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Abstract

DESIGN OF AN OPTIMAL PENDULUM-TUNED MASS DAMPER AP-
PLIED TO OFFSHORE WIND TURBINES

Author: Gino Bertollucci Colherinhas

Supervisor: Marcela Rodrigues Machado, PhD (ENM/ UnB)

Ph.D. in Mechanical Sciences

Brasília, 2020

Offshore Wind Turbines (OWT) may experience excessive vibration levels caused
by the actions of wind, waves, rotor torque, and seismic loads. To suppress the vibrations of
these primary structures, the Tuned Mass Damper (TMD) is a widely used passive control
alternative. Briefly, it is a damper that transfers the kinetic energy from the main structure
to a secondary mass usually attached to the hub. These devices need to be finely tuned
with a target self-vibration mode of the primary structure to work as dampers, otherwise,
they could amplify structural vibrations. This thesis presents optimal parameters of a
Pendulum-TMD (PTMD) to mitigates structural vibrations of OWTs levels. The PTMD
is examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind
turbine model using analytical and numerical procedures, such as a 2-degree-of-freedom
(2DOF), spectral elements (SEM), and finite elements (FEM). Following design standards
of OWTs structures wind and wave spectra computation, as well as the evaluation of
the hydrodynamic and aerodynamic loads by computing the resultant peak displacement
response at the OWT hub by a Power Spectral Density (PSD) analysis. In the validation
of the OWT models, a result comparison is made with the NREL OpenFAST, finding
good matching between the results. An in-house built Genetic Algorithm (GA) toolbox,
coded in MATLAB®, is used then to optimally design parameters of a PTMD attached to
the OWT. The chosen GA fitness function targets a minimization of the peak responses.
The design parameters of the PTMD are the flexural rigidity and damping, the mass ratio,
and the pendulum length.

Key-words: Offshore Wind Turbine; Pendulum Tuned Mass Damper; Genetic Algorithm
Optimization; Structural Control; Power Spectral Density analysis.
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1 General Introduction

The current chapter gives an overview of the motivation, objectives, and scope of
the work. The remaining chapters are related to:

• Chapter 2: The background of numerical modeling of Offshore Wind Turbine (OWT),
the demanding environment, load actions due to rotating blades, the dynamic
structural response procedure, and design loads.

• Chapter 3 The NREL 5-MW monopile OWT and the theory concerning the vibration
control of OWTs, focusing on the Pendulum-Tuned-Mass-Damper (PTMD) type
design used in this work. The analytical and numerical procedures for the PTMD
coupled at the OWT hub using the 2-Degrees-Of-Freedom (2DOF), Spectral Element
(SEM), and Finite Element (FEM) techniques.

• Chapter B Concepts of optimization and Genetic Algorithm (GA), as well as the
home-made genetic optimization toolbox, used to search optimum PTMD designs.

• Chapter 4 Results from the case studies.

• Chapter 5 Conclusions from the case studies and suggestions for further work.

Appendix A present the author’s list of publications, Appendix B presents a brief
theory concerning the genetic algorithms optimization, and Appendix C is devoted to the
Multi-degree-of-freedom (MDOF) reduction model.

1.1 Motivation

Wind energy is one of the renewable sources in fast development and implemen-
tation all over the world. Wind resources can be classified in offshore and onshore that
comprehending coastal and inland. The Global Wind Energy Council (1) reports that
worldwide installed wind power reached more than 650 GW up to 2019. The increase in
worldwide installed wind power was 329% between 2010 and 2019 and 914% from 2000 to
2009 due to a deceleration of coastal wind farm facilities.
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OWTs are beneficed from the vaster amount of wind power compared to the
onshore. The offshore wind power reached a historical record in 2019 with 6145 MW new
installations, and the cumulative capacity was 29136 MW (1).

Structural analysis of Offshore Wind Turbine (OWT) models has been vastly
improved with new designs for global deployments in the coming years. These turbines are
complex structural systems influenced by non-linearities, uncertainties, and fluid-structure
interactions. The OWT design process requires the comprehension of some aspects, such
as international standards, the macro/meso/micro-level of the OWT elements that will be
analyzed, the costs involved, and the loads provoked by the wind blade rotation (2). The
characterization of wind and hydrodynamic actions in analytical and numerical procedures
is also fundamentals to comprehend the environmental conditions over an OWT.

To improve the productivity of modern OWTs, support structures significantly
increased in slenderness and size, and structural designers are often requested to find their
limitations based on the dynamics, structure, and control systems. High vibration levels
occur in OWT due to its height, slenderness, and loads caused by its rotor operation and
environmental action. As a result, the implementation of structural control is required
systems to avoid failure and reduce maintenance costs (3).

Structural control mechanisms for the tower have been developed to balance
dynamic forces on OWTs, such as earthquake excitation, wind loads and waves, dissipating
energy, and increasing the efficiency in terms of fatigue and stability of the tower.

There are some types of controllers such as Tuned Mass Dampers (TMDs), tuned
liquid mass dampers, controllable fluid dampers, etc, that can be used combined or not
in different control strategies (passive, active, semi-active) (4) and more details about
them are explored in sec. 3.2.1. Several types of vibration control dampers are found in
literature and a brief review of its mechanisms and applications are presented in sec. 3.2.2.

Wind turbines with or without vibration control have been modeled by reduced
models represented by analytical solutions or with the finite element method (FEM) (5, 6, 7).
As an alternative, the SEM is an interesting method for modeling the whole system. The
SEM (8, 9) is formulated by the analytical solution of the wave equation in the frequency
domain. It implies high accuracy and low computational cost because of the reduction of
DOFs to model a structure. It is a meshing method similar to FEM, where the element
shape functions are replaced by the exact dynamic shape functions obtained from the
analytical solution of governing differential equations. Therefore, a single element is
sufficient to model any continuous and uniform part of the structure. The SEM had been
used in the structural dynamics analysis including rod, beam, plates, cables, composite
structures (10, 11, 12, 13, 14, 15), and ongoing researches is proposing new and improved
elements (16, 17).
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1.2 Objectives

The main objective of this thesis is to mitigate OWT vibrations with an optimal
PTMD design. Two analytical procedures and a finite element case studies are investigated
considering the NREL monopile 5-MW baseline OWT (18) as an object OWT reference
to be coupled to the PTMD. A consistent OWT model is compared with the NREL
OpenFAST software results presenting an alternative modular tool capable to evaluate
the power spectrum density of the hydrodynamic and aerodynamic loads considering
the parked and operating conditions of the OWT, including its power production. This
spectral density is inputted, analytically, on a two-degree-of-freedom and in a spectral
element model evaluating the OWT frequency response. A dynamic response is performed
on the finite element case study in terms of the mean value of the mean wind and sea
current and the standard deviation related to the effects of the turbulent wind and waves.

An in-house built GA toolbox (19) helps to find optimal PTMD parameters (flexural
rigidity, damping, mass-ratio, and pendulum length) by setting a fitness function that
targets a minimization of the frequency response peaks of the tower.

The case studies include the following research discussions which form the basis of
this thesis:

• Numerical modeling of OWTs for response analysis including design load conditions
with their respective environment demand and dynamic of rotating blades in operating
condition, for both deterministic and stochastic loads.

• Effects of aerodynamic and hydrodynamic power spectral densities on OWTs.

• Analytical modeling of 2DOF and SEM and the numerical modeling of FEM for
the NREL monopile 5-MW baseline OWT coupled to the Pendulum Tuned Mass
Damper.

• Comparison of the tower-top response of the SEM model of a tower with the finite
element, SDOF, and MDOF models, and of the SEM model of a tower coupled to
the PTMD with the 2DOF and FEM models.

• Comparison of both SEM and FEM models with the NREL OpenFAST software
results.

• Parametric analysis of the pendulum parameters influence for parked and operational
conditions of the OWT for the analytical models.

• Optimal PTMD design procedure of the flexural rigidity, damping, mass-ratio, and
pendulum length parameters using genetic optimization for all 2DOF, SEM, and
FEM models.
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• Dynamic structure analysis of the 3D-PTMD coupled to the OWT FEM model
evaluating the response displacements and the stresses at the OWT base.

• OWT power production with tip-loss and/or root loss effects.
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2 Numerical global modeling of
OWTs and of the demanding

environment for structural
analysis purposes

2.1 Introduction

Historically, the development and advancement of societies have been intimately
tied to the members’ ability to produce and manipulate structures and materials to fill their
needs. The merge of construction techniques with numerical and experimental methods,
in last decades, gave rise to complex structures capable to assume the dynamics of nature.
The combination of unusual structure shapes with amazing height, length, slenderness,
flexibility and lightness can be possible with sophisticated programming methods. The
effects of dynamic actions on structures must be evaluated to approximate these methods
near to the reality.

The randomness characteristics of dynamics actions, usually termed stochastic
excitation, includes seismic ground motions, wind gusts or turbulence in wind and ocean
waves, among others. By neglecting the variation of dynamic actions in space, the spatial
random field can be simplified as a series of random process with the same statistical
characteristics, enabling that, by using a time sequence, one point reflects the effects of
random excitation on structures. There are widely used assumptions in the establishment
of stochastic excitation models, as the homogeneous and isotropic assumption in which
a random field model should be adopted to reflect the spatial dynamic actions; and the
stationary assumption in which the variance is a constant and not changing with time.
This last assumption is taken to characterize the stationary stochastic processes usually
taken in the modeling of the wind turbulence in the atmospheric boundary layer (20).

The phenomenology-based modeling and the physics-based modeling are two
methods in the process of modeling stochastic dynamic excitation. The first one used
correlation or Power Spectral Density (PSD) functions based on statistical moments.
The physics-based modeling focuses on a random function model of dynamic excitation
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considering the real physical background. Besides wind and wave, stochastic methods are
also capable to describe the operational effects of OWTs due to rotating blades.

In general, the main focus of the structural analysis for PTMD design purposes is
the peak or the RMS of the structural response. In order to obtain them, the response
is modeled as composed of a mean part, induced by the mean wind and the sea current
(eventually including the vortex shedding effects), and by a fluctuating/stochastic part,
induced by the wind turbulence and by the sea waves. The first one is obtained by a static
analysis, while the second one can be evaluated, in frequency domain, by a PSD analysis.
The actions due to the mean wind and the sea current are then modeled by equivalent
static forces, while the actions due to turbulent wind and waves are modeled by their
power spectrum.

OWTs are located in a complex and high-demanding environment (21) with some
non-linear interactions and high variability of loading conditions (6). The scheme of such
a complex environment is shown in Figure 2.1.1, as well as the relevant macro-geometric
parameters of the problem: the mean water depth (ℎ) under the SWL, the hub height
(𝐻ℎ𝑢𝑏) above the SWL, the blade length or rotor radius (𝑅), and the bedrock depth (𝑑)
(22).

Figure 2.1.1 – Environmental actions over an Offshore Wind Turbine

Beside the wind and waves actions, stochastic models are also capable of describing
the wind sampling effects of OWTs due to rotating blades in operating conditions. This is
modeled by a rotor torque plus a sampling effect on turbulent wind forces. This section
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briefly summarizes the models used for obtaining the peak dynamic response of the turbine
under wind-current and wave loads for both parked and operating conditions by the
static+PSD analyses.

2.2 Wind field and wind-induced loads

The effects of wind actions on structures are ruled by norms and standards con-
sidering specific construction sites, such as the ABNT NBR 6123 (23) in Brasil and the
CNR-DT 207/2008 (24) in Italy. While the Brazilian standard ABNT NBR 6123 does not
has updates since 1988, the Italian CNR-DT 207/2008 was updated in 2008. Due to the
material wealth of the scientific contribution of the CNR-DT 207/2007 and the period
spent by this researcher in the University of Rome “Sapienza”, the CNR is mainly used in
this section for the characterization of the wind.

The CNR-DT 207/2008, of the National Research Council of Italy, specifies limita-
tions and requirements, which includes: civil engineering structures of height not exceeding
200 m, industrial structures, including moving and lifting equipment, and bridges with
spans not greater than 200 m, and other specific cases. This norm presents the effects of
wind actions on structures and their components, the principles and rules, characterized by
(a) the atmospheric characterization over construction site characteristics; (b) wind design
velocity and peak velocity pressure; (c) the shape, size and orientation of the structure,
the peak aerodynamic actions exerted by the wind on the structure and its components;
(d) the mechanical properties of the structure and of its components (if it’s considered
static actions, dynamic and/or aeroelastic actions and effects caused by vortex shedding,
aeroelastic phenomena, such as galloping, flutter, interference).

To show the effects of wind actions on structures, a systematic review about the basic
concepts of the wind characterization (sec. 2.2.1), the wind probabilistic characterization
(sec. 2.2.2), the effects of turbulence (sec. 2.2.3), and the Aerodynamics of horizontal axis
wind turbines (HAWT, sec. 2.2.4) are reported in this section.

2.2.1 Wind characterization

The displacement of air masses provoked by temperature and pressure fields
conditioned for the solar radiation, can induce many types of wind circulations. These
aeolian phenomena can be classified as primary (trade winds, westerlies, easterlies),
secondary circulations (cyclones, anti-cyclones, monsoons), and local winds associated
with specific geographic (breezes, Föhn winds, Catabatic winds) or atmospheric conditions
(frontal winds, Downbursts, whirlwinds).

There are no mathematical models capable to include all the aeolian phenomena
mentioned. But various different partial models are capable to representing single wind
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Figure 2.2.1 – Image from Satellite GOES-13

types with varying degrees of confidence. In this thesis the wind representation adopted
concerns extratropical cyclones - one of the most severe wind events in terms of probability
of occurrence, potentially affecting structures in countries with well behaving climate.

Extratropical cyclones are very common on south coast of Brazil. They are formed
from the meeting of cold air carried by the easterlies and hot tropical air carried by the
westerlies. The meeting of two air fronts of different temperature causes the phenomenon
and also a storm. Figure 2.2.1 shows an extratropical cyclone which affects the coast of
Rio Grande do Sul. The bands of the cold front clouds associated with this extratropical
cyclone appear between Rio de Janeiro, Minas Gerais and São Paulo south-central.

The wind exerts aerodynamic actions on the whole structure or on individual
structural components, due to the oncoming flow and the turbulent wake generated by the
bodies. An aeroelastic effect is produced by the interaction between the structure oscillation
over the oncoming flow and its aerodynamic actions. Another adjacent structures may
also causes an interference phenomena which can reduce or increase actions and effects on
the wind dynamics or on individual components.

The wind characteristics at the construction site may be determined by experimental,
numerical or analytical methods. The experimental determination can be performed by
means of full-scale measurements or wind tunnel testing. The numerical and analytical
depends on the terrain roughness and topography surrounding the site, thermal conditions
of the atmosphere, and the wind climate of the site.

For climate representation, the Standard International Electrotechnical Commission
(IEC) 61400-1 (25) presents a distinction between normal and extreme wind conditions
in which a wind turbine shall be design safely. The normal one consider the recurrent
structural loading conditions and can determinate the fatigue and extreme loads (by
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extrapolating normal operation loads), while the extreme represent rare external design
conditions that can lead to extreme loads in the components of the OWT, in the the
support and foundation (26).

A simplified procedure to determine wind characteristics can be implemented by
computing the mean wind velocity, the turbulence intensity (𝐼), and the peak velocity
pressure, based on the following assumptions:

• the designed wind velocity is associated with an extratropical cyclone developed in
wide areas and long periods (at least one or two days);

• the wind velocity is high, therefore the atmosphere is neutrally stratified and it is
independent of temperature;

• for onshore sites, the terrain roughness is uniform in all directions, the local is flat
or includes an isolated topographic of simple shape;

• for offshore sites, sea surface characteristics must be considered (eg. waves).

2.2.2 Wind probabilistic characterization

As environmental conditions have stochastic nature, a certain return period 𝑇𝑅

may be defined strategically. The nominal lifetime 𝑉𝑁 is defined, for well maintained
constructions, as the nominal construction lifetime. It is recommended defines the design
reference wind velocity 𝑣𝑟 as a function of the design return period 𝑇𝑅 to choose the
properties and the nominal lifetime of the construction (24). The reference return period
𝑇𝑅,0 is defined as the larger value between the conventional return period 𝑇0 (tab. 2.2.1)
and the nominal lifetime 𝑉𝑁 .

𝑇𝑅,0 = max{𝑇0, 𝑉𝑁} (2.2.1)

Table 2.2.1 – Conventional return period 𝑇0 (24)

Properties of the structure 𝑇0 (years)
Temporary constructionss, structures under construction or being demol-
ished, provided this condition lasts for less than 1 year. For temporary
structures, the overall length of all periods in which the structure is reused
shall be less than a year

10

Standard constructions 50
Large important constructions 100
Strategic constructions 200

Low values of 𝑇𝑅 means normal wind conditions while high values are associated
with extreme conditions. Therefore, this value has a high influence on the design process.
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Usually, wind speed variations during the year are characterized in terms of
probabilistic distribution, because annual mean wind speeds are hard to predict. For
OWTs, in areas where hurricanes do not occur, a Weibull distribution gives a good
representation of the variation in hourly mean wind speed over a year at many typical
sites (27). For a 10-minute mean wind speed �̄� , in a given height 𝑧 above the MSL, the
eq. 2.2.2 (from the Det Norske Veritas Offshore Standard DNV-OS-J101 (26)) estimates
the fraction of time 𝐹 (𝑈), for which the hourly mean speed �̄� exceeds 𝑈 .

𝐹�̄�(𝑈) = 1− exp
[︃
−
(︂
𝑈

𝑐

)︂𝑘
]︃

(2.2.2)

where the scale and shape parameters, respectively 𝑐 and 𝑘, are site- and height-dependent,
which describes the variability about the mean. The annual mean wind speed �̄� is related
to 𝑐 by:

�̄� = 𝑐Γ(1 + 1/𝑘) (2.2.3)

where Γ is the complete gamma function. By differentiating 𝐹 (𝑈) in terms of 𝑈 the
probability density function can be computed as:

𝑓(𝑈) = 𝑘
𝑈𝑘−1

𝑐𝑘
exp

(︃
−
(︂
𝑈

𝑐

)︂𝑘
)︃

(2.2.4)

The Rayleigh distribution occurs when the Weibull distribution adopts 𝑘 = 2, and
this is a fairly typical value for many locations. Higher value of 𝑘 (eg. 2.5 or 3) indicates
a site where the variation of 𝐹 (𝑈) is small. Lower values of 𝑘 (eg. 1.2 or 1.5) indicates
greater variability about the mean (27).

The wind speed �̄�𝑇𝑅
, with return period 𝑇𝑅 in units of years, is defined as a function

of the (1− 1/𝑇𝑅) part of the annual maximum 10-minute mean wind speed (Eq. 2.2.5).

�̄�𝑇𝑅
= 1
𝐹�̄�max,1year

(︂
1− 1

𝑇𝑅

)︂
(2.2.5)

where 𝑇𝑅 > 1 year and 𝐹�̄�max,1year = [𝐹�̄�(𝑢)]𝑁 is the cumulative distribution function of
the annual maximum value of 10-minute mean wind speed defined as function of the
distribution, 𝐹�̄�(𝑢), and 𝑁 = 52560 is the number of stationary 10-minute periods in one
year.

2.2.3 Turbulence

The effects of turbulence are described as a random function of space and time and
are generated mainly by the friction with the earth’s surface and by thermal effects which
can cause vertical movement of air masses due to temperature variations. Turbulence
effects are a complex process and cannot be represented in terms of deterministic equations.
For that reason it is generally described in terms of statistical properties.
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A detailed representation may consider both mean velocity and turbulent fluctu-
ations. When a long time span are considered and the power spectrum 𝑆 of the wind
velocity is evaluated for a frequency 𝑛, a curve is described with two main, well-separated
harmonic contents.

Figure 2.2.2 – Wind spectrum based on work by van de Hoven (27)

In the wind speed spectrum constructed by Van der Hoven (fig. 2.2.2), recorded at
Brookhaven, New York, is notable two harmonics behaviors: the first one can be associated
with long period aeolian events (between one hour to few months), with two peaks (synoptic
and diurnal) which represents the recurrence of aeolian storms; the turbulent peak is
associate with short period aeolian events (between few seconds to about ten minutes),
representing the turbulent fluctuation of wind speed.

The turbulence intensity is defined as a measure of the overall level of turbulence
as (27):

𝐼 = 𝜎/�̄� (2.2.6)

where 𝜎 is the standard deviation of wind speed variations about the mean wind speed �̄� .

By assuming that, wind turbulence can be represented as a zero-mean Gaussian,
stationary, ergodic stochastic process. Wind fluctuations results from a composite of
sinusoidally varying winds superimposed on the mean steady wind, and this variations
have a variety of frequencies, amplitudes, and phases.

For a Normal Turbulence Model (NTM), the turbulence standard deviation along
the direction of the mean wind velocity, 𝜎𝑘 = 𝜎1 (25) (where 𝑘 = 1 is the along direction),
is given by the 90% quantile for a given hub height wind speed (eq. 2.2.7)

𝜎1 = 𝐼ref (0.75𝑈hub + 𝑏) ; (2.2.7)
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where 𝑏 = 5.6𝑚/𝑠, and 𝐼ref is the reference value of the turbulence intensity defined in
tab. 2.2.2.

For wind turbines, the IEC 61400-1 standard (25) defines (tab. 2.2.2) the classes
to represent external conditions that cover most applications, in terms of the wind speed
and turbulence parameters.

Table 2.2.2 – Basic parameters for wind turbine classes (25, adapted)

Class I Class II Class III
Reference wind speed, 𝑈ref (m/s) 50 42.5 37.5
Annual average wind speed, 𝑈ave (m/s) 10 8.5 7.5
50-year return gust speed, 1.4 (m/s) 70 59.5 52.5
1-year return gust speed, 1.12 (m/s) 56 47.6 42.0
A, 𝐼ref (-) 0.16
B, 𝐼ref (-) 0.14
C, 𝐼ref (-) 0.12

These parameters are applied at hub height. 𝑈ref and 𝑈ave are, respectively, the
reference wind speed over 10 min and the annual average wind speed, 𝐴, 𝐵, and 𝐶

respectively designate the category for higher, medium and lower turbulence characteristics,
and 𝐼ref is the expected value of the turbulence intensity at 15 m/s. The design values of
class S shall be chosen by the designer and lifetime for wind turbine classes I to III shall
be at least 20 years (conditions I to III are neither intended to cover tropical storms such
as hurricanes, cyclones and typhoons). The 50- and 1-year return gust speed parameters
will be used later in other sections.

For extreme wind conditions the shear events, the peak wind speeds due to storms
and their rapid changes of direction are also included. The IEC 61400-1 defines the following
events for these conditions:

• Extreme Wind speed Model (EWM);

• Extreme Operating Gust (EOG);

• Extreme Turbulence Model (ETM);

• Extreme Direction Change (EDC);

• Extreme Coherent gust with Direction change (ECD);

• Extreme Wind Shear (EWS);

The turbulence standard deviation for extreme conditions is computed by eq. 2.2.8.

𝜎1 = 0.11𝑈hub (2.2.8)
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There are other environmental conditions that can affect the integrity and safety of
wind turbines, like thermal, corrosive, mechanical, electrical. . . that can be found in IEC
61400-1.

2.2.3.1 The boundary layer

Many researchers developed a series of relations which describes the properties of
the atmospheric boundary layer, such as turbulence intensities, spectra, length scales and
coherence functions.

To represent an extra-tropical cyclone we consider a gradient height 𝑍𝑔 that split
the atmospheric boundary and the free atmosphere (fig. 2.2.3). Above that height 𝑍𝑔

(defined, approximately, between 1000 m and 3000 m, depending on the wind velocity and
the roughness length) the wind velocity 𝑉𝑔 in free atmosphere is constant because there is
no influence due to the ground friction force. Below 𝑍𝑔 there is an atmospheric turbulent
boundary layer in which the wind velocity is affected by the surface roughness (terrain or
sea), the Coriolis effects due to the earth’s rotation and thermal effects.

Figure 2.2.3 – Mean wind velocity and atmospheric layer profile on onshore sites (24)

The neutral atmosphere condition of stability are the most important situation
when considering the turbulent wind loads on a wind turbine. In the neutral atmosphere
the main effects to be considered are the surface roughness and the Coriolis effect. Burton
et al. (27) presents some typical surface roughness lengths in tab. 2.2.3.

13



Table 2.2.3 – Typical surface roughness lengths (27)

Type of Terrain Roughness length 𝑧𝑜 (m)
Cities, forests 0.7
Suburbs, wooded countryside 0.3
Villages, countryside with trees and hedges 0.1
Open farmland, few trees and buildings 0.03
Flat grassy plains 0.01
Flat desert, rough sea 0.001

From the wind shear law, a wind profile can be expressed by the wind speed variation
height above ground by a logarithmic (eq. 2.2.9) or a power law profile (eq. 2.2.10).

�̄�(𝑧) = 𝑈(𝑧𝑟)
ln (𝑧/𝑧0)
ln (𝑧𝑟/𝑧0)

(2.2.9)

�̄�(𝑧) = 𝑈(𝑧𝑟)
(︂
𝑧

𝑧𝑟

)︂𝛼

(2.2.10)

where 𝑧𝑟 is a reference height above ground used for fitting the profile, 𝑧0 is the roughness
length; 𝛼 is the wind shear (or power law) exponent.

IEC 61400-1 ed. 3 (25) classify specific wind profiles for normal and extreme models.
The Normal Wind Profile (NWP) can be computed following the power law of eq. 2.2.11.

�̄�(𝑧) = 𝑈hub

(︂
𝑧

𝐻

)︂𝛼

(2.2.11)

where 𝑈hub is the wind speed at hub height of the wind turbine, 𝐻, and the power law
exponent, 𝛼, shall be assumed to be 0.2 for normal wind conditions onshore or 0.14 for
normal wind conditions offshore locations (25, 28).

For an EWM, the extreme wind speed with a recurrence period of 50 years, 𝑈𝑒50,
is computed as a function of height 𝑧 following the eq. 2.2.12.

𝑈𝑒50(𝑧) = 1.1𝑈ref

(︂
𝑧

𝐻

)︂𝛼

(2.2.12)

where 𝛼 = 0.11. For a recurrence period of 1 year: 𝑈𝑒1(𝑧) = 0.8𝑈𝑒50(𝑧).

The mean value of the wind speed over a time period of 10 min is assumed to
follow a Rayleigh distribution at hub height given by:

𝑃𝑅(𝑈hub) = 1− exp
[︃
−𝜋

(︂
𝑈hub

2𝑈ave

)︂2]︃
(2.2.13)

where for standard wind turbine classes 𝑈ave = 0.2𝑈ref.

For a spectral representation, the along-wind velocity 𝑈 in a generic point in space
𝑀 , at height 𝑧 and time 𝑡 (Eq. 2.2.14) is separated into two contribution: the first one
describes the mean wind velocity �̄� over 10 minutes in the along-wind direction (Eq. 2.2.15)
- characterised by long-term variations; and an atmospheric turbulence 𝑈 ′ (Eq. 2.2.16) -
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characterised by high frequency fluctuations.

𝑈(𝑀 ; 𝑡) = �̄�(𝑧) + 𝑈 ′(𝑀 ; 𝑡) (2.2.14)
𝑈(𝑀) = î · �̄�(𝑧) (2.2.15)

𝑈 ′(𝑀 ; 𝑡) = î · 𝑈 ′
1(𝑀 ; 𝑡) + ĵ · 𝑈 ′

2(𝑀 ; 𝑡) + k̂ · 𝑈 ′
3(𝑀 ; 𝑡) (2.2.16)

where î, ĵ, k̂ are the versors of 𝑥, 𝑦, and 𝑧 axes; �̄� is the mean wind velocity at height
𝑧 in the along-wind direction; 𝑈 ′

𝐾 is the component of turbulence which varies in space
and time with 𝐾 referring to the velocity component direction (i.e. 1 = longitudinal, 2 =
lateral, 3 = upward).

2.2.3.2 Turbulence spectra

To describe functions of frequency we can use the term spectrum and the function
that characterizes turbulence is known as a ‘spectral density’ function. Power Spectral
Densities (PSDs) describes the relation between frequency and power amplitudes of
sinusoidally varying signals making up the fluctuating wind speed (29).

The average power in the turbulence over a range of frequencies may be found by
integrating the PSD between two frequencies and the integral over all frequencies is equal
to the total variance.

PSDs functions are often used in dynamic analysis as models in wind energy
engineering when representative turbulence power spectral densities are unavailable from
a given site. In 1948, Karman (30) developed extensive series of experiments to create a
turbulent homogeneous and isotropic flow regime model in a wind tunnel.

According to the Kolmogorov law, the spectrum must approach an asymptotic limit
proportional to 𝑛−5/3 at high frequency (here 𝑛 is the frequency in Hz). This represent
the decay of turbulent eddies to higher frequencies as turbulent energy is dissipated as
heat (27).

