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Suppose that we were asked to arrange the following in two categories — distance, mass,

electric force, entropy, beauty, melody. I think there are the strongest grounds for

placing entropy alongside beauty and melody, and not with the first three.

Eddington A, The Nature of the Physical World, 1928
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Resumo Estendido

O sinal eletromiográfico é utilizado em diversas áreas da Medicina e da Biologia, e tem

sido uma opção cada vez mais explorada para o controle de próteses robóticas. Atualmente,

diversas próteses comerciais de mão utilizam uma malha de controle sequencial, o que torna

o movimento da prótese pouco fluido e dependente de sensores externos para execução de

movimentos. No presente trabalho, foram desenvolvidos estudos de métodos para o uso

sinal da eletromiografia de superf́ıcie (sEMG) no controle em tempo real de uma prótese de

mão. O objetivo foi utilizar métodos de extração de caracteŕısticas e classificação de padrões

em sEMG, e o treinamento adaptativo para o reconhecimento de movimentos da mão com

vários graus de liberdade, aumentando, assim, o conforto do usuário e dando naturalidade

ao movimento. Os métodos propostos permitiram o reconhecimento efetivo de movimen-

tos da mão, por meio de várias estratégias que permitiram a simplificação do processo de

reconhecimento e a diminuição da janela móvel que é usualmente aplicada ao sEMG. Os

classificadores foram desenvolvidos e testados com o uso das bases de dados dispońıveis na

plataforma Open Source BioPatRec [25]. A linguagem utilizada para os algoritmo foi o

python, com o auxilio das bibliotecas Scikit-learn [28], ScyPy [40] e Tensorflow [1]. Diver-

sos indicadores estat́ısticos, foram aplicados para avaliar o reconhecimento de padrões, de

modo off-line e on-line, e os resultados demonstraram melhoria significativa no processo de

reconhecimento em tempo real dos padrões, sugerindo que os métodos têm bom potencial

para o uso futuro em próteses robóticas.

Palavras-chave: sinal eletromiográfico de superf́ıcie, prótese de mão, reconheci-

mento de padrões, redes neurais, entropia.

1 Introdução

Segundo o IBGE [17], no Brasil, 13,2 milhões de pessoas se declararam portadoras de

algum tipo de deficiência motora, sendo que 470 mil foram v́ıtimas de amputações. Uma

amputação de mão é uma das lesões mais prejudiciais e pode afetar dramaticamente as

capacidades de uma pessoa. Estima-se ainda, segundo o IBGE, que a incidência média anual

de amputações seja de 13,9 por 100 mil habitantes. Além disso, segundo dados do Ministério

da Saúde [24], o total de nascidos vivos no Brasil no ano de 2015 foi de 3.017.668 e, sabe-se

que, de 1 a 2% deles sofrem de alguma anomalia congênita e destes, aproximadamente 10%

possuem deformidades dos membros superiores [24, 24, 23].

Houve grandes avanços nas interfaces homem-máquina, na qual os sinais biomédicos,

como os sinais mioelétricos, desempenham um papel fundamental. O controle utilizando o

sinal mioelétricos é uma técnica avançada, subdividida em detecção, processamento, classi-

ficação e aplicação de sinais EMG para controlar robôs ou dispositivos de reabilitação hu-

mana. Os sinais mioelétricos são muito ricos em informações, a partir das quais a intenção de
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movimento do usuário em forma de contração muscular pode ser detectada, usando eletro-

dos de superf́ıcie. O sinal da eletromiografia de superf́ıcie é detectado de forma não invasiva

a partir da superf́ıcie da pele e pode ser adaptado para força proporcional ou controle de

velocidade em um esquema de controle.

Os sinais de eletromiografia possuem caracteŕıstica não estacionária, que dificulta a

aplicação de reconhecimento de padrões mioelétricos para o controle de próteses. Na liter-

atura, o reconhecimento de padrões eletromiográficos, quando se utiliza aprendizagem de

máquina, é separado em duas etapas - uma de treinamento e outra de teste. Porém, nessa

análise não são consideradas as mudanças entre o treinamento e os dados de teste induzidos

por mudança de eletrodo, fadiga muscular, mudanças de impedância ou fatores psicológicos,

que muitas vezes resulta em queda do desempenho [33] em virtude dos algoritmos não

conseguirem generalizar os resultados. Para solucionar esse problema, vários estudos so-

bre treinamento adaptativo vem sendo feitos [2, 10, 18, 33, 39, 43] a fim de aprimorar o

desempenho da análise do sinal sEMG.

Como os dados do sinal EMG são adquiridos em um curto peŕıodo de duração, os

parâmetros coletados contêm informações limitadas, que não representam todo o peŕıodo de

utilização da prótese. Ampliar o tempo de coleta de dados se torna impraticável, pois adi-

cionaria uma carga muito grande ao usuário. Os sistemas de próteses que utilizam controle

de reconhecimento de padrões mioelétricos não são comercializados por possúırem desem-

penho insatisfatório [29], justamente por causa das variações dos dados de teste em relação

aos do treinamento. Portanto, torna-se necessário desenvolver um sistema de aprendizado

que consiga se adaptar e contabilize as mudanças do sinal do EMG. Mais especificamente,

para que a prótese se torne o mais natural posśıvel, é necessário que se faça uma recon-

figuração gradual do classificador de forma online, levando em consideração as mudanças

em tempo real do sinal EMG.

A utilização de informações a priori pode facilitar a classificação, pois limita as classes

que podem ser executadas ou confere maior probabilidade a alguns movimentos e diminuem

a de outros movimentos. Neste estudo a obtenção de informação sobre o sinal foi dividido

em três partes, A primeira é o pré-processamento e a extração de caracteŕısticas, que são

explicados no caṕıtulo III. A segunda parte corresponde a um detector de movimento, onde

um autoencoder é utilizado para determinar o exato instante em que o paciente começa a se

movimentar, que é detalhado no caṕıtulo IV. Finalmente, no caṕıtulo V o sinal é dividido

em grupos por similaridade e, por meio de uma máquina de estados, o total de movimentos

posśıveis é reduzido no classificador final.

As principais empresas que comercializam próteses, no mundo, são a Touch Bionics, Otto

Bock, Steeper e Vicent GmbH. Todas as próteses fabricadas por elas possuem um controle

sequêncial, sendo que algumas delas possuem sensores para auxiliar a movimentação da

prótese ou movimentos já predefinidos [14]. Isso demonstra que o caminho para o controle

natural ainda é longo, o que limita a usabilidade da prótese como apenas um membro de
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apoio. O controle simultâneo visa dar naturalidade ao movimento da prótese, diminuindo o

seu desconforto que, pode levar ao abandono do uso da mão biônica [6, 23].

2 Importância da Informação no Sinal EMG

A busca e processamento de informações são processos cognitivos complexos que exigem

a identificação, extração e organização da informação relevante. Porém, com a evolução

da computação em nuvem, técnicas de classificação embasadas em Deep Learning cresce-

ram muito, uma vez que elas vêm desempenhando melhor do que técnicas convencionais de

Machine Learning. Esse aumento no uso de técnicas de Deep Learning faz com que, em di-

versas aplicações, sobretudo quando o volume de dados de treinamento é comparativamente

grande [3], não seja necessário entender o problema ou realizar uma modelagem matemática

rigorosa.

Essa abordagem gera um problema; como não houve um aprendizado do processo, o

resultado fica dependendo da rede neural e do que ela foi treinada a fazer. Outro problema

é que o conhecimento ganho não ser aplicável. Além disso, uma vez que modelos de deep

learning são aplicados como uma caixa preta por conta de sua estrutura não linear, diversos

estudos são realizados para tentar explicar o seu processo de classificação [22, 14].

Em 1948, Claude Shannon publicou um artigo chamado Teoria Matemática da Co-

municação [7]. Neste artigo, Shannon descreve como a informação pode ser comunicada

por diferentes elementos de um sistema. Nele, Shannon mostra como sinais e rúıdos se

relacionam, como o rúıdo adiciona uma taxa de erro ao canal. Portanto, a habilidade de

separá-los para extrair informação dos dados é crucial para o processo de comunicação.

A informação é normalmente medida em bits. Um bit de informação permite a escolha

de duas alternativas posśıveis. Como exemplo, temos o lançamento de uma moeda, ao se

revelar o resultado, é gerado um bit de informação.

A teoria da informação tem os seus próprios conjuntos de termos. Uma mensagem é o

uma sequência ordenada de śımbolos. Uma mensagem composta por śımbolos s = (s1, ..., sn)

é codificada por uma função c = f(s) em uma sequência de códigos c = (c1, ..., cm),

onde o número de śımbolos ou códigos não são necessariamente iguais. Esses códigos são

transmitidos por um canal de comunicação para produzir sáıdas y = (y1, ..., yk), que são

decodificadas para reconstruir a mensagem s.

