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Resumo

Nesta tese, provamos uma série de resultados relacionados às equações diferen-
ciais funcionais com retardo dependendo do estado. Na primeira parte deste trabalho,
apresentamos resultados de existência de soluções fracas para as equações diferenciais
funcionais com retardo dependendo do estado usando pontos �xos do operador solução de
uma equação diferencial funcional com retardo dependendo do tempo. Também exibimos
algumas aplicações dos nossos resultados para as equações diferenciais parciais.

Na segunda parte deste texto, investigamos a classe das equações diferenciais fun-
cionais em medida com retardo dependendo do estado. Para elas, demonstramos re-
sultados de existência e unicidade de soluções, dependência contínua com relação aos
parâmetros, o método da média periódico e estabelecemos que as equações dinâmicas
funcionais com retardo dependendo do estado em escalas temporais representam um caso
particular dessas equações em medida. Além disso, mostramos a relação das suas soluções
com as soluções de várias outras classes de equações diferenciais tais como as equações
diferenciais funcionais em medida com impulsos e com retardo também dependendo do
estado e as equações diferenciais ordinárias generalizadas.

Palavras�chave: Existência e unicidade; dependência contínua; método da média; equações
diferenciais funcionais em medida, retardo dependendo do estado; equações diferenciais
funcionais abstratas.



Abstract

In this thesis, we prove a series of results related to functional di�erential equations
with state�dependent delay. In the �rst part of this work, we present results of existence
of mild solutions for the delayed functional di�erential equations with state�dependent
delays using �xed points of the solution operator of a functional di�erential equation
with time�dependent delay. We also exhibit some applications of our results for partial
di�erential equations.

In the second part of this text, we investigate the class of measure functional
di�erential equations with state�dependent delay. For them, we demonstrate results of
existence and uniqueness of solutions, continuous dependence on the parameters, the pe-
riodic averaging method and establish that the functional dynamic equations with state�
dependent delay in time scales represent a particular case of these measure equations.
In addition, we show the relationship between their solutions to the solutions of several
other classes of di�erential equations such as the impulsive measure functional di�erential
equations with state�dependent delays and the generalized ordinary di�erential equations.

Keywords: Existence and uniqueness; continuous dependence; averaging method; mea-
sure functional di�erential equations; abstract functional di�erential equations; state�
dependent delays.
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INTRODUCTION

The �eld of di�erential equations is certainly one of the most fundamental areas of

mathematics, with an extensive, solid and useful theory. Its most common object, the set

of ordinary di�erential equations (ODEs for short), may be used as a tool to describe a

large number of real systems. A classical element of this set can be formulated as follows:

x1ptq � fpt, xptqq,

xpt0q � x0,
(1)

where the symbol xptq usually represents a present state at a speci�c time t P R of an

investigated phenomenon. In addition, any realistic problem governed by (1) does not

take the dependence of all previous events into account. However, only in the late 1930s

that this dependence was precisely expressed mathematically when Volterra created a

realistic predador�prey model in [54] with equations with delayed arguments. It has been

considered the starting point of the building of another sub�eld of di�erential equations:

the �eld of functional di�erential equations (simply FDEs).

Despite sparse articles containing di�erential equations with retarded expressions

during the previous years of the 1930s, a consistent content about such equations, and

consequently, the development of the FDE subject, has been extensively expanded only

recently. In particular, most works about equations with time�dependent delays and

state�dependent delays appeared during the past 50 years, with the R. D. Driver's math-

ematical approach for a two�body problem of classical electrodynamics in [18]. In this

formulation, the position xiptq, i � 1, 2, for two charged particles of magnitude qi moving
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2 Introduction

along the x�axis is analyzed using the Líenard�Wiechert potential, into the Lorentz�

Abraham force law. Time delays τjiptq, j � 1, 2, are incorporated due to the �nite speed

of propagation of electrical e�ects. Under a group of suitable conditions and denoting

by viptq the velocity of the charges, by Ept, xq the external electric �eld, by c the speed

of light and ai a constant that depends on the rest mass mi, the model is the system of

di�erential equations involving time delays below:

xiptq � viptq

τ 1jiptq �
p�1qiviptq � p�1qivjpt� τjiptqq

c� p�1qivjpt� τjiptqq
v1iptq

p1 � v2
i ptq{c

2q
3{2

�
cp�1qiai
τ 2
jiptq

�
c� p�1qivjpt� τjiptqq

c� p�1qivjpt� τjiptqq



� qiEpt, xiptqq{mi.

Ordinary di�erential equations also provide an immediate relation to integration

theory. Indeed, under suitable conditions on the function f , the equality

xptq � xpt0q �

» t

t0

fps, xpsqqds (2)

o�ers the solution for the initial�value problem (1), where the right�hand side of (2) shows

the importance of the integration method chosen. Most mathematicians are familiar with

the Riemann integral, an integral that was created in the 1850s by the German mathe-

matician Bernhard Riemann. Its intuitive de�nition and its large range of applicability

are the main reasons that this concept has become notorious and has been extensively

used by a considerable group of researchers. At the same time, many other authors have

discovered a lot of its drawbacks, inspiring the scienti�c community to formulate alter-

native integrations theories not only to solve all problems of the Riemann integral, but

to generalize the German mathematician's formulation as well. In 1957, with a slight

adjustment of the Riemann's de�nition, Jaroslav Kurzweil successfully conceived a new

type of integration that nowadays, in the literature, has his name. Automatically, it also

has led to the concept of the generalized ordinary di�erential equation, which generalizes,

as the name suggests, the notion of ODEs.

Some scientists have obtained few connections between generalized ODEs and

FDEs. In 1966, the papers [37, 47] presented the �rst link between theses subjects for the

classical FDEs
x1ptq � fpt, xtq,

xt0 � x0,
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Introduction 3

where t P rt0, t0�σs and xt : r�r, 0s Ñ R is de�ned by xtpθq � xpt�θq. Later, Federson and

Schwabik in [23] extended this result with a correspondence between the impulsive FDEs

and generalized ODEs. This sort of correspondence permits a simultaneous examination

of the properties of both types of equations such as existence, uniqueness and regularity

of solutions, stability principles and so on.

Inspired by all lines above, this thesis is intended to make a deep investigation

on FDEs with state�dependent delays, together with their association to distinct types

of FDEs and generalized ODEs. It begins with an introductory chapter with numerous

fundamental concepts that may be used as an auxiliary tool to understand all subsequent

chapters. It is composed of four sections, where the �rst section is a brief report about

a signi�cant set: the space Gpra, bs,Rnq of all regulated functions f : ra, bs Ñ Rn. The

subsequent sections are devoted to introducing three di�erent types of integration, namely,

the Bochner integral, the Kurzweil integral and the integration on time scales in the sense

of Kurzweil�Henstock.

The second chapter, also divided into four sections, deals with abstract FDEs.

After an explanation, in the �rst section, of all attributes that a phase space must have,

the following part is concerned with obtaining some existence and uniqueness results of

an abstract FDE with time�dependent delay. In the third section, those theorems will

be applied to show the existence and uniqueness of solutions of the main equation of

the chapter. Finally, an application on di�usion systems is presented to illustrate the

signi�cance of all developed concepts.

Chapter 3 is dedicated to measure FDEs with state�dependent delays, the second

main goal of this thesis. It is divided into three sections and starts with a presentation

of another appropriate Banach space to investigate these equations, which is called phase

space as well. Then, existence and uniqueness of solutions are demonstrated for this class

of equation. To prove the existence of solutions, we employ the Schauder �xed point

theorem and for the uniqueness, we use the generalized Gronwall's inequality. The third

part is about a periodic averaging principle for these equations and we also present an

example.

Chapter 4 exhibits plenty correspondences between measure FDEs with state�

dependent delays and other classes of di�erential equations. More precisely, a corre-

spondence between measure FDEs with state�dependent delays and generalized ODEs
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4 Introduction

is estabilished. Also, we demonstrate that measure FDEs with state�dependent delays

encompass impulsive measure FDEs with state�dependent delays and functional dynamic

equations on time scales with state�dependent delays. Using one of the correspondences,

we obtain a local existence and uniqueness of solutions for measure FDEs with state�

dependent delays. Finally, we prove the results on continuous dependence on parameters

for these equations.

All new theorems contained in this PhD thesis have generated three papers (see

[31, 32, 33]).
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CHAPTER 1

PRELIMINARY CONCEPTS

In this chapter, we exhibit all the fundamental de�nitions and theorems related

to many di�erent concepts needed to develop and comprehend all subsequent chapters.

Most of these concepts are natural generalizations of the basic and well�known theory

formulated for the set of real numbers, usually explained in graduate courses.

Firstly, we introduce the space of regulated functions. Then, the next three sections

are dedicated to show three di�erent types of integrals. The references suggested for those

who are interested in the details are [3, 7, 8, 15, 25, 44, 48, 49, 52].

1.1 The space Gpra, bs,Rnq

Throughout this work, let us consider pR, } � }q and pRn, } � }q.

The set C pra, bs,Rnq of all continuous functions f : ra, bs Ñ Rn is one of the most

important spaces in mathematics. However, in some cases, continuity is considered a

strong condition. The existence of a large set of discontinuous functions which are Rie-

mann integrable shows, for instance, how restrictive that assumption can be. Fortunately,

researchers have found a set that is as useful as C pra, bs,Rnq, has similar characteristics

and has some crucial advantages over C pra, bs,Rnq. This is the set of all regulated func-

tions, whose de�nition is given below.

De�nition 1.1.1. Let a, b P R, a   b. A function f : ra, bs Ñ Rn is called regulated if
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6 Preliminary Concepts

all lateral limits

fpt�q :� lim
sÑt�

fpsq, t P pa, bs and fpt�q :� lim
sÑt�

fpsq, t P ra, bq

exist. The space of all regulated functions f : ra, bs Ñ Rn will be denoted by Gpra, bs,Rnq.

Likewise, Gpp�8, 0s,Rnq denotes the set of all regulated functions f : p�8, 0s Ñ Rn.

Similarly to C pra, bs,Rnq, the space Gpra, bs,Rnq is a Banach space when endowed

with the usual supremum norm

}f}8 :� sup
sPra,bs

|fpsq| , f P G pra, bs,Rnq

([44, Theorem 4.2.1]). Also, given g P Gpra, bs,Rnq, ∆�gptq and ∆�gptq will be symbolized

by

∆�gptq :� gpt�q � gptq, t P ra, bq and ∆�gptq :� gptq � gpt�q, t P pa, bs.

Evidently, C pra, bs,Rnq � G pra, bs,Rnq. Nevertheless, this inclusion is strict because,

for example, the characteristic function χc : ra, bs Ñ R, where c P pa, bq, belongs to

G pra, bs,Rq and is not continuous at c.

Remark 1.1.2. Usually, the composition of two regulated functions is not a regulated

function. Indeed, if we consider the functions f, g : r0, 1s Ñ R given by

fptq �

$'&'%0, t � 0,

t sinp1{tq, t P p0, 1s,

gptq � sgn t,

then both functions are regulated, but the composition g � f is not. On the other hand, if

g is continuous and f is regulated, then g � f is regulated. See [13] for more details.

In the sequel, we present a de�nition on a family F � Gpra, bs,Rnq which resembles

the de�nition of equicontinuity on a family A � Cpra, bs,Rnq.

De�nition 1.1.3 ([44, De�nition 4.3.3]). A set F � Gpra, bs,Rnq has uniform one�

sided limits at a point t0 P ra, bst0 P ra, bst0 P ra, bs if for every ε ¡ 0, there is δ ¡ 0 such that for every

x P F and t P ra, bs, we have:

(i) If t0   t   t0 � δ, then }xptq � xpt�0 q}   ε.

(ii) If t0 � δ   t   t0, then }xpt�0 q � xptq}   ε.
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The Bochner integral 7

The set F is called equiregulated if it has uniform one�sided limits at every point t0 P

ra, bs. Also, F is called right�sided (respectively, left�sided) equiregulated if condition

(i) (respectively, (ii)) holds.

The next theorem is a similar version of the classical Arzelà�Ascoli Theorem to a

family A � Gpra, bs,Rq.

Theorem 1.1.4 ([44, Corollary 4.3.7]). A subset A � Gpra, bs,Rq is relatively compact if

and only if it is equiregulated and the set tfptq : f P Au is bounded for each t P ra, bs.

Lastly, we present a result that associates relatively compactness of a family A �

Gpra, bs,Rnq to some properties that all elements of A must satisfy.

Theorem 1.1.5 ([25, Theorem 2.18]). The following conditions are equivalent.

(i) A � Gpra, bs,Rnq is relatively compact.

(ii) The set txpaq : x P Au is bounded and there is an increasing continuous function

η : r0,8q Ñ r0,8q with ηp0q � 0 and there is an increasing function K : ra, bs Ñ R

such that

}xpτ2q � xpτ1q} ¤ ηpKpτ2q �Kpτ1qq

for all x P A and all a ¤ τ1 ¤ τ2 ¤ b.

1.2 The Bochner integral

In this section, we expose brie�y a type of an integral in a Banach space that is an

immediate generalization of the Lebesgue integral (see [15], for more details). Throughout

it, pX, σ, µq is a σ��nite measure space on a set X and Y is a Banach space with norm

} � }.

De�nition 1.2.1 ([15, De�nition 2.1.1]). A function s : X Ñ Y is called simple when its

range is a �nite set spXq � ty1, . . . , ynu and Ei � s�1ptyiuq P σ for all i P t1, 2, . . . , nu �

N. In this case, we write

spxq �
ņ

i�1

χEi
pxqyi, (1.1)

where χEi
: X Ñ R is the characteristic function on Ei.
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8 Preliminary Concepts

De�nition 1.2.2 ([15, De�nition 2.1.1]). A function f : X Ñ Y is said to be measurable

if there is a sequence of simple functions sn : X Ñ Y such that sn Ñ f for almost every

x P X.

Given a simple function s : X Ñ Y represented as (1.1), we de�ne the Bochner

integral

»
X

s dµ of s on X as follows:

»
X

s dµ :�
ņ

k�1

µ pEkq yk. (1.2)

It is worth mentioning that the integral (1.2) does not depend on the representation (1.1).

In other words, if

spxq �
m̧

j�1

χFj
pxqzj,

where m P N, Fj P σ, zj P Y and, for all i � j, Fi X Fj � H, then

ņ

k�1

µ pEkq yk �
m̧

j�1

µ pFjq zj.

De�nition 1.2.3 ([15, De�nition 2.2.1]). Let f : X Ñ Y be a measurable function. We

say that f is Bochner integrable when there is a sequence of simple functions psnqnPN

whose its limit is f for almost every x P X and the Lebesgue integral»
X

}f � sn} dµÑ 0 when nÑ 8. (1.3)

In this case, we de�ne the Bochner integral of f on X by the equality»
X

f dµ :� lim
nÑ8

»
X

sn dµ. (1.4)

Since Y is a Banach space, the limit (1.4) exists for any sequence psnqnPN as de-

scribed in De�nition 1.2.3. Moreover, if ptnqnPN is a sequence of simple functions converging

to f for almost every x P X and such that»
X

f dµ � lim
nÑ8

»
X

tn dµ, (1.5)

then

lim
nÑ8

»
X

tn dµ � lim
nÑ8

»
X

sn dµ.

It means that p1.4q does not depend on the choice of the sequence psnqnPN.

The theorem below shows an expected property of the Bochner integral: the lin-

earity of the integral. Since it is a direct consequence of all de�nitions above, we will omit

its proof.
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The Bochner integral 9

Theorem 1.2.4. If f, g : X Ñ Y are integrable functions and α P R, then f � αg is

integrable and »
X

pf � αgq dµ �

»
X

f dµ� α

»
X

g dµ.

The next result illustrates a relation between the Bochner integral and the Lebesgue

integral. It also enables us to carry over some classical theorems from Lebesgue integral

on R to the vector�valued case.

Theorem 1.2.5 ([15, Theorem 2.2.4]). A function f : X Ñ Y is Bochner integrable if,

and only if, the function |f | : X Ñ R is Lebesgue integrable. In this case,����»
X

f dµ

���� ¤ »
X

|f | dµ. (1.6)

The upcoming theorem is a version of the Dominated Convergence Theorem for

the Bochner integral.

