

UNIVERSDADE DE BRASÍLIA INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS GRADUAÇÃO EM GEOLOGIA

ASSINATURA ISOTÓPICA DA FORMAÇÃO BARREIRAS NA BORDA LESTE DA BACIA DO MARAJÓ E PLATAFORMA BRAGANTINA: FONTES E IMPLICAÇÕES PARA A PALEOGEOGRAFIA DA AMAZÔNIA ORIENTAL NO MIOCENO

Dissertação de mestrado nº 472

Gabriel Ribeiro Moizinho

Brasília-DF 2021

Ficha catalográfica elaborada automaticamente, com os dados fornecidos pelo(a) autor(a)

Γ

MM715a	Moizinho, Gabriel Ribeiro Assinatura isotópica da Formação Barreiras na borda leste da Bacia do Marajó e Plataforma Bragantina: fontes e implicações para a paleogeografia da Amazônia Oriental no Mioceno / Gabriel Ribeiro Moizinho; orientador Lucieth Cruz Vieira Brasília, 2021. p.
	Dissertação (Mestrado - Mestrado em Geologia) Universidade de Brasília, 2021.
	1. Formação Barreiras. 2. Isótopos Sr-Nd. 3. Idades U-Pb. 4. Proveniência. I. Cruz Vieira, Lucieth, orient. II. Título.

ASSINATURA ISOTÓPICA DA FORMAÇÃO BARREIRAS NA BORDA LESTE DA BACIA DO MARAJÓ E PLATAFORMA BRAGANTINA: FONTES E IMPLICAÇÕES PARA A PALEOGEOGRAFIA DA AMAZÔNIA ORIENTAL NO MIOCENO

Dissertação submetida à Coordenação do Programa de Pós-Graduação em Geologia, Universidade de Brasília, como requisito para obtenção de grau de Mestre em Geologia.

Gabriel Ribeiro Moizinho

Área de Concentração: Geoquímica

Orientadora

Prof. Dra. Lucieth Cruz Vieira

Comissão Examinadora

Prof. Dra. Ana Maria Góes

Prof. Dr. Guilherme de Oliveira Gonçalves

AGRADECIMENTOS

Em primeiro lugar eu agradeço aos meus pais, Delma Ribeiro de Matos e Valdir de Lima Moizinho pelo seu amor e incentivo e me oferecer todas as condições possíveis para a realização deste trabalho.

A minha companheira Ellen Rose, pelo apoio incondicional na minha trajetória acadêmica.

Ao programa de Pós-Graduação em Geologia e Laboratório de Estudos Geodinâmicos, Geocronológicos e Ambientais da Universidade de Brasília pela infraestrutura e apoio financeiro.

A minha orientadora Prof. Dra. Lucieth Cruz Vieira pela confiança e orientação desde trabalhos de iniciação científica durante a graduação.

Aos co-autores do artigo, os professores Dr. Afonso Nogueira, Dr. Roberto Ventura e Dr. Martin Roddaz pelas contribuições e ensinamentos.

A equipe do LEGGA, especialmente aos professores Elton Luis Dantas, Gustavo Viegas e Natalia Hauser, técnicos Jeane Chaves e Luís Osório, e pesquisadores Michele Andriolli, Mariana Rodrigues, Arnold García Zalaveta e Andre Alvim.

A banca avaliadora deste volume, composta pelos professores Guilherme de Oliveira Gonçalves (UnB) e Ana Maria Góes (USP)

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brasil (CAPES) – Código de Financiamento 001

RESUMO

Médio Depósitos siliciclásticos do Mioceno denominados litoestratigraficamente como Formação Barreiras são amplamente distribuídos em bacias sedimentares e plataformas estruturais ao longo da margem equatorial brasileira. Nesta época, a região Amazônica testemunhou a implementação maior sistema fluvial planetário, o Rio Amazonas. Esta concomitância levou alguns autores a relacionar este expressivo aporte sedimentar a progradação do sistema Barreiras. Análises isotópicas indicam que os sedimentos transportados pelo rio Amazonas são originados de processos de erosão e dissolução de rochas andinas, com uma menor contribuição de escudos cratônicos. Esta dissertação investiga a proveniência dos depósitos da Formação Barreiras na borda leste da Bacia do Marajó e na Plataforma Bragantina, nordeste do estado do Pará, através da análise da composição isotópica de Sr-Sm-Nd em rocha total e idades U-Pb em zircão detrítico. Os resultados mostram que a assinatura isotópica Sr-Sm-Nd dos depósitos da Formação Barreiras na costa da Amazônia Oriental descarta qualquer similaridade geoquímica com as partículas em suspensão transportadas pelo Rio Amazonas e seus tributários. Além disso, valores de ϵ Nd(0) <-13, característico dos sedimentos siliclásticos miocenos de regiões da Foz do Rio Amazonas não são observados nas rochas da Formação Barreiras. Por fim, idades U-Pb em zircão detrítico dos depósitos Barreiras também não apresentam a população de idades do Mesozoico-Cenozoico característica das rochas Andinas. Dessa maneira, o aumento do aporte sedimentar siliciclástico no Mioceno Médio na Bacia do Marajó e Plataforma Bragantina não foi resultado da transcontinentalização do Rio Amazonas. Em vez disso, os espectros resultantes nos permitem distinguir duas populações de idade comum: Riaciano-Orosiriano e Neoproterozóico Superior. Contribuições menores de fontes argueanas e mesoproterozóicas também são registradas. Na borda leste da Bacia do Marajó a distribuição de idades é caracterizada principalmente por picos no Orosiriano (1921 Ma) e Ediacariano (588 Ma), refletindo diretamente a distribuição de idades da Formação Ipixuna, do Cretáceo. Já na Plataforma Bragantina, o padrão de idade mostra forte semelhança com rochas sedimentares fanerozoicas das bacias do Parnaíba e Grajaú e rochas cristalinas do Cráton São Luís e Faixa Gurupi. Os

mecanismos que desencadearam o soerguimento da porção sul da Plataforma Bragantina culminando na erosão de bacias sedimentares que alimentaram o sistema de deltas da Formação Barreiras não é claro.

Palavras-chave: Formação Barreiras, U-P geocronologia, Isótopos Sr-Sm-Nd, Proveniência

ABSTRACT

Middle Miocene siliciclastic deposits known as the Barreiras Formation are widespread along onshore sedimentary basins and structural platforms of the Eastern Amazonia coast. In about the same time, this region witnessed the onset of the world's largest drainage system, the transcontinental Amazon River. This concomitance has led some authors to link this massive siliciclastic input to the Barreiras system progradation. Several isotopic works have shown that the sediments transported by the Amazon River are originated from processes of erosion and dissolution in the Andean Mountain Range, with a smaller contribution of cratonic shields rocks. This study investigates the isotopic provenance of the Barreiras Formation deposits in the Eastern Marajó Basin and Bragantina Platform and its implications for the geodynamics setting in Eastern Amazonia during the Neogene. We carried Sr-Sm-Nd whole-rock isotopic composition and U-Pb in detrital zircon analyses. The results show the Middle Miocene Barreiras Formation in the onshore compartments located southeast from the Amazon Fan have $\varepsilon Nd(0)$ and ${}^{87}Sr/{}^{86}Sr$ isotopic composition that dismiss any contribution of Andean sources. U-Pb ages in detrital zircon also do not show Andean populations. Instead, the resulting spectra enable us to distinguish two common age populations: Rhyacian-Orosirian and Late Neoproterozoic. Minor contributions are observed from Archean and Mesoproterozoic sources as well. In the eastern Marajó Basin the age distribution is characterized mainly by Orosirian (1921 Ma) and Ediacaran (588 Ma) ages, mirroring the age distribution of the Cretaceous Ipixuna Formation. Meanwhile, in the Bragantina Platform the age pattern shows a strong similarity with phanerozoic sedimentary rocks from the Parnaíba and Grajaú basins, and metamorphic-granitic rocks from the São Luís Craton and Gurupi Belt. The mechanism that triggered the uplift of the southern portion of the Bragantina Platform culminating in the erosion of the aforementioned source lands of the Barreiras fan delta is not clear.

Keywords: Barreiras Formation, Miocene, Eastern Amazonia, U-Pb geochronology, Sr-Sm-Nd isotopes

AGRADECIMENTOS	3	
RESUMO	4	
ABSTRACT	6	
SUMÁRIO	7	
LISTA DE FIGURAS	10	
LISTA DE TABELAS 1		
CAPÍTULO 1 - INTRODUÇÃO	14	
1.1. ESTRUTURA DA DISSERTAÇÃO	14	
1.2. APRESENTAÇÃO	14	
1.3. OBJETIVOS	16	
1.4. ÁREA DE ESTUDO	17	
CAPÍTULO 2 – FUNDAMENTAÇÃO TEÓRICA	18	
2.1. PROVENIENCIA SEDIMENTAR	18	
2.1. PROVENIENCIA SEDIMENTAR		
2.1. PROVENIENCIA SEDIMENTAR	18 19 	
2.1. PROVENIENCIA SEDIMENTAR 2.2. U-Pb EM ZIRCÃO DETRÍTICO Princípios do método U-Pb Idades U-Pb em zircão detrítico		
 2.1. PROVENIENCIA SEDIMENTAR. 2.2. U-Pb EM ZIRCÃO DETRÍTICO. Princípios do método U-Pb. Idades U-Pb em zircão detrítico		
 2.1. PROVENIENCIA SEDIMENTAR. 2.2. U-Pb EM ZIRCÃO DETRÍTICO. Princípios do método U-Pb. Idades U-Pb em zircão detrítico 2.3. Sr-Sm-Nd EM ROCHA TOTAL Princípios do método Sm-Nd. 		
 2.1. PROVENIENCIA SEDIMENTAR. 2.2. U-Pb EM ZIRCÃO DETRÍTICO. Princípios do método U-Pb. Idades U-Pb em zircão detrítico 2.3. Sr-Sm-Nd EM ROCHA TOTAL Princípios do método Sm-Nd. Evolução dos isótopos de Nd e idades modelo (T_{DM}). 		
 2.1. PROVENIENCIA SEDIMENTAR. 2.2. U-Pb EM ZIRCÃO DETRÍTICO Princípios do método U-Pb Idades U-Pb em zircão detrítico 2.3. Sr-Sm-Nd EM ROCHA TOTAL Princípios do método Sm-Nd Evolução dos isótopos de Nd e idades modelo (T_{DM}) Princípios do método Rb-Sr 		
 2.1. PROVENIENCIA SEDIMENTAR. 2.2. U-Pb EM ZIRCÃO DETRÍTICO. Princípios do método U-Pb. Idades U-Pb em zircão detrítico 2.3. Sr-Sm-Nd EM ROCHA TOTAL Princípios do método Sm-Nd. Evolução dos isótopos de Nd e idades modelo (T_{DM}). Princípios do método Rb-Sr. Evolução crustal dos isótopos de Rb-Sr. 		
 2.1. PROVENIENCIA SEDIMENTAR. 2.2. U-Pb EM ZIRCÃO DETRÍTICO		
 2.1. PROVENIENCIA SEDIMENTAR. 2.2. U-Pb EM ZIRCÃO DETRÍTICO Princípios do método U-Pb Idades U-Pb em zircão detrítico 2.3. Sr-Sm-Nd EM ROCHA TOTAL Princípios do método Sm-Nd Evolução dos isótopos de Nd e idades modelo (Т_{DM}) Princípios do método Rb-Sr Evolução crustal dos isótopos de Rb-Sr CAPÍTULO 3 – MATERIAIS E MÉTODOS 3.1. AMOSTRAGEM 		
 2.1. PROVENIENCIA SEDIMENTAR. 2.2. U-Pb EM ZIRCÃO DETRÍTICO. Princípios do método U-Pb. Idades U-Pb em zircão detrítico 2.3. Sr-Sm-Nd EM ROCHA TOTAL Princípios do método Sm-Nd. Evolução dos isótopos de Nd e idades modelo (T_{DM}). Princípios do método Rb-Sr. Evolução crustal dos isótopos de Rb-Sr. CAPÍTULO 3 – MATERIAIS E MÉTODOS. 3.1. AMOSTRAGEM 3.2. U-Pb EM ZIRCÃO DETRÍTICO. 		
 2.1. PROVENIENCIA SEDIMENTAR. 2.2. U-Pb EM ZIRCÃO DETRÍTICO		
 2.1. PROVENIENCIA SEDIMENTAR. 2.2. U-Pb EM ZIRCÃO DETRÍTICO		

SUMÁRIO

Filtragem dos dados	29
3.3. Sr-Nd EM ROCHA TOTAL	29
Preparação das amostras	29
Digestão com ácidos	29
Separação cromatográfica	30
Instrumentação	30
CAPÍTULO 4 – CONTEXTO GEOLÓGICO	31
4.1. ARCABOUÇO TECTÔNICO	31
4.2. ASPECTOS ESTRATIGRÁFICOS DO NEÓGENO-QUATERNÁRIO NA BORDA LESTE DA BACIA	۹DO
MARAJÓ E PLATAFORMA BRAGANTINA	35
Formação Marajó	35
Formação Pirabas	36
Formação Barreiras	38
Unidade Pós-Barreiras	39
4.3. HIPÓTESES DE PROVENIÊNCIA	40
CAPÍTULO 5 – RESULTADOS E DISCUSSÕES	43
Abstract	44
5.1. Introduction	45
5.2. Geological setting	47
5.2.1. Tectonic and geodynamic setting	47
5.2.2. Miocene-Pleistocene stratigraphic framework of the Eastern Marajó Basin and Bragantina	
Platform	48
5.3. Materials and methods	51
5.3.1. Materials	51
5.3.2. Whole-rock Sr-Nd Isotopes	55
5.3.3. Detrital zircon geochronological analysis	56
5.4. Results	58
5.4.1. Sr-Sm-Nd Isotopes	58
5.4.2 U-Pb detrital zircons	59
5.5. Discussion	63
5.5.1. Provenance interpretations	63
5.5.2. Provenance evolution of the Eastern Amazon coast	71

5.6. Conclusions	
Acknowledgments	
CAPÍTULO 6 - CONCLUSÕES	
CAPÍTULO 7 - REFERENCIAS	
ANEXOS	

LISTA DE FIGURAS

Figura 1. Mapa de localização da área de estudo indicando a localização dos perfis
litoestratigráficos 17
Figura 2.1 Ilustração esquemática do ciclo sedimentar que atua na determinação da
composição de sedimentos. (Modificado de Morton & Hallsworth, 1994) 18
Figura 2.2 Diagrama de concórdia de Wetherill (1956) utilizados para cálculo das idades U-Pb
Figura 2.3 Diagrama de estimativa de densidade Kernel (Kernel Density Estimation – KDE)
utilizados para a visualização das distribuições de idades LI-Ph em populações de zirção
detrítico (Vermeesch 2012)
Figura 2.4 A) Evolução dos isótopos de Nd no manto e crosta B) Variação do parâmetro Nd
em rochas do manto e crosta em relação ao reservatório condrítico uniforme (CHUR).
Modificado de (DePaolo e Wasseburg 1976a, 1976b) 24
Figura 4.1. Arquitetura geológica da costa da Amazônia Oriental. Quadrado vermelho indica
a região abordada nesse estudo. Seção X-Y esta localizada no mapa (modificado de Soares Jr.
et al. 2011 e Nogueira et al. 2021) 32
Figura 4.2. Diagrama da distribuição no tempo geológico das principais províncias e unidades
do embasamento dos cratons Amazonico e São Luís e faixas Gurupi e Araguaia. Para
simplificação, as unidades estratigráficas do Craton Amazônico não foram individualizadas.
Caixas em amarelo representam unidades metassedimentares de baixo grau. Fontes:
Tassinari & Macambira (1999); Moura et al. (2008); Gorayeb et al. (2013); Klein et al. (2020b).
Figura 4.3. A) Mapa geológico da área estudada com os nomes das unidades estratigráficas.
B) Cartas estratigráficas das seções X-X' e Y-Y'
Figura 4.4. Diagramas de rosetas das paleocorrentes da Formação Barreiras medidas por
Nogueira et al. (2021) na borda leste da Bacia do Marajó e Plataforma Bragantina

Figure 5.5 A) ⁸⁷Sr/⁸⁶Sr vs ɛNd(0) values of analyzed samples compared with several relevant source areas and modern suspended particulate material. Quaternary Ecuadorian lavas from Barragán et al. (1988); Mesozoic and Neogene volcanic rocks from Rogers & Hawkesworth (1989) and Kay et al. (1994). Data for Cenozoic sedimentary rocks of the Central depression, Altiplano, Oriental Cordillera, and Subandean Zone from Pinto (2003). SPM from the Tapajós,

Negro, Urucara, and Trompetas rivers (Allègre et al. 1996). Madeira and Solimões rivers from Viers et al. (2008) and Amazon river from (Rousseau et al. 2019). B) εNd(0) vs f(Sm/Nd) (fractional deviation of ¹⁴⁷Sm/¹⁴⁴Nd from CHUR (Chondritic Uniform Reservoir). Fields are defined by SPM in the Amazon River and its tributaries, and muds and pelitic rocks from the Amazon subaqueous delta and submarine fan during the Miocene (modified after Allègre et al., 1996; McDaniel et al., 1997; Figueiredo et al., 2009; Hatting, 2014; Hoorn et al., 2017; van Soelen et al., 2017). The black circle represents the signature of sediments by the establishment of the transcontinental Amazon River.

Figure 5.6. Map of the northern South America showing the main geological provinces and the ages of their most recent metamorphic events. Modified and adapted after Cordani et al., (2000), Chew et al., (2008, 2011), Bahlburg et al., (2009, 2011), and Spiking et al., (2016). 1-Santos et al., (2000); 2- Klein et al., (2020a,b), 3- Moura et al., (2008); Gorayeb et al., (2013), Ribeiro & Alves, (2017); 4- Hollanda et al., (2018), 5- Nascimento et al., (2007); 6 - Bahlburg et al. (2009); Chew et al. (2007, 2008); Cordani et al. (2000); Priem et al. (1989); Restrepo-Pace et al. (1997); Teixeira et al. (1989). The red rectangle indicates the location of the study area.

LISTA DE TABELAS

 Table 1. Sr-Sm-Nd isotopes results for the Barreiras Formation and possible reworked

 sedimentary units.

 Error! Bookmark not defined.

1.1. ESTRUTURA DA DISSERTAÇÃO

A dissertação está organizada em 7 capítulos. O Capítulo 1 abrange a parte introdutória onde consta a apresentação da problemática, objetivos e área de estudo. O Capítulo 2 apresenta uma fundamentação teórica a respeito dos sistemas isotópicos escolhidos e sua aplicação em estudos de proveniência sedimentar. O Capítulo 3 descreve a metodologia de preparação das amostras e os procedimentos analíticos utilizados. O Capítulo 4 subsidia o contexto geológico da área de trabalho. Os resultados são apresentados e discutidos no Capítulo 5 na forma de artigo científico. Por fim, o Capítulo 6 sintetiza as conclusões e perspectivas abordadas pela pesquisa desenvolvida.

1.2. APRESENTAÇÃO

O Mioceno foi um período geologicamente bastante ativo na placa Sul-Americana, tendo testemunhado importantes eventos como as maiores variações eustáticas desde o Cenomaniano (Haq et al., 1987; Miller et al., 2005), soerguimento da cadeia de montanhas dos Andes (p.ex. Gregory-Wodzicki, 2000; Garzione et al., 2008), e desenvolvimento do maior sistema fluvial do planeta, o Rio Amazonas (p.ex. Damuth e Kumar, 1975; Castro et al., 1978; Soares et al., 2007; Figueiredo et al., 2009; Stewart et al., 2016; van Soelen et al., 2017; Cruz et al., 2019). Além disso, estudos de termocronologia e geomorfologia indicam que diversas regiões cratônicas e bacias fanerozoicas intracontinentais brasileiras, consideradas tectonicamente estáveis, passaram por episódios de soerguimento regional e denudação durante o Mioceno (Almeida et al., 2000; Bezerra e Vita-Finzi, 2000; Nóbrega et al., 2005; Morais Neto et al., 2008, 2009; Jelinek et al., 2014; Rodríguez Tribaldos et al., 2017).

Depósitos siliciclásticos miocenos denominados litoestratigraficamente como Formação Barreiras são amplamente distribuídos nas bacias costeiras das margens equatorial e leste brasileiras (Mabesoone et al., 1972, 1991; Bigarella et al., 1975; Arai, 1998, 1997, 2006; Rossetti et al., 2013; Dias et al., 2020). Na margem equatorial, a deposição da Formação Barreiras foi concomitante com a implementação do Rio Amazonas moderno em torno de 9.5-8.0 Ma (Roddaz et al., 2005; Mapes et al., 2006; Figueiredo et al., 2009; Hoorn et al., 2010, 2017; Shephard et al., 2010; Rozo et al., 2012; Nogueira et al., 2013; Guimarães et al., 2013; Gorini et al., 2014; Sacek, 2014; Stewart et al., 2016; van Soelen et al., 2017; Cruz et al., 2019). Esta contemporaneidade levou diversos autores a associarem a progradação de depósitos siliciclásticos na Amazônia Oriental ao gigante aporte sedimentar na foz do Rio Amazonas (Damuth e Kumar, 1975; Castro et al., 1978; Soares et al., 2007; Figueiredo et al., 2009; Stewart et al., 2016; van Soelen et al., 2017; Cruz et al., 2019). Estes trabalhos foram baseados exclusivamente em dados de testemunhos coletados na bacia offshore da Foz do Amazonas, localizada centenas de quilômetros da costa. Entretanto, essa interpretação foi extrapolada para diversos compartimentos tectônicos da Amazônia Oriental que não se incluem na história evolutiva da Foz do Amazonas (Latrubesse et al., 2007; Figueiredo et al., 2010; Gorini et al., 2014).

A borda leste da Bacia do Marajó e a Plataforma Bragantina, nordeste do Estado do Pará, Brasil são compartimentos onshore e apresentam excelentes exposições dos depósitos miocenos da Formação Barreiras. Nesta região, a Formação Barreiras foi extensivamente estudada ao longo dos últimos 20 anos, principalmente no que tange o seu reconhecimento estratigráfico, paleontológico e faciológico (Rossetti, 2001; Rossetti e Góes, 2004; Rossetti et al., 1989, 2013). A assembleia de minerais pesados da Formação Barreiras nestes compartimentos sugere fontes metassedimentares, graníticas e sedimentares retrabalhadas (Góes et al., 1981; Rossetti et al., 1989; Rossetti e Góes, 2004; Nascimento e Góes, 2005; Truckenbrodt et al., 2005). Entretanto, a delimitação das fontes específicas da Formação Barreiras ainda é uma guestão de debate. Recentemente, Nogueira et al. (2021) atribuíram a progradação da Formação Barreiras nestes compartimentos a queda do nível do mar no Langaniano (15-10 Ma). Este evento teria exposto áreas cratônicas localizadas na porção na porção leste e sudeste da Plataforma Bragantina a processos de denudação que alimentaram o sistema de legues aluviais da Formação Barreiras no Mioceno.

A assinatura isotópica de rochas sedimentares fornece informações valiosas sobre proveniência e processos de transporte de sedimentos. Zircões detríticos registram as idades de cristalização das potenciais áreas fonte pelas quais sistemas de drenagem capturam e transportam sedimentos (Fedo et al., 2003; Dickinson and Gehrels, 2008; Gehrels, 2014). Dessa forma, a datação U-Pb em zircão detrítico

permite fazer uma associação direta entre as idades de zircão em uma rocha sedimentar e as idades das rochas do embasamento. Adicionalmente, os isótopos de Sr-Sm-Nd são importantes traçadores de fluxo de material em suspensão em rios e possibilitam a comparação das assinaturas isotópicas entre os materiais erodidos e as rochas denudadas que lhe deram origem (Allègre et al., 1996, Roddaz, 2005). Nesse contexto, essa dissertação apresenta as primeiras análises isotópicas de U-Pb em zircão detrítico e Sr-Sm-Nd dos sedimentos siliclásticos miocenos depositados em compartimentos *onshore* da Amazônia Oriental e fornecem uma nova contribuição para a interpretação da origem do sistema Barreiras.

1.3. OBJETIVOS

O objetivo geral desta dissertação foi investigar a proveniência da Formação Barreiras, em compartimentos *onshore* da margem equatorial norte, e sua possível relação com a transcontinentalização do Rio Amazonas no Mioceno. Dessa forma, foi realizado um estudo integrado relacionando a assinatura isotópica de U-Pb em zircão detrítico e Sr-Nd em rocha total com dados faciológicos e medidas de paleocorrente

Dentro deste escopo foram traçados os seguintes objetivos específicos:

- Descrever as fácies de seções representativas da Formação Barreiras na área de estudo;
- Determinação de idades U-Pb em zircão detrítico e composição isotópica Sr-Nd em rocha total;
- Identificar as prováveis rochas fontes de sedimentos para a Formação Barreiras na porção leste da Bacia do Marajó e Plataforma Bragantina
- Propor um modelo de reconstrução paleogeográfica para o Mioceno da Amazônia Oriental

1.4. ÁREA DE ESTUDO

A área de estudo esta localizada no leste da Amazônia, nordeste do estado do Pará (PA). Compreende regiões dos municípios de Belém, Castanhal, Salinópolis, Primavera, São Miguel do Guamá e Ourém (Figura 1). As sessões estudadas ocorrem principalmente ao longo de cortes de estrada e falésias costeiras com exceção da sucessão 6, e entre os municípios de Primavera e Capanema, observada na pedreira B-17 de propriedade da CIBRASA S.A.

Figura 1. Mapa de localização da área de estudo indicando a localização dos perfis litoestratigráficos

2.1. PROVENIÊNCIA SEDIMENTAR

Os sedimentos siliciclásticos são originados a partir da erosão de rochas ígneas, metamórficas e sedimentares, e posteriormente introduzidos no sistema de dispersão sedimentar onde em algum momento serão acumulados em bacias sedimentares. Estudos de proveniência tem como principal objetivo caracterizar as rochas fontes fornecedoras de sedimentos, e assim reconstruir a sua trajetória (Morton, 1991; Morton et al. 2005). Desta forma, sedimentos siliciclásticos trazem informações não apenas das rochas das quais eles foram extraídos, mas também de todo conjunto de processos do ciclo sedimentar (Fig. 2.1)

Figura 2.1 Ilustração esquemática do ciclo sedimentar que atua na determinação da composição de sedimentos. (Modificado de Morton & Hallsworth, 1994).

Os trabalhos pioneiros em proveniência sedimentar foram baseados principalmente em parâmetros sedimentológicos, dentre eles: análise da composição de arenitos em diagramas QFL (Dickinson & Suczek, 1979), análise da assembleia de minerais pesados (Morton & Hallsworth, 1999), caracterização morfológica de grãos de guartzo e minerais pesados, análise da assembleia de argilo-minerais (Liu et al. 2010 e referências nele contida) e análise de paleocorrente (Tucker 2003). Estes métodos permitiram avanços significativos na interpretação do contexto tectônico em que a unidade sedimentar foi depositada, tipo (ígnea, metamórfica, sedimentar) e localização da rocha fonte. Entretanto, com o desenvolvimento de métodos analíticos isotópicos e geocronológicos a identificação da fonte primária de sedimentos pode ser apontada. Desde então a aplicação de isótopos radiogênicos tem se tornado praticamente uma ferramenta indispensável em estudos de proveniência de rochas sedimentares (Schoene, 2014). Idades U-Pb em zircão detrítico e isótopos de Sr-Sm-Nd em sedimentos siliciclásticos retém as características da rocha fonte e podem ser usados para distinguir com maior precisão diferentes fontes de sedimentos.

2.2. U-Pb EM ZIRCÃO DETRÍTICO

O zircão (ZrSiO₄) é um mineral de alta estabilidade aos processos físicos e químicos naturais, sendo capaz de resistir a vários ciclos sedimentares. Consequentemente, o zircão é um mineral acessório bastante comum em arenitos, especialmente quartzo-arenitos, que compõem a maior parte dos depósitos sedimentares siliciclásticos. Desta forma, cristais de zircão podem ser considerados como "cápsulas do tempo" carregando as informações químicas da sua fonte primaria.

A abordagem principal da avaliação de proveniência sedimentar utilizando a ferramenta de datação de zircão detrítico pelo método U-Pb é estabelecer a idade absoluta dos grãos individuais para correlacioná-los ao embasamento que serviu como fonte potencial de sedimentos. Muitas vezes, as áreas fontes podem apresentar grande complexidade geológica e, normalmente, envolvem contribuições de materiais reciclados (Morton et al. 1991).

Princípios do método U-Pb

Durante os estágios iniciais de cristalização o U⁴⁺ pode substituir Zr⁴⁺ na estrutura cristalina do zircão, devido ao seu raio iônico similar (r Zr⁴⁺ = 0.80 Å; r U⁴⁺ = 0.97 Å). Por outro lado, o Pb²⁺ é excluído da estrutura mineral durante a cristalização devido ao seu raio iônico maior (r Pb²⁺= 1.18-1.29 Å, r Pb⁴⁺ = 0.78-0.94 Å) e baixa carga (Faure et al., 2005).

A datação radiométrica através do sistema isotópico U-Pb se baseia na presença de dois isótopos com características químicas idênticas, mas diferentes taxas de decaimento radioativo. O urânio apresenta três isótopos: 234 U, 235 U e 238 U sendo que o 234 U é produto intermediário da série de decaimento do 238 U. As outras espécies 235 U e 238 U decaem para dois diferentes isótopos de Pb (207 Pb e 206 Pb respectivamente) via emissão de partículas α - e β -. Além destes, o Pb apresenta mais dois isótopos o 204 Pb e 208 Pb. O 204 Pb é a única espécie não radiogênica e por isso é tratado como isótopo estável de referência, sendo utilizado para corrigir o teor de chumbo comum da amostra ou branco analítico (Schoene, 2014).

A idade do geocronometro é uma função da razão entre isótopo pai e isótopo filho, constante de decaimento radioativo e o conteúdo inicial do isótopo filho. Para o sistema U-Pb então tem-se que:

$$\frac{206_{Pb}}{204_{Pb}} = \frac{206_{Pb_i}}{204_{Pb}} + \frac{238_U}{204_{Pb}} (e^{-\lambda t} - 1)$$
(1)
$$\frac{207_{Pb}}{204_{Pb}} = \frac{207_{Pb_i}}{204_{Pb}} + \frac{235_U}{204_{Pb}} (e^{-\lambda t} - 1)$$
(2)

Um dos principais motivos para o sucesso da aplicação desse sistema para datação de rochas é devido ao decaimento emparelhado das séries do ²³⁸U e ²³⁵U. Esta redundância integrada fornece um "teste interno" dos resultados o que torna o método indiscutivelmente a técnica de datação mais robusta e confiável (Davis et al., 2003; Faure et al., 2005).

Estas equações formam a base do diagrama Concórdia (Wetherill, 1956, 1966; Tera e Wasserburg, 1972a), onde se plota a razão 206 Pb/ 238 U versus a razão 207 Pb/ 235 U de uma mesma amostra (Figura 2.2A). A curva paramétrica da concórdia é então representada pela série de soluções das equações acima para os mesmos valores de idade *t*, que é não linear devido a diferença na meia vida dos isótopos de ²³⁸U e ²³⁵U, levando a uma produção muito mais rápida de ²⁰⁷Pb em relação a ²⁰⁶Pb. Análises que plotam ao longo da curva da concórdia correspondem a uma mesma idade *t* tanto para ²⁰⁷Pb/²³⁵U quanto para ²⁰⁶Pb/²³⁸U. Se ambas as idades ²⁰⁷Pb/²³⁵U e ²⁰⁶Pb/²³⁸U correspondem, a análise é dita como concordante. Todas as análises em cristais de zircão que permaneceram como um sistema fechado desde a cristalização plotam sobre a curva da concórdia.

Cada análise é representada no diagrama de concórdia por uma elipse. Seu formato depende diretamente da concentração de U e Pb do zircão analisado. Eventos metamórficos ou hidrotemais podem "abrir" a estrutura cristalina do zircão, resultando na perca de Pb. A linha que melhor define os dados discordantes é chamada de discórdia. A presença de ²⁰⁴Pb, chumbo comum, no zircão também influência no formato da elipse de uma análise (Fig. 2.2).

Figura 2.2 Diagrama de concórdia de Wetherill (1956) utilizados para cálculo das idades U-Pb

Idades U-Pb em zircão detrítico

Ao contrário de análises U-Pb em zircões de rochas ígneas e metamórficas, na qual o objetivo é datar um único evento geológico, em estudos de proveniência buscase caracterizar populações de idades. Uma única amostra de arenito pode conter centenas de milhares de grãos de zircão detrítico. Portanto, é crucial analisar um número elevado de grãos de zircão de forma a representar de maneira fiel todas as populações em uma rocha. Apesar da popularidade do método, não existe um consenso na literatura em relação ao número ideal de grãos analisados para estudos de proveniência. Para Dodson et al. (1988), pelo menos 59 grãos aleatoriamente selecionados são necessários para reduzir a probabilidade de se perder 5% de uma determinada população. Vermeesch (2004) afirma que 117 grãos deveriam ser analisados e Andersen (2005) entre 35-70 grãos.

Devido ao grande número de análises em uma única amostra a principal forma de apresentação e interpretação das idades de zircão detrítico é realizada através de métodos estatísticos (Hurford et al., 1984; Gehrels, 2000; Ludwig, 2003; Sircombe, 2004; Andersen 2005; Vermeesch, 2012; Zimmerman et al., 2015). Atualmente, o método mais difundido para a visualização de populações de grãos detríticos é o KDE, (*Kernel Density Estimation*; Vermeesch, 2012). Neste método a probabilidade relativa das diferentes idades em uma população é expressa em picos e vales no gráfico (Fig. 2.3).

Figura 2.3 Diagrama de estimativa de densidade Kernel (Kernel Density Estimation – KDE) utilizados para a visualização das distribuições de idades U-Pb em populações de zircão detrítico (Vermeesch 2012).

2.3. Sr-Sm-Nd EM ROCHA TOTAL

Devido a natureza imóvel dos ETR's processos de erosão, transporte e diagênese praticamente não afetam o sistema Sm-Nd. Portanto as razões medidas e os parâmetros calculados em rochas sedimentares finas refletem com fidelidade as características isotópicas da rocha fonte (McCulloch e Wasserburg 1978; Lugmair & Marti, 1977; McLennan et al., 1990).

Princípios do método Sm-Nd

Sm e Nd são elementos terras raras (ETR) da série dos lantanídeos comumente encontrados em silicatos, fosfatos e carbonatos formadores de rochas. O Sm apresenta sete isótopos que ocorrem naturalmente. Entre eles apenas o ¹⁴⁷Sm, ¹⁴⁸Sm e ¹⁴⁹Sm são radioativos, entretanto os dois últimos têm uma meia vida tão longa (10¹⁶ anos) que não são capazes de produzir variações mensuráveis nos isótopos radiogênicos ¹⁴⁴Nd e ¹⁴⁵Nd. Contudo, a meia vida do ¹⁴⁷Sm é suficientemente curta (106 Ga), para produzir pequenas diferenças mensuráveis na abundância do isótopo radiogênico ¹⁴³Nd. O método Sm-Nd se baseia na desintegração do isótopo radioativo ¹⁴⁷Sm para o isótopo radiogênico ¹⁴³Nd através da emissão espontânea de partículas α (Faure, 1986).

Aplicando a equação fundamental da geocronologia a um sistema fechado a equação que descreve a evolução do sistema isotópico Sm-Nd é:

$$\frac{{}^{143}Nd}{{}^{144}Nd} = \frac{{}^{143}Nd_i}{{}^{144}Nd} + \frac{{}^{147}Sm}{{}^{144}Nd} \left(e^{-\lambda t} - 1 \right)$$
(3)

Evolução dos isótopos de Nd e idades modelo (T_{DM})

A evolução isotópica do Nd na terra é referida ao modelo de evolução do CHUR (Reservatório Condrítico Uniforme) proposto por DePaolo e Wasseburg (1976a, 1976b). Este modelo idealiza que a composição isotópica do Nd do manto evoluiu a partir de um reservatório terrestre uniforme, cuja razão Sm/Nd é equivalente àquela dos meteoritos condríticos (Fig. 2.4a).

Assumindo que a crosta terrestre se forma a partir de material mantélico, um novo pedaço de crosta vai ter a mesma razão Nd/Nd que o manto, entretanto a sua razão Sm/Nd vai ser menor (consequência de o Nd ser mais incompatível e particionar mais para o líquido do que o Sm).

Tendo em conta os valores atuais de 147 Sm/ 144 Nd e 143 Nd/ 144 Nd dos condritos, é possível calcular a razão 143 Nd/ 144 Nd deste material em qualquer momento *t* da evolução da terra e com isso obter uma curva de evolução do Nd através do tempo (Fig. 2.4A).

Figura 2.4 A) Evolução dos isótopos de Nd no manto e crosta B) Variação do parâmetro Nd em rochas do manto e crosta em relação ao reservatório condrítico uniforme (CHUR). Modificado de (DePaolo e Wasseburg 1976a, 1976b).

Durante as primeiras determinações de isótopos de Nd em rochas ígneas terrestres DePaolo e Wasseburg (1976a) observaram que plutons de idade arqueana apresentavam um padrão de evolução $\frac{143_{Nd_i}}{144_{Nd}}$ muito similares aos medidos no CHUR. Estes autores desenvolveram uma notação onde a razão inicial $\frac{143_{Nd_i}}{144_{Nd}}$ é representada em partes por mil (10⁴) em relação a linha de evolução do CHUR denominada de ε Nd (Fig. 2.4b). Matematicamente esta notação é definida como:

$$\varepsilon Nd(t) = \left(\frac{\binom{1^{43}Nd}{^{144}Nd}_{amostra}(t)}{\binom{1^{43}Nd}{^{144}Nd}_{CHUR}(t)} - 1\right) x 10^4$$

onde t indica o tempo em que ε Nd foi calculado.

Valores positivos de ɛNd implicam que o material fonte apresenta razão Sm/Nd mais elevada do que o CHUR, sugerindo uma fonte mantélica emprobecida, enquanto um valor negativo indica que eles foram derivados de fontes mantélicas enriquecidas ou de fusão de rochas crustais que já tinham uma razão Sm/Nd mais baixas do que o CHUR (Figura 2.4b).

A idade modelo de uma rocha (τ) é um conceito apresentado por DePaolo e Wasserburg (1976b) e representa o tempo passado desde que a mesma foi separada de um dos reservatórios uniformes de referência, seja o CHUR ou manto depletado (DM). A idade modelo CHUR descreve o tempo percorrido T = τ desde que a amostra teve uma razão Nd/Nd condrítica, assumindo que o sistema permaneceu fechado. Este modelo é descrito matematicamente como:

$$\tau_{CHUR} = \frac{1}{\lambda} ln \left(\frac{(^{143}Nd/^{144}Nd)_{amostra} - (^{143}Nd/^{144}Nd)_{CHUR}}{(^{147}Sm/^{144}Nd)_{amostra} - (^{147}Sm/^{144}Nd)_{CHUR}} + 1 \right)$$
(4)

Já a idade modelo T_{DM} representa o tempo passado desde que a amostra foi extraída do manto depletado, adquirindo razões ¹⁴⁷Sm/¹⁴⁴Nd e ¹⁴³Nd/¹⁴⁴Nd específicas.

$$\tau_{DM} = \frac{1}{\lambda} ln \left(\frac{(^{143}Nd/^{144}Nd)_{amostra} - (^{143}Nd/^{144}Nd)_{DM}}{(^{147}Sm/^{144}Nd)_{amostra} - (^{147}Sm/^{144}Nd)_{DM}} + 1 \right)$$
(5)

Para a maior parte das rochas ígneas e sedimentares essa idade modelo representa o tempo médio de residência crustal médio, considerando que as rochas são constituídas por materiais de diferentes fontes e com diferentes idades de extração mantélica (Arndt and Goldstein, 1987).

Princípios do método Rb-Sr

O Rubídio é um elemento do grupo 1 dos metais alcalinos e possui dois isótopos que ocorrem naturalmente, ⁸⁵Rb e ⁸⁷Rb. O ⁸⁷Rb é radioativo e decai para ⁸⁷Sr através da emissão de partículas β . Sua constante de decaimento é definida em 1.42x10⁻¹¹ ano⁻¹ (λ) e a meia-vida em 48.8x10⁹ anos (Aldrich et al., 1953, apud Allègre, 2008).

Aplicando a equação fundamental da geocronologia a equação que descreve a evolução do sistema isotópico Rb-Sr é:

$$\frac{{}^{87}Sr}{{}^{86}Sr} = \frac{{}^{87}Sr_i}{{}^{86}Sr} + \frac{{}^{87}Rb}{{}^{86}Sr}(e^{-\lambda t} - 1)$$
(6)

Evolução crustal dos isótopos de Rb-Sr

Os mecanismos de fracionamento dos isótopos de Rb-Sr durante a extração de material mantélico para a crosta são similares ao do sistema Sm-Nd (Allègre, 2008). Entretanto, no sistema Rb-Sr o isótopo pai, ⁸⁷Rb, é o mais incompatível particionando assim para a fase líquida, o contrário do sistema Sm-Nd. Portanto, a concentração Rb na crosta continental é maior do que a de Sr, e consequentemente rochas mais antigas são geralmente caracterizadas por concentrações maiores de ⁸⁷Sr devido ao decaimento de ⁸⁷Rb. Por outro lado, rochas mais juvenis, com material derivado do manto, tendem a apresentar razões ⁸⁷Rb/⁸⁷Sr mais baixas. Por consequência, as razões isotópicas ⁸⁷Sr/⁸⁶Sr são negativamente correlacionadas às razões ¹⁴³Nd/¹⁴⁴Nd.

CAPÍTULO 3 – MATERIAIS E MÉTODOS

3.1. AMOSTRAGEM

Em trabalhos de proveniência sedimentar o conhecimento detalhado das seções/afloramentos onde o material é coletado é fundamental. Ao todo foram estudadas sete seções estratigráficas nas quais foram individualizadas fácies sedimentares por meio da caracterização e descrição de parâmetros como composição, geometria, textura e estruturas sedimentares, conteúdo fossilífero e padrões de paleocorrente dos depósitos sedimentares. Aliado ao entendimento dos processos sedimentares responsáveis pela gênese das fácies, as fácies contemporâneas e cogenéticas foram agrupadas em associações de fácies, proporcionando a interpretação paleoambiental e dos sistemas deposicionais.

Dessa forma, durante a coleta do material buscou-se amostrar diferentes frações granulométricas e fácies sedimentares ao longo do perfil vertical de cada seção estudada, visando assim minimizar os efeitos da segregação natural dos grãos durante o transporte dos sedimentos (Zimmerman *et al.* 2015).

Um total de 21 amostras coletadas ao longo das sete seções estudadas foi para análises em laboratório (Figura 1). Para as análises de U-Pb em zircão detrítico foram selecionadas 14 amostras de arenitos pesando entre 9-12kg. Já para as análises de Sr-Nd foram coletadas 9 amostras de rochas sedimentares finas (argilitos e siltitos) com um peso aproximado de 1kg por amostra.

3.2. U-Pb EM ZIRCÃO DETRÍTICO

Preparação das amostras

Inicialmente as amostras selecionadas foram desagregadas e peneiradas, e a fração menor do que 300µm foi selecionada. Este material então foi bateado visando a pré-concentração dos minerais pesados. O concentrado obtido foi posto para secar sob lâmpada infravermelha e em seguida passado no separador magnético Frantz. Por fim, o concentrado de minerais pesados não magnéticos foi analisado via lupa binocular onde os grãos de zircão detrítico foram separados. Finalmente, 150 grãos

de zircão foram dispostos aleatoriamente em um *mount* de resina epóxi e polidos, de forma a expor as partes internas dos grãos.

Os mounts com os grãos de zircão detrítico foram então imageados em Microscópio Eletrônico de Varredura (MEV) onde imagens de retroespalhamento (*Backscattered – BSE*) foram geradas. Essas imagens permitiram observar a textura e estrutura dos grãos a serem analisados. Segundo Corfu et al. (2003) e Gartner et al. (2013) a utilização de parâmetros morfológicos pode auxiliar na identificação de populações de zircão e na caracterização de processos intrínsecos ao ambiente sedimentar. Além disso, buscou-se também identificar grãos de zircão que apresentem estruturas de núcleo e borda de forma a determinar as zonas de *spot* próprias para datação, evitando análises no limite das zonações internas (Morton et al. 1996; Kosler & Sylvester 2003).

Instrumentação

As análises de U-Pb em zircão detrítico foram realizadas em um espectrômetro de massa MC-ICPMS (*Multicollector Inductively Coupled Plasma Mass Spectrometer*) da fabricante Thermo Finningan, modelo Neptune acoplado a um sistema de ablação a laser Nd-YAG (λ = 213nm) modelo UP-213, da New Wave Research. A configuração dos receptores segue o modelo proposto por Bühn et al. (2009). As análises empregaram um laser spot de 25 µm, frequência 10 Hz, e fluência de ~3.0-3.5 J/cm². Todas as análises incorporaram a aquisição do sinal de background por 20-30 segundos, seguido por 40 segundos de aquisição de dados das amostras. O Zircão GJ1 (Jackson et al., 2004) foi usado como material de referência primário e o Zircão 91500 (Wiedenbeck et al., 1995) como secundário/validação. O método de *bracketing* foi aplicado buscando corrigir *drift* instrumental, aonde duas análises de GJ1 e duas de 91500 são feitas no começo e final a cada 10 amostras analisadas.

Processamento de dados

O processamento de dados e correção do fracionamento induzido pelo laser foram realizadas através do software IOLITE v4.0 (Paton et al., 2011) e VizualAge (Petrus & Kamber, 2012) usando modelagem exponencial e linear. A média ponderada das nossas análises das idades 206 Pb/ 238 U do 91500 foram 1063 ± 10 Ma (2 σ , n = 309),

estando de acordo com a idade recomendada de 1062.4 ± 0.4 Ma (Wiedenbeck et al., 1995). As razões isotópicas e idades foram corrigidas para Pb comum de acordo com o modelo de evolução do Pb terrestre Stacey & Kramers (1975).