To consider the effects of the spatial variation of turbulence in the lateral and
vertical direction due to the variation of the wind inside the vertical plan spanned by
the moving blades, the spectral description of turbulence must be extended to include
information about the cross-correlations between turbulent fluctuations at points separated
laterally and vertically. These correlations decrease as the distance separating two points
increases and can be described by ’coherence’ functions, which describe the correlation as
a function of frequency and separation (27). The coherence 𝐶𝑗𝑘(Δ𝑟, 𝑛) is defined by:

𝐶𝑗𝑘(Δ𝑟, 𝑛) = |𝑆𝑗𝑘(𝑛)|√︁
𝑆𝑗𝑗(𝑛)𝑆𝑘𝑘(𝑛)

(2.2.17)

where 𝑆𝑗𝑘 is the cross-spectrum of variation at two points separated by 𝑟, and 𝑆𝑗𝑗 and 𝑆𝑘𝑘

are the spectra of variations at each of the points (usually 𝑆𝑗𝑗 = 𝑆𝑘𝑘).
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Characterizing the turbulent components 𝑢 and 𝑣 and neglecting the vertical 𝑤,
the normalized one-side ESDU PSD (31) can be write as (5, 32):

𝑛𝑆𝑢(𝑛)
𝜎2

𝑢

= 6.868𝑛𝑢

[1 + 10.302 𝑛2
𝑢(𝑧𝑗)]5/3 (2.2.18)

𝑛𝑆𝑣(𝑛)
𝜎2

𝑣

= 9.434𝑛𝑣

[1 + 14.151 𝑛2
𝑣(𝑧𝑗)]5/3 (2.2.19)

where 𝑧𝑗 is the height (in m) of point 𝑗, 𝜎2
𝑢 and 𝜎2

𝑣 are the variances of the velocity
fluctuations, where 𝜎𝑣/𝜎𝑢 = 0.7 (5, 32), and 𝑛𝑘(𝑧𝑗) is a non-dimensional height frequency
dependent, given by:

𝑛𝑘(𝑧) = 𝑛𝐿𝑘(𝑧𝑗)
�̄�

(2.2.20)

It can be see in eq. 2.2.20 a length scale 𝐿𝑘(𝑧𝑗), where 𝑧𝑗 is the height of point
𝑗, which can be identified as the integral length scale of the longitudinal component in
the longitudinal direction, and defined as

∫︀∞
0 𝜅𝑢(𝑟)𝑑𝑟 where 𝜅𝑢 is the cross-correlation

function between the turbulence component 𝑖 at two points separated longitudinally by a
distance 𝑟. The integral scale can be derived for 𝑘 = 𝑢, 𝑣 according the ESDU (33).

Length scales are dependent on the surface roughness 𝑧0 and the height above
ground (𝑧). If there are obstacles on the ground (of height 𝑧′), the height above ground
should be corrected for assuming an effective ground surface at a height 𝑧* = 𝑧′−2.5𝑧0 (33).
Far from the ground the turbulence becomes isotropic.

The out of diagonal terms (cross-spectra) 𝑆𝑗𝑘(𝑛) of [𝑆]𝑗𝑘 (𝑗, 𝑘 = 1, 2, . . . , 𝑁) are
given by:

𝑆𝑗𝑘(𝑛) =
√︁
𝑆𝑗𝑗(𝑛)𝑆𝑘𝑘(𝑛)× exp (−𝐹𝑗𝑘(𝑛)) (2.2.21)

where for vertically aligned points:

𝐹𝑗𝑘(𝑛) =
|𝑛|
√︁
𝐶2

𝑧 (𝑧𝑗 − 𝑧𝑘)2

2𝜋(�̄�(𝑧𝑗) + �̄�(𝑧𝑘))
(2.2.22)

where 𝐶𝑧 represents the decay coefficient that is inversely proportional to the spatial
correlation of the process. With this model Petrini et al. (5, 22) generates samples of the
wind action exerted on each point 𝑗 of the structure and applied them into an OWT using
finite elements.

When site-specific spectral densities of the wind speed process can be determined
from available measured wind data, it recommends the use of a spectral density model
which fulfils that the spectral density 𝑆(𝑛) asymptotically approaches the following form
as the frequency 𝑓 in the inertial subrange increases (26):

𝑛
𝑆𝑘(𝑛)
𝜎2

𝑘

= 0.202
(︂
𝐿𝑘

�̄�

)︂−2/3
𝑛−2/3 (2.2.23)
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In the OWT context, both IEC 61400-1 and DNV-OS-J101 (26) proposes the use of
the Kaimal spectrum (modified Karman’s PSD), unless data indicate otherwise, following
the Eq. 2.2.24.

𝑛𝑆𝑘(𝑛)
𝜎2

𝑘

= 4𝑛𝐿𝑘/�̄�(︁
1 + 6𝑛𝐿𝑘/�̄�

)︁5/3 (2.2.24)

where the integral scale parameter 𝐿𝑘 and the standard deviation 𝜎𝑘 are given in tab. 2.2.4.

Table 2.2.4 – Turbulence spectral parameters for the Kaimal model (25)

Velocity component, 𝐾 1 2 3
Standard deviation, 𝜎𝑘 𝜎1 0.8𝜎1 0.5𝜎1
Integral scale, 𝐿𝑘 8.1Λ1 2.7Λ1 0.66Λ1

The longitudinal turbulence scale parameter, Λ1, at hub height shall be given by:

Λ1 =

⎧⎪⎨⎪⎩0.7𝑧 for 𝑧 < 60𝑚

42𝑚 for 𝑧 ≥ 60𝑚
(2.2.25)

where 𝑧 denotes the height above the MSL.

The normalized Kaimal spectrum for �̄� = 12𝑚/𝑠 is applied to the NREL 5-MW
OWT at tower-top 𝑧 = 87.6𝑚 (34) as shown fig. 2.2.4.
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Figure 2.2.4 – Kaimal tower-top wind spectrum in along, across and upwind directions

An exponential coherence model may be used in conjunction with the Kaimal
autospectrum to taken into account the spatial correlation in the longitudinal velocity
component, defined by (25):

𝐶𝑢(Δ𝑟, 𝑛) = exp
[︂
−12

(︁
(𝑛Δ𝑟/�̄�)2 + (0.12Δ𝑟/𝐿𝑐)2

)︁0.5
]︂

(2.2.26)
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where 𝐶𝑢(Δ𝑟, 𝑛) is the coherence function defined by the complex magnitude of the cross-
spectral density of the longitudinal wind velocity components at two spatially separated
points divided by the autospectrum function; Δ𝑟 is the magnitude of the projection of
the separation vector between the two points on to a plane normal to the average wind
direction; 𝐿𝑐 = 8.1Λ1 is the coherence scale parameter.

The standard does not specify the coherence of the other two components to be
used in conjunction with the Kaimal model, Burton et al. (27) shows that the following
expression is often used:

𝐶𝑣(Δ𝑟, 𝑛) = 𝐶𝑤(Δ𝑟, 𝑛) = exp
(︂
−12Δ𝑟 𝑛

�̄�

)︂
(2.2.27)

2.2.4 Aerodynamics of HAWT

The aim of this section is not to present the entire theory about the aerodynamics
of HAWT, but presents a reviewed requirements for its design. To supplement this section
two important references must be mentioned: the “Wind energy: handbook” of Burton et
al. (27) and the “Aerodynamics of Wind Turbines” from Hansen (35).

2.2.4.1 Simple momentum theory

Burton defines the actuator disc concept, as shown fig. 2.2.5, to describe a simplified
mechanism for the extraction of kinetic energy of wind turbines in which 𝐷 refers to
conditions at the disc and 𝑊 to conditions in the far wake. This actuator disk induces a
velocity variation which is superimposed on the free stream velocity 𝑈∞. Then, the net
stream-wise velocity is computed as:

𝑈𝐷 = 𝑈∞(1− 𝑎) (2.2.28)

where 𝑎 is called the axial flow induction factor (or inflow factor).

Figure 2.2.5 – An energy extracting actuator disc and stream-tube (27)
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By using Bernoulli’s equation and assuming the flow to be incompressible (𝜌∞ = 𝜌𝐷)
and horizontal (ℎ∞ = ℎ𝐷), it can be deducted, by a simple momentum theory, that
𝑈𝑊 = 𝑈∞(1− 2𝑎). The power coefficient is then defined as:

𝐶𝑃 = Power
1
2𝜌𝑈

3
∞𝐴𝐷

= 4𝑎(1− 𝑎)2 (2.2.29)

where 𝐴𝐷 is the actuator disk area and 𝜌 the air density. The denominator represents the
power available in the air without the actuator disc. The maximum value of 𝐶𝑃 occurs
when 𝑑𝐶𝑝/𝑑𝑎 = 0, i.e. 𝑎 = 1/3, and it is known as the Lanchester-Betz limit. Hence,
𝐶𝑝𝑚𝑎𝑥 = 0.593.

Other non-dimensional factor which can quantify the actuator disc force caused by
the pressure drop is the coefficient of thrust 𝐶𝑇 (fig. 2.2.6), defined as:

𝐶𝑇 = Thrust
1
2𝜌𝑈

2
∞𝐴𝐷

= 4𝑎(1− 𝑎) (2.2.30)
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Figure 2.2.6 – 𝐶𝑝 and 𝐶𝑡 in function of the induction factor 𝑎

For values over 𝑎 > 1/2, the wake velocity 𝑈𝑊 becomes zero (or negative) and this
momentum theory no longer can be applied.

This theory can be expanded adding a tangential component of velocity due to the
wake rotation in terms of a tangential flow induction factor 𝑎′. Then the actuator disc is
swept out by a multiplicity of aerofoil blades each with an uniform bound circulation ΔΓ.

2.2.4.2 Blade-element/momentum (BEM) theory

To extend the formulation of the momentum theory, the BEM theory assumes that
the forces on a blade element of radius 𝑟 and length 𝛿𝑟 (fig. 2.2.7) can be calculated by
means of two-dimensional aerofoil characteristics using an estimated angle of attack.
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Figure 2.2.7 – Description of a blade element (27)

Figure 2.2.7 shows that the velocity components at a radial position on the blade
can be expressed in terms of the wind speed (𝑈(1− 𝑎)), the flow factors (𝑎 and 𝑎′) and
the rotational speed of the rotor (Ω𝑟).

Having information about how the aerofoil characteristic coefficients 𝐶𝑙 and 𝐶𝑑

vary with the angle of attack, the forces on the blades can be computed in function of 𝑎
and 𝑎′.

The velocities relative to the blade chord line at radius 𝑟 are shown in fig. 2.2.8.
The resultant relative velocity at the blade becomes:

𝑊 =
√︁
𝑈2

∞(1− 𝑎)2 + 𝑟2Ω2(1 + 𝑎′)2 (2.2.31)

Figure 2.2.8 – Blade element velocities (27)

The angle of attack is given by 𝛼 = 𝜑− 𝛽, where 𝜑 is the inflow angle and 𝛽 is the
local blade twist. Further, it is seen that:

𝜑 = arctan
[︃
𝑈∞(1− 𝑎)
𝑟Ω(1 + 𝑎′)

]︃
(2.2.32)
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The lift and drag force on a span-wise length 𝛿𝑟 of each blade are computed by
eqs. 2.2.33 and 2.2.34, respectively.

𝛿𝐿 = 1
2𝜌𝑊

2𝑐𝐶𝑙𝛿𝑟 (2.2.33)

𝛿𝐷 = 1
2𝜌𝑊

2𝑐𝐶𝑑𝛿𝑟 (2.2.34)

The axial thrust and the torque on an annular ring of the actuator disc are computed
by eqs. 2.2.35 and 2.2.36, respectively.

𝛿𝑇 = 1
2𝜌𝑊

2𝐵𝑐(𝐶𝑙 cos(𝜑) + 𝐶𝑑 sin(𝜑))𝛿𝑟 (2.2.35)

𝛿𝑄 = 1
2𝜌𝑊

2𝐵𝑐(𝐶𝑙 sin(𝜑)− 𝐶𝑑 cos(𝜑))𝛿𝑟 (2.2.36)
(2.2.37)

where B is the number of blades.

The lift and drag projected in the normal and tangential direction of the rotorplane,
are convenient described as:

𝑝𝑁 = 𝐿 cos𝜑+𝐷 sin𝜑 (2.2.38)
𝑝𝑇 = 𝐿 sin𝜑−𝐷 cos𝜑 (2.2.39)

These equations are normalized with respect to (1/2)𝜌𝑊 2𝑐 (35), yielding:

𝐶𝑛 = 𝐶𝑙 cos𝜑+ 𝐶𝑑 sin𝜑 (2.2.40)
𝐶𝑡 = 𝐶𝑙 sin𝜑− 𝐶𝑑 cos𝜑 (2.2.41)

A solidity 𝜎(𝑟) is defined as the fraction of the annular area by the rotor disc area:

𝜎(𝑟) = 𝑐(𝑟)𝐵
2𝜋𝑟 (2.2.42)

Then the axial thrust and torque on all blade elements, with the rate of change
of axial and angular momentum of the air that passes through the annulus swept by the
elements, can be written, respectively, as:

𝛿𝑇 = 2𝜋𝑟𝛿𝑟𝜌𝑈∞(1− 𝑎)2𝑎𝑈∞ (2.2.43)
𝛿𝑄 = 2𝜋𝑟𝛿𝑟𝜌𝑈∞(1− 𝑎)2𝑎′𝑟2Ω (2.2.44)

From the thrust and torque, the axial and tangential induction factors can be
computed, respectively, as:

𝑎 = 1
4 sin2 𝜑

𝜎𝐶𝑛
+ 1

(2.2.45)

𝑎′ = 1
4 sin 𝜑 cos 𝜑

𝜎𝐶𝑡
− 1

(2.2.46)
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This is the principle of the BEM method. By an initial value of 𝑎 and 𝑎′, it is
possible estimate the aerodynamic coefficients, inflow angles and angle of attacks for
specific elements of a blade. To achieve good results two corrections must be applied: The
Prandtl’s tip loss factor and the empirical Glauert correction (35).

The Prandtl’s tip loss factor corrects the assumption of an infinite number of blades.
The vortex system in the wake with finite number of blades is different with a rotor with
infinite number of blades. Prandtl derived a correction factor 𝐹 , from the thrust and
torque estimation computed as:

𝐹 = 2
𝜋
𝑐𝑜𝑠−1(𝑒−𝑓 ) (2.2.47)

where:

𝑓 = 𝐵

2
𝑅− 𝑟
𝑟 sin𝜑 (2.2.48)

where 𝑅 is the total radius of the rotor.

Then the eqs. 2.2.45 and 2.2.46 becomes:

𝑎 = 1
4𝐹 sin2 𝜑

𝜎𝐶𝑛
+ 1

(2.2.49)

𝑎′ = 1
4𝐹 sin 𝜑 cos 𝜑

𝜎𝐶𝑡
− 1

(2.2.50)

For axial induction factors larger than approximately 0.4, the simple BEM theory
don’t works anymore. The Glauert correction for high values of a must be applied. Resuming,
if 𝑎 > 𝑎𝑐 (with 𝑎𝑐 usually taken equals 0.2), the axial induction factor is usually taken as:

𝑎 = 1
2

[︂
2 +𝐾(1− 2𝑎𝑐)−

√︁
(𝐾(1− 2𝑎𝑐) + 2)2 + 4(𝐾𝑎2

𝑐 − 1)
]︂

(2.2.51)

where:

𝐾 = 4𝐹 sin2 𝜑

𝜎𝐶𝑛

(2.2.52)

If 𝑎 < 𝑎𝑐 then 𝑎 becomes the eq. 2.2.45.

Wilson and Lissaman (36) suggests that the drag coefficient should not be included
in the estimation of the induction factors because there is a velocity draft confined in the
narrow wake which flows from the the trailing edge of the aerofoil (27).

The BEM theory can be computed using the following algorithm (35):

• Step 1. Initialize 𝑎 and 𝑎′ (usually taken equals 0);

• Step 2. Computes 𝜑 using eq. 2.2.32, then 𝛼;

• Step 3. Read off 𝐶𝑙(𝛼) and 𝐶𝑑(𝛼) from the data;
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• Step 4. Calculate 𝑎 from eqs. 2.2.49 or 2.2.51 and 𝑎′ from eq. 2.2.50;

• Step 5. If 𝑎 and 𝑎′ changed more than a certain tolerance go to Step 2 or else
finish;

• Step 6. Compute the local loads on the segment of the blades.

2.2.4.3 Rotor torque and power

After computed the flow induction factors using the BEM theory, the torque
developed by the blade element of span wise length 𝛿𝑟 is

𝛿𝑄 = 4𝜋𝜌𝑈∞Ω𝑟𝑎′(1− 𝑎)𝑟2𝛿𝑟 (2.2.53)

If the drag has been excluded from the determination of the flow induction factors,
then

𝛿𝑄 = 4𝜋𝜌𝑈∞Ω𝑟𝑎′(1− 𝑎)𝑟2𝛿𝑟 − 1
2𝜌𝑊

2𝐵𝑐𝐶𝑑 cos𝜑𝑟𝛿𝑟 (2.2.54)

Then the total torque 𝑄 developed by the rotor is

𝑄 = 1
2𝜌𝑈

2
∞𝜋𝑅

3𝜆
∫︁ 𝑅

0
𝜇2

⎛⎝8𝑎′(1− 𝑎)𝜇− 𝑊

𝑈∞

𝐵 𝑐(𝑟)
𝑅

𝜋
𝐶𝑑(1 + 𝑎′)

⎞⎠ 𝑑𝜇 (2.2.55)

where 𝜆 = 𝑅Ω/𝑈∞ is the tip speed ratio and 𝜇 = 𝑟/𝑅 is the ratio between each element
radius and the total radius of the blade.

The power developed by the rotor is

𝑃 = 𝑄Ω (2.2.56)

And the power coefficient is

𝐶𝑝 = 𝑃
1
2𝜌𝑈

3
∞𝜋𝑅

2 (2.2.57)

2.2.4.4 Implementation of BEM theory

In this work the three-blades implemented follows the considerations taken from the
three NREL offshore 5-MW baseline wind turbine (34). About the structural properties,
each blade follows the 61.5-m-long LM Glasfiber blade adapted from the DOWEC study
(37).

The distributed blade aerodynamic properties are shown in tab. 2.2.5, with the blade
node locations labeled as “RNodes”, the element lengths as “DRNodes”, the aerodynamic
twist as “AeroTwst”, and the Airfoil Table presents eight airfoil-data distributed from
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each element (each one have aerodynamic coefficients 𝐶𝑙, 𝐶𝑑, and 𝐶𝑚 in function of the
angle of attack 𝛼, that can be founded in the Jonkman’s report annex (34)).

Table 2.2.5 – Distributed Blade Aerodynamic Properties (34)

By applying BEM theory for the three-blade OWT mentioned above, with 𝑈∞ =
12𝑚/𝑠 and Ω = 12.1𝑟𝑝𝑚, there are computed the aerodynamic coefficients 𝐶𝑙, 𝐶𝑑, 𝐶𝑚

(fig. 2.2.9), the inflow and attack angles (fig. 2.2.10) and the induction factors (fig. 2.2.11).
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Figure 2.2.9 – Span-wise distribution of the aerodynamic coefficients with blade length
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Figure 2.2.10 – Distribution of inflow and attack angles with blade length
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Figure 2.2.11 – Distribution of axial and tangential induction factors with blade length

By extending the BEM theory for other wind speed velocities the performance
requirements of this OWT can be estimated. After estimated the total torque (eq. 2.2.55),
the power developed by the rotor and the power coefficient in function of the tip speed
ratio (eq. 2.2.57) are computed, as shown fig. 2.2.12, for two cases: tip loss (35), and root
and tip losses (27). The power coefficient reaches its peak at 𝜆 ≈ 8.

25



0 5 10 15 20 25 30

U
hub

 [m/s]

0

1

2

3

4

5

6

7

P
 [
M

W
]

Power developed by the rotor

with tip-loss

with root and tip losses

0 5 10 15 20

 [-]

0

0.1

0.2

0.3

0.4

0.5

0.6

C
p
 [
-]

Power Coefficient - tip speed ratio performance curve

with tip-loss

with root and tip losses

Figure 2.2.12 – Power developed by the rotor and performance curve

2.2.4.5 Aerodynamic loads of blades during operation

Usually there are two representative scales to define the rotating condition of the
wind turbine blades. The first one takes its focus exclusively on the blades and the theory
behind it is the classical Blade Element Momentum (BEM) method proposed by Glauert
in 1935 (38). For time-domain or exclusively blade-only analysis this model can be very
helpful, allowing the calculation of the steady loads and thus also the thrust and power
for different settings of wind speed, rotational speed and pitch angle (35).

The scale used in this work focuses on the action force produced by the rotor on the
tower during the blade operation by interpreting all the dynamic behavior of the blades
in a specific vector over a tower, allowing analysis in both time and frequency domain in
addition to gravity and inertial loads and also other external forces like wind and wave
loading.

By separating out the load components due to the steady wind on the rotating
blade (deterministic) and the wind speed fluctuations (stochastic), we can analyze them
in different ways (27). The random loading on the blade due to the turbulence of wind
speed fluctuations is firstly described in probabilistic terms and, therefore, in a stochastic
load component. In order to analyze the response of OWT, the stochastic aerodynamic
loads are evaluated in a frequency domain analysis.

2.2.4.6 Deterministic aerodynamic loads

The aerodynamic forces on the blade can be applied at different radii after estimated
all the coefficients mentioned in the BEM theory. The forces per unit length on an element
perpendicular to the plane of rotation and in the direction of blade motion, known as the
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out-of-plane and in-place forces, are computed, respectively, as:

𝐹𝑋 = 𝐶𝑛
1
2𝜌𝑊

2𝑐 = 4𝜋𝜌𝑈2
∞(1− 𝑎𝐹 )𝑎𝐹

𝑁
𝑟 (2.2.58)

𝐹𝑌 = 𝐶𝑡
1
2𝜌𝑊

2𝑐 = 4𝜋𝜌𝑈2
∞(1− 𝑎𝐹 )𝑎′ 𝐹

𝑁
𝑟2 (2.2.59)

where 𝑐 is the chord length of the aerofoil and 𝐹 the Prandlt’s tip loss factor.

Figure 2.2.13 shows the deterministic out-of- and in-plane aerodynamic loads for
the same defined blade and velocity.
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Figure 2.2.13 – Distribution of blade out-of-plane and in-plane aerodynamic loads during
operation

The tower shadow effect (the blocking of the air flow by the tower) is not considered
in this work.

2.2.4.7 Stochastic aerodynamic loads: frequency domain analysis

To represent the wind speed fluctuations at a fixed point in space there are used
a probability distribution (usually a normal one) and a power spectrum which describes
how the energy of the fluctuations is distributed in terms of the frequency.

To understand better how to perform a frequency domain analysis of a wind turbine
is important have in mind some considerations about the turbulence intensity (already
defined in sec. 2.2.2 - see tab. 2.2.2 for intensity references and eq. 2.2.7 to estimate the
turbulence standard deviation for a NTM), and its spectra (eqs. 2.2.18 and 2.2.19 for
ESDU PSD, and 2.2.24 for Kaimal PSD).

Burton et al. (27) shows that the standard deviation of the blade root bending
moment can be computed as:

𝜎2
𝑀 =

(︃
1
2𝜌Ω

𝑑𝐶𝐿

𝑑𝛼

)︃2 ∫︁ 𝑅

0

∫︁ 𝑅

0
𝜅𝑢(𝑟1, 𝑟2, 0)𝑐(𝑟1)𝑐(𝑟2)𝑟2

1𝑟
2
2𝑑𝑟1𝑑𝑟2 (2.2.60)
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where 𝑐 is the chord length of the aerofoil, 𝐶𝐿 is the lift coefficient, 𝛼 is the angle of attack
= 𝜑− 𝛽 (usually 𝑑𝐶𝐿/𝑑𝛼 = 2𝜋), 𝜑 is the flow angle, 𝛽 is the local blade twist, 𝜅𝑢(𝑟1, 𝑟2, 0)
is the cross correlation function 𝜅𝑢(𝑟1, 𝑟2, 𝜏) between the wind fluctuations at radii 𝑟1 and
𝑟2 with the time lag 𝜏 set to zero, i.e.:

𝜅𝑢(𝑟1, 𝑟2, 0) =
[︃

1
𝑇

∫︁ 𝑇

0
𝑢(𝑟1, 𝑡)𝑢(𝑟2, 𝑡)𝑑𝑡

]︃
(2.2.61)

To find the energy content of the incident wind fluctuations it is necessary to
examine some points on the rotating blade at the blade natural frequencies, provided by a
rotationally sampled spectrum. The phenomenon ’gust slicing’ will enhance the frequency
content at the rotational frequency, by an often slice through an individual gust several
times.

The Rotationally sampled spectrum method can be obtained by deriving the
power spectrum of the wind seen by a point on a rotating blade, based on the Fourier
transform pair of eqs. 2.2.62 and 2.2.63.

𝑆𝑢(𝑛) = 4
∫︁ ∞

0
𝜅𝑢(𝜏) cos(2𝜋𝑛𝜏)𝑑𝜏 (2.2.62)

𝜅𝑢 =
∫︁ ∞

0
𝑆𝑢(𝑛) cos(2𝜋𝑛𝜏)𝑑𝑛 (2.2.63)

where 𝑆𝑢(𝑛) is the single sided spectrum of wind speed fluctuations in terms of frequency
(in Hz) and 𝜅𝑢 the autocorrelation function for the along wind turbulent fluctuations at a
fixed point in space from the corresponding spectrum, for an homogeneous and isotropic
turbulence, and an incompressible flow.

After found the autocorrelation function, 𝜅𝑢(𝜏), the autocorrelation function is
computed for a point on the rotating blade at a radius 𝑟, 𝜅𝑜

𝑢(𝑟, 𝜏), by a derivation (the
superscript 𝑜 denotes a point on a rotating blade - not ‘fixed’). This function is transformed
to yield the rotationally sampled spectrum. Burton et al. (27) explain this process by
following 3 steps:

Step 1 : Derivation of the autocorrelation function at a fixed point

In this step, Burton et al. selected the von Karman spectrum (eq. 2.2.24) as input,
because it is isotropic and homogeneous.

Using eq. 2.2.63 the expression for the autocorrelation function, for along wind
turbulent fluctuations, is estimated by eq. 2.2.64.

𝜅𝑢(𝜏) = 2𝜎2
𝑢

Γ
(︁

1
3

)︁ (︃𝜏/2
𝑇 ′

)︃
𝐾1/3

(︂
𝜏

𝑇 ′

)︂
(2.2.64)

where 𝑇 ′ has a relation to the turbulence length scale, 𝐿, by:

𝑇 ′ =
Γ
(︁

1
3

)︁
Γ
(︁

5
6

)︁√
𝜋

𝐿

�̄�
≈ 1.34𝐿

�̄�
(2.2.65)
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where Γ() is the gamma function and 𝐾1/3(𝑥) is a modified Bessel function (general
equation described in eq. 2.2.66) of the second kind and order 𝜐 = 1/3.

𝐾𝜐(𝑥) = 𝜋

2 sin 𝜋𝜐

∞∑︁
𝑚=0

(𝑥/2)2𝑚

𝑚!

[︃
(𝑥/2)−𝜐

Γ(𝑚− 𝜐 + 1) −
(𝑥/2)𝜐

Γ(𝑚+ 𝜐 + 1)

]︃
(2.2.66)

Step 2 : Derivation of the autocorrelation function at a point on the rotating blade;

This step makes the use of Taylor’s ‘frozen turbulence’ hypothesis - in a time 𝜏 the
wind speed at 𝐶 is equal to a point 𝐵 at a distance �̄�𝜏 at time 𝑡 = 0. From fig. 2.2.14,
the autocorrelation function 𝜅𝑜

𝑢(𝑟, 𝜏) for the along-wind wind fluctuations seen by a point
𝑄 at radius 𝑟 on the rotating blade is equal to the cross correlation function 𝜅𝑢(s, 0),
between the simultaneous along-wind wind fluctuations at points 𝐴 and 𝐵. 𝐴 and 𝐶 are
the positions of point 𝑄 at the beginning and end of time interval 𝜏 , 𝐵 is �̄�𝜏 upwind of 𝐶
an s is the vector 𝐵𝐴.

Figure 2.2.14 – Geometry reference for a point on a rotating blade (step 2) (27)

By the theory of homogeneous and isotropic turbulence, Batchelor (39) shown that
the cross correlation function 𝜅𝑢(s, 0) is given by:

𝜅𝑢(s, 0) = (𝜅𝐿(𝑠)− 𝜅𝑇 (𝑠))
(︂
𝑠1

𝑠

)︂2
+ 𝜅𝑇 (𝑠) (2.2.67)

where 𝜅𝐿(𝑠) is the cross correlation function between velocity components at points 𝐴 and
𝐵 in a direction parallel to 𝐴𝐵 (𝑣𝐴

𝐿 and 𝑣𝐵
𝐿 in fig. 2.2.14), 𝜅𝑇 (𝑠) is the function for velocity

components in a direction perpendicular to 𝐴𝐵 (𝑣𝐴
𝑇 and 𝑣𝐵

𝑇 ), 𝑠1 = �̄�𝜏 is the separation
of points 𝐴 and 𝐵 in the along wind direction (𝐵𝐶). By the Pythagorean theorem, the
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distance 𝑠 is calculated by using eq. 2.2.68.

𝑠2 = �̄�2𝜏 2 + 4𝑟2 sin2(Ω𝜏/2) (2.2.68)

where Ω is the rotational speed of rotor.

For incompressible flow:

𝜅𝑇 (𝑠) = 𝜅𝐿(𝑠) + 𝑠

2
𝑑𝜅𝐿(𝑠)
𝑑𝑠

(2.2.69)

and substituting eq. 2.2.69 in eq. 2.2.67:

𝜅𝑢(s, 0) = 𝜅𝐿(𝑠) + 𝑠

2
𝑑𝜅𝐿(𝑠)
𝑑𝑠

(︃
2𝑟 sin(Ω𝜏/2)

𝑠

)︃2

(2.2.70)

When the vector s is in the along-wind direction and using the Taylor’s frozen
turbulence hypothesis, 𝜅𝐿(𝑠) translates to 𝜅𝑢(𝑠1) matching with 𝜅𝑢(𝜏) from eq. 2.2.64
(with 𝜏 = 𝑠1/�̄�). By doing this and substituting the result in the eq. 2.2.70, the expression
for the autocorrelation function for the along-wind fluctuation at a point at radius 𝑟 on
the rotating blade [𝜅𝑜

𝑢(𝑟, 𝜏) = 𝜅𝑢(s, 0)] is computed in eq. 2.2.71.

