
 

Universidade de Brasília 

Instituto de Ciências Biológicas 

Programa de Pós-Graduação em Ecologia 

 

 

 

 

 

 

 

 

Efeitos da alteração da paisagem e uso da terra no nicho trófico e índice corporal de 

populações de Caiman crocodilus na planície de inundação da Bacia do Médio Rio 

Araguaia 

 

 

 

 

 

 

 

 

André Costa Pereira 

 

 

 

 

 

 

 

 

Brasília - DF 

Janeiro de 2021 



ii 
 

 

 

Universidade de Brasília 

Instituto de Ciências Biológicas 

Programa de Pós-Graduação em Ecologia 

 

 

 

 

Efeitos da alteração da paisagem e uso da terra no nicho trófico e índice corporal de 

populações de Caiman crocodilus na planície de inundação da Bacia do Médio Rio 

Araguaia 

 

 

 

André Costa Pereira 

 

Tese de Doutorado apresentada ao Programa de Pós-

Graduação stricto sensu em Ecologia da Universidade 

de Brasília como parte dos requisitos para obtenção do 

título de Doutor em Ecologia. 

 

 

Orientador: Professor Dr. Guarino R. Colli 

Co-orientadora: Professora Drª. Gabriela Bielefeld Nardoto 

 

 

 

 

 

Brasília - DF 

Janeiro de 2021 

  



iii 
 

TERMO DE APROVAÇÃO 
 

ANDRÉ COSTA PEREIRA  
 

Efeitos da alteração da paisagem e uso da terra no nicho trófico e índice corporal de 
populações de Caiman crocodilus na planície de inundação da Bacia do Médio Rio 

Araguaia 
 

Tese de doutorado apresentada em 15 de janeiro de 2021, junto ao Programa de Pós-Graduação 
em Ecologia do Instituto de Ciências Biológicas da Universidade de Brasília, sob orientação do 
Prof. Guarino Rinaldi Colli, com o apoio financeiro da Coordenação de Aperfeiçoamento de 
Pessoal de Nível Superior (CAPES) e Conselho Nacional de Desenvolvimento Científico e 
Tecnológico (CNPq), como parte dos requisitos para obtenção do título de Doutor em Ecologia. 
 
Banca Examinadora: 
 
 

________________________________________ 
Prof. Dr. Guarino Rinaldi Colli 

Presidente/Orientador 
Universidade de Brasília (UnB) 

Coleção Herpetológica da Universidade de Brasília – CHUNB 
 

________________________________________ 
Prof. Dr. Ricardo B. Machado 

Membro titular interno vinculado ao PPG 
Universidade de Brasília (UnB) 

Laboratório de Planejamento para a Conservação da Biodiversidade – LABIO 
 

________________________________________ 
Prof. Dr. Reuber Albuquerque Brandão 

Membro titular interno não vinculado ao PPG 
Universidade de Brasília (UnB) 

Laboratório de Fauna e Unidades de Conservação – LAFUC 
 

________________________________________ 
Prof. Dr. Luciano Martins Verdade 

Membro titular externo 
Centro de Energia Nuclear na Agricultura da Universidade de São Paulo (CENA/USP) 

Laboratório de Ecologia Isotópica 
 

________________________________________ 
Prof. Dr. Emerson Monteiro Vieira 

Membro suplente 
Universidade de Brasília (UnB) 

Laboratório de Ecologia de Vertebrados – Ecovert 
  



iv 
 

AGRADECIMENTOS 

 

 À minha família (pai, mãe, Bruna, Caísa, vó Maria, vô Miquilino). À minha família 
residente em Nova York (Tios Kennedy, Rosa, Marcone, Lu, e primos Natália, John (meu 
afilhado), Paloma, Lucas e Luíza) que tanto sentia saudade e pude desfrutar de um Natal em 
conjunto. Por tudo, incentivo, confiança, apoio, suporte, paciência, etc.  

Ao Guarino R. Colli (orientador) e Gabriela B. Nardoto (coorientadora), pela 
colaboração neste árduo trabalho, incentivo à pesquisa, confiança, orientação, ensinamentos, 
descontração e amizade. O conhecimento profissional adquirido foi exponencial e gratificante 
para minha formação, meu obrigado. 
 Ao Bruno Araújo e Humberto Nappo, pelo suporte, auxílio, disponibilidade e 
ensinamentos durante as coletas de dados em campo. Sem auxílio e empenho de vocês não 
seria possível a execução deste trabalho. Cabe mencionar que aprendi muito com os erros, 
peço perdão pelos desafetos ocorridos.  
 Aos membros da banca de doutorado pelas críticas, sugestões, considerações, atenção 
e disponibilidade a este trabalho: Prof. Dr. Ricardo B. Machado, Reuber Albuquerque 
Brandão, Luciano Martins Verdade e Emerson Vieira. Em especial ao Pro. Dr. Luciano 
Verdade que auxiliou para aquisição de recurso financeiro internacional da The Rufford 
Foundation ao ser avaliador do projeto. 
 Aos proprietários de terras privadas e cooperativas agrícolas COOPERGRAN 
(Cooperativa Mista Rural Lagoa Grande Ltda) e COOPERFORMOSO (Cooperativa 
Agroindustrial Rio Formoso Ltda) dos quais pude contar para executar meu trabalho, aos 
auxiliares que me acompanharam, meus agradecimentos pelo suporte, permissão, atenção, 
acolhimento. Mesmo desconhecendo minha pessoa e meu estudo, tiveram a coragem e 
interesse para que o estudo fosse executado ao longo das cidades da planície de inundação do 
Araguaia.  
 Às instituições que permitiram a execução desta pesquisa científica e gerência de 
Unidades de Conservação e Terras Indígenas: Marcos Leão (Parque Nacional do Araguaia), 
Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), Instituto Brasileiro do 
Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), Convenção sobre o Comércio 
Internacional das Espécies da Fauna e da Flora Silvestres Ameaçadas de Extinção (CITES) e 
Fundação Nacional do Índio (FUNAI). 
 À minha coorientadora Gabriela, que me deu a oportunidade de fazer um Doc 
Sanduíche a partir de recursos advindos de seus projetos, com apoiando e incentivo. Assim, 
conheci tive novas experiências profissionais em outro país, instituição, laboratório, etc. Grato 
a Seth Newsome e Christy Mancuso pela oportunidade e acolhimento para a execução deste 
projeto, dando todo o suporte necessário para minha integração social e laboratorial e 
superação das dificuldades em Albuquerque (NM, EUA). Toda a experiência e conhecimento 
foi muito além das expectativas iniciais, meu obrigado. 
 À minha amiga e orientadora Adriana Malvasio, pela iniciação científica, inserção a 
pesquisa, incentivo, oportunidades, colaboração, auxílio e ajuda, amizade e carinho. Ao 
Thiago Portelinha e Melina Simoncini, pela colaboração e auxílio nos trabalhos com 
crocodilianos e apoio para pesquisa. 
 Às minhas companheiras Jennifer e Raiane, que participaram em parte desta 
caminhada e conquista. Grato por todo amor e carinho, atenção, auxílio e paciência. Sejam 
felizes em suas vidas, todo o sucesso a vocês. 
 Aos colegas e amigos do Laboratório Relações Solo e Vegetação, pelo acolhimento, 
amizade, convivência, aprendizado, ajudas, críticas, diversão e confraternização, sugestões: 



v 
 

Tiago, Ray, Jéssica, Giovanna, Vinícius, Glauber, João Paulo, Juliana, Fábio Santos, Fábio 
Costa, Renata, Ingrid, Mariana, Henrique, Rodrigo, Alex, Messias, Ranne. 
 Aos colegas e amigos da CHUNB – Coleção Herpetológica da Universidade de 
Brasília, pela amizade, convivência, críticas, interações e confraternização, sugestões e 
colaborações: Florencia Breitman, Fabrícius Domingos, Justin Bagley, Helga Wiederhecker, 
André Barreto-Lima, Santos Balbino, Tacísio Abreu, Laís Veludo, Yan, Bernardo, Heitor, 
Vitor, Joseana, Pedro Campelo, Carlos José, Ana Cecília, Anna Carolina, Izabella Silva, João 
Pantoja, Gabriela Carvalho, Simone, Humberto Nappo, Laís Machado, Leandro Godinho, 
Bruno Araújo, Júlio Miguel, Cecília, Deborah, Carolina, Gabriel Caputo, Maria Luiza, 
Henrique, Almir, Davi Pantoja, Arthur, Gabriel, Tayná e Anandha. 
 Aos colegas e amigos do laboratório do Seth Newsome em Albuquerque, NM, por 
compartilhar ideias, sugestões, críticas, convivência, ensinamentos, paciência, 
confraternizações e dificuldades: Christy, Viorel, Geraldine, Juliano, Laura Pages, Emma, 
Phill, Sabina, Sophie, Vishua, Laura, Jessica, Alexi e Zoë. 
 Aos colegas e amigos de sala da Pós-Graduação, pelas amizades, descontrações, e 
bate-papos durante disciplinas, confraternizações, dia-a-dia na universidade: Carlinha, Júlio, 
Carlos, Lia, Priscila, Igor, Marcelo e Luiz. 

A todos os professores integrantes do Programa de Pós-Graduação em Ecologia. Seus 
ensinamentos, conhecimento e experiências foram essenciais para a construção do meu 
conhecimento sobre Ecologia ao longo do doutorado. 

Ao Programa de Pós-Graduação em Ecologia e à instituição Universidade de Brasília 
por todo o apoio e pela oportunidade de carregar a bandeira da instituição sobre todo o processo 
de estudo e pesquisa. 

Ao CNPq e CAPES pela concessão das bolsas de estudo e suporte financeiro para minha 
formação. À The Rufford Foundation pelo suporte financeiro para execução deste trabalho, com 
participação crucial.  
 

  



vi 
 

RESUMO  

 

Modificações da paisagem através da conversão e fragmentação de habitat afetam a 

persistência da biodiversidade em planícies de inundação devido às alterações nas condições 

ambientais, de recursos e dinâmica populacional (ocupação, movimento, distribuição) na 

paisagem. Esses efeitos negativos podem ser observados através da condição populacional de 

saúde e mudanças de nicho trófico. Avaliamos os impactos das modificações da paisagem 

sobre a biodiversidade da planície de inundação do rio Araguaia usando o predador Caiman 

crocodilus (Crocodylia, Alligatoridae) como espécie indicadora. Modelamos parâmetros de 

nicho trófico dos jacarés (estimados pela análise de isótopos estáveis) e índice de condição 

corporal (SMI) com características da paisagem, contabilizando a variabilidade do habitat, 

sexo e ontogenia. Ademais, verificamos diferenças em produtores primários entre corpos 

hídricos de áreas naturais e antropogênicas usando a análise isotópica de carbono em 

aminoácidos essenciais. Diferenças no uso de recursos para sexo e ontogenia sugerem uma 

partição de nicho. A dinâmica sazonal e conectividade na planície de inundação propiciam 

que habitats partilhem recursos usados pelos jacarés. A cobertura de pastagem afetou 

positivamente a largura de nicho, com altos valores distribuídos em regiões agrícolas. Fontes 

basais das teias alimentares diferiram entre habitats naturais (lagos e rios) e antropogênicos 

(canais e açudes), com carbono agrícola suportando em parte teias alimentares em áreas 

agrícolas. Jacarés apresentaram melhores condições corporais em habitats antropogênicos, 

indicando melhores características para forrageamento. Áreas agrícolas relacionadas à 

produção de arroz irrigado são matrizes de alta qualidade para a persistência de jacarés. Nosso 

estudo sugere que políticas ambientais, de conservação e manejo da terra devem considerar 

características da paisagem e condições do habitat para que a biodiversidade perdure em 

paisagens modificadas, inclusive mitigando impactos agrícolas negativos. Corpos hídricos 

antropogênicos e áreas agrícolas podem conciliar objetivos orientados à sociedade e 

biodiversidade, fornecendo serviços ecossistêmicos e habitats para espécies tolerantes às 

modificações da paisagem. 

 

Palavras-chaves: entrada de carbono agrícola; conectividade; fragmentação; variação de nicho 

intraespecífico; configuração e composição da paisagem; habitats seminaturais. 
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ABSTRACT 

 

Landscape modifications from habitat conversion and fragmentation affect biodiversity’s 

persistence in floodplains due to alterations in the environmental conditions, resource 

diversity, and population dynamics (occupation, movement, distribution) across landscape. 

These negative effects can be observed through populations’ health conditions and trophic 

niche shifts. We assessed impacts of landscape modifications upon biodiversity in the middle 

Araguaia River floodplain using the top predator Caiman crocodilus (Crocodylia, 

Alligatoridae) as indicator species. We modeled the parameters of caiman trophic niche 

(estimated by stable isotope analysis) and body condition index (SMI) with the landscape 

features, accounting with habitat, sex, and ontogeny variability. Furthermore, we verify 

differences in primary producers between waterbodies from natural and anthropogenic areas 

using carbon isotope analysis of essential amino acids. Differences in the resource use for sex 

and ontogeny suggest a niche partitioning. Seasonal dynamics and connectivity in the 

floodplain allow habitats to share resources used by caimans. Pasture coverage affected 

positively the caiman niche width, with high values distributed in agricultural region. Basal 

sources of food webs differed between natural (lakes and rivers) and anthropogenic habitats 

(ditches and man-made ponds), with agricultural carbon supporting in part food webs in 

agricultural areas. Caimans showed better body conditions in anthropogenic than in natural 

habitats, indicating better features for foraging. Agricultural areas related to irrigated rice 

yields are a high-quality matrix for caiman persistence. Our study suggests that environmental 

policies, conservation planning, and land use management should consider landscape features 

and habitat condition for wetland biodiversity endures in human-modified landscapes, besides 

mitigating negative agricultural impacts. Anthropogenic wetlands and agricultural areas can 

conciliate human-oriented and biodiversity-oriented purposes, providing ecosystem services 

and habitats for some species tolerant to landscape modifications. 

 

Keywords: agricultural carbon input; connectivity; fragmentation; intraspecific niche 

variation; landscape configuration and composition; semi-natural habitats.  
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INTRODUÇÃO GERAL 

 

 Estima-se a distribuição mundial de áreas alagáveis (wetlands) entre 7 milhões km² 

(Whigham 2009) e 12.8 milhões km² (Millennium Ecosystem Assessment 2005; Zedler & 

Kercher 2005). No Brasil, as áreas alagáveis representam aproximadamente 20% do território 

nacional, distribuídas principalmente pelo Pantanal e bacia dos rios Amazonas, Araguaia, 

Guaporé, Mamoré e Mortes (Junk et al. 2014). Áreas alagáveis possuem alta funcionalidade e 

complexidade ecológica que proporcionam bens e serviços ecossistêmicos vitais para a 

sociedade (Hails 1997; Baron et al. 2002; Millennium Ecosystem Assessment 2005; Maltby 

2009). A alta biodiversidade associada também exerce papel fundamental na estabilidade, 

resistência e resiliência deste ecossistema (Scheffer et al. 2001; Hooper et al. 2005; Rooney et 

al. 2006; Duffy et al. 2007). No entanto, a exploração exacerbada dos serviços ecológicos tem 

fragilizado e prejudicado a integridade, estrutura e funcionalidade das áreas alagáveis por 

alterações geomorfológicas e hidrológicas (perda de área, uso da terra, represamento, diques, 

drenagem), faunísticas (caça e pesca, extinção e invasão de espécies exóticas), 

contaminadoras (eutrofização e agroquímicos) e climáticas (Baron et al. 2002; Brinson & 

Malvárez 2002; Maltby 2009). 

 A conversão de áreas alagáveis para atividades agropecuárias tem profundos efeitos 

sobre a biodiversidade e processos ecológicos devido à perda e fragmentação de habitat e 

alteração da matriz (Fischer & Lindenmayer 2007; Haddad et al. 2015). Mudanças na 

composição e configuração da paisagem podem afetar como as espécies usam, exploram e 

acessam habitats e alimentos, consequentemente influenciando sua persistência (Bennett et al. 

2006; Villard et al. 2007; Liao et al. 2017). A configuração, o tamanho e a qualidade do 

habitat são determinantes na dinâmica de ocupação, distribuição e extinção local de 

populações (Fahrig 2003; Ewers & Didham 2006). Como consequência, há alterações nas 

interações tróficas, integridade da teia alimentar e vias de fluxo de energia na cadeia trófica 

aquática (Hillebrand & Shurin 2005; Duffy et al. 2007; Cardinale et al. 2012). Assim, o 

conceito de nicho trófico baseado nas dimensões de recursos e hábitats (Chase & Leibold 

2003) fornece bases teóricas para investigações e compreensão das mudanças e adaptações da 

dieta e ocupação de hábitats das espécies para persistir em áreas antropogênicas sob constante 

modificações da paisagem. 

 Em ambientes alterados, a disponibilidade e diversidade de recursos é reduzida 

(Tscharntke et al. 2012). Conforme a disponibilidade de recursos e requisitos nutricionais das 
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espécies, tais ambientes condicionam recursos não saudáveis, de baixo ganho energético e 

conteúdo nutricional, repercutindo na condição corporal individual e populacional (Lane et al. 

2014; Smyth et al. 2014; Gallego-Carmona et al. 2016). Portanto, uma rápida avaliação da 

saúde dos indivíduos pode revelar estressores ambientais ou antropogênicos operando em 

pequenas escalas espaciais antes que toda a população decline (Janin et al. 2011; Ellis et al. 

2012). Através do uso de índices de condição corporal – que indicam o estado energético, 

saúde ou condição fisiológica e nutricional (Peig & Green 2009, 2010), estudos ecológicos e 

de conservação têm demonstrado efeitos negativos de algumas ameaças ambientais e 

antropogênicas, incluindo perda e perturbação no habitat, pesticidas (revisado em Stevenson 

& Woods, 2006) ou efeitos positivos de ações de restauração e práticas de gestão hídrica 

(Fujisaki et al., 2009; Mazzotti et al., 2009). Em ambientes e paisagens alteradas surge a 

oportunidade de avaliar os mecanismos pelos quais os atributos da paisagem conduzem 

indivíduos e populações a condições saudáveis adequadas, identificando aqueles que melhor 

mitigam os impactos antrópicos e, portanto, potencial para contribuir para as práticas de 

conservação e manejo. 

 Em planícies de inundação, os crocodilianos são predadores de topo e importantes 

atores na funcionalidade de ecossistemas aquáticos e terrestres quanto ao funcionamento, 

integridade e estabilidade de teias alimentares (Mazzotti et al. 2009; Rosenblatt et al. 2013; 

Somaweera et al. 2020). São capazes de utilizar hábitats e paisagens em larga extensão, com 

exploração dos diversos recursos disponíveis devido a comportamentos distintos provocados 

por fatores ontogenéticos e sexuais (Barão-Nobrega et al. 2016; Thorbjarnarson 1993). Além 

disso, alguns crocodilianos demonstram adaptabilidade ecológica e resiliência para persistir 

em paisagens agrícolas, como açudes, canais de irrigação, barragens e represas (Borteiro et al. 

2008; Marques et al. 2016). Presumidamente, modificações na configuração e composição da 

paisagem podem afetar os crocodilianos através de efeitos bottom-up e com severas 

consequências para cadeia alimentar e funcionamento ecossistêmico quando perdidos (Estes 

et al. 2011; Ripple et al. 2014). Portanto, são organismos modelo para detectar e investigar os 

efeitos da modificação da paisagem e perturbação antropogênica na cadeia alimentar, bem 

como avaliar o papel da variação de características intraespecíficas na dinâmica trófica.  

 Diante do exposto, este estudo visa avaliar os efeitos da alteração da paisagem e uso 

da terra sobre a largura do nicho e condição corporal de Caiman crocodilus (Crocodylia, 

Alligatoridae). Caiman crocodilus (jacarétinga) é uma espécie indicadora da biodiversidade 

na bacia do médio rio Araguaia, Tocantins, útil como organismo modelo para detectar e 

monitorar impactos ambientais devido à alta detectabilidade, movimentos sazonais e 
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ontogenéticos em uma variedade de habitats terrestres e aquáticos, inclusive naturais e 

antropogênicos. Esta tese está estruturada em três capítulos: 

 Capítulo 1 – Aborda-se os efeitos da variação intraespecífica quanto aos atributos de 

sexo, ontogenia e uso do habitat sobre as dimensões do nicho trófico (largura e posição) de C. 

crocodilus, em uma paisagem agrícola sob uma abordagem temporal utilizando-se da técnica 

de análise de isótopos estáveis de carbono e nitrogênio. Este capítulo foi submetido e seguiu 

as normas da revista PLOS ONE (Qualis A1 em Biodiversidade).  

Capítulo 2 – Investiga-se os efeitos das modificações da paisagem sobre teias 

alimentares na planície de inundação do rio Araguaia, utilizando C. crocodilus como 

organismo modelo deste estudo e espécie indicadora para a biodiversidade da região. Ao 

longo de diferentes paisagens sob diferentes tipos de uso da terra na planície de inundação do 

Araguaia, avaliou as mudanças na composição e configuração da paisagem sobre os 

parâmetros de nicho trófico (posição e largura) de C. crocodilus em uma abordagem 

espacialmente explicita. Este capítulo seguiu as normas da revista Journal of Applied 

Ecology.  

Capítulo 3 – Avalia-se os efeitos das modificações da paisagem sobre a condição 

corporal de C. crocodilus ao longo de diferentes paisagens sob diferentes tipos de uso da terra 

na planície de inundação do Araguaia, buscando as características da paisagem que 

possibilitam populações viáveis e maximizam sua persistência. Este capítulo seguiu as normas 

da revista Freshwater Biology.  
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CAPÍTULO 1. SOURCES OF INTRASPECIFIC VARIATION IN THE ISOTOPIC 

NICHE OF CAIMAN CROCODILUS (REPTILIA, ALLIGATORIDAE) IN AN 

AGRICULTURAL LANDSCAPE 

 

 

ABSTRACT 

 Intraspecific variation is a driver of the resource use of species, with ecological 

implications for the structure and stability of food webs. Habitat use varies according to traits 

of sex and body size, conducting to variations in resource exploitation and niche parameters 

of populations. However, human disturbance can impact communities and food webs that 

reflects in trophic niche changes due to alterations in the resource diversity and availability. 

Using stable isotopes analysis, we assessed the effects of sex, ontogeny, and habitat use on the 

trophic niche of Caiman crocodilus in an agricultural landscape of Central Brazil. Moreover, 

we used different body tissues to evaluate temporal variations in the trophic niche. Females 

had a larger niche width than males, although sexes had high niche overlaps, indicating that 

they share a greater part of resources. We observed ontogenetic trophic shifts: trophic level 

increases with snout-vent length (SVL), while basal source differs with SVL but was 

dependent on sex. Such patterns suggest partitioning of food resources through a sexual body-

sized organization that could reduce intraspecific competition. Caiman niche width indicated 

differences in the use of food resources between habitats, but this was not related to habitat 

origins (natural or anthropogenic origins). High niche redundancy apparently results from 

movements across interconnected habitats. Despite the strong wet-dry seasonality in the 

floodplain, we found no temporal variation in the trophic niche. Our results suggest that 

Caiman crocodilus is a dietary generalist but an isotopic specialist, which results from the 

mutual effect of diet and diet-tissue discrimination factors. Since that anthropogenic habitats 
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can increase the susceptibility of caiman populations to harmful impacts, intraspecific 

variation should be the concern of decision-makers and stakeholders for sustainable 

management and conservation actions. 

 

Keywords: anthropogenic habitats; niche width; niche overlap; sexual niche variation; 

temporal invariability; isotopic specialist 

 

INTRODUCTION 

 Intraspecific variation has significant ecological effects on populations, communities, 

and ecosystems, mainly acting as the raw ingredient of natural selection (when heritable) and 

a factor that promotes coexistence [1, 2]. Despite receiving diminished attention at the turn of 

the century, interest in intraspecific variation has resurged, and it is regarded as important as 

interspecific variation in studies of community assembly and dynamics [3]. Through 

ecological and evolutionary processes, intraspecific trait variation influences population 

dynamics, community assembly, and ecosystem functioning. For instance, intraspecific trait 

variation affects predator-prey interactions, both at the individual and population levels, 

which in turn can modify the structure and stability of food webs [4-7]. Through phenotypic 

plasticity and contemporary evolution, human activity is a powerful driver of change in 

species traits, implying dramatic and harmful ecological effects [8, 9]. Therefore, 

understanding intraspecific variation is crucial to predicting population processes and 

dynamics in the face of changing environments and to promoting successful management and 

conservation of species. 

 Intraspecific variation is evident in the sexual and body size/age traits of species [10, 

11]. By reducing intraspecific competition, such variation can drive habitat segregation and 

coexistence [12, 13]. Body size is a structural-functional regulator of food webs, trophic 
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interactions, and other ecological processes [13, 14]. Ontogenetic shifts in metabolic rates and 

energetic requirements with increasing body size can generate functionally separate groups 

with distinct ecological niches due to changes in resource use and foraging areas [15]. Hence, 

niche width and trophic level can be positively related to body size due to a strong predator-

prey size relationship in size-structured food webs [16]. In the same way, sexual differences 

in predation-risk, dimorphism, physiological requirements, forage selection, and activity 

budgets can drive differences in resource and habitat use, causing sexual segregation [12, 17-

20]. 

 Trophic ecology has gained recent impetus by developments in stable isotope analysis 

(SIA). The quantification of carbon (δ13C) and nitrogen (δ15N) stable isotopes, incorporated 

through the diet in body tissues across the lifespan of an organism, enables insights on diet 

composition and trophic relationships through the calculation of an isotopic niche in 

multivariate δ-space [21]. δ13C and δ15N vary spatially and temporally in food webs, enabling 

inferences on the basal energy source via δ13C and on the trophic level via δ15N [22, 23]. 

