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Abstract: In this paper, we propose a general family of Birnbaum–Saunders autoregressive
conditional duration (BS-ACD) models based on generalized Birnbaum–Saunders (GBS) distributions,
denoted by GBS-ACD. We further generalize these GBS-ACD models by using a Box-Cox
transformation with a shape parameter λ to the conditional median dynamics and an asymmetric
response to shocks; this is denoted by GBS-AACD. We then carry out a Monte Carlo simulation study
to evaluate the performance of the GBS-ACD models. Finally, an illustration of the proposed models
is made by using New York stock exchange (NYSE) transaction data.
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1. Introduction

The modeling of high-frequency financial data has been the focus of intense interest over the
last decades. A prominent approach to modeling the durations between successive events (trades,
quotes, price changes, etc.) was introduced by Engle and Russell (1998). These authors proposed
the autoregressive conditional duration (ACD) model, which has some similarities with the ARCH
(Engle 1982) and GARCH (Bollerslev 1986) models. The usefulness of appropriately modeling duration
data is stressed by the relatively recent market microstructure literature; see Diamond and Verrechia
(1987), Easley and O’Hara (1992), and Easley et al. (1997). Generalizations of the original ACD model
are basically based on the following three aspects, i.e., (a) the distributional assumption in order to
yield a unimodal failure rate (FR) (Grammig and Maurer 2000; Lunde 1999), (b) the linear form for
the conditional mean (median) dynamics (Allen et al. 2008; Bauwens and Giot 2000; Fernandes and
Grammig 2006), and (c) the time series properties (Bauwens and Giot 2003; Chiang 2007; De Luca and
Zuccolotto 2006; Jasiak 1998; Zhang et al. 2001); see the reviews by Pacurar (2008) and Bhogal and
Variyam Thekke (2019). Bhatti (2010) proposed a generalization of the ACD model that falls into all
three branches above, based on the Birnbaum–Saunders (BS) distribution, denoted as the BS-ACD
model. This model has several advantages over the traditional ACD ones; in particular, the BS-ACD
model (1) has a realistic distributional assumption, that is, it provides both an asymmetric probability
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density function (PDF) and a unimodal FR shape; (2) it provides a natural parametrization of the
point process in terms of a conditional median duration which is expected to improve the model fit
despite a conditional mean duration, since the median is generally considered to be a better measure
of central tendency than the mean for asymmetrical and heavy-tailed distributions; and (3) has easy
implementation for estimation; see Ghosh and Mukherjee (2006), Bhatti (2010), Leiva et al. (2014), and
Saulo et al. (2019).

Based on the relationship between the BS and symmetric distributions, Díaz-García and Leiva
(2005) introduced generalized BS (GBS) distributions, obtaining a wider class of distributions that has
either lighter or heavier tails than the BS density, allowing them to provide more flexibility. This new
class essentially provides flexibility in the kurtosis level; see Sanhueza et al. (2008). In addition, the
GBS distributions produce models whose parameter estimates are often robust to atypical data; see
Leiva et al. (2008) and Barros et al. (2008). The GBS family includes as special cases the BS, BS-Laplace
(BS-LA), BS-Logistic (BS-LO), BS-power-exponential (BS-PE), and BS-Student-t (BS-t) distributions.

The main aim of this work is to generalize the BS-ACD model, which was proposed by Bhatti
(2010), based on GBS distributions (GBS-ACD). The proposed models should hold with the properties
of the BS-ACD model, but, in addition, they should provide further properties and more flexibility.
As mentioned before, the GBS family has models that have heavier tails than the BS density, and this
characteristic is very useful in the modeling of high-frequency financial durations, since duration data
are heavy-tailed and heavily right-skewed. We subsequently develop a class of augmented GBS-ACD
(GBS-AACD) models by using the Box-Cox transformation (Box and Cox 1964) with a shape parameter
λ ≥ 0 to the conditional duration process and an asymmetric response to shocks; see Fernandes and
Grammig (2006). Thus, the proposed GBS-ACD and GBS-AACD models would provide greater range
and flexibility while fitting data. We apply the proposed models to high-frequency financial transaction
(trade duration, TD) data. This type of data has unique features absent in data with low frequencies.
For example, TD data (1) inherently arrive in irregular time intervals, (2) possess a large number of
observations, (3) exhibit some diurnal pattern, i.e., activity is higher near the beginning and closing
than in the middle of the trading day, and (4) present a unimodal failure rate; see Engle and Russell
(1998) and Bhatti (2010). In addition, TD data have a relevant role in market microstructure theory,
since they can be used as proxies for the existence of information in the market, and then serve as
predictors for other market microstructure variables; see Mayorov (2011).

The rest of the paper proceeds as follows. Section 2 describes the BS and GBS distributions. In
addition, some propositions are presented. Section 3 derives the GBS-ACD models associated with
these distributions. Section 4 derives the GBS-AACD class of models. A Monte Carlo study of the
proposed GBS-ACD model is performed in Section 5. Next, Section 6 presents an application of the
proposed models to three data sets of New York stock exchange (NYSE) securities, and their fits are
then assessed by a goodness-of-fit test. Finally, Section 7 offers some concluding remarks.

2. The Birnbaum–Saunders Distribution and Its Generalization

In this section, we describe the BS and GBS distributions and some of their properties.
The two-parameter BS distribution was introduced by Birnbaum and Saunders (1969) for

modeling failure times of a material exposed to fatigue. They assumed that the fatigue failure follows
from the development and growth of a dominant crack. Let θ = (κ, σ)> and

a(x; θ) =
1
κ

[√
x
σ
−
√

σ

x

]
, x > 0 and κ, σ > 0. (1)
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Expressions for the first, second, and third derivatives of the function a(·; θ) are, respectively,
given by

a′(x; θ) = 1
2κσ

[(
σ
x
)1/2

+
(

σ
x
)3/2

]
, a′′(x; θ) = − 1

4κσx

[(
σ
x
)1/2

+ 3
(

σ
x
)3/2

]
, (2)

a′′′(x; θ) = 3
8κσx2

[(
σ
x
)1/2

+ 5
(

σ
x
)3/2

]
.

A random variable (RV) X has a BS distribution with parameter vector θ = (κ, σ)>, denoted by
BS(θ), if it can be expressed as

X = a−1(Z; θ) = σ
4

[
κZ +

√
(κZ)2 + 4

]2
, Z ∼ N(0, 1), (3)

where a−1(·; θ) denotes the inverse function of a(·; θ), κ is a shape parameter, and when it decreases to
zero, the BS distribution approaches the normal distribution with mean σ and variance τ, such that
τ → 0 when κ → 0. In addition, σ is a scale parameter and also the median of the distribution
FBS(σ) = 0.5, where FBS is the BS cumulative distribution function (CDF). The BS distribution holds
proportionality and reciprocal properties given by b X ∼ BS(κ, b σ), with b > 0, and 1/X ∼ BS(κ, 1/σ);
see Saunders (1974). The probability density function (PDF) of a two-parameter BS random variable X
is given by

fBS(x; θ) = φ
(
a(x; θ)

)
a′(x; θ), x > 0, (4)

where φ(·) denotes the PDF of the standard normal distribution.
Díaz-García and Leiva (2005) proposed the GBS distribution by assuming that Z in (3) follows

a symmetric distribution in R, denoted by X ∼ GBS(θ, g), where g is a density generator function
associated with the particular symmetric distribution. An RV Z has a standard symmetric distribution,
denoted by Z ∼ S(0, 1; g) ≡ S(g), if its density takes the form fZ(z) = c g(z2) for z ∈ R, where g(u)
with u > 0 is a real function that generates the density of Z, and c is the normalization constant, that is,
c = 1/

∫ +∞
−∞ g(z2)dz. Note that U = Z2 ∼ Gχ2(1; g), namely, U has a generalized chi-squared (Gχ2)

distribution with one degree of freedom and density generator g; see Fang et al. (1990). Table 1 presents
some characteristics and the values of u1(g), u2(g), u3(g), and u4(g) for the Laplace, logistic, normal,
power-exponential (PE) and Student-t symmetric distributions, where ur(g) = E[Ur] denotes the rth
moment of U.

