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Abstract: Paranoá Lake, Federal District (DF), Brazil, is one of the most important urban lakes in the
country and it receives inputs from basins with different characteristics, from natural and preserved
to intensely urbanized and agricultural areas. The study of the hydrological processes in these basins,
as well as the water balance in each of them, is fundamental for planning current and future water
uses in Paranoá Lake. Using an extensive database (35 years) and the Soil and Water Assessment Tool
(SWAT) model, we modelled five sub-basins. The outflow rates of the model for each sub-basin served
as input for determining the water balance of Paranoá Lake, which recently became part of the DF
public water supply system. Despite extensive flow monitoring in the main lake tributaries, about 20%
of the lake basin is composed of direct contribution or non-monitored tributaries. Additionally,
the lake outflow is composed of a spillway and a hydropower generation unit that does not have
proper flow measurements, and thus a correct basin hydrological simulation is essential for water
balance aiming to water management scenarios. The results show an average long-term balance of
18.073 m3/s, with minimum flows around 13 m3/s and maximum flows close to 30 m3/s. This is a
pioneering study that associates the extensive monitored database and the hydrological simulation of
all affluent basins with the water balance of Paranoá Lake. The results obtained are essential to water
management and hydrodynamic modeling of the lake.

Keywords: streamflow; SWAT; sensitivity analysis; calibration; uncertainty analysis;
water balance; reservoir

1. Introduction

The preservation of water resources is essential for natural ecosystems and environmental health.
In the last decades, the natural biome of the middle east of Brazil (Brazilian Savanna) has been replaced
by cultivating large areas for agricultural commodities or the growth of cities. The changes in the natural
environment affect water balance processes in the watersheds, notably surface runoff, infiltration,
and evapotranspiration, and can intensify processes such as erosion and sediment transports [1,2].

The Brazilian Federal District (DF), created by the transfer of the capital of the country from
Rio de Janeiro to Brasilia in 1960, showed intense population growth as well as expansion of urban
areas and agricultural activities, with direct consequences on the availability of water resources.
With about 94% of the population occupying urban areas, it is estimated that by 2025 the population of
the DF will reach 3.4 million inhabitants with a water demand that tends towards growing strongly in
the future [3].

In the last three decades, the DF has experienced in the years 2016 and 2017 a precipitation amount
below the historical average. This condition led the main water supply reservoirs (Descoberto reservoir
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and Santa Maria reservoir) to reach the lowest water level values recorded since the beginning of
the monitoring. The drought situation led the Federal District Water Regulation Agency (ADASA)
to take restricting measures to control water use such as interrupting water supply one day in six to
ensure population supplies by the end of the dry season and to preserve supply stocks. Additionally,
other measures were the exploitation of the new water supply sources, and the main contributors were
the Bananal River, a tributary of Paranoá Lake, and Paranoá Lake itself, as shown by [4].

Because of these problems, it is important to better understand the water balance in reservoirs.
One of the approaches that have been used extensively in recent decades for understanding water
balance phenomena in complex watershed systems and reservoirs is mathematical modeling [1,2,5,6].

In this context, several processes affect the dynamics of the water in reservoirs, such as the
variation of water inputs from affluent basins and the management of these systems that very often
serve multiple uses.

The reservoir water balance depends mainly on the determination of the amount of water involved
in each process and, once each of these parts is estimated, the continuity equation is applied through
adopting appropriate time steps. The study of reservoir water balance is fundamental to water resource
management and, in the case of Paranoá Lake, improving the knowledge of hydrodynamics and
ecological processes.

The continuity equation is an effective means of determining water balance and is widely used
in hydrology [1,6–9]. The biggest challenge is in the acquisition of monitored data such as inflows
to the reservoir, precipitation, and evaporation, which often depend on data from fluviometric and
meteorological stations and/or satellites.

The study of the water dynamics of reservoirs involves understanding the hydrological
characteristics of the contributing basins. This is relevant in terms of knowing the dominant processes
of water production to the reservoir [1,6,8–10].

The use of computational models for the representation and analysis of environmental systems has
been an effective approach in the description of environmental phenomena. For studies associated with
watersheds, these tools have been important because of their ability to simulate processes associated
with changes in land use, water use, and climate change, helping the understanding of hydrological
processes [2,5,11]. Among the tools associated with the study of watersheds is the Soil and Water
Assessment Tool (SWAT), a model that can continuously simulate a variety of processes occurring in
the watershed, over long periods, and in several places around the world [2,9,12–17].

In Brazil, most of the studies have aimed at the applicability of the SWAT model to the local basins,
with case studies mainly focusing on the analysis of the flow variable [18,19]. However, two aspects
are very important when the focus is on determining the water balance of a lake/reservoir. The first is
the determination of all flows that enter the system, including that of ungauged areas, because with
them the water balance simulation is improved [6,20]. The second aspect refers to the quality of these
estimates, i.e., the degree of uncertainty to which they are subjected. The uncertainties in hydrological
modeling are associated with three main factors: the input data that can directly affect the results,
the structure of the model that was developed under the assumptions and simplifications, and the
parameters of the model [21–25]. Of these three sources of uncertainty, parameter uncertainty is the
most common but the one that is relatively easy to control through calibration techniques [22,26].
In general, there is a diversity of key parameters in a sub-basin that describe basin characteristics
and hydrological processes. These parameters are difficult to determine and are generally derived
empirically and from a reference in the literature, which can introduce uncertainties in the modeling
system [24–26].

The applications of the SWAT model in the DF basins led to satisfactory results in various
applications [27–29]. However, there are no studies in the DF area that provide a long-term analysis of
the water balance of the tributary sub-basins of the Paranoá Lake that consider the uncertainties of
these results, the ungauged areas, and the degree of reliability that these estimates can generate.
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The importance of carrying out studies on Paranoá Lake is mainly due to the important permitted
uses. Recreation, water supply, power generation, dilution of effluents, and support for aquatic life are
some of the ecosystem services currently provided by the lake [4]. Considering these uses, the local
regulations allow only a 1-m level change in the outflow operational control. Paranoá Lake is an
example in Brazil of an urban lake that was recovered after an intense eutrophication process in the
1970s, 1980s, and part of the 1990s [30]. However, in recent years, some parts of the lake have been
shown to be ecologically fragile, with the appearance of cyanobacteria [31], which in part may be
associated with the non-point loads and the increase of urbanization of the Paranoá Lake Basin (PLB).
In addition, there is an expected increase in the withdrawal for water supply [4], which may lead to
the economic unfeasibility of hydroelectric energy production. For these reasons, it is necessary to
predict the evolution of water production in the basin, since the reservoir is maintained at a constant
level for landscape purposes.

Considering the importance that the PLB plays in the DF, in this work (i) we performed a long-term
analysis of water production in the sub-basins affluent to Paranoá Lake; (ii) we describe the water
balance of each monitored sub-basin, seeking to analyze the uncertainty associated with the modeling
process; (iii) we estimated the contribution of ungauged areas by extrapolating the results of the
modeled sub-basins; and, finally (iv) we calculated the water balance of Paranoá Lake.

