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Abstract

Fog Radio Access Networks (F-RANs) are the result of the application of fog paradigm
to cloud radio access networks, inheriting components and aspects from both. Artificial
Intelligence (AI) techniques can be applied to F-RANs to achieve enhanced energy effi-
ciency, increased throughput, and/or decreased processing power consumption. Nonethe-
less, to select an appropriated AI technique to apply, it is necessary to take into account
the different time granularities at which decision-making occurs in F-RANs. In the first
part of this work, the benefits and challenges of implementing an AI-driven F-RAN con-
sidering three time granularities (hours, minutes/seconds, and milliseconds) are discussed.
For each granularity, the key enabling AI techniques are highlighted, such as deep neural
networks, reinforcement learning based algorithms, adaptive online learning, and classi-
fiers. To enable integration between AI solutions from the same time granularity and from
different granularities, a multi-agent architecture for F-RANs is proposed. Furthermore,
a particular problem from the time granularity hours is explored. In this sense, oppor-
tunities for network operators to reduce their expenditures through optimal allocation of
virtual Base Band Units (vBBUs) in F-RANs are investigated. The optimal allocation
can generate additional revenue opportunities by leasing idle processing resources to Ap-
plication Service Providers. In particular, the challenge of improving vBBUs allocation
in terms of optimal assignment of the workloads of Remote Radio Heads (RRHs) to Mi-
cro Data Centers (MDCs) for cost minimisation is addressed, considering the trade-off
between MDC and RRH distance and processing power consumption. Thus, an opti-
misation model to decide the assignments between MDCs to RRHs is proposed. The
optimal solution is obtained through Binary Integer Linear Programming. The solution
is evaluated by applying a real Call Detail Record data set, assessing different regions
from Milan. K-means clustering was used to identify the Internet traffic behaviour of
different regions in Milan. The results highlight opportunities for network operators to
exploit their infrastructure usage and increase their gains.

Keywords: F-RAN, multiagent systems, time granularity, edge processing, vBBU allo-
cation, processing power allocation, Milano grid dataset.
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Resumo

Fog Radio Access Networks (F-RANs) são o resultado da aplicação de paradigmas de
fog/edge computing em cloud radio access networks, herdando componentes e aspectos de
ambos. As técnicas de Inteligência Artificial (IA) podem ser aplicadas às F-RANs para
obter maior eficiência energética, maior rendimento e/ou menor consumo de energia de
processamento, e melhor tomada de decisão em diferentes situações. No entanto, para
selecionar uma técnica apropriada de IA a ser aplicada, é necessário levar em consideração
as diferentes granularidades de tempo nas quais a tomada de decisão ocorre em F-RANs.
Na primeira parte deste trabalho são discutidos os benefícios e desafios da implementação
de uma F-RAN orientado a IA, considerando três granularidades de tempo. Para cada
granularidade, são destacadas as principais técnicas de aprendizado, como redes neurais
profundas, aprendizado de reforço, aprendizado on-line e classificadores. Para permitir a
integração entre soluções de IA, é proposta uma arquitetura multiagente para F-RANs.
Além disso, é explorado um problema específico a partir da granularidade de horas. Nesse
sentido, são investigadas oportunidades para as operadoras reduzirem seus gastos através
da alocação ideal de virtual Base Band Units (vBBUs). A alocação ideal pode gerar
oportunidades de receita adicionais, alugando recursos de processamento ocioso para Ap-
plication Service Providers (ASPs). Em particular, o desafio de melhorar a alocação de
vBBU em termos da atribuição ideal das cargas de trabalho entre Remote Radio Heads
(RRHs) e Micro Data Centers (MDCs), considerando o trade-off entre a distância entre
MDC e RRH e o consumo de poder de processamento. Assim, é proposto um modelo
de otimização para decidir as atribuições entre MDCs e RRHs. A solução ideal é obtida
por meio de Binary Integer Linear Programming. A solução é avaliada aplicando um
conjunto de dados Call Detail Records reais, simulando diferentes regiões de Milão. A
técnica de agrupamento k-means foi utilizada para identificar o comportamento do tráfego
de Internet em diferentes regiões de Milão. Os resultados destacam oportunidades para
as operadoras explorarem sua infraestrutura e aumentarem seus ganhos.

Palavras-chave: F-RAN, sistemas multiagentes, granularidade de tempo, alocação de
vBBUs, alocação de poder de processamento.
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Chapter 1

Introduction

The open interface used in Open Radio Access Networks (O-RANs) enables the pos-
sibility of any vendor’s software to work on any open radio unit, i.e., O-RAN aims to
define and build Radio Access Network (RAN) solutions using general purpose hardware
and software, disaggregating hardware and software. In this context, mobile operators
are able to virtualize and disaggregate their RAN with open interfaces, which opens more
options for network operators to optimize the deployment for different requirements with
a reduced associated cost. This characteristic enables operators to implement different
types of RANs according to their particular interests. From a practical aspect, the O-RAN
architecture is gaining momentum and can be the future of RANs, since it was designed
to flexibilize the deployment of RANs in a cost effective manner. Nonetheless, all in-
stances of O-RANs will involve some form of Cloud Radio Access Networks (C-RANs)
and/or Fog Radio Access Networks (F-RANs) [Singh et al., 2020], in which it is possible
to implement a C-RAN or an F-RAN in a O-RAN. In particular, the work presented in
this thesis employs an F-RAN architecture.

The virtualization and disaggregation of the RAN functions started with the C-RAN.
Through the Base-Band Unit (BBU) pool it was possible to centralize the workload
processing. A F-RAN is the result of the application of fog paradigm to a C-RAN
[Yousefpour et al., 2019]. In this sense, the F-RAN architecture can be viewed as a di-
rect evolution from C-RANs [Peng et al., 2016], seeking to achieve a balance between
centralization and distribution of computational resources. This type of network inherits
components and aspects from the C-RAN’s centralized architecture, such as the BBU
pool that processes the workload from geographically distributed RRHs, which, in turn,
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communicate with User Equipments (UEs). Following a fog paradigm, F-RAN distributes
core functions, such as computation, storage, communication, and control, extending the
processing to the network edge by using MDCs placed alongside the RAN, turning a typ-
ical RRH into a Fog-RRH. Figure 1.1 illustrates the architecture of an F-RAN. There
is an intersection between the RRHs and Fog-RRHs from the F-RAN and the central-
ized/decentralized units from the O-RAN (with a higher level of disaggegation). However,
different from C-RANs and F-RANs, O-RANs have open interface between MDCs and
RRHs.

Regardless the type of RAN architecture in use, it is noteworthy to mention that
Application Service Providers (ASPs) such as Google and Facebook are interested in pro-
visioning services in the cloud and also at the edge of the network, aiming to achieve
low latency and improve their users’ Quality of Service (QoS) [Chen et al., 2018a]. In
this sense, network operators are gradually migrating their infrastructure to this architec-
ture that incorporates the fog computing paradigm as a solution to decrease expenditures
[Habibi et al., 2019][Yousefpour et al., 2019]. Concomitantly, cellular networks increas-
ingly incorporate support for Artificial Intelligence (AI)-based network management and
control. It is possible, for example, to employ AI-enhanced applications to collect network
operation data and perform self-healing control using the analytics function capabilities
present in 5G and beyond (B5G) [3GPP, 2020].

In particular, F-RANs can optimize network performance dynamically by taking ad-
vantage of processing power near the edge when available. Dynamic decisions that require
up-to-date awareness of network conditions and resource availability result in several open
challenges, including decision-making regarding edge caching [Peng and Zhang, 2016], vir-
tual Base-Band Unit (vBBU) allocation [Yu et al., 2016], and power consumption min-
imization through resource management [Chien et al., 2019]. Moreover, F-RANs also
inherit many challenges that are present in C-RANs, including Central Processing Unit
(CPU) scheduling decisions [Wang et al., 2019], resource block allocation [Alqerm and Shihada, 2018],
and RRH-UE assignments [Imtiaz et al., 2018]. The F-RAN’s dynamism gives rise to
many of these challenges and requires adaptable and smart decisions, rather than ap-
proaches that are either hard coded in software or strictly based on utility function max-
imization. The use of AI shows great promise in dealing with these challenges.

There are some important works that highlight the use of Machine Learning (ML) in
F-RANs. Chien, Lai, and Chao [Chien et al., 2019] discuss time constraints related to
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ML approaches, including the difficulty of applying learning techniques to environments
with low latency requirements due to the complexity of the training process. Soliman and
Leon-Garcia [Soliman and Leon-Garcia, 2016] discuss how constraints regarding informa-
tion that all users must send to the scheduler in a time slot of one millisecond make the ap-
plication of sophisticated ML algorithms unfeasible. Hence, the authors propose a simple
learning approach to satisfy the time constraint. Nonetheless, the discussion regarding the
time constraints for decision-making in AI-driven RANs is not well explored in the litera-
ture, being mentioned only by [Chien et al., 2019] and [Soliman and Leon-Garcia, 2016].
One of the goals of this work is to fill this gap in the literature to foster the development
of novel and realistic solutions for AI-driven F-RANs.

Further, in RANs, the workload of RRHs is impacted by the density of UEs and
their demand, which changes frequently, potentially leaving MDCs/processing resources
unused [Tang et al., 2017]. Considering the combination of ASPs’ interests and the un-
derused resources left in F-RANs, an operator may exploit the opportunity to reduce
processing power in use and generate additional revenue by leasing idle processing to
ASPs, while minimising its own expenditures. To further explore this opportunity, it
is necessary to improve the efficiency of processing power utilization by optimising the
vBBU allocation in F-RANs. This work proposes and evaluates a mechanism to achieve
this goal.

Decisions regarding the allocation of vBBUs, i.e., virtual representations of BBUs
considering virtual machines or containers, impact the processing resource availability in
RANs [Aqeeli et al., 2018]. Note that efficient allocation of vBBUs may translate into
improved resource availability in F-RANs and, consequently, enhance the opportunity
for operators to generate revenue by leasing idle processing resources to ASPs. Given
that the computing resources in the BBU pool are limited and the efficiency of RANs
depends on the processing resources available in the BBU pool, the challenge is to find the
most effective way to allocate computational resources among MDCs [Aqeeli et al., 2018].
Moreover, the minimum computational resources required to process the workload of an
RRH is a function of its distance to the associated MDC, and this distance is a key factor
for processing power allocation [Marotta et al., 2018]. The ultimate goal is to achieve
optimality in vBBU allocation decisions, considering cost minimization and efficient usage
of computational resources.

Some aspects of the allocation of vBBUs to improve RAN performance and reduce
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operators’ expenditures have been investigated in the literature. For instance, Aryal and
Altmann [Aryal and Altmann, 2018] propose a solution that applies evolutionary com-
putation to make decisions regarding the placement of vBBUs to process the RRHs’
workload. Chien, Lai, and Chao [Chien et al., 2019] formulate the vBBU allocation as
an RRH workload assignment problem and propose a solution employing a deep Re-
current Neural Network (RNN) to decide how to allocate MDCs in the RAN. Xia et
al. [Xia et al., 2019] deal with vBBU allocation aiming to minimise the task execu-
tion and signal transmission delays by applying heuristic algorithms. Liu, Khoukhi, and
Hafid [Dongqing Liu et al., 2017] propose a solution based on game theory to make deci-
sions regarding data offloading for mobile cloud computing. Nonetheless, there is a gap
in dealing with allocation decisions in terms of operational expenditures minimization by
optimally decreasing the processing power in use through optimal assignment of RRHs’
workload. Moreover, there is a lack of a proper model to perform allocation decisions
considering the trade-off between processing power consumption and distance between
MDC and RRH, which is a key factor to determine how to allocate vBBUs and how to
assign RRHs’ workload to MDCs in F-RANs.