Table 1. Constants (c and cg2 ), density generators (g), and expressions of some moments ur(g) for the
indicated distributions.

Dist. c g = g(u), u > 0 u1(g) u2(g) u3(g) u4(g)

Laplace 1
2 exp (−|u|) 2! 4! 6! 8!

Logistic 1 exp(u)
[1+exp(u)]2

≈ 0.7957 ≈1.5097 ≈4.2777 ≈16.0142

Normal 1√
2π

exp
(
− 1

2 u
)

1 3 15 105

PE η

2
1

2η Γ
(

1
2η

) exp
(
− 1

2 uη
)

, η > 0
2

1
η Γ
(

3
2η

)

Γ
(

1
2η

)
2

2
η Γ
(

5
2η

)

Γ
(

1
2η

)
2

3
η Γ
(

7
2η

)

Γ
(

1
2η

)
2

4
η Γ
(

9
2η

)

Γ
(

1
2η

)

t
Γ
(

η+1
2

)

√
ηπ Γ( η

2 )

(
1 + u

η

)− η+1
2 , η > 0 η

(η−2)
3η2

(η−2)(η−4)
15η3

(η−2)(η−4)(η−6)
105η4

(η−2)(η−4)(η−6)(η−8)

η > 2 η > 4 η > 6 η > 8

Consider an RV Z such that Z = a(X; θ) ∼ S(g) so that

X = a−1(Z; θ) ∼ GBS(θ, g). (5)
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The density associated with X in (5) is given by

fGBS(x; θ, g) = c g
(
a2(x; θ)

)
a′(x; θ), x > 0 , (6)

where, as mentioned earlier, g is the generator and c the normalizing constant associated with a
particular symmetric density; see Table 1. The mean and variance of X are, respectively,

E[X] =
σ

2
(2 + u1κ2), Var[X] =

σ2κ2

4
(2κ2u2 + 4u1 − κ2u2

1), (7)

where ur = ur(g) = E[Ur], with U ∼ Gχ2(1, g); see Table 1.
Based on Table 1, the expressions for the BS-LA, BS-LO, BS-PE, and BS-t densities are as follows:

fBS−LA(x; θ) = 1
4κσ exp

(
− 1

κ

∣∣∣
√

x
σ −

√
σ
x

∣∣∣
) [(

σ
x
)1/2

+
(

σ
x
)3/2

]
,

fBS−L0(x; θ) = 1
2κσ

exp( 1
κ [
√

x
σ−
√

σ
x ])

[1+exp( 1
κ [
√

x
σ−
√

σ
x ])]

2

[(
σ
x
)1/2

+
(

σ
x
)3/2

]
,

fBS−PE(x; θ, η) = η

Γ
(

1
2η

)
2

1
2η +1

κσ

exp
(
− 1

2κ2η

[ x
σ + σ

x − 2
]η
) [(

σ
x
)1/2

+
(

σ
x
)3/2

]
,

fBS−t(x; θ, η) =
Γ
(

η+1
2

)

2
√

ηπ Γ( η
2 )κσ

[
1 + 1

ηκ2

( x
σ + σ

x − 2
)]− η+1

2
[(

σ
x
)1/2

+
(

σ
x
)3/2

]
,

x > 0 and κ, σ, η > 0.

Note that if η = 1 (BS-PE) or if η → ∞ (BS-t), then we obtain the BS distribution. It is worthwhile
to point out that the BS-PE distribution has a greater (smaller) kurtosis than that of the BS distribution
when η < 1 (η > 1). In addition, the BS-t distribution has a greater degree of kurtosis than that of the
BS distribution for η > 8; see Marchant et al. (2013).

Let

b(h; κ, ι, φ) =
2
κ

sinh
(h− ι

φ

)
, h ∈ R, κ, φ > 0 and ι ∈ R. (8)

An alternative way to obtain GBS distributions is through sinh-symmetric (SHS) distributions.
Díaz-García and Domínguez-Molina (2006) proposed SHS distributions by using the sinh-normal
distribution introduced by Rieck and Nedelman (1991) in the symmetric case. They assumed the
standard symmetrically distributed RV Z as follows:

Z = b(H; κ, ι, φ) ∼ S(g). (9)

Then,
H = b−1(Z; κ, ι, φ) = ι + φ arcsinh

(
κZ
2
)
∼ SHS(κ, ι, φ, g). (10)

The density associated with H in (10) is given by

fSHS(h; κ, ι, φ, g) = c g
(
b2(h; κ, ι, φ)

)
b′(h; κ, ι, φ), h ∈ R, κ, φ > 0 and ι ∈ R, (11)

where g and c are as given in (6). A prominent result, which will be useful later on, is the following.

Proposition 1 (See Rieck and Nedelman (1991)). If H ∼ SHS(κ, ι = ln σ, φ = 2, g), then X = exp(H) ∼
GBS(θ, g), which is denoted by H ∼ log-GBS(κ, ι, g).
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3. The GBS-ACD Models

3.1. Existing ACD Models

Let Xi = Ti − Ti−1 denote the trade duration, i.e., the time elapsed between two transactions
occurring at times Ti and Ti−1. Engle and Russell (1998) assumed that the serial dependence commonly
found in financial duration data is described by ψi = E[Xi|Fi−1], where ψi stands for the conditional
mean of the ith trade duration based on the conditioning information set Fi−1, which includes all
information available at time Ti−1. The basic ACD(r, s) model is then defined as

Xi = ψi εi,

ψi = α +
r

∑
j=1

β jψi−j +
s

∑
j=1

γjxi−j, i = 1, . . . , n, (12)

where r and s refer to the orders of the lags and {εi} is an independent and identically distributed
nonnegative sequence with PDF f (·). Engle and Russell (1998) assumed a linear ACD(1,1) model
defined by ψi = α + βxi−1 + γψi−1, where α, β, and γ are the parameters. Note that a wide range of
ACD model specifications may be defined by different distributions of εi and specifications of ψi; see
Fernandes and Grammig (2006) and Pathmanathan et al. (2009).

An alternative ACD model is the Birnbaum–Saunders autoregressive conditional duration
(BS-ACD) model proposed by Bhatti (2010). This approach takes into account the natural scale
parameter in the BS(θ) distribution to specify the BS-ACD model in terms of a time-varying conditional
median duration σi = F−1

BS (0.5|Fi−1), where FBS denotes the CDF of the BS distribution. This
specification has several advantages over the existing ACD models, as previously mentioned, including
a realistic distributional assumption—an expected improvement in the model fit as a result of the
natural parametrization in terms of the conditional median duration, since the median is generally
considered to be a better measure of central tendency than the mean for asymmetrical and heavy-tailed
distributions—and ease of fitting.