Thus, SIA can inform on various aspects of an animal’s trophic ecology, including dietary and 

habitat use, trophic specialization, movement patterns, trophic coupling, and anthropogenic 

impact on the food web [24-27]. For these applications, SIA enables characterizing and 

quantifying niche properties, such as evenness and packing, width or area, position or trophic 

length, resource diversity, degree of overlap, dietary variation, and niche path trajectories [25, 

28-32]. Moreover, tissues with different turnover rates from the same individuals allow 

resource use analyses at multiple temporal and spatial scales [33, 34]. For instance, 

metabolically active tissues (e.g., plasma, liver) convey short-term dietary information, while 

inert tissues (e.g., scute, claw, hair) incorporate long-term evidence. Therefore, intraspecific 

variation in body size and sex traits can be investigated, quantified, and revealed by SIA. 
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 Isotopic niche parameters can inform about spatiotemporal patterns of niche shift, 

acting as predictors of intraspecific trait development and species responses to habitat 

alteration [35-38]. In disturbed habitats, the low resource availability alters the foraging 

behavior of species, causing either niche expansion and high niche overlap [39, 40], or 

collapse with a reduction of niche width and trophic level [27, 41]. The potential increase of 

competition causes extirpation of sensitive species, affecting community structure and the 

food web [42]. Further, human-induced trait changes can alter processes (migration, 

movement, maturation, and habitat selection) that reflect on individual fitness and population 

persistence and also trigger non-natural eco-evolutionary dynamics, including phenotypic 

plasticity and contemporary evolution [9]. The magnitude of the anthropogenic impacts on the 

food web can become even more severe when they fall on a top predator species through 

trophic cascades [43, 44]. 

 Crocodilians are top predators and play a crucial role in maintaining the structure and 

functioning of food webs in diverse ecosystems, where the strength and dynamics of trophic 

relations are regulated by their intraspecific traits variation [45, 46]. They have an ontogenetic 

dietary shift: while hatchlings feed primarily on aquatic or terrestrial invertebrate prey, adults 

feed largely on large vertebrates and fish [47, 48]. As female crocodilians build terrestrial 

nests and tend to stay at or near the nest through incubation, there are often diet differences 

between nesting females vs. non-nesting females and males [49, 50]. 

 Crocodilians take advantage of man-made or disturbed waterbodies, demonstrating 

some ecological adaptability and resilience to persist in agricultural landscapes [51, 52]. 

Therefore, they are model organisms for detecting and investigating the effects of human 

disturbance upon the food web and assessing the role of intraspecific trait variation on trophic 

dynamics. Here, using stable isotopes of carbon and nitrogen from different tissues, we 

investigate the effects of sex, ontogeny, and habitat use on the trophic niche of Caiman 
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crocodilus in a human-modified landscape at the Formoso River floodplain, central Brazil. 

We predicted (i) differences in niche width and position between tissues due to different 

turnover rates and changes in food resources induced by the seasonal dynamics of the 

floodplain; (ii) differences in niche position between natural (e.g. river and lake) and 

anthropogenic habitats (e.g. ditch and man-made ponds) due to the influence of agricultural 

nutrient input, but similarity in niche width and high overlap within habitats of the same 

origin; (iii) differences in niche width between the sexes because of differences in their 

foraging behavior, but high overlap in niche position due to larger prey items shared between 

them; and (iv) ontogenetic niche shift regarding δ15N values (trophic level) and δ13C values 

(basal source). 

 

MATERIALS AND METHODS 

Ethics statement 

 We conducted this study under permit SISBIO #13324-6, issued by Instituto Brasileiro 

do Meio Ambiente e dos Recursos Naturais – IBAMA. All tissues were collected using non-

lethal sampling techniques following standard protocols [53-55]. 

 

Study area 

 The study area is located at Praia Alta farm in the municipality of Lagoa da Confusão 

(Lat. 10°44'0.94"S; Long. 49°51'23.66"W), Tocantins, Brazil. The city is the most significant 

rice producer in the state, with 43,600 ha of irrigated rice funded by international and state 

programs to expand the infrastructure of irrigation projects [56]. The agricultural activity 

follows the hydrologic regime, with rice being cultivated in the rainy season (October to 

April) and soybean or other crops in the dry season (May to September) [57]. 

 Lagoa da Confusão is in the Formoso River basin, a sub-basin of the middle Araguaia 

River basin, in the Cerrado–Amazonia ecotone [58]. The vegetation consists of alluvial and 
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semi-deciduous forests and floodplain grasslands [59]. In the wet season, the flood pulse 

interconnects most water bodies, including abandoned channels and oxbow lakes, which can 

span about 90,000 km2, reach 8 m at some places, and last for up to 5 months [59]. The 

climate is Aw in the Köppen climate classification; the mean annual temperature is 26ºC, the 

mean annual precipitation is 1,700 mm, and the air relative humidity is 40% in the dry season 

and 90% in the wet season [59-61]. 

 

Sampling 

 We sampled caimans in four habitats in July 2016: (i) river – the Formoso River, a 

tributary of the Javaés River, ca. 70 m wide and 5 m deep; (ii) lake – the Retiro Lake, 

covering ca. 5 ha, surrounded with riparian vegetation, and used for cattle watering; (iii) pond 

– a muddy water reservoir (0.3 ha, 1 m deep) for cattle watering, surrounded by pastures and 

with aquatic macrophytes; (iv) ditch – irrigation channels for agriculture (3 m wide, ca. 1.5 m 

deep). We captured 42 caimans in nocturnal spotlight surveys with the aid of locking cable 

snares or by hand [62, 63]. The number of captures was independent of animal size in all 

study habitats. We physically restrained the mouth and limbs of captured animals with ropes 

and adhesive tape and brought them to a field lab [63]. Within 24 h, from each captured 

caiman, we recorded the snout-vent length (SVL), body mass, and sex by cloacal examination 

and palpation of the penis [64]; collected tissue samples for SIA (below); placed a permanent 

and individual mark by notching tail scutes as a standardized numerical code; and released the 

animal at the same place of capture [65]. 

 

Stable isotope analyses 

 From each captured caiman, we collected samples of the claw (5 mm), tail scute (1 

cm2), tail muscle (2 cm2), and blood (3 ml) [53-55]. We collected blood from the dorsal 



23 
 

cervical sinus using a 4 ml BD Vacutainer® blood collection kit with lithium heparin additive. 

Within four hours, we used a centrifuge (OMEGA Mod. 1 Labor Import®) to separate 

samples into red blood cells (RBC) and plasma components at 3,000 rpm for 60 s. We kept all 

tissue samples at -80ºC in a cryogenic liquid nitrogen container. Back to the university, we 

washed claw, scute, and muscle samples with a 2:1 ratio chloroform: methanol solvent to 

extract lipids [66], dried them at 50ºC to constant mass, and ground to a fine powder. We 

freeze-dried plasma and RBC samples for 24 h, weighed about 1-2 mg of each sample, and 

stored in 3 x 5 mm tin capsules. 

 The carbon and nitrogen isotope ratios were determined by combustion using an 

elemental analyzer (Carlo Erba, CHN-1100) coupled to a Thermo Finnigan Delta Plus mass 

spectrometer at the Laboratory of Isotope Ecology of the Centro de Energia Nuclear na 

Agricultura (CENA/Universidade de São Paulo), Piracicaba, SP, Brazil. The results were 

expressed in delta notation (δ), in parts per thousand (‰), based on internationally recognized 

standards. We used the following equation: δ13C and δ15N (‰) = (Rsample – Rstandard) / Rstandard 

× 1.000), where Rsample and Rstandard represent the heavy/light isotope molar ratio of the sample 

and standard, respectively. The standard used for carbon analysis was Vienna Pee Dee 

Belemnite (Vienna PDB; 13C:12C ratio = 0.01118), and the standard used for nitrogen analysis 

was atmospheric air (15N:14N ratio = 0.0036765). Internal standards (tropical soil and 

sugarcane leaves) are routinely interspersed with target samples during analysis runs. The 

long-term analytical error for the internal standards is 0.2‰ for both δ13C and δ15N. 

 Most samples had C:N ratio values within acceptable limits in plasma [mean (SD): 3.4 

(0.2)], RBC [3.0 (0.2)], muscle [3.4 (1.9)], claw [3.0 (0.1)], and scute [2.7 (0.1)] [66]. 

However, 17 muscle samples had a C:N ratio above 4.0, indicating a high lipid content with a 

likely effect on δ13C values [66, 67]. To solve the problem, we decided to impute the δ13C 
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values of these samples [68]. We did not consider using lipid correction equations because 

such equations are species- and tissue-specific, focusing mainly on fishes [67]. 

 

Statistical analyses 

 We treated the missing values (the δ13C and δ15N for plasma and RBC samples of one 

individual; n = 4) and δ13C values for muscle samples with a C:N ratio > 4 (n = 17), 

representing 0.1% of all data, through imputation using the R package MISSFOREST [69]. 

Imputation is a viable solution where missing data can introduce bias and lead to incorrect 

conclusions due to masking biological patterns [68]. The MISSFOREST is among the best 

imputation approaches for animal trait data [68, 69]. It is a non-parametric method that relies 

on Random Forest algorithms [70], and thus, a machine learning technique that handles in an 

iterative imputation scheme by training a Random Forest on observed values, predicting the 

missing values, and then proceeding iteratively [69]. Its performance is assessed using the 

normalized root mean squared error (NRMSE), where an excellent performance leads to a 

value close to 0 [69]. In our case, the NRMSE was 0.023%. 

 Then, we initially calculated summary statistics of the C. crocodilus dataset, 

expressing values as mean (standard deviation). We assessed between-habitat differences in 

the SVL of caimans using a one-way ANOVA, followed by a Tukey posthoc test, and 

between sexes using a non-parametric ranked t-test, i.e., a Mann-Whitney test. We used a 

significance level of 5% in hypothesis testing. 

 To assess the effects of tissue, SVL, habitat, and sex on δ13C and δ15N, we used a 

Bayesian model averaging approach [71, 72]. In this analysis, δ13C and δ15N values were 

response variables (analysis for each one), while tissue, SVL, habitat, sex, and all possible 

interactions among them were the predictors. We implemented the Bayesian model averaging 

with R package BMS [73] using 106 iterations, 105 burn-ins, the birth-death model-sampler, 
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BRIC Zellner’s g-prior, uniform model size prior, retention of 1,000 best models, and default 

settings for the other parameters. In the modeling, the SVL was standardized around the mean 

with one standard deviation. Necessary to Bayesian model averaging, we numerically codified 

and ordered the categorical predictors: sex (1 – female; 2 – male); habitat (1 – river; 2 – lake; 

3 – pond; 4 – ditch); and tissues according to incorporation time (1 – plasma; 2 – muscle; 3 – 

RBC; 4 – claw; 5 – scute; [74]). 

 We assessed models with the posterior model probability correlation (Corr.PMP), 

which indicates convergence, and the shrinkage coefficient as a Bayesian “goodness-of-fit” 

indicator [73]. We identified the most important predictors through the posterior inclusion 

probability (PIP), which is the sum of PMP for all models including the predictor. We also 

performed a diagnostic of the standardized coefficients posterior means (PostMean) and 

posterior standard deviation (PostSD). The posterior mean gives the intensity and direction of 

the relationship between predictor and response, while the posterior standard deviation 

reflects the strength of the dispersion of the predictor. Commonly, higher PIP values reflect in 

higher PostMean and PostSD. 

 Next, we assessed differences in resource use and niche width between tissues, 

habitats, and sexes through the standard ellipse and estimated Bayesian standard ellipse area 

metrics (SEAB; in ‰2) using the R package SIBER [28]. In the analysis, we considered SEAB 

as a niche width measure and the standard ellipse as the niche position occupied in the 

bidimensional isotopic space. We estimated the SEAB through a Markov chain Monte Carlo 

simulation with 104 iterations, 103 burn-ins, and two chains [28]. 

 To compare niche width between groups (e.g., tissue vs. tissue, habitat vs. habitat, or 

male vs. female), we performed pairwise tests using SEAB values drew in the simulations for 

each group, inferring the certainty of difference through the probability that one group was 

larger (reference group) than another: SEAgroupA > SEAgroupB [28]. Thus, the probability of 
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difference can range from 0.5 (equal probabilities or smaller certainty) to 1.00 (higher 

certainty). Furthermore, we assessed diet similarity between groups by niche overlap [28, 39], 

calculated through the area of overlap between two fitted ellipses based on the maximum 

likelihood with 95% of the data using function maxLikOverlap. We performed all statistical 

tests in R version 3.6.1 [75]. 

 

RESULTS 

 The sampled C. crocodilus had mean SVL of 56.22 (20.17) cm, with significant 

differences in SVL between habitats (F3,38 = 4.072, P = 0.013). Larger individuals were found 

in the river [69.16 (15) cm] in relation to lake [53.43 (17.2) cm], pond [48.11 (17.67) cm], and 

ditch [47.56 (22) cm]. The sex ratio was 1.1 female for 1 male, with no significant difference 

in SVL [male: 60.83 (23.41) cm, n = 20; female: 52.03 (16.13) cm, n = 22; ranked t40 = -

1.755, P = 0.08]. 

 The Bayesian model averaging for δ13C demonstrated that SVL, sex, sex:SVL 

interaction, tissue, and habitat were the most important predictors with higher PIPs and 

standardized coefficients (Table 1, Fig 1A). Also, they were included in the top model, which 

concentrated 14% of the posterior model probability (Corr.PMP = 0.99, shrinkage = 0.99). 

δ13C values decreased with SVL (Fig 2A). Females had higher δ13C and range than males (Fig 

2B). δ13C values increased according to isotopic incorporation time, from smaller values in 

plasma to higher values in scute (Fig 2C). δ13C values were smallest in the river and highest in 

the ditch (Fig 2D). The δ13C–SVL relationship was dependent on sex, with a stronger δ13C 

decrease in females than males with increasing SVL (Fig 2E). 
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Fig 1. Bayesian model averaging of δ13C (A) and δ15N (B) values. The Y-axis contains the 
predictors of carbon or nitrogen stable isotopes, while the X-axis is scaled by the posterior 
model probabilities. Colors indicate predictor inclusion in models: positive coefficients are in 
blue, negative coefficients are in red, and non-inclusion is in white. 
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Fig 2. Most significant predictors of δ13C: (A) SVL, (B) sex, (C) tissue, (D) habitat, and (E) 
interaction between SVL and sex. Tissues are ordered according to turnover rates [74]. Except 
for (C), each point corresponds to the mean δ13C value for all tissues of one individual. Lines 
indicate the BMA model fit, and their respective polygons correspond to the 95% confidence 
interval. 
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Table 1. Bayesian model averaging estimates for δ13C. 
Predictor PIP PostMean PostSD CondPosSign 

SVL 1.000 -3.422 1.025 0.000 
Sex 1.000 -0.984 0.790 0.000 
Tissue 0.999 0.403 0.127 1.000 
SVL : Sex 0.999 2.034 0.621 1.000 
Habitat 0.999 0.137 0.420 0.489 
Habitat : Sex 0.524 0.253 0.283 1.000 
Habitat : SVL : Sex 0.476 -0.111 0.184 0.001 
Habitat : SVL 0.229 0.053 0.276 0.474 
Tissue : SVL : Sex : Habitat 0.108 -0.002 0.010 0.227 
Tissue : Habitat 0.097 -0.006 0.030 0.000 
Tissue : SVL : Habitat 0.082 0.000 0.013 0.392 
Tissue : Sex : Habitat 0.081 -0.001 0.014 0.408 
Tissue : SVL 0.070 -0.001 0.040 0.154 
Tissue : SVL : Sex 0.069 0.001 0.023 0.295 
Tissue : Sex 0.068 -0.004 0.046 0.042 

PIP: posterior inclusion probabilities, i.e., the sum of posterior model probabilities for all 
models wherein a predictor was included; PostMean: coefficients averaged over all models; 
PostSD: coefficients’ posterior standard deviations; CondPosSign: posterior probability of a 
positive coefficient expected value conditional on inclusion. 
 

 For the δ15N, the Bayesian model averaging analysis indicated that the predictors did 

not have a good percentage of inclusion in the best models, resulting in the null model as the 

top model, which corresponded to 39% of the posterior model probability (Corr.PMP = 0.94, 

shrinkage = 0.99, Fig 1B). The most important predictors were sex and SVL, with higher PIPs 

and standardized coefficients (Table 2). Both predictors were in the second-best model, 

explaining only 14% of the posterior model probability. Although SVL had a negative 

coefficient, it was positive in 63% of the models (see CondPosSign in Table 2), demonstrating 

an overall positive relationship with δ15N (Fig 3A). For sex, males had higher δ15N values 

than females (Fig 3B). The remaining predictors had meager contributions to posterior model 

probability and smaller PIPs and standardized coefficients, indicating a small predictive 

power. 
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Fig 3. Most significant predictors for δ15N: (A) SVL, (B) sex. Each point corresponds to the 
mean δ15N value for all tissues of one individual. The line is the BMA model fit, and its 
respective polygon corresponds to the 95% confidence interval. 

 

Table 2. Bayesian model averaging estimates for δ15N.  
Predictor PIP PostMean PostSD CondPosSign 

SVL 0.358 -0.030 0.266 0.637 
Sex 0.341 0.024 0.200 0.853 
Habitat 0.157 -0.025 0.112 0.316 
SVL : Sex 0.132 0.050 0.151 0.978 
Tissue 0.071 0.001 0.013 0.962 
Habitat : SVL 0.051 -0.013 0.070 0.000 
Habitat : Sex 0.050 0.016 0.076 1.000 
Habitat : SVL : Sex 0.023 0.004 0.030 0.946 
Tissue : SVL 0.002 0.000 0.005 0.043 
Tissue : SVL : Sex 0.002 0.000 0.003 0.996 
Tissue : Sex 0.001 0.000 0.003 0.994 
Tissue : SVL : Habitat 0.001 0.000 0.001 0.000 
Tissue : Habitat 0.001 0.000 0.001 0.010 
Tissue : Sex : Habitat 0.000 0.000 0.001 0.615 
Tissue : SVL : Sex : Habitat 0.000 0.000 0.001 0.752 

PIP, posterior inclusion probabilities, i.e., the sum of posterior model probabilities for all 
models wherein a predictor was included; PostMean, coefficients averaged over all models; 
PostSD, coefficients’ posterior standard deviations; CondPosSign, posterior probability of a 
positive coefficient expected value conditional on inclusion. 
 

 Concerning isotopic niches, the tissues were concentrated in a specific isotopic region, 

with high overlap overall (Fig 4A). Muscle–scute ellipses had the smallest niche overlap 

(22.6‰2), while RBC–plasma had higher overlaps (35.7‰2, S1 Table). Niche width varied 
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significantly among tissues (Fig 4D, S2 Table), with the ascending order: muscle (24.5‰2), 

scute (32.6‰2), claw (32.8‰2), plasma (36.2‰2), and RBC (41.6‰2). 

 

 
Fig 4. Isotopic niches and estimated niche width for tissues (A, D), habitats (B, E), and 
sexes (C, F). Scatter plots for habitats and sexes exhibit mean isotopic values of all tissues from 
each individual. Solid lines represent the core isotopic niche space. Black dots correspond to 
the mean, and boxes represent 50%, 75%, and 95% credibility intervals. 

 

 Habitats also concentrated their isotopic niches, whereas pond had a visible large 

niche and a short displacement in location (Fig 4B). Niche overlap area ranged from 8.9‰2 
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between river and pond to 19.8‰2 between lake and pond (S3 Table). Overall, the pond 

(39.9‰2) and lake (33.7‰2) had larger niche widths compared to the river (15.0‰2) and ditch 

(15.4‰2) (Fig 4E, S2 Table). Patterns of niche width and overlap between habitats within 

tissues overall resembled patterns of the pooled tissues, except for muscle (S1 Fig). 

 The females’ niche encompassed fully the males’ niche, with overlap area of 22.8‰2 

(Fig 4C). There was a pronounced difference in niche width between sexes, with females 

having a larger niche than males (respectively, 45.5‰2 and 21.1‰2, Fig 4F). Overall, patterns 

of niche width and overlap between sexes within habitats (S2 Fig) or tissues (S3 Fig) 

resembled those of the pooled data. 

 

DISCUSSION 

 Patterns of variation in the trophic niche of a population reveal mechanisms that 

reduce intraspecific competition for habitat or food resources and improve population fitness. 

Our study contributes with new information and perspectives on habitat and resource use of a 

semi-aquatic top predator population, revealing a particular dynamic in the human-modified 

floodplain reflected in (i) temporal invariability of the trophic niche; (ii) discrete differences 

in the food resource diversity among habitats; and (iii) resource partitioning driven by sexual 

and ontogenetic differences in the foraging behavior across trophic levels and basal sources. 

 Seasonal isotopic shifts are known in basal sources and consumers of the floodplains 

[76, 77]. These shifts are induced by trophic and nutrient dynamics associated with biotic and 

abiotic processes [22, 78-80], as well as by anthropic activities and land use change [36-38, 

41]. In our study, Caiman crocodilus showed variation in δ13C values, increasing throughout 

distinct time windows (i.e., tissues), while δ15N did not differ among tissues. Hence, our 

results suggest that niche width differed among tissues mediated by a discrete variation in the 
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basal source in the floodplain food web, but not associated to shift in the trophic level to 

support a clear seasonal difference in resource availability and use. 

 Our results reflected a population of isotopic specialists and dietary generalists of a 

conceptual model developed by [24] (panel B of Fig 1), characterized by integrating short- 

and long-term isotopic information invariably and homogeneously [31]. The isotopic niche 

positions among tissues (i.e., niche ellipses) suggest the consumption of the same prey 

mixture and a constant diet throughout the tissue integration time. Diverse factors could act 

mutually to reproduce a population of isotopic specialists and dietary generalists. First, the 

isotopic variability of caiman prey could be not so high between seasons in the Formoso 

River floodplain to reflect in distinct isotopic niche positions among tissues. The variation of 

isotopic composition from the diet is assimilated and weighted to the isotopic composition of 

the tissues according to their proportional contribution, the base of diet contribution studies 

using mathematical mixing models [21, 81]. For this, we assume that available prey items 

were at isotopic equilibrium, that is, isotopic compositions in the tissues reflected the time-

integrated average of the habitats used by C. crocodilus [22]. Future directions for research 

are in identifying the isotopic composition of different prey types and determining the 

contribution of each resource in the caiman diet, considering the seasonality [76, 77], and the 

use of complementary techniques such as stable isotopes analysis and gut content analysis 

[82]. The findings will help elucidate the prey types that contribute to maintaining an isotopic 

invariability of caiman niche during the dry and wet seasons in the floodplain. 

 Second, the isotopic similarity among tissues could be driven by a diet-tissue 

discrimination factor, i.e., a difference between the isotopic composition of a consumer tissue 

and its diet, expressed in Δ13C (carbon) or Δ15N (nitrogen) [23, 34, 81]. Discrimination factors 

have several sources of variation [83, 84], including differences among tissues relates to 

protein turnover, amino acid allocation [34, 83, 84], and even diet [83]. Crocodilians 



34 
 

apparently have low discrimination factors in tissues [74, 85-87]; thus, considerable between-

tissue differences in Δ13C or Δ15N could reflect distinct ingested prey and seasonal isotopic 

niche according to tissue assimilation time. The uncertainties concerning the seasonal 

variability in prey consumption and its isotopic values, and different diet-tissue discrimination 

factors could interact to generate similar isotopic values among tissues [31]. Hence, the 

trophic niche estimates have potential similarity in the isotopic area between each tissue, 

overlapping among them. 

 Significant differences in crocodilians trophic niches are observed in cross-ecosystem 

studies (e.g., freshwater and marine-estuarine systems) in which prey differ clearly in 

diversity and isotopic composition according to primary producers and trophic levels [20, 26, 

85, 88]. Alternatively, crocodilian species also exhibit clear niche segregation under sympatry 

[82]. Our results demonstrated high niche redundancy among habitats revealed by niche 

position, indicating that they supply a large part of resources from the same pool (Fig 4B, S1 

Fig). Further, habitats did not differ in trophic structure (δ15N values) to note a human 

disturbance on caiman trophic level through some anthropogenic nitrogen input, like evidence 

in some studies [36-38]. Otherwise, we found two distinct groups of caiman niche width 

resembling the pattern throughout the tissue time windows (Fig 4E), suggesting differences in 

food resources in the habitat scale.  

 The intrinsic ecological dynamic of wetland animals in the floodplain could produce 

differences in niche width and high niche overlap among habitats in our human-modified 

landscape. The dynamic in the resource diversity and availability across several different 

aquatic habitats and waterbodies in floodplain ecosystems, mediated by seasonal flood pulses 

and hydric connectivity, could influence trophic niche parameters of consumers according to 

their habitat use and mobility [76, 89]. Consequently, habitats could vary their suitability for 

caimans or sustain a complex food web with larger animals [88, 90, 91]. For example, smaller 
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waterbodies complement the insufficient energy of autochthonous production with an 

allochthonous subsidy [79, 80]. Some studies show that terrestrial food web can be more 

important in supporting crocodilians than aquatic food web [82, 88, 91]. Therefore, large 

predators may reside in an aquatic habitat but not participate in its food web [88, 90]. On the 

other hand, larger habitats (i.e., river and lakes) can supply resources for small ones due to 

higher availability and condition to sustain a complex food web [26, 90], where caimans have 

movement patterns across habitats in the landscape [26, 85, 92]. Hence, a population in a 

habitat can comprehend a combination of individuals with broad home ranges and highly 

mobiles among habitats (larger isotopic variability) and individuals with small home ranges or 

residents (lower isotopic variability), influencing on the niche width measure for that 

population of the habitat [88, 90, 92]. In this sense, landscape configuration and composition 

impose some influence on how populations use habitats and explore the resources across the 

landscape, dynamizing trophic relations of the food webs and affecting their trophic niche 

position and width [14, 40]. 