2. Study Area

Paranoá Lake (Figure 1), located in PLB, Federal District, Brazil, is an artificial lake formed by a
dam built at the confluence of the five main rivers: Cabeça de Veado River, Gama River, Riacho Fundo
River, Bananal River, and Torto River. In addition to these tributaries, it has several eastern small
watersheds in the geographic limits of the basin and a direct drainage area in the central region of the
basin. The morphometric characteristics of Paranoá Lake are shown in Table 1.
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of urban areas (blue) and natural areas (green) that drain directly into Paranoá Lake.
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The PLB has an area of about 1020 km2; the terrain presents a predominance of flat features and
smooth undulations with slopes ranging from 0 to 8%, followed by more rugged regions in the areas
close to the water bodies with slopes between 8 and 20%. Few areas have a slope greater than 20%,
representing less than 3% of the entire basin area. The climate observed in the study region is a tropical
savanna climate. The annual average rainfall of around 1500 mm, with the rainy season being from
October to April and the dry season from May to August. The average annual temperatures range
around 13 ◦C to 33 ◦C. The predominant land use is composed of some phytophysiomies of one of the
Brazilian tropical savannas, the Cerrado Biome, representing about 50% of the total area, followed by
urban areas representing about 28% in 2014. The urban area has been increasing very fast in recent
years, with an increase of around 15% from 1984 to 2014. The Federal District population experienced
about a 16% increase in the last decade. The relatively low urban area percentage is due to a very
irregular occupation imposed by the protected areas in the Bananal e Gama regions. The urban area in
the Riacho Fundo sub-basin was more than 50% in 2014.

Table 1. Paranoá Lake characteristics [30].

Morphometric Characteristics

Maximum depth (m) 37
Mean depth (m) 12

Lake surface area (km2) 38
Catchment area (km2) 1024

Volume (hm3) 460
Water residence time (days) 300

Water use Water supply, recreation, hydropower generation,
sewage dilution, microclimate improvement

Altitude (m) 1000

3. Materials and Methods

3.1. Spatial Data

The spatial data input SWAT modeling database refers to the physical data that allow the
characterization of the sub-basins affluent to Paranoá Lake. This dataset consists of information plans
containing soil types, types of land use, and the digital elevation model.

The land use provided by the Federal District Government—GDF (2010) [32] was updated
manually for the year 2014 (Figure 1) using aerial images taken by the government of the Federal
District obtained from the Department of Urban Development and Housing—SEDUH (2019) [33].
The typological patterns of land use adopted in modeling comprised 18 classes ranging from different
types of urban, natural, and agricultural uses. The land use database is presented in Table 2.

The digital elevation model used for the delimitation of hydrographic basins was built in this
work from topographic data of contour lines with equidistance of five meters, obtained from Federal
District Government—GDF (2010) [32]. The topographic data consisted of contour lines that cover the
entire Federal District, as this work the area of the PLB was defined to build the Digital Elevation Model
(DEM). The altitude varies from 1000 m at the level of the lake where the lowest point is, to around
1300 m in the highest region.

The classification of the PLB, according to the type of soil, took place in the first stage according to
that adopted by EMBRAPA (Brazilian Agricultural Research Corporation), through an update of the
cartography base of the pedology of the Federal District carried out by Reatto et al. (2004) [34]. Then,
compatibility was found between the database developed by the author and that developed by Lima
et al. (2013) [35], which aimed to apply the SWAT model to the Cerrado biome.
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Table 2. Paranoá Lake Basin (PLB) land use.

Land Use Area (km2) (%)

Campo Sujo 1 123.39 12.05
Campo Limpo 1 37.89 3.70

Cerrado 2—Brazilian Savana 276.77 27.02
Degraded area 3.84 0.37
Exposed soils 7.79 0.76

Pasture 2.24 0.22
Wetlands 15.36 1.50

Water—lakes/reservoirs 46.68 4.55
Paved roads 23.19 2.26

Reforestation—eucalyptus 36.25 3.54
Agriculture 34.96 3.41

Low-density urban area 48.23 4.71
Medium-density urban area 87.85 8.57

High-density urban area 146.69 14.32
Fruticulture 6.73 0.65

Forest 62.08 6.07
Vegetated area 63.69 6.22
Unpaved roads 0.84 0.08

TOTAL 1024.47 100.00
1 Phytophysiognomy of the Cerrado. 2 Cerrado—generic Brazilian savana.

3.2. Hydro-Meteorological Data

The SWAT model requires 5 types of weather data as input, these being rainfall, max and min
temperatures, solar radiation, wind speed, and air humidity. The rainfall data used were obtained from
9 rainfall stations operated by CAESB (Environmental Sanitation Company of the Federal District),
located alongside PLB, besides the meteorological station operated by INMET (Brazilian Meteorological
Institute) from which the other meteorological input data were obtained. Another dataset necessary for
the adjustment steps of the model were the flows monitored in the Paranoá Lake affluent sub-basins.
The CAESB provided this dataset. The location of these monitoring stations is shown in Figure 2.
The data used in this study are daily data spanning from 1982 to 2017. Table 3 shows the SWAT
input data.

3.3. Paranoá Lake Data

Another dataset necessary for the preparation of the study is related to Paranoá Lake, such as the
storage area curve and the other flows that enter the lake. The storage area curve was obtained through
the management study of Paranoá Lake [30], and the other flows into the lake can be differentiated
as to their origin. The first consist of effluents from the Brasília North and Brasília South wastewater
treatment plants (WTPs) that are discharged into the lake. The second is associated with ungauged
areas, and for that reason their flows were estimated through the specific flow of areas modeled with
the SWAT. The choice of areas took into account similar characteristics with ungauged areas such as
land use. A brief resumé of all datasets used to build this study is shown in Table 3.

A likely source of lake water balance error is the outflows from the lake, consisting mostly by
water released through the power generation turbines and, during the rainy season, the water released
through the spillway controlled by sluice gates. The flow through the turbines is not gauged and is
estimated by the amount of power generated by the 4 turbines, including 3 of them that have been
working for more than 50 years. The dam was built in 1960 and the spillway/sluice gate equations had
never been properly checked.
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Figure 2. Climate and flow stations database.

Table 3. Used databases.

SWAT Input Data

Database Parameters Period Region Source

Climate data
(daily) Rainfall 1979–2017

Bananal River

CAESB

Gama River

Riacho Fundo
River

Torto River

Cabeça de
Veado River

Climate data
(daily)

Rainfall

1979–2017 PLB INMET

Temperature

Relative humidity

Solar radiation

Wind

Climate data (monthly) Evaporation 1982–2017 PLB UnB station
(University of Brasilia)

Soil data (30 m × 3 m) Soil — PLB EMBRAPA
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Table 3. Cont.

