential to point out that hardware implementation
has some advantages, like a logic architecture’s intrinsic
parallelism. On the other hand, a drawback is that the de-
signer must be mindful not to surpass the number of logical
resources on the chip.

Moreover, the Impedance Controller block in Fig. 11 is
executed in the CU’s Processor Unit (from now referred to
as Programmable Software Part / PS-part). The composition
of the CU’s architecture and the dataflow is described in
Fig. 12. Similarly, the robotic hand Control Interface block
is implemented in the PS-part. It can switch the control
technique between manual, position, and impedance control;
this is described more thoroughly in the following subsection.

Net Interfacin
g Control InterfaceControl Type 17 17

17
Filtering Process

DoF_1 DoF_2 DoF_3 DoF_4 DoF_5 DoF_6 DoF_712bit1 MSPSADCdataready

USBLAN

161717
Motor DriverPWMGenerator

AXI4 Interface
171717

m17

m17ROBOTICHAND m17

ZYNQ7000 SoC

FIGURE 12. Internal architecture of the CU. The Filtering Process block is
replicated for the same amount of DoF (Degrees of Freedom) in the robotic
hand. These blocks, including the Motor Driver, are controlled and
synchronized via the AXI interface with the PS-part. The PS-part also
executes the impedance controller algorithm and the control interface.

The platform-chip used in the CU allows communication
between the PS- and PL-part, enabling the creation of hybrid
systems combining the advantages of software and hardware,
i.e., the possibility of implementing hardware accelerators in
the PL-part and the flexibility of software.

A. PL-PART: SENSORS FILTERING PROCESS
The PL-part includes an ADC converter, the motor PWM
signals generator (Motor Drivers), communication protocol
(AXI Interface), and the sensors Filtering Process. The latter
implements two filters for the analog current and position
sensors: (1) a Kalman filter [48] that estimate position and
velocity for the analog position sensor; and (2) a second-
order low-pass filter for the current sensor.

The architecture uses FSM to control dataflow and opera-
tions. There are four arithmetical operators (two adders, one
multiplier, and one divider) that can be used in parallel and
shared between states and two filters. Additionally, the op-
erators are custom-made [49] and use a 27-bit floating-point
numeric representation. This bit resolution is used because it
preserves the best resource utilization/precision ratio for the
selected FPGA device. A more thorough description of the
Filtering process is depicted in [19], [50].

B. PS-PART: IMPEDANCE CONTROLLER
The controller block involves the impedance controller
scheme introduced in Section II. It performs all the scheme
steps using the sensor filter outputs and the motor’s current
reference. It is important to note that it cannot be executed in
parallel given the step’s equations’ data dependency, which
is another reason not to implement it on hardware. The con-
troller’s output is fed to the motor driver block as seen in Fig.
12. The PS-part is also in charge of the data synchronization
between modules through the AXI Interface.
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FIGURE 13. Robotic hand visual interface. It illustrates some relevant data for
the sensors calibration and filters parameters. It also shows sensors and
control data: setP and Pos are the desired and filtered angular position of a
finger, Volt is the voltage of a finger’s motor, and Curr and setC are the filtered
sensor and desired current respectively. Finally, it also specifies the current
control strategy for testing (MANUAL_MOTORS, P_ONLY or
FULL_IMPEDANCE).

C. PS-PART: CONTROL INTERFACE
This work uses a text-based visual interface (see Fig. 13) that
enables the user to control the robotic hand. The interface
allows setting a series of predefined control values (i∗1,..., 7)
for different grasps and manually controlling each finger
separately. The “***” below the fingers’ names indicates the
currently controlled one. The control variable of that finger
can be increased or decreased. The user can also declare
which control variable will be adjusted between three options
by overriding it in the impedance controller dataflow. This
circumvention of the dataflow is depicted in Fig. 11 with
the red, green and blue lines for i∗, θ∗ and m∗ respectively.
Resuming the control can be done with three strategies:

1) MANUAL_MOTORS mode overrides the m∗ variable
(Seen as "Volt" on Fig. 11), allowing to control the
voltage of the motors of the robotic hand manually;
and hence, the flexion-extension movements of every
finger. It sends a constant pulse to the motors vetoing
the output of the proportional gain.

2) P_ONLY: Bypasses the desired position of a finger (θ∗k
and shown as “setP”on Fig. 11). Setting this control
variable makes it possible to set a finger in the desired
position, nullifying the impedance controller’s action.

3) FULL_IMPEDANCE: Is the full proposed impedance
controller scheme. It updates the control variable i∗

(“setC” in Fig. 11) into the impedance controller. It
feeds the desired current for grasping objects.

D. RESULTS AND SYNTHESIS ANALYSIS
An FPGA has limited resources, such as LUTs (Look-Up
Tables), slice registers, DSPs (Digital Signal Processors),
and BRAM (Block RAM). Table 6 presents the consumption
of those resources for the implementation of the system
described in Fig. 12 in the column under the name PSPL-
Arty. Additionally, for contrast, the table also presents the
resource consumption of the full-hardware implementation
(without using the PS-part); these results are described in the

column under the name PL-Arty.

TABLE 6. Synthesis Utilization of Full Controller System for One Finger and
the Full Hand

PSPL-Arty PL-Arty
Resource 1 Finger Full Hand 1 Finger Full Hand ArtyZ720

Utilization (%) (%) (%) (%) Available

LUT 1976 12252 2888 22521 53200
(3,71) (23,03) (5,43) (42,33)

LUTRAM 0 0 0 62 17400
(0,00) (0,00) (0,00) (0,36)

FF 1917 10714 3522 25702 106400
(1,80) (10,07) (3,31) (24,16)

DSP 2 14 3 21 220
(0,91) (6,36) (1,36) (9,55)

For full-logic implementation, almost half of the FPGA
resources were used, allowing little space for further devel-
opment and other characteristics the work might need in the
future. In contrast, the hardware-software implementation re-
sults (PSPL-Arty) drastically reduced the resource utilization
of the FPGA.

IV. PERFORMANCE ANALYSIS OF THE CONTROLLER

This section compares the implementation of this control sys-
tem using various architectures and platforms. The controller
is implemented as three different structures, exploiting the
modules created in the previous subsection: 1) The architec-
tures named as “software-only” perform the systems using
only software. 2) Similarly, the architectures named “Full-
HW” perform the system using only the PL-part. 3) Finally,
the architecture proposed in Fig. 12 is named Hybrid.

The software-only implementations are replicated in dif-
ferent platforms, comparing cost and performance. Table
7 lists the different architectures, platforms, and Operating
Systems (OS) implemented in this work.

TABLE 7. Control system implementation on different platforms.

ID Type of Platform OS Clock
Arch Frequency

PS-Arduino Software ATmega2560 Bare 16MHz
-Only metal

PS-ArtyBM Software ARM Bare 650MHz
-Only Cortex-A9 metal

PS-ArtyLnx Software ARM Linux 650MHz
-Only Cortex-A9

PL-Arty Full XC7Z020 - 100MHz
-HW

PSPL-ArtyBM Hybrid ARM Cortex-A9 / Bare 650MHz /
1CLG400C metal 100MHz

PSPL-ArtyLnx Hybrid ARM Cortex-A9 / Linux 650MHz /
1CLG400C 100MHz

In total, six approaches were performed in this work.
The comparison consists of executing the control loop and
measuring the execution time of each iteration for one DoF
(Degree of Freedom) and then for the seven. Table 8 lists the
execution time consumed for every architecture.
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TABLE 8. Control system implementation on different platforms.

1 DoF 7 DoF
ID t[us] Freq[kH] t[us] Freq[kH]
PS-Arduino 1017.00 0.98 7219.00 0.14
PS-ArtyBM 5.24 190.84 32.92 30.38
PS-ArtyLnx 13.72 72.88 87,80 11.39
PL-Arty 1.20 830.00 1.44 692.52
PSPL-ArtyBM 3.38 303.03 21.16 47.26
PSPL-ArtyLnx 5.85 170.94 39.00 25.64

All the PS (Programmable Software) approaches used the
same code with small adaptations for some functions that
were not compatible between platforms. Table 8 shows a big
timing gap between the PS-Arduino approach and the rest,
which is an unfair comparison in many cases. However, it al-
lows the execution time to be compared with a much cheaper
solution than the Arty-Z720 used on the other approaches.
The PS-Arduino strategy’s execution demonstrates that it can
only achieve a maximum control frequency of 140Hz.