The PDF associated with the BS-ACD(r, s) model is given by

fBS(xi; θi) = φ
(
a(xi; θi)

)
a′(xi; θi), i = 1, . . . , n, (13)

where
θi = (κ, σi)

>, i = 1, . . . , n,

with
ln σi = α + ∑r

j=1 β j ln σi−j + ∑s
j=1 γj

[ xi−j
σi−j

]
. (14)

3.2. GBS-ACD Models

We now extend the class of BS-ACD(r, s) models by using the GBS distributions. As explained
earlier, this family of distributions possesses either lighter or heavier tails than the BS density, thus
providing more flexibility. From the density given in (6), the GBS-ACD(r, s) model can be obtained in a
way analogous to that provided for the BS-ACD(r, s) model in (13) with an associated PDF expressed as

fGBS(xi; θi, g) = c g
(
a2(xi; θi)

)
a′(xi; θi), i = 1, . . . , n, (15)

where c and g are as given in (6), θi = (κ, σi)
> for i = 1, . . . , n, with

ln σi = α + ∑r
j=1 β j ln σi−j + ∑s

j=1 γj
[ xi−j

σi−j

]
, (16)

where ξ = (κ, α, β1, . . . , βr, γ1, . . . , γs)> and ζ = (ζ1, . . . , ζk)
> denotes the additional parameters

required by the density function in (6).
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Note that model (15) can be written as

Xi = σi ϕi, (17)

where ϕi = exp(εi) with εi being positively supported independent and identically distributed RVs
following the SHS(κ, 0, 2, g) distribution, with density given by (11). Note that if εi ∼ SHS(κ, 0, 2, g),
then exp(εi) ∼ GBS(κ, 1, g) (see Proposition 1) with Xi ∼ GBS(θi, g).

3.2.1. Properties

Proposition 2 (Expected value of logarithmic duration in the GBS-ACD(r, s) model). Assuming that the
process {Xi ∼ GBS(θi, g) : i = 1, 2, . . .} is strictly stationary and that E[εi] = µ, where εi is given in (17),
we have

E[ln Xi] =
2[α+µ(1+∑r

j=1 β j)]+(2+u1κ2)∑s
j=1 γj

2(1−∑r
j=1 β j)

, ∀i,

whenever ∑r
j=1 β j 6= 1. The constant (depending only on the kernel g) u1 is given in (7).

Proposition 3 (Moments of logarithmic duration in the GBS-ACD(1, 1) model). If the process {Xi ∼
GBS(θi, g) : i = 1, 2, . . .} is strictly stationary and E[εi] = µ, where εi is given in (17), then

• E[ln Xi] =
2[α+µ(1+β)]+(2+u1κ2)γ

2(1−β)
, β 6= 1,

• E[(ln Xi)
2] = µ(2− µ) + 2µ E[ln Xi]+

α2−2αβ+ γ2
2 (u2κ4+4u1κ2+2)+γ(2+u1κ2)(α−βµ)+[2αβ+γβ(2+u1κ2)] E[ln Xi ]

1−β2 , β 6= ±1,

, ∀i.

3.2.2. Estimation

Let (X1, . . . , Xn) be a sample from Xi ∼ GBS(θi, g) for i = 1, . . . , n, and let x = (x1, . . . , xn)>

be the observed durations. Then, the log-likelihood function for ξ = (κ, α, β1, . . . , βr, γ1, . . . , γs)> is
obtained as

`GBS(ξ) =
n

∑
i=1

[
ln (2c)− ln κ − ln σi + ln g

(
a2(xi; θi)

)
+ ln

((σi
xi

)1/2
+
(σi

xi

)3/2
)]

, (18)

where the time-varying conditional median σi is given as in (16). The maximum-likelihood (ML)
estimates can be obtained by maximizing the expression defined in (18) by equating the score
vector ˙̀GBS(ξ), which contains the first derivatives of `GBS(ξ), to zero, providing the likelihood
equations. They must be solved by an iterative procedure for non-linear optimization, such as the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton method. It can easily be seen that the
first-order partial derivatives of `GBS(ξ) are

∂`GBS

∂u
(ξ) =

n

∑
i=1

[
2a(xi; θi)

g(a2(xi; θi))

∂a(xi; θi)

∂u
g′(a2(xi; θi)) +

1
a′(xi; θi)

∂a′(xi; θi)

∂u

]
,

for each u ∈ {κ, α, β1, . . . , βr, γ1, . . . , γs}, where

∂a(xi ;θi)
∂κ = − a(xi ;θi)

κ , ∂a(xi ;θi)
∂w = δ(xi; θi)

∂σi
∂w

∂a′(xi ;θi)
∂κ = − a′(xi ;θi)

κ , ∂a′(xi ;θi)
∂w = ∆(xi; θi)

∂σi
∂w

, w ∈ {α, β1, . . . , βr, γ1, . . . , γs}, (19)
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with δ(xi; θi) = −√xi(2κ
√

σi)
−1(σ−1

i − x−1
i ) and ∆(xi; θi) = −(4κ

√
xiσi)

−1(σ−1
i + x−1

i ), and i =
1, . . . , n. Here,

∂σi
∂α =

(
∑r

j=1
β j

σi−j

∂σi−j
∂α −∑s

j=1
γjxi−j

σ2
i−j

∂σi−j
∂α

)
σi,

∂σi
∂βl

=
(

βl ln σi−l + ∑r
j=1

β j
σi−j

∂σi−j
∂βl
−∑s

j=1
γjxi−j

σ2
i−j

∂σi−j
∂βl

)
σi, l = 1, . . . , r,

∂σi
∂γm

=
(

∑r
j=1

β j
σi−j

∂σi−j
∂γm

+ γm
[ xi−m

σi−m

]
−∑s

j=1
γjxi−j

σ2
i−j

∂σi−j
∂γm

)
σi, m = 1, . . . , s.

(20)

The asymptotic distribution of the ML estimator ξ̂ can be used to perform inference for ξ. This
estimator is consistent and has an asymptotic multivariate normal joint distribution with mean ξ and
covariance matrix Σξ̂ , which may be obtained from the corresponding expected Fisher information
matrix I(ξ). Then, √

n [ξ̂ − ξ]
D→ N2+r+s(0, Σξ̂ = J (ξ)−1),

as n → ∞, where D→ means “convergence in distribution” and J (ξ) = limn→∞[1/n]I(ξ). Notice

that Î(ξ)−1 is a consistent estimator of the asymptotic variance–covariance matrix of ξ̂. Here, we
approximate the expected Fisher information matrix by its observed version obtained from the Hessian
matrix ῭GBS(ξ), which contains the second derivatives of `GBS(ξ).

The elements of the Hessian are expressed as follows:

∂2`GBS
∂u∂v (ξ) = ∑n

i=1

[
∂Θ(xi ;θi)

∂v g′(a2(xi; θi)) + 2Θ(xi; θi)a(xi; θi)
∂a(xi ;θi)

∂v g′′(a2(xi; θi))

− 1(
a′(xi ;θi)

)2
∂a′(xi ;θi)

∂u
∂a′(xi ;θi)

∂v + 1
a′(xi ;θi)

∂2a′(xi ;θi)
∂u∂v

]
,

(21)

for each u, v ∈ {κ, α, β1, . . . , βr, γ1, . . . , γs}, where

Θ(xi; θi) =
2a(xi ;θi)

g(a2(xi ;θi))
∂a(xi ;θi)

∂u and

∂Θ(xi ;θi)
∂v = 2

g(a2(xi ;θi))

[(
1− 2a2(xi ;θi)

g(a2(xi ;θi))

)
∂a(xi ;θi)

∂u
∂a(xi ;θi)

∂v + a(xi; θi)
∂2a(xi ;θi)

∂u∂v

]
.