𝜅𝑜
𝑢(𝑟, 𝜏) = 2𝜎2

𝑢

Γ(1/3)

(︃
𝑠/2

1.34𝐿

)︃1/3

×⎡⎣𝐾1/3

(︂
𝑠

1.34

)︂
− 𝑠

2(1.34𝐿)𝐾2/3

(︂
𝑠

1.34𝐿

)︂(︃2𝑟 sin(Ω𝜏/2)
𝑠

)︃2
⎤⎦ (2.2.71)

Step 3 : Derivation of the power spectrum seen by a point on the rotating bade.

How the integral of the power spectrum do not have analytical solution, a discrete
Fourier transform (DFT) is used to solve it (see Burton et al. (27) notes) and estimate
the rotationally sampled spectrum 𝑆𝑜

𝑢(𝑛𝑘) using eq. 2.2.72.

𝑆𝑜
𝑢(𝑛𝑘) = 2𝑇

⎡⎣ 1
𝑁

𝑁−1∑︁
𝑝=0

𝜅*𝑜
𝑢 (𝑟, 𝑝𝑇/𝑁) cos(2𝜋𝑘𝑝/𝑁)

⎤⎦ (2.2.72)

where 𝑁 is the number of points in the time series of 𝜅*𝑜
𝑢 (𝑟, 𝑝𝑇/𝑁), and the PSD is

calculated at the frequencies 𝑛𝑘 = 𝑘/𝑇 for 𝑘 = 0, 1, 2, . . . , 𝑁 − 1. The sum can be
evaluated using a fast Fourier transform (FFT) providing for 𝑁 a value equals to a power
of 2.

The selection of 𝑇 = 200 s and 𝑁 = 4096 for the FFT gives useful results up
to a frequency of 5 Hz for a interval of 0.005 Hz. These results have been computed
following the pre-requisites of IEC 61400-1 Edition 3 (28), with the isotropic integral
length scale, 𝐿, taken as 3.5 times the turbulence scale parameter, Λ1. By using the
capabilities of MATLAB, for points on a 𝑟 = [20; 40; 60] 𝑚 on a blading rotating at
Ω = 15 𝑟𝑝𝑚 in a mean wind speed of �̄� = 8 𝑚/𝑠, the rotationally sampled spectrum
was generated. Figs. 2.2.15 and 2.2.16 shows, respectively, the generated normalized
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autocorrelation function, 𝜌𝑜
𝑢(𝑟, 𝜏)(= 𝜅𝑜

𝑢(𝑟, 𝜏)/𝜎2
𝑢), against the number of rotor revolutions

and the rotationally sampled power spectral density function, 𝑅𝑜
𝑢(𝑟, 𝑛)(= 𝑛𝑆𝑜

𝑢(𝑟, 𝑛)/𝜎2
𝑢),

versus the frequency 𝑛.
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Figure 2.2.15 – Normalized autocorrelation for along-wind wind fluctuations seen by 𝑟 =
[20, 40, 60] 𝑚 radii on a rotating blade
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Figure 2.2.16 – Rotationally sampled power spectra of longitudinal wind fluctuations seen
by 𝑟 = [20, 40, 60] 𝑚 radii on a rotating blade

Figs. 2.2.15 and 2.2.16 present very similar results compared to the reference (27),
as expected. Figure 2.2.15 presents curves that display pronounced peaks after each full
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revolution (an even more for high values of 𝑟). Figure 2.2.16 shows high frequency content
of the spectrum to the frequency of rotation in which increases with the radius.

The corresponding cross correlation of the cross spectrum, for a pair of points at
radii 𝑟1 and 𝑟2 on a rotating blade, is related with the Fourier transform pair:

𝑆𝑜
𝑢(𝑟1, 𝑟2, 𝑛) = 4

∫︁ ∞

0
𝜅𝑜

𝑢(𝑟1, 𝑟2, 𝜏) cos 2𝜋𝑛𝜏𝑑𝜏 (2.2.73)

𝜅𝑜
𝑢 =

∫︁ ∞

0
𝑆𝑜

𝑢(𝑟1, 𝑟2, 𝑛) cos 2𝜋𝑛𝜏𝑑𝑛 (2.2.74)

which, setting 𝜏 = 0 and substituting into the eq. 2.2.60 of the standard deviation of the
blade root bending moment gives:

𝜎2
𝑀 =

(︃
1
2𝜌Ω

𝑑𝐶𝐿

𝑑𝛼

)︃2 ∫︁ 𝑅

0

∫︁ 𝑅

0

[︂∫︁ ∞

0
𝑆𝑜

𝑢(𝑟1, 𝑟2, 𝑛)𝑑𝑛
]︂
𝑐(𝑟1)𝑐(𝑟2)𝑟2

1𝑟
2
2𝑑𝑟1𝑑𝑟2 (2.2.75)

Then the power spectrum of the blade root bending moment can be computed by eq. 2.2.76.

𝑆𝑀(𝑛) =
(︃

1
2𝜌Ω

𝑑𝐶𝐿

𝑑𝛼

)︃2 ∫︁ 𝑅

0

∫︁ 𝑅

0
𝑆𝑜

𝑢(𝑟1, 𝑟2, 𝑛)𝑐(𝑟1)𝑐(𝑟2)𝑟2
1𝑟

2
2𝑑𝑟1𝑑𝑟2 (2.2.76)

The rotationally sampled cross spectrum, 𝑆𝑜
𝑢(𝑟1, 𝑟2, 𝑛), can be estimated following

the same idea presented previously. Burton et al.(27) shows that the separation distance,
𝑠, at radii 𝑟1 and 𝑟2 on the rotating blade is now computed by:

𝑠2 = �̄�2𝜏 2 + 𝑟2
1 + 𝑟2

2 − 2𝑟1𝑟2 cos Ω𝜏 (2.2.77)

The cross correlation thus becomes:

𝜅𝑜
𝑢(𝑟1, 𝑟2, 𝜏) = 2𝜎2

𝑢

Γ
(︁

1
3

)︁ (︃ 𝑠/2
1.34𝐿

)︃ 1
3

×

[︃
𝐾1/3

(︂
𝑠

1.34𝐿

)︂
− 𝑠

2(1.34𝐿)𝐾2/3

(︂
𝑠

1.34𝐿

)︂
·
(︃
𝑟2

1 + 𝑟2
2 − 2𝑟1𝑟2 cos Ω𝜏

𝑠2

)︃]︃ (2.2.78)

Figure 2.2.17 shows the rotationally cross spectrum for 𝑟1 = 20 𝑚 and 𝑟2 = 40 𝑚
compared with the rotationally sampled single autospectra for two cases.
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Figure 2.2.17 – Rotationally sampled cross spectrum of longitudinal wind speed fluctu-
ations seen by at 𝑟1 = 20 𝑚 and 𝑟2 = 40 𝑚 radii compared with auto
spectra

Burton et al. (27) shows that the power spectrum of the blade root bending moment
is computed using summations to approximate to the integrals in eq. 2.2.76, as follows:

𝑆𝑀(𝑛) =
(︃

1
2𝜌Ω

𝑑𝐶𝐿

𝑑𝛼

)︃2∑︁
𝑗

∑︁
𝑘

𝑆𝑜
𝑢(𝑟𝑗, 𝑟𝑘, 𝑛)𝑐(𝑟𝑗)𝑐(𝑟𝑘)𝑟2

𝑗 𝑟
2
𝑘(Δ𝑟)2 (2.2.79)

For the above-mentioned 5-MW NREL OWT the power spectrum of bending root
bending moment results in fig. 2.2.18.
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Figure 2.2.18 – Power spectrum of the bending root bending moment
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2.2.4.8 Vortex shedding effect on the tower

At certain critical ranges for the flow mean velocities, the frequency of vortex shed-
ding originating around the tower coincides with the first natural (across-wind direction)
frequency of the lateral motion of the tower resulting in lock-in vibrations. The lock-in
effect can be considered as the applied maximum across-wind displacement (𝑟VS

across)max

given by (40) (︃
𝑟VS

across
𝐷

)︃
max

= 1.29
1 + 0.43(2𝜋𝑆2

𝑡 𝑆𝑐)
(2.2.80)

where 𝐷 is the diameter of the tubular section under wind action and 𝑆𝑡 and 𝑆𝑐 are the
Strouhal and Scruton numbers, respectively (41).

2.3 Wave and sea current dynamics and induced loads

Brebbia and Walker (42) presents two methods for offshore structures analysis which
depends of different types of information, the design wave approach and the wave-energy
spectrum.

The first is deterministic and requires information about the period and height of the
maximum wave occurring for certain environmental condition. The wave-energy spectrum
uses a probabilistic theory obtaining results for maximum stresses, displacements, etc., of
the structure within a certain confidence level. The probabilistic one is more accurate to
define the sea state and allow the use of random vibration theory to analyze the structure.

Important concepts of hydrodynamics of offshore structures on the sea is briefly
reviewed in sec. 2.3.1 and wave theories are presented in sec. 2.3.2. These concepts are
relevant to interpret oceanographic information to carry out a structural analysis.

Statistical procedures are presented in sec. 2.3.3 for analyzing wave data determining
common wave spectrum as the Pierson-Moskowitz and JONSWAP for a wind-generated
sea.

In section 2.3.4.1 is presented how the hydrodynamic forces acts on slender members
estimating the Morison equation.

2.3.1 Some basic definitions

The motion of an incompressible fluid must be a reasonable consideration for
representing the kinematics of waves. For steel offshore structures this can be made by
computing the drag forces using the Morison’s equation empirical formula.

Assuming an Eulerian velocity vector v = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) with its origin at the SWL
with a depth 𝑑, consider the Navier-Stokes’ eq. 2.3.1 for the motion of an incompressible

34



fluid.

𝜌
𝐷v
𝐷𝑡

= 𝜌F−∇𝑝− 𝜇∇× 𝜔 (2.3.1)

where 𝜌 is the density of the fluid, 𝐷/𝐷𝑡 = 𝜕/𝜕𝑡+ v.∇ is the material derivative, 𝑝 is the
pressure, 𝐹 is the body force vector, 𝜇 is the viscosity and 𝜔 is the vorticity field defined
by the curl of the velocity vector, i.e. 𝜔 = ∇× v, which measure the rotationality of the
fluid.

For an irrotationality condition (eq. 2.3.2),

∇× v = 0 (2.3.2)

it can be assumed a velocity potential Φ(𝑥, 𝑦, 𝑧) defined by eq. 2.3.3.

v = ∇Φ =
(︃
𝜕Φ
𝜕𝑥

,
𝜕Φ
𝜕𝑦

,
𝜕Φ
𝜕𝑧

)︃
(2.3.3)

The continuity equation is defined by the eq. 2.3.4.

𝐷𝜌

𝐷𝑡
+ 𝜌∇.v = 0 (2.3.4)

if a fluid is incompressible than the density remains constant, i.e. 𝐷𝜌/𝐷𝑡 = 0, consequently
∇.v = 0 for an incompressible homogeneous fluid. In terms of the potential Φ, the
incompressible inviscid fluid is computed by eq. 2.3.5

∇.∇Φ = ∇2Φ = 𝜕2Φ
𝜕𝑥2 + 𝜕2Φ

𝜕𝑦2 + 𝜕2Φ
𝜕𝑧2 = 0 (2.3.5)

Consider now the propagation of a fluid with disturbances of height 𝜂(𝑥, 𝑦, 𝑡) above
the SWL. Kinematic and pressure conditions occurs at the free surface and a fluid condition
at a constant depth.

The kinematic condition: The vertical velocity 𝑣𝑧 at the free surface, for smalls
slope 𝜕𝜂 or horizontal velocity 𝑣𝑥, considering that the surface moves with the fluid, is:

𝑣𝑧 ≈
𝜕𝜂

𝜕𝑡
= 𝜕Φ
𝜕𝑧

at 𝑧 = 𝜂 (2.3.6)

and for small disturbances (by using the Taylor’s theorem):

𝜕𝜂

𝜕𝑡
≈ 𝜕Φ
𝜕𝑧

at 𝑧 = 0 (2.3.7)

The pressure condition: Assuming that the surface has a constant atmospheric
pressure, for an irrotational motion, the Bernoulli’s equation can be reduced as:

𝑃𝑖 − 𝑃𝑜 = −𝜌
(︃
𝜕Φ
𝜕𝑡

+ 𝑔𝜂

)︃
(2.3.8)

where 𝑃𝑖 and 𝑃𝑜 is the pressure inside and outside the liquid surface, respectively, 𝜌 is the
density of the liquid and 𝑔 is the acceleration due to gravity.
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By neglecting the surface-tension effects (𝑃𝑖 = 𝑃𝑜), we obtain:
𝜕Φ
𝜕𝑡

= −𝑔𝜂 at 𝑧 = 𝜂 (2.3.9)
𝜕Φ
𝜕𝑡
≈ −𝑔𝜂 at 𝑧 = 0 (2.3.10)

Combining the kinematic condition, we obtain:
𝜕Φ
𝜕𝑧

= −𝑔𝜕
2Φ
𝜕𝑡2

at 𝑧 = 0 (2.3.11)

Fluid of constant depth condition: This last condition come from a constant
depth 𝑧 = −ℎ, assuming a solid impermeable surface and by neglecting slope. We have no
liquid flux at the seabed, so:

𝜕Φ
𝜕𝑧

= 0 at 𝑧 = −𝑑 (2.3.12)

Assuming the real part of the separable solution Φ(𝑥, 𝑦, 𝑧, 𝑡) = 𝜑(𝑥, 𝑦)𝑓(𝑧) exp (𝑖𝜔𝑡),
i.e. Re[exp 𝑖𝜔𝑡] = cos𝜔𝑡, and substituting in the continuity equation for an incompressible
inviscid fluid of eq. 2.3.5 we obtain that:

∇2𝜑𝑓(𝑧) + 𝜑
𝜕2𝑓

𝜕𝑧2 = 0 (2.3.13)

which can be rewritten as:
∇2𝜑(𝑥, 𝑦)
𝜑(𝑥, 𝑦) = −𝜕

2𝑓/𝜕𝑧2

𝑓(𝑧) (2.3.14)

For these functions to be equal for all 𝑥, 𝑦, and 𝑧:
∇2𝜑

𝜑
= −𝜅2 (2.3.15)

𝜕2𝑓/𝜕𝑧2

𝑓
= 𝜅2 (2.3.16)

where 𝜅2 is a constant to be determined by using the boundary conditions.

From the eq. 2.3.15 we obtain the Helmholtz equation in two dimensions, i.e.

∇2𝜑+ 𝜅2𝜑 = 0 (2.3.17)

where 𝜑(𝑥, 𝑦) is the reduced velocity potential.

From the eq. 2.3.16:
𝜕2𝑓

𝜕𝑧2 = 𝜅2𝑓 (2.3.18)

By using the initial boundary condition of eq. 2.3.12 and the kinematic condition of
eq. 2.3.7, Brebbia and Walker (42) obtain the general solution for a harmonic disturbance
(eq. 2.3.19) with where 𝜑(𝑥, 𝑦) is any solution of Helmholtz eq. 2.3.17.

Φ(𝑥, 𝑦, 𝑧, 𝑡) = 𝜑(𝑥, 𝑦)cosh [𝜅(𝑧 + 𝑑)]
cosh 𝜅𝑑 exp (−𝑖𝜔𝑡) (2.3.19)

where 𝜔2 = 𝑔𝜅 tanh (𝜅𝑑) is the dispersion relation for disturbances traveling on a liquid
depth 𝑑.
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2.3.2 Wave theories

According to Chandrasekaran (43) the particles velocities, accelerations, and dy-
namic pressure as function of the surface elevation of the waves, can be computed by wave
theories. There are different theories such as:

• Linear first-order or Airy theory;

• Stokes fifth-order theory;

• Solitary wave theory;

• Cnoidal theory;

• Dean’s stream function theory;

• Numerical theory by Chappelear.

According to Chandrasekaran (43) the particles’ velocities, accelerations, and
dynamic pressure as function of the surface elevation of the waves, can be computed by a
number of wave theories such as the Linear of first-order or Airy theory, Stokes second-,
and fifth-order theory, Solitary wave theory, Cnoidal theory, Dean’s stream function theory,
and the numerical theory by Chappelear.

The linear theory is adequate for slender structures under small-amplitude deep
water waves. Other theories such as Stokes’s fifth and third-order wave theories can be
used for non-linear high waves, as well the stream function theory (numerical methods for
a broad range of water depths), while the Boussinesq high-order theory is used for shallow
water waves and solitary wave theory for very shallow water.

The most appropriate theory can be found based on the relations between the wave
height 𝐻𝑤, wave period 𝑇𝑤, and water depth ℎ (44, 45) as shown fig. 2.3.1. For example,
the Airy wave theory can be applied for the light-yellow area of the figure, the light-blue
area gives the range of cnoidal wave theory, the blue lines demarcate between the required
order in Stokes’ wave theory, and for high waves, i.e. 𝐻 > 1/4𝐻breaking, the light-gray
shading gives the range extension by using fifth-order stream-function.
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Figure 2.3.1 – Wave theory selection chart (45, adapted)

The DNV-OS-J101 defines three non-dimensional parameters that determine the
ranges of validity for different wave theories: the wave steepness parameter, 𝑆𝑤; shallow
water parameter, 𝜇𝑤; and Ursell parameter, 𝑈𝑟. Which are defined in eqs. 2.3.20 to 2.3.22
and have their ranges of application for different wave theories as shows tab. 2.3.1.

𝑆𝑤 = 2𝜋 𝐻

𝑔𝑇 2 = 𝐻

𝜆0
(2.3.20)

𝜇𝑤 = 2𝜋 𝑑

𝑔𝑇 2 = 𝑑

𝜆0
(2.3.21)

𝑈𝑟 = 𝐻

𝑘2
0𝑑

3 = 𝑆𝑤

4𝜋2𝜇3
𝑤

(2.3.22)

Table 2.3.1 – Ranges of application of regular wave theories (26)

Theory Depth Approximate range
Linear (Airy) wave Deep and shallow 𝑆𝑤 < 0.006; 𝑆𝑤/𝜇𝑤 < 0.03

2𝑛𝑑 order Stokes wave Deep water 𝑈𝑟 < 0.65; 𝑆𝑤 < 0.04
5𝑡ℎ order Stokes wave Deep water 𝑈𝑟 < 0.65; 𝑆𝑤 < 0.14

Cnoidal theory Shallow water 𝑈𝑟 > 0.65; 𝜇𝑤 < 0.125
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2.3.2.1 Linear Airy Theory

The wave amplitude can be calculated using eq. 2.3.23 as consequence of the
pressure condition of eq. 2.3.10, then the surface elevation becomes

𝜂(𝑥, 𝑦) = +𝑖𝜔
𝑔
𝜑(𝑥, 𝑦) (2.3.23)

where the wave frequency can be written in function of the period as 𝜔 = 2𝜋/𝑇 .

Consider now the one-dimensional Helmholtz equation of eq. 2.3.24 for a sinusoidal
wave of frequency 𝜔 of the fig. 2.3.2, then

𝜕2𝜂

𝜕𝜂2 + 𝜅2𝜂 = 0 (2.3.24)

The solution 𝜂 can be computed by using the eq. 2.3.25 as a free surface disturbance as

𝜂(𝑥, 𝑡) = 𝜂(𝑥) exp (𝑖𝜔𝑡) (2.3.25)

The elevation has a harmonic solution (eq. 2.3.26)

𝜂(𝑥) = 𝑎0 exp (−𝑖𝜅𝑥) (2.3.26)

where 𝜅 is the wavenumber, 𝜅 = 2𝜋/𝜆. Substituting the harmonic solution in the eq. 2.3.25,
it is computed the elevation of a linear Airy wave (eq. 2.3.27) of amplitude 𝑎0 with a
celerity, or phase velocity, 𝑐 = 𝜔/𝜅.

𝜂(𝑥, 𝑡) = 𝑎0 exp [−𝑖(𝜅𝑥− 𝜔𝑡)] (2.3.27)

For regular linear waves the wave crest height is equal to the wave trough height,
then the wave height is 𝐻 = 2𝑎0. DNV-OS-J101 defines the surface elevation in terms of 𝑥
and 𝑦 as the eq. 2.3.28 (fig. 2.3.2).

𝜂(𝑥, 𝑦, 𝑡) = 𝐻

2 cos Θ (2.3.28)

where Θ = 𝜅(𝑥 cos 𝛽1 + 𝑦 sin 𝛽1 − 𝑐𝑡) and 𝛽1 is the direction of propagation (measure from
the positive x-axis). If 𝛽1 = 0∘, Θ = 𝜃 = 𝜅(𝑥− 𝑐𝑡) = 𝜅𝑥− 𝜔𝑡, with 𝜔 = 2𝜋/𝑇 .

Figure 2.3.2 – Regular traveling properties (46)
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The dispersion relationship which determines the wavelength 𝜆 is given by eq. 2.3.29.

𝜆 = 𝑔𝑇 2

2𝜋 tanh
(︃

2𝜋𝑑
𝜆

)︃
(2.3.29)

that can be approximated as a function of the wave period 𝑇 by eq. 2.3.30.

𝜆 = 𝑇 (𝑔𝑑)1/2
(︃

𝑓(�̄�)
1 + �̄�𝑓(�̄�)

)︃1/2

(2.3.30)

where 𝑓(�̄�) = 1 + ∑︀4
𝑛=1 𝛼𝑛�̄�

𝑛, �̄� = (4𝜋2𝑑)/(𝑔𝑇 2), 𝛼1 = 0.666, 𝛼2 = 0.445, 𝛼3 = −0.105,
𝛼4 = 0.272, and 𝑔 the gravity.

For linear waves the phase velocity only depends on wave length 𝜆 and it is
independent of the wave amplitude as:

𝑐 =

⎯⎸⎸⎷𝑔𝜆

2𝜋 tanh
(︃

2𝜋𝑑
𝜆

)︃
(2.3.31)

From eqs. 2.3.30 and 2.3.31 the wave length and phase velocity are shown in
fig. 2.3.3 as a function of wave period at various water depths for linear waves.
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Figure 2.3.3 – Wave length and phase velocity as function of wave period at various water
depths

Using again the linearized free-surface boundary conditions, the velocity potential
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for the motion is computed by the eq. 2.3.32

Φ(𝑥, 𝑧, 𝑡) = 𝑖
𝑔

𝜔
𝑎0 exp [−𝑖(𝜅𝑥− 𝜔𝑡)]cosh [𝜅(𝑧 + 𝑑)]

cosh 𝜅𝑑

= 𝑔𝐻

2𝜔
cosh [𝜅(𝑧 + 𝑑)]

cosh 𝜅𝑑 sin 𝜃

= 𝜋𝐻

𝜅𝑇

cosh [𝜅(𝑧 + 𝑑)]
sinh 𝜅𝑑 sin 𝜃

(2.3.32)

where 𝜃 = 𝜅𝑥− 𝜔𝑡 = 𝜅(𝑥− 𝑐𝑡).

For deep water the component (𝜅𝑑) is large and cosh (𝜅𝑑) ≈ exp (𝜅𝑑)/2 and
sinh [𝜅(𝑧 + 𝑑)] = cosh [𝜅(𝑧 + 𝑑)] ≈ exp [𝜅(𝑧 + 𝑑)]/2, then:

Φ(𝑥, 𝑧, 𝑡) = 𝑖
𝑔

𝜔
𝑎0 exp [−𝑖(𝜅𝑥− 𝜔𝑡)] exp(𝜅𝑧)

= 𝑔𝐻

2𝜔 exp (𝜅𝑧) sin 𝜃

= 𝜋𝐻

𝜅𝑇
exp (𝜅𝑧) sin 𝜃

(2.3.33)

with dispersion 𝜔2 = 𝑔𝜅 (tanh(𝜅𝑑) ≈ 1 for 𝜅𝑑 > 2.65).

As a consequence for 𝜅𝑑 > 2.65, i.e. 𝑑≪ 𝜆/2, we may neglect the effects of smooth
variations of the depth 𝑑, then 𝑐2 = 𝑔𝜆/2𝜋 or 𝑐 = 𝑔/𝜔.

2.3.2.2 Second-order Stokes wave theory

The Stokes wave expansion is an extension of the surface elevation in powers of
the linear wave (46). While the first-order is identical to a linear (or Airy) wave, the
second-order component is smaller than the first-order contribution and provides twice
the wave frequency (47).

The surface profile is defined as:

𝜂 = 𝜂1 + 𝜋𝐻2

8𝜆
cosh 𝜅𝑑
sinh3 𝜅𝑑

(2 + cosh 2𝜅𝑑) cos 2Θ (2.3.34)

where the subscript 1 of 𝜂1 refers to the linear or Airy first-order of eq. 2.3.28.

For deep water:

𝜂 = 𝜂1 + 𝜋𝐻2

4𝜆 cos 2Θ (2.3.35)

The velocity potential can be computed as

Φ = 𝜑1 + 3
8
𝜋𝐻

𝑘𝑇

(︂
𝜋𝐻

𝜆

)︂ cosh[2𝑘(𝑧 + 𝑑)] sin 2𝜃
sinh4(𝜅𝑑)

(2.3.36)

For deep water the Stokes second-order potential is equal to the Airy.
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2.3.2.3 Particles velocities, accelerations

For a unidirectional Airy wave, i.e. 𝑛(𝑥) = −𝑖𝜔𝜑(𝑥)/𝑔 = 𝑎0 exp(−𝑖𝜅𝑥), we can
express the eq. 2.3.32 as a function of 𝜂 (eq. 2.3.37)

Φ(𝑥, 𝑧, 𝑡) = 𝑖
𝑔

𝜔
𝑎0𝜂(𝑥)cosh [𝜅(𝑧 + 𝑑)]

cosh 𝜅𝑑 exp(𝑖𝜔𝑡) (2.3.37)

By deriving the eq 2.3.37, Brebbia and Walker (42) determined the particle velocity
components in the 𝑥, and 𝑧 directions (in 𝑦 direction 𝑣 = �̇� = 0), as

𝑢 = 𝑔

𝜔
𝜅

cosh [𝜅(𝑧 + 𝑑)]
cosh 𝜅𝑑 exp(𝑖𝜔𝑡)(𝑥)

𝑤 = 𝑖
𝑔

𝜔
𝜅

sinh [𝜅(𝑧 + 𝑑)]
cosh 𝜅𝑑 exp(𝑖𝜔𝑡)𝜂(𝑥)

(2.3.38)

and deriving again the accelerations

�̇� = 𝑖𝑔𝜅
cosh [𝜅(𝑧 + 𝑑)]

cosh 𝜅𝑑 exp(𝑖𝜔𝑡)

�̇� = −𝑔𝜅sinh [𝜅(𝑧 + 𝑑)]
cosh 𝜅𝑑 exp(𝑖𝜔𝑡)

(2.3.39)

The DNV (46) recommended practice for environmental conditions and environ-
mental loads presents these values tabled as shown tab. 2.3.2.

Table 2.3.2 – Velocities and accelerations of Airy and Stokes second-order wave theory
(46, adapted)

For a wave height of 𝐻 = 6𝑚 with a peak wave period of 𝑇 = 6𝑠 the velocity and
acceleration profile of a water particle are obtained by using the equations presented in
tab. 2.3.2, as shown fig. 2.3.4.
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Figure 2.3.4 – Velocity and acceleration of the particle for a second-order wave theory

2.3.3 Wave probabilistic characterization

To get a realistic idea of the wind-generated sea we have to enlarge the discussion
not only for waves of constant depth or frequencies. The sea-surface elevation is a time-
dependent random variable and must be evaluated using statistical procedures. These
methods are usually used to determine the response of offshore structures. For tidal waves,
i.e. waves generated by earthquakes, eruptions, etc., there are deterministic methods that
must be realized separately because their occurrence is not frequent.

The excitation provoked by the nature have a random variable in function of the
surface elevation an can be expressed by an infinite sum of harmonic waves of random
phase as

𝜂(x, t) =
∞∑︁

𝑖=1
𝜂𝑖(x, 𝑡) =

∞∑︁
𝑖=1

𝑎𝑖(𝜔𝑖, 𝜅𝑖) cos(𝜔𝑖𝑡− 𝜅i.x + 𝜀𝑖) (2.3.40)

where, for a particular wave, x = (𝑥, 𝑦) is the position vector, 𝜅𝑖 the wavenumber vector,
distributed randomly within the storm area, 𝜔𝑖 are the frequencies, 𝜀𝑖 are the random
phases distributed uniformly on the interval 0 to 2𝜋, and 𝑎𝑖 is the amplitude.

The variable 𝜂 in the form of eq. 2.3.40 follows the same central theorem described
by Rice (48) and the distribution of 𝜂 is Gaussian. The probability density function of 𝜂
can be expressed as:

𝑝(𝜂) = 1√︁
(2𝜋)𝑀0

exp
(︃
− 𝜂2

2𝑀2
0

)︃
(2.3.41)

where 𝑀0 = ⟨𝜂2⟩1/2 is the root mean square value of 𝜂 and it is assumed that ⟨𝜂⟩ = 0,
which means that the surface elevation is measure from the SWL.