SWAT Input Data

Database Parameters Period Region Source

Elevation (topography)
(30 m × 30 m)

(x,y,z) coordinates, — Federal DEM build from GDF (2010)
[32]contour lines District

Land use
(30 m × 30 m)

Photogrammetric survey
of the Federal District

2014
Federal

GDF (2010) [32], updated by
authors from aerial images

from SEDUH (2019) [33]District

Flow Calibration Data

Database Parameters Period Region Source

Gauge data
(daily)

Water discharge data 1982–2017

Bananal River

CAESB

Torto River

Gama River

Riacho Fundo
River

Cabeça de
Veado River

Additional Paranoá Lake Water Balance Data

Database Parameters Period Region Source

Sewage data
(weekly)

Wastewater discharge
data

1982–2017
WTP North

CAESB
WTP South

Storage area curve Bathymetry 2003 Paranoá Lake CAESB

3.4. Hydrological Modeling with SWAT

SWAT is a versatile watershed model capable of modeling various processes from rain-flow to
plant growth [36]. It is recognized as a model that is focused on ungauged river basin analysis [13],
mainly because of its components that simulate plant growth, pesticides, and nutrients, but it is
appropriate in the analysis of the impacts on the basin due to changes in land use and land cover,
including the expansion of urban areas. The equation governing the hydrological components in the
SWAT model is as follows [13,36]:

SWt = SW0 +
t∑

t=1

(Rt −Qt − ETt − Pt −QRt) (1)

where SWt is the water contained in the soil at the end of the day, SW0 is the initial amount of water
contained in the soil, t represents the time in days, Rt is the precipitation, Qt is the runoff, and ETt is
evapotranspiration. Pt is the percolation and QRt is the return flow. All components of equation 1 are
in millimeters. The general methodology used in modeling the Paranoá Lake tributary sub-basins is
presented in Figure 3.

The study started with the construction of the physical database of the sub-basins that would be
modeled. In QGIS/QSWAT, the physical information of the basin was loaded, and the physical model
of each sub-basin was built, going through the stages of delineation of the drainage area, creation
of sub-basins, and generation of HRU. The next step consisted of integrating climatic data into the
physical model and, finally, we ran the SWAT model using 3 years of data from the weather database
as the model’s warmup, from 1979 to 1981, for all simulated sub-basins, except for the Gama River
sub-basin, which was from 1982 to 1984.

After the initial simulation of the sub-basins affluent to Paranoá Lake, we began adjustments in
the sub-basins. For this, steps of sensitivity analysis, calibration, and validation were implemented.
It is worth mentioning that for the validation step, we chose to perform it in two stages, the first
performed from 2000 to 2010, and the second performed from 2001 to 2017.
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3.5. Sensitivity Analysis, Model Performance Evaluation, Calibration and Validation, and Uncertainly Analysis

For reasonable simulations, most of the hydrological models need a certain degree of adjustment
so that the results produced by the model present a high degree of agreement with the actual monitored
data and thus are able to support analysis of scenarios and/or other studies from which its results
serve as input data [37]. For this reason, model adjustment steps such as model calibration are very
important in modeling studies.

In this study, we conducted a sensitivity analysis to find the most sensitive parameters for flow
adjustment, model calibration using data from 1982 to 2000, and model validation in two stages—the
first using data from 2001 to 2010 and the second using data from 2001 to 2017. With the model
calibrated and verified, we performed uncertainty analysis.

Sensitivity analysis was a preliminary step to model calibration and validation. After the
initial modeling of the basins, we selected a group of parameters with the greatest impact on the
hydrological components simulated by the SWAT model. We sought to investigate works performed
both worldwide [13,16,17] and in Brazil [17,38,39]. In the SWAT-Cup, the parameters can be changed in
3 different ways: the first is the relative change (r__)—in this method the parameter value is multiplied
by a given value. The second is substitution (v__)—in this method, the parameter value is replaced by
a new value each round. Finally, the third method is changing the addition (a__), wherein the value of
the parameter is added by a given value [40]. The parameters selected for the sensitivity analysis are
shown in Table 4.
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Table 4. Soil and Water Assessment Tool (SWAT) parameters (absolute values) used in sensitive analysis.

Parameter Description Lower
Bound

Upper
Bound Process

CN2 Soil conservation service runoff curve
number for moisture condition II 35 98 Runoff

ESCO Soil evaporation compensation factor 0 1 Evapotranspiration

CANMX Maximum canopy storage 0 100 Evapotranspiration

GW_REVAP Groundwater “revap” coefficient 0.02 0.2 Evapotranspiration

ANION_EXCL Fraction of porosity (void space) from
which anions are excluded 0.01 1 Soil

SURLAG Surface runoff lag coefficient 0.05 24 Groundwater

SOL_Z Soil depth (mm) 0 3500 Soil

SOL_AWC Available water capacity of the soil
layer (mm/mm soil) 0 1 Soil

SOL_K Satured hydraulic conductivity (mm/h) 0.05 2000 Soil

SOL_BD Moist bulk density 0.9 2.5 Soil

ALPHA_BNK Baseflow alpha factor for bank storage 0 1 Channel

ALPHA_BF Baseflow alpha factor (days) 0 1 Groundwater

GW_DELAY Groundwater delay time (days) 0 500 Groundwater

GWQMN
Threshold depth of water in shallow

aquifer required for return flow to occur
(mm H2O)

0 5000 Groundwater

REVAPMN
Threshold depth of water in the shallow
aquifer for “revap” or percolation to the

deep aquifer to occur (mm H2O)
0 500 Groundwater

GWHT Initial groundwater height 0 25 Groundwater

SHALLST Initial depth of water in the shallow
aquifer (mm) 0 50,000 Groundwater

DEEPST Initial depth of water in the deep
aquifer (mm) 0 50,000 Groundwater

CH_N2 Manning’s “n” value for the main
channel −0.01 0.3 Channel water

routing

CH_K2 Effective hydraulic conductivity in
main channel alluvium −0.01 500 Chanel water

routing

With the set of parameters selected for the sensitivity analysis (Table 4), we used the SWAT-Cup
tool [40], an interface that allows for the performance of various analyses with the results provided by the
SWAT model, in order to calibrate the Paranoá Lake sub-basin models. The method used in the sensitivity
analysis of the parameters and calibration of the model was the SUFI-2 [24–26,41–43]. This method has
been used to analyze the sensitivity of parameters and calibration in basin modeling [44–46] and has
been indicated to have better computational performance in complex distributed hydrological models,
besides also having good accuracy in the estimates [24].

On the basis of a Bayesian framework, the SUFI-2 method determines uncertainties through the
sequential and fitting process. In SUFI-2 (Figure 4), several iterations for updating the estimates of
unknown parameters are required to achieve the final estimates. In this method, parameter uncertainties
account for different possible sources, including model input, model structure, parameters, and observed
data for calibration and validation purposes. An objective function needs to be defined before
uncertainty analysis and assigned with a required stopping rule [37]. The P-factor, the percentage of
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observed data bracketed by 95% prediction uncertainty (95PPU), is used to quantify the degree of all
uncertainties. The 95PPU is calculated at the 2.5% and 97.5% levels of the cumulative distribution
of output variables through the Latin hypercube sampling method [42–44]. The R-factor is another
index to quantify the strength of a calibration and uncertainty analysis and it reflects the average
thickness of the 95PPU band divided by the standard deviation of the measured data. If the R-factor
is large, the ranges of parameters are larger than the optimal parameter ranges and more parameter
uncertainties will remain. Usually, a value of less than 1 is a desirable result for the R-factor [25]. Hence,
a balance between these two factors has to be monitored while decreasing parameter uncertainty,
with the ratio of P-factor and R-factor being able to be used to evaluate the strength and goodness
of fit of uncertainty analysis. When acceptable P- and R-factors are obtained, the reduced parameter
uncertainty ranges are the preferred ones [41]. Theoretically, a P-factor of 1 and R-factor of 0 indicate
that the simulation exactly corresponds to the measured data. However, R-factor values < 1.5 are
considered satisfactory [41,43].
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Figure 4. SUFI-2 method. Modified from [33].