The different approaches in the Arty-Z720 have each their
advantages. For instance, the applications in Bare-Metal (PS-
ArtyBM and PSPL-ArtyBM) can be executed in real-time; this
guarantees the correct execution of the controller at a fixed
frequency. Real-time implementation is not as simple for the
cases with the Linux kernel used in the OS (PS-ArtyLnx and
PSPL-ArtyLnx) because it is not real-time. However, using
Linux in the platform provides more flexibility for interfacing
and networking for future project applications. Connectivity
for this project is essential given that this work is intended
as part of a much bigger application where several elements
need to communicate with each other.

The performance of the approaches using software-only is
better on bare-metal than with Linux-OS. Nevertheless, the
hybrid system of Linux with PL (PSPL-ArtyLnx) stretches
this difference in the execution time. Additionally, the issue
regarding real-time in Linux is minimized in this approach,
given that the PL (Programmable Logic) part executes the
control in real-time.

On the other hand, the dynamic energy is related to
the user design’s power consumption on the FPGA (Field
Programmable Gate Arrays). In contrast, the static power
represents the steady-state intrinsic leakage of the transistors
on the device. For the hybrid system PSPL, the used static
power is 0.115W , and the dynamic is 1.467W . Most of
the latter is related to the PS-Part (1.39W ), given that the
Cortex A9 included in the chip is a high-performance multi-
core processor. Nonetheless, the energy consumption of the
proposed architecture is only 0.077W .

A. COMPARISON TO RELATED WORKS
According to table 1, previous works [9], [10] have achieved
the most considerable control loop frequency (around 1 kHz)
for a robotic hand with 3 DoF, using two DSP devices,
directly sensing position, torque, and force on fingertips. In
contrast, this work accomplishes a control loop frequency
of approximately 25 kHz of a robotic hand with 7 DoF,

using a single chip device and sensing position and current
to estimate torque.

In terms of DoF and control technique, works in [13],
[14] developed a robotic hand with 6 DoF using only two
DC motors and only one DSP device for controlling position
with sliding detection. However, control loop frequency is
not reported, and the dexterous is limited since only two DC
motors are used. A robotic hand with 16 DoF with force
and position control was developed in [6], [7]; however, it
is limited in terms of space given that it uses a PC, achieving
a control loop frequency of 50 Hz. An embedded solution to
force control of a robotic hand with 16 DoF was developed
in [2]. The authors used a PID current control and embedded
the solution in a matrix of 16 uCs and achieving a control
loop frequency of 333 MHz. Finally, works in [11] and
[12] implemented an embedded solution for impedance and
position control of a robotic hand with 20 DoF using 6 DSPs
and 6 FPGAs devices. This massive parallel solution does not
report the control loop frequency but probably increases the
energy consumption and the controller board complexity.

Using a single chip for all DoF is a novel contribution
of this work that saves the embedded controller board’s
real-estate and can be more efficient in energy consumption
and performance. Additionally, the current system can be
scaled; i.e., if the number of DoF increases, the hardware
architecture can also be adapted. As reported in Table 6, there
are enough hardware resources for implementing more filters
and processing more DoF, still achieving a high control loop
frequency.

V. EXPERIMENTS
The finger’s control response using the proposed PSPL-
ArtyLnx architecture is smooth and is tested to grasp various
objects. Fig. 14 illustrates the control response of the sensors
for one finger.

It can be seen it stabilizes for a set current that is propor-
tional to the grip torque. The impedance controller sends the
position signal to the proportional controller that calculates
the motor’s input voltage.

A. IMPEDANCE CONTROLLER INTERFERENCE
TESTING
The Arty-Z720’s available ADC channels allows controlling
the five fingers of the robotic hand simultaneously, enabling
experiments that involve grasping objects with specific inter-
ference.

The test consists of setting a current setpoint for the
impedance controller and then see how it behaves upon
contact with a cylindrical object and with some type of
interference afterward. It is important to highlight that the
setpoint values are selected empirically. Figure 15 illustrates
these experiments.

Figure 15(a)-(e) illustrates the first test of grasping a rigid
cylindrical object, where immediately after contact (around
the 20th second), a user carries out interference to evaluate if
the robotic hand can maintain the grasp. First, in Fig. 15(b)
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FIGURE 14. Control behavior of impedance controller of one finger. (a)
Robotic hand experimental setup, (b)-(c) Current response to a sine wave and
step input.

the object is pushed outwards and then sideways Fig. 15(c)-
(d). The opposable thumb is the most affected finger in this
type of interference, and it can be seen in its curve. However,
the thumb can maintain the grasp and is stabilized after the
interference is stopped, around the second 40.

The second experiment (Fig. 15(f)-(h)) details the curves
for when the finger enters in contact with a non-rigid object
on its surface. It is then performed a series of increased
steps to see if the fingers interject more on the object upon
increasing the grasping force. It can be seen that this is not
the case because the initial setpoint is already high enough to
interject the object the maximum amount. This value can not
be less because the fingers will not start moving because of
the work gear inertia.

B. CUTKOSKY TAXONOMY TESTING
Additional experiments are performed to test if the present
work can simulate human grasping motion despite DoF re-
duction (Degrees of Freedom). The Cutkosky taxonomy [51]
is a human grasping classification that has been extensively
used for manipulation and machining tasks. The different
types of grasping poses are classified into power and pre-
cision grasps. The experiments are executed by this work’s
robotic hand by maintaining an object’s static grasping pose
from the taxonomy.

Figure 16 shows the robotic hand performing some poses
from said taxonomy. The robotic hand can perform five
power-grasp and four precision-grasp successfully, demon-
strating its ability to grasp and manipulate some objects,
enabling a vast amount of applications. These results also
show the relevance of the TMC_aa for most grasping poses.

CONCLUSIONS
In this project, a biomimetic robotic hand was implemented
using an FPGA/SoC-based (Field Programmable Gate Ar-
rays / System on a Chip) approach using a Zynq chip from
Xilinx. The biomimetic hand’s mechanical design contains
7 DoF (Degrees of Freedom) compared to the 24 an actual

human hand has. The number and specific joints of the
project were selected according to the most significant DoF
and how well they perform gripping objects. Given that some
movements are constrained by other DoF in this project,
the fingers execute the flexion-extension movements with 4-
link mechanisms. A bioinspired optimization was applied to
solve a mechanism that generates the necessary trajectories
for emulating a human finger’s action. The optimization
process reached an average quadratic error of 0, 00266. This
result was extended for the five fingers’ mechanical design
according to their size, allowing the full robotic hand’s im-
plementation similar to a real hand. Reaching dimensions of
210×84×38mmwith 413.13gr (for the robotic hand design)
versus 175 × 89 × 43mm with 409, 5gr (for a regular male
hand). Additionally, the thumb’s ability of this project was
demonstrated with the Kapandji test. The prototype was able
to reach all ten levels of finger positioning.

The impedance controller developed in this work was
first evaluated via numerical simulation. For this action, a
robotic finger simulator was implemented for tuning the
controller parameters without endangering the prototype.
The impedance controller’s tuning was performed with
bioinspired optimization algorithms, precisely the OPSO
(Opposition-based learning Particle Swarm Optimization).
The optimization process resulted in an underdamped motor
current response, efficiently achieving a rising time of 355ms
and a steady-state error of 1, 2%. This bioinspired tuning
method for an impedance controller of a robotic system is
a new approach and one of this work’s main contributions.

As reported in Section V, the embedded controller
was developed through several approaches: PS-Arduino,
PS-ArtyBM, PS-ArtyLnx, PL-Arty, PSPL-ArtyBM, PSPL-
ArtyLnx. The experiments conducted with the proposed
PSPL architectures of the impedance controller proved that
the tuning performs correctly outside of the simulator. How-
ever, complex physical phenomena such as dynamic friction,
gaps, and tolerances in the physical prototype (specifically
the worm gear), introduced several oscillations in the sys-
tem’s response. This is also derived from the oscillations
of the position set point. Despite that, the response of the
controller remains stable for most of the experiments.