The partial derivatives ∂a(xi ;θi)
∂u and ∂a′(xi ;θi)

∂u are given in (19). Furthermore, the second-order
partial derivatives of a(xi; θi) and a′(xi; θi) in (21), respectively, are given by

∂2a(xi ;θi)
∂κ2 = 2a(xi ;θi)

κ2 , ∂2a(xi ;θi)
∂w2 =

√
xi

4κσ3/2
i

( 1
σi
− 1

xi

)( ∂σi
∂w
)2

+ δ(xi; θi)
∂2σi
∂w2 ,

∂2a′(xi ;θi)
∂κ2 = 2a′(xi ;θi)

κ2 , ∂2a′(xi ;θi)
∂w2 = 2κ√

xiσ
3/2
i

( 1
σi
+ 1

xi

)( ∂σi
∂w
)2

+ ∆(xi; θi)
∂2σi
∂w2 ,

for each w ∈ {α, β1, . . . , βr, γ1, . . . , γs}, with δ(xi; θi) = −
√

xi(2κ
√

σi)
−1(σ−1

i − x−1
i ) and ∆(xi; θi) =

−(4κ
√

xiσi)
−1(σ−1

i + x−1
i ). Here,

∂2σi
∂α2 =

[
−∑r

j=1
β j

σi−j

( 1
σi−j

(
∂σi−j

∂α )2 − ∂2σi−j
∂α2

)
+ ∑s

j=1
γjxi−j

σ2
i−j

( 2
σi−j

(
∂σi−j

∂α )2 − ∂2σi−j
∂α2

)]
σi +

1
σi
( ∂σi

∂α )
2,

∂2σi
∂β2

l
=
[

ln σi−l +
βl

σi−l

∂σi−l
∂βl
−∑r

j=1
β j

σi−j

( 1
σi−j

(
∂σi−j
∂βl

)2 − ∂2σi−j

∂β2
l

)
+ ∑s

j=1
γjxi−j

σ2
i−j

( 2
σi−j

(
∂σi−j
∂βl

)2 − ∂2σi−j

∂β2
l

)]
σi

+ 1
σi
( ∂σi

∂βl
)2, l = 1, . . . , r,

∂2σi
∂γ2

m
=
[
−∑r

j=1
β j

σi−j

( 1
σi−j

(
∂σi−j
∂γm

)2 − ∂2σi−j

∂γ2
m

)
+

xi−m
σi−m
− xi−m

σ2
i−m

∂σi−m
∂γm

+∑s
j=1

γjxi−j

σ2
i−j

( 2
σi−j

(
∂σi−j
∂γm

)2 − ∂2σi−j

∂γ2
m

)]
σi

+ 1
σi
( ∂σi

∂γm
)2, m = 1, . . . , s; i = 1, . . . , n.
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Note that the functions a(xi; θi) and a′(xi; θi) have continuous second-order partial derivatives
at a given point θi ∈ R4, i = 1, . . . , n. Then, by Schwarz’s Theorem, it follows that the partial

differentiations of these functions are commutative at that point, that is, ∂2a(xi ;θi)
∂u∂v = ∂2a(xi ;θi)

∂v∂u and
∂2a′(xi ;θi)

∂u∂v = ∂2a′(xi ;θi)
∂v∂u , for each u 6= v ∈ {κ, α, β1, . . . , βr, γ1, . . . , γs}. With this in mind, the mixed partial

derivatives of a(xi; θi) and a′(xi; θi) in (21) have the following form:

∂2a(xi ;θi)
∂κ∂w1

= − 1
κ

∂a(xi ;θi)
∂w1

,

∂2a(xi ;θi)
∂α∂w2

=
√

xi

4κσ3/2
i

( 1
σi
− 1

xi

) ∂σi
∂α

∂σi
∂w2

+ δ(xi; θi)
∂2σi

∂α∂w2
,

∂2a(xi ;θi)
∂βl∂γm

=
√

xi

4κσ3/2
i

( 1
σi
− 1

xi

) ∂σi
∂βl

∂σi
∂γm

+ δ(xi; θi)
∂2σi

∂βl ∂γm
,

∂2a′(xi ;θi)
∂κ∂w1

= − 1
κ

∂a′(xi ;θi)
∂w1

,

∂2a′(xi ;θi)
∂α∂w2

= 2κ√
xiσ

3/2
i

( 1
σi
+ 1

xi

) ∂σi
∂α

∂σi
∂w2

+ ∆(xi; θi)
∂2σi

∂α∂w2
,

∂2a′(xi ;θi)
∂βl ∂γm

= 2κ√
xiσ

3/2
i

( 1
σi
+ 1

xi

) ∂σi
∂βl

∂σi
∂γm

+ ∆(xi; θi)
∂2σi

∂βl ∂γm
,

for each w1 ∈ {α, β1, . . . , βr, γ1, . . . , γs}, w2 ∈ {β1, . . . , βr, γ1, . . . , γs}, and l = 1, . . . , r; m = 1, . . . , s,

where δ(xi; θi) and ∆(xi; θi) are as before. In the above identities, the mixed partial derivatives ∂2σi
∂α∂w2

and ∂2σi
∂βl ∂γm

, respectively, are given by

∂2σi
∂α∂w2

=
[
−∑r

j=1
β j

σi−j

( 1
σi−j

∂σi−j
∂α

∂σi−j
∂w2
− ∂2σi−j

∂α∂w2

)
+∑s

j=1
γjxi−j

σ2
i−j

( 2
σi−j

∂σi−j
∂α

∂σi−j
∂w2
− ∂2σi−j

∂α∂w2

)]
σi +

1
σi

∂σi
∂α

∂σi
∂w2

,

∂2σi
∂βl∂γm

=
[ βl

σi−l

∂σi−l
∂γm
−∑r

j=1
β j

σi−j

( 1
σi−j

∂σi−j
∂βl

∂σi−j
∂γm
− ∂2σi−j

∂βl ∂γm

)
+ ∑s

j=1
γjxi−j

σ2
i−j

( 2
σi−j

∂σi−j
∂βl

∂σi−j
∂γm
− ∂2σi−j

∂βl ∂γm

)]
σi

+ 1
σi

∂σi
∂βl

∂σi
∂γm

, l = 1, . . . , r; m = 1, . . . , s and i = 1, . . . , n.

3.2.3. Residual Analysis

We carry out goodness-of-fit through residual analysis. In particular, we consider the generalized
Cox–Snell residual, which is given by

rcs = − ln Ŝ(xi|Fi−1), (22)

where Ŝ(xi|Fi−1) denotes the fitted conditional survival function. When the model is correctly
specified, the Cox–Snell residual has a unit exponential (EXP(1)) distribution; see Bhatti (2010).

4. The GBS-AACD Models

Now, we introduce a generalization of the linear form for the conditional median dynamics
based on the Box-Cox transformation; see Box and Cox (1964) and Fernandes and Grammig (2006) for
pertinent details. Hereafter, we use the log-linear form σi given in (16) with r = 1 and s = 1 (i.e., the
GBS-ACD(r = 1, s = 1) model, which we abbreviate as the GBS-ACD model, since a higher-order
model does not increase the distributional fit of the residuals (Bhatti 2010)). Therefore, (16) results in

ln σi = α + β ln σi−1 + γ
[ xi−1

σi−1

]
. (23)

The asymmetric version of the GBS-ACD model—GBS-AACD model—is given by

σi = α + βσi−1 + γσi−1
(
|ϕi−1 − b|+ c(ϕi−1 − b)

)
, (24)
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where b and c are the shift and rotation parameters, respectively. By applying the Box-Cox
transformation with parameter λ ≥ 0 to the conditional duration model process σi and introducing the
parameter ν, we can write (24) as

σλ
i −1
λ = α∗ + β

σλ
i−1−1

λ + γ∗σλ
i−1
(
|ϕi−1 − b|+ c(ϕi−1 − b)

)ν. (25)

The parameter λ determines the shape of the transformation, i.e., concave (λ ≤ 1) or convex
(λ ≥ 1), and the parameter ν aims to transform the (potentially shifted and rotated) term

(
|ϕi−1 − b|+

c(ϕi−1 − b)
)
. Setting α = λα∗ − β + 1 and γ = λγ∗, we obtain

σλ
i = α + βσλ

i−1 + γσλ
i−1
(
|ϕi−1 − b|+ c(ϕi−1 − b)

)ν. (26)

We present below the forms of GBS-AACD models obtained from different specifications. Note
that the Logarithmic GBS-ACD type II is equivalent to (23).

• Augmented ACD (GBS-AACD):

σλ
i = α + βσλ

i−1 + γσλ
i−1
(
|ϕi−1 − b|+ c(ϕi−1 − b)

)ν.