 However, we should be alert on the food web of the habitats and caiman trophic niche 

regarding the possible influence of the anthropogenic disturbance. For example, we found 

similar results to studies in the tropical floodplains [82, 92], where the decrease in δ13C values 

is associated to C3 carbon from autochthonous aquatic resources [82]. Nonetheless, a C3 

carbon may come from soybean and rice crops, which have C3 photosynthetic pathway and 

are the most common crops harvested in the Formoso River floodplain [57]. The occurrence 

of caimans in agricultural ditches can imply in the incorporation of agricultural C3 inputs and 

differ from natural habitats. To investigate such effect that bulk tissue stable isotope analysis 

is unable, the use of compound‐specific stable isotopes analysis (CSIA) can be ideal for 

discriminating and identifying differences in the basal source of natural and anthropogenic 

habitats [93, 94]. Another way, the land use cover may promote C4 energy source in the food 
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web due to pasturelands in the landscape [37, 39, 77], generating larger niches and high 

overlaps [37, 39]. Although our results did not show that caimans incorporate C4 energy 

source (δ13C > -18‰), populations in man-made ponds have potential susceptibility for such 

effect. 

 Additionally, we observed that ditch and river had smaller niche width. Studies that 

report smaller niche widths suggest a homogenization of resource, and loss of multiple energy 

flow pathways in the agricultural system [27, 41], which have implications to structure and 

stability of food webs [6, 95]. However, caimans could be coping with the cost of habitat 

alteration, changing the feeding strategy at the individual level to reduce intraspecific 

competition to persist in disturbed habitats [96, 97], developing some degree of individual 

specialization [1, 4], including mediated by sex [18-20]. Future studies can investigate the 

hypothesis of individual specialization as a mechanism for adaptation of caimans in the 

disturbed areas. 

 Sexual body-size dimorphism can trigger niche divergence and decrease intersexual 

competition [20, 98]. This can result from differences related to physiological requirements 

and cost-benefit ratios of prey, conducting in distinct resource use on the same habitat and 

enabling the coexistence of individuals in the population [12, 17-19]. For example, sexual 

niche segregation can be evident seasonally due to sex-specific seasonal foraging behavior 

related to reproduction [17, 19]. In C. crocodilus, prior conventional dietary studies reported 

no divergence between sexes [47, 48], but new information associated nesting strategy and 

reproduction period brought evidence of sexual and seasonal dietary differences [49]. Nesting 

females (reproductively active at SVL > 60 cm) change the diet to more terrestrial prey in 

reason of the nesting attendance (~3 months) compared to non-nesting females and males that 

stay in the waterbody and consume aquatic prey [49]. Our findings revealed through stable 

isotopes that the female population had a larger niche than the male population in reason of 
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resource exploitation varying as the habitat (S2 Fig). Although we could not infer about 

seasonal period and reproduction status (not possible due to ultrasonography tools and sample 

size restrictions), such understanding supports our results; it seems plausible that our female 

population could have comprehended reproductive ones that forage during the nesting 

activity, broadening the female niche width. Otherwise, the high overlap between sexes 

indicates the similarity and sharing of resources. The verification of isotopic niches for each 

habitat and throughout the tissue time windows provides compelling evidence of high 

overlaps (S2 and S3 Figs). 

 The ontogenetic shifts suggest a sex-related body-sized organization to reflect niche 

partitioning. In our study, δ15N demonstrated a positive relationship with the ontogenetic shift 

and no statistical difference between sexes. The positive body size-δ15N relationship reveals 

the predicted shift in trophic level [35, 88, 92, 98]; hatchlings consume prey of lower trophic 

levels (invertebrates in larger quantity), while adults consume more protein-rich diets 

composed of prey in higher trophic level, like larger vertebrates and fishes [47, 48, 98]. 

Additionally, we found that δ13C was dependent on sex during trophic ontogenetic shifts: 

females had a higher negative slope than males, suggesting a distinct basal source. 

Considering both patterns, δ13C and δ15N, it is probable that caimans may be partitioning food 

resources on a microhabitat scale [35]. Such findings indicate a social organization to 

decrease intraspecific competition with a distinct niche shift as the ontogeny and sex. Further, 

agonistic behaviors can limit some groups to the access of food resources in the microhabitat 

level, forcing a niche partitioning [35, 92]. 

 The intraspecific variation in caimans must be the concern of environmental decision-

makers and stakeholders since that caimans use anthropogenic habitats and human-

crocodilians conflicts can generate sex-related mortality – due to sexual dimorphism (males 

are larger than females) – with implications on the population sex-ratio and possible local 
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population declines. The sex-specific diets may lead to differential exposure to anthropogenic 

pollutants or agricultural nutrient input [12], the nesting strategy and foraging behavior of 

reproductive females may increase their chances of consuming terrestrial prey with 

agricultural origins [49, 50]. Contributions to reduce deleterious effects on a determined 

intraspecific trait relates to recognition by landowners that anthropogenic waterbodies could 

comprehend ecological purposes too, implicating in the sustainable management of water 

resource and land use associated to actions of waterbody restorations to enhance ecological 

results. For instance, actions that improve habitat conditions to several wetland species 

beyond caimans, such as habitat heterogeneity, diversity and connectivity, water stability, 

native vegetation buffer zone, non-use of agrochemicals. 
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SUPPORTING INFORMATION 

 
FIGURES 

 

S1 Fig. Isotopic niches and estimated niche width for habitats. Habitat data for plasma (A, 
F), muscle (B, G), RBC (C, H), claw (D, I), and scute (E, J). Solid lines represent the core 
isotopic niche space. Black dots correspond to the mean and boxes represent the 50%, 75% 
and 95% credible intervals. 

 

S2 Fig. Isotopic niches and estimated niche width for sexes. Sex data in the river (A, E), 
lake (B, F), pond (C, G), and ditch (D, H). Scatter plots had the isotopic values from all 
tissues. Solid lines represent the core isotopic niche space. Black dots correspond to the mean 
and boxes represent the 50%, 75% and 95% credible intervals. 

 

S3 Fig. Isotopic niches and estimated niche width for sexes. Sex data for plasma (A, F), 
muscle (B, G), RBC (C, H), claw (D, I), and scute (E, J). Scatter plots had the isotopic values 
from all habitats. Solid lines represent the core isotopic niche space. Black dots correspond to 
the mean and boxes represent the 50%, 75% and 95% credible intervals. 
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TABLES 

 

S1 Table. Niche overlap area among tissues. Values in ‰2. 

  Muscle RBC Claw Scute 
Plasma 23.3 35.7 30.6 26.2 
Muscle – 23.5 23.5 22.6 
RBC  – 32.6 28.8 
Claw   – 27.3 
Scute    – 

 

S2 Table. Probability of difference between groups for tissues and habitats. The first group 
was the largest group (reference for comparisons). 
Tissue 
Comparison Probability 
SEARBC > SEAmuscle 1.0 
SEAplasma > SEAmuscle 0.97 
SEAscute > SEAmuscle 0.90 
SEAnail > SEAmuscle 0.87 
SEARBC > SEAscute 0.84 
SEARBC > SEAnail 0.82 
SEAplasma > SEARBC 0.78 
SEAplasma > SEAnail 0.71 
SEAplasma > SEAscute 0.68 
SEAnail > SEAscute 0.55 
Habitat 
SEApond > SEAriver 1.0 
SEApond > SEAditch 1.0 
SEAlake > SEAriver 1.0 
SEAlake > SEAditch 1.0 
SEApond > SEAlake 0.7 
SEAriver > SEAditch 0.6 

 

S3 Table. Niche overlap area among habitats. Values in ‰2. 
  Ditch Lake River 
Pond 11.7 19.8 8.9 
Ditch - 17.1 11.6 
Lake  - 14.7 
River   - 
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CAPÍTULO 2. SPATIALLY EXPLICIT TROPHIC NICHE AND AGRICULTURAL 

CARBON INPUT IN THE FOOD WEB: FINDINGS FROM A SEMI-AQUATIC TOP 

PREDATOR ACROSS A HUMAN-MODIFIED LANDSCAPE GRADIENT IN THE 

MIDDLE ARAGUAIA RIVER FLOODPLAIN, CENTRAL BRAZIL 

 

 

ABSTRACT 

1. Landscape modifications for agribusiness from land-use conversion and fragmentation 

affect trophic niche of species through changes in habitat and resource diversity in a spatial 

context, including for highly mobile and generalist top predators, like crocodilians in 

floodplains. To ignore spatial context, species traits, environmental heterogeneity, and 

landscape attributes to define a trophic niche for top predators can confound and make 

misinterpretations in the assessment of anthropogenic impacts. 

2. We investigated the effects of landscape modifications upon food webs in the 

Araguaia floodplain, central Brazil, using the top predator and indicator species Caiman 

crocodilus (Crocodilia, Alligatoridae). We estimated trophic niche parameters (position and 

width) by stable isotope analysis for three tissues with different integration time, and 

evaluated changes in caimans niche parameters through spatial hierarchical Bayesian 

modeling, accounting for habitat use, intraspecific trait variation (sex and body size), and 

landscape attributes (composition and configuration). Additionally, we performed the carbon 

isotope analysis of essential amino acids to investigate differences in primary producers 

between waterbodies from natural and anthropogenic areas. 

3. Spatial distribution of stable isotope compositions showed high values in agricultural 

areas while natural areas had lower values. Habitats reflected differences in the caiman 

isotopic niche width, but their niche positions demonstrated similar locations among them 
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across tissues. Remarkably, the spatial distribution of caiman niche width demonstrated that 

the largest agricultural irrigation project had a higher value, relied on by the effect of 

extensive pasture coverage areas surrounded agricultural places. Essential amino acids 

showed a clear distinction in basal sources between natural and anthropogenic habitats. Our 

findings indicated that agricultural carbon sources can support in part caiman food webs in 

agricultural areas.  

4. Synthesis and applications. Realistic trophic responses of species face landscape 

alterations depend on intraspecific traits, habitat perception, and landscape characteristics in a 

spatially explicit context. The use of the landscape by species mediates the food web dynamic 

in fragmented landscapes. The findings that crop energy can support a top predator imply 

alterations of trophic control, energy flow dynamic, and long-term biodiversity persistence in 

human-modified landscapes. Environmental policies, conservation planning, and land use 

management should rely on spatial trophic dynamic information to implement future actions. 

 

Keywords: basal energy source, compound-specific stable isotope analysis, crocodilians, 

essential amino acids, human disturbance, landscape configuration and composition, spatial 

hierarchical Bayesian modeling, trophic dynamic. 

 

INTRODUCTION 

 Agribusiness has required extensive areas to increase food production, compromising 

natural biodiversity, and processes in the ecosystem (Phalan et al. 2013; Laurance, Sayer & 

Cassman 2014). Floodplains provide fertile soils and water for agricultural activities but 

suffer intense degradation and reduction that impact both terrestrial and aquatic ecosystems 

(Allan 2004). These debts occur in one of the wetland ecosystems with high complexity, 

productivity, and functionality that support unique and rich biodiversity and provide 
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ecosystem goods and services (Millennium Ecosystem Assessment 2005; Maltby & Baker 

2009). In the middle Araguaia River floodplain in central Brazil, the rich natural communities 

and ecosystem processes copy with the quick native vegetation conversion and waterbody 

management (pumping irrigation and damming) to supply agricultural demands and 

development, mainly soybean and rice production and livestock (Hunke et al. 2014; CONAB 

2015; Oliveira et al. 2015; Garcia et al. 2017; Araújo et al. 2019). Hence, efforts toward 

sustainable and good practices in land and water management have an important role on 

ecological integrity of floodplain ecosystems, contributing to conservation of biodiversity and 

ecosystem processes and reduction of anthropogenic negative impacts (Laurance, Sayer & 

Cassman 2014; Leal et al. 2020). 

 Biodiversity patterns and food web dynamics suffer effects of modification in multiple 

dimensions of landscape (extension, composition, and configuration) due to habitat loss, 

fragmentation, and alteration of the matrix (Fischer & Lindenmayer 2007; Haddad et al. 

2015; Liao, Bearup & Blasius 2017b). Habitat configuration, size, and quality are determinant 

in the dynamic of occupation, distribution, and local extinction of populations (Fahrig 2003; 

Ewers & Didham 2006). Matrix quality and type also play pivotal importance for population 

dynamic by mediating factors such as permeability, hostility, abiotic alteration, and resource 

availability (Prevedello & Vieira 2009; Quesnelle, Lindsay & Fahrig 2015), though its quality 

varies spatially and temporally, implying in a non-homogeneous and static factor for 

biodiversity (Driscoll et al. 2013). Because matrix and habitat quality are a species-specific 

perception, species traits play critical importance for persistence in fragmented landscapes, 

such as dispersal ability, habitat specialization, trophic level, feeding behavior (Ewers & 

Didham 2006). Landscape simplification acts as an ecological filter and drives to biotic 

homogenization in terms of biodiversity abundance and richness, where restriction to habitat 

and resource availability favors species with ecological plasticity while sensitive and 
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specialist species are eliminated (Newbold et al. 2015; Siqueira, Lacerda & Saito 2015; Le 

Provost et al. 2020). Such changes imply in serious consequences to ecological processes 

(productivity, functioning, stability, resilience, and resistance) (Scheffer et al. 2001; Duffy et 

al. 2007; Hooper et al. 2012). 

 Nowadays, stable isotopes analysis (SIA) methodology offers an integrated analytical 

assessment of biochemical cycle, food webs dynamic, and trophic niche parameters for 

organisms, commonly through carbon (d13C) and nitrogen (d15N) stable isotopes incorporated 

in body tissues (termed as bulk tissue samples) (Crawford, McDonald & Bearhop 2008; 

Shipley & Matich 2020). Through consumer–resource trophic dynamic, SIA allows to trace 

the basal carbon source via d13C (e.g., among plants with C3 and C4 photosynthetic cycles) 

and estimate trophic level via d15N due to predictable enrichment at each trophic transfer 

(Gannes, del Rio & Koch 1998; Ben-David & Flaherty 2012). The isotopic trophic niche of 

an organism (a bidimensional d-space) has elucidated ecological niche variation in body size 

and sex traits, leading to differences in resource exploitation, ecosystem or habitat use, and 

trophic position (Marques et al. 2013; Nifong, Layman & Silliman 2015). Additionally, 

applications of SIA reveal ecological responses to anthropogenic disturbances. For example, 

agricultural matrixes (pastures or croplands) alter the nutrient dynamic and proportions of 

natural C3 autochthonous production and C4 allochthonous subsidy in aquatic food webs 

(Martinelli et al. 2007; Carvalho et al. 2015; Bentivoglio et al. 2016; Parreira de Castro et al. 

2016). Under landscape modification, top predators reveal changes in the trophic dynamic and 

structure, such as trophic downgrading, niche collapses, lower niche redundancy, high niche 

overlap, energy flow homogenization, and niche shift from feeding plasticity (Layman et al. 

2007; Resasco et al. 2017; Korotkevich et al. 2018; Magioli et al. 2019; Price et al. 2019; 

Burdon, McIntosh & Harding 2020).  
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 Many assessments of the impacts of anthropogenic disturbances in the aquatic 

ecosystem using SIA make inferences from categorical or disturbance gradient design using 

dispersal-limited top predators, like fishes (Carvalho et al. 2015; Price et al. 2019; Burdon, 

McIntosh & Harding 2020). Such approaches are limited for a wetland top predator highly 

mobile and with generalist feeding behavior, like crocodilians. Recognized as a long-lived 

and large-bodied animal, crocodilians can explore all waterbody habitats and have population 

dynamic according to landscape attributes (Ouboter & Nanhoe 1988; Somaweera et al. 2020), 

exerting ecological implications for the dynamic of terrestrial and aquatic food webs 

(McCann, Rasmussen & Umbanhowar 2005; Rooney, McCann & Moore 2008). Thus, 

landscape patterns (amount, composition, and configuration of habitats and matrix types) can 

provide background information of ecological processes in the floodplains associated with 

spatial context (Wang, Blanchet & Koper 2014; Riva & Nielsen 2020). Further, spatial 

extension mediates spatial heterogeneity of stable isotope ratios in the ecosystems, including 

under small scale and human influence (Zambrano, Valiente & Vander Zanden 2010; Doi et 

al. 2013; Merlo-Galeazzi & Zambrano 2014), with direct effect in the isotopic trophic niche 

(Ceia et al. 2014; Reddin et al. 2018). To ignore spatial context, isotopic variability, and 

landscape attributes could make misinterpretations in the analyses and hide anthropogenic 

disturbances upon wetland food web through the isotopic trophic niche of a top predator. In 

this sense, the use of hierarchical Bayesian modeling allows verifying significance of species 

traits, habitat, and landscape attributes involved in the variability of trophic niche from SIA, 

accounting at the same time for spatial patterns and representations of the studied ecological 

process (Lindgren & Rue 2015; Rue et al. 2017; Wang, Yue & Faraway 2018). The 

hierarchical Bayesian approach has been a powerful and extraordinary tool to assess diverse 

ecological processes, including anthropogenic disturbance upon biodiversity (Blangiardo & 

Cameletti 2015; Abreu et al. 2020).  
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 However, studies using SIA from bulk tissue in top predators can have difficulties to 

evidence alterations in the energy flow from the basal carbon source, due to d13C has high 

similarity among aquatic and terrestrial primary producers (Finlay & Kendall 2008; Zaia 

Alves et al. 2017), and suffers other multiple sources of variations (Boecklen et al. 2011; 

Shipley & Matich 2020). As an alternative, the emergent and robust compound-specific stable 

isotope analysis (CSIA) overcomes the caveats/limitations of bulk tissue SIA to interpret and 

disentangle energy/nutrient flow across the aquatic food chain using amino acids. This is 

because primary producers in basal food web have distinct patterns in the essential amino acid 

δ13C values (δ13CEAA) based on metabolic pathways and primary source of carbon (Larsen et 

al. 2009; Larsen et al. 2013; McMahon et al. 2016). Essential amino acids are those that 

consumers cannot synthesize, having a direct route from the diet, and thus, remain with 

minimal isotopic alteration in tissue samples of organisms across the food chain (Whiteman et 

al. 2019). Applying CSIA, we can infer about the basal source of food web directly from 

consumers (Arthur et al. 2014; McMahon et al. 2015; Thorp & Bowes 2016), as well as 

examine potential human-induced changes (Thorp & Bowes 2016; Bowes, Thorp & Delong 

2019), especially agricultural carbon input across human-modified landscapes. 

 Here, we combined landscape attributes, species intraspecific traits, and trophic 

ecology of Caiman crocodilus to investigate anthropogenic impacts of landscape 

modifications upon food webs of the Araguaia floodplain in a spatially explicit approach. 

Caiman crocodilus (spectacled caiman) is an indicator crocodilian species for Araguaia 

biodiversity, useful as a model organism for detecting and monitoring environmental impacts 

due to high detectability, seasonal and ontogenetic movements across a variety of terrestrial 

and aquatic habitats in the floodplain (Rosenblatt et al. 2013; Somaweera et al. 2020). 

Applying spatial hierarchical Bayesian modeling, we investigated (1) the effects of 

intraspecific traits of sex, ontogeny, and habitat use on the carbon and nitrogen stable isotopes 
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of C. crocodilus; and (2) what landscape attributes (land use composition and wetland 

configuration) influenced and affected trophic niche of C. crocodilus. Further, we performed 

CSIA for essential amino acids (δ13CEAA) to evaluate and characterize differences in primary 

producers between waterbodies from natural areas (i.e., lake and river) and man-made 

waterbodies from agricultural areas (i.e., cattle ponds and irrigation ditches), verifying 

especially participation of crop-derived energy on C. crocodilus food web in the human-

modified environments. 

 

MATERIALS AND METHODS 

Study area 

We conducted this study in the middle Araguaia River floodplain (Figure 1). This 

region is in a highly dynamic and complex Cerrado–Amazonia transition zone in central 

Brazil, where ecotonal boundaries were recently redefined by Marques et al. (2019). The 

pronounced tropical wet-dry climate influences the flooding patterns: the discharge increases 

from November to April (wet season), when the flood pulse that can span about 88,000 km2 

of surface area at maximum flood level and interconnect several and diverse waterbodies, and 

decreases during June and September (dry season), when waterbodies are only 3.3% (2,930 

km2) of coverage area (Irion et al. 2016). Most of the phytophysiognomies consist of Cerrado 

savannas and seasonally flooded grasslands, with smaller areas occupied by alluvial and semi-

deciduous forests (Valente, Latrubesse & Ferreira 2013). The high spatial and temporal 

heterogeneity of the floodplain supports a rich and abundant biota, many endemic and 

endangered species, which are protected in several conservation units and indigenous lands, 

including in a RAMSAR site (nº 624) – the Bananal Island (RAMSAR 1998). These 

protected areas play a crucial role in limiting the fragmentation and land-use conversion 
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advances due to their biological and ecological purpose (Carranza et al. 2014; Garcia et al. 

2017).  

 
Figure 1. Location of seven sampling landscapes in the middle Araguaia River floodplain, 
Central Brazil. Hydrograph and protected areas in the region are depicted. Red points 
represent the location of captured caimans in sampling sites. The 3 km buffer indicates the 
maximum spatial region for data acquisition of landscape attributes. 

 

However, the region is under sustained pressure from agricultural development funded 

by international and state programs due to favorable topography and hydrology that turned 

this region into one of the main producers of irrigated rice in Brazil (Fragoso et al. 2013; 

CONAB 2015). The production is across several irrigation projects, where crops are 

cultivated according to the hydrological regime, rice in wet season alternating to other crops 

(e.g., soybeans, beans, watermelon) in the dry season (Oliveira et al. 2015). During the last 

decades, Tocantins state expanded the cultivated area from 49,000 to 120,000 ha between 

1989 and 2015, with a maximum of 160,000 ha in 2008 (Santos & Rabelo 2008; IBGE 2016). 
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Like in the whole Cerrado biome (Hunke et al. 2014; Dias et al. 2016), the Araguaia River 

Basin suffers sustained pressure from agricultural activities, with less than 50% of native 

vegetation remaining in the Upper Araguaia River (Ferreira et al. 2008; Coe et al. 2011), and 

experiencing changes in hydro-geomorphological dynamics due to water damming, pumping, 

sedimentation, silting, erosion, and contamination (Latrubesse et al. 2009; Coe et al. 2011; 

Oliveira et al. 2015). In the middle Araguaia River floodplain, during 1975-2013, there was a 

reduction of 26% of native vegetation coverage, driven mainly by expansion of pasturelands 

(Garcia et al. 2017). Nowadays, the land use pattern of Cerrado is changing slowly from 

extensification to intensification of agricultural activities, but pasturelands coverage remains 

large (Dias et al. 2016).  

 

Sampling 

We carried out fieldworks during the dry season of 2016 and 2018 (July to September) 

in seven localities in five municipalities of Tocantins State (Figure 1), labeled as Bananal, 

Canguçu, Cristalândia, Cooperformoso, Coopergran, Lagoa, and Xavante. We sampled 

caimans in natural (e.g., rivers and lakes) and artificial habitats (e.g., man-made ponds and 

irrigation ditches), distributed in 32 sites under distinct areas of land use and cover, including 

inside and outside of protected areas. To maximize spatial independence, localities were at 

least 20 km from each other, and sites within each locality were as apart as possible from each 

other. This distance is based on the migration, movement patterns, and home ranges described 

for C. crocodilus (Gorzula 1978; Ouboter & Nanhoe 1988).  

We captured caimans through nocturnal spotlight surveys with the aid of locking cable 

snares or by hand after locating the animals by eye-reflection, following physical restraint of 

mouth and limbs with ropes and adhesive tape (Fitzgerald 2012; Brien & Manolis 2016). The 

capture effort was independent of animal size. We recorded the snout-vent length (SVL; with 
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a 0.1 cm precision tape), body mass (with 0.1 kg precision Pesola®), and sex, determined by 

cloacal examination and palpation of the penis (Reed & Tucker 2012). We individually 

marked C. crocodilus by notching tail scutes as a standardized numerical code and released at 

the same capture local after handling (Plummer & Ferner 2012).  

 

Bulk tissue stable isotope analyses 

SIA has an essential advantage compared to conventional stomach flushing, isotopic 

compositions provide longer-term estimates of prey incorporated into predator tissue, 

irrespective of the timeframe of predator sampling, condition of the stomach (empty or not), 

or differential prey digestibility (Crawford, McDonald & Bearhop 2008; Ben-David & 

Flaherty 2012). Thus, tissues with different turnover rates from the same individual allow 

evaluating resource use at multiple temporal and spatial scales. Metabolically active tissues 

(e.g., plasma, liver) integrate short-term dietary information while metabolically inert tissues 

(e.g., scute, claw, hair) incorporate long-term information (Gannes, del Rio & Koch 1998; 

Vander Zanden et al. 2015). In this sense, we integrated a temporal analysis in our study 

assessing carbon (δ13C) and nitrogen (δ15N) stable isotopes in different tissues. Presumably, 

the effects of human disturbance can be evidenced in C. crocodilus in the short-term by 

plasma, mid-term by muscle, and long-term by claw (Caut 2013). Moreover, the differences 

among tissues could reveal crop rotation whether the crops have distinct carbon and nitrogen 

isotopic values (e.g., C3, versus C4 plants) incorporated in the local food web.  

We collected samples of the claw (~5 mm of fragments), tail muscle (1 g), and blood 

(~3 mL) of captured animals for SIA (Beaupre et al. 2004; Fleming & Fontenot 2015). The 

blood sample was obtained from the dorsal cervical sinus with a blood-collection kit using 

21G × 1′′ needles (25 × 8 mm) coupled to a 4 mL BD Vacutainer® with lithium heparin 

anticoagulant. Within four hours, we used a centrifuge (OMEGA Mod. 1 Labor Import®) to 
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separate and collect plasma samples at 3,000 rpm for 60 s. We kept all tissue samples at -80 

°C in a cryogenic liquid nitrogen container until preparation, which we washed claw and 

muscle samples with a 2:1 ratio chloroform:methanol solvent to extract the lipids (Post et al. 

