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ABSTRACT

The increase in 3D applications made necessary the research and development of standards for
point cloud compression. Since point clouds represent a significant amount of data, compression
standards are essential to efficiently transmit and store such data [1], [2]. For this reason, theMov-
ing Pictures Expert Group (MPEG) started the standardization activities of point cloud compres-
sion algorithms resulting in two standards: the Geometry-based Point Cloud Compression (G-
PCC) [3] and the Video-based Point Cloud Compression (V-PCC) [4]. G-PCC was designed to
address static point clouds, those consisting of objects and scenes, and dynamically acquired point
clouds, typically obtained by LiDAR technology. In contrast, V-PCC was addressed to dynamic
point clouds, those consisting of several temporal frames similar to a video sequence.

In the compression of dynamic point clouds, algorithms to estimate and compensate motion
play an essential role. They allow temporal redundancies among successive frames to be further
explored, hence, significantly reducing the number of bits required to store and transmit the dy-
namic scenes. Although motion estimation algorithms have been studied, those algorithms for
points clouds are still very complex and demand plenty of computational power, making them
unsuitable for practical time-constrained applications. Therefore, an efficient motion estimation
solution for point clouds is still an open research problem.

Based on that, the work presented in this dissertation focuses on exploring the use of a simple
inter-frameprediction alongside the region-adaptive hierarchical (orHaar) transform (RAHT) [5].
Our goal is to improve RAHT’s attribute compression performance of dynamic point clouds us-
ing a low-complexity inter-frame prediction algorithm. We devise simple schemes combining the
latest version of RAHTwith an intra-frame predictive step added [6] with a low-complexity inter-
frame prediction to improve the compression performance of dynamic point clouds usingRAHT.
As previously mentioned, inter-frame prediction algorithms based on motion estimation are still
very complex for point clouds. For this reason, we use an inter-frame prediction based on the spa-
tial proximity of neighboring voxels between successive frames. The nearest-neighbor inter-frame
prediction simplymatches each voxel in the current point cloud frame to its nearest voxel in the im-
mediately previous frame. Since it is a straightforward algorithm, it can be efficiently implemented
for time-constrained applications.

Finally, wedevised twoadaptive approaches that combine thenearest-neighborprediction along-
side the intra-frame predictiveRAHT.The first designed approach is referred to as fragment-based
multiple decision, and the second is referred to as level-based multiple decision. Both schemes are
capable of outperforming the use of only the intra-frame prediction alongside RAHT in the com-
pression of dynamic point clouds. The fragment-based algorithm is capable of slightly outperform-
ing the use of only the intra-frame prediction with average Bjontegaard delta (BD) [7] PSNR-Y
gains of 0.44 dB and bitrate savings of 10.57%. The level-based scheme achieves more substantial
gains over the use of only the intra-frame prediction with average BD PSNR-Y gains of 0.97 dB



and bitrate savings of 21.73%.

RESUMO

O aumento no número de aplicações 3D fez necessária a pesquisa e o desenvolvimento de padrões
para compressão de nuvem de pontos. Visto que nuvens de pontos representam uma quantidade
significativa de dados, padrões de compressão são essenciais para transmissão e armazenamento efi-
cientes desses formatos [1], [2]. Por esse motivo, oMoving Pictures Expert Group (MPEG) iniciou
atividades de padronização de technologias para compressão de nuvens de pontos resultando em
dois padrões: oGeometry-based Point Cloud Compression (G-PCC) [3] e oVideo-based Point Cloud
Compression (V-PCC) [4]. G-PCC foi desenvolvido para compressão de nuvens de pontos estáticas,
aquelas que representam objetos e cenas, e nuvens de pontos adquiridas dinamicamente, obtidas
por technologia LiDAR. Por outro lado, V-PCC foi direcionado para compressão de nuvens de
pontos dinâmicas, aquelas representadas por diversos quadros temporais semelhantes a sequências
de vídeo.

Na compressão de nuvens de pontos dinâmicas, os algoritmos para estimar e compensar movi-
mentodesempenhamumpapel essencial. Eles permitemque redundâncias temporais entrequadros
sucessivos sejam exploradas, reduzindo significativamente o número de bits necessários para ar-
mazenar e transmitir as cenas dinâmicas. Embora técnicas de estimação de movimento já tenham
sido estudadas, esses algoritmos para nuvens de pontos ainda sãomuito complexos e exigemmuito
poder computacional, tornando-os inadequados para aplicações práticas com restrições de tempo.
Portanto, uma solução de estimação de movimento eficiente para nuvens de pontos ainda é um
problema de pesquisa em aberto.

Com base nisso, o trabalho apresentado nesta dissertação se concentra em explorar o uso de
uma predição inter-quadros simples ao lado da region-adaptive hierarchical (or Haar) transform
(RAHT) [5]. Nossoobjetivo émelhorar odesempenhode compressãode atributos daRAHTpara
nuvens de pontos dinâmicas usando um algoritmo de predição inter-quadros de baixa complexi-
dade. Desenvolvemos esquemas simples combinando a última versão da transformadaRAHTcom
uma etapa preditiva intra-quadros adicionada [6] a uma predição inter-quadros de baixa complexi-
dade paramelhorar o desempenhoda compressão denuvens de pontos dinâmicas usando aRAHT.
Comomencionado anteriormente, os algoritmos de predição inter-quadros baseados em estimação
de movimento ainda são muito complexos para nuvens de pontos. Por esse motivo, usamos uma
predição inter-quadros com base na proximidade espacial de voxels vizinhos entre quadros suces-
sivos. A predição inter-quadros do vizinhomais próximo combina cada voxel no quadro de nuvem
de pontos atual com seu voxel mais próximo no quadro imediatamente anterior. Por ser um al-
goritmo simples, ele pode ser implementado de forma eficiente para aplicações com restrições de
tempo.

Finalmente, desenvolvemosduas abordagens adaptativas que combinamapredição inter-quadros
do vizinho mais próximo ao lado da RAHT com predição intra-quadros. A primeira abordagem



desenvolvida é definida como fragment-based multiple decision e a segunda como level-based multi-
ple decision. Ambos os esquemas são capazes de superar o uso apenas da predição intra-quadros ao
lado da RAHTpara compressão de nuvens de pontos dinâmicas. O algoritmo fragment-based tem
um desempenho ligeiramente melhor se comparado ao uso apenas da predição intra-quadros com
ganhos Bjontegaard delta (BD) [7] PSNR-Y médios de 0,44 dB e economia média de taxa de bits
de 10,57%. O esquema level-based foi capaz de atingir ganhos mais substanciais sobre o uso apenas
da predição intra-quadros com ganhos BD PSNR-Y médios de 0,97 dB e economia média de taxa
de bits de 21,73%.
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1 INTRODUCTION

Due to the increase in 3D applications, such as augmented/virtual reality, 3D telepresence sys-
tems, and autonomous navigation, point clouddata have enjoyed a growth in popularity in the past
few years [1], [2]. In a nutshell, point clouds consist of a commonway to represent 3D images, and
they aim to represent the external surface of objects or people. Point clouds can be defined as a
set of points in the 3D space, each point having proper geometry and proper attributes. Millions
of points may represent such 3D data. Therefore, a significant challenge is to store and efficiently
transmit high-quality point clouds. For this reason, efficient compression algorithms for both ge-
ometry and attributes are essential for practical 3D applications involving point clouds.

Based on this emerging problem, the Moving Pictures Expert Group (MPEG) issued a call for
proposals in 2017 to standardize technologies for compression of point clouds [18]. Based on its
responses, initial proposals were adopted for the standardization activities [1]. They evolved over
the yearswith several contributions from technology companies, academic researchers, and research
institutions. Due to those efforts, MPEGwas able to standardize two technologies for point cloud
compression: the Geometry-based Point Cloud Compression (G-PCC) [3] and the Video-based
Point CloudCompression (V-PCC) [4]. The idea behindG-PCC is towork directly in the 3Ddata,
using octrees and transform coding techniques to compress geometry and attributes, respectively.
G-PCCwas developed for static point clouds, those consisting of only one frame, and dynamically
acquired point clouds, those typically obtained by LiDAR technology. On the other hand, V-PCC
converts the 3D point clouds into 2D projections and leverages existent video codecs to compress
both geometry and attributes. V-PCC was developed for dynamic point clouds, those consisting
of several temporal frames, similar to a video sequence.

In the scope of dynamic point clouds, motion estimation and compensation algorithms play a
crucial role in compressing such 3D sequences. With them, temporal redundancies amongdifferent
frames can be further explored, significantly reducing the number of bits needed to represent the
dynamic scenes. Several efforts have been made to develop a suitable algorithm for motion estima-
tion of point clouds [16], [17], [19]–[22]. However, for now, those algorithms for points clouds
are still very complex and demand plenty of computational power, making them unsuitable for
practical applications.

With that in mind, this work focuses on exploring the use of inter-frame prediction along-
side the region-adaptive hierarchical (or Haar) transform (RAHT) [5], to improve RAHT’s at-
tribute compression performance of dynamic point clouds. The main idea is to develop a simple
scheme combining MPEG’s intra-frame predictive version of RAHT [6] with a low complexity
inter-frame prediction, to improve the compression performance of dynamic point clouds using
RAHT. As mentioned before, inter-frame prediction algorithms based on motion estimation are
still very complex. Therefore, we opted here to use a simple inter-frame prediction based on the
spatial proximity of neighboring voxels between frames. This nearest-neighbor inter-frame predic-
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tion matches each voxel in the current point cloud frame to its nearest voxel in the immediately
previous frame. This algorithm can be efficiently implemented for time-constrained applications
usingk-nearest neighbor search, as in theC++ implementationof the Fast Library forApproximate
Nearest Neighbors [23].

For testing purposes, two datasets with popular point cloud sequences were used [10], [13].
Performance evaluations compare rate-distortion curves, where the distortion is measured in peak
signal-to-noise ratio for the luminance component (PSNR-Y), and the rate is measured in bits per
occupied voxel (bpov) in the compressed bitstream.

This manuscript is organized as follows: Chapter 2 presents a review of the basic concepts nec-
essary to understand this work. Chapter 3 describes the research developed here. Chapter 4 shows
the datasets used and the results obtained. Finally, Chapter 5 presents a conclusion and suggestions
for future work.

1.1 PUBLICATIONS

Publications related to this dissertation:

“On Predictive RAHT for Dynamic Point Cloud Coding”. André L. Souto and Ricardo L. de
Queiroz. In: IEEE International Conference on Image Processing (ICIP), October 2020 [24];

“Transformada RAHT com Predição Inter-Quadros para Compressão de Nuvem de Pontos”.
André L. Souto and Ricardo L. deQueiroz. In: Simpósio Brasileiro de Telecomunicações e Processa-
mento de Sinais (SBrT), November 2020 [25];

“A 3D Motion Vector Database for Dynamic Point Clouds”. André L. Souto, Ricardo L. de
Queiroz and Camilo Dorea. In: ArXiv e-prints, August 2020, arXiv: 2008.08438 [eess.IV] [22];

“Multi-Resolution Intra-Predictive Coding of 3D Point Cloud Attributes”. Eduardo Pavez,
André L. Souto, Ricardo L. de Queiroz and Antonio Ortega. In: IEEE International Conference
on Image Processing (ICIP), September 2021 [27].