1.1 Research Study Design

Fundamental Question: How to design an intelligent decision-making system able to
address the challenges of F-RANs considering the distance between MDC and RRH as a

key factor?

Hypothesis: AI techniques must be applied in order to improve decision-making
considering the distance between MDC and RRH under different time constraints in

F-RANs.

The four research questions (RQ) associated with the hypothesis are defined and pre-
sented to guide the investigations conducted in this thesis:

• RQ1 - What are the main decisions to be taken in an AI-driven F-RAN considering
the different time granularities?

• RQ2 - How to integrate decision-making possibilities from different time granulari-
ties in an AI-driven F-RAN?
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• RQ3 - How to formalize decision-making in F-RAN considering vBBUs allocation,
the distance between MDC and RRH, and time constraints?

In this thesis, the relationship between ML approaches is discussed as well as the deci-
sions associated with different timescales in F-RANs, as depicted in Figure 1.2. To drive
the discussion, it is considered the F-RAN architecture proposed in [Peng et al., 2016]
(i.e., an F-RAN is composed of a BBU pool in the cloud and multiple RRHs and Fog-
RRHs) under three granularities: hours, minutes/seconds, and milliseconds.

In the scope of hours, decisions regarding optimal allocation of vBBUs can be ad-
dressed with training during runtime, for instance, with online clustering and neural net-
works [Yu et al., 2016]. Within the range of minutes/seconds, service placement, caching,
and routing decisions can be made through more sophisticated approaches, applying, for
example, contextual reinforcement learning [Chen et al., 2018a], deep reinforcement learn-
ing agents [Xu et al., 2017], and adaptive online learning [Jiang et al., 2019]. Decisions
that must be made in milliseconds, such as Modulation and Coding Scheme (MCS) pre-
diction for transmission power allocation, resource block scheduling, and CPU scheduling,
impose strict time constraints on the AI solutions that can be applied [Chien et al., 2019].
Moreover, this thesis examines how ML-based solutions can improve the performance of
F-RANs through resource management decisions made at different time constraints. This
discussion is fundamental to characterize the potential trade-offs between decision-making
approaches at different time granularities, which highlights future opportunities on AI-
driven F-RANs. Different from the aforementioned solutions, in which the applications is
confined to a single kind of decision within one time granularity, the proposed architec-
ture aims to provide an possible solution to implement the integration among decisions
from different time granularities while characterizing trade-offs between decision-making
possibilities.

Further, a case study from the time granularity of hours is presented. In particu-
lar, this work presents a solution for vBBU allocation in F-RANs through the optimal
assignment of RRHs’ workload for cost minimization, considering the relation between
processing power consumption and distance between MDCs and RRHs. The vBBU allo-
cation problem is formulated as an optimization problem in terms of decisions regarding
assignments of RRHs to MDCs. The objective function is defined in terms of the system’s
cost minimization, subject to allocation and assignment constraints. The optimization
problem is formulated as a Binary Integer Linear Programming (BILP), which minimises
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Figure 1.2: Decision-making in F-RAN, considered at different timescales.

the cost of vBBU allocation by optimally deciding the assignments of RRHs to MDCs
required to meet the RRHs’ workload demand, reducing operator’s expenditures and in-
creasing the processing resource availability in the F-RAN.

In this context, through simulations under different F-RAN scenarios, the solution’s
potential to achieve revenue gains to network operators considering the opportunity of
leasing unused processing resources to others is evaluated. As future work, the optimal
solution will be used to compare with other solutions using ML, which are currently under
development. The ML-based solution will be developed addressing the problem of efficient
resource allocation in F-RANs while considering the time constraints.
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1.2 Main Contributions

Throughout the development of this work, many contributions were developed in re-
gard to the state-of-the-art of AI in F-RANs. In short, the main contributions of this
work include:

1. A systematic investigation of the application of AI techniques in F-RANs and its
benefits, classified around three time granularities: hours, minutes/seconds, and
milliseconds.

2. A mapping between the time granularity at which resource management decisions
must be made in F-RANs and the most effective AI techniques that can be applied.

3. A multiagent-based architecture proposal for integration of AI solutions into F-RANs,
at different time granularities.

4. A model to formulate the problem of vBBU optimal allocation, a specific goal from
the time granularity of hours, as an RRH-MDC assignment problem for cost mini-
mization, considering the relation between processing power and distance between
MDCs and RRHs.

5. The evaluation of the potential operators’ expenditure gains in terms of minimal
processing power in use considering different scenarios and relying on real demand
data provided by an operator.

1.3 Document Outline

This document is organized as follows. The concepts of decision-making and time
granularities, presenting a literature review to describe each time granularity are presented
in Chapter 2. The time granularities of hours, minutes/seconds, and milliseconds as well
as the mapping between decision-making and AI techniques in F-RANs are presented. The
multiagent architecture proposal for AI-driven F-RANs, a possible solution for decision-
making integration among time granularities, is presented in Chapter 3. The description
of the use case considering a time granularity of hours, including the definition of the
system model, problem formulation, simulation results, and analysis are presented in
Chapter 4. Finally, the conclusions and future works are presented in Chapter 5.
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Chapter 2

AI-driven F-RANs Overview:
Decision-making, Time
Granularities, and ML techniques

This chapter presents the key concepts and a literature review related to AI in F-RANs,
aiming to characterize ML-based solutions for decision-making in the network. Based on
the literature review, a characterization and discussion regarding three time granularities
(hours, minutes/seconds, and milliseconds) are presented. The relationship between AI
approaches is discussed as well as the decisions associated with different timescales in
F-RANs. Further, a mapping between decision-making and AI techniques in F-RANs is
presented.

2.1 Decision-making in Hours

Decision-making that occurs on a timescale of hours/several minutes incorporates
elements from cloud and fog, as depicted in Figure 2.1. The BBU pool, RRHs, and
Fog-RRHs are the main components involved at this time granularity, and decisions as-
sociated with such resources can have significant impact on the RAN operation. For
instance, decisions regarding MDC and vBBU allocation will influence all the attached
communication, i.e., will impact all the assigned RRHs/Fog-RRHs and any other equip-
ment linked requiring reconfiguration and preparation according to different decision.
In this context, decisions will result in service migration, which is a task that can be
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set in the granularity of hours [Liu et al., 2018]. Considering such flexible time con-
straint, it is feasible to apply sophisticated ML techniques to improve the RAN’s opera-
tion [Yu et al., 2016] [Chien et al., 2019] [Aryal and Altmann, 2018]. We highlight three
relevant goals to guide the decision-making on a F-RAN on a timescale of hours: (i)
optimal allocation of MDCs; (ii) processing power minimization; and (iii) cost reduction
of vBBU allocation. For each goal, we present the main decision involved, ML techniques
that can be employed for decision-making, and the reason these techniques are suitable.
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Figure 2.1: F-RAN: resources and decision-making in hours.

2.1.1 Optimal allocation of MDCs

Optimal allocation of MDCs can reduce energy consumption and cost. Decisions con-
sist on selecting the minimal set of active MDCs in the BBU pool that meets the F-RAN
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processing demand. Considering the dynamic characteristics of processing demand in
F-RANs, accurate prediction of the processing power in use is a key factor to determine
the MDCs’ future loading. ML techniques capable of calculating regressions during run-
time assume an important role in this context, taking several minutes to hours of training.

Deep RNNs are widely used for performing predictions through regressions of time
series, which is directly applicable to demand prediction. Such techniques typically cannot
process very long sequences and require a prolonged training time. Nonetheless, for the
allocation of MDCs, in which the time interval for decision-making is large, the benefits
of neural networks outstrip their disadvantages. As an application example, Chien, Lai,
and Chao [Chien et al., 2019] presented an solution applying Long Short-Term Memory,
a deep RNN, to predict throughput and to allocate MDCs considering a scale of hours.

2.1.2 Processing Power Minimization

Minimizing the processing power in use enables MDCs and Fog-RRHs to direct spare
resources to serve new RANs or to be shared among operators. An F-RAN may serve
simultaneously urban, residential, and rural areas that present distinct processing demand
behavior. ML techniques able to detect and cluster the different patterns of demand can
be beneficial for load balancing and processing power allocation. In this context, clustering
and neural network techniques can process the data and make decisions that increase the
accuracy of workload predictions.

Although neural networks are able to learn an effective model based on the training
data and experience, the training process is costly and the number of parameters grows
as the number of layers and perceptrons increases. Nonetheless, this technique is suitable
for workload demand prediction in RANs, i.e., the benefits of such a technique outweigh
its disadvantages. For instance, Yu et al. [Yu et al., 2016] presented a solution applying
K-means and Multi-Layer Perceptron, examples of clustering and neural network respec-
tively, to detect specific demand patterns of each involved RAN and to minimize the
processing power constrained to a scale of hours.

2.1.3 Cost reduction of vBBU allocation

Cost reduction of vBBU allocation enables operators to decrease operational expen-
ditures in F-RANs. In this regard, decisions must be made to allocate the lowest cost set
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of vBBUs, by placing them in MDCs that are closer to the edge in Fog-RRHs or in the
distant cloud, to process the RRHs’ workload. Market and operational factors introduce
fluctuations in the price of processing resources. ML techniques able to search the space
of potential solutions can make decisions that consider these price fluctuations.

Evolutionary computation is suitable for this purpose, since it can exploit the search
space by generating a population of solutions and combining them to create more fitted
ones, aiming to achieve optimality. As a counterpoint, the task of setting suitable heuris-
tics and parameters (e.g., population and generation) is not trivial. As consequence, the
optimal solution may not be achieved at all times since the results of such techniques
depend on the proper algorithm settings. Regardless these limitations, genetic algorithms
can be successfully applied to decide how to allocate vBBUs in RANs. For instance, con-
strained to a timescale of hours, Aryal and Altmann [Aryal and Altmann, 2018] presented
valuable results by applying a genetic algorithm, an evolutionary computation approach,
to achieve better vBBU allocation while minimizing the costs of operation.