2007), dried them at 50 °C to a constant mass, and ground to a fine powder. For plasma 

tissue, we freeze-dried for 24 hours. Moreover, we also collected and prepared crop samples 

from agricultural areas to characterize the anthropogenic basal source in the SIA. We used 

seeds from Coopergran locality (rice: n = 10; soybean: n = 10), dried in an oven (60 °C for 48 

h), and ground into a fine powder. Finally, we weighed about 1-2 mg for each caiman sample 

and 2-2.5 mg for each crop sample and placed them in 3 × 5 mm tin capsules for SIA. 

Carbon and nitrogen stable isotopes were determined by combustion using an 

elemental analyzer (Carlo Erba, CHN-1100) coupled to a Thermo Finnigan Delta Plus mass 

spectrometer at the Laboratory of Isotope Ecology of the Centro de Energia Nuclear na 

Agricultura (CENA/Universidade de São Paulo), Piracicaba, SP, Brazil. The results were 

expressed in delta notation (δ), in parts per thousand (‰), based on the internationally 

recognized standard. We used the following equation: δ13C or δ15N = [(Rsample - Rstandard)/ 

Rstandard] × 1000, where Rsample and Rstandard represent the heavy/light isotope molar ratio 

(13C/12C or 15N/14N) of the sample and standard, respectively. The standard used for carbon 

analysis was Vienna Pee Dee Belemnite (Vienna PDB; 13C/12C ratio = 0.01118), and the 

standard used for nitrogen analysis was atmospheric air (15N/14N ratio = 0.0036765). Internal 

standards (tropical soil and sugarcane leaves) are routinely interspersed with target samples 

during analysis runs. Long-term analytical errors for the internal standards are of 0.2‰ for 

both δ13C and δ15N. 

 Most samples had CN ratio values within acceptable limits in plasma (mean ± SD: 3.3 

± 0.2), muscle (3.3 ± 1.9), and claw (2.9 ± 0.1) (Post et al. 2007). However, 17 muscle 

samples had a CN ratio above 4.0, indicating a high lipid content with a likely effect on δ13C 
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values (Post et al. 2007; Logan et al. 2008). To solve the problem, we decided to impute the 

δ13C values of these samples (Penone et al. 2014). We did not consider using lipid correction 

equations because such equations are species- and tissue-specific, focusing mainly on fishes 

(Logan et al. 2008). 

 

Essential amino acid δ13C analysis (δ13CEAA) 

We selected 40 individuals to analyze essential amino acids (δ13CEAA) using muscle 

samples. They came from natural and anthropogenic habitats of four localities: 10 individuals 

from lakes (Canguçu: 5 ind.; Bananal: 5 ind.); 10 individuals from rivers (Canguçu: 5 ind.; 

Bananal: 5 ind.); 10 individuals from ponds (Coopergran: 5 ind.; Cooperformoso: 5 ind.); 10 

individuals from ditches (Coopergran: 5 ind.; Cooperformoso: 5 ind.). To identify possible 

participation of the agriculture activity in the caiman food web, we also analyzed rice and 

soybean samples, the most harvest crops in the Araguaia irrigation projects. We selected 

seeds from Coopergran locality (rice: n = 2; soybean: n = 3) for essential amino acids δ13CEAA 

analysis. All samples were processed and analyzed for δ13CEAA at the Center for Stable 

Isotopes at the University of New Mexico (UNM-CSI). At the UNM-CSI facility, we can 

reliably make δ13C measurements for 13 amino acids; however, for this analysis, we restricted 

measurements for seven amino acids that are considered essential for animals: isoleucine 

(Ile), leucine (Leu), lysine (Lys), phenylalanine (Phe), tyrosine (Tyr), threonine (Thr) and 

valine (Val). 

Following established protocols (Whiteman et al. 2019), an aliquot about 1-2 mg from 

each lipid-extracted muscle sample was hydrolyzed to constituent amino acids in 1mL of 6 N 

hydrochloric acid (HCl) at 110 °C for 20 hours; tubes were flushed with N2 gas for 30 s and 

sealed before hydrolysis to prevent oxidation. After, all samples were transferred into 4 mL 

vials and dried down under a steam of N2 gas for 1 hour at 110 °C in a Thermo Scientific® 
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Reacti-Therm heating module. This process converted the sample in a solid film in the vials 

that consisted of pure amino acids (Whiteman et al. 2019). To transform samples into more 

volatile forms, amino acids were derivatized to N- trifluoroacetic acid isopropyl esters using 

previously described methods (Silfer et al. 1991; Whiteman et al. 2019). In brief, samples 

were initially reacted with 1 mL of a 4:1, 2-propanol:acetyl chloride solution for an hour at 

110 °C. Samples were then dried down under N2 gas at room temperature and rinsed twice 

with dichloromethane (DCM). Lastly, samples were acetylated by adding a 1:1 trifluoroacetic 

anhydride:dichloromethane solution and reacting at 110 °C for 10 min.  

For crop analysis, we used an aliquot of about 19-20 mg from each ground samples for 

both types. They followed all methods described for caiman muscle samples, but an 

additional step was made after hydrolysis. We made the Dowex purification step, which 

consisted in passing the hydrolyzed crop samples through a cation exchange resin column 

(Dowex 50WX8 100–200 mesh) to isolate amino acids from other metabolites (Amelung & 

Zhang 2001).  

The δ13C values of individual derivatized amino acids were measured in duplicate 

using a GC‐C‐IRMS system. Derivatized samples were injected into a 60-m BPX5 gas 

chromatography column for amino acid separation (0.32 ID, 1.0 μm film thickness, SGE 

Analytical Science, Ringwood, Victoria, Australia) in a Thermo Scientific Trace 1310 gas 

chromatography, coupled to an IsoLink combustion interface attached to a Thermo Scientific 

Delta Plus IRMS (Bremen, Germany). For amino acid δ13C measurements, commercially 

available powdered amino acids (Sigma Aldrich, St. Louis, MO) were used as a primary 

reference material (PRM) that were derivatized and analyzed alongside each batch of 

unknown samples. δ13C values for each underivatized (powdered) amino acid have been 

previously measured via EA-IRMS in the UNM-CSI. The within‐run standard deviations of 



62 
 

measured δ13C values among essential amino acids in the in‐house reference material ranged 

from 0.2‰ (isoleucine) to 0.8‰ (lysine). 

Measured δ13C values of reference materials and unknown samples include carbon 

from reagents (isopropanol and N-trifluoroacetic acid anhydride) added during derivatization. 

By derivatizing and analyzing reference materials alongside unknown samples, we can 

calculate the δ13C value of the intrinsic amino acid (δXAAsample) using the following equation: 

δXAAsample = δXAAdsa – δXAAdst + δXAAstd (pstd) / pstd, where δX is the isotope of interest 

(δ13C), δXAAdsa and δXAAdst refer to the derivatized sample and standard respectively, 

δXAAstd refers to the underivatized standard, and pstd is equal to the proportion of the carbon 

derivative that was sourced from the amino acid (Silfer et al. 1991; O'Brien, Fogel & Boggs 

2002).  

 

Landscape metrics 

We assessed human land use composition and wetland configuration through 

landscape metrics based on circular buffers of 500 m, 1 km, and 3 km centered at each animal 

in the site. First, the rasters of land use/cover were obtained from MapBiomas Project 

(http://mapbiomas.org, collection 4, year: 2016 and 2018). We grouped MapBiomas land use 

classes considering five categories: waterbody, forest, savanna (savanna, grassland, non-forest 

natural formation, and other non-forest natural formation classes), pasture (pasture and other 

non-vegetated area classes), agriculture (annual and perennial crop class), and urban (urban 

infrastructure class). To improve water coverage, we incorporated a hydrography raster 

generated from a vectorial database acquired from Secretaria do Meio Ambiente e Recursos 

Hídricos of State of Tocantins (https://semarh.to.gov.br/car/base-vetorial-digital-tematica-do-

car/). Further, we improved MapBiomas land use due to differences between supervised 

coverage in loco and MapBiomas raster, reclassifying and redefining the topology guided by 



63 
 

Landsat 8 satellites images for the same months of caiman sampling in 2016 and 2018, with 

30-m pixel spatial resolution obtained from the Instituto Nacional de Pesquisas Espaciais–

INPE (Brazilian Space Agency; http://www.inpe.br/) using QGIS, version 3.12 (QGIS 

Development Team 2020). 

Second, we calculated landscape metrics in class and landscape levels for each buffer 

using the R package LANDSCAPEMETRICS (Hesselbarth et al. 2019). At the landscape level, the 

landscape division index (LDI) was the metrics selected. In the class level, the metrics 

comprehended just the proportion of class (PCLASS) for all categories to describe the 

landscape composition, while the metrics in the patch level were restricted to water coverage 

to estimate wetland configuration: mean of Euclidean nearest-neighbor distance (ENN), 

largest patch index (LPI), patch cohesion index (COHESION), and mean of patch area 

(MPA). Such landscape metrics reflect aspects of proportion, isolation, patch dominance, 

aggregation, and physical connectivity, and landscape fragmentation (McGarigal & Marks 

1995; Jaeger 2000). For standardization, each variable was named with prefix related to 

buffer, landscape attribute as a root word, and suffix related to class of land use; for example, 

“B_500m_PCLASS_Pasture” for pasture proportion in 500 m buffer, or “B_500m_LDI” for 

division index in the whole landscape in 500 m buffer. 

Third, we minimized multicollinearity among landscape metrics using the variance 

inflation factor with a maximum value of 4 in the R package USDM (Naimi et al. 2014). This 

resulted in the retention of 14 metrics with a maximum correlation of r = 0.67 among them 

(Table S1). After, we calculated the mean values of landscape metrics at each site, applied a 

log (x + 1) transformation, and standardized around the mean with one standard deviation for 

posterior analyses.  
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Data analysis 

We treated the missing values (δ13C and δ15N from eight individuals; n = 16) and δ13C 

values for muscle samples with a CN ratio > 4 (n = 17), representing 0.02% of all data (n = 

1650), through imputation using the R package MISSFOREST (Stekhoven & Bühlmann 2012). 

Imputation is a viable solution where missing data can introduce bias and lead to incorrect 

conclusions due to masking biological patterns (Penone et al. 2014). The MISSFOREST is 

among the best imputation approaches for animal trait data (Stekhoven & Bühlmann 2012; 

Penone et al. 2014). It is a non-parametric method that relies on Random Forest algorithms, 

and thus, a machine learning technique that handles in an iterative imputation scheme by 

training a Random Forest on observed values, predicting the missing values, and then 

proceeding iteratively (Stekhoven & Bühlmann 2012). Its performance is assessed using the 

normalized root mean squared error (NRMSE), where an excellent performance leads to a 

value close to 0 (Stekhoven & Bühlmann 2012). In our case, the NRMSE was 0.03%. 

We assessed differences in resource use and niche width between habitats through the 

standard ellipse space and estimated Bayesian standard ellipse area metric (SEAB; in ‰2) 

using the R package SIBER (Jackson et al. 2011). We estimated the SEAB through a Markov 

chain Monte Carlo simulation with 104 iterations, 103 burn-ins, and two chains. The SEAB 

generates a robust measure of isotopic niche width due to insensitivity to bias associated with 

sample size. Further, the generated standard ellipses produce more information about isotopic 

niche position than a simple point estimate from δ13C and δ15N means, retaining uncertainty 

from fluctuations in the ellipse location and shape (Jackson et al. 2011). Thus, the ellipse 

represents a suitable measure for the niche position, being a proxy of the richness and 

evenness of resources consumed by the population.  

To verify differences and similarities in the isotopic niche width among habitats, we 

performed pairwise comparisons between-habitat for each tissue using SEAB values drew in 
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the simulations. We assumed the certainty of difference through the probability that one group 

was larger (reference group) than another: SEAgroupA > SEAgroupB (Jackson et al. 2011). The 

probability of difference can range from 0.5 (equal probabilities or smaller certainty) to 1.00 

(higher certainty). Furthermore, we assessed diet similarity between groups by niche overlap 

through the function bayesianOverlap set to 100 draws with other parameters in default 

values. 

To assess the effect of landscape composition and wetland configuration on isotopic 

niche width of C. crocodilus, we estimated the niche width (SEAB) in the site level for each 

tissue implementing the same setting parameters described above. Before analysis, we 

selected landscape metrics that had greater relevance to niche width through R package 

BORUTA (Kursa & Rudnicki 2010). Boruta is a Random Forest-based selection method that 

identifies all-relevant variables through a comparative approach of the importance (Z-score 

values) between original and “shadows” variables (obtained by shuffling values of the 

randomized original variables). Boruta performs eliminations of the irrelevant features (Z-

scores Original var. < maximum Z-scores Shadows var.) to improve the accuracy and prediction of the 

model. We then used ntree of 2000, maxRuns of 2000, and default settings for the other 

parameters. We retained the landscape attributes with mean and normalized importance 

values above zero (meanImp and normImp > 0), obtained through function attStats (Table 

S2). 

We implemented a hierarchical Bayesian approach to model the spatial variation in the 

(i) isotopic composition (δ13C and δ15N values) under effects of intraspecific traits of sex, 

ontogeny, and habitat; (ii) isotopic niche width of C. crocodilus under effects of land use 

composition and wetland configuration across landscapes in the Araguaia floodplain. Spatial 

hierarchical Bayesian models were structured by two powerful tools: Stochastic Partial 

Differential Equations (SPDE) combined with the Integrated Nested Laplace Approximations 
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(INLA) algorithm. SPDE handles the continuous spatial stochastic process from 

spatial/geostatistical data through a discretely indexed spatial random process, the Gaussian 

Markov Random Field representation (GMRF), using a Matérn covariance function 

(Lindgren, Rue & Lindström 2011; Lindgren & Rue 2015). Through a representation of 

neighborhood mesh designs with indexed nodes, a derived matrix connects the GMRF-on-the-

mesh to the GMRF-on-the-data (Bakka et al. 2018). In this way, we construct a class of latent 

Gaussian model able to do Bayesian inference through the INLA approach, supporting the 

applicability to many related variants of additive and/or generalized models (Rue, Martino & 

Chopin 2009; Blangiardo & Cameletti 2015; Rue et al. 2017). INLA became a faster and 

accurate alternative for Bayesian inference than time-intensive Markov Chain Monte Carlo 

methods (Rue, Martino & Chopin 2009; Wang, Yue & Faraway 2018). 

Thus, we implemented SPDE and INLA approaches using the R package R-INLA 

(Rue, Martino & Chopin 2009; Lindgren, Rue & Lindström 2011), accounting for the spatial 

dependency between sampling sites and for the effects of selected predictors. We performed 

separately models for each tissue, where response variables were δ13C, δ15N, and isotopic 

niche width, while the predictors were SVL, sex, habitat, and their interactions (for δ13C and 

δ15N models) or landscape attributes (for isotopic niche width model). We applied backward 

stepwise procedures in INLA to obtain the best model using the INLAstep function in the R 

package INLAUTILS (Redding et al. 2017). Before, we standardized SVL around the mean 

with one standard deviation and applied an orthogonal contrast to categorical matrixes using 

model.matrix function.  

For each model, we evaluated the performance of different mesh designs based on 

deviance information (DIC) and Watanabe-Akaike information (WAIC) criteria 

(Spiegelhalter et al. 2002; Watanabe 2010). We created five mesh designs using the 

constrained refined Delaunay triangulation based on individual positions (in case of the δ13C 
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and δ15N models) or sampling site locations (for isotopic niche width model), by varying the 

sizes of triangles within and outside the sampled area (Figure S1), attempting to minimize any 

boundary effects (Lindgren & Rue 2015). Details about models, representation of the spatial 

Random Fields, and descriptions of the posterior estimates of hyperparameters from spatial 

hierarchical Bayesian approach are in Supporting Information. 

We investigated whether δ13CEAA values could discriminate and classify categories 

separately, indicating that primary producers of C. crocodilus food webs across human-

modified landscapes differ among habitats or localities, and what are the essential amino acids 

that best explains the pattern of classification. For that, we performed a linear discriminant 

analysis (LDA) using the R package MASS (Venables & Ripley 2002). We examined the 

reclassification error rate using a leave-one-out cross-validation approach (Larsen et al. 

2013). In the LDA, we plotted the 95% confidence interval ellipses to evidence a clear 

distinction among groups and the dataset was not standardized. Additionally, we also used the 

LDA to predict and associate crop samples to discriminated categories of caiman samples 

(Larsen et al. 2009; Larsen et al. 2013). We know that crop samples (both rice and soybean) 

came from ditch systems in the Coopergran. Thus, a high reclassification rate of crop samples 

(n = 5) within their group establishes a reliable LDA analysis to link the possible contribution 

of the agricultural source to food webs of the associated habitats in modified landscapes. All 

statistical tests were performed in R, version 3.6.1 (R Development Core Team 2019). 

 

RESULTS 

We captured 275 caimans with a sampling effort per site ranging from 9 to 14 animals. 

The minimum capture per locality was in Canguçu (n = 21, in two sites – two habitat types) 

while the maximum capture was in Coopergran (n = 49, in six sites – four habitat types). The 
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sex ratio was 2:1 (males:females) but distributed disproportionally among habitats, where 

some localities presented exclusively males in river habitat (Table S3).  

 

δ13C and δ15N values and trophic niche estimates 

The hierarchical Bayesian approach demonstrated that mesh design had different 

performances in δ13C and δ15N models as the DIC and WAIC information criteria (Table S4, 

Table S5). The spatial structure of mesh 1 was the best for all tissues in δ13C models, while 

mesh 1 (plasma and claw) and mesh 5 (muscle) were the best spatial structures for δ15N 

models. The isotopic models had similar random fields among tissues, with reduced spatial 

uncertainty met in the regions of sampled points (Figure S2; Figure S3). 

δ13C and δ15N models differed in their spatial effects among tissues, i.e., time window 

(Figure 2A; Figure 2B). Predicted spatial distribution of δ13C values enriched temporally from 

smaller values in plasma to high values in claw, and prominent difference among localities, 

especially in the Xavante, Cooperformoso, and Coopergran regions (high values) compared to 

other areas (Figure 2A; Figure S4A). Alternatively, predicted spatial distribution of δ15N 

values had lower differences among tissues, nonetheless, the localities showed consistent 

variation: high values found in the Xavante, Cooperformoso, and Coopergran regions, and 

lower values in the Bananal and natural areas surrounded Cooperformoso and Coopergran 

(Figure 2B; Figure S4B).  
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Figure 2. Predicted values from spatial hierarchical Bayesian best models for (A) δ13C, (B) 
δ15N, (C) isotopic niche width values of Caiman crocodilus according to tissue across 
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landscapes in the Araguaia floodplain. White points represent each sampled caiman (A and B) 
or sampling sites (C). The colors indicate levels of δ13C (‰), δ15N (‰), isotopic niche width 
(‰2) mean values according to the associated legend. High values in bulk δ13C and δ15N are 
related to anthropogenic habitats, e.g., irrigation systems, but surrounding natural habitats of 
these areas present lower values, depicting a spatially isotopic variability. Additionally, the 
higher caiman isotopic niche width values were concentrated in the largest agricultural 
irrigation system and related to a greater proportion of pasture coverage. Some human-
modified landscapes had similar niche width to natural landscapes in the Araguaia floodplain, 
suggesting the same intensity of resource use in these populations across the landscape. 

 

In δ13C models (Table 1), the only habitat affected that δ13C in the plasma model 

(short-term scale) was pond, with evident positive effect. In muscle (middle-term scale) and 

claw (long-term scale) models, habitats differed in δ13C values, demonstrating a clear effect in 

the pond (positive) and ditch (negative). The SVL had a negative effect on δ13C in both 

models. The participation of sex was verified in the interaction of habitat:sex:SVL, which 

males in the lake had a positive effect in the SVL–δ13C relationship.  

 

Table 1. Posterior estimates (mean ± SD and 95% credibility interval) from spatial 
hierarchical Bayesian best models relating sex, SVL, and habitat effects to δ13C values of 
Caiman crocodilus across landscapes in the Araguaia floodplain. Bold values indicate 
parameters significantly different from zero. 
Tissue Parameter Mean SD Q0.025  Q0.975   

Intercept -25.764 0.413 -26.609 -24.960  
Ditch -0.174 0.336 -0.840 0.484  
Lake -0.377 0.334 -1.039 0.274  
Pond 1.200 0.361 0.498 1.915  
Male -0.103 0.115 -0.330 0.122  
SVL -0.282 0.150 -0.576 0.012 

Plasma Ditch:Male -0.027 0.169 -0.359 0.305  
Lake:Male 0.191 0.174 -0.150 0.532  
Ditch:SVL -0.315 0.200 -0.708 0.078  
Male:SVL -0.260 0.144 -0.544 0.023  
Ditch:Male:SVL -0.216 0.200 -0.608 0.175  
Pond:Male:SVL 0.265 0.187 -0.102 0.632 

  Intercept -24.616 0.401 -25.446 -23.841 
  Ditch -0.725 0.318 -1.354 -0.102 
  Lake 0.417 0.332 -0.241 1.066 
  Pond 0.851 0.341 0.187 1.530 
  SVL -0.451 0.149 -0.744 -0.158 
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  Ditch:Male -0.170 0.185 -0.534 0.194 
Muscle Lake:Male 0.398 0.223 -0.040 0.835 
  Pond:Male -0.183 0.217 -0.609 0.243 
  Ditch:SVL -0.208 0.216 -0.632 0.216 
  Lake:SVL 0.340 0.261 -0.174 0.853 
  Male:SVL -0.142 0.144 -0.425 0.142 
  Ditch:Male:SVL -0.381 0.213 -0.800 0.038 
  Lake:Male:SVL 0.642 0.273 0.104 1.178 
  Pond:Male:SVL 0.111 0.222 -0.325 0.547  

Intercept -24.483 0.400 -25.301 -23.697  
Ditch -0.759 0.312 -1.376 -0.145  
Lake 0.380 0.327 -0.270 1.017  
Pond 0.983 0.342 0.319 1.664  
SVL -0.463 0.149 -0.757 -0.170  
Ditch:Male -0.147 0.185 -0.511 0.218 

Claw Lake:Male 0.301 0.226 -0.142 0.744  
Pond:Male -0.098 0.221 -0.531 0.335  
Ditch:SVL -0.374 0.219 -0.805 0.057  
Lake:SVL 0.480 0.275 -0.062 1.020  
Pond:SVL 0.243 0.254 -0.257 0.742  
Male:SVL -0.200 0.146 -0.488 0.087  
Ditch:Male:SVL -0.402 0.214 -0.822 0.017  
Lake:Male:SVL 0.680 0.277 0.135 1.224 

  Pond:Male:SVL 0.294 0.256 -0.209 0.797 
 

In δ15N models (Table 2), for plasma, only habitat affected δ15N values, which pond 

had a negative effect. In muscle, δ15N differed among habitats, with a remarkable negative 

effect from the lake. Further, habitat influenced the SVL–δ15N relationship, where ditch and 

pond had a negative and positive effect, respectively. Sex also affected the SVL–δ15N 

relationship, with males having a negative and positive effect in the ditch and pond, 

respectively. Finally, for claw, the δ15N was affected in the SVL–δ15N relationship due to the 

habitat effect of the ditch, showing a negative effect. This same SVL–δ15N relationship in the 

ditch differed according to sex; males demonstrated a negative effect.  
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Table 2. Posterior estimates (mean ± SD and 95% credibility interval) from spatial 
hierarchical Bayesian best models relating sex, SVL, and habitat effects to δ15N values of 
Caiman crocodilus across landscapes in the Araguaia floodplain. Bold values indicate 
parameters significantly different from zero. 

Tissue Parameter Mean SD Q0.025 Q0.975 
 Intercept 6.400 0.218 5.960 6.837 
 Ditch 0.273 0.143 -0.011 0.550 
 Pond -0.537 0.152 -0.834 -0.236 
 SVL 0.080 0.068 -0.053 0.213 
 Ditch:Male -0.046 0.081 -0.206 0.114 
 Pond:Male 0.105 0.093 -0.078 0.287 
Plasma Ditch:SVL -0.154 0.100 -0.349 0.042 
 Lake:SVL 0.096 0.109 -0.118 0.310 
 Pond:SVL 0.215 0.116 -0.012 0.442 
 Male:SVL 0.061 0.067 -0.071 0.192 
 Ditch:Male:SVL -0.182 0.098 -0.374 0.009 
 Lake:Male:SVL 0.132 0.117 -0.096 0.362 
 Pond:Male:SVL 0.219 0.116 -0.009 0.446 
 Intercept 7.024 0.197 6.632 7.417 
 Ditch 0.228 0.118 -0.005 0.458 
 Lake -0.252 0.121 -0.489 -0.012 
 Pond -0.214 0.122 -0.454 0.025 
 Male -0.053 0.052 -0.156 0.050 
 SVL 0.040 0.053 -0.064 0.143 
Muscle Ditch:Male -0.135 0.085 -0.302 0.031 
 Lake:Male 0.152 0.101 -0.046 0.349 
 Pond:Male 0.047 0.100 -0.150 0.244 
 Ditch:SVL -0.293 0.094 -0.478 -0.108 
 Lake:SVL 0.181 0.127 -0.068 0.431 
 Pond:SVL 0.329 0.114 0.104 0.554 
 Ditch:Male:SVL -0.194 0.090 -0.370 -0.017 
 Lake:Male:SVL 0.132 0.126 -0.116 0.380 
 Pond:Male:SVL 0.262 0.116 0.034 0.490 
 Intercept 7.062 0.182 6.695 7.421 
 Ditch 0.119 0.147 -0.172 0.408 
 Pond -0.305 0.160 -0.620 0.008 
 Male -0.032 0.061 -0.151 0.087 
 SVL 0.095 0.061 -0.025 0.214 
 Ditch:Male -0.104 0.096 -0.293 0.083 
Claw Lake:Male 0.160 0.113 -0.062 0.382 
 Pond:Male 0.026 0.112 -0.196 0.246 
 Ditch:SVL -0.279 0.107 -0.490 -0.069 
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 Lake:SVL 0.246 0.144 -0.036 0.528 
 Pond:SVL 0.237 0.129 -0.016 0.489 
 Ditch:Male:SVL -0.315 0.101 -0.514 -0.117 
 Lake:Male:SVL 0.224 0.138 -0.047 0.496 
 Pond:Male:SVL 0.258 0.131 0.000 0.514 

 

Habitats differed in the isotopic niche width, varying their size differently across 

tissues (Figure 3). Overall, pond and river were larger and had higher probabilities of 

difference in the pairwise tests (Table S6). There were changes in the niche width across 

tissues. Pond and lake had larger niches in plasma. In muscle, lake decreased its niche, while 

river increased and joined to pond as higher niches. The pattern was maintained in claw, with 

a similarity between ditch and lake. Additionally, we observed a high niche overlap among 

habitats and no strong change in the niche position according to tissue time windows (Figure 

3). Overall, the degree of the niche overlap increased from plasma to claw (Table S7; Figure 

S5). 
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Figure 3. Isotopic niches and estimated niche width for habitats according to tissues of 
Caiman crocodilus across landscapes in the Araguaia floodplain. Solid lines represent the 
core isotopic niche space. Black dots correspond to the mean, and boxes represent 50%, 75%, 
and 95% credibility intervals. Overall, habitats shared similar basal resources, reflecting a 
high niche redundancy. Otherwise, niche width shows that tissues demonstrate variability in 
resource use among habitats, but with a similar effect on long-term tissues. Caimans in the 
pond had a larger resource use, regardless of tissue, while other habitats had higher 
similarities. 