Submitted work currently under review:

“Motion-Compensated Predictive RAHT for Dynamic Point Clouds”. André L. Souto, Ri-
cardo L. de Queiroz and Camilo Dorea. Submitted to: IEEE Transactions on Image Processing
2020 [26].

The submitted paper entitled “Motion-Compensated Predictive RAHT for Dynamic Point
Clouds” [26] contains part of the work presented here and an extension of it. We went beyond
the use of the nearest-neighbor inter-frame prediction and studied the use of a motion estimation
algorithm alongside RAHT. We were able to significantly improve the compression performance
of dynamic point clouds using RAHT for all tested point cloud sequences under different motion
conditions. However, since the motion estimation algorithm used demanded plenty of computa-
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tional power, we decided not to include its results in this manuscript. Here, we aim to present only
straightforward algorithms that can be efficiently implemented for time-constrained applications
and are based on the very simple nearest-neighbor inter-frame prediction.
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2 LITERATURE REVIEW

2.1 POINT CLOUDS

A point cloud consists of a set of individual points in the space. Each point contains a 3D
location (x, y, and z coordinates) and a list of attributes. The 3D locations are referred to as the
point cloud’s geometry, and the attributes may depend on its purposes. For instance, they can be
colors, usually used to represent objects and people. Alternatively, the point cloud attributemay be
reflectance, traditionally employed in autonomous driving applications. Other common attributes
are surface normal of each point, and motion vectors [1], [2]. For anN -point cloud, the geometry
information can be represented as:

G = {(xi, yi, zi)}, i = 1, ..., N, (2.1)

and the attribute information can be referred to as a list ofD attributes for each point

A = {(ai,1, ..., ai,D)}, i = 1, ..., N. (2.2)

According to MPEG, point clouds can be classified into three different categories: static (or
category 1), dynamic (or category 2), anddynamically acquired (or category 3) [18]. The static point
clouds are represented by a single frame, as illustrated in Fig. 2.1, and typically represent objects and
scenes. The dynamic ones are representedby several temporal frames, similar to a video sequence, as
illustrated in Fig. 2.2, and typically represent people in motion. Finally, the dynamically acquired
ones, depicted in Fig. 2.3, are commonly obtained by LiDAR technology and are typically used
in autonomous driving applications. The static and dynamic point clouds typically have colors as
attributes, while the dynamically acquired ones commonly have reflectance.

Point clouds can be captured using an array of stereo cameras such as the ones used by 8i Labs,
illustrated in Fig. 2.4. In this case, the disparity between cameras provides information about the
depth of the scene and is used to obtain the geometry information. Microsoft Kinect cameras may
also be used in the acquisition process. They use infrared light to generate a depthmap of the scene
and are also capable of acquiring RGB information, therefore, outputting RGB-D data [28]. For
applications such as autonomousnavigation that needoutdoor areas to bemapped, LiDARsensors
are typically used. They can provide a 3D representation of outdoor spaces by targeting an object
with a laser and measuring the time for the reflected light to return to the receiver.

For efficient processing, point clouds are voxelized, each point is constrained to a small cube of
dimensions 1 × 1 × 1 with integer coordinates, referred to as voxels. The space where the point
cloud resides is divided in a regular grid representing the voxels position and points are assigned to
voxels depending on their geometry, that is, if a point falls within the region delimited by a voxel it is
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: Examples of static point clouds [8], [9].

Figure 2.2: Examples of dynamic point clouds [10].

(a) (b) (c)

Figure 2.3: Examples of dynamically acquired point clouds [11].
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Figure 2.4: Array of cameras for point cloud acquisition at 8i [12].

assigned to that voxel. A voxel in 3D is analogous to a pixel in 2D. In contrast with images, inwhich
all pixels are occupied, in point clouds, not all voxels contain points. A voxel containing one point
is said to be occupied, while the empty ones are defined as empty voxels. Note that the datasets
used in this dissertation, from Microsoft Research Labs [13] and from 8i Labs [10], consisted of
point clouds that were previously voxelized.

Point clouds are commonly stored in the “Polygon File Format”, also known as the “Stanford
Triangle Format”. This file format has extension PLY and may be available either in binary format
or in ASCII format. An example of a PLY file in ASCII format is illustrated in Fig. 2.5 for a frame
of the point cloud sequence “Ricardo” [13]. The first ten lines correspond to the header of the file,
indicating the number of points and the point cloud attributes. After the header, at each row, the
information of each point’s location and its attributes are shown. In the case of geometry, the first
three values at each line represent x, y, and z coordinates. While in the case of colors, the last three
values represent one channel each (from 0 to 255) of the RGB color system.

The point clouds used in this work have bit-depths 9 and 10. The bit-depth represents the
number of bits needed to represent each point of the geometry. In terms of size, the point clouds
used here have from 200,000 to around 1,000,000 points. Each one of these points has geometry
and color information. Therefore, similar to images and videos, point clouds may be represented
by a large amount of data. For this reason, to store and transmit such 3D data efficiently, proper

6



Figure 2.5: Example of the first 25 lines of a PLY file from point cloud “Ricardo” [13].

compression algorithms of both geometry and attributes are needed.

2.2 POINT CLOUD COMPRESSION

As explained before, point clouds in their raw format require a considerable amount of data to
bemanipulated. Therefore, compression is essential for practical applications. In order to compress
point clouds, the geometry and the attributes are typically processed in a separate manner.

In 2013,MPEG first considered the use of point clouds for immersive telepresence applications
and conducted subsequent discussions on how to compress this type of data properly [29], [30].
With increased use cases of point clouds made available and presented [31], and seeing the current
need to develop efficient point cloud compression technologies, MPEG issued a Call for Proposals
in 2017. In the Call for Proposals,MPEGproposed exploring the three different point clouds using
different compression strategies. The Surface Point Cloud Compression (S-PCC) addressed cate-
gory 1 containing static point clouds. Category 2, with dynamic point clouds, was assigned to the
Video-based Point Cloud Compression (V-PCC). Finally, category 3, comprising of dynamically
acquired point clouds, was assigned to the LIDAR Point Cloud Compression (L-PCC). Later on,
S-PCC and L-PCC were merged into the G-PCC after noticing similarities between the compres-
sion approaches used [1], [2].

Afterwards, MPEG issued two reference softwares: the Test Model Category 2 (TMC2) for V-
PCC and the Test Model Categories 1 and 3 (TMC13) for G-PCC. TMC2 and TMC13 have been
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subjected to efforts from several research institutionsworldwide, turning intopowerful point cloud
compression technologies representing the current state-of-the-art. In Sections 2.2.1 and 2.2.2, an
overview of the techniques that have been developed for geometry and attribute compression are
presented. In Sections 2.2.3 and 2.2.4, brief descriptions of the standards V-PCC and G-PCC are
presented.

2.2.1 Geometry Compression

Popular examples of geometry encoder are the compression algorithms based on octrees [32],
[33]. Such tree structures are often used in 3D graphics, and recently, they have also become pop-
ular in geometry compression algorithms as the field of point cloud compression emerged. Octree-
based algorithms leverage the octree structure to compress the spatial location of points, and they
have been shown to be very efficient [34]. The octree can be defined as a tree data structure inwhich
each node has eight children (with the leaves as exceptions). Octrees consist of the 3D extension of
quadtrees, in which they are used to partition the 3D space by recursively subdividing it into eight
nodes. Typically, the octree starts as the root node corresponding to the entire point cloud space.
The node is then subdivided in the directions x, y, and z. At each direction, each node is parti-
tioned into two subnodes. This partitioning step is repeated until reaching the voxel level, where
each node has dimensions 1×1×1. The octree is illustrated in Fig. 2.6. Fig. 2.6-(a) shows the entire
space as a single node, further subdivided in one direction (x, y, or z), let’s say x direction, gener-
ating two subnodes. That is, in Fig. 2.6-(b), the entire space is subdivided into two nodes. Figs.
2.6-(c) and 2.6-(d) show the further subdivision in y direction and in z direction, respectively. In
Fig. 2.6-(d), one can see the eight nodes after the subdivisions in each direction x, y, and z. Finally,
in Fig. 2.6-(e), the tree is partitioned in the x direction again. As mentioned before, this procedure
is repeated until voxel level.

In the scope of point cloud compression, octrees can be efficiently used to encode the geometry
information, as mentioned before. The compression can be done by traversing the octree from the
roots until the leaves and signaling the occupied nodes. For each node in the tree, a bit 1 is sent to
signal that this node bounds at least one occupied voxel. On the other hand, if the node does not
have any occupied voxels, a bit 0 is sent, and this node is referred to as an empty node. With this
information, the point cloud geometry can be properly encoded. Therefore, the subdivisions re-
ferred to as empty nodes can be ignored for the next level, whichmeans that the nodes signaledwith
a bit 0will not be further divided because they do not carry any points of the cloud. This procedure
is illustrated in Fig. 2.7. In this example, in level 1 of the octree, only two nodes are referred to as
occupied nodes. Therefore, they are the only ones that are further divided into eight subnodes. In
level 2, seven nodes are signaled as occupied. Hence, the sequence 010010001000101100110010 is
enough to encode the positions associated with the sample point cloud shown in Fig. 2.7.

This octree-based representationof thepoint cloudgeometry allows the coder tohave aprogres-
sive functionality. Since the octree can be decoded by level, the application can stop the decoding at
any chosen level [35], [36]. Octree-based compressionmethods can also be combinedwith entropy
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Figure 2.6: Illustration of the octree subdivision per direction [14].

Figure 2.7: Example of geometry encoding of a sample point cloud using octree [14].
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encoders to further exploit intra-frame and inter-frame redundancies by using contexts [36], [37].

2.2.2 Attribute Compression

The attributes of a point cloud are typically encoded separately from its geometry. For this
reason, their ordering has to be preserved between encoder and decoder. That is necessary to as-
sociate the attributes to their corresponding 3D location correctly. Commonly, the geometry is
encoded first and then the attributes. This is done because some transform coding techniques use
the geometry information to compress the attributes better. So far, attribute compression of point
clouds has been widely explored, some methods such as the discrete cosine transform (DCT) [38]
and the graph transform (GT) [39] were used in the initial efforts. Currently, some of the popular
methods are: the region-adaptive hierarchical transform (RAHT) [5], the predicting and lifting
transforms [40], [41], and the recently introduced region-adaptive graph Fourier transform (RA-
GFT) [15].