The SUFI-2 method assumes a large parameter uncertainty (or physically meaningful range)
to ensure the observed data fall into the 95PPU for the first iteration and decreases the uncertainty
while monitoring the P-factor and R-factor for the next several iterations. The goal of the SUFI-2
method is to search for bracketing most of the observed data with the smallest possible uncertainty
band. These two measures can also be used to evaluate the performance of other uncertainty analysis
methods. Parameters are then updated with new ranges, which are always centered around the values
of the optimal parameter set that leads to the best simulation. The major procedures of SUFI-2 are
shown as follows [22,40,42,44].

The model performance analysis was performed by evaluating the generated results by SWAT.
For this analysis, two different metrics were adopted [45], which are the percentage bias (PBIAS) and
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the Nash–Sutcliffe coefficient (NSE), which were used to evaluate the mathematical definitions of each
of the metrics used in the study; these are shown below:

PBIAS =


∑n

i=1

(
Qobs

i −Qsim
i

)
·100

Qobs
i

 (2)

NSE = 1−


∑n

i=1

(
Qobs

i −Qsim
i

)2(
Qobs

i −Qmean
i

)2

 (3)

where Q is the discharge.
The calibration process was carried out with three iterations [22,24], each with 1900 runs.

This number was adopted through considering a reasonable 100 runs multiplied by the number of
parameters. After each iteration, the intervals of each parameter were updated, taking into account the
feasible physical limits for the studied basins, and then a new iteration was performed. After 3 iterations,
the intervals for each parameter were applied in the following steps, the first validation stage (2001–2010)
and the second validation stage (2011–2017), as recommended in the literature for evaluation of the
results [25,40,42].

3.6. Paranoá Lake Water Balance

The necessary dataset for the Paranoá Lake water balance computation were inlet flows,
precipitation, evaporation, and outflows. The flow generated by modeled sub-basins with the SWAT
provided the inlet flows to Paranoá Lake, comprised of streamflow and groundwater contribution,
from the tributary sub-basins. Precipitation was estimated based on the series of monitored data
provided by INMET and CAESB and evaporation was estimated on the basis of data monitored by
UnB stations, measured with class A tank.

The ungauged areas, about 20% of the basin area, have a relevant contribution in determining
the water balance of Paranoá Lake. These areas have 2 types of land use, urban and preserved. Thus,
we chose to estimate the contribution flow of these areas by applying the specific flow of the sub-basins
with similar characteristics modeled with the SWAT [6]. Thus, the contribution flow from the ungauged
urban areas of Brasília, as well as from the cities Lago Norte and Lago Sul, were estimated on the basis
of the specific flow of the Riacho Fundo sub-basin, the basin with the highest percentage of urban
occupation contributing to Paranoá Lake. In turn, the contribution of the ungauged eastern side of
Paranoá Lake was estimated on the basis of the specific flow of the Gama sub-basin due to similarities
concerning land use and occupation. There are also two wastewater treatment plants that release their
effluents into Paranoá Lake. These plants are operated by CAESB, which provided the data released
on Paranoá Lake during the period studied.

The estimate of the water balance for Paranoá Lake was based on the continuity equation, given by

S(t+1) = S(t) + Qin f low(t) + Plake(t) + Gnet(t) −Qout f low(t) − Ereservoir(t) + ε(t) (4)

where the terms S and S(t+1) represent the storage at time t and at time t + 1, Qin f low(t) is the lake
inlet flow, Plake(t) is the precipitation rate direct in the lake, Gnet(t) is the groundwater contribution
rate, Qout f low(t) is the outflow, and Ereservoir(t) is the evaporation rate. The last term, ε(t), represents the
uncertainties in the water balance arising from the process of acquisition and manipulation of data in
addition to unrecorded portions.

4. Results

The analysis carried out considered the availability of monitored hydrological data in the basin,
thus using climatic and hydrological data for approximately 30 years. The results generated by the
SWAT model for each sub-basin are presented below.
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4.1. Gauged Sub-Basins: Modelling, Sensitivity Analysis, and Calibration Uncertainty Analysis

4.1.1. Default Simulation and Sensitivity Analysis

The initial results generated by the SWAT model for each sub-basin were evaluated by the metrics
adopted in this work (Table 5) and can be seen in Table 6.

Table 5. Model performance scale [46].

Performance NSE PBIAS (%)

Very good 0.75 ≤ NSE ≤ 1 PBIAS ≤ ±10
Good 0.65 ≤ NSE ≤ 0.75 ≤ ±10 PBIAS ≤ ±15

Satisfactory 0.5 ≤ NSE ≤ 0.65 ≤ ±15 PBIAS ≤ ±25
Unsatisfactory NSE ≤ 0.5 PBIAS ≥ ±25

Table 6. Statistical results for initial simulation.

Sub-Basin
Default Simulation (1982–2017)

NSE PBIAS

Bananal −1.55 3.8
Gama −0.14 −25.6

Riacho Fundo 0.05 −18
Torto −0.02 42.7

Cabeça de Veado −2.93 52.8

The initial results generated by the SWAT model showed the need for model adjustment. Thus,
we proceeded with the sensitivity analysis of the parameters. This analysis sought to perform the
ranking of the most sensitive parameters for each sub-basin (Figure 5). The x-axis shows the most
sensitive parameters separated by the hydrological process, while the y-axis shows the order of
sensitivity of the parameters in each of the studied basins.
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The results in Figure 5 showed a tendency regarding the sensitivity of the parameters in the modeled
sub-basins, with emphasis on the parameters SHALLST, GWQMN, and GW_DELAY, which are related
to underground waters. Similarly, about the processes associated with water in the soil, the emphasis
is given to SOL_K and SOL_AWC, with visible sensitivity in all basins except the Riacho Fundo River
sub-basin. The low sensitivity of this parameter in the Riacho Fundo River sub-basin may be related to
the predominantly urban type of land use.

Regarding the parameters associated with evapotranspiration, both CAN_MX and ESCO
parameters showed high sensitivity, especially CAN_MX, in all simulated sub-basins, while ESCO was
found to not be sensitive to Cabeça de Veado sub-basin.

As for the water routing in the channel, the three parameters (CH_N2, CH_K2, and ALPHA_BNK)
showed a certain degree of sensitivity, with the parameter ALPHA_BNK showing low sensitivity in
the Cabeça de Veado sub-basin.

Finally, for the runoff process, CN2 was relevant in all basins, as expected, since it directly reflects
the amount of runoff generated in the basin. The most sensitive parameters in the basins studied
in this work (Figure 3) were reported in other studies conducted in Brazil. The set of parameters
CN2, SOL_AWC, SOL_K, SOL_Z, ESCO, and CANMX, some of the most sensitive parameters in this
hydrological study also were related to sediment production in other brazilian basins [18,46]. In the
Federal District, the results presented in this study corroborate other findings [27–29].