 

Land use composition and wetland configuration effect on caiman niche width 

We found similar DIC and WAIC values among mesh designs within each tissue 

model, suggesting that structures had similar spatial dependences in the hierarchical Bayesian 

approach for isotopic niche width (Table S8). However, we selected the mesh structure with 
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the lower value in the DIC and WAIC criteria: mesh 2 for plasma, mesh 5 for muscle, and 

mesh 1 for claw. The caiman niche width had different realizations of the spatial random 

fields according to tissue (Figure S2C; Figure S3C). Plasma and claw random fields had, 

overall, low spatial dependence and reduced uncertainty across the Araguaia floodplain, while 

muscle random field had high dependence and uncertainty, especially in the north and south. 

Boruta and INLA stepwise selection procedures retained only the proportion of 

pasture coverage and the fragmentation index for models of isotopic niche width (Table 3). 

Just proportion of pasture coverage in 500-m buffer affected caiman niche width, with a 

positive effect in the plasma. The remaining predictors in their respective tissue models did 

not have effects on caiman niche width. The predicted isotopic niche width showed a spatial 

variability across sites with a higher range in plasma, medium in muscle, lower in claw 

(Figure 2C; Figure S4C). In plasma, caiman niche width was remarkably higher in 

Cooperformoso and Coopergran region (~23‰2), with other localities having lower values 

(>19.5‰2). In muscle, the central region of the map had the lower niche width (>19‰2), 

while Cooperformoso and Coopergran region maintained higher values (~20.5‰2). In claw, 

overall, the spatial distribution of niche width was higher compared to other tissues, but it 

distributed homogeneously across Araguaia floodplain (range: 20-21‰2).  

 

Table 3. Posterior estimates (mean ± SD and 95% credibility interval) from spatial 
hierarchical Bayesian best models relating Boruta-selected landscape attributes to isotopic 
niche width (SEAB) of Caiman crocodilus across landscapes in the Araguaia floodplain. Bold 
values indicate parameters significantly different from zero. 

Tissue Parameter Mean SD Q0.025  Q0.975  

 Intercept 17.966 7.972 -3.315 33.467 
Plasma B_500m_PCLASS_Pasture 11.54 5.199 1.236 21.759 

 B_3km_PCLASS_Pasture -3.205 5.234 -13.511 7.144 
  Intercept 16.833 10.301 -12.355 36.336 
Muscle B_3km_PCLASS_Pasture 4.413 2.682 -0.94 9.669 

  B_3km_LDI 0.724 2.68 -4.523 6.074 

 Intercept 19.395 7.557 -1.691 33.682 
Claw B_3km_PCLASS_Pasture 4.478 2.424 -0.323 9.254 
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Essential amino acids δ13C analysis 

In the LDA analysis, we found an overall successful reclassification rate of 65% for 

habitats, where they were correctly reclassified in 50% for pond, 60% for ditch, 70% for lake, 

and 80% for river (Appendix B, page 99). The linear discriminant axes explained 88% (LD1) 

and 9% (LD2) of the overall variation among habitats, which the most important EAA for 

distinguishing habitats were phenylalanine, leucine, and lysine. The LDA results showed a 

clear distinction in carbon sources from primary producers between natural and anthropogenic 

habitats (Figure 4A). Crop samples had a successful reclassification rate of 80%, just one rice 

sample was reclassified as river. The LDA space demonstrates a better characterization of 

anthropogenic habitats and possible contribution to the caiman food web in these habitats, 

evidencing proximity of crop samples to ellipses (Figure 4A). 

 The LDA had larger statistical support for separation among localities, with a correct 

reclassification rate of 85%, where they were correctly reclassified in 70% for Canguçu, 80% 

for Coopergran, 90% for Cooperformoso, and 100% for Bananal (Appendix C, page 100). 

The LD1 and LD2 explained respectively 80% and 10% of the variation, indicating a clear 

separation among localities, especially Bananal and Canguçu from Coorperformoso and 

Coopergran (Figure 4B). The most informative coefficients were phenylalanine, leucine, and 

lysine. Crop samples had a successful reclassification rate of 80%, just one Coopergran 

sample was reclassified as Bananal. The LDA maintained the affinity of crop samples to 

anthropogenic habitats but showed distant locations from habitat ellipses (Figure 4B). 

 



77 
 

 
Figure 4. Multivariate discrimination of primary producer based on δ13CEAA values of Caiman 
crocodilus and crops (i.e., rice and soybean) according to habitat (A) and locality (B). Lake 
and river are natural habitats sampled in the localities of Bananal and Canguçu, while pond 
and ditch were anthropogenic habitats sampled in the Cooperformoso and Coopergran. 
Ellipses indicate a 95% confidence interval region for classified groups of C. crocodilus. 
Basal sources of the caiman food webs differed among natural and anthropogenic habitats, 
which altered habitats suggest a potential contribution from soybean-energy carbon due to 
correct discrimination and similarities in the δ13CEAA values with caimans.  

 

DISCUSSION 

We demonstrated that human-induced landscape modification impacts wetland food 

web in the Araguaia floodplain, identified through spatial representations in which related 

high values of δ13C, δ15N, and isotopic trophic niche of Caiman crocodilus to agricultural 

areas. Indeed, pasture coverage was the principal landscape feature that affected C. crocodilus 

niche width in a spatially explicit context, reflecting effects of land-use conversion, habitat 

alteration, and fragmentation. Moreover, sex, ontogeny, and habitat use had an influence and 

effect on the spatial patterns of δ13C and δ15N values across landscapes in the Araguaia 

floodplain. Habitats influenced the caiman diet and altered differently trophic niche width 

across tissue time windows, but their niche positions evidenced a similar pool in the resource 

supply. However, our study revealed by δ13CEAA analysis that natural and anthropogenic 

habitats differ in the basal source of carbon for C. crocodilus food webs, with soybean-

derived energy possibly supporting food webs in anthropogenic habitats. 
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Crocodilians are highly mobile top predators with an opportunistic and generalist 

feeding behavior that can participate in several and distinct food webs in the landscape, where 

variations in their intraspecific trait regulate the strength and dynamics of trophic relations 

(Rosenblatt et al. 2013; Somaweera et al. 2020). This was corroborated in our study, 

ontogeny and sex influenced the resource use, with their effects varying with habitat. Such 

variations can be mediated by density-dependent mechanisms, such as hierarchical social and 

sexual body-sized groups, nutritional and/or physiological requirements to impose niche 

segregation at habitat and microhabitat level, and thus, decrease the competition in the 

population to coexistence (Pereira et al. in prep., Marques et al. 2013; Caut et al. 2019).  

The utilization of hierarchical Bayesian models for δ13C and δ15N values evidenced a 

marked spatial heterogeneity in small-scale across landscapes in the Araguaia floodplain. 

Overall, we found higher isotopic values in landscapes of irrigation systems, i.e., highly 

human-modified areas, but contrasting with lower values in natural environments surrounded 

them. Patterns of stable isotope variation in a small spatial scale are reported in man-made 

and natural freshwater ecosystems (Zambrano, Valiente & Vander Zanden 2010; Doi et al. 

2013; Merlo-Galeazzi & Zambrano 2014). Such spatial variation can relate to different 

resources, trophic structures, and basal sources in the food webs due to distinct ecological 

processes and conditions across distinct habitats (Finlay & Kendall 2008; Boecklen et al. 

2011; Zaia Alves et al. 2017). Otherwise, these findings can suggest an influence of anthropic 

activities and land-use changes on the food web functioning through agricultural N input or 

alterations in the C3/C4 resources availability and nutrient cycling (Bentivoglio et al. 2016; 

Parreira de Castro et al. 2016; Resasco et al. 2017; Magioli et al. 2019; Price et al. 2019; 

Burdon, McIntosh & Harding 2020). Therefore, the implications of spatial small-scale 

isotopic variability could result in a high similarity and no clear differentiation in the niche 

positions among habitats (Figure 3, Figure S5). High niche overlap degrees are seen in 
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human-modified areas in which food web members and functional groups exert a generalist 

feeding behavior and trophic flexibility in the community (Zambrano, Valiente & Vander 

Zanden 2010; Carvalho et al. 2015; Korotkevich et al. 2018; Magioli et al. 2019). 

Communities in disturbed landscapes are usually represented by generalist and opportunistic 

species with broad trophic niche resulted from historical environmental- or biotic-filtering 

processes (Newbold et al. 2015; Siqueira, Lacerda & Saito 2015; Le Provost et al. 2020).  

Concomitantly to spatial small-scale isotopic variability, movements and feeding 

behavior of caimans can contribute to high niche redundancy among habitats across tissue 

time windows, motivated by factors of habitat suitability and seasonal floodplain dynamic 

(Pereira et al. in prep.). Habitat suitability can relate to food provision and availability, where 

some waterbodies couldn’t sustain a complex food web with larger animals in which 

allochthonous subsidy complements autochthonous production, for instance in small pools 

and man-made ponds where adjacent habitats and/or surrounding land use matrix influences 

food supplementation (Jardine et al. 2017). Some studies show that the terrestrial food web 

can be more important in supporting crocodilians than the aquatic food web (Adame et al. 

2018; Santos et al. 2018). Moreover, seasonal floodplain dynamic through flood pulse 

mediates hydric connectivity among waterbodies and population dynamics (occupation, 

dispersal, and movement) of wetland species across interconnected habitats (Pereira et al. in 

prep.). Larger niches can reflect a season with a high food supply, while smaller niche widths 

can reflect a season with a low food supply (Sepúlveda-Lozada et al. 2017).  

Alternatively, studies in fragmented environments report that smaller niches reflect a 

collapsed food web due to disruption of energy flow caused by reductions in diversity of 

potential prey for consumers (Layman et al. 2007; Korotkevich et al. 2018; Burdon, McIntosh 

& Harding 2020). Such trends could be observed in ditches in our study. However, trophic 

niche mechanisms are non-exclusive and some populations can reflect smaller niches due 
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promoted by abundant low-diversified resources simultaneously to other generalist 

populations in the region (Burdon, McIntosh & Harding 2020). Caimans can be taking 

advantage of the ditch systems through the stable and closed water system, predation facility, 

natural predation release, and food provision from associated biodiversity, which provide an 

optimal diet and body condition (Pereira and Colli in prep.). These populations could trigger a 

shift in feeding behavior to a site specialist population (Thomson et al. 2012) mediated by 

ecological opportunity mechanism (Araújo, Bolnick & Layman 2011), in which individuals 

cope with the cost of habitat selection and adaptation and foraging preferences to improve 

populational and individual fitness (Bolnick et al. 2003). 

Then, what are the landscape attributes (composition and/or configuration) that affect 

the isotopic niche width of caimans? The spatial distribution of trophic niche width was 

affected by pasture coverage in multiple scales in the landscapes in Araguaia floodplain, with 

high values clustered in the largest irrigation system, Cooperformoso and Coopergran areas. 

Our finding that pasturelands influence caiman trophic niche corroborates with evidence of 

land-use cover affects the trophic dynamic of aquatic food webs (Merlo-Galeazzi & 

Zambrano 2014; Carvalho et al. 2015; Bentivoglio et al. 2016; Parreira de Castro et al. 2016). 

Pasture coverage changes the terrestrial carbon biomass (from C3 to C4 source) and 

alters soil hydro-physical proprieties that maximize the susceptibility of aquatic ecosystems 

receive pasture inputs through erosion, sedimentation, and leaching processes (Latrubesse et 

al. 2009; Coe et al. 2011; Hunke et al. 2014), including under reduction of riparian vegetation 

and geomorphology conditions in the watershed (Cordeiro et al. 2020). Coarse grass 

fragments or attached to the soil particles can enter the aquatic ecosystem and alter 

biogeochemical constituents - increasing δ13C values for dissolved inorganic carbon and 

particulate organic matter in the waterbody (Martinelli et al. 2007). However, aquatic food 

webs have demonstrated low assimilations of the source from C4 pathway, with 
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autochthonous production (C3 pathway) supporting the food web in rivers (Wantzen, 

Fellerhoff & Voss 2010; Thorp & Bowes 2016; Villamarín et al. 2017), which was 

corroborated by our data. Those few individuals in our study with low δ13C values (> 20‰) 

could be directly related to terrestrial prey. C4 carbon can be introduced through the 

consumption of insectivorous-omnivorous fishes or terrestrial grazer prey (insects or 

vertebrates) coming from pasture or savanna vegetation (Wantzen, Fellerhoff & Voss 2010). 

In our context, caimans in the man-made ponds have prominent susceptibility to this 

allochthonous subsidy (Jardine et al. 2017; Adame et al. 2018; Santos et al. 2018). 

Otherwise, food webs in pasturelands show a high variation of δ13C and δ15N values in 

basal resources (particulate organic matter, algae, periphyton; all C3 pathway) for consumers, 

such as macroinvertebrates and fishes (Turner & Edwards 2012; García et al. 2017). As 

consequence, all trophic chain members can repercuss higher isotopic variability and larger 

isotopic trophic niches, summed to feeding plasticity of some organisms (Carvalho et al. 

2015; Parreira de Castro et al. 2016). Thus, variations in the proportion of pasture coverage 

can drive to greater alteration in the basal resources, generalist feeding behaviors, and niches 

sizes of consumers. Large areas of pasture can imply in higher susceptibility of wetland food 

webs suffer such bottom-up effect in a large spatial extension, which it can impact farther 

terrestrial and aquatic food webs (Rooney, McCann & Moore 2008; McCoy, Barfield & Holt 

2009; Tscharntke et al. 2012). Using spatially explicit Bayesian models, we evidenced these 

effects on the food web through top predator, which caiman trophic niche varies according to 

pastureland proportion in human-modified landscapes in the Araguaia floodplain. 

Distinct modes of human modifications alter the structural state of the landscape from 

an ongoing process over time that results in habitat loss and fragmentation (McGarigal & 

Marks 1995; Jaeger 2000; Fahrig 2003). However, the amount of loss mediates the effects of 

habitat fragmentation (Ewers & Didham 2006; Villard, Metzger & Saura 2014). Land-use 
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conversion is a clear outcome and unreversible change (in sense of intangible recovery of 

prior state), disrupting ecological patterns and processes that drive food webs (Fischer & 

Lindenmayer 2007; Jordan et al. 2012; Tscharntke et al. 2012; Haddad et al. 2015). In this 

sense, the relevant importance of fragmentation index on the isotopic trophic niche of C. 

crocodilus in the spatial Bayesian model of the claw (a tissue with long-term incorporation 

time) suggest the chronic effect of landscape modification and habitat disturbance on 

terrestrial and aquatic food webs through land-use conversion, expanding an agricultural 

matrix over natural vegetation. Overall, the Cerrado biome suffers a historical and constant 

pressure of pasturelands and croplands expansions (Barretto et al. 2013; Dias et al. 2016), 

including in the Araguaia River Basin (Ferreira et al. 2008; Coe et al. 2011; Garcia et al. 

2017). Favorable climate, topography, and soil physical properties in Araguaia floodplain 

linked to government incentives through technological, mechanical, and financial supports 

had converged this region to an agricultural frontier (Fragoso et al. 2013; Phalan et al. 2013; 

Araújo et al. 2019). Although studies report prospective reductions in the expansion of 

agribusiness relied on the agricultural intensification and protected area delimitations 

(Barretto et al. 2013; Carranza et al. 2014; Dias et al. 2016; Garcia et al. 2017), it’s plausible 

that areas of natural vegetation will still be fragmented and converted to pasturelands or 

croplands, with Cerrado species facing a huge challenger to persist (Lemes, de Andrade & 

Loyola 2019).  

The evidences that carbon origins of caiman food webs differed among habitats by 

δ13CEAA analysis reveal the masked impact of matrix expansion and fragmentation on the 

Araguaia floodplain food web didn’t note by bulk tissue SIA. In part due to similar isotopic 

variability of bulk δ13C between aquatic basal sources and the most common crops harvested 

in agricultural matrixes (soybean and rice) in the Araguaia floodplain, such as Figure S6 (Zaia 

Alves et al. 2017). Natural producers are consistent to have a unique δ13CEAA composition, 
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determined by species-specificity biochemical pathways in the synthesis of the amino acids 

and conserved across environmental gradients (Larsen et al. 2009; Larsen et al. 2013; 

McMahon et al. 2016). The δ13CEAA analysis confirms that basal carbon source for river food 

webs is associated with autochthonous primary production via algae (Thorp & Bowes 2016; 

Bowes, Thorp & Delong 2019); otherwise, anthropogenic changes also are observed via 

δ13CEAA values in watershed scale by altering hydrogeomorphic changes and primary 

productivity in freshwater ecosystems (Bowes, Thorp & Delong 2019). In our case, essentials 

amino acids demonstrated the distinction between natural and anthropogenic habitats in basal 

carbon source, resembling among localities in their pairs and demonstrating a remarkable 

effect of human influence on energy and nutrient flow of caiman food web in altered habitats.  

Our findings suggest that crop-derived energy can be incorporated in the caiman food 

web with decisive participation in the agricultural ditch systems. The results were consistent 

with the turnover rate and integration time of muscle tissue associated with soybean 

cultivation and harvesting in the dry period in the Araguaia floodplain region, from May to 

September (Oliveira et al. 2015); period before tissue collection (September) and 

comprehended for δ13C turnover time estimated in caiman muscle – four months or more 

considering the body size (Caut 2013; Vander Zanden et al. 2015). Additionally, rice-derived 

energy could probably have more participation in the caiman food web during the rainy 

period (October to April), when rice crop is cultivated in the Araguaia floodplain (Oliveira et 

al. 2015). Both soybean and rice could be part of the annual carbon source for the basal food 

web in anthropogenic habitats. To verify this possible influence, future studies should focus 

on collecting muscle samples in the late wet season. However, the caiman food web cannot be 

exclusively supported by crop-derived energy, incorporating resources from another basal 

source, as observed by variability in the LDA representation. The population dynamic, 

movements between natural–anthropogenic habitats, and seasonality of the Araguaia 
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floodplain favor variability in the basal source (Pereira et al. in prep.). Unfortunately, our 

study didn’t sample primary producers from natural sites in the research area for δ13CEAA 

analysis due to logistic and financial constraints, but bulk tissue SIA with caimans in 

Amazonian floodplain infers that autochthonous production (C3 pathway) supports caiman 

food web, mainly evidencing interspecific niche partitioning among sympatric caiman species 

and elucidating terrestrial allochthonous subsidy according to habitat use (Villamarín et al. 

2017). 

 

Concluding remarks 

Our results highlight the effect of agricultural activities and disturbances on the 

trophic ecology of a semi-aquatic top predator driven by land-use conversion in landscapes 

along the Araguaia floodplain. Further, we evidenced that basal sources of food webs in 

natural habitats differ from anthropogenic habitats, which are supported in part by crop 

energy in agricultural areas. To our knowledge, this was the first study to assess the effects 

that landscape modification has upon species trophic niche based on SIA methodology and 

multi-scale gradient study design relied on landscape attributes (composition and 

configuration metrics). We advocate that the use of spatially explicit Bayesian models explore 

the relationship between landscape characteristics and ecological responses of species, 

considering variations in intraspecific traits, and avoid dichotomic/categorical evaluations of 

landscape (e.g., Resasco et al. 2017; Korotkevich et al. 2018; Magioli et al. 2019) that does 

not reflect spatial variations and effects of the mechanisms that moderate the landscape use by 

organisms (Tscharntke et al. 2012; Wang, Blanchet & Koper 2014; Riva & Nielsen 2020). 

Landscape configuration and composition drive food web structure and trophic interactions 

(Rooney, McCann & Moore 2008; Pillai, Gonzalez & Loreau 2011; Liao et al. 2016; Liao, 

Bearup & Blasius 2017b). Realistic ecological responses of landscape alteration effects arise 
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from consideration of species traits (e.g., trophic level, feeding behavior, body size, dispersal 

ability) and species-oriented habitat perception (Ewers & Didham 2006), which interacts with 

landscape characteristics to model species’ sensitivity and tolerance in the face of the gradient 

of landscape alteration to persist in human-modified landscapes (Villard, Metzger & Saura 

2014). 

Our finding of crop supplementation for caiman food web support evidences that 

agricultural energy availability integrates and mediates food web structure (Thompson & 

Townsend 2005; Larson et al. 2013), providing high primary productivity to ecosystems in 

agricultural landscapes (Finlay 2011; Bastos et al. 2018). In these systems, food web 

functioning and stability could be achieved through weak indirect interactions and short food 

chains under predator-prey control (Canning & Death 2017). Omnivorous community plays 

crucial importance to maintain the food web functioning in human-modified areas, which 

bottom-up control is replaced by the predominant top-down control regime but top predators 

have secondary importance (Pillai, Gonzalez & Loreau 2011; Jordan et al. 2012). Empirical 

studies report that trophic controls change and energy flow pathways are lost, making 

unfeasible a food web support a top predator in long-term (Layman et al. 2007; Liao, Bearup 

& Blasius 2017b), triggering trophic cascade with strong and severe impacts to processes of 

ecosystem resilience and resistance to disturbances (Scheffer et al. 2001; Duffy et al. 2007; 

Hooper et al. 2012). The fragmentation threshold for species extinction can be dependent on 

community and landscape contexts (Villard, Metzger & Saura 2014; Liao, Bearup & Blasius 

2017a). The potential for anthropogenic landscapes to support biodiversity and ecological and 

conservation values relies on an evaluation of the key attributes of species, food web, and 

ecosystem processes in their spatial context of landscape proprieties (Rooney, McCann & 

Moore 2008; McCoy, Barfield & Holt 2009).  
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Sustainable land and water management rely on the management of landscape 

attributes (extension, composition, and configuration) to increase landscape heterogeneity and 

quality (Tscharntke et al. 2012). Landscape complexity through environmental diversification 

and land cover types via local management can drive biodiversity patterns and dynamics to 

support more species, rather than simplified or in complex landscapes (Tscharntke et al. 

2005). Inter-dependent ecological processes emerge from landscape complexity across 

multiple spatial scales, supplying ecological requirements of biodiversity for population 

processes and dynamics (Villard, Metzger & Saura 2014; Riva & Nielsen 2020). As 

consequence, energy flow pathways increase to structure and stabilize spatially the food webs 

(McCann, Rasmussen & Umbanhowar 2005; Rooney, McCann & Moore 2008). In general, 

landscape attributes are still neglected or unapplied in spatial food web models to elucidate 

the mechanisms of functioning, especially in ongoing landscape modification worldwide 

(Pillai, Gonzalez & Loreau 2011; Liao et al. 2016; Liao, Bearup & Blasius 2017a). However, 

our results emphasized the process of landscape modification that reverberates in resource use 

patterns and trophic interactions of a semi-aquatic top predator. Therefore, it provides new 

insights on how landscape fragmentation affects food web dynamics in a human-modified 

floodplain, enhancing our understanding and contributing with critical information for 

environmental policies, conservation planning, and land use management. 
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SUPPORTING INFORMATION 

 
APPENDIX A – Spatial hierarchical Bayesian models with INLA and SPDE 

 

Geostatistical data are realizations of a stochastic process indexed by space (random 
field) 

!(#) 	≡ 	 {(()), )	 ∈ 	,}, 
 
where random field is characterized by a spatial index s which varies continuously in the 
fixed domain , (Blangiardo & Cameletti 2015; Krainski et al. 2018; Gómez-Rubio 2020). 
Typically, s is a two-dimensional vector, such as latitude and longitude. In this sense, the 
actual data are represented by a collection of observations y = {y(s1),…, y(sn)}, where the set 
of n points (s1,…, sn) indicate the locations at which the measurements are taken. Such spatial 
process, a latent Gaussian Random Field (GRF), follows a multivariate Normal distribution 
with mean μ = {μ(s1),…, μ(sn)} and spatially structured covariance matrix Σ = {C(s1, sn)}, 
which is related to the Matérn spatial covariance function (Rue, Martino & Chopin 2009; 
Lindgren, Rue & Lindström 2011; Blangiardo & Cameletti 2015; Rue et al. 2017). 
Additionally, the latent GRF must assume a Gaussian form with additional conditional 
independence properties, which reflects to a Gaussian Markov Random Fields (GMRF) form, 
with huge computational benefits because pairs of conditionally independent values result in 
zeros in the matrix; thus, this implies great importance in Bayesian inferential methods based 
on Integrated Nested Laplace Approximations – INLA (Rue et al. 2017). The Stochastic 
Partial Differential Equations (SPDE) approach is implemented by constructing a 
continuously indexed approximation of the latent GRF defined on the entire study area 
through a discretely indexed spatial random process (i.e., a GMRF) associated to use of the 
Matérn covariance function, where the parameters used in SPDE have one-to-one 
correspondence (Lindgren, Rue & Lindström 2011; Blangiardo & Cameletti 2015; Bakka et 
al. 2018). 