For an specific location, it is possible to estimate the significant wave height 𝐻𝑠 and
the mean zero crossing period 𝑇0 from the local geography and its expected wind velocities.
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This values are extensively used for design wave approach. For a spectral approach these
parameters can be used to define a spectral form as the Pierson-Moskowitz spectrum and
can vary with the sea state.

Brebbia and Walker (42) present three sources to obtain these statistical parameters:
oceanographic maps, which computes the probable values of the height of the highest
wave in a 50 or 100 year storm, with its most probable zero crossing period; wave scatter
diagrams, with the information about different sea states of a certain period; wind roses,
which presents the strength, direction and a percentage frequency of the expected winds
at the location.

The wave height can be described by the significant wave height 𝐻𝑠 and the spectral
peak period 𝑇𝑝.

DNV-OS-J101 defines that, unless data indicate otherwise, a 3-parameters Weibull
distribution can be assumed for the significant wave height:

𝐹𝐻𝑆
(ℎ) = 1− exp

⎡⎣−(︃ℎ− 𝛾
𝛼

)︃𝛽
⎤⎦ (2.3.42)

The significant wave height with return period 𝑇𝑅 in units of years can be computed
in a similar way that was defined the wind speed 𝑈10,𝑇𝑅

(from Eq. 2.2.5):

𝐻𝑠,𝑇𝑅
= 𝐹−1

𝐻𝑠,max,1year

(︂
1− 1

𝑇𝑅

)︂
(2.3.43)

where 𝑇𝑅 > 1 year, 𝐹𝐻𝑠,max,1year(ℎ) = [𝐹𝐻𝑆
(ℎ)]𝑁 represents the maximum annual significant

wave height and 𝑁 is the number of t-hour sea states in one year. For 𝑡 = 3 hours, 𝑁 = 2920.
In deep water the wave height can be assumed as a Rayleigh distribution (see DNV-OS-
J101).

For a wider frequency range of a narrow-band record, the significant wave height
𝐻𝑠 relates to the maximum wave height 𝐻10, which occurs a typical wave record of ten
minutes in length, by the eq. 2.3.44.

𝐻10 = 1.6𝐻𝑠 (2.3.44)

2.3.4 Wind wave and ocean wave spectrum

2.3.4.1 Hydrodynamic forces on slender members

At this point is important to examine the fluid-structure interaction of slender
members to understand the dynamic which involves OWTs. To analyze the stochastic
behavior of environmental loads (wind forces, currents, earthquakes, wave loading), a
random vibration analysis can handle this approach instead of just statistical procedures.
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For forces due to currents and tides their behavior have time period much larger
than the resonant period and a vortex shedding is formed around the section of the
structure as show fig. 2.3.5.

Figure 2.3.5 – Vortex shedding (42)

The effects of this vortex behind the member generates an equal an opposite
circulation of the fluid round the cylinder, rising a lift force on it at right angles on the
direction of fluid flow. In addiction, currents and tides change the wave field on the surface
altering the wave forces provoking a constant drag force due to the viscosity. Brebbia and
Walker (42) also says that the designer must take into account other factors as the marine
growth, the water-temperature variation and the hydrostatic pressure.

An other important environment loading is the wave motion or the wave loading
(fig. 2.3.6).

Figure 2.3.6 – Wave loading due to a linear wave (42).

The fig. 2.3.6 shows a fluctuating buoyancy force in the vertical direction resulted
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from the varying length of the member immersed. From hydrostatics this force is estimated
by eq. 2.3.45

𝐹𝐵 = 𝑏𝜌𝑔𝑎0

𝜅
[sin(𝜅𝑏− 𝜔𝑡) + sin𝜔𝑡] (2.3.45)

for a sinusoidal Airy wave of amplitude 𝑎0, angular frequency 𝜔, wavenumber 𝜅, and a
square-sectioned member of width 𝑏. For other shapes must be evaluated the immersed
volume of the member at any time during the motion.

For a vertical member 75% of the height of a wave slapping is above SWL as shown
in fig. 2.3.7. For this type of members the impact area due to horizontal forces are more
important to be considered in the analysis.

Figure 2.3.7 – Wave slapping on a vertical member (42)

The forward velocity of the water particles:

𝑉𝑏 ≈ 𝑐𝑏 =
√︁
𝑔𝑑 (2.3.46)

where 𝑐𝑏 is the velocity of the breaking wave, 𝑔 the gravity, and 𝑑 the undisturbed depth
of the water.

There are two main wave forces on a supporting member of an offshore structure in
the line of the wave direction, the drag and inertia forces. The drag force is proportional
to the square of the water particle velocity and is associated to the effects of viscosity
in the fluid (without vortex shedding effects). The inertia force is independent of any
viscosity and is composed of: the virtual mass of the member in motion, which can be an
added inertial water mass or a force in opposition to the motion of the member; and the
inertia force due to an accelerating fluid.

Morison’s equation

For a full analysis, Morison (49) postulated an equation which includes the effects
of the drag, lift and inertial forces on a stationary cylinder in accelerating fluid flow
(depending of the condition is added a lift component).

His formulation gives inertia and drag forces without considering any modification
in the shape of the wave and is valid for a diameter-to-wavelength ratio of less than 0.2.
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For a larger diameter the change in the shape of the waves due to diffraction effects must
be considered, which means that the inertia effect will be much larger than the drag one
and the fluid can be considered inviscid (42).

Considering only the drag and inertia forces and using the Airy wave theory, the
force per unit length in the 𝑥 direction at depth 𝑧 can be computed using the eq. 2.3.47

𝐹𝐼+𝐷(𝑧, 𝑡) = 𝐹𝐼 + 𝐹𝐷 = 𝐶𝐼 �̇�+ 𝐶𝐷𝑢|𝑢| (2.3.47)

where the velocities and accelerations 𝑢 and �̇� are evaluated at the cylinder axis.

𝐶𝐼 is an inertia constant which consider an hydrodynamic mass contribution and a
variation of the pressure gradient within the accelerating fluid, computed as:

𝐶𝐼 = 𝐶𝑀 + 𝐶𝐴 = 𝑐𝑚
𝜌𝜋𝐷2

4 + 𝜌𝐴 = 𝑐𝑖
𝜌𝜋𝐷2

4 (2.3.48)

where 𝑐𝑖 = 𝑐𝑚 + 1 is the inertia coefficient for the section, 𝑐𝑚 is the added mass coefficient,
and 𝐴 is the cross-sectional area. For an infinite circular cylinder in an infinite medium
𝑐𝑚 = 1.

The inertia force on the body then can be written as:

𝐹𝐼(𝑧, 𝑡) = 𝐶𝐼 �̇� =
(︃
𝑐𝑚
𝜌𝜋𝐷2

4 + 𝜌𝐴

)︃
�̇� (2.3.49)

The coefficient 𝐶𝐷 has the following relation with the drag coefficient 𝑐𝑑:

𝐶𝐷 = 1
2𝑐𝑑𝜌𝐷 (2.3.50)

and for a circular cylinder the values of 𝑐𝑑 can be computed in function of Reynolds
number as shown in fig. 2.3.8. The Reynolds number is defined by:

𝑅𝑒 = 𝑉 𝐷/𝜈 (2.3.51)

where 𝐷 is a typical length associated with the horizontal dimension (in the present context
the diameter), 𝑉 is a characteristic velocity of the flow, and 𝜈 is the kinematic viscosity of
the fluid.

In order to write the Morison equation properly, a statistical equivalent linearisation
of the non-linear drag term of eq. 2.3.50 is carried out to insert the stochastic nature of the
process. Brebbia and Walker shows that the linearized drag coefficient 𝐶𝐷 can be written,
after a Gaussian with a zero mean process, as:

𝐶𝐷 = 𝐶𝐷

√︃
8
𝜋
𝜎𝑢 (2.3.52)

where 𝜎𝑢 is the standard deviation of 𝑢.
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Figure 2.3.8 – Drag coefficient in function of the Reynolds number for a circular cylinder
(42).

The linearized Morison equation can now be written as:

𝐹𝐼+𝐷(𝑧, 𝑡) = 𝐶𝐼 �̇�+ 𝐶𝐷

√︃
8
𝜋
𝜎𝑢𝑢 (2.3.53)

Li and Chen (20) introduces

𝐻(𝜔, 𝑧) = 𝜔 cosh[𝜅(𝑧 + 𝑑)]
sinh(𝜅𝑑) (2.3.54)

to write the horizontal acceleration and velocity of eqs. 2.3.38 and 2.3.39 as

𝑢(𝑥, 𝑧, 𝑡) = 𝐻(𝜔, 𝑧)𝜂(𝑥, 𝑡)
�̇�(𝑢, 𝑧, 𝑡) = 𝐻(𝜔, 𝑧)�̇�(𝑥, 𝑡)

(2.3.55)

Substituting eqs. 2.3.55 in the linearized Morison eq. 2.3.53 will give

𝐹𝐼+𝐷(𝑧, 𝑡) = 𝐶𝐼𝐻(𝜔, 𝑧)𝜂(𝑥, 𝑡) + 𝐶𝐷

√︃
8
𝜋
𝜎𝑢𝐻(𝜔, 𝑧)𝑆𝜂𝜂(𝑥, 𝑡) (2.3.56)

If 𝜂(𝑡) is a stationary stochastic process, from eq. 2.3.56 it is obtained the PSD
of the wave force 𝐹 (𝑧, 𝑡) due to the uncorrelated nature of the stationary process and its
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derivative

𝑆𝐹 (𝑧, 𝜔) =
(︂ 8
𝜋
𝜎2

𝑢𝐶
2
𝐷 + 𝐶2

𝐼𝜔
2
)︂
𝐻2(𝜔, 𝑧)𝑆𝜂(𝜔) (2.3.57)

Current modeling

The sea currents in shallow water can be characterized by a velocity field whose
intensity decreases with depth, when detailed field measurements are not available. DNV-
OS-J101 defines the variation in current velocity 𝑣(𝑧) with the depth 𝑧 as:

𝑣(𝑧) = 𝑣tide(𝑧) + 𝑣wind(𝑧) (2.3.58)

𝑣tide(𝑧) = 𝑣tide0

(︃
ℎ+ 𝑧

ℎ

)︃1/7

for 𝑧 ≤ 0 (2.3.59)

𝑣wind(𝑧) = 𝑣wind0

(︃
ℎ0 + 𝑧

ℎ0

)︃
for − ℎ0 ≤ 𝑧 ≤ 0 (2.3.60)

where 𝑣tide(𝑧) and 𝑣wind(𝑧) are the velocities generated by the tide and wind; 𝑣tide0 and
𝑣wind0 are the tidal and wind-generated current at SWL; ℎ0 is the reference depth for
wind-generated current (typically 50m). Unless data indicate otherwise, 𝑣wind0 = 𝑘𝑈0 with
0.015 ≤ 𝑘 ≤ 0.03.

Lift forces

The motion of fluid on slender members give rise to vortex shedding, which provokes
a lift force on the member at a frequency corresponding to the eddy-shedding frequency.
For steady flow past a cylinder the Strouhal number 𝑆𝑡 (eq. 2.3.61) can measure the
frequency of lift forces.

𝑆𝑡 = 𝐷𝑓𝑣𝑠

𝑉
(2.3.61)

where 𝑓𝑣𝑠 is the frequency of vortex shedding.

Considering an accelerating flow it is expected for long waves and small cylinder the
presence of dynamic lift forces. Keulegan and Carpenter (50) defines a measure in which
the coefficients 𝑐𝑖, 𝑐𝑚 and 𝑐𝑑 depends on the Keulegan-Carpenter number 𝐾𝐶 (eq. 2.3.62).
For 𝐾𝐶 ≥ 15 Keulegan and Carpenter estimate the occurrence of lift forces.

𝐾𝐶 = 𝑉𝑚𝑇

𝐷
(2.3.62)

where 𝑉𝑚 is the maximum horizontal water-particle velocity and 𝑇 the time period of the
wave.

Chakrabarti (51) define the lift force as the eq. 2.3.63.

𝐹𝐿(𝑧, 𝑡) = 𝜌𝐷𝑉 2
𝑚

2

𝑁∑︁
𝑛=1

𝑐𝑛
𝑙 cos (𝑛𝜔0𝑡+ 𝜓𝑛) (2.3.63)

where 𝜔0 is the angular frequency of the incident wave, 𝜓𝑛 the phase angle of the 𝑛th
harmonic force, and 𝑐𝑛

𝑙 the lift coefficient for the 𝑛th harmonic (and a function of 𝐾𝐶).
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Hydrodynamic coefficients

The use of Morison equation in the estimation of the hydrodynamic loads on slender
member may take into account the variation of the added mass coefficient 𝑐𝑚 and the
drag coefficient 𝑐𝑑 as function of 𝑅𝑒 (eq. 2.3.51), 𝐾𝐶 (eq. 2.3.62) and the non-dimensional
roughness Δ, i.e. 𝑐𝑑 = 𝑐𝑑(𝑅𝑒,𝐾𝐶 ,Δ) and 𝑐𝑚 = 𝑐𝑚(𝑅𝑒,𝐾𝐶 ,Δ) (46).

The non-dimensional roughness parameter is defined as:

Δ = 𝑘/𝐷 (2.3.64)

where 𝑘 is the surface roughness height and 𝐷 the diameter of the section.

DNV-GL-RP-C205 (46) suggests the selection of surface roughness presented in
tab. 2.3.3 for the estimation of the drag coefficient.

Table 2.3.3 – Typical values of surface roughness

Material 𝑘 (meters)
Steel, new uncoated 5× 10−5

Steel, painted 5× 10−6

Steel, highly corroded 3× 10−3

Concrete 3× 10−3

Marine growth 5× 10−3 to 5× 10−2

For high Reynolds (𝑅𝑒 > 106) a dependence between the drag-coefficient and the
roughness may be taken as:

𝑐𝐷𝑆 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.65 if Δ < 10−4 (smooth)

(29 + 4 log10(Δ))/20 if 10−4 < Δ < 10−2

1.05 if Δ > 10−4 (rough)

(2.3.65)

for both regular and irregular wave analysis.

The variation of the drag coefficient as a function of the Keulegan-Carpenter
number can be approximated by:

𝑐𝑑 = 𝑐𝐷𝑆(Δ) · 𝜓(𝐾𝐶) (2.3.66)

where 𝜓(𝐾𝐶) is the wake amplification factor. For low Keulegan-Carpenter numbers
(𝐾𝐶 < 12) that value can be taken as:

𝜓(𝐾𝐶) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐶𝜋 + 0.10(𝐾𝑐 − 12) if 2 ≤ 𝐾𝐶 < 12

𝐶𝜋 − 1 if 0.75 ≤ 𝐾𝐶 < 2

𝐶𝜋 − 1− 2(𝐾𝐶 − 0.75) if 𝐾𝐶 ≤ 0.75

(2.3.67)

where 𝐶𝜋 = 1.5− 0.024(12/𝑐𝐷𝑆 − 10).
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For combined wave and current action, the current velocity (𝑣(𝑧)) must be consid-
ered in the estimation of the Keulegan-Carpenter number. When 𝑣(𝑧) > 0.4𝑉𝑚, 𝑐𝑑 can be
taken equal to 𝑐𝐷𝑆.

For 𝐾𝐶 < 3, 𝐶𝐼 is independent of 𝐾𝐶 and takes the theoretical value 𝐶𝐼 = 2 for
both rough and smooth cylinders. For 𝐾𝐶 > 3, the mass coefficient becomes

𝐶𝐼 = 𝑚𝑎𝑥 [2− 0.044(𝐾𝐶 − 3); 1.6− (𝑐𝐷𝑆 − 0.65)] (2.3.68)

2.3.4.2 Power spectral density of wind waves

Brebbia and Walker (42) defines the spectral density of a random process 𝑢 as:

𝑆𝑢𝑢(𝜔) = lim
𝑇 →∞

1
𝑇
{�̄�Û} = lim

𝑇 →∞

1
𝑇
|�̄� |2 (2.3.69)

where �̄� is the Fourier transform of 𝑢 and Û is its conjugate. Applying this spectral density
to the velocities from eqs. 2.3.38, we obtain:

𝑆𝑣𝑥𝑣𝑥 =
[︃
𝑔𝜅

𝜔

cosh [𝜅(𝑧 + 𝑑)]
cosh 𝜅𝑑

]︃2

𝑆𝜂𝜂 (2.3.70)

𝑆𝑣𝑧𝑣𝑧 =
[︃
𝑔𝜅

𝜔

sinh [𝜅(𝑧 + 𝑑)]
cosh 𝜅𝑑

]︃2

𝑆𝜂𝜂 (2.3.71)

and applying the accelerations from eqs. 2.3.39, we obtain:

𝑆�̇�𝑥�̇�𝑥 =
[︃
𝑔𝜅

cosh [𝜅(𝑧 + 𝑑)]
cosh 𝜅𝑑

]︃2

𝑆𝜂𝜂 (2.3.72)

𝑆�̇�𝑧 �̇�𝑧 =
[︃
𝑔𝜅

sinh [𝜅(𝑧 + 𝑑)]
cosh 𝜅𝑑

]︃2

𝑆𝜂𝜂 (2.3.73)

where 𝑆�̇��̇�(𝜔) = 𝜔2𝑆𝑣𝑣(𝜔). The cross spectral densities of the velocities and accelerations
will be equals zero.

Neumann (52) predict wave spectrum for different sea states relating to generate
wave. In his work is shown that, for a wind, a certain fetch 𝐹 and duration 𝑇 there is a
certain cut-off frequency 𝜔𝑐 below which there will be almost no energy content in the
waves.

The sea-surface elevation at a specific location is a time-dependent random variable
𝜂. A spectral density function of time 𝑆𝜂𝜂(𝜔) can well represent this behavior. After
estimated the parameters 𝐻𝑠 and 𝑇0 there are presented two empirically derived expressions
for the spectral density function 𝑆𝜂𝜂(𝜔) commonly used: the Pierson-Moskowitz (eq. 2.3.74)
and JONSWAP (Joint North Sea Wave Project) (eq. 2.3.76).

Pierson-Moskowitz (PM)

𝑆𝜂𝜂(𝑛) = 𝛼𝑔2

𝑛5 exp
[︃
−𝛽

(︂
𝑔

𝑛𝑊

)︂4
]︃

(2.3.74)
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where 𝑊 is the wind speed required, 𝛼 and 𝛽 are dimensionless constants dependent on
𝐻𝑠 and 𝑇0 and given by the following equations:

𝛼 = 4𝜋3
(︃
𝐻𝑠

𝑔𝑇 2
0

)︃2

, 𝛽 = 16𝜋3
(︃
𝑊

𝑔𝑇0

)︃4

(2.3.75)

The wind speed 𝑊 is conventionally taken at 19.5 meters above the MSL. For the
North Sea 𝛼 and 𝛽 are taken as 0.0081 and 0.74 respectively. This spectrum is applicable
for a fully developed sea (where low frequencies are presented).

JONSWAP

Unless data indicate otherwise, the spectral density of the sea elevation may be
represented by the JONSWAP spectrum (26) (eq. 2.3.76).

𝑆𝜂𝜂(𝑛) = 𝛼𝑔2

(2𝜋)4𝑛
−5 exp

⎡⎣−5
4

(︃
𝑛

𝑛𝑝

)︃−4
⎤⎦𝛾exp

[︂
−0.5

(︁
𝑛−𝑛𝑝

𝑛𝑝

)︁2
]︂

(2.3.76)

where 𝛼 is now the generalized Phillips’ constant, 𝛼 = 5(𝐻2
𝑆𝑛

4
𝑝/𝑔

2)(1 − 0.287 ln 𝛾)𝜋4,
𝑛 = 1/𝑇 is the wave frequency, 𝑇 is the wave period, 𝑛𝑝 = (4𝛽/5)1/4𝑔/𝑊 = 1/𝑇𝑝 is the
frequency corresponding to maximum energy density given by the PM spectrum, 𝑇𝑝 is
the peak period, 𝛾 is peak-enhancement factor of the maximum spectral energy to the
corresponding maximum of the PM spectrum or overshoot parameter, and 𝜎 = 𝜎𝑎 is the
left side width (for 𝑛 < 𝑛𝑝) and 𝜎 = 𝜎𝑏 is the right side width (for 𝑛 > 𝑛𝑝).

For the North Sea the overshoot parameter is considered in a range of 1 < 𝛾 < 7
as a function of 𝐻𝑠 and 𝑇𝑝 (and can be extracted from the fig. 2.3.9 from Chakrabarti
and Snider (53)) and values of 𝜎𝑎 and 𝜎𝑏 of 0.07 and 0.09 respectively. The overshoot 𝛾
parameter can represent some kind of non-linear interactions non considered in the PM
spectrum an can be estimated also by eq. 2.3.77.

𝛾 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
5 for 𝑇𝑝√

𝐻𝑆
≤ 3.6

exp
(︁
5.75− 1.15 𝑇𝑝√

𝐻𝑆

)︁
for 3.6 < 𝑇𝑝√

𝐻𝑆
≤ 5

1 for 5 < 𝑇𝑝√
𝐻𝑆

(2.3.77)

The zero-upcrossing period 𝑇𝑍 depends on the peak period 𝑇𝑝 through the rela-
tionship of eq. 2.3.78.

𝑇𝑍 = 𝑇𝑝

√︃
5 + 𝛾

1 + 𝛾
(2.3.78)

The IEC (25) defines the correlation between the PM (𝑆𝑃 𝑀 ) and JONSWAP(𝑆𝐽𝑆)
PSD as:

𝑆𝑃 𝑀 = 0.3125 ·𝐻2
𝑠 · 𝑛4

𝑝 · 𝑛−5 ·
(︃
−1.25

(︂
𝑛𝑝

𝑛

)︂4
)︃

(2.3.79)

𝑆𝐽𝑆 = 𝐶(𝛾) · 𝑆𝑃 𝑀(𝑛) · 𝛾
exp
[︂

−0.5
(︁

𝑛−𝑛𝑝
𝑛𝑝

)︁2
]︂

(2.3.80)
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Figure 2.3.9 – Overshoot parameter in function of the wave height and the peak period
for the JONSWAP spectrum (53)

where 𝐶(𝛾) = 1− 0.287 · ln 𝛾 is the normalizing factor.

Both PM and JONSWAP (𝛾 = 3.3) spectrum are shown in fig. 2.3.10 for 𝐻𝑠 = 6𝑚,
𝑇𝑝 = 10𝑠 (same values used in the 5-MW OWT of Jonkman (34)).
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Figure 2.3.10 – Pierson-Moskowitz and JONSWAP spectrum

2.4 Design loads

After selected the basic layout of the OWT and estimate the aerodynamic and
hydrodynamic actions, the next step in the design process is to consider in detail the
loads related by the turbine. This section shows some international standards used for

53



modeling wind turbines (and OWT); how to estimate the basis loads as the aerodynamic,
gravitational, inertia, operational, ultimate and fatigue loads;

2.4.1 Wind turbine standards

Manwell et al. (29) organizes a variety of relevant standards for the design, testing,
and operation of Wind Turbines. The lead in wind turbine standards is being taken by
the International Electro-technical Commission (IEC). The most important international
standards that are in use today are presented in tab. 2.4.1.

Table 2.4.1 – Some wind turbine-related IEC standards

Other useful, but non-IEC, standards are listed in tab. 2.4.2. These standards were
developed by countries or entities, such as Germanischer Lloyd (GL) or Det Norske Veritas
(DNV).

Table 2.4.2 – Other wind turbine-related standards
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Petrini et al. (5) adapted the classification of the IEC 61400-3 (28) about environ-
mental conditions in the diagram of fig. 2.4.1.

Figure 2.4.1 – Environmental conditions classification

IEC 61400-3 is part of International Standard published by the IEC which rules
the requirements to design an OWT, focusing on the engineering integrity of its structural
components and also concerning with subsystems such as control and protection mecha-
nisms, internal electrical systems and mechanical systems. Together with appropriated
IEC and ISO standards they can properly design an OWT.

2.4.2 Basis for design load

Manwell et al (29) classify onshore wind turbine loads into five categories: steady
(including static loads), cyclic, stochastic, transient (including impulsive loads), and
resonance-induced loads. Each category relates to the action of the wind turbine elements
or by the effects of the environmental action (fig. 2.4.2). For OWTs the effects of marine
conditions as waves and sea currents must be added.
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Figure 2.4.2 – Sources of wind turbine loads (29)

To properly model the loads, it is indicated to organize the loads into categories
following the standards presented in sec. 2.4.1. Burton et al. (27) categorize sources of
loading to be taken into account as:

• aerodynamic loads;

• gravitational loads;

• inertia loads (including centrifugal and gyroscopic effects);

• operational loads arising from actions of the control system.

There are some kind of loads that must be considered in this design process as
ultimate and fatigue loads, partial safety factor for loads and functions of the control and
safety systems.

Ultimate loads refer to likely maximum loads, multiplied by a safety factor which
cover realistic combinations of a wide range of external wind conditions and machine
states. Its common distinguish cases between normal and extreme wind conditions and
between normal machine states and fault states. The first case are defined in terms of
the worst condition occurring for return periods of 50 year for the extreme and 1 year for
normal conditions.

The IEC 61400-1 stipulates that the correlation between an extreme condition and
a fault state must be considered as a design case. The IEC also provides partial safety
factors (tab. 2.4.3) for ultimate loads which have to be properly designed for a limit-state
by calculating the sum of the products of each characteristic load and the appropriated
partial load factor (27).
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Table 2.4.3 – Partial safety factors for loads, 𝛾𝑓 (25)

Unfavourable loads Favourable loads
Normal (N) Abnormal (A) Transport (T) All design situations

1.35* 1.1 1.5 0.9

For the design load case (DLC) of normal design situations (DLC 1.1 of tab. 2.4.4),
the loads are determined using statistical load extrapolation at prescribed wind speeds
between cut-in wind speed and cut-out wind speed (𝑉in and 𝑉out, respectively), and the
partial load factor shall be 𝛾𝑓 = 1.25.

Fatigue loads refer to the component’s ability to withstand an expected number
of cycles of possibly varying magnitude. The design fatigue load spectrum should be
representative of the loading cycles experienced during power production over the full
operational wind speed range taking account the numbers of cycles proportional to the
time spent generating at each wind speed.

Control system maintaining the protection of the system by operating the machine
parameters following the IEC 61400-1. This way this control is activated by reading critical
parameters of the turbine rotational speed, power output, vibration level, and twist of
pendant cables running up into nacelle.

2.4.3 Extreme loads

Extreme loads refer to the states of the machine (normal machine state, machine
fault state, or loss of load) under operational or non-operational load cases. A non-
operational machine state is stationary (i.e. parked, or idling condition), for the cases in
which the wind turbine don’t generates power (and neither start-up or shut-down).

IEC 61400-1 specifies load cases in function of the wind models, characterized
in sec. 2.2.2, as shown tab. 2.4.4 (the following abbreviations are used: 𝑉𝑟 ± 2𝑚/𝑠, the
sensitivity to all wind speeds; 𝐹 , Fatigue; 𝑈 , ultimate strength; 𝑁 , Normal; 𝐴, Abnormal;
𝑇 , Transport and Erection; *, Partial safety for fatigue).

Burton et al. (27) classifies these cases into operational or non-operational states:

• Operational load cases: This state taking into account the investigation of several
load cases to evaluate the effects of extremes of gust loading, wind direction change
and wind shear. The IEC 61400-1 divided this load cases into two distinct types
with the wind field can be modeled in deterministic or stochastic terms. IEC 61400-1
specifies for all operational load cases the use of the following requirements: wind
shear according to the power law 𝑈(𝑧) ∝ 𝑧0.2 (normal wind profile), tower shadow,
inclination of the mean air flow up to 8∘ with respect to the horizontal plane, rotor
aerodynamic and rotor mass imbalances, yaw tracking errors, and air density as
1.225𝑘𝑔/𝑚3 (27).
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Table 2.4.4 – Design load cases (25)

- Power production load cases - normal machine state: DLC 1.1 involves the
operation in turbulent wind field defined by the NTM (normal turbulence model),
with wind speeds at 2𝑚/𝑠 intervals between cut-in wind speed and cut-out wind
speed, normal partial load factor, and investigation of the turbine cut-out wind speed
𝑈0. The DLC 1.2 is a fatigue analysis. DLC 1.3 is for an operation in turbulent wind
field defined by the ETM (extreme turbulence model). DLCs 1.4 and 1.5 specify
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transient cases that have been selected as potentially critical events in the life of a
wind turbine.

- Machine fault state: Carry out the effects of the occurrence of fault or loss of
electrical network while a power production (DLCs 2.1 to 2.4)

- Start-up and shut-down load cases: Taking account the transients start-up
(DLCs 3.1 to 3.3) and shut-down (DLCs 4.1, 4.2), based on the control system
behavior and a emergency shutdown (DLC 5.1).

• Non-operational load cases (parked)

- Normal machine state: The design wind speed for this load case is normally
taken as the gust speed with a return period of 50 years. This factor depends on the
gust duration and the size of the loaded area. For this load case, IEC 61400-1 takes
into account the possibility of grid failure, preventing that the yaw system track
any subsequent changes in wind direction (in the absence of faults or grid loss cater
for varying yaw misalignments, DLCs 6.1 and 6.3; in case of loss of grid connection,
DLC 6.2; in case of yaw slippage, DLC 6.4).

- Machine fault state: Involves the failure of the yaw or pich mechanisms. The
gust speed for this load case is commonly taken with a return period of 1 year (DLC
7.1).