Theorem 1.2.6 ([15, Theorem 2.2.3]). Let pfnqnPN be a sequence of Bochner integrable

functions from X to Y and let f : X Ñ Y be a measurable function such that fn Ñ f for

almost every x P X. Furthermore, let g P L1pXq be such that }fn} ¤ g for almost every

x P X and all n P N. Then, f is Bochner integrable and»
X

f dµ � lim
nÑ8

»
X

fn dµ.

From now on, σ will indicate the Borel σ�algebra and µ will denote the Lebesgue

measure. Besides, all integrals below are in the sense of Bochner integral.

De�nition 1.2.7 ([48, De�nition 1.1]). An one parameter family pT ptqqt¥0 of bounded

linear operators T ptq : Y Ñ Y is a semigroup of bounded linear operators on Y if

(i) T p0q � I, where I is the identity operator,

(ii) T ps� tq � T psqT ptq for every t, s ¥ 0.

If, in addition, for each x P Y,

lim
tÑ0�

T ptqx � x,

we say that pT ptqqt¥0 is a strongly continuous semigroup of bounded linear oper-

ators on Y (or a C0C0C0�semigroup on Y ). Finally, we say that pT ptqqt¥0 is compact if

T ptq is a compact operator for each t ¥ 0.
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10 Preliminary Concepts

De�nition 1.2.8 ([48, De�nition 1.1]). Let pT ptqqt¥0 be a semigroup of bounded linear

operators on Y and let

DpAq �

"
x P Y : lim

tÑ0�

T ptqx� x

t
exists

*
.

The operator A : DpAq Ñ Y de�ned by

Ax :� lim
tÑ0�

T ptqx� x

t

is called the in�nitesimal generator of the semigroup pT ptqqt¥0.

Theorem 1.2.9 ([48, Theorem 2.2]). If pT ptqqt¥0 is a strongly continuous semigroup of

bounded linear operators on Y , then there exist constants M ¥ 1 and ω ¥ 0 such that

}T ptq} ¤Meωt, t ¥ 0.

Theorem 1.2.10 ([48, Theorem 2.4]). Let pT ptqqt¥0 be a strongly continuous semigroup

of bounded linear operators on Y and let A be its in�nitesimal generator. Then:

(i) for x P Y,

lim
hÑ0

1

h

» t�h

t

T psqxds � T ptqx,

(ii) for x P Y,
³t
0
T psqxds P DpAq and

A

�» t

0

T psqxds



� T ptqx� x,

(iii) for x P DpAq,

T ptqx� T psqx �

» t

s

T puqAxdu �

» t

s

AT puqxdu.

1.3 The Kurzweil integral

In this section, we will de�ne the Kurzweil integral. Then, the Kurzweil�Henstock

integral and the Kurzweil�Henstock�Stieltjes integral will appear as particular cases.

Throughout this section, X will denote a Banach space with norm } � }.

Let ra, bs be an interval of R such that �8   a   b   8, a � s0   s1   � � �   sp �

b is a �nite division of ra, bs, p P N, and τi P rsi�1, sis. The collection of point�interval

pairs D � pτi, rsi�1, sisq is called a tagged division of ra, bs and we write p � |D|.
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The Kurzweil integral 11

A gauge on a set B � ra, bs is any function δ : B Ñ p0,8q. Given a gauge

δ on ra, bs, we say that a tagged division D � pτi, rsi�1, sisq is δδδ��ne if for every i P

t1, 2, . . . , |D|u, we have

rsi�1, sis � pτi � δpτiq, τi � δpτiqq.

De�nition 1.3.1 ([26, De�nition 2.1]). A function U : ra, bs � ra, bs Ñ X is called

Kurzweil integrable if there is an element I P X such that for every ε ¡ 0, there

is a gauge δ : ra, bs Ñ p0,8q such that�����
|D|̧

i�1

pUpsi, τiq � Upsi�1, τiqq � I

�����   ε,

for all δ��ne tagged division of ra, bs. In this case, I is called Kurzweil integral of U

and it will be denoted by
³b
a
DUpt, τq.

From the de�nition above, a question about the existence of at least one δ��ne

division of ra, bs from a given gauge δ on ra, bs arises. The answer for this question is

given by the lemma below, known in the literature as the Cousin Lemma. It ensures that

the Kurzweil integral is well�de�ned.

Lemma 1.3.2 ([52, Lemma 1.4]). Given a gauge δ on ra, bs, there is a δ��ne tagged

division of ra, bs.

When the function U of the De�nition 1.3.1 is given by Upt, τq � tfpτq, where

f : ra, bs Ñ X is any function, and it is Kurzweil integrable, then we say that f is

Kurzweil�Henstock integrable. Additionally, its integral is denoted by
³b
a
fpsqds.

On the other hand, when Upt, τq � gptqfpτq is Kurzweil integrable, where g : ra, bs Ñ R

is any other function, we say that f is a Kurwzeil�Henstock�Stieltjes integrable

function with respect to ggg and its integral is denoted by
³b
a
fpsqdgpsq.

Theorem 1.3.3 ([52, Theorem 1.9]). If U, V : ra, bs � ra, bs Ñ X are Kurzweil integrable

functions and c1, c2 P R, then c1U � c2V is Kurzweil integrable and» b

a

D pc1Upt, τq � c2V pt, τqq � c1

» b

a

DUpt, τq � c2

» b

a

DV pt, τq.

Theorem 1.3.4 ([52, Theorem 1.11]). Let U : ra, bs � ra, bs Ñ X and c P pa, bq. If both

integrals
³c
a
DUpt, τq and

³b
c
DUpt, τq exist, then the integral

³b
a
DUpt, τq exists as well and» b

a

DUpt, τq �

» c

a

DUpt, τq �

» b

c

DUpt, τq.
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12 Preliminary Concepts

Surprisingly, as the next example shows, if U : ra, bs � ra, bs Ñ X is a Kurzweil

integrable function and V : ra, bs � ra, bs Ñ R is de�ned by V pt, τq � }Upt, τq}, then,

in general, V is not Kurzweil integrable. Thus, some care is needed when dealing with

inequalities involving the norm of an integral. Speci�cally, the inequality����» b

a

DUpt, τq

���� ¤ » b

a

DV pt, τq (1.7)

is not always true.

Example 1.3.5 ([3, Example 10.2.2]). For k P N, let ck � 1� 1{2k and f : r0, 1s Ñ R be

the function de�ned by

fpxq �

$'&'%
p�1qk

k
2k, ck�1 ¤ x   ck,

0, x � 1.

It is possible to show that f is Kurzweil�Henstock integrable and» 1

0

fpxqdx �
8̧

k�1

p�1qk

k
.

However, its absolute value |f | is not integrable because, otherwise, it would imply the

convergence of the harmonic series.

Despite the inaccuracy of the inequality (1.7) in general, the theorem below illus-

trates that, with additional hypotheses, (1.7) may be true.

Theorem 1.3.6 ([52, Theorem 1.35]). Assume that both functions U : ra, bs� ra, bs Ñ Rn

and V : ra, bs� ra, bs Ñ R are Kurzweil integrable. If there is a gauge δ on ra, bs such that

|t� τ |}Upt, τq � Upτ, τq} ¤ pt� τqpV pt, τq � V pτ, τqq

for every t P rτ � δpτq, τ � δpτqs, then the inequality����» b

a

DUpt, τq

���� ¤ » b

a

DV pt, τq

holds.

Now, we bring some basic results, particularly for the Kurwzeil�Henstock�Stieltjes

integral, that will be applied in future sections.

Theorem 1.3.7 ([52, Corollary 1.34]). Let f : ra, bs Ñ Rn be a regulated function and

g : ra, bs Ñ R be a nondecreasing function. Then, the following conditions hold:
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(i) The integral
» b

a

fpsqdgpsq exists;

(ii)
����» b

a

fpsqdgpsq

���� ¤ » b

a

}fpsq} dgpsq ¤ }f}8 pgpbq � gpaqq.

The next property is an immediate consequence of Theorems 1.3.3 and 1.3.6. We

will omit its proof since it is nearly the same as the demonstration of [4, Corollary 3.3].

Theorem 1.3.8. Let f1, f2 : ra, bs Ñ R be Kurzweil�Henstock�Stieltjes integrable func-

tions on the interval ra, bs with respect to a nondecreasing function g : ra, bs Ñ R such

that f1ptq ¤ f2ptq, for t P ra, bs. Then» b

a

f1psqdgpsq ¤

» b

a

f2psqdgpsq. (1.8)

By analogous arguments of the proof of [4, Theorem 3.2], we may obtain the

following corollary.

Corollary 1.3.9. Let f : ra, bs Ñ R be a Kurzweil�Henstock�Stieltjes integrable function

on the interval ra, bs with respect to a nondecreasing function g : ra, bs Ñ R and such that

fptq ¥ 0, for t P ra, bs. Then:

(i)
» b

a

fpsqdgpsq ¥ 0.

(ii) The function ξptq : ra, bs ÞÑ R de�ned by

ξptq �

» t

a

fpsqdgpsq

is nondecreasing.

The next statement is a type of Gronwall�inequality for Kurwzeil�Henstock�Stieltjes

integrals.

Theorem 1.3.10 ([44, Theorem 7.5.3], Gronwall Inequality). Let g : ra, bs Ñ r0,8q be a

nondecreasing and left�continuous function, k ¥ 0 and l ¡ 0. Assume that ψ : ra, bs Ñ

r0,8q satis�es

ψpξq ¤ k � l

» ξ

a

ψpsqdgpsq, ξ P ra, bs.

Then ψpξq ¤ kelpgpξq�gpaqq for all ξ P ra, bs.

The following result, which describes some properties of the inde�nite Kurzweil�

Henstock�Stieltjes integral, is a special case of [52, Theorem 1.16].
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14 Preliminary Concepts

Theorem 1.3.11 ([44, Corollary 6.5.5]). Let f, g : ra, bs Ñ R be a pair of functions such

that g is regulated and
³b
a
fpsqdgpsq exists. Then the function

hptq �

» t

a

fpsqdgpsq, t P ra, bs

is regulated on ra, bs and satis�es

hpt�q � hptq � fptq∆�gptq, t P ra, bq,

hpt�q � hptq � fptq∆�gptq, t P pa, bs.

In the sequel, we bring the de�nition and some attributes of generalized ordinary

di�erential equations, a class of equations that will be used in the third chapter of this

work. From now on, O � X is an open and nonempty subset, Ω � ra, bs � O and

F : Ω Ñ X is a function.

De�nition 1.3.12 ([26, De�nition 2.5]). A function x : ra, bs Ñ X is called a solution of

the generalized ordinary di�erential equation

dx

dτ
� DF pt, xq (1.9)

on the interval ra, bs if, for every t P ra, bs, pt, xptqq P Ω and

xpdq � xpcq �

» d

c

DF pt, xpτqq (1.10)

whenever rc, ds � ra, bs.

Remark 1.3.13. In general, a solution of the generalized ODE (1.9) does not need to

be di�erentiable at ra, bs, although its notation suggests such di�erentiability. In fact, a

continuous function r : ra, bs Ñ R that has no derivative at any point of ra, bs (an example

can be found on [3], page 367) is a solution of the generalized ODE

dx

dt
� Drptq

since, by De�nition 1.3.1,

|D|̧

i�1

pF psi, xpτiqq � F psi�1, xpτiqqq �

|D|̧

i�1

prpsiq � rpsi�1qq � rpdq � rpcq,

where F pt, xq � rptq and D � pτi, rsi�1, sisq is any tagged division of rc, ds � ra, bs.

If ps0, x0q P Ω is �xed, then we can de�ne the solution of the generalized ODE (1.9)

on the interval ra, bs with initial condition xps0q � x0 (we are considering that s0 P ra, bs),
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as a function x : rs0, bs Ñ X such that pt, xptqq P Ω for all t P rs0, bs and (1.10) is satis�ed

for all rc, ds � rs0, bs. In the similar way, we can also de�ne a solution of (1.9) for an

arbitrary nondegenerate interval I with initial condition xps0q � x0.

The next de�nition is an important prerequisite to estabilish some existence and

uniqueness result for generalized ODEs.

De�nition 1.3.14 ([26, De�nition 2.6]). We say that FFF belongs to the class FpΩ, hqFpΩ, hqFpΩ, hq

if there exists a nondecreasing function h : ra, bs Ñ R such that F : Ω Ñ X satis�es the

following conditions:

(F1) For every psi, xq P Ω, with i � 1, 2, we have

}F ps2, xq � F ps1, xq} ¤ |hps2q � hps1q| .

(F2) For every psi, xq, psi, yq P Ω, with i � 1, 2,

}F ps2, xq � F ps1, xq � F ps2, yq � F ps1, xq} ¤ |hps2q � hps1q| }x� y}.

The upcoming lemma gives us enough requisites to ensure the existence of the

Kurzweil integral on the right�hand side of (1.10). When X � Rn, the reader can see a

proof of this result in [52, Corollary 3.16]. However, with analogous arguments used for

the Rn case, it is still valid in a more general Banach space as we state below.

Lemma 1.3.15. Assume F P FpΩ, hq. Suppose x : ra, bs Ñ X is a regulated function on

ra, bs such that ps, xpsqq P Ω for all s P ra, bs. Then the Kurzweil integral
³b
a
DF pt, xpτqq

exists.

The next conclusion reveals few characteristics of the solutions of the generalized

ODEs when F satis�es the condition (F1). The special case X � Rn is demonstrated in

[52, Lemma 3.12]. Since the proof for the general case follows the same steps, we will

omit it here.

Lemma 1.3.16. Let F : Ω Ñ X be a function that satis�es condition (F1). If x : ra, bs Ñ

X is a solution of the generalized ODE (1.9) on the interval ra, bs, then x is a regulated

function and

}xps2q � xps1q} ¤ |hps2q � hps1q|

for each pair s1, s2 P ra, bs.

Notice that this type of result shows that x has the same discontinuities of h.
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1.4 Integration on Time Scales

In this section, we will start with a short exposure of some basic concepts in the

theory of time scales. This theory appeared mainly to unify continuous and discrete

analysis. As a result, some classical theorems applied to functions de�ned on R or de�ned

on Z can be considered particular cases of a single assertion proved to a function de�ned on

a time scale. Also, this approach can unify other results since there exist many di�erent

time scales such as Cantor set, the set qN � tqn : n P Nu, q ¡ 1, among others. This

fact makes this theory very alluring due applications, since it is possible to investigate

models where the time has hybrid behavior (continuous and discrete) being very useful

for population models and it allows us to investigate the theory for quantum calculus,

which has applications in quantum physics

This section will be extensively used in the fourth chapter, where we study a

relationship between functional dynamic equations on time scales with state�dependent

delays and measure FDEs with state�dependent delays.

De�nition 1.4.1 ([8, De�nition 1.1]). A time scale T is a closed nonempty subset of R.

We de�ne, respectively, the forward jump operator and the backward jump operator

σ, ρ : T Ñ T by σptq � infts P T : s ¡ tu and ρptq � supts P T : s   tu. The graininess

function µ : T Ñ r0,8q is de�ned by µptq � σptq � t.

In this de�nition, we consider inf H � supT and supH � inf T.

De�nition 1.4.2 ([8, De�nition 1.1]). Let T be a time scale and t P T. If σptq ¡ t, we

say that t is right�scattered. If t   supT and t � σptq, then t is called right�dense.

We say that t is left�scattered if ρptq   t. Lastly, if t � ρptq and t ¡ inf T, then t is

called left�dense.

For a pair of numbers a, b P T, the symbol ra, bsT will denote a closed interval

in T, while ra, bs will denote the usual closed interval on the real line. In other words,

ra, bsT � tt P T : a ¤ t ¤ bu and ra, bs � tt P R : a ¤ t ¤ bu. Similar notations can be

used to numerous other cases such as pa, bqT, pa, bsT and so on. This notational convention

should help the reader to distinguish between ordinary and time scale intervals.
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For an arbitrary time scale T, let

Tκ �

$'&'%T z pρpsupTq, supTs, if supT   8,

T, otherwise.