In INLA, the spatial hierarchical Bayesian model has a structure similar to the 
Generalized Linear Mixed Model framework, where the response (η) is a linear predictor and 
the measured parameter, where observations have an associated likelihood. The models 
estimate the mean (μ) of the observed data using a structured additive predictor η through a 
link function g(.), such that g(μi) = η , for example:  

 
(! 	~	/01234(5! , 6"#)				7 = 1,… , ; 

<(5!) 	= 	= 
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where: 6"# is the hyperparameter of variance of the measurement error ei which is supposed to 
be normally distributed and independent; β0 is the intercept; z are fixed covariates with linear 
effects; βj are the linear regression coefficients of the z predictors; the term Bi represents the 
random effect, which is the realization of the latent GF using a Gaussian multivariate 
distribution B(s) ∼ MVNormal(0, Σ), where the mean is zero and the precision matrix Σ 
relates to Matérn spatial covariance function and by which captures the spatial correlation 
through mesh structures; finally, ε! is an error term (Blangiardo et al. 2013; Rue et al. 2017; 
Krainski et al. 2018; Gómez-Rubio 2020). All these components constitute the (non-
observable) latent field defined as θ = {β0, βj, B}, where β and B are the covariates and smooth 
functions included in the linear predictor. In the SPDE approach, the mesh structures are 
representations of latent fields of domain , in triangular subdivisions of mosaic with indexed 
node (vertices), and thus, used to construct observation matrix A that connects the GMRF-on-
the-mesh to the GMRF-on-the-data (Lindgren & Rue 2015; Bakka et al. 2018). 

Then, we performed the spatial hierarchical Bayesian models where the responses 
were bulk isotopic compositions (δ13C and δ15N values) from each individual and isotopic 
niche width (SEAB) at each site across landscapes in the Araguaia floodplain. Each sampled 
tissue had separated model, where the predictors for δ13C and δ15N models were sex, snout-
vent length (SVL), habitat, and their interactions; otherwise, the SEAB model had the 
previously selected by Boruta, which were B_500m_PCLASS_Pasture, 
B_3km_PCLASS_Pasture, and B_3km_LDI (Table S2). Following Blangiardo and Cameletti 
(2015), we constructed three models to test for each response: (i) null model; (ii) full model 
without accounting for spatial process; (iii) full model accounting for spatial process. Overall, 
the simplified models tested were: 

 
1. δ13C (all tissues): 

i. Null 
= 	1 

ii. Non-SPDE 
=	>$ + >&E3F7G3G + >#HIJ + >'HKL + >(E3F7G3G: HIJ

+ >)E3F7G3G: HKL + >*E3F7G3G: HIJ: HKL 
iii. SPDE 

=	>$ + >&E3F7G3G + >#HIJ + >'HKL + >(E3F7G3G: HIJ
+ >)E3F7G3G: HKL + >*E3F7G3G: HIJ: HKL + B 

 
2. δ15N (all tissues): 

i. Null 
= 	1 

ii. Non-SPDE 
=	>$ + >&E3F7G3G + >#HIJ + >'HKL + >(E3F7G3G: HIJ

+ >)E3F7G3G: HKL + >*E3F7G3G: HIJ: HKL 
iii. SPDE 

=	>$ + >&E3F7G3G + >#HIJ + >'HKL + >(E3F7G3G: HIJ
+ >)E3F7G3G: HKL + >*E3F7G3G: HIJ: HKL + B 

 
3. SEAB: 

a.   Plasma and Muscle  
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i. Null 
= 	1 

ii. Non-SPDE 
=	>$ + >&	N_5002_RSLTHH_R3#GU1I

+ >#	N_3W2_RSLTHH_R3#GU1I
+ >'	N_3W2_LXY 

iii. SPDE 
=	>$ + >&	N_5002_RSLTHH_R3#GU1I

+ >#	N_3W2_RSLTHH_R3#GU1I
+ >'	N_3W2_LXY + B 

b.   Claw 
i. Null 

= 	1 
ii. Non-SPDE 

=	>$ + >&	N_3W2_RSLTHH_R3#GU1I 
iii. SPDE 

=	>$ + >&	N_3W2_RSLTHH_R3#GU1I + B 
 
However, we obtained the best model designed from these previous models using a 

backward stepwise procedure in the INLAstep function from R package INLAUTILS (Redding 
et al. 2017). The best models are reported in the Table 1-3 of main text. For these best 
models, hyperparameters estimated are given in Table S9. 
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APPENDIX B – Linear discriminant analysis output for habitat categorization of essential 

amino acids analysis (δ13CEAA) 

 
Prior probabilities of groups 

Ditch Lake Pond River 
0.25 0.25 0.25 0.25 

 
Group means 
Habitat Thr Ile Leu Val Lys Phe Tyr 
Ditch -17.0 -24.8 -31.0 -27.5 -23.8 -28.9 -28.9 
Lake -16.1 -24.0 -30.0 -27.4 -23.2 -30.9 -30.4 
Pond -17.3 -24.0 -29.9 -26.4 -22.3 -27.9 -28.2 
River -19.0 -25.6 -31.7 -28.5 -23.9 -32.4 -31.5 

 
Coefficients of linear discriminants 
Parameter LD1 LD2 LD3 
Thr 0.108 -0.622 0.306 
Ile 0.149 0.375 -0.220 
Leu 0.793 -1.325 -0.686 
Val -0.105 1.063 0.017 
Lys 0.798 0.708 -0.125 
Phe -1.721 -0.147 -0.259 
Tyr -0.214 -0.066 0.466 

 
Proportion of trace 

LD1 LD2 LD3 
0.8856 0.0922 0.0222 

 
Linear discriminant analysis (LDA) classification table.   

Ditch Lake Pond River Percent correct 
Ditch 6 0 4 0 60 
Lake 0 7 0 3 70 
Pond 4 0 5 1 50 
River 0 2 0 8 80 

Bold numbers represent correct reclassification of the LDA. 
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APPENDIX C – Linear discriminant analysis output for locality categorization of essential 

amino acids analysis (δ13CEAA) 

 
Prior probabilities of groups 

Bananal Canguçu Cooperformoso Coopergran 
0.25 0.25 0.25 0.25 

 
Group means 
Locality Thr Ile Leu Val Lys Phe Tyr 
Bananal -17.0 -25.1 -30.9 -27.3 -23.4 -31.6 -30.8 
Canguçu -18.0 -24.5 -30.8 -28.6 -23.8 -31.7 -31.1 
Cooperformoso -16.3 -23.8 -30.1 -26.1 -23.3 -28.2 -29.0 
Coopergran -18.0 -25.0 -30.8 -27.7 -22.9 -28.6 -28.0 

 
Coefficients of linear discriminants 
Parameter LD1 LD2 LD3 
Thr -0.164 0.406 0.320 
Ile -0.137 -1.103 -0.735 
Leu -0.957 -0.987 -0.171 
Val 0.265 1.160 -0.692 
Lys -0.700 0.698 0.689 
Phe 1.688 -0.152 -0.238 
Tyr 0.192 -0.159 0.560 

 
Proportion of trace 

LD1 LD2 LD3 
0.8024 0.1094 0.0881 

 
Linear discriminant analysis (LDA) classification table  

Bananal Canguçu Cooperformoso Coopergran Percent correct 
Bananal 10 0 0 0 100 
Canguçu 3 7 0 0 70 
Cooperformoso 0 0 9 1 90 
Coopergran 0 0 2 8 80 

Bold numbers represent correct reclassification of the LDA. 
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TABLES 

 
Table S1. Landscape attributes retained by Variance Inflation Factor (VIF) in the Araguaia 
floodplain. The VIF threshold had a value of 4 for theta parameter. NS: landscape attributes 
with collinearity problem (VIF value > 4) and that were excluded of the posterior analysis.  
Variables VIF 
B_500m_PCLASS_Forest 3.61 
B_500m_PCLASS_Savanna 2.19 
B_500m_PCLASS_Pasture 2.51 
B_500m_PCLASS_Water 2.99 
B_3km_PCLASS_Forest 2.73 
B_3km_PCLASS_Pasture 2.94 
B_1km_MPA_Water 2.37 
B_3km_MPA_Water 1.56 
B_1km_ENN_Water 1.25 
B_3km_ENN_Water 1.59 
B_500m_COE_Water 1.92 
B_3km_COE_Water 2.64 
B_500m_LDI 3.24 
B_3km_LDI 1.78 
B_1km_PCLASS_Crop NS 
B_1km_LPI_Water NS 
B_3km_PCLASS_Crop NS 
B_500m_LPI_Water NS 
B_3km_PCLASS_Water NS 
B_500m_PCLASS_Crop NS 
B_1km_PCLASS_Water NS 
B_1km_PCLASS_Savanna NS 
B_1km_PCLASS_Pasture NS 
B_1km_PCLASS_Forest NS 
B_1km_LDI NS 
B_1km_COE_Water NS 
B_500m_MPA_Water NS 
B_3km_PCLASS_Savanna NS 
B_3km_LPI_Water NS 
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Table S2. Summary of importance parameters of Boruta selection for isotopic niche width 
(SEAB) according to tissue of C. crocodilus related to landscape attributes measured in the 
Araguaia floodplain: mean, minimum, maximum, and normalized importance based on the 
fraction of random forest runs in which the attributes were more important than shadow 
values. 
Tissue Predictor meanImp minImp maxImp normHits 

Plasma 

B_500m_PCLASS_Pasture 18.545 11.571 23.735 0.974 
B_3km_PCLASS_Pasture 7.665 2.483 12.249 0.652 
B_3km_LDI 0.703 -2.080 3.127 0.035 
B_3km_COE_Water -0.708 -3.312 1.656 0.000 
B_500m_PCLASS_Water -0.752 -2.167 1.151 0.000 
B_500m_LDI -0.924 -3.708 2.202 0.009 
B_500m_COE_Water -1.365 -3.226 1.502 0.000 
B_500m_PCLASS_Forest -1.571 -2.938 0.256 0.000 
B_3km_MPA_Water -1.816 -5.548 1.548 0.009 
B_3km_ENN_Water -2.140 -3.918 -0.161 0.000 
B_1km_MPA_Water -2.218 -2.805 -0.928 0.000 
B_1km_ENN_Water -2.243 -3.796 -0.289 0.000 
B_3km_PCLASS_Forest -2.431 -4.442 -0.998 0.000 
B_500m_PCLASS_Savanna -2.608 -3.835 -1.052 0.000 

Muscle 

B_3km_PCLASS_Pasture 7.077 0.224 14.523 0.476 
B_3km_LDI 3.586 0.704 9.267 0.001 
B_500m_PCLASS_Pasture 2.978 -0.923 5.982 0.001 
B_500m_PCLASS_Forest 0.147 -1.861 2.622 0.000 
B_3km_PCLASS_Forest -0.084 -2.571 1.718 0.000 
B_3km_ENN_Water -0.839 -2.176 1.453 0.000 
B_500m_LDI -1.086 -2.633 0.209 0.000 
B_500m_PCLASS_Water -1.087 -3.138 0.187 0.000 
B_1km_ENN_Water -1.569 -3.499 0.400 0.000 
B_500m_PCLASS_Savanna -1.739 -4.086 0.889 0.000 
B_3km_MPA_Water -2.571 -4.714 -1.136 0.000 
B_500m_COE_Water -3.010 -5.122 -0.803 0.000 
B_1km_MPA_Water -3.702 -4.586 -1.407 0.000 
B_3km_COE_Water -3.862 -5.526 -1.882 0.000 

Claw 

B_3km_PCLASS_Pasture 9.619 3.059 16.860 0.612 
B_3km_PCLASS_Forest 1.126 -1.128 2.265 0.000 
B_3km_ENN_Water 0.080 -2.150 2.238 0.000 
B_1km_ENN_Water 0.039 -1.449 2.182 0.000 
B_500m_PCLASS_Savanna -0.262 -2.620 4.933 0.000 
B_500m_COE_Water -0.519 -4.286 1.562 0.000 
B_3km_LDI -0.740 -1.951 0.661 0.000 
B_500m_PCLASS_Pasture -0.865 -1.781 0.764 0.000 
B_500m_PCLASS_Water -1.124 -2.577 -0.133 0.000 
B_500m_LDI -1.620 -4.024 1.341 0.000 
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B_500m_PCLASS_Forest -1.828 -3.870 0.046 0.000 
B_3km_MPA_Water -2.017 -3.209 -0.672 0.000 
B_1km_MPA_Water -2.358 -4.476 -0.887 0.000 
B_3km_COE_Water -2.362 -4.111 -1.173 0.000 
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Table S3. Description of the sampled population of the Caiman crocodilus and Boruta-selected landscape attributes in the Araguaia floodplain. 

Locality 
Number 

of sites  
Habitat N 

Sex ratio 

(Male:Female) 

500 m Buffer    3 km Buffer  

PCLASS_Pasture (%)   PCLASS_Pasture (%) LDI 

Mean SD   Mean SD Mean SD 

Bananal  

2 Ditch 12 7:5 0.13 0.35  0.30 0.04 0.48 0.09 

1 Lake 12 7:5 0.00 0.00  0.00 0.00 0.33 0.02 

1 River 12 9:3 0.11 0.39  0.31 0.05 0.86 0.02 

Canguçu  
1 Lake 9 4:5 11.59 15.15   25.85 8.80 0.57 0.12 

1 River 12 12:0 9.13 13.86   15.81 11.98 0.74 0.12 

Cooperformoso  

1 Ditch 10 7:3 0.35 0.63  4.53 3.48 0.67 0.06 

2 Lake 11 9:2 20.76 29.63  39.76 16.10 0.67 0.09 

1 Pond 12 6:6 60.34 9.07  38.62 0.37 0.81 0.01 

1 River 12 10:2 28.49 16.89  54.33 22.80 0.78 0.05 

Coopergran  

1 Ditch 12 9:3 0.00 0.00   4.25 4.70 0.27 0.26 

2 Lake 14 11:3 15.05 16.80   29.65 5.07 0.84 0.04 

2 Pond 10 7:3 38.15 8.31   26.61 6.58 0.72 0.04 

1 River 13 12:1 57.11 13.92   51.32 4.90 0.67 0.01 

Cristalândia  

2 Ditch 12 6:6 0.00 0.00  17.80 26.18 0.70 0.01 

1 Lake 10 8:2 31.46 5.40  50.56 1.52 0.86 0.00 

1 Pond 6 3:3 29.44 9.82  48.75 3.38 0.80 0.06 

1 River 11 11:0 7.54 7.54  27.54 3.53 0.76 0.02 

Lagoa  

1 Ditch 13 6:7 1.04 2.42   18.94 2.67 0.89 0.01 

1 Lake 7 2:5 26.28 9.10   19.98 1.08 0.88 0.02 

1 Pond 8 4:4 59.64 24.80   23.04 0.07 0.86 0.01 

2 River 14 8:7 13.99 15.35   18.84 2.77 0.84 0.04 

Xavante  

1 Ditch 12 1:1 0.84 1.39  3.25 3.12 0.64 0.08 

1 Lake 10 9:1 20.63 10.18  43.36 1.32 0.77 0.01 

2 Pond 11 7:4 59.84 10.78  37.64 0.26 0.71 0.08 

1 River 10 4:6 18.07 2.50   25.82 0.38 0.79 0.01 
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Table S4. Accuracy information criteria of mesh designs from different spatial hierarchical Bayesian models for each tissue relating δ13C values of Caiman 
crocodilus to sex, ontogeny, and habitat across landscapes in the Araguaia floodplain. Bold values indicate mesh design and model chose for posterior analysis. 

Model descriptions are described in Appendix A.  

Tissue Mesh 
DIC  WAIC 

Null Non-SPDE SPDE Best model  Null Non-SPDE SPDE Best model 

 Mesh 1 1215.587 1184.973 1062.336 1054.824  1215.735 1186.426 1071.379 1059.407 

 Mesh 2 1215.587 1184.973 1076.590 1070.672  1215.735 1186.426 1082.268 1072.129 

Plasma Mesh 3 1215.587 1184.973 1078.516 1072.786  1215.735 1186.426 1084.668 1074.338 

 Mesh 4 1215.587 1184.973 1076.542 1070.820  1215.735 1186.426 1082.216 1072.125 

 Mesh 5 1215.587 1184.973 1078.549 1072.897  1215.735 1186.426 1084.700 1074.331 

 Mesh 1 1224.719 1189.252 1079.481 1075.445  1224.725 1188.863 1086.761 1080.745 

 Mesh 2 1224.719 1189.252 1088.368 1086.907  1224.725 1188.863 1092.801 1088.798 

Muscle Mesh 3 1224.719 1189.252 1088.705 1087.096  1224.725 1188.863 1093.203 1089.531 

 Mesh 4 1224.719 1189.252 1088.281 1086.704  1224.725 1188.863 1092.889 1088.659 

 Mesh 5 1224.719 1189.252 1088.952 1087.048  1224.725 1188.863 1093.421 1089.500 

 Mesh 1 1220.159 1185.034 1078.919 1076.872  1220.238 1185.340 1085.464 1081.347 

 Mesh 2 1220.159 1185.034 1088.800 1084.906  1220.238 1185.340 1093.042 1087.417 

Claw Mesh 3 1220.159 1185.034 1087.318 1085.589  1220.238 1185.340 1091.489 1087.377 

 Mesh 4 1220.159 1185.034 1088.929 1084.875  1220.238 1185.340 1093.154 1087.503 

 Mesh 5 1220.159 1185.034 1087.314 1085.573  1220.238 1185.340 1091.505 1087.545 
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Table S5. Accuracy information criteria of mesh designs from different spatial hierarchical Bayesian models for each tissue relating δ15N values of Caiman 
crocodilus to sex, ontogeny, and habitat across landscapes in the Araguaia floodplain. Bold values indicate mesh design and model chose for posterior analysis. 

Model descriptions are described in Appendix A. 

Tissue Mesh 
DIC  WAIC 

Null Non-SPDE SPDE Best model  Null Non-SPDE SPDE Best model 

 Mesh 1 795.551 762.731 656.718 648.695  796.364 765.030 662.052 652.016 

 Mesh 2 795.551 762.731 657.561 655.927  796.364 765.030 661.620 657.650 

Plasma Mesh 3 795.551 762.731 652.109 650.449  796.364 765.030 655.783 652.030 

 Mesh 4 795.551 762.731 657.538 652.334  796.364 765.030 661.559 653.666 

 Mesh 5 795.551 762.731 652.227 650.473  796.364 765.030 655.958 652.027 

 Mesh 1 733.805 736.360 646.003 643.957  733.691 737.380 647.630 643.734 

 Mesh 2 733.805 736.360 648.844 644.890  733.691 737.380 649.672 644.297 

Muscle Mesh 3 733.805 736.360 641.496 639.384  733.691 737.380 642.458 638.706 

 Mesh 4 733.805 736.360 648.834 644.879  733.691 737.380 649.662 644.304 

 Mesh 5 733.805 736.360 641.423 639.375  733.691 737.380 642.368 638.660 

 Mesh 1 794.461 784.527 709.619 705.288  794.469 785.074 713.007 706.877 

 Mesh 2 794.461 784.527 719.626 715.522  794.469 785.074 720.990 715.024 

Claw Mesh 3 794.461 784.527 709.160 707.033  794.469 785.074 710.657 706.655 

 Mesh 4 794.461 784.527 719.641 715.475  794.469 785.074 721.012 715.034 

 Mesh 5 794.461 784.527 709.116 707.027  794.469 785.074 710.605 706.667 
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Table S6. Probability of difference between groups of habitats according to tissues of Caiman 
crocodilus across landscapes in the Araguaia floodplain. The first group was the largest 
group (reference for comparisons). 

Tissue Mean SEAB ‰2 (95% credible 
interval) Comparison Probability 

Plasma 

River = 30.32 (23.73 – 36.66) 
Lake = 44.93 (35.39 – 54.35) 
Pond = 48.82 (36.32 – 61.46) 
Ditch = 19.2 (14.07 – 24.19) 

SEApond > SEAditch 1.00 
SEApond > SEAriver 1.00 
SEAriver > SEAditch 1.00 
SEAlake > SEAditch 1.00 
SEAlake > SEAriver 0.99 
SEApond > SEAlake 0.62 

 
River = 38.59 (30.85 – 45.92) 
Lake = 29.93 (22.21 – 37.87) 
Pond = 38.74 (28.42 – 48.23) 
Ditch = 24.11 (19.13 – 28.76) 

SEApond > SEAditch 1.00 

Muscle 

SEAriver >  SEAditch 0.99 
SEApond > SEAlake 0.94 
SEAriver > SEAlake 0.92 
SEAlake > SEAditch 0.91 
SEAriver > SEApond 0.51 

Claw 

River = 38.92 (30.23 – 47.24) 
Lake = 31.20 (23.87 – 38.07) 
Pond = 44.98 (29.85 – 59.87) 
Ditch = 32.63 (24.83 – 40.38) 

SEApond > SEAlake 0.96 
SEApond > SEAditch 0.94 
SEAriver > SEAlake  0.89 
SEAriver >SEAditch   0.87 
SEApond > SEAriver 0.82 
SEAditch > SEAlake  0.65 
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Table S7. Niche overlap area (‰2) among habitats in the (A) plasma, (B) muscle, and (C) 
claw of Caiman crocodilus across landscapes in the Araguaia floodplain. Values in mean 
(95% credible interval). 

Tissue  Lake Pond Ditch 

 River 26.53 
(21.38–32.16) 

21.89 
(16.49–27.18) 

16.62 
(13.38–19.90) 

Plasma Lake  33.19 
(26.41–39.95) 

16.60 
(13.03–20.14) 

 Pond   16.71 
(12.34–21.03) 

 River 26.19 
(20.74–31.71) 

25.55 
(20.45–30.29) 

21.30 
(17.50–25.06) 

Muscle Lake  23.05 
(18.47–27.58) 

18.27 
(14.67–21.86) 

 Pond   18.43 
(13.71–23.11) 

 River 25.99 
(20.58–31.28) 

28.23 
(21.00–35.13) 

27.84 
(21.99–33.99) 

Claw Lake  25.65 
(20.27–30.81) 

21.12 
(16.34–26.19) 

 Pond   24.57 
(17.56–31.45) 
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Table S8. Accuracy information criteria of mesh designs from different spatial hierarchical Bayesian models for each tissue relating isotopic niche width 
(SEAB) of Caiman crocodilus to Boruta-selected landscapes attributes in the Araguaia floodplain. Bold values indicate mesh design and model chose for 
posterior analysis. Model descriptions are described in Appendix A. NA means that step for model construction was not performed. 

Tissue Mesh 
DIC  WAIC 

Null Non-SPDE SPDE Best model  Null Non-SPDE SPDE Best model 

 Mesh 1 275.724 273.581 273.152 271.674  277.406 274.294 273.625 271.041 
 Mesh 2 275.724 273.581 273.105 271.154  277.406 274.294 273.509 270.938 

Plasma Mesh 3 275.724 273.581 273.038 271.721  277.406 274.294 273.490 271.278 
 Mesh 4 275.724 273.581 273.071 271.580  277.406 274.294 273.441 270.969 
 Mesh 5 275.724 273.581 273.073 271.313  277.406 274.294 273.452 270.939 

 Mesh 1 249.977 251.260 250.992 248.951  251.478 251.166 250.850 247.842 
 Mesh 2 249.977 251.260 250.880 248.872  251.478 251.166 250.896 247.987 

Muscle Mesh 3 249.977 251.260 250.810 248.838  251.478 251.166 250.804 247.971 
 Mesh 4 249.977 251.260 250.953 248.819  251.478 251.166 250.719 247.901 
 Mesh 5 249.977 251.260 250.661 248.830  251.478 251.166 250.746 247.870 

 Mesh 1 254.029 252.517 252.535 NA  254.453 252.371 252.477 NA 
 Mesh 2 254.029 252.517 252.658 NA  254.453 252.371 252.629 NA 

Claw Mesh 3 254.029 252.517 252.560 NA  254.453 252.371 252.509 NA 
 Mesh 4 254.029 252.517 252.542 NA  254.453 252.371 252.502 NA 
 Mesh 5 254.029 252.517 252.572 NA  254.453 252.371 252.528 NA 
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Table S9. Posterior estimates of hyperparameters (mean ± standard deviation and 95% credibility interval) from spatial hierarchical Bayesian best models for 
δ13C, δ15N, and isotopic niche width (SEAB) of Caiman crocodilus according to tissue across landscapes in the Araguaia floodplain. 
Response Tissue Hyperparameter Mean SD Q0.025 Q0.975 

δ13C 

Plasma 
Precision for the Gaussian observations 0.44 0.04 0.36 0.53 
Range for spatial random field -5.69 0.49 -6.67 -4.76 
SD for spatial random field 3.84 0.43 3.02 4.71 

Muscle 
Precision for the Gaussian observations 0.41 0.04 0.34 0.49 
Range for spatial random field -5.29 0.51 -6.29 -4.28 
SD for spatial random field 3.60 0.47 2.67 4.51 

Claw 
Precision for the Gaussian observations 0.41 0.04 0.33 0.49 
Range for spatial random field -5.18 0.50 -6.17 -4.20 
SD for spatial random field 3.52 0.47 2.61 4.44 

δ15N 

Plasma 
Precision for the Gaussian observations 1.93 0.18 1.59 2.31 
Range for spatial random field -4.58 0.40 -5.38 -3.81 
SD for spatial random field 3.51 0.41 2.73 4.33 

Muscle 
Precision for the Gaussian observations 1.93 0.18 1.60 2.30 
Range for spatial random field -4.94 0.91 -6.83 -3.27 
SD for spatial random field 3.62 0.57 2.56 4.82 

Claw 
Precision for the Gaussian observations 1.57 0.15 1.29 1.89 
Range for spatial random field -4.81 0.52 -5.84 -3.80 
SD for spatial random field 3.81 0.44 2.94 4.68 

SEAB 

Plasma 
Precision for the Gaussian observations 0.00 0.00 0.00 0.01 
Range for spatial random field -1.64 2.43 -5.81 3.68 
SD for spatial random field 2.99 2.27 -0.69 8.05 

Muscle 
Precision for the Gaussian observations 0.01 0.00 0.00 0.01 
Range for spatial random field -3.00 2.54 -7.84 2.12 
SD for spatial random field 1.51 1.93 -2.05 5.50 

Claw 
Precision for the Gaussian observations 0.01 0.00 0.00 0.01 
Range for spatial random field -1.41 2.16 -5.08 3.31 
SD for spatial random field 2.83 2.34 -1.20 7.92 
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FIGURES 

 

Figure S1. Meshes used in the SPDE approach to INLA model selection. First, we constructed 
five meshes with a specified non-convex boundary (convex = -0.15) with inla.nonconvex.hull 
function. Next, we built non-convex meshes using the inla.mesh.2d function with fixed values 
for cutoff and offset parameters (cutoff = 0.01 and offset = (0.1, 0.2)) and varying values of the 
max edge parameter: Mesh I (max edge = (0.05, 0.1)), Mesh II (max edge = (0.1, 0.2)), Mesh 
III (max edge = (0.15, 0.2)) and Mesh IV (max edge = (0.1, 0.3)), and Mesh V (max edge = 
(0.15, 0.3)). 