3 Introdução à Entropia

Ainda segundo Shannon [37], para que as definições matemáticas da informação sejam

úteis, elas precisam obedecer às seguintes propriedades:
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1. Continuidade: A quantidade de informação associada a um resultado aumenta ou

diminui continuamente, de acordo com a mudança da probabilidade do resultado.

2. Simetria: O total de informação associado em uma sequência de resultados não

depende da ordem em que os resultados acontecem.

3. Valor máximo: O total de informação com um conjunto de resultados não pode

aumentar se esses resultados são igualmente prováveis.

4. Adição: A informação associada a um conjunto de resultados é obtida pela adição

das informações dos resultados individuais.

Surpresa e Entropia

Quanto mais improvável é um resultado, maiior é a surpresa com a sua observação.

Então, a quantidade de surpresa associada a um resultado aumenta caso a probabilidade

do resultado diminua. Então, para satisfazer a condição de aditividade, Shannon utilizou

o logaritmo de 1/p(x). Este parâmetro é conhecido como informação de Shannon de x, ou

seja, a informação de Shannon é uma medida da surpresa. A surpresa média de uma variável

X, com uma distribuição p(X) é chamada entropia de p(X), e é representada por H(X),

cuja expressão é apresentada na equação 1.

H(X) = −
n∑
i=1

P (xi)log(P (xi)) (1)

Basicamente, entropia é a medida de incerteza. Quando a incerteza é reduzida, in-

formação é ganha. Portanto, se a incerteza de uma variável X é resumida por sua entropia

H(X), se o valor de X for revelado, o total de informação ganha é, na média, exatamente

igual à entropia.

Caso hajam valores consecutivos e relacionados, então eles não fornecem informação in-

dependente. Nesse caso, a sequência possui menor entropia do que o somatório das entropias

individuais calculados com a equação 1. Assim, o teorema de Shannon não se aplica apenas

a sequências de elementos independentes, mas também para sequências estruturadas que

possuem dependências entre os seus elementos.

4 Entropia e o sinal sEMG

O sinal sEMG, assim como todos os sinais fisiológicos, é um sinal dilúıdo, isto é, um

sinal que possui muitos dados e pouca informação. Ademais, ele é um sinal em que cada

sequência de amostragem possui alto grau dependência entre seus valores.

Problemas do Processamento em tempo real
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Como uma boa experiência em prótese precisa de respostas rápidas, o processamento

em tempo real é essencial. Radhika Menon, et al [31] mostra o impacto do tamanho da

janela temporal no erro da classificação do sinal sEMG. Segundo esse estudo, quando se tem

janelas muito pequenas (em média menores do que 200 ms) o erro da classificação aumenta,

uma vez que o total de informação na janela diminui. Isso dificulta muito o processamento

em tempo real que precisa de janelas, em 2011 Peerdeman [29] constatou que a janela

de processamento precisa ser menor do que 300 ms ou o atraso se torna inaceitável para

o usuário. Instintivamente nota-se a necessidade da diminuição da janela de tempo de

processamento para o aumento do conforto do usuário.

Uma das dificuldades na classificação do sinal geradas pelo tamanho reduzido da janela

temporal foi identificar exatamente onde o movimento começou. Isso ocorre devido às car-

acteŕısticas estocásticas do sinal, quando as unidades motoras começam a ser recrutadas, o

sinal de repouso e movimento é confundido.

5 Metodologia

A utilização de técnicas de reconhecimento de padrões é de grande importância para

o controle de próteses mioelétricas, trazendo uma melhora nos graus de liberdade e movi-

mentação das mesmas além da capacidade de seu controle sequêncial [13]. Tal controle

consiste tipicamente na extração de caracteŕısticas do sinal e na classificação destas carac-

teŕısticas de dados segmentados no processamento de sinal para comando de um atuador.

A qualidade da movimentação dessas próteses é proporcional aos processos de extração das

caracteŕısticas do sinal mioelétrico e da classificação dos padrões.

Conforme já mencionado, a maioria dos sistemas de controle empregados em mãos

prostéticas é o controle sequêncial, mas, recentemente, muitas pesquisas estão sendo con-

duzidas para empregar o controle simultâneo [5, 11, 31, 44]. Uma das principais vantagens

do controle simultâneo da prótese é aproximar a movimentação da prótese ao movimento

fisiológico natural, porem isso leva a um aumento das caracteŕısticas necessárias para se

classificar o sinal, além da interferência do sinal de músculos adjacentes nos eletrodos de

captura do sEMG.

Clusterização, máquina de estados e a classificação do movimento

No século XVI, Shakespeare, em suas peças, introduziu mais de 1700 de palavras ao

idioma inglês. Transformou substantivos em verbos, ou verbos em adjetivos, ou conectou

palavras nunca antes usadas em conjunto, misturando prefixos e sufixos criou palavras to-

talmente novas. Assim como o inglês consiste de sequências de letras não independentes que

podem ser eficientemente codificadas como blocos independentes de sub-sequências, assim

também pode ser feito como a maioria dos sinais naturais, como música, imagem, DNA, ou

o EMG.

xi



Para a classificação do sinal EMG foi realizado um janelamento no sinal, cada janela

com 10ms. Após este janelamento foi realizado as seguintes etapas:

1. Seleção de caracteŕısticas: nesta etapa diversos caracteŕısticas, tanto no domı́nio da

frequência quanto no domı́nio do tempo serão extráıdas;

2. Redução de dimensionalidade: nesta etapa diversos algoritimos de redução de di-

mensionalidade foram avaliados para a criação de clusters de sinais de movimentos

parecidos. Foram avaliados: NCA (Neighborhood Component Analysis), PCA (Prin-

cipal Component Analysis), LDA (Linear Discriminant Analysis), Variational Autoen-

coders.

3. Clusterização do sinal: após avaliação de diversos algoŕıtimos de de clusterização,

os movimentos foram agrupados em grupos de acordo com a similaridade das carac-

teŕısticas extráıdas.

4. Comparação com os posśıveis movimentos: após o cluster ser criado, os movimentos

são comparados com os posśıveis movimentos para determinada posição. Esses movi-

mentos foram extráıdos através de um processo chamado de Árvore de Decisão ou

Máquina de Estados [27].

5. Classificação do sinal: com a redução das posśıveis classes de movimento em inter-

cessão com os clusters criados, diversos classificadores são criados com subconjuntos

das classes totais de movimentos.

Cada janela de tempo retorna, como resposta para os posśıveis movimentos, o cluster no

qual o movimento pertence e a posśıvel classificação. Essas respostas podem ser consider-

adas letras em uma sentença. Cada janela retorna uma sequência dependente da sequência

anterior e onde, a cada uma das janelas diminui a entropia do sinal como um todo.

Para diferenciar os estados de repouso e movimento, foi utilizado um autoencoder varia-

cional. Devido a suas caracteŕısticas intŕınsecas, ele é especializado em separar classes

(movimento e repouso) em sua camada latente. Após essa separação, uma perceptron sim-

ples, foi o suficiente para classificar esses estados. Esse resultado só foi posśıvel graças à

redução de classes do classificador, que em vez de trabalhar com as 27 classes presentes no

banco de dados, classificava apenas um subgrupo dessas classes.

Extraindo informação do sinal

Para extrairmos informação da eletromiografia de superf́ıcie, foi utilizada uma técnica

conhecida como extração de caracteŕısticas. O sinal foi dividido em janelas de 50 ms, onde o

sinal sEMG é analisados e as caracteŕısticas no domı́nio da frequência são extráıdas, seguindo

os principais recursos selecionados e finalmente, a rede neural classifica o movimento.

As caracteŕısticas extráıdas são:
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1. Momento Espectral (Spectral Moment);

2. Amostra da Entropia (Sample Entropy);

3. KhushabaSet;

4. Comprimento de Onda (Wavelenght frequency);

5. Média da Frequência (Mean Frequency);

6. Mediana da Frequência (Median Frequency).

Dataset

No total, a base de dados utilizada possui apenas 17 pacientes e 3 repetições de cada

movimento, o que impossibilitou o uso de algumas técnicas de treinamento. Com um banco

de dados suficientemente grande e, uma vez criado um classificador redundante, como no

caso do estudo, as diversas etapas da classificação podem ser usadas como um código e, com

uma rede neural maior, e os valores das janelas de classificação podem ser previstos usando

técnicas como LSTM. A relação de dependências entre as janelas de tempo também pode

ser estudada para se obter um classificador melhor projetado.

6 Resultados e Discussões

Desde que as próteses mioelétricas foram desenvolvidas, o número de usuários que a

rejeitam permaneceu constante [6, 23, 9], O que mostra que não houve avanço significa-

tivo neste ponto dessa área. A redução da janela de tempo para a classificação do sinal

EMG permitirá que o controle da prótese seja realizado de forma mais fluida pelo usuário,

aumentando seu conforto ao utilizá-la.