4.1.2. Calibration and Uncertainty Analysis

The calibration of the sub-basins was performed with three iterations each with 1900 runs,
a procedure similar to that adopted in [22,24]. In each iteration, the metrics for evaluating the results of
the model (NSE, PBIAS, P-factor, R-factor, 95PPU) were analyzed to observe the reduction of uncertainty
associated with the calibration of the parameters, and we noticed that more than three iterations
did not provide a significant improvement in the results. Moreover, at each iteration, the limits of
the parameters were updated, always taking care to keep them within the physical limits that are
representative of the modeled sub-basins.

The trends of each parameter were observed in each iteration towards the best NSE values
(Figure 6), so that as the intervals of each parameter were updated in each iteration, the NSE values
were also optimized, showing the increase in NSE values throughout the iterations. The increase in
the NSE over the iterations showed a reduction in the uncertainty in the results of the model since at
each iteration the upper and lower limits of each parameter were reduced and therefore the space of
solutions that gives optimal or sub-optimal solutions was better delimited.

Analyzing the graphs of the optimized parameters, we noticed that with each iteration the
sensitivity parameter order changed; this happened because when a given parameter found its region
of optimal solutions, the alteration of other parameters started to generate impacts more significant in
the calibration of the flows of each sub-basin.

In the results shown in Figure 6, we observed that the applied methodology provided effective
results for the simulation of the basins seeking to reduce the degree of uncertainty regarding the
model parameters. This behavior can be seen with the NSE values obtained, since the higher the NSE,
the lower the uncertainty and the greater the adjustment of the simulated datasets to those observed.

With the results, we observed that the greatest uncertainties were associated mainly with five
processes, described below and contemplated in Figures 5 and 6.

• The use and cover of the soil evidenced by CN2, the parameter of impact on the runoff generated
in the sub-basins.

• The evapotranspiration represented by the parameters CAN_MX and ESCO that are associated
with water stored in the vegetation canopy and the water evaporation capacity of the soil.

• The flow of soil water given by the parameters SOL_AWC and SOL_K with the water available in
the soil and the conductivity of the saturated soil, respectively.
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• The parameters associated with groundwater represented by the parameters GW_DELAY and
SHALLST, with these being the groundwater lag and the initial height of the water in the deep
aquifer, respectively.

• Finally, the parameters associated with the channel water routing, represented by CH_N2, CH_K2,
and ALPHA_BNK, which are Manning n’s value for the channel, effective hydraulic conductivity
in the main channel, and the base flow alpha factor for bank storage, respectively.
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After the model calibration for the sub-basins, we observed a considerable improvement in the
model evaluation metrics. So, the results can still be considered satisfactory (Table 7). The final
intervals obtained for the parameters used in the calibration process after the third iteration of the
SUFI-2 algorithm are shown in Table A1, as well as the determination of each water balance (Table A2)
process for the gauged sub-basins.

In the Bananal sub-basin (Figure 7), the SWAT model performed well in all stages of analysis.
We observed that the range of parameters obtained in the third iteration was able to obtain good results
also for the first and second validations. Similarly, this occurred in the Gama sub-basin (Figure 8).
These sub-basins have high natural vegetation cover due to the implementation of preservation policies
adopted in the PLB. Thus, it is possible to observe the good performance of SWAT in the hydrological
simulation of natural environments and without major anthropogenic interventions.

The SWAT model performed well in modeling the Riacho Fundo Basin (Figure 9), a fact that
deserves mention for two main reasons. The first is associated with the fact that this basin was
the target of major changes in land use between the 1980s and 2000s, going from predominantly
agricultural to a high degree of urbanization. The second denotes the ability of the SWAT model to
represent hydrological processes in densely urbanized basins, even though it is a model developed
for hydrological analysis of rural basins. However, it is still observed that the modeling performance
for the calibration stage of this sub-basin was below sub-basins such as Bananal, Gama, and even
Torto that did not have significant changes in their land use. These differences are associated with
the reasons already mentioned above and also with problems associated with the uncertainties in the
flow-monitoring station reported by CAESB.

In this sense, it is worth noting that the dynamics of water flow in urban basins occur more intensely
when taking into account the runoff that occurs in different ways depending on the type of soil cover
and the degree of urbanization to which the basin may be subjected. Therefore, studies that advance
in the discretization of these patterns’ area are important to improve the model and, consequently,
its capacity for the hydrological representation of the basin. We consider this an important factor in
the Riacho Fundo sub-basin, since, despite the high degree of urbanization, different patterns may
be present in the basin and the typological patterns presented in the SWAT model take into account
only three categories, which are areas of low, medium, or high urban density. Factors such as these
may explain the drop in the model’s performance in the representation of the Riacho Fundo sub-basin,
especially when taking into account other factors such as the uncertainties associated with the flow
monitoring and the modeling process.

In the Torto sub-basin (Figure 10), there is a decrease in the model efficiency for the first (NSE = 0.56;
PBIAS = −11.90) and second validation periods (NSE = 0.60; PBIAS = −23.50) in comparison with
the calibration period (NSE = 0.72; PBIAS = −9.40). It is worth mentioning that from 2013 onwards,
the observed flow decreased year by year, a period that coincided with the increase in demands that
have occurred since the end of the 2010s, as pointed out by [3]. The sub-basin that presented the lowest
performance was the Cabeça de Veado (Figure 11), which presented a lower NSE value in calibration
between the modeled sub-basins. However, even so, we see that the results obtained are reasonable
and show a good simulation for the basin.

It is important to highlight that the Torto sub-basin, as well as the Cabeça de Veado sub-basin,
are water supply sub-basins, and that the drop in the performance of the model can be linked to the
input data of water withdrawal that occur in a monthly stage, affecting periods that do not have similar
behavior to the historical average.

A summary of the results obtained for each simulated sub-basin is found in Table 7, and the
detailed aspects of hydrological modeling of the gauged sub basins as range parameter values and the
sub basins water balances are in Appendix A.
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Table 7. Summary of metrics for each modeled sub-basin.

Step (Period) Metrics
Sub-Basins

Bananal Gama Riacho Fundo Torto Cabeça de Veado

Calibration
(1982–2000)

NSE 0.76 0.85 0.68 0.72 0.64
PBIAS −0.60 −0.80 0.40 −9.40 3.20

P-factor 0.62 0.88 0.79 0.59 0.77
R-factor 0.59 0.86 0.84 0.54 0.84

First Validation
(2001–2010)

NSE 0.80 0.86 0.49 0.56 0.63
PBIAS 2.00 −6.10 13.80 11.90 7.70

P-factor 0.81 0.84 0.77 0.31 0.82
R-factor 0.84 0.82 0.80 0.40 0.92

Second Validation
(2011–2017)

NSE 0.92 0.74 0.60 0.60 0.57
PBIAS −2.30 −17.10 −3.30 −23.50 8.50

P-factor 0.96 0.65 0.77 0.33 0.38
R-factor 0.83 0.81 0.88 0.58 0.49

A general analysis of the water balance plots of the Paranoá tributary sub-basins obtained
throughout the study period (Table 8) shows that the largest contribution impact to the flow in the
river channel is from the base flow. These values are very expressive for sub-basins that have a high
percentage of land use in preserved areas such as Bananal (83%), Gama (71%), Torto (92%), and Cabeça
de Veado (88%). The sub-basin that had the lowest percentage of base runoff contribution to the final
flow was the Riacho Fundo. Although it is still significant that the contribution of the base runoff

represented only 38% of the total, explained by the high percentage of urbanization, this aspect ended
up emphasizing the surface runoff process that was predominant in the sub-basin, representing 62%
of the water produced in the sub-basin. This result is relevant because it shows the importance of
maintaining natural areas, as once maintained, important processes for maintaining the flows in the
sub-basins and, consequently, contributions to Paranoá Lake are guaranteed.