The execution time had to achieve a maximum of one
millisecond for every DoF, and for this reason, the PS-
Arduino approach was ruled out to implement the full hand.
The PSPL-ArtyLnx method applies the hybrid system using
software for interfacing and communication. Programmable
logic enables the robotic hand’s control in real-time while
achieving an execution time much higher than the required
(25.64 kHz). It is essential to highlight that even though the
achieved frequencies are not required for the current system,
this architecture opens a path for other platforms with faster
dynamics.

Finally, this project’s prototype could grasp objects with
different geometries with power and precision grip, high-
lighting the robotic hand’s dexterity and flexibility. Also, The
results of the experiment in Fig. 15(f)-(h) showed that for low
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FIGURE 15. Grasping tests with interference. (a)-(e) is the first experiment and (f)-(h) is the second. Bellow the experiments are the curves for current and position
for the index, middle and thumb fingers. The pictures are in chronological order. See video
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FIGURE 16. Robotic hand performing grasping poses according to the Cutkosky taxonomy. See video

force grasping it is still necessary a complementary strategy
or data to the impedance controller, such as tactile sensing.
One could be a combined impedance/position control that
performs a position control until contact with an object
is reached, switching to the impedance control. These are
objectives for future works.
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ory,” Journal of Dynamic Systems, Measurement, and Control, vol. 107,
no. 1, p. 1, 1985.

[37] W. He, W. Ge, Y. Li, Y. Liu, C. Yang, and C. Sun, “Model identification
and control design for a humanoid robot,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 47, no. 1, pp. 45–57, 2017.

[38] J. Sergey, S. Sergei, and Y. Andrey, “Comparative analysis of global
optimization-based controller tuning methods for an exoskeleton perform-
ing push recovery,” in 2016 20th International Conference on System
Theory, Control and Computing (ICSTCC), 2016, pp. 107–112.

[39] F. Caccavale, C. Natale, B. Siciliano, and L. Villani, “Integration for the
next generation: embedding force control into industrial robots,” IEEE
Robotics & Automation Magazine, vol. 12, no. 3, pp. 53–64, sep 2005.

[40] C. H. Llanos, D. Munoz, and S. A. Pertuz Mendez, “Simulation and
Implementation of Impedance Control in Robotic Hand,” in Procceedings
of the 24th ABCM International Congress of Mechanical Engineering.
ABCM, 2017.

[41] S. Dehghani, H. D. Taghirad, and M. Darainy, “Self-tuning dynamic
impedance control for human arm motion,” in 2010 17th Iranian Confer-
ence of Biomedical Engineering (ICBME), 2010, pp. 1–5.

[42] B. Maldonado, M. Mendoza, I. Bonilla, and I. Reyna-GutiÃl’rrez,
“Stiffness-based tuning of an adaptive impedance controller for robot-
assisted rehabilitation of upper limbs,” in 2015 37th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), 2015, pp. 3578–3581.

[43] P. Balatti, D. Kanoulas, G. F. Rigano, L. Muratore, N. G. Tsagarakis, and
A. Ajoudani, “A self-tuning impedance controller for autonomous robotic
manipulation,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 5885–5891.

[44] Y. Raza, S. F. Ahmed, A. Ali, M. K. Joyo, and K. A. Kadir, “Optimization
of pid using pso for upper limb rehabilitation robot,” in 2018 IEEE
5th International Conference on Engineering Technologies and Applied
Sciences (ICETAS), 2018, pp. 1–4.

[45] J. Campos, S. Jaramillo, L. Morales, O. Camacho, D. ChÃąvez, and
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Efficient Data-driven Real-time Magnetic
Tracking for Myokinetic Control Interfaces
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Abstract— This work presents an embedded machine1

learning solutions for the control of prosthetic limbs based2

on magnetic tracking. Namely, we employ a data-driven3

strategy to create mathematical models, which can trans-4

late measured magnetic information from implanted mag-5

nets to desired commands for active prosthetic devices.6

Initially, the prediction uses an optimization algorithm to7

solve an extensive equation system. Instead, we employed8

machine learning models such as linear and Radial Ba-9

sis Functions Artificial Neural Networks (RBFNN) due to10

their inherently parallel architecture. They were developed11

offline and then implemented on field-programmable gate12

arrays using customized floating-point operators, optimiz-13

ing computational precision, hardware, and energy con-14

sumption, which are essential features in the context of15

wearables devices. When used to track a single magnet16

in an anatomical mockup of the human forearm, the pro-17

posed data-driven strategy implemented in hardware could18

achieve a tracking accuracy of 720 µm 95% of the time and19

latency of a 12.07 µs. Also, the proposed system architec-20

ture requires a lower energy consumption than previous21

solutions reported in the literature. This work’s outcomes22

encourage further research on improving the devised meth-23

ods to deal with a more significant number of magnets24

simultaneously.25

Index Terms— myokinetic control interface; prosthetic26

control; artificial neural networks; machine learning; FPGA27

28

I. INTRODUCTION29

UPPER limb amputation deprives individuals of their30

innate ability to manipulate objects. In order to restore31

these dexterous motor functions after amputation, prosthetic32

devices and control strategies have been one of the primary33

goals in rehabilitation engineering. However, the quest for a34
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human-machine interface (HMI) that allows for arbitrary and 35

physiologically appropriate control over multiple degrees of 36

freedom is still far from being completed. Besides commercial 37

solutions that exploit superficial electromyography (EMG) 38

signals to control the prosthesis [1], researchers are investi- 39

gating alternative approaches that take advantage of different 40

biological sources. For instance, solutions have been proposed 41

which exploit implanted electrodes (such as intramuscular [2] 42

and epymisial electrodes [3]) to record muscle activity, as 43

well as neural electrodes to record peripheral information [4]. 44

An alternative solution recently introduced in [5] exploiting 45

magnet tracking for controlling a prosthesis. The authors 46

proposed a new HMI dubbed the myokinetic control interface. 47

This interface derives information about muscle contractions 48

from permanent magnets implanted into the amputee’s forearm 49

muscles. Indeed, localizing the magnets’ position is equivalent 50

to measuring the contraction/elongation of the muscle. This 51

information can be used to interpret the voluntary movement 52

of the subject. In [5], magnets were analytically modeled as 53

point dipoles, and localization was obtained through the Lev- 54

enberg–Marquardt optimization algorithm. It finds an optimal 55

solution to the inverse problem of magnetostatics. 56

A vital research venue is to create efficient algorithms to 57

estimate the magnets’ position in this context. The faster the 58

estimation algorithm can provide an output, the more fine- 59

grained control can be achieved for the prosthetic device. The 60

design of a position transducer based on the magnetic sensor 61

information should consider the compromise of precision, 62

accuracy, and execution time. With more time-dense inputs, 63

the control algorithm will have more fine-grained information 64

to perform trajectory tracking, making it easier to represent 65

human-like behavior. In this view, the latency of the algorithm 66

(i.e., the time needed for localizing the magnets once the 67

measurements are available) has to be short enough to ensure 68

real-time tracking. In [6], the authors showed that the latency 69

of algorithms that exploit an analytic representation of the 70

magnets could be reduced by computing the analytic gradient 71

of such representation. In [5], the tracking algorithm could 72

not provide estimations as fast as the sensor could provide 73

information. More specifically, while sensors could provide 74

∼75 samples per second (one sample every 13 ms), 45 ms 75

were needed for localizing four magnets. In a more recent 76

study [7], a fully embedded system was presented, which 77

proved capable of tracking up to five magnets in less than 78

∼4 ms using 32 magnetic field sensors. In this case, the time 79
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needed for sampling the sensors readings (one sample every80