Com o processo de diminuição de classes para o classificador final, proposto neste estudo,

foi posśıvel uma diminuir a janela temporal de 200 ms para 10 ms mantendo o desempenho

da classificação final. Outro fator muito importante gerado pela diminuição da janela de

tempo foi a diminuição da complexidade da avaliação, o que resulta em economia de energia

durante o processo de classificação, o que, por sua vez, aumentaria o tempo de uso da

prótese, reduzindo o tempo de recargas que o usuário precisaria fazer.

Além disso, o processamento desenvolvido neste estudo pode ser usado para a classi-

ficação de outros sinais naturais que, à medida que são dilúıdos (muitos dados para pouca

informação), são mais dif́ıceis de classificar.

7 Conclusão
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Ao fornecer informações a priori para classificação de sinais interativamente, o número

de classes posśıveis para classificação de sinais diminui bastante. Criar etapas de validação

menos complexas também aumentou a precisão, permitindo a redução do tamanho da janela.

As técnicas apresentadas aqui apenas arranham a superf́ıcie das aplicações em que a

entropia de formações pode e deve ser usada. A ideia principal é que uma sequência de redes

simples cuja descrição precise de um pequeno número de bits e tenha maior probabilidade

de fazer generalizações corretas do que uma rede mais complexa, porque presumivelmente

extraiu a essência dos dados e removeu a redundância. Portanto, fornecer ferramentas que

simplifiquem ou forneçam informações de dados é muito importante.

Infelizmente, a coleta de dados do sinal EMG pode ser estressante para o paciente.

Portanto, é muito dif́ıcil obter grandes bancos de dados de sinais biológicos. Por esse motivo,

este estudo foi realizado usando apenas um banco de dados, fornecido junto com a plataforma

BioPatRec. Além disso, o banco de dados utilizado possui poucas repetições de movimento,

o que dificulta o treinamento com algoritmos de aprendizado de máquina.

Lista de Referências

[1] Mart́ın Abadi e et al. TensorFlow : A System for Large-Scale Machine Learning This

paper is included in the Proceedings of the TensorFlow : A system for large-scale

machine learning. 2016.

[2] Sebastian Amsuss, Peter M. Goebel, Ning Jiang, Bernhard Graimann, Liliana Pare-

des, e Dario Farina. Self-correcting pattern recognition system of surface EMG sig-

nals for upper limb prosthesis control. IEEE Transactions on Biomedical Engineering,

61(4):1167–1176, 2014.

[3] Jayme Barbedo. Impact of dataset size and variety on the effectiveness of deep learning

and transfer learning for plant disease classification. Computers and Electronics in

Agriculture, 153:46–53, 2018.

[4] Daniel A. Bennett e Michael Goldfarb. IMU-Based Wrist Rotation Control of a Transra-

dial Myoelectric Prosthesis. IEEE Transactions on Neural Systems and Rehabilitation

Engineering, 2017.

[5] Stephen F. Burrough Brook e Judith A. Patterns of Acceptance and Rejection of Upper

Limb Prostheses, 1985.

xiv



[6] C.E. Shannon , vol. 27, pp. , July, October,. A Mathematical Theory of Communication.

Bell System Technical Journal, 27(April 1928):379–423,623–656, 1948.

[7] C.P. Diehl e G. Cauwenberghs. Svm incremental learning, adaptation and optimiza-

tion. Proceedings of the International Joint Conference on Neural Networks, 2003.,

4(x):2685–2690.

[8] Strahinja Dosen, Marko Markovic, Kelef Somer, Bernhard Graimann, e Dario Farina.

EMG Biofeedback for online predictive control of grasping force in a myoelectric pros-

thesis. Journal of NeuroEngineering and Rehabilitation, 2015.

[9] Biddiss EA e Chau TT.

[10] Kevin B. Englehart e Bernard Hudgins. A robust, real-time control scheme for multi-

function myoelectric control. IEEE Trans. Biomed. Eng., 50(7):848–854, 2003.

[11] Purushothaman Geethanjali. Myoelectric control of prosthetic hands: State-of-the-art

review, 2016.

[12] IBGE. CENSO de 2010, Link: https://censo2010.ibge.gov.br/noticias-censo.html - Ac-

cessed on: Jun. 20 of 2019.

[13] Sarthak Jain, Girish Singhal, Ryan J. Smith, Rahul Kaliki, e Nitish Thakor. Improving

long term myoelectric decoding, using an adaptive classifier with label correction. Pro-

ceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics

and Biomechatronics, páginas 532–537, 2012.
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Abstract

The electromyographic signal is used in several areas of Medicine and Biology and

has been an option increasingly explored to control robotic prostheses. Nowadays, sev-

eral commercial hand-held prostheses use a sequential control mesh, which makes the

prosthesis movement not so fluid and dependent on external sensors to execute move-

ments. This work aimed to develop methods that use surface electromyography signals

(sEMG) to enhance hand prostheses’ real-time control. The objective was to use meth-

ods to extract characteristics, classify patterns in sEMG, and employ adaptive training

to recognize hand movements with varying degrees of freedom, thus increasing user com-

fort and giving naturalness to movement. The proposed methods allowed the effective

recognition of hand movements through various strategies that allowed simplifying the

recognition process and reduced the usual moving window length in the processing of the

sEMG. The classifiers were developed and tested using the databases available on the

Open Source BioPatRec [25] platform; the language used for the algorithms was python,

with the Scikit-learn [28], ScyPy [40] and Tensorflow [1] libraries’ aid. Several statis-

tical indicators have been applied to assess pattern recognition, both offline and online,

and the results have shown significant improvement in the process of real-time pattern

recognition, suggesting that the methods have good potential for future use in robotic

prostheses.

Keywords: surface electromyographic signal, hand prosthesis, pattern recog-

nition, neural networks, entropy.
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1 Introduction

According to the Brazilian Institute of Geography and Statistics (in Portuguese

Instituto Brasileiro de Geografia e Estat́ıstica (IBGE)) [17], in Brazil, 13.2 million people

declared themselves to have some type of motor deficiency, and 470,000 were victims of

amputations. A hand amputation is one of the most harmful injuries and can dramati-

cally affect a person’s abilities. It is also estimated, according to IBGE, that the average

annual incidence of amputations is 13.9 per 100,000 inhabitants. Besides, according to

data from the Ministry of Health [24], the total number of live births in Brazil in 2015

was 3,017,668 and, it is known that from 1 to 2% of them suffer from some congenital

anomaly and of these, approximately 10% have deformities of the upper limbs [24, 24, 23].

There have been great advances in man-machine interfaces, in which biomedical sig-

nals, such as myoelectric signals, play a key role. Control using the myoelectric signal is

an advanced technique, subdivided into detection, processing, classification, and applica-

tion of EMG signals to control human robots or rehabilitation devices. The myoelectric

signals are very rich in information, from which the user’s intention to move in the form

of muscle contraction can be detected using surface electrodes. The surface electromyo-

graphy signal is detected noninvasively from the skin surface and can be adapted for

proportional force or speed control in a control scheme.

The electromyography signals have a non-stationary property, making it difficult to

apply the recognition of myoelectrical patterns to control prostheses. In the literature,

EMG pattern recognition is separated into two separate steps: training and test. However,

the changes that happen during training, such as variation in electrode behavior, muscle

fatigue, impedance changes, and psychological factors, are not considered, which often

results in a drop in performance [33]. To develop methods that can take these variations

into account, we performed several studies on adaptive training [2, 10, 18, 33, 39, 43].

Because EMG signal data are acquired in a short period of duration, the parameters

collected contain limited information, which does not represent the entire period of use of

the prosthesis. Extending data collection time becomes impractical because it would add

a very large load to the user. Prosthesis systems that use myoelectric pattern recognition

control are not marketed because they have unsatisfactory performance [29], precisely
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because of variations in test data compared to those of training. Therefore, it is necessary

to develop a learning system that can adapt and account for EMG signal changes. More

specifically, for the prosthesis to become as natural as possible, it is necessary to make a

gradual reconfiguration of the classifier online, taking into account the real-time changes

in the EMG signal.

The main companies that sell prostheses, in the world, are Touch Bionics, Otto

Bock, Steeper, and Vicent GmbH. All prostheses manufactured by them have a sequential

control, some of which have sensors to help drive the prosthesis or movements already

predefined [14]; an example of such prosthesis, manufactured by Touch Bionics, is shown

in figure 1.1. This information demonstrates that the path to natural control is still long,

limiting the prosthesis’s usability to only one support member. Simultaneous control

aims to give naturalness to the prosthesis movement, reducing its discomfort, which is an

element that can lead to the abandonment of the bionic hand [6, 23].