One of the most successful early attempts in attribute compression was the GT [39]. It was
later replaced by RAHT, a transform with better performance and also smaller complexity. Re-
cently, RAHT was outperformed by RA-GFT, which has a better performance and may have
similar complexity. Therefore, RA-GFT currently represents the state-of-the-art of non-predictive
transform coding. The current version of G-PCC incorporates an intra-frame predictive version of
RAHT [6], which is still superior to RA-GFT. This predictive RAHT represents the state-of-the-
art in non-video-based attribute compression. However, it leverages an intra-frame prediction step
to achieve such outstanding performance. Also, G-PCC includes two other transform techniques:
the predicting and the lifting transforms. The work presented in this manuscript was based on
RAHT and its intra-frame predictive version, hence, the two approaches will be explained in detail
in the Sections 2.3 and 2.3.1. This Section will briefly explain the other techniques here.

2.2.2.1 Predicting/Lifting Transform

The predicting transform is a predictive scheme that depends on a Level of Detail (LoD) repre-
sentation. TheLoD, illustrated in Fig. 2.8, distributes the input points into sets of refinement levels
(R) using a criterion based on the Euclidean distance. The attributes of each point are encoded us-
ing a prediction determined by the LoD order, in which the attribute values of a refinement level
R` are always predicted using the attribute values of its k-nearest neighbors in the previous LoD
(LoD`−1).

The predicting transform [40] is implemented using the operators split and merge. While the
lifting transform is built on top of the predicting transform, introducing an update operator and
an adaptive quantization scheme. The forward and inverse predicting/lifting scheme is depicted
in Fig. 2.9. Let L` be the set of attributes associated with LoD`, and H` the set of attributes as-
sociated with R`. The split operator takes L` as an input and returns the low-resolution samples
L`−1 and the high-resolution samplesH`−1. Themerge operator takesL` andH` and returnsL`+1.
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Figure 2.8: LoDs of point cloud “Redandblack” [9], [10].

The prediction operator is used to estimateH`, by using an interpolation based on the inverse dis-
tance weighted average of the k-nearest neighbors of R` in LoD`−1, and then, the residuesD` are
computed.

In the case of the lifting transform [41], an update operator and an adaptive quantization strat-
egy are introduced. In the prediction scheme, each point is associated with an influence weight
based on its impact on the encoding process. Since the points in lower LoDs are used more fre-
quently, they are associated with higher weights. The introduced update operator determines U`
based on the residualD`, then, L` is updated based on U`, generating L′`.

Figure 2.9: Forward and inverse predicting/lifting scheme [9].

Both predicting and lifting transforms are currently part of G-PCC for attribute compression
of point clouds of categories 1 and 3. According to [3], predicting is commonly used for point
clouds of category 1, while lifting is typically employed for category 3.
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2.2.2.2 Region-Adaptive Graph Fourier Transform

The RA-GFT is a recently developed technique introduced in the IEEE International Confer-
ence on Image Processing 2020. It is amulti-resolution transform thatwas inspired byRAHT.The
idea behind RA-GFT is to traverse the octree backwards, from the leaves to the root, combining
spatially localized blocks at each level. Each block corresponds to a cube bounding a different num-
ber of occupied voxels. The blocks are combined based on a block transform that produces one
low-pass coefficient and several high-pass coefficients. The low-pass coefficient is promoted to the
upper level of the octree, while the high-pass coefficients are quantized and entropy encoded. This
procedure is repeated for all blocks at each level of the octree. When at the tree root, the low-pass
coefficient generated is also quantized and entropy encoded alongside all the high-pass coefficients.

Within each block, a weighted undirected graph G = (V , E ,W ,Q) is first constructed by
adding edges if the distance between a pair of point coordinates is below a fixed threshold, while
edge weights are the reciprocal of the distance, as in [39]. In the graph G, V denotes the vertex set,
E represents the edge set,W is the edge weight matrix, andQ is a diagonal matrix with diagonal
entries containing the number of descendants of each node. Also, L = D −W is the combi-
natorial graph Laplacian matrix, where D = diag(di), with di =

∑
j wij , is the degree matrix.

Since each block in the tree may contain a different number of internal points, the block transform
should incorporate the importance of each node based on the number of points it bounds. For this
reason, a proposed graph Fourier transform (GFT) is used, which is given by the eigenvectors of
theQ-normalized graph Laplacian,

LQ = Q−
1
2LQ−1

2 = ΦΛΦᵀ, (2.3)

where Φ is the matrix of eigenvectors, Λ is the matrix of eigenvalues, and Φᵀ is defined to be the
block transform of RA-GFT with inverseΦ.

In Fig. 2.10, RA-GFT applied to a hypothetical point cloud with nine occupied voxels and
three levels ` is illustrated. The circles represent the low-pass coefficients, and the squares represent
the RA-GFT coefficients (low-pass coefficient of root node and all high-pass coefficients) to be
quantized and entropy encoded. Consider the subtree of the attributes a1, a2, and a3 at the highest
resolution level (` = L = 2). The attributes are first transformed by Φᵀ

1,1, generating a low-pass
â11,0 coefficient and two high-pass â11,1 and â11,2 coefficients. Then, â11,0 is promoted to level ` = 1

and â11,1 and â11,2 are quantized and entropy encoded. The procedure is analogous for the other two
subtrees at level ` = 2. At level ` = 1, the promoted low-pass coefficients â11,0, â12,0 and â13,0 are then
transformed byΦᵀ

0,1, generating the tree root low-pass and high-pass coefficients that are quantized
and entropy encoded.

RA-GFT was implemented with different block sizes bL (2, 4, 8, and 16) at the level of highest
resolution (leaves of the octree), but with the same block sizes b` = 2 for all other resolutions. For
point clouds with colors as attributes, RA-GFT outperforms RAHT by up to 0.5 dB for bL =

2. Coding performance improves as bL increases, achieving up to 2.5 dB over RAHT for bL =
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16. Nevertheless, RA-GFT does not perform very well for point clouds of category 3, due to the
sparsity of the points of such LiDAR point clouds.

Figure 2.10: RA-GFT applied to a sample point cloud. Circles represent low-pass coefficients that are further
transformed, while squares contain RA-GFT coefficients [15].

An alternative for the dedicated techniques for both geometry and attribute compression in the
3D space is the use of state-of-the-art video compression algorithms, such as the High-Efficiency
Video Coding (HEVC). In this case, the idea is to convert the 3D point clouds into 2D projec-
tions and compress both the geometry and the attributes at the same time [4]. Note that this is a
lossy compression algorithmwhere both geometry and color information are degraded. The advan-
tage of leveraging existent video codecs is the current availability of dedicated hardware for video
compression [42]. This technique is successfully implemented in the V-PCC standard and will be
explained in the next Section.

2.2.3 Video-based Point Cloud Compression

TheV-PCC is a standard technology for point cloud compression that has been a research topic
for some years. V-PCCwas the subject of several efforts from researchers in industry and academia,
and now, it is a very powerful technology for dynamic point cloud compression, representing the
state-of-the-art of such point cloud category [4]. The main elements of V-PCC codec architecture
are patch generation, patch packing, image padding, and video compression. Note that all the parts
mentioned above will be explained here based on the reference software TMC2. An overview of
V-PCC architecture can be seen in Fig. 2.11.

To generate the patches, initially, the normal of each point in the cloud is computed. Then,
given the six orthographic projection directions (±x,±y,±z), each point is associated with a pro-
jection direction based on its normal. Since multiple points may be projected onto the same pixel,
TMC2 uses maps to store the overlapped points.

The generated patches are then packed into 2D images. This packing procedure is performed in
an iterative way that guarantees an overlap-free insertion into the 2D image. TMC2 tries to insert
similar patches of different frames at similar locations to generate a temporally consistent packing
in order to improve compression efficiency.
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Figure 2.11: Overview of TMC2 architecture [9].

The patch generation and patch packing steps produce an atlas of three 2D images: a 3D patch
occupancy map, a 3D patch geometry image, and a 3D patch attribute image. The 3D patch occu-
pancy map signals whether a pixel corresponds to a valid 3D projected point. The occupancy map
is necessary since some pixels of the 2D images may stay empty after packing. The 3D patch ge-
ometry image contains the depth information of each point regarding its projection plane. Finally,
the 3D patch attribute image includes the attribute information for each projected point. Fig. 2.12
illustrates packed patches of occupancy map, geometry, and attributes.

Figure 2.12: Example of patch packing [9].
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Togenerate piecewise-smooth images for higher video compression efficiency, the geometry and
attribute images are padded. That is, the empty spaces between patches are filled in a process called
dilation. Each geometry and attribute images of a specific frame are padded independently of the
other frames. Then, the generated atlas information is compressed using a video codec. In TMC2,
the video codec used is the HEVC. However, this is not mandatory, and any appropriate image or
video codec could be used.

2.2.4 Geometry-based Point Cloud Compression

As explained before, V-PCC is a projection-based scheme that leverages video codecs to com-
press point clouds. Hence,V-PCCdoesnot encode thepoint cloud contentdirectly in the 3Dspace.
In the opposite direction of V-PCC, G-PCC works directly on the 3D space using data structures
and transforms [3]. Another difference fromV-PCC is that G-PCCwas designed for static and dy-
namically acquired point clouds as a consequence of it being originated from themerging of L-PCC
and S-PCC. Therefore, G-PCC is limited to intra-frame and does not use any temporal prediction
tools.

Similar to what was done for V-PCC, the main codec principles of G-PCC are explained in
this Section based on the reference software TMC13. G-PCC encodes the geometry and attributes
separately, nevertheless, since attribute coding depends on the geometry, the positions of the points
are always encoded and decoded first.

That said, TMC13 starts by processing the geometry information. Since G-PCC is agnostic to
the input data coordinate representation, the first step is a coordinate transformation, followed by
a voxelization pre-processing step. Then, the second step performed by TMC13 is the geometry
analysis using an octree or trisoup scheme. The octree scheme was explained in Section 2.2.1. Nev-
ertheless, TMC13 entropy encodes the octets considering the correlation with neighboring octets.
In the case of points isolated, there is no neighborhood to exploit correlation, hence, a Direct Cod-
ing Mode (DCM) can be used [43]. In DCM, the coordinates of the isolated points are directly
encoded without any compression. Alternatively, the geometry can be encoded using the trisoup
scheme. In this approach, the geometry is represented as a pruned octree, that is, an octree from
the root until an arbitrary level where the nodes are larger than a voxel. The object surface is then
approximated by a series of triangles with no connectivity information among them. Finally, the
resulting data structure is arithmetically encoded.

After encoding the geometry, TMC13 encodes the attribute information. When encoding a
point cloudwith colors as attributes, the first step is to convert them fromRGB color space to YUV
previously to compression. In the case of reflectance, the color space conversion step is not per-
formed. Then, one of the three transforming tools explained in Section 2.2.2 can be used: RAHT,
predicting transform, or lifting transform. Typically, RAHT and lifting are used for colors, and
predicting is used for reflectance. Finally, following the transform coding step, the generated coef-
ficients are quantized and arithmetically encoded.
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Figure 2.13: Overview of TMC13 architecture [9].