∼21 ms) and sending them to the computation unit (∼2481

ms) represented the actual bottleneck of the system. Thus,82

the system architecture proposed in [7] could be optimized83

in terms of acquisition and data-transfer times to boost the84

system performance.85

This work aims to evaluate data-driven solutions based86

on embedded machine learning algorithms, an alternative to87

that in [5], [7]. Linear models and artificial neural networks88

(ANNs) were used to approximate mathematical abstractions89

from input-output tuples [8]. As a result of its universal90

approximation property, ANNs can reproduce the behavior91

of any continuous function [9]. The inherent parallelism and92

modular structure of ANNs [10], [11] can be tuned in order93

to achieve a better compromise between accuracy, precision,94

computational complexity, and energy consumption. Similarly,95

their computational implementation on embedded hardware,96

such as Field-programmable gate arrays (FPGAs), is simplified97

for the nature of its structure, favoring simpler and more98

efficient solutions adjusting the execution time according to99

the task [12].100

Machine learning models have been fruitfully applied to101

various problems involving sensing, control, and estimation102

in biomedical applications, including interpreting biological103

signals to generate actionable commands. In this context,104

cases in which real-time response is required and solved105

by hardware implementations often involve such data-driven106

methods. In the scope of pneumatic muscles, ANNs have107

been implemented to dynamic modeling in [13] while in108

[14] a nonlinear proportional-integral-derivative ANN con-109

troller has been devised. ANNs have also been used for110

controlling wearable exoskeletons, in [15] to improve the111

torque estimation required by the apparatus and in [16] to112

perform adaptive control concerning parametric uncertainties113

and unknown disturbances, and in [17] for controlling grasp114

and lift of a cable-driven soft hand. In the case of prosthetic115

hands, in [18], the authors investigate the use of convolutional116

ANNs embedded in microcontrollers to classify hand gestures117

by interpreting EMG signals. In [19], the authors employ118

a dataset aggregation strategy for creating deep ANNs for119

processing EMG data to perform prosthetic limb control.120

As can be seen from this recent literature review, machine121

learning has shown great applicability for creating models that122

interpret complex biosignals. Moreover, such mathematical123

abstractions favor efficient hardware implementations due to124

their structure, composed of simple entities, such as neurons125

or support vectors.126

A recent review on the topic of ANNs embedded solutions127

on FPGAs and their advantages to other heterogeneous com-128

puting platforms is given in [20]. Recently, FPGA solutions of129

deep artificial neural networks have also been studied for both130

training and inference stages. In [21], the authors report the131

most important features and advantages of hardware imple-132

mentations for deep ANNs, namely lower power consumption133

and inherent reconfigurability. In [22], several activation func-134

tions are mapped and improve software, and GPU-based de-135

ployments, similar to [23], mainly due to its parallel dataflow136

characteristic. Hardware implementation of ANN for sensor-137

driven position estimation, such as the proposal of this work, 138

has been previously used in [24], [25]. An interesting type of 139

ANN is the Radial Basis Function Neural Network (RBFNN), 140

which has an inherently parallel architecture and is usually 141

implemented using Gaussian activation functions. Most recent 142

works that focus on implementing RBFNNs on hardware can 143

be found in [12], [26] and references therein [27]–[31]. In 144

[12] new architectures for RBFNN were proposed with cus- 145

tomized floating-point precision enabling hardware and energy 146

consumption optimization. RBFNNs are relatively easy to 147

design and training, besides dealing with linear and nonlinear 148

problems relatively well. Furthermore, it has a strong tolerance 149

to input noise, and even when the problem’s complexity is 150

significant [32]. 151

In this context, the present work aims to evaluate new 152

hardware architectures for machine learning models for faster 153

and energy-efficient solutions in the myokinetic control in- 154

terface. Thus, this work’s contributions are the following: 155

(i) To empirically prove that it is possible to build data- 156

driven machine learning models that can translate the magnetic 157

information to useful commands for driving prosthetic devices. 158

We confirmed with real-world measured data made in a test 159

bench that it is possible to map the magnetic information to 160

muscle deflection using machine learning models. (ii) Create 161

tools that automatically map the proposed machine learning 162

models on reconfigurable hardware, allowing other applica- 163

tions (pLinRgen and vRBFgen). They enable customization of 164

the models’ architecture according to the number of parallel 165

operators and the bit-width representation. In this way, the 166

latency, throughput, and computational power can be precisely 167

adjusted according to the application requirements, which is 168

important in the present application as the deployment of each 169

prosthesis is ideally personalized and thus involves recon- 170

figuration that can be optimized using the tools mentioned 171

above. They permit the myokinetic interface to explore the full 172

sampling rate of the magnetic field sensors. Current techniques 173

are based on complex models such as Levenberg–Marquardt 174

optimization algorithm, which provides a solution to the 175

inverse problem of magnetostatics [5]. Although this approach 176

provides accurate information, real-time implementation is a 177

challenge using embedded solutions with limited resources. 178

The method and tools gave herein allow efficiently real-time 179

magnet tracking considering energy consumption and perfor- 180

mance. The RBFNN model achieved a localization error below 181

720 µm 95% of the time and a 12.07 µs latency. In contrast, the 182

linear model achieved 520 µm with 11.52 µs. However, even 183

though the linear model has better accuracy than RBFNN, the 184

latter has better precision (a more relevant characteristic for 185

this case), as proved in the Discussions section. Additionally, 186

energy consumption was reduced to less than 57% compared 187

to the previous implementation, a major accomplishment. (iii) 188

The I2C communication of the magnetic sensors is a slow 189

protocol given the number of sensors and their sample rate. 190

The use of several data lines with the board allows to fully 191

exploit these models’ computational performance, which is 192

plausible in an FPGA. 193

The manuscript is organized as follows. Section II explores 194

the test bench and its features, the soft sensing strategy based 195
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on machine learning for solving the transduction problem,196

and the protocols for data acquisition. Section III depicts197

the machine learning hardware implementation architectures,198

while the results for its real-time implementation are given in199

Section IV. Lastly, discussions and future research activities200

are given respectively in Section V and VI.201

II. EXPERIMENTAL SETUP AND DATA ACQUISITION202

A physical mockup resembling the human forearm was used203

to acquire the data for training and testing the machine learning204

models. In such a system, muscles were modeled with wires205

attached to servo motors, pulleys, and weights. In this setup,206

the servo motor rotation corresponds to a translation (contrac-207

tion/elongation) of the muscle (wire), reproducing their axial208

deformation. The implants are commercially available NdFeB209

cylindrical magnets (D = 4 mm, L = 2 mm, residual magnetic210

flux density Br = 1.27 T) and are attached to the wire.211

The magnets’ magnetic field is sampled through 128 three-212

axis magnetic field sensors disposed on four custom PCBs213

(32 sensors per board), as depicted in Fig. 1. Each PCB is214

laid on one of the four orthogonal planes along the arm, and215

the sensors are aligned in grids of eight columns and four216

rows separated by a 9 mm gap. The four PCBs were spatially217

centered on four opposite sides of a parallelepiped structure218

enclosing the workspace (100 mm × 54 mm × 100 mm)219

(two on the XZ plane, two on the XY plane – Fig. 1). In the220

mockup, the data is streamed to a PC (Windows 7, Intel i7-221

6700 CPU running at 3.4 GHz, 32 GB of RAM) the readouts222

from the sensors at a rate of 20 Hz, through a serial bus (RS-223

232). The collected signals are stored, so they can later be224

used for offline processing. In total, there are 384 time-series225

recorded that carry information about the magnetic field (three-226

axis times 32 sensors times four boards).227

Forearmmockup
Remoteactuation unit

MM
sss ... sss ... sss ... sss ...8x4 grid

PCB

Frontal Viewx yz
Fig. 1. Mockup Schematic. It emulates the movements of the hand’s 17
degrees of freedom, for a total of 17 wires, although only one is currently
being used. Muscles were modeled using a wire attached on one side
to a servo motor (housed in a remote actuation unit) and on the other
side to counterweight to maintain tension. Adapted from [5].

For this work, the displacement of a single magnet is228

adequately driven to achieve a maximum translation of the229

wire (i.e., of the muscle) of ∼10 mm. A total of six datasets230

are acquired, giving a new input to the servo at a ts = 50 ms231

sample-rate. The input displacement (target) provided to the232

servo was used as groundtruth for analyzing the accuracy of233

the retrieved magnet displacement. In particular, the following 234

datasets were used as target: 235

• Multisine, for creating the model. It is composed by a 236

sum of sinusoid signals as 237

yk =
A

2M

{
M∑

i=1

[sin (2πfitsk + φi)] + 1

}
, (1)

where yk denotes the servo command used as output 238

for the model at discrete time k = 0, 1, ..., N , A is the 239

desired amplitude for yk in the range [0, A], M is the 240

total number of sinusoids in the equally spaced range 241

for f1, f2, . . . , fM , and φ1, φ2, . . . , φM are uniformly 242

random phases in the range [0, 90◦]. The multisine is able 243

to excite the system in an specific range and also is able 244

to reveal if the dynamic relationship between the input 245

and the output of the system should be taken into account. 246

For the acquisitions, we used A = 10 mm, as it is the 247

range of operation for the mockup, M = 10 sine waves, 248

and frequencies f1, ..., fM equally distributed in a range 249

between 0.1 and 0.5 Hz (see Fig. 2). 250

• Ramp and sequence of steps, for testing the models. 251

Ideally, a data-driven model should be tested with a 252

different dataset than used to train it. To this end, we 253

used ramp and step signals datasets that are relevant for 254

the application of trajectory tracking using the myokinetic 255

interface. The ramps are configured with positive and 256

negative slopes with different speeds during 20, 40, 60, 257

and 80 seconds. The steps were equally divided into 258

twenty levels, ranging from the minimum (0 mm) to the 259

maximum (10 mm) servo displacement, and were applied 260

sequentially. The sequence of ramps and steps is given 261

in Fig. 3. 262

Fig. 2. Measured dataset with the multisine excitation signal (left)
and zoomed around 20 seconds (right). The sensors readings are the
magnetic fields in Gauss.
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(a) (b)

Fig. 3. Measured dataset for (a) the ramp excitation signal with 80
seconds total duration and (b) the step excitation signal.