Figure 1.1. The i-limb line of hands was developed by Touch Bionics. Its proposal
for easy adaptability and versatility offers great comfort for users, offering a range
of commands that can be changed in a companion application. Font: Extremetech.1

1.1 Importance of Information in EMG Signal

The search and processing of information is a complex cognitive process that re-

quires the identification of extraction and organization of relevant information. However,

with the evolution of cloud computing, deep learning-based classification techniques have

grown significantly, as they performing better than conventional Machine Learning tech-

niques. This increase in the use of Deep Learning techniques often makes it unnecessary
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to understand the problem or delimit its edges.

This approach creates a problem, as there was no learning from the process. The

knowledge of how to solve the problem is still insufficient, and the result is dependent

on the neural network, which is usually trained to perform only one specific task. This

dependency may creates the need for training new networks as complex as the primary

one to solve similar problems.

In 1948, Claude Shannon published an article titled Mathematical Theory of Com-

munication [7]. In this article, Shannon describes how different elements of a system can

exchange information, showing how signals and noise relate, and how noise adds an error

rate to the channel. Therefore the ability to separate these two elements is crucial to the

communication process.

Information is usually measured in bits. A bit is an information element that can

assume only two possible states; for example, “true” or “false” or “0” or “1”.

The information theory has its own sets of terms. A message is an orderly sequence

of symbols. A message composed of symbols s = (s1, ..., sn) is encoded by a function

c = f(s) in a sequence of codes c = (c1, ..., cm), where the number of symbols or codes

are not necessarily the same. These codes are transmitted over a communication channel

to produce outputs y = (y1, ..., yk) that are decoded to rebuild the message s.

Figure 1.2. Discrete noiseless channel. The data from a source is encoded and
transmitted through a communication channel. On other side, a receiver decodes
the codeword and recovers the original message.

1.2 Introduction to Entropy

Also according to Shannon [37], For mathematical definitions of information to be

useful, they must obey the following properties:
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1. Continuity: The total information associated with a result increases or decrements

continuously, according to the change in the result’s probability.

2. Symmetry: The total information associated with a sequence of results does not

depend on the order in which the results happen.

3. Maximum value: The total information with a result set cannot increase if these

results are equally likely.

4. Addition: The information associated with a result set is obtained by adding

individual results’ information.

1.2.1 Surprise and Entropy

The more improbable the result, the greater the surprise with your observation. Then

the total surprise associated with a result increases if the probability of the result de-

creases. Then, to satisfy the condition of additivity, Shannon used the logarithm of

1/p(x). This is known as Shannon information of x, i.e. Shannon information is a mea-

sure of surprise. The average surprise of a variable X, with a distribution p(X), is called

entropy of p(X) and is represented by H(X).

H(X) =
n∑
i=1

P (xi)log(P (xi)) (1.1)

Basically, entropy is the measure of uncertainty. When uncertainty is reduced, in-

formation is gained. Therefore, if the uncertainty of a variable X is summarized by its

entropy H(X), if the value of X is revealed, the total information gains are, on average,

exactly equal to the entropy.

If there are consecutive and related values, then they do not provide independent

information. In this case, the sequence has less entropy than the sum of the individual

entropy calculated with the Equation 1.1. Thus, Shannon’s theorem applies not only

to independent element sequences but also to structured sequences with dependencies

between their elements.

1.3 Entropy and sEMG

The sEMG signal, like all physiological signals, is a diluted signal, i. e., a signal that

has a high amount of data and little information. Moreover, it is a sign in which each

sampling sequence has a high degree of dependence between its values.

Figure 1.3 exemplifies the sEMG signal measured on the forearm during a closing
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hand movement. The movement was repeated three times, for three seconds, with a

three-second interval between the movements. As we can see from the figure, the three

repetitions led to different patterns in the graph.

Figure 1.3. The sEMG signal, the vertical axis represents the amplitude and the
horizontal axis represents the samples.

This behavior occurs because, in each contraction, different motor units are recruited,

generating the corresponding sEMG signal. Other factors that may alter the measurement

are sweat, muscle fatigue, and the sensors’ displacement. One way to mitigate these effects

is to acquire information a priori. Where each piece of information extracted facilitates

the future classification of the signal.

With the use of a finite state machine, the possible movements, given a posture for

the hand, were mapped and the intersection with the cluster generated a list of possible

movements, greatly facilitating the classification of the EMG signal.

1.3.1 Real-time processing problems

Menon, et al [31] showed temporal window size’s impact on the signal classification

error for the sEMG. According to this study with very small windows (on average less

than 200 ms) the classification error increase, since the total information in the window

decreases. This characteristic makes it very difficult perform real-time processing with

the windows. In 2011 Peerdeman [29] found that to allow for real-time processing of the

sEMG signal so that the results be useful for effectively actuating a controlled prosthesis,

the processing window needs to be less than 300 ms or the delay becomes unacceptable

to the user. Instinctively, it is reasonable for one to expect the need for a decrease in

processing time to increase user comfort.

A serious hassle caused by the decrease in the time window is the difficulty in defining
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the end of rest and the beginning of a movement. To overcome this problem, in this

study, a clustering algorithms have been used as a way to get more information about

the signal. A Neighborhood Components Analysis (NCA) algorithm has been used to

reduce the dimensionality of the extracted characteristics and a hierarchical clustering

algorithm grouped the closest movements.

The solution to this problem once again presented itself with a decrease in the entropy

of the signal. An auto-encoder algorithm was also used for anomaly analysis by clustering

the signal at rest and the motion and then, a simple perceptron classified the result.

1.3.2 Extracting signal information

In order to extract information from surface electromyography, a technique known as

characteristic extraction was used. The signal was divided into windows of 50 ms, where

the sEMG signal is analyzed and frequency-based characteristics are extracted, following

the main selected resources and finally, the neural network classifies movement.

The extracted characteristics are:

1. Spectral Moment (Spectral Moment (SM));

2. Sample Entropy (Sample Entropy (SE));

3. KhushabaSet;

4. Wave Lenght (WL) Frequency);

5. Mean Frequency;

6. Median Frequency.

1.4 Objective

1.4.1 Main Objective

To develop an algorithm for a robotic prosthesis using the latest state of the art

technologies art of myoelectric prostheses, from a proportional and simultaneous control,

which allow posture recognition of the hand joints.

1.4.2 Specific Objective

When obtaining the maximum information from the myoelectric signal, the dimension

of the problem is better understood, and with that its classification becomes as efficient
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as possible.

The objective is to use methods of extracting characteristics and classification of

patterns in electromyographic signals, as well as adaptive training for the recognition of

hand movements with varying degrees of freedom, thus increasing the comfort of the user

and giving naturalness to movement. Through these methods, a significant improvement

was achieved in the pattern recognition process.
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2 Study and Proposals Overview

2.1 Introduction

Pattern recognition with the processing of myoelectric signals has been the research

basis for prosthesis control in the last decade [25]. Also, the use of machines has been

disseminated in the EMG signal analysis tasks, to aid in selecting of characteristics and

performing classification of this signal [12, 16, 20, 22]. The project also aims to use

adaptive training so that new paradigms can be created and the techniques and methods

for the analysis of the myoelectric signal can be improved.

Pattern recognition techniques are of great importance for controlling myoelectric

prostheses, bringing an improvement in the degrees of freedom and their movement be-

yond the capacity of achievable by sequential control [13]. Such control typically con-

sists of extracting characteristics of the signal and categorizing these characteristics of

segmented data in the processing signal to control an actuator. The quality of the move-

ments of these prostheses depends directly on their ability to extract the characteristics

of the myoelectric signal and to identify the intended movements.

Figure 2.1. A typical flow chart used for sEMG controlled prosthese protesis.

As already mentioned, most control systems employed in prosthetic hands use se-

quential control but, recently, a great deal of research is being conducted to employ

simultaneous control [5, 11, 31, 44]. One of the main advantages of simultaneous control

of a prosthesis is that it may yield prosthesis movements that resemble normal physio-

logical movements. However, this choice leads to an increase in the system’s complexity,

since it has to capture, process, and classify the signal. Additionally, the system has to

deal with the interference of the sEMG signals from adjacent muscles. Moreover, there is

a need for simultaneous control demanding the combined execution of several movements,

such as, for example, closing and flexing the hand at the same time.

The purpose of this study takes into account the arrangement of several simple net-
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Table 2.1. State of the art table of sEMG signal analysis.