The next concept can be found in [8, De�nition 1.10] for functions taking values

in R. The same de�nition may be extended to functions taking values in Rn as follows:

De�nition 1.4.3 ([8, De�nition 1.10]). Let T be a time scale, t P Tκ and f : T Ñ Rn be a

function. The vector f∆ptq is called a ∆∆∆�derivative of fff at ttt if it satis�es the following

property: for any ε ¡ 0, there exists a δ ¡ 0 such that��fpσptqq � fpsq � f∆ptqpσptq � sq
�� ¤ ε |σptq � s| for all s P pt� δ, t� δqT.

Notice that if T � R, then the de�nition above is exactly the de�nition of the

usual derivative f 1ptq from calculus since, in this case, σptq � t. It is one of the main

reasons that several results in the theory of time scales generalize many theorems from

the classical calculus.

De�nition 1.4.4 ([8, De�nition 1.57]). A function f : T Ñ Rn is called regulated pro-

vided its right�sided limits exist at all right�dense points in T and its left�sided limits exist

at all left�dense points in T. We denote this set by GpT,Rnq.

De�nition 1.4.5 ([8, De�nition 1.58]). A function f : T Ñ Rn is called rd�continuous

provided it is continuous at right�dense points in T and its left�sided limits exist at all

left�dense points in T. We denote this set by CrdpT,Rnq.

If T � R, then t P T is, at the same time, a right�dense and left�dense point, by

de�nition. Thus, in this particular time scale, any regulated function in the sense of De�-

nition 1.1.1 is a regulated function in the sense of the De�nition 1.4.4. It shows consistency

of De�nition 1.4.4. The same applies to the de�nition of rd�continuous functions.

Next, we present some basic concepts which will allow us to introduce the Kurzweil�

Henstock ∆�integral. The de�nition of such integral was presented for the �rst time in

reference [49].

De�nition 1.4.6 ([49, De�nition 1.5]). A tagged division of ra, bsT is a �nite collection

of point�interval pairs DT � pτi, rsi�1, sisTq, where a � s0   s1   � � �   s|D| � b is a

division of ra, bsT, τi P rsi�1, sisT and τi, si P T i � 1, 2, . . . , |D|, where the symbol |D|

denotes the number of subintervals in which ra, bsT is divided.
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De�nition 1.4.7 ([49, De�nition 1.4]). Given two functions δL, δR : ra, bsT Ñ R, we say

that the pair δptq � pδLptq, δRptqq is a ∆∆∆�gauge on ra, bsT provided δLptq ¡ 0 on pa, bsT,

δRptq ¡ 0 on ra, bqT, δLpaq ¥ 0, δRpbq ¥ 0, and δRptq ¥ µptq for all t P ra, bqT.

Indeed, we can always assume that any ∆�gauge δ on ra, bsT satis�es δLpaq ¥ 0

and δRpbq ¥ 0, since, otherwise, we can replace it to another ∆�gauge on ra, bsT with this

property.

De�nition 1.4.8 ([49, De�nition 1.6]). If δ is a ∆�gauge on ra, bsT, then we say a

tagged division DT � pτi, rsi�1, sisTq is δδδ��ne if τi � δLpτiq ¤ si�1   si ¤ τi � δRpτiq

for 1 ¤ i ¤ |D|.

In the sequel, we de�ne the Kurzweil�Henstock ∆�integral.

De�nition 1.4.9 ([49, De�nition 1.7]). We say that f : ra, bsT Ñ Rn is Kurzweil�

Henstock ∆∆∆�integrable on ra, bsT with value I, provided given any ε ¡ 0, there exists a

∆�gauge δ on ra, bsT such that����� ņ

i�1

psi � si�1qfpτiq � I

�����   ε

for all δ��ne tagged divisions DT of ra, bsT.

Once again, from the de�nition above, a question about the existence of at least

one δ��ne division of ra, bsT from a given ∆�gauge δ on ra, bsT arises. As the reader

may expect, the following lemma answers this question and ensures that the Kurzweil�

Henstock ∆�integral is well�de�ned. It is a type of Cousin Lemma on time scales.

Lemma 1.4.10 ([49, Lemma 1.9]). If δ is a ∆�gauge on ra, bsT, then there is a δ��ne

tagged division DT for ra, bsT.

The same way as the Bochner integral and the Kurzweil�Henstock integral, the

Kurzweil�Henstock ∆�integral satis�es the linearity and the additivity properties, both

stated below.

Theorem 1.4.11 ([49, Theorem 2.12]). If f, g : ra, bsT Ñ Rn are Kurzweil�Henstock ∆�

integrable functions and c1, c2 P R, then c1f � c2g is Kurzweil�Henstock ∆�integrable

and » b

a

c1fptq � c2gptq∆t � c1

» b

a

fptq∆t� c2

» b

a

gptq∆t.
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Moreover, if c P ra, bsT and both
³c
a
fptq∆t and

³b
c
fptq∆t exist, then

³b
a
fptq∆t exists as

well and » b

a

fptq∆t �

» c

a

fptq∆t�

» b

c

fptq∆t.

Now, we display important de�nitions which will allow us to obtain a correspon-

dence between Kurzweil�Henstock ∆�integrals and Kurzweil�Henstock�Stieltjes integrals

(see [20, 21, 50]).

Firstly, given a real number t ¤ supT, let

t� � infts P T : s ¥ tu.

This de�nition was �rst introduced by A. Slavík in [50]. Notice that t� P T since T is

a closed set. Moreover, even though both numbers t� and σptq have similar de�nitions,

they may be di�erent depending on the choice of the time scale. For example, if T � Z

and t P Z, then it can be shown that t� � t, but σptq � t� 1.

Secondly, given an arbitrary T, de�ne its extension by

T� �

$&% p�8, supTs, if supT   8,

p�8,8q, otherwise.

Finally, for a function f : T Ñ Rn, we consider its extension f� : T� Ñ Rn given by

f�ptq � fpt�q, t P T�.

In what follows, we recall some results linking ∆�integrals and Kurzweil�Henstock�

Stieltjes integrals.

Theorem 1.4.12 ([20, Theorem 4.2]). Let f : ra, bsT Ñ Rn be an arbitrary function.

De�ne gptq � t� for every t P ra, bs. Then, the ∆�integral
³b
a
fptq∆t exists if and only if

the Kurzweil�Henstock�Stieltjes integral
³b
a
f�ptq dgptq exists. In this case, both integrals

have the same value.

Lemma 1.4.13 ([20, Lemma 4.4]). Let a, b P T, a   b, gptq � t� for every t P ra, bs. If

f : ra, bs Ñ Rn is such that the integral
³b
a
fptq dgptq exists, then» d

c

fptq dgptq �

» d�

c�
fptq dgptq

for every c, d P ra, bs.

According to the following theorem, the Kurzweil�Henstock ∆�integral of a func-

tion f de�ned on T is, in fact, equivalent to the Kurzweil�Henstock�Stieltjes integral of
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its extended function f� for the case gptq � t�.

Theorem 1.4.14 ([20, Theorem 4.5]). Let f : T Ñ Rn be a function such that the

Kurzweil�Henstock ∆�integral
³b
a
fpsq∆s exists for every a, b P T, a   b. De�ne

F1ptq �

» t

a

fpsq∆s, t P T,

F2ptq �

» t

a

f�psq dgpsq, t P T�,

where gpsq � s� for every s P T�. Then F2 � F �
1 .

We �nish this section showing that the Kurzweil�Henstock�Stieltjes integral
³b
a
f� dg

does not change if f� is replaced by a function which coincides with f on ra, bs X T.

Theorem 1.4.15 ([21, Lemma 4.2]). Let T be a time scale, gpsq � s� for every s P T�,

ra, bs � T�. Consider a pair of functions f1, f2 : ra, bs Ñ Rn such that f1ptq � f2ptq for

every t P ra, bs X T. If
³b
a
f1 dg exists, then

³b
a
f2 dg exists as well and both integrals have

the same value.
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CHAPTER 2

ABSTRACT RETARDED FDE WITH

UNBOUNDED STATE�DEPENDENT

DELAY

The theory of retarded FDEs with state�dependent delays emerged along with the

necessity to obtain more precise mathematical models for a great group of real phenomena.

Over the last sixty years, an extensive theory has been developed and many equations

with state�dependent delays were used as models in, for example, electrodynamics, neural

networks, infectious diseases, among others. Works like [12] and [34] are just a couple of

papers that illustrate how relevant to the mathematical community this area has become.

The purpose of this chapter is to study the existence of mild solutions for a class

of abstract FDEs with unbounded state�dependent delay speci�ed by

x1ptq � Axptq � fpt, xρpt,xtqq, t P r0, as,

x0 � ϕ,
(2.1)

where x, f , and ρ are functions that will be de�ned later, A is the in�nitesimal generator of

a strongly continuous semigroup of bounded linear operators pT ptqqt¥0 on a Banach space

pX, }�}q and xt : p�8, 0s Ñ X, the segment of x at t, is a function given by xtpθq � xpt�θq.

It is divided into four sections. The introductory section presents all axioms and many

other major aspects about the phase space B. The second section is devoted to show
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22 Abstract retarded FDE with unbounded state�dependent delay

the existence and uniqueness of a solution for of a particular FDE with time�dependent

delay. These results will be used throughout the third section as an auxiliary tool to

derive all crucial characteristics of the main problem (2.1). An application of all the

theory developed in former sections will be demonstrated in the last section. It is worth

noting that all theorems exposed in this chapter are new in the literature and can be

checked in [31]. Lastly, throughout this chapter, we consider the Borel σ�algebra and the

Lebesgue measure µ to apply the Bochner integral for functions with range contained in

X.

2.1 Phase space

In this section, in order to detail the type of equations to be studied and also

to prove our assertions, we consider equations described on a phase space B de�ned

axiomatically as in Hino et al. [36]. Thus, B will be a linear space of functions mapping

p�8, 0s into X endowed with a norm } � }B. We will assume that B satis�es the following

axioms:

(A1) If x : p�8, σ � T q Ñ X, T ¡ 0, is continuous on rσ, σ � T q and xσ P B, then the

following conditions hold for every t P rσ, σ � T q:

(a) xt P B.

(b) }xptq} ¤ H}xt}B, where H ¥ 0 is a constant and is independent on x.

(c) }xt}B ¤ Kpt�σq supt}xpsq} : σ ¤ s ¤ tu�Mpt�σq}xσ}B, whereK,M : r0,8q Ñ

r0,8q, K is continuous, M is locally bounded and both functions are indepen-

dent on x.

(A2) For the function x in (A1), the function t ÞÑ xt is a B�valued continuous function

on rσ, σ � T q.

(A3) The space B is complete.

Throughout this chapter, we always assume that B is a phase space as described above.

Furthermore, for a �xed a ¡ 0, let us denote pK � suptKpsq : 0 ¤ s ¤ au and xM �

suptMpsq : 0 ¤ s ¤ au.
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Next, we denote by C00 the space of continuous functions from p�8, 0s into X

with compact support. It is clear from the axioms of phase space that C00 � B. We also

consider the following axiom:

(A4) If a uniformly bounded sequence pϕnqnPN in C00 converges to a function ϕ in the

compact�open topology, then ϕ belongs to B and }ϕn � ϕ}B Ñ 0, as nÑ 8.

Remark 2.1.1. When the axiom (A4) holds, the space Cbpp�8, 0s, Xq of all bounded con-

tinuous functions ψ : p�8, 0s Ñ X is continuously included in B ([36, Proposition 7.1.1]).

Thus, there is a constant Q ¡ 0 such that }ψ}B ¤ Q}ψ}8 for all ψ P Cbpp�8, 0s, Xq.

Example 2.1.2. Suppose that 1 ¤ p   8 and g is a nonnegative measurable function

on p�8, 0q which satis�es the following conditions:

(B1)
³0

s
gpθqdθ   8, for all s P p�8, 0q.

(B2) There is a nonnegative function J , which is locally bounded in p�8, 0s, such that

gps � θq ¤ Jpsqgpθq for all s ¤ 0 and all θ P p�8, 0qzNs, where Ns � p�8, 0q is a

set with Lebesgue measure zero, .

The space C0 � Lppg,Xq consists of all classes of functions ϕ : p�8, 0s Ñ X such that

ϕ is Lebesgue�measurable and g}ϕ}p is Lebesgue integrable on p�8, 0q. The norm in

C0 � Lppg,Xq is de�ned by

}ϕ}B � }ϕp0q} �

�» 0

�8

gpθq}ϕpθq}pdθ


1{p

.

The space B � C0�L
ppg,Xq satis�es axioms (A1), (A2) and (A3). Moreover, when p � 2,

we can take H � 1, Mptq � Jp�tq1{2 and Kptq � 1 �
�³0

�t
gpθqdθ

	1{2

for t ¥ 0 (see [36,

Theorem 1.3.8] for details). Hence, pK � 1 �
�³0

�a
gpθqdθ

	1{2

and xM � sup0¤t¤a Jp�tq
1{2.

Moreover, if g satis�es

(B3)
³0

�8
gpθqdθ   8,

then C0 � L2pg,Xq satis�es the axiom (A4) and the constant Q is given by

Q � 1 �

�» 0

�8

gpθqdθ


1{2

.
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24 Abstract retarded FDE with unbounded state�dependent delay

For each t ¥ 0, consider the function Sptq : B Ñ B de�ned by

pSptqϕq pθq �

$'&'%ϕp0q, θ P r�t, 0s,

ϕpt� θq, θ P p�8,�ts.

The family pSptqqt¥0 is a strongly continuous semigroup of bounded linear operators on

B. This family is useful to obtain some estimates between segments of x at two di�erent

points. Indeed, if s, t P R are such that t ¤ s and the segments xs, xt belong to B, then

the function y : p�8, ss Ñ X de�ned by

ypθq �

$'&'%xptq, t ¤ θ ¤ s,

xpθq, θ   t,

is such that yt � xt and

}xs � xt}B ¤ }xs � ys}B � }ys � xt}B

¤ Kps� tq sup
t¤θ¤s

}xpθq � ypθq} �Mps� tq}xt � yt}B � }Sps� tqxt � xt}B

¤ Kps� tq sup
t¤θ¤s

}xpθq � xptq} � }Sps� tqxt � xt}B. (2.2)

2.2 Existence of solutions for time�dependent

equations

Throughout this section, we assume that r : r0, as Ñ R is a regulated function such

that τ � inf0¤t¤aprptq � tq and, for all t P r0, as, rptq ¤ t. We introduce the space Bτ
consisting of all functions ϕ P B such that ϕs P B for all τ ¤ s ¤ 0 and the function

rτ, 0s Q s ÞÑ ϕs P B, is continuous. Endowed with the norm

}ϕ}τ � sup
τ¤s¤0

}ϕs}B, ϕ P Bτ ,

the space pBτ , } � }τ q turn into a Banach space as the following lemma shows.

Lemma 2.2.1. The space pBτ , } � }τ q is complete.

Proof. Let pϕnqnPN be a Cauchy sequence in Bτ . This implies that pϕn|rτ,0sqnPN is a Cauchy

sequence in the space Cprτ, 0s, Xq. Therefore, there exists u P Cprτ, 0s, Xq such that

ϕnpsq Ñ upsq, nÑ 8, uniformly for s P rτ, 0s. On the other hand, ϕnτ Ñ ψ P B, nÑ 8.
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We de�ne ϕ : p�8, 0s Ñ X by

ϕpθq �

$'&'%upθq, τ ¤ θ ¤ 0,

ψpθ � τq, θ   τ.

It is clear that ϕτ � ψ and ϕ is continuous on rτ, 0s. Consequently, ϕs P B for all s P rτ, 0s.

Moreover,

}ϕns � ϕs}B ¤ Kps� τq max
τ¤θ¤s

}ϕnpθq � ϕpθq} �Mps� τq}ϕnτ � ψ}B

Ñ 0, nÑ 8,

and the convergence is uniform for s P rτ, 0s. This implies that pϕnqn converges to ϕ when

n goes to in�nity in the space Bτ .

If B satis�es axiom (A4), then, as it was pointed before, Cbpp�8, 0s, Xq � B with

continuous inclusion. Likewise, for ϕ P Cbpp�8, 0s, Xq, the function ϕs P Cbpp�8, 0s, Xq

for all τ ¤ s ¤ 0. In addition, since ϕτ P B, it follows from axiom (A2) that the function

s ÞÑ ϕs is continuous. Hence, Cbpp�8, 0s, Xq � Bτ with continuous inclusion.