• Asymmetric power ACD (GBS-A-PACD) (λ = ν):

σλ
i = α + βσλ

i−1 + γσλ
i−1
(
|ϕi−1 − b|+ c(ϕi−1 − b)

)λ.

• Asymmetric logarithmic ACD (GBS-A-LACD) (λ→ 0 and ν = 1):

ln σi = α + β ln σi−1 + γ
(
|ϕi−1 − b|+ c(ϕi−1 − b)

)
.

• Asymmetric ACD (GBS-A-ACD) (λ = ν = 1):

σi = α + βσi−1 + γσi−1
(
|ϕi−1 − b|+ c(ϕi−1 − b)

)
.

• Power ACD (GBS-PACD) (λ = ν and b = c = 0):

σλ
i = α + βσλ

i−1 + γxλ
i−1.

• Box-Cox ACD (GBS-BCACD) (λ→ 0 and b = c = 0):

ln σi = α + β ln σi−1 + γϕν
i−1.

• Logarithmic ACD type I (GBS-LACD I) (λ, ν→ 0 and b = c = 0):

ln σi = α + β ln σi−1 + γ ln xi−1.

• Logarithmic ACD type II (GBS-LACD II) (λ→ 0, ν = 1 and b = c = 0):

ln σi = α + β ln σi−1 + γϕi−1.

5. Numerical Results for the GBS-ACD Models

In this section, we perform two simulation studies, one for evaluating the behavior of the
ML estimators of the GBS-ACD models, and another for examining the performance of the
residuals. We have focused on the GBS-ACD models because similar results were obtained for
the GBS-AACD models.
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5.1. Study of ML Estimators

Through a Monte Carlo (MC) study, we evaluate here the finite sample behavior of the ML
estimators of the GBS-ACD model parameters presented in Section 3. The sample sizes considered
were n = 500, 1000, and 3000. The number of MC replications was B = 1000. The data-generating
process for each of the realizations is

Xi = ψiεi, ln ψi = 0.10 + 0.90 ln ψi−1 + 0.10
[ xi−1

ψi−1

]
, (27)

where the distribution of εi is a generalized gamma with density f (x; µ, σ, ν) =

θθzθν exp(−θz)/(Γ(θ)x) with z = (x/µ)µ and θ = 1/σ2|ν|2. Note that stationarity conditions
only require |β| < 1, and in (27), β = 0.9; see Bauwens and Giot (2000).

We estimate the GBS-ACD model parameters through the following two-step algorithm:

• Estimate only the ACD parameters (α, β, γ) by the Nelder and Mead (1965) (NM) approach, with
starting values for (α, β, γ) fixed at (0.01, 0.70, 0.01), σ0 being the unconditional sample median,
and the value of κ being fixed at κ0 =

√
2 [x/Med[x]− 1], where x and Med[x] are the sample

mean and median based on observations (data) x = (x1, . . . , xn)>, respectively;
• Estimate all of the ACD model parameters using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)

quasi-Newton approach, with starting values obtained from the estimates obtained in the
anterior step.

The estimation results from the simulation study are presented in Table 2. The following sample
statistics for the ML estimates are reported: Mean, coefficients of skewness (CS) and kurtosis (CK),
relative bias (the RB, in absolute values, is defined as |E(τ̂) − τ|/τ, where τ̂ is an estimator of a
parameter τ), and root mean squared error (

√
MSE). The sample CS and CK are, respectively, given by

CS(x) =
√

n[n−1]
[n−2]

n−1 ∑n
i=1[xi−x̄]3

[n−1 ∑n
i=1(xi−x̄)2]

3/2 and CK(x) = n−1 ∑n
i=1[xi−x̄]4

[n−1 ∑n
i=1(xi−x̄)2]

2 ,

where x = (xi, . . . , xn)> denotes an observation of the sample. This definition of kurtosis is the raw
measure, not excess kurtosis, which subtracts three from this quantity. From Table 2, we note that, as
the sample size increases, the RBs and

√
MSE become smaller. We can also note that both β̂ and γ̂ are

persistently skewed and somewhat unstable; nonetheless, they remain close to a normal distribution
in terms of their skewness and kurtosis values.
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Table 2. Results of the Monte Carlo (MC) experiments based on the generalized gamma distribution.

n = 500

BS-ACD BS-LA-ACD BS-LO-ACD BS-PE-ACD BS-t-ACD

β̂ Mean 0.8893 0.8920 0.8932 0.8919 0.8931
SD 0.0455 0.0607 0.0430 0.0447 0.0432
CS −1.2311 −2.6638 −1.4726 −1.5005 −1.4408
CK 5.5554 16.9123 6.9795 6.8696 6.8782
RB 0.0118 0.0088 0.0074 0.0089 0.0075√

MSE 0.0467 0.0612 0.0435 0.0454 0.0438

γ̂ Mean 0.1210 0.1135 0.1147 0.1165 0.1146
SD 0.0277 0.0291 0.0241 0.0252 0.0243
CS 0.3561 0.3929 0.2769 0.3364 0.2823
CK 3.2213 3.2985 3.2425 3.2974 3.2485
RB 0.2108 0.1354 0.1470 0.1655 0.1461√

MSE 0.0348 0.0321 0.0282 0.0302 0.0283

n = 1000

β̂ Mean 0.8925 0.8960 0.8953 0.8945 0.8955
SD 0.0309 0.0364 0.0287 0.0292 0.0287
CS −0.8445 −1.0195 −0.7789 −0.8251 −0.7971
CK 4.2081 4.7648 3.9145 4.0728 4.0305
RB 0.0082 0.0043 0.0051 0.0060 0.0049√

MSE 0.0318 0.0366 0.0291 0.0297 0.0291

γ̂ Mean 0.1089 0.1052 0.1059 0.1068 0.1058
SD 0.0182 0.0196 0.0164 0.0168 0.0164
CS 0.2838 0.2560 0.2254 0.2605 0.2493
CK 3.2734 3.1051 3.2301 3.2127 3.2768
RB 0.0892 0.0525 0.0590 0.0685 0.0581√

MSE 0.0203 0.0203 0.0174 0.0181 0.0174

n = 2000

β̂ Mean 0.8959 0.8986 0.8972 0.8967 0.8971
SD 0.0218 0.0250 0.0203 0.0206 0.0203
CS −0.6096 −0.8894 −0.6294 −0.6631 −0.6345
CK 3.7129 4.7915 3.9189 3.9201 3.8773
RB 0.0045 0.0015 0.0030 0.0035 0.0031√

MSE 0.0222 0.0251 0.0204 0.0208 0.0205

γ̂ Mean 0.1024 0.1017 0.1015 0.1019 0.1014
SD 0.0123 0.0136 0.0113 0.0114 0.0113
CS 0.0999 0.0920 0.0696 0.1094 0.0880
CK 2.8660 2.8964 2.9778 2.9514 2.9710
RB 0.0241 0.0173 0.0157 0.0192 0.0146√

MSE 0.0125 0.0137 0.0114 0.0116 0.0114

5.2. Study of Residuals

We now carry out an MC simulation study to examine the performance of the Cox–Snell residual
rcs defined in (22). To do so, we use the estimation procedure presented in Section 5.1 and consider
only the BS-PE-ACD model, as it provides greater flexibility in relation to other models, that is, it
has either less or greater (lighter or heavier tails) than the BS distribution. The BS-PE-ACD samples
are generated using the transformation in (5). We simulate B = 1000 MC samples of size n = 500.
The empirical autocorrelation function (ACF) of the residual rcs is plotted in Figure 1a. This plot
indicates that the BS-PE-ACD model is well specified, since the residual rcs mimics a sequence of
independent and identically distributed RVs and there is no indication of serial correlation. Moreover,
the empirical mean of the residual rcs, whose value was expected to be 1, was 0.9836. Finally, using
a quantile-against-quantile (QQ) plot with a simulated envelope (see Figure 1b), we note that the
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Cox–Snell residual has an excellent agreement with the EXP(1) distribution, which supports the
adequacy and flexibility of the BS-PE-ACD model. It is then possible to conclude that the residual rcs

seems adequate to assess the adjustment of the proposed models.
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for the residuals.