Table 8. Water balance ratios for modeled sub-basins.

Water Balance Ratios Bananal Gama Riacho Fundo Torto Cabeça de Veado

Streamflow/rainfall 0.40 0.35 0.46 0.33 0.22
Baseflow/total flow 0.83 0.71 0.38 0.92 0.88

Surface runoff/total flow 0.17 0.29 0.62 0.08 0.12
Percolation/rainfall 0.31 0.19 0.17 0.2 0.15

Deep recharge/rainfall 0.02 0.01 0.01 0.01 0.01
Evapotranspiration/rainfall 0.59 0.64 0.55 0.68 0.78

4.2. Ungauged Sub-Basins

From the results obtained through the modeling of the monitored basins, we estimated the inflow
to the Paranoá Lake of the unmonitored areas on the basis of the specific flow of areas with similar
characteristics, i.e., flow per area. The contribution of the ungauged urban area was determined on the
basis of the modeled results for the Riacho Fundo sub-basin, and the contribution of the east side of
the PLB was determined on the basis of the modeled data for the Gama sub-basin. The determination
of each water balance process of the ungauged areas can be found in Appendix A.

4.3. Paranoá Lake Inflows and Outflows

The monitored sub-basins affluent to Paranoá Lake were simulated and calibrated with the SWAT
model. We performed the sum of the observed and simulated flows that contribute to Paranoá Lake
and calculated the model evaluation metrics (Figure 12) in order to evaluate the results generated by
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the modeling process in the adjustment of the sub-basin simulations, since the calibrated flows would
be used in determining the lake water balance.

The results in Figure 12 show that the SWAT model performed well in determining the flow rates
of the sub-basins affluent to Paranoá Lake; this can be observed through the values of NSE and PBIAS
in the three evaluated periods. The major differences, however, were in the rainy periods over the
years when the model underestimated affluent flows and other years when the model overestimated
affluent flows. However, when considering the evaluation periods in general, the SWAT model always
underestimated the affluent flows with PBIAS of −1.9 in the calibration period, −6.8 and −7.5 in the
first and second validation stages, respectively; even so, they are values that allow classification of the
estimates as very good. The differences between the sum of observed gauged flows into Paranoá Lake
and the adjusted flows generated by the SWAT model are shown in Figure 13.
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Figure 13. Error calculated between the sum of affluent monitored flows and affluent calibrated flows
into Paranoá Lake.

We inserted the difference between the Paranoá Lake inflows from the monitored sub-basins and
the calibrated flows generated by the SWAT model shown in Figure 13 in order to provide a more
feasible idea of the error associated with the modeling. It was noticed that the error was concentrated in
the range between ±5 m3/s; however, it can be observed that relevant errors, as observed for the rainy
season in 1990 associated with higher observed flows generated by the model, had the most impact on
the affluent flow of the Torto sub-basin (Figure 10). In addition to this, it is relevant to comment on
the difference for the year 1997, wherein the model presented overestimated flows compared to the
monitored flows.

We point out that a possible cause of the errors obtained for the years 1990 and 1997 could be
the data input related to the water released from the Santa Maria reservoir, which is located in the
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Torto sub-basin. We believe that errors can be introduced due to the that the fact that the water
withdrawal data from the reservoir must be supplied as input to the model as a long-term monthly
average and not a continuous series. The reservoir has an uncontrolled spillway and no other discharge
device, and thus the reservoir operation depends on the water demand, which is dynamic because
it is part of an integrated multiple source system, and the use of monthly long-term averages does
not effectively describe the behavior of the reservoir, impacting the simulated flow rates in the Torto
sub-basin. In spite of that, we consider that this aspect does not impair the use of the model and the
analysis structure developed in this work concerning hydrological aspects, but we emphasize that
some attention should be paid to rainy seasons when the reservoir may behave differently from that
observed in the long-term data, which can result in underestimations in extraordinary rainy seasons
when the reservoir reaches its maximum capacity and spills, as well as overestimations in rainy seasons
with below-average rainfall when no outflow is generated.

Even with differences such as those mentioned, the average error observed over the studied
period was −0.48 m3/s, a negligible error when compared to the average tributary flow to Paranoá
Lake (observed affluent flow = 11.04 m3/s; simulated affluent flow = 11.52 m3/s).

The other flows that contribute to Paranoá Lake correspond to ungauged areas (urban areas
and east side, Figure 14) and the wastewater treatment plants WTP Norte and WTP Sul (Figure 15).
The average contribution over a long period was 2.072 m3/s for the urban area and 1.341 m3/s for the
east side.
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The contribution of wastewater treatment plants is of great relevance to the lake, with flow rates
higher than Cabeça de Veado sub-basin, for example. The long-term average for each one is 0.402 m3/s
for WTP Brasilia Norte and 0.906 m3/s for WTP Brasília Sul. Visibly, in 1992, after improvements in
sewage treatment, the stations had their capacity increased and therefore there was an increase in the
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flows of WTPs that were launched in Paranoá Lake, mainly of WTP Brasília Sul, the biggest treatment
plant in the city of Brasília.

The system’s water losses occur through two main ways involving the outflows that result from the
operation of the Paranoá Lake dam, which are divided into spillway and turbine flows. The operation
of the reservoir is predominantly for power generation, which registers a historical average turbine
flow of around 14.7 m3/s, the only exceptions being the lowering of the lake level for the damping of
flows in rainy seasons and the opening of the spillway when the water level reaches the maximum
operational level. The average historical flow is about 1.9 m3/s, with average monthly flows exceeding
50 m3/s already recorded.

4.4. Paranoá Lake Water Balance

The annual water balance of Paranoá Lake (Figure 16) from 1982 to 2017 shows in 1983 the highest
flow in the series, reaching about 30 m3/s. The years 1986, 1996, 1999, and 2003 presented the lowest
values with values close to 13 m3/s. These years were marked by lower total rainfall throughout the
basin, directly affecting the water balance of Paranoá Lake.
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From 2004, there was a certain regularity in the water balance, ranging from 20 m3/s to 25 m3/s.
This period lasted until the year 2014, with an approximate value of 27 m3/s. From 2015, there was a
gradual decrease in the values, reaching 15 m3/s in the year 2017.

The observed residues reflect the uncertainties associated with the process of determining all
input and output flows of the lake water balance. The main sources of uncertainties in the inflows for
the determination of the water balance are in the inflows from ungauged areas, such as urban areas
and the east side, estimated due to the extrapolation of the results obtained in the modeled basins.
The uncertainty is also associated with the modeling process, which is reduced with the calibration
process. Other sources of uncertainties may be associated with the outflows of Paranoá Lake. As it
has an old dam, the turbine flow is estimated from the generated electricity and the spillway has no
known flow-rate equation. In addition, the only measured flow after the Paranoá Lake dam is that of
a fluviometric station approximately 2 km downstream and with an unstable key curve due to flow
measurement difficulties in the deactivated section since 1999.