The aim of this section is to study the existence of solutions for the abstract FDE

with in�nite time�dependent delay

x1ptq � Axptq � fpt, xrptqq, 0 ¤ t ¤ a,

x0 � ϕ P Bτ ,
(2.3)

where f : r0, as�B Ñ X is a function that satis�es the following Carathéodory condition:

(C1) The function fp�, ϕq is measurable on r0, as for each ϕ P B and the function fpt, �q

is continuous on B for almost all t P r0, as.

Our development begins with the following property:

Lemma 2.2.2. Assume that (C1) is satis�ed and x : p�8, as Ñ X is a continuous func-

tion on r0, as such that x0 � ϕ P Bτ . Then, the function u : r0, as Ñ X given by

uptq � fpt, xrptqq, 0 ¤ t ¤ a,

is measurable in the Bochner sense.

Proof. Let v : rτ, as Ñ B be the function given by vpsq � xs. Then, v is a continuous

function. This implies that w : r0, as Ñ B, wptq � vprptqq, is a regulated function. Conse-

quently, w is a uniform limit of step functions ([44, Theorem 4.1.5]) which implies that w
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26 Abstract retarded FDE with unbounded state�dependent delay

is a measurable function. Since uptq � fpt, wptqq, it follows from condition (C1) that u is

measurable.

Lemma 2.2.2 enables us to make the de�nition below.

De�nition 2.2.3. A function x : p�8, as Ñ X is a mild solution of problem (2.3) if x

is continuous on r0, as, x0 � ϕ and the integral equation

xptq � T ptqϕp0q �

» t

0

T pt� sqfps, xrpsqqds, t P r0, as, (2.4)

is satis�ed.

The following result gives some conditions on the function f that guarantee the

existence and uniqueness of mild solutions for the problem (2.3). In what follows, we

denote by �M � sup0¤t¤a }T ptq} and by Cϕpr0, as, Xq the subset of all x P Cpr0, as, Xq such

that xp0q � ϕp0q. It is clear that Cϕpr0, as, Xq is a closed convex subset of Cpr0, as, Xq.

Theorem 2.2.4. Assume that (C1) is satis�ed and suppose that the function fp�, 0q is

Bochner integrable. Moreover, consider the existence of a positive function η P L1pr0, asq

such that

}fpt, ψ1q � fpt, ψ2q} ¤ ηptq}ψ1 � ψ2}B (2.5)

for ψ1, ψ2 P Bτ and t P r0, as. Then the problem (2.3) has a unique mild solution.

Proof. The argument to establish this statement is standard, so we will only limit ourselves

to present the essential ideas of the proof.

Consider the Banach space

Y � tx : p�8, as Ñ X : x0 P Bτ and x|r0,as is continuousu

equipped with the norm

}x}Y � }x0}τ � sup
uPr0,as

}xpuq}

and de�ne the operator Γ: Y Ñ Y by the expression

Γpxqptq �

$'&'%T ptqϕp0q �
³t
0
T pt� sqfps, xrpsqqds, 0 ¤ t ¤ a,

ϕptq, t ¤ 0.

(2.6)

For each x, y P Y and t P p�8, as, we can estimate

}Γpxqptq � Γpyqptq} ¤ �M » t

0

��fps, xrpsqq � fps, yrpsqq
�� ds
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¤ �M » t

0

ηpsq
��xrpsq � yrpsq

��
B ds

¤ �M pK » t

0

ηpsq max
0¤ξ¤s

}xpξq � ypξq}ds.

Repeating this argument, we achieve that

}Γnpxqptq � Γnpyqptq} ¤
�Mn pKn

n!

�» a

0

ηpsqds


n

max
0¤u¤t

}xpuq � ypuq}

which shows that Γn is a contraction on Y for n P N large enough. Hence, we conclude

that Γ has a unique �xed point x which is the mild solution of the problem (2.3).

From now on, we will assume that the semigroup pT ptqqt¥0 is compact Also, we

introduce the following boundedness condition for f .

(C2) There exists a positive function µ P L1pr0, asq and a continuous nondecreasing func-

tion Φ: r0,8q Ñ p0,8q such that

}fpt, ψq} ¤ µptqΦp}ψ}Bq

for all ψ P Bτ and a.e. t P r0, as.

Before we demonstrate another crucial theorem concerning the existence of solu-

tions of the abstract FDEs with state�dependent delays, we recall a classical result which

is frequently applied to many other similar theorems. Also, we will need this result in the

chapter about measure functional di�erential equations with state�dependent delays.

Theorem 2.2.5 (Schauder Fixed�Point Theorem). Let pE, }�}q be a normed vector space,

S be a nonempty convex and closed subset of E and T : S Ñ S is a continuous function

such that T pSq is relatively compact. Then, T has a �xed point in S.

Now, we are ready to prove our second main result of this chapter.

Theorem 2.2.6. Assume that the semigroup pT ptqqt¥0 is compact. Assume further that

f is a locally Lipschitz continuous function that satis�es condition (C2) and suppose that

there exists R ¡ }ϕ}τ for which the following condition holds:

�M}ϕp0q} � �M » a

0

µpsqdsΦp pKR � xM}ϕ}τ q ¤ R. (2.7)

Then, there exists a unique mild solution of the problem (2.3).
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28 Abstract retarded FDE with unbounded state�dependent delay

Proof. Let Ψ: Cϕpr0, as, Xq Ñ Cϕpr0, as, Xq the map de�ned as follows

Ψpxqptq � T ptqϕp0q �

» t

0

T pt� sqfps, xrpsqqds, t P r0, as.

By Theorem 1.2.6, we obtain that Ψ is a continuous map. Let BR be the closed ball with

center at 0 and radius R in the space Cϕpr0, as, Xq and let x P BR. By de�nition of Ψ,

we have

}Ψpxqptq} ¤ �M}ϕp0q} � �M » t

0

µpsqΦp}xrpsq}Bqds

¤ �M}ϕp0q} � �M » t

0

µpsqΦp pKR � xM}ϕ}τ qds ¤ R,

which shows that ΨpBRq � BR.

Now, let t P r0, as be a �xed number and let pxnqnPN be a bounded sequence on BR.

For all n P N, without any change of notation, we will extend xn to p�8, 0s by de�ning

xpθq � ϕpθq for all θ ¤ 0. By condition (C2), we have, for any s P r0, as,��fps, pxnqrpsqq�� ¤ µpsqΦ
���pxnqrpsq��B� ¤ µpsqΦ

� pK sup
0¤u¤a

}xnpuq} � xM}ϕ}B



,

which shows that the sequence
�
fps, pxnqrpsqq

�
nPN is bounded as well. The compactness of

T implies the existence of a subsequence pxnk
qkPN such that T pt�sqfps, pxnk

qrpsqq converges

to some function ypsq. By Theorem 1.2.6, we conclude that Ψpxnk
qptq converges to some

point in X. Hence, the operator Kt : BR Ñ X given by Ktpxq � Ψpxqptq is compact.

Therefore, ΨpBRqptq is relatively compact.

Finally, we can show that ΨpBRq is an equicontinuous subset of Cpr0, as, Xq. In

fact, for x P BR and h ¥ 0, we can write

Ψpxqpt� hq � Ψpxqptq � T ptqpT phq � Iqϕp0q �

» t

0

pT pt� h� sq � T pt� sqq fps, xrpsqqds

�

» t�h

t

T pt� h� sqfps, xrpsqqds

� pT phq � IqΨpxqptq �

» t�h

t

T pt� h� sqfps, xrpsqqds.

The �rst term on the right�hand side pT phq � IqΨpxqptq Ñ 0 as h Ñ 0 independent of x

because the set ΨpBRqptq is relatively compact. In similar way, the second term on the

right�hand side » t�h

t

T pt� h� sqfps, xrpsqqdsÑ 0

as h Ñ 0 independent of x P BR. Combining these assertions, we conclude that Ψ is a
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completely continuous map on BR. By Theorem 2.2.5, we obtain that Ψ has a �xed point

x. Since f is locally Lipschitz continuous, an standard argument allows us to a�rm that

x is the unique �xed point of Ψ.

To conclude our proof, let y : p�8, as Ñ X be the following function:

yptq �

$'&'%xptq, t P r0, as,

ϕptq, t P p�8, 0s.

Since, for all t P r0, as, Γyptq � Ψpxqptq � xptq, we have that y is the mild solution of

problem (2.3).

Next, for a �xed τ ¤ 0, we introduce the setRτ consisting of all regulated functions

r : r0, as Ñ R such that rptq ¤ t for all t P r0, as and inf0¤t¤aprptq�tq ¥ τ . It is not di�cult

to check thatRτ is a closed and convex subset of the Banach space pGpr0, as,Rq, }�}8q. For

each r P Rτ , we denote by xp�, ϕ, rq the unique mild solution of (2.3) whose existence was

established in Theorem 2.2.4 or Theorem 2.2.6. Additionally, we denote by S : Rτ Ñ Y ,

r ÞÑ xp�, ϕ, rq the segment operator and by rS : Rτ Ñ Cpr0, as,Bτ q, rSprqptq � Sprqt.

Lemma 2.2.7. Assume that x P Y . Then, the family of functions Rτ Ñ Bτ , r ÞÑ xrpsq, is

equicontinuous for s P r0, as. Moreover, if K � Cϕpr0, as, Xq is a relatively compact set,

then the continuity of r ÞÑ xrpsq is independent of x.

Proof. Let r1, r2 P Rτ and s P r0, as. We can assume, without loss of generality, that

r1psq ¤ r2psq. Using that ϕ P Bτ and from the fact that the set txt : τ ¤ t ¤ au is

relatively compact in B, for each ε ¡ 0, there is δ ¡ 0 such that

}ϕt1 � ϕt2}B ¤
ε

3
, }pSphq � Iqxt}B ¤

ε

3
, }xps1q � xps2q} ¤

ε

3 pK
for all s1, s2 P r0, as, t1, t2 P rτ, 0s with 0 ¤ s2 � s1 ¤ δ, 0 ¤ t2 � t1 ¤ δ, and 0 ¤ h ¤ δ.

Assume that }r1 � r2}8 ¤ δ and u P rτ, 0s. This allows us to estimate }xr1psq � xr2psq}τ as

follows:

(i) If r2psq � u   0, then clearly r1psq � u   0 and

}xr1psq�u � xr2psq�u}B � }ϕr1psq�u � ϕr2psq�u}B.

(ii) If r1psq � u   0 and r2psq � u ¡ 0, then by (2.2),

}xr1psq�u � xr2psq�u}B � }ϕr1psq�u � xr2psq�u}B
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¤ }ϕr1psq�u � ϕ0}B � }ϕ0 � xr2psq�u}B

¤ }ϕr1psq�u � ϕ0}B � }x0 � xr2psq�u}B

¤ }ϕr1psq�u � ϕ0}B � }x0 � Spr2psq � uqx0}B �Kpr2psq � uq max
ξPr0,r2psq�us

}xpξq � xp0q}

¤ }ϕr1psq�u � ϕ0}B � }ϕ0 � Spr2psq � uqϕ0}B � pK max
ξPr0,r2psq�us

}xpξq � ϕp0q}.

(iii) If r1psq � u ¥ 0, then clearly r2psq � u ¥ 0 and, once again, by (2.2),

}xr1psq�u � xr2psq�u}B

¤ }pSpr2psq � r1psqq � Iqxr1psq�u}B � pK max
r1psq�u¤ξ¤r2psq�u

}xpξq � xpr1psq � uq}.

Combining these estimates with the selection of δ, we can a�rm that

}xr1psq � xr2psq}τ ¤ ε

is independent of s P r0, as, which shows the �rst assertion.

In addition, this argument also serves to establish the second claim, using, in this

case, that the set txp�q : x P Y and x|r0,as P Ku is equicontinuous and the set txt : τ ¤ t ¤

a, x P Y and x|r0,as P Ku is relatively compact in B.

Now, we enunciate two important theorems to prove some results of this section.

Theorem 2.2.8 ([29, Lemma 6.2]). If, for a ¤ t ¤ b, ψ, α are real valued and continuous

functions, α1ptq ¥ 0, βptq ¥ 0 is integrable on ra, bs and

ψptq ¤ αptq �

» t

a

βpsqψpsqds, a ¤ t ¤ b,

then

ψptq ¤ αptq exp

�» t

a

βpsqds



.

Theorem 2.2.9 ([17, Theorem 69]). Suppose that the functions uptq and αptq are non-

negative for 0   s   t   b and Φpsq is positive, nondecreasing and continuous for s ¡ 0.

If

uptq ¤ c�

» t

a

αpsqΦpupsqqds,

where c ¡ 0, then » uptq

a

1

Φpsq
ds ¤

» t

a

αpsqds

for all t P pa, bq.

H. C. dos Reis October 2020 Mat � UnB

mailto: henrique.costa.reis@hotmail.com
http://www.mat.unb.br


Existence of solutions for time�dependent equations 31

Proposition 2.2.10. If all hypotheses from Theorem 2.2.4 or Theorem 2.2.6 are satis�ed,

then S : Rτ Ñ Y is a continuous map.

Proof. We assume initially that all hypotheses of Theorem 2.2.4 hold. Let r1, r2 P Rτ .

For simplicity, we abbreviate the notation by writing x � xp�, ϕ, r1q and y � xp�, ϕ, r2q.

It follows from (2.4) that

yptq � xptq �

» t

0

T pt� sq
�
fps, yr2psqq � fps, xr1psqq

�
ds, t P r0, as.

This implies that

}yptq � xptq} ¤ �M » t

0

ηpsq
��yr2psq � xr1psq

��
B ds

¤ �M » t

0

ηpsq
��yr2psq � xr2psq

��
B ds� �M » t

0

ηpsq
��xr2psq � xr1psq

��
B ds (2.8)

for 0 ¤ t ¤ a. Proceeding as in the proof of Lemma 2.2.7, for every ε ¡ 0, there exists a

δ ¡ 0 such that ��xr2psq � xr1psq
��
B ¤ ε, 0 ¤ s ¤ a, (2.9)

when }r2 � r1}8 ¤ δ. Replacing (2.9) in (2.8), we have, for all t P r0, as,

}yptq � xptq} ¤ �M » t

0

ηpsq
��yr2psq � xr2psq

��
B ds� �M » a

0

ηpsqdsε

¤ �M pK » t

0

ηpsq max
0¤ξ¤s

}ypξq � xpξq} ds� �M » a

0

ηpsqdsε.

Applying Theorem 2.2.8, we get

}yptq � xptq} ¤ �Mε

» a

0

ηpsqds e
�M pK ³t

0 ηpsqds, t P r0, as.

This inequality and the fact that Spr2qptq � Spr1qptq � 0 for all t ¤ 0 imply that S is a

continuous map in this case.

We assume now that the hypotheses of Theorem 2.2.6 hold. We �rst show that

the set txp�, ϕ, rq : r P Rτu is bounded. In fact, for t P r0, as, it follows from (2.4) that

}xptq} ¤ �M}ϕp0q} � �M » t

0

µpsqΦp}xrpsq}Bqds

¤ �M}ϕp0q} � �M » t

0

µpsqΦ

� pK max
0¤ξ¤s

}xpξq} � xM}ϕ}τ



ds.

Hence, if αptq � pK max0¤ξ¤t }xpξq} � xM}ϕ}τ , then

αptq ¤ �M pK}ϕp0q} � xM}ϕ}τ � �M pK » t

0

µpsqΦpαpsqqds, t P r0, as.
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32 Abstract retarded FDE with unbounded state�dependent delay

Applying Theorem 2.2.9, we have that }xptq} ¤ C for some constant C ¥ 0 independent

of r P Rτ .

We next show that txpt, ϕ, rq : r P Rτu is relatively compact in X for all 0 ¤ t ¤ a.

Indeed, for t ¡ 0 and 0   ε ¤ t su�ciently small, we can write

xptq � T pεqT pt� εqϕp0q � T pεq

» t�ε

0

T pt� ε� sqfps, xrpsqqds�

» t

t�ε

T pt� sqfps, xrpsqqds

� T pεqxpt� εq �

» t

t�ε

T pt� sqfps, xrpsqqds.

Using that T pεq is a compact operator, the set txpt� ε, ϕ, rq : r P Rτu is bounded and» t

t�ε

T pt� sqfps, xrpsqqdsÑ 0

as εÑ 0, we obtain that txpt, ϕ, rq : r P Rτu is relatively compact in X.