Reference Class Channel Features Classifier

(Huang et al. 2005) 6 classes of movement 4 channels Gaussian Misture Model (GMM) GMM and Majority Vote

(Khezri and Jahed 2011) 6 classes of movement 1 channel
Mean Absolute Value (MAV), Signal Slope Change (SSC),

Autoregressive Model (AR) and Discrete Wavelet Transform (DWT)
Neuro-Fuzy

(Young et al. 2013) 3 degrees of freedom
6 channels and

8 channels
MAV, Zero Crossing (ZC), SSC and Wave Length (WL) Parallel classification strategy

(Bennett and Goldfarb 2017)
Standardized object

relocation and manipulation
tasks

2 channels Normalized Signal Result tables

(Yang et al. 2011) 6 classes of movement 4 channels DWT Fisher criterion, NWFE (Feature projection)

(Hartmann et al. 2015) 8 classes of movement 6 channels
Root Mean Square (RMS), ZC, SSC,

WL and First Three Cepstral Coefficients (3xCEPS)
Linear Discriminant Analysis

(Duan et al. 2016) 6 classes of movement 3 channels RMS and DWT Wavelet Neuro Network (WNN)

(Siu, Shah, and Stirling 2016)
two grab and

release sequences
7 channels GMM and Markov WPD e Random Forest

(Luh et al. 2016) 16 classes of movement 8 channels
Four levels of the Daubechies

wavelet transform
Neural Network

(Radhika Menon et al.) 7 classes of movement 128 channels MAV, SSC, Waveform Length (WFL), ZC Linear Discriminant Analysis (LDA)

works to extract information and classify the sEMG signal. The figure 2.2 show the

fluxogram used in this study. An autoencoder analyzes the EMG and classifies the state

of rest and movement. If the movement starts, a cluster together with the state machine

returns the possible movements that may be being executed. The last step is the classifier

that chooses the movements among the possible ones for that state.

Figure 2.2. The proposed fluxogram used in this study for sEMG classification.

This dissertation presents the following chapters based on works previously published

by the author in national and international conferences about this study. The next

chapter presents the content of these articles.

Chapter 3 presents a strategy, proposal, and evaluation of the characteristic features

for classifiers. Chapter 4 presents a study on the use of autoencoders to detect movements

to improve the classification when the movements start to be executed. Chapter 5, on the

other hand, shows the use of a state machine and a clustering algorithm to decrease the

possible classes of movements in the final classifier to reduce the size of the time window

for real-time processing.
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2.2 sEMG Database

In this study, the 6mov8chUFS database, available on the BioPatRec platform, was

used, and it is available on the BioPatRec platform. Seventeen subjects formed this

database, six classes of individual movements were selected, such as hand opening and

closing, flexion and extension of the wrist, and prono-supination of the hand, forming

27 possible movements. The signal was measured as follows: 3 seconds contraction time

with 3 seconds for relaxation be-tween each repetition, repetitions of each motion. 8

bipolar electrodes (Disposable Ag/AgCl), 1 cm electrode diameter, 2 cm inter-electrode

distance for the bipole. Electrodes were equally spaced around the most proximal third

of the forearm.

The signal was extracted using overlapped time windows of 0.2 seconds and time

increments of 0.05 seconds.

2.3 Movement Classes

The movement classes used in the ”6mov8chUFS” database are formed by the linear

combination of six basic open and close movements, figure 2.3, prone-supination and,

finally, extension and flexion of the hand and are listed as follows:

1. Open Hand

2. Close Hand

3. Flex Hand

4. Extend Hand

5. Pronation

6. Supination

7. Open Hand + Flex Hand

8. Close Hand + Flex Hand

9. Open Hand + Extend Hand

10. Close Hand + Extend Hand

11. Open Hand + Pronation

12. Close Hand + Pronation

10



13. Open Hand + Supination

14. Close Hand + Supination

15. Flex Hand + Pronation

16. Extend Hand + Pronation

17. Flex Hand + Supination

18. Extend Hand + Supination

19. Open Hand + Flex Hand + Pronation

20. Close Hand + Flex Hand + Pronation

21. Open Hand + Flex Hand + Supination

22. Close Hand + Flex Hand + Supination

23. Open Hand + Extend Hand + Pronation

24. Close Hand + Extend Hand + Pronation

25. Open Hand + Extend Hand + Supination

26. Close Hand + Extend Hand + Supination

Figure 2.3. The basic six classes of movement, the 27 classes are formed by the
linear combination of these six classes. 1 - Open Hand. 2 - Close Hand. 3 - Flex
Hand. 4 - Extend Hand. 5 - Hand Pronation. 6 - Hand Supination
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3 Proposal for the Preprocessing Algorithm

and Evaluation

3.1 Introduction

Pattern recognition for myoelectric signal processing plays an important role on re-

search for prosthetics [25]. In addition, the application of machine learning techniques

has become widespread in the area of surface electromyography (sEMG) signals analysis,

to enhance the feature extraction and selection as well the classification of the myoelectric

pattern [16, 20, 12, 22]. Furthermore, the use of pattern recognition brings an improve-

ment in the degrees of freedom and movement of the prosthesis beyond the capacity of

its sequential control [27].

In this study, the open source BioPatRec platform was used [25, 26, 27]. With a

modular and customizable concept, researchers can compare their algorithms easily and

efficiently, applying them to control a prosthesis. As advantages, users, by means of this

platform, can access the sEMG signals database for both sequential and simultaneous

analysis, including quantitative metrics to evaluate the performance of sequential and

simultaneous control in a standardized way, as well as to apply methods that the plat-

form provides for feature extraction, feature selection, feature reduction and myoelectric

pattern classification.

The objective of this work is to analyze new algorithms for feature extraction and

selection methods not provided by BioPatRec platform, four additional feature extraction

methods were used: the Levinson-Durbin Recursion, the Absolute value of the Summation

of the Expth Root Mean, the Mean value of the Square Root and the Abso-lute value of

the Summation of Square Root [34]. Additionally, an unsupervised method for feature

selection (UFS) was used [9].

These additions were made for the improvement of the classification of the myo-

electrical signal to provide a better performance for the simultaneous movement of an

upper-limb prosthesis, aiming at increasing the user comfort and giving easing for the

movement.
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3.2 Methodology

For this study, the “6mov8chUFS” (Untargeted Forearm Simultaneous) [26] database

was used, which is freely available on the BioPatRec platform [25]. The sEMG signal

is analyzed, and the features are extracted, following the main features are selected and

finally the neural network classifies the movement.

3.2.1 BioPatRec Platform

As previously mentioned, the biomedical signal analysis platform, BioPatRec, was

used, using the Multilayer Perceptron Network with backpropagation, already config-

ured on the platform for pattern classification.

3.2.2 Features Extraction

In this study were added four time-domain features described below:

(a) The Absolute value of the Summation of the Square root (Absolute value of the

Summation of the Square root (ASS)) [34]: This is the first time-domain feature. For

calculation of the ASS, the first step is to first execute a full-wave rectification on the

sEMG data, this help in retaining the entire energy content of the signal. Next, the

integral of the rectified EMG signal is calculated with respect to the current analysis

window, as expressed mathematically in Eq. (1)

AS =

∣∣∣∣∣
k∑

n=1

(xn)
1
2

∣∣∣∣∣ (3.1)

where k represents the analysis window, xn denote the data within the corresponding

analysis window.

(b) The Mean value of the Square Root (Absolute value of the Summation of the The

Mean (MSR)) [34]: This is the second time-domain feature. It provides an estimated

measure of the total amount of activity in the analysis window.

MSR =
k∑

n=1

(xn)
1
2 (3.2)

where k represents the analysis window, xn denote the data within the corresponding

analysis window.
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(c) The Absolute value of the Summation of the expth root (Absolute value of the Sum-

mation of the expth root (ASM)) [34] of the data is the third time-domain feature,

as shown in Eq. (3). The ASM feature provides a comprehensive insight into the

amplitude of the EMG signal since it gives an approximate measure of the power of

the signal which also produces a waveform that is easily analyzable. This feature

contains information from which the amplitude of the rectified EMG signal could be

obtained.

ASM =

∣∣∣∣∣
∑k

n=1(xn)exp

k

∣∣∣∣∣
exp =

0.50, if(n ≤ 0.25 × k, if n ≥ 0.75)

0.75 otherwise

(3.3)

The exp. variable can assume one of two possible values (0.50 or 0.75) based on

the characteristic of the EMG signal segment under analysis. The ASM is therefore

determined in the following three steps: first the summation of the expth root of all

values in a given analysis window is computed; followed by the mean of the resultant

values; and lastly, the absolute value of the resultant mean is evaluated.

(d) The last feature added was the Levinson–Durbin Recursion [45], it is a recursive order-

update method to the calculation of linear predictor coefficients, it has applications

in filter design, coding, and spectral estimation. This method was used to estimate

parameters of the sEMG signal.

3.2.3 Features Selection

A method based on the Maximal Information Compression Index (Maximal Informa-

tion Compression Index (MICI)), and the Entropy Representation (Entropy Represen-

tation (ER)) was applied for unsupervised feature selection, in order to obtain the best

feature sets for the classification [9]. Analyzing through the MICI to obtain combinations

of characteristics with lower value or high redundancy. Those redundant features come

together with the rejected features, in order to obtain an updated set formed by the

features that provide the highest ER value during the combination with non-redundant

features.