2.1.4 Considerations

Although ML techniques have been broadly applied in the context of RANs, there is
still the opportunity to improve the learning process on this timescale by incorporating the
output from finer-grained solutions. The different objectives involved in decision-making
by F-RANs on a timescale of hours are not mutually exclusive and can be employed to-
gether according to the interests of network operators. In this case, F-RANs must present
a flexible decision-making architecture capable of selecting and tailoring the AI techniques
according to the objectives that are of highest priority. A solution based on multiagent
systems enable the integration of different AI techniques in the same framework. To
achieve optimal allocation of MDCs, processing power minimization, and vBBU alloca-
tion for cost minimization, some agents can implement neural networks or evolutionary
algorithms, while others can apply meta-learning algorithms to decide which learning
technique to use according to the current scenario, historical data, and the operators’
interests. Besides, there is still the opportunity to improve the learning process on this
timescale by incorporating the output from finer-grained solutions. More detail on the
multiagent architecture as well as the integration among granularities is provided in Sec-
tion 4.4. Next, some of the objectives and AI techniques that are relevant on a timescale
of minutes/seconds are discussed.
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2.2 Decision-making in Minutes/Seconds

Decision-making that occurs on a timescale of minutes/seconds involves resources
closer to the fog, such as Fog-RRHs, RRHs, and UEs, as depicted in Figure 2.2. De-
cisions regarding these resources must be made considering unexpected circumstances,
such as flash-crowd events, and content popularity variations according to time, space,
and context. Considering such dynamic situations, a granularity of hours is no longer
suitable for decision-making. In this scenario, ML techniques able to respond considering
a time constraint on the scale of minutes/seconds can be effectively applied to support
decision-making in RANs [Chen et al., 2018a] [Xu et al., 2017] [Jiang et al., 2019]. We fo-
cus on three germane objectives that affect decision-making in F-RANs at this timescale:
(i) optimal service placement at the edge; (ii) enhanced caching hit rate; and (iii) optimal
usage of RRHs/Fog-RRHs. For each of these objectives, we present the main decision and
the related ML techniques that are most suited for those decisions.
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Figure 2.2: F-RAN: resources and decision-making in minutes/seconds.
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2.2.1 Optimal service placement at the edge

Optimal service placement is an important goal for ASPs aiming to reduce service
deployment costs and improve users’ long-term satisfaction. To this end, an ASP must
select the optimal set of Fog-RRHs required to deploy services at the edge, considering its
limited budget. Nonetheless, Fog-RRHs’ resource availability (e.g., processing, memory,
and storage) is always in flux and, concomitantly, UEs’ contextual information (e.g.,
connected RRH/Fog-RRH and content demand) also varies significantly on a timescale of
minutes. Consequently, ASPs have to adapt their decisions to these scenario dynamics.
ML techniques that are able to cross-reference contextual data, resource availability, and
ASPs’ interests, generating and updating their own model during runtime without several
minutes of training, are well suited to this problem.

Contextual reinforcement learning algorithms are widely employed in recommendation
systems to process different sources to maximize the average reward of a given objective.
Such techniques are able to detect errors and make corrections during the learning process,
which makes it highly suitable for environments where the data is constantly gathered.
Potential disadvantages of a contextual reinforcement learning algorithm include: the
difficulty to set a proper reward function for the algorithm and it requires constant com-
putation and data acquisition. Nevertheless, Chen et al. [Chen et al., 2018a] implemented
a solution using Bandit Learning, a context reinforcement learning algorithm, based on
user feedback for optimal selection of Fog-RRHs in the range of minutes.

2.2.2 Enhanced Caching Hit Rate

Enhancing the caching hit rate in F-RANs can improve network latency and content
acquisition time. The challenge is to decide whether to cache a content, via prediction
of its popularity. Content popularity varies in space and time, so an accurate prediction
considering these two variables is key. ML techniques that can learn and make predictions
during runtime are appropriate for improving cache hit rate through caching policy up-
dates in the F-RAN. In this context, adaptive online learning algorithms that also create
their model during runtime but aiming for long-term optimality can be exploited.

Online learning algorithms are able to generate sparser solutions and the model can be
efficiently updated during runtime, which makes it highly suitable for large-scale learn-
ing tasks with real data. When compared with offline approaches, online learning has
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an important role in this context because it is able to track the environment changes in
real time. However, it is difficult to evaluate the model and it is not trivial to achieve
the correct behaviour automatically. Even considering such limitations, online learn algo-
rithms can be effectively used to predict content popularity. As presented by Jiang et al.
[Jiang et al., 2019], asymptotically optimal performance is achieved by employing Follow-
The-Regularized-Leader (a novel optimization algorithm for training deep networks) to
predict and track local popularity during runtime, and to update the caching policy within
minutes, thus improving the caching hit rate in F-RANs.

2.2.3 Optimal usage of RRHs/Fog-RRHs

Optimal usage of RRHs/Fog-RRHs refers to the selection of the minimal set of active
RRHs to serve UEs, meeting their throughput demand. UEs’ requests vary significantly
within a time interval of minutes or less. Consequently, a solution able to adapt promptly
in consonance with this variation is necessary. For instance, reinforcement learning tech-
niques are applied in many domains in which a system interacts with a dynamic environ-
ment and learns during runtime constrained to seconds.

Deep reinforcement learning is able to scale highly complex problems by automatically
reducing and tuning features direct from inputs in runtime. Such a technique is able to
estimate the possible states instead of computing every solution and, consequently, the
solution space is pared down during the decision process. The limitation of this technique
is that it requires a lot of data and computation in other to achieve effective results,
i.e., it will not perform well if there is few data. Nonetheless, the advantages outstrip the
disadvantages when applied in the context of usage of RRHs/Fog-RRHs. For instance, Xu
et al. [Xu et al., 2017] show that a deep reinforcement learning agent can be effectively
applied to select the minimal set of active RRHs according to user requests and varying
scenario dynamics considering a timescale of seconds.

2.2.4 Considerations

It is noteworthy that the varying behavior of F-RANs hinders the usage of techniques
based on recurrent offline training, since the information cannot be well represented by
historical data. Even with this limitation, there is still the opportunity to integrate dif-
ferent AI techniques at this time granularity using a multiagent architecture, given that
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the presented objectives are not mutually exclusive. Similarly to the timescale of hours,
the objectives can be divided among several agents implementing different AI algorithms.
As an example, some agents implement reinforcement learning-based algorithms for opti-
mal usage of RRHs/Fog-RRHs while others implement adaptive learning algorithms for
content popularity prediction to enhance caching hit rate. More detail on multiagent
architecture is presented in Section 4.4. The next sections presents the main objectives
and AI techniques considering a timescale of milliseconds.

2.3 Decision-making in Milliseconds

Decision-making that occurs in milliseconds is directly related to the physical layer,
involving spectrum and processing resources, including transmission and processing power
and resource blocks, as depicted in Figure 2.3. Decisions regarding these resources
must consider the high variability of channel conditions caused by interference, noise,
and UE mobility. In this context, decisions regarding such low level resources must be
made on the scale of milliseconds or even on a shorter timescale (i.e., micro or nanosec-
onds) [Larsen et al., 2019]. However, ML techniques can be effectively exploited to as-
sist decisions constrained to milliseconds [Wang et al., 2019] [Alqerm and Shihada, 2018]
[Imtiaz et al., 2018]. For decisions within a granularity smaller than milliseconds (e.g.,
nanoseconds), it is not practical to implement an ML solution since it will be restrained
to quasi-statistical solutions with drastic computing limitations, approaching the proces-
sor’s cycle time. In particular, we highlight three relevant goals for decision-making at
this timescale: (i) optimal spectrum resource allocation; (ii) enhanced CPU scheduling;
and (iii) optimal RRHs-UEs assignment. Considering each of these objectives, we present
the main decision and the related ML techniques that are suitable for those decisions.

2.3.1 Optimal spectrum resource allocation

Optimal spectrum resource allocation impacts the F-RANs’ energy consumption and
spectral efficiency. In this context, the decision is made concerning resource blocks and
transmission power allocated for communications between RRHs and UEs, considering
QoS requirements. Since F-RANs must employ spectrum reuse in a dense scenario, ap-
propriate resource block and transmission power allocation is needed to avoid inter-tier
interference between RRHs/Fog-RRHs. An ML technique capable of acquiring current
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state information to quickly assign the available resource blocks and adjust the transmis-
sion power to minimize interference is required.

Quasi-statistical model-free reinforcement learning algorithms are widely used to han-
dle problems with stochastic transitions and rewards. A model-free algorithm that can
learn without using the current policy nor accurate representation of the environment is
suitable for problems where a model of the environment is not available, which is the case
here. Additionally, when compared with other learning techniques (such as presented in
Sections 2.1 and 2.2), this type of algorithm is considerably less complex in computation
and in space. Nonetheless, since there is no defined model, previous experience is required
to perform the training task. Alqerm and Shihada [Alqerm and Shihada, 2018] show that
a Q-learning agent, a model-free learning approach, is suitable to perform joint allocation
of resource blocks and transmission power while mitigating interference and maintaining
QoS even with a strict time constraint.

2.3.2 Enhanced CPU scheduling

Enhanced CPU scheduling brings throughput improvements, while tailoring the pro-
cessing resources to UEs’ QoS requirements in F-RANs. Decisions regarding Fog-RRHs’
CPUs scheduling may consider the application’s delay budget, packet inter-arrival time,
and packet length. In this context, ML classifiers that train a model beforehand without
online updates are suitable to distinguish between different types of traffic, identifying
their patterns in milliseconds. It is worth mentioning that the internal CPU opera-
tion (e.g., cache coherence protocols and acceleration features) depends on its specific
design/architecture. In particular, the Intel Atom P5900, a 5G chip, is equipped with a
hardware-based network acceleration feature for integrated packet processing and a switch
for inline cryptographic acceleration. From the perspective of scheduling algorithms devel-
opment, a higher level context, such specific characteristics can be abstracted or included
as parameters.

Support Vector Machines, a broadly applied ML classifier, is effective in high dimen-
sional spaces and suitable for unstructured/semi-structured data. Although it is success-
fully applied in many domains, it is important to mention that such a technique is not
suitable for large and noisy datasets. However, for the task of discriminating between
different types of traffic, this technique shows great promise. As an example, constrained
to a scale of milliseconds, Wang et al. [Wang et al., 2019] report throughput improve-
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ments by applying Support Vector Machines to classify the traffic and adapt the CPU
scheduling decisions based on the traffic classification and its QoS requirements, as well
as the baseband signal processing load.

2.3.3 Optimal RRH-UE assignments

Optimal RRH-UE assignments can reduce the signaling overhead in F-RANs. Deci-
sions are made regarding the best set of assignments among RRHs and UEs to perform
communication without interfering with parallel transmissions. F-RANs are employed
in very dense scenarios with high interference, resulting in frequent changes in channel
state between RRHs and UEs and requiring frequent Channel Quality Indicator (CQI)
transmissions. Considering that the primary use of CQIs is to determine the appropriate
MCS, ML techniques bring the opportunity to assign RRHs to UEs while predicting the
appropriate MCS. ML classifiers with an offline model trained are able to quickly predict
MCS based on knowledge about UEs’ positions, and past transmission beam, to assign
RRHs to UEs, reducing signaling overhead.

The Random Forests algorithm, a supervised ML classifier, is able to create models
based on few samples and deal well with missing data and unbalanced datasets. Nonethe-
less, the control on what the model does is highly limited (black box), turning difficult to
improve the performance of the model. This disadvantage must be considered since such
technique has a penchant towards over-fit. Additionally, it can consume a lot of memory
(complex in space). Even so, it is possible to get valuable results for MCS classification.
Imtiaz et al. [Imtiaz et al., 2018] proposed an solution based on Random Forests to im-
prove resource allocation based on MCS prediction using UE’s information on a scale of
milliseconds.