Filtragem dos dados

O grau de discordância entre as idades das razões ²⁰⁶Pb/²³⁸U e ²⁰⁷Pb/²⁰⁶Pb é calculado seguindo a equação

$$Disc = \left(1 - \left(\frac{\frac{206Pb}{^{238}U_{Idade}}}{\frac{207Pb}{^{206}Pb}_{Idade}}\right)\right) * 100$$

Idades com grau de discordância maior do que 10% não são consideradas para interpretação.

As idades utilizadas para interpretação foram ²⁰⁶Pb/²³⁸U para zircões com idades menores do 1.5 bilhões de anos e ²⁰⁷Pb/²⁰⁶Pb para zircões mais velhos do que 1.5 bilhões de anos (Spencer et al. 2016).

3.3. Sr-Nd EM ROCHA TOTAL

Preparação das amostras

Antes da preparação química, amostras de arenitos foram secadas a 60°C e peneiradas, separando a fração mais fina do que 63m (fração silte). Argilitos também foram secos 60°C por aproximadamente 12 horas. Em seguidas, todas as amostras foram então pulverizadas em moinho de panela. A metodologia de ataques ácidos e extração de concentrados de Sr-Nd das amostras descritas a seguir segue o protocolo proposto em Gioia & Pimentel (2000).

Digestão com ácidos

- 50-100mg de rocha pulverizada é misturada com 3 gotas de *spike* (mistura enriquecida em ¹⁵⁰Nd), aproximadamente 10 mg cada gota;
- Mistura de 0,5mL HNO₃ concentrado e 3mL HF em recipiente teflon SAVILLEX com amostra, deixar em digestão em estufa por 24 horas à 180°C;

- Novo ataque com ácido com 0,5mL HNO₃ concentrado e 3mL HF em recipiente teflon SAVILLEX com amostra, deixar em digestão em estufa por 3 a 4 dias à 180°C;
- Após dissolução completa e amostra seca, são adicionados 2mL de concentrado de HNO₃;
- Após evaporação completa, 6ml de 6N HCl são adicionados e deixados na estufa por 24 horas à 180 °C. Neste ponto a solução já deve estar absolutamente homogênea. As amostras que não se homogeneizaram são submetidas aos procedimentos anteriores.

Separação cromatográfica

Para a obtenção das concentrações dos isótopos de Sr as amostras digeridas são purificadas em colunas de Teflon preenchidas com 0,5mL de resina Eichrom Sr/50-100 µm. Para a extração de Sm e Nd foram aplicadas técnicas cromatográficas convencionais descritas em Gioia & Pimentel (2000) utilizando-se resina LN-Spec em colunas de Teflon.

Instrumentação

As razões isotópicas foram determinadas no espectrômetro de massa de ionização termal (TIMS) multicoletor da marca Thermo Scientific modelo TRITON Plus. Durante as análises de Nd os dados foram normalizados usando a razão natural ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219. A acurácia das análises foi estimada através de repetidas análises do padrão internacional BHVO-2, aonde a média ponderada da razão ¹⁴³Nd/¹⁴⁴Nd foi de 0.512996 \pm 0.000006 (2SD, n =50), em concordância com o valor recomendado de 0.512986 \pm 0.00001 (2SD, n=10) (Weis et al. 2005). Durante as análises de Sr, os dados foram normalizados usando a razão natural ⁸⁷Sr/⁸⁶Sr = 8.375209. A acurácia das medidas foi checada através da comparação com o padrão NBS-987 (=0.710240; Hodell et al., 2007). Repetidas análises resultaram em uma média ponderada da razão ⁸⁷Sr/⁸⁶Sr de 0.71028 \pm 0.000002 (2SD, n=40), em concordância com o valor recomendado por Hodell et al. (2007).

CAPÍTULO 4 – CONTEXTO GEOLÓGICO

4.1. ARCABOUÇO TECTÔNICO

A Amazônia Oriental corresponde a uma extensa área da margem equatorial brasileira que abrange diversas bacias e plataformas estruturais formadas durante a abertura do Oceano Atlântico Equatorial no Cretáceo (Costa et al., 2002; Soares Jr. et al., 2011). Estes compartimentos incluem as bacias da Foz do Amazonas, do Sistema de Grabens de Marajó (Mexiana, Limoeiro e Cametá), Bragança-Viseu, Grajaú, Barreirinhas, e São Luís e Plataforma Bragantina (Fig. 4.1). A área de estudo desta dissertação esta inserida no contexto do Sistema de Grabens do Marajó e Plataforma Bragantina.

O Sistema de Grabens do Marajó está situado na confluência dos rios Amazonas e Tocantins e cobre uma área de aproximadamente 53,000 km²(Fig. 4.1). A tectônica que deu origem ao rifte do Marajó foi controlada principalmente pela reativação de zonas de cisalhamento e falhas do embasamento durante a quebra do supercontinente Gondwanna, no Cretáceo (Costa et al., 2002; Soares Jr et al., 2011). É delimitado no Oeste e Sudeste pelas bacias do Amazonas, Parnaíba e Grajaú, respectivamente, no Norte pela Bacia da Foz do Amazonas (Costa et al., 2002) e Nordeste pela Plataforma Bragantina (Almaraz, 1977, Nogueira et al., 2021). O Sistema Marajó registra mais de 16.000 metros de sedimentos depositados entre o Cretáceo e Neógeno. A sequência pós rifte inclui na base, depósitos do Cretáceo (arenitos, conglomerados e argilitos) interpretados como fluvio-lacustres das formações Breve (Aptiano-Cenomaniano) e Limoeiro (Cretáceo Superior). Sobrepondo as unidades do Cretáceo encontram-se os depósitos de arenitos e argilitos da Formação Marajó, depositada entre o Eoceno e o Oligoceno. Por fim, depósitos das Formações Barreiras e Pós Barreiras marcam o registro sedimentar do Mioceno e Quaternário.

Localizada na porção nordeste do estado do Pará a Plataforma Bragantina é limitada pela Bacia Bragança-Viseu a Leste, Arco do Tocantins a sudeste e Bacia do Marajó a Oeste. Soerguida desde o Siluriano, essa plataforma se manteve como um sítio erosivo/não deposicional até a transição Oligoceno-Mioceno quando regime de tectônica intraplaca passou a atuar na região (Costa et al., 1996; Soares Jr. et al. 2011).

31

Figura 4.1. Arquitetura geológica da costa da Amazônia Oriental. Quadrado vermelho indica a região abordada nesse estudo. Seção X-Y esta localizada no mapa (modificado de Soares Jr. et al. 2011 e Nogueira et al. 2021).

Esse evento gerou subsidência de blocos tectônicos e formação de grabens e semigabrens orientados na direção NW-SE. Concomitantemente, eventos transgressivos favoreceram a deposição de carbonatos marinhos da Formação Pirabas (Costa et al., 1996, 2002; Rossetti & Góes, 2004; Soares Jr. et al., 2011). Diferente da Bacia do Marajó, a Plataforma Bragantina contém apenas 150 metros de

registro sedimentar depositados entre o Siluriano e o Neógeno. Os depósitos supostamente do Siluriano, denominados como arenitos do Guamá, são interpretados como depósitos de plataforma marinha rasa (*foreshore/shoreface*). Litoestratigraficamente podem ser correlacionados as fácies distais da Formação Ipu, Bacia do Parnaíba, e com os arenitos da Formação Inhamundá, Bacia do Amazonas (Oliveira & Truckenbrodt, 2019).

O embasamento cristalino circundante da Bacia do Marajó e Plataforma Bragantina é constituído por um conjunto fragmentos continentais aglutinados representados pelos cratons Amazônico e São Luís, bem como pelos cinturões orogênicos neoproterozóicos do Ciclo Brasiliano-Panafricano Gurupi e Araguaia (Alkmim & Martins Neto, 2001; Klein et al. 2020a). A figura 4.2 apresenta uma síntese simplificada da distribuição, ao longo do tempo geológico, das principais unidades do embasamento cristalino relacionadas a área de estudo.

O Craton Amazônico, localizado na porção norte do continente Sul-Americano, é o resultado de processos de acreção e retrabalhamento crustal de diversos cinturões móveis desenvolvidos ao redor de um núcleo primitivo no final do Mesoproterozóico (Teixeira et al., 1989). Este compartimento é divido em seis grandes províncias geocronológicas: Amazônia Central (>2.3 Ga); Maroni-Itacaiúnas (2.2-1.95 Ga); Venturai-Tapajós (1.95-1.80 Ga); Rio Negro-Juruena (1.8-1.55 Ga); Rondoniano-São Ignácio (1.55-1.3 Ga) e Sunsás (1.3-1.0 Ga) (Tassinari & Macambira, 1999).

O craton São Luís consiste em rochas metavulcano-sedimentares, granitóides alcalinos, e associações de vulcânicas félsicas a intermediárias paleoproterozoicas (Fig 4.1 e 4.2). Estas rochas são interpretadas como formadas em arcos de ilha e arcos continentais associados a orogenia Riaciana (Klein et al., 2020a). Pequenos corpos de granitos colisionais e pós orogênicos e rochas vulcânicas também são encontradas (Costa, 2000; Palheta et al., 2009). O Cinturão Gurupi compreende uma faixa de dobramentos de direção NW-SE desenvolvida na borda sudoeste do Craton

Figura 4.2. Diagrama da distribuição no tempo geológico das principais províncias e unidades do embasamento dos cratons Amazonico e São Luís e faixas Gurupi e Araguaia. Para simplificação, as unidades estratigráficas do Craton Amazônico não foram individualizadas. Caixas em amarelo representam unidades metassedimentares de baixo grau. Fontes: Tassinari & Macambira (1999); Moura et al. (2008); Gorayeb et al. (2013); Klein et al. (2020b).

São Francisco durante o ciclo orogênico Brasiliano no Neoproterozoico/Cambriano Inferior (Almeida et al. 1976; Klein et al., 2005; Palheta et al., 2009; Klein et al., 2020a). A maioria de suas unidades de embasamento são associadas as rochas do Riaciano do Craton São Luís mencionadas anteriormente. Unidades neoproterozóicas associadas com a orogênia brasiliana incluem rochas metassedimentares, alcalinas anorogênicas/pre-orogenicas e intrusões graníticas peraluminosas (Klein et al., 2005a; Palheta et al., 2009; Lopes et al., 2016).

Localizado na porção central do Brasil, o Cinturão Araguaia corresponde a uma faixa de dobramentos de trend N-S com aproximadamente 1200km de comprimento desenvolvida durante o ciclo orogênico Brasiliano (Pimentel and Fuck, 1992; Fuck et al., 2001). É constituído por sucessões de pelitos e psamitos metamorfizados, rochas máficas e ultramáficas, e intrusões graníticas de idade arqueana, paleoproterozoica e neoproterozoica (Fig. 4.2).

4.2. ASPECTOS ESTRATIGRÁFICOS DO NEÓGENO-QUATERNÁRIO NA BORDA LESTE DA BACIA DO MARAJÓ E PLATAFORMA BRAGANTINA

O registro sedimentar do Neógeno da borda leste da Bacia do Marajó e Plataforma Bragantina está formalmente distribuído nas formações Marajó, Pirabas, Barreiras, e depósitos Pós-Barreiras (Fig. 4.3A)

Formação Marajó

A Formação Marajó (Eoceno-Mioceno Inferior) ocorre apenas na Bacia do Marajó e seus afloramentos são restritos as porções basais de falésias costeiras na Ilha de
Outeiro (Fig 4.3B). Dados de subsuperfície indicam que essa unidade alcança até 300m de espessura e sobrepõe os depósitos cretáceos da Formação Limoeiro/Ipixuna. As rochas da Formação Marajó consistem em arenitos fino a médio e argilitos com níveis cimentados por carbonato contendo um rico conteúdo fossilífero, incluindo foraminíferos, corais, briozoários, moluscos, ostracodes, espículas de esponja, dentes de peixe e fragmentos de osso. A assembleia fossilífera e abundância de sedimentos siliciclásticos sugerem um ambiente deposicional costeiro/plataformal (Petri, 1954).

Formação Pirabas

Durante a transição Oligoceno-Mioceno Inferior variações eustáticas globais e reativações tectônicas regionais resultaram na transgressão do mar em grandes distâncias continentais (~150 quilomêtros) favorecendo a deposição das rochas carbonáticas da Formação Pirabas na Plataforma Bragantina (Costa et al., 1996; Soares Jr. et al., 2011; Rossetti et al., 2013; Nogueira et al., 2021). A Formação Pirabas consiste em aproximadamente 140 metros de sucessão mista (entre siliciclásticos e carbonáticos) que sobrepõem o embasamento cristalino précambriano e os depósitos Silurianos da Formação do Guamá na Plataforma Bragantina.

A idade de deposição da Formação Pirabas é definida pela presença do gastrópode *Orthaulax pugnax* (Ferreira 1982), foraminíferos relacionados as zonas N2 à N5 (Petri, 1957), e palinomórfos (Leite, 2004). A ocorrência do *Crassoretitriletes vanraadshoovenii* à aproximadamente 1 metro acima da última camada de carbonato na praia de Atalaia indica interdigitação com a Formação Barreiras, sugerindo assim uma idade Mioceno-Médio para a Formação Pirabas (Nogueira et al., 2021). Esta unidade é interpretada como depósitos de plataforma marinha, planície de maré e laguna (Góes et al., 1990; Aguilera et al., 2014; Nogueira e Nogueira, 2017).

Figura 4.3. A) Mapa geológico da área estudada com os nomes das unidades estratigráficas. B) Cartas estratigráficas das seções X-X' e Y-Y'.

Formação Barreiras

O registro sedimentar da Formação Barreiras na área de estudo é caracterizado por argilitos, arenitos e, localmente, conglomerados intensamente intemperizados. Suas melhores exposições ocorrem ao longo de falésias costeiras, cortes de estrada e pedreiras. Estes depósitos são interpretados como formados em uma variedade de ambientes sedimentares, desde leques aluviais a estuários (Rossetti et al., 1989; Rossetti, 2001; Rossetti et al., 2013). De forma geral, as fácies costeiras são mais bem preservadas, enquanto as fácies aluviais mais proximais são encontradas pontualmente na porção sul da Plataforma Bragantina, sobrepondo diretamente rochas metassedimentares do Cinturão Gurupi (Rossetti et al., 1989). A ocorrência de *Crassoretitriletes vanraadshooveni* na base da Formação Barreiras indica uma idade de deposição no Mioceno Médio (Leite et al., 1997 a,b).

A análise da assembleia de minerais pesados nos sedimentos da Formação Barreiras na borda leste da Bacia do Marajó e Plataforma Bragantina indicam alta concentração de estaurolita, cianita, silimanita, turmalina, zircão e rutilo. A proporção de estaurolita aumenta continente adentro, principalmente nas fácies de leques aluviais que sobrepõem rochas metassedimentares do cinturão Gurupi, porção sul da Plataforma Bragantina (Rossetti et al., 1989; Rossetti & Góes, 2004; Nascimento & Góes, 2005; Truckenbrodt et al., 2005; James et al. 2018). Estes autores também sugerem como fontes rochas graníticas e sedimentares do Cráton São Luís e Bacia do Grajaú, respectivamente. Nogueira et al. (2021) em uma compilação de dados já publicados com novos levantamentos estratigráficos propuseram um modelo paleoambiental/paleogeográfico aonde a progradação dos depósitos da Formação Barreiras teria sido o resultado exlsuvio da queda do nível do mar entre o Langhiano e o início do Tortoniano (~16 -10 Ma). A análise de direções de paleocorrente sugere fontes localizadas a sul e a sudeste da Bacia do Marajó e Plataforma Bragantina, respectivamente (Fig 4.4).

Figura 4.4. Diagramas de rosetas das paleocorrentes da Formação Barreiras medidas por Nogueira et al. (2021) na borda leste da Bacia do Marajó e Plataforma Bragantina.

Unidade Pós-Barreiras

A unidade Pós-Barreiras consiste em arenitos depositados durante dois eventos de sedimentação distintos, informalmente dividido em Pós-Barreiras I e II (Tatumi et al., 2008). Os sedimentos basais do Pós-Barreiras I são constituídos por aproximadamente 10m de arenitos ferruginosos friáveis intercalados com camadas de argilitos bioturbados. Estes depósitos são sobrepostos discordantemente pelos sedimentos da unidade Pós-Barreiras II, caracterizados por 2 a 3 metros de arenitos finos (Rossetti et al., 1989). A espessura dos depósitos do Pós-Barreiras depende de compartimento tectônico, variando de algumas dezenas a centenas de metros na Bacia do Marajó (Miranda et al., 2009).

4.3. HIPÓTESES DE PROVENIÊNCIA

As potenciais fontes de sedimento para os depósitos da Formação Barreiras incluem as rochas pré-cambrianas do embasamento cristalino (crátons Amazônico e São Luís e cinturões Gurupi e Araguaia), rochas sedimentares fanerozoicas das Bacias do Parnaíba e Grajaú, e rochas magmáticas e sedimentares dos Andes Centrais (Fig. 4.5).

Diversos autores têm demonstrado que as composições isotópicas de Nd dos sedimentos transportados pelo Rio Amazonas e seus tributários são uma excelente ferramenta para tracar as fontes de sedimentos e reconstruir paleodrenagens (Basu et al., 1990; Allègre et al., 1996; Roddaz et al., 2005; Horbe et al., 2014; Bayon et al., 2015; Rousseau et al., 2019). Sedimentos em suspensão em rios que drenam terrenos cratônicos (p.ex. Rio Negro) são caracterizados por valores de εNd(0) mais radiogênicos (<-15) (Allègre et al., 1996; Cordani & Sato, 1999; Bayon et al., 2015) e idades modelo TDM em torno de 1.75-3.3 Ga. Por outro lado, os Andes são constituídos por rochas magmáticas e sedimentares fanerozoicas, desta maneira os materiais em suspensão em rios que drenam estes terrenos apresentam valores de ϵ Nd(0) menos radiogênicos (>-12,1) e idades modelo mais novas do que 1.6 Ga (Basu et al., 1990; Viers et al., 2008). Bons exemplos que refletem este comportamento são os rios Solimões (-8,9 a -9,9), Madeira (-10,8 a -12,1) e Madre de Dios (-8.02 a -11.55). Os sedimentos que chegam hoje no delta do Rio Amazonas apresentam valores de ENd(0) entre -10,5 e -10,7 (Bayon et al., 2015). Devido a natureza imóvel dos ETR's processos de erosão, transporte e diagênese praticamente não afetam o sistema Sm-Nd, sendo assim as considerações a respeito dos materiais em suspensão podem ser aplicadas a rochas sedimentares (McLennan et al., 1992). Desta forma, rochas sedimentares cujo sedimentos foram fornecidos por regiões cratônicas apresentam valores de ε Nd(0) entre -14,5 e -25 enquanto que rochas com sedimentos derivados dos Andes tem valores mais positivos que -13,8 (Roddaz et al., 2005; Figueiredo et al., 2009; Hoorn et al., 2017).

De maneira similar, idades U-Pb em zircão detrítico de sedimentos andinos apresentam distribuições de idade que contrastam radicalmente com os demais terrenos da porção Norte da América do Sul (Perez et al., 2016; Louterbach et al., 2017; Mason et al., 2019) (Fig. 4.5). Os Andes são caracterizados por idades U-Pb

do Fanerozoico (<550 Ma), principalmente entre Mesozoico e o Cenozoico (Martin-Gambojav & Winkler, 2008; DeCelles et al., 2011; Horton et al., 2015, 2016; Spikings et al., 2016). Por outro lado, como apresentado na Seção 4.1, todas as unidades do embasamento cristalino da Amazônia Oriental apresentam idades pré-cambrianas (Figs. 4.2 e 4.5).

Figura 4.5 Mapa da porção Norte da América do Sul ilustrando as principais potenciais fontes de sedimentos para o sistema Barreiras na Amazonia Oriental (modificado de Cordani et al., 2000, Chew et al., 2008, 2011, Bahlburg et al., 2009,

2011, eSpiking et al., 2016). 1- Santos et al., (2000); 2- Klein et al., (2020a,b), 3-Moura et al., (2008); Gorayeb et al., (2013), Ribeiro e Alves, (2017); 4- Hollanda et al., (2018), 5- Nascimento et al., (2007); 6 - Bahlburg et al. (2009); Chew et al. (2007, 2008); Cordani et al. (2000); Priem et al. (1989); Restrepo-Pace et al. (1997); Teixeira et al. (1989). Retângulo vermelho indica a área estudada.

Possíveis fontes sedimentares fanerozoicas recicladas incluem as rochas da Bacias do Parnaíba, Grajaú e Marajó, e os arenitos do Guamá (Fig. 4.5). A Bacia do Parnaíba é uma bacia Paleozoica intracratônica do tipo *sag* e ocupa uma área de aproximadamente 600.000 km2 sobrepondo as rochas do Cráton Amazônico, Província Borborema e Cinturão Araguaia. O seu registro sedimentar consiste em 5000 metros de predominantemente sedimentos siliciclásticos. Idades U-Pb em zircão detrítico indicam três principais populações de zircão ao longo da sucessão Paleozoico-Triassico: Paleoproterozoico, Esteniano-Tonian (1.1-0.9 Ga) e Neoproterozóico Superior (Hollanda et al., 2018).

A Bacia do Grajaú, desenvolvida sobre a porção norte da Bacia do Parnaíba, compreende depósitos albianos relacionados a abertura do Oceano Atlântico no Cretáceo. Estes depósitos são denominados como Formação Itaperucu e consistem em arenitos depositados em ambientes fluvio-deltaicos (Rossetti & Góes, 2003). Datação Pb-Pb de zircões detríticos indicam a contribuição de fontes arqueanas (3.1-2.5 Ga), paleoproterozóicas (2.4-1.6 Ga) e neoproterozoicas (993-505 Ma) (Nascimento et al., 2007).

Por fim, idades Pb-Pb dos zircões detrítico dos arenitos do Guamá apresentam uma distribuição de idades bimodal concentradas nos eventos Transamazônico (2.0-2.08 Ga) e Brasiliano (500-575 Ga) (Martins et al., 2006).

CAPÍTULO 5 – RESULTADOS E DISCUSSÕES

Os resultados dos dados isotópicos da Formação Barreiras e sua consequência na interpretação do contexto geodinâmico da Amazônia Oriental durante o Mioceno serão apresentados a seguir na forma de artigo científico submetido para a revista "Palaoegeography, Palaeoclimatology, Palaecology".

Detrital zircon U-Pb ages and Sr-Nd isotopes of Miocene-Holocene siliciclastic deposits in the Eastern Amazonia coast, Brazil: provenance and paleogeographic implications

Gabriel Ribeiro Moizinho¹, Lucieth Cruz Vieira¹, Roberto Ventura Santos¹, Afonso César Rodrigues Nogueira², Elton Luiz Dantas¹, Martin Roddaz^{1,3}

¹ Instituto de Geociências, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Ala Central, Brasília, DF, 70910-900, Brazil.

²Programa de Pós-Graduação em Geologia e Geoquímica – PPGG, Instituto de Geociências, Universidade Federal do Pará – UFPA, Rua Augusto Corrêa, s/n, CEP 66075-110, Belém, Pará, Brazil.

³Géosciences-Environnement Toulouse, Université de Toulouse; UPS (SVT-OMP); CNRS; IRD; 14 Avenue Édouard Belin, F-31400 Toulouse, France

*Corresponding author

Email address: gabriel.moizinho@gmail.com (G.R. Moizinho)

Abstract

Detrital zircon U-Pb ages and Sr-Nd isotopic data constraint the influence of the Amazon River onset with the progradation of Miocene-Holocene siliciclastic deposits in onshore compartments (eastern Marajó Basin and Bragantina Platform) of the Eastern Amazonia Coast and help reconstruct its paleogeography. Compared to suspended particulate matter in the modern Amazon River and core data from the Amazon Fan, the Miocene-Pleistocene onshore deposits have ⁸⁷Sr/⁸⁶Sr and εNd(0) isotopic compositions that dismiss the transcontinental Amazon River characteristic Andean fingerprint. Additionally, detrital zircon U-Pb ages don't present the distinctive Andean Mesozoic-Cenozoic detrital zircon age population. Instead, our results show a predominantly Pre-Cambrian isotopic signature. In the Eastern Marajó Basin, reworked Cretaceous sedimentary rocks and Neoproterozoic granites from the Gurupi Belt were the primary sources. Meanwhile, in the Bragantina Platform, age distribution patterns indicate reworking of the Paleozoic Parnaíba and Cretaceous Grajaú basin sedimentary rocks as the main sources and crystalline basement rocks from the São Luís Craton and Gurupi Belt as subordinated sources. These findings highlight the difference in provenance between the two tectonic compartments studied and a significant contribution to basin recycling, which can be considered in the tectonic evolution of the Eastern Amazonia coast.

Keywords: Provenance, Miocene, Eastern Amazonia

5.1. Introduction

Miocene siliciclastic deposits are widespread across several onshore basins and platforms along the Brazilian equatorial and eastern margins (Mabesoone et al., 1972; Bigarella et al., 1975; Arai 1998, 2006; Rossetti et al., 2013); (Fig. 1). In the Eastern Amazonia coast, its deposition was concomitant with the onset of the transcontinental Amazon River, around 9.5-8.0 Ma (Cruz et al., 2019; Figueiredo et al., 2009; Gorini et al., 2014; Guimarães et al., 2013; Hoorn et al., 2017; Hoorn and Wesselingh, 2010; Nogueira et al., 2013; Roddaz et al., 2005; Rozo et al., 2012; Sacek, 2014; Shephard et al., 2010; Stewart et al., 2016; van Soelen et al., 2017). For years, this concomitance has led several authors to attribute the increase in siliciclastic input in the Eastern Amazonia coast mainly to the development of the Amazon fan (Damuth and Kumar, 1975; Castro et al., 1978; Soares et al., 2007; Figueiredo et al., 2009; Stewart et al., 2016; van Soelen et al., 2017; Cruz et al., 2019). The onset of this transcontinental drainage, supplied mainly by Andean sediments, has been recorded only in offshore core data, located hundreds of kilometers away from the river principal channel and mouth (Fig.1B) (Figueiredo et al., 2009; Gorini et al., 2014; Hoorn et al., 2017; Hoorn and Wesselingh, 2010; Mason et al., 2019; Stewart et al., 2016; van Soelen et al., 2017). However, this interpretation has been extrapolated to several tectonic compartments that are not included in the fan system's evolution (Figueiredo et al., 2009; Gorini et al., 2014; Hoorn et al., 2017; Hoorn and Wesselingh, 2010; Latrubesse et al., 2007; Shephard et al., 2010).

Recently, Nogueira et al. (2021) proposed that the progradation of Miocene siliciclastic deposits in onshore compartments of the Eastern Amazonia coast (Eastern Marajó Basin and Bragantina Platform) preceded the transcontinental Amazon River. These authors proposed that the progradation of siliciclastic deposits was exclusively

45

the result of a Langhian-Serravallian sea-level fall and that by the time of the establishment of the transcontinental Amazon River (Early-Tortonian), Miocene sedimentation was already ceased.

Figure 5.1. Location of the study area in northern South America and map of the Eastern Amazonia coast with the main tectonic compartments and locations of previous studied wells addressing the provenance of Miocene siliciclastic sediments in the Eastern Amazonia coast. 1 and 2-Figueiredo et al., (2009); 2- Hoorn et al.

(2017); 3, 4, and 5- Mason et al., (2019); 6- van Soelen et al., (2017); Stewart et al., (2016). The red rectangle indicates the location of the studied area shown on Fig. 2A.

Isotopic fingerprints of detrital sediments provide powerful insights on geographic provenance and sediment transportation processes. Fine river sediments and sedimentary rocks carry a unique Sr-Nd isotopic fingerprint directly linked to the geological units within the drainage basin (Allègre et al., 1996; Hoorn et al., 2017; Horbe et al., 2014; Roddaz et al., 2005). Additionally, zircon crystals record the crystallization age of potential source areas that rivers pass through, making U-Pb dating in detrital zircon analysis a powerful method for reconstructing denudation processes (Dickinson, 2008; Gehrels, 2014).

In this work, we carried outcrop-based facies and stratigraphic analysis combined, for the first time, with U-Pb detrital zircon ages and Sr-Nd isotopes of the Miocene-Pleistocene strata in the onshore portion of Eastern Amazonia. We investigate the contribution of Amazon River-derived sediments to the development of these deposits.

5.2. Geological setting

5.2.1. Tectonic and geodynamic setting

Eastern Amazonia is an extensive area of the Northern Brazilian coast that comprises several sedimentary basins and structural platforms developed during the opening of the Equatorial Atlantic Ocean in the Late Cretaceous (Soares Jr. et al., 2011). These tectonic compartments include the offshore Foz do Amazonas basin, the onshore Marajó, Bragança-Viseu and São Luís basins, and the Bragantina Platform (Fig.1). It's beyond the scope of this paper to discuss in detail all the aforementioned tectonic compartments. Therefore, for more information, the reader is referred to Soares Jr. et al. (2011) and Nogueira et al. (2021). Here we focus on the eastern border of the Marajó Basin and the Bragantina Platform (Fig.2)

The Marajó Basin is a SE-NE graben system situated at the confluence of the Amazon and Tocantins rivers and spams an area over 53,000 km² (Costa et al., 2002). The Marajó Basin records over 16,000 m of sediments deposited between the earlylate Cretaceous and the Neogene, comprising mainly sandstones associated with continental and transitional environments (Zalán & Matsuda 2007; Nogueira et al., 2021). The Bragantina Platform, is an extensive flat interbasinal area located to the east, separated from the Marajó Basin by the Vigia-Castanhal Through (Almaraz, 1978) (Fig.1). This compartment remained as a non-depositional since the Silurian until the Oligo-Miocene transition when marine transgressions_occurred. In contrast to the Marajó Basin, the Bragantina Platform records only about 150 m of sediments deposited in the Silurian and Neogene.

5.2.2. Miocene-Pleistocene stratigraphic framework of the Eastern Marajó Basin and Bragantina Platform

In the Eastern Marajó Basin and Bragantina Platform, the Miocene to Pleistocene corresponds to the Upper Oligocene-Middle Miocene Pirabas and Midddle Miocene Barreiras Formations. These units unconformably overlie the Precambrian crystalline basement and Silurian and Cretaceous siliciclastic sedimentary rocks (Fig. 2). Pleistocene deposits correspond exclusively to the Post-Barreiras unit.

Figure 5.2. A) Simplified geological map of the studied area with the sampling site locations. B) Cross sections (X-X' and Y-Y' indicated in Fig. 2a) with the main outcropping units in the eastern border of the Marajó Basin and Bragantina Platform. Black dots indicate the sampled level. Modified after Nogueira et al. (2021).

The Oligocene-Miocene Pirabas Formation consists of a 140m thick succession of densely fossiliferous lime mudstones and bioclastic sandstones deposited exclusively in the Bragantina Platform. This unit overlies the Pre-Cambrian crystalline basement rocks, and the Silurian São Miguel do Guamá Formation in the Bragantina Platform. Its depositional age is based on the presence of gastropod *Orthaulax pugnax* (Ferreira 1982), foraminifers related to the N2 to N5 zones (Petri, 1957), and palynomorphs (Leite, 2004). The occurrence of *Crassoretitriletes vanraadshoovenii,* ~1 m above the last carbonate bed at Atalaia Beach, indicates interbedding with the Barreiras Formations and suggests a middle Miocene age to the upper Pirabas Formation (Nogueira et al. 2021). The Pirabas Formation is interpreted as a shallow marine platform, tidal flat, lagoon, and tidal inlet deposits (Góes et al., 1990; Aguilera et al., 2013; Nogueira and Nogueira, 2017). Its deposition is associated with the combination of sea-level rise and tectonic subsidence during the Oligocene-Miocene transition (Rossetti et al., 2013).

The sedimentary record of the middle Miocene Barreiras Formation consists mainly of about 40-m-thick deposits of highly weathered massive mudrocks and sandstones and, more locally, conglomerates formed in a variety of environments, ranging from alluvial fan to estuarine (Rossetti et al., 1989; Rossetti, 2001; Rossetti et al., 2013). The presence of *Crassoretitriletes vanraadshoovenii*, which occurs sparsely

50

(0-4%) at the base of the Barreiras Formation, indicates a middle Miocene age for this unit (Leite et al., 1997a, b). According to Nogueira et al. (2021), the progradation of the Barreiras fan delta system caused the demise of the Pirabas carbonate platform in the Bragantina Platform. The top of the Barreiras Formation in the studied area is marked by a lateritic paleosol and is interpreted as a result of a sea-level fall in the Tortonian (10-5 Ma) (Rossetti et al. 2001, 2004).

Heavy mineral studies and paleocurrent analyses performed on Barreiras samples collected across the Bragantina Platform, as well in the São Luís and Eastern Marajó basins, suggest metasedimentary rocks from the Gurupi Belt as the main source of sediments (Rossetti et al., 1989; Rossetti and Góes, 2004; Nascimento and Góes, 2005; Truckenbrodt et al., 2005, Nogueira et al. 2021; Fig. 3). Subordinated sources are granitic and reworked sedimentary rocks of the São Luís Craton and the Grajaú basin.

The Post-Barreiras unit comprises friable reddish sands and silty clay beds with bioturbation unconformably overlaid fine-grained sand (Rossetti et al., 1989; Tatumi et al. 2008). The thickness of these deposits depends on the different tectonic compartments and can reach a few meters to hundreds of meters, as in the Marajó Basin (Miranda et al., 2009).

5.3. Materials and methods

5.3.1. Materials

In total, we collected twenty samples of seven different stratigraphic sections along the Eastern Marajó Basin and Bragantina Platform for detrital zircon U-Pb ages and Sr-Nd isotopes analysis (Fig. 2, 3). Older sedimentary units (Silurian and Cretaceous) were sampled to address the potential contribution of recycled sedimentary rocks to the Neogene-Quaternary deposits. Additionally, we also collected a sample of modern coastal sand. These sediments were deposited at a time where the transcontinental Amazon River was already well established. Thus, if Amazon River-derived sediment reached the studied compartments, we should see its geochemical fingerprints.

5.3.1.1. Silurian and Cretaceous

The Silurian Guamá sandstones are exposed on an approximately 18m thick outcrop along the margin of the Guamá River in the Bragantina Platform (Section 3, Fig. 4). These deposits are tabular bodies of fine- to medium-grained sandstones, with tabular cross-bedded stratifications and *skolithos* ichnofossil. Its depositional setting has been interpreted as coastal marine (foreshore/shoreface), and stratigraphically these deposits can be correlated with the distal facies of the Ipu Formation, in the Serra Grande Group of the Parnaíba Basin and with the Silurian Nhamundá Formation of the Amazon Basin (Oliveira and Truckenbrodt, 2019). We collected one sandstone sample for U-Pb analysis.

Cretaceous deposits are exposed in the southern portion of the studied area, within the Eastern Marajó Basin, and are referred to as the Ipixuna Formation (Section 4, Fig. 4). These deposits consist of kaolinitized conglomerates, sandstones, and pelites organized in a finning upward succession interpreted as meandering fluvial deposits and are correlated to the Upper Cretaceous-Paleocene Limoeiro Formation (Zalán & Matsuda, 2007; Santos and Rossetti, 2008). One sandstone sample was collected for detrital U-Pb analysis and one sample of mudstone for Sr-Nd whole rock analysis.

Figure 5.3. A) Paleocurrent directions from the Middle-Miocene Barreiras Formation after Nogueira et al. (2021). B) Stratigraphic columns of the sections studied and sampled facies for Sr-Sm-Nd isotopic composition analysis and U-Pb in detrital zircon.

5.3.1.2. Middle Miocene (14 – 8 Ma)

Found exclusively in the Bragantina Platform, the Upper Oligocene-Middle Miocene Pirabas Formation is exposed in sections 6 and 7 (Fig. 2, 3). These mixed deposits of carbonate and siliciclastic sediments comprise biocalcirudite, biocalcarenite, coguina, biohermite, and mudstone, which are interpreted as a shallow marine platform, tidal flat, lagoon, and tidal channel deposits. The fossiliferous content includes mollusks, foraminifera, ostracods, bryozoans, corals, echinoids, crustaceans, fishes, sirenids bones, and ichnofossil. The lagoon deposits are characterized by the occurrence of Gyrolithes and Thalassinoides. Near the contact with the overlying Barreiras Formation mudrock beds with plant remains display a thickening upward trend and exhibit black and reddish colors. Thalassinoides and Paleophicus ichnofossils mark the last carbonate bank of the Pirabas Formation. Two samples of fine sandstones at the top of the Pirabas Formation were collected for U-Pb analysis and one sample of mudstone right below the contact with the Barreiras Formation for Sr-Nd isotopic composition.

The Middle Miocene Barreiras deposits were sampled in sections 1, 2, 5, 6, and 7 (Fig. 2, 3). Section 1, located in the Mosqueiro Island, near the south cut bank of the Pará River (Fig. 2, 3), comprises 2 meters thick of mudrock with a partially ferruginized top section unconformably overlaid by braided channel deposits. Sections 2, 6, and 7 include finer-grained facies consisting of mudrock, rhythmites, and fine-grained sandstone with even parallel stratification, crossbedding with mud drapes in the foresets. *Thalassinoides* and *Ophiomorpha* ichnofossils are common in the contact zone with the Pirabas Formation. These facies are interpreted as coastal deposits related to the tidal flats and tidal channels. Ichnofossils assemblages suggest biological activities by decapod crustaceans (Gaillard and Olivero, 2009; Rossetti et

54

al., 1989; Carvalho et al., 2007). Section 5 consists of a massive conglomerate, coarse-grained pebbly sandstone, and massive mudrock organized in meter-scale fining-upward cycles. The main structures are trough and planar crossbedding, even parallel stratifications. The matrix of the conglomerates is primarily clast-supported and secondarily matrix-supported. Subrounded to angular and poorly sorted pebble-to cobbled-sized quartz clasts provided an oligomictic composition for the conglomerates. These facies characterize alluvial fan to bedload fluvial channel deposits (Miall, 2006). Five sandstone samples were collected for detrital zircon analysis and five samples of mudstones for Sr-Nd.

5.3.1.3. Pleistocene and modern coastal sands (~2.5 – present)

The Pleistocene Post-Barreiras unit was sampled in Section 2. Overall, this unit comprises ferruginized gravel and sands with trough cross-bedding, massive bedding, and even parallel stratification. Poorly sorted and sub-rounded to angular pebble to cobble-sized clasts of quartz, ferruginized sandstone, and mudrock disseminated in a sandy matrix. This succession is organized in meter-scale finning upward cycles, generally filling channelized geometries. These deposits represent alluvial and fluvial channels related to the bedload of streams. Modern coastal sands were collected at the beach in Mosqueiro Island, right next to Section 1.

5.3.2. Whole-rock Sr-Nd Isotopes

Before chemical preparation, sandstone samples were dried at 60°C and sieved through a 63 µm mesh to collect the fine-grained fraction. Mudrocks were dried at 60°C for approximately 12 hours and finely crushed in an agate mortar. Sample digestion and extraction of Sr-Nd isotopes followed the procedures described in Gioia and Pimentel (2000). The isotopic ratios of both elements were measured using a Thermo Scientific TRITON Plus thermal ionization mass spectrometer. During the Nd runs, isotopic normalizations were made using the natural ratios of ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219. The accuracy of the measurements was estimated by repeated analysis of the BHVO-2 standard. Repeated analysis of the BHVO-2 standard gave a ¹⁴³Nd/¹⁴⁴Nd ratio of 0.512996 \pm 0.000006 (2SD, n =50), in agreement with the recommended value of 0.512986 \pm 0.00001 (2SD, n=10) (Weis et al. 2005). During the Sr runs, ⁸⁷Sr/⁸⁶Sr = 8.375209 was used to correct the signal for mass fractionation. The accuracy of the measurements was checked against the NBS-987 standard (=0.710240; Hodell et al., 2007). Repeated analysis of the NBS 987 standard yielded an ⁸⁷Sr/⁸⁶Sr ratio of 0.71028 \pm 0.000002 (2SD, n=40), in agreement with the recommended value of Hodell et al. (2007).

The measured ¹⁴³Nd/¹⁴⁴Nd_{sample} and ¹⁴³Sm/¹⁴⁴Nd_{sample} ratios are expressed in $f^{\text{Sm/Nd}}$ (DePaolo and Wasserburg, 1976) and epsilon notation (DePaolo, 1988) and reflect the fractional deviation from the Chondritic Uniform Reservoir (CHUR).

5.3.3. Detrital zircon geochronological analysis

Concentrates of zircon were obtained by crushing, sieving (between 60 and 300#), panning, and magnetic separation (Frantz). Zircon grains were randomly hand-picked under a binocular magnifier, avoiding any sorting, and mounted in epoxy resin (150 grains) that was subsequently polished. Before analysis, the internal structure of zircons was investigated by backscattered electron (BSE) images using a Scanning Electron Microscope FEI Quanta 450 at the Universidade de Brasília (UnB).

Detrital zircon U-Pb analyses were undertaken in a Thermo Finnigan Neptune MC-ICP-MS coupled to a Nd-YAG (λ = 213nm) laser ablation system (UP-213, New Wave Research) at UnB. Cup configuration followed (Bühn et al., 2009). The analysis employed a laser spot diameter of 25 µm, frequency of 10 Hz, and fluence of ~3.0-3.5 J/cm². Every analysis incorporated one background acquisition lasting 20-30s, followed by 40s of data acquisition from each sample. Zircon GJ1 (Jackson et al., 2004) was used as primary reference material and zircon 91500 (Wiedenbeck et al., 1995) as secondary/validation. The standard-sample bracketing (SSB) method was applied to correct instrumental drift, where two GJ1 and two 91500 analyses were inserted at the beginning and end of each run. Data processing and correction of laser-induced fractionation (LIEF) was performed using IOLITE v4.0 (Paton et al., 2011) and VizualAge (Petrus and Kamber, 2012) using exponential plus linear modeling. Our measurements of 91500 yielded weighted mean ²⁰⁶Pb/²³⁸U ages of 1063 ± 10 Ma (2 σ , n = 309) in agreement with the recommended age of 1062.4 ± 0.4 Ma (Wiedenbeck et al., 1995).

Approximately 100 grains from each sample were analyzed for U-Pb dating. The effective U-Pb ages were 206 Pb/ 238 U ages for zircons grains with ages ≤ 1.5 Ga and 207 Pb/ 206 Pb ages for grains with ages > 1.5 Ga. Ages with discordance degrees >10% and samples with few zircons (<35) were not considered because of their low statistical representation (Vermeesch, 2004). Detrital zircon age data are visualized and compared using kernel density estimation (KDE) diagrams (Vermeesch, 2012).

5.4. Results

5.4.1. Sr-Sm-Nd Isotopes

The ⁸⁷Sr/⁸⁶Sr isotopic composition of the samples ranges from 0.71664 to 0.76335, while their ε Nd(0) values range from -14.04 to -21.79 (Table 1). A direct correlation between Sr and Nd isotopic composition can be observed. The Cretaceous sample yields more radiogenic ⁸⁷Sr/⁸⁶Sr ratio (0.76335) and the lowest ε Nd₍₀₎ value (-21.79) of the analyzed samples, while Miocene to Pleistocene samples show an overall trend to less radiogenic ⁸⁷Sr/⁸⁶Sr ratios and slightly more positive ε Nd₍₀₎ values (Table 1). Representatives of the Miocene Barreiras Formation (GM-B1B and GM-B2) collected in the Eastern Marajó Basin have a more intermediate ε Nd₍₀₎ isotopic composition with values of -14.04 and -15.72, respectively (Table 1). On the other hand, Miocene samples in the Bragantina Platform yield ε Nd₍₀₎ values ranging between -20.73 and -17.62.

Sample	Age	⁸⁷ Sr/ ⁸⁶ Sr	±1σ(*10 ⁶)	Sm	Nd	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	±1σ	f ^{\$m/Nd}	ENd(0)	±1σ
				(ppm)	(ppm)						
IP4B	Cretaceous	0.76335	0.000003	9.595	71.786	0.0808	0.511521	0.000007	-0.59	-21.79	0.2
P7A	Oligocene-										
	Middle	0.73141	0.000005	9.262	53.629	0.1044	0.511576	0.000013	-0.47	-20.73	0.4
	Miocene										
B1B	Middle	0.72751	0.000005	3.614	21.393	0.10213	0.511918	0.000018	-0.48	-14.04	0.5
	Miocene										
B2	Middle	0.74599	0.000003	3.68	25.11	0.0886	0.511832	0.000009	-0.55	-15.72	0.2
	Miocene										

B7A	Middle Miocene	0.71821	0.000001	20.717	128.013	0.09783	0.511735	0.000014	-0.50	-17.62	0.4
B7B	Middle Miocene	0.7316	0.000002	5.079	26.582	0.11549	0.511634	0.000017	-0.41	-19.59	0.5
B7C	Middle Miocene	0.72815	0.000005	6.013	34.766	0.10456	0.511714	0.000016	-0.47	-18.02	0.4
PB2B	Pleistocene	0.71664	0.000003	1.221	7.885	0.09364	0.511713	0.000007	-0.53	-18.05	0.2
PB2A	Pleistocene	0.72282	0.000005	2.013	19.832	0.06136	0.511758	0.00001	-0.69	-17.16	0.3
ϵ Nd(t) = [(¹⁴³ Nd/ ¹⁴⁴ Nd _{sample(t)}) / (¹⁴³ Nd/ ¹⁴⁴ Nd _{CHUR(t)}) -1] x 10 ⁴ , where t indicates the time at which ϵ Nd is											
calculated. Here no time correction is applied (t = 0) and $^{143}Nd/^{144}Nd_{CHUR(0)}$ = 0.512638 (Jacobsen and											
Wa	asserburg, 1	1980). <i>f^si</i>	^{m/Nd} repre	sents th	ne deviat	ion of ¹⁴³	³ Sm/ ¹⁴⁴ Nd	from CH	UR. <i>f</i>	Sm/Nd =	
(¹⁴³ Sm/ ¹⁴⁴ Nd _{sample,today} / ¹⁴³ Sm/ ¹⁴⁴ Nd _{CHUR,today}) — 1.											