On the other hand, principal component analysis (Principal Component Analisys

(PCA)), an orthogonal linear trans-formation, that rearrange the components in the

inverse order of variance It is used for dimensionality reduction in the BioPatRec platform

14



as default, as it is a widely used technique. In that study, PCA reduced the 160 features

(20 for each channel) to the 64 best features for classification.

Later in chapter5, new methods of reducing characteristics and dimensionality were

tested and evaluated.

3.2.4 Neural Network Classifiers

Despite the existence of a wide variety of different pattern recognition algorithms,

the Multi-Layer Perceptron (MLP) as a supervised Artificial Neural Network was chosen

because of its inherent capacity of simultaneous classification [25, 27, 3].

An MLP can be used as a logistic regression classifier, where the input is first trans-

formed nonlinearly by a learned transformation. This transformation projects the input

data into a space in which it becomes linearly separable. This middle layer is called the

hidden layer. For this study an MLP with 3 hidden layers with eleven neurons was used,

the transference function was the softmax function.

3.2.5 Statistical Evaluation

The tests were performed on seventeen subjects of the original base ”6mov8chUFS”.

First, the BioPatRec feature selection methods were used with and without PCA. Finally,

the unsupervised feature selection algorithm (Unsupervised Feature Selection (UFS)) was

used for reducing features in place of the PCA. Thus the tests were completed they were

repeated by adding the new characteristic vectors proposed in this study.

The evaluation of the classifier used a cross-validation of 48 trainings with random-

ized datasets were per subject and for each algorithm, 24 validation sets, and 49 test sets.

For this study was used unitary range normalization. The BioPatRec provides statistical

tools to evaluate the proposed algorithms on the platform, thus, it has a wide variety of

metrics [27] that were used to analyze the results, such as Accuracy (Class Specific), Sen-

sitivity (Recall), PPV (Precision), F1, Specificity (Negative Condition), NPV (Negative

Outcome) and Accuracy (Global).

(a) Accuracy – Class Specific

AccCS =
absolute correct predictions

total absolute predictions
(3.4)

(b) Sensitivity
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Sensitivity =
TPs

TPs+ TPs
(3.5)

(c) PPV

PPV =
TPs

TPs+ FPs
(3.6)

(d) F1

F1 = 2× precision× sensitivity
precision+ sensibility

(3.7)

(e) Specificity

Specificity =
TNs

TNs+ FPs
(3.8)

(f) NPV

NPV =
TNs

TNs+ FNs
(3.9)

(g) Accuracy – Global

AccG =
TNs+ TPs

TPs+ TNs+ FPs+ FNs
, (3.10)

where TP means true positive, the correct activation; TN is true negative, the correct in-

activation; FP is false positive, the incorrect activation; and FN is false negative, incorrect

inactivation.

3.3 Results and discussion

It has been shown that the individual movements can be successfully predicted offline

using pattern recognition algorithms [25, 20, 36, 14] and in this study was demonstrated an

increase in terms of classification accuracy was achieved when the new features were used

in conjunction with a feature reduction algorithm. Table 1 shows the results obtained

using the characteristics present in BioPatRec and the use of PCA or UFS to reduce

characteristics.

Table 3.2 shows the results obtained using the characteristics present in BioPatRec

and those added by this study, in addition to the use of PCA or UFS to reduce the

characteristics. As more characteristics are sorted, the MLP begins to diverge, but when
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Table 3.1. Quantitative indicators obtained with the comparison between old
features with feature reduction algorithms.

Features Selection Accuracy Class Sensitivity PPV F1 Specificity NPV Accuracy Global

None 83.10 85.11 92.30 0.89 99.73 99.43 99.19
PCA 92.74 94.78 94.78 0.95 99.80 99.80 99.61
UFS 90.63 92.29 95.02 0.94 99.81 99.70 99.54

selecting the most divergent characteristics, through the methods of selecting charac-

teristics, rating the signal becomes easier. The performance of the proposed and the

conventional methods present in the BioPatRec is shown by the gain in the accuracy and

deviation shown in table 3.1 and 3.2.

Table 3.2. Quantitative indicators obtained with the comparison between the new
features added to the old features sets with feature reduction algorithms.

Features Selection Accuracy Class Sensitivity PPV F1 Specificity NPV Accuracy Global

None 82.39 83.60 95.76 0.89 99.86 99.37 99.26
PCA 94.63 96.22 96.95 0.97 99.88 99.85 99.75
UFS 93.50 94.71 96.68 0.96 99.87 99.80 99.68

The below figure shows the distribution curves of the experiment, while the blue curve

represents the old features the red one represent the experiment with the added features.

The difference between two means divided by a standard deviation for the data is

represented with the ”d” letter in the graphic.

According to Cohen and Sawilowsky:

• d = 0.01 =⇒ very small effect size;

• d = 0.20 =⇒ small effect size;

• d = 0.50 =⇒ medium effect size;

• d = 0.80 =⇒ large effect size;

• d = 1.20 =⇒ very large effect size;

• d = 2.00 =⇒ huge effect size.

The experiment was offline, and the mean training and validation time was of 34

seconds and the mean testing time was of 0.004 seconds.

The use of BioPatRec allows a fast and accurate simulation of the pattern recognition

algorithms, which streamlines the process of development and testing of theories that will

be applied in the control of a myoelectric prosthesis. This platform is being used in this
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Figure 3.1. Distribution of the experiment with the old features and the added
features.

study and it is hoped that it can assist in the development of an adaptive learning pattern

recognition system for the control of an upper limb electrical prosthesis. In addition,

the fact that the BioPatRec platform is modular allows the study to be better divided

into stages, such as signal processing, extraction of characteristics, classification and the

decision-making system of the prosthesis, making the process agiler.

3.4 Conclusion

The addition of the new features in conjunction with the selection algorithms im-

proved the characterization of the myoelectric signal, which will facilitate the decision

process for the control of the myoelectric prosthesis. The help of the BioPatRec platform

made the work agiler and the statistical metrics helped to evaluate the effectiveness of the

algorithms applied in this study. Furthermore, this study showed that simultaneous con-

trol can be considered since it improves user comfort. In addition, simultaneous control

is required for more natural control of artificial limbs, and pattern recognition has proved

to be an excellent means of working with the complexity generated by simulta-neous

movement.

18



4 Autoencoder and Anomaly Detection for

Movement Class Separation

4.1 Introduction

An autoencoder is a neural network that is trained to attempt to copy its input to

its output. While copying the input to the output may be useless, a high-dimensional

data can be converted to low-dimensional codes by training a multilayer neural network

with a small central layer to reconstruct high-dimensional input vectors. Using the inner

layer, also called latent space, we have a signal with a reduced size, more easily classified.

The Variational Autoencoder (VAE) is a generative model that estimates the Prob-

ability Density Function (Probability Density Function (PDF)) of training data. By

training the model to recognize the sEMG signal it will assign a high probability value

to a motion class, while the noise will receive a low probability value[42].

The VAE model can also sample examples of the PDF learned, thus generating new

examples similar to the original data set. But it is important to emphasize that VAE

is not a way of training generative models, but rather that the generative model is a

component of VAE, generally being a deeply latent Gaussian model[32].

In the figure 4.1 are the steps to summarize the operation of a VAE. On the left side

we have the model definition:

1. Let q(z|x) be defined as how the signal is encoded into a distribution over the latent

space;

2. Let z be A latent vector sampled from q(z|x), z will contain the information de-

scribing x. The decode of it is represented as p(z|x);

3. z is decoded as a signal.

On the right side we have the loss:

1. Reconstruction error: the difference between the output and the input.
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2. p(z|x) should be similar to the prior (multivariate standard Gaussian).

The VAE generating coefficient appears by directly sampling the latent vector from

the prior distribution and decoding it into a noisy representation of x[42].

4.1.1 Model specification

4.1.1.1 Encoder layer

In Bayesian modeling, the distribution of observed variables is governed by latent

variables. The latent variables are extracted from a previous density p(z) and related to

the observations through the probability pθ(x|z). Deep latent gaussian models (DLGMs)

are a general class of models where the observed variable is governed by a latent variable

hierarchy, and the latent variables at each level of the hierarchy are Gaussian a priory[32].

Normally, in the VAE, a Gaussian distribution is used to sample the latent space.

p(z) = N(0, I) (4.1)

In this way, each local latent variable is related to its corresponding observation

through the likelihood pθ(x|z), which can be seen as a probabilistic decoder. Using a

hidden smaller representation z, it decodes it into a distribution over observation x.

4.1.1.2 Decoder layer

The decoder is another neural network. Its input is the latent vector z, generates the

parameters for the probability distribution of the data and has weights and biases θ. The

decoder is denoted by pθ(x|z). The probability distribution is a multivariate Gaussian.