Other cases involves transportation, installation, maintenance, or repair design
situation and appropriate external conditions (DLCs 8.1 and 8.2).
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3 Structural modeling and
vibration control of OWT

In this chapter are presented the NREL 5-MW OWT reference used in this thesis,
a brief review of vibration control techniques applied to wind turbines, focusing on the
Pendulum Tuned Mass Damper (PTMD) passive controller type, and three main structural
modeling that uses the PTMD for vibration control: the tower+PTMD 2DOF, OWT+FEM,
and OWT+SEM models.

3.1 NREL 5-MW OWT definition

The OWT modeled in this thesis belongs to the Offshore Code Comparison Collab-
oration (OC3) NREL Phase 1 (18), i.e. the NREL 5-MW OWT with a rigid foundation in
20 m of water, represented schematically on the first draw of fig. 3.1.1. This wind turbine
is a conventional three-bladed, upwind, variable-speed, variable-blade-pitch-to-feather-
controlled turbine. For more details about Phases I to IV see the (55, 56, 57, 58) references.

Figure 3.1.1 – Support structure concepts investigated within the OC3 project for the
phases I-II, III and IV (which is not modeled here), respectively
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Table 3.1.1 – Summary of properties for the NREL 5-MW baseline wind turbine

Rating 5 MW
Rotor orientation, configuration Upwind, 3 blades

Control Variable speed, collective pitch
Drivetrain High speed, multiple-stage gearbox

Rotor, hub diameter 126𝑚, 3𝑚
Hub height 90𝑚

Cut-in, rated, cut-out wind speed 3𝑚/𝑠, 11.4𝑚/𝑠, 25𝑚/𝑠
Cut-in, rated rotor speed 6.9𝑟𝑝𝑚, 12.1𝑟𝑝𝑚

Rated tip speed 80𝑚/𝑠
Overhang, shaft tilt, precone 5𝑚, 5ž, 2.5ž

Rotor mass 110, 000𝑘𝑔
Nacelle mass 240, 000𝑘𝑔
Tower mass 347, 500𝑘𝑔

Coordinate location of overall center of mass (CM) (−0.2𝑚, 0.0𝑚, 64.0𝑚)

Specifications of the NREL offshore 5-MW baseline wind turbine are summarized
in the tab. 3.1. The hydrodynamic and elastic properties of the varying offshore support
structures are also controlled. Furthermore, the turbulent full-field wind inflow and regular
and irregular wave kinematics are evaluated, including specific turbulence models, wave
theories, or stochastic realizations.

The distributed tower properties of the model are based on the base diameter (6𝑚)
and its thickness (0.027𝑚), top diameter (3.87𝑚) and its thickness (0.019𝑚), and effective
mechanical steel properties of the tower used in the DOWEC study, as given in Table
9 on page 31 of (59). The radius and thickness of the tower are assumed to be linearly
tapered from base to top. The tower-monopile connection presents a constant diameter
and thickness of 6𝑚 and 0.060𝑚, respectively. The tower base begins at an elevation of
10𝑚 above the mean sea level (MSL). The monopile extends from the tower base down
to the mud line, which is at 20𝑚 below MSL. The Young’s and shear modulus, and the
effective density of the steel are, respectively, 210𝐺𝑃𝑎, 80.8𝐺𝑃𝑎, and 8, 500𝑘𝑔/𝑚3. The
8, 500𝑘𝑔/𝑚3 is meant to be an increase above steel’s typical value of 7, 850𝑘𝑔/𝑚3 due
to the not accounted paint, bolts, welds, and flanges in the thickness data. The support
structure incorporates 1% critical structural damping in all modes of the isolated structure
(without the top mass present), which corresponds to the values used in the DOWEC
study from page 21 of (59).

Jonkman et al. (18) define Phase I-II load-case (LC) simulations including all
relevant aerodynamic and hydrodynamic effects (e.g., turbulence, tower shadow, dynamic
stall, wind shear, and Wheeler stretching). Individual subsystems are modeled as flexible
or rigid depending on the evaluated LC, as follows:

• Load case 1.X: Modal properties in terms of the coupled subsystem eigenfrequencies;

• Load case 2.X: Completely rigid structure;
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• Load case 3.X: Flexible onshore wind turbine (rigid substructure), using the land-
based version of the NREL offshore 5-MW baseline turbine, as documented in
(34);

• Load case 4.X: Flexible offshore structure with tower top mass (rigid nacelle and
rotor); also referred to as an “inverted pendulum”;

• Load case 5.X: Fully flexible offshore wind turbine;

Load cases 1.1 and 1.2 consists of the eigenanalysis without and with gravity and
structural damping, respectively, of the entire system (substructure, tower, drivetrain,
blades), and the frequencies are computed as shown fig. 3.1.2 (18).

Figure 3.1.2 – Full-system natural frequencies of the phase I fully flexible OWT (18)

In Jonkman et al’s (18) report, turbulent wind conditions are considered for
LCs with two sets of turbulent wind fields. These turbulence fields are modeled by the
International Electrotechnical Commission (IEC) Turbulence Simulator from the WAsP
Engineering model, one at 𝑈hub = 𝑈𝑟 = 11.4 𝑚/𝑠, i.e., rated wind speed and one at
𝑈hub = 18 𝑚/𝑠, i.e., in the full load range of the turbine. Both turbulence fields follow the
Mann model in conformity with IEC 61400-1 ed.3 (25) using a reference value of 𝐼ref = 0.14
for the turbulence intensity (turbine class II of tab. 2.2.2).

3.2 Vibration control strategies

Wind turbines have become one of the most used technologies for power generation.
Researchers have been instigating to find its limitations, to improve its productivity and
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effectiveness, based on the structural dynamics and control systems (60).

High vibration levels occur in HAWTs and blades due to its height, slenderness, and
heavy loads on the tower top (composed of the generator, gearbox, and other components).

Structural control mechanisms have been developed to balance dynamic forces on
a wind turbine system, such as earthquake excitation, wind loads, and waves (for offshore
turbines). The use of control systems increases wind turbines efficiency by minimizing
its vibration and the rotor-nacelle assembly vibration. Damping devices, such as tuned
mass dampers, tuned liquid mass dampers, controllable fluid dampers, among others, are
commonly used to dissipate the system energy.

3.2.1 Classification of vibration control systems

Structural control systems can be passive, active, hybrid, and semi-active. Passive
energy dissipater includes materials and devices which enhancing damping, stiffness, and
strength. The other control systems exert external force devices by using sensors, controllers,
and signal processing (4).

Several researchers have been studying the use of structural control to help suppress
the wind-induced vibrations experienced by Wind Turbines and Offshore Wind Turbines
(OWTs), especially the passive controller Tuned Mass Dampers (TMD) (61, 62, 63, 64, 65).
Rahmat et al. (60) and Yilmaz (63) present a literature survey about the performance
enhancement of wind turbine systems with vibration control following fig. 3.2.1.

Figure 3.2.1 – Wind turbine vibration control types (63)

Passive control consists of adding one or more devices to the main structure to
absorb or transfer part of its energy (65). Passive control typical mechanisms are, for
example, mass dampers that control structural response transferring the main structure
energy to an auxiliary mass, metallic dampers that dissipate energy while deforming
themselves, and base isolation systems that uncouple structure moving from seismic soil
vibrations. A passive control system does not require an external power source (66), is
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easy to implement and is widely used in wind turbine systems (67). System controllers
control the input of forces with the excitation amplitudes measured by sensors.

The active control mitigates the structural vibration of a system with actuators
that exert forces or torques to the structure, with real-time data processors and sensors,
according to a control law. The forces exerted have the same magnitude as the measure of
the forces by real-time processors. Sensors can measure excitation amplitude, structural
response amplitudes. Active control is another widely used alternative to control structural
vibrations in wind turbines (68, 69). Figure 3.2.2 shows how the structure is controlled by
a typical active control (67).

Figure 3.2.2 – Structure with active control (67)

Semi-active controllers combine the best features of active and passive controllers
providing better performance. The semi-active approach has become attractive for struc-
tural vibration control applications due to controllable damping and low power requirement
for operating damping devices. Its operation is similar to the active controller of fig. 3.2.2,
but with an addition of a passive energy dissipater in the control actuator. This type
of control makes the wind turbine more effective. Many research investigate the use of
semi-active controls in wind turbines and OWT with tuned liquid dampers, or controllable
fluid dampers like a magnetorheological tuned vibration absorber (70, 71, 72).

3.2.2 Vibration control dampers

A brief review and applications of some classic, pendulum, active, liquid, column-
liquid, controllable-fluid tuned mass dampers are presented below:

Tuned mass damper (TMD)

The beginning of the TMD appliance to civil structures was in the sixties on high
buildings, bridges, towers, and industrial chimneys to control vibrations caused by wind
forces.

Later TMDs were designed for specific construction such as wind turbines. A
scheme of a TMD in a wind turbine is illustrated in fig. 3.2.3.
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Figure 3.2.3 – Construction of a TMD in a wind turbine (67)

The TMD is a control device composed of a mass-spring-dashpot attached to
the structure, aiming to reduce structural vibration response (73). A TMD tuned to the
first structure natural frequency reduces substantially the response associated with the
first mode vibration while little reducing or even increasing the response associated with
higher modes. Moreover, a single TMD is more sensitive to discrepancies on the first
natural frequency and/or damping ratio considered on the design. These limitations can
be overcome by adding more than one damper, each one of them tuned to a different
vibration natural frequency (74).

Extensive applications of passive devices coupled to wind turbines and OWTs have
been investigated in the last years (75, 65, 76, 64, 77, 63, 67, 61, 78, 79, 80, 81, 82, 83, 3).

Murthag et al. (84) use a passive to mitigate the vibration level of a simplified wind
turbine model which includes the blade/ tower interaction and a rotationally sampled
turbulence.

He et al. (61) designed a TMD to suppress the vibration of a barge-type offshore
floating wind turbine by using a genetic optimization.

Single (61, 80) and multiple (83) TMDs are applied in many articles in the literature.
Other authors (65, 76, 64, 82) present numerical models based on open-source FAST
(NREL).

A robust optimal design criterion for a single TMD device analyzing a case of
structural vibration control of the main system subject to stochastic dynamic loads was
proposed by Marano et al (85). The dynamic input is represented by a random base
acceleration, modeled by a stationary filtered white noise process.

Bakre and Jangid (86) search for optimum TMD parameters for different damping
ratios of the main system and the mass ratios of the TMD system. The applied excitation
of the main system consists of an external force and base acceleration modeled as a
Gaussian white-noise random process. Using the numerical searching technique, the
optimum damping and tuning frequency ratio of the TMD are obtained for minimization
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of various mean square responses such as relative displacement, the velocity of the main
mass, and force transmitted to the support.

Lavan et al. (87) reached a multi-objective optimal design of TMDs minimizing
simultaneously the structural responses, the TMD mass, and the TMD stroke.

A numerical procedure based on the MinMax method was performed by Tsai et
al. (88). The design criteria are obtained through frequency response function minimiza-
tion searching its minimum-maximum amplitudes. This minimization is achieved by an
optimization iterative process.

Some meta-heuristic optimization methods were been used to search optimum
TMD design parameters such as Genetic Algorithms (GAs) (89, 90, 91), harmony search
algorithms (92), bionic algorithms (93), ant colony optimization (94), particle swarm
optimization (95), and hybrid approaches such as an adaptive genetic simulated annealing
method (96).

A frequency-based optimization technique (62) finds design variables such as mass,
period, and damping ratio of TMD on the top of a structure using a music-inspired
algorithm called harmony search.

Mohebbi et al. (97) use GAs for designing optimal Multiple Tuned Mass Dampers
(MTMDs) to mitigate the seismic response of structures. They considered the parameters
of TMDs as variables and aimed the minimization of the maximum structural response as
an objective function while some constraints have been applied to TMDs response and
parameters.

Two different optimization criteria of TMDs applied to a slender structure excited by
wind load are investigated by Morga et al. (98): the reduction of the maximum displacement
at the top of the structure; the reduction of the maximum inertial acceleration at the top
of the structure. The wind load is defined by a superposition of the mean wind velocity
and filtered white noise.

Pendulum TMD (PTMD)

One of the alternative geometries of the TMD is the PTMD device. The main
structure excites the device and part of its energy is transferred by its movement and then
it is dissipated by the pendulum damper. In comparison to the TMD, the pendulum length
is an extra dimension used for tuning, enabling several optimal PTMD configurations.
This type of damper has its vibration period depending on the length of the cable, and
can only be considered a linear device when the vibration amplitudes are small.

Figure 3.2.4 shows a schematic description of PTMD. The main PTMD parameters
are: the pendulum length (𝐿𝑝), mass (𝑀𝑝), torsional stiffness (𝐾𝑝) and damping (𝐶𝑝).
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Figure 3.2.4 – Schematic description of the Pendulum-TMD

Pendulum tuned mass dampers (PTMDs) have been investigated in high-rise
slender buildings due to the simplicity of installation and maintenance. Murtagh et al. (99)
define optimal parameters for a PTMD to control structural vibration of slender towers
by reducing the system to two degrees of freedom (2DOF): a mass-spring system with a
pendulum attached.

Oliveira et al. (100) proposed a set of general dimensionless optimal parameters
for a PTMD, that can be employed in the design to control any tower, subjected to
deterministic or random dynamic loads, with different mass and damping ratios.

Deraemaeker and Soltani (101) introduced an analytical formula for the optimum
design of the linear Pendulum Tuned Mass Damper (PTMD) coupled to an undamped
primary system applying Den Hartog’s equal peak method (102) to derive the optimum
design. They calculated the optimum length and damping of the pendulum by using the
mass ratio between the primary system and the PTMD.

Orlando and Gonçalves (103) modeled a PTMD that controls excessive vibrations in
slender towers presenting a parametric analysis of non-linear oscillations of a tower-damper
system, searching the best configurations to reduce vibrations and tower construction. The
main structure excites the device and part of its energy is transferred by its movement
and then it is dissipated by the PTMD.

Xiang and Nishitani (104) performed both experimental and numerical studies
to examine the seismic performance of the pendulum-type non-traditional tuned mass
damper system (PNTTMD) to control structural vibrations, founding satisfactory control
of inter-story drift and floor absolute acceleration, requiring small movement space.

A similar study was presented by Gerges and Vickery (105) using a PTMD to
reduce the structure RMS displacement subjected to force and accelerations simulating
random excitations such as white noise. A numerical study was performed to obtain
optimal parameters to a damped main system subjected to seismic and wind loads.
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Guimarães et al. (106) use an inverted PTMD to reduce the vibration of a simplified
offshore wind turbine model.

Sun and Jahangiri (79) developed an analytical model of the NREL monopile 5MW
OWT (34) coupled with a 3D-PTMD, under the misaligned wind, wave, and seismic loading,
showing that unidirectional vibration attenuation is inadequate for real applications.

Active TMD (ATMD)

The ATMD is a hybrid device consisting of a passive TMD supplemented by an
actuator parallel to the spring and damper. The active element of the ATMD is controlled
by the feedback of the tower top displacement and the relative velocity of the damper
mass. The ATMD is a well-known concept in structural control, especially for mitigation of
excessive dynamic response of high-rise buildings subjected to strong wind and earthquake
loads. Brodersen (107) uses an ATMD for damping offshore wind turbine vibrations,
proving that the ATMD yield enhanced damping performance compared with the passive
TMD.

Tuned liquid/ column damper (TLD/TLCD)

One common device for vibration control is the TLD. It can be designed to be a
passive, active, or semi-active device for structural vibration control. The Tuned Liquid
Column Damper (TLCD) is a TLD variation type with a U-shaped tube filled with a
volume liquid that acts as a mass of the damper, typically placed on top of the structures.
The liquid volume of a TLD or TLCD oscillates by a sloshing fluid-structure interaction
re-establishing the system equilibrium.

Mensah (77) uses the TLCD to improve the wind turbine tower reliability. Fig-
ure 3.2.5 shows a schematic diagram of a 5-MW wind turbine equipped with two TLCDs.
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Figure 3.2.5 – (a) A schematic diagram of a 5-MW wind turbine equipped with two TLCDs
(b) TLCD model (77)

Controllable fluid damper

The controllable fluid damper is semi-active devices that use controllable fluids, such
as Electrorheological (ER) and Magnetorheological (MR), inside a damper for structural
vibration control. ER/MR controllable fluids can change from a free-flowing state to a
semi-solid state when it comes to an electric (ER) or magnetic (MR) field (67, 70).

3.3 Structural modeling for vibration control

3.3.1 Tower and PTMD 2DOF modeling approach

The equation of motion of a tower with a tip mass subjected to a distributed force
𝑓(𝑧, 𝑡) is given by

[𝑚+𝑀𝛿(𝑧 −𝐻)] �̈�(𝑧, 𝑡) + 𝑐�̇�(𝑧, 𝑡) + 𝐸𝐼𝑤𝑖𝑣(𝑧, 𝑡) = 𝑓(𝑧, 𝑡) (3.3.1)

where �̈�(𝑧, 𝑡) is a second partial derivative with respect to time t, 𝑤𝑖𝑣(𝑧, 𝑡) is a fourth
partial derivative with respect to 𝑧, 𝐸𝐼 is the bending stiffness, 𝑚 and 𝑀 are the mass
per unit length of the beam and the tip mass, respectively, and 𝑐 is the viscous-damping
coefficient. The Dirac delta 𝛿(𝑧 −𝐻) is used to apply the tip mass 𝑀 at the tower height
𝐻, where 𝑧 is the position along tower axis.

To reduce the tower dynamic system (3.3.1) to a SDOF, we assume the following
separated space-time transversal displacement function in terms of 𝑤(𝑧, 𝑡) ∼= 𝑤ℎ(𝑧, 𝑡) =
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𝜓(𝑧)𝑦(𝑡), where 𝑦(𝑡) is the tip transversal displacement, and 𝜓(𝑧) = 1 − cos(𝜋𝑧/2𝐻) is
the assumed shape function.

Substituting the assumed function shape 𝑤ℎ(𝑧, 𝑡) into equation (3.3.1), Avila et
al. (108) obtained the equivalent-SDOF dynamic system governed by

𝑀𝑠𝑦(𝑡) + 𝐶𝑠�̇�(𝑡) +𝐾𝑠𝑦(𝑡) = 𝐹𝑠(𝑡) (3.3.2)

where the equivalent stiffness 𝐾𝑠, damping 𝐶𝑠 and mass 𝑀𝑠 of the SDOF are respectively
represented by:

𝐾𝑠 =
∫︁ 𝐻

0
𝐸𝐼[𝜓′′(𝑥)]2𝑑𝑥 =

∫︁ 𝐻

0
𝐸𝐼

𝜋4

16𝐻4 cos2
(︂
𝜋𝑥

2𝐻

)︂
𝑑𝑥 ∴ 𝐾𝑠 = 𝐸𝐼𝜋4

32𝐻3 (3.3.3)

𝐶𝑠 =
∫︁ 𝐻

0
𝑐𝜓2(𝑥)𝑑𝑥 =

∫︁ 𝐻

0
𝑐
[︂
1− cos

(︂
𝜋𝑥

2𝐿

)︂]︂2
𝑑𝑥 ∴ 𝐶𝑠 = 𝑐𝐿

2𝜋 (3𝜋 − 8) (3.3.4)

𝑀𝑠 = 𝑀 +
∫︁ 𝐻

0
𝑚𝜓2(𝑥)𝑑𝑥 = 𝑀 +

∫︁ 𝐻

0
𝑚
[︂
1− cos

(︂
𝜋𝑥

2𝐿

)︂]︂2
𝑑𝑥

∴ 𝑀𝑠 = 𝑚𝐿

2𝜋 (3𝜋 − 8) +𝑀 (3.3.5)

Additionally, the equivalent force representing a discrete harmonic force 𝑓(𝑧, 𝑡) = 𝐹0𝛿(𝑧 −
𝐻) sin(𝑛𝑡) on tower top is computed as:

𝐹𝑠(𝑡) =
∫︁ 𝐿

0
𝑓(𝑧, 𝑡)𝜓(𝑥)𝑑𝑥 ∴ 𝐹𝑠(𝑡) = 𝐹0𝑠𝑖𝑛(𝑛𝑡) · 𝜓(𝐻) (3.3.6)

The PTMD is attached to the SDOF falling into a 2DOF discrete system described
by Fig. 3.3.1 (73).

Figure 3.3.1 – Structure with a linear pendulum attached (2DOF) excited by a force 𝐹𝑠(𝑡).

The equations of motion of the 2DOF system are given by

(𝑀𝑠 +𝑀𝑝)𝑦 +𝑀𝑝𝐿𝑝𝜃 + 𝐶𝑠�̇� +𝐾𝑠𝑦 = 𝐹𝑠(𝑡) (3.3.7)
𝑀𝑝𝐿𝑝𝑦 +𝑀𝑝𝐿

2
𝑝𝜃 + 𝐶𝑝𝜃 + (𝐾𝑝 +𝑀𝑝𝑔𝐿𝑝)𝜃 = 0
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These equations can be rewritten in a matrix form as follows.⎡⎣(𝑀𝑠 +𝑀𝑝) 𝑀𝑝𝐿𝑝

𝑀𝑝𝐿𝑝 𝑀𝑝𝐿
2
𝑝

⎤⎦⎡⎣𝑦
𝜃

⎤⎦+
⎡⎣𝐶𝑠 0

0 𝐶𝑝

⎤⎦ ⎡⎣�̇�
𝜃

⎤⎦+

+
⎡⎣𝐾𝑠 0

0 (𝐾𝑝 +𝑀𝑝𝑔𝐿𝑝)

⎤⎦⎡⎣𝑦
𝜃

⎤⎦ =
⎡⎣𝐹𝑠(𝑡)

0

⎤⎦ (3.3.8)

where 𝑀𝑠 is the main equivalent mass; 𝐶𝑠 is the main equivalent damping; 𝐾𝑠 is the main
equivalent stiffness; 𝑀𝑝 is the pendulum mass; 𝐶𝑝 is the pendulum damping; 𝐾𝑝 is the
pendulum stiffness; 𝐿 is the cable length; 𝑔 is the gravity acceleration; 𝐹𝑠(𝑡) = 𝐹𝑠0𝑒

𝑖𝑛𝑡 is
the excitation modal force; 𝑦(𝑡) is the main system displacement; and 𝜃(𝑡) is the pendulum
angular displacement.

Considering 𝐹𝑠(𝑡) = 𝑒𝑖𝑛𝑡, 𝑦(𝑡) = 𝐻𝑦(𝑛)𝑒𝑖𝑛𝑡 and 𝜃(𝑡) = 𝐻𝜃(𝑛)𝑒𝑖𝑛𝑡, (3.3.8) can be
rewritten by the linear equation system (3.3.9).⎡⎣𝐴11 𝐴12

𝐴21 𝐴22

⎤⎦⎡⎣𝐻𝑦(𝑛)
𝐻𝜃(𝑛)

⎤⎦ =
⎡⎣1
0

⎤⎦ (3.3.9)

where 𝐻𝑦(𝑛) and 𝐻𝜃(𝑛) are respectively the structure and the pendulum frequency transfer
function:

𝐴11 = −(𝑀𝑠 +𝑀𝑝)𝑛2 + 𝐶𝑠𝑖𝑛+𝐾𝑠,

𝐴12 = 𝐴21 = −𝑀𝑝𝐿𝑝𝑛
2,

𝐴22 = −𝑀𝑝𝐿
2
𝑝𝑛

2 + 𝐶𝑝𝑖𝑛+ (𝐾𝑝 +𝑀𝑝𝑔𝐿𝑝).

Oliveira et al. (100) solved the linear equation system (3.3.9) given the frequency
transfer functions 𝐻𝑦(𝑛) (3.3.10) and 𝐻𝜃(𝑛) (3.3.11).

𝐻𝑦(𝑛) = 𝐴𝑦0 + 𝐴𝑦1𝑛+ 𝐴𝑦2𝑛
2

𝐵0 +𝐵1𝑛+𝐵2𝑛2 +𝐵3𝑛3 +𝐵4𝑛4 (3.3.10)

𝐻𝜃(𝑛) = 𝐴𝜃0 + 𝐴𝜃1𝑛+ 𝐴𝜃2𝑛
2

𝐵0 +𝐵1𝑛+𝐵2𝑛2 +𝐵3𝑛3 +𝐵4𝑛4 (3.3.11)

where

𝐴𝑦0 = 𝐿𝑝𝑀𝑝𝑔 +𝐾𝑝; 𝐴𝑦1 = 𝑖𝐶𝑝𝐿
2
𝑝; 𝐴𝑦2 = −𝐿2

𝑝𝑀𝑝;

𝐴𝜃0 = 0; 𝐴𝜃1 = 0; 𝐴𝜃2 = 𝐿𝑝𝑀𝑝;

𝐵0 = 𝐾𝑠(𝐾𝑝 + 𝐿𝑝𝑀𝑝𝑔); 𝐵1 = 𝑖(𝐶𝑠𝐾𝑝 + 𝐶𝑝𝐾𝑠𝐿
2
𝑝 + 𝐶𝑠𝐿𝑝𝑀𝑝𝑔);

𝐵2 = −(𝐾𝑝𝑀𝑝 +𝐾𝑝𝑀𝑠 + 𝐶𝑝𝐶𝑠𝐿
2
𝑝 +𝐾𝑠𝐿

2
𝑝𝑀𝑝 + 𝐿𝑝𝑀

2
𝑝 𝑔 + 𝐿𝑝𝑀𝑝𝑀𝑠𝑔);

𝐵3 = −𝑖𝐿2
𝑝(𝐶𝑝𝑀𝑠 + 𝐶𝑠𝑀𝑝 + 𝐶𝑝𝑀𝑝); 𝐵4 = 𝐿2

𝑝𝑀𝑝𝑀𝑠.

3.3.2 Offshore wind turbine and PTMD FEM model

This section presents the procedures to obtain the dynamic structural response of
the OWT+PTMD model using the FEM following the detailed specifications of Phase I
(monopile type) of the NREL 5-MW OWT by Jonkman et al. (34).
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3.3.2.1 Dynamic Structural Response

As said before, structural analysis in the frequency domain can be performed to
evaluate the dynamic response of OWTs subjected to both the environmental and rotating
blade actions. Following Davenport (109), the peak response 𝑟𝑝 of the structure is expressed
in terms of its mean value (𝑟𝑚) generated by the mean wind (including the VS effect on
the tower) and by sea current, and the response standard deviation (𝜎𝑟), which is related
to the effects of the turbulent wind and the waves, by making use of the response peak
factor 𝑔𝑟, as reported in eq. 3.3.12. The soil-structure interaction is not considered in this
paper (the structure is assumed to be fully restrained at the seabed).

𝑟𝑝(ℎ) = 𝑟𝑚 + 𝑔𝑟 · 𝜎𝑟(ℎ) (3.3.12)

where 𝜎𝑟 is the response deviation and the peak factor is computed by

𝑔𝑟 =
√︁

2 ln (𝜂𝑐𝑟 · 𝑇𝑤𝑖𝑛𝑑) + 0.577√︁
2 ln (𝜂𝑐𝑟 · 𝑇𝑤𝑖𝑛𝑑)

(3.3.13)

where 𝜂 is the cycling rate of effective frequency for the response (taken equal to the first
eigenfrequency of the system) and 𝑇𝑤𝑖𝑛𝑑 is the time interval over which the maximum
value is evaluated.

Operatively, the 𝑟𝑚 is computed by a static analysis with the application of the
maximum values of the forces or of the displacements evaluated in previous equations
for the mean wind (equation 2.2.59), for the vortex shedding effects (eqs. 2.2.80 which
directly computes the response, and 2.3.63 by assuming herein cos(−) = 1) and for the
sea current (equation 2.3.47), while 𝜎𝑟 can be evaluated by a PSD analysis by applying
the power spectra of waves’ force (equation 2.3.57) and of turbulent wind components as
sampled by rotating blades (eq. 2.2.79), as the area underpinned by the response PSD for
the response parameter 𝑟 (6), which in the following sections will be the displacement at
the hub of the OWT.

3.3.2.2 3D OWT+PTMD FEM model

In order to create the FE model, an integrated MATLAB®/ ANSYS® APDL
routine create samples of wave and wind rotational spectra, as well the hydrodynamic and
aerodynamic loads over the structure. A flowchart represents the ANSYS®/ MATLAB®

integrated routines for the global 3D Finite Element analysis of the OWT (eventually
provided with the PTMD) is shown in fig. 3.3.2.

Square shapes in the flowchart stand for routines, while rhomboidal shapes stand
for input/output data. The flux of the analyzes is represented in the vertical direction,
while the flux of the data is represented in the horizontal one.

Initial input (left side column) regards the environmental conditions concerning
the wind and the hydrodynamic fields chosen for the analysis, these includes the wind
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Figure 3.3.2 – Flowchart of the integration between ANSYS and MATLAB routines

velocity at the hub height, the waves height and the waves period. These inputs are passed
to a MATLAB® routine defining the load cases first (e.g. parked or rotating blades) and
the load spectra later (PSDs of the wind and waves), together with the turbine geometry
parameters and saves all these data to a file before launching the ANSYS® routine who
performs the structural analyzes (static+modal+PSD) and returns back to MATLAB® the
PSD and the mean values of the response parameters for final computation (in MATLAB®)
of the peak response.

The gross properties of the NREL baseline OWT modeled are shown in Table 3.1,
while a schematic representation of the FE model developed in ANSYS is shown in Figure
3.3.3.
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Figure 3.3.3 – Schematic description of the FE model of the OWT developed in ANSYS.
Nodes and loads (left); type of FE used (right).