6. Application to Analysis of Financial Transaction Data

In this section, our objective is to assess the GBS-ACD and GBS-AACD models using TD data. In
particular, we consider here three TD data sets studied in Bhatti (2010), corresponding to the time
elapsed (in seconds) between two consecutive transactions, which cover forty trading days from
January 1, 2002 to February 28, 2002: International Business Machines (IBM), Johnson and Johnson
Company (JNJ), and The Proctor and Gamble Company (PG). Note that, as mentioned before, these
types of data exhibit some diurnal patterns, so that the final data sets are constructed from adjusted
TD x̄i = xi/φ̂, where φ̂ = exp(ŝ) and ŝ denotes a set of quadratic functions and indicator variables for
each half-hour interval of the trading day from 9:30 am to 4:00 pm; for more details, see Giot (2000),
Tsay (2002), and Bhatti (2010).

6.1. Exploratory Data Analysis

Table 3 provides some descriptive statistics for both plain and diurnally adjusted TD data, which
include central tendency statistics and coefficients of variation (CV), of skewness (CS), and of kurtosis
(CK), among others. These measures indicate the positively skewed nature and the high kurtosis of
the data. Figure 2 shows graphical plots of the ACF and partial ACF for the IBM, JNJ, and PG data
sets, which indicate the presence of serial correlation.

Table 3. Summary statistics for the International Business Machines (IBM),
Johnson and Johnson Company (JNJ), and The Proctor and Gamble Company (PG) data sets.

Data Min. Max. Median Mean SD CV CS CK

Plain data IBM 1 166 5 6.768 6.234 92.10% 3.106 20.368
JNJ 1 225 7 10.391 11.737 109.45% 3.187 18.706
PG 1 172 7 10.904 12.066 110.66% 2.973 14.339

Adjusted data IBM 0.169 32.523 1.038 1.384 1.252 90.43% 3.023 19.802
JNJ 0.131 33.973 0.976 1.557 1.680 107.91% 3.135 18.463
PG 0.121 26.327 0.985 1.582 1.718 108.58% 2.865 13.311

Figure 1. Autocorrelation function (ACF) plot and quantile-against-quantile (QQ) plot with envelope
for the residuals.

6. Application to Analysis of Financial Transaction Data

In this section, our objective is to assess the GBS-ACD and GBS-AACD models using TD data.
In particular, we consider here three TD data sets studied in Bhatti (2010), corresponding to the time
elapsed (in seconds) between two consecutive transactions, which cover forty trading days from
January 1, 2002 to February 28, 2002: International Business Machines (IBM), Johnson and Johnson
Company (JNJ), and The Proctor and Gamble Company (PG). Note that, as mentioned before, these
types of data exhibit some diurnal patterns, so that the final data sets are constructed from adjusted
TD x̄i = xi/φ̂, where φ̂ = exp(ŝ) and ŝ denotes a set of quadratic functions and indicator variables for
each half-hour interval of the trading day from 9:30 am to 4:00 pm; for more details, see Giot (2000),
Tsay (2002), and Bhatti (2010).

6.1. Exploratory Data Analysis

Table 3 provides some descriptive statistics for both plain and diurnally adjusted TD data, which
include central tendency statistics and coefficients of variation (CV), of skewness (CS), and of kurtosis
(CK), among others. These measures indicate the positively skewed nature and the high kurtosis of
the data. Figure 2 shows graphical plots of the ACF and partial ACF for the IBM, JNJ, and PG data
sets, which indicate the presence of serial correlation.

Table 3. Summary statistics for the International Business Machines (IBM), Johnson and Johnson
Company (JNJ), and The Proctor and Gamble Company (PG) data sets.

Data Min. Max. Median Mean SD CV CS CK

Plain data IBM 1 166 5 6.768 6.234 92.10% 3.106 20.368
JNJ 1 225 7 10.391 11.737 109.45% 3.187 18.706
PG 1 172 7 10.904 12.066 110.66% 2.973 14.339

Adjusted data IBM 0.169 32.523 1.038 1.384 1.252 90.43% 3.023 19.802
JNJ 0.131 33.973 0.976 1.557 1.680 107.91% 3.135 18.463
PG 0.121 26.327 0.985 1.582 1.718 108.58% 2.865 13.311
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Figure 2. Autocorrelation and partial autocorrelation functions for the indicated data sets.

The hazard function of a positive RV X is given by hX(t) = fX(x)/(1− FX(x)), where fX(·) and
FX(·) are the PDF and CDF of X, respectively. A useful way to characterize the hazard function is by
the scaled total time on test (TTT) function, namely, we can detect the type of hazard function that
the data have and then choose an appropriate distribution. The TTT function is given by WX(u) =

H−1
X (u)/H−1

X (1) for 0 ≤ u ≤ 1, where H−1
X (u) =

∫ F−1
X (u)

0 [1 − FX(y)]dy, where F−1
X (·) is the inverse

CDF of X. By plotting the consecutive points (k/n, Wn(k/n)) with Wn(k/n) = [∑k
i=1 x(i) + (n −

k)xk]/ ∑n
i=1 x(i) for k = 0, . . . , n, and x(i) being the ith-order statistic, it is possible to approximate

WX(·); see Aarset (1987) and Azevedo et al. (2012).
From Figure 3, we observe that the TTT plots suggest a failure rate with a unimodal shape. We

also observe that the histograms suggest a positive skewness for the data density. This supports
the results obtained in Table 3. However, Huber and Vanderviere (2008) pointed out that, in cases
where the data follow a skewed distribution, a significant number of observations can be classified
as atypical when they are not. The boxplots depicted in Figure 3 suggest such a situation, i.e., most
of the observations considered as potential outliers by the usual boxplot are not outliers when we
consider the adjusted boxplot.
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X (u) =

∫ F−1
X (u)

0 [1− FX(y)]dy, where F−1
X (·) is the inverse

CDF of X. By plotting the consecutive points (k/n, Wn(k/n)) with Wn(k/n) = [∑k
i=1 x(i) + (n −

k)xk]/ ∑n
i=1 x(i) for k = 0, . . . , n, and x(i) being the ith-order statistic, it is possible to approximate

WX(·); see Aarset (1987) and Azevedo et al. (2012).
From Figure 3, we observe that the TTT plots suggest a failure rate with a unimodal shape. We

also observe that the histograms suggest a positive skewness for the data density. This supports
the results obtained in Table 3. However, Huber and Vanderviere (2008) pointed out that, in cases
where the data follow a skewed distribution, a significant number of observations can be classified as
atypical when they are not. The boxplots depicted in Figure 3 suggest such a situation, i.e., most of the
observations considered as potential outliers by the usual boxplot are not outliers when we consider
the adjusted boxplot.
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Figure 3. Total time on test (TTT) plot (a), histogram (b), and usual and adjusted boxplots (c) for the
indicated data sets.