2.3 REGION-ADAPTIVE HIERARCHICAL TRANSFORM

The region-adaptive hierarchical (or Haar) transform (RAHT) [5] is a hierarchical orthogonal
sub-band transform, that resembles an adaptive variation of aHaar wavelet transform. RAHTwas
developed to compress point cloud attributes, such as colors of point clouds representing objects
and people, and reflectance of point clouds used in autonomous driving applications. RAHTwas
developed to be an efficient transform in both compression and time performances, being able to
efficiently compress attributes of point clouds in real-time [5].

Thebasic idea behindRAHT is to use the color attributes associatedwith a node in a lower level
of the octree to predict the colors of the nodes in the next level [5]. The transform follows the octree
scan backwards, from voxels to the entire point cloud space. At each step, voxels are recombined
along each dimension (x, y, z) into larger ones until reaching the root. For a given level `, letC`

x,y,z

be the average voxel color at position (x, y, z) in the space. C`
x,y,z is obtainedby transformingC`+1

2x,y,z

and C`+1
2x+1,y,z along dimension x. Only occupied voxels are subject to transformation, that is, if

one of the voxels in the pairC`+1
2x,y,z andC`+1

2x+1,y,z is unocuppied, let’s sayC`+1
2x+1,y,z, the other one is

promoted to the next level: C`
x,y,z = C`+1

2x,y,z. This grouping process is repeated for each direction,
for each level `, until the root of the octree. Each transformation of nodes generates high-pass and
low-pass coefficients. The high-pass coefficients are quantized and entropy encoded while the low-
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pass ones are passed to the next level of the octree. RAHT’s core transformation [5] is defined
as

[
C`
x,y,z

H`
x,y,z

]
= T(w1,w2)

[
C`+1

2x,y,z

C`+1
2x+1,y,z

]
, (2.4)

where

T(w1,w2) =
1√

w1 + w2

[ √
w1

√
w2

−√w2
√
w1

]
, (2.5)

and where w1 = w`+1
2x,y,z and w2 = w`+1

2x+1,y,z are the number of leaf voxels, or weights, represented
by the nodes to be combined [5]. According to (2.5), the transform matrix T(w1,w2) changes at all
times, adapting to the weights of each node [5].

In the last stage of the transform, when at the tree root, the two remaining voxels represented
by C1

0,0,0 and C1
0,0,1 are grouped and transformed into two final coefficients: C0

0,0,0 andH0
0,0,0. The

low-pass coefficient of the tree root C0
0,0,0 (or DC) is also entropy encoded alongside all the high-

pass coefficients generated during the transform steps. In Fig. 2.14, RAHT applied to a 2× 2× 2

node is illustrated.

Figure 2.14: RAHT process applied to a 2× 2× 2 node with four occupied sub-nodes [9].

In [44], the compression performance of RAHT was further improved. The RAHT coeffi-
cients were reordered in ascending order according to their associated depth (depth of the octree
where they were generated), and encoded using adaptive run-length Golomb-Rice (RLGR) [45].
The depth-sorted case yields longer runs of zeros, and may lead to faster adaptation and better
compression with the RLGR algorithm.

Due to its time efficiency and superior compression performance relative to GT and DCT, as
shown in Fig. 2.15, RAHTwas initially adopted as part of the G-PCC test model. However, in the
latest G-PCC versions, the original RAHT has been modified. Despite the fact that the core of the
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transform remains the same, the current version consists of a fixed-point implementation [46]with
an intra-frame prediction step added. The intra-frame prediction step is explained in Section 2.3.1
and it was introduced due to significant performance improvement over the original RAHT [6].
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Figure 2.15: Performance of RAHT compared to GT and DCT for point cloud “Ricardo”.

2.3.1 Intra-Frame Predictive RAHT

The latest G-PCC [3] includes a version of RAHT with an intra-frame prediction step added
[6]. This predictive version, commonly referred as “Upside down RAHT” and referred here as
“I-RAHT”, computes the high-pass and low-pass coefficients in a different manner. In opposition
to the original RAHT, which computes the coefficients in a bottom-up approach, i.e., from the
leaves of the octree until the root, the current version of RAHT adopted a top-down approach,
i.e., the computation goes from the root of the octree to the leaves. This change in the order of
coefficient computation does not affect the compression performance of the transform, however,
the top-down approach allowed the addition of an intra-frame prediction step to explore spatial
correlation among neighboring nodes.

The idea behind I-RAHT, is to predict the attributes of the next level of the octree and trans-
form them and the original attributes, in order to encode only the residues of coefficients. Con-
sider a node at level ` of the octree where its attributes are represented by C`

x,y,z. Let C`+1
2x,y,z and

C`+1
2x+1,y,z be the attributes of the two occupied sub-nodes (out of eight) at level ` + 1 and Ĉ`+1

2x,y,z

and Ĉ`+1
2x+1,y,z be the estimations of C`+1

2x,y,z and C`+1
2x+1,y,z, respectively. The intra-frame prediction

performs an upsampling of the nodeC`
x,y,z with its occupied neighboring nodes to estimate Ĉ`+1

2x,y,z

and Ĉ`+1
2x+1,y,z. The upsampling, illustrated in Fig. 2.16, simply consists of a weighted average of
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C`
x,y,z with its neighbors, where the weights are determined by the inverse of the distances of the

node to the upsampled sub-node. Then, both estimated (i.e. Ĉ`+1
2x,y,z, Ĉ`+1

2x+1,y,z) and original (i.e.
C`+1

2x,y,z, C`+1
2x+1,y,z) sub-node attributes are subject to RAHT transform in (2.4), thus, generating

original and estimated coefficients. The differences in between the original and estimated coeffi-
cients are taken in order to obtain residual coefficients which are quantized and entropy encoded.
This procedure is repeated for all nodes at each level ` of the octree. Note that, in this intra-frame
predictive approach, the differences of the coefficients of the original and of the predicted attributes
are quantized and entropy encoded instead of the coefficients of the attribute differences. An illus-
tration of I-RAHT process for one node is depicted in Fig. 2.17.

Figure 2.16: Upsampling of the next level of the octree used in I-RAHT [6].

Figure 2.17: Illustration of I-RAHT process for one node.

Fig. 2.18 shows the performance of I-RAHT relative to RAHT for point cloud “Ricardo”. It
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is possible to see that, due to its intra-frame prediction, I-RAHT can achieve significant gains over
RAHT. According to [6], the average reported gains of I-RAHT over RAHT is around 30% for
point clouds with colors, and around 15% for point clouds with reflectance. Due to its massive
gains over the original RAHT, I-RAHT was adopted in the lastest versions of G-PCC, being the
current version of RAHT present in the point cloud compression standard.
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Figure 2.18: Performance of I-RAHT compared to RAHT for point cloud “Ricardo”.

2.4 INTER-FRAME PREDICTION OF POINT CLOUDS

In a video sequence, several successive frames may be very similar, with only a few objects mov-
ing from one frame to the next. For this reason, when compressing videos, algorithms that ex-
ploit temporal redundancies have been successfully used to improve compression performance. In
that sense, inter-frame prediction techniques play an important role in compression of dynamic
sequences. Commonly used in video codecs, motion estimation algorithms consist of a type of
inter-frame prediction that aims to predict the motion of objects in between frames and represent
suchmotion as motion vectors to be encoded. In the decoder side, themotion vectors obtained are
used to compensate an adjacent frame to obtain a prediction of a target frame. By the use of such
motion estimation techniques, a significant amount of storage space may be saved.

In the scope of point clouds, motion estimation algorithms have the same goal. They aim to
exploit temporal redundancies over different frameswith significant objectmotion through the use
of motion vectors. At the decoder side, the information can be predicted by motion compensat-
ing the adjacent frame with decoded motion vectors. However, unlike video sequences, successive
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point cloud frames may have different geometries, that is, a different number of voxels in differ-
ent 3D locations. For this reason, algorithms for accurate motion estimation and compensation of
point clouds are not trivial.

Such motion estimation algorithms for point clouds have been object of different studies [16],
[17], [19]–[22]. In [16], a graph-based approach is proposed where features are used to find corre-
spondences in temporally successive point clouds. Spectral graph wavelets computed on the color
and on the geometry signals of the point cloud are used as the feature descriptors. Then, these
wavelet coefficients are used to compute point-to-point correspondences between graphs of differ-
ent frames, and only a subset of best matching correspondences are used to define a sparse set of
motion vectors. The obtained sparse set of motion vectors describe the temporal correlation in the
point cloud sequence. Finally, a dense motion field, that completely maps two successive frames,
is interpolated based on the sparse set of motion vectors obtained. This approach is illustrated in
Fig. 2.19.

Figure 2.19: Illustration of the sparse set of correspondences in between point clouds using the graph-based
motion estimation technique [16].

In [19], a block-based motion estimation approach is used. The algorithm divides the point
clouds into blocks of dimensions 16 × 16 × 16, and computes the motion vectors using a rigid
transformT . Note that, all the blocks have the samedimensions, however, theymayhave a different
number of occupied voxels inside. The rigid transform is a 4 × 4 matrix, that consists of a 3 × 3

rotationmatrixR and a 3×1 translationmatrix t. However,T of a certain block is only computed
if the iterative closest points algorithm for such block converges to below a certain threshold.

In [17], [20]–[22], a block-based approach is also used. But in this case, the target frame is
partitioned into several blocks of sizeM ×M ×M , whereM = 8 orM = 16. For each block, a
best block match is searched for, in a search space of dimensions S × S × S, in the adjacent frame.
The best match is computed based on a metric of similarity in between the compared blocks. The
metric take into consideration the colors of the points within each block, and their relative location
inside each block. The motion vector is obtained by the location differences of the target block
and its adjacent match. This block-based approach is capable of achieving good predicted frames,

21



however, the comparisonofblocks represents a very time consuming step. The effortsmade in [20],
[21] focused on reducing the time needed for the computation of the best block match, however,
the accuracy of the predictions was also reduced. The block-based approach is illustrated in Fig.
2.20.

Figure 2.20: Illustration of the block-based motion estimation technique [17].

Even though the efforts aforementioned have been made in order to find a suitable algorithm
for motion estimation of point clouds, the algorithms are still very complex methods and demand
plenty of computational power. Due to the differences in the geometry of successive point clouds,
it is far from trivial to develop suitable motion estimation algorithms for point clouds. Therefore,
the current techniques for motion estimation developed for point cloud compression are not suit-
able for time-constrained applications. For this reason, the compression of point clouds leveraging
motion estimation approaches is still an open issue for further research exploration.

With that in mind, an alternative for algorithms based on motion estimation is the use of a
simple inter-frame prediction based on the nearest-neighbors. Consider a point cloud frame to be
compressed F(t), its immediately previous frame F(t − 1) and its inter-frame prediction F̂(t) =

Ω(F(t)) (whereΩ(·) represents the inter-framepredictionused). Thebasic idea behind thenearest-
neighbor inter-frame prediction is to match each voxel inF(t) with the nearest voxel inF(t− 1),
e.g., with the voxel inF(t−1) that presents the lowest euclideandistance. Hence, F̂(t)will have the
samegeometry asF(t), butwith the attributes fromF(t−1). This inter-framepredictive algorithm
can be efficiently implemented for time-constrained applications using k-nearest neighbor search
from the Fast Library for Approximate Nearest Neighbors [23].