In this step, we show that the set txp�, ϕ, rq : r P Rτu is equicontinuous on r0, as.

Proceeding in similar way as above, for h ¥ 0, we can write

xpt� hq � xptq � pT phq � IqT ptqϕp0q �

» t

0

pT phq � IqT pt� sqfps, xrpsqqds

�

» t�h

t

T pt� h� sqfps, xrpsqqds

� pT phq � Iqxptq �

» t�h

t

T pt� h� sqfps, xrpsqqds.

Since txpt, ϕ, rq : r P Rτu is relatively compact in X and fps, xrpsqq is bounded indepen-

dently of r, we conclude that xpt � hq � xptq Ñ 0 as h Ñ 0 independently of r. Conse-

quently, the set of functions txp�, ϕ, rq|r0,as : r P Rτu is relatively compact in Cpr0, as, Xq.

Let prnqnPN be a sequence in Rτ that converges to r P Rτ . In what follows, we

abbreviate the notation by writing xn � xp�, ϕ, rnq and y � xp�, ϕ, rq. Thus, there exists

a subsequence of pxnqnPN, still denoted by the index n P N, that converges uniformly to

z. We extend z to p�8, as by de�ning the function z : p�8, as Ñ X as follows:

zptq �

$'&'%zptq, t P r0, as,

ϕptq, t P p�8, 0s.

It follows from Lemma 2.2.7 that for each s P r0, as, xnrpsq Ñ zrpsq and fps, xnrpsqq Ñ

fps, zrpsqq as n Ñ 8. Using now Theorem 1.2.6, we obtain that z is a mild solution of

problem (2.3). From the uniqueness of mild solutions, we conclude that z � y, which

completes the proof.
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Corollary 2.2.11. If all the hypotheses of Proposition 2.2.10 hold, then the map rS : Rτ Ñ

Cpr0, as,Bτ q is continuous.

Proof. Let r1, r2 P Rτ , x � Spr1q and y � Spr2q. For every t P r0, as, and s P rτ, 0s, we

have that pxtqs � xt�s and pytqs � yt�s. If t� s   0, then xt�s � yt�s � ϕt�s. Hence, we

can assume that t� s ¥ 0, which implies that

}xt � yt}τ � max
τ¤s¤0

}xt�s � yt�s}B

¤ max
τ¤s¤0

pK max
0¤ξ¤t�s

}xpξq � ypξq}

¤ pK}x� y}8.

The assertion is now a consequence of Proposition 2.2.10.

2.3 Existence for state�dependent equations

In this section, we apply all results on the existence of solutions for time�dependent

delay equations established in Section 2.2 to study the existence of solutions of problem

(2.1). Essentially, we do not need to assume the continuity of the function ρ : r0, as�B Ñ

R, which allows us to include in the theory those equations in which there is memory loss.

Instead, for a �xed τ ¤ 0, we suppose that ρ satis�es the following conditions:

(D1) For every ψ P Bτ , the function ρp�, ψq is regulated and, for every compact set

W � Bτ , the set of functions tρpt, �q|W : t P r0, asu is equicontinuous.

(D2) τ � t ¤ ρpt, ψq ¤ t for all t P r0, as and ψ P Bτ .

Moreover, we consider that f satis�es the Carathéodory condition (C1). We begin by

establishing our concept of solution. In this statement, we assume that ϕ P Bτ .

De�nition 2.3.1. A function x : p�8, as Ñ X is a mild solution of the problem (2.1)

if x is continuous on r0, as, x0 � ϕ and the integral equation

xptq � T ptqϕp0q �

» t

0

T pt� sqfps, xρps,xsqqds, t P r0, as, (2.10)

is satis�ed.

Theorem 2.3.2. Assume that hypotheses of Theorem 2.2.6 are ful�lled. If hypotheses

(D1) and (D2) are satis�ed, then the problem (2.1) has a mild solution.
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34 Abstract retarded FDE with unbounded state�dependent delay

Proof. Since for each r P Rτ there is a unique mild solution of problem (2.3), we de�ne

the operator F : Rτ Ñ Gpr0, as,Rq given by

F prqptq � ρpt, xtq,

where x � Sprq. We will show that F has a �xed point, organizing the proof in three

steps.

(i) In this �rst step, we prove that F pRτ q � Rτ . Let r P Rτ . It follows from (D1) that

for every ψ P Bτ , the maps

R�pt, ψq � ρpt�, ψq, t P ra, bq,

R�pt, ψq � ρpt�, ψq, t P pa, bs,

are well�de�ned. Let ptnqnPN be a decreasing sequence convergent to t P ra, bq. It follows

from Lemma 2.2.7 that xtn Ñ xt as nÑ 8. Using (D1) again, we have

ρptn, xtnq �R�pt, xtq � ρptn, xtnq � ρptn, xtq � ρptn, xtq �R�pt, xtq.

Hence, lim
nÑ8

ρptn, xtnq � R�pt, xtq. Similarly, for an increasing sequence ptnqnPN converging

to t P pa, bs, we obtain that lim
nÑ8

ρptn, xtnq � R�pt, xtq. Consequently, F prq is a regulated

function. Combining with (D2), we ascertain that F prq P Rτ .

(ii) In this step, we show that F is continuous. We begin with a general remark. Let

W � Bτ be a compact set and let ε ¡ 0. It follows from (D1) that for every ψ P W , there

exists δpψq ¡ 0 such that

|ρpt, ψ1q � ρpt, ψq| ¤ ε{2

for all ψ1 P Bδpψqpψq and all t P r0, as. Let δ ¡ 0 be a Lebesgue number [45, Lemma 27.5]

of the covering of W by the open balls Bδpψqpψq with ψ P W . For every ψ1, ψ2 P W with

}ψ1 � ψ2}τ   δ, there is ψ0 P W such that ψ1 P Bδpψ0qpψ
0q. This implies that

|ρpt, ψ1q � ρpt, ψ2q| ¤ |ρpt, ψ1q � ρpt, ψ0q| � |ρpt, ψ0q � ρpt, ψ2q|

¤ ε.

Let prnqnPN be a sequence in Rτ converging to r. We denote Sprnq � xn and

Sprq � x. It follows from Corollary 2.2.11 that xnt Ñ xt as nÑ 8 in the norm in Bτ and

uniformly for t P r0, as. This implies that the set

W � txnt : t P r0, as, n P Nu Y txt : t P r0, asu
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is compact in Bτ . Applying our previous remark to the setW , we conclude that ρpt, xnt q Ñ

ρpt, xtq as nÑ 8 uniformly for t P r0, as.

(iii) In this step, we show that tF prq : r P Rτu is equiregulated. It is su�cient to show

that tF prq : r P Rτu is left�sided equiregulated, since the proof for the right�sided equireg-

ulated case is similar. Let W � Bτ be a compact set. It follows from (D1) that for ε ¡ 0

and ψ0 P W there exists δpψ0q ¡ 0 such that

|ρpt� h, ψq � ρpt� h, ψ0q| ¤ ε{3,

for h ¡ 0 such that t� h   a, all t P r0, aq and all ψ P Bδpψ0qpψ
0q. Since

|R�pt, ψq �R�pt, ψ0q| ¤ |R�pt, ψq � ρpt� h, ψq| � |ρpt� h, ψq � ρpt� h, ψ0q|

�|ρpt� h, ψ0q �R�pt, ψ0q|

taking the limit as hÑ 0�, we obtain that

|R�pt, ψq �R�pt, ψ0q| ¤ ε{3

for all t P r0, aq, and all ψ P Bδpψ0qpψ
0q.

Let ψi P W , i � 1, . . . , n, be such that tBδpψiqpψ
iq : i � 1, . . . , nu is an open covering

of W . Since the function ρp�, ψiq is left�sided equiregulated, for each i � 1, . . . , n, there

exists βi ¡ 0 such that

|ρpt� h, ψiq �R�pt, ψiq| ¤ ε{3,

for 0   h   βi. Let β � mintβi : i � 1, . . . , nu. Let ψ P W . We select ψi such that

ψ P Bδpψiqpψ
iq. Combining these estimates, we obtain that

|ρpt� h, ψq �R�pt, ψq| ¤ |ρpt� h, ψq � ρpt� h, ψiq| � |ρpt� h, ψiq �R�pt, ψiq|

�|R�pt, ψiq �R�pt, ψq|

¤ ε

for all 0   h   β. This shows that the set tρp�, ψq : ψ P W u is left�sided equiregulated.

On the other hand, proceeding as in the proof of Theorem 2.2.6, we can a�rm thatrSpRτ q is a relatively compact set in Cpr0, as,Bτ q. We complete the proof of the assertion

by applying the above property for the set W � tSprqt : r P Rτ , 0 ¤ t ¤ au.

As a consequence of Theorem 1.1.4, we can a�rm that the set tF prq : r P Rτu is

relatively compact in Gpr0, as,Rq. Applying now Theorem 2.2.5, we conclude that F has
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36 Abstract retarded FDE with unbounded state�dependent delay

a �xed point r. It is clear that x � Sprq is a mild solution of problem (2.1).

Remark 2.3.3. A relation between state�dependent delays equations and time�dependent

delays for the case rptq � t was already established previously in the literature (see, for

example, [30]). However, the relation presented here allows us to consider more general

conditions concerning the regularity of the solutions and the considered spaces.

To establish a result of the same type as Theorem 2.3.2 when the hypotheses of

Theorem 2.2.4 are satis�ed, we need to restrict the condition (D1). With this object, we

introduce the following condition:

(D3) For every ψ P Bτ , the function ρp�, ψq is regulated. Furthermore, for each ϕ P Bτ ,

there exists a constant Cρ ¥ 0 such that

|ρpt, xtq � ρpt, ytq| ¤ Cρ max
0¤s¤t

}xpsq � ypsq}

for all x, y P Cϕpr0, as, Xq and t P r0, as.

Theorem 2.3.4. Consider that the space B satis�es axiom (A4). Assume that all hy-

potheses of Theorem 2.2.4 are satis�ed with a bounded function η. Suppose that conditions

(D2) and (D3) are ful�lled and the initial condition ϕ P Cbpp�8, 0s, Xq satis�es the Lip-

schiz condition

}ϕpθ1q � ϕpθ2q} ¤ Lϕ|θ
1 � θ2| for all θ1, θ2 ¤ 0.

Finally, let fp�, 0q be a bounded function on r0, as such that fpt, ψq P DpAq for all t P r0, as

and

}Afpt, ψq} ¤ η1}ψ}B (2.11)

for some constant η1 ¥ 0. If

Cρ�MQmaxtLϕ, C4u

�» a

0

ηpsqds



exp

��M pK » a

0

ηpsqds



  1, (2.12)

then problem (2.1) has a unique mild solution.

Proof. We divide the proof in three steps.

(i) Initially, we will prove that the solutions of (2.3) are bounded independently of r P Rτ .

Let r P Rτ and x � Sprq. It follows from (2.5) that

}xptq} ¤ �M}ϕp0q} � �M » t

0

��fps, xrpsqq�� ds
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¤ �M}ϕp0q} � �M » t

0

ηpsq}xrpsq}Bds� �M » t

0

}fps, 0q}ds

¤ �M}ϕp0q} � �M » t

0

}fps, 0q}ds� �MxM}ϕ}τ

» a

0

ηpsqds� �M pK » t

0

ηpsq max
0¤ξ¤s

}xpξq}ds

for all 0 ¤ t ¤ a. Using Theorem 2.2.8, it follows that

}xptq} ¤ C1e
�M pK ³t

0 ηpsqds

¤ C2,

where

C1 � �M}ϕp0q} � �M » a

0

}fps, 0q}ds� �MxM}ϕ}τ

» a

0

ηpsqds,

C2 � C1e
�M pK ³a

0 ηpsqds.

This also implies that

}xrptq}B ¤ pKC2 � xM}ϕ}τ . (2.13)

(ii) In this step, we will estimate }xr1psq � xr2psq}B, where x � Sprq, r, r1, r2 P Rτ and

0 ¤ s ¤ a. Let t P r0, as and h ¡ 0 such that t� h P r0, as. Since

xpt� hq � xptq �

» t

0

T pt� sqpT phq � Iqfps, xrpsqqds�

» t�h

t

T pt� h� sqfps, xrpsqqds,

Theorem 1.2.10 and inequalities (2.5), (2.11) and (2.13) imply that

}xpt� hq � xptq} ¤ �M » t

0

��pT phq � Iqfps, xrpsqq
�� ds� �M » t�h

t

��fps, xrpsqq�� ds

¤ �M » t

0

����» h

0

T puqAfps, xrpsqqdu

���� ds� �M » t�h

t

��fps, xrpsqq � fps, 0q
�� ds� �M » t�h

t

}fps, 0q} ds

¤ �M » t

0

» h

0

�Mη1}xrpsq}B du ds� xM » t�h

t

ηpsq}xrpsq}B du� �M » t�h

t

sup
0¤u¤a

}fpu, 0q}ds

¤ �M2η1h

» t

0

pKC2 � xM}ϕ}τ ds� xM » t�h

t

ηpsq
� pKC2 � xM}ϕ}τ

	
du� �Mh sup

0¤u¤a
}fpu, 0q}

¤ �M2η1hC3a� �Mη2hC3 � �Mh sup
0¤u¤a

}fpu, 0q}

¤ C4h,

where we have denoted by

η2 � sup
tPr0,as

ηptq

C3 � pKC2 � xM}ϕ}τ ,
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C4 � �M ��Mη1C3a� η2C3 � sup
0¤u¤a

}fpu, 0q}



.

By Remark 2.1.1, for every r1, r2 P Rτ and 0 ¤ s ¤ a, we can estimate

}xr1psq � xr2psq}B ¤ Q sup
θ¤0

}xpr1psq � θq � xpr2psq � θq}.

Without loss of generality, we can assume that r1psq ¤ r2psq. In this case, there are

several cases to analyze:

(ii.1) If r2psq ¤ 0, then

}xpr1psq � θq � xpr2psq � θq} � }ϕpr1psq � θq � ϕpr2psq � θq} ¤ Lϕ|r
1psq � r2psq|.

(ii.2) If r1psq   0, r2psq ¡ 0 and θ ¤ �r2psq, then

}xpr1psq � θq � xpr2psq � θq} � }ϕpr1psq � θq � ϕpr2psq � θq}

¤ Lϕ|r
1psq � r2psq|.

(ii.3) If r1psq   0 and �r2psq   θ ¤ 0, then

}xpr1psq � θq � xpr2psq � θq} � }ϕpr1psq � θq � xpr2psq � θq}

¤ }ϕpr1psq � θq � ϕp0q} � }ϕp0q � xpr2psq � θq}

¤ Lϕ|r
1psq � θ| � C4pr

2psq � θq

¤ maxtLϕ, C4u|r
2psq � r1psq|

(ii.4) If r1psq ¡ 0 and �r1psq ¤ θ ¤ 0, then

}xpr1psq � θq � xpr2psq � θq} ¤ C4|r
2psq � r1psq|.

(ii.5) If �r2psq ¤ θ ¤ �r1psq, then

}xpr1psq � θq � xpr2psq � θq} � }ϕpr1psq � θq � xpr2psq � θq}

¤ }ϕpr1psq � θq � ϕp0q} � }ϕp0q � xpr2psq � θq}

¤ Lϕ|r
1psq � θ| � C4||r

2psq � θ|

� �Lϕpr
1psq � θq � C4pr

2psq � θq

¤ maxtLϕ, C4u|r
2psq � r1psq|.
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(ii.6) If θ ¤ �r2psq, then

}xpr1psq � θq � xpr2psq � θq} � }ϕpr1psq � θq � ϕpr2psq � θq}

¤ Lϕ|r
1psq � r2psq|.

Therefore, in any case, we conclude that

}xpr1psq � θq � xpr2psq � θq} ¤ maxtLϕ, C4u|r
1psq � r2psq|,

which is independent of r P Rτ .

(iii) Finally, we will conclude that F is a contraction. Let r1, r2 P Rτ , x � Spr1q and

y � Spr2q. For every t P r0, as, it follows from (2.4) that

yptq � xptq �

» t

0

T pt� sq
�
fps, yr2psqq � fps, xr1psqq

�
ds.