2.3.4 Considerations

It is worth mentioning that, because the training task is performed beforehand, all
ML classifiers highlighted above can be used on a timescale of milliseconds. Since the
predictions are limited to well-defined categories (e.g., traffic type and MCS indices), the
recent data does not necessarily have a considerable impact on the classifier model, and
an effective model can be achieved using labeled historical data. Again, there is the op-
portunity to adopt a multiagent architecture consisting of several agents using distinct
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AI techniques. For instance, two agents with the same goal (e.g., traffic classification)
can achieve it by applying different algorithms, such as Boosted Trees and Naive Bayes.
Furthermore, since this time granularity imposes a strong time constraint, heuristic ap-
proaches may become necessary. Thus, a multiagent solution can merge AI techniques
and statistical/pure heuristic approaches. Lastly, agents from all the timescales can be
integrated into one multiagent architecture. The discussion of such an architecture is
presented in Chapter 3.
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Figure 2.3: F-RAN: resources and decision-making in milliseconds.

2.4 Mapping Between Decision-Making and AI tech-

niques in F-RANs

The discussion presented in Sections 2.1, 2.2, and 2.3 is the result of an extensive
investigation of the literature, starting from over 100 articles (from 2016 to 2019), which
we filtered down to 30 that specifically dealt with automated solutions for resource man-
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agement in RANs. From those, we selected the three most relevant works for each time
granularity. Publications highlighted in the previous sections are presented in Tables 2.1,
2.2, and 2.3, presenting a mapping between decision-making, and suitable ML technique
for each time granularity. Moreover, these tables summarize the benefits that ML-based
solutions bring to RAN operation and the advantages/disadvantages of each technique.
Notice that all solutions were able to bring considerable benefits to RANs’ performance
despite their disadvantages. The complete list of selected articles is summarized in Ta-
bles 2.4 (references from 2016 to 2018) and 2.5 (references from 2019).

In Tables 2.1 to 2.3, the main benefits that ML solutions bring to RAN operation as
well as the main advantages and disadvantages of each technique are summarized. At
the granularity of hours, the main disadvantage of the techniques is the complexity of the
training process. However, considering that there is a wide time window for the decision-
making process, this disadvantage is compensated by their effectiveness in making high
quality prediction. At the granularity of minutes/seconds, the main limitation of the
techniques is the requirement of a large amount of data and, sometimes, constant com-
putation/data acquisition. Nonetheless, such advantages are addressed by the plethora
of information from RRHs and Fog-RRHs that are constantly gathered. For the three
main goals from this granularity, the data from RRHs and Fog-RRHs are being collected
constantly and, consequently, there is a plethora of data to be used in the training pro-
cess. Therefore, considering the quantity of data available and the common advantage of
updating and make corrections during run-time, the demand for data is not a great limi-
tation to be considered in such context. Considering the time granularity of milliseconds,
the main limitation is the lack of available time and, consequently, training models in real
time is not practical. In this sense, this granularity overcome such limitation by applying
quasi-statistical techniques or previous trained models. Nonetheless, considering the ML
classifiers applied in the decision-making in milliseconds, the main limitations are the lack
of performance dealing with large and noisy datasets and their complexity. Further, the
complexity of training and model configuration is not a great problem considering that
the model is going to be trained beforehand, i.e., the solution will only apply a previous
trained model.

Based on the investigation performed, it is possible to conclude that AI solutions
have the capabilities to enhance the performance of F-RAN as long as time constraints
are met. Moreover, there is an opportunity to integrate different solutions horizontally
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Table 2.1: Highlighted works for decision-making on a timescale of hours/several minutes
Reference Decisions Techniques Benefits Advantages Disadvantages

[Chien et al., 2019]
Optimal
allocation of
MDCs

Long-short
term memory
(recurrent
neural net-
work)

Energy con-
sumption
minimization
and cost
reduction

Can remember
the informa-
tion through
time, which
turns it a lot
suitable for
time series
prediction

Can not pro-
cess very long
sequences;
training
process is
complex

[Yu et al., 2016]

Cloud
workload
prediction for
optimal vBBU
allocation

Multi-layer
perceptron
(neural net-
work) and
k-means
clustering

Processing
power mini-
mization

Can learn
how to act
based on
the training
data and
experience;
highly suitable
for regression
tasks

The number
of parameters
grows quickly;
training
process is
complex

[Aryal and Altmann, 2018]
Allocate the
lowest cost set
of vBBUs

Genetic algo-
rithm

Reduced
RAN’s op-
erational
expenditures

Can generate
many different
solutions in
considerably
short time of
computation

Difficult to
set a proper
heuristic and
parameters; it
do not reach
the optimal
solution at all
times

(solutions from the same time granularity) and vertically (solutions from different time
granularities), which will be discussed in Chapter 3. Although several works have proposed
valuable ML-based solutions in RANs, there is still opportunities on integrating different
solutions, which are not discussed in any of these works. The next chapter presents the
opportunities as well as the related challenges of integrating different solutions.
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Table 2.2: Highlighted works for decision-making on a timescale of minutes/seconds
Reference Decisions Techniques Benefits Advantages Disadvantages

[Chen et al., 2018a]

Select the
optimal set of
Fog-RRHs to
be rented to
deploy services
at the edge

Bandit
learning
(reinforcement
learning)

Optimal
service
placement;
deployment
costs reduc-
tion while
attending QoS
demand

Can detect
errors and
make correc-
tions during
the training
process;
suitable for
environments
where the data
is constantly
gathered

Hard to define
the reward
function;
requires
constant
computation
and data
acquisition

[Jiang et al., 2019]

Decide
whether
or not to
cache specific
content via
prediction of
its popularity
in Fog-RRHs

Follow the
(proximally)
regularized
leader (adap-
tive online
learning)

Enhanced
caching hit
rate

Generates
sparse so-
lutions;
converges fast;
the model can
be efficiently
updated dur-
ing runtime

Difficult to
evaluate; hard
to achieve
the correct
behaviour
automatically

[Xu et al., 2017]

Select minimal
set of active
RRHs/Fog-
RRHs that
meets UE
requests in
terms of
throughput

Deep rein-
forcement
learning

Energy con-
sumption
minimization

Can reduce
the complexity
of the solution,
enabling to
scale complex
problems;
features are
automatically
deduced and
optimally
tuned

Requires a lot
of data and
computation
to overcome
other tech-
niques (even
more than
pure reinforce-
ment learning
algorithms)

Table 2.3: Highlighted works for decision-making on a timescale of milliseconds
Reference Decisions Techniques Benefits Advantages Disadvantages

[Alqerm and Shihada, 2018]

Resource
blocks and
transmission
power alloca-
tion

Q-learning

Enhanced
spectral effi-
ciency while
mitigating in-
terference and
maintaining
QoS

Can learn
without an
accurate
representa-
tion of the
environment;
less complex
in computa-
tion/space

Experience is
required for
training task;
it does not
how the dy-
namics of the
environment
affects the
system

[Wang et al., 2019]

CPU schedul-
ing based on
the traffic
classification

Support vec-
tor machines

Throughput
improvements
while meeting
UE’ QoS
requirements

Effective in
high dimen-
sional spaces;
suitable for
unstructured
and semi-
structured
data

Not suitable
for large and
noisy datasets;
hard to select
the kernel
function and
tune the
parameters

[Imtiaz et al., 2018]

Select the
best set of
assignments
among RRHs
and UEs to
perform com-
munication
via MCS
prediction

Random
forests

Better spec-
trum resources
allocation;
CQI signaling
overhead
reduction

Can create
an effective
model with
few samples;
deal with
missing data
and unbal-
anced datasets

Limited
control on
what the
model does;
proclivity to-
wards over-fit;
complex in
space
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Table 2.4: Complete mapping of references from 2016 to 2018 considering decision-making
on a timescale of hours, seconds and milliseconds.
Reference Granularity Decisions Techniques

[Soliman and Leon-Garcia, 2016] Milliseconds Decide if an user should be
scheduled.

SVM and Decision Trees

[Xu et al., 2017] Seconds Select the minimal set of RRHs
to be turned off while meeting
UEs’ demand.

Deep Reinforcement Learning
(DRL) agent

[Nakayama et al., 2017] Seconds Traffic routing selection. Markov Chain Monte Carlo Ma-
chine Learning (MCMC-ML)

[Shahriari et al., 2017] Seconds Proactive caching Reinforcement Learning Agent

[Chen et al., 2017] Minutes Predict the distribution of re-
quirements and decide contents
to store.

Machine learning tools of Echo
State Networks and sublinear
algorithms

[Tinini et al., 2017] Hours Proccess scheduling between
nodes.

Integer Linear Programming

[Huang et al., 2017] Seconds Infer the terminal (UE) type
and effectively decide to allocate
training tasks.

Support Vector Machines

[Zhang et al., 2017] Hours Minimize total amount of com-
puting resources and load bal-
ancing

Genetic Algorithm

[Alqerm and Shihada, 2018] Milliseconds Decide spectral resource alloca-
tion according to user prefer-
ences

Q-Learning Agent

[Imtiaz et al., 2018] Milliseconds Select the best set of assign-
ments among RRH and UE
to perform communication via
MCS prediction.

Random Forests

[Sun et al., 2018] Seconds Select and allocate resources for
potential pairs of D2D users in
the RAN.

Reinforcement Learning

[Chen et al., 2018a] Minutes Select the optimal set of Fog-
RRHs to be rented to deploy
services at the edge.

Bandit Learning (Reinforce-
ment Learning)

[Balevi and Gitlin, 2018] Hours Determine the position of Fog-
RRHs in order to maximize the
throughput.

Clustering - distance-based K-
means

[Du and Nakao, 2018] Milliseconds Classify the uplink/downlink
packets using information about
the aplication.

Deep Learning

[Chen et al., 2018b] Seconds Decides to offload the compu-
tation or decide to compute lo-
cally.

Deep Reinforcement Learning
(DRL)

[Zhou et al., 2018] Minutes Proactive caching based on the
previous uses’ requisitions and
preferences.

Deep Reinforcement Learning
(DRL)

[Rahman et al., 2018] Minutes Decide the number of tasks to
compute in the edge or in the
cloud processors.

Heuristics

[Yan et al., 2018] Minutes Select which algorithm to apply
for resource allocation

Heuristics
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Table 2.5: Complete mapping of references from 2019 considering decision-making on a
timescale of hours, seconds and milliseconds.
Reference Granularity Decisions Techniques

[Jiang et al., 2019] Minutes Proactive caching FTRL-Proximal

[Sun et al., 2019a] Hours Minimize the number of active
RRHs to minimize the energy con-
sumption.

Relational Reinforcement Learn-
ing, Online K-Means Clustering

[Chien et al., 2019] Hours Optimal allocation of MDCs by
predicting the future throughput
and decide to turn off an BBU pool
or load balancing.

Long Short-Term Memory
(LSTM), Genetic Algorithm

[Sun et al., 2019b] Minutes Decide the UE modes (D2D or
RAN). Decide processors’ on/off
states.