Since the nearest-neighbor method is a very simple inter-frame prediction, it does not yield
good prediction results in all cases. When there is low motion in between F(t) and F(t − 1),
the nearest-neighbor inter-frame prediction performs well, generating accurate predicted frames.
However, when there is fast motion in between F(t) and F(t − 1), the nearest-neighbor inter-
frame prediction performs badly, generating poor frame predictions. This can be seen in Fig. 2.21,
for point clouds “Ricardo” with low motion and “David” with intense motion.
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(a) Frame #16.

(b) Frame #206.

Figure 2.21: Results of the nearest-neighbor inter-frame prediction for point cloud sequences (a) “Ricardo”
and (b) “David”. The original frame on the left and the predicted frame on the right.
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3 METHODOLOGY

In this Chapter, we explore the idea of using the nearest-neighbor inter-frame prediction along-
side RAHT to leverage residual encoding to improve RAHT’s compression performance of dy-
namic point clouds. However, as explained in Section 2.3.1, the current version of RAHT, with
the intra-frame predictive step added (I-RAHT), is capable of achieving significant gains of up
to 30% over the original RAHT. With that in mind, we decided here to use I-RAHT instead of
the original RAHT. Therefore, we explore possible combinations of the inter-frame and the intra-
frame predictions alongside RAHT to improve its attribute compression performance of dynamic
point clouds. In order to assess the performance of our predictive schemes, we compare them to
I-RAHT since it represents the best predictive RAHT that currently exists.

Initially, in Section 3.1, we perform a theoretical experiment to foresee the potential gains of
using residual encoding with different prediction qualities. Then, two alternative approaches are
explored in this work: encode the attribute residues and encode the coefficient residues. In Sec-
tion 3.2, we explore the use of attribute residues in different compression schemes combining the
nearest-neighbor inter-frame predictionwith I-RAHT.Attribute residues consist of taking the dif-
ferences, in the attribute domain, of two point cloud frames to obtain color residues. Then, the
residues are subjected to the transform, and the generated coefficients are entropy encoded. In Sec-
tion 3.3, we explore the use of coefficient residues as an alternative. Considering the intra-frame
predictive step in I-RAHT that exploits attribute correlation, we expect to obtain slightly different
rate-distortion results. Coefficient residues consist of subjecting the attributes of two point cloud
frames to the transform and subtracting their generated coefficients to obtain residues of coeffi-
cients. That is, the residues are computed in the coefficient domain and then entropy encoded.

Throughout this Chapter, we use the symbols F(t) to denote the attributes of a point cloud
frame to be compressed, F(t − 1) to denote the immediately previous frame, and F̂(t) to repre-
sent the prediction ofF(t). The nearest-neighbor inter-frame prediction is denoted as Ω(·), while
RAHT and I-RAHT are represented by Γ(·) and Υ(·), respectively.

3.1 THEORETICAL EXPERIMENT

To assess the benefits of introducing a predictive step to RAHT, we start with a theoretical
experiment. This experiment serves as a starting point to determine how accurate a predictive ap-
proach has to be to promote improvements in dynamic point cloud compression using RAHT.
Hence, it provides information on what kind of compression gains should be expected from the
use of the nearest-neighbor inter-frame prediction.

In our experiment, we used the frame #1065 of the point cloud sequence “Longdress” [10] as
the frame to be compressed F(t). By adding Gaussian noise with variance σ to F(t), we obtain
the prediction F̂(t). Then, the differences between the frames are taken G(t) = F(t) − F̂(t)
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generating residues that are transformed with RAHT Γ(G(t)), and then entropy encoded. This
experiment was repeated for values of σ equal to 2, 4, 6, and 8. The idea is to simulate a frame F̂(t)

predicted with different distortion levels and determine how accurate the prediction has to be to
generate compression improvements. Higher values of σ generate predictions with a higher level
of distortions, while lower values generate more accurate predictions. The rate-distortion curves
obtained are presented in Fig. 3.1.

From Fig. 3.1, one can easily see that significant gains may be achieved by encoding G(t) in-
stead of F(t), if the predicted frame F̂(t) achieves a certain degree of accuracy. In this example, it
seems to be advantageous to use inter- or intra-frame predictive approaches alongside RAHT for
σ < 4. This value of σ translates to an estimated frame F̂(t) with mean squared error relative to
F(t) of 26. Equivalently, the quality of F̂(t) relative to F(t) has to be around 34-35 dB PSNR to
promote compression gains. Otherwise, with poor prediction, encoding the residues G(t) seems
to be disadvantageous if compared to encodingF(t). We are aware that encoding noise is different
than encoding real predicted frames. However, as mentioned before, this experiment served only
as a starting point to determine what kind of results we would obtain from the use of the nearest-
neighbor inter-frame prediction and set a distortion threshold used in the following sections.
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Figure 3.1: Theoretical experiment illustrating potential rate-distortion gains of the use of prediction along-
sideRAHTat various noise variancesσ. The experiment shownwas performed for the frame #1065 of point
cloud sequence “Longdress”.

3.2 ATTRIBUTE RESIDUES

In this Section we explore leveraging the use of attribute residues to improve compression per-
formance. As briefly mentioned before, the idea behind encoding attribute residues is to trans-
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form the differences of the attributes instead of the attributes themselves. Consider G(t) such that
G(t) = F(t) − F̂(t) and F̂(t) = Ω(F(t − 1)). Leveraging attribute residues consist of encoding
C(t) = Υ(G(t)) instead of C(t) = Υ(F(t)). Differently from the theoretical experiment, here we
use I-RAHT to transform the attributes and the nearest-neighbor inter-frame prediction to gen-
erate F̂(t). The described procedure is depicted in Fig. 3.2. As seen previously in the theoretical
experiment, it may be advantageous to encode residues with proper attribute prediction. On the
other hand, it may be better to encode the attributes themselves with poor attribute prediction.

Figure 3.2: Illustration of the idea behind leveraging attribute residues

The compression performance of the combination of the inter- and the intra-frame predictions
against I-RAHT is illustrated in Fig. 3.3. Table 3.1 shows the Bjontegaard delta (BD) [7] PSNR-Y
gains andbitrate savings of the attribute residues approach relative to I-RAHT.Wepicked two con-
secutive frames fromthepoint cloud sequences “Sarah” [13] and“Loot” [10]. Theparticular pair of
frames from the sequence “Sarah” has very littlemotion, while the pair of frames from the sequence
“Loot” contains more intense motion. Hence, we expect the simple inter-frame prediction based
on the nearest-neighbors to be fairly accurate for “Sarah” and poor for “Loot”. Therefore, based on
that and the theoretical experiment, the combination of the inter- and the intra-frame predictions
should outperform I-RAHT for “Sarah” and be outperformed for “Loot”. That is precisely what
the results illustrate in Fig. 3.3. The correspondence among point clouds using simple proximity
will lead to good approximations and residual encoding improvement if there is not much local
motion between frames. If there is, it may be better to use only the intra-frame prediction.

A solution based on motion estimation algorithms might be the first choice to improve inter-
frame prediction reliability on regions with more intense object motion. However, as explained
before, a motion estimation solution for point cloud frames suitable for practical applications re-
mains elusive. Current motion estimation approaches for point clouds are too computationally
expensive for time-constrained applications. With that in mind, we opted here to use adaptive
strategies based on the nearest-neighbor inter-frame prediction algorithm.
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Figure 3.3: Results of the attribute residues approach (Attr. Res.) compared to I-RAHT for point clouds
“Sarah” and “Loot”.

Table 3.1: Average BD PSNR-Y gains and average bitrate savings of the attribute residues approach relative
to I-RAHT.

Point Cloud Sequence BD PSNR-Y [dB] BD bitrate [%]
Sarah 4.22 -65.49
Loot -1.26 47.91
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3.2.1 Proposal 1 - Fragment-based Single Decision

To overcome the weakness of the last approach in front of regions of the point cloud frames
with intensemotion,wedevised two adaptivemethods. They are referred to as the “fragment-based
single decision” and the “fragment-basedmultiple decision”. These adaptive methods segment the
point clouds into several fragments to only carry inter-frame prediction in parts where the nearest-
neighbor inter-frame prediction is sufficiently accurate.

The fragment-based single decision starts by segmenting themorton-code-orderedpoint clouds
F(t) and F̂(t) in fixed fragments of 1500 voxels {Fk(t)} and {F̂k(t)}. Each fragment Fk(t) and
F̂k(t) can be seen as a small point cloud containing 1500 voxels. Then, the distortion (in mean
squared error) of each fragment F̂k(t) in {F̂k(t)} is checked. If the distortion is below a threshold
λ, then F̂k(t) is deemed reliable, and only a control bit 1 is entropy encoded. Otherwise, F̂k(t) is
deemedunreliable and the attributes are transformedC(t) = Υ(Fk(t)). ThenC(t) and a control bit
0 are entropy encoded. Hence, in this adaptive method, the inter-frame prediction is only used in
regionswhich can bewell predicted byF(t−1). Otherwise, we use only the intra-frame prediction.
This procedure is illustrated as a flowchart in Fig. 3.4.

Figure 3.4: Flowchart describing the fragment-based single decision scheme.

In our implementation, λ was empirically defined as the distortion (in mean squared error) of
F(t− 1) locally decoded. The use of the distortion measure of F(t− 1) was verified to represent
a good approximation of the quality expected from each fragment to be considered reliable. The
control bits inform the decoder how each fragment should be decoded.

Rate-distortion curves are presented inFig. 3.5 for the samepoint clouds as in Fig. 3.3. Table 3.2
shows the average BDPSNR-Y and bitrate savings of the proposed scheme relative to I-RAHT. For
“Loot”, instead of the large negative gains over the use of only the intra-frame prediction, the pro-
posed predictive approach now slightly outperforms it. However, compared to the results in Sec-
tion 3.2, the performance improvement of the combination of the inter- and the intra-frame pre-
dictions for “Sarah” has significantly decreased. In summary, the adaptive method’s performance is
very similar to the one of I-RAHT in the worst-case scenario. While in the best-case scenario, the
gains are smaller than in the non-adaptive case.
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Figure 3.5: Results of the fragment-based single decision (Proposal 1) compared to I-RAHTfor point clouds
“Sarah” and “Loot”.

Table 3.2: Average BDPSNR-Y gains and average bitrate savings of the fragment-based single decision (Pro-
posal 1) relative to I-RAHT.