This implies that

}yptq � xptq} ¤ �M » t

0

ηpsq
��yr2psq � xr1psq

��
B ds

¤ �M » t

0

ηpsq
��xr2psq � xr1psq

��
B ds� �M » t

0

ηpsq
��yr2psq � xr2psq

��
B ds

¤ �MQmaxtLϕ, C4u

» t

0

ηpsq|r2psq � r1psq|ds� �M pK » t

0

ηpsq max
0¤ξ¤s

}ypsq � xpsq}ds

¤ �MQmaxtLϕ, C4u

» a

0

ηpsqds }r2 � r1}8 � �M pK » t

0

ηpsq max
0¤ξ¤s

}ypsq � xpsq}ds.

Applying Theorem 2.2.8, we obtain

}yptq � xptq} ¤ �MQmaxtLϕ, C4u

�» a

0

ηpsqds



exp

��M pK » t

0

ηpsqds



}r2 � r1}8.

This implies that

}F pr2q � F pr1q}8 � sup
0¤t¤a

|ρpt, ytq � ρpt, xtq|

¤ Cρ sup
0¤t¤a

max
0¤s¤t

}ypsq � xpsq}

¤ Cρ�MQmaxtLϕ, C4u

�» a

0

ηpsqds



exp

��M pK » a

0

ηpsqds



}r2 � r1}8.

Combining with (2.12), the above estimate shows that F : Rτ Ñ Rτ is a contraction,

which in turn implies that F has a unique �xed point. This completes the proof.
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2.4 Applications

The purpose of this section is to apply some of the results of the last sections. In

order to do this, we will study the existence of a mild solution for di�usion systems as

Bu

Bt
pt, ξq �

B2u

Bξ2
pt, ξq � fpt, uρpt,utqq, 0 ¤ t ¤ a,

upθ, ξq � ϕpθ, ξq, �8   θ ¤ 0,

(2.14)

where 0 ¤ ξ ¤ π, a is a positive number, u : p�8, as�r0, πs Ñ R and ϕ : p�8, 0s�r0, πs Ñ

R is an appropriate function. We model this problem in abstract form on the space

X � L2pr0, πsq endowed the norm } � }2 and we take as phase space B � C0 � L2pg,Xq,

where the function g satis�es the conditions established in Example 2.1.2. We consider

the operator A : DpAq � X Ñ X de�ned by

Azpξq �
d2zpξq

dξ2

on the domain DpAq � tz P X : z2 P X, zp0q � zpπq � 0u. It is well�known that A is

the in�nitesimal generator of an analytic semigroup pT ptqqt¥0 on X. Furthermore, A has

a discrete spectrum and the eigenvalues are �n2, n P N, with corresponding normalized

eigenfunctions znpξq �
�

2
π

�1{2
sinpnξq. Moreover, the set tzn : n P Nu is an orthonormal

basis of X. Consequently,

Az �
8̧

n�1

�n2xz, znyzn,

for z P DpAq and

T ptqz �
8̧

n�1

e�n
2txz, znyzn,

for all z P X. It follows from this expression that pT ptqqt¥0 is a compact semigroup with

}T ptq} ¤ 1 for all t ¥ 0.

We study the problem (2.14) on the interval r0, as. In [30, 46], there are many

examples of functions ρ that arise in state�dependent delay problems. We consider the

function ρpt, ψq � t � pptq � qpψq, where p : r0, as Ñ R� is a regulated function and

q : B Ñ R� is a bounded continuous function. We denote by

τ � � suptpptq � qpψq : 0 ¤ t ¤ a, ψ P Bu.

It is clear that ρ satis�es conditions (D1)�(D2).

Let f0 : r0, as � X Ñ X be a function that satis�es the Carathéodory condition
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(C1), f0p�, 0q P L
1pr0, as, Xq, and there exists an integrable function L0 such that

}f0pt, xq � f0pt, yq}2 ¤ L0ptq}x� y}2

for all x, y P X. Let fpt, ψq � f0pt, ψp0qq. Then f satis�es the Carathéodory condition as

well, fp�, 0q P L1pr0, as, Xq and

}fpt, ψ1q � fpt, ψ2q}2 � }f0pt, ψ
1p0qq � f0pt, ψ

2p0qq}2

¤ L0ptq}ψ
1p0q � ψ2p0q}2

¤ L0ptq}ψ
1 � ψ2}B

for all ψ1, ψ2 P B. In particular, this implies that

}fpt, ψq}2 ¤ L0ptq}ψ}B � }f0pt, 0q}2.

Moreover, as usual, we abbreviate ψpθ, ξq instead of ψpθqpξq. With these notations, prob-

lem (2.14) is reduced to

Bu

Bt
pt, ξq �

B2u

Bξ2
pt, ξq � f0pt, upt� pptq � qputq, ξqq, 0 ¤ t ¤ a,

upθ, ξq � ϕpθ, ξq, �8   θ ¤ 0,

(2.15)

for 0 ¤ ξ ¤ π, where u : p�8, as � r0, πs Ñ R is a function such that upt, �q P L2pr0, πsq,

and ϕ : p�8, 0s � r0, πs Ñ R is a function such that ϕ P Bτ .

Combining with the previous assertions, problem (2.15) can be modeled in the

abstract form (2.1). A direct application of Theorem 2.2.6 allows us to state the following

result.

Corollary 2.4.1. Under the above conditions, if ϕp0, ξq � 0 for all ξ P r0, πs and

pK » a

0

L0psqds   1,

then there exists a unique mild solution of problem (2.15).
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CHAPTER 3

MEASURE FDES WITH

UNBOUNDED STATE�DEPENDENT

DELAYS

This chapter is dedicated to obtain a series of properties of the measure functional

di�erential equations with state�dependent delays

xptq � xpt0q �

» t

t0

fps, xρps,xsqqdgpsq, t P rt0, t0 � σs,

xt0 � φ,

(3.1)

where the integral of the right�hand side of (3.1) is in the sense of Kurzweil�Henstock�

Stieltjes integral, σ ¡ 0, t0 P R, g : rt0, t0 � σs Ñ R is a nondecreasing function,

B � Gpp�8, 0s,Rnq is an appropriate Banach space, φ P B and x : p�8, t0 � σs Ñ Rn,

ρ : rt0, t0 � σs � B Ñ R and f : rt0, t0 � σs � B Ñ Rn are functions. In the �rst section,

we introduce an adequate phase space B � Gpp�8, 0s,Rnq to work with this type of

equation. Next, under appropriate conditions, we obtain the existence and uniqueness of

solutions of the equation (3.1). The chapter �nishes with a periodic averaging theorem

for measure functional di�erential equations with state�dependent delays. All results are

new in the literature and are contained in [32].
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44 Measure FDEs with unbounded state�dependent delays

3.1 Phase Space

For our purposes, we will need a suitable vector space B � Gpp�8, 0s,Rnq equipped

with a norm }�}B which satis�es the following axioms:

(E1) B is complete.

(E2) If t0 P R, σ ¡ 0, y : p�8, t0 � σs Ñ Rn is regulated on rt0, t0 � σs and yt0 P B, then

there are locally bounded functions k1, k2, k3 : r0,8q Ñ p0,8q, all independent of y,

t0 and σ, such that, for every t P rt0, t0 � σs:

(a) yt P B.

(b) }yptq} ¤ k1pt� t0q }yt}B.

(c) }yt}B ¤ k2pt� t0q}yt0}B � k3pt� t0q sup
uPrt0,ts

}ypuq}.

(E3) For t ¥ 0, let Sptq : B Ñ B be the operator de�ned by

pSptqϕqpθq �

$'''''&'''''%
ϕp0q, θ � 0,

ϕp0�q, �t ¤ θ   0,

ϕpt� θq, θ   �t.

Then, there is a continuous function k : r0,8q Ñ r0,8q such that kp0q � 0 and

}Sptqϕ}B ¤ p1 � kptqq }ϕ}B , for all ϕ P B.

Usually, the motivation on the choice of the phase space lies on the expected properties of

the solution of the investigated equation. Therefore, as Theorem 1.3.11 suggests, it seems

to be more satisfactory to de�ne phase space for measure FDE to be a particular subset

of the set of all regulated functions.

Next, we show some examples of phase spaces.

Example 3.1.1 ([27, Example 3.2]). Let ρ : p�8, 0s Ñ p0,8q be a continuous function

such that ρp0q � 1 and that the function p : r0,8q Ñ p0,8q given by

pptq � sup
θ¤�t

ρpt� θq

ρpθq
, t ¥ 0,

is locally bounded. The space

B � BGρpp�8, 0s,Rnq �

"
ϕ P Gpp�8, 0s,Rnq :

}ϕpθq}

ρpθq
is bounded

*
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endowed with the norm

}ϕ}ρ � sup
θ¤0

}ϕpθq}

ρpθq
, ϕ P BGρpp�8, 0s,Rnq,

satis�es all the properties (E1)�(E3). Therefore, BGρpp�8, 0s,Rnq is a phase space.

Example 3.1.2 ([27, Example 3.6]). Let h : p�8, 0s Ñ p0,8q be a continuous function

such that
» 0

�8

hpsqds � L   8. Consider the space

Bhpp�8, 0sq,Rnq �

"
ϕ P Gpp�8, 0s,Rnq :

» 0

�8

hpsq sup
s¤ξ¤0

|ϕpξq|ds   8

*
,

endowed with the norm

}ϕ}h �

» 0

�8

hpsq sup
s¤ξ¤0

|ϕpξq|ds, ϕ P Bhpp�8, 0sq,Rnq.

Then, Bhpp�8, 0sq,Rnq is a phase space as well.

Contrarily to the phase space H0 chosen by G. A. Monteiro and A. Slavík in [43],

where all functions yt, t   0, belong to H0 whenever y P H0, none of the axioms (E1)�(E3)

of the phase space introduced here o�er much data about the function xt when x P B,

t0 � 0 and t   0. This lack of information permits to deal with more general FDEs with

state�dependent delays. It also increases the quantity of sets that may be considered as

phase spaces.

Example 3.1.3. Let ρ̃ : p�8, 0s Ñ p0,8q be a function as in Example 3.1.1. Additionally,

suppose that

(a) ρ̃pθq Ñ 8 as θ Ñ �8.

Consider the space

B � BG0
ρ̃pp�8, 0s,Rnq �

"
ϕ P BGρ̃pp�8, 0s,Rnq :

}ϕpθq}

ρ̃pθq
Ñ 0, θ Ñ �8

*
endowed with the norm

}ϕ}ρ̃ � sup
θ¤0

}ϕpθq}

ρ̃pθq
, ϕ P BG0

ρ̃pp�8, 0s,Rnq.

If ρ̃pθq � eγθ
2
for θ ¤ 0, then it is possible to show that all conditions (E1)�(E3) are

satis�ed (see [27] for details).
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46 Measure FDEs with unbounded state�dependent delays

On the other hand, let ϕ : p�8, 0s Ñ R be the function de�ned by

ϕpθq �

$'&'%e
�γ, θ P r�1, 0s,

eγpθ
2�2θq, θ P p�8,�1s.

Since ϕpθq{ρ̃pθq � e2γθ Ñ 0 as θ Ñ �8, we have that ϕ P B. However, if ρps, ϕsq � s�1,

then ϕρps,ϕsq�s � ϕ�1 does not belong to B. Indeed,

lim
θÑ�8

|ϕ�1pθq|

ρ̃pθq
� lim

θÑ�8

|ϕpθ � 1q|

ρ̃pθq
� lim

θÑ�8

eγppθ�1q2�2pθ�1qq

ρ̃pθq
� e�γ,

which is di�erent from zero. It implies that ϕ�1 R B. Thus, B is not a phase space

considering the hypotheses from [43], but B is a phase space in our case.

We �nish this section recalling two important properties.

Lemma 3.1.4 ([27, Lemma 3.8]). Assume that B is a phase space. If y : p�8, t0�σs Ñ Rn

is such that yt0 P B and y|rt0,t0�σs is a regulated function, then t ÞÑ }yt}B is regulated on

rt0, t0 � σs.

Lemma 3.1.5 ([27, Lemma 3.10]). Let r : rt0, t0 � σs Ñ R be a nondecreasing function

such that rpsq ¤ s for all s P rt0, t0 � σs. Assume that y : p�8, rpt0 � σqs Ñ Rn is such

that yrpt0q P B and y|rrpt0q,rpt0�σqs is a regulated function, then t ÞÑ }yrptq}B is regulated on

rt0, t0 � σs.

Henceforth, until the end of this chapter, B will always denote a phase space in

the sense presented in this section.

3.2 Existence and uniqueness of solutions

Here, we are interested in proving results concerning existence and uniqueness of

solutions of measure functional di�erential equations with state�dependent delays given

by

xptq � xpt0q �

» t

t0

fps, xρps,xsqqdgpsq, t P rt0, t0 � σs,

xt0 � φ,

(3.2)

where σ ¡ 0, t0 P R, g : rt0, t0�σs Ñ R is a nondecreasing function, B � Gpp�8, 0s,Rnq is

a Banach space satisfying axioms (E1)�(E3), φ P B and x : p�8, t0�σs Ñ Rn, ρ : rt0, t0�

σs � B Ñ R and f : rt0, t0 � σs � B Ñ Rn are functions.

H. C. dos Reis October 2020 Mat � UnB

mailto: henrique.costa.reis@hotmail.com
http://www.mat.unb.br


Existence and uniqueness of solutions 47

To show that the problem p3.2q has a solution, we begin by considering the set

X �
 
x : p�8, t0 � σs Ñ Rn : xt0 P B and x|rt0,t0�σs is regulated

(
, (3.3)

equipped with the norm

}x}X � }xt0}B � sup
uPrt0,t0�σs

}xpuq}. (3.4)

This set is a Banach space. We also assume the following assumptions:

(F1) For all x P B, the integral
³t0�σ
t0

fps, xqdgpsq exists in the sense of Kurzweil�Henstock�

Stieltjes.

(F2) There exists a Kurzweil�Henstock�Stieltjes integrable functionM : rt0, t0�σs Ñ R�

such that ����» u2

u1

fps, xqdgpsq

���� ¤ » u2

u1

Mpsqdgpsq

whenever x P B and u1, u2 P rt0, t0 � σs.

(F3) There exists a Kurzweil�Henstock�Stieltjes integrable function L : rt0, t0 �σs Ñ R�

such that ����» u2

u1

pfps, xq � fps, yqq dgpsq

���� ¤ » u2

u1

Lpsq }x� y}B dgpsq

whenever x, y P B and u1, u2 P rt0, t0 � σs .

(F4) There exists a Kurzweil�Henstock�Stieltjes integrable function L2 : rt0, t0�σs Ñ R�

such that ����» u2

u1

pfps, xuq � fps, xvqq dgpsq

���� ¤ » u2

u1

L2psq |u� v| dgpsq

for all x P X and u1, u2, u, v P rt0, t0 � σs.

(F5) For all x P X, the function t ÞÑ ρpt, xtq, t P rt0, t0 � σs, is nondecreasing, satis�es

ρpt, xtq ¤ t and xρpt0,xt0 q P B.

(F6) There exists a Kurzweil�Henstock�Stieltjes integrable function L3 : rt0, t0�σs Ñ R�

such that » u2

u1

|ρps, xq � ρps, yq| dgpsq ¤

» u2

u1

L3psq }x� y}B dgpsq

for all u1, u2 P rt0, t0 � σs and all x, y P B.
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Remark 3.2.1. Theorem 1.3.7 and Lemma 3.1.4 guarantee that, whenever x : p�8, t0 �

σs Ñ Rn is such that x|rt0,t0�σs is regulated and xt0 P B, the function t ÞÑ }xt}B is

Kurzweil�Henstock�Stieltjes integrable with respect to a nondecreasing function g.

Remark 3.2.2. Notice that condition (F5) is necessary in order to ensure that }xρpt,xtq}B

is a regulated function (Lemma 3.1.5). Thus, in this case, following the same arguments

used in the Remark 3.2.1, }xρpt,xtq}B is Kurzweil�Henstock�Stieltjes integrable with respect

to a nondecreasing function g, whenever x : p�8, t0 � σs Ñ Rn is such that x|rt0,t0�σs is

regulated and xt0 P B.