Deep Reinforcement Learning

[Gao et al., 2019] Seconds Positioning of BBUs Path selection. Deep Reinforcement Learning
(DRL)

[Lu et al., 2019] Minutes Find the optimal cache policy. Q-Learning with value function ap-
proximation (Q-VFA-learning)

[Girgis et al., 2019] Minutes Proactive caching. Statistical approach.

[Moon et al., 2019] Minutes Adaptive selection of backhaul and
fronthaul transfer modes.

Online Reinforcement Learning

[Jiang et al., 2019] Minutes Content popularity prediction in
order to decide to cache a content.

Deep Q-Learning

[Mao and Yan, 2019] Milliseconds Channel estimation. Deep Learning

[Nassar and Yilmaz, 2019] Minutes Decide to serve an user locally or to
refer it to the cloud.

Markov Decision Process with Re-
inforcement Learning
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Chapter 3

Multiagent Architecture for
AI-driven F-RANs

In this chapter, a proposal of a multiagent architecture integrating AI techniques at
different time granularities to improve performance in F-RANs is presented. Section 3.1
introduces the multiagent architecture, presenting, for each time granularity, the impacts
of the decision-making considering horizontal (at the same granularity) and vertical (at
different time granularities) communication/integration. Section 3.2 discuss a communi-
cation and interaction protocol for the multiagent system.

3.1 Multiagent Architecture Proposal

A multiagent architecture can be designed to integrate AI techniques for multi-level
decision-making F-RANs, as depicted in Figure 3.1. The proposed architecture comprises
nine different types of intelligent agents within three time granularity layers: hours, min-
utes/seconds, and milliseconds. Each time granularity has three types of agents. The
hours layer is composed of cloud managers, vBBU manager, and meta-learner. The min-
utes/seconds layer is composed of fog manager, QoS manager, and context manager. The
milliseconds layer is composed of RRH-UE manager, CPU scheduling, and spectrum re-
sources manager. Furthermore, there is a shared Knowledge Base (KB) in each layer
to store all the information gathered from the environment as well as data regarding
resources and decision-making on each timescale. Next, the architecture is described,
considering the agents’ behavior and capabilities.

25



3.1.1 Top Layer: Hours Granularity

In the top layer (hours), the cloud managers are responsible to allocate MDCs, select-
ing the optimal set of active MDCs. The vBBU manager is responsible for cost reduction
in vBBU allocation, considering the distance between MDCs and RRHs. Both agents
communicate with the meta-learner, which is responsible for selecting the most suitable
AI technique to apply according to the current scenario. Therefore, the meta-learner does
not act directly into the F-RAN environment but systematically observes the performance
of different AI techniques in use at this layer to decide which one to apply. Although this
kind of AI technique is promising for decision-making improvements, it is not feasible to
be applied at finer time granularities, presenting a special opportunity on the timescale
of hours.
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Figure 3.1: Multiagent architecture proposal for AI-driven F-RAN
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In this layer, cloud and vBBU managers present different goals that may conflict due
to the allocation trade-off regarding distance, cost, and number of cores in use, such as
investigated in a previous work [Marotta et al., 2018], being depicted in Figure 3.2. To
avoid such conflicts, agents must communicate with each other to arrive at a joint decision.
The joint decision comprises vBBU allocation and migration operations, guided by the
operator’s business model. This business model can be represented as a utility function
or weighted objective sum, to balance the interests of the operator aiming for equilibrium,
at the intersection of the two curves in Figure 3.2. The two curves illustrate the influence
of distance between RRH and MDC on the minimal number of processing cores allocated
and the processing cost per hour, illustrating an important trade-off for F-RAN. Notice
that these results consider the processing of seven iterations of a Forward Error Correction
(FEC) decoder, an RRH with fixed upstream data rate of 10Mb/s, an MDC comprised of
processors with an efficiency of 8 operations per cycle and 3.4 GHz per core, and allocation
price of $0.0425/hour/core as defined by Amazon [Amazon Web Services, 2019].

Figure 3.2: Relation betwenn distance between RRH and MDC on the minimal number
of processing cores allocated and the processing cost per hour.

Further, all the mentioned agents are able to access the hours and minutes/seconds
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KB to get data from both timescales, enabling horizontal and vertical integration. As an
example of the potential of using data from another timescale, let us consider the situation
of flash crowd events, such as a concert. While the occurrence and duration of such events
is on a timescale of hours, once the event starts, further fine grained resource allocation
decisions must be made on a timescale of minutes. In this case, the agents can get
information from the minutes/seconds knowledge base for these finer-grained decisions.

3.1.2 Middle Layer: Minutes/Seconds Granularity

In the middle layer (minutes/seconds), the fog manager implements an AI technique
able to select the minimal set of active RRHs to serve a certain area. The QoS manager
is in charge of selecting MDCs and Fog-RRHs for ASPs to deploy their services, as well
as of updating caching policies during run-time. These two agents require different pa-
rameters for decision-making, such as content popularity, UEs’ information, and resource
availability. Considering these parameters, the context manager is in charge of monitoring
the scenario dynamics in terms of content, demand/popularity, and Fog-RRHs resource
usage. More than a simple monitor, this agent’s goal is to create predictions of content
popularity, using adaptive online learning, and track contextual data, such as user mobil-
ity and positioning. Although this agent does not interact directly with F-RAN, it acts
as an assistant to other agents from the same layer, enabling horizontal integration.

In this layer, the fog manager and the QoS manager goals may conflict. The fog man-
ager may decide to turn off one or more RRHs that are near MDCs, which were selected
by the QoSs manager to deploy the ASP’s local services for their users. Communications
between both agents enable system adaptation to arrive at a shared decision according to
operators’ interests, enabling a trade-off between decreasing energy consumption costs or
increasing revenue through MDCs service hosting. For example, a Foundation for Intel-
ligent Physical Agents (FIPA) Contract Net Interaction Protocol1 may be settled during
runtime by adjusting the price for service deployment to cover the energy costs related to
sustain an RRH turned on.

The fog manager is also able to access the KB from the layer of milliseconds, which
has information regarding traffic type classification and can enable vertical integration
between these two timescales. This agent is able to access the KB from the layer of
milliseconds, which has information regarding traffic type classification and can enable

1Available in http://www.fipa.org/specs/fipa00029/SC00029H.html, last accessed on 01-18-2020.
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vertical integration between these two timescales. As an example, consider that the
context manager can get data regarding traffic type classification from the bottom layer’s
KB and use that information to improve its contextual data about the scenario in which it
operates. Therefore, traffic classification assists both the context manager in monitoring
the environment and, consequently, the QoS manager for decision-making regarding local
service placement. For instance, if there is a location with high traffic for a specific kind of
content, such as streaming, the QoSs manager may adapt its decision to deploy streaming
services at MDCs from this location.

3.1.3 Bottom Layer: Milliseconds Granularity

In the bottom layer (milliseconds), the spectral resources manager is in charge of
performing joint allocation of resource blocks and transmission power. The RRH-UE
manager decides the assignment of RRHs and UEs based on MCS prediction. The CPU
scheduling agent’s goal is to classify the type of traffic to make scheduling decisions that
increase overall throughput. Considering the limited time available for decision-making,
all these agents can access only KB from the layer of milliseconds (e.g., a shared memory
or storage from an MDC).

In this layer, the RRH-UE manager and spectral resources manager share a trade-off
in common regarding resource block allocation, enhanced channel capacity, and number
of served UEs. Spectrum is a finite resource, sometimes requiring decisions of whether to
serve a new UE or to provide enhanced channel capacity to already connected ones. At
least one of the agents must receive information from the other to reach a shared decision
regarding the resource block assignment and UEs being served. The shared decision must
be ranked according to a performance objective (e.g., the highest overall throughput or
the fairest scheduling). Since communications between agents at this time granularity
is not feasible, they must store their outcome in KBs (blackboard protocol). One of
the agents can use the output of the other, readjusting its objective to aim for the best
outcome.

The strong time constraint of a few milliseconds prevents any direct interaction be-
tween the agents at this granularity and the higher ones. In this sense, only indirect
interactions are available, considering higher time granularity outcomes as information
stored in the shared KB. For instance, let us assume that a fog manager from the min-
utes/seconds granularity determines the shutdown of an RRH. For the RRH-UE manager
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at the milliseconds granularity, it will be considered a scenario parameter gathered from
the milliseconds KB that will prevent the association with that RRH, when executing the
Q-learning algorithm.

3.2 Communication and Interaction Protocol

To communicate, exchange, and understand messages in a multiagent environment,
agents use a common set of terms through an Agent Communication Language (ACL),
the standard language proposed by the FIPA, or other languages such as the knowledge
query and manipulations language (KQML), knowledge interchange format (KIF), or
more formal specifications such as ontologies. Considering the architecture presented in
Figure 3.1, horizontal exchange of messages is accomplished by using FIPA ACL to inform
and request basic performatives within the three layers. For example, in the hours layer,
an inform performative with the statement content exchanged between the cloud manager
and the vBBU manager is used to share information regarding the set of active MDCs.
The vertical integration is accomplished through the stored agents’ decisions/predictions
at the shared KB from each layer.

An interaction protocol must be used for the structured exchange of messages be-
tween agents. Autonomous agents can have conflicting goals or simply be self-interested.
In this case, utility functions are used to maximize payoff, e.g., vBBU allocation and
migration operations. In other instances, agents can have similar goals, so the objective
is to maintain globally coherent performance without violating the autonomous behavior
of agents, by determining shared goals and common tasks, avoiding unnecessary conflict,
and pooling knowledge and evidence. For instance, the context manager sends contextual
information and content popularity predictions to assist the decision-making of the QoS
manager. There are many interaction protocols used in multiagent systems, including
coordination, cooperation, contract net, and negotiation.

Considering the contract net protocol, a widely applied task-sharing approach, there
are five stages: recognition, announcement, bidding, awarding, and expediting. Suppose
there are two agents that cannot achieve the goal in isolation (e.g., typically because
of solution quality or deadline). In such cases, specific roles are assigned to the two
agents: (i) the manager, which is responsible to announce a task, receive/evaluate bids,
award a contract, and receive results; (ii) the contractor, which is responsible to receive

30



task announcements, evaluate/respond/decline/perform the task, and report results. For
example, the contract net protocol can be used to setup an agreement between the fog
and QoS managers such that the cost of leaving RRHs turned on is paid with the income
adjustment of hosting ASPs services. To perform this process among middle layer agents,
it is possible to use a cloud storage service, while for the bottom layer the communications
occurs in the shared memory at MDC of an F-RAN, since the time interval available for
decision-making is highly constrained.

It is worth mentioning that increasing the number of agents has its consequences, and
the communication among agents may become a bottleneck. Therefore, the horizontal
and vertical integration may be compromised, mainly in the bottom layer. To mitigate
this issue, the integration among time granularities through KB sharing (i.e., a shared
cloud storage for decision-making and its related information) is proposed. This shared
KB enables agents from coarser granularities to access the finer-grained data without com-
promising their performance with a complex communication and interaction mechanism.
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Chapter 4

Use Cases: Granularity of Hours and
Decomposed Time Granularities

In this chapter, an use case from the time granularity of hours is presented. First, the
system model is defined followed by the problem formulation and evaluation followed by
results analysis. Lastly, another use case is presented in order to illustrate the benefits of
decomposing time granularities.