5.4.2 U-Pb detrital zircons

All samples analyzed yielded a total of 945 U-Pb ages within 10% discordance. The results are tabulated in the Supplementary data file and shown in Figure 4. BSE images representing the analyzed zircon grains and the U-Pb Concordia diagrams are also provided in the Supplementary data.

Figure 5.4. Kernel density estimates plots (KDE) of each sample analyzed in the study and potential sources. 1- Santos et al., (2000); 2- Klein et al., (2020b), 3- Moura et al., (2008); Gorayeb et al., (2013), Ribeiro & Alves, (2017); 4- Hollanda et al., (2018), 5-

Nascimento et al., (2007); 6- Mason et al., (2019). *Neoproterozoic magmatism in the Gurupi Belt doesn't form an age peak due the small amount of analysis

5.4.2.1. Silurian and Cretaceous

Zircons grains from the Silurian Guamá sandstones (GM-SMG4) are prismatic, rounded to well-rounded, and have an average of 144 μ m. Oscillatory zoning is the most abundant internal structure, but homogeneous grains are also observed. A total of a hundred and four spot analyses were performed in 100 grains, among which 62 were used for interpretations. Ages distributions show a bimodal pattern with two main population clusters at 588 Ma and a subordinated at 2109 Ma.

Cretaceous Ipixuna Formation (GM-IP4) detrital zircon grains are elongated and rounded and range in size between 80 and 110 μ m. The majority of the grains show well-developed oscillatory zoning and are intensely fractured. A hundred and ten grains were considered for interpretation. The ages distribution shows a concentration of zircons with ages between 1800 and 2200 Ma, forming three main clusters in 1887, 1979, and 2122 Ma (Fig. 4). Minor contributions of 578, 1518, and 2635 Ma are also observed.

5.4.2.2. Middle Miocene (14 – 8 Ma)

A total of 161 analyses distributed in two samples (GM-P6 and GM-P7) from the Upper Oligocene-Middle Miocene Pirabas Formation were considered for geological interpretation. Detrital zircon grains are rounded to well-rounded, varying between 70 and 260 μ m, and with well-developed oscillatory zoning. Sample GM-P6 presents a bimodal age pattern with prominent peaks at 592 and 2172 Ma (Fig. 4). Smaller subordinated population peaks occur at 758, 1030, 2475, and 2964 Ma. In sample GM-P7, most zircon ages concentrate around 2173 Ma. Other five subordinated populations cluster around 617, 1042, 1366, and 2676 Ma (Fig. 4).

For the Miocene Barreiras Formation, 361 spot analyses distributed in five samples (GM-B1B, GM-B2, GM-B5, GM-B6, and GM-B7) were adequate for geological interpretation. Zircon grains are prismatic with well-rounded edges and sizes between 170 to 250 µm. Fragments of large broken grains are relatively common. Internal structures vary between homogeneous, oscillatory zoning and a less common sector zoning. Age distribution patterns amidst the Barreiras Formation samples are heterogeneous, as illustrated by the KDE plots (Fig. 4). Sample GM-B1B shows the main population cluster between 535 and 619 Ma and minor peaks scattered between 800 and 2200 Ma. Two smaller peaks of Phanerozoic ages are observed around 70 Ma (n = 1) and 370 Ma (n = 3). In sample GM-B2, the age distribution is bimodal, with a prominent population peak at 1921 Ma and a subordinated one at 588 Ma. Sample GM-B5 displays almost a unimodal pattern with the main peak at 2164 Ma. Detrital zircon grains from sample GM-B6 have a dominant age peak at 604 Ma and several minor peaks scattered between 1000 and 2800 Ma with a single grain holding a strikingly younger age at 83 Ma (n = 1). Detrital zircon ages distributions of the sample GM-B7 are characterized by a bimodal pattern with peaks at 600 and 2114 Ma.

5.4.2.3. Pleistocene and modern coastal sand (~2.5 – present)

A hundred and thirty analyses of two samples (GM-PB2A and GM-PB2B) from the Pleistocene Post-Barreiras Formation were adequate for use. Detrital zircon grains are mainly rounded and spherical, with an average size of 156 μ m. Internal structures vary between oscillatory and sector zoning. Sample GM-PB2A shows a very scattered age distribution pattern with significant peaks at 777, 1042, 2122, and 2194 Ma. In sample GM-PB2B detrital zircon age populations display a bimodal trend with peaks at 608 and 796 Ma. Minor populations peak at 2159, 2710, and 3503 Ma (Fig. 4).

For the modern coastal sands, 73 analyses were adequate for geological interpretation. Detrital grains are well rounded with an average size of 238 μ m. Two prominent peaks are observed at 567 and 2084 Ma, and four subordinated peaks at 938, 1526, 1745, and 2084 Ma (Fig. 4).

5.5. Discussion

5.5.1. Provenance interpretations

5.5.1.1. Were the terrigenous deposits in the Eastern Amazonia coast fed by the Amazon River?

Previous geochemical studies have shown that the Suspended Particulate Matter (SPM) transported by the transcontinental Amazon River and its tributaries carry very distinctive Sr-Nd isotopic signatures (Allègre et al., 1996; Viers et al., 2008; Santos et al., 2015; Rousseau et al., 2019). The Sr-Nd isotopic fingerprint of Amazonian river sediments is commonly interpreted to reflect the mixing between juvenile primitive Andean Arc and older cratonic sources (Basu et al., 1990; Roddaz et al., 2005). Cratonic-derived sedimentary rocks present negative values of ε Nd(0), ranging from -

14.5 to -20 (Cordani and Sato, 1999), while Anden-derived sediments have more positive ε Nd(0) values, higher than -13.8 (Hoorn et al., 2017 and references therein). Furthermore, since sedimentary or post-depositional processes do not fractionate the Nd isotopes, the Nd isotopic signature of sedimentary rocks can be used in provenance studies (McLennan et al., 1993). The Andean isotopic fingerprint has been a critical feature to establish the onset of the transcontinental Amazon drainage in the Late Miocene. Andean sourced sediments have been recorded in core data collected in the offshore region, distant hundreds of kilometers from the coast (Fig. 1) (Figueiredo et al., 2009; Hoorn et al., 2017; Stewart et al., 2016; van Soelen et al., 2017; Mason et al., 2019).

Figure 5.5 A) ⁸⁷Sr/⁸⁶Sr vs εNd(0) values of analyzed samples compared with several relevant source areas and modern suspended particulate material. Quaternary Ecuadorian lavas from Barragán et al. (1988); Mesozoic and Neogene volcanic rocks from Rogers & Hawkesworth (1989) and Kay et al. (1994). Data for Cenozoic sedimentary rocks of the Central depression, Altiplano, Oriental Cordillera, and Subandean Zone from Pinto (2003). SPM from the Tapajós, Negro, Urucara, and

Trompetas rivers (Allègre et al. 1996). Madeira and Solimões rivers from Viers et al. (2008) and Amazon river from (Rousseau et al. 2019). B) ε Nd(0) vs *f*(Sm/Nd) (fractional deviation of ¹⁴⁷Sm/¹⁴⁴Nd from CHUR (Chondritic Uniform Reservoir). Fields are defined by SPM in the Amazon River and its tributaries, and muds and pelitic rocks from the Amazon subaqueous delta and submarine fan during the Miocene (modified after Allègre et al., 1996; McDaniel et al., 1997; Figueiredo et al., 2009; Hatting, 2014; Hoorn et al., 2017; van Soelen et al., 2017). The black circle represents the signature of sediments by the establishment of the transcontinental Amazon River.

When plotted on an ⁸⁷Sr/⁸⁶Sr vs. ε Nd(0) diagram (Fig. 5A) and compared with relevant sources and SPM from the main Amazonian rivers, our samples Sr-Nd compositions dismiss any Andean source. The same is observed in the ε Nd(0) vs. *f*(Sm/Nd) diagram when our samples are compared with Miocene offshore core data (Fig. 5B). Exception goes to the Barreiras samples collected in the eastern Marajó Basin, which resemble the isotopic fingerprint of the Negro River and falls into the "mixed" provenance group in Figure 5A, B. The shift towards these fields is driven by the more juvenile radiogenic material signature ε Nd values (-14.04 and -15.72). This behavior could be explained by the contribution of the Neoproterozoic Boca Nova nepheline syenite (ε Nd = -14.9; Klein et al., 2005), Ney Peixoto (avg. ε Nd = -13.8; Palheta et al., 2009) and Pantoja (ε Nd = -16.56; Klein et al., 2020b) granites associated to the Gurupi Belt.

In a similar way, detrital zircon U-Pb ages of Andean sources are very distinct from the other potential source terranes (Fig. 4). The Andes are characterized by Phanerozoic rocks (<550 Ma), mostly Mesozoic-Cenozoic ages (Hurtado et al., 2018),

65

and this same isotopic fingerprint can be seen in Pleistocene deposits in the Amazon submarine fan (Fig.1 and 4) (Mason et al., 2019). Meanwhile, the Amazon, São Luis, Gurupi, and Araguaia crystalline rocks are characterized mainly by Precambrian (>600Ma) zircon U-Pb ages (Fig. 4). Overall, none of the analyzed Miocene-Pleistocene sedimentary rocks and neither modern coastal beach sands in the Marajó Basin present an Andean isotopic fingerprint (Fig. 6). Yet, two Upper Cretaceous (70 and 83 Ma) and three Devonian (~370 Ma) detrital zircon ages were reported (Fig 4). Jurassic ages in Eastern Amazonia are commonly attributed to basaltic rocks associated with the volcanic events of the Central Atlantic Magmatic Province (CAMP), with peak activity circa 200 Ma (Crawford et al., 1985; Marzoli, 1999; Yang and Escalona, 2011). However, Berrangé and Dearnley (1975) have reported two K/Ar radiometric ages as young as 114 ± 3 and 116 ± 4 Ma for basaltic lava flows in the Guiana Shield. Thus, these ages could represent unknown volcanic rocks in the region. Devonian magmatism hasn't been found in the northern part of South America, being reported exclusively in southern Chile and Argentina (Hervé et al., 2016; Serra-Varela et al., 2021 and references therein).

5.5.1.2. Potential source areas

With an Andean contribution discarded, the potential sources of sediments to Miocene-Pleistocene deposits in the eastern Marajó Basin and Bragantina Platform are the Amazon and São Luís cratons, the Neoproterozoic Araguaia and Gurupi belts, recycled sedimentary rocks from the Paleozoic Parnaíba Basin, and Cretaceous Marajó and Grajaú basins. Overall, detrital zircon U-Pb ages display a main contribution of Paleoproterozoic and Neoproterozoic sources (Fig. 6), with subordinated input of Archean and Mesoproterozoic sources.

Basement rocks of Ryacian ages are abundant in the Amazon and São Luís cratons and the Gurupi Belt, reflecting rocks associations related to the Transamazonic Orogenic cycle (Costa 2000, Palheta et al. 2009; Klein et al., 2020a). The distribution pattern matches with the following primary source areas: Tromaí Intrusive Suite (2168-2147 Ma), Tracuateua Suite (2086-2091 Ma), Negra Velha Granite (2056-2076 Ma), Igarapé Grande (2695 Ma), Japiim Granite (2116-2072 Ma) (Klein et al., 2020a); Ventuari-Tapajós province (1950-1800 Ma), Maroni-Itacaiunas Province (2200-1950 Ma), and Central Amazon Province (2300 Ma) (Tassinari & Macambira, 1999). A strong Orosirian (~2000-1800 Ma) detrital zircon population is observed, exclusively in the sample GM-B2, collected in the eastern Marajó Basin (Fig. 6). Crystalline basement units of this age are unknown; however, the same population is also striking in the Cretaceous Ipixuna Formation, which could indicate the recycling of the older sedimentary unit. Neoproterozoic crystalline basement rocks are not widespread in the studied area, being restricted to the small bodies of the Ney Peixoto Granite and Boca Nova Nepheline Syenite (Klein et al. 2020a). However, Neoproterozoic zircons are a significant constituent in the Parnaiba and Grajaú basin sediments. Thus, either the granitic magmatism in the Gurupi and Araguaia belts directly participated as a primary source of sediments to the Barreiras fan delta system or Neoproterozoic grains comes from recycling (Fig. 4).

The subordinated Archean and Mesoproterozoic detrital zircons are more enigmatic. Archean rocks are not very common in the proximal areas, only registered in small lenses of the Igarapé Grande metatonalite (2695 Ma), the oldest known basement unit in the Gurupi Belt (Klein et al., 2005). Rocks older than this age are common in the Central Amazon province, more specifically the Carajás area (Tassinari and Macambira, 1999; Santos et al., 2000) and in metamorphic rocks of the Colméia

67

Complex (~2858 Ma), Araguaia Belt (Moura & Gaudette, 1999). Additionally, Mesoproterozoic (1100-1500 Ma) rocks are not known in the region. However, similar detrital zircon ages are reported in Neoproterozoic metasedimentary rocks from the Araguaia (Moura et al., 2008) and Gurupi (Lopes et al., 2016 and Klein et al., 2020b) belts and in the Parnaíba Basin sediments (Hollanda et al., 2018). These ages in Miocene sediments could represent the recycling of Pre-Cambrian metasedimentary and Paleozoic sedimentary rocks, unknown Mesoproterozoic basement units, or a distant provenance.

Figure 5.6. Map of the northern South America showing the main geological provinces and the ages of their most recent metamorphic events. Modified and adapted after Cordani et al., (2000), Chew et al., (2008, 2011), Bahlburg et al., (2009, 2011), and Spiking et al., (2016). 1- Santos et al., (2000); 2- Klein et al., (2020a,b), 3- Moura et al., (2008); Gorayeb et al., (2013), Ribeiro & Alves, (2017); 4- Hollanda et al., (2018), 5- Nascimento et al., (2007) ; 6 - Bahlburg et al. (2009); Chew et al. (2007, 2008); Cordani et al. (2000); Priem et al. (1989); Restrepo-Pace et al. (1997); Teixeira et al. (1989). The red rectangle indicates the location of the study area.

As shown above, we can conclude that the terrigenous Miocene-Holocene sediments in the eastern Marajó Basin and Bragantina Platform were mainly derived from the adjacent crystalline Pre-Cambrian terranes and Paleozoic/Cretaceous sedimentary basins rather than the Andes. Nevertheless, the proportion of detrital zircon population of a certain age may vary significantly between samples. To investigate this difference, we implemented the non-matrix metric multi-dimensional scaling (MDS) statistical technique (Vermeesch, 2013). The MDS is a superset of principal component analysis that, given a table of pairwise 'dissimilarities' between samples, produces a 'map' of points on which 'similar' samples cluster closely together, and 'dissimilar' samples plot far apart. Following the latest recommendations by Vermeesch (2018), we use the Kolmogorov–Smirnov test to produce an MDS map comparing analyzed samples. Additionally, we also plotted detrital zircon U-Pb ages of sedimentary and metasedimentary basement units that could have been recycled into the Miocene and Pleistocene-Holocene deposits.

Figure 5.7. Non-matrix metric multi-dimensional scaling (MDS) plot (Vermeesch, 2013) of detrital zircon ages from Cretaceous to Holocene deposits in the studied area along data from metasedimentary basement units (Moura et al. 2008 and Klein et al. 2020b), Parnaíba Basin and Grajaú sedimentary successions (Hollanda et al. 2018 and Nascimento et al. 2007). The solid line connecting samples indicate the closest neighbors.

The analyzed samples can be roughly distinguished into three main groups on the MDS plot (Fig. 7). Group 1 includes the Pirabas (GM-P7) and Barreiras (GM-B5) samples. Group 2 comprises the Silurian sandstones (GM-SMG3), Miocene deposits

(GM-P6, GM-B1B, GM-B6, and GM-B7), and Pleistocene-Holocene deposits (GM-PB2A, GM-PB2B, and GM-MCS1). These two groups exhibit strikingly similar detrital zircon U-Pb ages with the sedimentary rocks of Parnaíba and Grajaú basins and metasedimentary rocks of the Araguaia Belt. This similarity suggests that detrital zircon from groups 1 and 2 could be either locally derived from recycled sedimentary rocks or share a very similar primary source. On the other hand, group 3 includes the Cretaceous sample GM-IP4 and Miocene sample GM-B2, collected in the eastern Marajó Basin region. Accordingly, these results show that Miocene-Holocene provenance differs regarding the tectonic compartment studied. This interpretation is also supported by paleocurrent directions published by Nogueira et al. (2021) (Fig. 3A), which indicates an average flow toward the north in the eastern Marajó Basin and an average flow towards the northwest in the Bragantina Platform.

5.5.2. Provenance evolution of the Eastern Amazon coast

By comparing our new Sr-Nd isotopic composition and detrital zircon U-Pb data of Miocene-Pleistocene deposits in onshore compartments with previously reported isotopic composition of offshore deposits in the Eastern Amazonia coast, we present a comprehensive model revealing the provenance of siliciclastic sediments in Eastern Amazonia (Fig. 9).

Figure 5.8. Paleogeographic reconstructions of the Eastern Amazonia coast integrating the main siliciclastic progradation events during the Miocene and Pleistocene with ε Nd values of previously published and new data. A) and B)

Paleogeography during the Middle-Miocene (14-10 Ma) when the active Barreiras fan deltas prograded in onshore tectonic compartment of the Eastern Amazonia coast. C) Paleogeography between the Late Miocene-Pleistocene. By the late Miocene the Barreiras fan was inactive and subjected to lateritization processes. In the meantime, the transcontinental amazon river was being established. During the Pleistocene, sedimentation of the Post-Barreiras unit was independent from the Amazon River. Numbers inside the circles refer to the locations of wells studied by 1 and 2- Figueiredo et al., (2009); 2- Hoorn et al., 2017; 3,4, and 5- Mason et al., (2019); 6- van Soelen et al., (2017).

5.5.2.1. Middle Miocene (14 – 8 Ma)

In the Bragantina Platform, the siliciclastic sediments at the top of the Pirabas Formation mark the demise of carbonate sedimentation and the beginning of the Barreiras fan delta progradation in the Serravalian-early Tortonian (14-10 Ma) (Nogueira et al., 2021). Sr-Nd isotopes indicate highly evolved older cratonic areas with low radiogenic values of Sr isotopes were the sources of terrigenous materials (Table 1). Detrital zircon U-Pb ages show that these deposits were mainly supplied by the Gurupi and São Luís Craton (Fig 8A, B). These isotopic data corroborate with previous heavy mineral analysis studies (Góes, 1981; Rossetti et al., 1989; Rossetti & Góes, 2004; Nascimento & Góes, 2005; Truckenbrodt et al., 2005), which suggested that low-grade metamorphic rocks and granitic units fed the Barreiras fan delta. However, our data also highlight a significant similarity between the Miocene deposits detrital zircon U-Pb ages populations with those previously reported to the Parnaiba and Grajaú basins, suggesting a greater area catching sediments than previously thought, leading to the recycling of Cretaceous and Phanerozoic sedimentary basins (Fig. 4, 8A).

In the eastern Marajó Basin, detrital zircon U-Pb ages show a significant contribution of Orosirian zircons, suggesting a direct contribution of sediments from the Cretaceous Ipixuna Formation (Fig. 4). Additionally, Neoproterozoic U-Pb ages and Sr-Nd isotopic composition support radiogenic sources that can be linked to the intracontinental and post-orogenic granitic magmatism from the Gurupi Belt (Fig. 8A, B). The Tocantins River current configuration appears to be a suitable drainage system that might have fed the fan system. However, there is no study addressing the geochemistry and isotopic composition of sediments transported by this river until now.

Simultaneously, the cratonic Amazon River delta prograded into the Pará-Maranhão and Foz do Amazonas basin to the north and the western portion of the Marajó basin captured most of the siliciclastic inflow (Fig. 8A). By this time, ε Nd values in offshore sediments were still below the Andean cutoff (-13.8) (Figueiredo et al., 2009; Hoorn et al., 2017; van Soelen et al., 2017).

The mechanism that triggered the uplift of the southern portion of the Bragantina Platform culminating in the erosion of crystalline basement and phanerozoic siliciclastic rocks and giving rise to the source lands of the Barreiras fan delta is not precise. The Bragantina Platform exhibits effects of local uplift and subsidence caused by Miocene and post-Miocene brittle tectonics indicated mainly by occurrences of normal and transcurrent faults (Bezerra et al., 2001, 2008; Costa et al., 2002; Rossetti and Santos, 2006; Nogueira et al., 2010; Rossetti, 2006; Rossetti et al., 2012, 2013). Thus, the intraplate stress during the post-rift history of eastern South America could

be the cause of Neogene tectonic activity in the Eastern Amazonia coast, creating new accommodation space for deposition of the Miocene sedimentary pile in specific depocenters (Cordani et al., 2000; Costa et al., 2002; Rossetti, 2006; Rossetti et al., 2012, 2013). Additionally, the low thickness of the Barreiras deposits (<40m) indicates a reduced accommodation space, which is compatible with a cooling event causing thermal subsidence (Nogueira et al., 2021). However, up to this date, thermochronological studies (apatite and zircon fission-track data) are valid only for the northeastern Brazilian margin. Temperatures around 60°C recorded in a 40 Ma event until the present has been used to explain the Barreiras progradation for the region (Bezerra and Vita-Finzi, 2000; Nóbrega et al., 2005; Morais Neto et al., 2008, 2009). Furthermore, volcanic occurrences in northeastern Brazil register continuous magmatism active from Late Cretaceous to Late Miocene (Sial., 1976; Almeida et al., 1988).

5.5.2.2. Late Miocene – Holocene (~8 – present)

In the Middle Tortonian (~8 Ma) eustatic sea-level fall, the Barreiras fan delta system became inactive, and laterization processes began (Nogueira et al., 2021 and references therein). Between 9.5-8.0 Ma, the implantation of the modern transcontinental Amazon River took place, and the Foz do Amazonas basin, and even farther geographical locations such as the Ceará rise (Fig. 1, 8C), started registering sediments with Andean isotopic signature (Fig, 8C).

Later, in the Pleistocene (~2.5 Ma), laterization processes in the onshore compartments were succeeded by the progradation of the Post-Barreiras unit fluvial deposits. The presence of ferruginized sandstones and lateritic paleosol clasts indicate remobilization of the Barreiras Formation sediments. The sr-Nd isotopic

composition indicates a strong cratonic source with εNd(0) values averaging -17.6 (Table 1). Detrital zircon U-Pb ages show a more scattered distribution between the Neoproterozoic and Paleoproterozoic, yet Neoproterozoic clusters are more prominent than Paleoproterozoic (Fig. 8C). The modern coastal sand sample collected in the Mosqueiro Island (Fig. 2,3), on the other hand, shows mainly a unimodal peak in the Neoproterozoic, indicating less contribution of the Rhyacian sources (Fig. 8C). Accordingly, our data show that even after the transcontinental Amazon River was well established, sediments with Andean provenance never reached the onshore compartments in the eastern Amazônia Coast (Fig. 4, 8C).

5.6. Conclusions

Based on Sr-Nd isotopic composition and detrital zircon U-Pb ages from the Miocene to Pleistocene samples collected in the eastern Marajó basin and Bragantina Platform compared with an extensive isotopic database of possible sources and paleocurrent directions, this work provides the following conclusions:

- Middle-Miocene siliciclastic deposits in onshore compartments located southeast from the Amazon Fan have εNd(0) and ⁸⁷Sr/⁸⁶Sr isotopic composition, and U-Pb ages in detrital zircon that dismisses the contribution of Andean sources, discarding the hypothesis of the transcontinentalization of the Amazon River as the cause of siliciclastic progradation.
- The Middle-Miocene Barreiras fan delta system has different provenance regarding the tectonic compartments studied. The eastern Marajó Basin was fed mainly by reworked autochthonous Cretaceous sedimentary rocks and subordinately by Neoproterozoic granites from the Gurupi Belt. Meanwhile, in

the Bragantina Platform, the primary sources were metamorphic rocks from the São Luís Craton, Gurupi Belt, and recycled phanerozoic sedimentary rocks from the Parnaíba and Grajaú basins.

 Pleistocene Post-Barreiras unit and modern coastal sands also display a cratonic isotopic fingerprint, thus discarding the contribution of Andean sediments in the studied area even after the transcontinental Amazon River was already well established.

Acknowledgments

The authors are thankful to the University of Brasília for the infrastructure and technical support, especially the Geodynamics Laboratory. We also thank the financial support of the Coordination for the Improvement of Higher Education Personnel – Brazil (CAPES) - Finance Code 001 for funding the first author master's degree. We express our gratitude to the technicians Jeane Grasyelle Silva Chaves, Luis Felipe Baumotte Osorio from the Geochronology Laboratory of Universidade de Brasília for their efficiency in the analytical work.

Data availability

Supplementary material related to this article can be found at searching http://dx.doi.org/10.17632/j3h49grbrj.1 DOI or by its number (10.17632/j3h49grbrj.1) on the website https://www.doi.org/ . This material is hosted at Mendeley Data website, an open-source online data repository.

CAPÍTULO 6 - CONCLUSÕES

A assinatura isotópica Sr-Nd dos depósitos da Formação Barreiras na costa da Amazônia Oriental descarta qualquer similaridade geoquímica com as partículas em suspensão transportadas pelo Rio Amazonas e seus tributários. Além disso, valores de εNd(0) <-13, característico dos sedimentos siliclásticos miocenos de regiões da Foz do Rio Amazonas não são observados nas rochas da Formação Barreiras. Por fim, idades U-Pb em zircão detrítico dos depósitos Barreiras também não apresentam a população característica de idades Andinas (Mesozóico-Cenozóico) do Rio Amazonas transcontinental. Dessa maneira, o aumento do aporte sedimentar siliclástico no Mioceno Superior na Bacia do Marajó e Plataforma Bragantina não foi resultado da transcontinentalização do Rio Amazonas.

A distribuição de idades U-Pb da Formação Barreiras indica duas populações principais no Riaciano-Orosiriano e Neoproterozóico Superior e subordinamente idades arqueanas e mesoproterozóicas dispersas. A proporção destas populações varia de acordo com o compartimento tectônico analisado e a proximidade da seção amostrada com o embasamento cristalino. Amostras coletadas na Bacia do Marajó apresentam distribuição de idade praticamente idêntica as rochas da Formação lpixuna, Cretáceo Superior. Por outro lado, a distribuição das idades das amostras coletadas na Plataforma Bragantina se assemelha principalmente a rochas das bacias do Parnaíba e Grajaú, e de unidades do embasamento cristalino (Cinturão Gurupi e Craton São Luís). Quando combinada a direções de paleocorrente, estas distinções de sistemas transportadores de sedimentos ficam ainda mais evidente com um sistema de direção NW-SW na Bacia do Marajó e outro SW-NE na Plataforma Bragantina. Estes resultados corroboram com estudos de proveniência de minerais pesados anteriores em que se sugeria uma fonte metassedimentar retrabalhada

(geralmente associada a unidades do Craton São Luís e Cinturão Gurupi). Entretanto, trazem uma maior atenção quanto a contribuição de sedimentos retrabalhados oriundos da Bacia do Parnaíba.

Os mecanismos que desencadearam o soerguimento da porção sul da Plataforma Bragantina culminando na erosão de bacias sedimentares que alimentaram o sistema de deltas da Formação Barreiras não é claro. Diversos trabalhos já sugeriram a reativação de falhas do embasamento e soerguimento termal como prováveis causas, entretanto estas hipóteses precisam ser melhores investigadas com trabalhos de geologia estrutural e termocronologia. Todavia, este trabalho reforça a ideia de que margens continentais passivas são muito menos passivas do que o seu nome sugere, e a evolução pós rifte não é simplesmente uma história monótona de resfriamento e retorno gradual ao equilíbrio, mas é tão viva e rica quanto qualquer outro capítulo do livro geológico.

CAPÍTULO 7 - REFERENCIAS

- Aguilera, O., Schwarzhans, W., Moraes-Santos, H., Nepomuceno, A., 2014. Before the flood: Miocene otoliths from eastern Amazon Pirabas Formation reveal a Caribbean- type fish fauna. J. S. Am. Earth Sci. 56, 422–446. https://doi.org/10.1016/j. jsames.2014.09.021.
- Alkmim F.F. & Martins-Neto M.A. 2001. A Bacia Intracratônica do São Francisco: arcabouço estrutural e cenários evolutivos. In: Pinto C.P., Martins-Neto M.A. (eds.) Bacia do São Francisco: geologia e recursos naturais. Belo Horizonte: SBG-MG, p. 9-30.
- Allègre, C.J., Dupré, B., Négrel, P., Gaillardet, J., 1996. Sr-Nd-Pb isotope systematics in Amazon and Congo River systems: constraints about erosion processes. Chem. Geol. 131, 93–112. https://doi.org/10.1016/0009-2541(96)00028-9
- Almaraz, J.S.U., 1977. Aspectos geoquímicos e ambientais dos calca[´]rios da Formação Pirabas, Estado do Para. Universidade Federal do Rio Grande do Sul (Ph.D. dissertation, 198p)
- Almeida, F.F.M., Hasui, Y., de Brito Neves, B.B., Fuck, R.A., 1981. Brazilian structural provinces: An introduction. Earth-Sci. Rev. 17, 1–29. https://doi.org/10.1016/0012-8252(81)90003-9
- Almeida, F.F.M., Carneiro, C.D.R., Machado, J.R., Dehira, L.K., 1988. Magmatismo pós-paleozóico no nordeste oriental do Brasil. Revista Brasileira de Geociências 18, 451–462.
- Almeida, F.F.M., Hasui, Y., Brito Neves, B.B., 1976. The upper Precambrian of South America. Boletim Instituto de Geociências USP 7, 45–80.
- Almeida, F.F.M. de, Brito Neves, B.B. de, Dal Ré Carneiro, C., 2000. The origin and evolution of the South American Platform. Earth-Sci. Rev. 50, 77–111. https://doi.org/10.1016/S0012-8252(99)00072-0
- Andersen T. 2005. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. *Geochemical Geology*, 216:249-270.
- Arai, M., 1997. Dinoflagelados (Dynophiceae) miocenos do Grupo Barreiras do nordeste do Estado do Pará (Brasil). Universidade de Guarulhos, *Geociências*, 2: 98-106.
- Arai, M., 2006. A grande elevação eustática do Mioceno e sua influência na origem do Grupo Barreiras. Geol. USP Sér. Científica 6, 01–06. https://doi.org/10.5327/S1519-874X2006000300002

Arndt, N.T., Goldstein, S.L., n.d. Use and abuse of crust-formation ages 4.

- Basu, A.R., Sharma, M., DeCelles, P.G., 1990. Nd, Sr-isotopic provenance and trace element geochemistry of Amazonian foreland basin fluvial sands, Bolivia and Peru: implications for ensialic Andean orogeny. Earth Planet. Sci. Lett. 100, 1– 17. https://doi.org/10.1016/0012-821X(90)90172-T
- Bahlburg, H., Vervoort, J.D., Du Frane, S.A., Bock, B., Augustsson, C., Reimann, C., 2009. Timing of crust formation and recycling in accretionary orogens: Insights learned from the western margin of South America. Earth-Sci. Rev. 97, 215– 241. https://doi.org/10.1016/j.earscirev.2009.10.006
- Bahlburg, H., Vervoort, J.D., DuFrane, A., Carlotto, V., Reimann, C., Cárdenas, J., 2011. The U-Pb and Hf isotope evidence of detrital zircons of the Ordovician Ollantaytambo Formation, southern Peru, and the Ordovician provenance and paleogeography of southern Peru and northern Bolivia J. S. Am. Earth Sci., 32 (2011), pp. 196-209 https://doi.org/10.1016/j.jsames.2011.07.002
- Bayon, G., Toucanne, S., Skonieczny, C., André, L., Bermell, S., Cheron, S., Dennielou, B., Etoubleau, J., Freslon, N., Gauchery, T., Germain, Y., Jorry, S.J., Ménot, G., Monin, L., Ponzevera, E., Rouget, M.-L., Tachikawa, K., Barrat, J.A., 2015. Rare earth elements and neodymium isotopes in world river sediments revisited. Geochim. Cosmochim. Acta 170, 17–38. https://doi.org/10.1016/j.gca.2015.08.001
- Berrangé, J.P., Dearnley, R., 1975. The Apoteri volcanic formation tholeiitic flows in the North Savannas Graben of Guyana and Brazil. Geol. Rundsch. 64, 883– 899. https://doi.org/10.1007/BF01820702
- Bezerra, F.H.R., Vita-Finzi, C., 2000. How active is a passive margin? Paleoseismicity in Northeastern Brazil. *Geology.* 28: 591–594.
- Bezerra, F.H.R., Amaro, V.E., Vitafinzi, C., Saadi, A., 2001. Pliocene–Quaternary fault control of sedimentation and coastal plain morphology in NE Brazil. Journal of South American Earth Sciences 14, 61–75.
- Bezerra, F.H.R., Brito-Neves, B.B., Correa, A.C.B., Barreto, A.M.F., Suguio, K., 2008. Late Pleistocene tectonic–geomorphological development within a passive margin: the Cariatá trough, northeastern Brazil. Geomorphology 97, 555-582 https://doi.org/10.1016/j.geomorph.2007.09.008
- Bigarella, J. J., 1975. The Barreiras Group in North-eastern Brazil. *Anais da Acad. Brasil. de* Ciên. 47: 366-392.
- Bühn, B., Pimentel, M. M., Matteini, M., Dantas, E. L., 2009. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-IC-MS). *Anais da Academia Brasileira de Ciências* 81 (1): 1–16.
- Carozzi, A. V., 1981. Porosity models and oil exploration of Amapa carbonates, Paleogene, Foz do Amazonas Basin, offshore NW Brazil: *Journal of Petroleum Geology*, 4:3-34

- Carvalho, C.N. de, Viegas, P.A., Cachão, M., 2007. Thalassinoides and Its Producer: Populations of Mecochirus Buried within Their Burrow Systems, Boca Do Chapim Formation (Lower Cretaceous), Portugal. PALAIOS 22, 104–109.
- Castro, J.C., Miura, K., Braga, J.A.E., 1978. Stratigraphic and structural framework of the Foz do Amazonas Basin. Houston, Texas:10th Annual Onshore Technology Conference, 1843–1847
- Chew, D.M., Magna, T., Kirkland, C.L., Mišković, A., Cardona, A., Spikings, R., Schaltegger, U., 2008. Detrital zircon fingerprint of the Proto-Andes: Evidence for a Neoproterozoic active margin? Precambrian Res. 167, 186–200. https://doi.org/10.1016/j.precamres.2008.08.002
- Chew, D.M., Schaltegger, U., Košler, J., Whitehouse, M.J., Gutjahr, M., Spikings, R.A., Miškovic, A., 2007. U-Pb geochronologic evidence for the evolution of the Gondwanan margin of the north-central Andes. Geol. Soc. Am. Bull. 119, 697– 711.
- Cordani, U., Sato, K., 1999. Crustal evolution of the South American Platform, based on Nd isotopic systematics on granitoid rocks. Episodes 22 (3), 167–173.
- Cordani U., Sato, K. Teixeira, W., Tassinari, C., Gand Basei, M.A., 2000. Crustal Evolution of the South American Platform. In: Cordani UG, Milani EJ, Thomaz Filho A and Campos DA (Eds), Tectonic Evolution of South America, 31st. International Geological Congress, Rio de Janeiro, Brazil, p. 19-40.
- Corfu, F., Hanchar, J. M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry. 53, 469-500 https://doi.org/10.2113/0530469
- Costa, J. B. S., Bemerguy, R. L., Hasui, Y., Borges, M. S.; Ferreira Jr., C. R .P., Bezerra, P. E. L., Costa, M. L., Fernandes, J.M.G., 1996. Neotectônica da região amazônica: aspectos tectônicos, geomorfológicos e deposicionais. *Geonomos*, v. 4, n. 2, p. 23-43.
- Costa, J.L., 2000. Programa Levantamentos Geológicos Básicos Do Brasil. Programa Grande Carajás. Castanhal, Folha SA. 23-V-C. Estado Do Pará. Belém, CPRM (CD- ROM) (in Portuguese).
- Costa, J.B.S., Hasui, Y., Bemerguy, R.L., Soares-Júnior, A.V., Villegas, J.M.C., 2002. Tectonics and paleogeography of the Marajó Basin, northern Brazil. An. Acad. Bras. Ciênc. 74, 519–531. https://doi.org/10.1590/S0001-37652002000300013
- Crawford, F.D., Szelewski, C.E., Alvey, G.D., 1985. Geology and exploration in the Takutu graben of Guyana Brazil. J. Pet. Geol. 8, 5–36. https://doi.org/10.1111/j.1747-5457.1985.tb00189.x
- Cruz, A.M., Reis, A.T., Suc, J.P., Silva, C.G., Praeg, D., Granjeon, D., Rabineau, M., Popescu, S.M., Gorini, C., 2019. Neogene evolution and demise of the Amapá

carbonate platform, Amazon continental margin, Brazil. Mar. Pet. Geol. 105, 185–203. https://doi.org/10.1016/j.marpetgeo.2019.04.009

- Damuth, J.E., Kumar, N., 1975. Amazon Cone: morphology, sediments, age, and growth pattern. *Geol. Soc. Ame. Bull.* 86: 863–878.
- Davis, D.W., Williams, I.S., Krogh, T.E., 2003. Historical development of zircon geochronology. In: Hanchar, J.M., Hoskin, P.W.O. (eds.). Zircon. Mineralogical Society of America Geochemical Society, 53, 146-181.
- DeCelles, P.G., Carrapa, B., Horton, B.K., Gehrels, G.E., 2011. Cenozoic foreland basin system in the central Andes of northwestern Argentina: Implications for Andean geodynamics and modes of deformation. Tectonics 30, TC6013. https://doi.org/10.1029/2011TC002948
- DePaolo, D.J., 1988. Neodymium Isotope Geochemistry: an Introduction. Springer Berlin Heidelberg, Berlin, Heidelberg.
- DePaolo, D.J., Wasserburg, G.J., 1976. Inferences about magma sources and mantle structure from variations of ¹⁴³ Nd/ ¹⁴⁴ Nd. Geophys. Res. Lett. 3, 743–746. https://doi.org/10.1029/GL003i012p00743
- DePaolo, D.J., Wasserburg, G.J., 1976. Nd isotopic variations and petrogenetic models. Geophys. Res. Lett. 3, 249–252. https://doi.org/10.1029/GL003i005p0024
- Dias, A.N.C., Guadagnin, F., Rangel, C.V.G.T., Chemale, F., Oliveira, T.R.P., Moura, C.A., Pereira, V.Q., Alves, J.S.E., 2021. Provenance of Neogene deposits of Barreiras Formation in the southeastern Brazilian continental margin. Int. J. Earth Sci. 110, 233–249. https://doi.org/10.1007/s00531-020-01949-y
- Dickinson W.R., Suczek C.A. 1979. Plate tectonics and sandstone compositions. American Association of Petroleum Geologists Bulletin, 63: 2-31.
- Dickinson, W.R., Gehrels, G.E., 2008. U-Pb Ages of Detrital Zircons in Relation to Paleogeography: Triassic Paleodrainage Networks and Sediment Dispersal Across Southwest Laurentia. J. Sediment. Res. 78, 745–764. https://doi.org/10.2110/jsr.2008.088
- Dodson M.H., Compston, W., Williams I.S., Wilson J.F. 1988. A search for ancient detrital zircons in Zimbabwean sediments – *Journal of the Geological Society*, **145**(6): 977–983.
- Faure G. 1986 (eds). *Principles of isotope geology*. John Wiley & Sons, Nova Iorque, 589 p.
- Faure, G., Mensing, T.M., Faure, G., 2005. Isotopes: principles and applications, 3rd ed. ed. Wiley, Hoboken, N.J.

- Fedo, C.M., Sircombe, K.N., Rainbird, R.H., n.d. 10 Detrital Zircon Analysis of the Sedimentary Record 27.
- Ferreira, C.S., 1982. Notas Estratigráficas sobre o Cenozóico Marinho do Estado do Pará. Anais do 1º Simpósio de Geologia da Amazônia, Pará. 1, 84–88.
- Figueiredo, J., Hoorn, C., van der Ven, P., Soares, E., 2009. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology 37, 619–622. https://doi.org/10.1130/G25567A.1
- Fuck, R.A., Dantas, E.L., Pimentel, M.M., Junges, S.L., Moraes, R., 2001. Nd isotopes, UePb single grain and SHRIMP zircon ages from basement rocks of the Tocantins Province. In: Revista Comunicaciones, Edición Especial III South American Symposium on Isotope Geology, Pucon, Chile, vol. 52, p. 40.
- Gaillard, C., Olivero, D., 2009. The Ichnofossil Halimedides in Cretaceous Pelagic Deposits from the Alps: Environmental and Ethological Significance. PALAIOS 24, 257–270.
- Gärtner A., Linnemann, U., Sagawe, A., Hofmann, M., Ullrich, B., Kleber A., 2013. Morphology of zircon crystal grains in sediments - characteristics, classifications, definitions. Journal of Central European Geology, 59, 65-73
- Garzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., MacFadden, B., Elier, J., Ghosh, P., Mulch, A., 2008. Rise of the Andes. Science 320, 1304–1307.
- Gehrels, G. 2000. Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California. Geol. Soc. Am. Spec. Pap. 347:1– 17.
- Gehrels, G., 2014. Detrital Zircon U-Pb Geochronology Applied to Tectonics. Annu. Rev. Earth Planet. Sci. 42, 127–149. https://doi.org/10.1146/annurev-earth-050212-124012
- Gioia, S.M.C.L., Pimentel, M.M., 2000. The Sm-Nd isotopic method in the geochronology laboratory of the University of Brasília. An. Acad. Bras. Ciênc. 72, 219–245. https://doi.org/10.1590/S0001-37652000000200009
- Góes, A.M., 1981. Estudo sedimentológico dos sedimentos Barreiras, Ipixuna e Itapecuru, no nordeste do Pará e noroeste do Maranhão. Dissertação de Mestrado, Centro de Geociências, UFPA, 55 p.
- Góes, A.M., Rossetti, D.F., Nogueira, A.C.R., Toledo, P.M., 1990. Modelo deposicional preliminar da Formação Pirabas no nordeste do Estado do Pará. Boletim do Museu Paraense Emílio Goeldi (Série Ciências da Terra) 2, 3–15.
- Góes, A.M.O., Feijó, F.J. 1994. A Bacia do Parnaíba. Boletim de Geociências da Petrobras, 8, 57–67.