BEAM188 element type is used for the tower and the submerged monopile, and
a CTUBE tapered section connects the bottom and the tip of the tower considering the
thickness variation along the height. The Rotor-Nacelle Assembly (RNA) is modeled by
two MASS21 elements, one for the hub (connected to the tower-top with a rigid CERIG
command) and other for the nacelle (with a COMBIN14 connection to a tower-top). The
PTMD was modeled using a rigid connector (BEAM4) of length Lp, and a MASS21
connected with a COMBIN14 torsional spring at the tower-top.

To analyze the stochastic aerodynamic loads of blades in the frequency domain, the
rotationally sampled spectrum (27) is applied at the hub node. The wind turbulent model
along the tower follows the Kaimal spectrum together with its respective coherence, and
was applied along the 10 nodes of the tower, while the wind-induced vortex shedding effect
𝑟𝑉 𝑆

across (eq. 2.2.80) was added to the mean value of the peak response in the across-wind
(side-side) direction. 𝑟𝑉 𝑆

across was imposed to the node located at the hub height, when the
wind velocity 𝑉𝑚 herein (𝑈ℎ𝑢𝑏) falls within reduced velocity range of 0.8/𝑆𝑡 < 𝑉𝑅 < 1.6/𝑆𝑡,
being 𝑉𝑅 the reduced velocity defined as (46):

𝑉𝑅 = 𝑈ℎ𝑢𝑏

𝑓𝑛𝐷
(3.3.14)

where 𝑓𝑛 is the first natural frequency of the tower in the side-side direction. The waves
spectral density 𝑆𝜂 is represented by the JONSWAP spectrum. The wave force PSD (eq.
2.3.57) is applied at the two nodes located at- and below- the SWL.
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3.3.3 Offshore wind turbine and PTMD spectral element model

The SEM is a practical and accurate technique to analyze the dynamic behaviors of
structures. It is formulated in the frequency domain and the structural element interpolation
function is the exact analytical solution of the differential equation. Hence, the number of
elements required for a spectral model will coincide with the number of discontinuities in
the structure. This section presented the use of SEM to model a wind turbine composed of
the wind rotor and nacelle supported by a high and slender tower coupled with a PTMD.
Therefore, it is also demonstrated in the PTMD spectral model formulation.

3.3.3.1 Beam spectral element

The fundamental equation for the flexural motion in a beam is presented in this
section. Figure 3.3.4 shows an elastic two-node beam element with a uniform cross-section.

Figure 3.3.4 – Two-node beam spectral element.

The undamped Euler-Bernoulli beam equation of motion under bending vibration
is given by

𝐸𝐼
𝜕4𝑣(𝑥, 𝑡)
𝜕𝑥4 + 𝜌𝐴

𝜕2𝑣(𝑥, 𝑡)
𝜕𝑡2

= 𝑞(𝑥, 𝑡) (3.3.15)

and spectral representation gives

𝐸𝐼
𝑑4v̂
𝑑𝑥4 + 𝑛2𝜌𝐴v̂ = 𝑞(𝑥, 𝑡)

where 𝐸 ,𝐼, 𝜌, 𝐴 are Young’s modulus, inertia moment, mass density per unit length, and
cross-section area, respectively; 𝑣(𝑥, 𝑡) is the transversal displacement and 𝑞(𝑥, 𝑡) external
load. A structural internal damping is introduced into the beam formulation by adding
into the variable (𝐸 · 𝐼) a deterministic part (𝐸0 · 𝐼0) weighted by a complex damping
factor (𝑖𝜂, 𝑖 =

√
−1), to obtain 𝐸𝐼 = 𝐸 · 𝐼 + (𝐸0 · 𝐼0)𝑖𝜂. By considering the homogeneous

differential equation with constant properties along the beam length, the spectral form of
equation (3.3.15) became:

𝑑4v̂
𝑑𝑥4 − 𝑘

4v̂ = 0, (3.3.16)

where the wavenumber is
𝑘4 = 𝑛2 𝜌𝐴

𝐸𝐼
. (3.3.17)
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By considering solutions of the form 𝑒−𝑖𝛽𝑥, the wave number relates with propagating
and evanescent waves are 𝑘 = ±𝛽 and 𝑘 = ±𝑖𝛽 respectively. For the spectral Euler-Bernoulli
beam element of length 𝐿, the general solution of equation. (3.3.16) can be obtained of
the form

𝑣(𝑥, 𝑛) = 𝑎1𝑒
−𝑖𝑘𝑥 + 𝑎2𝑒

−𝑘𝑥 + 𝑎3𝑒
−𝑖𝑘(𝐿−𝑥) + 𝑎4𝑒

−𝑘(𝐿−𝑥) (3.3.18)
= s(𝑥, 𝑛)a (3.3.19)

where

s(𝑥, 𝑛) =
{︁
𝑒−𝑖𝑘𝑥, 𝑒−𝑘𝑥, 𝑒−𝑖𝑘(𝐿−𝑥), 𝑒−𝑘(𝐿−𝑥)

}︁
,

a(𝑥, 𝑛) = {𝑎1, 𝑎2, 𝑎3, 𝑎4}𝑇 (3.3.20)

The spectral nodal displacements and slopes of the beam element are related to
the displacement field at node 1 (𝑥 = 0) and node 2 (𝑥 = 𝐿), by

d =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑣1

𝜑1

𝑣2

𝜑2

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑣(0)
𝑣′(0)
𝑣(𝐿)
𝑣′(𝐿)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑠(0, 𝑛)
𝑠′(0, 𝑛)
𝑠(𝐿, 𝑛)
𝑠′(𝐿, 𝑛)

⎤⎥⎥⎥⎥⎥⎥⎦ a = G(𝑛)a (3.3.21)

where

G(𝑛) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 𝑒−𝑖𝑘𝐿 𝑒−𝑘𝐿

−𝑖𝑘 −𝑘 𝑖𝑒−𝑖𝑘𝐿𝑘 𝑒−𝑘𝐿𝑘

𝑒−𝑖𝑘𝐿 𝑒−𝑘𝐿 1 1
−𝑖𝑒−𝑖𝑘𝐿𝑘 −𝑒−𝑘𝐿𝑘 𝑖𝑘 𝑘

⎤⎥⎥⎥⎥⎥⎥⎦ (3.3.22)

The frequency-dependent displacement within an element is interpolated from the
nodal displacement vector d by eliminating the constant vector a from equation (3.3.21)
it is expressed as

𝑣(𝑥, 𝑛) = g(𝑥, 𝑛)d (3.3.23)

where the shape function is

g(𝑥, 𝑛) = s(𝑥, 𝑛)G−1(𝑛) = s(𝑥, 𝑛)Γ(𝑛) (3.3.24)

Considering that 𝜌𝐴𝑛2 = 𝐸𝐼𝑘4 and substituting in equation. 3.3.15, the weak
form can be derived from weight-integral to obtain the dynamic stiffness matrix for the
two-nodes beam element by,

S𝑏(𝑛) = 𝐸𝐼

[︃∫︁ 𝐿

0
g′′(𝑥)𝑇 g′′(𝑥)𝑑𝑥− 𝑘4

∫︁ 𝐿

0
g(𝑥)𝑇 g(𝑥)𝑑𝑥

]︃
(3.3.25)

where ′ express the spatial partial derivative. Solving the integral the dynamic stiffness
matrix.
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3.3.3.2 Nodal representation of distributed load

The distributed load was incorporated into the spectral beam formulation as
presented in Doyle (8). To determine the contribution of the distributed load to the
dynamic stiffness matrix the procedure is to also multiply the force 𝑞(𝑥) by the form
function g(𝑥) and integrating over the limits, it has

𝐸𝐼

[︃∫︁ 𝐿

0
g′′(𝑥)𝑇 g′′(𝑥)𝑑𝑥− 𝑘4

∫︁ 𝐿

0
g(𝑥)𝑇 g(𝑥)𝑑𝑥

]︃
=
∫︁ 𝐿

0
̂︀𝑞(𝑥)g𝑇 (𝑥)g(𝑥)𝑑𝑥, (3.3.26)

Thus, the stiffness ratio for the beam with a distributed load can be written as

S𝑏(𝑛)d = ̂︀F +
∫︁ 𝐿

0
̂︀𝑞(𝑥)g𝑇 (𝑥)g(𝑥)𝑑𝑥. (3.3.27)

where ̂︀F represents the externally applied node forces. In SEM a uniform structural
element is discretized in case there are discontinues along the structure and the number
of an element will follow the number of discontinuities, such as point of loads or damage.
Otherwise, it can be modeled by a single spectral element with very accuracy (8). Analogous
to FEM, the SEM can be assembled to form a global structure matrix system (9).

3.3.3.3 Wind tower spectral model

The NREL 5MW monopile OWT was adopted in this case of study. The beam
spectral element summarized in section 3.3.3.1 was used to model the slender tower and a
lumped mass represented the rotor and nacelle, as illustrated in Fig. 3.3.5.

Regarding the traveling waves aspect, the nacelle on the tower top can be considered
as an obstruction in the tower traveling waves, which is assumed as a boundary. The
incident wave generates a reflected wave in such a way that the two waves superpose
at the boundary to satisfy the boundary conditions. To satisfy the boundary conditions
associated with the known incident wave and reflected wave (8), the nacelle is modeled by
a lumped mass expressed as

𝐸𝐼
𝜕3𝑣(𝑥 = 𝐿, 𝑡)

𝜕𝑥3 = 𝑚𝑛
𝜕2𝑣(𝑥 = 𝐿, 𝑡)

𝜕𝑡2
(3.3.28)

The OWT model composed of a beam with a lumped mass 𝑚𝑛 connected in one-end.
By adding the lumped mass given in eq. 3.3.28 into 3.3.15, the equation of motion that
represents the OWT will be,

𝐸𝐼
𝜕4𝑣(𝑥, 𝑡)
𝜕𝑥4 + 𝜌𝐴

𝜕2𝑣(𝑥, 𝑡)
𝜕𝑡2

+𝑚𝑛
𝜕2𝑣(𝑥 = 𝐿, 𝑡)

𝜕𝑡2
= 𝑞(𝑥, 𝑡) (3.3.29)

in the spectral representation it has,

𝐸𝐼
𝑑4v̂
𝑑𝑥4 + 𝑛2(𝜌𝐴+ �̃�𝑛)v̂ = 𝑞(𝑥, 𝑡)
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(a)
(b)

Figure 3.3.5 – OWT representation: a) Draft model (79, adapted); b) Mechanical model.

where �̃�𝑛 = 𝑚𝑛𝐸𝐼𝛽
3. The presence of the mass makes the reflection and transmission

frequency dependent. Therefore, the mass will act as a filter. Low frequencies will not
overpass the mass while very high frequency terms will be attenuated. By assembling the
OWT it was used a beam and a lumped mass in its end by using the spectral form of each
element, which gives the following global OWT spectral matrix:

SOWT(𝑛) = S𝑏(𝑛) + 𝑆𝑚𝑛(𝑥 = 𝐿, 𝑛)

=

⎡⎢⎢⎢⎢⎢⎢⎣
𝑆𝑏(1, 1) 𝑆𝑏(1, 2) 𝑆𝑏(1, 3) 𝑆𝑏(1, 4)
𝑆𝑏(2, 1) 𝑆𝑏(2, 2) 𝑆𝑏(2, 3) 𝑆𝑏(2, 4)
𝑆𝑏(3, 1) 𝑆𝑏(3, 2) 𝑆𝑏(3, 3) + 𝑆𝑚𝑛 𝑆𝑏(3, 4)
𝑆𝑏(4, 1) 𝑆𝑏(4, 2) 𝑆𝑏(4, 3) 𝑆𝑏(4, 4) + 𝑆𝑚𝑛

⎤⎥⎥⎥⎥⎥⎥⎦ (3.3.30)

where 𝑆𝑚𝑛 = −𝑛2�̃�𝑛. Upon, the dynamic properties of the spectral OWT model are
introduced regarding the equivalent parameters, the vibration analysis can be easily
performed by using the well established spectral element analysis.

3.3.3.4 PTMD coupled to the OWT spectral model

Gerges and Vickery (105) design an optimum PTMD for the vibration mode
attached to a primary structure modeled as a single-degree of freedom (SDOF) system
with a generalized mass 𝑀𝑠, damping 𝐶𝑠, stiffness 𝐾𝑠, and force 𝐹𝑠. Some authors
(110, 111, 73, 112, 108) have modeled the tower with PTMD coupled with an assumed-
mode technique where the tower is reduced to a single-degree-of-freedom system (SDOF)
by assuming an arbitrary shape function as demonstrated in Fig. 3.3.6.
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Figure 3.3.6 – Structure with a linear pendulum attached (2DOF) excited by a force
𝐹𝑠(𝑡) (19)

The equation of motion of the pendulum-type tuned mass dampers were formulated
by Gerges and Vickery (105) mixing translational and rotational, two-degree of freedom
dynamic system with a force applied to the translational degree of freedom. To connect
the PTMD with the entire tower it has the following governing equations of motion,

𝐸𝐼
𝜕4𝑣(𝑥, 𝑡)
𝜕𝑥4 + 𝐶𝑠

𝜕𝑣(𝑥, 𝑡)
𝜕𝑡

+ 𝜌𝐴
𝜕2𝑣(𝑥, 𝑡)
𝜕𝑡2

+𝑚𝑛
𝜕2𝑣(𝑥, 𝑡)
𝜕𝑡2

+ 𝐿𝑝𝑀𝑝
𝜕2𝜃(𝑥, 𝑡)
𝜕𝑡2

= 𝑞(𝑥, 𝑡)

𝐿𝑝𝑀𝑝
𝜕2𝑣(𝐿, 𝑡)
𝜕𝑡2

+ 𝐿2
𝑝𝑀𝑝

𝜕2𝜃(𝑥, 𝑡)
𝜕𝑡2

+ 𝐶𝑝
𝜕𝜃(𝑥, 𝑡)
𝜕𝑡

+ (𝐾𝑝 +𝑀𝑝𝑔𝐿𝑝)𝜃 = 0 (3.3.31)

where 𝑣 is the vertical displacement and 𝜃 is the rotation of the auxiliary system, 𝑀𝑝, 𝐶𝑝,
and 𝐾𝑝 are the auxiliary system mass moment of inertia, mass, equivalent translational
damping and stiffness, respectively, ℎ is the distance between the spring/damper attachment
point ant the pivot point, while 𝐿𝑝 is the distance between the center of mass and the
pivot point. The spectral form of the PTMD coupled to the OWT will be,

𝐸𝐼
𝑑4v̂
𝑑𝑥4 − 𝑛

2(𝜌𝐴+ �̃�𝑛)v̂ − 𝑛2𝑀𝑝𝐿𝑝𝜃 = 𝑞(𝑥, 𝑡)

− 𝑛2𝑀𝑝𝐿
2
𝑝𝜃 − 𝑛2𝑀𝑝𝐿𝑝v̂ + 𝑖𝑛𝐶𝑝𝜃 + (𝐾𝑝 +𝑀𝑝𝑔𝐿𝑝)𝜃 = 0 (3.3.32)

For the entire tower with PTMD coupled, the wind tower spectral model presented
in section 3.3.3.3 was used. As in the model proposed by Gerges and Vickery (105), the
PTMD is coupled at tower node 3, as illustrated in Fig. 3.3.7. The PTMD must be
formulated in a spectral form because the tower is modeled using SEM. Hence, the PTMD
composed of an adapted torsional stiffness (𝐾𝑝), damping (𝐶𝑝), and mass (𝑀𝑝), can be
written in a spectral form as

𝑆PTMD(𝑛) =
⎡⎣−𝑛2(𝑀𝑠 + 𝑀𝑝) + 𝑖𝑛𝐶𝑠 + 𝐾𝑠 −𝑛2𝑀𝑝𝐿𝑝

−𝑛2𝑀𝑝𝐿𝑝 −𝑛2𝑀𝑝𝐿2
𝑝 + 𝑖𝑛𝐶𝑝 + (𝐾𝑝 + 𝑀𝑝𝑔𝐿𝑝)

⎤⎦ (3.3.33)

where 𝐾𝑠 = 𝐸𝐼𝜋4/(32𝐿3), 𝑀𝑠 = 𝜌𝐴𝐿(3𝜋 − 8)/(2𝜋) + 𝑚𝑛, and 𝐶𝑠 = 𝑐𝐿(3𝜋 − 8)/(2𝜋)
(viscous damping coefficient 𝑐) are the structure equivalent rigidity, mass, and damping,
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respectively (19). The OWT with active PTMD control in a general spectral form followed
the tower model. The PTMD element was attached to the tower in node 3, as showed
in Fig. 3.3.7. Analogous to FEM, the SEM can be assembled to form a global structure
matrix system. Thus, the global spectral element matrix for the PTMD coupled to the
OWT is given by,

S(𝑛) = SOWT(𝑛)− SPTMD(𝑥 = 𝐿, 𝑛) (3.3.34)

where the PTMD is connected on the vertical and rotational tower tip DOF.

Figure 3.3.7 – Schematic representation of the OWT+PTMD SEM model

To simulate the OWT environment and analyze its dynamic behavior, it included
the power spectrum of the stochastic component of actions due to turbulent wind and
waves in operating conditions, considering the blade characteristic (including the number
of blades, chord, airfoil, and the twist of the rotor geometry) of the 5 MW-NREL OWT
model (34), disregarding the soil effects. The PSD due to rotating condition is evaluated at
the blade root bending moment following the theory presented by Burton (27). The PSD
of environmental action of wind and waves are evaluated regarding Kaimal and JONSWAP
spectra, respectively. The rotationally sampled spectrum on blades and the wind and wave
spectra analytical background are presented in sec. 2.4.
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4 Case studies

In this chapter three case studies (table 4) are presented and compared with models
found on literature and also between them. Case study 1 models a simplified tower with
a tip mass, and case studies 2 and 3 model the mentioned OWT. All cases presents the
amplitude response with and without the PTMD controller.

Table 4.0.1 – Case studies
Case study 1 2DOF model of tower
Case study 2 FEM model of OWT
Case study 3 SEM model of OWT

4.1 Case study 1: 2DOF model of an optimal PTMD design applied
to a tower

In this case study, a PTMD is evaluated to obtain the best performance when
attached to a tall, flexible, slender tower. Using an assumed-mode technique, the tower
(with multiple degrees of freedom - MDOF) is reduced to a single-degree-of-freedom
system (SDOF) assuming an arbitrary shape function (sec. 3.3.1) (110, 111, 73, 112, 108).
This equivalent SDOF represents the behavior of a dynamic continuous system with
distributed mass and stiffness. The analytical background of the 2DOF model is presented
on Section 3.3.1.

After obtaining all the optimum parameters, such as pendulum length (𝐿𝑝), pendu-
lum mass (𝑀𝑝), pendulum damping (𝐶𝑝), and pendulum stiffness (𝐾𝑝), the displacement
on the top of tower can be substantially reduced.

Figure 4.1.1 reveals the impact of a PTMD on the Murtagh et al. (99) tower. The
graphic shows the frequency response of the control and uncontrolled Murtagh et al. (99)
tower. Previously, Murtagh et al. (99) evaluated a steel tower that had a height of 60
meters, an outer diameter of 3 m and a thickness of 15 mm without control. The authors
used a tower with a mass of 𝑀 = 66, 253.13 kg, nacelle plus blades represented by a
mass of 𝑚 = 19, 876.00 kg, and a value of flexural stiffness of 𝐸𝐼 = 3.29× 1010 Nm2. The
generalized stiffness 𝐾𝑠 = 463, 671.26 N/m and mass 𝑀𝑠 = 34, 899.60 kg were obtained
using equations (3.3.3) and (3.3.5). The tower damping was considered negligible (𝐶𝑠 ≈ 0).
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Figure 4.1.1 – Case Example: Tower FRF with and without PTMD

Some PTMDs are based on viscous (101) or friction damping (113), but the current
case study is limited to PTMDs with friction dampers. The 2DOF model proposed taking
into account the torsional stiffness and damping as 𝐾𝑝 = 1.2479 MNm/rad and 𝐶𝑝 = 9.0249
kNms/rad, respectively (114), the mass ratio was 𝜇 = 𝑀𝑝/𝑀𝑠 = 0.2636 (𝑀𝑝 = 9198.6 kg),
and the pendulum length was 𝐿𝑝 = 4 m.

Five steps toward the PTMD optimum design are suggested as follows:

• 1st step: The system is analyzed first without control (1DOF) and then with the
PTMD attached (2DOF) to compare both dynamic responses (fig. 4.1.1);

• 2nd step: The PTMD damping influence is observed by a parametric analysis;

• 3rd step: The PTMD stiffness influence is analyzed by a parametric analysis;

• 4th step: The optimization problem is built to be handled by a toolbox algorithm.
The fitness function is the min/max of the frequency response, and the design
variables are the pendulum length and mass ratio of PTMD.

• 5th step: The best design of PTMD is identified and compared with Shzu et al.’s
results (115), so the toolbox algorithm is validated.

4.1.1 Sensitivity Analysis

To analyze the sensitivity of the torsional damping over the dynamic effects of
the structure, two cases 𝐶𝑝 = {5; 15} kNms/rad are considered using torsional stiffness
𝐾𝑝 = 1.2479 MNm/rad, mass ratio 𝜇 = 0.26 and pendulum length 𝐿𝑝 = 4.38 m, proposed
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by Shzu et al. (115). Both designs presented a similar shape of response map. However,
the frequency response increases as damping decreases, as shown in fig. 4.1.2.

• For 𝐶𝑝 = 5 kNms/rad → 𝐻𝑦 = 1.1 · 10−4 m.

• For 𝐶𝑝 = 15 kNms/rad → 𝐻𝑦 = 0.7 · 10−4 m.

Figure 4.1.2 – Response map for 𝐶𝑝 = {5; 15} kNms/rad

The torsional stiffness value used is equal to 𝐾𝑝 = {0.5; 1.5} MNm/rad, and the
same damping (𝐶𝑝 = 9.0249 kNms/rad) and mass ratio (𝜇 = 0.26) submitted by Shzu et
al. are used (115).

• For 𝐾𝑝 = 0.5 MNm/rad → 𝐻𝑦 = 5.5 · 10−5 m.

• For 𝐾𝑝 = 1.5 MNm/rad → 𝐻𝑦 = 13.8 · 10−5 m.

It is observed that the geometric valley shifts to the right on the 𝐿𝑝 vs. 𝜇 plan. When the
stiffness 𝐾𝑝 increases, the response value peaks 𝐻𝑦(𝑛) also increase, as shown in fig. 4.1.3.

Figure 4.1.3 – Response map for 𝐾𝑝 = {0.5; 1.5} MNm/rad
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4.1.2 GA optimization results

The GA toolbox (19) minimizes the frequency response peaks of the tower de-
scribed in the analytical 2DOF model (eq. 3.3.10). The fitness function minimizes 𝐻𝑦(𝑛),
maximizing its inverse as shown in eq. 4.1.1.

𝑓fitness = 1
max𝐻𝑦(𝑛)𝑖

, 𝑖 = 1, 2, . . . , 𝑁ind (4.1.1)

where 𝑖 is the chromosome of the population with 𝑁ind individuals.

The pendulum length 𝐿𝑝 and the mass ratio 𝜇 are defined design variables. This
set of numerical inputs is defined by a range of variation from its lower to upper bounds,
0.50 ≤ 𝐿𝑝 ≤ 10.00 m and 0.1 ≤ 𝜇 ≤ 0.35, respectively.

Once the fitness function 𝑓fitness was defined, the optimization was performed several
times to define the best parameters using the GA toolbox. To find the fastest convergence,
the following was established:

• 𝑁gen = 100, number of generations;

• 𝑁ind = 100, number of individuals in the population;

• 𝑝c = 60%, crossover probability;

• 𝑝m = 2%, mutation probability;

• 𝑝elit = 2%, elitism probability;

• 𝑝dec = 20%, decimation probability;

• 𝑁dec = 20, step of generation for the occurrence of decimation (116, 117).

As consequence of the sensitivity analysis (19), a specific set of GA optimizations
has been performed varying the pendulum stiffness and maintaining the same damping.
As shown in fig. 4.1.4, the GA results are gathered on the 𝜇 vs Ł𝑝 plan, and the power
regression graphics take a linear form of 𝜇 = 𝑎𝑖𝐿

𝑏𝑖
𝑝 + 𝑐𝑖.
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Figure 4.1.4 – Power regression of the (𝜇;𝐿𝑝) optimization results for different values of
𝐾𝑝 in log x log scale (𝐿𝑝 in m and 𝐾𝑝 in Nm/rad)

These power functions present a certain linearity in log-log scale. The designer can
easily select the optimal pendulum parameters for 𝐿𝑝, 𝜇 and 𝐾𝑝 in fig. 4.1.4, since it was
observed that the damping 𝐶𝑝 does not affect the behavior of these curves. The selection
of the pendulum length and the mass ratio is a consequence of the stiffness selected by
using the power regression curves. A case example is observed in fig. 4.1.4 with mass ratio
𝜇* = 0.14 and length 𝐿*

𝑝 = 3.54 m related to 𝐾*
𝑝 = 0.50 MNm/rad.

The optimization analysis carried out with a GA toolbox saved a significant amount
of time compared to the parametric study and determined the best PTMD according to
the problem description. Accordingly, the optimum design consists of 𝐾*

𝑝 = 0.50 MNm/rad,
𝐶*

𝑝 = 9.0249 kNms/rad, 𝜇* = 0.14, and 𝐿*
𝑝 = 3.54 m.
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Figure 4.1.5 – Case Study: Tower FRF with and without PTMD

The sensitivity of length 𝐿𝑝 and mass ratio 𝜇 was evaluated. First, two values of
pendulum length were defined: 𝐿𝑝 = 0.8𝐿*

𝑝 m and 𝐿𝑝 = 1.2𝐿*
𝑝 m. The other optimal values

did not change. The comparative study can be observed in fig. 4.1.6. A shift of the peak
frequency responses and amplitude changes are observed.
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Figure 4.1.6 – Comparison between the case study and pendulum length variations
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Then, remaining with the optimum design, but making a slight change in the mass
ratio value, that is, 𝜇 = 0.8𝜇* m and 𝜇 = 1.2𝜇* m, it is possible to observe the sensitivity
of this parameter over the best design as fig. 4.1.7 shows. Resonance peaks also shift
frequency values and amplitudes, but not as significantly as in the previous case.
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Figure 4.1.7 – Comparison between the case study and mass ratios variations

Figures 4.1.8 and 4.1.9 show the FRFs for some stiffness value (𝐾𝑝 = [0.50; 0.75; 1.00;
1.25; 1.50; 1.75; 2.00] MNm/rad). The first figure was plotted considering the mass ratio
value (fig. 4.1.8) 𝜇 = 0.1, and the other used 𝜇 = 0.2 (fig. 4.1.9).
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Figure 4.1.8 – Parametric validation: Comparison of the Frequency Response Function for
𝜇 = 0.1
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Figure 4.1.9 – Parametric validation: Comparison of the Frequency Response Function for
𝜇 = 0.2

Table 4.1.1 shows the amplitude response peaks for the combinations of 𝜇, 𝐾𝑝, and
𝐿𝑝, considering 𝐶𝑝 = 9.0249 kNms/rad.
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Table 4.1.1 – Maximum amplitude responses as a function of the stiffness

𝐾𝑝 (MNm/rad) 0.50 0.75 1.00 1.25 1.50 1.75 2.00

𝜇 = 0.1
max |𝐻𝑦(𝑛)| × 10−5 (m) 4.38 6.27 8.13 10.00 11.78 13.35 15.33
𝐿𝑝 (m) 3.98 4.77 5.43 6.00 6.54 7.02 7.48

𝜇 = 0.2
max |𝐻𝑦(𝑛)| × 10−5 (m) 5.37 7.50 9.34 11.67 13.72 15.28 16.65
𝐿𝑝 (m) 3.13 3.72 4.23 4.65 5.04 5.37 5.75

Figures 4.1.8 and 4.1.9 and Tab. 4.1.1 shows that the control frequency range
increases when mass ratio 𝜇 increases. Moreover, lower values of 𝐾𝑝 lead to lower amplitude
responses. For each value of 𝜇, taking into account the stiffness variations, the natural
frequencies do not change; however, the amplitude response peaks increase when the
pendulum stiffness increases.

To observe the performance of optimum PTMD (𝐾𝑝 = 0.50 MNm/rad, 𝐶𝑝 = 9.0249
kNms/rad, 𝜇 = 0.1, and Ł𝑝 = 3.98 m), a five hour time history was performed with an
external white-noise force (random signal with uniform probability distribution) in order
to simulate the effects of a simplified wind load. In this particular case, the white-noise
spectrum follows the same normal distribution of a constant and unitary force represented
in eq. 3.3.9, making it possible to extend these results by performing a structural response
using a real record of the wind or simply applying a well representative wind power
spectrum density. Figure 4.1.10 shows the time history of a tower with and without control.
The effectiveness of the optimal PTMD passive control type can be inferred. PTMD can
reduce more than 92% of the effective RMS tip displacement compared to the case without
control.
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Figure 4.1.10 – Time history of the tower controlled and uncontrolled by a PTMD
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4.1.3 Case study 1 conclusions

The GA toolbox enables easy identification of a geometric locus on a map response
that contains optimal PTMD parameters using a 2DOF model of a tower with a PTMD.
A response map sensitivity study identifies the influence of the stiffness and damping of
the pendulum over the frequency response peaks of the tower. Using genetic algorithms,
power regression curves comprising optimal data are created as a function of the pendulum
stiffness, length and mass.