4.1 System Model

The defined system model of an F-RAN is depicted in Figure 4.1 and the notation
is presented in Table 4.1. An F-RAN is composed of S = |S| MDCs, where S is the set
containing MDCs from macrocells and from smallcells, i.e., MDCs from Fog-RRHs. Note
that the operator | · | represents the cardinality of a set. Each MDC s ∈ S has gis General
Purpose Processors (GPPs) for different classes of vBBUs i ∈ I responsible for the remote
processing of the workload of M = |M| RRHs, whereM is the set containing RRHs from
macrocells and RRHs from small cells that are serving UEs in the RAN within a defined
time horizon T = {1, 2, · · · }. RRHs from macrocells are separated by a distance dmacro
(or dsm), in meters, where dmacro

2 determines the coverage radius of each macrocell. The
total workload demand of an RRH for one second of operation is represented as Γm(t), in
bits.

The different classes of vBBUs within MDCs are responsible for processing the RRHs’
workload using different types of GPPs. For each class i ∈ I of vBBU, the technical
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specifications of each GPPs used are the following: ceiling processing power fis in hertz
(Hz), efficiency eis operations per cycle, number of cores pis. Moreover, each class of vBBU
has a proportion of cost kis per time slot t, according to its individual specification. A
vBBU class within an MDC performs processing for signal demodulation, radio resource
demapping, precoding, and channel coding. It is noteworthy that the largest component of
the processing workload is due to the decoding function of the FEC [Bhaumik et al., 2012].
In this context, w stands for the number of operations per bit for channel decoding
processing.
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Figure 4.1: F-RAN: system model.
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Table 4.1: Notation
Symbol Description
S Set of MDCs from macrocells and MDCs from smallcells
I Set of classes of vBBUs
M Set of RRHs and Fog-RRHs
T Finite horizon of operation
c Speed of light in meters per second

dmacro Distance between RRH from macrocells in meters
w Number of instructions for channel decoding process
ϕ Delay budget according to the technology in use
h Distance for signal regeneration in meters
λ Delay per hop in seconds
gis Number of processors per MDC
fis Total processor frequency in Hz
eis Processor efficiency in operations per cycle
pis Total processor cores
kis Processor cost per hour in USD
klease Operator’s leasing price per core per hour in USD
dsm Link distance between MDC and RRH

Γm(t) Workload per RRH per slot t in Megabit per second (mbps)
nism(t) Minimum number of cores to process a workload from

an RRH per slot t
n′ism(t) Minimum number of vBBUs to process a workload from

an RRH per slot t
aism(t) Decision variable for assignment among vBBU class,

MDC, and RRH per slot t
Acores(t) Total number of cores in the system per slot t
Ucores(t) Total number of idle cores in the system per slot t
Kalloc(t) Cost of allocation per slot t
Glease(t) Maximum income (by leasing idle cores) for each slot t
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FEC is processed at MDCs for the total data received from all assigned RRHs. To set
an assignment between an MDC s and an RRH m at a time slot t, the assigned MDC
must be able to process the workload demand Γm(t) of the RRH m, i.e., MDC must
have GPPs available to allocate the required number of vBBUs. From Marotta et al.
[Marotta et al., 2018], it is possible to obtain the minimum number of cores nism(t) of an
MDC s required to process the workload Γm(t) of an RRH m transmitted in one second
of operation as a function of their distance dsm at a time slot t:

nism(t) =


Γm(t)w

fiseis(ϕ− 3dsm
c
− 2λdsm

h ) , if
(
ϕ− 3dsm

c
− 2λdsm

h

)
> 0

−∞, otherwise
(4.1)

where ϕ stands for the delay budget according to the technology in use (e.g., Hybrid
Automatic Repeat reQuest (HARQ) imposes 3 milliseconds for the Long Term Evolution
(LTE) processing [China Mobile Research Institute, 2011]); dsm stands for the distance,
in meters, between each MDC s ∈ S and RRH m ∈ M; h stands for the distance, in
meters, for signal regeneration, which determines the number of intermediate nodes (hops)
required; λ stands for the delay per hop in seconds; and c is the speed of light in meters per
second. Notice that nism(t) is set to minus infinity when the distance between the RRH
and MDC is too long, considering that narrow delay constraints dictate the maximum
distance between an RRH and MDC to process to its workload [Musumeci et al., 2016].
In this case, the minus infinity is to represent that is not possible to process the RRH’s
workload in the MDC, i.e., the distance limits the area that an MDC can serve.

Considering that each GPP has a specific number pis of cores, it is possible to divide
nism(t) by pis to get the minimum number of vBBUs n′ism(t) required to process the RRH’s
workload transmitted per time slot averaged for one second of operation:

n′ism(t) =


Γm(t)w

fiseispis(ϕ− 3dsm
c
− 2λdsm

h ) , if
(
ϕ− 3dsm

c
− 2λdsm

h

)
> 0

−∞, otherwise
(4.2)

Each MDC can support at most gis vBBUs to run in the same time slot t, i.e., nism(t) ≤
gis,∀i ∈ I,∀s ∈ S,∀m ∈M,∀t ∈ T . Hence, the problem of vBBU allocation is addressed
considering the distance between MDC and RRH when deciding which vBBU class to
allocate to process the RRHs’ workload. Lastly, the total number of cores for the entire
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RAN is given by Acores(t) = ∑I
i=1

∑S
s=1 pisgis, which Acores(t) is the total number of cores

of all GPPs from all MDCs at each time slot t. Considering the system model presented,
the problem of optimal vBBU allocation in F-RANs is formulated in the next section.

4.2 Problem Formulation

The goal of this part of the work is to optimize the operator’s allocation decisions to
minimize their expenditures by deciding how to best assign RRHs’ workload to MDCs.
Note that the distance between RRH and MDC is the factor that most impacts the
vBBU allocation cost since it determines the minimum computation resources required
to process an RRH’s workload. Besides, it is important to consider limitations regarding
horizontal allocation, i.e., allocation of MDCs to process workloads in parallel, and vertical
allocation, i.e., processing allocation required to process RRHs’ workload considering
delay thresholds from the wireless stack [Marotta et al., 2018]. Furthermore, the workload
of an RRH must always be served by an MDC, i.e., it will always be possible to assign an
RRH’s workload to an MDC. Therefore, the optimization problem to realize the proposed
strategy is formulated as:

min
∀t∈T

I∑
i=1

S∑
s=1

M∑
m=1

aism(t)n′ism(t)kis (4.3a)

s.t.
M∑
m=1

n′ism(t)aism(t) ≤ gispis ∀i ∈ I; ∀s ∈ S (4.3b)

Γm(t)w(
ϕ− 3dsm

c
− 2dsm

λ

) − aism(t)fiseisn′ism(t) ≤ 0 (4.3c)

∀i ∈ I;∀s ∈ S;∀m ∈M

I∑
i=1

S∑
s=1

aism(t) = 1 ∀m ∈M (4.3d)
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In this case, aism(t) is a decision assignment binary variable such that

aism(t) =


1, if a vBBU class i within an MDC s

is assigned to an RRH m at a slot t

0, otherwise

and kis is a scenario parameter for the cost of allocation for each class i of vBBU within
an MDC s.

Equation 4.3a (the objective function) aims to minimize the sum of the system’s
processing power allocation cost for each vBBU class within each MDC that is computing
RRHs’ workloads per time slot t, subject to three constraints. Equation 4.3b represents
the constraint regarding horizontal allocation, i.e., an MDC must be able to process all
the assigned workload, which restricts the vBBU allocation according to the available
computational power considering the combination of workload assignment for each RRH
m, vBBU class i, and MDC s. Equation 4.3c represents the constraint regarding vertical
allocation, i.e., the processing power required to compute the workload must be less than
or equal to the available processing power within the system’s MDCs, considering each
vBBU class, each MDC, and each RRH. Finally, Equation 4.3d is the constraint to assure
the assignment of all RRHs’ workloads to at least one MDC, ensuring that all the RAN’s
workload is going to be processed, for all RRHs.

From the decision variable aism(t), an equation for the total number of idle cores
Ucores(t) at each time slot t is formulated, which is obtained by subtracting the total
number of assigned cores to compute RRHs’ workload from Acores(t):

Ucores(t) =
I∑
i=1

S∑
s=1

M∑
m=1

Acores(t)− aism(t) (pisn′ism(t)) ∀t ∈ T (4.4)

Also from aism(t), an equation for the total cost of vBBU allocation Kalloc(t) at each time
slot t is formulated, such that:

Kalloc(t) =
I∑
i=1

S∑
s=1

M∑
m=1

aism(t) (kisn′ism(t)) ∀t ∈ T (4.5)

which gives the total cost of allocation required to serve all the system’s RRHs for each
time slot t, achieved by multiplying the number of cores allocated to serve the system’s
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workload demand by the cost of allocation per core per unit time.
Following the problem formulation presented, a real demand data provided by a net-

work operator is applied to evaluate the optimal allocation of vBBUs. Next, details of
the simulations performed in this work are presented as well as the results for vBBU
allocation in terms of cost minimisation.

4.3 Evaluation

In this section, the data set used in the experiments is described and the simulation
scenarios are characterized.

4.3.1 Data Set

The Milano Call Detail Record (CDR) data set [Telecom Milano, ] is employed in the
experiments. This is a real telecommunications data set from Telecom Italia, a cellular
network operator. The data is geo-referenced and is processed from CDRs of their sub-
scribers residing in a metropolitan area of Milan, Italy. It is temporally divided into 62
files, one for each day (from November 1, 2013 to January 1, 2014). This data set provides
temporal and spatial information, including SMS, call and Internet traffic activity data
during a two-month period for the city of Milan. The city of Milan is represented as a
grid containing 10,000 squares (100x100 grid), each with an area of 55,225 m2. The data
set is spatially represented in Figure 4.2 using geojsonio [Chamberlain and Teucher, 2020]
with OpenStreetMap [OpenStreetMap contributors, 2017].

For each grid, the following CDR information is presented in the original files:

• Square ID: indicates the identification number of the square grids.

• Time Stamp: indicates the data recorded over an interval of 10 min.

• Inbound Call Activity: indicates the duration of the inbound call at a particular
grid within time slot of 10 minutes.

• Outbound Call Activity: indicates the duration of the outbound call at a particular
grid within time stamp of 10 minutes.

• Inbound SMS Activity: indicates the duration of the inbound SMS at a particular
grid within time slot of 10 minutes.
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Figure 4.2: Spatial representation of Milano Grid data set.

• Outbound SMS Activity: indicates the duration of the outbound SMS at a particular
grid within time slot of 10 minutes.

• Internet Activity: indicates the duration of the Internet activity at a particular grid
within time slot of 10 minutes.

After preprocessing and cleaning, the CDR information used in the data set are the
following:

• X Position: indicates the X position for a particular region.

• Y Position: indicates the Y position for a particular region.