The loss function of VAE is the negative log-likelihood with a regularizer. Since it

is not possible to generalize the global representation shared by all data points, we can

decompose the loss function into terms that depend only on a single data point li. The

parameters are typically the weights and biases of the neural networks represented as θ

and φ. The total loss will then be represented by the sum of all losses li for all data

points. The loss function li for the data point xi is:

li(θ, φ) = Ez qθ(z|xi)[log(pφ(xi|z))] + KL(qθ(z|xi)|p(z)) (4.2)

The first term represent the reconstruction loss, and has the form of a negative log-

likelihood of the i-th data point. The expectation is taken with respect to the encoder’s
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Figure 4.1. Flowchart of a variational autoencoder

distribution over the representations. This term encourages the decoder to learn how

to reconstruct the data. If the decoder’s output does not have similarity with the data,

statistically the decoder parameterizes a likelihood distribution that does not place much

probability mass on the true data. Poor reconstruction will incur a large cost in this loss

function.

The second term is a regularizer. This is the Kullback-Leibler divergence between the

encoder’s distribution qθ(z|x) and p(z). This divergence measures how much information

is lost when using q to represent p, in other words, the divergence of the approximate

from the true posterior.

4.1.1.3 Inference Network

An inference network is a flexible construction for parameterizing approximating dis-

tributions during inference[8], and it is used on VAE[32, 42] to infer the optimal values

of the latent variables given observed data, or to calculate the posterior p(z|x). By mod-

eling the true distribution P (z|X) using simpler distribution that is easy to evaluate,

e.g. Gaussian, and minimize the difference between those two distribution using KL

divergence metric, as in 4.2, which tells us how difference it is p and q.
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4.1.2 Anomaly Detection

The use of auto-ponder for anomaly detection is already common in the area of

artificial intelligence [41, 47, 4]. In this study, a variational autoencoder was used to

detect the onset of movement, which is otherwise confused with the resting state.

The test of the usability of the auto-encoder was done for the classification of the 26

classes of movement of the database, it was later retrained to detect the change of the

resting state.

4.2 Methodology

4.2.1 VAE Algorithm

A simple Variational Autoencoder was used for the anomaly detection phase. The

encoder stage was compose of three dense layers. The first one have 32 neurons, the

second 16 neurons and the third 8 neurons. The sampling inference, which characterizes

the variational autoencoder, is made on top of the last layer of the encoder step, which

has 8 neurons. All layers in this phase have the Rectified Linear Unit (ReLU) as the

activation function.

The decoding stage is the reverse of the encoding. It starts with 8 neurons in the

first layer, 16 neurons in the second and 32 neurons in the last. The first two layers

have ReLU as the activation function and the third layer, the sigmoid as the activation

function.

The figure 4.2 is the dimensionless values of the autoencoder trained with two neurons

in the latent layer. The figure represents the representation of the anomalies found when

the patient starts to move. With that output of the latent space, a simple perceptron

network is used to detect whether the patient is moving or resting.

4.3 Results

In this experiment, a 0.01s window (10 samples) was used. With this window size,

normal classification methods cannot accurately classify the movements classes or even

differentiate the resting state of movement. Through the use of auto-encoder as an

anomaly detector, it was possible to determine the moment when the movement really

started.

The figure 4.3 is the representation of the difference between the rest movement state

in the latent space of the variational autoencoder. For the construction of the image the
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Figure 4.2. The latent space representation created by te Variational Autoencoder

latent space was dimensioned with 4096 neurons. The output of the neurons has been

scaled to a 64 by 64 square shape and the image was made.

It is worth remembering that, although the detection of the anomaly only needed

eight neurons to be able to perform successfully, the representation of the latent space

needed to be enlarged so that the difference was visible to our eyes.

4.4 Conclusion

The results obtained demonstrate the feasibility of the variational autoenconder as

an anomaly detector for the sEMG signal. Furthermore, by separating the resting state

from the other classes of movement, the entropy of the system is reduced, facilitating the

future classification of the other classes of movement.

By using VAE, which is specialized in separating classes in their latent space, move-

ment detection has been simplified and its computational cost has been greatly reduced.

Although the training was done only using the offline signal, simulating the acquisition

of the signal online proved to be extremely efficient.

In this study, the auto encoder was used only as an anomaly detection instrument,

but its use is not limited to that. As shown in figure 4.3, the autoencoder can be used

to increase the separation between classes just by increasing the size of the latent space.
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Figure 4.3. A expanded latent space, to represent the diference between the rest
and the rest and the movement state. In this image the latent space was dimensioned
to be 64 x 64 to facilitate the diference visualization.

This technique can be used in further studies to improve the system accuracy.
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5 Entropy and Clustering Information Applied

to sEMG Classification

5.1 Introduction

The EMG signal varies according to the posture, position, and force applied by the

person that is performing a muscle contraction. Therefore, to have perfect control of

a prosthesis, extensive training with a myoelectric unit is required. However, as these

prostheses have a high cost investment, it is often not possible to offer longterm training

for their use.

One of the difficulties regarding EMG signal processing for use in prosthesis control

is the need for real-time processing. This creates the need for ever-smaller time windows

that, in turn, have less signal information, which limits the amount of information that

can be extracted from them.

In the last few years, deep learning techniques have become increasingly used, but

the more complex the applications are, the more complex the neural networks become.

However, the more parameters the network has, the higher the chance of having over-

fitting, which causes considerable deterioration to the network’s generalization capacity.

Otherwise, if the neural network has few parameters, it will probably not be able to

represent the data accurately. Notably, the best way to achieve generalization is to seek

a balance between training error and network complexity [21, 46].

In the tasks of biosignal classification, there are frequently too few biomedical signal

samples to allow for the achievement of good results with deep learning [35]. Another

problem associated with deep learning is the cost of training processing, which demands

specific hardware and high computational cost due to the complexity of the current neural

networks architectures [46]. This thesis suggests extracting maximum signal information

before signal classification as a method to reduce the system complexity and create re-

dundancy for the classification and thereby managing to decrease the time window for

the real-time processing of the signal. One of the steps of the algorithm proposed includes

the development of a pipeline that extracts a priori information from the EMG signal by

computing the current hand and forearm postures and the similarity of the EMG signals
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from the forearm.

As mentioned before, one way to ensure entropy reduction (information gain) is to

obtain a priori information [37]. The starting position of the hand and forearm provide

a great deal of information to the classifier as it restricts possible movement classes. For

this purpose, a state machine [3] that counts the possible movements from the initial

classes was created. This state machine reduced by just over three times the number of

classes to classify, improving the classification of the system.

A second method used in this work for entropy reduction, was the classification of

signals by similarity. Therefore, a Hierarchical Agglomerative clustering (Hierarchical

Agglomerative Clustering (HCA)) technique was selected. In this technique, each data

point is considered an individual cluster. At each iteration, using distance, a similar pair

of clusters are merged as they move up the hierarchy, until there is a formation of one

cluster or K clusters.

The proposed methodology led to a substantial decrease in the size of the temporal

window used for sEMG signal processing. Besides, there was also an improvement in

the generalization and processing speed due to the simplification of the model used for

classification.

This chapter is organized as follows: Section II shows a detailed explanation of the al-

gorithms used. The results are listed in Section III, which also presents a detailed analysis

of the experiment. Finally, there is a conclusion, where the results are summarized.

5.2 Methodology

5.2.1 The Pipeline

Initially, there is an estimation of the original positions of the hand and forearm. The

possible movements are checked by analyzing the state machine; these two steps lead to

a list of values associated with the neurons that are activated in the final layer of the

classifier.

The second step is processing the signal with the Butterworth filter, followed by the

feature extraction and standardization of the data. Furthermore, a reduced space trans-

form created by the NCA algorithm is applied, and the signal is ready for the classification

and clustering algorithms. This transformation reduces the vector of characteristics from

36 to 25 dimensions.

The third step for signal classification is to find the group to which the analyzed

window belongs. The HCA clustering algorithm will provide a new list of activated

neurons in the classifier. In the HCA algorithm, each observation starts in its cluster, and
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Figure 5.1. Pipeline representation: the algorithm begins at a starting position;
the sEMG signal is measured and pre-processed to help to determine the movement
intention; with these two information pieces, the possible next movements are de-
termined as well as the cluster to which the class belongs; finally, the algorithm
yields the movement intention.

the algorithm merges pairs of clusters when one moves up the hierarchy. The intersection

between the state machine-generated list and the cluster generates the final list of neurons

that can be activated.

The last step is the signal classification by the MLP and the multiplication of the

result by the list generated in the previous step. The image below shows the value of

neurons before and after applying the list of neurons to be used.