- Gorayeb, P.S., Chaves, C.L., Moura, C.A.V., da Silva Lobo, L.R., 2013. Neoproterozoic granites of the Lajeado intrusive suite, north-center Brazil: A late Ediacaran remelting of a Paleoproterozoic crust. J. South Am. Earth Sci. 45, 278–292. https://doi.org/10.1016/j.jsames.2013.04.001
- Gorini, C., Haq, B.U., dos Reis, A.T., Silva, C.G., Cruz, A., Soares, E., Grangeon, D., 2014. Late Neogene sequence stratigraphic evolution of the *Foz do Amazonas* Basin, Brazil. Terra Nova 26, 179–185. https://doi.org/10.1111/ter.12083
- Gregory-Wodzicki, K.M., 2000. Uplift history of the Central and Northern Andes: a review. Geological Society of America Bulletin 112, 1091–1105.
- Guimarães, J.T.F., Nogueira, A.C.R., Bandeira Cavalcante Da Silva, J., Lima Soares, J., Silveira, R., 2013. Fossil Fungi from Miocene Sedimentary Rocks of the Central and Coastal Amazon Region, North Brazil. J. Paleontol. 87, 484–492. https://doi.org/10.1666/12-091.1
- Haq B.U., Hardenbol J., Vail, P.R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235:1156–1167.
- Hatting, K., 2014. Composição dos isótopos de Sr e Nd nos sedimentos em suspensão da Bacia Amazônica: Implicações para a origem e transporte de sedimentos. M. Sc. Thesis. Universidade de Brasília, Brasília (74 pp).
- Hervé, F., Calderon, M., Fanning, C.M., Pankhurst, R.J., Fuentes, F., Rapela, C.W., Correa, J., Quezada, P., Marambio, C., 2016. Devonian magmatism in the accretionary complex of southern Chile. J. Geol. Soc. 173, 587–602. https://doi.org/10.1144/jgs2015-163
- Hodell, D.A., Kamenov, G.D., Hathorne, E.C., Zachos, J.C., Ro'hl, U., Westerhold, T., 2007. Variations in the strontium isotope composition of seawater during the Paleocene and early Eocene from ODP Leg 208 (Walvis Ridge). Geochem. Geophys. Geosyst. 8 https://doi.org/10.1029/2007GC001607.
- Hollanda, M.H.B.M., Góes, A.M., Negri, F.A., 2018. Provenance of sandstones in the Parnaíba Basin through detrital zircon geochronology. Geol. Soc. Lond. Spec. Publ. 472, 181–197. https://doi.org/10.1144/SP472.16
- Hoorn, C., Wesselingh, F.P. (Eds.), 2010. Amazonia--landscape and species evolution: a look into the past. Wiley-Blackwell, Chichester, UK; Hoboken, NJ.
- Hoorn, C., Bogotá-A, G.R., Romero-Baez, M., Lammertsma, E.I., Flantua, S.G.A., Dantas, E.L., Dino, R., do Carmo, D.A., Chemale, F., 2017. The Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Glob. Planet. Change 153, 51–65. https://doi.org/10.1016/j.gloplacha.2017.02.005
- Horbe, A.M.C., da Trindade, I.R., Dantas, E.L., Santos, R.V., Roddaz, M., 2014. Provenance of quaternary and modern alluvial deposits of the Amazonian floodplain (Brazil) inferred from major and trace elements and Pb–Nd–Sr

isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 411, 144–154. https://doi.org/10.1016/j.palaeo.2014.06.019

- Horton, B.K., Anderson, V.J., Caballero, V., Saylor, J.E., Nie, J., Parra, M., Mora, A., 2015. Application of detrital zircon U-Pb geochronology to surface and subsurface correlations of provenance, paleodrainage, and tectonics of the Middle Magdalena Valley Basin of Colombia. Geosphere 11, 1790–1811. https://doi.org/10.1130/GES01251.1
- Horton, B.K., Fuentes, F., Boll, A., Starck, D., Ramirez, S.G., Stockli, D.F., 2016. Andean stratigraphic record of the transition from backarc extension to orogenic shortening: A case study from the northern Neuquén Basin, Argentina. J. South Am. Earth Sci. 71, 17–40. https://doi.org/10.1016/j.jsames.2016.06.003
- Horstwood, M.S.A., Košler, J., Gehrels, G., Jackson, S.E., McLean, N.M., Paton, C., Pearson, N.J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J.F., Condon, D.J., Schoene, B., 2016. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology - Uncertainty Propagation, Age Interpretation and Data Reporting. Geostand. Geoanalytical Res. 40, 311–332. https://doi.org/10.1111/j.1751-908X.2016.00379.x
- Hurford A. J., Fitch, F. J., Clarke, A., 1984. Resolution of the age structure of the detrital zircon populations of two Lower Cretaceous sandstones from the Weald of England by fission track dating. Geol. Mag. 121, 269-277.
- Hurtado, C., Roddaz, M., Santos, R.V., Baby, P., Antoine, P.-O., Dantas, E.L., 2018. Cretaceous-early Paleocene drainage shift of Amazonian rivers driven by Equatorial Atlantic Ocean opening and Andean uplift as deduced from the provenance of northern Peruvian sedimentary rocks (Huallaga basin). Gondwana Res. 63, 152–168. https://doi.org/10.1016/j.gr.2018.05.012
- Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211, 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
- James, M.J., Santos Júnior, A.E. de A., Costa, J.S. da, 2018. Aspectos estratigráficos e análise de minerais pesados das formações Ipixuna, Barreiras e Pós-Barreiras, entre as cidades de Jacundá e Goianésia do Pará, sub-bacia de Mocajuba, sudeste do estado do Pará. Geosci. Geociências 37, 759–773. https://doi.org/10.5016/geociencias.v37i4.12433
- Jelinek, A.R., Chemale, F., van der Beek, P.A., Guadagnin, F., Cupertino, J.A., Viana, A., 2014. Denudation history and landscape evolution of the northern East-Brazilian continental margin from apatite fission-track thermochronology. J. South Am. Earth Sci. 54, 158–181. https://doi.org/10.1016/j.jsames.2014.06.001
- Kay, S.M., Coira, B., Viramonte, J., 1994. Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna

Plateau, central Andes. J. Geophys. Res. Solid Earth 99, 24323–24339. https://doi.org/10.1029/94JB00896

- Košler J. & Sylvester P.J. 2003. Present Trends and the Future of Zircon in Geochronology: Laser Ablation ICPMS. *In:* Hanchar, J.M., Hoskin, P.W.O. (Eds.), *Zircon. Reviews in Mineralogy & Geochemistry*, Washington, 143-175.
- Klein, E.L., Moura, C.A.V., Pinheiro, B.L.S., 2005. Paleoproterozoic Crustal Evolution of the São Luís Craton, Brazil: Evidence from Zircon Geochronology and Sm-Nd Isotopes. Gondwana Res. 8, 177–186. https://doi.org/10.1016/S1342-937X(05)71116-3
- Klein, E.L., Lopes, E.C.S., Rodrigues, J.B., Souza-Gaia, S.M., Cordani, U.G., 2020a. Rhyacian and Neoproterozoic magmatic associations of the Gurupi Belt, Brazil: Implications for the tectonic evolution, and regional correlations. Geosci. Front. 11, 2243–2269. https://doi.org/10.1016/j.gsf.2020.02.016
- Klein, E.L., Rodrigues, J.B., Lopes, E.C.S., Gusmão de Oliveira, R., Souza-Gaia, S.M., Oliveira, L.B.T. de, 2020b. Age, provenance and tectonic setting of metasedimentary sequences of the Gurupi Belt and São Luís cratonic fragment, northern Brazil: Broadening the understanding of the Proterozoic-Early Cambrian tectonic evolution. Precambrian Res. 351, 105950. https://doi.org/10.1016/j.precamres.2020.105950
- Latrubesse, E.M., da Silva, S.A.F., Cozzuol, M., Absy, M.L., 2007. Late Miocene continental sedimentation in southwestern Amazonia and its regional significance: Biotic and geological evidence. J. South Am. Earth Sci. 23, 61–80. https://doi.org/10.1016/j.jsames.2006.09.021
- Leite, F.P.R., Oliveira, M.E.B., Oliveira, P.E., Silvestre-Capelato, M.S., Arai, M., Truckenbrodt, W., 1997a. Palinofloras miocenas da Formação Pirabas e Grupo Barreiras, na Região Bragantina. Estado do Paría. Bras. Revista da Universidade de Guarulhos (Geoci^encias) 2, 128–140.
- Leite, F.P.R., Oliveira, M.E.B., Arai, M., Truckenbrodt, W., 1997b. Palinoestratigrafia da Formaçã o Pirabas e Grupo Barreiras, Mioceno do nordeste do estado do Para, Brasil. Revista da Universidade de Guarulhos (Geoci^encias) 2, 141–147.
- Leite, F.P.R., 2004. Palinologia. In: Rossetti, D.F., Góes, A.M. (Eds.), O Mioceno na Amazônia Oriental: Ed. Museu Paraense Emilio Goeldi, pp. 55–90.
- Liu, Q., Zhao, G., Han, Y., Zhu, Y., Wang, B., Eizenhöfer, P.R., Zhang, X., 2010. Detrital zircon provenance constraints on the final closure of the middle segment of the Paleo-Asian Ocean. Gondwana Research. 69, 73-88.
- Lopes, E.C. dos S., Klein, E.L., Moura, C.A.V., Lucas, F.R. dos A., Pinheiro, B.L.S., Rodrigues, J.B., Simas, M.W., 2016. U-Pb (LA-ICP-MS) of detrital zircon and whole rock Nd and geochemical constraints on the provenance, depositional age and tectonic setting of the metasedimentary Piriá Basin, northern Brazil:

implications for the evolution of the Gurupi Belt. Braz. J. Geol. 46, 123–144. https://doi.org/10.1590/2317-4889201620150015

- Ludwig K.R. 2003. Isoplot 3.0 A geochronological toolkit for Microsoft Excel.Berkley Geochronology Center, *Special Publications* No. 4.
- Lugmair, G. W., Marti, K., 1976. Sm-Nd-Pu Timepieces in the Angra dos Reis meteorite. Earth and Planetary Scince Letter, 35, 273-284
- Mabesoone J. M., Campos E., Silva A., Beurlen K.,1972. Estratigrafia e origem do Grupo Barreiras em Pernambuco, Paraíba e Rio Grande do Norte. *Rev. Bras. Geoci.* 2: 173-190
- Martin-Gombojav, N., Winkler, W., 2008. Recycling of Proterozoic crust in the Andean Amazon foreland of Ecuador: implications for orogenic development of the Northern Andes. Terra Nova 20, 22–31. https://doi.org/10.1111/j.1365-3121.2007.00782.x
- Martins, P.S., Truckenbrodt, W., Moura, C.A.V., 2006. Proveniência do Arenito do Guamá (Siluriano Inferior) com base em petrografia e datação de grãos de zircão por evaporação de Pb. In: IX Simpósio de Geologia da Amazônia, CD-ROM.
- Marzoli, A., 1999. Extensive 200-Million-Year-Old Continental Flood Basalts of the Central Atlantic Magmatic Province. Science 284, 616–618. https://doi.org/10.1126/science.284.5414.616
- Mapes, R.W., Nogueira, A.C.R., Coleman, D.'S., Vega, A.M.L., 2006. Evidence for a continental-scale drainage inversion in the Amazon Basin since the late cretaceous. *Geological Society of America Abstract with Program*. 38: 518.
- Mason, C.C., Romans, B.W., Stockli, D.F., Mapes, R.W., Fildani, A., 2019. Detrital zircons reveal sea-level and hydroclimate controls on Amazon River to deepsea fan sediment transfer. Geology 47, 563–567. https://doi.org/10.1130/G45852.1
- McCulloch, M. T., Wasserburg, G. J., 1978. Sm-Nd and Rb-Sr chronology of continental crust formation. Science. 200, 1003-1011.DOI: 10.1126/science.200.4345.1003
- McDaniel, D.K., McLennan, S.M., Hanson, G.N., 1997. Provenance of the Amazon fun muds: constraints from Nd and Pb isotopes. Proc. Ocean Drill. Program Sci. Results 155, 169–176.
- McLennan, S.M., Taylor, S.R., McCulloch, M.T., Maynard, J.B., 1990. Geochemical and Nd Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochim. Cosmochim. Acta 54, 2015–2050. https://doi.org/10.1016/0016-7037(90)90269-Q

- McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics, in: Geological Society of America Special Papers. Geological Society of America, pp. 21–40. https://doi.org/10.1130/SPE284-p21
- Miall, A.D., 2006. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer, Berlin, 582 pp.
- Miller K.G., Kominz M.A., Browining J.V., Weight J.D., Mountan G.S., Katz M.E., Sugarman P.J., Cramer B.S., Christie-Blick N., Pekar S.F., 2005. The Phanerozoic record of global sea-level change. Science, 310:1293–1298.
- Miranda, A.C.C., Rossetti, D.F., Pessenda, L., 2009. Quaternary paleoenvironments and relative sea-level changes in Marajo[´] Island (Northern Brazil): Facies, δ13C, δ15N and C/N. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 282, 19–31.
- Moura, C.A.V., Gaudette, E., 1999. Zircon ages of the basement orthogneisses of the Araguaia belt, north Central Brazil. In: SBG, Congresso Brasileiro de Geoquímica, pp. 232-234, 4, Brasília, Resumos Expandidos.
- Moura, C.A.V., Pinheiro, B.L.S., Nogueira, A.C.R., Gorayeb, P.S.S., Galarza, M.A., 2008. Sedimentary provenance and palaeoenvironment of the Baixo Araguaia Supergroup: constraints on the palaeogeographical evolution of the Araguaia Belt and assembly of West Gondwana. Geol. Soc. Lond. Spec. Publ. 294, 173– 196. https://doi.org/10.1144/SP294.10
- Morais Neto, J.M., Green, P.F., Karner, G.D., Alkmim, F., 2008. Age of the Serra do Martins Formation, Borborema Plateau, northeastern Brazil: Constraints from apatite and zircon fission track analysis. *Boletim de Geociências da Petrobras.* 16: 23–52.
- Morais-Neto, J.M., Hegarty, K.A., Karner, G.D., Alkmim, F.F., 2009. Timing and mechanisms for the generation and modification of the anomalous topography of the Borborema Province, northeastern Brazil. *Mari. Pet. Geol.* 26: 1070–1086. https://doi.org/10.1016/j.marpetgeo.2008.07.002.
- Morton, A.C., 1991. Geochemical studies of detrital heavy min- erals and their application to provenance studies. In: Morton A.C., Todd, S.P., Haughton, P.D.W. (Eds.), Developments in Sedimentary Provenance Studies. Geol. Soc. London, Spec. Publ. 57, 31–45.
- Morton, A.C., Hallsworth, C.R., 1994. Identifying provenance- specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol. 90, 241–256.
- Morton, A.C., Hallsworth, C.R., 1999. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124,3-29. https://doi.org/10.1016/S0037-0738(98)00118-3

- Morton, A.C., Whitham, A. G. & Fanning, C. M. 2005a. Provenance of Late Cretaceous – Paleocene submarine fan sandstones in the Norwegian Sea: inte- gration of heavy mineral, mineral chemical and zircon age data. Sedimentary Geology, 182, 3–28.
- Nascimento, M. dos S., Góes, A.M., Macambira, M.J.B., Brod, J.A., 2007. Provenance of Albian sandstones in the São Luís–Grajaú Basin (northern Brazil) from evidence of Pb–Pb zircon ages, mineral chemistry of tourmaline and palaeocurrent data. Sediment. Geol. 201, 21–42. https://doi.org/10.1016/j.sedgeo.2007.04.005
- Nóbrega, M.A., Sá, J.M., Bezerra, F.H.R., Hadler Neto, J.C., Iunes, P.J., Oliveira, S.G., Saez, C.A.T., Lima Filho, F.P., 2005. The use of apatite fission track thermochronology to constrain fault movements and sedimentary basin evolution in northeastern Brazil. Radiat. Meas. 39: 627–633. https://doi.org/10.1016/j. radmeas.2004.12.006.
- Nogueira, F.C., Bezerra, F.H.R., Fuck, R.A., 2010. Quaternary fault kinematics and chronology in intraplate northeastern Brazil. Journal of Geodesy 49, 79–91. https://doi.org/10.1016/j.jog.2009.11.002
- Nogueira, A.A.E., Nogueira, A.C.R., 2017. Ostracods biostratigraphy of the Oligocene-Miocene carbonate platform in the northeastern Amazonia coast and its correlation with the Caribbean region. J. S. Am. Earth Sci. 80, 389–403. https://doi.org/10.1016/j.jsames.2017.10.006.
- Nogueira, A.C.R., Amorim, K.B., Góes, A.M., Truckenbrodt, W., Petri, S., Nogueira, A.A.E., Bandeira, J., Soares, J.L., Baía, L.B., Imbiriba Júnior, M., Bezerra, I.S., Ribas, C.C., Cracraft, J., 2021. Upper Oligocene-Miocene deposits of Eastern Amazonia: Implications for the collapse of Neogene carbonate platforms along the coast of northern Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 563, 110178. https://doi.org/10.1016/j.palaeo.2020.110178
- Nogueira, A.C.R., Silveira, R., Guimarães, J.T.F., 2013. Neogene–Quaternary sedimentary and paleovegetation history of the eastern Solimões Basin, central Amazon region. J. South Am. Earth Sci. 46, 89–99. https://doi.org/10.1016/j.jsames.2013.05.004
- Oliveira, R.S. de, Truckenbrodt, W., 2019. Provenance and diagenesis of Guamá Sandstone, northeastern Pará, Brazil: A Silurian link between the Amazonas and Parnaíba basins. J. South Am. Earth Sci. 90, 265–281. https://doi.org/10.1016/j.jsames.2018.12.014
- Palheta, E.S. de M., Abreu, F. de A.M. de, Moura, C.A.V., 2009. Granitóides proterozóicos como marcadores da evolução geotectônica da região nordeste do Pará, Brasil. Rev. Bras. Geociências 39, 647–657. https://doi.org/10.25249/0375-7536.2009394647657

- Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508. https://doi.org/10.1039/c1ja10172b
- Perez, N.D., Horton, B.K., McQUARRIE, N., Stübner, K., Ehlers, T.A., 2016. Andean shortening, inversion and exhumation associated with thin- and thick-skinned deformation in southern Peru. Geol. Mag. 153, 1013–1041. https://doi.org/10.1017/S0016756816000121
- Petri, S., 1957. Foraminíferos Miocenos da Formação Pirabas. Boletim da Faculdade de Filosofia Ciências e Letras da Universidade de São Paulo, São Paulo. 216, 1–79.
- Petrus, J.A., Kamber, B.S., 2012. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostand. Geoanalytical Res. 36, 247–270. https://doi.org/10.1111/j.1751-908X.2012.00158.x
- Pimentel, M.M., Fuck, R.A., 1992. Neoproterozoic crustal accretion in central Brazil. Geology 4, 375e379.
- Pinto, L., 2003. Traçage de l'erosion Cénozoique des Andes Centrales 'a l'aide dela minéralogie et de la géochimie des sédiments (Nord du Chili et Nord-Ouest de la Bolivie)(PhD thesis) Université Paul Sabatier, Toulouse, p. 196.
- Priem, H.N.A., Kroonenberg, S.B., Boelrijk, N.A.I.M., Hebeda, E.H., 1989. Rb-Sr and K- Ar evidence for the presence of a 1.6 Ga basement underlying the 1.2 Ga Garzón-Santa Marta granulite belt in the Colombian Andes. Precambrian Res., Precambrian Research Recent Advances of the Precambrain Geology of South and Central America and the Caribbean 42, 315–324. https://doi.org/10.1016/0301-9268(89)90016-8
- Restrepo-Pace, P.A., Ruiz, J., Gehrels, G., Cosca, M., 1997. Geochronology and Nd isotopic data of Grenville-age rocks in the Colombian Andes: new constraints for Late Proterozoic-Early Paleozoic paleocontinental reconstructions of the Americas. Earth Planet. Sci. Lett. 150, 427–441. https://doi.org/10.1016/S0012-821X(97)00091-5
- Ribeiro, P. S. E., Alves, C. L. 2017. Geologia e Recursos Minerais da Região de Palmas -Folhas Miracema do Norte SC.22-X-D, Porto Nacional SC.22-Z-B e Santa Teresinha SC.22-Z-A. Escala 1:250,000. CPRM. Goiânia. p.438.
- Roddaz, M., Viers, J., Brusset, S., Baby, P., Hérail, G., 2005. Sediment provenances and drainage evolution of the Neogene Amazonian foreland basin. Earth Planet. Sci. Lett. 239, 57–78. https://doi.org/10.1016/j.epsl.2005.08.007
- Rodríguez Tribaldos, V., White, N.J., Roberts, G.G., Hoggard, M.J., 2017. Spatial and temporal uplift history of South America from calibrated drainage analysis: SOUTH AMERICAN DRAINAGE. Geochem. Geophys. Geosystems 18, 2321– 2353. https://doi.org/10.1002/2017GC006909.

- Rossetti, D.F., 2001. Late Cenozoic Sedimentary Evolution in northeastern Para, Brazil, within the context of sea-level changes. J. S. Am. Earth Sci. 14, 77–89. https://doi.org/10.1016/S0895-9811(01)00008-6.
- Rossetti, D.F., 2004. Paleosurfaces from northeastern Amazonia as a key for Reconstructing Paleolandscapes and Understanding weathering Products. Sedimentary Geology, Holanda 169 (3–4), 151–174. https://doi.org/10.1016/j. sedgeo.2004.05.003.
- Rossetti, D.F., 2006. Evolução Sedimentar Miocênica nos Estados do Pará e Maranhão. Rev. do Inst. Geociências, USP 6 (2), 7–18. https://doi.org/10.5327/ S1519874X2006000300003.
- Rossetti, D.F., Góes, A.M., 2004. Geologia. In: Rossetti; Góes. (Org.). O Neógeno da Amazônia Oriental. 1ed. Belém: Editora Museu Goeldi 1, 13–52.
- Rossetti, D. D. F., & Góes, A. M. (2003). Caracterização paleoambiental de depósitos albianos na borda Sul da Bacia de São Luís-Grajaú: modelo de delta fluvial influenciado por tempestade. Revista Brasileira de Geociências, 33(3), 299-312.
- Rossetti, D.F., Truckenbrodt, W., Góes, A.M., 1989. Estudo paleoambiental e estratigráfico dos Sedimentos Barreiras e Pós-Barreiras na região Bragantina, nordeste do Pará. Boletim do Museu Paraense Emílio Goeldi, Belém 1, 25–72.
- Rossetti, D.F., Souza, L.S.B., Elis, V.R., 2012. Neotectonics in the Northern Equatorial Brazilian margin. J. S. Am. Earth Sci. 37, 175–190. https://doi.org/10.1016/j. jsames.2012.03.004.
- Rossetti, D.F., Bezerra, F.H.R., Dominguez, J.M.L., 2013. Late Oligocene–Miocene transgressions along the equatorial and eastern margins of Brazil. Earth-Sci. Rev. 123, 87–112. https://doi.org/10.1016/j.earscirev.2013.04.005
- Rousseau, T.C.C., Roddaz, M., Moquet, J.-S., Handt Delgado, H., Calves, G., Bayon, G., 2019. Controls on the geochemistry of suspended sediments from large tropical South American rivers (Amazon, Orinoco and Maroni). Chem. Geol. 522, 38–54. https://doi.org/10.1016/j.chemgeo.2019.05.027
- Rozo, M.G., Nogueira, A.C.R., Truckenbrodt, W., 2012. The anastomosing pattern and the extensively distributed scroll bars in the middle Amazon River: ANASTOMOSING PATTERN AND SCROLL BARS IN THE MIDDLE AMAZON RIVER. Earth Surf. Process. Landf. 37, 1471–1488. https://doi.org/10.1002/esp.3249
- Sacek, V., 2014. Drainage reversal of the Amazon River due to the coupling of surface and lithospheric processes. Earth Planet. Sci. Lett. 401, 301–312. https://doi.org/10.1016/j.epsl.2014.06.022

- Santos, A.E. de A., Rossetti, D. de F., 2008. Origin of the Rio Capim Kaolin based on optical (petrographic and SEM) data. J. South Am. Earth Sci. 26, 329–341. https://doi.org/10.1016/j.jsames.2008.08.004
- Santos, J.O.S., Hartmann, L.A., Gaudette, H.E., Groves, D.I., Mcnaughton, N.J., Fletcher, I.R., 2000. A New Understanding of the Provinces of the Amazon Craton Based on Integration of Field Mapping and U-Pb and Sm-Nd Geochronology. Gondwana Res. 3, 453–488. https://doi.org/10.1016/S1342-937X(05)70755-3
- Santos, R.V., Sondag, F., Cochonneau, G., Lagane, C., Brunet, P., Hattingh, K., Chaves, J.G.S., 2015. Source area and seasonal ⁸⁷ Sr/ ⁸⁶ Sr variations in rivers of the Amazon basin: AMAZON RIVERS SOURCE SEDIMENTS. Hydrol. Process. 29, 187–197. https://doi.org/10.1002/hyp.10131
- Schoene, B., 2014. U–Th–Pb Geochronology, in: Treatise on Geochemistry. Elsevier, pp. 341–378. https://doi.org/10.1016/B978-0-08-095975-7.00310-7
- Serra-Varela, S., Heredia, N., Otamendi, J., Giacosa, R., 2021. Petrology and geochronology of the San Martín de los Andes batholith: Insights into the Devonian magmatism of the North Patagonian Andes. J. South Am. Earth Sci. 109, 103283. https://doi.org/10.1016/j.jsames.2021.103283
- Shephard, G.E., Müller, R.D., Liu, L., Gurnis, M., 2010. Miocene drainage reversal of the Amazon River driven by plate–mantle interaction. Nat. Geosci. 3, 870–875. https://doi.org/10.1038/ngeo1017
- Spencer, C.J., Kirkland, C.L., Taylor, R.J.M., 2016. Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology. Geosci. Front. 7, 581–589. https://doi.org/10.1016/j.gsf.2015.11.006
- Sial, A.N., 1976. The Post-Paleozoic Volcanism of Northeast Brazil and its tectonic significance. An. Acad. Bras. Cienc. 45, 299–311.
- Sircombe, K. N., and Hazelton, M. L. 2004. Comparison of detrital zircon age distributions by kernel functional estimation. Sediment. Geol. 171:91–111.
- Soares Jr., A.V., Hasui, Y., Costa, J.B.S., Machado, F.B., 2011. Evolução do rifteamento e paleogeografia da margem Atlântica Equatorial do Brasil: Triássico ao Holoceno. *Geociências-UNESP*. 30: 669–692.
- Soares, E.F., Zalán, P.V., Figueiredo, J.J.P., 2007. Bacia do Pará-Maranhão. Boletim de Geociências da Petrobras. 15: 321–329.
- Spikings, R., Reitsma, M.J., Boekhout, F., Mišković, A., Ulianov, A., Chiaradia, M., Gerdes, A., Schaltegger, U., 2016. Characterisation of Triassic rifting in Peru and implications for the early disassembly of western Pangaea. Gondwana Res. 35, 124–143. https://doi.org/10.1016/j.gr.2016.02.008

- Stacey, J.S., Kramers, J.D., n.d. Approximation of terrestrial lead isotope evolution by a two-stage model. U 15.
- Stewart, J.A., Gutjahr, M., James, R.H., Anand, P., Wilson, P.A., 2016. Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene–Miocene transition. Earth Planet. Sci. Lett. 454, 132–141. https://doi.org/10.1016/j.epsl.2016.08.037
- Tassinari, C.C.G., Macambira, M.J.B., 1999. Geochronological provinces of the
Amazonian Craton. Episodes 22, 174–182.
https://doi.org/10.18814/epiiugs/1999/v22i3/004
- Tatumi, S., Silva, L., Pires, E., Rossetti, D., Go´es, A., 2008. Datação de Sedimentos Pós- Barreiras no Norte do Brasil: implicações paleogeográficas. Revista Brasileira de Geociências 38, 514–524. https://doi.org/10.25249/0375-7536.2008383514524.
- Tera F. & Wasserburg G.J. 1972. U-Th-Pb systematic in ther Apollo 14 basalts and the problem of initial Pb in lunar rocks. *Earth and Planetary Science Letters*, **14**:281- 304.
- Teixeira, W., Tassinari, C., Cordani, U., Kawashita, K., 1989. A review of the geochronology of the Amazonian Craton: Tectonic implications. Precambrian Res. 42, 213–227. https://doi.org/10.1016/0301-9268(89)90012-0
- Truckenbrodt, W., Nascimento, M.S., Góes, A.M., 2005. Distribuição de minerais pesados em arenitos das formações fanerozóicas no nordeste do Pará e noroeste do Maranhão. Contribuições à Geologia da Amazônia. 1ed. Manaus: Universidade Federal do Amazonas 4, 181–189.
- Tucker, M. 2003. Sedimentary rocks in the field: the geological field guide series. 3a ed. John Wiley & Sons Ltd. 234 p.
- van Soelen, E.E., Kim, J.-H., Santos, R.V., Dantas, E.L., Vasconcelos de Almeida, F., Pires, J.P., Roddaz, M., Sinninghe Damsté, J.S., 2017. A 30 Ma history of the Amazon River inferred from terrigenous sediments and organic matter on the Ceará Rise. Earth Planet. Sci. Lett. 474, 40–48. https://doi.org/10.1016/j.epsl.2017.06.025
- Vermeesch, P., 2004. How many grains are needed for a provenance study? Earth Planet. Sci. Lett. 224, 441–451. https://doi.org/10.1016/j.epsl.2004.05.037
- Vermeesch, P., 2012. On the visualisation of detrital age distributions. Chem. Geol. 312–313, 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021
- Vermeesch, P., 2013. Multi-sample comparison of detrital age distributions. Chem. Geol. 341, 140–146. https://doi.org/10.1016/j.chemgeo.2013.01.010
- Vermeesch, P., Resentini, A., Garzanti, E., 2016. An R package for statistical provenance analysis. Sediment. Geol., Sediment generation and provenance:

processes	and	pathways	336,	14–25.
https://doi.org/10).1016/j.sedge	0.2016.01.009		

- Vermeesch, P., 2018. Dissimilarity measures in detrital geochronology. Earth-Sci. Rev. 178, 310–321. https://doi.org/10.1016/j.earscirev.2017.11.027
- Viers, J., Roddaz, M., Filizola, N., Guyot, J.-L., Sondag, F., Brunet, P., Zouiten, C., Boucayrand, C., Martin, F., Boaventura, G.R., 2008. Seasonal and provenance controls on Nd-Sr isotopic compositions of Amazon rivers suspended sediments and implications for Nd and Sr fluxes exported to the Atlantic Ocean. *Earth Planetary Science Letters*. 274: 511-523.
- Weis, D., Kieffer, B., Maerschalk, C., Pretorius, W., Barling, J., 2005. High-precision Pb-Sr-Nd-Hf isotopic characterization of USGS BHVO-1 and BHVO-2 reference materials: Pb-Sr-Nd-Hf CHARACTERIZATION. Geochem. Geophys. Geosystems 6. https://doi.org/10.1029/2004GC000852
- Wetherill G. 1956. Discordant uranium-lead ages I. American Geophysical UnionTransactions, **37**: 320-326.
- Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Quadt, A.V., Roddick, J.C., Spiegel, W., 1995. THREE NATURAL ZIRCON STANDARDS FOR U-TH-PB, LU-HF, TRACE ELEMENT AND REE ANALYSES. Geostand. Geoanalytical Res. 19, 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
- Wolff, B., Carozzi, A.V., 1984. Microfacies, depositional environments, and diagenesis of the Amapá carbonates (Paleocene–middle Miocene). Foz do Amazonas Basin, offshore NE Brasil: *Petrobras, Série Ciência-Técnica-Petróleo: Seção Exploração de Petróleo.* 13: 102 pp.
- Yang, W., Escalona, A., 2011. Tectonostratigraphic evolution of the Guyana Basin. AAPG Bull. 95, 1339–1368. https://doi.org/10.1306/01031110106.
- Zimmermann, U., Andersen, T., Madland, M.V., Larsen, I.S., 2015. The role of U-Pb ages of detrital zircons in sedimentology—An alarming case study for the impact of sampling for provenance interpretation. Sediment. Geol. 320, 38–50. https://doi.org/10.1016/j.sedgeo.2015.02.006
- Zalán, P.V., Matsuda, N.S., 2007. Bacia do Marajó. *Boletim de Geociências da Petrobras*. 15: 311–319.

ANEXOS

ANEXO A – Imagens BSE dos zircões detríticos estudados

ANEXO B – Diagramas de concórdia dos zircões detrítico estudados

ANEXO C – Dados U-Pb dos zircões detríticos dos arenitos do Guamá, formações Ipixuna, Pirabas, e Barreiras, sedimentos Pós-Barreiras e sedimentos costeiros modernos via LA-ICP-MS

Nome Th/U Spot	²⁰⁶ Pb/ ²⁰⁴ Pb	1s% -	Razões				Dhe	Idades (Ma)*				diaa1	Melhor	Ja aha			
			²⁰⁷ Pb/ ²⁰⁶ Pb	1s %	²⁰⁷ Pb/ ²³⁵ U	1s %	²⁰⁶ Pb/ ²³⁸ U	1s %	KIIU	²⁰⁷ Pb/ ²⁰⁶ Pb	2s abs	²⁰⁶ Pb/ ²³⁸ U	2s abs	uisci	ldade	25 805	
ARENITOS DO GUAMÁ (GM-SMG3)																	
ZR4	0,553	19863	18,48	0,05985	1,52	0,779	2,17	0,0944	1,50	0,69	598	65	581	17	2,81	581	17
ZR5	1,051	39377	21,03	0,05829	1,11	0,698	1,46	0,0869	0,89	0,61	541	48	537	9	0,66	537	9
ZR7	0,261	388803	11,78	0,13093	0,36	6,740	0,84	0,3733	0,67	0,79	2111	13	2045	23	3,10	2111	13
ZR8	0,161	228558	18,42	0,16190	0,48	10,729	0,86	0,4806	0,61	0,71	2476	16	2530	25	-2,19	2476	16
ZR9R	0,133	360125	26,38	0,12741	0,31	6,351	1,51	0,3615	1,44	0,95	2063	11	1989	49	3,55	2063	11
ZR11	0,943	48831	17,46	0,06146	1,23	0,869	1,71	0,1025	1,13	0,66	656	52	629	14	4,03	629	14
ZR12	0,221	51758	21,81	0,05898	0,72	0,698	1,12	0,0858	0,78	0,70	566	31	531	8	6,31	531	8
ZR14	0,876	51756	17,81	0,05978	0,89	0,845	1,40	0,1025	1,02	0,72	596	38	629	12	-5,60	629	12
ZR16	1,222	11396	25,13	0,05860	3,20	0,765	3,79	0,0946	1,99	0,52	552	137	583	22	-5,55	583	22
ZR17	0,783	76391	14,63	0,13714	0,79	7,911	1,32	0,4184	0,99	0,75	2191	27	2253	38	-2,81	2191	27
ZR19	0,910	192298	14,04	0,12876	0,45	6,878	1,20	0,3874	1,05	0,88	2081	16	2111	38	-1,42	2081	16
ZR20	0,727	52627	19,56	0,05806	0,91	0,687	1,31	0,0858	0,87	0,66	532	39	531	9	0,20	531	9
ZR21	0,731	124411	14,63	0,05930	0,68	0,803	1,08	0,0982	0,75	0,70	578	29	604	9	-4,39	604	9
ZR24	0,267	659794	16,73	0,17577	0,36	12,022	0,78	0,4960	0,59	0,75	2613	12	2597	25	0,64	2613	12
ZR25	1,949	69171	17,53	0,05884	0,71	0,737	1,12	0,0909	0,78	0,70	561	31	561	8	0,09	561	8
ZR27	0,946	82798	16,53	0,05886	0,73	0,727	1,13	0,0896	0,78	0,69	562	32	553	8	1,52	553	8
ZR30	0,444	517164	9,90	0,30593	0,36	27,743	0,73	0,6576	0,52	0,71	3501	11	3258	26	6,93	3501	11
ZR32C	0,658	379384	22,92	0,13282	0,33	6,832	0,90	0,3730	0,75	0,83	2136	12	2044	26	4,30	2136	12
ZR33	1,119	115203	13,44	0,06099	0,74	0,887	1,29	0,1055	0,99	0,77	639	32	647	12	-1,21	647	12
ZR34	0,365	944192	13,62	0,13270	0,49	6,440	0,93	0,3520	0,70	0,75	2134	17	1944	24	8,90	2134	17
ZR36	0,162	127404	12,48	0,06488	0,88	1,141	1,18	0,1275	0,70	0,59	770	37	774	10	-0,41	774	10
ZR37	0,571	52187	8,54	0,06369	1,58	0,974	1,95	0,1110	1,08	0,56	731	66	678	14	7,22	678	14
ZR38	0,778	64230	11,19	0,05797	0,91	0,715	1,64	0,0895	1,32	0,80	529	40	552	14	-4,49	552	14
ZR39	0,928	129351	12,17	0,05842	0,65	0,667	1,13	0,0829	0,85	0,75	545	28	513	8	5,92	513	8
ZR40	0,472	225176	26,55	0,13591	0,74	7,330	1,51	0,3911	1,26	0,83	2176	26	2128	46	2,19	2176	26
ZR41	0,863	224736	19,78	0,12897	0,37	6,750	1,03	0,3796	0,88	0,86	2084	13	2074	31	0,46	2084	13
------	-------	--------	-------	---------	------	--------	------	--------	------	------	------	-----	------	----	-------	------	----
ZR44	0,809	68119	15,84	0,06102	0,97	0,858	1,50	0,1019	1,08	0,72	640	41	626	13	2,21	626	13
ZR45	0,817	393118	27,50	0,22699	0,43	19,315	1,48	0,6171	1,37	0,92	3031	14	3098	67	-2,23	3031	14
ZR46	0,348	274623	11,31	0,13319	0,56	7,093	0,94	0,3862	0,65	0,69	2140	20	2105	23	1,65	2140	20
ZR47	0,444	124202	14,08	0,07373	0,71	1,623	1,00	0,1596	0,61	0,61	1034	28	955	11	7,69	955	11
ZR49	0,559	52411	13,20	0,05834	1,52	0,713	2,22	0,0886	1,57	0,71	543	66	547	16	-0,81	547	16
ZR51	0,580	142224	15,19	0,13975	0,57	7,618	1,04	0,3954	0,79	0,76	2224	20	2148	29	3,44	2224	20
ZR52	0,601	47699	40,51	0,05949	0,89	0,717	1,67	0,0874	1,37	0,82	585	39	540	14	7,68	540	14
ZR56	0,686	114533	42,00	0,08606	1,08	2,566	1,90	0,2162	1,52	0,80	1339	42	1262	35	5,80	1262	35
ZR57	0,944	41582	18,22	0,06097	1,11	0,947	1,56	0,1126	1,04	0,67	638	47	688	14	-7,81	688	14
ZR58	0,733	82205	12,30	0,06050	0,67	0,901	1,10	0,1081	0,78	0,71	622	29	661	10	-6,42	661	10
ZR59	1,273	40375	14,21	0,05872	1,61	0,785	2,14	0,0969	1,36	0,64	557	69	596	15	-7,08	596	15
ZR62	0,340	270848	13,07	0,13147	0,31	6,354	0,98	0,3505	0,85	0,87	2118	11	1937	28	8,53	2118	11
ZR64	0,883	83381	15,99	0,05928	0,90	0,690	1,31	0,0844	0,88	0,67	577	39	523	9	9,50	523	9
ZR66	0,987	660854	84,57	0,06160	1,05	0,917	1,55	0,1080	1,08	0,70	660	45	661	14	-0,10	661	14
ZR68	0,942	61866	15,87	0,05947	0,84	0,801	1,32	0,0976	0,95	0,72	584	36	601	11	-2,78	601	11
ZR72	0,393	75891	19,91	0,11642	0,96	5,247	1,63	0,3269	1,26	0,77	1902	34	1823	40	4,14	1902	34
ZR74	0,670	77419	16,79	0,06079	0,71	0,850	1,41	0,1014	1,16	0,82	632	31	622	14	1,48	622	14
ZR76	1,219	127769	12,30	0,15692	0,56	9,807	1,06	0,4533	0,83	0,78	2423	19	2410	33	0,54	2423	19
ZR77	1,434	135752	41,65	0,05935	2,15	0,731	2,69	0,0893	1,56	0,58	580	92	552	17	4,89	552	17
ZR78	0,811	52555	14,26	0,05990	0,92	0,833	1,40	0,1008	0,99	0,71	600	39	619	12	-3,23	619	12
ZR79	0,811	16992	54,21	0,05865	1,89	0,788	4,89	0,0974	4,50	0,92	554	81	599	51	-8,13	599	51
ZR80	0,320	291130	17,91	0,09585	0,49	3,834	1,31	0,2901	1,16	0,89	1545	18	1642	34	-6,28	1545	18
ZR81	0,629	19091	23,06	0,06041	3,01	0,845	4,45	0,1015	3,26	0,73	618	127	623	39	-0,76	623	39
ZR82	0,409	27406	13,77	0,05824	2,62	0,742	3,78	0,0925	2,70	0,71	539	113	570	29	-5,82	570	29
ZR84	0,447	48073	17,09	0,05886	1,24	0,779	1,81	0,0960	1,26	0,70	562	54	591	14	-5,13	591	14
ZR86	0,810	231814	14,24	0,12859	0,41	6,985	0,78	0,3939	0,55	0,71	2079	14	2141	20	-3,00	2079	14
ZR87	0,914	25295	15,57	0,05832	1,98	0,752	2,82	0,0935	1,97	0,70	542	85	576	22	-6,35	576	22

ZR88	0,729	137394	23,83	0,13102	0,44	6,672	1,06	0,3693	0,90	0,84	2112	15	2026	31	4,05	2112	15
ZR90	0,409	321074	55,46	0,13047	0,34	7,423	1,42	0,4126	1,33	0,94	2104	12	2227	50	-5,82	2104	12
ZR91	0,501	139655	14,37	0,12501	0,38	6,294	0,77	0,3652	0,55	0,72	2029	14	2007	19	1,10	2029	14
ZR92	0,476	63435	12,97	0,06218	0,67	0,918	1,06	0,1071	0,72	0,69	680	29	656	9	3,60	656	9
ZR95	0,300	86104	14,88	0,05839	0,74	0,719	1,09	0,0893	0,70	0,65	544	32	551	7	-1,26	551	7
ZR96	1,154	57581	11,87	0,05894	0,94	0,823	1,41	0,1012	0,97	0,69	565	41	622	12	-10,00	622	12
ZR97	0,264	204185	13,46	0,09589	0,40	3,661	0,78	0,2769	0,56	0,72	1546	15	1576	16	-1,95	1546	15
ZR98	1,521	140167	21,49	0,05835	0,79	0,747	1,12	0,0929	0,71	0,63	543	34	573	8	-5,48	573	8
ZR99	0,581	51161	18,09	0,06008	0,86	0,827	1,29	0,0999	0,89	0,69	606	37	614	10	-1,19	614	10
FORMAÇÃO	IPIXUNA	(GM-IP3)															
ZR1	0,323	94858	15,56	0,11616	0,68	5,309	1,17	0,3315	0,88	0,75	1898	24	1846	28	2,76	1898	24
ZR2N	0,419	210860	28,46	0,13979	0,50	7,825	0,88	0,4060	0,62	0,71	2225	17	2196	23	1,26	2225	17
ZR3	0,126	56642	69,80	0,11680	0,44	5,064	0,91	0,3144	0,70	0,77	1908	16	1762	22	7,63	1908	16
ZR5	0,326	206650	15,67	0,09416	0,45	3,512	0,96	0,2705	0,77	0,80	1511	17	1543	21	-2,12	1511	17
ZR9	0,188	973298	56,32	0,12527	0,49	6,247	0,90	0,3617	0,66	0,73	2033	17	1990	22	2,09	2033	17
ZR11	0,270	505112	18,77	0,13509	0,34	7,210	0,80	0,3871	0,63	0,78	2165	12	2109	23	2,58	2165	12
ZR12	1,530	58363	26,31	0,11382	0,78	5,746	1,53	0,3661	1,27	0,83	1861	28	2011	44	-8,05	1861	28
ZR14	0,796	2931	8,73	0,11594	0,52	5,716	1,13	0,3575	0,93	0,82	1895	19	1971	32	-4,01	1895	19
ZR16	0,789	144068	25,03	0,10989	0,57	4,829	1,38	0,3187	1,20	0,87	1798	21	1783	37	0,79	1798	21
ZR18	1,042	28193	20,30	0,12228	1,45	6,200	1,84	0,3677	1,07	0,58	1990	51	2018	37	-1,44	1990	51
024-ZR19	0,763	129082	28,50	0,12995	0,72	6,756	1,44	0,3770	1,18	0,82	2097	25	2062	42	1,66	2097	25
027-ZR20	0,101	155994	50,13	0,11746	0,41	5,042	1,02	0,3113	0,86	0,84	1918	15	1747	26	8,91	1918	15
028-ZR21	0,544	396947	25,16	0,13066	0,40	7,018	0,85	0,3895	0,65	0,76	2107	14	2121	23	-0,65	2107	14
030-ZR23	0,896	15523	19,89	0,11548	0,33	5,446	1,37	0,3420	1,28	0,93	1887	12	1896	42	-0,48	1887	12
041-ZR32	0,679	790797	20,74	0,13042	0,32	6,880	0,85	0,3826	0,70	0,82	2104	11	2088	25	0,73	2104	11
042-ZR33	0,488	1195482	23,79	0,11904	0,27	5,998	0,83	0,3654	0,68	0,83	1942	10	2008	24	-3,40	1942	10
043-ZR34	0,218	134940	44,50	0,11309	1,76	5,125	1,99	0,3287	0,85	0,43	1850	63	1832	27	0,96	1850	63
044-ZR35	0,341	444992	13,74	0,13196	0,31	6,475	0,75	0,3558	0,57	0,76	2124	11	1962	19	7,62	2124	11

045-ZR36	0,557	240924	11,58	0,11512	0,39	5,082	0,77	0,3201	0,56	0,72	1882	14	1790	17	4,86	1882	14
048-ZR39	0,393	66659	13,39	0,07182	0,79	1,500	1,28	0,1514	0,93	0,73	981	32	909	16	7,34	909	16
053-ZR40	0,458	10889	9,62	0,12212	0,47	5,532	1,48	0,3285	1,35	0,91	1987	17	1831	43	7,87	1987	17
056-ZR43	0,214	570331	17,51	0,10711	0,75	4,717	1,97	0,3194	1,78	0,90	1751	28	1787	56	-2,06	1751	28
061-ZR48N	0,978	367342	25,52	0,11543	0,61	5,271	0,98	0,3312	0,67	0,68	1887	22	1844	22	2,25	1887	22
065-ZR49N	0,579	263535	11,27	0,13129	0,53	6,602	0,94	0,3647	0,67	0,72	2115	19	2004	23	5,25	2115	19
067-ZR50	0,550	104897	13,97	0,11189	0,60	4,872	1,01	0,3158	0,73	0,72	1830	22	1769	22	3,35	1830	22
068-ZR51	0,694	516950	13,56	0,17775	0,40	11,804	0,82	0,4816	0,61	0,75	2632	13	2534	26	3,72	2632	13
069-ZR52N	0,702	180539	15,14	0,12291	0,43	5,970	0,91	0,3523	0,71	0,78	1999	15	1945	24	2,67	1999	15
070-ZR52B	0,374	360705	13,37	0,12256	0,41	5,971	0,82	0,3533	0,60	0,74	1994	14	1951	20	2,17	1994	14
071-ZR53	0,206	685072	17,82	0,11819	0,42	5,694	0,92	0,3494	0,73	0,79	1929	15	1932	24	-0,14	1929	15
072-ZR54	0,492	307172	27,37	0,12170	0,49	5,652	0,89	0,3368	0,65	0,72	1981	17	1871	21	5,56	1981	17
073-ZR55	0,344	467465	19,09	0,11071	0,71	4,861	1,09	0,3184	0,74	0,68	1811	26	1782	23	1,62	1811	26
074-ZR56	0,314	182074	36,93	0,12130	0,65	5,693	1,05	0,3404	0,74	0,71	1975	23	1888	24	4,40	1975	23
077-ZR57	0,692	39175	42,50	0,11193	0,76	4,919	1,38	0,3187	1,09	0,79	1831	28	1784	34	2,59	1831	28
078-ZR58	0,362	576252	19,83	0,11437	0,55	5,202	0,99	0,3299	0,74	0,74	1870	20	1838	24	1,73	1870	20
082-ZR62	0,155	11407	13,09	0,08776	0,93	2,798	1,55	0,2312	1,19	0,76	1377	35	1341	29	2,63	1377	35
083-ZR63	0,296	1041903	18,32	0,11847	0,47	5,674	0,94	0,3474	0,72	0,77	1933	17	1922	24	0,58	1933	17
084-ZR64	0,473	326280	22,77	0,12664	0,59	6,606	0,98	0,3783	0,69	0,71	2052	21	2068	25	-0,81	2052	21
085-ZR65	0,240	644314	16,56	0,18261	0,69	12,215	0,97	0,4851	0,57	0,59	2677	23	2549	24	4,75	2677	23
090-ZR68	0,434	387923	15,07	0,12191	0,53	5,868	0,87	0,3491	0,58	0,66	1984	19	1930	19	2,73	1984	19
091-ZR69	0,334	114900	16,65	0,05840	1,06	0,747	1,34	0,0927	0,73	0,55	545	46	572	8	-4,96	572	8
093-ZR71	0,482	173335	37,26	0,12185	0,43	6,173	0,87	0,3674	0,66	0,76	1983	15	2017	23	-1,71	1983	15
096-ZR74	0,923	174824	30,52	0,13588	0,58	7,579	1,04	0,4045	0,78	0,75	2175	20	2190	29	-0,66	2175	20
097-ZR75	0,544	187847	25,27	0,13343	0,57	7,703	1,22	0,4187	1,01	0,83	2144	20	2255	38	-5,18	2144	20
103-ZR79	0,412	303496	15,93	0,12045	0,42	5,891	0,81	0,3547	0,59	0,73	1963	15	1957	20	0,30	1963	15
104-ZR80	1,655	310747	13,02	0,12821	0,40	6,446	0,90	0,3646	0,72	0,80	2074	14	2004	25	3,35	2074	14
105-ZR81	0,856	149969	46,82	0,11469	1,22	5,137	1,45	0,3248	0,70	0,48	1875	44	1813	22	3,30	1875	44