Point Cloud Sequence BD PSNR-Y [dB] BD bitrate [%]
Sarah 0.77 -16.40
Loot 0.23 -7.64
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3.2.2 Proposal 2 - Fragment-Based Multiple Decision

To guarantee significant gains when the inter-frame prediction is reliable and ensure a similar
performance when unreliable, we devised a second adaptive approach. The fragment-based multi-
ple decision starts by checking the overall distortionof F̂(t), if it is below a thresholdρ the proposed
scheme performs as follows: the point clouds F(t) and F̂(t) are segmented in fixed fragments
of 1500 voxels {Fk(t)} and {F̂k(t)}. Then, the attribute differences are computed {Gk(t)} =

{Fk(t)} − {F̂k(t)}. The distortion of each fragment F̂k(t) in {F̂k(t)} is checked. If the distor-
tion is below a threshold λ, F̂k(t) is deemed reliable and only a control bit 1 is entropy encoded.
Otherwise, F̂k(t) is deemed unreliable and the attribute residues are transformed C(t) = Υ(Gk(t)).
Then C(t) and a control bit 0 are entropy encoded.

Otherwise, if the distortion of F̂(t) is equal or above ρ the proposed scheme performs as fol-
lows: F(t) and F̂(t) are segmented in fixed fragments of 1500 voxels {Fk(t)} and {F̂k(t)}. Then,
the distortion of each fragment F̂k(t) in {F̂k(t)} is checked. If the distortion is below λ, F̂k(t) is
deemed reliable and only a control bit 1 is entropy encoded. Otherwise, F̂k(t) is deemed unreliable
and the attributes themselves are transformed C(t) = Υ(Fk(t)). Then C(t) and a control bit 0 are
entropy encoded. This method merges both Sections 3.2 and 3.2.1, and is depicted in Fig. 3.6. In
our implementation, ρwas defined as 26 based on the theoretical experiment, andλwas empirically
defined as the distortion (in mean squared error) ofF(t− 1) locally decoded.

Figure 3.6: Flowchart describing the fragment-based multiple decision scheme.

The results obtained are presented in Fig. 3.7 and in Table 3.3 for point clouds “Sarah” and
“Loot”. For “Loot”, the performance of the devised approach remains the same as in Section 3.2.1.
For “Sarah”, significant gains similar to Section 3.2 are obtained. Therefore, in the best scenario, the
gains of this adaptive method are as high as in the non-adaptive case. While in the worst scenario,
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Figure 3.7: Results of the fragment-based multiple decision (Proposal 2) compared to I-RAHT for point
clouds “Sarah” and “Loot”.

Table 3.3: Average BD PSNR-Y gains and average bitrate savings of the fragment-based multiple decision
(Proposal 2) relative to I-RAHT.

Point Cloud Sequence BD PSNR-Y [dB] BD bitrate [%]
Sarah 3.87 -69.29
Loot 0.23 -7.64
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its performance is very similar to the one of I-RAHT.

3.3 COEFFICIENT RESIDUES

In Sections 3.2 to 3.2.2, we explored leveraging attribute residues to improveRAHT’s compres-
sion performance of dynamic point clouds. We achieved significant gains over the use of only the
intra-frame prediction for frames with low motion. At the same time, ensuring a competitive per-
formance for frames with intense motion. An alternative to that is leveraging coefficient residues
instead, which is explored in the remainder of this Chapter. Due to the intra-frame prediction that
exploits attribute correlation among neighboring nodes, we expect the results in the next Sections
to be somewhat different from those presented in Sections 3.2 to 3.2.2.

The idea behind encoding coefficient residues is to encode the differences of the coefficients
instead of the coefficients themselves. That is, subject both the current and predicted frames to I-
RAHTgenerating the coefficients C(t) = Υ(F(t)) and the predicted coefficients Ĉ(t) = Υ(F̂(t)),
respectively. Then, compute the differences U(t) = C(t) − Ĉ(t). Finally, entropy encode U(t)

instead of C(t). This procedure is depicted in Fig. 3.8.

Figure 3.8: Illustration of the idea behind leveraging coefficient residues.

The compression performance against I-RAHT is illustrated in Fig. 3.9 and in Table 3.4. We
used the same frames of the point cloud sequences “Sarah” and “Loot” as in Section 3.2. The
results obtained are similar to the ones obtained in Fig. 3.3: for “Sarah”, they are slightlyworse than
the attribute residues approach but slightly better for “Loot”. Therefore, we can derive the same
conclusions as before: the use of the simple inter-frame prediction can provide significant gains
over the use of only the intra-frame prediction when there is not muchmotion between frames. In
the case of intense motion between frames, it may be better to use only the intra-frame prediction.
Hence, to improve the performance of our method, we explored adaptive schemes to use the inter-
frame prediction only in regions of the point cloud where it is reliable.
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Figure 3.9: Results of the coefficient residues approach (Coeff. Res.) compared to I-RAHT for point clouds
“Sarah” and “Loot”.

Table 3.4: Average BDPSNR-Y gains and average bitrate savings of the coefficient residues approach relative
to I-RAHT.

Point Cloud Sequence BD PSNR-Y [dB] BD bitrate [%]
Sarah 3.68 -62.81
Loot -1.03 36.77
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3.3.1 Proposal 3 - Block-Based Multiple Decision

Similarly to Section 3.2.1, to improve the performance of the method described in Section 3.3,
we devise an adaptive scheme. Instead of partitioning into fragments as in Sections 3.2.1 and 3.2.2,
we decided to break the point clouds into blocks of fixed dimensions, and to use the inter-frame
prediction only when accurate enough.

Initially, the overall distortionof F̂(t) is checked, if it is belowa thresholdρ the schemeperforms
as follows: the point cloudsF(t) and F̂(t) are partitioned into blocks of dimensions 16× 16× 16,
{Fk(t)} and {F̂k(t)}. Then, the distortion of each block F̂k(t) in {F̂k(t)} is checked. If the distor-
tion is below a threshold λ, F̂k(t) is deemed reliable, and only a control bit 1 is entropy encoded.
Otherwise, F̂k(t) is deemedunreliable, andbothFk(t) and F̂k(t) are transformedC(t) = Υ(Fk(t))
and Ĉ(t) = Υ(F̂k(t)). Then, U(t) = C(t)− Ĉ(t) and a control bit 0 are entropy encoded.

On the other hand, if the distortion of F̂(t) is equal or above ρ, the method proceeds as fol-
lows: F(t) and F̂(t) are partitioned into blocks of dimensions 16×16×16, {Fk(t)} and {F̂k(t)}.
Then, the distortion of each block F̂k(t) in {F̂k(t)} is checked. If the distortion is below λ, F̂k(t)
is deemed reliable and only a control bit 1 is entropy encoded. Otherwise, F̂k(t) is deemed unre-
liable and the original attributes are transformed C(t) = Υ(Fk(t)). Then C(t) and a control bit
0 are entropy encoded. A flowchart describing the proposed scheme is shown in Fig. 3.10. In our
implementation, ρ was defined as 26 based on the theoretical experiment, and λ was empirically
defined as the distortion ofF(t− 1) locally decoded.

Figure 3.10: Flowchart describing the block-based multiple decision scheme.

The results obtained are presented in Fig. 3.11 and in Table 3.5. For “Sarah”, one can see signif-
icant gains over the use of only the intra-frame prediction. For “Loot”, a competitive performance
regarding the use of only the intra-frame prediction is illustrated. We can see an improvement in
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Figure 3.11: Results of the block-basedmultiple decision (Proposal 3) compared to I-RAHTfor point clouds
“Sarah” and “Loot”.

Table 3.5: Average BD PSNR-Y gains and average bitrate savings of the block-based multiple decision (Pro-
posal 3) relative to I-RAHT.

Point Cloud Sequence BD PSNR-Y [dB] BD bitrate [%]
Sarah 3.92 -64.54
Loot 0.25 -7.00
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performance for point clouds with intense motion while keeping the significant gains for point
clouds with low motion. The results are very similar to those obtained in Section 3.2.2, with a
subtle increase in BD PSNR-Y and a slight decrease in BD bitrate.

3.3.2 Proposal 4 - Level-Based Multiple Decision

In an attempt to improve the performance of our last adaptive method, we decided to explore
the coefficients per level of the octree. The coefficients of I-RAHT are ordered in a top-downman-
ner from the root of the octree to the leaves. In Fig. 3.12, the magnitudes of the serialized coeffi-
cients C(t) of Y-channel for one frame of point cloud “Loot” are shown. Note that the coefficients
present a decaying pattern, with the highermagnitude coefficients in the beginning, e.g., in the first
levels of the octree. One can also observe that the coefficients tend to decay until they becomemin-
imal in magnitude. Hence, we can conclude that, when taking U(t) for the entire set of residues,
compression improvement is expected for the first residues, but not for the many very small co-
efficients. For those very small coefficients to be predicted appropriately, one would need a very
accurate inter-frame prediction, which is not the case of the nearest-neighbor method used here.
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Figure 3.12: Coefficient magnitudes of Y-channel for one frame of point cloud “Loot”.

Based on the decaying pattern illustrated in Fig. 3.12, we decided to only encode U(t) for a
fraction of C(t) where high magnitude values are predominant. For the others, C(t) is directly
encoded. In our tests, the optimal number of residues U(t) to be encoded varied depending on the
inter-frame prediction quality. Let there beN coefficients in C(t) and in Ĉ(t) such that we encode
U(t) only for the first α levels of the octree which consists of a fraction of nα < N coefficients
(i.e., {Uv(t)}, v = 1, ..., nα). When F̂(t) is accurate, C(t) and Ĉ(t) are very similar and we better
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encode U(t) for α = α1. On the other hand, if C(t) and Ĉ(t) differ considerably, we encode U(t)

for α = α2 < α1.

The level-based multiple decision algorithm initially checks the overall distortion of F̂(t), if it
is below a threshold ρ, the proposed scheme performs as follows: F(t) and F̂(t) are partitioned
into blocks of dimension 16× 16× 16, {Fk(t)} and {F̂k(t)}. Then, the distortion of each block
F̂k(t) in {F̂k(t)} is checked. If the distortion is below a threshold λ, F̂k(t) is deemed reliable and
only a control bit 1 is entropy encoded. Otherwise, F̂k(t) is deemed unreliable and the original and
predicted attributes are transformed C(t) = Υ(Fk(t)) and Ĉ(t) = Υ(F̂k(t)). Then, the residues
are computed for the first α1 levels of the octree {Uv(t)}, v = 1, ..., nα1 . Finally, {Uv(t)} and
{Cr(t)}, r = nα1 + 1, ..., N are entropy encoded with a control bit 0.

On the other hand, if the overall distortion of F̂(t) is equal or above ρ, the proposed scheme
performs as follows: F(t) and F̂(t) are partitioned into blocks of dimension 16×16×16, {Fk(t)}
and {F̂k(t)}. Then, the distortion of each block F̂k(t) in {F̂k(t)} is checked. If the distortion is
below λ, F̂k(t) is deemed reliable and only a control bit 1 is entropy encoded. Otherwise, F̂k(t) is
deemed unreliable and the original and predicted attributes are transformed C(t) = Υ(Fk(t)) and
Ĉ(t) = Υ(F̂k(t)). Then, the residues are computed for the firstα2 levels of the octree {Uv(t)}, v =

1, ..., nα2 . Finally, {Uv(t)} and {Cr(t)}, r = nα2 + 1, ..., N are entropy encoded with a control bit
0. This method is illustrated in the flowchart of Fig. 3.13. In our implementation, ρ was defined
as 26 based on the theoretical experiment, and λwas empirically defined as the distortion (in mean
squared error) ofF(t− 1) locally decoded. Also, α1 = L− 1 and α2 = L− 4, whereL represents
the bit-depth of the point cloud.