 

Figure S2. Posterior mean of the spatial random effect, Gaussian random field, from spatial 
hierarchical Bayesian best models for (A) δ13C, (B) δ15N, and (C) isotopic niche width 
according to tissue of Caiman crocodilus across landscapes in the Araguaia floodplain. Points 
represent individuals (for A and B) and sites (C) within determined locality. The colors 
indicate levels of spatial random effect according to the associated legends. 

 

Figure S3. Posterior standard deviation of the spatial random effect, Gaussian random field, 
from spatial hierarchical Bayesian best models for (A) δ13C, (B) δ15N, and (C) isotopic niche 
width according to tissue of Caiman crocodilus across landscapes in the Araguaia floodplain. 
Points represent individuals (for A and B) and sites (C) within determined locality. The colors 
indicate levels of spatial random effect according to the associated legends. 

 

Figure S4. Predicted standard deviation of the spatial hierarchical Bayesian best models for 
(A) δ13C, (B) δ15N, and (C) isotopic niche width according to tissue of Caiman crocodilus 
across landscapes in the Araguaia floodplain. Points represent individuals (for A and B) and 
sites (C) within determined locality. The colors indicate levels of responses according to the 
associated legends. 

 

Figure S5. Isotopic niches of the habitats for each locality in (A) plasma, (B) muscle, and (C) 
claw of Caiman crocodilus across landscapes in the Araguaia floodplain. Solid lines represent 
the core isotopic niche space. Overall, habitats had high niche redundance (i.e., high niche 
overlap) in all localities. 

 

Figure S6. Values of isotope composition (A) and means ± SD (B) from primary carbon 
sources collected by Zaia Alves et al. (2017) in the Araguaia River Basin and from samples of 
crops (rice and soybean) and caimans collected for our study. A high isotopic variability along 
δ13C axis occurs in basal sources, including with agricultural samples, and caimans.  
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CAPÍTULO 3. IRRIGATED-RICE LANDSCAPES CAN SUPPORT HEALTHY 

POPULATIONS OF CAIMAN CROCODILUS (CROCODYLIA, ALLIGATORIDAE) 

 

 

ABSTRACT 

1. Landscape modifications cause environmental degradation that affects habitat 

suitability for species’ persistence, with initial effects observed through individuals’ and 

populations’ physiological responses. However, some species can take advantage of 

landscape alteration and anthropogenic habitats. The landscape features that enable wildlife 

populations to persist in human-modified landscapes are still overlooked. We investigated 

what landscape features affect the body condition of Caiman crocodilus (Crocodylia, 

Alligatoridae) in human-modified landscapes with different land uses in the Araguaia 

floodplain, central Brazil. 

2. Across seven distinct agricultural landscapes in the floodplain, we estimated the body 

condition index (SMI) of C. crocodilus captured in natural and anthropogenic habitats. 

Further, we verified and recorded the incidence of body injuries in individuals. To assess 

landscape modification, we measured land use composition and wetland configuration at 

different spatial scales. Next, we used a spatial Bayesian model averaging approach to assess 

the effects of body injuries and landscape attributes on caiman body condition. 

3. Caimans had higher SMI in anthropogenic than in natural habitats and in ditches and 

man-made ponds than in lakes or rivers. The caiman SMI was affected only by wetland 

cohesion (an aggregation and connectivity metric), suffering a negative effect. However, 

wetland cohesion ranged from 80 to 99% in the human-modified landscapes. Otherwise, 

landscape composition did not influence caiman SMI, though ditch habitats relate to irrigated 

rice systems. Further, illnesses (i.e., leeches and body injuries) did not affect SMI. 
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4. Caiman crocodilus can thrive in anthropogenic waterbodies, such as stable water, 

closed systems of irrigation, apparently benefitting from higher prey availability. 

Additionally, irrigated rice yields favored caimans by providing resources from associated 

biodiversity, becoming a high-quality matrix for caiman persistence. 

5. Our findings highlight landscape features that support the persistence of caiman 

populations in altered landscapes. Anthropogenic waterbodies and irrigated rice fields provide 

suitable landscape conditions for caimans, supporting population maintenance across the 

landscape through waterbody availability and connectivity. In this sense, artificial wetlands 

can conciliate human-oriented and biodiversity-oriented purposes, providing ecosystem 

services and semi-natural habitats for some tolerant biota to habitat modifications. 

Environmental policies should incorporate these semi-natural habitats in an integrative 

strategy of landscape-based management and monitoring water resources to achieve 

sustainable and conservation goals. 

 

Keywords: body condition, disturbance, connectivity, fragmentation, Araguaia floodplain 

 

INTRODUCTION 

Anthropogenic ecosystems are becoming increasingly ubiquitous as humans modify natural 

landscapes for their purposes (Ellis & Ramankutty, 2008). Irrigation ditches and canals, 

livestock watering ponds, roadside ponds, and agricultural dams are examples of 

anthropogenic freshwater ecosystems in croplands and rangelands. These artificial 

waterbodies can vary with the degree and intent of modification, and their conditions for 

wildlife are not necessarily inadequate from their anthropogenic origins (Clifford & 

Heffernan, 2018). On the contrary, man-made waterbodies often can support many ecological 

processes and high biodiversity (Chester & Robson, 2013; Herzon & Helenius, 2008). In 
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landscapes where natural wetlands were suppressed, abundant and heterogeneous 

anthropogenic waterbodies can provide shelter and functional connectivity for wetland 

species (Clarke, 2015; Guareschi, Laini, Viaroli, & Bolpagni, 2019; Sayer, 2014; Thiere et al., 

2009). Thus, improving habitat quality in agroecosystems through land and water 

management to enhance biodiversity, ecological processes, and ecosystem services is an 

active area of research (Biggs, von Fumetti, & Kelly-Quinn, 2016; Dollinger, Dagès, Bailly, 

Lagacherie, & Voltz, 2015; Maltchik, Stenert, & Batzer, 2017; Perfecto & Vandermeer, 2008; 

Sayer, 2014). 

 Such emergent ecological significance is threatened by well-known harmful human 

effects on wetland ecosystems and biodiversity, caused by environmental degradation and 

pollution, fragmentation and suppression of natural habitats, and land-use conversion (Allan, 

2004). Changes in landscape composition and configuration can affect how species use, 

exploit, and access habitats and food, consequently influencing their persistence (Bennett, 

Radford, & Haslem, 2006; Fischer & Lindenmayer, 2007; Villard, Metzger, & Saura, 2014). 

The stressor factors can initially affect individuals and, posteriorly, entire populations; thus, 

population parameters may not inform habitat or landscape quality in a short-time (Gilroy & 

Edwards, 2017). Therefore, a quick health assessment of individuals may reveal 

environmental or anthropogenic stressors operating at small spatial scales before the entire 

population declines (Ellis, McWhorter, & Maron, 2012; Janin, Léna, & Joly, 2011). 

 Physiological traits, often measured through non-destructive or non-invasive 

alternative approaches, can help understand and predict wildlife responses under stressors 

(Ellis et al., 2012; Romero, 2004; Sheriff, Dantzer, Delehanty, Palme, & Boonstra, 2011). 

Body condition indexes indicate an animal’s energetic state, health, or quality (i.e., 

physiological and nutritional condition), assuming a positive relationship with fitness and 

survival, being indirectly related with habitat suitability for the long-term persistence of 
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populations (Peig & Green, 2009, 2010; Stevenson & Woods, 2006). Ecological and 

conservation studies have profitably used body condition indexes to reveal some silent 

environmental and anthropogenic threats, including habitat loss, habitat disturbance, and 

pesticides (reviewed in Stevenson & Woods, 2006), and also to evaluate restoration actions 

and water management practices (Fujisaki, Rice, Pearlstine, & Mazzotti, 2009; Mazzotti et al., 

2009). For instance, body condition can increase with the aggregation and proximity of 

habitat fragments in the landscape (Janin et al., 2011) and be lower in anthropogenic habitats 

due to reduced habitat quality (Battles, Whittle, Stehle, & Johnson, 2013; Gallego-Carmona, 

Castro-Arango, & Bernal-Bautista, 2016; Smyth, Smee, Godfrey, Crowther, & Phalen, 2014). 

 Smaller patch size is known to reduce food and refugia; consequently, the body 

condition of freshwater species is expected to have a positive relationship with increased 

waterbody size (Ellis et al., 2012; Ewers & Didham, 2006; Fahrig, 2003). Additionally, 

artificial habitats are surrounded by a non-native matrix that can vary in hostility, degree of 

permeability, and functional connectivity for biodiversity (Driscoll, Banks, Barton, 

Lindenmayer, & Smith, 2013; Ewers & Didham, 2006; Fischer & Lindenmayer, 2007). For 

example, irrigated rice systems can provide stable, interconnected, and heterogeneous habitats 

(Clarke, 2015; Maltchik et al., 2017; Perfecto & Vandermeer, 2008), while forest patches 

enhance the matrix quality and help maintain the life cycles, population dynamics, and body 

condition of wetland species (Janin et al., 2011; Quesnelle, Lindsay, & Fahrig, 2015). 

Conversely, homogeneous pastures are less favorable to such species due to reduced dispersal 

and elevated risk under more extreme abiotic conditions (Ribeiro, Colli, Batista, & Soares, 

2017). 

 The ecological processes affecting body condition can vary among species in the same 

landscape, mainly related to differences in dispersal ability and body size driving their 

susceptibility to landscape modification (Ewers & Didham, 2006; Fischer & Lindenmayer, 
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2007). Crocodilians are semi-aquatic, large-bodied top predators in wetland ecosystems, 

which use multiples habitats in the landscape to meet their nutritional requirements, 

alternating resources from terrestrial and aquatic food webs (Somaweera et al., 2020). 

Crocodilians experience an ontogenetic dietary shift, from small invertebrates as juveniles to 

large vertebrates as adults, reflecting an associated increase in home range size and 

movements, including incursions in terrestrial environments (Grigg & Kirshner, 2015). As an 

ectothermic and a wetland-dependent species, prolonged periods overland may negatively 

impact physiological parameters and body condition (Barão-Nóbrega et al., 2017; Campbell, 

Micheli, & Abe, 2008). Changes in landscape characteristics may impact the trophic ecology, 

physiology, occupancy, and persistence of crocodilian populations (Somaweera, Brien, Platt, 

Manolis, & Webber, 2019). Therefore, crocodilians are a useful ecological indicator for 

detecting and monitoring the effects of anthropogenic disturbance (Somaweera et al., 2020; 

Mazzotti et al., 2009). 

 Here, we investigate the effects of landscape features on the body condition of Caiman 

crocodilus (Crocodylia, Alligatoridae) across a gradient of anthropogenic disturbance in the 

middle Araguaia River floodplain, central Brazil. We also use the incidence of ectoparasites 

(e.g., ticks and leeches) and body injuries (amputations, lesions, fractures, and lacerations) as 

indicators of general health. We use the top predator C. crocodilus (spectacled caiman) as an 

indicator species due to (1) its broad range of seasonal and ontogenetic movements across a 

variety of terrestrial and aquatic habitats in the floodplain (Gorzula, 1978; Ouboter & Nanhoe, 

1988); (2) its public appeal as an iconic element of the Araguaia River basin; and (3) the 

presence in anthropogenic habitats in the floodplain, including irrigated crop systems and 

livestock watering ponds, which are essential for the conservation of crocodilian populations 

(Borteiro, Gutiérrez, Tedros, & Kolenc, 2008; Marques et al., 2016). We hypothesize that 
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anthropogenic disturbance should negatively affect the body condition and health of C. 

crocodilus. 

 

METHODS 

Study sites 

The middle Araguaia River floodplain is in the highly dynamic and complex Cerrado–

Amazonia ecotone in Brazil (Marques et al., 2019). The annual flood pulse drastically 

changes the landscape, spanning about 88,000 km2 at maximum flood level and 

interconnecting several waterbodies, while only 3.3% (2,930 km2) of water area is present in 

the dry season (Irion et al., 2016). The Araguaia floodplain supports a rich and abundant 

biota, including many endemic and endangered species, protected by a RAMSAR site (Ilha do 

Bananal; no. 624), some parks, and indigenous lands (RAMSAR, 2002; SEPLAN, 2012). 

 However, the Araguaia floodplain is under sustained pressure from agricultural 

development due to favorable topography and hydrology, which turned this region into one of 

the leading producers of irrigated rice in Brazil (CONAB, 2015). The production is based on 

irrigated systems, where crops are cultivated according to the hydrological regime: rice in the 

wet season alternating with other crops (e.g., soybeans, beans, watermelon) in the dry season 

(Oliveira, Viola, Mello, Giongo, & Coelho, 2015). During the last decades, Tocantins state 

expanded the cultivated area from 49,000 to 120,000 ha between 1989 and 2015, with 

maximum of 160,000 ha in 2008 (IBGE, 2016; Santos & Rabelo, 2008). The agribusiness has 

severely impacted the Araguaia Basin, and less than 50% of native vegetation remains (Coe, 

Latrubesse, Ferreira, & Amsler, 2011; Ferreira, Ferreira, Latrubesse, & Miziara, 2008). In the 

middle Araguaia River floodplain, there was a reduction of 26% of native vegetation cover 

between 1975-2013, driven mainly by the expansion of pasturelands (Garcia, Sawakuchi, 

Ferreira, & Ballester, 2017). 
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Study design 

We carried out fieldwork during the dry seasons (July to September) of 2016 and 2018 in 

seven localities across the middle Araguaia River floodplain (Figure 1). In each locality, we 

sampled animals in natural (e.g., rivers and lakes) and artificial habitats (e.g., ponds, 

reservoirs, and irrigation ditches), distributed among anthropogenic landscapes under different 

land uses and cover and natural landscapes, inside and outside of protected areas. To 

maximize their spatial independence, we chose localities at least 20 km from each other and 

sites within each locality as apart as possible from each other. 

 

 
FIGURE 1 Location of seven sampling landscapes in the middle Araguaia River floodplain, 
central Brazil. Hydrograph and protected areas in the region are depicted. Red points 
represent the location of captured caimans in sampling sites. The 3-km buffer indicates the 
maximum spatial region for data acquisition of landscape attributes. 
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 For assessment and measurement of human disturbance, we recorded landscape 

metrics using 500-m, 1-km, and 3-km circular buffers centered at each animal associated with 

the raster of land use/cover from MapBiomas Project (http://mapbiomas.org, collection 4, 

year: 2016 and 2018). Such buffer distances represent suitable distances for habitat utilization 

based on home range and movement studies for C. crocodilus (Gorzula, 1978; Ouboter & 

Nanhoe, 1988). We redefined MapBiomas land use classes considering five categories: water, 

forest, savanna (savanna, grassland, non-forest natural formation, and other non-forest natural 

formation classes), pasture (pasture and other non-vegetated area classes), agriculture (annual 

and perennial crop class). We excluded the urban class due to low representativeness in the 

coverage. To improve water coverage, we incorporated a hydrography raster generated from a 

vectorial database acquired from Secretaria do Meio Ambiente e Recursos Hídricos of State 

of Tocantins (https://semarh.to.gov.br/car/base-vetorial-digital-tematica-do-car/). Further, we 

improved MapBiomas land use mapping due to differences between supervised in loco 

coverage and MapBiomas raster, reclassifying and redefining the topology guided by Landsat 

8 satellites images for the same months of caiman sampling in 2016 and 2018, with 30-m 

pixel spatial resolution obtained from the Instituto Nacional de Pesquisas Espaciais–INPE 

(Brazilian Space Agency; http://www.inpe.br/) using QGIS, version 3.12 (QGIS Development 

Team, 2020). 

 For each buffer, we calculated landscape metrics for the designated classes with the R 

package LANDSCAPEMETRICS (Hesselbarth, Sciaini, Nowosad, & Hanss, 2019): the percentage 

of the landscape of class (PCLASS) and mean patch area (MPA) for all classes; the mean of 

Euclidean nearest-neighbor distance (ENN), patch cohesion index (COHESION), and largest 

patch index (LPI) restricted to waterbody class. At the landscape level, we estimated the 

landscape shape index (LSI) and landscape division index (LDI). Such landscape metrics 

relate to composition characteristics, such as PCLASS, LPI, and MPA, which describe the 
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proportion of different types of classes, dominance of largest patch on class area, and mean 

area of class patches within the buffer area; and configuration characteristics, such as ENN, 

COHESION, LSI, and LDI. These characteristics reflect aspects of isolation, physical 

connectivity, and landscape fragmentation, respectively (McGarigal & Marks, 1995). 

 

Field methods 

We captured caimans in nocturnal spotlight surveys with the aid of locking cable snares or by 

hand after locating the animals by eye-reflection (Brien & Manolis, 2016; Fitzgerald, 2012). 

We physically restrained mouth and limbs with ropes and adhesive tape (Brien & Manolis, 

2016). The capture effort was independent of animal size for all study habitats. We recorded 

the snout-vent length (SVL; with a 0.1-cm precision tape), tail length (from the posterior 

margin of the cloaca to the end of tail), body mass (with 0.1-kg precision spring scale), and 

sex, determined by cloacal examination and palpation of the penis (Reed & Tucker, 2012). 

Moreover, we recorded the presence of ectoparasites (e.g., ticks and leeches) and severe 

injuries (amputations, lesions, fractures, and lacerations) in the animals caught (Figure 2). We 

placed a permanent and individual mark in caimans by notching tail scutes as a standardized 

numerical code and released at the same local of capture (Plummer & Ferner, 2012). We 

conducted this study under permits SISBIO #13324-6 and #57940-3 (issued by Instituto 

Chico Mendes de Conservação da Biodiversidade), FUNAI #08620.005147/2018-38 

(Fundação Nacional do Índio), and CEUA-UnB #94/2017 (Comissão de Ética no Uso de 

Animais da Universidade de Brasília). 
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FIGURE 2 Caiman crocodilus specimens in the middle Araguaia River floodplain: (a) released 
in an irrigation canal; (b) with leeches; (c) with hindlimb amputation; (d) with thorax laceration; 
(e) with partial tail loss; (f) with mouth lesion. 

 

 We estimated the body condition of Caiman crocodilus using the scaled mass index – 

SMI (Peig & Green, 2009), based on body mass and snout-vent length data in Equation (1):  

 !"#! =	"! ∗ 	'
!()"
!()!

*
#!"#

 (1) 

where Mi and SVLi are the body mass and the size of individual i, respectively; SVL0 is 

the mean size in the study population; and bSMA is a scaling factor. We computed bSMA from a 

standardized major axis (SMA) regression of log(M) on log(L), using the R package LMODEL2 

(Legendre, 2014). SMI is more efficient than conventional methods of estimating body 

condition, with isometric growth and invariability regarding sex and ontogeny, predicting 

(a) (b)

(c) (d)

(e) (f)
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measures of fat and protein reserves of individuals, and being employed in several vertebrate 

taxa (Peig & Green, 2009, 2010). 

 

 Data analysis 

We initially performed descriptive analyses, with values expressed mean ± standard deviation 

(min – max). We performed a Chi-square test of independence with 1000 Monte Carlo 

simulations to investigate whether the frequency of ectoparasites and injuries were related to 

sex, habitat, and locality. 

 To assess the effects of land use and illnesses on C. crocodilus body condition, we 

used a Bayesian model averaging (BMA) approach to identify the most important predictors 

for body condition (Hoeting, 2002; Hoeting, Madigan, Raftery, & Volinsky, 1999), with R 

package BMS (Zeugner & Feldkircher, 2015). In this analysis, SMI was the response 

variable, while habitat, sex, tail length, presence of injury, presence of ectoparasite, landscape 

metrics (ENN, MPA, PCLASS, COHESION, LPI, LDI and LSI) for each buffer, and the 

interaction between sex and habitat were predictors. The predictors of landscape metrics and 

tail length were standardized around the mean with one standard deviation. For ectoparasite 

and injury, individuals had a record of presence-absence, represented as a binary variable (1 

or 0, respectively). For this purpose, we excluded hatchlings (SVL < 20 cm) due to the low 

survivor rate and influence of environmental conditions on the mass-SVL relationship during 

embryonic development (Campos, 1993; Grigg & Kirshner, 2015). 

 Before analysis, we reduced the multicollinearity of the predictors by retaining 

landscape metrics with Variance Inflation Factors (VIF) smaller than 2 (Table S1), using the 

R package USDM (Naimi, Hamm, Groen, Skidmore, & Toxopeus, 2014). Next, we selected 

those with greater predictive accuracy for caiman body condition among the remaining 

landscape metrics, using R package BORUTA (Kursa & Rudnicki, 2010). Boruta is a Random 
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Forest-based selection method that identifies all-relevant variables through a comparative 

approach of the importance (Z-score values) between original and “shadow” variables 

(obtained by shuffling values of the randomized original variables). Boruta eliminates 

irrelevant features (Z-scores Original var. < maximum Z-scores Shadow var.) to improve model 

predictive accuracy. We used ntree = 2000, maxRuns = 2000, and default settings of the other 

parameters. We retained the landscape attributes that had a positive decision (Table S2). 

 We incorporated in the BMA procedures to address model uncertainty in the presence 

of spatial autocorrelation due to the inherent spatial dependencies among the observations 

(Legendre, 1993). Spatial dependencies are removed through a semiparametric spatial 

filtering approach based on selected eigenvectors extracted from the spatial weight matrix 

(Tiefelsdorf & Griffith, 2007). Considering the critical effects that uncertainty in the type of 

spatial weight matrix (neighborhood relationships) can have on model parameter estimates, 

the spatial Bayesian model averaging method addresses both the uncertainty over model 

specification and the uncertainty regarding the choice of neighborhood relationships in the 

spatial regression model (Cuaresma & Feldkircher, 2013). 

 We implemented spatial Bayesian model averaging using the R package SPATBMS 

(Feldkircher, 2010) in 5 chains, using 107 iterations, 106 burn-in draws, the reversible-jump 

model-sampler algorithm, retention of the 500 best models, and default settings for the other 

parameters. We used nine different spatial weight matrices built with R package SPDEP 

(Bivand, Pebesma, & Gómez-Rubio, 2008): k nearest-neighbors (k = 89-91), Delaunay’s 

triangulation, Gabriel graph, relative neighbor graph, sphere of influence graph, and distance-

based neighbors (distance = 17 ´ dngb, 20 ´ dngb, and 23 ´ dngb) – calculated from the 

minimum distance (dngb) at which all points have at least one neighbor, and then multiplied 

as many times as needed (i.e., 17, 20, and 23 times) to improve the contiguity. In this sense, 

we respected the contiguity condition for the choice of graph-based neighbor schemes, where 
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all graph schemes had all the points and areas linked, producing a unique mesh (Bivand et al., 

2008). To assess the adequacy of the spatial filtering, we verified P-values of the Moran’s I 

test for spatial autocorrelation obtained from the 100 best models (Feldkircher, 2010). We 

implemented all statistical tests in the R platform (R Development Core Team, 2019). 

 

RESULTS 

We caught 294 Caiman crocodilus across localities, with mean SVL of 57.40 ± 20.24 cm 

(15.4 – 104 cm) and body mass of 6.32 ± 5.98 kg (0.056 – 26.6 kg). The resulting bSMA was 

3.217, producing a mean SMI of 4.45 ± 0.46 (2.05 – 5.83). We recorded parasitism by leeches 

(n = 15) and injuries (n = 19), which included perforations and lacerations in the jaw, head, 

dorsum, and the loss of limbs and part of the tail (Figure 2). The presence of leeches was 

independent of sex (c2 = 1.228; P = 0.390), but significantly associated with lake habitat (c2 = 

11.472; P = 0.008) and Cooperformoso and Bananal localities (c2 = 12.428; P = 0.499). On 

the other hand, the occurrence of body injuries was dependent of sex (c2 = 4.693; P = 0.047), 

with males having more injuries than females, but independent of habitat (c2 = 0.320; P = 

0.950) and locality (c2 = 12.355; P = 0.056). 