6.2. Estimation Results and Analysis of Goodness-of-Fit for the GBS-ACD Models

We now estimate the GBS-ACD models by the maximum likelihood method using the steps
described in Section 5.1. Tables 4–6 present the estimation results for the indicated models. The
standard errors (SEs) are reported in parentheses and ℓ stands for the value of the log-likelihood
function, whereas AIC = −2ℓ + 2k and BIC = −2ℓ + k ln n denote, respectively, the Akaike
information and Bayesian information criteria, where k stands for the number of parameters and n
for the number of observations. The maximum and minimum values of the sample autocorrelations
(ACF) from order 1 to 60 are also reported. Finally, γ̄ denotes the mean magnitude of autocorrelation
for the first 15 lags, namely, γ̄ = 1/15 ∑15

i=1 |γk|, where γk = cor(xi, xi+k). The mean magnitude of
autocorrelation γ̄ is relevant for separating the influence of the sample size on the measure of the
degree of autocorrelation in the residuals.
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6.2. Estimation Results and Analysis of Goodness-of-Fit for the GBS-ACD Models

We now estimate the GBS-ACD models by the maximum likelihood method using the steps
described in Section 5.1. Tables 4–6 present the estimation results for the indicated models. The
standard errors (SEs) are reported in parentheses and ` stands for the value of the log-likelihood
function, whereas AIC = −2`+ 2k and BIC = −2`+ k ln n denote, respectively, the Akaike information
and Bayesian information criteria, where k stands for the number of parameters and n for the number
of observations. The maximum and minimum values of the sample autocorrelations (ACF) from order
1 to 60 are also reported. Finally, γ̄ denotes the mean magnitude of autocorrelation for the first 15 lags,
namely, γ̄ = 1/15 ∑15

i=1 |γk|, where γk = cor(xi, xi+k). The mean magnitude of autocorrelation γ̄ is
relevant for separating the influence of the sample size on the measure of the degree of autocorrelation
in the residuals.

From Tables 4–6, we observe that all of the parameters are statistically significant at the 1% level.
It is also interesting to observe that, in general, the ACD parameter estimates are very similar across
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the models independently of the assumed distribution. In terms of AIC values, the BS-PE-ACD model
outperforms all other models. Based on the BIC values, we note that the BS-PE-ACD model once again
outperforms the remaining models, except for the JNJ data set. However, in this case, there does not
exist one best model, since the BIC values for the BS-ACD and BS-PE-ACD models are very close.

In order to check for misspecification, we look at the sample ACF from order 1 to 60. Tables 4–6
report that there is no sample autocorrelation greater than 0.05 (in magnitude) throughout the models
and residuals. Figure 4 shows the QQ plots of the Cox–Snell residual with the IBM, JNJ, and PG data
sets. The QQ plot allows us to check graphically if the residual follows the EXP(1) distribution. These
graphical plots show an overall superiority in terms of fit of the BS-PE-ACD model. Moreover, the
empirical means of the residual rcs for the BS-PE-ACD model with the IBM, GM, and PG data sets
were 1.0271, 0.9990, and 1.0153, respectively. Thus, the BS-PE-ACD model seems to be more suitable
for modeling the data considered. It must be emphasized that this model provides greater flexibility in
terms of kurtosis compared to the BS-ACD model.

Table 4. Estimation results based on the generalized Birnbaum–Saunders autoregressive conditional
duration (GBS-ACD) models for IBM trade durations.

BS-ACD BS-LA-ACD BS-L0-ACD BS-PE-ACD BS-t-ACD

α −0.0454 −0.0495 −0.0503 −0.0473 −0.0470
(0.00164) (0.00199) (0.00174) (0.00168) (0.00168)

β 0.9393 0.9387 0.9367 0.9373 0.9383
(0.00381) (0.00436) (0.00389) (0.00389) (0.00384)

γ 0.0324 0.0385 0.0372 0.0342 0.0336
(0.00116) (0.00158) (0.00128) (0.00121) (0.00119)

κ 0.8736 0.6862 0.4949 0.7934 0.8575
(0.00173) (0.00192) (0.00115) (0.00532) (0.00266)

η 0.9019 54.4022
(0.00582) (7.05075)

` −153644.7 −157875.7 −154274.3 −153519.2 −153625.1
AIC 307297.4 315759.4 308556.6 307048.4 307260.2
BIC 307336.4 315798.4 308595.6 307097.2 307309
max ACF 0.0253 0.0293 0.0258 0.0341 0.0251
min ACF −0.0075 −0.0100 −0.0089 −0.0052 −0.0079
γ̄ 0.0060 0.0061 0.0057 0.0074 0.0059

Table 5. Estimation results based on the GBS-ACD models for JNJ trade durations.

BS-ACD BS-LA-ACD BS-L0-ACD BS-PE-ACD BS-t-ACD

α −0.0174 −0.0168 −0.0503 −0.0174 −0.0179
(0.00080) (0.00070) (0.00174) (0.00081) (0.00078)

β 0.9744 0.9830 0.9367 0.9744 0.9769
(0.00207) (0.00138) (0.00389) (0.00209) (0.00171)

γ 0.0113 0.0108 0.0372 0.0113 0.0115
(0.00051) (0.00044) (0.00128) (0.00051) (0.00050)

κ 1.0427 0.8296 0.4949 1.0195 1.0395
(0.00256) (0.00288) (0.00115) (0.00749) (0.00256)

η 0.9747 334.0810
(0.00755) (12.93302)

` −112581.4 −116353.4 −154274.3 −112575.8 −112582.8
AIC 225170.8 232714.8 308556.6 225161.6 225175.6
BIC 225208.1 232752.1 226547.4 225208.3 225222.1
max ACF 0.0197 0.0191 0.0182 0.0157 0.0189
min ACF −0.0103 −0.0144 −0.0134 −0.0111 −0.0112
γ̄ 0.0075 0.0071 0.0072 0.0061 0.0070
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Table 6. Estimation results based on the GBS-ACD models for PG trade durations.

BS-ACD BS-LA-ACD BS-L0-ACD BS-PE-ACD BS-t-ACD

α −0.0182 −0.0313 −0.0181 −0.0189 −0.0231
(0.00066) (0.00281) (0.00086) (0.00070) (0.00101)

β 0.9859 0.9744 0.9748 0.9856 0.9810
(0.00101) (0.00396) (0.00223) (0.00105) (0.00150)

γ 0.0115 0.0202 0.0117 0.0120 0.0146
(0.00041) (0.00180) (0.00055) (0.00044) (0.00063)

κ 1.0636 0.8404 0.5944 1.0058 1.0596
(0.00267) (0.00299) (0.00171) (0.00814) (0.00286)

η 0.9401 267.2753
(0.00770) (67.87919)

` −108461.2 −111511.8 −113251 −108433 −108464.8
AIC 216930.4 223031.6 226510 216876 216939.6
BIC 216967.5 223068.7 218064 216922.4 216986.1
max ACF 0.0396 0.0309 0.0341 0.0326 0.0352
min ACF −0.0143 −0.0133 −0.0140 −0.0101 −0.0132
γ̄ 0.0112 0.0067 0.0080 0.0114 0.0087
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Figure 4. QQ plot for the Cox–Snell residual with the indicated data sets.

6.3. Estimation Results for the BS-PE-AACD Models

We estimate here different ACD specifications (see Section 4) assuming a BS-PE PDF and using
JNJ TD data. We focus on the BS-PE-AACD models (in short, AACD models), since, as observed
in Section 6.2, this model fits the data adequately to provide effective ML-based inference. The
estimation is performed using the steps presented in Section 5.1.

Tables 7 and 8 report the estimation results for different specifications. It is important to point
out that the estimates of the BS-PE parameters κ and η are quite robust throughout the specifications.
The Box-Cox ACD result (see column BCACD) shows that allowing ν of ϕi−1 to freely vary in the
logarithm ACD processes (LACD I and LACD II) increases the log-likelihood value, indicating that
ν may play a role. In fact, ν̂ is significantly different from zero and one, thus supporting the BCACD
model against its logarithm counterparts, i.e., LACD I and LACD II. The AIC values show that the
BCACD, LACD I, and AACD are best models. From the BIC values, the LACD I, BCACD, and AACD
models are the best ones. Note, however, that the BIC values for the LACD I and BCACD models
are quite close. Tables 4–6 also show that there is no sample autocorrelation greater than 0.05 (in
magnitude) throughout the models and residuals.

Figure 4. QQ plot for the Cox–Snell residual with the indicated data sets.