We present a result concerning the existence of solutions of measure FDEs with

state�dependent delays.

Theorem 3.2.3. Let B � Gpp�8, 0s,Rnq be a Banach space satisfying axioms (E1)�(E3),

φ P B and g : rt0, t0 � σs Ñ R be a nondecreasing function. If f : rt0, t0 � σs � B Ñ Rn

and ρ : rt0, t0 � σs � B Ñ R are functions that satisfy the properties (F1)�(F6), then the

problem (3.2) has a solution.

Proof. Let

A �

"
x P X : xt0 � φ and }xptq � φp0q} ¤

» t

t0

Mpsqdgpsq for all t P rt0, t0 � σs

*
(3.5)

and de�ne the operator Γ: AÑ X by

Γxptq :�

$''&''%
φpt� t0q, if t ¤ t0,

xpt0q �

» t

t0

fps, xρps,xsqqdgpsq, if t0 ¤ t ¤ t0 � σ.

We start by proving some statements about A, the operator Γ and ΓpAq. Then, the

theorem will follow as a direct consequence of Theorem 2.2.5 (Schauder Fixed Point

Theorem).

Statement 1: The set A is convex. In fact, given x, y P A, θ P p�8, 0s and ξ P p0, 1q,

we have

pξx� p1 � ξqyqt0 pθq � ξxpt0 � θq � p1 � ξqypt0 � θq

� ξxt0pθq � p1 � ξqyt0pθq

� ξφpθq � p1 � ξqφpθq

� φpθq.
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For all t P rt0, t0 � σs, we get

}pξx� p1 � ξqyq ptq � φp0q} � }ξxptq � p1 � ξqyptq � ξφp0q � p1 � ξqφp0q}

¤ ξ }xptq � φp0q} � p1 � ξq }yptq � φp0q}

¤

» t

t0

Mpsqdgpsq,

proving the Statement 1.

Statement 2: ΓpAq � A. Indeed, for x P A, we have pΓxqt0 pθq � pΓxq pt0 � θq � φpθq.

By (F2), we get

}Γxptq � φp0q} �

����» t

t0

fps, xρps,xsqqdgpsq

���� ¤ » t

t0

Mpsqdgpsq,

for all t P rt0, t0 � σs, proving the Statement 2.

Statement 3: The set A is bounded and closed. Indeed, let pxnqnPN be a sequence in A

such that converges to x on }�}X norm. Then, for all n P N, pxnqt0 � φ,

}xnptq � φp0q} ¤

» t

t0

Mpsqdgpsq for all t P rt0, t0 � σs

and

}xt0 � φ}B � }xt0 � pxnqt0}B

¤ }px� xnqt0}B � sup
uPrt0,t0�σs

}xpuq � xnpuq}

� }x� xn}X . (3.6)

Thus, passing (3.6) to limit when nÑ 8, we obtain xt0 � φ. By (E2), we have

}xptq � φp0q} ¤ }xptq � xnptq} � }xnptq � φp0q}

¤ k1pt� t0q }px� xnqt}B �

» t

t0

Mpsqdgpsq

¤ k1pt� t0qk3pt� t0q sup
uPrt0,ts

}px� xnqpuq} �

» t

t0

Mpsqdgpsq

¤ sup
uPr0,σs

k1puq sup
uPr0,σs

k3puq }x� xn}X �

» t

t0

Mpsqdgpsq (3.7)

for all t P rt0, t0�σs and for all n P N. If supuPr0,σs k1puq supuPr0,σs k3puq ¡ 0, then let ε ¡ 0

be arbitrary and n0 P N be such that }x� xn}X   ε
�
supuPr0,σs k1puq supuPr0,σs k3puq

��1 for
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all n ¥ n0. By p3.7q, we have

}xptq � φp0q}   ε�

» t

t0

Mpsqdgpsq for all t P rt0, t0 � σs.

Since ε is arbitrary, we conclude that

}xptq � φp0q} ¤

» t

t0

Mpsqdgpsq for all t P rt0, t0 � σs. (3.8)

Clearly, (3.8) is true if supuPr0,σs k1puq supuPr0,σs k3puq � 0. Thus, we obtain that A is

closed. Finally, by p3.8q,

}x}X � }xt0}B � sup
uPrt0,t0�σs

}xpuq}

¤ }φ}B � sup
uPrt0,t0�σs

p}xpuq � φp0q} � }φp0q}q

¤ }φ}B � sup
uPrt0,t0�σs

» u

t0

Mpsqdgpsq � }φp0q}

¤ }φ}B �

» t0�σ

t0

Mpsqdgpsq � }φp0q}.

Therefore, A is bounded and the statement is proved.

Statement 4: The operator Γ is continuous. Firstly, given x, y P A and t P rt0, t0 � σs,

inequalities (F3) and (F4) imply that

}pΓx� Γyq ptq} �

����» t

t0

fps, xρps,xsqq � fps, yρps,ysqqdgpsq

����
�

����» t

t0

fps, xρps,xsqq � fps, yρps,xsqq � fps, yρps,xsqq � fps, yρps,ysqqdgpsq

����
¤

����» t

t0

fps, xρps,xsqq � fps, yρps,xsqqdgpsq

����� ����» t

t0

fps, yρps,xsqq � fps, yρps,ysqqdgpsq

����
¤

» t

t0

Lpsq
��xρps,xsq � yρps,xsq

��
B dgpsq �

» t

t0

L2psq |ρps, xsq � ρps, ysq| dgpsq. (3.9)

By axiom (E2) and by inequalities (F6) and (3.9), we have

}pΓx� Γyq ptq}

¤

» t

t0

Lpsqk3pρps, xsq � t0q sup
uPrt0,ρps,xsqs

}px� yqpuq} dgpsq �

» t

t0

L2psqL3psq }xs � ys}B dgpsq

¤

» t

t0

Lpsqk3pρps, xsq � t0q }x� y}X dgpsq�

» t

t0

L2psqL3psqk3ps� t0q sup
uPrt0,ss

}px� yqpuq} dgpsq

¤

» t

t0

pLpsq � L2psqL3psqq sup
uPr0,σs

k3puqdgpsq }x� y}X . (3.10)
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Therefore, by (3.10),

}Γx� Γy}X �
��pΓx� Γyqt0

��
B � sup

uPrt0,t0�σs

}pΓx� Γyqpuq}

¤

» t0�σ

t0

pLpsq � L2psqL3psqq sup
uPr0,σs

k3puqdgpsq }x� y}X ,

proving the continuity on }�}X norm.

Statement 5: The set B :�
 
f : rt0, t0 � σs Ñ Rn : f � Γx|rt0,t0�σs for some x P A

(
is

relatively compact on Gprt0, t0 � σs,Rnq. Indeed, for all t P rt0, t0 � σs,

}Γxptq} �

����xpt0q � » t

t0

fps, xρps,xsqqdgpsq

����
¤ }xpt0q} �

����» t

t0

fps, xρps,xsqqdgpsq

����
¤ }xpt0q} �

» t

t0

Mpsqdgpsq

¤ }xpt0q} �

» t0�σ

t0

Mpsqdgpsq.

Furthermore,

}Γxpuq � Γxpvq} �

����» u

t0

fps, xρps,xsqqdgpsq �

» v

t0

fps, xρps,xsqqdgpsq

����
�

����» u

v

fps, xρps,xsqqdgpsq

���� ¤ » u

v

Mpsqdgpsq.

By Corollary 1.3.9, the function hptq �
³t
t0
Mpsqdgpsq is nondecreasing. In addition, both

functions K : rt0, t0 � σs Ñ R and η : r0,8q Ñ r0,8q de�ned by

Kptq � hptq � t, ηptq � t

are increasing functions. Moreover, η is continuous and ηp0q � 0. By Theorem 1.1.5, B

is relatively compact on Gprt0, t0 � σs,Rnq.

Statement 6: We conclude that Γ is completely continuous. In fact, let pxnqnPN � A be

a bounded sequence on }�}X norm and let t P rt0, t0 � σs. By axiom (E2), we obtain

}xnptq} ¤ k1pt� t0q }pxnqt}B

¤ k1pt� t0q

�
k2pt� t0q }pxnqt0}B � k3pt� t0q sup

uPrt0,ts

}xnpuq}

�

¤ sup
uPr0,σs

k1puq

�
sup
uPr0,σs

k2puq }pxnqt0}B � sup
uPr0,σs

k3puq sup
uPrt0,t0�σs

}xnpuq}

�
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¤ D}xn}X ,

where

D � max

#
sup
uPr0,σs

k1puq sup
uPr0,σs

k2puq, sup
uPr0,σs

k1puq sup
uPr0,σs

k3puq

+
.

This inequality proves that pxnq restricted to the interval rt0, t0 � σs is bounded on the

space Gprt0, t0 � σs,Rnq. Consequently, by the last statement, there exists a subsequence

pxnk
qkPN such that pΓpxnk

qqkPN is convergent on }�}8 norm. If we denote its limit by y,

then the function ȳ : p�8, t0 � σs Ñ Rn given by

ȳptq �

$'&'%φpt� t0q, t P p�8, t0s,

yptq, t P rt0, t0 � σs,

is well�de�ned and is such that

}Γpxnk
q � ȳ}X ¤ }pΓxnk

� ȳqt0}B � sup
uPrt0,t0�σs

}pΓpxnk
q � ȳqpuq}

¤ }pxnk
qt0 � φ}B � }Γpxnk

q � y}8

¤ }Γpxnk
q � y}8 . (3.11)

Passing (3.11) to limit when k Ñ 8, we conclude that pΓpxnk
qqk converges to ȳ on }�}X

norm. Since A is closed, ȳ P A. We conclude that Γ is completely continuous.

Finally, after all statements together with Theorem 2.2.5, we conclude the desired

result.

In what follows, we present a result which ensures the uniqueness of solutions of

(3.2).

Theorem 3.2.4. Let B � Gpp�8, 0s,Rnq be a Banach space satisfying axioms (E1)�

(E3), φ P B and g : rt0, t0 � σs Ñ R be a nondecreasing and left�continuous function. If

f : rt0, t0�σs�B Ñ Rn and ρ : rt0, t0�σs�B Ñ R are functions that satisfy the properties

(F1)�(F6) and L,L2 and L3 are regulated functions, then the problem (3.2) possesses a

unique solution on p�8, t0 � σs.

Proof. If x, y are solutions of (3.2), then by following the same steps as in the proof of

Theorem 3.2.3, we get

}xptq � yptq} � }pΓx� Γyq ptq}
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¤

» t

t0

Lpsq sup
uPr0,σs

k3puq sup
uPrt0,ss

}px� yqpuq} dgpsq �

�

» t

t0

L2psqL3psqk3ps� t0q sup
uPrt0,ss

}px� yqpuq} dgpsq

¤

» t

t0

pLpsq � L2psqL3psqq sup
uPr0,σs

k3puq sup
uPrt0,ss

}px� yqpuq} dgpsq.

Let ψpvq � sup
uPrt0,vs

}xpuq � ypuq}. Since x, y are regulated functions, it follows that ψ is also

regulated, and thus, Kurzweil�Henstock�Stieltjes integrable with respect to the function

g. Therefore,

ψptq ¤

» t

t0

pLpsq � L2psqL3psqq sup
uPr0,σs

k3puqψpsqdgpsq

¤ K

» t

t0

ψpsqdgpsq,

where

K � sup
uPrt0,t0�σs

pLpuq � L2puqL3puqq sup
uPr0,σs

k3puq.

Applying Theorem 1.3.10, we get ψptq ¤ 0. Since ψptq ¥ 0 by de�nition, it follows the

desired result.

3.2.1 Example

In this subsection, we exemplify three functions f, g and ρ and a phase space that

�t all the hypotheses of Theorem 3.2.3.

Let q : p�8, 0s Ñ R be the function qpθq � eθ and choose the phase space

B � BGqpp�8, 0s,Rq de�ned as in Example 3.1.1. Let T : p�8, 0s Ñ R be a bounded

continuous function such that:

(a)
T pθq

qpθq
is bounded.

(b)
³0

�8
|T pθq|qpθqdθ   8.

(c) There exists a constant D ¡ 0 such that
³0

�8
|T pθ � t2q � T pθ � t1q|dθ ¤ D|t2 � t1|

for all 0 ¤ t1, t2.

De�ne the functions f : r0,8q � B Ñ R and ρ : r0,8q � B Ñ r0,8q by

fpt, xq � cos2ptq

» 0

�8

T pθq tanhpxpθqqdθ, ρpt, xq � t�

» �t

�8

|T pθq| tanhp|xpθ � tq|qdθ.
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It is immediate that for all x P X, the function t ÞÑ ρpt, xtq, t P r0, σs, is nondecreasing,

satis�es ρpt, xtq ¤ t and xρp0,x0q P B. In addition, by de�nition of ρ,

ρps, yq � ρps, xq �

» �s

�8

|T pθq| ptanhp|ypθ � sq|q � tanhp|xpθ � sq|qq dθ

�

» �2s

�8

|T pu� sq| ptanhp|ypuq|q � tanhp|xpuq|qq du (3.12)

By (3.12), we have

|ρps, yq � ρps, xq| ¤

» 0

�8

|T pu� sq|| tanhp|ypuq|q � tanhp|xpuq|q|du

¤

» 0

�8

|T pu� sq|
|ypuq � xpuq|

qpuq
qpuqdu

¤ sup
θ¤0

|T pθq|

» 0

�8

qpuqdu}y � x}B

Now, since | tanh z| ¤ 1 for all z P R and since there is constant C ¡ 0 such that

|T pθq|{qpθq ¤ C for all θ ¤ 0, we get

|fpt, xq| ¤

» 0

�8

|T pθq|

qpθq
| tanhpxpθqq|qpθqdθ ¤

» 0

�8

Cqpθqdθ � C

for all pt, xq P r0,8q � B. Additionally, if pt, xq, ps, yq P r0,8q � B, then

fpt, xq � fps, yq � cos2ptq

» 0

�8

T pθq tanhpxpθqqdθ � cos2psq

» 0

�8

T pθq tanhpypθqqdθ

� cos2ptq

» 0

�8

T pθqptanhpxpθqq � tanhpypθqqqdθ

� pcos2ptq � cos2psqq

» 0

�8

T pθq tanhpypθqqdθ (3.13)

In particular, for all x P X and all 0 ¤ b ¤ a ¤ σ,

fpt, xaq�fps, xbq

� cos2ptq

» 0

�8

T pθqptanhpxpθ � aqq � tanhpxpθ � bqqqdθ

� pcos2ptq � cos2psqq

» 0

�8

T pθq tanhpxpθ � bqqdθ

� cos2ptq

�» 0

�8

pT pu� aq � T pu� bqq tanhpxpuqqdu

�

» 0

�b

pT pu� b� aq � T puqq tanhpxpu� bqqdu�

» 0

b�a

T puq tanhpxpu� aqqdu



� pcos2ptq � cos2psqq

» 0

�8

T pθq tanhpxpθ � bqqdθ. (3.14)
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By (3.13),

|fps, xq � fps, yq| ¤

» 0

�8

|T pθq|| tanhpxpθqq � tanhpypθqq|dθ

¤

» 0

�8

|T pθq|
|xpθq � ypθq|

qpθq
qpθqdθ

¤

» 0

�8

|T pθq|qpθqdθ }x� y}B.

Then, ����» u2

u1

fps, xq � fps, yqds

���� ¤ » u2

u1

C}x� y}Bds,

for all u1, u2 ¥ 0, where C �
³0

�8
|T pθq|qpθqdθ. By (3.14), we obtain

|fps, xaq � fps, xbq| ¤

» 0

�8

|T pu� aq � T pu� bq|du

�

» 0

�8

|T pu� b� aq � T puq|du�

» 0

b�a

|T puq|| tanhpxpu� aqq|du

¤ 2D|a� b| �D|a� b|,

where D � supθ¤0 |T pθq|.

Therefore, all hypotheses of the Theorem 3.2.3 are satis�ed for the case where the

function g : r0, σs Ñ R is given by gpsq � s. The continuity of g is enough to conclude

that

xptq � xpt0q �

» t

t0

fps, xρps,xsqqdgpsq, t P rt0, t0 � σs,

xt0 � φ,

has a unique solution.