From the plots in Fig. 2–3 we can see that there is a263

cause-effect relationship between the measured magnetic field264

and the output displacement. This observation is confirmed in265

Fig. 4, which plots the normalized histogram of the Pearson266

cross-correlation for the magnetic sensors data and the output267

displacement, ordered by groups of the amplitude of R in268

ascending order. It is possible to see that many sensors are269

linearly correlated with the output muscle deflection (posi-270

tively and negatively), which indicates that machine learning271

models can represent the measured displacement based on the272

magnetic field data. Thus, they can then be implemented on273

hardware for fast and energy-efficient solutions, as we devise274

in the next section. The challenge was to design offline a model275

that can be embedded as a general architecture that delivers276

better timing results than those available in the literature.277

Fig. 4. Distribution of the cross-correlation among the magnetic sensors
time series and the muscle’s output displacement. Note that many
measurements are directly or inversely linearly correlated with the output
deflection.

III. MACHINE LEARNING MODELS IMPLEMENTATION ON 278

HARDWARE 279

A. Mathematical Formulation 280

In the present paper we employ both the linear and RBFNN 281

models. The linear model is simply described by a linear 282

combination of the inputs of the model, that is, 283

ŷLk = c1 · x1,k + c2 · x2,k + ... + cnvar · xnvar,k + b (2)

where ci ∈ R, i = 1, 2, . . . , nvar and b ∈ R are the free 284

coefficients of the model with nvar representing the number 285

of inputs, ŷLk and xi,k ∈ R, i = 1, 2, . . . , nvar are the output 286

and the input variables of the linear model in the instant k. 287

The linear model is the weighted combination of the model 288

inputs. On the n the other hand, the RBFNN is given by 289

ŷRk = F [xxxk] =
M∑

m=1

wmφ(xxxk, cccm, σm), (3)

where ŷRk ∈ R and xxxk ∈ Rnvar are respectively the network
predicted output and the input vector at a given instant k, M ∈
N+ is the number of neurons in the hidden layer, the output
weights are denoted by wm ∈ R, cccm ∈ Rnvar and σm ∈ R+

are respectively the center and the width of the m-th hidden
node of the RBFNN. The function φ : Rnvar×Rnvar×R 7→ R
is the radial basis activation function, which is frequently set
as the Gaussian with

φ(xxx(k), cccm, σm) = exp

[
− 1

2σ2
m

nvar∑

i=1

(ri(k)− cm,i)
2

]
. (4)

The linear model was trained using the linear least-squares 290

regression method to determine its intersection and coefficients 291

[33]. On the other hand, the RBFNN was trained using a 292

simple yet effective 2-stage procedure [11], meaning that the 293

centers are defined according to unsupervised learning, and 294

the weights are obtained by any least-squares method as they 295

are linear in the parameters. We employed k-means clustering 296

algorithm for the centers, and the output weights were defined 297

by QR factorization. We defined the number of neurons with 298

trial and error, aiming at better validation metrics. 299

B. Validation Metrics 300

In this work, the validation metrics used to provide a quan- 301

titative measure of agreement between the predictive models 302

and the expected observations are the Mean Squared Error in 303

decibels (MSE [db]) and the coefficient of determination (R2). 304

The former is calculated by 305

MSE [db] = 10 log10(
1

N

N∑

i=1

(yi − ŷi)2) (5)

and the latter with 306

R2 = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − y)2

(6)

where y is the reference dataset, ŷ is the models’ estimation 307

result, y is the mean of y, and N is the size of the datasets. 308
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The MSE [db] is used as a prediction fidelity measure whose309

goal is to provide a quantitative score describing the degree310

of similarity/fidelity or, conversely, between the real and the311

estimated magnet displacement. The MSE is selected because312

it is the natural way to define the error signal’s energy and is313

an excellent metric in the context of optimization [34]. On the314

other hand, the R2 is a widely used metric for curve fitting315

that provides a measure of how well the expected outcomes316

are replicated by the models, based on the proportion of total317

variation of outcomes explained by the model [35].318

The mean absolute error deviation is also used to compare319

the final prediction of the models. It is calculated by contrast-320

ing the prediction to the expected value with321

s =
1

N

√√√√
N∑

i=1

(yi − ŷi)2 (7)

C. Architectures for the Linear and RBFNN Models322

Both hardware architectures were automatically generated323

using our VHDL code generator tools (pLinRgen and vRBF-324

gen) developed in MATLAB to easily produce different mod-325

els. The tools receive configuration parameters that set the326

model’s architecture composition, characterizing the number327

of arithmetical operators and the connections in between. The328

arithmetical operators are customized floating-point modules329

previously developed in [36], [37]. The hardware imple-330

mentation models’ description and the tools’ configuration331

parameters are detailed in the following subsections.332

1) Linear Model - pLinRgen: The linear model predictor ar-333

chitecture generator was implemented in FPGA as a combina-334

tion of FSM (Finite State Machine) and pipeline architectures.335

It calculates equation 2, and the architecture can be customized336

using the following configuration parameters:337

1) nbits: Is the bit-width of the floating-point representa-338

tion.339

2) nvar: is the number of variables of the linear model.340

3) c1, ..., cnvar
and b: see Eq. 2341

4) nop: Is the number of operators executed in parallel. The342

number of stages of the pipeline architecture and the343

arrangement of the operators depends on this parameter344

(see Fig 5(b)).345

The input/output ports of the linear model predictor are346

depicted in Fig. 5(a). As expected, the quantity of inputs347

depends on the nop parameter. Figure 5(b) illustrates a possible348

configuration for the linear model predictor with nop = 4 and349

4 levels of deepness (nstages), which is determined by350

nstages = log2(nop) + 2. (8)

The “Data FSM” block is an FSM that synchronously feeds351

the variables and coefficients to the “Linear Model” block.352

When nvar > nop the FSM feeds the data in the correct353

sequence for ncycles = dnvar/nope, being the number of354

cycles necessary to carry out a prediction. This sequence is355

illustrated in Fig. 6 as a timing diagram with the states of the356

values for the inputs and outputs of the “Linear Model” block.357

The latency in the diagram is depicted as the measured time 358

between the first start pulse (“ready in”) and the first output 359

ready pulse (“ready out”) of the system. It is calculated by 360

L = ncycles · nstages · top, (9)

where Tclock is the global clock period, top is the time the 361

operator modules require to carry out a result and is expressed 362

as 2 · Tclock, and the latency is measured in µseconds. 363

(a)Linear Model Predictor Linear Modelready_inx[1]...x[n    ]c[1]...c[n    ]op
op

b
ready_outbusy_outŷnbits nbits

x[1]...x[n    ]opx[1]...x[n     ]var
Data FSM

c[1]...c[n    ]opc[1]...c[n     ]varROM nbits ... nbits
c[1]...c[n     ]varb

x[1]...x[n     ]var nbitsnbits ... nbitsnbits ...

nbitsnbits ...

rdy_in rdybusyŷ
(b)Levels of deepness (n       =4)xxxx
++ + +x1

x4c3c4
c2x2c1x3
bOperation

s in parall
el (n  =4) op

stages

Fig. 5. Linear Model Predictor on FPGA. (a) Top level view of system.
(b) Internal pipe-lined architecture of “Linear Model” block.

Fig. 6. Input/Output data time diagram of linear model in FPGA. The
“ready in” input indicates the start of the process ncycles-times. The
“ready out” output announces when a prediction is calculated.