Figure 3.13: Flowchart describing the level-based multiple decision scheme.

The results of the aforementioned approach are shown in Fig. 3.14 and in Table 3.6 for point
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(a) “Sarah” frame #124
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(b) “Loot” frame #1073

Figure 3.14: Results of the level-basedmultiple decision (Proposal 4) compared to I-RAHT for point clouds
“Sarah” and “Loot”.

Table 3.6: Average BD PSNR-Y gains and average bitrate savings of the level-based multiple decision (Pro-
posal 4) relative to I-RAHT.

Point Cloud Sequence BD PSNR-Y [dB] BD bitrate [%]
Sarah 4.59 -68.06
Loot 0.57 -15.82
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clouds “Sarah” and “Loot”. One can see that for “Sarah”, significant gains over the use of only
the intra-frame prediction are achieved. For “Loot”, small but consistent gains are obtained. The
present adaptive scheme generated better compression results for both point clouds than all the
previously devised adaptive methods.
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4 RESULTS

This section presents the results obtained for the two final adaptive schemes that were devised
in Sections 3.2.2 and 3.3.2: the fragment-based multiple decision (proposal 2) and the level-based
multiple decision (proposal 4), respectively. The former is an adaptive combination of the nearest-
neighbor inter-frame prediction with I-RAHT, segmenting the point clouds into fragments and
encoding the attribute residues when advantageous. While the latter is also an adaptive combi-
nation of the nearest-neighbor inter-frame prediction alongside I-RAHT, partitioning the point
clouds into small cubes and encoding the coefficient residues only for certain octree levels.

To test our approaches, we used two datasets with popular point cloud sequences: five frontal
upper body sequences fromMicrosoft Research Labs [13] (“Andrew”, “Ricardo”, “Sarah”, “Phil”,
“David”) with around 200,000 to 400,000 voxels, and four full-body sequences from 8i Labs [10]
(“Soldier”, “Longdress”, “Loot”, “Redandblack”) with around 700,000 to 1,100,000 voxels. The
point cloud sequences fromMicrosoft have voxels at bit-depth 9, and the ones from8i have voxels at
bit-depth 10. The information of each sequence used is shown in Table 4.1. In Fig. 4.1, projections
of one frame of each sequence are illustrated.

Table 4.1: Source, bit-depth, number of voxels, and frames available for each point cloud sequence used.

Point Cloud Sequence Source Bit-depth Voxels Frames
Andrew Microsoft 9 ≈ 270, 000 1-317
David Microsoft 9 ≈ 330, 000 1-215
Phil Microsoft 9 ≈ 370, 000 1-244
Ricardo Microsoft 9 ≈ 210, 000 1-215
Sarah Microsoft 9 ≈ 300, 00 1-206
Longdress 8i Labs 10 ≈ 850, 000 1052-1350
Loot 8i Labs 10 ≈ 800, 000 1001-1299
Redandblack 8i Labs 10 ≈ 750, 000 1451-1749
Soldier 8i Labs 10 ≈ 1, 090, 000 537-835

From each point cloud sequence, 20 frames were used and averaged to assess the compression
performance of our devised schemes. Ten frames were skipped between two selected frames, cov-
ering a variety of inter-frame motions from all sequences. The immediately previous frame was
always subjected to the nearest-neighbor inter-frame prediction to estimate the current frame to be
compressed.

As mentioned before, in our tests, performance evaluations compare rate-distortion curves,
where distortion is measured in peak signal-to-noise ratio for the luminance component, and the
rate is measured in bits per occupied voxel in the compressed bitstream. The quantization steps
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range from 8 to 256, increased by a factor of 2 at each point in the rate-distortion curves. The de-
vised schemes are first compared to the use of only the intra-frame prediction, in Sections 4.1 and
4.2. In Section 4.3 the two devised schemes are compared to each other.

Figure 4.1: Projections of point cloud sequences used. From left to right, top to bottom: “Sarah”, “Andrew”,
“David”, “Soldier”, “Redandblack”, “Longdress”, “Loot”, “Phil”, and “Ricardo”.
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4.1 PROPOSAL 2 - FRAGMENT-BASED MULTIPLE DECI-
SION

In Figs. 4.2 to 4.10, the rate-distortion performances of the fragment-based multiple decision
scheme compared to I-RAHT are depicted. In Table 4.2, average BD PSNR-Y gains and average
bitrate savings for each point cloud sequence are illustrated.

For the point cloud sequences “Andrew”, “David”, “Phil”, “Loot”, “Redandblack”, and “Long-
dress” (Figs. 4.2, 4.3, 4.6, 4.8, 4.9, and 4.10) small gains over the use of only the intra-frame pre-
diction can be observed. The PSNR gains ranged from 0.01 dB in the case of “Longdress” to 0.27
dB in the case of “Loot”. While the bitrate savings ranged from 0.49% in the case of “Longdress”
to 8.14% in the case of “Loot”. An explanation for that is the fact that these sequences represent
hard sequences to be predicted by our nearest-neighbor inter-frame prediction. More specifically,
“David”, “Loot”, “Redandblack” and “Longdress” are represented by frames predominantly with
intense motion, which makes a very hard environment for our inter-frame prediction. Also, “An-
drew” and “Phil”, similarly to “Redandblack” and “Longdress”, are sequences with very small de-
tails on the clothes of the depicted people, this fact may also significantly contribute to a worse
inter-frame accuracy.

For the point cloud sequences “Ricardo”, “Sarah”, and “Soldier” (Figs. 4.4, 4.5, and 4.7) more
interesting gains can be observed. The PSNR gains ranged from 0.61 dB in the case of “Ricardo” to
1.26dB in the case of “Sarah”. While the bitrate savings ranged from13.95% in the case of “Ricardo”
to 27.76% in the case of “Soldier”. The superior performance can be explained by the fact that these
sequences do not predominantly consist of frames with intensemotion, having several frames with
lowornomotion at all. The veryhigh gains observed for “Sarah” throughout Section3were diluted
by averaging theperformance of several different frameswithdifferentmotions, thus, withdifferent
compression performances. For the sequence “Soldier”, onewould expect a very hard environment
for the nearest-neighbor inter-frame prediction to performwell due to the tiny details on the outfit
of the person depicted. However, the successful performance in compressing this sequence can be
explained by the fact that “Soldier” is mainly composed of frames with low motion.

According to the Table 4.2, the best performance in terms of bitrate is achieved for “Soldier”
and in terms of PSNR is achieved for “Sarah”. The worst performance in terms of bitrate and in
terms of PSNR are achieved for “Longdress”. The average gains in PSNR and the average bitrate
savings for the fragment-based algorithm relative to I-RAHT are 0.44 dB and 10.57%, respectively.
In conclusion, our fragment-based algorithm can achieve interesting gains over the use of only the
intra-frame prediction for sequences composed of several low motion frames. At the same time,
it guarantees a competitive performance relative to I-RAHT for point cloud sequences consisting
mainly or entirely of frames with intense motion.
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Figure 4.2: Results of the fragment-based multiple decision (Proposal 2) compared to I-RAHT for point
cloud “Andrew”.
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Figure 4.3: Results of the fragment-based multiple decision (Proposal 2) compared to I-RAHT for point
cloud “David”.
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Figure 4.4: Results of the fragment-based multiple decision (Proposal 2) compared to I-RAHT for point
cloud “Ricardo”.
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Figure 4.5: Results of the fragment-based multiple decision (Proposal 2) compared to I-RAHT for point
cloud “Sarah”.
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Figure 4.6: Results of the fragment-based multiple decision (Proposal 2) compared to I-RAHT for point
cloud “Phil”.
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Figure 4.7: Results of the fragment-based multiple decision (Proposal 2) compared to I-RAHT for point
cloud “Soldier”.
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Figure 4.8: Results of the fragment-based multiple decision (Proposal 2) compared to I-RAHT for point
cloud “Loot”.
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Figure 4.9: Results of the fragment-based multiple decision (Proposal 2) compared to I-RAHT for point
cloud “Redandblack”.
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Figure 4.10: Results of the fragment-based multiple decision (Proposal 2) compared to I-RAHT for point
cloud “Longdress”.

Table 4.2: Average BD PSNR-Y gains and average bitrate savings of the fragment-based multiple decision
(Proposal 2) relative to I-RAHT.

Point Cloud Sequence BD PSNR-Y [dB] BD bitrate [%]
Andrew 0.23 -6.74
David 0.16 -5.07
Ricardo 0.61 -13.95
Sarah 1.26 -24.30
Phil 0.12 -3.27

Soldier 1.17 -27.76
Loot 0.27 -8.14

Redandblack 0.16 -5.38
Longdress 0.01 -0.49
Average 0.44 -10.57

4.2 PROPOSAL 4 - LEVEL-BASED MULTIPLE DECISION

InFigs. 4.11 to4.19, the rate-distortionperformances of the level-basedmultiple decision scheme
compared to I-RAHT are depicted. In Table 4.3, average BD PSNR-Y gains and average bitrate
savings for each point cloud sequence are presented.

In this case, for the point cloud sequences “Andrew”, “Phil”, “Redandblack”, and “Longdress”
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(Figs. 4.11, 4.15, 4.18, and 4.19) small gains over the use of only the intra-frame prediction can be
observed. The PSNRgains ranged from 0.14 dB in the case of “Longdress” to 0.43 dB in the case of
“Andrew”. While the bitrate savings ranged from4.04% in the case of “Longdress” to 12.96% in the
case of “Loot”. Asmentioned before, the sequences “Redandblack” and “Longdress” are very hard
to be predicted due to intensemotion inmost of their frames and small scale details on the outfits of
the depicted people. For this reason, the nearest-neighbor inter-frame prediction performs poorly
and our proposed approach does not achieve large gains over the use of only the intra-frame pre-
diction. For the sequences “Andrew” and “Phil”, the very small details present on the outfits of the
depicted upper bodies represent a harder environment for our inter-frame prediction to perform
well. However, even though the gains are still small for the mentioned point cloud sequences, they
increase if compared to the achieved results by the fragment-based multiple decision scheme.