107-ZR83	0,390	76990	15,98	0,10698	0,96	4,729	1,56	0,3205	1,17	0,75	1749	35	1792	37	-2,50	1749	35
109-ZR85	1,005	88084	19,68	0,12793	0,92	6,434	1,56	0,3647	1,20	0,77	2070	32	2005	41	3,15	2070	32
110-ZR86	0,311	104053	50,65	0,12596	0,98	7,089	2,03	0,4081	1,74	0,86	2042	34	2206	65	-8,03	2042	34
116-ZR90	0,787	24049	69,77	0,13923	0,79	7,417	1,32	0,3863	0,99	0,75	2218	27	2106	36	5,04	2218	27
117-ZR91	0,524	140144	18,13	0,11252	0,60	4,713	1,17	0,3037	0,93	0,80	1841	22	1710	28	7,11	1841	22
119-ZR93	0,257	175234	24,69	0,12459	0,69	5,844	1,21	0,3402	0,93	0,76	2023	24	1887	30	6,70	2023	24
120-ZR94	0,402	136344	40,87	0,12099	1,24	5,900	1,59	0,3536	0,92	0,58	1971	44	1952	31	0,96	1971	44
121-ZR95	0,369	203899	30,02	0,13298	0,59	6,793	1,07	0,3705	0,82	0,76	2138	21	2032	28	4,96	2138	21
124-ZR98	0,505	298450	21,66	0,11356	0,72	5,048	1,24	0,3224	0,94	0,76	1857	26	1801	29	3,01	1857	26
125-ZR99	0,743	152441	30,31	0,12075	0,72	5,570	1,03	0,3345	0,64	0,62	1967	26	1860	21	5,44	1967	26
126-ZR100	0,638	269690	15,76	0,13951	0,63	7,027	0,92	0,3653	0,56	0,61	2221	22	2007	19	9,63	2221	22
005-ZR3	0,596	58054	24,92	0,05965	0,86	0,754	1,30	0,0916	0,90	0,69	591	37	565	10	4,38	565	10
006-ZR4	0,649	247769	11,17	0,13258	0,46	6,843	0,84	0,3743	0,60	0,71	2132	16	2050	21	3,88	2132	16
008-ZR6	0,302	73466	15,69	0,13462	0,58	7,304	1,00	0,3935	0,73	0,73	2159	20	2139	27	0,94	2159	20
009-ZR7	0,557	204488	33,03	0,12037	0,47	6,095	0,98	0,3672	0,77	0,79	1962	17	2016	27	-2,79	1962	17
020-ZR16	0,321	355923	10,91	0,12192	0,31	6,033	0,79	0,3589	0,62	0,79	1984	11	1977	21	0,38	1984	11
024-ZR20	0,450	303455	25,58	0,11535	0,47	5,067	0,90	0,3186	0,68	0,75	1885	17	1783	21	5,43	1885	17
027-ZR21	0,798	91341	12,97	0,13653	0,64	7,664	1,11	0,4071	0,82	0,74	2184	22	2202	31	-0,82	2184	22
029-ZR23	0,442	452142	10,46	0,12262	0,39	6,178	0,82	0,3654	0,62	0,76	1995	14	2007	21	-0,64	1995	14
030-ZR24	0,396	75607	30,22	0,11256	0,43	4,956	0,87	0,3193	0,66	0,76	1841	16	1786	21	2,99	1841	16
031-ZR25	0,396	461955	18,95	0,11731	0,41	5,389	0,89	0,3331	0,70	0,78	1916	15	1854	23	3,24	1916	15
032-ZR26	0,789	5824	7,25	0,11415	0,63	4,863	1,17	0,3089	0,91	0,78	1867	23	1735	28	7,03	1867	23
033-ZR27	0,322	8987	11,18	0,12313	0,56	6,179	1,25	0,3639	1,06	0,84	2002	20	2001	36	0,07	2002	20
034-ZR28	2,666	1651	17,54	0,20730	0,72	16,601	2,06	0,5808	1,90	0,92	2885	23	2952	90	-2,34	2885	23
035-ZR29	0,470	456650	17,03	0,11501	0,47	5,349	0,93	0,3373	0,71	0,76	1880	17	1874	23	0,34	1880	17
039-ZR31	0,637	235469	15,77	0,12226	0,40	5,988	0,85	0,3552	0,65	0,76	1989	14	1959	22	1,51	1989	14
040-ZR32	0,460	1479	14,66	0,13167	0,59	6,559	1,32	0,3612	1,11	0,85	2120	21	1988	38	6,24	2120	21
041-ZR33	0,276	599682	45,48	0,13044	0,38	6,763	1,21	0,3760	1,09	0,90	2104	13	2058	38	2,20	2104	13

042-ZR34	0,231	2458	7,75	0,13808	0,83	7,297	1,18	0,3832	0,75	0,64	2203	29	2091	27	5,08	2203	29
043-ZR35	0,276	442805	14,47	0,11815	0,33	5,527	0,75	0,3393	0,57	0,75	1928	12	1883	18	2,35	1928	12
046-ZR38	0,948	1934	10,91	0,11918	0,70	5,328	1,21	0,3242	0,92	0,76	1944	25	1810	29	6,87	1944	25
047-ZR39	1,108	96510	41,87	0,12605	0,53	6,385	0,91	0,3673	0,63	0,70	2044	19	2017	22	1,31	2044	19
051-ZR41	0,621	11433	16,41	0,12092	0,50	5,835	0,98	0,3499	0,76	0,77	1970	18	1934	25	1,80	1970	18
052-ZR42	0,259	89473	15,90	0,09491	0,55	3,422	0,98	0,2615	0,71	0,73	1526	21	1497	19	1,90	1526	21
054-ZR44	0,698	3372	3,58	0,12660	0,52	6,789	1,40	0,3889	1,25	0,89	2051	18	2118	45	-3,25	2051	18
055-ZR45	0,484	450590	15,99	0,13075	0,33	7,036	0,80	0,3903	0,63	0,79	2108	12	2124	23	-0,77	2108	12
057-ZR47	0,677	172172	16,32	0,11519	0,44	5,284	1,02	0,3327	0,83	0,82	1883	16	1851	27	1,66	1883	16
058-ZR48	0,433	377739	13,66	0,12190	0,36	6,022	1,01	0,3583	0,87	0,86	1984	13	1974	29	0,52	1984	13
059-ZR49	0,593	189413	32,02	0,12424	0,54	5,657	1,69	0,3302	1,56	0,92	2018	19	1839	50	8,85	2018	19
063-ZR51	0,705	169666	16,60	0,13358	0,38	6,969	1,15	0,3784	1,02	0,89	2146	13	2069	36	3,58	2146	13
064-ZR52	0,528	398590	19,23	0,11558	0,35	5,321	0,90	0,3339	0,74	0,82	1889	13	1857	24	1,68	1889	13
065-ZR53	0,405	380097	16,75	0,11558	0,30	5,259	0,84	0,3300	0,69	0,82	1889	11	1838	22	2,68	1889	11
067-ZR55	0,618	322463	24,92	0,12330	0,35	6,197	0,95	0,3645	0,80	0,84	2005	12	2004	28	0,05	2005	12
068-ZR56	0,341	243420	20,03	0,11302	0,45	4,948	0,98	0,3175	0,79	0,80	1848	16	1778	25	3,84	1848	16
069-ZR57	0,642	132521	23,24	0,11604	0,55	5,500	0,98	0,3438	0,72	0,73	1896	20	1905	24	-0,46	1896	20
071-ZR59	0,790	251720	24,36	0,12109	0,71	6,241	1,48	0,3738	1,25	0,84	1972	25	2047	44	-3,79	1972	25
075-ZR61	0,628	218712	12,58	0,11853	1,77	6,248	1,98	0,3823	0,82	0,41	1934	63	2087	29	-7,90	1934	63
076-ZR62	0,545	287640	9,80	0,13562	0,48	7,769	0,93	0,4154	0,71	0,76	2172	17	2240	27	-3,11	2172	17
079-ZR65	0,510	365065	21,62	0,12211	0,41	6,086	0,85	0,3614	0,65	0,76	1987	15	1989	22	-0,09	1987	15
083-ZR69	0,713	144211	28,24	0,11424	0,58	5,210	1,00	0,3307	0,73	0,73	1868	21	1842	23	1,39	1868	21
089-ZR73	0,545	40201	55,21	0,12110	0,40	6,176	0,92	0,3699	0,74	0,80	1972	14	2029	26	-2,86	1972	14
091-ZR75	0,312	369754	28,85	0,19235	0,48	14,186	1,10	0,5348	0,92	0,84	2762	16	2762	41	0,02	2762	16
092-ZR76	0,565	95497	21,64	0,12525	0,69	6,241	1,71	0,3613	1,52	0,89	2032	24	1989	52	2,16	2032	24
093-ZR77	0,561	265347	16,28	0,12416	0,41	6,360	0,95	0,3715	0,77	0,81	2017	14	2036	27	-0,98	2017	14
094-ZR78	0,279	372669	21,67	0,11615	0,49	5,534	1,17	0,3455	1,00	0,85	1898	18	1913	33	-0,81	1898	18
095-ZR79	0,641	281071	15,15	0,11592	0,56	5,102	1,03	0,3192	0,79	0,76	1894	20	1786	25	5,74	1894	20

ZR80	0,322	393630	13,46	0,11912	0,54	5,426	0,97	0,3303	0,71	0,73	1943	19	1840	23	5,31	1943	19
ZR81	0,345	290442	17,38	0,12558	0,44	6,197	0,93	0,3579	0,73	0,79	2037	15	1972	25	3,18	2037	15
ZR83	0,755	492365	75,57	0,10952	0,78	4,363	1,61	0,2889	1,37	0,85	1791	28	1636	39	8,68	1791	28
ZR85	0,299	467131	51,36	0,11935	0,35	5,736	0,88	0,3485	0,72	0,82	1947	12	1928	24	0,97	1947	12
ZR86	0,730	69099	16,05	0,05983	0,73	0,814	1,17	0,0987	0,84	0,71	597	32	607	10	-1,59	607	10
ZR92	0,262	489078	21,53	0,11323	0,44	4,845	1,07	0,3103	0,90	0,84	1852	16	1742	27	5,92	1852	16
ZR97	0,301	4085001	87,51	0,17643	0,37	11,865	0,86	0,4877	0,68	0,79	2620	12	2561	29	2,25	2620	12
ZR99	1,050	1292	12,66	0,11097	0,83	4,705	1,34	0,3075	0,99	0,74	1815	30	1728	30	4,79	1815	30
FORMAÇÃO) PIRABAS	6 (GM-P6)															
ZR1	0,314	123457	17,26	0,12917	0,47	6,369	0,86	0,3576	0,61	0,72	2087	17	1971	21	5,55	2087	17
ZR2	0,554	165628	15,57	0,06744	0,42	1,258	0,86	0,1353	0,66	0,76	851	17	818	10	3,92	818	10
ZR3	0,533	354893	10,44	0,10733	0,30	4,293	0,69	0,2901	0,50	0,72	1755	11	1642	14	6,42	1755	11
ZR4	0,601	8966	3,73	0,13851	0,23	7,545	0,87	0,3950	0,75	0,87	2209	8	2146	28	2,83	2209	8
ZR6	0,766	247246	11,33	0,07255	0,44	1,618	0,79	0,1617	0,54	0,69	1002	18	966	10	3,51	966	10
ZR7	0,481	430267	8,77	0,17888	0,37	11,592	0,75	0,4699	0,54	0,72	2643	12	2483	22	6,03	2643	12
ZR9	0,729	541147	7,00	0,13585	0,38	7,499	0,77	0,4003	0,56	0,72	2175	13	2171	21	0,20	2175	13
ZR10	0,308	37588	7,86	0,05893	2,47	0,814	3,13	0,1002	1,88	0,60	565	106	616	22	-9,02	616	22
ZR11	0,360	410075	27,76	0,13167	0,25	6,689	0,64	0,3684	0,46	0,71	2120	9	2022	16	4,64	2120	9
ZR12C	0,301	616657	15,20	0,13177	0,39	6,362	1,00	0,3501	0,84	0,84	2122	14	1935	28	8,79	2122	14
ZR12R	0,285	510899	20,50	0,12702	0,34	6,720	0,72	0,3837	0,52	0,72	2057	12	2093	18	-1,76	2057	12
ZR14	0,428	289678	15,74	0,12542	0,33	6,372	0,71	0,3685	0,51	0,71	2035	12	2022	18	0,62	2035	12
ZR15	0,239	92861	14,26	0,07110	0,51	1,621	0,92	0,1654	0,68	0,73	960	21	986	12	-2,73	986	12
ZR16	0,262	187895	15,10	0,05824	0,38	0,740	0,74	0,0921	0,52	0,70	539	17	568	6	-5,47	568	6
ZR17	0,445	331740	16,50	0,13661	0,25	7,520	0,66	0,3992	0,49	0,74	2185	9	2165	18	0,89	2185	9
ZR18	0,686	203546	13,46	0,07297	0,61	1,779	1,02	0,1768	0,73	0,71	1013	25	1049	14	-3,57	1049	14
ZR19	0,215	115162	12,52	0,13376	0,52	7,938	0,93	0,4304	0,68	0,73	2148	18	2307	26	-7,43	2148	18
ZR20	0,401	382790	22,27	0,11644	0,28	5,948	0,72	0,3705	0,54	0,76	1902	10	2032	19	-6,79	1902	10
ZR21	0,283	301829	15,02	0,16162	0,58	10,085	0,89	0,4525	0,56	0,63	2473	20	2406	23	2,68	2473	20

ZR23	0,856	145404	43,02	0,05857	0,56	0,732	1,18	0,0907	0,97	0,82	551	24	560	10	-1,57	560	10
ZR24	0,888	152198	18,12	0,07603	0,53	1,980	0,93	0,1889	0,66	0,71	1096	21	1115	13	-1,77	1115	13
ZR26	0,300	40599	46,03	0,07387	0,42	1,713	0,77	0,1682	0,53	0,69	1038	17	1002	10	3,46	1002	10
ZR27	0,836	222252	30,02	0,12207	0,41	6,015	0,94	0,3573	0,75	0,80	1987	15	1970	26	0,86	1987	15
ZR29	0,379	176712	16,20	0,13490	0,42	6,725	0,89	0,3615	0,68	0,77	2163	15	1989	23	8,01	2163	15
ZR31	0,637	108918	22,87	0,13854	0,46	7,011	0,98	0,3670	0,78	0,80	2209	16	2015	27	8,77	2209	16
ZR34	1,171	63005	15,00	0,06952	0,66	1,399	1,04	0,1459	0,71	0,68	914	27	878	12	3,95	878	12
ZR35	0,376	235189	10,73	0,12386	0,39	5,598	1,12	0,3278	0,98	0,88	2012	14	1827	31	9,19	2012	14
ZR36	0,470	120629	18,74	0,05921	0,65	0,772	1,07	0,0945	0,77	0,71	575	28	582	9	-1,23	582	9
ZR37	0,553	380354	14,46	0,19042	0,40	13,425	0,76	0,5113	0,53	0,70	2746	13	2662	23	3,05	2746	13
ZR38	0,368	216016	19,42	0,05995	0,67	0,766	1,07	0,0926	0,75	0,70	602	29	571	8	5,13	571	8
ZR39	0,798	87458	7,75	0,06955	0,80	1,566	1,35	0,1633	1,02	0,76	915	33	975	19	-6,53	975	19
ZR40	0,417	314077	17,81	0,13845	0,35	7,496	0,72	0,3927	0,51	0,71	2208	12	2135	19	3,29	2208	12
ZR41	0,473	181378	37,11	0,13496	0,37	7,373	0,88	0,3962	0,70	0,80	2163	13	2152	26	0,55	2163	13
ZR42	0,317	212853	12,85	0,05799	0,43	0,643	0,84	0,0805	0,62	0,73	529	19	499	6	5,77	499	6
ZR43	0,183	446856	14,90	0,06305	0,34	0,949	0,70	0,1091	0,48	0,69	710	14	668	6	5,94	668	6
ZR44	0,920	277047	14,13	0,21750	0,32	15,415	0,70	0,5140	0,50	0,72	2962	10	2674	22	9,74	2962	10
ZR46	0,684	430985	45,44	0,14030	0,52	7,453	0,84	0,3853	0,54	0,64	2231	18	2101	19	5,84	2231	18
ZR47	0,021	171742	14,39	0,07374	0,50	1,638	0,85	0,1611	0,59	0,69	1034	20	963	11	6,89	963	11
ZR48	0,347	137182	14,02	0,05751	0,65	0,645	1,01	0,0813	0,68	0,67	511	28	504	7	1,40	504	7
ZR49	0,790	869090	13,96	0,11328	0,30	5,351	0,68	0,3426	0,49	0,72	1853	11	1899	16	-2,51	1853	11
ZR51	0,261	294786	10,93	0,14260	0,41	8,721	0,79	0,4435	0,56	0,71	2259	14	2366	22	-4,74	2259	14
ZR52	0,094	1833986	9,19	0,16193	0,24	11,343	0,70	0,5080	0,54	0,78	2476	8	2648	24	-6,95	2476	8
ZR54	0,422	50753	20,30	0,06183	0,99	0,910	1,36	0,1067	0,86	0,63	668	42	654	11	2,15	654	11
ZR55	0,409	212502	17,61	0,06044	0,37	0,790	0,73	0,0948	0,51	0,70	619	16	584	6	5,74	584	6
ZR56	0,296	230658	13,37	0,07855	0,39	1,996	0,77	0,1843	0,56	0,72	1161	15	1091	11	6,05	1091	11
ZR57	0,230	144914	21,65	0,06048	0,46	0,818	0,96	0,0981	0,75	0,79	621	20	603	9	2,79	603	9
ZR58	0,592	358005	14,65	0,13662	0,36	6,872	0,71	0,3648	0,49	0,69	2185	12	2005	17	8,24	2185	12

ZR59	0,292	116046	14,56	0,06025	0,54	0,834	0,91	0,1004	0,63	0,69	613	23	617	7	-0,68	617	7
ZR60	0,298	456030	19,05	0,13545	0,30	7,065	0,68	0,3783	0,49	0,72	2170	10	2068	17	4,68	2170	10
ZR61	0,539	653585	18,17	0,12916	0,25	6,362	0,68	0,3572	0,52	0,76	2087	9	1969	18	5,64	2087	9
ZR62	1,009	323934	18,46	0,11511	0,28	5,246	0,65	0,3305	0,45	0,70	1882	10	1841	15	2,16	1882	10
ZR63	0,360	403892	15,01	0,13399	0,24	7,119	0,79	0,3853	0,65	0,83	2151	8	2101	23	2,32	2151	8
ZR64	0,694	87643	11,11	0,06047	0,91	0,786	1,42	0,0943	1,03	0,72	621	39	581	11	6,39	581	11
ZR65	0,324	176004	14,80	0,06572	0,48	1,127	0,90	0,1243	0,67	0,74	798	20	755	10	5,30	755	10
ZR66	0,554	458292	19,79	0,13219	0,27	7,082	0,64	0,3885	0,46	0,71	2127	9	2116	16	0,52	2127	9
ZR67	0,572	162987	15,71	0,22009	0,38	17,154	0,76	0,5653	0,54	0,71	2981	12	2888	25	3,12	2981	12
ZR68	0,565	659958	30,18	0,11477	0,31	5,074	0,69	0,3206	0,50	0,72	1876	11	1793	16	4,46	1876	11
ZR69	0,521	267582	19,92	0,07528	0,39	1,687	0,73	0,1625	0,48	0,67	1076	16	971	9	9,79	971	9
ZR70	0,406	609875	15,41	0,13106	0,31	6,734	0,65	0,3726	0,44	0,67	2112	11	2042	15	3,33	2112	11
ZR71	1,232	152059	13,56	0,07330	0,39	1,643	0,75	0,1625	0,53	0,70	1022	16	971	9	5,04	971	9
ZR72	0,488	655997	16,02	0,29556	0,27	26,334	0,74	0,6461	0,58	0,78	3447	8	3213	29	6,79	3447	8
ZR73	0,469	226220	17,38	0,13639	0,33	7,307	0,70	0,3886	0,49	0,70	2182	12	2116	18	3,01	2182	12
ZR76	0,363	459521	39,71	0,11559	0,25	4,830	0,70	0,3031	0,55	0,77	1889	9	1706	16	9,67	1889	9
ZR78	0,501	148037	17,36	0,07408	0,48	1,713	0,83	0,1677	0,57	0,69	1044	19	1000	11	4,20	1000	11
ZR80	0,314	53133	64,16	0,06386	1,06	1,046	2,51	0,1188	2,24	0,89	737	45	724	31	1,82	724	31
ZR81	0,482	174842	21,44	0,13611	0,38	6,837	0,78	0,3643	0,57	0,73	2178	13	2003	20	8,06	2178	13
ZR83	0,155	351941	32,81	0,06562	0,33	1,127	0,70	0,1246	0,50	0,71	794	14	757	7	4,67	757	7
ZR84	0,742	141227	13,43	0,06091	0,45	0,844	0,83	0,1005	0,60	0,71	636	19	618	7	2,89	618	7
ZR85	0,323	123083	13,39	0,05959	0,56	0,767	0,93	0,0933	0,65	0,70	589	24	575	7	2,25	575	7
ZR87	0,270	287237	13,41	0,06098	0,65	0,818	1,52	0,0973	1,32	0,87	638	28	598	15	6,27	598	15
ZR88	0,110	43575	20,84	0,05920	1,31	0,716	1,85	0,0877	1,26	0,68	574	56	542	13	5,66	542	13
ZR89	0,661	248118	17,54	0,10573	0,48	4,644	0,97	0,3186	0,76	0,78	1727	18	1783	24	-3,23	1727	18
ZR90	0,552	29006	18,59	0,06173	1,12	0,834	1,51	0,0979	0,94	0,63	665	47	602	11	9,40	602	11
ZR91	0,253	43356	18,82	0,06321	1,13	0,927	1,65	0,1063	1,14	0,69	715	48	651	14	8,93	651	14
ZR92	0,278	50812	22,23	0,13911	0,65	7,053	1,40	0,3677	1,18	0,84	2216	23	2018	41	8,92	2216	23

ZR93	0,305	205841	16,76	0,06671	0,43	1,167	0,78	0,1269	0,54	0,69	829	18	770	8	7,09	770	8
ZR94	0,331	1164564	42,58	0,12089	0,28	5,931	0,68	0,3558	0,50	0,73	1969	10	1962	17	0,36	1969	10
ZR95	0,428	204864	16,72	0,06529	0,42	1,253	0,95	0,1392	0,76	0,80	784	18	840	12	-7,20	840	12
ZR96	0,763	380541	17,75	0,12282	0,26	6,000	0,72	0,3543	0,57	0,78	1998	9	1955	19	2,13	1998	9
ZR97	0,521	8203	50,62	0,04777	2,16	0,195	2,86	0,0296	1,85	0,65	88	101	188	7	-4,0	188	7
ZR98	0,580	134867	9,51	0,21582	0,53	17,095	1,02	0,5744	0,79	0,77	2950	17	2926	37	0,81	2950	17
ZR99	0,473	281897	31,96	0,07493	0,56	1,771	0,86	0,1714	0,53	0,62	1067	22	1020	10	4,40	1020	10
FORMAÇÃO) PIRABAS	S (GM-P7)															
ZR1C	0,387	443629	1,23	0,13997	0,59	8,151	1,15	0,4223	0,91	0,80	2227	20	2271	35	-1,99	2227	20
ZR1R	0,278	281358	15,90	0,13486	0,50	6,961	0,93	0,3744	0,70	0,75	2162	17	2050	25	5,19	2162	17
ZR2	0,340	813597	30,03	0,12701	0,39	6,671	0,83	0,3809	0,64	0,77	2057	14	2080	23	-1,14	2057	14
ZR5	0,881	141831	1,81	0,05906	0,78	0,824	1,55	0,1012	1,29	0,83	569	34	621	15	-9,10	621	15
ZR6	0,683	245884	2,82	0,10786	0,67	4,737	1,22	0,3185	0,95	0,78	1764	24	1782	30	-1,07	1764	24
ZR7	0,390	64484	44,68	0,14145	0,69	7,901	1,12	0,4051	0,80	0,71	2245	24	2192	30	2,34	2245	24
ZR9	0,159	572306	4,71	0,13820	0,74	7,625	1,24	0,4001	0,92	0,74	2205	26	2170	34	1,59	2205	26
ZR10	0,496	151337	13,05	0,06060	0,79	0,812	1,26	0,0971	0,92	0,73	625	34	598	10	4,42	598	10
ZR11C	0,302	7240	19,36	0,14241	0,58	7,584	2,29	0,3862	2,18	0,95	2257	20	2105	78	6,72	2193	29
ZR12	0,608	298083	15,43	0,13489	0,48	7,397	1,37	0,3977	1,23	0,90	2163	17	2159	45	0,19	2257	20
ZR13	0,551	241708	16,53	0,14612	0,54	7,729	1,22	0,3836	1,03	0,84	2301	19	2093	37	9,04	2163	17
ZR15	0,184	1108191	13,68	0,18592	1,32	12,035	1,87	0,4694	1,28	0,68	2706	43	2481	53	8,32	2301	19
ZR16C	0,611	488982	46,98	0,18069	0,49	13,653	1,25	0,5480	1,08	0,87	2659	16	2817	49	-5,93	2706	43
ZR16R	0,381	1352520	6,20	0,18171	0,55	12,940	1,27	0,5164	1,08	0,85	2669	18	2684	47	-0,58	2659	16
ZR17	0,115	1295533	12,74	0,12143	0,55	5,928	1,06	0,3540	0,83	0,78	1977	19	1954	28	1,19	2669	18
ZR18	0,261	457616	35,65	0,07358	0,66	1,753	1,50	0,1728	1,30	0,86	1030	27	1028	25	0,24	1977	19
ZR19	0,528	322820	11,14	0,13725	0,55	7,879	1,18	0,4163	0,98	0,83	2193	19	2244	37	-2,32	1028	25
ZR20	0,399	189045	19,57	0,13292	0,46	7,092	1,50	0,3870	1,38	0,92	2137	16	2109	49	1,32	2193	19
ZR21	1,930	73416	17,08	0,12647	1,39	6,343	1,91	0,3637	1,27	0,66	2049	49	2000	43	2,42	2137	16
ZR22	0,329	238401	10,61	0,13764	0,62	7,183	1,24	0,3785	1,00	0,81	2198	22	2069	35	5,85	2049	49

ZR23	0,290	776565	37,93	0,14105	0,82	7,297	1,60	0,3752	1,33	0,83	2240	28	2054	47	8,32	2198	22
ZR24	0,414	18408	29,45	0,13041	0,53	6,557	1,38	0,3646	1,22	0,88	2103	19	2004	42	4,72	2240	28
ZR26	0,354	247263	11,02	0,14231	0,60	8,040	1,48	0,4097	1,30	0,88	2255	21	2214	49	1,85	2103	19
ZR28	0,009	53306	11,09	0,05928	1,20	0,844	2,04	0,1032	1,61	0,79	577	52	633	19	-9,67	2255	21
ZR29	0,385	345235	14,29	0,13707	0,47	7,144	1,29	0,3779	1,14	0,89	2191	16	2067	40	5,65	633	19
ZR31	0,352	29387	34,60	0,07276	0,81	1,591	1,55	0,1586	1,27	0,82	1007	33	949	22	5,80	2191	16
ZR33	0,383	334321	17,10	0,13803	0,49	7,742	1,31	0,4068	1,15	0,88	2203	17	2200	43	0,12	949	22
ZR34	0,532	128219	21,17	0,06061	0,87	0,906	1,61	0,1084	1,30	0,81	625	37	664	16	-6,14	2203	17
ZR36	0,275	188751	16,83	0,13531	0,46	7,569	1,05	0,4056	0,86	0,82	2168	16	2195	32	-1,24	664	16
ZR37	0,005	90400	18,75	0,13090	0,70	6,607	1,34	0,3660	1,08	0,81	2110	24	2011	37	4,71	2168	16
ZR38	0,486	251874	18,65	0,13514	0,45	7,632	1,05	0,4096	0,88	0,83	2166	16	2213	33	-2,18	2110	24
ZR40	0,864	106088	24,86	0,13576	0,49	7,520	1,15	0,4017	0,97	0,84	2174	17	2177	36	-0,15	2166	16
ZR41	0,866	68554	17,34	0,05897	0,80	0,761	1,40	0,0936	1,09	0,78	566	34	577	12	-1,89	2174	17
ZR42C	0,724	172404	27,70	0,07604	0,90	1,996	1,75	0,1903	1,46	0,83	1096	36	1123	30	-2,45	577	12
ZR44	0,509	3403	16,69	0,14108	1,48	8,027	1,94	0,4126	1,19	0,62	2240	51	2227	45	0,60	1123	30
ZR45	0,350	108775	14,82	0,13358	0,86	7,677	1,38	0,4168	1,02	0,74	2146	30	2246	38	-4,68	2240	51
ZR46	0,280	283808	15,21	0,13488	0,63	7,674	1,33	0,4126	1,11	0,83	2163	22	2227	42	-2,97	2146	30
ZR47	1,783	67590	15,02	0,07437	0,92	1,772	1,29	0,1728	0,82	0,64	1051	37	1028	16	2,26	2163	22
ZR48	0,325	225442	18,75	0,13759	0,68	7,791	1,65	0,4107	1,45	0,88	2197	24	2218	54	-0,95	1028	16
ZR49	0,690	122780	18,06	0,11521	0,55	5,358	1,09	0,3373	0,87	0,79	1883	20	1874	28	0,51	2197	24
ZR50	0,891	142828	12,52	0,11454	0,67	5,567	1,24	0,3525	0,97	0,79	1873	24	1946	33	-3,94	1883	20
ZR51	0,329	190359	22,74	0,11835	0,55	5,335	1,09	0,3269	0,87	0,79	1931	20	1823	28	5,59	1873	24
ZR53	0,745	201022	15,41	0,13328	0,68	7,402	1,20	0,4028	0,91	0,76	2142	24	2182	34	-1,87	1931	20
ZR54	0,478	114558	21,64	0,13453	0,59	7,913	1,25	0,4266	1,04	0,83	2158	21	2290	40	-6,14	2142	24
ZR55	0,363	298109	18,00	0,11713	0,53	5,812	1,65	0,3598	1,52	0,92	1913	19	1981	52	-3,58	2158	21
ZR56	0,740	23416	19,48	0,06288	1,38	0,898	2,18	0,1035	1,64	0,75	704	58	635	20	9,79	1913	19
ZR57	0,763	381155	12,52	0,13178	0,57	6,820	1,49	0,3753	1,32	0,89	2122	20	2054	46	3,17	635	20
ZR59	0,311	160831	20,97	0,05743	0,53	0,624	1,64	0,0788	1,51	0,92	508	23	489	14	3,73	2122	20

ZR60	0,338	224652	16,99	0,11467	0,50	4,846	1,28	0,3065	1,12	0,87	1875	18	1723	34	8,07	489	14
ZR63	0,541	244206	12,98	0,12834	0,62	6,157	1,34	0,3479	1,13	0,84	2075	22	1925	37	7,25	1875	18
ZR65	0,207	644836	11,64	0,08628	0,43	2,917	1,44	0,2452	1,32	0,92	1345	16	1414	34	-5,13	2075	22
ZR68	0,665	436675	9,35	0,13034	0,42	6,410	1,13	0,3566	0,97	0,87	2103	15	1966	33	6,49	1414	34
ZR69	0,475	278130	10,30	0,13387	0,51	6,993	1,09	0,3789	0,89	0,82	2149	18	2071	32	3,65	2103	15
ZR70	0,974	70456	13,30	0,13263	0,86	7,066	1,65	0,3864	1,36	0,82	2133	30	2106	49	1,26	2149	18
ZR71	0,273	282309	11,78	0,13874	0,58	6,935	1,38	0,3625	1,20	0,87	2212	20	1994	41	9,84	2133	30
ZR72	0,297	183738	9,69	0,08827	0,67	2,755	1,32	0,2263	1,07	0,81	1388	26	1315	25	5,27	2212	20
ZR73	0,753	634224	12,93	0,14062	0,58	7,565	1,09	0,3901	0,84	0,78	2235	20	2124	31	4,98	1315	25
ZR74	1,011	76468	12,02	0,06124	0,76	0,801	1,44	0,0949	1,17	0,81	648	33	584	13	9,75	2235	20
ZR75	0,248	433080	17,09	0,13432	0,50	7,453	1,74	0,4024	1,63	0,93	2155	17	2180	60	-1,15	584	13
ZR76	1,507	150148	18,24	0,11581	0,49	5,286	1,21	0,3310	1,04	0,86	1892	18	1843	33	2,59	2155	17
ZR77	0,408	79324	17,53	0,13281	0,81	7,067	1,51	0,3859	1,22	0,81	2135	28	2104	44	1,49	1892	18
ZR78	0,382	73390	36,66	0,13319	0,59	7,638	2,08	0,4159	1,96	0,94	2141	21	2242	74	-4,73	2135	28
ZR79	0,461	144019	27,72	0,13858	0,52	7,402	1,33	0,3873	1,17	0,88	2210	18	2110	42	4,49	2141	21
ZR80	0,668	189844	17,36	0,05896	0,78	0,725	1,53	0,0892	1,26	0,83	566	34	551	13	2,66	2210	18
ZR82	0,280	276618	15,72	0,13868	0,72	7,079	1,55	0,3702	1,33	0,86	2211	25	2030	46	8,17	551	13
ZR84	0,670	148453	17,51	0,05924	0,81	0,821	1,76	0,1005	1,52	0,86	576	35	617	18	-7,17	2211	25
ZR85	0,742	96670	20,56	0,06005	0,95	0,845	2,27	0,1021	2,02	0,89	605	41	627	24	-3,50	617	18
ZR86	0,796	319710	23,84	0,20914	0,78	15,420	1,67	0,5347	1,43	0,86	2899	25	2761	64	4,74	627	24
ZR88	0,584	53198	24,07	0,05904	0,96	0,686	1,57	0,0843	1,19	0,76	568	42	522	12	8,20	2899	25
ZR89	0,263	130011	15,79	0,13654	0,57	7,112	1,21	0,3778	1,00	0,83	2184	20	2066	35	5,40	522	12
ZR90	0,463	410072	18,31	0,11551	0,56	5,284	1,82	0,3317	1,69	0,93	1888	20	1847	54	2,18	2184	20
ZR91	0,559	161618	45,10	0,10301	2,44	3,995	3,14	0,2813	1,94	0,62	1679	89	1598	55	4,84	1888	20
ZR93	0,880	259633	11,46	0,11082	0,72	4,971	1,33	0,3253	1,05	0,79	1813	26	1816	33	-0,15	1679	89
ZR94	0,337	603726	65,26	0,07715	0,77	2,047	1,71	0,1924	1,48	0,87	1125	31	1134	31	-0,83	1813	26
ZR96	0,615	95906	15,73	0,06118	0,64	0,867	1,24	0,1028	1,00	0,80	646	27	631	12	2,31	1134	31
ZR97	0,259	189234	21,38	0,13490	0,48	7,675	1,13	0,4126	0,95	0,84	2163	17	2227	36	-2,96	631	12

ZR98	0,523	262411	23,56	0,13900	0,57	7,086	1,99	0,3697	1,87	0,94	2215	20	2028	65	8,43	2163	17
ZR99	0,493	137620	21,05	0,13381	0,52	7,076	1,11	0,3835	0,90	0,81	2149	18	2093	32	2,60	2215	20
ZR100	0,442	123243	12,96	0,13724	0,85	7,842	1,75	0,4144	1,48	0,85	2193	29	2235	56	-1,92	2149	18
FORMAÇÃ	O BARREI	RAS (GM-B2	2)														
ZR1	0,498	37815	20,71	0,11773	0,38	5,635	1,73	0,3471	1,64	0,95	1922	14	1921	54	0,07	1922	14
ZR3	0,654	309028	17,49	0,15527	0,36	8,671	0,98	0,4050	0,84	0,85	2405	12	2192	31	8,85	2405	12
ZR5	0,641	253501	37,28	0,11498	0,36	5,137	0,81	0,3240	0,62	0,77	1880	13	1809	20	3,75	1880	13
ZR6	0,471	440450	30,63	0,12427	0,30	6,345	0,88	0,3703	0,74	0,84	2018	11	2031	26	-0,61	2018	11
ZR8	0,234	229372	23,70	0,10877	0,42	4,509	0,86	0,3006	0,65	0,76	1779	15	1694	19	4,76	1779	15
ZR9	0,320	159412	21,17	0,13293	0,55	6,961	1,21	0,3797	1,01	0,84	2137	19	2075	36	2,90	2137	19
ZR10	0,445	131216	17,77	0,12396	0,53	6,298	1,00	0,3684	0,76	0,76	2014	19	2022	26	-0,40	2014	19
ZR11	0,289	76890	14,48	0,05930	0,80	0,837	1,29	0,1023	0,94	0,73	578	34	628	11	-8,68	628	11
ZR13	0,527	68746	13,73	0,11998	0,68	6,045	1,16	0,3654	0,87	0,75	1956	24	2008	30	-2,64	1956	24
ZR14	0,502	356526	51,21	0,18165	0,31	12,350	1,13	0,4930	1,02	0,90	2668	10	2584	43	3,16	2668	10
ZR18	0,774	96124	23,45	0,09263	0,70	3,183	1,10	0,2492	0,75	0,69	1480	27	1434	19	3,11	1434	19
ZR20	0,417	81630	41,48	0,05935	0,99	0,719	1,21	0,0879	0,59	0,49	580	43	543	6	6,37	543	6
ZR21	1,220	1043	3,90	0,13876	1,11	7,005	2,45	0,3661	2,16	0,88	2212	38	2011	74	9,08	2212	38
ZR22	0,257	140264	18,07	0,13404	0,59	6,482	1,04	0,3507	0,78	0,75	2152	20	1938	26	9,92	2152	20
ZR24	0,261	619809	30,32	0,11514	0,43	5,116	0,78	0,3222	0,54	0,69	1882	15	1800	17	4,33	1882	15
ZR25	0,276	320857	17,53	0,12840	0,37	6,271	0,76	0,3542	0,55	0,73	2076	13	1955	19	5,86	2076	13
ZR26	0,496	81538	15,61	0,11505	0,55	4,989	0,95	0,3145	0,68	0,72	1881	20	1763	21	6,28	1881	20
ZR28	0,838	86610	13,44	0,06396	0,61	0,977	1,02	0,1108	0,72	0,71	740	26	677	9	8,52	677	9
ZR29	0,467	65508	25,59	0,06097	0,96	0,795	1,25	0,0946	0,71	0,57	638	41	583	8	8,69	583	8
ZR30	0,703	6501	20,09	0,08801	1,25	2,594	1,80	0,2138	1,24	0,69	1383	48	1249	28	9,68	1249	28
ZR32	0,357	91070	26,57	0,11690	0,43	5,277	0,92	0,3274	0,72	0,78	1909	15	1826	23	4,38	1909	15
ZR33	0,497	192090	21,97	0,13514	0,48	6,901	0,85	0,3703	0,60	0,70	2166	17	2031	21	6,23	2166	17
ZR34	0,840	177572	22,12	0,11486	0,40	5,353	0,93	0,3380	0,75	0,81	1878	14	1877	25	0,03	1878	14
ZR35	0,446	395019	66,52	0,10679	0,43	4,544	0,85	0,3086	0,63	0,74	1745	16	1734	19	0,67	1745	16

ZR37	0,658	116867	21,68	0,11636	0,46	5,256	0,84	0,3276	0,59	0,71	1901	17	1827	19	3,91	1901	17
ZR38	0,526	79074	15,69	0,05758	0,65	0,682	1,09	0,0859	0,80	0,73	514	28	531	8	-3,33	531	8
ZR39	0,500	275221	20,64	0,12121	0,65	6,084	1,12	0,3640	0,83	0,74	1974	23	2001	29	-1,37	1974	23
ZR40	0,164	521571	17,17	0,12880	0,59	6,722	0,87	0,3785	0,53	0,60	2082	21	2069	19	0,60	2082	21
ZR43	0,524	22823	22,96	0,06061	0,87	0,781	1,66	0,0935	1,37	0,82	625	37	576	15	7,92	576	15
ZR44	0,512	4814	24,81	0,15863	0,88	9,122	1,15	0,4170	0,64	0,56	2441	30	2247	24	7,95	2441	30
ZR45	0,745	187763	13,03	0,12041	0,45	5,791	0,92	0,3488	0,72	0,78	1962	16	1929	24	1,71	1962	16
ZR46	0,650	140053	15,79	0,09441	0,40	3,517	0,89	0,2701	0,70	0,79	1516	15	1541	19	-1,66	1516	15
ZR47	0,467	102616	15,03	0,06131	0,74	0,900	1,11	0,1065	0,73	0,66	650	32	652	9	-0,36	652	9
ZR49	0,791	95914	28,21	0,13007	1,06	7,003	1,56	0,3905	1,09	0,70	2099	37	2125	40	-1,24	2099	37
ZR50	0,629	177169	19,58	0,12383	0,54	5,900	0,96	0,3455	0,70	0,73	2012	19	1913	23	4,91	2012	19
ZR51	0,341	552612	17,16	0,11783	0,42	5,377	0,92	0,3309	0,73	0,79	1924	15	1843	23	4,19	1924	15
ZR52	0,497	444206	17,09	0,12451	0,39	6,091	0,91	0,3548	0,74	0,81	2022	14	1957	25	3,19	2022	14
ZR54	0,048	515597	13,83	0,12734	0,33	6,637	0,87	0,3780	0,72	0,82	2062	12	2067	25	-0,25	2062	12
ZR55	0,950	232382	10,75	0,12695	0,45	6,178	0,90	0,3529	0,68	0,76	2056	16	1948	23	5,24	2056	16
ZR57	0,242	704392	11,07	0,11744	0,38	5,370	1,07	0,3316	0,93	0,87	1918	13	1846	30	3,73	1918	13
ZR59	0,780	144594	27,61	0,11824	1,09	5,948	1,71	0,3648	1,27	0,74	1930	39	2005	44	-3,89	1930	39
ZR61	0,459	13260	19,86	0,12269	0,51	5,773	0,97	0,3412	0,74	0,76	1996	18	1893	24	5,17	1996	18
ZR62	0,674	200720	18,80	0,11571	0,45	5,221	0,87	0,3272	0,65	0,74	1891	16	1825	20	3,49	1891	16
ZR63	0,226	768729	14,45	0,10788	0,38	4,449	0,79	0,2991	0,59	0,74	1764	14	1687	17	4,39	1764	14
ZR66	0,734	183597	38,32	0,12138	0,41	5,935	1,49	0,3546	1,38	0,93	1977	14	1957	47	1,01	1977	14
ZR68	0,334	653466	19,77	0,18631	0,51	12,712	1,03	0,4948	0,81	0,79	2710	17	2592	34	4,37	2710	17
ZR69	0,339	756711	16,28	0,12999	0,58	6,893	1,01	0,3845	0,73	0,73	2098	20	2097	26	0,02	2098	20
ZR71	0,850	249993	14,21	0,12855	0,52	6,968	1,04	0,3931	0,83	0,79	2078	18	2137	30	-2,83	2078	18
ZR72	0,679	252808	16,35	0,10600	0,47	4,512	0,87	0,3087	0,63	0,72	1732	17	1734	19	-0,16	1732	17
ZR73	0,432	402772	32,41	0,11543	0,45	5,382	0,85	0,3381	0,61	0,73	1887	16	1878	20	0,47	1887	16
ZR76	0,315	1680639	15,75	0,16006	0,40	9,703	0,86	0,4396	0,66	0,77	2456	14	2349	26	4,36	2456	14
ZR77	0,613	70467	13,20	0,05954	0,91	0,777	1,31	0,0947	0,88	0,67	587	39	583	10	0,62	583	10