Similarly, the throughput is the output data rate and can 364

be measured in MFLOPS (Million of Floating Operations 365

per Second). It is estimated as the inverse time between 366

two consecutive output ready pulses (“ready out”). However, 367

because it combines FSM and a pipelined architecture, the 368

traditional estimation of the throughput for a pipeline ( 1
2·Tclock

) 369
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does not work. For this case, the throughput (T ) also depends370

on the ncycles and nstages variables and is estimated by371

T =
1

(ncycles · nstages − nstages + 1) · top
. (10)

As seen, these timing characteristics of the architecture372

depend on the input parameters of the code generators. Thus,373

they can be adjusted according to the application requirements.374

2) RBFNN Model - vRBFgen: The RBFNN VHDL code375

generator is builded using parallel neurons controlled by an376

FSM. It implements the equations 3 and 4 with the following377

configuration parameters:378

1) nbits: Is the bit-width of the floating-point representa-379

tion.380

2) nvar: Is the number of inputs.381

3) M : Is the number of neurons.382

4) ccc: Is an M × nvar matrix with the centers for every383

neuron.384

5) δ: Is an M×1 array with the neurons’ spreads. 1/(2σ2)385

for this case, see Eq. 4. And386

6) w: Is an M × 1 array with the output layer weights.387

(a)

nbitsnbits
RBFNN Model Predictorx[1]...x[n     ]var

rdy_in rdy
ŷ

Neuron 1
NeuronM...ROM c(M   n     )varnbits nbits nbits nbitsnbits nbits nbits nbitsnbits nbits nbits nbitsnbits nbits nbits nbits

...nbitsnbits
nbitsnbitsRegister A

rray... nbits  n var. ...

nbits  n       M var.
c[1,n     ]var

c[M,n     ]var

...

... nbitsnbitsnbitsnbits ROM ...w1wM
φ1...φM x + nbits

FSM
rdy_multresetstart selreadystart_neurons

sel

(b)x1 ...xnvarc1 ...cnvar ROMδ
x exp

sel1sel2 φ
FSMstartrdy_mulrdy_addrdy_exp readystart_mulstart_addstart_expsel1,sel2

start ready
Fig. 7. RBFNN Model Predictor on FPGA. (a) Top level view of the
system. (b) Internal FSM of radial based kernel of “Neuron” block.

The RBFNN Model Predictor architecture shown in Fig.388

7(a) is composed of: 1) the input layer which contains a389

“Register Array” block where the inputs are stacked, and a390

“ROM” block with the coefficients c(M × nvar), 2), the391

hidden layer with M parallel neurons and 3) the output layer392

that is integrated by an “FSM”, a “ROM” (containing the393

weight coefficients) and some operators weighing the neurons’394

outputs φ. Every “Neuron” block implements a Gaussian395

kernel, as seen in Eq. 4, using an adder/subtractor, a multiplier,396

and an exponential operator, differently from the Linear Model397

that only uses the former two. The latter is implemented398

as a CORDIC (Coordinate Rotation in a Digital Compute) 399

algorithm [36]. The composition of this block is depicted in 400

Fig. 7(b) and is also implemented using an FSM that controls 401

the operations. 402

As seen in Fig. 7, the RBFNN model in (a) and the NN 403

blocks in (b) consists only of FSM; thus, its latency and 404

throughput are equal. As said before, the NN blocks are 405

implemented in parallel (one for every neuron of the model), 406

and its total of inner operators are kept the same no matter 407

the number of inputs; hence, the latency (L) depends on the 408

number of inputs and can be obtained by 409

L = nvar · tfsm + tcordic + (M + 1) · tfsm, (11)

where tfsm is the execution time of the multiplier, adder and 410

substractor in an FSM and tcordic is the time the CORDIC 411

algorithm takes to perform an exponential operation. The 412

throughput (T) is calculated using the latency as T = 1
L . 413

D. Integration with the acquisition board 414

(a)

(b)

RegisterFSM

ZYNQ7020 SoCPLpart
μBlaze32bit RISC

AXI4Litemaster slvslv
startvarx[1:n     ]ŷ

Model PredictorLinear/RBFNNstart varx[1:n     ] ŷ
i2cmaster sss... sss ...sss...sss ...MM sensors

Acquisition & Computation Unit

Fig. 8. Localizer for embedded myokinetic sensoring system. (a)
Describe the overview of the architecture previously considered in [7].
The AU contains the matrix of the ”S” magnetic sensors and a 16-bits
µController, while the CU contains the ARM processor in charge of
the prediction. (b) Depicts the proposed architecture of this article. The
Acquisition and Computation Units are included in the same SoC. Note
that the red lines denote the chip’s spatial boundaries.

In previous work [7], the localizer comprised two parts: 415

the acquisition unit (AU) and the Computation Unit (CU), 416

see Fig. 8(a). The AU contains a 16-bits micro-controller that 417

acquires data from an array of 32 three-axis magnetic field 418

sensors through an I2C interface. The CU consists of an iMX 419

RT1050 Processor that draws the data from the AU via UART 420

RS-485 and makes the prediction by implementing a set of 421

96 equations (32 sensors × three-axis) and solve it using a 422

Levenberg–Marquardt algorithm (LMA) [38]. 423
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This work proposes simplifying the localizer implementa-424

tion by integrating the CU and the AU on a single System on425

Chip (SoC). To this end, it was used a Zynq-7020 SoC that426

integrates a dual-core, 650 MHz, ARM Cortex-A9 processor427

(Programmable Software - PS) with a Xilinx 7-series FPGA428

(Programmable Logic - PL). Figure 8(b) depicts the proposed429

architecture (please note that the ARM-core is not used). It430

is implemented in the PL-part of the SoC using a custom431

µBlaze (32-bits RISC processor) as a master to manage the432

I2C interface and the model block accelerators (Linear or433

RBFNN) through AXI (AMBA eXtensible Interface), which434

is an On-Chip bus architecture.435

IV. RESULTS436

In the present section, constructing the linear and RBFNN437

models is stated together with their hardware implementation438

results, focusing on the analysis of hardware consumption439

and accuracy. In the results hereafter given, both models use440

as input all the measurements made by the magnets, where441

the Multisine signal in Fig. 2 is used for estimation of the442

model, while the ramp and sequence of steps in Fig. 3 are443

used for validation. Firstly, we analyze the results in terms444

of modeling accuracy and interpret its efficiency for hardware445

implementation in the following subsections.446

TABLE I
RESULTS IN TERMS O MSE [DB] AND R2 (LOWER, BETWEEN

PARENTHESIS) FOR THE MODELS TESTED. IT IS POSSIBLE TO SEE THAT

THE SIMPLE LINEAR MODEL ACHIEVES BETTER RESULTS WITH R2

CLOSE TO UNITY AND THAT THERE IS NO SIGNIFICANT IMPROVEMENT

OF THE RBFNN MODEL BY INCREASING THE MODEL COMPLEXITY. IT
CAN BE SEEN THAT FOR ALL MODELS, THE ERROR IS SIMILAR FOR

EVERY DATASET. FOR THE RBFNN, IT CAN BE SEEN THAT INCREASING

THE NUMBER OF NEURONS DOES NOT IMPROVE THE ERROR

DRAMATICALLY.