For the point cloud sequences “David”, “Ricardo”, “Sarah”, “Soldier”, and “Loot” (Figs. 4.12,
4.13, 4.14, 4.16, and 4.17) interesting gains can be observed. The PSNR gains ranged from 0.62 dB
in the case of “David” to 2.50 dB in the case of “Soldier”. While the bitrate savings ranged from
17.84% in the case of “David” to 49.03% in the case of “Soldier”. Again, here the very high gains
obtained for “Sarah” in Section 3 were diluted after averaging the results for several frames with
different motions, however, the gains remained very interesting. The performance obtained here
for “Ricardo”, “Sarah”, and “Soldier” can be explained by the fact that these sequences are not
mostly composed by frames with intense motion, they also contain some frames with low motion
and no motion at all. We can also observe that, even for sequences that mostly contain intense
motion, such as “David” and “Loot”, our devised level-based approach was capable of obtaining
interesting gains related to the use of only the intra-frame prediction.
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Figure 4.11: Results of the level-based multiple decision (Proposal 4) compared to I-RAHT for point cloud
“Andrew”.
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Figure 4.12: Results of the level-based multiple decision (Proposal 4) compared to I-RAHT for point cloud
“David”.
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Figure 4.13: Results of the level-based multiple decision (Proposal 4) compared to I-RAHT for point cloud
“Ricardo”.
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Figure 4.14: Results of the level-based multiple decision (Proposal 4) compared to I-RAHT for point cloud
“Sarah”.
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Figure 4.15: Results of the level-based multiple decision (Proposal 4) compared to I-RAHT for point cloud
“Phil”.
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Figure 4.16: Results of the level-based multiple decision (Proposal 4) compared to I-RAHT for point cloud
“Loot”.
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Figure 4.17: Results of the level-based multiple decision (Proposal 4) compared to I-RAHT for point cloud
“Soldier”.
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Figure 4.18: Results of the level-based multiple decision (Proposal 4) compared to I-RAHT for point cloud
“Redandblack”.
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Figure 4.19: Results of the level-based multiple decision (Proposal 4) compared to I-RAHT for point cloud
“Longdress”.

According to the Table 4.3, the best performance in terms of bitrate and in terms of PSNR
are achieved for “Soldier”. The worst performance in terms of bitrate and in terms of PSNR are

52



achieved for “Longdress”. The average gains in PSNR and the average bitrate savings for the level-
based algorithm relative to I-RAHT are 0.97 dB and 21.73%, respectively. In conclusion, our level-
based algorithm can achieve very interesting gains over the use of only the intra-frame prediction
for sequences composed of several low motion frames. At the same time, it guarantees a slightly
better performance relative to I-RAHT for point cloud sequences consisting mainly or entirely of
frames with intense motion.

Table 4.3: Average BD PSNR-Y gains and average bitrate savings of the level-based multiple decision (Pro-
posal 4) relative to I-RAHT.

Point Cloud Sequence BD PSNR-Y [dB] BD bitrate [%]
Andrew 0.43 -12.96
David 0.62 -17.84
Ricardo 1.45 -31.76
Sarah 2.20 -41.02
Phil 0.37 -9.71

Soldier 2.50 -49.03
Loot 0.71 -19.76

Redandblack 0.31 -9.43
Longdress 0.14 -4.04
Average 0.97 -21.73

4.3 COMPARISON OF PROPOSAL 2 AND PROPOSAL 4

In Figs. 4.20 to 4.28, the rate-distortion performances of the fragment-based multiple decision
scheme compared to the level-based multiple decision scheme are shown. In Table 4.4, average BD
PSNR-Y gains and average bitrate savings for each point cloud sequence are shown.

From the results obtained, we can observe that for all point cloud sequences, the level-based
algorithm performs better relative to the fragment-based algorithm. The PSNR gains ranged from
0.13 dB in the case of “Longdress” to 1.29 dB in the case of “Soldier”. While the bitrate savings
ranged from 3.65% in the case of “Longdress” to 29.57% in the case of “Soldier”. For point clouds
with small details and consisting mostly (or entirely) of frames with intense motion, such as “An-
drew”, “Phil”, “Redandblack”, and “Longdress” (Figs. 4.20, 4.24, 4.27, and 4.28), the advantage
of the level-based approach over the fragment-based one was small. In contrast, for the other point
cloud sequences, a more interesting advantage of the level-based approach can be seen.

According to theTable 4.4, the best performance of the level-based approach over the fragment-
based one in terms of bitrate and in terms of PSNRare achieved for “Soldier”. In contrast, theworst
performance in terms of bitrate and in terms of PSNR are achieved for “Longdress”. The average
gains in PSNRand the average bitrate savings for the level-based algorithm relative to the fragment-
based one are 0.54 dB and 13.36%, respectively. In conclusion, our level-based algorithmperformed
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better for compression of dynamic point clouds for all tested sequences. Gains are somewhat signif-
icant for sequences such as “Sarah” and “Soldier” and very small for sequences such as “Longdress”
and “Redandblack”. Both schemeswere shown to be advantageous relative to I-RAHTwhen com-
pressing dynamic point clouds, but the level-based algorithmwas shown here to be the best option
in all cases.
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Figure 4.20: Results of level-based multiple decision (Proposal 4) compared to fragment-based multiple
decision (Proposal 2) for point cloud “Andrew”.

0 0.2 0.4 0.6

Rate (bpov)

30

35

40

45

P
S

N
R

-Y
 (

d
B

)

Proposal 4

Proposal 2

Figure 4.21: Results of level-based multiple decision (Proposal 4) compared to fragment-based multiple de-
cision (Proposal 2) for point cloud “David”.
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Figure 4.22: Results of level-based multiple decision (Proposal 4) compared to fragment-based multiple
decision (Proposal 2) for point cloud “Ricardo”.
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Figure 4.23: Results of level-based multiple decision (Proposal 4) compared to fragment-based multiple
decision (Proposal 2) for point cloud “Sarah”.
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Figure 4.24: Results of level-based multiple decision (Proposal 4) compared to fragment-based multiple
decision (Proposal 2) for point cloud “Phil”.
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Figure 4.25: Results of level-based multiple decision (Proposal 4) compared to fragment-based multiple
decision (Proposal 2) for point cloud “Loot”.
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Figure 4.26: Results of level-based multiple decision (Proposal 4) compared to fragment-based multiple
decision (Proposal 2) for point cloud “Soldier”.

0 0.5 1 1.5

Rate (bpov)

30

35

40

45

P
S

N
R

-Y
 (

d
B

)

Proposal 4

Proposal 2

Figure 4.27: Results of level-based multiple decision (Proposal 4) compared to fragment-based multiple
decision (Proposal 2) for point cloud “Redandblack”.
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Figure 4.28: Results of level-based multiple decision (Proposal 4) compared to fragment-based multiple
decision (Proposal 2) for point cloud “Longdress”.

Table 4.4: Average BD PSNR-Y gains and average bitrate savings of the level-based multiple decision (Pro-
posal 4) relative to the fragment-based multiple decision (Proposal 2).

Point Cloud Sequence BD PSNR-Y [dB] BD bitrate [%]
Andrew 0.21 -6.65
David 0.47 -13.43
Ricardo 0.89 -20.80
Sarah 1.04 -22.45
Phil 0.25 -6.67

Soldier 1.29 -29.57
Loot 0.44 -12.71

Redandblack 0.14 -4.29
Longdress 0.13 -3.65
Average 0.54 -13.36
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5 CONCLUSIONS

The research work presented in this manuscript focused on exploring the use of a simple inter-
frame prediction alongside RAHT, in order to improve attribute compression performance of dy-
namic point clouds. Themain idea was to develop a simple scheme combining the latest version of
RAHT,with an intra-frame predictive step added, referred to as “I-RAHT”with a low complexity
inter-frame prediction.

Since the current motion estimation algorithms for point clouds are highly time-consuming
and complex, we opted to use a simple low-complexity inter-frame prediction based on the nearest
neighborhood of voxels. This inter-frame prediction was chosen because it can be efficiently im-
plemented for time-constrained applications using k-nearest neighbor search, as in the C++ imple-
mentation of the Fast Library for Approximate Nearest Neighbors. Therefore, this work explored
adaptive combinations of the intra-frame and the inter-frame predictions to achieve an improve-
ment in compression performance of RAHT for dynamic point clouds. Our devised schemes were
compared with I-RAHT because this is currently the best predictive RAHT algorithm in the lit-
erature.

We devised two final adaptive schemes: one exploring the encoding of attribute residues re-
ferred to as “fragment-based multiple decision” (proposal 2), presented in Section 3.2.2. A second
one that explores the encoding of coefficient residues referred to as “level-based multiple decision”
(proposal 4), presented in Section 3.3.2. Both of our devised schemeswere tested for dynamic point
cloud compression against I-RAHT. We use two popular datasets of dynamic point clouds, from
8i Labs andMicrosoft Research Labs. The one from 8i Labs consists of four full-body point cloud
sequences, and the one fromMicrosoft Research Labs consists of five upper body point cloud se-
quences. We tested our devised approaches in 20 point cloud frames from each sequence, always
skipping ten frames between two selected frames. Hence, covering a variety of situations and mo-
tions. Also, the immediately previous framewas always used to predict the frame to be compressed.

From our rate-distortion curves presented in Sections 3 and 4, it is possible to observe that the
fragment-based algorithm is capable of achieving outstanding gains over the use of only the intra-
frame prediction for point cloud frames with low or no motion. In the case of point cloud frames
with intense motion, our scheme can guarantee a competitive performance against the intra-frame
case. Overall, the fragment-based algorithm achieves BD PSNR-Y gains of 0.44 dB and bitrate
savings of 10.57%. We can also observe that the level-based algorithm can also achieve outstanding
gains over I-RAHT for point cloud frames with low or no motion. For the cases with intense
motion, our algorithm can slightly outperform the use of only the intra-frame prediction. Overall,
the level-based algorithm achieves BD PSNR-Y gains of 0.97 dB and bitrate savings of 21.73%.
Therefore, our devised schemes can be an alternative for the compression of dynamic point clouds,
guaranteeing at least a similar performance in theworst-case scenario and achieving significant gains
in the best-case scenario.

59



Finally, comparing the two final devised schemes, it can be observed that the level-based algo-
rithm presents a better compression performance than the fragment-based one, for all tested point
cloud sequences and all situations, with low motion or intense motion.

5.1 FUTURE WORK

Future work may focus on the use of better inter-frame prediction algorithms for point clouds
that are also time-efficient. An excellent inter-frame predictor will be capable of improving even
more, the compression performance of our devised approaches. One alternative is to invest in re-
search to design suitable motion estimation and compensation algorithms for practical applica-
tions. Ideas on how to do that efficiently might start by exploring the motion estimation in the 2D
since it is already a well-solved problem with plenty of algorithms available. The idea would be to
project the 3D point clouds into 2D and perform motion estimation. Then, recover 3D motion
vectors from the 2D ones obtained.

Another research line that can be further explored based on this work is to examine the use of
inter-frame prediction algorithms alongside RA-GFT. The latter is a recently published transform
for attribute compressionof point clouds capable of outperformingRAHT.Theuse of inter-frame
prediction algorithms alongside it may allow achieving even better results. Both inter-frame and
intra-frame prediction algorithms can be combined with RA-GFT in order to exploit inter-frame
and intra-frame redundancies.
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