• Date: indicates the date in the format day/month/year.
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• Time Activity: indicates the hour of the day of data collection

• Internet Activity: indicates the duration of the Internet activity at a particular grid
within time slot of 60 minutes (one hour).
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Figure 4.3: Internet traffic activity during two weeks

As the Internet traffic activity in this data set corresponding to rural areas is very low,
we decided to focus on urban, suburban, and sub-rural areas around Milan. Exactly 1,521
squares were selected from the grid, corresponding to an area of 83,997,225 m2 around
central Milan. For each day, the data entries are aggregated in time slots of one hour.
Finally, the CDRs for Internet traffic activity is normalized in order to scale it to values
between 0 and 1 for each hour of the day, for all square areas. Figure 4.3 presents the
normalized Internet traffic activity heatmap for the entire data set, separated by weekday
and weekend days. Note that none of the data comes from holidays, and the selected
squares are the ones that belong to the region with highest traffic activity, i.e., around
city center Milan.
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After preprocessing and filtering the data, k-means [Macqueen, 1967], an unsupervised
learning technique for data clustering, was applied using the euclidean distance. This part
of the work was developed using R, a statistical programming language. This technique
were used to distinguish the Internet traffic behaviour among regions of Milan in different
hours of the day. In this case, the features employed were the sum of Internet traffic
for each square area and their x and y positions. As a result, the area was divided into
five clusters with different demand behaviour during a day, illustrated in Figure 4.4. The
number of clusters was defined empirically based on the Elbow test [Thorndike, 1953],
in which the results is presented in Figure 4.5. The Elbow test is a method of interpre-
tation and validation of consistency within cluster analysis designed to help to find the
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Figure 4.5: Elbow test results.

appropriate number of clusters in a dataset. From Figure 4.5 it is possible to notice that
the line begins to flatten significantly right after the number of clusters is equal to five.
Therefore, it is clear that the optimized number of clusters for clustering the data set in
the k-means clustering algorithm is five.

The demand behavior of each cluster is depicted in the bar plots in Figure 4.6, which
presents the normalized value of Internet traffic for each cluster on weekdays and week-
ends.

4.3.2 Scenario

To evaluate the proposed solution, a simulation of an F-RAN system according to
RAN scenarios described by Third Generation Partnership Project (3GPP) [3GPP, 2010,
Annex A] was performed. Each macrosite is composed of one macrocell with one MDC,
and one cluster of smallcells with an MDC positioned in the centroid of this cluster of
antennas, such as presented in 4.7. All parameters values contained in the 3GPP Technical
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Report [3GPP, 2010, Annex A] were reused and all the MDC parameters are summarized
in Table 4.2.

Table 4.2: MDCs’ specifications
MDC Processor i gis pis fis kis

Macrocell D-1653 1 11 8 2.8 GHz 0.340
D-1667 2 11 12 2.7 GHz 0.510

Smallcell D-1513N 3 7 4 2.2 GHz 0.170
D-1633N 4 7 6 2.5 GHz 0.255

The definition of the number of GPPs within MDCs is based on a DX2000 2U
rack[Hiro Microdatacenters, ], with Intel Xeon processors with maximum efficiency of
eis = 16 operations per cycle for each MDC s ∈ S and for all vBBU class i ∈ I. The
cost of allocation per vBBU kis in USD follows the proportion of the price of an Amazon
C5[Amazon Web Services, 2019] instance. RRHs were configured with a maximum trans-
mission rate (uplink) of 50 Mbit/s [Watanabe and Machida, 2012]. The workload for each
RRH at each time slot is calculated by multiplying the average number of bits transmit-
ted in one second of operation to a random number between the interval delimited by the
error rate of the normalized traffic activity value gathered from the Milano CDR data
set. The delay budget is set to ϕ = 0.00270 s [China Mobile Research Institute, 2011],
w = 200 operations per bit for the channel decoding process [Holma and Toskala, 2009],
the distance for signal regeneration is set to h = 50, 000 m, and the delay per hop is
λ = 0.00005 s [Marotta et al., 2018].

The simulation of the Milan city center was divided into four smaller simulations with
different characteristics: (i) downtown; (ii) urban; (iii) suburban; and (iv) sub-rural.
Figure 4.8 summarises the simulation configuration for these four areas:

• Downtown: the simulation for downtown is composed of three macrosites following
the demand behaviour from cluster 1 and four from cluster 2. The distance between
macrocells is set to dmacro = 1000 m. In this case, the area of one hexagon is
equivalent to the area of 14 squares.

• Urban: the simulation for the urban area is composed of four macrosites following
the demand behaviour from cluster 2 and three from cluster 3. The distance between
macrocells is set to dmacro = 2000 m and the area of one hexagon is equivalent to
62 squares.
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• Suburban: the simulation for the suburban area is composed of three macrosites
following the demand behaviour from cluster 2, two from cluster 3, and four from
cluster 4. The distance between macrocells is set to dmacro = 3000 m and the area
of one hexagon is equivalent to 141 squares.

• Sub-rural: the simulation for the sub-rural area is composed of two macrosites fol-
lowing the demand behaviour from cluster 4 and five from cluster 5. The distance
between macrocells is set as dmacro = 9000 m and the area of one hexagon is equiv-
alent to 1,271 squares.

Figure 4.7: Scenario representation.

The source code for all the experimentation is available on GitHub1. Next, the results
of the simulations are analyzed.

1https://github.com/jonathanalmd/f-ran-optimal-assignment, last accessed on 10-18-2020.
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Figure 4.8: Milan simulation scenarios.

4.4 Results and Analysis

To characterize the relation between processing power consumption and distance be-
tween MDC and RRH, first, the Equation 4.2 is analysed considering different classes of
vBBUs. Figure 4.9 illustrates the influence of distance on the minimal number of vBBUs
per class that are allocated, considering an RRH with fixed upstream data rate of 50
Mbit/s, characterizing an important trade-off in F-RANs.

To evaluate the presented solution, the analysis is focused in the potential gains con-
sidering cost minimisation with optimised vBBU allocation. The optimal assignment of
RRHs to MDCs is achieved by applying BILP. From the optimization result, the optimal
allocation of vBBUs in terms of cost minimisation with the decision assignment binary
variable aism(t) is obtained. Furthermore, this result is combined with the possibility of
increasing operator’s income by leasing idle resources. In this case, the maximum income
for each time slot is obtained by multiplying Ucores(t) (Equation 4.4) by a constant, which
represents the cost per core defined by the operator. To present the results, this con-
stant is set equal to 0.02125 USD, half of the price per core set by Amazon for a c5.large
dedicated instance.

Figure 4.10 summarises the results obtained, separated by urban region categories,
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Figure 4.9: Trade-off between distance and processing power.

weekday versus weekend, and the day is divided into night (12 AM to 6 AM), morning
(6 AM to 12 PM), afternoon (12 PM to 6 PM), and evening (6 PM to 0 AM). This
figure presents the proportion of maximum income per cost of allocation, indicating the
potential of gains for network operators. The potential for gain is more relevant when
the proportion is more than one, which means the operator’s maximum income is higher
than the budget used to serve its demand, i.e., the operator can gain this proportion of
income for each cash unit used to serve its demand.

From the results, the maximum potential for gain from leasing idle processing power
occurs during the night, and is slightly higher on weekdays. From the previous results
for demand behaviour in different regions presented in Figure 4.6, it is possible to see
that those correspond to the periods of lowest Internet traffic activity. For the remaining
periods of the day the most relevant results are from weekday mornings and afternoons
for the urban area and from weekday mornings to evenings for downtown. These regions
and periods are the ones with highest peaks of activity and potentially the periods that
ASPs are most interested in provisioning their services at the edge. It is possible to notice
that there is an high opportunity in leasing edge processing resources, i.e., vBBUs of
MDCs from smallcells. Note that this opportunity is considerably more evident in the
downtown area. This behaviour occurs because the optimal solution, in high demand
scenarios, decides to centralize the processing to more powerful GPPs, which are located
within MDCs from macrocells. On weekends, this processing centralization is only evident
during the period of afternoon to evening for the downtown area and only during the
evening for the urban area. For weekend mornings downtown, the opportunities of leasing
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Figure 4.10: Ratio of maximum income to cost of allocation for each time of the day, on
weekdays and weekends for MDCs from macrocells and smallcells.

processing power of MDCs from both macrocells and smallcells are statistically the same.
Nonetheless, considering macrocells’ MDCs, there is a higher potential of gains when
compared to weekdays.

Notice that even considering the allocation cost for an operator to serve its own de-
mand is the cost of an Amazon EC2 C5 instance, there is still a huge opportunity in
leasing idle resources for half this price, in most of situations. Considering a sample
size of 50 and the application of a t-test with 95% confidence interval, the proportion of
maximum income per cost of allocation is statistically less than one only for macrocells’
MDCs only in downtown weekdays during morning to evening, urban weekdays during
morning and afternoon, and downtown/urban weekends during afternoon and evening.
For smallcells’ MDCs, this occurs only during downtown weekday nights. Nonetheless,
as aforementioned, the most significant opportunity to be exploited relies on leasing edge
processing to ASPs. Considering the same scenarios, the confidence interval for the pro-
portion is considerably greater than one, as depicted in Figure 4.10. In particular, this
value can be greater than three for downtown weekdays, fluctuating between 2.7 and 3.2
during afternoons. These results show that there is a better opportunity for operators
to increase their income through edge processing leasing in these mentioned scenarios,
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especially in downtown.
From the perspective of the entire day (weekdays and weekends), considering a 95%

confidence interval, the proportion are statistically greater than one for MDCs from macro-
cells in downtown, urban, and suburban areas. In particular, in suburban areas this pro-
portion fluctuates around 2.1. Considering MDCs from smallcells, in which the confidence
interval in downtown, urban, and suburban areas are around 1.1 and 1.5. Note that the
opportunity for leasing processing from smallcells’ MDCs is better in downtown, which is
the region with higher values, fluctuating between 1.4 and 1.5. Whereas, suburban areas
have more potential of gains when considering MDCs from macrocells, in which leasing
more powerful processing power can be characterized as a key opportunity to this region.
A balance between these two, urban regions have potential of gains both for macro and
smallcells processing. This interval is impacted by the high potential of gains during
night periods. However, ASPs may not be so interested in providing their services during
night. In this context, operators should take into account the period of the day when de-
ciding the price of allocation per core. Moreover, considering that ASPs may have more
interest in provisioning services in downtown/urban areas, operators should consider the
region when setting the price of allocation. Therefore, operators must evaluate the ASPs’
interests in order to set this price according to the different situations.

Note that the results from the optimization for subrural/rural areas was not included
to not compromise the visualization of the results for urban areas. This kind of region
has a demand behaviour that diverges a lot from urban areas. It is not fair to consider
an MDC for subrural/rural region with the same configuration of an MDC used in urban
areas, it is expected that the processing power will be underused during the day. In this
case, a neutral hosting may be ideal for most network operators, with a shared infras-
tructure where the Internet activities from different operators are summed. Nonetheless,
even considering a homogeneous configuration for MDCs, subrural and rural regions have
the potential to be exploited regarding processing power leasing. Even though it is a
subrural/rural region, it is still closer to the city center when compared to Amazon EC2
instances that, for a large proportion of cities, is located hundreds or even thousands of
kilometers away. In this context, for example, an operator may exploit this opportunity
by employing most of their MDCs’ processing power from subrural/rural regions to this
purpose.