In addition to these uncertainties, there are three main sources of errors related to the storage of
water in the lake. The first is associated with level measurements, a second is related to the amplitude
of temperature changes that may increase and decrease the water density, and the last is associated with
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the bathymetry data available and the possibility of inaccurate volume determination [47]. However,
there are other sources of errors that are difficult to compute such as those intrinsic to measuring
instruments; the location of measuring stations, operation, and data recording; and coefficients for
evaporation [7].

The long-term water balance (Table 9) with average inflows and outflows of the Paranoá Lake
calculated over the studied period corresponded to a flow of 18.073 m3/s.

Approximately 80% of the water inflow to Paranoá Lake is gauged, either by the outflow from the
sub-basins or indirectly by rainfall throughout the basin. The ungauged areas correspond to about
20%. The result shown in Table 9 is presented graphically in Figure 17. The blue arrows represent inlet
flows into Paranoá Lake, while the red arrows represent system water losses.

As noted in Figure 17, the largest average long-term contribution is the Riacho Fundo sub-basin
with approximately 4.5 m3/s, representing almost 25% of the contribution to Paranoá Lake alone.

The Bananal and Gama sub-basins have very close contributions; this is due to the similarity
between their contribution areas (Bananal = 125.76 km2, Gama = 136.55 km2), as well as the presence
of large areas of preserved native vegetation. The Torto sub-basin also fits into this profile, however,
they have two fundamental differences, the first is that it has a larger area of about 233.4 km2 and the
second is that it is one of the sub-basins that are a source of public supply in the DF, which justifies
long-term inflows close to that observed in Gama and Bananal.

As for the contributions of the WTPs, together they reach a long-term flow close to the evaporated
flow in the water surface, around 1.3 m3/s.

The unmonitored areas, urban and east side, had long-term flows estimated at 2.072 m3/s
and 1.341 m3/s, respectively, which represents an important portion for maintaining the volume of
Paranoá Lake.

Finally, the total loss of water from the Paranoá Lake is given by the sum of the dam outflow and
the evaporated flow, which together correspond to 18.073 m3/s. The dam outflow can also be divided
into turbine flow with 14.771 m3/s and spillway flow with 1.950 m3/s.

Table 9. Mean water balance of Paranoá Lake (1982–2017).

Source Inflows (m3/s) (%)

Bananal 2.085 11.5
Gama 2.228 12.3

Riacho Fundo 4.458 24.7
Torto 2.409 13.3

Cabeça de Veado 0.337 1.9
Urban ungauged areas 2.072 11.5

East side ungauged areas 1.341 7.4
WTP Brasilia Norte 0.402 2.2

WTP Brasilia Sul 0.906 5.0
Rainfall 1.835 10.2

Total 18.073 100.0

Sink Outflow (m3/s) (%)

Dam—turbined flow 14.771 81.7
Dam—spillway flow 1.950 10.8

Evaporation 1.352 7.5
Total 18.073 100.0
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5. Discussion

Despite the performance of some studies on sub-basins affluent to Lake Paranoá [17],
the elaboration of a long-term study, which considers the entire area affluent to Lake Paranoá,
with all its contribution area and its physical and meteorological characteristics, still has not been
accomplished. In this context, we conducted a study that integrated, through the focus of mathematical
modeling, physical, meteorological, and hydrological data for more than 30 years. Using the SWAT
model, we approached the characteristics of the sub-basins affluent to Lake Paranoá and reproduced
their behavior efficiently and satisfactorily over the last three decades. Our approach considered that
the analysis should be carried out in three different periods considering the availability of data. Then,
we considered the first period used for the calibration of the model from 1982 to 2000, and then the
validation was carried out in two stages, with the first performed with data from 2001 to 2010 and
the second from 2011 to 2017. It is an approach that differs slightly from those traditionally adopted
that consider only two periods, such as calibration and verification. However, the division in these
periods considers a dynamics of the use of the basin that occurred in these periods, with the first period
(calibration—1982 to 2000) being a time marked by intense occupation of the basin, the second period
(first verification—2001 to 2010) being a transition period between stabilization, and finally the third
period (second verification—2011 to 2017) being a time when the achievement of stability is observed.

In these three periods (1982–2000, 2001–2010, 2011–2017), we sought to evaluate the performance of
the model in the representation of the hydrological processes of the sub-basins affluent to Paranoá Lake.
We carried out the calibration using NSE and PBIAS as evaluation metrics [45], and SUFI-2 as a method
of parameter optimization, considering its efficiency for optimization of distributed models [24,26].
With this approach, the model performed well in the representation of the basins. The parameter
optimization and the uncertainty analysis were executed within the SWAT-Cup, wherein the SUFI-2
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algorithm was applied. We observed that after three SUFFI-2 iterations, with 1900 runs in each iteration,
the modelling reached good performance, shown in this work. The uncertainty analysis regarding the
parameters was conducted with the evaluation of the P-factor and R-factor values at the end of each
iteration to have P-factor values close to 0 and R-factor values below 1.5, as well as reducing the 95PPU
range [24–26,40–43].

We plotted the parameter values and the respective NSE value for the three SUFI-2 iterations
performed in the Swat-Cup to observe the relationship parameter objective function, with a substantial
improvement being achieved in the modeling process, showing the effectiveness of the use of SWAT in
the sub-basins affluent to Lake Paranoá. We found that the parameters selected as the most sensitive in
each sub-basin are reported in several studies in other Brazilian basins [18,27–29,46], but also different
places around the world [1,10,22,25,26,42].

For the study of the water balance of Paranoá Lake, the contribution of the areas of direct drainage
to the lake needed to be estimated because they represent a significant part of the contributing area.
This was done on the basis of the modeled sub-basins, using as criteria the fact that the directly
contributing area has similar behavior of the modeled areas with similar characteristics [6] such
as slopes and land use/land cover. This approach was used because it would not be possible to
calibrate/validate the modelling.

Extrapolating information from gauged basins to ungauged areas is always a challenge in
hydrology. When a basin dataset is lacking, neighboring basins with similar characteristics can be
used as a parameter for the estimates. The similarity between gauged and ungauged basins can be
established from a comparison of physical factors [6]. An alternative is to integrate various pieces of
information about reservoirs in SWAT in order to model the basin–lake set, however, as discussed
previously, there is a limitation of the model in receiving a dynamic reservoir dataset, i.e., a series
of operation data of the reservoirs (turbine and spillage flows), and it is allows only the insertion of
historical monthly flows into the model. This limitation may directly affect the water balance due
to factors such as extreme weather events, the size of the reservoir, and the dynamics of flow outlet
operation, and thus it can introduce difficulties for reservoir management decision making. For this
reason, we applied the SWAT model to all gauged sub-basins and then carried out the water balance,
considering the dynamics of the reservoir’s operation, as we understand that this is the most feasible
way to analyze basins with this level of complexity.

6. Conclusions

This paper carried out a study to determine the water balance of Paranoá Lake. The SWAT model
was used in the hydrological study of each affluent sub-basin. After the calibration and validation
steps of the gauged sub-basins, we estimated the contributing flows from ungauged areas.