 The best predictor of body condition was COHESION of waterbodies in a 3-km buffer 

(Table 1; Figure 3a), with 70.3% of posterior inclusion probability, a 95% credibility interval 

that did not include zero, and the largest standardized coefficient, but a negative correlation 

with body condition in all models that it was present (Figure 4a). COHESION was alone in 

the top model, contributing 35% to the posterior model probabilities. The null model was the 

second-best model, adding 21% to the posterior model probabilities, while the third-best 

model (COHESION and habitat) added just 9.6% to the posterior model probabilities (Figure 

3a). The second-best predictor was habitat, with a 95% credibility interval that did not include 

zero, but just with 29.8% of posterior inclusion probability. Habitat had a positive coefficient, 
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that is, caiman body condition increased from river to ditch [predicted SMI river: 4.43 ± 0.05 

(4.36 – 4.56); lake: 4.47 ± 0.09 (4.34 – 4.59); pond: 4.46 ± 0.08 (4.39 – 4.64); ditch: 4.48 ± 

0.06 (4.39 – 4.65); Figure 4b]. The remaining predictors had lower importance (PIP < 10%), 

lower standardized coefficients, and meager contributions to posterior model probability, 

indicating a small predictive power (Table 1, Figure 3a). The spatial BMA analysis indicated 

that the spatial weight matrix based on Delaunay’s triangulation graph had the highest 

posterior model probability above 99%, with successful removal of the spatial autocorrelation 

from the regression residuals (Figure 3b). 

 

TABLE 1 Bayesian model averaging of Caiman crocodilus body condition for landscape 
mosaic in the middle Araguaia River floodplain, central Brazil. 

Predictor PIP 
Post 
Mean Post SD 

Post 
Sign 

2.5% 
PostCI 

97.5% 
PostCI 

COHESION (water) 3-B 0.703 -0.078 0.058 0.000 -0.175 -0.047 
Habitat 0.298 0.023 0.039 1.000 0.015 0.138 
Sex 0.070 -0.008 0.033 0.000 -0.234 -0.008 
MPA (water) 1-B 0.039 -0.002 0.011 0.000 -0.105 0.007 
MPA (agriculture) 3-B 0.036 0.002 0.011 1.000 -0.009 0.111 
MPA (forest) 1-B 0.033 -0.001 0.009 0.000 -0.094 0.007 
MPA (water) 3-B 0.030 -0.001 0.009 0.000 -0.092 0.011 
MPA (forest) 3-B 0.030 -0.001 0.009 0.001 -0.101 0.008 
Habitat:Sex 0.027 0.000 0.006 0.474 -0.065 0.052 
PCLASS (agriculture) 0.5-B 0.020 0.001 0.010 1.000 -0.025 0.139 
MPA (pasture) 3-B 0.016 0.001 0.007 1.000 -0.037 0.091 
Injury 0.012 -0.001 0.014 0.000 -0.271 0.102 
MPA (savanna) 1-B 0.012 0.000 0.004 0.179 -0.071 0.038 
ENN (water) 3-B 0.011 0.000 0.003 0.999 -0.029 0.064 
Tail length 0.011 0.000 0.003 1.000 -0.033 0.065 
COHESION (water) 0.5-B 0.010 0.000 0.003 0.077 -0.072 0.047 
MPA (pasture) 1-B 0.010 0.000 0.003 0.980 -0.047 0.077 
Ectoparasites 0.009 0.000 0.010 0.049 -0.240 0.186 
PIP: posterior inclusion probabilities, i.e., sum of posterior model probabilities for all 
models wherein a predictor was included. Post Mean: standardized coefficients averaged 
over all models. Post SD: standard deviations of standardized coefficients. Post Sign: 
posterior probability of a positive coefficient expected value conditional on inclusion. 
2.5% and 97.5% PostCI: credibility interval of the posterior probability distribution. 
Buffers: 0.5-B for 500-m buffer; 1-B for 1-km buffer; 3-B for 3-km buffer. 
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FIGURE 3 Bayesian model averaging of Caiman crocodilus body condition across 
landscapes in the middle Araguaia River floodplain: (a) cumulative model probabilities; (b) 
Moran’s test P-values from spatial filtering of Delaunay’s triangulation graph. The Y-axis 
contains the predictors of body condition, while the X-axis is scaled by the posterior model 
probabilities. Colors relate to predictor inclusions in models: positive coefficients are in blue, 
negative coefficients are in red, and non-inclusion are in white. Buffers: 0.5-B for 500-m 
buffer; 1-B for 1-km buffer; 3-B for 3-km buffer. 

 

 
FIGURE 4 Effect of (a) patch cohesion index (COHESION) in 3-km buffer and (b) habitat 
on Caiman crocodilus body condition across landscapes in the middle Araguaia River 
floodplain. 

 

DISCUSSION 

Overall, the caiman body condition indicated good population health, suggesting suitable 

environmental conditions for populations’ persistence in the Araguaia floodplain. Contrary to 
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our prediction, Caiman crocodilus had better body condition in anthropogenic waterbodies 

than their natural counterparts. Landscape features across human-modified areas in the 

Araguaia floodplain demonstrated that only waterbody connectivity affected caiman health, 

while other land-use composition and structure features did not directly influence. Our results 

illustrate how this species tolerates and even benefits from anthropogenic modifications. 

 Injuries and leeches were infrequent in Caiman crocodilus, and they were not included 

among important predictors of body condition. Although leech infestation rate and degree 

(number of leeches per individual) tend to increase with body size (Cott, 1961), habitat 

selection may be central for infestation intensity on individuals by using areas with high 

parasite load (Magnusson, 1985). Natural and anthropogenic waterbodies in our study 

indicated a low prevalence of ectoparasites, where the leech infestation did not indicate any 

obvious sign of disease or pathogenicity and no effect on C. crocodilus body condition. Still, 

leeches can transmit pathogens and hemoparasites, such as Trypanosoma and 

Haemogregarina (Fermino et al., 2015; Khan, Forrester, Goodwin, & Ross, 1980). 

 Injuries affect the physiologic functioning of individuals, reallocating energy for the 

immune system, regeneration, and recovery (Pressinotti et al., 2013; Siroski, Pina, Larriera, 

Merchant, & Di Conza, 2009), and depending on their severity, they may reflect apparent 

poor body condition and physical deterioration, e.g., weight loss (Huchzermeyer, 2003). In 

our study, injuries were more frequent in males than females, but unrelated to either 

anthropogenic waterbodies or higher human disturbance areas. Prevalence of injuries may 

relate to density-dependent factors through social interactions, such as crowding, hierarchy, 

and territory, where males usually demonstrate antagonistic behaviors during disputes for 

territory or females in the breeding season (Cott, 1961; Grigg & Kirshner, 2015; 

Huchzermeyer, 2003; Padilla & Weber, 2016). Nonetheless, the occurrence of crocodilians in 

some anthropogenic waterbodies may increase conflicts with humans due to human 
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occupation or threat to the rural livelihood, and thus, crocodilians may suffer injuries from 

human attacks, with fatal consequences for local populations (Das & Jana, 2017; Dunham, 

Ghiurghi, Cumbi, & Urbano, 2010; Fukuda, Manolis, & Appel, 2014; García-Grajales & 

Buenrostro-Silva, 2019). We postulate the low occurrence of injuries in our study is the 

reason for the lack of effect on Caiman crocodilus body condition, since we recorded injuries 

with great potential for physical impairments. Amputations and lesions can affect the body 

condition of crocodilians by restricting prey capture indirectly through hunt constrains (attack, 

locomotion, pursuit) or directly the food ingestion through feeding movement constrains 

(review of feeding mechanics of crocodilians in Grigg & Kirshner, 2015). For instance, we 

found a C. crocodilus without a tongue with poor physical aspect corresponding to one of the 

lowest values of body condition, likely due to reduced food intake. 

 Effects of landscape attributes upon C. crocodilus body condition were restricted to 

patch cohesion index, an indicative of aggregation and physical connectivity of waterbodies. 

Body condition decreased with a higher patch cohesion index in the 3-km buffer, indicating 

that our prediction was not supported. Higher aggregation and connectivity could indicate 

unfavorable conditions for foraging activities with a negative effect on C. crocodilus body 

condition. For example, more clumped wetlands could have high caiman densities, driving 

higher competition and resource deprivation (Hoare et al., 2006). Under the hypothesis that 

landscape influences population dynamics, with habitat quality and selection imposing costs 

and gains to individuals to achieve the best fitness (Hengeveld, van Langevelde, Groen, & de 

Knegt, 2009; Tscharntke et al., 2012), anthropogenic pressures can reduce resource 

availability and diversity, lowering body condition in a spatial configuration of clumped 

wetlands (Battles et al., 2013; Gallego-Carmona et al., 2016; Smyth et al., 2014). 

 In our study, the waterbody cohesion index in 3-km buffer ranged from 80 to 99%, 

which can mask more harmful effects of extensive matrices in human-modified landscapes 
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with scarce and isolated wetlands, like pasturelands. In these circumstances, a severe dry 

season may intensify environmental constraints (reduced resource and habitat availability and 

depreciated physical-chemical conditions) to impact crocodilian body condition. A 

remarkable factor of stress is overheating and dehydration associated with restricted access to 

waterbodies or vegetation, with impact on physiological mechanisms of thermoregulation and 

body water balance able to conduct to lethal level (Campbell et al., 2008; Grigg & Kirshner, 

2015; Somaweera et al., 2019). Caiman crocodilus females have a more prominent effect of 

dehydration in the breeding period when reproductive females reduce food acquisition and 

water access during nest attendance (Barão-Nóbrega et al., 2017; Barão-Nóbrega et al., 2016). 

Campbell et al. (2008) found expressive weight loss and reduction in physiological 

parameters (plasmatic glucose and triglycerides) in smaller C. yacare animals that inhabit 

Pantanal dry grassland with restricted access to water in high population density compared to 

animals inhabited in permanent ponds, indicating food deprivation by territorialism. Even 

though in estivation mode, crocodilians over three months without access to water were able 

to lose ~13% of their body weight, maintaining the same proportion of body mass in ~75% 

(Christian, Green, & Kennett, 1996). In circumstances of isolated waterbodies, an animal in 

poor health condition may reduce its survival rate during movement in a hostile agricultural 

matrix. For instance, the severe events in the dry seasons in 2016, 2017, and 2019 conduced 

to deaths of caimans in some isolated lakes in the Araguaia region 

(https://g1.globo.com/to/tocantins/noticia/dezenas-de-jacares-morrem-apos-lagoas-secarem-

na-ilha-do-bananal.ghtml, http://g1.globo.com/to/tocantins/noticia/2016/08/jacares-morrem-

presos-lama-apos-lago-secar-no-sudeste-do-tocantins.html, and https://g1.globo.com/jornal-

nacional/noticia/2019/09/30/no-tocantins-a-seca-severa-transforma-rios-em-lagos.ghtml). 

 Forest formation is pivotal to support wetland species in agricultural landscapes 

(Bennett et al., 2006; Quesnelle et al., 2015). Some species relate mainly to the mounds of 
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vegetation formed next to wetlands (a complementary habitat), such as amphibians and 

reptiles that require different habitat types to complete their life cycles (i.e., foraging, 

dispersion, and breeding activities) (Guareschi et al., 2019; Quesnelle et al., 2015; Ribeiro et 

al., 2017). Vegetation influences directly crocodilians through nesting ecology, spatial habitat 

occupation according to body size, thermoregulation behavior, population survival, 

communication, and foraging activities across different spatial scales (reviewed in Somaweera 

et al., 2019). However, our spatial BMA modeling indicated no effect of forest area 

(represented by MPA of forest in 1-km buffer) upon C. crocodilus body condition, but 

intrinsically driven by wetland amount via cohesion index. The effect of vegetation coverage 

varies with animal taxa, and thus, though a wetland-dependent species is linked to wetland 

amount (Guareschi et al., 2019; Quesnelle et al., 2015). As the landscape integrates nearby 

protected areas and high waterbody connectivity, the spillover of caimans across habitats, 

including between irrigated rice fields and natural ecosystems, could reduce the negative 

impacts of landscape modifications upon body condition (Tscharntke et al., 2012). 

 Our findings did not support our prediction that Caiman crocodilus population in 

natural habitats (e.g., rivers and lakes) should have higher body condition than populations in 

anthropogenic habitats; instead, C. crocodilus population in ditches had the best health, 

followed by populations in man-made ponds. This finding suggests that anthropogenic 

waterbodies met some characteristics for C. crocodilus to achieve better health. Man-made 

ponds and drainage networks in rice irrigation systems may become closed aquatic systems 

for aquatic animals during the dry season, with stable standing water or slow flow and 

shallow depths (Bambaradeniya & Amerasinghe, 2003; Biggs et al., 2016; Davies, Biggs, 

Williams, Lee, & Thompson, 2008), promoting suitable conditions to increase food intake. 

With a diet based on fish (Da Silveira & Magnusson, 1999; Laverty & Dobson, 2013; 

Thorbjarnarson, 1993), crocodilians experiment better body conditions in the dry season, 
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when feeding opportunity increases due to reduction of depth and area in waterbodies, 

concentrating aquatic and terrestrial prey in smaller wetlands (Fujisaki et al., 2009; Mazzotti 

et al., 2012). Whereas not equally comparable to natural habitats in pristine wetlands, 

waterbodies in agricultural landscapes can support expressive and representative freshwater 

biodiversity, including native, rare, threatened, and endangered species from diverse taxa 

(Bambaradeniya & Amerasinghe, 2003; Chester & Robson, 2013; Davies et al., 2008; Davies 

et al., 2008; Davis & Moore, 2016; Herzon & Helenius, 2008; Verdonschot, Keizer-Vlek, & 

Verdonschot, 2011). High a and g taxonomic diversities are found in some agricultural 

landscapes, highlighting an important role of small natural and anthropogenic waterbodies for 

biodiversity conservation (Biggs et al., 2016; Davies et al., 2008; Ishiyama, Sueyoshi, 

Watanabe, & Nakamura, 2016; Thiere et al., 2009; Verdonschot et al., 2011). Man-made 

aquatic habitats such as irrigated rice yields could support generalist and opportunistic species 

by facilitating access to widespread prey associated with agricultural areas, amplifying the 

number of habitats and the structural connectivity between natural aquatic waterbodies. 

 However, the occurrence in anthropogenic habitats puts caution on these results 

because the susceptibility to exposure to agrochemicals, which are known to be harmful to 

biodiversity (Lee & Choi, 2020; Tavalieri et al., 2020; Warner et al., 2020). In irrigated 

agricultural systems in the Araguaia floodplain, the application of fungicides and herbicides 

apparently has low concentrations of their contaminants in the water, such as atrazine, 

propiconazole, tebuconazole, and tetraconazole (Guarda et al., 2020). However, negative 

effects are being detected through histological analyses of living tissues (liver, epithelium, 

and reproductive system) in amphibians (Lima, Malvasio, & Moraes, 2020). Although our 

study did not apply ecotoxicological approach, studies with crocodilians demonstrated 

harmful effects of pesticides on these predators, including through genotoxicity, enzymatic 

and metabolic alterations that affects fetal development and animal reproductive and immune 
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systems (Di Lorenzo et al., 2020; Galoppo et al., 2020; Guillette & Iguchi, 2003; Poletta et 

al., 2011; Siroski et al., 2016; Tavalieri et al., 2020). Body condition index also are negatively 

correlated with pesticide concentrations and distance to application area (Grant, Woudneh, & 

Ross, 2013). As indicator species and top predator that suffers effects from bioaccumulation 

and/or biomagnification processes, caiman body conditions can reflect a direct health loss or 

an indirect effect of trophic relations with reduction of prey (Grant et al., 2013). This 

ecotoxicological approach with caimans emerges as an open area for investigation in future 

studies in agricultural landscapes in the Araguaia floodplain. 

 Environmental heterogeneity plays a pivotal role for the populations of wetland 

species in agricultural wetlands (Bennett et al., 2006; Guareschi et al., 2019; Thiere et al., 

2009). Local management can be effective to support rich biodiversity through an 

intermediate landscape complexity hypothesis, where the mosaic comprises natural and semi-

natural habitats (Tscharntke, Klein, Kruess, Steffan-Dewenter, & Thies, 2005; Tscharntke et 

al., 2012). For instance, agroecological systems integrate components for biodiversity- and 

human-oriented purposes, improving landscape attributes to a high-quality matrix and 

functional landscape heterogeneity (Fahrig et al., 2011; Perfecto & Vandermeer, 2008). 

Anthropogenic origins do not imply limitations to harbor wetland biodiversity when suitable 

landscape features are involved, mainly when associated with their natural counterparts. 

Artificial habitats can support functions for: maintenance of life cycle stages (e.g., breeding, 

foraging, temporal refuges) with higher habitat heterogeneity and availability for animal 

species; persistence, as an immediate refuge in the landscape with scarce natural freshwater 

habitats, considering the habitat suitability and representativeness in the landscape for the 

species; and dispersion and movement, as stepping-stones habitats able to have high 

connectivity value between freshwater habitats (natural or anthropogenic), mainly for 
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dispersive species (Bennett et al., 2006; Chester & Robson, 2013; Guareschi et al., 2019; 

Thiere et al., 2009). 

 Our study emphasizes the importance of anthropogenic waterbodies in agricultural 

areas and landscape configuration for a wetland-dependent species. Albeit of human origin, 

irrigated-rice landscapes could still have high conservation and ecological value (Chester & 

Robson, 2013; Clifford & Heffernan, 2018). Management of these habitats is the key for 

improving biodiversity, when considering strategies to incorporate and enhance ecological 

goals and possible new ecosystem services (Clifford & Heffernan, 2018). Under the strategic 

view, better responses can be achieved with proper management in local and catchment scales 

(Allan, 2004). In local scale management, both human-oriented and biodiversity-oriented 

purposes aggregate attributes to provide ecosystem services and increase biodiversity, such as 

in ponds (Biggs et al., 2016; Bolpagni et al., 2019; Sayer et al., 2012), ditches (Clarke, 2015; 

Dollinger et al., 2015; Needeman, Kleinman, Strock, & Allen, 2007), and other man-made 

habitats (Chester & Robson, 2013). A catchment and landscape-based management benefits 

biodiversity conservation, integrating connectivity in a river-floodplain system for protective 

and restorative actions of diverse waterbody types (Allan, 2004; Eros & Grant, 2015; Sayer, 

2014). 
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SUPPORTING INFORMATION 

TABLE S1 Landscape attributes retained by Variance Inflation Factor (VIF) in the Araguaia 
floodplain. The VIF threshold had a value of 2 for the theta parameter. NS: landscape 
attributes with collinearity problem (VIF value > 2) and that were excluded from the posterior 
analysis. 
Landscape attribute VIF 
ENN (water) 0.5-B 1.157 
MPA (agriculture) 3-B 1.234 
PCLASS (agriculture) 0.5-B 1.243 
ENN (water) 1-B 1.251 
MPA (pasture) 1-B 1.501 
ENN (water) 3-B 1.584 
MPA (pasture) 3-B 1.601 
MPA (savanna) 1-B 1.621 
COE (water) 3-B 1.652 
MPA (forest) 1-B 1.658 
MPA (forest) 3-B 1.688 
MPA (water) 3-B 1.712 
MPA (savanna) 0.5-B 1.725 
MPA (water) 1-B 1.799 
COE (water) 0.5-B 1.913 
LPI (water) 1-B NS 
MPA (agriculture) 0.5-B NS 
PCLASS (savanna) 3-B NS 
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PCLASS (agriculture) 3-B NS 
PCLASS (forest) 1-B NS 
LSI 3-B NS 
PCLASS (savanna) 0.5-B NS 
PCLASS (forest) 3-B NS 
LDI 3-B NS 
MPA (pasture) 0.5-B NS 
PCLASS (water) 0.5-B NS 
PCLASS (water) 1-B NS 
PCLASS (savanna) 1-B NS 
LSI 0.5-B NS 
PCLASS (agriculture) 1-B NS 
MPA (savanna) 3-B NS 
LDI 0.5-B NS 
PCLASS (forest) 0.5-B NS 
LPI (water) 0.5-B NS 
MPA (forest) 0.5-B NS 
PCLASS (water) 3-B NS 
LDI 1-B NS 
COE (water) 1-B NS 
PCLASS (pasture) 0.5-B NS 
MPA (water) 0.5-B NS 
LPI (water) 3-B NS 
PCLASS (pasture) 1-B NS 
MPA (agriculture) 1-B NS 
PCLASS (pasture) 3-B NS 
LSI 1-B NS 

 

 

TABLE S2 Importance of landscape features selected by Boruta as predictors of the body 
condition of Caiman crocodilus in the Araguaia floodplain. Decision, mean, minimum, 
maximum, and normalized importance based on the fraction of random forest runs in which 
the attributes were more important than shadow values. 
Landscape metric Decision meanImp minImp maxImp normHits 
MPA (water) 1-B Confirmed 18.591 14.866 22.851 1.000 
COHESION (water) 3-B Confirmed 17.346 13.758 22.448 1.000 
COHESION (water) 0.5-B Confirmed 15.542 11.667 19.451 0.999 
MPA (water) 3-B Confirmed 15.346 11.159 19.483 0.999 
MPA (forest) 3-B Confirmed 11.281 7.278 15.753 0.985 
MPA (forest) 1-B Confirmed 10.401 6.272 13.468 0.979 
PCLASS (agriculture) 0.5-B Confirmed 9.507 4.201 15.884 0.956 
MPA (pasture) 3-B Confirmed 8.984 5.142 12.053 0.953 
MPA (savanna) 1-B Confirmed 8.833 5.322 11.799 0.946 
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ENN (water) 3-B Confirmed 7.657 4.169 10.747 0.905 
MPA (pasture) 1-B Confirmed 5.316 1.405 8.942 0.683 
MPA (agriculture) 3-B Confirmed 4.527 -0.272 8.125 0.555 
ENN (water) 0.5-B Rejected 3.741 0.654 7.188 0.214 
MPA (savanna) 0.5-B Rejected 3.640 0.548 6.328 0.084 
ENN (water) 1-B Rejected 3.383 1.255 5.294 0.006 
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CONSIDERAÇÕES FINAIS 

 

As paisagens estudadas na planície de inundação do Araguaia apresentaram-se como 

uma composição mista de áreas antropogênicas com atividades agrícolas e de áreas naturais. 

Ambientes aquáticos naturais e antropogênicos se alternaram ao longo da paisagem e 

proveram diversidade e heterogeneidade de habitat para a biodiversidade. Assim, a maior 

disponibilidade e diversidade de corpos hídricos reconfiguram a paisagem sustentando 

propriedades essenciais para as espécies de áreas alagáveis, nas quais as implicações 

ecológicas apoiam-se na manutenção da dinâmica populacional, interações tróficas e 

persistências de certas espécies tolerantes a modificações da paisagem.  

Nossos resultados sugerem adequáveis condições e importância ecológica de habitats 

antropogênicos para persistência das populações de jacarés. No entanto, ressalva-se que C. 

crocodilus possui comportamento de tolerância a perturbações, com favorecimento das 

condições impostas pelas modificações da paisagem devido a sua alta mobilidade, tamanho 

corporal e comportamento de forrageio, como apontado por esse estudo. No entanto, algumas 

espécies especializadas em ambientes naturais e/ou com habilidade limitada de dispersão são 

prejudicadas frente a reconfiguração e perda de habitats em paisagens modificadas. A 

importância de ambientes antropogênicos para a biodiversidade ainda carece de mais estudos 

e informações detalhadas da contribuição destes ambientes para toda biodiversidade. Estudos 

remetem a uma diversidade taxonômica com certo grau de plasticidade ecológica e ausentes 

espécies de grupos tróficos funcionais importantes na funcionalidade ecossistêmica, 

demonstrando limitações do conhecimento para estes ambientes antropogênicos.  

Frente aos efeitos deletérios não mensurados neste estudo, relativos às atividades 

agrícolas, que são capazes de serem averiguados por outras abordagens complementares, 

como ecotoxocologia para contaminação por agrotóxicos, há de se investigar e manter 

contínuo monitoramento dessas áreas agrícolas. O contínuo crescimento científico desses 

ambientes sob distintas abordagens contribui para fomentar práticas e ações de manejo quanto 

aos recursos hídricos e de controle fitossanitário dos cultivos agrícolas voltados para 

sustentabilidade e conservação destes ecossistemas. As áreas agrícolas são componentes 

dominantes ao longo da paisagem, inclusive com perspectivas futuras de aumento devido ao 

potencial agrícola na planície de inundação do Araguaia, a conservação efetiva da 

biodiversidade apoia-se também na matriz agrícola e seu manejo aliado a delimitações de 

áreas protegidas. Os agroecossistemas emergem com novos paradigmas ao abarcar a 
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conservação da biodiversidade e perspectivas de paisagem, demonstrando estratégias de 

manejo integradas em ampla escala espacial. Em nosso estudo, sistemas irrigados de produção 

de arroz demonstraram serem matrizes agrícolas de alta qualidade para C. crocodilus ao 

aumentar habitats aquáticos, facilitar movimentação e dispersão, e disponibilizar e fornecer 

itens alimentares associados a estes ambientes. Há um papel relevante dos gestores e 

proprietários de terras no manejo da atividade agrícola com manejo dos recursos hídricos e 

uso da terra as quais mantem certas condições ambientais e de hábitat para a biodiversidade, 

bem como uma heterogeneidade com diferentes corpos hídricos em diferentes regimes 

hídricos e de formação vegetal, propiciando a manutenção de certos serviços ecossistêmicos. 

O efeito da paisagem sobre processos ecológicos teve evidências por esse estudo, os 

quais influenciaram o nicho trófico e condição corporal C. crocodilus. Desta forma, cresce a 

atenção ao manejo dessas paisagens mistas, que quando integrada a estratégias de gestão de 

recursos hídricos em escala de bacias hidrográficas, unifica-se ecossistemas terrestres e 

aquáticos com um delineamento para alcançar propriedades ecológicas da paisagem que dão a 

funcionalidade para toda biodiversidade associada, como conectividade, heterogeneidade, 

permeabilidade de ambientes aquáticos e terrestres, com possibilidades efetivas de manejo da 

paisagem. Assim, prioridades de conservação de áreas naturais integram-se com áreas 

antropogênicas como componentes de uma paisagem mista adequada a biodiversidade, com 

parcial compensação da perda de complexidade da paisagem comparada a paisagens 

preservadas.  

 