ZR79	0,640	203220	14,28	0,12042	0,65	5,869	1,04	0,3535	0,72	0,70	1962	23	1951	24	0,57	1962	23
ZR80	0,468	410525	10,60	0,09482	0,64	3,339	1,00	0,2553	0,67	0,67	1525	24	1466	18	3,84	1466	18
ZR81	0,624	373089	18,79	0,12403	0,53	6,193	1,00	0,3621	0,77	0,76	2015	19	1992	26	1,13	2015	19
ZR83	0,796	12660	13,97	0,11955	0,85	6,153	2,12	0,3732	1,90	0,90	1949	30	2045	66	-4,88	1949	30
ZR84	0,472	242785	25,07	0,11753	0,79	5,824	1,12	0,3594	0,70	0,63	1919	28	1979	24	-3,14	1919	28
ZR85	0,492	337513	31,18	0,11416	0,46	5,326	1,15	0,3383	0,98	0,86	1867	16	1879	32	-0,65	1867	16
ZR86	0,521	25588	11,87	0,11022	0,42	4,604	0,97	0,3029	0,79	0,82	1803	15	1706	24	5,40	1803	15
ZR87R	0,400	15539	12,91	0,06007	0,73	0,807	1,08	0,0975	0,70	0,65	606	31	600	8	1,10	600	8
ZR89	0,636	734685	83,78	0,11410	0,63	4,824	1,06	0,3066	0,77	0,72	1866	23	1724	23	7,59	1866	23
ZR91	0,564	271233	14,31	0,10787	0,42	4,540	0,88	0,3052	0,68	0,77	1764	15	1717	20	2,64	1764	15
ZR92	0,642	66704	56,34	0,11463	0,44	5,313	1,01	0,3361	0,83	0,82	1874	16	1868	27	0,32	1874	16
ZR93	0,559	116237	34,73	0,10478	0,64	4,452	1,24	0,3081	0,99	0,80	1711	23	1731	30	-1,22	1711	23
ZR95	0,247	233101	24,46	0,11762	0,39	5,765	1,66	0,3555	1,57	0,95	1920	14	1961	53	-2,10	1920	14
ZR96	0,331	561955	20,60	0,11708	0,40	5,664	0,99	0,3508	0,83	0,84	1912	14	1939	28	-1,38	1912	14
ZR97	0,265	237837	10,84	0,08027	0,43	2,378	0,85	0,2148	0,63	0,74	1204	17	1255	14	-4,23	1255	14
ZR98	1,735	34627	66,82	0,11941	0,50	5,376	1,66	0,3265	1,54	0,93	1947	18	1822	49	6,47	1947	18
ZR99	0,720	84616	55,05	0,12142	0,47	5,458	1,26	0,3260	1,11	0,88	1977	17	1819	35	8,01	1977	17
ZR100	0,395	63496	15,78	0,08102	0,83	2,370	1,24	0,2121	0,85	0,68	1222	32	1240	19	-1,50	1240	19
FORMAÇÃO	O BARREII	RAS (GM-B5	5)														
ZR2	0,933	168451	16,76	0,12205	0,47	5,623	0,95	0,3342	0,74	0,78	1986	17	1858	24	6,44	1986	17
ZR3C	0,345	297283	10,91	0,13459	0,36	7,330	0,84	0,3950	0,67	0,79	2159	13	2146	24	0,60	2159	13
ZR3R	0,208	214627	15,52	0,13522	0,32	7,155	0,76	0,3837	0,58	0,76	2167	11	2094	21	3,38	2167	11
ZR4	0,252	146039	40,79	0,13454	0,50	7,246	0,91	0,3906	0,67	0,73	2158	17	2125	24	1,51	2158	17
ZR5	0,364	165826	19,53	0,13416	0,37	7,672	0,83	0,4147	0,64	0,78	2153	13	2236	24	-3,86	2153	13
ZR6	0,509	159050	15,82	0,13026	0,47	7,380	1,00	0,4109	0,80	0,80	2101	17	2219	30	-5,58	2101	17
ZR7	0,482	116225	17,97	0,06007	0,54	0,880	0,96	0,1063	0,70	0,73	606	23	651	9	-7,39	651	9
ZR8	0,357	166502	24,72	0,12058	0,37	6,340	0,90	0,3813	0,73	0,81	1965	13	2082	26	-5,99	1965	13
ZR10	0,716	449301	33,21	0,18235	0,36	12,277	0,78	0,4883	0,58	0,75	2674	12	2563	25	4,16	2674	12

ZR11	0,429	132562	18,78	0,13841	0,39	8,439	0,83	0,4422	0,64	0,76	2207	13	2360	25	-6,93	2207	13
ZR12	0,311	261350	18,23	0,13468	0,36	7,882	0,99	0,4244	0,84	0,85	2160	13	2280	32	-5,58	2160	13
ZR13	0,360	108567	19,80	0,05948	0,44	0,808	0,82	0,0986	0,58	0,71	585	19	606	7	-3,66	606	7
ZR14	0,589	107262	17,69	0,06256	0,73	1,053	1,10	0,1221	0,73	0,67	693	31	742	10	-7,12	742	10
ZR15	0,826	527951	17,97	0,19504	0,30	14,173	0,85	0,5270	0,70	0,82	2785	10	2729	31	2,02	2785	10
ZR16	0,482	159101	16,37	0,12186	0,47	6,413	0,96	0,3817	0,74	0,78	1984	17	2084	26	-5,06	1984	17
ZR17	0,029	161773	42,05	0,12308	0,54	6,397	0,95	0,3769	0,69	0,72	2001	19	2062	24	-3,03	2001	19
ZR19	0,242	239079	14,72	0,13485	0,38	7,371	0,82	0,3964	0,63	0,77	2162	13	2152	23	0,45	2162	13
ZR21	0,519	386529	12,40	0,13914	0,43	8,162	0,95	0,4254	0,76	0,80	2217	15	2285	29	-3,09	2217	15
ZR22	0,297	212055	43,26	0,11916	0,44	5,724	0,87	0,3484	0,65	0,75	1944	16	1927	22	0,87	1944	16
ZR23	0,346	426951	14,67	0,11769	0,28	5,956	0,85	0,3670	0,71	0,84	1921	10	2015	24	-4,89	1921	10
ZR24	0,574	35830	12,48	0,06259	1,46	1,054	1,80	0,1221	0,98	0,54	694	62	743	14	-6,98	743	14
ZR26	0,381	188469	25,25	0,13675	0,37	8,121	1,58	0,4307	1,49	0,94	2186	13	2309	58	-5,60	2186	13
ZR27	0,264	249221	13,07	0,12207	0,44	5,550	0,82	0,3297	0,59	0,72	1987	16	1837	19	7,53	1987	16
ZR28	0,411	291711	15,12	0,13572	0,49	8,215	0,84	0,4390	0,57	0,68	2173	17	2346	23	-7,95	2173	17
ZR29	0,227	78751	13,29	0,13311	0,70	7,436	1,22	0,4051	0,92	0,76	2139	24	2193	34	-2,49	2139	24
ZR30	0,606	166051	41,32	0,12144	0,47	5,571	1,08	0,3327	0,91	0,84	1977	17	1851	29	6,38	1977	17
ZR31	0,363	101824	10,93	0,13424	0,59	6,951	1,04	0,3755	0,77	0,74	2154	21	2055	27	4,58	2154	21
ZR32C	0,148	159659	14,36	0,13726	0,35	7,349	0,83	0,3883	0,66	0,79	2193	12	2115	24	3,55	2193	12
ZR32R	0,167	285157	24,86	0,13739	0,36	7,345	0,77	0,3877	0,58	0,75	2195	12	2112	21	3,75	2195	12
ZR33	0,351	206204	10,63	0,13463	0,49	7,343	0,99	0,3956	0,78	0,79	2159	17	2149	29	0,49	2159	17
ZR34	0,443	24848	18,57	0,06059	1,02	0,865	1,57	0,1035	1,13	0,72	625	44	635	14	-1,65	635	14
ZR35	0,313	121075	13,81	0,13294	0,53	7,343	0,93	0,4006	0,66	0,71	2137	19	2172	24	-1,62	2137	19
ZR37	0,480	562802	13,53	0,12797	0,44	6,662	0,86	0,3776	0,64	0,75	2070	15	2065	23	0,26	2070	15
ZR38	0,366	277495	13,80	0,13656	0,35	7,960	0,79	0,4227	0,60	0,77	2184	12	2273	23	-4,06	2184	12
ZR39	0,664	72293	9,41	0,06494	1,05	1,092	1,46	0,1219	0,94	0,65	772	44	742	13	4,01	742	13
ZR40	0,185	254731	10,80	0,13602	0,43	7,858	1,11	0,4190	0,95	0,86	2177	15	2256	36	-3,61	2177	15
ZR41	0,413	83299	13,83	0,05880	0,83	0,745	1,31	0,0919	0,95	0,72	560	36	567	10	-1,30	567	10

ZR42	0,599	27497	18,93	0,06051	1,66	0,806	2,12	0,0966	1,26	0,59	622	71	595	14	4,35	595	14
ZR44C	0,314	145768	12,61	0,13676	0,46	6,739	0,96	0,3573	0,76	0,79	2187	16	1969	26	9,93	2187	16
ZR46	0,397	128360	13,22	0,12655	0,69	6,281	1,09	0,3599	0,76	0,70	2051	24	1982	26	3,35	2051	24
ZR47	0,541	324519	12,77	0,17795	0,59	11,441	1,01	0,4663	0,74	0,73	2634	20	2467	30	6,33	2634	20
ZR50	0,432	134575	13,91	0,05978	0,75	0,738	1,24	0,0895	0,92	0,74	596	32	553	10	7,20	553	10
ZR51	0,383	257000	13,07	0,20401	0,44	14,274	0,84	0,5074	0,61	0,73	2859	14	2646	27	7,45	2859	14
ZR52	1,193	21869	18,55	0,07008	2,64	1,434	3,80	0,1484	2,71	0,71	931	106	892	45	4,20	892	45
ZR54	0,430	76779	12,08	0,07428	0,64	1,705	1,10	0,1664	0,81	0,74	1049	26	992	15	5,40	992	15
ZR55	0,458	354222	15,65	0,13538	0,38	6,898	0,94	0,3695	0,78	0,83	2169	13	2027	27	6,54	2169	13
ZR56	0,330	1145453	14,64	0,17763	0,56	11,331	0,91	0,4626	0,62	0,68	2631	18	2451	25	6,83	2631	18
ZR58	0,070	51947	11,32	0,13083	0,91	6,640	1,49	0,3680	1,12	0,75	2109	32	2020	39	4,22	2109	32
ZR60	0,520	177752	21,34	0,13847	0,38	7,633	0,84	0,3997	0,65	0,77	2208	13	2168	24	1,83	2208	13
ZR61	0,198	198689	12,72	0,13521	0,44	7,304	0,83	0,3917	0,59	0,72	2167	15	2131	21	1,65	2167	15
ZR62	0,571	337661	16,83	0,10912	0,32	4,963	0,78	0,3298	0,61	0,78	1785	12	1838	19	-2,96	1785	12
ZR64	0,175	217596	13,03	0,13458	0,36	7,099	0,80	0,3825	0,61	0,76	2159	13	2088	22	3,27	2159	13
ZR66	0,940	281948	14,24	0,12779	0,39	5,993	0,92	0,3401	0,75	0,81	2068	14	1887	24	8,74	2068	14
ZR67C	0,328	107536	23,53	0,13437	0,63	7,764	1,15	0,4190	0,89	0,78	2156	22	2256	34	-4,65	2156	22
ZR67R	0,214	310646	20,95	0,13514	0,51	6,791	1,16	0,3644	0,97	0,84	2166	18	2003	33	7,51	2166	18
ZR68C	0,386	40186	42,68	0,13533	0,43	7,563	0,98	0,4053	0,79	0,81	2168	15	2193	30	-1,16	2168	15
ZR68R	0,260	14759	80,89	0,13734	0,44	7,118	1,41	0,3759	1,29	0,91	2194	15	2057	45	6,25	2194	15
ZR69	0,173	370479	20,59	0,16126	0,48	9,461	1,13	0,4255	0,95	0,84	2469	16	2285	37	7,43	2469	16
ZR70	0,319	1393175	84,80	0,16553	0,39	10,337	0,80	0,4529	0,58	0,73	2513	13	2408	23	4,18	2513	13
ZR71	0,322	107704	21,68	0,13977	0,32	8,234	0,75	0,4272	0,57	0,76	2224	11	2293	22	-3,10	2224	11
ZR72	0,405	124820	13,59	0,13465	0,44	7,243	0,81	0,3901	0,57	0,70	2159	15	2123	21	1,68	2159	15
ZR74	0,459	81564	11,97	0,13604	0,69	7,554	1,31	0,4027	1,04	0,80	2177	24	2181	39	-0,19	2177	24
ZR75	0,468	117653	31,27	0,11590	2,64	5,505	2,96	0,3444	1,29	0,44	1894	93	1908	43	-0,75	1894	93
ZR76	0,249	96166	65,26	0,17829	0,47	11,468	1,50	0,4665	1,37	0,92	2637	16	2468	56	6,41	2637	16
ZR77	0,963	72446	5,75	0,12557	1,28	6,627	2,15	0,3828	1,69	0,79	2037	45	2089	60	-2,57	2037	45

ZR78	0,667	437908	1,84	0,12683	0,52	6,860	1,30	0,3923	1,13	0,87	2054	18	2133	41	-3,84	2054	18
ZR79	0,219	486357	2,61	0,12346	0,35	6,365	0,81	0,3739	0,63	0,78	2007	12	2048	22	-2,04	2007	12
ZR80	0,616	39021	8,08	0,12436	1,73	6,324	2,90	0,3688	2,29	0,79	2020	61	2024	79	-0,21	2020	61
ZR81	0,397	859993	2,63	0,18889	0,27	14,166	0,82	0,5439	0,68	0,83	2733	9	2800	31	-2,46	2733	9
ZR82C	0,211	179577	6,96	0,13167	0,56	7,334	1,06	0,4039	0,81	0,77	2120	20	2187	30	-3,15	2120	20
ZR82R	0,267	335357	2,41	0,13197	0,44	7,144	0,86	0,3926	0,63	0,74	2124	16	2135	23	-0,50	2124	16
ZR84	0,303	77012	27,16	0,13504	0,43	7,221	0,86	0,3878	0,65	0,75	2165	15	2113	23	2,40	2165	15
ZR85C	0,381	116499	18,50	0,13216	0,50	6,884	0,98	0,3777	0,75	0,77	2127	18	2066	27	2,87	2149	12
ZR85R	0,327	254467	15,31	0,13382	0,34	7,144	0,74	0,3872	0,54	0,73	2149	12	2110	20	1,82	2127	18
ZR86	0,561	611079	44,98	0,13469	0,34	6,961	0,79	0,3748	0,61	0,77	2160	12	2052	21	5,00	2160	12
ZR87	0,799	25280	39,38	0,05924	1,37	0,706	1,58	0,0864	0,69	0,43	576	59	534	7	7,19	534	7
ZR92	0,208	180396	6,03	0,06592	0,55	1,159	0,93	0,1275	0,65	0,70	804	23	774	10	3,74	774	10
ZR93C	0,200	399547	6,89	0,13556	0,47	7,187	0,80	0,3845	0,53	0,66	2171	16	2097	19	3,41	2171	16
ZR93R	0,198	466341	4,02	0,13567	0,45	7,174	0,75	0,3835	0,47	0,63	2173	16	2093	17	3,68	2173	16
ZR94	0,912	47323	2,84	0,05863	1,97	0,654	2,71	0,0809	1,83	0,67	553	85	502	18	9,30	502	18
ZR95	0,314	817953	2,71	0,12807	0,35	6,023	0,73	0,3410	0,52	0,71	2072	12	1892	17	8,69	2072	12
ZR96C	0,254	408375	1,80	0,13618	0,50	7,774	1,29	0,4140	1,14	0,88	2179	17	2233	43	-2,47	2179	17
ZR97	0,428	246913	1,60	0,06201	0,46	0,900	0,84	0,1052	0,59	0,71	674	20	645	7	4,37	645	7
ZR98	0,251	142479	3,48	0,06744	0,67	1,337	1,07	0,1438	0,75	0,70	851	28	866	12	-1,69	866	12
ZR100R	0,186	10953	13,88	0,13381	0,63	7,629	0,90	0,4134	0,52	0,58	2149	22	2231	19	-3,81	2149	22
FORMAÇÃO	D BARREII	RAS (GM-B6	i)														
ZR1	0,300	39480	13,30	0,05968	1,23	0,766	1,89	0,0931	1,38	0,73	592	53	574	15	3,12	574	15
ZR2	0,545	652808	49,22	0,11542	0,43	5,133	0,93	0,3225	0,74	0,79	1887	16	1802	23	4,48	1887	16
ZR3	1,036	42719	16,56	0,12665	1,11	6,165	1,50	0,3530	0,93	0,62	2052	39	1949	31	5,01	2052	39
ZR7	0,717	55133	14,85	0,05933	0,93	0,729	1,36	0,0891	0,93	0,68	579	40	550	10	5,08	550	10
ZR8	0,104	697984	13,11	0,16253	0,47	9,783	0,86	0,4365	0,61	0,71	2482	16	2335	24	5,93	2482	16
ZR9	0,373	169467	35,85	0,13372	0,60	7,001	1,61	0,3797	1,45	0,90	2147	21	2075	51	3,38	2147	21
ZR10	0,494	172265	12,83	0,13479	0,66	7,182	1,01	0,3864	0,66	0,66	2161	23	2106	24	2,55	2161	23

ZR11	0,288	210498	31,19	0,06484	0,63	1,139	0,98	0,1274	0,65	0,67	769	26	773	9	-0,55	773	9
ZR13	0,869	73126	9,80	0,05975	0,96	0,781	1,42	0,0948	0,98	0,69	595	41	584	11	1,80	584	11
ZR15	0,723	116722	12,38	0,05853	0,62	0,684	1,00	0,0848	0,69	0,69	550	27	525	7	4,55	525	7
ZR16	1,332	53186	14,07	0,07277	1,00	1,699	1,45	0,1693	0,99	0,68	1008	40	1008	18	-0,08	1008	18
ZR19	0,746	143756	12,60	0,11588	0,57	5,239	0,96	0,3279	0,68	0,71	1894	20	1828	22	3,46	1894	20
ZR20	0,775	487628	21,93	0,17337	1,39	11,014	1,68	0,4607	0,86	0,51	2590	46	2443	35	5,70	2590	46
ZR21	0,838	188679	26,01	0,06066	0,64	0,826	1,20	0,0987	0,94	0,79	627	27	607	11	3,23	607	11
ZR22	0,424	111659	29,20	0,12118	0,51	5,796	1,14	0,3469	0,96	0,84	1974	18	1920	32	2,74	1974	18
ZR23	0,413	66442	13,42	0,08469	0,81	2,568	1,23	0,2199	0,85	0,69	1308	31	1281	20	2,08	1281	20
ZR24	0,730	52824	23,19	0,06044	1,06	0,822	1,52	0,0986	1,02	0,67	619	45	606	12	2,09	606	12
ZR25	0,571	81692	14,77	0,05768	0,58	0,669	0,99	0,0841	0,71	0,72	518	25	520	7	-0,52	520	7
ZR26	0,572	255018	27,32	0,06139	0,46	0,870	0,83	0,1027	0,58	0,70	653	20	630	7	3,43	630	7
ZR28	0,805	147204	21,99	0,13900	0,47	7,498	0,86	0,3912	0,62	0,72	2215	16	2128	23	3,90	2215	16
ZR32	0,112	389223	25,71	0,20169	0,52	15,087	0,92	0,5425	0,66	0,72	2840	17	2794	30	1,62	2840	17
ZR34	0,637	178822	13,25	0,11564	0,52	5,183	0,91	0,3251	0,65	0,71	1890	19	1814	20	3,99	1890	19
ZR35	0,084	357909	16,50	0,12757	0,47	6,173	0,91	0,3509	0,69	0,75	2065	17	1939	23	6,09	2065	17
ZR37	0,845	76928	14,81	0,06078	0,74	0,834	1,34	0,0995	1,05	0,79	631	32	611	12	3,20	611	12
ZR38	1,934	72653	15,88	0,06007	0,73	0,832	1,13	0,1005	0,77	0,69	606	31	617	9	-1,83	617	9
ZR41	0,683	252949	13,20	0,12182	0,46	5,903	0,92	0,3514	0,70	0,77	1983	16	1941	24	2,11	1983	16
ZR42	0,418	276939	15,93	0,12213	0,41	5,824	0,77	0,3459	0,53	0,69	1988	15	1915	17	3,66	1988	15
ZR43	0,586	73908	24,24	0,08147	0,83	2,169	1,19	0,1931	0,76	0,64	1233	32	1138	16	7,68	1138	16
ZR45	0,355	201658	22,22	0,13664	0,52	7,677	0,97	0,4074	0,74	0,76	2185	18	2203	27	-0,83	2185	18
ZR47	0,256	75298	21,63	0,08211	0,72	2,269	1,01	0,2004	0,60	0,60	1248	28	1177	13	5,68	1177	13
ZR49	0,619	66424	18,29	0,13443	0,67	6,963	1,04	0,3756	0,69	0,67	2157	23	2056	24	4,68	2157	23
ZR51	0,938	71906	20,63	0,11979	0,64	5,839	1,03	0,3535	0,72	0,70	1953	23	1951	24	0,09	1953	23
ZR53	0,501	277737	12,95	0,12171	0,44	5,980	0,83	0,3563	0,59	0,72	1981	16	1965	20	0,84	1981	16
ZR54	0,155	451102	27,31	0,13818	0,76	7,056	1,14	0,3703	0,76	0,67	2205	26	2031	26	7,89	2205	26
ZR56	0,894	30365	15,32	0,11059	1,10	4,659	1,78	0,3055	1,35	0,76	1809	40	1719	41	4,99	1809	40

ZR57	0,535	154576	15,98	0,10574	0,61	4,045	1,04	0,2774	0,76	0,73	1727	22	1578	21	8,63	1727	22
ZR58	0,710	147172	16,10	0,17493	0,72	11,249	1,20	0,4663	0,89	0,74	2605	24	2467	36	5,29	2605	24
ZR59	0,834	107282	21,54	0,12190	0,90	5,656	1,29	0,3365	0,85	0,66	1984	32	1870	27	5,76	1984	32
ZR60	1,056	57398	33,22	0,06063	1,29	0,814	1,86	0,0974	1,29	0,69	626	55	599	15	4,36	599	15
ZR63	0,825	172592	19,94	0,09725	0,60	3,541	0,96	0,2640	0,64	0,67	1572	23	1510	17	3,93	1572	23
ZR66	0,271	96138	14,14	0,19936	0,72	14,779	1,13	0,5376	0,79	0,70	2821	23	2774	35	1,68	2821	23
ZR68	0,323	237866	33,45	0,12477	0,60	5,952	1,16	0,3459	0,92	0,79	2025	21	1915	31	5,44	2025	21
ZR71	0,727	41867	20,21	0,06728	1,19	1,282	1,79	0,1382	1,28	0,72	847	49	834	20	1,44	834	20
ZR73	0,432	118769	18,22	0,07330	0,60	1,702	0,91	0,1684	0,57	0,62	1022	24	1003	11	1,88	1003	11
ZR76	0,550	143618	17,21	0,13384	0,56	7,124	1,02	0,3860	0,77	0,75	2149	20	2104	28	2,08	2149	20
ZR79	0,273	108215	25,02	0,07501	0,77	1,732	1,10	0,1674	0,68	0,62	1069	31	998	13	6,63	998	13
ZR80	0,129	177250	11,81	0,07020	0,78	1,438	1,05	0,1486	0,60	0,57	934	32	893	10	4,43	893	10
ZR85	0,234	60334	15,98	0,07295	0,82	1,578	1,20	0,1569	0,79	0,66	1013	33	939	14	7,23	939	14
ZR86	0,351	115373	14,59	0,06012	0,62	0,807	1,03	0,0974	0,74	0,71	608	27	599	8	1,44	599	8
ZR89	1,519	129799	33,43	0,19791	0,73	13,698	1,09	0,5019	0,72	0,66	2809	24	2622	31	6,65	2809	24
ZR90	0,093	114670	15,86	0,05854	0,87	0,682	1,27	0,0844	0,85	0,67	550	38	522	9	5,01	522	9
ZR91	1,536	55029	41,58	0,04643	1,29	0,083	1,74	0,0129	1,11	0,64	20	61	83	2	-2,6	83	2
ZR92	0,434	165182	16,10	0,07358	0,67	1,680	1,08	0,1656	0,77	0,71	1030	27	988	14	4,10	988	14
ZR93	0,861	54541	41,62	0,09075	0,53	2,942	0,95	0,2351	0,69	0,73	1441	20	1361	17	5,55	1361	17
ZR95	0,440	508987	11,62	0,12871	0,47	6,393	0,91	0,3602	0,69	0,76	2080	16	1983	23	4,67	2080	16
ZR96	0,674	115277	20,51	0,22293	0,56	16,729	1,02	0,5442	0,76	0,75	3002	18	2801	35	6,69	3002	18
ZR98	0,339	175245	37,09	0,09418	0,54	3,147	0,94	0,2423	0,67	0,72	1512	20	1399	17	7,47	1399	17
ZR99	0,894	72719	20,44	0,09890	0,77	3,479	1,22	0,2551	0,88	0,72	1603	28	1465	23	8,64	1465	23
FORMAÇÃ	O BARREI	RAS (GM-B7	')														
ZR05	2,92	24303	16,4	0,09859	0,72	3,6894	1,9	0,27172	1,7	0,92	1597	13	1550	24	3,0	1597	13
ZR07	6,16	5296	4,4	0,06086	3,75	0,8632	5,1	0,10357	3,5	0,68	627	82	635	21	-1,4	635	21
ZR09	2,61	51661	40,7	0,13497	0,65	7,2691	1,9	0,38999	1,7	0,94	2163	11	2123	32	1,9	2163	11
ZR10	2,20	40718	4,4	0,21957	0,84	17,8459	1,9	0,59081	1,7	0,90	2977	13	2993	42	-0,5	2977	13

ZR11	0,90	20589	14,5	0,06598	0,95	1,1750	2,1	0,12898	1,9	0,89	804	20	782	14	2,8	782	14
ZR12	0,60	221355	4,4	0,07807	0,75	2,1000	1,8	0,19459	1,6	0,91	1148	15	1146	17	0,1	1146	17
ZR13	0,98	11486	2,2	0,05812	3,50	0,7502	4,8	0,09399	3,3	0,69	526	76	579	19	-10,0	579	19
ZR14	2,24	11516	5,9	0,05845	2,21	0,7262	3,4	0,09007	2,6	0,76	543	48	556	14	-2,3	556	14
ZR19	1,29	4339	33,5	0,11847	1,10	5,5513	2,0	0,33893	1,6	0,83	1932	20	1882	27	2,6	1932	20
ZR20	0,99	20112	8,1	0,07920	1,08	2,1271	2,0	0,19343	1,7	0,84	1176	21	1140	17	3,1	1140	17
ZR23	2,21	12373	13,3	0,12376	1,22	6,2334	2,3	0,36487	2,0	0,85	2010	22	2005	34	0,2	2010	22
ZR25	2,12	33613	10,4	0,26093	0,98	23,3545	2,2	0,64817	2,0	0,90	3251	15	3221	51	0,9	3251	15
ZR27	1,01	33190	1,8	0,06798	3,48	1,4138	8,2	0,15171	7,5	0,91	862	72	910	63	-5,5	910	63
ZR28	2,43	10207	5,5	0,17553	0,76	11,8780	1,8	0,49000	1,6	0,91	2610	13	2571	35	1,5	2610	13
ZR33	0,16	40398	4,0	0,06049	1,00	0,8128	2,2	0,09729	1,9	0,89	620	22	598	11	3,4	598	11
ZR34	1,16	12952	3,3	0,06020	1,81	0,7625	3,0	0,09202	2,4	0,80	609	39	567	13	6,8	567	13
ZR36	2,02	10292	7,1	0,06111	1,56	0,8875	2,6	0,10539	2,1	0,80	641	33	646	13	-0,8	646	13
ZR37	2,68	2786	8,0	0,06027	5,02	0,7796	8,4	0,09513	6,7	0,80	604	107	586	38	3,1	586	38
ZR39	1,34	124532	20,8	0,13050	0,83	7,0511	1,8	0,39206	1,6	0,89	2104	14	2132	29	-1,4	2104	14
ZR40	3,12	70187	1,7	0,09380	2,77	3,3987	4,1	0,26468	3,0	0,74	1501	52	1514	41	-0,8	1501	52
ZR41	2,21	20284	2,5	0,05662	2,59	0,6152	4,1	0,07915	3,2	0,78	472	58	491	15	-4,0	491	15
ZR47	0,42	14664	6,4	0,06571	1,81	1,1036	2,6	0,12250	1,9	0,73	795	38	745	13	6,3	745	13
ZR48	0,52	28881	33,4	0,07525	1,54	1,7588	2,7	0,16821	2,2	0,82	1074	31	1002	21	6,7	1002	21
ZR49	2,22	28058	3,1	0,13344	1,62	7,5509	2,8	0,41355	2,3	0,81	2142	28	2231	43	-4,1	2142	28
ZR50	0,75	7910	5,3	0,06400	2,52	0,9636	3,9	0,10955	3,0	0,76	738	54	670	19	9,2	670	19
ZR51	1,71	25557	3,4	0,06806	1,20	1,3277	2,1	0,14163	1,7	0,82	869	25	854	14	1,7	854	14
ZR52	1,00	532123	0,6	0,06598	1,25	1,2018	2,2	0,13152	1,8	0,81	804	26	797	13	1,0	797	13
ZR53	0,88	75896	0,9	0,05998	2,11	0,7547	3,0	0,09137	2,1	0,70	600	46	564	11	6,0	564	11
ZR54	0,29	24827	10,3	0,05909	1,03	0,6927	2,0	0,08502	1,7	0,85	569	22	526	8	7,6	526	8
ZR61	1,46	39341	37,1	0,13531	0,63	6,6377	1,7	0,35649	1,6	0,93	2167	11	1965	28	9,3	2167	11
ZR65	1,37	21601	15,0	0,06183	1,03	0,8930	2,1	0,10518	1,8	0,87	667	22	645	11	3,3	645	11
ZR66	2,24	5939	7,9	0,05915	3,70	0,6824	5,3	0,08408	3,7	0,71	566	81	520	19	8,0	520	19

ZR67	1,21	4386	8,3	0,06852	5,90	1,2228	8,6	0,13148	6,2	0,73	873	123	796	47	8,8	796	47
ZR68	4,83	11329	6,3	0,06191	1,77	0,9077	2,7	0,10661	2,1	0,76	668	38	653	13	2,3	653	13
ZR69	1,79	10635	4,4	0,06401	2,77	0,9783	4,4	0,11153	3,4	0,78	738	58	682	22	7,6	682	22
ZR80	1,58	11571	3,6	0,06711	2,52	1,3093	3,8	0,14176	2,8	0,75	837	52	855	23	-2,1	855	23
ZR81	2,92	11229	11,4	0,05741	2,54	0,7394	4,9	0,09199	4,2	0,86	539	93	567	23	-5,1	567	23
ZR83	2,32	14941	15,2	0,11231	1,31	5,3239	2,4	0,34513	2,0	0,83	1836	24	1911	33	-4,1	1836	24
ZR84	0,49	17705	8,3	0,13210	0,98	7,2813	2,0	0,39966	1,7	0,87	2125	17	2167	32	-2,0	2125	17
ZR88	1,33	47999	12,8	0,13523	0,97	7,4806	2,0	0,40235	1,7	0,87	2166	17	2180	32	-0,6	2166	17
ZR94	1,61	16202	14,0	0,13550	0,69	7,5098	2,4	0,40455	2,3	0,96	2170	12	2190	42	-0,9	2170	12
ZR95	1,26	48045	1,5	0,11619	1,17	5,5266	2,4	0,34557	2,1	0,87	1897	21	1913	34	-0,8	1897	21
ZR96	3,13	79101	6,1	0,11550	0,70	5,4429	1,8	0,34162	1,7	0,92	1887	13	1894	28	-0,4	1887	13
ZR97	3,40	90129	2,0	0,11747	1,07	5,6637	2,1	0,35020	1,8	0,86	1917	19	1935	30	-1,0	1917	19
ZR99	1,34	33871	4,8	0,05894	1,43	0,8008	2,5	0,09866	2,0	0,81	563	32	607	12	-7,7	607	12
ZR100	1,87	26382	2,0	0,06077	1,23	0,8259	2,5	0,09880	2,2	0,87	629	27	607	12	3,5	607	12
ZR101	0,50	105478	1,7	0,13766	1,31	7,9828	2,4	0,42377	2,0	0,84	2197	23	2277	39	-3,7	2197	23
ZR108	1,18	35637	9,0	0,09666	0,84	3,5183	2,1	0,26564	1,9	0,91	1560	16	1519	26	2,6	1560	16
ZR109	1,41	31889	23,7	0,06906	0,99	1,4610	1,9	0,15369	1,6	0,86	899	20	922	14	-2,5	922	14
ZR110	1,95	16525	27,4	0,07256	1,26	1,5848	2,2	0,15886	1,8	0,82	1000	26	950	16	5,0	950	16
ZR111	0,83	32302	7,9	0,12713	0,82	6,6754	1,9	0,38310	1,7	0,90	2058	15	2091	31	-1,6	2058	15
ZR112	0,87	22763	47,5	0,12739	0,63	6,6026	1,9	0,37697	1,8	0,95	2061	11	2062	33	0,0	2061	11
ZR114	2,57	324776	1,5	0,11461	0,80	5,3692	1,9	0,34040	1,7	0,91	1873	14	1889	28	-0,8	1873	14
ZR115	1,36	134818	1,5	0,12845	0,72	6,7582	1,8	0,38312	1,6	0,91	2076	13	2091	29	-0,7	2076	13
ZR116	2,61	59880	3,0	0,12275	0,86	6,3043	2,0	0,37396	1,8	0,90	1996	15	2048	31	-2,6	1996	15
ZR121	1,05	161394	0,8	0,25922	0,60	23,5116	1,7	0,66255	1,6	0,94	3241	9	3277	42	-1,1	3241	9
ZR123	0,81	16536	22,4	0,07559	1,22	1,7973	2,3	0,17181	1,9	0,84	1083	25	1022	18	5,6	1022	18
ZR124	1,46	9579	10,6	0,06017	1,10	0,7755	2,2	0,09417	1,9	0,87	609	24	580	11	4,7	580	11
ZR125	1,18	9576	6,5	0,05873	1,10	0,7662	2,4	0,09481	2,1	0,89	556	24	584	12	-5,1	584	12
ZR127	1,99	260889	3,3	0,12176	0,78	6,2163	1,8	0,37086	1,6	0,90	1981	14	2033	29	-2,6	1981	14

ZR128	2,58	43078	10,6	0,11552	0,70	5,3753	1,8	0,33743	1,7	0,92	1887	13	1874	27	0,7	1887	13
ZR129	1,30	27811	7,3	0,16348	1,01	10,4678	2,2	0,46651	2,0	0,89	2491	17	2468	40	0,9	2491	17
ZR130	0,97	948422	0,9	0,19607	1,02	14,1964	2,0	0,52830	1,8	0,87	2793	17	2734	40	2,1	2793	17
ZR135	0,02	12457	11,6	0,08306	1,00	2,4555	2,0	0,21448	1,8	0,87	1269	19	1253	20	1,3	1253	20
ZR136	4,37	24673	5,0	0,12997	0,83	6,8919	2,0	0,38532	1,8	0,91	2097	14	2101	33	-0,2	2097	14
ZR137	0,66	11533	16,1	0,06640	1,30	1,2475	2,2	0,13622	1,7	0,80	817	27	823	13	-0,7	823	13
ZR138	0,81	15861	3,8	0,06156	1,67	0,8968	3,0	0,10588	2,5	0,83	657	36	649	16	1,2	649	16
ZR139	2,98	86114	3,1	0,12705	0,66	6,6093	1,8	0,37711	1,7	0,93	2057	12	2063	29	-0,3	2057	12
ZR140	1,66	9982	12,3	0,06102	1,21	0,8582	2,4	0,10213	2,0	0,86	638	26	627	12	1,8	627	12
ZR142	2,51	10656	3,8	0,07309	1,43	1,7197	3,1	0,17090	2,8	0,89	1014	29	1017	26	-0,2	1017	26
SEDIMENT	OS PÓS-B	ARREIRAS	(GM-PB1)														
ZR1	0,393	89749	23,91	0,06815	0,43	1,291	0,82	0,1373	0,59	0,72	873	18	830	9	4,99	830	9
ZR2	0,516	54668	22,83	0,05899	0,58	0,825	1,01	0,1015	0,74	0,73	567	25	623	9	-9,97	623	9
ZR3	0,340	122021	15,29	0,05877	0,45	0,799	0,82	0,0986	0,58	0,71	559	19	606	7	-8,54	606	7
ZR4	0,755	368195	17,49	0,10805	0,25	4,586	0,65	0,3078	0,47	0,72	1767	9	1730	14	2,10	1767	9
ZR5	0,601	110942	31,73	0,13300	0,37	7,600	0,83	0,4144	0,65	0,78	2138	13	2235	24	-4,54	2138	13
ZR7	0,532	43039	24,02	0,06596	1,13	1,097	1,63	0,1206	1,12	0,69	805	47	734	16	8,81	734	16
ZR8	1,044	267577	34,58	0,12185	0,57	5,807	1,12	0,3456	0,88	0,79	1984	20	1914	29	3,52	1984	20
ZR9	0,200	91526	26,64	0,06007	0,69	0,874	1,14	0,1055	0,83	0,73	606	30	646	10	-6,65	646	10
ZR10	0,078	614916	33,99	0,09882	0,89	4,101	1,47	0,3009	1,11	0,75	1602	33	1696	33	-5,86	1602	33
ZR11	0,594	66014	23,54	0,05874	0,54	0,676	1,34	0,0834	1,17	0,87	557	23	517	12	7,29	517	12
ZR12	0,643	188333	17,37	0,07470	0,50	1,958	1,24	0,1901	1,07	0,86	1061	20	1122	22	-5,77	1061	20
ZR13	0,516	71227	15,68	0,06545	1,19	1,079	2,19	0,1196	1,80	0,82	789	50	728	25	7,68	728	25
ZR18	1,314	48947	15,22	0,13422	1,31	6,884	2,00	0,3719	1,46	0,73	2154	45	2039	51	5,36	2154	45
ZR19	0,339	231502	4,86	0,13199	0,50	7,579	0,93	0,4164	0,68	0,74	2125	18	2244	26	-5,63	2125	18
ZR20	0,843	202819	17,29	0,11292	0,55	5,260	0,90	0,3378	0,62	0,68	1847	20	1876	20	-1,57	1847	20
ZR21	0,282	95817	17,68	0,06019	0,53	0,769	1,05	0,0927	0,83	0,79	610	23	571	9	6,38	571	9
ZR22	0,600	328179	30,64	0,13823	0,21	7,395	0,72	0,3880	0,57	0,80	2205	7	2114	21	4,15	2205	7

ZR24	0,881	298725	17,30	0,07572	0,31	1,805	0,69	0,1728	0,50	0,72	1088	12	1028	9	5,51	1088	12
ZR26	0,626	543786	10,27	0,13038	0,26	6,714	0,76	0,3735	0,61	0,80	2103	9	2046	21	2,73	2103	9
ZR27	0,831	486825	11,78	0,17791	0,29	11,826	0,67	0,4821	0,48	0,72	2634	10	2536	20	3,70	2634	10
ZR28	0,323	330797	9,39	0,13157	0,37	6,465	0,72	0,3564	0,50	0,69	2119	13	1965	17	7,27	2119	13
ZR30	0,483	68344	7,33	0,05971	1,16	0,727	1,71	0,0883	1,21	0,70	593	50	545	13	8,03	545	13
ZR31	0,561	198643	14,57	0,07197	0,41	1,471	0,83	0,1482	0,62	0,75	985	17	891	10	9,55	891	10
ZR32	0,566	114331	14,90	0,12019	0,54	5,822	0,90	0,3513	0,62	0,69	1959	19	1941	21	0,92	1959	19
ZR33	0,887	106249	27,12	0,10960	0,31	4,677	0,81	0,3095	0,66	0,81	1793	11	1738	20	3,04	1793	11
ZR34	0,847	164187	17,48	0,05891	0,68	0,778	1,01	0,0958	0,65	0,64	564	29	590	7	-4,60	590	7
ZR35	0,587	110544	12,95	0,05793	0,67	0,665	0,98	0,0833	0,61	0,62	527	29	516	6	2,17	516	6
ZR36	0,497	560706	14,32	0,17658	0,40	12,222	0,81	0,5020	0,60	0,74	2621	13	2622	26	-0,05	2621	13
ZR37	0,268	140110	12,89	0,05898	0,53	0,697	0,95	0,0857	0,69	0,73	566	23	530	7	6,35	530	7
ZR39	0,570	290420	22,86	0,21867	0,38	17,575	0,82	0,5829	0,62	0,76	2971	12	2960	29	0,35	2971	12
ZR40	0,361	38341	14,42	0,06025	1,28	0,865	1,82	0,1041	1,24	0,68	613	55	638	15	-4,18	638	15
ZR46	0,370	12352	26,15	0,05924	2,55	0,718	3,16	0,0879	1,83	0,58	576	109	543	19	5,70	543	19
ZR47	0,698	23744	20,90	0,05895	2,11	0,701	2,96	0,0863	2,04	0,69	565	90	534	21	5,58	534	21
ZR48	0,816	37109	15,60	0,06113	1,24	0,810	1,79	0,0961	1,24	0,69	644	53	592	14	8,07	592	14
ZR49	0,416	142600	18,89	0,07776	0,46	1,945	1,06	0,1814	0,88	0,83	1141	18	1075	17	5,79	1141	18
ZR50	0,472	22623	31,86	0,05898	1,95	0,686	2,70	0,0843	1,83	0,68	567	84	522	18	7,87	522	18
ZR51	0,140	251987	15,51	0,12413	0,31	6,248	0,80	0,3650	0,63	0,79	2016	11	2006	22	0,52	2016	11
ZR53C	0,681	576030	13,73	0,17901	0,26	11,808	0,75	0,4784	0,60	0,80	2644	9	2520	25	4,68	2644	9
ZR54	0,550	4006	11,78	0,13857	0,42	7,149	1,11	0,3741	0,96	0,86	2209	15	2049	34	7,27	2209	15
ZR56	0,537	133369	14,89	0,05860	0,59	0,685	1,11	0,0848	0,86	0,78	552	26	524	9	5,06	524	9
ZR57	0,748	126630	14,30	0,06755	0,45	1,337	0,94	0,1436	0,74	0,78	855	19	865	12	-1,18	865	12
ZR58	0,844	57151	13,04	0,06086	0,85	0,852	1,35	0,1016	0,98	0,73	634	36	624	12	1,69	624	12
ZR59	1,239	85586	13,00	0,09657	0,55	3,428	1,19	0,2574	0,98	0,83	1559	21	1477	26	5,28	1559	21
ZR60C	0,385	120826	29,89	0,05377	0,41	0,436	0,86	0,0589	0,65	0,76	361	19	369	5	-2,03	369	5
ZR60R	0,703	4294	28,00	0,05759	2,44	0,449	2,88	0,0565	1,49	0,52	514	105	354	10	31,06	354	10

ZR61	0,580	113495	26,88	0,07558	0,50	2,064	0,89	0,1980	0,63	0,71	1084	20	1165	13	-7,43	1084	20
ZR62	0,617	278556	19,83	0,11509	0,31	5,657	0,92	0,3565	0,79	0,85	1881	11	1965	27	-4,48	1881	11
ZR63	0,320	411810	16,52	0,22941	0,26	19,187	0,78	0,6065	0,63	0,81	3048	8	3056	31	-0,27	3048	8
ZR64	0,391	108461	16,34	0,06234	0,47	0,939	0,90	0,1092	0,68	0,75	686	20	668	9	2,61	668	9
ZR65	0,437	14188	13,23	0,04643	3,36	0,070	4,84	0,0110	3,45	0,71	20	158	70	5	-2,0	70	5
ZR66	0,357	112183	19,24	0,05937	0,62	0,757	1,01	0,0925	0,71	0,70	581	27	570	8	1,79	570	8
ZR69	1,127	44088	15,42	0,12143	0,74	5,940	1,25	0,3548	0,94	0,75	1977	26	1957	32	1,02	1977	26
ZR70	0,359	301555	33,79	0,13090	0,54	6,849	1,17	0,3794	0,97	0,83	2110	19	2074	34	1,73	2110	19
ZR71	0,328	132050	11,31	0,06001	0,51	0,745	0,83	0,0900	0,53	0,65	604	22	556	6	8,01	556	6
ZR72	0,725	394157	15,96	0,08845	0,39	2,880	0,88	0,2361	0,69	0,79	1392	15	1367	17	1,85	1392	15
ZR73	0,173	78338	12,95	0,06191	1,23	0,867	1,70	0,1015	1,11	0,65	671	52	623	13	7,11	623	13
ZR74	0,746	67184	10,56	0,05832	1,02	0,669	1,43	0,0831	0,93	0,65	542	44	515	9	5,01	515	9
ZR75	0,477	43325	14,68	0,06807	1,04	1,369	1,48	0,1459	0,99	0,67	871	43	878	16	-0,81	878	16
ZR76	0,421	168005	18,04	0,06632	0,45	1,183	0,77	0,1293	0,50	0,66	817	19	784	7	3,98	784	7
ZR77	0,300	136847	13,98	0,07945	0,52	2,150	0,91	0,1963	0,65	0,71	1183	20	1155	14	2,36	1183	20
ZR78	0,382	327608	16,23	0,07688	0,42	1,857	0,77	0,1752	0,52	0,68	1118	17	1040	10	6,94	1118	17
ZR79	0,497	15550	12,21	0,05731	2,93	0,670	3,99	0,0848	2,69	0,67	504	126	525	27	-4,22	525	27
ZR80	0,617	171755	13,85	0,13175	0,41	6,933	0,81	0,3816	0,59	0,73	2121	14	2084	21	1,77	2121	14
ZR81	0,376	165020	13,34	0,20152	0,38	15,590	0,98	0,5610	0,83	0,84	2839	12	2871	38	-1,14	2839	12
ZR82	0,459	131651	17,41	0,10071	0,41	3,762	0,73	0,2709	0,49	0,66	1637	15	1545	13	5,62	1637	15
ZR83	0,272	102915	21,48	0,07669	0,65	1,975	1,03	0,1867	0,70	0,68	1113	26	1104	14	0,85	1113	26
ZR84	0,982	35813	15,93	0,06029	1,46	0,856	2,10	0,1030	1,47	0,70	614	62	632	18	-2,91	632	18
ZR85	1,069	189877	16,07	0,11624	0,36	5,078	0,76	0,3168	0,55	0,73	1899	13	1774	17	6,58	1899	13
ZR86	0,263	987671	27,43	0,17502	0,30	11,599	0,65	0,4806	0,44	0,68	2606	10	2530	18	2,93	2606	10
ZR87	0,214	303175	10,00	0,06214	0,50	0,880	0,82	0,1026	0,53	0,65	679	21	630	6	7,23	630	6
ZR88	0,191	69171	15,67	0,06013	0,59	0,782	1,04	0,0943	0,77	0,74	608	25	581	9	4,45	581	9
ZR89	0,329	617166	11,27	0,12204	0,31	5,866	0,72	0,3486	0,54	0,75	1986	11	1928	18	2,95	1986	11
ZR90	1,693	79583	10,77	0,05965	0,78	0,818	1,26	0,0994	0,91	0,73	591	34	611	11	-3,43	611	11