HHHHHModel
Signal Step Ramp

(20 s)
Ramp
(40 s)

Ramp
(60 s)

Ramp
(80 s)

Linear -29.33
(0.9854 )

-32.50
(0.9929 )

-29.76
(0.9870 )

-32.55
(0.9931 )

-33.28
(0.9948 )

RBFNN
(6 neurons)

-24.59
(0.9567 )

-28.35
(0.9816 )

-25.55
(0.9659 )

-27.28
(0.9770 )

-31.44
(0.9921 )

RBFNN
(7 neurons)

-24.95
(0.9601 )

-28.37
(0.9817 )

-25.77
(0.9677 )

-27.37
(0.9775 )

-30.87
(0.9910)

RBFNN
(8 neurons)

-24.68
(0.9576 )

-28.59
(0.9826 )

-25.47
(0.9653 )

-27.17
(0.9764 )

-30.94
(0.9911)

RBFNN
(9 neurons)

-24.74
(0.9581 )

-28.75
(0.9833 )

-25.52
(0.9657 )

-27.20
(0.9765 )

-31.12
(0.9915)

RBFNN
(10 neurons)

-25.38
(0.9639 )

-29.66
(0.9864 )

-26.00
(0.9693 )

-27.73
(0.9792 )

-31.09
(0.9914)

Using the procedures for determining the parameters of the447

linear and RBFNN models given in Section III, we obtained448

the results provided in Table I, which were evaluated offline449

for the validation metrics R2 and MSE. The results are similar450

for every dataset, indicating that the models perform almost451

equally in different situations, including cases where the452

magnet moves at different speeds. Furthermore, the results for453

the RBFNN using different complexities are similar, meaning454

that more neurons, in this case, do not improve the prediction455

capability of the model. As the number of neurons for the456

RBFNN model dramatically increases the hardware architec-457

ture consumption, as will be shown later on, it was decided458

to use eight neurons for this work, utilizing the maximum 459

resources available of the FPGA. Moreover, the linear model 460

achieves better results for all types of muscle deflection signals 461

in prediction accuracy. In the following, we discuss the impact 462

of the hardware implementation of both models on hardware. 463

A. Hardware utilization and precision analysis 464

Since it is essential to preserve both good precision error 465

and minimum hardware consumption, a trade-off analysis 466

between the hardware occupation, computational performance, 467

and precision must be addressed to allow the designer to guide 468

the physical implementation. As previously mentioned, the 469

architectures can be customized, and the design criteria depend 470

on the model, the number of operators, and the bit-width rep- 471

resentation. The automatically generated model architectures 472

were implemented using the Vivado 2018.2 Design Suite. 473

Figure 9 presents the MSE metric for both models. It is 474

calculated using MATLAB (64-bits floating-point represen- 475

tation) as reference or golden result (yi) and all different 476

bit-widths implementations in hardware (See Eq. 5). This 477

is done using all testing data, i.e., ramps and sequence of 478

steps. The ad-hoc architectures’ precision is not improved for 479

more than 32 and 38 bit-width representations for the linear 480

and RBFNN models, respectively. The previous illustrates the 481

importance of manipulating the architectures’ floating-point 482

precision in design, as the bit-width directly impacts hardware 483

resources and energy consumption. In the figure, the MSE 484

being that small means that the hardware implementation 485

gives a very accurate response for such lower bit-width than 486

the golden reference, which justifies using the tools/methods 487

discussed in the contribution section. Moreover, optimizing 488

hardware consumption for such applications is also essential 489

to enumerate at which bit-width representation the error stalls. 490

The hardware implementation naturally has its limits and 491

does not improve anymore concerning the golden model in 492

software, which is also evident in Table II. 493

Fig. 9. MSE [dB] vs bit-width for the RBFNN and Linear models using
the five tests datasets (’+’ Ramp (20 s), ’o’ ramp (40 s), ’*’ ramp (60 s), ’x’
ramp (80 s), and ’v’ step datasets). It is possible to see that the RBFNN
model does not improve significantly for architectures with more than 38
bits, while the same can be affirmed for the linear model with 32 bits.

Table II reports the estimates of the hardware consumption 494

(in terms of DSP blocks, look-up tables (LUTs), and registers) 495
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TABLE II
HARDWARE UTILIZATION AND ERROR ESTIMATION VARYING THE FLOATING-POINT BIT-WIDTH OF THE LINEAR MODEL USING 8 AND 128

OPERATORS. IT CAN BE SEEN THAT INCREASING THE BIT-WIDTH OPERATIONS INCREASES THE HARDWARE CONSUMPTION AND DECREASES THE

PREDICTION ERROR SIGNIFICANTLY UP TO 32-BITS.

Linear Model RBFNN Model
LUTs (53200) DSP (220) SR (106400) MSE LUTs DSP SR MSE

bits 8 ops 128 ops 8 ops 128 ops 8 ops 128 ops [dB] (53200) (220) (106400) [dB]
20 2126 31640 8 128 1829 27997 -58.61 50327 9 13443 -16.11

(3.9%) (59.5%) (3.6%) (58.2%) (1.7%) (26.3%) (94.6%) (4.1%) (12.6%)
27 3340 51420 8 128 2419 37227 -100.61 67065 9 16936 -58.50

(6.3%) (96.6%) (3.6%) (58.2%) (2.3%) (34.9%) (126.1%) (4.1%) (15.9%)
32 3532 82021 16 160 2869 44278 -115.68 78877 18 19442 -86.75

(6.6%) (154.2%) (7.3%) (72.7%) (2.7%) (41.6%) (148.3%) (8.2%) (18.3%)
38 4971 158651 32 160 3415 52743 -115.52 93481 36 22435 -122.11

(9.3%) (298.2%) (14.5%) (72.7%) (3.2%) (49.6%) (175.7%) (16.4%) (21.1%)
42 5569 206715 32 160 3775 58383 -115.52 103385 36 24451 -125.20

(10.5%) (388.6%) (14.5%) (72.7%) (3.5%) (54.9%) (194.3%) (16.4%) (23.0%)
45 6382 232451 32 160 4045 62613 -115.53 111770 36 25952 -125.22

(12.0%) (436.9%) (14.5%) (72.7%) (3.8%) (58.8%) (210.1%) (16.4%) (24.4%)

after logical synthesis and the numerical error of the linear496

and RBFNN models predictors implemented with different bit-497

width floating-point representations. Given that the different498

datasets’ MSE values are very similar within the same model,499

the Tables depict the mean of the datasets’ MSE for every500

bit-width. On the other hand, Table III shows the hardware501

consumption of the extra modules of the integrated architecture502

depicted in Fig. 8b.503

As shown in Table II, the logical synthesis results indicate504

that the linear model of 128 operators with a bit-width greater505

than 27 and the RBFNN model with a bit-width greater than506

20 do not fit in the selected SoC device. In particular, for507

both models, the LUTs consumption exceeds the maximum508

available. However, it is essential to remark that the synthesis509

and implementation tool can optimize the circuit, with, e.g.,510

area multiplication optimization, enabling it to be effectively511

mapped on the selected device. Moreover, solutions with less512

than 20 bits did not achieve acceptable results due to error513

mitigation; hence, they were not included in the table. On the514

other hand, architectures with bit-width greater than 32 and515

38 bits do not significantly improve the MSE for the linear516

and the RBFNN model, respectively. Both models achieve517

satisfactory results with 27 bit-width representation in all518

validation datasets. The linear model showed an absolute error519

smaller than 520µm and than 720µm for the RBFNN for 95%520

of the estimations and mean absolute error deviation 220µm521

and 340µm, respectively.522

TABLE III
HARDWARE UTILIZATION OF THE EXTRA BLOCKS FOR THE

INTEGRATION SCHEME.

Block LUT DSP SR BRAM
(53200) (220) (106400) (144)

MicroBlaze 700 0 334 8
(1.31%) () (0.3%) (5.5%)

I2C Master 179 0 250 0
(0.3%) () (0.2%) ()

Fifo Mailbox 239 0 199 0
(0.4%) () (0.2%) ()

AXI-4 Lite 471 0 576 0
(0.9%) () (0.5%) ()

B. Execution Time Results 523

Table IV compares the execution time of the architectures. 524

For the linear model, three different values of the Nop con- 525

figuration parameter were studied since they directly affected 526

the execution time. Differently, as explained before, for the 527

RBFNN model, only the number of inputs nvar affects the 528

execution time (see Eq. 11). 529

The sensory data comes from an IIC serial line at a fixed rate 530

of 12.5 ms (80 Hz), the NXP magnetic field sensor’s maximum 531

feed rate, which is the system’s real-time requirement. An 532

average person flex and extend his fingers no faster than 2 533

Hz [39] and highly skilled individuals, i.e., piano players, 534

do it at 10.5 Hz at most [40]. Consequently, based on the 535

Nyquist–Shannon sampling theorem, the sensors’ feed rate can 536

faithfully identify human finger gestures. 537

TABLE IV
EXECUTION TIME OF MODEL PREDICTORS

Model Type Nop Neurons Execution Time Throughput
Latency [µs] [MFLOPS]

Linear 2 - 11.52 0.09
Linear 8 - 4.80 0.21
Linear 128 - 0.54 2.63
RBFNN - 8 12.07 0.08