A design methodology is suggested, allowing the selection of optimal pendulum
configurations. We conclude in the parametric validation section that when we increase
the mass ratio between the pendulum and tower, the zone control also increases, and
increasing the pendulum stiffness maintaining the same mass ratio will increase the FRF
response peaks. A time history using a behavior of a white-noise wind effect shows that
the PTMD can reduce the tip tower vibration more than 92%. The tower lifetime can be
extended by reducing its vibration and, consequently, its fatigue.
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4.2 Case Study 2: FE model of an optimal PTMD design applied
to a OWT

This case study models the OWT and PTMD by using finite elements following
the detailed specifications of Phase I (monopile type) NREL 5-MW OWT baseline defined
by Jonkman et al. (18).

4.2.1 Genetic algorithm optimization

The optimization is carried out by hierarchically subdividing the parameters of the
PTMD in primary and secondary design variables (DVs). Then couples of values for 𝐾𝑝

and 𝐶𝑝 (secondary DVs) are fixed, and optimal values of 𝜇 and 𝐿𝑝 as primary DVs are
found. An in-house built Genetic Algorithm (GA) toolbox computes the PTMD optimal
parameters of the 2DOF model, following the procedures developed by Colherinhas et al
(19) and detailed on sec. B.

The goal of this genetic optimization is to minimize the frequency response peak
displacements of the tower described in the analytical 2DOF model, considering the
influence of the environment and rotating blade actions as specified in the previous
sections. The fitness function 𝑓fitness minimizes |𝐻𝑦(𝑛)|

√︁
(𝑆𝐹𝑆

(𝑛)) (only in FA direction),
maximizing its inverse, as follows

(𝑓fitness) = 1
max

(︁
𝐻𝑦(𝑛)

√︁
𝑆𝐹𝑠(𝑛)

)︁ , 𝑖 = 1, 2, . . . , 𝑁𝑖𝑛𝑑 (4.2.1)

where 𝑖 corresponds to each chromosome evaluated in the population of 𝑁𝑖𝑛𝑑 individuals.

The ranges of variation from 0.10 ≤ 𝐿𝑝 ≤ 10.00 m and 0.01 ≤ 𝜇𝑝 ≤ 0.20 are chosen
for the primary DVs.

4.2.2 Model validation

The modal frequencies in the fore-aft (FA) and side-to-side (SS) directions of the
presented FEM model agree with those found in literature for the case study structure
(81) 4.2.2.

Table 4.2.1 – Natural frequencies comparison (values in Hz)

FEM model Ghassempour’s model (81)
1st fore-aft 0.2741 0.2752

1st side-to-side 0.2741 0.2782
2nd fore-aft 2.2783 2.2651

; 2nd side-to-side 2.2916 2.3452
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In order to validate the proposed FEM model of the case study when not provided
with any control device, a PSD analysis is performed and the resultant tower-top peak
displacements are compared with those obtained by the NREL OpenFAST model (Figure
4.2.1).
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Figure 4.2.1 – PSD for tower-top displacements of the OWT model. Full frequency range
(up); first-peak zoom (bottom)

The OpenFAST response PSD is computed as the mean of 20 PSDs produced using
the MATLAB Toolbox for OpenFAST (118), from the Discrete Fourier Transform (DFT)
of 20 different time-histories obtained by OpenFAST simulations conducted at the same
wind intensities. The turbulent stochastic wind velocity fields are generated using the
NREL TurbSim software, which works as inputs of the AeroDyn OpenFAST module. The
generation of the mean OpenFAST PSD takes a total of 85.52 minutes with the available
computational capacity versus 79.32 seconds of the ANSYS FEM analysis in the frequency
domain, using the same processor specifications (i.e., the expended simulation time is more
than 60 times).

Figure 4.2.1 presents a response PSD comparison of the FEM, SDOF and OpenFAST
models for 𝑈ℎ𝑢𝑏 = 12 m/s, 𝐻𝑤 = 6 m, and 𝑇𝑤 = 10 s for the FA hub displacements.

The FA and SS tower-top peak displacements of the FEM model are, respectively,
1.04 and 0.34 m versus 1.08 and 0.12 m (OpenFAST). The normal peak stress at the tower
base is 𝑆𝑏 = 18.16 MPa as evaluated in FEM analysis, the last one will increase when the
PTMD is installed due to the additional weight provided by the PTMD mass.
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4.2.3 Optimal PTMD design by the 2 DOFs model

The following parameters are used in the GA-based PTMD optimal design by
the 2 DOFs model introduced in previous sections: tower with a mass of 532.60 ton;
rotor-nacelle-assembly (RNA) with a mass of 𝑚 = 350.00 ton and flexural stiffness of
𝐸𝐼 = 1, 036.24GNm2 (value obtained from the FEM model); generalized tower mass and
stiffness, respectively, 𝑀𝑠 = 882.60 ton (eq. 3.3.5) and 𝐾𝑠 = 2, 532.07 kN/m (eq. 3.3.3);
the tower damping coefficient was set to 1% (18). For a preliminary investigation, the
torsional stiffness and the friction damping of the PTMD are considered, respectively,
𝐾𝑝 = 1.25 MNm/rad and 𝐶𝑝 = 9.0 kNms/rad (secondary DVs set No 1) (114), enabling
the parametric analysis giving the results shown Figure 4.2.2.

Figure 4.2.2 – Parametric optimization analysis for the secondary DVs set No 1 (𝐾𝑝 = 1.25
MNm/rad and 𝐶𝑝 = 9.0 kNms/rad)

The response surface shown in fig. 4.2.2 has not a simple curvature, but on the
contrary it presents multiple geometric valleys, something that is due to the rotor dynamics.
The dark regions in the fig. 4.2.2 represent the valleys of this complex surface, i.e. the
lower response peak displacements, presenting optimal values of the GA optimization.

To find the fastest convergence of the optimization procedure by the implemented
GA, the following parameters were established during the adopted GA optimization:

• 𝑁gen = 100, number of generations;

• 𝑁ind = 100, number of individuals in the population;

• 𝑝c = 60%, crossover probability;

• 𝑝m = 2%, mutation probability;
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• 𝑝elit = 2%, elitism probability;

• 𝑝dec = 20%, decimation probability;

• 𝑁dec = 20, step of generation for the occurrence of decimation.

This way, four hundred iteration analyses are carried out by the GA optimization.
The results are gathered on the 𝜇 vs 𝐿𝑝 plane, where the power regression line of the
optimal solutions found with the secondary DVs set 1 takes the form of 𝜇 = 𝑎𝐿𝑏

𝑝 + 𝑐, with
𝑎 = 1.185 · 104, 𝑏 = −7.354, and 𝑐 = 9.249 · 10−3, as shown in fig. 4.2.3.

Figure 4.2.3 – Optimal results of 𝐿𝑝 and 𝜇 obtained with the secondary DVs set No 1
(colours are associated with the same magnitude scale of previous fig. 4.2.2)

Although optimal values fluctuate around the power regression curve of fig. 4.2.3,
this regression curve (located in a main valley of the surface) gives a good clue for a
pre-design of PTMDs. Four design cases (DC) are selected (DC1 to DC4) from the one
obtained considering the secondary DVs set No 1, with 𝜇𝐷𝐶1 = 0.10 (𝑀𝑝 = 85.11 t),
𝜇𝐷𝐶2 = 0.05 (𝑀𝑝 = 44.88 t), 𝜇𝐷𝐶3 = 0.03 (𝑀𝑝 = 30.64 t), 𝜇𝐷𝐶4 = 0.02 (𝑀𝑝 = 14.55 t).
The DC1 to DC4 are also indicated in fig. 4.2.3.

Using the same strategy of (19), the secondary DVs (stiffness 𝐾𝑝, and damping
𝐶𝑝) can be changed to obtain additional sub-optimal configurations, i.e. by increasing 𝐾𝑝

the main valley is expected to shift toward the right side on the 𝐿𝑝 × 𝜇 plan, while by
increasing 𝐶𝑝 the response amplitude is expected to decrease but the surface shape and the
valley position are not supposed to be affected. With this in mind, a new set of secondary
DVs (set No 2) is selected with 𝐾𝑝 = 0.5 MN/m and 𝐶𝑝 = 15.0 kNms/rad, leading to
the parametric response surface shown in fig. 4.2.4. For this new set of secondary DVs a
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thousand optimizations are performed, expending a total time of 2771.51 seconds (= 2.8 s
per optimization).

Figure 4.2.4 – Parametric optimization analysis for the secondary DVs set No 2 (𝐾𝑝 = 0.5
MNm/rad and 𝐶𝑝 = 15.0 kNms/rad)

From this new optimization carried out with the DVs set No 2, four additional
DCs (DC5 to DC8) are also selected with the criteria of keeping the same mass ratio of
the previous DCs (𝜇𝐷𝐶5 = 0.10, 𝜇𝐷𝐶6 = 0.05, 𝜇𝐷𝐶7 = 0.03, 𝜇𝐷𝐶8 = 0.02) as shown in
fig. 4.2.5. The power regression for the set No 2 takes the form of 𝜇 = 𝑎𝐿𝑏

𝑝, with 𝑎 = 300.8
and 𝑏 = −5.629, as also shown in fig. 4.2.5.

Figure 4.2.5 – Optimal results of 𝐿𝑝 and 𝜇 obtained with the secondary DVs set No 2
(colours are associated with the same magnitude scale of previous fig. 4.2.4
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4.2.4 Optimal PTMD selection of the 3D finite element model

The eight DCs selected above are compared by using the 3D global FEM model.
Due to the particular configuration of the system (the PTMD is located inside the tower),
as a pre-requisite for a DC to be acceptable, in order to avoid collision of the PTMD
mass with the inner surface of the tower, the peak lateral displacements (sway) of the
PTMD mass must remain lower than the inner radius of the tubular section of the tower
at the location of the PTMD mass. The maximum peak lateral sway experimented by
the PTMD mass in the selected DCs is 0.91 m, which is acceptable for avoiding such an
event. Figure 4.2.6 shows the peak stresses 𝑆𝑏 at the base for the different DCs at different
𝑈ℎ𝑢𝑏 values. The local increasing of the response values obtained for each DC at relatively
low velocities, is due to the wind induced vortex shedding effect occurring at the critical
velocity range specified above. A cut-off wind speed 𝑉𝑜𝑢𝑡 = 25 m/s has been set for 𝑈ℎ𝑢𝑏

(i.e. for 𝑈ℎ𝑢𝑏 ≥ 𝑉𝑜𝑢𝑡 the rotor is parked), resulting in a local drop of the response from 𝑉𝑜𝑢𝑡
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Figure 4.2.6 – Stresses at the base Sb. Secondary DVs set No 1 (left); secondary DVs set
No 2 (right)

The decreasing trend of 𝑆𝑏 by increasing the DC from 1 to 4 and from 5 to 8 is
partially due to the contingent decreasing of the pendulum mass. DCs 1 and 5 present the
higher values of stresses at the base, close to 22 N/mm2 at moderate wind speeds and for
𝑈ℎ𝑢𝑏 < 8 m/s, due to vortex induced vibrations.

In Figure 4.2.7 (secondary DVs set No 1) and Figure 4.2.8 (secondary DVs set No
2) the peak response displacements at the hub dp for FA and SS directions are compared
for all the considered DCs, and shown as function of 𝑈ℎ𝑢𝑏, at 𝐻𝑤 = 6 m, and 𝑇𝑤 = 10 s,
the response of the uncontrolled configuration is also shown for comparison purposes.
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For 𝑈ℎ𝑢𝑏 ≥ 𝑉𝑜𝑢𝑡 = 25 m/s, i.e. cut-out speed, the rotational spectrum is set off (i.e.
it is replaced by an ordinary Kaimal wind spectra acting of parked blades) and there is
a drop of the peak displacement curves. It also can be noticed an increase of the peak
displacements at low wind speed in SS direction, due to vortex induced vibrations.

In general, it is graphically shown that the DCs corresponding to the secondary
DVs set No 2 presents higher peak response displacement reductions than those of the
DVs set No 1. A detailed study for 𝑈ℎ𝑢𝑏 = 12 m⁄s (operating conditions and out from
the vortex-shedding velocity range for the uncontrolled case and for all DCs) and 25 m/s
(parked conditions) is performed and a comparison summary of the peak displacements
reduction and the corresponding stress at the base (SB), is presented in Table 4.2.2 by
considering the OWT with and without PTMD for both FA and SS directions. The
comparison of results is presented in dB with the purpose of facilitating the understanding
of the performances i.e.: for the response peak displacements: 𝑟𝑑𝐵

𝑝 = 10 · log10(𝑟𝑃 𝑇 𝑀𝐷
𝑝 /𝑟𝑝);

for the stress at the base: 𝜎𝑑𝐵
𝑏 = 10 · log10(𝜎𝑃 𝑇 𝑀𝐷

𝑏 /𝜎𝑏) (where the superscript PTMD
denotes the OWT with the PTMD). By adopting this units, better PTMD performances
(larger reduction of the response) corresponds to lower (negative) values.

Table 4.2.2 – Resume of selected optimal DCs (results in dB)
Design Parameters secondary DVs set No 1 secondary DVs set No 2

DC 1 DC 2 DC 3 DC 4 DC 5 DC 6 DC 7 DC 8
𝜇𝑝 [-] 0.10 0.05 0.03 0.02 0.10 0.05 0.03 0.02

𝐿𝑝 [m] 5.15 5.47 6.04 7.45 4.35 4.51 4.86 5.34

𝑈ℎ𝑢𝑏 = 12 m/s
FA -1.21 -1.61 -1.49 -0.85 -0.19 -1.24 -1.56 -1.37
SS -0.02 -0.93 -1.51 -2.15 0.38 -0.81 -1.47 -1.87
SB 0.80 0.30 0.14 0.02 0.97 0.34 0.06 0.01

𝑈ℎ𝑢𝑏 = 25 m/s
FA -2.53 -2.11 -1.56 -0.79 -2.34 -2.43 -2.00 -1.52
SS -2.17 -2.34 -2.56 -2.78 -1.94 -2.25 -2.42 -2.64
SB 0.24 0.08 0.13 0.14 0.32 0.14 0.27 0.25

As expected, due to the variety of conditions explored for performance assessment,
there is not a unique optimal DC. For example, in FA direction for 𝑈ℎ𝑢𝑏 = 25 m/s, the DC
1 is the best among all explored DCs (−2.53 in reduction). On the contrary, for the wind
velocity 𝑈ℎ𝑢𝑏 = 12 m/s, DC 2 presents peak displacements reductions higher than DC 1,
with reductions of −1.61 and −0.93 dB in FA and SS direction, respectively. On the basis
of feasibility considerations, it can be stated that, since the mass of the DC 1 is huge,
it’s actual implementation is not suggested (the same applies for the DC 5), potentially
leading to collateral structural problems in the life-cycle time (e.g. addition of such a mass
to the system could increase the vulnerability of the tower to fatigue), the DC 2 is possibly
the best optimized design in FA direction among those obtained for secondary DVs set No
1 (𝐾𝑝 = 1.25 MNm/rad and 𝐶𝑝 = 9.0 kNms/rad). In fact, compared to DC 3 and DC 4,
the DC 2 presents a reduction of −2.11 versus −1.56 and −0.79 dB respectively in FA
direction, at 𝑈ℎ𝑢𝑏 = 25 m/s, while DC 2 performs always lower than DC 3 and DC 4 in SS
direction.
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The DCs obtained by the secondary DVs set No 2 (𝐾𝑝 = 5.0 · 105 N/m and
𝐶𝑝 = 15.0 ·103 Nms), in FA direction, present, in general, higher peak reductions compared
to set No 1, as expected by (19). For 𝑈ℎ𝑢𝑏 = 25 m/s there are reductions, in FA direction, in
the order of −2.43 dB (DC 6) versus −2.11 dB (DC 2) for 𝜇 = 0.05, and −2.00 dB (DC 7)
versus −1.56 dB (DC 3) for 𝜇 = 0.03. DCs 6 and 7 are selected as the best DCs considering
the variation of the wind speed and the feasibility of the optimal pendulum parameters.
The hard task to select these optimum DCs proves the following Ghassempour’s et al. (81)
assumptions: the conventional design of TMDs based on natural frequencies may not be
suitable for OWTs due to the fact that the optimal values of the DVs strongly depend on
the wind velocity at operational conditions.

Figure 4.2.9 shows a comparison between the tower-top PSD displacements in
FA and SS direction for DCs 6 and 7, for wind velocities of 𝑈ℎ𝑢𝑏 = 24𝑚/𝑠 (operational
condition).
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Figure 4.2.9 – PSD of tower-top displacements of DC 6 and 7 for 𝑈ℎ𝑢𝑏 = 24 m/s

To further point out on the difficulties in choosing between the two selected DCs,
Figure 4.2.10 shows the peak response displacement reduction of DCs 6 and 7 for both
FA and SS direction, in function of 𝑈ℎ𝑢𝑏 (in SS, values of 𝑈ℎ𝑢𝑏 < 11.4 m/s are neglected
for scale purposes). It is clear that (especially in the FA direction, the prevalence of one
DC on the other one strongly depends on the wind velocity. Higher reductions happen in
operating conditions for wind velocity values close to the cut-off speed 𝑈ℎ𝑢𝑏 = 25 m/s.

Finally, regarding the possibility of implementing passive-adaptive control strategies:
let us assume that for some reason the PTMD has been set to the DC8, which (from Figure
4.2.8) is shown to work well for both the FA and the SS directions in operating conditions
at low wind velocities (e.g. 𝑈ℎ𝑢𝑏 = 12 m/s); in the case that strong winds (𝑈ℎ𝑢𝑏 ≥ 25 m/s)
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are forecast in a certain day with FA direction expected to become critical for ultimate
strength for such strong winds, then 𝐿𝑝 and 𝜇 parameters can be switched in advance to
temporary fall in the DC 5, which, for the same 𝐾𝑝 and 𝐶𝑝, is more efficient than the
DC8 in suppressing the FA vibrations at high wind velocities. This passively-adaptive
skill, allowed by the presence of Lp as additional tuning parameter, can be very useful for
optimal life-cycle management purposes of the OWT.
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Figure 4.2.10 – Peak response reduction between the control- and uncontrolled OWT

4.2.5 Case study 2 conclusions

Design optimization and performance assessment procedure are presented for
PTMDs in OWT systems for the mitigation of the global vibrations of the tower by
installing the PTMD inside the tubular tower section and attached to the hub. A simplified
2DOF model is used for optimizing the OWT+PTMD system for different intensities of
the actions by a genetic algorithm (GA), which aims to minimize the peak displacement
making use of the stochastic dynamic theory and the frequency domain (PSD) analysis,
and leading to the identification of some alternative design configurations (DCs). The
assessment of the performances and the choice of the best DC among the selected ones
are conducted by a global 3D Finite Element model of the turbine still by conducting a
PSD frequency domain analysis and by implementing state of art models for the spectra
of the wind (as sampled by the rotor in operating conditions) and the wave actions.

Based on the obtained results, the following general conclusions can be provided:

• the PTMD can mitigate wind- and sea- induced global OWT vibrations both in
fore-aft and side-side directions.
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• it is outlined how the complex shape of the response surface in the primary design
variables space, leading to a set of sub-optimal solutions DCs of the optimization
problem, which in turn are more or less suitable depending on the operating condition
of the system.

• the use of the 2DOFs model during the optimal design phase allows for significant
savings in the computational efforts required during the optimization phase;

• the 3D PSD finite element analysis allows for the fast investigation of the performances
at different wind velocities, and the individuation of the more suitable DCs for
practical realization and passively-adaptive control strategy purposes;

• before choosing the more suitable design configuration, the admissibility of the peak
sway of the PTMD mass and the increasing of the peak stress at the base of the
tower due to the installation of the PTMD additional mass must be checked;

• moreover, the possibility of passively adapting the pendulum length, if coupled
with other passively-adaptive skills (rearrangement of 𝐾𝑝, 𝐶𝑝 or 𝜇), allows for the
temporary switching from an identified optimal (DC) to different ones, which are
more appropriate at different operating conditions (e.g. operating versus parked
rotor at different wind intensities)

From the application of the outlined procedure to a case study, a reduction of over
20% of the response peaks for high wind velocities in the fore-aft direction was noticed,
which is consistent with the response reduction provided by other semi-active PTMD
vibration control systems found in literature (119), but in the device proposed here, there
is the advantage of not requiring electric power in operation

This case study contributes to providing advanced tools for the optimal design
analysis of the PTMD with the purpose of its installation in OWTs as an initial step
toward the implementation of passively adaptive vibration control strategies as a convenient
alternative to the active- and semi-active controls, which are complex to calibrate and
manage.

4.3 Case study 3: SEM model of an optimal PTMD design applied
to OWT

This case study presents the modeling of an optimum pendulum attached to an
OWT using a spectral element (SEM) approach. Results are compared with both 2DOF
and FEM models. The complete analytical background of the mentioned SEM model is
presented in sec. 3.3.3.
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Figure 4.3.1 presents the comparison of the frequency response for Murthag et al.’s
tower (99), obtained with SEM, FEM as published in (108), modeled as a single-degree of
freedom (SDOF) (19), and multi-degree of freedom (MDOF) reduction summarized in C.
SEM and MDOF model also estimated the second mode with a good agreement in the
resonance frequency and mode shape.
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Figure 4.3.1 – Frequency response comparison of the tower for analytical MDOF solution
(4 modes), FEM and SEM (108, adapted)

Figure 4.3.2 presents a detailed view of the first mode by comparing the methods.
This figure also shows the response of the controlled tower (OWT+PTMD) calculated with
SEM and MDOF, which presents a precise match between them. The OWT SEM model
proved to be efficient and accurate compared to other techniques. The spectral model of
the OWT+PTMD proved to be effective and present a similar behavior in comparison to
the 2DOF model.
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With the OWT and OWT+PTMD SEM models validated, the next analysis will
use SEM as the basis model. An optimization study and PTMD design will be presented,
in addition to a random excitation analysis.

4.3.1 OWT PSD analysis

A dynamic analysis of the OWT SEM model, with any control device, has been
performed for the proposed OWT model taking as input the PSD load models (2.4).
Figure 4.3.3 shows the tower-top PSD displacements correspondent to the rotating blades
(in blue), waves (orange), and wind (dashed lines), generated by a rotationally sampled
spectrum, JONSWAP PSD, and ten equally spaced Kaimal PSDs above the SWL of the
OWT, respectively. The resultant PSD (in yellow) is the sum of the rotationally sampled
spectrum and all environmental PSD loads.
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Figure 4.3.3 – PSDs of rotating blades, wave and wind actions, and resultant

All computations were made using an Intel® Core™ i5-6200U CPU with 2.40GHz
and 8 GB RAM. By using the SEM model, an enormous reduction in the computational
time related to OpenFAST and FEM is achieved. The PSD is compared with those obtained
by the NREL OpenFAST model and the FEM of the same NREL 5MW OWT presented
in (120) (Fig. 4.3.4). The OpenFAST response PSD is computed through the mean of
ten PSDs produced using the MATLAB® Toolbox for OpenFAST (121) from the discrete
Fourier transform (DFT) of 20 different time-histories obtained by OpenFAST simulations
conducted at the same wind intensities. The turbulent stochastic wind velocity fields
generated using the NREL TurbSim software were the inputs of the AeroDyn OpenFAST
module. The OpenFAST PSD takes 85.52 minutes to compute the results, in contrast to
FEM with 79.32 seconds and SEM using 1.23 seconds.
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Figure 4.3.4 – PSD comparison for tower-top displacements of FEM, OpenFAST (120,
adapted) and SEM OWT models

Figure 4.3.4 shows a PSD comparison of the presented SEM and the FEM and
OpenFAST models (120) for 𝑈ℎ𝑢𝑏 = 12 m/s, 𝐻𝑤 = 6 m, and 𝑇𝑤 = 10 s in the fore-aft (FA)
direction. OpenFAST estimated the first mode of the response while FEM and SEM could
calculate the first and second modes. The PSD obtained with the three methods showed a
good agreement between them.

4.3.2 Optimal PTMD design

The OWT assumed parameters are mass of 522.61 ton, rotor-nacelle-assembly
(RNA) with a mass of 𝑚𝑡𝑖𝑝 = 350 ton (34). The mean flexural stiffness is 𝐸𝐼 = 586.02GNm2.
The generalized tower mass and stiffness are: 𝑀𝑠 = 468.51 ton and 𝐾𝑠 = 1431.94 kN/m,
respectively. Damping coefficient set as 1%, torsional stiffness and the friction damping of
the PTMD are considered as 𝐾𝑝 = 0.5 kNm/rad and 𝐶𝑝 = 15.0 kNms/rad.

Figures 4.3.5, 4.3.7, and 4.3.9 present an SEM parametric surface shape of the
maximum peak response in function of the pendulum length 𝐿𝑝 and the mass ratio between
the pendulum and the tower mass 𝜇 of the monopile 5MW OWT for a white noise, parked,
and rotating blade conditions, respectively, revealing a geometric locus with the best
design cases. These figures (4.3.5, 4.3.7, 4.3.9) are compared with the 2DOF parametric
maps (Figs. 4.3.6, 4.3.8 and 4.3.10) noticing that in some resonant regions the peaks of
the 2DOF peaks are more expressive compared to other SEM peaks.

104



Figure 4.3.5 – SEM Parametric analysis of the OWT+PTMD (white noise)

Figure 4.3.6 – 2DOF parametric analysis of the OWT+PTMD (white noise)

Figure 4.3.7 – SEM parametric analysis of the OWT+PTMD (parked)

Figure 4.3.8 – 2DOF parametric analysis of the OWT+PTMD (parked)
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Figure 4.3.9 – SEM parametric analysis of the OWT+PTMD (rotating blades)

Figure 4.3.10 – 2DOF parametric analysis of the OWT+PTMD (rotating blades)

The optimal PTMD design parameters can be found following the fourth step
presented in (19), i.e. implementing an owner GA optimization toolbox, for the rotating
blade case. The GA optimization aims as optimum PTMD design the parameters 𝐿𝑝 and
𝜇. The fitness function evaluates the maximum peak of the frequency responses obtained
by both SEM and 2DOF models. The following was established during the adopted GA
optimization:

• 𝑁𝑔𝑒𝑛 = 50, number of generations;

• 𝑁𝑖𝑛𝑑 = 25, number of individuals in the population;

• 𝑝𝑐 = 60%, crossover probability;

• 𝑝𝑚 = 2%, mutation probability;

• 𝑝𝑒𝑙𝑖𝑡 = 2%, elitism probability;

• 𝑝𝑑𝑒𝑐 = 20%, decimation rate;

• 𝑁𝑑𝑒𝑐 = 10, step of generation for the occurrence of decimation.

The fitting curve of the best approximation for both mentioned curves takes a
power regression form of 𝜇 = 𝑎 · 𝑥𝑏 + 𝑐, with 𝑎𝑠 = 47.159, 𝑏𝑠 = −4.612 and 𝑐𝑠 = 0.00623
with R-square of 0.9911 and the sum of squares due to error (SSE) of 1.11 · 10−4, for the
SEM regression and 𝑎𝑡 = 20.176, 𝑏𝑡 = −3.851, and 𝑐𝑡 = 0.00260, with R-square of 0.9972
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and SSE of 5.37 · 10−6 for the 2DOF regression. Figure 4.3.11 shows the power regression
comparison of both SEM and 2DOF models presenting a SSE between them of 3.36%.
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Figure 4.3.11 – Optimization power regression comparison between 2DOF and SEM
OWT+PTMD models

Four design cases (DC), shown in Fig. 4.3.9 (b), have been selected for analysis for
𝜇 ≈ [0.02; 0.04; 0.06; 0.08]. Their frequency responses are compared in Fig. 4.3.12 for the
rotating blade condition. As expected, the maximum frequency peaks of each DC presents
values near them due to the fitness goal of the optimization. It also can be noticed that
the pendulum mass increases the distance between both PSD peaks for the presented
frequency range.
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Figure 4.3.12 – PSD of selected DCs for rotating blade conditions

Figures 4.3.13, 4.3.14, 4.3.15, and 4.3.16 present the SEM and 2DOF PSD frequency
responses for the DC 1, DC 2, DC 3, and DC 4, respectively, for the white noise, parked,
and rotating blade conditions. These figures show how the environmental PSD loads affect
the white noise 2DOF model, given a realistic approach.
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Figure 4.3.13 – PSD of DC 1
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Figure 4.3.14 – PSD DC 2
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Figure 4.3.15 – PSD of DC 3
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Figure 4.3.16 – PSD of DC 4

The DC 2 is selected and its PSD response for both SEM and FEM models are
shown in Figure 4.3.17, for the rotating blade conditions. It can be noticed that while the
OWT without control presents frequency response and shapes near between both models,
the results between the controlled models are quite different. This can be explained due
to the FEM model be a model that uses a three-dimensional PTMD (3D-PTMD) and a
detailed geometry model.
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Figure 4.3.17 – PSD comparison between the FEM (120) and SEM models for the OWT
coupled to the PTMD
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Among the methods presented, the SEM model showed a good relationship between
OpenFAST and the numerical models present in the literature. In addition to being the
most efficient in computational time, this model presents an accuracy in estimating the
dynamic response of OTW and OTW+PTMD, showing an alternative method for studies
in wind turbines and a powerful tool when combined with a genetic algorithm optimization.