ZR91	0,554	104519	9,85	0,07436	0,72	1,777	1,15	0,1733	0,81	0,71	1051	29	1030	15	1,99	1051	29
ZR92	0,469	5623	6,81	0,13791	0,40	7,819	1,10	0,4112	0,95	0,87	2201	14	2220	36	-0,87	2201	14
ZR96	0,707	44774	14,96	0,06020	1,10	0,857	1,49	0,1032	0,93	0,63	611	47	633	11	-3,73	633	11
ZR97	0,319	134392	30,90	0,19389	0,36	13,113	0,82	0,4904	0,63	0,77	2775	12	2573	27	7,31	2775	12
ZR99	0,572	94586	37,94	0,05438	0,82	0,466	1,34	0,0622	0,99	0,74	387	37	389	7	-0,54	389	7
SEDIMEN	TOS PÓS-B	ARREIRAS	(GM-PB2A	A)													
ZR1	0,524	642527	20,70	0,29614	0,38	27,577	0,96	0,6753	0,80	0,83	3450	12	3326	41	3,58	3450	12
ZR2	0,609	569680	24,53	0,24698	0,35	21,644	0,88	0,6355	0,72	0,82	3165	11	3171	36	-0,19	3165	11
ZR3	0,235	157183	16,56	0,07116	0,95	1,556	1,26	0,1586	0,73	0,58	962	39	949	13	1,35	949	13
ZR7	0,473	297825	14,80	0,07593	0,41	1,775	1,07	0,1695	0,91	0,86	1093	16	1010	17	7,66	1010	17
ZR9	0,034	602057	30,23	0,12784	0,43	5,960	0,99	0,3381	0,81	0,82	2068	15	1877	26	9,23	2068	15
ZR11	0,518	26042	15,43	0,05912	2,45	0,716	3,47	0,0878	2,43	0,70	571	105	543	25	5,04	543	25
ZR13	0,147	1233540	48,22	0,15924	0,30	8,958	0,91	0,4080	0,78	0,85	2448	10	2206	29	9,89	2448	10
ZR14	0,713	165457	37,50	0,13159	0,37	6,595	0,92	0,3634	0,75	0,82	2119	13	1998	26	5,70	2119	13
ZR15	0,382	116285	13,26	0,06620	0,95	1,186	1,72	0,1299	1,38	0,80	813	40	787	21	3,13	787	21
ZR16	0,313	937013	20,56	0,13730	0,32	7,227	0,79	0,3818	0,62	0,78	2193	11	2084	22	4,97	2193	11
ZR18	0,165	550033	27,02	0,10885	0,36	4,578	0,89	0,3050	0,73	0,81	1780	13	1716	22	3,59	1780	13
ZR19	2,451	1026	12,54	0,14799	1,71	9,057	2,10	0,4438	1,17	0,56	2323	58	2368	46	-1,93	2323	58
ZR20	0,608	142754	22,49	0,06109	0,71	0,818	1,19	0,0972	0,87	0,74	642	31	598	10	6,94	598	10
ZR21	0,409	174617	18,02	0,06494	0,48	1,153	1,12	0,1288	0,94	0,84	773	20	781	14	-1,07	781	14
ZR23	0,450	99848	28,47	0,05654	1,27	0,576	1,78	0,0739	1,19	0,67	473	56	460	11	2,93	460	11
ZR25	0,629	87423	22,37	0,07359	0,46	1,684	0,98	0,1659	0,78	0,80	1030	18	990	14	3,96	990	14
ZR27	0,465	87248	12,34	0,06725	0,60	1,208	0,97	0,1303	0,66	0,68	846	25	790	10	6,61	790	10
ZR29	0,765	65877	13,03	0,07444	0,87	1,730	1,48	0,1685	1,14	0,77	1053	35	1004	21	4,71	1004	21
ZR30	0,154	271031	17,54	0,06615	0,55	1,130	1,01	0,1239	0,76	0,76	811	23	753	11	7,14	753	11
ZR32	0,546	120328	11,11	0,06076	1,06	0,871	1,39	0,1040	0,83	0,59	631	45	638	10	-1,08	638	10
ZR33	0,009	850879	7,56	0,05930	0,38	0,732	0,91	0,0895	0,74	0,81	578	16	553	8	4,40	553	8
ZR34	0,429	420774	9,26	0,06599	0,47	1,140	0,96	0,1253	0,75	0,78	806	20	761	11	5,60	761	11

ZR35	0,639	205918	6,82	0,10770	0,44	4,332	0,96	0,2917	0,77	0,80	1761	16	1650	22	6,29	1761	16
ZR36	0,515	117317	9,50	0,05923	0,75	0,732	1,23	0,0896	0,90	0,73	576	32	553	9	3,91	553	9
ZR41	0,470	228965	27,66	0,13037	0,37	6,543	1,06	0,3639	0,93	0,87	2103	13	2001	32	4,85	2103	13
ZR44	0,734	16904	14,97	0,12663	0,42	6,136	1,21	0,3514	1,07	0,89	2052	15	1941	36	5,37	2052	15
ZR47	0,378	242437	13,61	0,13204	0,69	7,403	1,15	0,4066	0,84	0,73	2125	24	2199	31	-3,49	2125	24
ZR48	0,642	29372	18,36	0,07853	1,11	2,012	1,71	0,1858	1,25	0,73	1160	44	1098	25	5,32	1098	25
50R	0,427	69525	53,97	0,07490	0,56	1,930	1,16	0,1869	0,95	0,81	1066	23	1104	19	-3,63	1104	19
ZR51	0,216	72529	30,72	0,05868	0,64	0,729	1,07	0,0901	0,77	0,72	555	28	556	8	-0,12	556	8
ZR52	0,431	356145	26,00	0,13671	0,45	6,833	1,13	0,3625	0,97	0,86	2186	16	1994	33	8,79	2186	16
ZR53	1,028	122114	39,46	0,07408	0,59	1,643	1,12	0,1608	0,88	0,78	1044	24	961	16	7,90	961	16
ZR55	0,440	345471	19,78	0,13164	0,66	6,403	1,36	0,3528	1,13	0,83	2120	23	1948	38	8,12	2120	23
ZR56	0,475	56624	9,36	0,11769	1,54	5,374	2,41	0,3312	1,82	0,75	1921	55	1844	58	4,03	1921	55
ZR57	0,383	418372	9,59	0,13838	0,79	7,530	1,25	0,3946	0,89	0,72	2207	27	2144	33	2,85	2207	27
ZR62	0,137	818235	16,17	0,07704	0,58	1,917	1,09	0,1805	0,84	0,78	1122	23	1070	17	4,68	1070	17
ZR65	0,486	312634	18,63	0,17290	0,80	11,051	1,24	0,4635	0,87	0,70	2586	27	2455	35	5,06	2586	27
ZR68	0,392	41829	28,82	0,13758	0,87	7,894	1,37	0,4161	0,99	0,72	2197	30	2243	38	-2,09	2197	30
ZR72	0,829	30340	31,17	0,13227	0,48	6,450	1,09	0,3536	0,90	0,83	2128	17	1952	30	8,29	2128	17
ZR73	0,588	33769	34,51	0,10886	0,58	4,472	1,20	0,2979	0,99	0,82	1780	21	1681	29	5,60	1780	21
ZR74	0,211	180101	10,63	0,07366	0,62	1,757	1,28	0,1730	1,06	0,83	1032	25	1028	20	0,35	1028	20
ZR75	0,318	104197	29,91	0,06591	0,73	1,147	1,60	0,1262	1,37	0,86	804	31	766	20	4,64	766	20
ZR76	0,495	124756	27,94	0,13392	0,72	7,608	1,56	0,4120	1,34	0,86	2150	25	2224	50	-3,44	2150	25
ZR78	0,338	215524	28,57	0,17830	0,50	12,729	1,50	0,5177	1,36	0,91	2637	16	2690	60	-1,99	2637	16
ZR80	0,344	60369	22,54	0,06136	0,94	0,952	1,72	0,1125	1,39	0,81	652	40	687	18	-5,37	687	18
ZR82	0,474	257309	11,67	0,05900	0,73	0,825	1,22	0,1014	0,91	0,74	567	31	623	11	-9,84	623	11
ZR83	0,688	153781	14,76	0,07401	0,52	1,689	1,28	0,1655	1,11	0,87	1042	21	987	20	5,23	987	20
ZR87	0,619	113929	11,37	0,06771	0,83	1,244	1,41	0,1333	1,08	0,76	860	34	806	16	6,20	806	16
ZR88	0,761	73722	10,13	0,09230	1,08	3,228	1,80	0,2536	1,39	0,77	1474	41	1457	36	1,12	1457	36
ZR89	0,399	48217	19,25	0,06291	0,85	0,900	1,38	0,1037	1,02	0,74	705	36	636	12	9,79	636	12

ZR97	0,659	8537	9,92	0,11758	0,70	5,175	1,14	0,3192	0,82	0,72	1920	25	1786	25	6,97	1920	25
ZR100	0,252	208787	9,92	0,07372	0,67	1,624	1,06	0,1597	0,74	0,69	1034	27	955	13	7,61	955	13
SEDIMENT	OS PÓS-B	ARREIRAS	(GM-PB2E	3)													
ZR2	0,680	22631	34,03	0,11178	0,69	4,669	1,17	0,3029	0,87	0,74	1829	25	1706	26	6,72	1829	25
ZR3	0,444	24738	18,66	0,06809	0,94	1,288	1,49	0,1372	1,10	0,74	871	39	829	17	4,87	829	17
ZR4N	0,510	659105	21,66	0,13555	0,22	7,016	0,89	0,3754	0,78	0,88	2171	8	2055	28	5,36	2608	9
ZR5	0,438	120892	54,98	0,17522	0,28	12,437	0,85	0,5147	0,71	0,84	2608	9	2677	31	-2,64	626	7
ZR6	0,523	203006	26,21	0,06071	0,36	0,854	0,76	0,1020	0,56	0,73	629	15	626	7	0,51	1074	20
ZR7	0,594	71415	20,72	0,07734	0,84	1,933	1,35	0,1813	0,99	0,73	1130	33	1074	20	4,97	1775	21
ZR8	0,570	111376	13,23	0,10851	0,57	4,663	1,10	0,3117	0,86	0,79	1775	21	1749	26	1,45	617	13
ZR9	0,559	46702	25,83	0,06080	1,03	0,842	1,55	0,1004	1,10	0,71	632	44	617	13	2,43	2186	11
ZR10	0,719	502027	8,91	0,13674	0,31	7,600	0,75	0,4031	0,57	0,77	2186	11	2183	21	0,14	1040	17
ZR11	0,864	147859	11,30	0,07603	0,72	1,836	1,21	0,1751	0,90	0,74	1096	29	1040	17	5,07	2058	15
ZR12	0,505	403939	13,69	0,12710	0,42	6,787	0,77	0,3873	0,53	0,68	2058	15	2110	19	-2,52	866	13
ZR13	0,398	43298	17,73	0,07088	1,82	1,405	2,03	0,1437	0,81	0,40	954	74	866	13	9,27	2875	12
ZR14	0,423	314436	10,61	0,20611	0,37	15,599	0,72	0,5489	0,49	0,68	2875	12	2820	22	1,90	554	21
ZR15	0,600	53507	11,92	0,05990	2,16	0,742	2,97	0,0898	2,00	0,67	600	92	554	21	7,63	3503	13
ZR17	0,259	507850	11,96	0,30637	0,42	27,173	0,73	0,6432	0,46	0,64	3503	13	3202	23	8,60	632	8
ZR18	0,244	239484	14,34	0,06076	0,56	0,864	0,92	0,1031	0,63	0,69	631	24	632	8	-0,28	1010	11
ZR19	0,332	130444	7,13	0,07391	0,59	1,729	0,92	0,1697	0,61	0,66	1039	24	1010	11	2,75	661	12
ZR20	0,727	25891	17,83	0,06199	1,12	0,923	1,53	0,1079	0,97	0,63	674	48	661	12	1,92	777	13
ZR21	0,532	93789	13,93	0,06654	0,82	1,175	1,25	0,1281	0,87	0,69	823	34	777	13	5,64	560	10
ZR22	0,384	35157	21,58	0,05907	0,75	0,740	1,28	0,0908	0,97	0,76	570	32	560	10	1,61	2700	16
ZR23	0,326	220603	14,90	0,18521	0,49	12,746	0,83	0,4991	0,56	0,67	2700	16	2610	24	3,34	1541	16
ZR25	0,341	144734	11,24	0,09563	0,42	3,492	0,83	0,2648	0,61	0,73	1541	16	1514	16	1,69	2007	14
ZR27	0,604	300670	15,09	0,12348	0,40	6,007	0,78	0,3528	0,55	0,71	2007	14	1948	19	2,94	599	12
ZR28	0,625	60726	14,44	0,05992	0,81	0,805	1,34	0,0974	1,01	0,75	601	35	599	12	0,25	2153	16
ZR30	0,248	412556	13,90	0,13419	0,47	6,888	0,85	0,3723	0,60	0,71	2153	16	2040	21	5,27	775	12

ZR31C	0,344	236788	12,44	0,06553	0,65	1,155	1,12	0,1278	0,83	0,74	791	27	775	12	2,05	328	6
ZR32	0,581	76145	13,85	0,05367	0,81	0,386	1,29	0,0522	0,93	0,72	357	36	328	6	8,20	2172	26
ZR33	0,634	119126	13,01	0,13562	0,75	7,262	1,20	0,3883	0,86	0,71	2172	26	2115	31	2,62	786	9
ZR34	0,452	130953	14,07	0,06670	0,48	1,193	0,84	0,1297	0,59	0,69	828	20	786	9	5,12	1880	24
ZR37	0,589	447084	20,57	0,11498	0,67	5,151	1,01	0,3249	0,66	0,65	1880	24	1814	21	3,51	672	23
ZR38	0,582	20218	17,37	0,06154	2,06	0,933	2,74	0,1099	1,77	0,65	658	87	672	23	-2,18	614	9
ZR39	0,408	81604	21,14	0,05920	1,21	0,815	1,49	0,0999	0,79	0,53	575	52	614	9	-6,82	612	9
ZR40	0,607	83687	34,52	0,06067	0,70	0,833	1,12	0,0995	0,79	0,71	628	30	612	9	2,57	2895	16
ZR42	0,432	462156	11,79	0,20865	0,48	14,525	0,92	0,5048	0,69	0,75	2895	16	2635	30	9,00	1585	13
ZR43	0,506	359901	28,25	0,09792	0,34	3,604	0,72	0,2669	0,51	0,72	1585	13	1525	14	3,77	2619	9
ZR44	1,488	216107	22,28	0,17640	0,27	11,261	0,67	0,4629	0,49	0,73	2619	9	2453	20	6,37	2717	11
ZR45	0,526	182496	22,42	0,18712	0,34	12,863	0,76	0,4985	0,57	0,75	2717	11	2607	25	4,03	644	13
ZR46	0,332	98604	19,29	0,06077	1,01	0,881	1,52	0,1051	1,07	0,71	631	43	644	13	-2,08	570	10
ZR48	0,223	42577	15,97	0,05924	1,02	0,756	1,43	0,0925	0,93	0,65	576	44	570	10	0,95	499	11
ZR49	0,530	43461	36,67	0,05782	0,85	0,641	1,46	0,0804	1,13	0,77	523	37	499	11	4,64	2171	8
ZR50	0,469	217038	32,42	0,05949	0,52	0,746	0,97	0,0909	0,73	0,75	585	23	561	8	4,13	561	8
ZR51	0,453	566060	16,66	0,18636	0,25	13,019	0,67	0,5066	0,50	0,75	2710	8	2642	22	2,51	2710	8
ZR54	0,674	184729	16,81	0,13331	0,39	7,211	0,79	0,3922	0,58	0,74	2142	14	2133	21	0,41	2142	14
ZR55R	0,227	121262	53,77	0,17872	0,54	11,141	0,91	0,4521	0,63	0,70	2641	18	2404	25	8,96	2641	18
ZR56	0,593	526366	51,62	0,19119	0,43	13,614	0,79	0,5164	0,55	0,69	2752	14	2684	24	2,49	2752	14
ZR58	0,296	38293	11,92	0,06745	1,08	1,208	1,82	0,1299	1,42	0,78	852	45	787	21	7,60	787	21
ZR59	2,857	22591	17,55	0,06106	1,58	0,889	2,05	0,1056	1,24	0,61	641	67	647	15	-0,91	647	15
ZR60	1,083	174702	17,15	0,08095	0,38	2,257	0,79	0,2022	0,58	0,74	1220	15	1187	13	2,69	1187	13
ZR61	0,382	217191	18,05	0,22067	0,32	15,739	0,84	0,5172	0,68	0,81	2986	10	2687	30	9,99	2986	10
ZR62	0,648	103846	19,84	0,07023	0,56	1,364	0,94	0,1408	0,65	0,70	935	23	849	10	9,15	849	10
ZR63	0,951	251690	24,95	0,11330	0,26	4,859	1,06	0,3110	0,96	0,90	1853	9	1746	29	5,79	1853	9
ZR64	0,933	102284	13,12	0,06983	0,48	1,460	0,91	0,1516	0,68	0,75	923	19	910	12	1,49	910	12
ZR65R	0,316	36481	19,14	0,05776	1,65	0,656	2,04	0,0824	1,15	0,56	521	72	510	11	1,99	510	11

ZR66	0,647	73248	27,40	0,05873	1,80	0,708	1,96	0,0874	0,67	0,34	557	78	540	7	3,06	540	7
ZR67	0,532	84783	22,90	0,07123	0,78	1,484	1,33	0,1511	1,01	0,76	964	32	907	17	5,91	907	17
ZR68	0,067	313308	12,04	0,05947	0,38	0,793	0,76	0,0968	0,54	0,72	584	16	595	6	-1,91	595	6
ZR69	0,103	371186	30,33	0,06560	0,48	1,235	1,05	0,1365	0,86	0,82	794	20	825	13	-3,91	825	13
ZR70	1,178	27325	15,12	0,06136	2,32	0,834	3,33	0,0986	2,36	0,71	652	98	606	27	7,06	606	27
ZR71	0,216	153564	13,49	0,07076	0,50	1,507	0,87	0,1544	0,60	0,69	951	21	926	10	2,61	926	10
ZR73	0,606	204037	13,94	0,10851	0,51	4,577	0,87	0,3059	0,60	0,69	1775	18	1720	18	3,06	1775	18
ZR75	0,463	147892	34,12	0,13219	0,58	6,555	0,94	0,3596	0,64	0,68	2127	20	1980	22	6,90	2127	20
ZR79	0,510	510415	52,49	0,06566	0,38	1,160	0,82	0,1281	0,62	0,76	796	16	777	9	2,32	777	9
ZR80	0,772	117151	13,63	0,10873	0,57	4,579	0,95	0,3054	0,67	0,70	1778	21	1718	20	3,38	1778	21
ZR81	0,283	14834	21,39	0,14986	1,13	8,059	1,82	0,3900	1,38	0,76	2344	38	2123	50	9,45	2344	38
ZR82	0,628	69399	17,92	0,05928	0,79	0,760	1,27	0,0929	0,92	0,72	577	34	573	10	0,78	573	10
ZR84	0,337	348446	13,76	0,11329	0,45	4,980	0,85	0,3188	0,62	0,73	1853	16	1784	19	3,72	1853	16
ZR86	0,271	41734	14,76	0,06724	1,20	1,226	1,69	0,1322	1,13	0,67	845	50	800	17	5,28	800	17
ZR87	0,498	88150	16,44	0,06008	0,60	0,888	1,01	0,1071	0,72	0,71	606	26	656	9	-8,20	656	9
ZR88	0,904	63520	13,96	0,07046	0,99	1,574	1,50	0,1620	1,06	0,71	942	40	968	19	-2,76	968	19
ZR89	0,551	101680	17,85	0,05727	0,62	0,673	0,99	0,0853	0,68	0,69	502	27	528	7	-5,06	528	7
ZR92	0,533	63140	13,12	0,06744	0,75	1,222	1,11	0,1315	0,73	0,66	851	31	796	11	6,46	796	11
ZR93	0,640	316119	14,69	0,12118	0,35	5,615	0,79	0,3360	0,61	0,77	1974	12	1867	20	5,38	1974	12
ZR94	0,708	24463	32,40	0,06639	0,86	1,141	1,27	0,1246	0,85	0,67	819	36	757	12	7,53	757	12
ZR95	0,219	672126	11,87	0,13473	0,28	7,420	1,09	0,3994	0,98	0,90	2161	10	2166	36	-0,26	2161	10
ZR97	0,239	46136	19,62	0,06477	1,07	1,190	1,60	0,1332	1,12	0,70	767	45	806	17	-5,12	806	17
ZR98	0,214	143924	14,45	0,07289	0,55	1,657	0,89	0,1649	0,60	0,67	1011	22	984	11	2,68	984	11
ZR99	0,654	86118	30,40	0,10051	1,32	3,927	1,74	0,2833	1,07	0,61	1634	49	1608	30	1,57	1634	49
ZR100	0,313	528939	14,55	0,14555	0,37	8,687	0,81	0,4328	0,61	0,76	2294	13	2319	24	-1,06	2294	13
SEDIMENT	FOS COSTE	EIROS MOD	ERNOS (G	GM-MCS1)													
ZR1	0,870	89118	12,41	0,12533	1,05	6,446	1,60	0,3730	1,15	0,72	2033	37	2043	40	-0,49	2033	37
ZR2	0,569	38754	20,48	0,06151	1,47	0,851	2,48	0,1004	1,96	0,79	657	62	617	23	6,16	617	23

ZR3	0,416	15132	17,01	0,05850	2,36	0,727	3,66	0,0901	2,77	0,76	548	101	556	29	-1,42	556	29
ZR6	0,569	212006	7,53	0,07848	0,67	2,072	1,05	0,1915	0,72	0,68	1159	27	1130	15	2,54	1130	15
ZR8	0,497	360617	17,57	0,07566	0,60	1,720	0,92	0,1649	0,59	0,64	1086	24	984	11	9,43	984	11
ZR9	0,381	32030	20,05	0,05937	1,90	0,740	2,81	0,0904	2,04	0,73	581	81	558	22	3,91	558	22
ZR11	0,467	310482	19,68	0,13746	0,59	7,298	0,88	0,3850	0,55	0,62	2195	20	2100	20	4,36	2195	20
ZR12	0,785	176275	13,31	0,12908	0,50	6,750	0,94	0,3792	0,71	0,75	2085	18	2073	25	0,61	2085	18
ZR14	0,653	114214	10,84	0,05748	0,64	0,607	1,11	0,0766	0,82	0,75	510	28	476	8	6,73	476	8
ZR16	0,598	263780	18,01	0,20289	0,43	15,516	0,80	0,5546	0,56	0,70	2850	14	2844	26	0,18	2850	14
ZR18	0,293	33460	12,33	0,07010	1,30	1,495	1,98	0,1546	1,44	0,73	931	53	927	25	0,48	927	25
ZR20	0,402	29422	4,59	0,07160	2,16	1,611	2,93	0,1632	1,95	0,67	975	87	975	35	0,01	975	35
ZR21	0,948	346867	5,53	0,06690	0,52	1,300	0,85	0,1409	0,56	0,66	835	22	850	9	-1,77	850	9
ZR22	0,161	1137286	10,69	0,12522	0,41	6,201	0,75	0,3592	0,50	0,67	2032	14	1978	17	2,64	2032	14
ZR23	0,401	1095932	4,01	0,10538	0,41	4,438	0,73	0,3055	0,47	0,64	1721	15	1718	14	0,15	1721	15
ZR25	0,400	412792	4,77	0,11447	0,39	5,148	0,72	0,3261	0,47	0,66	1872	14	1820	15	2,78	1872	14
ZR26C	1,233	498813	7,78	0,12620	0,33	6,591	0,76	0,3787	0,57	0,76	2046	12	2070	20	-1,21	2046	12
ZR26R	0,954	347791	17,16	0,12682	0,49	6,678	1,36	0,3819	1,22	0,89	2054	17	2085	43	-1,49	2054	17
ZR28	0,764	218203	4,47	0,06059	0,60	0,872	0,93	0,1043	0,60	0,65	625	26	640	7	-2,42	640	7
ZR29	0,320	279105	6,60	0,05925	0,55	0,801	0,90	0,0981	0,60	0,67	576	24	603	7	-4,68	603	7
ZR36	0,396	338251	10,61	0,11589	0,41	5,104	0,75	0,3194	0,51	0,68	1894	15	1787	16	5,65	1894	15
ZR40	0,240	130684	43,96	0,05906	0,75	0,712	1,27	0,0874	0,95	0,75	569	32	540	10	5,10	540	10
ZR41	0,480	27450	10,32	0,07312	1,88	1,565	2,60	0,1552	1,76	0,68	1017	75	930	30	8,57	930	30
ZR43	0,480	124855	12,35	0,06692	0,57	1,235	0,98	0,1339	0,71	0,72	835	24	810	11	3,04	810	11
ZR44	1,241	45994	11,10	0,05799	1,44	0,710	1,97	0,0888	1,29	0,65	529	63	548	14	-3,57	548	14
ZR45	0,417	100049	13,47	0,13439	0,66	7,519	1,10	0,4057	0,79	0,72	2156	23	2195	29	-1,82	2156	23
ZR47	0,452	2331	6,03	0,13335	0,63	7,650	1,62	0,4160	1,45	0,89	2142	22	2242	55	-4,67	2142	22
ZR48	0,435	262924	12,78	0,12910	0,44	6,981	0,76	0,3922	0,50	0,65	2086	15	2133	18	-2,27	2086	15
ZR50	0,605	136513	17,36	0,06186	0,44	0,956	0,78	0,1120	0,53	0,68	669	19	685	7	-2,28	685	7
ZR52	0,542	55178	22,46	0,06079	0,70	0,816	1,04	0,0974	0,68	0,65	632	30	599	8	5,22	599	8

ZR53	2,041	35729	21,01	0,05994	0,86	0,857	1,33	0,1038	0,94	0,71	601	37	636	11	-5,84	636	11
ZR54	0,478	12650	28,55	0,05964	2,53	0,716	3,47	0,0871	2,34	0,68	590	108	539	24	8,78	539	24
ZR55	0,620	44652	30,81	0,06151	1,15	0,873	1,60	0,1030	1,04	0,65	657	49	632	13	3,87	632	13
ZR56	0,685	179450	29,95	0,05949	0,55	0,767	0,86	0,0935	0,54	0,63	585	24	576	6	1,51	576	6
ZR57	0,381	98310	16,21	0,05950	0,75	0,816	1,07	0,0994	0,66	0,62	585	32	611	8	-4,39	611	8
ZR58	0,312	113171	21,38	0,09483	0,38	3,509	0,80	0,2684	0,60	0,75	1525	14	1533	16	-0,53	1525	14
ZR59	1,142	107260	17,47	0,12952	0,51	7,302	0,94	0,4088	0,71	0,75	2091	18	2210	26	-5,65	2091	18
ZR60	0,482	46254	19,62	0,06199	0,81	0,991	1,26	0,1159	0,89	0,70	674	35	707	12	-4,94	707	12
ZR61	0,434	133349	18,81	0,10741	0,41	4,646	0,78	0,3137	0,55	0,71	1756	15	1759	17	-0,16	1756	15
ZR62	0,483	91142	16,28	0,13212	0,51	6,907	0,95	0,3792	0,71	0,75	2126	18	2072	25	2,54	2126	18
ZR63	0,348	79269	12,35	0,05818	0,75	0,714	1,12	0,0890	0,75	0,67	536	33	550	8	-2,47	550	8
ZR64	0,443	71804	15,72	0,05913	0,71	0,744	1,05	0,0912	0,68	0,65	572	31	563	7	1,60	563	7
ZR65C	0,631	376360	21,48	0,10699	0,27	4,626	0,69	0,3135	0,51	0,74	1749	10	1758	16	-0,53	1749	10
ZR65R	0,634	331402	19,21	0,10687	0,36	4,474	0,75	0,3036	0,54	0,72	1747	13	1709	16	2,15	1747	13
ZR66	0,489	172812	48,12	0,16322	0,49	10,964	0,88	0,4872	0,62	0,71	2489	17	2558	26	-2,78	2489	17
ZR67	2,129	66135	15,75	0,05743	0,66	0,618	1,08	0,0781	0,78	0,72	508	29	485	7	4,62	485	7
ZR68	0,759	166768	78,15	0,06308	0,94	0,989	1,48	0,1137	1,08	0,73	711	40	694	14	2,32	694	14
ZR69	0,239	8860	29,32	0,05847	3,70	0,753	4,99	0,0935	3,34	0,67	547	158	576	37	-5,23	576	37
ZR70	0,481	248466	16,36	0,13520	0,33	7,164	0,71	0,3843	0,51	0,72	2167	12	2096	18	3,25	2167	12
ZR71	0,343	186747	15,55	0,09435	0,39	3,341	0,78	0,2568	0,56	0,72	1515	15	1474	15	2,73	1474	15
ZR72	0,197	310638	14,37	0,06037	0,31	0,822	0,68	0,0987	0,48	0,70	617	13	607	6	1,67	607	6
ZR74	0,378	28110	15,11	0,06248	1,18	0,887	1,67	0,1029	1,12	0,67	691	50	631	13	8,59	631	13
ZR75	0,960	508226	11,64	0,12770	0,33	6,585	0,71	0,3739	0,50	0,71	2067	12	2048	18	0,90	2067	12
ZR76	0,507	61970	16,27	0,07183	0,65	1,569	1,06	0,1584	0,75	0,71	981	26	948	13	3,38	948	13
ZR78	0,557	25204	20,58	0,05791	1,03	0,674	1,51	0,0844	1,03	0,69	526	45	522	10	0,80	522	10
ZR79	0,918	16178	17,05	0,05762	2,77	0,680	3,81	0,0856	2,60	0,68	515	119	529	26	-2,76	529	26
ZR80	0,390	345435	16,32	0,12292	0,37	5,512	0,76	0,3252	0,55	0,72	1999	13	1815	17	9,20	1999	13
ZR82	0,087	400739	16,15	0,06148	0,32	0,836	0,71	0,0986	0,52	0,72	656	14	606	6	7,58	606	6

ZR83	0,186	25423	19,62	0,05916	1,00	0,684	1,42	0,0839	0,94	0,66	573	43	519	9	9,33	519	9
ZR84	0,351	94605	33,09	0,05955	1,02	0,774	1,38	0,0943	0,85	0,61	587	44	581	9	1,08	581	9
ZR88	0,755	29563	13,27	0,05877	2,06	0,723	2,95	0,0892	2,08	0,71	559	89	551	22	1,40	551	22
ZR91	0,507	93406	12,92	0,09580	0,66	3,248	1,01	0,2459	0,66	0,66	1544	25	1417	17	8,22	1417	17
ZR92	0,009	137712	19,96	0,05754	0,76	0,605	1,17	0,0762	0,81	0,69	512	33	474	7	7,53	474	7
ZR94	0,273	235081	13,50	0,09606	0,39	3,221	0,76	0,2432	0,53	0,70	1549	15	1403	13	9,40	1403	13
ZR96	0,368	169913	11,46	0,05937	0,50	0,707	0,86	0,0863	0,59	0,69	581	22	534	6	8,09	534	6
ZR97	1,114	125684	16,07	0,13219	0,73	6,573	1,22	0,3606	0,90	0,74	2127	26	1985	31	6,69	2127	26
ZR98	0,150	92388	11,48	0,05784	0,80	0,657	1,22	0,0823	0,85	0,69	524	35	510	8	2,57	510	8
ZR99	0,601	96162	14,73	0,07172	0,54	1,450	0,98	0,1466	0,73	0,74	978	22	882	12	9,83	882	12

ANEXO D – Dados U-Pb do material de referência Zircão 91500

Sample]	Ratios					Dho			Ages (N	Ia)*			- % U Ph dise1
Sample	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	1s%	²⁰⁷ Pb/ ²⁰⁶ Pb	1s %	²⁰⁷ Pb/ ²³⁵ U	1s %	²⁰⁶ Pb/ ²³⁸ U	1s %	KIIU	²⁰⁷ Pb/ ²⁰⁶ Pb	2s abs	²⁰⁶ Pb/ ²³⁸ U	2s abs	²⁰⁷ Pb/ ²³⁵ U	2s abs	78 0-1 b uisci
SMG3	0.257	195731	22.94	0.07536	0.39	1.864	0.77	0.1794	0.55	0.72	1078	15	1064	11	1069	10	1.33
SMG3	0.259	134264	16.97	0.07463	0.41	1.808	0.78	0.1757	0.55	0.71	1059	16	1043	11	1048	10	1.45
SMG3	0.262	218732	15.99	0.07510	0.38	1.830	0.76	0.1767	0.55	0.72	1071	15	1049	11	1056	10	2.09
SMG3	0.261	168093	13.16	0.07471	0.42	1.833	0.78	0.1779	0.54	0.70	1061	17	1056	11	1057	10	0.48
SMG3	0.259	417730	62.43	0.07491	0.37	1.777	0.73	0.1720	0.51	0.70	1066	15	1023	10	1037	9	4.04
SMG3	0.264	220572	9.78	0.07449	0.35	1.798	0.74	0.1750	0.53	0.72	1055	14	1040	10	1045	10	1.42
SMG3	0.267	144330	17.90	0.07517	0.40	1.816	0.77	0.1752	0.54	0.70	1073	16	1040	10	1051	10	3.04
SMG3	0.269	188798	12.26	0.07425	0.41	1.823	0.79	0.1781	0.56	0.72	1048	16	1056	11	1054	10	-0.76
SMG3	0.272	281914	33.41	0.07437	0.37	1.826	0.73	0.1780	0.51	0.70	1052	15	1056	10	1055	10	-0.44
SMG3	0.266	364274	52.89	0.07436	0.39	1.777	0.78	0.1733	0.57	0.72	1051	16	1030	11	1037	10	1.99
SMG3	0.252	129135	23.03	0.07430	0.58	1.841	0.90	0.1797	0.58	0.64	1050	23	1065	11	1060	12	-1.48
SMG3	0.251	104335	17.75	0.07468	0.50	1.817	0.83	0.1765	0.54	0.66	1060	20	1048	11	1052	11	1.15
SMG3	0.249	122400	26.49	0.07505	0.50	1.798	0.84	0.1738	0.56	0.67	1070	20	1033	11	1045	11	3.46
SMG3	0.250	138717	12.88	0.07461	0.45	1.793	0.84	0.1743	0.60	0.72	1058	18	1036	12	1043	11	2.13
SMG3	0.252	178389	20.94	0.07473	0.37	1.820	0.74	0.1766	0.53	0.71	1061	15	1048	10	1053	10	1.20
SMG3	0.250	134400	17.43	0.07481	0.40	1.800	0.74	0.1745	0.50	0.67	1063	16	1037	10	1045	10	2.49
SMG3	0.250	125349	14.91	0.07447	0.42	1.800	0.81	0.1753	0.58	0.72	1054	17	1041	11	1046	11	1.22
SMG3	0.256	144858	26.87	0.07443	0.38	1.802	0.73	0.1756	0.50	0.68	1053	15	1043	10	1046	9	0.99
SMG3	0.250	127018	16.52	0.07436	0.55	1.792	0.89	0.1748	0.60	0.67	1051	22	1038	11	1043	12	1.22
SMG3	0.254	120368	19.42	0.07450	0.43	1.789	0.83	0.1741	0.60	0.73	1055	17	1035	12	1041	11	1.91
IP4-CGL	0.38	12095	3.9	0.07497	1.96	1.8521	4.3	0.17893	3.9	0.89	1066	39	1061	38	1064	29	0.43
IP4-CGL	0.37	14381	3.1	0.07463	2.32	1.8515	4.4	0.17961	3.8	0.85	1056	47	1065	37	1064	30	-0.84
IP4-CGL	0.38	6935	6.7	0.07491	2.42	1.8484	4.7	0.17884	4.0	0.86	1063	50	1061	39	1063	31	0.26
IP4-CGL	0.37	6430	6.6	0.07517	2.65	1.8444	4.9	0.17786	4.2	0.84	1070	52	1055	41	1061	33	1.37
IP4-CGL	0.38	17160	2.3	0.07479	2.68	1.8626	5.0	0.18086	4.2	0.84	1060	56	1072	42	1068	34	-1.13

IP4-CGL	0.37	33083	1.6	0.07483	2.44	1.8412	4.6	0.17863	3.9	0.85	1061	49	1059	38	1060	31	0.14
IP4-CGL	0.38	74476	0.8	0.07429	2.19	1.8601	4.4	0.18159	3.9	0.87	1047	43	1076	38	1067	30	-2.72
IP4-CGL	0.36	10831	4.1	0.07615	2.60	1.8134	5.0	0.17288	4.2	0.85	1096	52	1028	40	1050	33	6.21
IP4-CGL	0.38	9053	5.4	0.07481	2.40	1.8516	4.7	0.17967	4.1	0.86	1060	49	1065	40	1064	32	-0.43
IP4-CGL	0.38	7755	9.4	0.07451	2.22	1.8720	4.7	0.18226	4.1	0.88	1053	45	1079	41	1071	31	-2.49
IP4-CGL	0.38	7021	5.7	0.07557	2.25	1.8630	4.6	0.17866	4.0	0.87	1081	45	1060	39	1068	31	2.01
IP4-CGL	0.37	16648	2.6	0.07412	2.96	1.8026	5.2	0.17654	4.3	0.82	1041	60	1048	42	1046	35	-0.71
IP4-CGL	0.38	6210	5.7	0.07505	1.93	1.8561	4.4	0.17906	4.0	0.90	1068	39	1062	39	1066	30	0.59
IP4-CGL	0.37	7084	5.8	0.07459	2.02	1.8515	4.3	0.17979	3.8	0.88	1055	41	1066	37	1064	29	-0.99
IP4-CGL	0.38	8042	4.1	0.07415	2.26	1.8586	4.4	0.18177	3.8	0.86	1043	46	1077	38	1066	29	-3.23
IP4-CGL	0.37	12332	3.5	0.07572	2.22	1.8291	4.4	0.17525	3.8	0.87	1085	44	1041	37	1056	30	4.10
IP4-CGL	0.38	4872	9.9	0.07515	2.14	1.8694	4.3	0.17969	3.8	0.87	1070	43	1065	37	1070	29	0.48
IP4-CGL	0.37	9128	4.9	0.07456	2.35	1.8425	4.6	0.17857	4.0	0.86	1054	47	1059	39	1061	31	-0.48
IP4-CGL	0.38	9005	3.5	0.07510	2.28	1.8527	4.5	0.17897	3.9	0.86	1069	46	1061	38	1064	30	0.70
IP4-CGL	0.37	26404	2.6	0.07466	2.03	1.8405	4.4	0.17947	3.9	0.89	1057	41	1064	38	1060	29	-0.64
IP4-CGL	0.38	18925	2.6	0.07458	2.32	1.8559	4.7	0.18117	4.0	0.87	1055	46	1073	40	1065	31	-1.76
IP4-CGL	0.37	12677	3.5	0.07535	2.49	1.8305	4.7	0.17680	3.9	0.85	1075	50	1049	38	1056	31	2.39
IP4-CGL	0.38	7827	6.1	0.07425	2.55	1.8568	4.8	0.18136	4.1	0.85	1045	53	1074	40	1066	32	-2.80
IP4-CGL	0.37	73097	0.8	0.07543	2.45	1.8486	4.8	0.17769	4.1	0.86	1077	49	1054	40	1063	32	2.13
IP4-C1	0.38	12095	3.9	0.07497	1.96	1.8521	4.3	0.17893	3.9	0.89	1066	39	1061	38	1064	29	0.43
IP4-C1	0.37	14381	3.1	0.07463	2.32	1.8515	4.4	0.17961	3.8	0.85	1056	47	1065	37	1064	30	-0.84
IP4-C1	0.38	6935	6.7	0.07491	2.42	1.8484	4.7	0.17884	4.0	0.86	1063	50	1061	39	1063	31	0.26
IP4-C1	0.37	6430	6.6	0.07517	2.65	1.8444	4.9	0.17786	4.2	0.84	1070	52	1055	41	1061	33	1.37
IP4-C1	0.38	17160	2.3	0.07479	2.68	1.8626	5.0	0.18086	4.2	0.84	1060	56	1072	42	1068	34	-1.13
IP4-C1	0.37	33083	1.6	0.07483	2.44	1.8412	4.6	0.17863	3.9	0.85	1061	49	1059	38	1060	31	0.14
IP4-C1	0.38	74476	0.8	0.07429	2.19	1.8601	4.4	0.18159	3.9	0.87	1047	43	1076	38	1067	30	-2.72
IP4-C1	0.36	10831	4.1	0.07615	2.60	1.8134	5.0	0.17288	4.2	0.85	1096	52	1028	40	1050	33	6.21

IP4-C1	0.38	9053	5.4	0.07481	2.40	1.8516	4.7	0.17967	4.1	0.86	1060	49	1065	40	1064	32	-0.43
IP4-C1	0.38	7755	9.4	0.07451	2.22	1.8720	4.7	0.18226	4.1	0.88	1053	45	1079	41	1071	31	-2.49
IP4-C1	0.38	7021	5.7	0.07557	2.25	1.8630	4.6	0.17866	4.0	0.87	1081	45	1060	39	1068	31	2.01
IP4-C1	0.37	16648	2.6	0.07412	2.96	1.8026	5.2	0.17654	4.3	0.82	1041	60	1048	42	1046	35	-0.71
IP4-C1	0.38	6210	5.7	0.07505	1.93	1.8561	4.4	0.17906	4.0	0.90	1068	39	1062	39	1066	30	0.59
IP4-C1	0.37	7084	5.8	0.07459	2.02	1.8515	4.3	0.17979	3.8	0.88	1055	41	1066	37	1064	29	-0.99
IP4-C1	0.38	8042	4.1	0.07415	2.26	1.8586	4.4	0.18177	3.8	0.86	1043	46	1077	38	1066	29	-3.23
IP4-C1	0.37	12332	3.5	0.07572	2.22	1.8291	4.4	0.17525	3.8	0.87	1085	44	1041	37	1056	30	4.10
IP4-C1	0.38	4872	9.9	0.07515	2.14	1.8694	4.3	0.17969	3.8	0.87	1070	43	1065	37	1070	29	0.48
IP4-C1	0.37	9128	4.9	0.07456	2.35	1.8425	4.6	0.17857	4.0	0.86	1054	47	1059	39	1061	31	-0.48
IP4-C1	0.38	9005	3.5	0.07510	2.28	1.8527	4.5	0.17897	3.9	0.86	1069	46	1061	38	1064	30	0.70
IP4-C1	0.37	26404	2.6	0.07466	2.03	1.8405	4.4	0.17947	3.9	0.89	1057	41	1064	38	1060	29	-0.64
IP4-C1	0.38	18925	2.6	0.07458	2.32	1.8559	4.7	0.18117	4.0	0.87	1055	46	1073	40	1065	31	-1.76
IP4-C1	0.37	12677	3.5	0.07535	2.49	1.8305	4.7	0.17680	3.9	0.85	1075	50	1049	38	1056	31	2.39
IP4-C1	0.38	7827	6.1	0.07425	2.55	1.8568	4.8	0.18136	4.1	0.85	1045	53	1074	40	1066	32	-2.80
IP4-C1	0.37	73097	0.8	0.07543	2.45	1.8486	4.8	0.17769	4.1	0.86	1077	49	1054	40	1063	32	2.13
P6	0.289	59749	23.08	0.07435	0.38	1.748	0.82	0.1705	0.62	0.76	1051	15	1015	12	1026	11	3.45
P6	0.295	87710	18.23	0.07523	0.47	1.816	0.89	0.1750	0.66	0.74	1075	19	1040	13	1051	12	3.24
P6	0.297	94467	18.43	0.07441	0.50	1.751	0.84	0.1706	0.56	0.67	1053	20	1016	11	1027	11	3.51
P6	0.297	163806	8.93	0.07459	0.48	1.784	0.85	0.1735	0.60	0.70	1058	19	1031	11	1040	11	2.49
P6	0.293	187898	1.51	0.07494	0.44	1.787	0.81	0.1730	0.57	0.70	1067	18	1028	11	1041	11	3.61
P6	0.296	178932	2.81	0.07500	0.49	1.802	0.84	0.1743	0.58	0.68	1069	20	1036	11	1046	11	3.08
P6	0.298	182300	1.27	0.07446	0.52	1.835	0.94	0.1787	0.69	0.74	1054	21	1060	14	1058	12	-0.57
P6	0.300	183642	1.23	0.07473	0.57	1.819	0.98	0.1765	0.71	0.72	1061	23	1048	14	1052	13	1.27
P6	0.300	185238	1.26	0.07434	0.47	1.781	0.90	0.1738	0.67	0.74	1051	19	1033	13	1039	12	1.71
P6	0.288	39405	15.87	0.07454	0.82	1.768	1.19	0.1720	0.78	0.66	1056	33	1023	15	1034	15	3.15
P6	0.290	43935	16.89	0.07491	1.00	1.820	1.59	0.1762	1.18	0.74	1066	40	1046	23	1053	21	1.88
P6	0.291	55795	11.28	0.07488	1.17	1.852	1.90	0.1794	1.45	0.76	1065	47	1064	28	1064	25	0.15
----	-------	--------	-------	---------	------	-------	------	--------	------	------	------	----	------	----	------	----	-------
P6	0.281	85211	43.23	0.07499	1.23	1.824	1.70	0.1764	1.11	0.65	1068	49	1047	21	1054	22	1.94
P6	0.284	44434	14.23	0.07379	0.98	1.819	1.59	0.1787	1.20	0.75	1036	39	1060	23	1052	21	-2.35
P6	0.281	46999	14.62	0.07473	1.12	1.804	1.72	0.1751	1.25	0.73	1061	45	1040	24	1047	22	2.02
P6	0.284	41156	12.55	0.07514	1.07	1.806	1.51	0.1744	0.99	0.66	1072	43	1036	19	1048	20	3.37
P7	0.227	101003	15.50	0.07519	0.47	1.841	0.82	0.1775	0.56	0.68	1073	19	1053	11	1060	11	1.86
P7	0.227	71982	21.89	0.07474	0.63	1.800	0.99	0.1746	0.66	0.67	1061	25	1038	13	1045	13	2.25
P7	0.225	86024	20.97	0.07469	0.34	1.820	0.73	0.1767	0.52	0.72	1060	14	1049	10	1053	10	1.05
P7	0.226	80179	20.11	0.07446	0.52	1.783	0.86	0.1737	0.58	0.67	1054	21	1032	11	1039	11	2.06
P7	0.226	114456	14.57	0.07436	0.55	1.783	0.95	0.1739	0.68	0.71	1051	22	1034	13	1039	12	1.68
P7	0.229	117210	13.53	0.07446	0.54	1.792	0.90	0.1745	0.62	0.69	1054	22	1037	12	1042	12	1.65
P7	0.229	94817	16.42	0.07455	0.41	1.758	0.79	0.1710	0.56	0.71	1056	16	1018	11	1030	10	3.66
P7	0.232	130327	14.20	0.07432	0.49	1.752	0.82	0.1709	0.54	0.66	1050	20	1017	10	1028	11	3.13
P7	0.233	179428	3.50	0.07533	0.64	1.766	0.91	0.1700	0.54	0.59	1077	25	1012	10	1033	12	6.04
P7	0.212	109961	16.02	0.07393	0.54	1.729	0.88	0.1696	0.59	0.67	1040	22	1010	11	1019	11	2.85
P7	0.215	111307	14.98	0.07479	0.53	1.742	0.91	0.1689	0.64	0.70	1063	21	1006	12	1024	12	5.36
P7	0.211	110554	15.64	0.07533	0.52	1.745	0.98	0.1680	0.74	0.76	1077	21	1001	14	1025	13	7.05
P7	0.213	115800	14.15	0.07501	0.52	1.755	1.00	0.1696	0.77	0.77	1069	21	1010	14	1029	13	5.49
P7	0.213	69331	21.45	0.07528	0.58	1.817	0.95	0.1750	0.66	0.69	1076	23	1040	13	1052	12	3.37
B1	0.239	76938	13.15	0.07370	0.82	1.870	1.19	0.1840	0.79	0.66	1033	33	1089	16	1070	16	-5.37
B1	0.245	82380	28.64	0.07400	0.66	1.878	1.06	0.1841	0.73	0.69	1041	27	1089	15	1074	14	-4.61
B1	0.254	52702	18.53	0.07476	0.76	1.978	1.14	0.1919	0.77	0.68	1062	30	1132	16	1108	15	-6.57
B1	0.259	75845	15.68	0.07406	0.59	1.856	1.03	0.1817	0.75	0.73	1043	24	1076	15	1065	13	-3.18
B1	0.263	108002	9.72	0.07454	0.81	1.869	1.21	0.1819	0.82	0.68	1056	33	1077	16	1070	16	-1.99
B1	0.249	82719	11.26	0.07498	0.74	1.976	1.11	0.1911	0.74	0.66	1068	30	1127	15	1107	15	-5.57
B1	0.247	76446	11.20	0.07429	0.70	1.868	1.40	0.1823	1.16	0.83	1049	28	1080	23	1070	18	-2.89