In Table IV it can be seen that the 128Nop linear model 538

dramatically outperforms the RBFNN model. We can consider 539

this a fair comparison since both models’ hardware consump- 540

tion is similar according to Table II. 541

Nevertheless, another outstanding result is the 2Nop linear 542

model due to its similar timing performance with the RBFNN 543

model using much fewer hardware resources. It is a much more 544

suitable approach for this system, given that it makes more 545

sense to compute the data faster than the source. In contrast, 546

the 8Nop linear model would not correspond to the previous 547

reasoning. However, this solution could also be noteworthy if 548

the sensory board could feed the data using more IIC lines. 549

If, for instance, it could be feed from eight data lines, the full 550

potential of this model could be exploited. The good results 551

achieved with faster and least complex models are essential for 552
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the myokinetic interfaces since they will use more magnets.553

C. Implementation Feasibility and Power Consumption554

Estimation555

Figure 10 represents the system layout of the 27 bit-556

width models mapped on a Zynq 7020 SoC device to test557

the feasibility of implementing the system on real hardware.558

Both models effectively operate at a clock frequency of 100559

MHz. Finally, the models’ power consumption estimation is560

presented in Table V. The energy consumption was not directly561

measured from the architecture, as it was estimated using562

the development tool’s design-flow. The power consumption563

related to the linear model is expected to be 56% lower than564

that of the RBFNN model. The extra blocks are included,565

and as they are independent of the models, they do not566

change significantly. The last column shows the total power567

consumption of the integrated scheme.568

TABLE V
POWER CONSUMPTION ESTIMATION OF THE PREDICTION MODELS.

µBlaze Axi4 Mbox i2c Sensors Model Total
[mW] [mW] [mW] [mW] [mW] [mW] [mW]

Linear 18 5 1 2 200 39 265
RBFNN 332 558

(a) (b)

Model Linear/RBFNN

μBlaze

Axi4-Lite i2c Master

FIFO Mailbox

Fig. 10. Device overview of the FPGA utilization for both models of
the complete system depicted in Fig. III. Every module is highlighted
with a different color. (a) RBFNN Model (M = 8). (b) Linear Model
(Nop = 8).

V. DISCUSSIONS569

This work presented an embedded solution for solving570

the magnetic tracking problem for a myokinetic interface.571

Two machine learning techniques were used as system model572

predictors to solve the magnets’ localization using an anatom-573

ically relevant forearm mockup. Both models perform with574

acceptable accuracy. However, considering only the MSE, the575

linear model outperforms the RBFNN model with a mean576

absolute error deviation of 220µm over 340µm, (see Sec. III-577

B). Both values are comparable to the previous works [5],578

[7]; however, the functionality of the MIKY interface does579

not depend much on its capacity to fetch the exact position580

of the magnet. Repeatability of the measurement is more581

relevant for this case, i.e., the precision is more important582

than the accuracy [5]. Table VI reports the variances of the583

estimated magnet position for nine steps singled sampled from 584

the step dataset. This table was calculated by isolating the 585

magnetic field data corresponding to the moments the magnet 586

is static. In particular, nine sub-datasets were derived: the first 587

in correspondence of the first step (10% the muscle deflection), 588

then the second (20% the muscle deflection), and so on. Table 589

VI states that the RBFNN model has less dispersed error 590

values when considering a static position, given that eight out 591

of the nine values are smaller than those of the linear model. 592

In other words, RBFNN has a better precision because most 593

of its static variances are lower, despite its more significant 594

hardware resource usage. 595

TABLE VI
VARIANCE OF PREDICTOR MODELS IN µm2 .

HHHHHModel
y[mm] 1 2 3 4 5 6 7 8 9

RBFNN 6.48 7.33 6.72 7.28 8.87 9.94 4.98 8.42 9.22
Linear 8.16 8.39 6.97 6.56 11.22 15.10 7.31 8.78 10.05

However, to prove that this direct comparison is valid, it 596

was proved that all nine sub-datasets came from different 597

distributions. Thus, the one-sample Kolmogorov-Smirnov test 598

[41] was performed to test if all the group samples (one for 599

every position of y and model) were normally distributed or 600

not. The hypothesis to test was H0, stating that the data set has 601

a normal distribution and H1 otherwise. Since each sub-dataset 602

came out as a non-normal distribution, the next procedure 603

was to use a non-parametric test to see if each sub-dataset 604

originates from an identical distribution or not. The rank-sum 605

test [42] was used where the null hypothesis H0 states that 606

two independent data sets come from distributions with equal 607

medians and H1 otherwise. The test confirmed that all the 608

samples were drawn from different distributions, confirming 609

that the RFBNN model is more precise than the linear model. 610

The computational performance of these architectures 611

proved to be superior to previous embedded solutions [7], 612

achieving execution times of 4.8 and 12.07 µs for the 8Nop 613

linear and RBFNN models, respectively, compared to 250 µs 614

reported in [7]. This will allow localizing five or more magnets 615

in the same chip taking advantage of the full sampling rate of 616

the magnetic field sensor array. Likewise, this implementa- 617

tion also eases the system’s real-time requirements since its 618

execution time is deterministic for both models. It is also 619

remarkable that the previous work [7], being a pure software 620

solution and implementing an optimization algorithm, did not 621

have deterministic execution time, even when using a real-time 622

processing core. 623

That the system proposed in [7] used only one PCB with 624

32 three-axis sensors. In contrast, this approach used four 625

PCBs (128 sensors); therefore, if the same scheme were to 626

be used in the previous solution, its execution time would 627

increase because of the superposition effect of solving the 628

inverse problem of magnetostatics [5]. Besides, considering 629

the communication overhead that took most of the system’s 630

execution time in [5], the full exploitation of the sensors’ 631

sample rate would be even more unattainable. The solution 632

proposed in this work targets that issue by minimizing the 633
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communication overhead and reducing the embedded system634

to a single chip.635

Finally, another critical aspect of an embedded portable636

solution is its energy consumption. Indeed, results showed that637

the proposed system is more power-efficient in contrast to the638

previous work [7]. In that case, the AU’s power consumption639

was 550 mW, and that of the CU was 430 mW, resulting in640

total consumption of 980 mW. Our solution effectively reduced641

power to less than 57% of that.642

VI. CONCLUSION643

This work presented the application of two machine learning644

models and their ad-hoc implementation on hardware for645

magnet localization in the context of myokinetic prosthetic646

control. First, we validated the hypothesis that machine learn-647

ing can be used for developing data-driven magnet localization648

approaches, as both models presented results with R2 close649

to unity. The linear model presented overall better results in650

terms of accuracy and hardware consumption compared to the651

RBFNN model regarding model prediction accuracy. However,652

the RBFNN model showed a smaller static error, critical for653

such biosignal interpretation models.654

The linear model demands significantly fewer hardware655

resources when we optimize the architecture by taking ad-656

vantage of the model’s inherently parallel structure. Hardware657

optimization was further applied for both models by tuning658

the bit-width numerical representation for the floating-point659

operations on hardware, highlighting the importance of ad-hoc660

floating-point precision hardware architectures. Even though661

the simple linear model presented better results than the662

RBFNN in terms of accuracy, we suggest testing in future663

research as more models, including state-of-the-art solutions664

[22]–[25]. Similarly, more results are needed to test the adher-665

ence of machine learning models for more complex behavior666

observed when using several magnets for tracking different667

muscles at the same time.668

Indeed, the next natural step to test is the localization669

of many magnets concomitantly. We have proved that it is670

possible to use machine learning to localize a single magnet.671

To do so, we need to perform experiments with more than672

one magnet and evaluate the data-driven models’ accuracy in673

this more challenging scenario. Moreover, other possibilities,674

such as feature extraction techniques, should be tested to675

reduce the number of inputs to the model, potentially reducing676

the hardware resources needed. The latter could also include677

machine learning adaptation mechanisms [43] for improving678

the models’ accuracy. Any method for dimensionality reduc-679

tion or feature extraction would reduce the number of input680

variables, reducing the hardware implementation’s complexity.681

That could potentially reduce FPGA resource utilization and682

improve computational performance. The data exploration683

results show that a smaller amount of magnetic information684

can be used to create the models, which should also be tested685

in the multi-magnet scenario. Additionally, it will prove useful686

to test as many models as it is feasible as we are not sure687

which will be best for a more challenging task [44], and also688

evaluate stacking ensembles of many different models towards689

more precise data-driven localization [45], [46].690
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