6.3. Estimation Results for the BS-PE-AACD Models

We estimate here different ACD specifications (see Section 4) assuming a BS-PE PDF and using
JNJ TD data. We focus on the BS-PE-AACD models (in short, AACD models), since, as observed in
Section 6.2, this model fits the data adequately to provide effective ML-based inference. The estimation
is performed using the steps presented in Section 5.1.

Tables 7 and 8 report the estimation results for different specifications. It is important to point
out that the estimates of the BS-PE parameters κ and η are quite robust throughout the specifications.
The Box-Cox ACD result (see column BCACD) shows that allowing ν of ϕi−1 to freely vary in the
logarithm ACD processes (LACD I and LACD II) increases the log-likelihood value, indicating that ν

may play a role. In fact, ν̂ is significantly different from zero and one, thus supporting the BCACD
model against its logarithm counterparts, i.e., LACD I and LACD II. The AIC values show that the
BCACD, LACD I, and AACD are best models. From the BIC values, the LACD I, BCACD, and AACD
models are the best ones. Note, however, that the BIC values for the LACD I and BCACD models
are quite close. Tables 4–6 also show that there is no sample autocorrelation greater than 0.05 (in
magnitude) throughout the models and residuals.
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Table 7. Estimation results for ACD specifications of JNJ trade durations. A star (∗) indicates that the
parameter estimate is not significantly different from zero.

LACD I LACD II BCACD PACD

α 7.2771e-05 −0.0174 −0.2719 0.0449
(0.00165) (0.00126) (0.06500) (0.01096)

β 0.9638 0.9744 0.9817 0.9266
(0.02594) (0.00294) (0.00464) (0.01604)

γ 0.0189 0.0113 0.2713 0.0258
(0.00166) (0.00081) (0.06526) (0.00893)

λ 0.4606 *
(0.40488)

ν 0.0713
(0.02436)

κ 1.0190 1.0195 1.0189 1.0126
(0.01245) (0.00753) (0.00748) (0.00752)

η 0.9746 0.9747 0.9748 0.9678
(0.03448) (0.00758) (0.00753) (0.00754)

` −112544.7 −112575.8 −112539.5 −112558.6
AIC 225099.4 225161.6 225091 225129.2
BIC 225146 225208.3 225146.9 225185.1
max ACF 0.0175 0.0156 0.0158 0.0119
min ACF −0.0130 −0.0113 −0.0134 −0.0188
γ̄ 0.0057 0.0061 0.0055 0.0045

Table 8. Estimation results for ACD specifications of JNJ trade durations. A star (∗) indicates that the
parameter estimate is not significantly different from zero.

A-ACD A-LACD A-PACD AACD

α 0.0267 −0.0167 0.1358 0.0319
(0.00122) (0.00344) (0.00728) (0.00881)

β 0.9537 0.9745 0.7975 0.8241
(0.00601) (0.00239) (0.00077) (0.00599)

γ 0.0139 0.0140 0.0632 0.1329
(0.00100) (0.00046) (0.00918) (0.00730)

λ 0.1118 0.5896
(0.01008) (0.08903)

ν 0.1348
(0.01590)

b −0.1060 * 0.0610 * −0.6393 −0.4250
(0.69799) (0.35477) (0.21157) (0.10707)

c −0.1493 −0.1949 −0.1395 * 0.1229
(0.05026) (0.03656) (1.82254) (0.06525)

κ 1.0187 1.0195 1.0188 1.0182
(0.00749) (0.00749) (0.00750) (0.00749)

η 0.9740 0.9747 0.9737 0.9746
(0.00754) (0.00755) (0.00755) (0.00756)

` −112574.5 −112575.8 −112681.5 −112543.1
AIC 225163 225165.6 225379 225104.2
BIC 225228.3 225230.9 225453.6 225188.2
max ACF 0.0148 0.0157 0.0171 0.0137
min ACF −0.0114 −0.0111 −0.0253 −0.0147
γ̄ 0.0057 0.0061 0.0081 0.0049

7. Concluding Remarks

We have introduced a general class of ACD models based on GBS distributions. These
distributions possess either lighter or heavier tails than the BS distribution, thus providing a wider
class of positively skewed densities with nonnegative support. In addition, we have proposed a
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wider class of GBS-ACD models based on the Box-Cox transformation with a shape parameter to
the conditional duration process and an asymmetric response to shocks. We then investigated the
performance of the maximum likelihood estimates of the GBS-ACD models by means of an MC study.
We also compared the proposed GBS-ACD and GBS-AACD models through an analysis with real
financial data sets, which has shown the superiority of the BS-PE-ACD and BS-PE-BCACD models.
A future line of research may be the out-of-sample forecast abilities of these models, as well as their
application to other types of irregularly time-spaced data (besides TD data).
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Appendix A

Mathematical Proofs

Proof of Proposition 2. Since µ = E[εi] and the process ηi = (ln Xi − µ) − ln σi is a martingale
difference sequence, E[ηi|Fi−1] = 0 almost surely (a.s.). Replacing (16) in the equation ln Xi =

ln σi + ηi + µ, note that the GBS-ACD(r, s) model can be written as

ln Xi = α + µ
(
1 + ∑r

j=1 β j
)
−∑r

j=1 β jηi−j + ∑s
j=1 γj

[Xi−j
σi−j

]
+ ∑r

j=1 β j ln Xi−j + ηi. (A1)

Note that

E
[Xi−j

σi−j

]
= E[ϕi−j] =

1
2 (2 + u1κ2), (A2)

where, in the first equality, we use the relation Xi = σi ϕi; in the second equality, the identity E[ϕi] = (2+
u1κ2)/2 is used, where ur = ur(g) = E[Ur] with U ∼ Gχ2(1, g), because ϕi = exp(εi) ∼ GBS(κ, 1, g).

Provided that {Xi} is a strictly stationary process, the transformed process {ln Xi} is always
strictly stationary, too. Using this fact, taking expectation on both sides in (A1), and using the identity
(A2), we obtain, after some algebra, that

E[ln Xi] =
2[α+µ(1+∑r

j=1 β j)]+(2+u1κ2)∑s
j=1 γj

2(1−∑r
j=1 β j)

,

whenever ∑r
j=1 β j 6= 1. The proof is complete.

Proof of Proposition 3. From Proposition 2 follows the expression for E[ln Xi]. In what follows,
we find the expression for E[(ln Xi)

2]. Indeed, since Xi = σi ϕi, σi is Fi−1-measurable and ϕi ∼
GBS(κ, 1, g), it follows that

E[ln Xi] = µ + E[ln σi],

E[(ln Xi)
2] = µ(2 + µ) + E[(ln σi)

2] + 2µE[ln σi],

E
[

ln σi (
Xi
σi
)
]
= E

[
ln σi E[ϕi|Fi−1]

]
= 1

2 (2 + u1κ2)E[ln σi],

E
[Xi−1

σi−1

]
= 1

2 (2 + u1κ2)

E[(Xi−1
σi−1

)2] = Var[ϕi−1] + E2[ϕi−1]
(7)
= 1

2 (u2k4 + 4u1k2 + 2).

(A3)
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Taking the square of ln σi in (23) and after the expectation, by a strictly stationary process, we have

E[(ln σi)
2] = α2 + β2E[(ln σi)

2] + 2αβE[ln σi]

+ γ2E
[
(

Xi−1
σi−1

)2]+ 2γαE
[Xi−1

σi−1

]
+ 2γβE

[
ln σi−1(

Xi−1
σi−1

)
]
. (A4)

Combining the Equation (A3) with (A4),

(1− β2)E[(ln σi)
2] = α2 − 2αβ + γ2

2 (u2κ4 + 4u1κ2 + 2) + γα(2 + u1κ2)− γβ(2 + u1κ2){E[ln Xi]− µ}.

Using this identity and Proposition 2 in the second identity for E[(ln Xi)
2] in (A3), the proof

follows.
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