Comparing the potential gains between the city of Milan and the province of Trento,
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the major differences occur in urban and suburban scenarios, as depicted in Figure 4.11.
Given that the traffic behavior in the Trento downtown area is similar to the behavior in
Milan downtown area, it was expected that the opportunity for income gains would be
similar to what was observed in Milan. For urban e suburban areas, the internet traffic
in Trento is much less intense when compared with Milan. Consequently, considering
the same configuration of MDCs, the opportunity of income gains in Trento is naturally
higher. Nonetheless, it should be taken into account the fact that ASPs probably are more
interested in providing their services in larger cities, where the demand for processing is
higher. Therefore, in theory, even though the proportion of maximum income and cost
of allocation can be higher for the province of Trento, it is necessary to consider that the
demand from ASPs will probably be lower than for the city of Milan. To evaluate such
aspect, it is necessary to perform a further investigation in the characteristics of service
usage in both cities, which is beyond the scope of this thesis proposal.

4.5 Importance and Benefits of Decomposing and In-

tegrating Time Granularities

It is important to decompose time granularities since it can be used to bring clear
benefits to F-RANs’ performance. The benefits are related to the usage of fine-grained
data to improve the solution of thicker granularities. Based on the simulated scenarios
presented in the previous sections, it is possible to evidence the importance of decomposing
the timescales by applying the optimal solution and analyzing the number of migrations
per MDC per day, such as presented in Figure 4.12.

The number of migrations increases as the time interval for decision-making decreases.
Considering a sample size of 35 and the application of a t-test with a 95% confidence
interval, the average number of migrations per MDC per day for time intervals of 10, 30,
and 60 minutes are 168.4 ± 4.8, 65.7 ± 1.7, and 36.3 ± 1.0, respectively. The number
of migrations for a time interval of 10 minutes and 30 minutes is approximately 4.6 and
1.8 times higher than for a time interval of one hour. Analyzing the spatial aspect, the
number of migrations is higher in urban areas, in which Internet traffic is intense and
fluctuates more.

It is crucial to decide a proper time interval for decision-making since each migra-
tion has an associated cost depending on the migration time and transmission cost
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[Liu et al., 2018]. Moreover, a larger range can enable the application of more sophis-
ticated ML techniques as well as more frequent updates in the model. Therefore, this use
case shows that a larger time granularity is, in fact, better suited for vBBU allocation in
F-RANs.

Considering the integration of time granularities, there is an opportunity in incor-
porating data from a smaller timescale for decision-making in a larger timescale. For
instance, training a model for traffic prediction for each hour using data in the time gran-
ularity of minutes can improve the performance of the predictor (i.e., reduce the error),
as depicted in Figure 4.13. This figure presents the Root Mean Square Error (RMSE) for
three different models: M1, M2, and Default. The RMSE is defined as:

RMSE =
√√√√( 1

n
)

n∑
i=1

(yi − xi)2 (4.6)

The RMSE is small, it can indicate that the noise is small and, consequently, the model is
good at predicting the observed data. Conversely, the trained model is missing important
features if the RMSE is large, i.e., the noise is large. M1 is the model trained using data
in the time granularity of hours, i.e., using the Internet traffic for each hour of the day.
M2 is the model trained using data in the time granularity of minutes, i.e., using the
Internet traffic for each 10 minutes of the day. M1 and M2 were trained using data from
two weeks (14 days) and tested using five weeks (35 days). Lastly, the default model only
computes the average Internet traffic during a day and allocates this value during the
entire day, which is used to evaluate if it is worth using a traffic predictor rather than a
simple allocation rule.

Analyzing the boxplot presented in Figure 4.13 it is possible to notice that the RMSE
for M2 is lower when compared with M1. Considering a 95% confidence interval and
a sample of 35 observations, the RMSE for M1, M2, and Default are 0.0575±0.0057,
0.0384±0.0065, and 0.1214±0.01333, respectively. These results indicate a performance
improvement (RMSE reduced about to 50%) through time granularity integration by only
incorporating fine grained data to a decision-making solution from a thicker granularity,
i.e., using data at the timescale of minutes to predict in hours.
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Chapter 5

Concluding Remarks and Future
Work

5.1 Conclusions

In the first part of this thesis proposal (Chapters 2 and 3), the benefits and challenges of
implementing an AI-driven F-RAN were discussed. To drive the discussion, AI techniques
that are applied to an F-RAN on three timescales are considered: hours, minutes/seconds,
and milliseconds. At the time granularity of hours, AI techniques such as neural networks,
k-means, and genetic algorithms can bring benefits to F-RANs in terms of low energy
consumption, cost reduction, and processing power minimization in the cloud. Meanwhile,
at a time granularity of minutes/seconds, reinforcement learning-based techniques and
adaptive online learning algorithms enable F-RANs to reduce energy consumption of
RRHs, enhance caching hit rate, and promote better decisions for local service deployment.
At the time granularity of milliseconds, the application of AI classifiers and Q-learning
can bring spectral efficiency gains, throughput improvements, and CQI signaling overhead
reduction. Finally, to enable integration between AI solutions from the same granularity
and from different granularities, a multiagent architecture for F-RANs is proposed.

In the second part of this thesis (Chapter 4), opportunities for network operators
to reduce their expenditures through optimal allocation of vBBUs in F-RANs were in-
vestigated, tackling a particular goal from the time granularity of hours. Besides, the
possibility of generating additional revenue by leasing idle resources to ASPs is discussed,
highlighting which situations this opportunity can be better exploited. In particular, the
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challenge of improving vBBU allocation in terms of optimal assignment of RRHs to MDCs
for cost minimisation is addressed, considering the trade-off between processing power and
distance between MDC and RRH. In this context, optimization model to perform vBBU
allocation by optimally deciding the RRH to MDC assignments considering such trade-off
is proposed. The solution was evaluated by applying a real CDR data set, simulating
regions from Milan area. To identify the demand behaviour from different regions consid-
ering spatial and temporal characteristics, k-means clustering was applied. The results of
this work highlighted the opportunity for network operators to exploit their infrastructure
better and increase their gains.

Given characterized challenges and the proposed solutions, further investigations and
experiments have been conducted aiming to verify the following the fundamental question
and hypothesis by answering the research questions presented in Chapter 1.

Fundamental Question: How to design an intelligent decision-making system able to
address the challenges of F-RANs considering the distance between MDC and RRH as a

key factor?

Hypothesis: AI techniques must be applied in order to improve decision-making
considering the distance between MDC and RRH under different time constraints in

F-RANs.

Even though there is still more experiments and investigation to perform, the presented
results underlie the proposed hypothesis. During this work, we were able to to answer
the research questions (RQ 1 to 3) associated with the hypothesis. The answers to each
question are detailed as follows.

RQ 1 - What are the main decisions to be taken in an AI-driven F-RAN
considering the different time granularities?

As presented in Chapter 2, throughout a systematic investigation of the application
of AI techniques in F-RANs and its benefits, it was possible to classify around three time
granularities: hours, minutes/seconds, and milliseconds. Concomitantly, by investigat-
ing the AI-driven solutions for F-RANs, it was possible to identify key decision-making
possibilities of each time granularity.

RQ 2 - How to integrate decision-making possibilities from different time
granularities in an AI-driven F-RAN?
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In Chapter 3, a solution to enable integration between AI solutions from the same
granularity and from different granularities, a multiagent architecture for F-RANs was
proposed.

RQ 3 - How to formalize decision-making in F-RAN considering vBBUs
allocation, the distance between MDC and RRH, and time constraints?

The problem of optimal allocation of vBBUs considering the distance between MDC
and RRH can be formulated as an optimization problem, as presented in Chapter 4. In
this sense, this proposal presented an optimization model to perform vBBU allocation by
deciding the RRH to MDC assignments considering trade-off between processing power
and distance. The objective function is subjected to constraints regarding horizontal and
vertical allocation. Furthermore, the solution was evaluated by applying a real CDR data
set, simulating regions from Milan area.

Based on the investigations conducted, it is possible to identify some open challenges.
For instance, it seems to be possible to incorporate ASP transactions to the optimization
model in order to minimize the operators’ expenditures while directly considering the
potential of income gains by leasing idle resources. Moreover, there is still the need
to perform further investigation in regarding ML techniques that are suitable to the
problem of vBBU allocation. Considering the literature review, it is possible to address
some adequate AI techniques to be applied. Nonetheless, for this specific problem (vBBU
allocation considering the distance between MDC and RRH) it is necessary to perform
extensive comparative experiments in order to obtain the best feasible solution, i.e., closer
to the optimal solution.

5.2 Future Work

As future work, we aim to incorporate ASP transactions to the optimization model to
minimise the operators’ expenditures while directly considering the potential of income
gains by leasing idle resources. Moreover, we will investigate the use to of ML techniques
to make vBBU allocation decisions and compare them with the optimal solution. Then, we
aim to integrate different agents with distinct capabilities from the same time granularity,
which is the first step to implement the proposed multi-agent architecture.

Further, we aim to deal with the challenge of integrating decision-making across dif-
ferent granularities. The main challenge to be tackled is the integration between different
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time granularities while taking into account the time constraints and trade-offs among
decision-making possibilities. In this context, our first step is to implement the agents
from the granularity of hours and integrate them into one multi-agent system, followed by
the agents from fine-grained granularities. Once we implement the multi-agent systems
from each granularity, we aim to integrate them into one multi-agent architecture for
AI-driven F-RANs. In this case, the goal is to achieve integration among different time
granularities and evaluate the gains.
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Appendix A

Publications

This appendix presents the articles published/submitted since the beginning of the
masters until this work to its conclusion. These articles are papers resulted from the
investigations about F-RAN and ML for decision-making, presenting the main solution
and results detailed in this thesis proposal.

• Title: Optimal Allocation of vBBUs Considering Distance Between MDC and RRH
in F-RANs

– Authors: Jonathan M. De Almeida, Luiz A. DaSilva, Cristiano B. Both,
Célia G. Ralha, Marcelo A. Marotta

– Conference: 54th IEEE International Conference on Communications (ICC)

– Submitted in October 2019 / Published in June 2020

• Title: Integrating Decision-making in AI-driven F-RANs Considering Different Time
Granularities

– Authors: Jonathan M. De Almeida, Luiz A. DaSilva, Cristiano B. Both,
Célia G. Ralha, Marcelo A. Marotta

– Journal: IEEE Vehicular Technology Magazine

– Impact Factor: 7.921

– Submitted in June 2020 / Revisions in February 2021

∗ Also submitted to IEEE Network Magazine (Special Issue) in January 2020
/ Major Revisions in March 2020 / Rejected in May 2020
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• Title: Data-driven Anomaly Detection with Traffic Pattern Categorization in Mobile
Cellular Networks

– Authors: Jonathan M. De Almeida, Camila F.T. Pontes, Luiz A. DaSilva,
Cristiano B. Both, João C. Gondim, Célia G. Ralha, Marcelo A. Marotta

– Journal: IEEE Transactions on Network and Service Management
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