5.2.2 Movement Classes

The movement classes used in the ”6mov8chUFS” database are listed as follows:

1. Open Hand

2. Close Hand

3. Flex Hand

4. Extend Hand

5. Pronation

6. Supination
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7. Open Hand + Flex Hand

8. Close Hand + Flex Hand

9. Open Hand + Extend Hand

10. Close Hand + Extend Hand

11. Open Hand + Pronation

12. Close Hand + Pronation

13. Open Hand + Supination

14. Close Hand + Supination

15. Flex Hand + Pronation

16. Extend Hand + Pronation

17. Flex Hand + Supination

18. Extend Hand + Supination

19. Open Hand + Flex Hand + Pronation

20. Close Hand + Flex Hand + Pronation

21. Open Hand + Flex Hand + Supination

22. Close Hand + Flex Hand + Supination

23. Open Hand + Extend Hand + Pronation

24. Close Hand + Extend Hand + Pronation

25. Open Hand + Extend Hand + Supination

26. Close Hand + Extend Hand + Supination

5.2.3 Feature extraction

In order to reduce signal noise, the first step in extracting features was to use a sixth-

order bandpass Butterworth filter, 80-450Hz. Additionally, a time window for sampling

the signal is selected. In this study, the sampling frequency of the sEMG was 2000 Hz,

with a 0.01s window (i.e., ten samples per window).

This stage was subdivided into two steps:
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1. Selection of characteristics: to extract information from the signal four fre-

quency domain features were used [19]:

• Spectral Moment;

• Waveform Length (acumulative changes in the length);

• Mean;

• Median;

2. Dimensional reduction: (NCA) [30] allowed for the dimensional reduction by

helping to select the most significant features of the signal. NCA is a supervised

learning algorithm for distance metric learning. It learns a linear transformation

(of input data) that maximizes, in the transformed space, the average leave-one-out

classification performance.

The figure 5.2 shows the study made to select the best dimensionality reduction

algorithm. The methods were tested with a KNN with k =3, the method was select

base on the accuracy of the knn. The plots represent the features on the dimensionality

reduction algorithm space, therefore they don’t have dimensions.

5.2.4 Signal Information

To extract the maximum information of the signal the processes were divided into

two steps:

1. Signal Clustering: Agglomerative Hierarchical Clustering (HCA) clusterized the

signal into three groups according to the similarity of the features. The HAC

algorithm recursively merges the pair of clusters that minimally increases a given

linkage distance [38, 15];

2. Comparison with possible movements: after the creation of the cluster, the algo-

rithm compares movements classes with the possible movements for a given posi-

tion, and the classes are extracted through a process called Decision Tree or State

Machine [9].

5.2.5 Classifier Algorithm

A simple multi-layer perceptron (MLP), with three layers, was used to classify the

signal. The first layer was composed of 25 neurons, the middle layer by 52 neurons

and the last by 26 neurons. In the first two layers, the linear rectifier was used as
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Figure 5.2. Test of diferent methodos of dimensionality reduction for the use in
the classificatory algorithm. The methods were tested with a KNN with k =3.
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activation function. The last layer had a softmax function helping in the classification

process. A dropout function (20%), placed between the MLP layers, reduce the chance

of over-fitting.The MLP was chosen because of its inherent capacity of simultaneous

classification [37].

Figure 5.3. Output of the values of the MLP neurons of the last layer. The blue
color mean the right classification and the red the wrong classification. The left
figure is the output of the MLP and the right figure is the result with the possible
classes only.

5.3 Results

A recent study [31] shows the impact of the temporal window size on the EMG signal

classification error. According to this study, with very small windows, (on average less

than 200 ms), the classification error increases as the total information in the window

decreases. This feature makes real-time processing very difficult, since it requires small

temporal windows. Moreover, in 2011 Peerdeman [29] found that the processing window

needs to have less than 300 ms, or the delay becomes unacceptable to the user.

The proposals studied in this article aim to reduce this limit from 200 to 300 mil-

liseconds by creating mechanisms that allow for using smaller windows. Through these

smalltime windows, it is possible to perform real-time processing.

Because of the small size (10ms) of the window, the MLP did not achieve a good

signal classification, but the selection of which neurons are active for the classification,

significantly increased the accuracy. Figure 2 shows the difference in the classification

using only the possible classes.

For the clustering algorithm, three data clusters were created and evaluated using a

KNN (k = 3). This KNN achieved 97% accuracy by classifying the groups created, as

seen in figure 5.4.

Table 5.1 shows the accuracy and standard deviation of MLP used in this article.

The left side shows the results for the full MLP, and the right colulmn shows the, the

results after the application of the pipeline shown in figure 5.1.
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Figure 5.4. sMEG Clustering the classes by the similarity in the features ex-
tracted. After the extraction of twenty-five dimensions, the two more representa-
tive dimensions among them were used to generate the plot. A KNN was used to
validate the cluster.

Although the standard deviation remained relatively unchanged, the improvement

in accuracy was immense. This achievement can be reached by excluding very close

classes, such as closing and flexing the hand or opening and flexing the hand, where

misclassifications generally occur.

5.4 Conclusion

In this thesis, two methods were used to obtain a priori information and thus re-

duce signal entropy before classification. New methods can bring even more significant

improvement to the system. By providing a priori information for signal classification in-

teractively, the number of possible classes for signal classification dramatically decreases.

Creating less complex validation steps also increased accuracy while allowing window size

reduction. We believe that the techniques presented here only scratch the surface of the

applications where information entropy can and should be used.
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Table 5.1. Accuracy and Standard Deviation Comparison

Ful MLP Output MLP with Selectd Neurouns
Acc 0.382 0.913
Std 0.013 0.011

The main idea of this study was to create a network that is simple and, through

a small number of bits, can generalize the data better than a more complex network.

Therefore, it is imperative to provide tools that simplify or provide data information.

Besides, a simple neural network will have faster processing time and use less energy,

being cheaper to train and more efficient to apply. Thus, providing tools that simplify

or provide data information is critical. Furthermore, more studies to account for the

trade-off between the number of steps and the processing time of the pipeline is needed.
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6 Conclusion

This study was done with the intention of raising a greater amount of information

about the EMG signal. This survey serves to build a better definition of the problem.

Knowing how the signal behaves it is possible to create simpler and more efficient solution.

For this purpose, a processing protocol of feature extraction, clustering and classification

of the myoelectric signal were followed.

As a good prosthesis experience needs quick responses, real-time processing is critical.

The number of features and their choice was such as to guarantee faster signal processing.

Four characteristics in the frequency domain were selected:

• Spectral Moment;

• Waveform Length (cumulative changes in the length);

• Mean;

• Median;

One of the difficulties in classifying the signal was knowing exactly where the move-

ment started. This happens because of the stochastic characteristics of the signal, when

motor units start to be recruited, the signal of rest and movement are confused. To

differentiate these two states, a variational self-hiding was used. Due to its intrinsic char-

acteristics, it is specialized in separating classes (movement and rest) in its latent layer.

With a simple perceptron it was possible to ascertain the change in the user’s states and

activate the prosthesis movement classifier.

The last part of this study was the development of a classifier. For this, the concept

of information entropy was used. The first part of the classifier was the construction of a

state machine that maps the possible combinations of movement given an initial position

of the prosthesis. Another step was the use of clusters to catalog nearby movements,

the intersection of these two steps generates a list of possible movements. Because of

the extremely small time window, without using these two steps, classification would be

impossible.
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Since the myoelectric prostheses were developed, the number of users who reject it

has remained constant [6], Which shows that there has been no significant advance in the

area. The reduction of the time window for the classification of the myoelectric signal

will allow the control of the prosthesis to be performed in a more fluid way by the user,

increasing his comfort when using it.

Another very important factor generated by the decrease in the time window is the

decrease in the complexity of the evaluation, which results in energy savings during the

classification process, which, in turn, would increase the time of using the prosthesis,

reducing the amount of time of refills that the user would need to do. In addition, the

processing developed in this study can be used for the classification of other natural signals

which, as they are diluted (too much information for little information), are difficult to

classify.

The collection of EMG signal data can be stressful for the patient, so it is very

difficult to get large databases of biological signals. Because of this, this study was

done using only one database, provided along with the BioPatRec platform. In addition,

the database used has few repetitions of movement, which makes training with machine

learning algorithms difficult. In total, this base has only 17 patients and 3 repetitions of

each movement, which made it impossible to use some training techniques.

With a sufficiently large database and, once a redundant classifier has been created,

as in the case of the study, the various steps of the cassification can be used as a code

and, with a larger neural network and the values of the classification windows can be

predicted using techniques such as Long Short Time Memory (LSTM).

One of the main future works would be the implementation of the system and tests

with patients with live acquisition of the sEMG. The corelations between the time win-

dows can also be studied in order to have a better designed classifier. New methods of

reducing entropy before the classifier mustbe tested since tools that simplify or provide

data information is critical.

Despite the few samples of the data set used, the methodology created in this thesis

proved to be efficient for the classification of the sEMG signal. However, further studies

must be carried out to find new ways to decrease the entropy of the signal before its final

classification.
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[19] Luiz José, Lucas Barbosa, Paulo Roberto, Fernandes De Oliveira, Philippe Dias

Araujo, Adson Ferreira, Denis Delisle-rodriguez, John Jairo, Villarejo Mayor, Suélia
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