4.3.3 Case study 3 conclusions

The present case study proposes an optimal PTMD design to mitigate the vibration
of OWT in the FA direction in operational condition using spectral elements. The study is
conducted in a frequency PSD analysis by implementing the spectra of the wind and wave
actions. The PTMD is attached to the end node in the spectral matrix model by adding
2DOF to the system. The SEM tower model is validated by comparing the frequency
response of the tower-top with MDOF, beam, and shell FEM models. The SEM OWT
model frequency response is also validated with a realistic FEM and simulated OpenFAST
models.

A parametric analysis of the SEM and 2DOF models shows that both generated
maps of the peak displacements in function of the pendulum length and mass-ratio have
similar shapes. A PTMD design procedure is proposed by performing a genetic optimization
for both SEM and 2DOF models in operational condition, taken as fitness function the
maximum response peaks using the same design parameters. Both models present a residual
sum of squares of 3.36%.

Four design cases are selected and their frequency responses are compared for
white noise, parked, and operating conditions, revealing the effects of the PSD loads over
the OWT. The frequency response of the specific design case 2, in operational condition,
presents different natural frequencies in comparison to the FEM model. Despite this,
the OWT+PTMD SEM model represents well the magnitude and shape of the response
function taking a computational cost 65 times faster, being a powerful tool that enables
an efficient way to reach the optimum PTMD design using genetic algorithms.
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5 General conclusions

This doctoral thesis proposes a new optimization methodology for a realistic
offshore wind turbine capable to compute the offshore environmental loads on the turbine.
A genetic optimization is applied to find the optimum PTMD design to minimize the tower-
top response. Using genetic optimization allows finding many combinations of optimal
mass damper design parameters that reach similar peak response reduction, allowing the
temporary switching of different rearrangement of pendulum parameters. This technique
can also be applied for the 2DOF, SEM, and FEM models. The tower-top spectrum of
the finite and spectral elements were compared to those obtained from the simulated
OpenFAST model presenting a good match between them. Three case studies present
design cases of optimal PTMD configurations using a 2DOF, FEM, and SEM models:

• Case study 1 consists of modeling a tower using 2DOF. A GA optimization is capable
to identify optimal parameters (flexural rigidity, damping, mass-ratio, and pendulum
length) of a PTMD, minimizing its peak displacement. Case studies 2 and 3 take
the NREL monopile 5-MW OWT as a baseline.

• Case study 2 models a FEM OWT with a PTMD attached. The finite model
was performed for realistic characteristics of OWTs and uses the 2DOF model
for the fast selection of optimal mass damper configurations. This model allows a
fast investigation of the performance at different wind velocities. The PTMD can
mitigate wind- and sea-induced global OWT vibrations both in fore-aft and side-side
directions. The pendular peak sway and the stress at the tower base were verified
due to the additional pendulum mass. It works for parked and operating conditions
varying the wind velocity. It was noticed a 20% response peak reduction. The FEM
model is 60 times faster than the OpenFAST model.

• Case study 3 design an optimal PTMD+OWT system, using a spectral element
approach, mitigating wind- and sea- induced global OWT vibrations in the fore-aft
direction. A simplified tower with tip mass was modeled using spectral elements
finding a perfect match when compared to the finite element, multi-, single-, and
two-degrees-of-freedom models. A parametric and a GA optimization analysis are
conduct finding optimal DCs for both PTMD+OWT 2DOF and SEM models. The
spectral model is 4000 times faster than the OpenFAST model
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The frequency response of the specific DC 2 of the SEM model (case study 3), in
operational condition, presents a slight difference of natural frequencies in comparison to
the FEM model (case study 2). Despite this, the OWT+PTMD SEM model represents
well the magnitude and shape of the response function taking a computational cost 65
times faster, being a powerful tool that enables an efficient way to reach the optimum
PTMD design using GA.
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• FERREIRA, Á. C.; COLHERINHAS, G. B.; de ALBUQUERQUE, É. L; MACHADO,
M. R.; de MORAIS, M. V. G. H-matrix acoustics BEM for vocal tract configuration
optimization using genetic algorithms. Journal of the Brazilian Society of Mechanical
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B Genetic Optimization

The technology evolution in the last few decades have been motivate the engineer
to find new optimized solutions for complex problems. Although methodologies to solve
some type of problems are not well defined at all, a little variation of the parameters can
drastically affect the results. The manipulation of these parameters induced the creation
of many numerical techniques that, with the development of computational sources and
processing, integrated even more the relation between the human race and the computers.

Stochastic methods were developed to reduce the number of solutions to give
more “intelligence” to these machines. In practice is easier and more efficient to find local
solutions instead of a global, because the last one require a high computational cost. In
this way a lot of heuristic formulations have been developed to solve problems with a lot
of complexity and been also capable to vary many variables. This heuristics are techniques
inspired in intuitive processes that find satisfactory solutions near to the optimal global.

Since 1980s, many studies were developed to evaluate heuristic procedures by
using a broad theoretical structure. The merge of concepts between the optimization and
Computational Intelligence (CI) made viable the construction of flexible strategies, known
by meta-heuristics. This technique explore efficiently the viable space of problem solutions,
escaping from the confinement of local maxima and minima. How more we apply these
specific acknowledgements in an heuristic form, the algorithm converges closer to the
global solution (127).

This interface introduced a new concept of algorithms based on CI. Bezdek (128)
attribute to CI a collection of methodologies that explores the uncertainty, imprecision
and tolerance to failures, given robustness to low cost solutions. Between the mainly CI
methods are the Artificial Neural Network (ANN), Evolutionary Computation (EC), Fuzzy
Logic, Probabilistic Methods, and hybrid systems (combinations between two or more CI
methods) (129). The optimization use CI techniques to find the best maxima or minima
values of a fitness function, subject to a set of constraints.

Meta-heuristics are mostly bio-inspired algorithms in logical process of nature,
based on behavioural, evolutionary, or from well defined strategies, such as Particle Swarm
Optimization (PSO), Ant Colonies Optimization (ACO), Simulated Annealing (SA),
(ANN), Genetic Algorithms (GA), Memetic Algorithms (130), among others.
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Some meta-heuristic optimization methods were been used to search optimum
TMD design parameters such as the GA (89, 90, 97, 91), PSO (95), ACO (94), harmony
search algorithm (92), bionic algorithm (93), and hybrid approaches such as an adaptive
GA-SA method (96).

B.1 Optimization

Mathematically, a set 𝐷 ⊂ R𝑛 and a function 𝑓 : Ω → R, where 𝐷 ⊂ Ω such
that a minimizer must be found for the fitness function 𝑓 in a viable set 𝐷. The points
belonging to D are named viable points . This situation can be write as (131, 132):

min 𝑓(𝑥) subject to 𝑥 ∈ 𝐷 (B.1.1)

this way, the point �̄� ∈ 𝐷 is a global minimizer of 𝑓 if:

𝑓(�̄�) ≤ 𝑓(𝑥), ∀𝑥 ∈ 𝐷 (B.1.2)

and a local minimizer of 𝑓 if exist a neighbourhood 𝑈 , such that:

𝑓(�̄�) ≤ 𝑓(𝑥), ∀𝑥 ∈ 𝐷 ∩ 𝑈 (B.1.3)

In other words, �̄� ∈ 𝐷 is a local minimizer if exists 𝜖 > 0, such that:

∀𝑥 ∈ 𝐷 ⇒ ‖𝑥− �̄�‖ ≤ 𝜖 (B.1.4)

The optimum value 𝑣 ∈ [−∞,+∞] of a fitness function of the Eq. B.1.1 is defined
as:

𝑣 = inf 𝑓(𝑥) : 𝑥 ∈ 𝐷 (B.1.5)

It is noticed that a function may assume many global minimizers but the optimum
value is the same for all of them. In addition, all global minimizers are also local but the
reciprocal does not apply. Sales (133) show in fig. B.1.1 an example that illustrate this
case, extracted from Izmailov and Solodov (132).

Figure B.1.1 – The minimization problem of 𝑓 , where 𝑥1 is the global minimizer and 𝑣
the optimal value.
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B.2 Genetic Algorithms

Inspired on the Darwin natural adaptation principle, Holland (134) and their stu-
dents and friends from the University of Michigan (135), in the 60’s and 70’s, implemented
the natural evolution mechanism in an algorithm to create the GA. The development of
this optimization technique reverberated in the academic community and now the GA is
a classic method of EC used in many different areas (engineering, computation sciences,
geology...).

Holland presented the GAs in his book Adaptation in Natural and Artificial Systems
and his student Goldberg (116) advanced the GAs studies as a optimization technique
in his book Genetic Algorithms in Search, Optimization and Machine Learning, through
simulations of genetic systems.

These algorithms expanded through academic community in a role of many non
conventional applications, as examples: solution problems, machine learning, strategies to
find mathematical formulae, economic model analysis, engineering problems by modelling
space structures (136), vehicle systems (137), turbines (138, 139) and in biology by
simulating the bacteria, immunologic systems, ecosystems, organic molecules. These wide
range of applications also contributed in the development of commercial software such as
the Evolver and ModeFrontier, and a lot of similar ways to reach the same object.

In theory, each chromosome or individual of the population associates to a solution
and each gene associate to a variable. One allele correspond to a value that the gene can
assume (fig. B.2.1). Through each sequence of interaction of logical steps, the population
evolves in each generation until arise an optimal chromosome.

Figure B.2.1 – Definition of the components of a chromosome

A set of chromosomes are defined as genotypes organized in data structures of
binary or real vectors that defines the genetic constitution of each individual. Evolutionary
strategies - such as selection, crossover, mutation, elitism, decimation - are applied over
these chromosomes to generate new individuals (140).

An initial population is created with chromosomes presenting uniform random
values over defined restrictions. Each chromosome is evaluated through a score by a
fitness function. The chromosome participate in a selection process where the fittest
have the greatest ability to transfer their characteristics to the next generations through
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a crossover. A minimal portion of the population may have their genetic information
altered in a process of mutation. Deterministic methods such as elitism can ensure that
a percentage of the best individuals will always survive for subsequent generations. And a
decimation can eliminate a portion of the worst individuals in the population.

Figure B.2.2 shows how the GA is defined in this thesis. The variable 𝑖 is a logical
counter of the evolution of generations. If 𝑖 = 0, the GA is initialized. If 𝑖𝑛 = 𝑛𝑔𝑒𝑟, it ends.
If 𝑖 is a integer multiple of the decimation step 𝑛𝑑𝑖𝑧, decimation occurs.

?

Calculate the

Converge?
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END

?

Create initial
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parameters
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Selection Crossover
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if not
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if not
z
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if 𝑖 = 𝑛𝑔𝑒𝑛 or 𝜀 < 𝑛𝑒𝑟𝑟𝑜𝑟

Figure B.2.2 – GA Flowchart implemented

In sequence, each operator is explained and how the parameters definition may be
setted.

Initial Parameters

When initializing the parameters (𝑖 = 0), essential information about how the AG
works may be included, such as:

• the encoding type used (binary or real);

• the constraints that limit the chromosomes within a range of possible solutions;
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• which evolutionary strategies will be applied and their respective rates (probability
of individuals crossing, mutation, elitism and decimation)

• the population size and in how many generations the GA will end (or an error can
also be defined).

Binary or real enconding?

In the original work of Holland (134), binary coding was the first to be developed.
It is widely used because of its easy implementation, manipulation, and is simple to analyse
theoretically.

For problems with optimization parameters with variables over continuous do-
mains, real (or floating-point) coding genes are used, having their own genetic operators.
Michalewicz (141) compares the computational time for both implementations by varying
the chromosome numbers of the elements, for specific examples. He comes to the conclusion
that coding via floating points can achieve convergence faster than binary implementation.
For large and/or high-precision domains the total length of the chromosomes increases,
increasing the computational cost.

Initial Population

After the optimization parameters have been defined, the initial population assigns
to each chromosome a value from a random distribution. These chromosomes are restricted
to a range of constrains assigned in the initial parameters.

Often some optimizations require a high computational cost and not converges on
the pre-established number of generations. The selection of some chromosomes trapped at
local maxima can be inserted into a new optimization reducing the processing time and
evolution of this new simulation.

Some approaches present the use of parallel processing where multiple populations
are generated simultaneously in several processing cores (142, 143). These cores share
information produced through a central node.

Fitness function

The fitness function is a very important step and depends on the objectives of
the optimization, subject to a set of constraints. This is a decisive step for the correct
functioning of the algorithm. The conjunction between the fitness function and the
constraints assigns a final score on a given individual. Each case has a distinct logic for
assigning this note. In order to define multi-objective problems, a combination of the
evaluated factors is performed. You can also weigh each goal with different weights.

For example, in (144) it was optimized the transmission ratios of a powertrain
system in order to obtain the best fuel consumption and acceleration ratio. For this case,
three distinct fitness functions have been defined. The first one optimizes two parameters
simultaneously (acceleration and consumption). The second one prioritizes fuel economy.
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And the latter, determines the optimum point for only the vehicle acceleration. Since the
acceleration and fuel consumption have different objectives, when weighing each one it is
possible to assign transmission reasons for a touring car (prioritizing the fuel economy) or
a sport model (prioritizing the vehicle acceleration). Giving priority to an fitness function
does not mean disregarding others.

B.2.1 Selection

After the evaluation, a specialized algorithm selects best genetic characteristics of
the chromosomes with stochastic and/or deterministic choices. The selection depends on
the grade assigned to each chromosome. Some well-known selection strategies are described
in the following items (135):

Deterministic selection: elistism and decimation

Elitism is a method that holds a small portion of the individuals with the highest
fitness of the population. As a deterministic method, this value should be small so that
the population does not lose genetic variability when passing through generations.

Similarly, decimation is a strategy that removes a fixed number of individuals of
low fitness. The simplicity of this method faces the disadvantage of eliminating potential
genetic characteristics. Some of these characteristics may be relevant despite their low
aptitude while, in stochastic methods, individuals with low fitness have the chance of
being selected.

This elimination usually occurs from a step of 𝑛𝑑𝑒𝑐. A strategy to skip the decimation
selection at all generations must be applied to increase the genetic variability of the
population.

Roulette-wheel method

The roulette-wheel is a classical proportional selection method in which each
chromosome assigned a slice over a circular area of the roulette wheel. The size of this slice
is based on the fitness of each chromosome relative to the sum of all scores of the population.
The roulette (fig. B.2.3) is rotated 𝑁 times, where 𝑁 is the number of individuals in
the population. Each time the roulette wheel stops, the individual is selected for the
next generation. These selected individuals will be able to participate in the evolutionary
strategies of crossover and mutation.
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𝑃 (1)

𝑃 (2)𝑃 (3)

𝑃 (5, . . . , 𝑁 − 1)

𝑃 (4)

𝑃 (𝑁)

Figure B.2.3 – Roulette-wheel method and its probabilities

The probability 𝑃𝑖 that an individual 𝑖 has to be selected as a function of his fitness
𝑓𝑓𝑖𝑡(𝑖), is expressed by Eq. B.2.1.

𝑃𝑖 = 𝑓𝑓𝑖𝑡(𝑖)∑︀𝑁
𝑖=1 𝑓𝑓𝑖𝑡(𝑖)

(B.2.1)

𝑃𝑖 represents a portion of the roulette that individual 𝑖 has to be selected. A chromosome
with higher fitness score has a greater chance of being chosen.

The cumulative probability 𝑞𝑖 represents the sum of the probabilities 𝑃𝑘, expressed
by Eq. B.2.2.

𝑞𝑖 =
𝑖∑︁

𝑘=1
𝑃𝑘 (B.2.2)

where 𝑘 = 1, . . . , 𝑖.

The algorithm 1 presents the roulette-wheel method.

Algorithm 1: Roulette-wheel method
input : individuals of population
output : selection of the fittest individuals

𝑖← 1: start counting individuals to be selected;
𝑁 ← number of individuals in the population;
repeat

𝑃𝑖 ← Eq. B.2.1;
generate 𝑟 with random value between 0 e 1;
𝑞𝑖 ← Eq. B.2.2;
if 𝑟 < 𝑞𝑖 then

select 𝑖;
𝑖← 𝑖+ 1;

end
until 𝑖 = 𝑁 ;
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Rank selection

Rank selection is an alternative method that avoids the rapid convergence of the
GA. Individuals of the population are classified according to their fitness and the expected
values of each individual depends on their rank, rather than their brute fitness.

Linear rank selection is a method proposed by Baker in 1985 (145) where each
individual of the population is ranked in increasing order of fitness. The worst guy gets 1
and the best 𝑁 . The rest of the selection is made in the same way as the roulette wheel.

Discarding absolute fitness informations can have advantages and disadvantages.
Rank selection avoids giving to the offspring a small group of individuals with high aptitude.
This avoids selective pressure when the fitness variance is too high. It is also observed that
when the variance of fitness is small, the ratio of the expected values of the individuals of
the rank selection 𝑖 and 𝑖 + 1 will be the same if the difference of their brute fitness is
high or low (135). Figure B.2.4 compares the roulette method with the rank selection.

Figure B.2.4 – (A) Roulette-wheel method x (B) Rank Selection

Tournament selection

The tournament selection is a method where a portion of individuals from the
population is randomly chosen. This portions competes one each other, based on their
skills. The one with the best score is selected. A tournament size parameter 𝑘, defines the
number of individuals selected for the competition.

Figure B.2.5 shows how the best individual in the population is selected through
the tournament.

Figure B.2.5 – Representation of the Tournament Method with 𝑘 = 5
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The minimum value of 𝑘 is two, since only the competition exists. If 𝑘 = 𝑁

(population size), the winner is always the same. If 𝑘 is a high value, the 𝑁−𝑘 chromosomes
will predominate, since they will always have a higher probability of being chosen.

Algorithm 2 presents the pseudo-code corresponding to this method.

Algorithm 2: Tournament selection
input : individuals of population
output : selection of the fittest individuals

𝑁 ← number of individuals in the population;
𝑘 ← parameters between 2 and 𝑁 of individuals to be selected;
for 𝑖← 1 to 𝑁 do

for 𝑗 ← 1 to 𝑘 do
generate 𝑟𝑗 with random values between 1 and 𝑘;

end
select 𝑖(max(𝑓𝑜𝑏𝑗(𝑟𝑗)));

end

B.2.2 Crossover

The crossover is responsible for exchange genetic information between two selected
chromosomes. From this exchange, new descendants are generated. Goldberg (116) suggests
that the crossover probability must be 𝑃𝑐 ≥ 60%. This simulates a natural occurrence in
which most couples have children. With this high probability, the crossover becomes a
fundamental operator for the new generations.

Crossover in binary coding

Crossover can be accomplished in different ways. A simple way is the random
selection of a gene from the chromosome where parents exchange genetic material in any
position (fig. B.2.6, (146)).

Figure B.2.6 – Crossover in a single point

There are some variations of this method: random two points or more (fig. B.2.7)
and there is also the possibility of crossover into random alleles (fig. B.2.8) (146).
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Figure B.2.7 – Crossover in two points

Figure B.2.8 – Crossover in random points

Arithmetic crossover

Arithmetic crossover (or intermediary) seeks an analogy of binary representation.
The chromosomes are represented by real numbers (147). The arithmetic crossover proposed
by Michalewicz (148) creates new alleles in the offspring with intermediate values to those
of the parents.

A linear combination between two chromosomes 𝑥 and 𝑦 generates an offspring 𝑧
can be computed in Eq. B.2.3.

𝑧 = 𝑦 + 𝛽(𝑥− 𝑦) (B.2.3)

where 𝛽 is a random number belonging to the range [0, 1]. 𝛽 can be considered fixed (for
example 𝛽 = 0.5), characterizing a uniform crossover.

Heuristic crossover (HX)

The Heuristic crossover (HX) evaluates fitness information to prevent arithmetic
crossover takes the genes to the center of the range, as show Eq. B.2.4 (149).

𝑧 = 𝑦 + 𝛽(𝑥− 𝑦) (B.2.4)

where 𝑓(𝑦) > 𝑓(𝑥) and 𝛽 ∼ 𝑈(0, 1). 𝑈 represents a uniform distribution.

Blend crossover (BLX-𝛼)

Another approach (that is the used in this thesis) is the Blend crossover (BLX-
𝛼) (150, 117). Given two chromosomes 𝑥 and 𝑦, a chromosome 𝑧 is produced as follow
Eq. B.2.5.

𝑧 = 𝑥+ 𝛽(𝑦 − 𝑥) (B.2.5)
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where 𝛽 ∼ 𝑈(−𝛼, 1 + 𝛼). In the literature it is suggested 𝛼 = 0, 5 or 0, 25.

This operator allows to extrapolate the region of crossover of the parents. For this
reason, it attributes greater genetic variability during the evolution of the generations.
fig. B.2.9 (150) shows a representation of how the space of BLX-𝛼 works in this evolutionary
strategy. It is interesting to see that by adding the 𝛼 parameter, new solutions are added
to the search space.

Figure B.2.9 – Blend crossover - BLX-𝛼

Rayleigh crossover (RX)

Rayleigh crossover (RX) uses the Rayleigh distribution. This is a continuous
probability distribution that generates random descendants at floating points. The Rayleigh
density function is defined in Eq. B.2.6.

𝑓(𝑥; 𝑠) = 𝑥

𝑠2 𝑒
−𝑥2/2𝑠2

, 𝑥 ≥ 0 (B.2.6)

where 𝑠 > 0 the scale parameter of the distribution. Lim et al. (151) experimentally defines
the best value of 𝑠 = 3.

To use this distribution, two parents 𝑝1 and 𝑝2 produce two offspring 𝑦1 and 𝑦2

from the following equations:

𝑦1 = 𝑝1 log(𝑥) + 𝑝2(1− log(𝑥)) (B.2.7)
𝑦2 = 𝑝2 log(𝑥) + 𝑝1(1− log(𝑥)) (B.2.8)

The offspring 𝑦1 (B.2.7) is defined closer to the parent 𝑝1, while the offspring 𝑦2

(B.2.8) of the parent 𝑝2. The logarithm defines the contour 𝑥, where 0 < 𝑥 < 1. The number
of the Rayleigh distribution 𝑥 is generated by the inversion of the Rayleigh distribution
function (B.2.9).

|𝑥| =
√︁
−2𝑠2 log𝑒 (1− 𝑈) (B.2.9)

being assigned to 𝑥 only the positive values. Therefore:

𝑥 = | − 𝑠(2 ln (1− 𝑈))1/2| (B.2.10)

B.2.3 Mutation

The mutation operator randomly modifies one or more genes of a chromosome
through a mutation rate of 𝑃𝑚. Goldberg (116) suggests a mutation rate of 5%. Generally,
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small values are assigned for this rate, since this operator can generate an individual much
worse than the original. Through mutation, however, new information is introduced or
perhaps lost in iterations. The mutation seeks to escape of local maxima by increasing the
probability of finding a global maximum.

The most common mutation operators for floating points are the uniform mutation
and the Gaussian mutation.

Mutation in binary coding

Mutation is a very simple genetic operator in binary algorithms. It is only necessary
to reverse the value of one or more random alleles of the chromosome. fig. B.2.10 (146)
illustrates the mutation in a single allele.

Figure B.2.10 – Mutation in a single point

Uniform mutation

For this type of mutation, the operator selects random genes 𝑘 ∈ {1, 2, . . . , 𝑛}
of chromosome 𝐶 = [𝑥1, . . . , 𝑥𝑘, . . . , 𝑥𝑛]. A new gene 𝑥′

𝑘 is generated through a uniform
random distribution 𝑈(𝐿𝑖, 𝐿𝑠), , respectively, the lower limits 𝐿𝑖 an higher 𝐿𝑠 of the gene
restriction 𝑥𝑘 (147).

Contour mutation

In this type of mutation, a random gene 𝑗 is selected. This gene is replaced by one
of the limits of the range [𝐿𝑖, 𝐿𝑠], explicit in Eq. B.2.11.

𝑥′
𝑘 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐿𝑖, if 𝑟 < 0, 5 and 𝑘 = 𝑗

𝐿𝑠, if 𝑟 ≥ 0, 5 and 𝑘 = 𝑗

𝑥𝑘, otherwise
(B.2.11)

where 𝑟 ∈ 𝑈(0, 1).

This operator prevents the chromosome inducing genes to the center of the feasible
range [𝐿𝑖, 𝐿𝑠].

Gaussian mutation

This operator adds a random value to the chromosome according to a Gaussian
distribution as follows:

𝑥′
𝑘 =

⎧⎨⎩ 𝑁(𝑥𝑘, 𝜎), if 𝑘 = 𝑗

𝑥𝑘, otherwise
(B.2.12)
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where 𝑁(𝑥𝑘, 𝜎) is the normal distribution with mean 𝑥𝑘 and standard deviation 𝜎.

This procedure generates great genetic variability in the solutions, making it difficult
to converge the solution to a minimum (local or global). One strategy in order to decrease
this variability is to progressively reduce the standard deviation 𝜎 as the number of
generations

Uniform creep mutation

This operator adds a small random number to the gene 𝑥𝑘 or multiplies it by a
number closer to 1.

This is a less destructive operator used to locally search the space. Small distur-
bances in the genes are made in order to move them faster to convergence. It applies at a
higher rate than other mutation operators (𝑃𝑚 ≈ 10%).

Non-uniform creep mutation

This type of mutation replaces the gene with a number extracted from a non-uniform
distribution (Eq. B.2.13).

𝑥′
𝑘 =

⎧⎨⎩ 𝑥𝑘 + Δ(𝑖, 𝐿𝑠 − 𝑥𝑘), se 𝑧 = 0
𝑥𝑘 −Δ(𝑖, 𝑥𝑘 − 𝐿𝑖), se 𝑧 = 1

(B.2.13)

where 𝑧 is a random binary digit (0 ou 1), 𝐿𝑖 and 𝐿𝑠 the upper and lower limits of
the parameter 𝑥′

𝑘. The function Δ(𝑖, 𝑦) returns a value in the range [0, 𝑦] such that the
probability of Δ(𝑖, 𝑦) it starts at zero and is incremented according to the number of
generations 𝑖, such that:

Δ(𝑖, 𝑦) = 𝑦.𝑟

(︃
1− 𝑖

𝑁𝑔𝑒𝑟

)︃𝑏

(B.2.14)

where 𝑟 is a number generated randomly in the interval [0, 1], 𝑁𝑔𝑒𝑟 is the maximum number
of generations and 𝑏 a parameter chosen by the user, which determines the degree of
dependence with the number of generations.

This property instigates the operator to perform a uniform search in the initial
space (when 𝑖 is small) and a more local search as the 𝑖 increases.
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C Multi degree of freedom
(MDOF) reduction

The MDOF reduction consists in reducing the continuous system of a beam with a
tip mass, subject to a distributed force 𝐹 (𝑥, 𝑡) in a discrete numbers of temporal ordinary
differential equations (ODEs) depending of the test functions, taking the matricial form

Mq̈ + Cq̇ + Kq = f (C.0.1)

where M, C and K are, respectively, the mass, damping and stiffness matrices, q is the
vector of generalized coordinates, and f is the vector of imposed forces; the overdot denotes
differentiation with time. Using three-mode approximation (𝑁 = 3), the Eq. C.0.1 may be
written in the following matrix form (108):⎡⎢⎢⎢⎣

𝑚𝐿+𝑀𝑒𝜓
2
1(𝐿) 𝑀𝑒𝜓1(𝐿)𝜓2(𝐿) 𝑀𝑒𝜓1(𝐿)𝜓3(𝐿)

𝑀𝑒𝜓2(𝐿)𝜓1(𝐿) 𝑚𝐿+𝑀𝑒𝜓
2
2(𝐿) 𝑀𝑒𝜓2(𝐿)𝜓3(𝐿)

𝑀𝑒𝜓3(𝐿)𝜓1(𝐿) 𝑀𝑒𝜓3(𝐿)𝜓2(𝐿) 𝑚𝐿+𝑀𝑒𝜓
2
3(𝐿)

⎤⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞1

𝑞2

𝑞3

⎫⎪⎪⎪⎬⎪⎪⎪⎭+

⎡⎢⎢⎢⎣
𝑐1 0 0
0 𝑐2 0
0 0 𝑐3

⎤⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞1

𝑞2

𝑞3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+𝐸𝐼

⎡⎢⎢⎢⎣
𝜆4

1 0 0
0 𝜆4

2 0
0 0 𝜆4

3

⎤⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞1

𝑞2

𝑞3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 𝐹0 sin𝜔𝑓 𝑡 ·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜓1(𝐿)
𝜓2(𝐿)
𝜓3(𝐿)

⎫⎪⎪⎪⎬⎪⎪⎪⎭(C.0.2)

where 𝜓𝑗(𝑥) are test functions in domain D = [0, 𝐿] that satisfies the boundary conditions.
The following eigenfunctions is used as basis function

𝜓𝑗(𝑥) = cosh 𝜆𝑗𝑥− cos𝜆𝑗𝑥− 𝜎𝑗(sinh 𝜆𝑗𝑥− sin 𝜆𝑗𝑥) (C.0.3)

where 𝜎𝑗 = (sinh 𝜆𝑗𝐿− sin 𝜆𝑗𝐿)÷ (cosh 𝜆𝑗𝐿− cos𝜆𝑗𝐿) and 𝜆𝑗𝐿 are the roots of transcen-
dental equation cos𝜆𝑗𝐿 · cosh 𝜆𝑗𝐿+ 1 = 0 that yields a set of the eigenvalues. The pair
(𝜆, 𝜓)𝑗 are the natural frequencies and modal shapes of a clamped beam (108).

The Eq. C.0.2 is solved by using the Runge-Kutta ode45 command in MATLAB®.
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