0.244	97092	4.78	0.07509	1.01	1.840	1.42	0.1777	0.93	0.65	1071	40	1054	18	1060	19	1.55
0.246	1021(2	2.00	0.07499	0.02	1.075	1.42	0.1907	1.02	0.02	10/1	27	1071	20	1000	10	0.50
0.246	102165	2.69	0.07488	0.92	1.805	1.43	0.1807	1.03	0.72	1065	37	10/1	20	1069	19	-0.50
0.237	96188	3.37	0.07470	0.82	1.756	1.20	0.1705	0.79	0.66	1060	33	1015	15	1030	15	4.29
0.241	83362	11.45	0.07442	0.80	1.935	1.26	0.1885	0.90	0.71	1053	32	1113	18	1093	17	-5.76
0.241	63712	15.11	0.07580	0.66	1.850	1.07	0.1770	0.76	0.71	1090	26	1050	15	1063	14	3.63
0.243	65044	13.74	0.07535	0.68	1.814	1.11	0.1746	0.80	0.72	1078	27	1037	15	1050	15	3.77
0.243	66623	13.42	0.07474	0.68	1.820	1.02	0.1766	0.66	0.65	1062	27	1048	13	1053	13	1.25
0.244	72423	12.31	0.07650	0.71	1.833	1.03	0.1738	0.64	0.62	1108	28	1033	12	1057	13	6.78
0.262	86400	19.88	0.07551	0.63	1.735	0.96	0.1666	0.61	0.64	1082	25	994	11	1022	12	8.19
0.273	80423	14.35	0.07538	0.61	1.782	0.94	0.1714	0.61	0.65	1079	24	1020	11	1039	12	5.44
0.277	90096	12.13	0.07565	0.62	1.789	0.94	0.1715	0.60	0.64	1086	25	1020	11	1041	12	6.04
0.282	62139	19.24	0.07528	0.55	1.786	0.94	0.1721	0.66	0.71	1076	22	1024	13	1041	12	4.88
0.277	75309	14.93	0.07583	0.56	1.763	1.04	0.1686	0.79	0.76	1091	22	1004	15	1032	13	7.90
0.263	268583	12.71	0.07478	0.61	1.854	0.93	0.1798	0.59	0.63	1063	25	1066	12	1065	12	-0.32
0.262	189638	16.22	0.07516	0.57	1.833	0.88	0.1769	0.56	0.63	1073	23	1050	11	1057	12	2.15
0.250	206433	12.01	0.07473	0.56	1.830	0.90	0.1775	0.60	0.66	1061	22	1054	12	1056	12	0.73
0.265	266172	13.40	0.07521	0.47	1.798	0.77	0.1734	0.49	0.64	1074	19	1031	9	1045	10	4.06
0.274	263308	14.95	0.07493	0.48	1.830	0.80	0.1771	0.52	0.65	1067	19	1051	10	1056	10	1.46
0.284	324807	13.58	0.07473	0.42	1.833	0.74	0.1779	0.48	0.65	1061	17	1056	9	1057	10	0.52
0.265	260015	13.95	0.07470	0.47	1.806	0.77	0.1753	0.48	0.63	1060	19	1041	9	1047	10	1.81
0.265	263071	14.42	0.07490	0.50	1.796	0.79	0.1739	0.49	0.62	1066	20	1033	9	1044	10	3.04
0.273	223730	16.83	0.07495	0.61	1.804	0.88	0.1746	0.51	0.58	1067	25	1037	10	1047	11	2.80
0.266	275455	15.45	0.07489	0.63	1.775	0.88	0.1719	0.49	0.56	1065	25	1023	9	1037	11	4.01
0.256	228708	13.90	0.07524	0.57	1.798	0.87	0.1733	0.55	0.63	1075	23	1030	10	1045	11	4.14
0.262	377817	10.01	0.07518	0.49	1.766	0.80	0.1704	0.52	0.64	1073	20	1014	10	1033	10	5.50
0.282	439334	12.92	0.07508	0.47	1.810	0.81	0.1749	0.55	0.68	1071	19	1039	11	1049	11	2.97
0.261	291473	13.51	0.07483	0.47	1.806	0.78	0.1751	0.50	0.64	1064	19	1040	10	1048	10	2.25
	0.244 0.246 0.237 0.241 0.243 0.243 0.243 0.243 0.243 0.244 0.262 0.273 0.277 0.282 0.277 0.282 0.277 0.263 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.266 0.262 0.282 0.282 0.261	0.244 97092 0.246 102163 0.237 96188 0.241 83362 0.241 63712 0.243 65044 0.243 66623 0.244 72423 0.262 86400 0.273 80423 0.262 62139 0.277 90096 0.282 62139 0.277 75309 0.263 268583 0.264 189638 0.265 266172 0.265 266172 0.274 263308 0.284 324807 0.265 260015 0.265 263071 0.273 223730 0.266 275455 0.266 275455 0.262 377817 0.282 439334 0.261 291473	0.244 97092 4.78 0.246 102163 2.69 0.237 96188 3.37 0.241 83362 11.45 0.241 63712 15.11 0.243 66023 13.42 0.244 72423 12.31 0.243 66623 13.42 0.244 72423 12.31 0.262 86400 19.88 0.273 80423 14.35 0.277 90096 12.13 0.282 62139 19.24 0.277 75309 14.93 0.265 266172 13.40 0.265 266172 13.40 0.265 266172 13.40 0.274 263308 14.95 0.284 324807 13.58 0.265 260015 13.95 0.265 263071 14.42 0.273 223730 16.83 0.266 275455 15.45 0.266 275455 15.45 0.266 275455	0.244970924.780.075090.2461021632.690.074880.237961883.370.074700.2418336211.450.074420.2416371215.110.075800.2436602313.420.074740.2447242312.310.076500.2628640019.880.075510.2738042314.350.075650.2826213919.240.075280.2779009612.130.075830.26326858312.710.074780.26218963816.220.075160.25020643312.010.075210.27426330814.950.074730.26526617213.400.075210.27426330814.950.074730.26526001513.950.074700.26526307114.420.074900.27322373016.830.074550.26627545515.450.074890.25622870813.900.075240.26237781710.010.075180.26129147313.510.07483	0.244 97092 4.78 0.07509 1.01 0.246 102163 2.69 0.07488 0.92 0.237 96188 3.37 0.07470 0.82 0.241 83362 11.45 0.07442 0.80 0.241 63712 15.11 0.07535 0.68 0.243 65044 13.74 0.07535 0.68 0.243 66623 13.42 0.07474 0.68 0.244 72423 12.31 0.07650 0.71 0.262 86400 19.88 0.07551 0.63 0.277 90096 12.13 0.07565 0.62 0.282 62139 19.24 0.07583 0.55 0.277 75309 14.93 0.07583 0.56 0.262 189638 16.22 0.07516 0.57 0.262 189638 12.01 0.07473 0.56 0.265 266172 13.40 0.07521 0.47 0.265 26015 13.95 0.07470 0.47 0.265	0.244 97092 4.78 0.07509 1.01 1.840 0.246 102163 2.69 0.07488 0.92 1.865 0.237 96188 3.37 0.07470 0.82 1.756 0.241 83362 11.45 0.07442 0.80 1.935 0.241 63712 15.11 0.07580 0.66 1.850 0.243 65044 13.74 0.07535 0.68 1.814 0.243 66623 13.42 0.07474 0.68 1.820 0.244 72423 12.31 0.07650 0.71 1.833 0.262 86400 19.88 0.07518 0.61 1.782 0.277 90096 12.13 0.07528 0.55 1.786 0.277 90096 12.13 0.07528 0.55 1.786 0.263 268583 12.271 0.07478 0.61 1.854 0.264 189638 16.22 0.07516 0.57 1.833	0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.237 96188 3.37 0.07470 0.82 1.756 1.20 0.241 83362 11.45 0.07442 0.80 1.935 1.26 0.241 63712 15.11 0.07580 0.66 1.850 1.07 0.243 65044 13.74 0.07535 0.68 1.814 1.11 0.243 66623 13.42 0.07474 0.68 1.820 1.02 0.244 72423 12.31 0.07650 0.71 1.833 1.03 0.262 86400 19.88 0.07518 0.61 1.782 0.94 0.277 90096 12.13 0.07528 0.55 1.786 0.94 0.277 75309 14.93 0.07518 0.56 1.833 0.88 0.262 189638 16.22 0.07516 0.57 1.833 0.88 0.262 268	0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.1777 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 0.237 96188 3.37 0.07470 0.82 1.756 1.20 0.1705 0.241 83362 11.45 0.0742 0.80 1.935 1.26 0.1885 0.243 65044 13.74 0.07535 0.68 1.814 1.11 0.1706 0.243 66623 13.42 0.07474 0.68 1.820 1.02 0.1766 0.244 72423 12.31 0.07550 0.71 1.833 1.03 0.1738 0.262 86400 19.88 0.07551 0.63 1.782 0.94 0.1714 0.277 90096 12.13 0.07583 0.55 1.786 0.94 0.1711 0.277 90096 12.13 0.07583 0.55 1.783 0.94 0.1721 0.277 75309 14.93 0.07518 0.57 1.833 0.88	0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.237 96188 3.37 0.07470 0.82 1.756 1.20 0.1705 0.79 0.241 63362 11.45 0.07442 0.80 1.935 1.26 0.1885 0.90 0.241 63712 15.11 0.07535 0.66 1.850 1.07 0.1770 0.76 0.243 66623 13.42 0.07474 0.68 1.820 1.02 0.1766 0.66 0.244 72423 12.31 0.07551 0.63 1.735 0.96 0.1666 0.61 0.273 80423 14.35 0.07538 0.61 1.782 0.94 0.1711 0.66 0.277 90096 12.13 0.0758 0.55 1.786 0.94 0.1721 0.66 0.277 75309 14.93 0.07518 0.57 1.833 0.88 <td< th=""><th>0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.65 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.72 0.237 96188 3.37 0.07470 0.82 1.756 1.20 0.1705 0.79 0.666 0.241 63712 15.11 0.07580 0.66 1.850 1.07 0.1707 0.76 0.71 0.243 66623 13.42 0.07474 0.68 1.820 1.02 0.1766 0.66 0.65 0.244 72423 12.31 0.07550 0.71 1.833 1.03 0.1738 0.64 0.62 0.262 86400 19.88 0.07538 0.61 1.782 0.94 0.1714 0.61 0.64 0.273 80423 14.35 0.07538 0.55 1.786 0.94 0.1714 0.66 0.71 0.282 62139</th><th>0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.65 1071 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.72 1065 0.237 96188 3.37 0.07470 0.82 1.756 1.20 0.1705 0.79 0.66 1060 0.241 83362 11.45 0.07442 0.80 1.935 1.26 0.1885 0.90 0.71 1053 0.241 63712 15.11 0.07580 0.66 1.850 1.07 0.170 0.76 0.71 1090 0.243 66623 13.42 0.07474 0.68 1.820 1.02 0.1766 0.66 0.65 1062 0.244 72423 12.31 0.07551 0.63 1.735 0.96 0.1666 0.61 0.64 1082 0.277 90096 12.13 0.07528 0.55 1.786 <</th><th>0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.65 1071 40 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.72 1065 37 0.237 96188 3.37 0.07470 0.82 1.756 1.20 0.1705 0.79 0.66 1060 33 0.241 63712 15.11 0.0742 0.80 1.955 1.26 0.1885 0.90 0.71 1053 32 0.243 65044 13.74 0.07535 0.68 1.814 1.11 0.1766 0.66 0.65 1062 277 0.243 66623 13.42 0.07551 0.63 1.735 0.96 0.1666 0.61 1062 276 0.242 86400 19.88 0.07551 0.62 1.782 0.94 0.1715 0.66 0.61 1.682 0.277 90096</th><th>0.244 97992 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.65 1071 40 1054 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.72 1065 37 1071 0.237 96188 3.37 0.07470 0.82 1.756 1.20 0.1705 0.79 0.66 1060 33 1015 0.241 63712 15.11 0.07580 0.66 1.850 1.07 0.1706 0.71 1090 26 1030 0.243 65044 1.374 0.0753 0.68 1.820 1.02 0.1766 0.66 0.62 1108 28 1033 0.242 72423 1.231 0.0753 0.61 1.782 0.94 0.1714 0.61 0.64 1082 25 994 0.277 90096 12.13 0.0758 0.55 1.786 0.94 0.1714</th><th>0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.65 1071 40 1054 18 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.72 1065 37 1071 20 0.237 96188 3.37 0.0740 0.82 1.756 1.20 0.1705 0.79 0.66 1060 33 1015 15 0.241 63712 15.11 0.07580 0.66 1.850 1.07 0.170 0.76 0.71 1090 2.6 1050 153 0.243 66623 1.342 0.0744 0.68 1.820 1.02 0.1766 0.66 0.65 1062 2.7 1048 133 0.244 72423 12.31 0.07538 0.61 1.782 0.94 0.1714 0.61 0.64 1082 2.5 1020 11 0.273 80423<th>0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.65 1071 40 1054 18 1060 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.72 1065 37 1071 20 1090 0.237 96188 3.37 0.07440 0.82 1.756 1.20 0.170 0.76 1060 33 1015 15 1003 0.241 6334 1.34 0.0755 0.66 1.820 1.02 0.176 0.66 0.65 1062 27 1048 13 1053 0.243 66623 1.342 0.0765 0.71 1.833 103 0.178 0.64 0.62 1108 28 1033 12 1057 0.262 86400 1988 0.0758 0.62 1.789 0.94 0.171 0.64 0.65 1079 22 1024</th><th>0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.65 1071 40 1054 18 1060 19 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.72 1665 37 1071 20 1069 19 0.237 96188 0.37 0.0740 0.82 1.756 1.20 0.1705 0.79 0.66 1.350 1113 18 1030 12 0.241 83362 1.45 0.075 0.76 0.71 1090 26 1050 15 1053 125 0.243 66623 1.34 0.0755 0.68 1.02 0.76 0.71 1080 28 1033 12 1057 133 0.243 6623 1.34 0.0755 0.63 1.735 0.64 0.64 0.64 1082 25 940 11 1022 12</th></th></td<>	0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.65 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.72 0.237 96188 3.37 0.07470 0.82 1.756 1.20 0.1705 0.79 0.666 0.241 63712 15.11 0.07580 0.66 1.850 1.07 0.1707 0.76 0.71 0.243 66623 13.42 0.07474 0.68 1.820 1.02 0.1766 0.66 0.65 0.244 72423 12.31 0.07550 0.71 1.833 1.03 0.1738 0.64 0.62 0.262 86400 19.88 0.07538 0.61 1.782 0.94 0.1714 0.61 0.64 0.273 80423 14.35 0.07538 0.55 1.786 0.94 0.1714 0.66 0.71 0.282 62139	0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.65 1071 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.72 1065 0.237 96188 3.37 0.07470 0.82 1.756 1.20 0.1705 0.79 0.66 1060 0.241 83362 11.45 0.07442 0.80 1.935 1.26 0.1885 0.90 0.71 1053 0.241 63712 15.11 0.07580 0.66 1.850 1.07 0.170 0.76 0.71 1090 0.243 66623 13.42 0.07474 0.68 1.820 1.02 0.1766 0.66 0.65 1062 0.244 72423 12.31 0.07551 0.63 1.735 0.96 0.1666 0.61 0.64 1082 0.277 90096 12.13 0.07528 0.55 1.786 <	0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.65 1071 40 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.72 1065 37 0.237 96188 3.37 0.07470 0.82 1.756 1.20 0.1705 0.79 0.66 1060 33 0.241 63712 15.11 0.0742 0.80 1.955 1.26 0.1885 0.90 0.71 1053 32 0.243 65044 13.74 0.07535 0.68 1.814 1.11 0.1766 0.66 0.65 1062 277 0.243 66623 13.42 0.07551 0.63 1.735 0.96 0.1666 0.61 1062 276 0.242 86400 19.88 0.07551 0.62 1.782 0.94 0.1715 0.66 0.61 1.682 0.277 90096	0.244 97992 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.65 1071 40 1054 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.72 1065 37 1071 0.237 96188 3.37 0.07470 0.82 1.756 1.20 0.1705 0.79 0.66 1060 33 1015 0.241 63712 15.11 0.07580 0.66 1.850 1.07 0.1706 0.71 1090 26 1030 0.243 65044 1.374 0.0753 0.68 1.820 1.02 0.1766 0.66 0.62 1108 28 1033 0.242 72423 1.231 0.0753 0.61 1.782 0.94 0.1714 0.61 0.64 1082 25 994 0.277 90096 12.13 0.0758 0.55 1.786 0.94 0.1714	0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.65 1071 40 1054 18 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.72 1065 37 1071 20 0.237 96188 3.37 0.0740 0.82 1.756 1.20 0.1705 0.79 0.66 1060 33 1015 15 0.241 63712 15.11 0.07580 0.66 1.850 1.07 0.170 0.76 0.71 1090 2.6 1050 153 0.243 66623 1.342 0.0744 0.68 1.820 1.02 0.1766 0.66 0.65 1062 2.7 1048 133 0.244 72423 12.31 0.07538 0.61 1.782 0.94 0.1714 0.61 0.64 1082 2.5 1020 11 0.273 80423 <th>0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.65 1071 40 1054 18 1060 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.72 1065 37 1071 20 1090 0.237 96188 3.37 0.07440 0.82 1.756 1.20 0.170 0.76 1060 33 1015 15 1003 0.241 6334 1.34 0.0755 0.66 1.820 1.02 0.176 0.66 0.65 1062 27 1048 13 1053 0.243 66623 1.342 0.0765 0.71 1.833 103 0.178 0.64 0.62 1108 28 1033 12 1057 0.262 86400 1988 0.0758 0.62 1.789 0.94 0.171 0.64 0.65 1079 22 1024</th> <th>0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.65 1071 40 1054 18 1060 19 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.72 1665 37 1071 20 1069 19 0.237 96188 0.37 0.0740 0.82 1.756 1.20 0.1705 0.79 0.66 1.350 1113 18 1030 12 0.241 83362 1.45 0.075 0.76 0.71 1090 26 1050 15 1053 125 0.243 66623 1.34 0.0755 0.68 1.02 0.76 0.71 1080 28 1033 12 1057 133 0.243 6623 1.34 0.0755 0.63 1.735 0.64 0.64 0.64 1082 25 940 11 1022 12</th>	0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.65 1071 40 1054 18 1060 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.72 1065 37 1071 20 1090 0.237 96188 3.37 0.07440 0.82 1.756 1.20 0.170 0.76 1060 33 1015 15 1003 0.241 6334 1.34 0.0755 0.66 1.820 1.02 0.176 0.66 0.65 1062 27 1048 13 1053 0.243 66623 1.342 0.0765 0.71 1.833 103 0.178 0.64 0.62 1108 28 1033 12 1057 0.262 86400 1988 0.0758 0.62 1.789 0.94 0.171 0.64 0.65 1079 22 1024	0.244 97092 4.78 0.07509 1.01 1.840 1.42 0.1777 0.93 0.65 1071 40 1054 18 1060 19 0.246 102163 2.69 0.07488 0.92 1.865 1.43 0.1807 1.03 0.72 1665 37 1071 20 1069 19 0.237 96188 0.37 0.0740 0.82 1.756 1.20 0.1705 0.79 0.66 1.350 1113 18 1030 12 0.241 83362 1.45 0.075 0.76 0.71 1090 26 1050 15 1053 125 0.243 66623 1.34 0.0755 0.68 1.02 0.76 0.71 1080 28 1033 12 1057 133 0.243 6623 1.34 0.0755 0.63 1.735 0.64 0.64 0.64 1082 25 940 11 1022 12

В2	0.254	292543	15.27	0.07468	0.47	1.751	0.77	0.1701	0.50	0.64	1060	19	1012	9	1028	10	4.49
В2	0.264	307846	12.27	0.07488	0.44	1.791	0.76	0.1734	0.50	0.66	1065	17	1031	9	1042	10	3.21
B2	0.263	369854	11.86	0.07448	0.41	1.787	0.78	0.1739	0.55	0.70	1055	17	1034	10	1041	10	1.97
B2	0.277	355086	11.48	0.07477	0.46	1.809	0.80	0.1755	0.55	0.68	1062	18	1042	11	1049	10	1.91
B2	0.271	326903	12.46	0.07503	0.47	1.825	0.81	0.1764	0.54	0.67	1069	19	1047	10	1054	11	2.07
B2	0.277	419158	11.25	0.07474	0.50	1.807	0.81	0.1753	0.52	0.64	1061	20	1041	10	1048	11	1.90
В5	0.247	126769	19.40	0.07492	0.56	1.851	0.88	0.1792	0.58	0.65	1066	22	1062	11	1064	12	0.38
В5	0.249	189722	11.16	0.07460	0.42	1.828	0.75	0.1777	0.50	0.67	1058	17	1054	10	1056	10	0.30
В5	0.251	219923	27.31	0.07485	0.38	1.805	0.72	0.1749	0.48	0.67	1064	15	1039	9	1047	9	2.39
В5	0.253	225529	35.14	0.07484	0.28	1.899	0.79	0.1840	0.64	0.81	1064	11	1089	13	1081	11	-2.30
В5	0.256	136966	16.80	0.07454	0.37	1.962	0.80	0.1909	0.61	0.76	1056	15	1126	13	1103	11	-6.67
В5	0.254	165186	15.28	0.07491	0.39	1.898	0.78	0.1837	0.57	0.73	1066	16	1087	11	1080	10	-1.98
В5	0.257	183158	15.64	0.07520	0.40	1.922	0.77	0.1853	0.54	0.70	1074	16	1096	11	1089	10	-2.07
В5	0.259	149362	21.21	0.07448	0.35	1.898	0.70	0.1848	0.49	0.69	1054	14	1093	10	1080	9	-3.67
В5	0.254	230278	55.62	0.07415	0.58	1.869	0.86	0.1828	0.51	0.59	1046	23	1082	10	1070	11	-3.49
В5	0.255	138989	14.10	0.07448	0.44	1.875	0.80	0.1825	0.55	0.69	1055	18	1081	11	1072	11	-2.48
В5	0.255	182789	8.90	0.07487	0.37	1.855	0.77	0.1797	0.56	0.73	1065	15	1065	11	1065	10	-0.03
В5	0.255	161618	11.12	0.07503	0.47	1.868	0.84	0.1805	0.59	0.70	1069	19	1070	12	1070	11	-0.07
В5	0.255	943140	85.37	0.07513	0.44	1.876	0.80	0.1810	0.56	0.70	1072	18	1073	11	1072	11	-0.06
В5	0.254	980898	76.77	0.07484	0.46	1.829	0.81	0.1773	0.55	0.68	1064	18	1052	11	1056	11	1.14
В5	0.254	219509	5.26	0.07449	0.47	1.854	0.84	0.1805	0.59	0.70	1055	19	1070	12	1065	11	-1.42
В5	0.251	233205	4.79	0.07463	0.47	1.809	0.84	0.1758	0.59	0.70	1058	19	1044	11	1049	11	1.37
В5	0.253	234153	4.41	0.07454	0.51	1.821	0.82	0.1772	0.53	0.65	1056	20	1051	10	1053	11	0.44
B6	0.260	167586	11.47	0.07488	0.56	1.747	0.87	0.1692	0.56	0.64	1065	23	1008	10	1026	11	5.43
B6	0.265	174685	11.91	0.07465	0.48	1.785	0.83	0.1734	0.57	0.68	1059	19	1031	11	1040	11	2.67
B6	0.263	168066	11.90	0.07479	0.45	1.801	0.80	0.1746	0.55	0.68	1063	18	1038	10	1046	10	2.38

B6	0.267	202016	11.36	0.07478	0.40	1.806	0.81	0.1751	0.59	0.73	1063	16	1040	11	1047	11	2.12
B6	0.266	144265	16.69	0.07522	0.45	1.800	0.84	0.1736	0.61	0.72	1074	18	1032	12	1046	11	3.97
B6	0.266	132891	15.65	0.07479	0.43	1.821	0.76	0.1765	0.51	0.67	1063	17	1048	10	1053	10	1.40
B6	0.266	162983	13.48	0.07451	0.44	1.813	0.76	0.1764	0.50	0.66	1055	17	1048	10	1050	10	0.74
B6	0.269	162390	14.43	0.07481	0.43	1.794	0.75	0.1739	0.49	0.65	1063	17	1034	9	1043	10	2.79
B6	0.266	167384	12.72	0.07484	0.45	1.742	0.75	0.1688	0.47	0.63	1064	18	1006	9	1024	10	5.52
B6	0.269	217574	12.60	0.07474	0.56	1.797	0.84	0.1743	0.50	0.60	1062	23	1036	10	1044	11	2.41
B6	0.277	111682	14.16	0.07474	0.53	1.858	0.92	0.1803	0.65	0.71	1062	21	1069	13	1066	12	-0.66
B6	0.277	132359	11.71	0.07467	0.49	1.811	0.84	0.1759	0.58	0.69	1060	20	1044	11	1049	11	1.44
B6	0.276	129670	11.52	0.07534	0.54	1.792	0.90	0.1725	0.62	0.69	1077	22	1026	12	1043	12	4.77
B6	0.278	205313	32.31	0.07456	0.45	1.754	0.85	0.1706	0.61	0.72	1057	18	1015	12	1029	11	3.90
B6	0.278	120240	13.43	0.07441	0.50	1.784	0.84	0.1739	0.57	0.68	1053	20	1033	11	1040	11	1.83
B6	0.274	115803	13.86	0.07482	0.55	1.742	0.85	0.1689	0.53	0.63	1064	22	1006	10	1024	11	5.44
B6	0.279	127192	11.84	0.07473	0.67	1.833	0.97	0.1779	0.60	0.62	1061	27	1055	12	1057	13	0.56
B6	0.276	113046	14.61	0.07501	0.65	1.761	0.94	0.1703	0.58	0.61	1069	26	1014	11	1031	12	5.16
B7	0.91	12520	5.0	0.07542	1.65	1.8191	2.6	0.17546	2.0	0.77	1078	33	1042	19	1052	17	3.3
B7	0.90	22097	3.7	0.07581	2.24	1.8035	3.7	0.17339	2.9	0.79	1087	44	1031	28	1047	24	5.2
B7	0.92	18787	3.3	0.07541	1.76	1.8569	2.8	0.17908	2.2	0.79	1077	35	1062	22	1066	19	1.4
B7	0.92	8598	8.2	0.07627	1.33	1.8309	2.4	0.17449	2.0	0.83	1100	26	1037	19	1057	16	5.8
B7	0.90	12629	9.3	0.07591	1.65	1.8403	2.7	0.17564	2.2	0.80	1090	33	1043	21	1060	18	4.3
B7	0.90	12294	5.7	0.07506	1.58	1.8475	2.6	0.17853	2.1	0.80	1068	32	1059	20	1062	17	0.9
B7	0.90	15425	2.7	0.07499	1.81	1.8376	3.0	0.17781	2.4	0.80	1066	37	1055	24	1059	20	1.0
B7	0.93	10930	6.8	0.07495	1.91	1.7989	3.2	0.17488	2.6	0.81	1065	39	1039	25	1045	21	2.4
B7	0.91	8032	10.2	0.07701	2.08	1.8376	3.5	0.17293	2.8	0.80	1119	41	1028	27	1059	23	8.1
В7	0.90	37835	1.6	0.07473	1.48	1.8115	2.9	0.17530	2.5	0.87	1060	30	1041	24	1049	19	1.7
B7	0.91	80824	0.9	0.07550	1.87	1.8384	2.9	0.17633	2.2	0.76	1079	37	1047	21	1059	19	3.0
B7	0.91	11662	5.2	0.07580	1.75	1.8398	3.0	0.17599	2.4	0.80	1088	35	1045	23	1060	20	3.9

	0.92	7260	71	0.07594	1.52	1 8079	29	0 17307	24	0.85	1092	30	1029	23	1048	19	
B7	0.92	00120	7.1	0.07574	1.52	1.0079	2.9	0.17307	2.1	0.05	1002	30	1025	25	1040	10	5.8
B7	0.91	80138	0.6	0.07602	1.79	1.8069	2.8	0.17267	2.2	0.77	1093	36	1027	21	1048	19	6.1
B7	0.92	80764	0.3	0.07572	1.78	1.8101	2.9	0.17365	2.3	0.79	1085	35	1032	22	1049	19	4.9
B7	0.92	11762	4.2	0.07518	2.18	1.8001	3.6	0.17401	2.8	0.79	1070	44	1034	27	1045	23	3.4
В7	0.94	58897	1.1	0.07545	2.34	1.7910	3.4	0.17274	2.5	0.73	1077	47	1027	24	1042	22	4.6
В7	0.95	10409	3.4	0.07482	1.53	1.8407	2.7	0.17831	2.3	0.83	1062	31	1058	22	1060	18	0.4
В7	0.94	4819	7.5	0.07466	1.02	1.8171	2.2	0.17626	2.0	0.89	1058	21	1046	19	1052	15	1.1
В7	0.96	8807	4.9	0.07672	2.25	1.8338	3.4	0.17449	2.5	0.74	1111	45	1037	24	1058	22	6.6
В7	0.96	31153	1.8	0.07616	1.66	1.8556	2.8	0.17694	2.2	0.80	1097	33	1050	21	1065	18	4.3
В7	0.97	14130	4.2	0.07632	1.48	1.8545	2.6	0.17700	2.1	0.82	1101	29	1050	20	1065	17	4.6
В7	0.96	27850	1.3	0.07518	1.54	1.8527	2.5	0.17949	2.0	0.79	1071	31	1064	19	1064	17	0.7
В7	0.97	17464	5.3	0.07587	1.99	1.8414	3.2	0.17682	2.5	0.78	1089	40	1049	24	1060	21	3.6
В7	0.96	16092	3.3	0.07555	2.34	1.8380	4.0	0.17737	3.2	0.81	1080	47	1052	31	1059	26	2.5
В7	0.95	21224	3.0	0.07502	1.51	1.8497	2.6	0.17920	2.1	0.81	1067	30	1063	21	1063	17	0.4
В7	0.94	12806	4.9	0.07526	2.23	1.8506	3.3	0.17893	2.5	0.74	1072	45	1061	24	1064	22	1.0
В7	0.92	76980	0.7	0.07548	1.88	1.8797	3.1	0.18106	2.4	0.79	1079	38	1073	24	1074	20	0.6
В7	0.92	30729	2.1	0.07586	2.38	1.8528	3.4	0.17765	2.5	0.72	1088	48	1054	24	1064	23	3.1
PB2A	0.259	161445	15.56	0.07469	0.54	1.806	0.96	0.1754	0.70	0.73	1060	22	1042	14	1048	12	1.74
PB2A	0.258	1030232	83.24	0.07457	0.46	1.785	0.80	0.1736	0.53	0.67	1057	19	1032	10	1040	10	2.37
PB2A	0.261	198400	13.44	0.07513	0.40	1.765	0.72	0.1704	0.47	0.65	1072	16	1014	9	1033	9	5.40
PB2A	0.261	206337	13.08	0.07472	0.45	1.828	0.77	0.1774	0.51	0.66	1061	18	1053	10	1056	10	0.75
PB2A	0.262	208367	13.18	0.07465	0.42	1.778	0.78	0.1727	0.54	0.69	1059	17	1027	10	1038	10	3.02
PB2A	0.267	151621	17.55	0.07471	0.43	1.843	0.85	0.1789	0.62	0.74	1061	17	1061	12	1061	11	-0.03
PB2A	0.268	222987	27.90	0.07502	0.46	1.816	0.76	0.1755	0.48	0.64	1069	18	1042	9	1051	10	2.49
PB2A	0.267	271569	15.56	0.07434	0.44	1.766	0.79	0.1723	0.55	0.69	1051	18	1025	10	1033	10	2.49
PB2A	0.270	216889	15.45	0.07463	0.41	1.862	0.73	0.1809	0.47	0.65	1059	16	1072	9	1068	10	-1.26
PB2A	0.287	95623	13.57	0.07466	0.67	1.742	1.04	0.1692	0.70	0.68	1059	27	1008	13	1024	13	4.86

PB2A	0.286	87088	20.08	0.07520	0.66	1.850	1.06	0.1784	0.75	0.70	1074	26	1058	15	1063	14	1.45
PB2A	0.287	125295	35.33	0.07492	0.62	1.721	1.00	0.1666	0.69	0.69	1066	25	993	13	1016	13	6.88
PB2A	0.285	107745	12.59	0.07479	0.61	1.743	1.10	0.1690	0.83	0.76	1063	25	1007	15	1025	14	5.30
PB2A	0.286	61443	19.22	0.07416	0.62	1.761	1.07	0.1722	0.79	0.74	1046	25	1024	15	1031	14	2.04
PB2A	0.288	98955	12.02	0.07470	0.71	1.753	1.07	0.1702	0.71	0.67	1061	28	1013	13	1028	14	4.46
PB2A	0.283	89669	14.21	0.07427	0.81	1.696	1.28	0.1657	0.91	0.72	1049	33	988	17	1007	16	5.78
PB2A	0.283	83982	14.10	0.07453	0.84	1.771	1.21	0.1724	0.80	0.66	1056	34	1025	15	1035	16	2.90
PB2A	0.284	63896	18.19	0.07487	0.77	1.803	1.11	0.1746	0.70	0.64	1065	31	1037	14	1046	14	2.59
PB2A	0.285	107671	9.23	0.07483	0.89	1.722	1.38	0.1669	0.99	0.71	1064	36	995	18	1017	18	6.46
1.52.1																	
PB2B	0.228	103604	12.22	0.07496	0.54	1.830	0.88	0.1771	0.58	0.66	1068	22	1051	11	1056	12	1.55
PB2B	0.230	108420	11.88	0.07532	0.64	1.854	1.05	0.1785	0.75	0.71	1077	25	1059	15	1065	14	1.71
PB2B	0.235	121007	12.27	0.07558	0.50	1.826	0.91	0.1752	0.66	0.73	1084	20	1041	13	1055	12	4.00
PB2B	0.237	141446	9.28	0.07480	0.45	1.830	0.83	0.1774	0.59	0.71	1063	18	1053	11	1056	11	0.97
PB2B	0.236	150653	11.12	0.07481	0.41	1.823	0.76	0.1767	0.52	0.69	1063	16	1049	10	1054	10	1.37
PB2B	0.238	122865	12.92	0.07474	0.52	1.772	0.85	0.1719	0.56	0.66	1061	21	1023	11	1035	11	3.65
PB2B	0.238	97647	15.36	0.07440	0.53	1.783	0.87	0.1738	0.59	0.68	1052	21	1033	11	1039	11	1.82
PB2B	0.250	150836	10.59	0.07487	0.42	1.824	0.75	0.1767	0.50	0.66	1065	17	1049	10	1054	10	1.54
PB2B	0.253	156995	10.02	0.07446	0.50	1.818	0.84	0.1770	0.56	0.67	1054	20	1051	11	1052	11	0.30
PB2B	0.254	123809	13.74	0.07477	0.43	1.888	0.97	0.1831	0.79	0.81	1062	17	1084	16	1077	13	-2.03
PB2B	0.224	134540	12.61	0.07464	0.55	1.845	0.93	0.1792	0.65	0.70	1059	22	1063	13	1062	12	-0.38
PB2B	0.220	220702	40.93	0.07482	0.54	1.830	0.91	0.1774	0.63	0.69	1064	22	1053	12	1056	12	1.00
PB2B	0.224	146827	12.16	0.07497	0.47	1.764	0.86	0.1706	0.61	0.71	1068	19	1015	11	1032	11	4.88
PB2B	0.228	165161	9.40	0.07415	0.35	1.793	0.79	0.1754	0.60	0.76	1045	14	1042	12	1043	10	0.36
PB2B	0.230	139244	15.53	0.07503	0.49	1.818	0.85	0.1757	0.59	0.69	1069	20	1043	11	1052	11	2.43
PB2B	0.232	124686	14.20	0.07498	0.39	1.824	0.74	0.1764	0.51	0.68	1068	16	1047	10	1054	10	1.94
PB2B	0.231	149904	12.44	0.07509	0.48	1.766	0.80	0.1705	0.53	0.65	1071	19	1015	10	1033	10	5.20
PB2B	0.231	330197	54.39	0.07457	0.49	1.770	0.97	0.1721	0.74	0.77	1057	20	1024	14	1035	13	3.13

PB2B	0.231	128360	13.42	0.07493	0.51	1.768	0.82	0.1712	0.52	0.64	1067	20	1019	10	1034	11	4.52
PB2B	0.234	154101	10.55	0.07532	0.60	1.873	0.98	0.1803	0.69	0.70	1077	24	1069	14	1071	13	0.77
MCS1	0.259	161445	15.56	0.07469	0.54	1.806	0.96	0.1754	0.70	0.73	1060	22	1042	14	1048	12	1.74
MCS1	0.258	1030232	83.24	0.07457	0.46	1.785	0.80	0.1736	0.53	0.67	1057	19	1032	10	1040	10	2.37
MCS1	0.261	198400	13.44	0.07513	0.40	1.765	0.72	0.1704	0.47	0.65	1072	16	1014	9	1033	9	5.40
MCS1	0.261	206337	13.08	0.07472	0.45	1.828	0.77	0.1774	0.51	0.66	1061	18	1053	10	1056	10	0.75
MCS1	0.262	208367	13.18	0.07465	0.42	1.778	0.78	0.1727	0.54	0.69	1059	17	1027	10	1038	10	3.02
MCS1	0.267	151621	17.55	0.07471	0.43	1.843	0.85	0.1789	0.62	0.74	1061	17	1061	12	1061	11	-0.03
MCS1	0.268	222987	27.90	0.07502	0.46	1.816	0.76	0.1755	0.48	0.64	1069	18	1042	9	1051	10	2.49
MCS1	0.267	271569	15.56	0.07434	0.44	1.766	0.79	0.1723	0.55	0.69	1051	18	1025	10	1033	10	2.49
MCS1	0.270	216889	15.45	0.07463	0.41	1.862	0.73	0.1809	0.47	0.65	1059	16	1072	9	1068	10	-1.26
MCS1	0.287	95623	13.57	0.07466	0.67	1.742	1.04	0.1692	0.70	0.68	1059	27	1008	13	1024	13	4.86
MCS1	0.286	87088	20.08	0.07520	0.66	1.850	1.06	0.1784	0.75	0.70	1074	26	1058	15	1063	14	1.45
MCS1	0.287	125295	35.33	0.07492	0.62	1.721	1.00	0.1666	0.69	0.69	1066	25	993	13	1016	13	6.88
MCS1	0.285	107745	12.59	0.07479	0.61	1.743	1.10	0.1690	0.83	0.76	1063	25	1007	15	1025	14	5.30
MCS1	0.286	61443	19.22	0.07416	0.62	1.761	1.07	0.1722	0.79	0.74	1046	25	1024	15	1031	14	2.04
MCS1	0.288	98955	12.02	0.07470	0.71	1.753	1.07	0.1702	0.71	0.67	1061	28	1013	13	1028	14	4.46
MCS1	0.283	89669	14.21	0.07427	0.81	1.696	1.28	0.1657	0.91	0.72	1049	33	988	17	1007	16	5.78
MCS1	0.283	83982	14.10	0.07453	0.84	1.771	1.21	0.1724	0.80	0.66	1056	34	1025	15	1035	16	2.90
MCS1	0.284	63896	18.19	0.07487	0.77	1.803	1.11	0.1746	0.70	0.64	1065	31	1037	14	1046	14	2.59
MCS1	0.285	107671	9.23	0.07483	0.89	1.722	1.38	0.1669	0.99	0.71	1064	36	995	18	1017	18	6.46

ANEXO E – Parâmetros laboratoriais do LA-ICP-MS do Laboratório de Estudos Geodinâmicos, Geocronológicos e Ambientais da Universidade de Brasília

Labo	pratory and Sample Preparation
Laboratory name	Laboratório de Estudos Geodinâmicos, Geocronológicos e Ambientais, Instituto de Geociências, Universidade de Brasília (UnB)
Sample type/mineral	Zircon
Sample preparation	Conventional mineral separation, 0.5 cm resin mount, 1 μ m polish to finish
Imaging	BSE, SEM Quanta 450, 10 nA, 20kV, 13.8 mm working distance
	Laser ablation system
Make, Model and type	ESI/New Wave Research, UP-213, Nd:YAG
Ablation cell and volume	Low volume cell, ca. 4 cm ³
Laser wavelength (nm)	213 nm
Pulse width (ns)	3 ns
Fluence (J cm ⁻²)	3.0 - 3.5 J cm ⁻²
Repetition rate (Hz)	10 Hz
Spot size	25 um
Sampling mode / pattern	single spot analyses
Carrier gas	100% He, Ar make-up gas combined using a Y-piece along the sample transport line close to the torch
Pre-ablation laser warm-up	10 s
(background collection)	
Ablation duration (s)	40 s
Wash-out delay	20 s
Ablation pit depth / ablation rate	~10 um nit denth
Cell carrier gas flow (1 min ⁻¹)	$0.40 \mathrm{Imin^{-1}He}$
Make Model and type	Thermo-Fischer Nentune MC-ICP-MS
Sample introduction	Ablation aerosol
BE power (W)	1050 W
Sample gas flow $(I \min^{-1})$	0.966 L min ⁻¹
Detection system	Mixed Faraday cups and multiple ion counting (MIC) array
Masses measured	Earaday 232 Th 238 L and 206 Ph: MIC 202 Hg 204 Ph 207 Ph and 208 Ph
Integration time per peak/dwell times	4ΝΙΔ
(ms): quadrupole settling time	πιν
between mass jumps	
Total integration time per output data point (s)	1.049 s
Dead time (ns)	#N.A.
	Data Processing
Gas blank	20 s
Calibration strategy	GJ1 used as primary reference material, 91500 used as
	secondary/validation
Reference Material info	GJ1 (Jackson <i>et al.</i> 2004, Horstwood <i>et al.</i> 2016) 91500 (Wiedenbeck <i>et al.</i> 1995)
Data processing package used /	Inlite v 4.0 (Paton et al. 2011) & VizualAce (Patrus and Kambor
Correction for LIEF	2012) using exponential plus linear modelling for LIEF correction
Mass discrimination	ratios normalized to reference material GJ1
Common-Pb correction, composition and uncertainty	none
Uncertainty level and propagation	Ages are quoted at 2s absolute, propagation is by quadratic addition. Excess variance and age uncertainty of reference material are propagated where appropriate.
Quality control / Validation	91500 – Concordia age = 1063 ± 6 (2s, MSWDc+e = 0.36, n = 24) Systematic uncertainty for propagation is 1% (2s).

Data Filtering									
Discordance calculation	Older ages: Disc1 = (1-(206Pb/238U age/207Pb/206Pb age))*100								
	Younger ages: Disc2 = (1-(206Pb/238U age/207Pb/235U age))*100								
Best age	207Pb/206Pb ages (>1.5 Ma) and 206Pb/238U ages (<1.5 Ma) (Spencer et al. 2016)								