It was the first time that the extensive monitored tributary flow database (35 years) was used
in the modeling of PLB. The study was also a pioneer in using hydrological modeling data in the
representation of affluent flows from ungauged affluent basins. The results generated from the
hydrological modeling showed good performance of the SWAT model, even in the Riacho Fundo
sub-basin, which has a high degree of urbanization, confirming that the model can also be used for the
estimation of hydrological processes for urban basins.

The results generated by the SWAT model showed the importance of the base flow for the
maintenance of the flows in each sub-basin and consequently for Paranoá Lake. Thus, anthropogenic
interventions in the basin that increase impermeabilization, as has been occurring in recent years,
should be avoided, as this will dramatically change the hydrological processes, and it will certainly
affect the flow regime of each sub-basin and, consequently, Paranoá Lake.

We believe that the improvement achieved in the simulation of the contributing basins to the
lake using the SWAT model will improve the water management of the lake and its hydrological
basin, a very important contribution considering the growing importance of the lake as a water supply
source. One important modelling aspect observed is the flow discharge from reservoirs, as occurs with
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the sub-basins of Torto and Cabeça de Veado. In the current SWAT version, data input is based on
long-term monthly averages and not on time series data; thus, even if continuous flow monitored
data is available, these data must be converted to historical averages and inserted into the model.
This aspect of the model certainly has an impact on the efficiency of the model in representing such
basins since the long-term monthly average may not be representative in years of extreme events,
notably in lakes such as the Paranoa, with a small range of permitted stage variation (1 m).

The Paranoá Lake water balance was performed on the basis of the continuity equation integrating
the results generated for each area affluent to the lake. This approach proved to be effective in
both diagnosing the hydrological characteristics of each sub-basin and calculating the long-term
water balance in Paranoá Lake, as well as allowing future water management studies by performing
simulations with different occupation scenarios, which is very dynamic due to the urban expansion
into the PLB.

Analysis over time identified the Riacho Fundo sub-basin as the largest contribution to Paranoá
Lake, representing about 24% of the total flow that reaches into the lake. From the analyzed period,
the years with the lowest water balance were the years 1986, 1996, 1999, and 2003, which are associated
with smaller annual rainfall. The determination of the inlet water volumes into Paranoá Lake is very
important in the management of the lake, both in terms of water balance aspects for the allocation
of each service and in terms of aspects of water quality management. Considering the problems in
evaluating the lake surface water outflows and the large population growth and consequent land use
change in the basin, we believe that hydrological modeling is essential for water management scenarios.

On the basis of the results obtained in this study, we were able to verify that this type of
analysis—one that is associated with the hydrological modeling of the affluent basins as a support for
understanding the effect of possible changes that may occur in the PLB and the effects of such changes
in the water balance of the lake, a system subjected to multiple uses with already severe restrictions
on water level variation—can be used in the Brazilian Federal District for water source management
improvement purposes, as well as in the study of other urban lake basins.
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Appendix A

Table A1. Range values for calibration in modelled sub-basins.

Parameter
Bananal Gama Riacho Fundo Torto Cabeça de Veado

Min Max Min Max Min Max Min Max Min Max

r_CN2.mgt 0.03 0.20 −0.14 0.16 −0.14 0.16 −0.2 −0.025 0.06 0.34
v__ALPHA_BF.gw 0.2 0.7 0.40 0.80 0.6 1 0.29 0.9 0.09 0.84
v__GW_DELAY.gw 270 446 77 246 71 257 126 293 325 500

v__GWQMN.gw 11,232 33,699 1281 3842 2490 4567 1803 4257 1173 3724
v__GW_REVAP.gw 0.07 0.15 0.00 0.10 0.06 0.14 0.01 0.09 0.07 0.14

v__ESCO.hru 0.60 1.00 0.60 0.91 0.002 0.67 0.6 1.00 0.42 0.71
v__ALPHA_BNK.rte 0.28 0.60 0.02 0.59 0 0.32 0.2 0.76 0.36 0.66
r__SOL_AWC().sol −0.03 0.21 0.20 0.41 −0.16 0.3 0.17 0.52 −0.20 0.00

r__SOL_K().sol 0.08 1.00 0.00 0.80 −1.8 −0.93 0.06 0.8 0.09 1.59
r__SOL_BD().sol −0.50 −0.67 −0.78 −0.48 −0.75 −0.6 −0.6 −0.33 −0.93 −0.63
v__SHALLST.gw 22,284 40,762 22,030 37,633 0 23,592 28,824 50,000 0 14,638

v__GWHT.gw 2 12 4.52 13.51 7 18 0 7.2 4.30 17.62
v__DEEPST.gw 13,727 41,183 18,906 32,550 35,204 50,000 0 16,182 10,607 31,823

v__ANION_EXCL.sol 0.4 1 0.67 1.00 0.01 0.43 0.5 0.98 0.29 0.73
v__REVAPMN.gw 7 198.5 22 174 95 285 0 178 158 474
v__SURLAG.bsn 9 19 13 20 0.05 8.80 13.30 20.5 0.44 10.84
v__CANMX.hru 0 26 0.00 32.90 0 29 0 27 0 33
v__CH_N2.rte 0.1 0.24 −0.01 0.12 0.04 0.15 0.05 0.18 0.05 0.16
v__CH_K2.rte −0.01 162.3 142 302 −0.01 150 −0.01 190 83 250

Table A2. Water balance sub-basin processes for modeled sub-basins.

Hydrologic Process

Sub-Basins

Bananal Gama Riacho Fundo Torto Cabeça de Veado

(mm) (m3/s) (mm) (m3/s) (mm) (m3/s) (mm) (m3/s) (mm) (m3/s)

Precipitation 1337.2 5.33 1392.2 6.03 1449.4 9.81 1271 9.41 1438.3 9.41
Evapotranspiration 782.5 3.12 894.8 3.87 790.9 5.35 863.4 6.39 934.8 6.39

Surface runoff 90.83 0.36 138.06 0.6 404.68 2.74 31.94 0.24 42.09 0.24
Lateral flow 60.57 0.24 87.13 0.38 11.65 0.08 137.9 1.02 104.77 1.02

Percolation to the shallow aquifer 410.49 1.64 270.26 1.17 270.26 1.17 256.47 1.9 373.06 1.9
Revap from shallow aquifer 227.66 0.91 85.15 0.37 85.15 0.37 74.94 0.55 33.31 0.2

Return flow 227.66 1.56 256.74 1.11 256.74 1.11 243.65 1.8 354.41 1.8
Recharge to deep aquifer 390 0.08 13.51 0.06 13.51 0.06 12.82 0.09 18.65 0.09

Area (km2) 125.79 136.55 213. 41 233.4 30

Table A3. Water balance processes for ungauged areas.

Hydrologic Process

Ungauged Areas

Urban Areas Eastern Side

(mm) (m3/s) (mm) (m3/s)

Precipitation 1449.4 5.82 1392.2 4.12
Evapotranspiration 790.9 3.18 894.8 2.65

Surface runoff 404.68 1.63 138.06 0.41
Lateral flow 11.65 0.05 87.13 0.26

Percolation to the shallow aquifer 244.55 0.98 270.26 0.8
Revap from shallow aquifer 132.27 0.53 85.15 0.25

Return flow 232.33 0.93 256.74 0.76
Recharge to deep aquifer 12.23 0.05 13.51 0.04

Area (km2) 126.07 93.29
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