Remark 3.2.5. Since the example above uses an abstract function T : p�8, 0s Ñ R that

satis�es some assertions, the question of the existence of such a function arises. Indeed,

it is possible to verify that the function T pθq � e�θ
2�θ answers positively this question.

3.3 Periodic averaging theorem

In this section, our goal is to prove a periodic averaging theorem for measure FDE

with state�dependent delays. This method plays an important role for investigating the

asymptotic behavior of the solutions. The classical results on periodic averaging principles

for ordinary di�erential equations ensures that, under certain conditions, the solution of
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nonlinear di�erential equations given by

x1ptq � εfpt, xptqq � ε2gps, xptq, εq,

xt0 � x0,
(3.15)

where ε ¡ 0 is a small parameter and f is T�periodic with respect to the �rst variable,

are close to the solutions of the autonomous di�erential equation

y1ptq � εf0pyptqq,

yt0 � y0,
(3.16)

where

f0pyq �
1

T

» T

0

fps, yqds.

This type of result allows us to understand the asymptotic behavior of the solutions

of equation (3.15) only knowing the information about the solutions of equation (3.16),

which is much easier to deal with, since it is an autonomous equation.

It is worth mentioning that it is also possible to have a similar approach when the

function f is not periodic with respect to the �rst variable, but in this case, it is necessary

to calculate f0pyq as the following limit:

f0pyq � lim
TÑ8

1

T

» T

0

fpt, yqdt.

Therefore, in this case, one needs to ensure the right�hand side is well�de�ned and this

limit exists. This kind of averaging principle was extensively investigated by many au-

thors, including Jaroslav Kurzweil, see [38, 39, 40, 41] and the references therein.

In this work, we are interested to prove that the solutions of the measure FDE

with state�dependent delays

xptq � xp0q � ε

» t

0

fps, xρps,xs,εqqdhpsq � ε2

» t

0

gps, xρps,xs,εq, εqdhpsq,

x0 � φ,

(3.17)

where f is T�periodic with respect to the �rst variable, can be approximated by the

solutions of the autonomous FDE with state�dependent delays

yptq � yp0q � ε

» t

0

f0pyρps,ys,εqqds,

y0 � φ,

(3.18)
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where

f0pxq �
1

T

» T

0

fps, xqdhpsq,

which is known as the average of f .

As explained before, the main advantage behind periodic averaging principle is

due to the fact that it allows us to investigate the behavior of the solutions of a very

complicated equation described by (3.17) only investigating the solutions of a simpler

equation given by (3.18), which is autonomous and easier to deal with. In our case, our

equation (3.18) is a type of autonomous FDE which is much simpler compared to (3.17).

It does not involve measure, for instance.

Let ε0 ¡ 0, L ¡ 0, T ¡ 0. Consider that the functions f : r0,8q � B Ñ Rn,

g : r0,8q � B � p0, ε0s Ñ Rn are bounded. Suppose h : r0,8q Ñ R is a left�continuous

and nondecreasing function and let ρ : r0,8q�B�p0, ε0s Ñ r0,8q be a function. Assume

that the following conditions are satis�ed:

(G1) For all x P B, the following integrals» u2

u1

fps, xqdhpsq and
» u2

u1

gps, x, εqdhpsq

exist for all u1, u2 P r0,8q and ε P p0, ε0s in the sense of Kurzweil�Henstock�Stieltjes.

(G2) Both ρ, f are T�periodic with respect to the �rst variable.

(G3) There exists a constant α ¡ 0 such that hpt� T q � hptq � α for all t ¥ 0.

(G4) There exists a constant C ¡ 0 such that����» u2

u1

pfps, xq � fps, yqq dhpsq

���� ¤ » u2

u1

C }x� y}B dhpsq

for all x, y P B and u1, u2 P r0,8q.

(G5) The integral

f0pxq �
1

T

» T

0

fps, xqdhpsq

exists in the sense of Kurzweil�Henstock�Stieltjes for all x P B.

(G6) There exists a constant C2 ¡ 0 such that����» u2

u1

pfps, xaq � fps, xbqq dhpsq

���� ¤ » u2

u1

C2 |a� b| dhpsq

for all x P X, all a, b P r0, σs and all u1, u2 P r0,8q.
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(G7) For all ε P p0, ε0s and all x P X, the function t ÞÑ ρpt, xt, εq, t P r0, σs, is nondecreas-

ing, satis�es ρpt, xt, εq ¤ t and xρp0,x0,εq P B.

(G8) There exists a constant C3 ¡ 0 such that

|ρpt, xa, εq � ρpt, xb, εq| ¤ εC3|a� b|

for all a, b P r0, σs, all t P r0,8q, x P X and ε P p0, ε0s.

(G9) There exists a constant C4 ¡ 0 such that

|ρps, y, εq � ρps, x, εq| ¤ C4 }y � x}B

for all s P r0,8q, ε P p0, ε0s and x, y P B.

Now, we are ready to prove our periodic averaging theorem for measure FDEs with

state�dependent delays. We follow some ideas from [42, Theorem 13]. It is the main result

of this section.

Theorem 3.3.1. Let ε0 ¡ 0, B � Gpp�8, 0s,Rnq be a Banach space satisfying axioms

(E1)�(E3), φ P B and h : r0,8q Ñ R be a left�continuous nondecreasing function. Assume

that f : r0,8q�B Ñ Rn, g : r0,8q�B�p0, ε0s Ñ Rn are bounded functions and ρ : r0,8q�

B Ñ r0,8q is a function. Also, suppose that the properties (G1)�(G9) are satis�ed.

Finally, suppose that, for all ε P p0, ε0s, the initial value problems

xptq � xp0q � ε

» t

0

fps, xρps,xs,εqqdhpsq � ε2

» t

0

gps, xρps,xs,εq, εqdhpsq,

x0 � φ,

(3.19)

and

yptq � yp0q � ε

» t

0

f0pyρps,ys,εqqds

y0 � φ,

(3.20)

have solutions xε, yε : p�8, L{εs Ñ Rn, respectively. Then, there exists a J ¡ 0 such that

the inequality

}xεptq � yεptq}X ¤ Jε (3.21)

holds for all t P p�8, L{εs, where X is the Banach space de�ned on p3.3q with the norm

given by p3.4q.

Proof. Since f and g are bounded functions, there exists M ¡ 0 such that }fpt, xq} ¤M

and }gpt, x, εq} ¤ M for all x P B, t ¥ 0 and ε P p0, ε0s. We can assume without loss of
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generality that M is the same constant for both functions. Then, Theorem 1.3.6 implies

that

}f0pxq} ¤
1

T

» T

0

Mdhpsq ¤
M

T
phpT q � hp0qq �

M

T
α (3.22)

for all x P B. If xε and yε are solutions of (3.19) and (3.20) respectively, then

}xεptq � yεptq}X � }pxε � yεq0}B � sup
tPr0,L{εs

}xεptq � yεptq} � sup
tPr0,L{εs

}xεptq � yεptq} (3.23)

for all t P r0, L{εs. On the other hand, given t P r0, L{εs, by the conditions (G1)�(G9)

and Theorem 1.3.6, we get

}xεptq � yεptq} �

�

����ε » t

0

fps, xερps,xεs,εqqdhpsq � ε2

» t

0

gps, xερps,xεs,εq, εqdhpsq � ε

» t

0

f0py
ε
ρps,yεs ,εq

qds

����
¤ ε

����» t

0

fps, xερps,xεs,εqq � fps, yερps,xεs,εqqdhpsq

����� ε

����» t

0

fps, yερps,xεs,εqq � fps, yερps,yεs ,εqqdhpsq

����
� ε

����» t

0

fps, yερps,yεs ,εqqdhpsq �

» t

0

f0py
ε
ρps,yεs ,εq

qds

����� ε2Mphptq � hp0qq

¤ ε

» t

0

C
��xερps,xεs,εq � yερps,xεs,εq

��
B

dhpsq � ε

» t

0

C2 |ρps, x
ε
s, εq � ρps, yεs, εq| dhpsq

� ε

����» t

0

fps, yερps,yεs ,εqqdhpsq �

» t

0

f0py
ε
ρps,yεs ,εq

qds

����� ε2Mphptq � hp0qq

¤ εC

» t

0

k3psq sup
uPr0,ss

}xεpuq � yεpuq} dhpsq � εC2C4

» t

0

}xεs � yεs}B dhpsq

� ε

����» t

0

fps, yερps,yεs ,εqqdhpsq �

» t

0

f0py
ε
ρps,yεs ,εq

qds

����� ε2Mphptq � hp0qq

¤ εC

» t

0

k3psq sup
uPr0,ss

}xεpuq � yεpuq} dhpsq � εC2C4

» t

0

k3psq sup
uPr0,ss

}xεpuq � yεpuq} dhpsq

� ε

����» t

0

fps, yερps,yεs ,εqqdhpsq �

» t

0

f0py
ε
ρps,yεs ,εq

qds

����� ε2Mphptq � hp0qq

¤ εpC � C2C4q

» t

0

k3psq sup
uPr0,ss

}xεpuq � yεpuq} dhpsq

� ε

����» t

0

fps, yερps,yεs ,εqqdhpsq �

» t

0

f0py
ε
ρps,yεs ,εq

qds

����� ε2Mphptq � hp0qq. (3.24)

Taking p as the largest integer such that pT ¤ t, we have����» t

0

fps, yερps,yεs ,εqqdhpsq �

» t

0

f0py
ε
ρps,yεs ,εq

qds

����
¤

p̧

i�1

����» iT

pi�1qT

fps, yερps,yεs ,εqq � fps, yερps,yε
pi�1qT

,εqqdhpsq

����
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�
p̧

i�1

����» iT

pi�1qT

fps, yερps,yε
pi�1qT

,εqqdhpsq �

» iT

pi�1qT

f0py
ε
ρps,yε

pi�1qT
,εqqds

����
�

p̧

i�1

����» iT

pi�1qT

f0py
ε
ρps,yε

pi�1qT
,εqq � f0py

ε
ρps,yεs ,εq

qds

����
�

����» t

pT

fps, yερps,yεs ,εqqdhpsq �

» t

pT

f0py
ε
ρps,yεs ,εq

qds

���� . (3.25)

For every i P t1, 2, . . . , pu and every s P rpi� 1qT, iT s, we obtain
p̧

i�1

����» iT

pi�1qT

fps, yερps,yεs ,εqq �fps, y
ε
ρps,yε

pi�1qT
,εqqdhpsq

���
¤

p̧

i�1

» iT

pi�1qT

C2|ρps, y
ε
s, εq � ρps, yεpi�1qT , εq|dhpsq

¤
p̧

i�1

C2C3ε

» iT

pi�1qT

|s� iT � T |dhpsq

¤
p̧

i�1

C2C3TεphpiT q � hppi� 1qT qq

� C2C3Tαpε. (3.26)

Using this estimate and the fact that pT ¤ L{ε, we get
p̧

i�1

����» iT

pi�1qT

�
fps, yερps,yεs ,εqq � fps, yερps,yε

pi�1qT
,εqq

	
dhpsq

���� ¤ C2C3αL. (3.27)

On the other hand, notice that, for s P rpi� 1qT, iT s, we have���f0py
ε
ρps,yεs ,εq

q � f0py
ε
ρps,yε

pi�1qT
,εqq

��� � ���� 1

T

» T

0

�
fpu, yερps,yεs ,εqq � fpu, yερps,yε

pi�1qT
,εqq

	
dhpuq

����
¤

1

T

» T

0

C2|ρps, y
ε
s, εq � ρps, yεpi�1qT , εq|dhpuq

¤
1

T

» T

0

C2C3ε|s� pi� 1qT |dhpuq

¤ C2C3εα.

Therefore, it implies that
p̧

i�1

����» iT

pi�1qT

f0py
ε
ρps,yεs ,εq

q � f0py
ε
ρps,yε

pi�1qT
,εqqds

���� ¤
p̧

i�1

» iT

pi�1qT

C2C3εαds

¤ C2C3εαpT

¤ C2C3αL. (3.28)
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Since f is T�periodic in the �rst variable and by the de�nition of f0, we obtain
p̧

i�1

����» iT

pi�1qT

fps, yερps,yε
pi�1qT

,εqqdhpsq �

» iT

pi�1qT

f0py
ε
ρps,yε

pi�1qT
,εqqds

����
�

p̧

i�1

����» T

0

fps, yερps,yε
pi�1qT

,εqqdhpsq � f0py
ε
ρps,yε

pi�1qT
,εqqT

���� � 0. (3.29)

Finally, we have����» t

pT

fps, yερps,yεs ,εqqdhpsq �

» t

pT

f0py
ε
ρps,yεs ,εq

qds

����
¤

����» t

pT

fps, yερps,yεs ,εqqdhpsq

����� ����» t

pT

f0py
ε
ρps,yεs ,εq

qds

����
¤Mphptq � hppT qq �

Mα

T
pt� pT q

¤Mphppp� 1qT q � hppT qq �
Mα

T
T

�Mα �Mα � 2Mα. (3.30)

Combining inequalities (3.25), (3.27), (3.28), (3.29) and (3.30), we get����» t

0

fps, yερps,yεs ,εqqdhpsq �

» t

0

f0py
ε
ρps,yεs ,εq

qds

���� ¤ 2Mα � C2C3αL� C2C3αL

¤ 2αpM � C2C3Lq. (3.31)

From inequalities (3.24) and (3.31), we get

}xεptq �yεptq}

¤ εpC � C2C4q

» t

0

k3psq sup
uPr0,ss

}yεpuq � xεpuq} dhpsq � εK � ε2Mphptq � hp0qq,

where K � 2αpM � C2C3Lq. Since k3 is bounded, there exists K 1 ¡ 0 such that

sup
sPr0,ts

k3psq ¤ K 1. It implies that

}xεptq � yεptq} ¤ εpC � C2C4qK
1

» t

0

sup
uPr0,ss

}yεpuq � xεpuq} dhpsq � εK � ε2Mphptq � hp0qq.

Notice that

εphptq � hp0qq ¤ ε

�
h

�
L

ε



� hp0q



¤ ε

�
h

�R
L

εT

V
T



� hp0q



� ε

R
L

εT

V
α ¤ ε

�
L

εT
� 1



α ¤

�
L

T
� ε0



α.
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62 Measure FDEs with unbounded state�dependent delays

Hence, we have

}xεptq � yεptq} ¤ εK2

» t

0

sup
uPr0,ss

}yεpuq � xεpuq} dhpsq � εK � εM

�
L

T
� ε0



α,

where K2 � pC � C2C4qK
1. If ψpsq � sup

τPr0,ss

}xεpτq � yεpτq}, then

ψptq ¤ εK2

» t

0

ψpsqdhpsq � εK � εM

�
L

T
� ε0



α.

By Theorem 1.3.10, we get

ψptq ¤ eεK
2phptq�hp0qq

�
K �M

�
L

T
� ε0



α



� ε

¤ eK
2pL

T
�ε0qα

�
K �M

�
L

T
� ε0



α



� ε.

If we de�ne J :� eK
2pL

T
�ε0qα �K �M

�
L
T
� ε0

�
α
�
, then we have ψptq ¤ Jε for every

ε P p0, ε0s and t P r0, L{εs. Therefore, in particular, for t P r0, L{εs,

}xεptq � yεptq}X � sup
tPr0,L{εs

}xεptq � yεptq} � ψpL{εq ¤ Jε

proving the desired result.

Remark 3.3.2. A careful examination in the proof of Theorem 3.3.1 reveals that it is

enough to require that conditions (G4), (G6), (G8) and (G9) hold on compact invervals

instead of unbounded intervals, since t P r0, L{εs.
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CHAPTER 4

MEASURE FDES AND OTHER

TYPES OF EQUATIONS:

CORRESPONDENCES

In the article [21], M. Federson, J. G. Mesquita and A. Slavík proved that measure

FDEs and few others classes of di�erential equations can be related. One of theses relations

is a correspondence between

xptq � xpt0q �

» t

t0

fps, xsqdgpsq, t P rt0, t0 � σs, (4.1)

and the generalized ODE
dx

dτ
� DF pt, xq, (4.2)

where f : rt0, t0 � σs � Ω Ñ Rn, Ω � G pr�r, 0s,Rnq, xt the function xt : r�r, 0s Ñ Rn

de�ned by xtpθq � xpt � θq, r ¡ 0 is �xed, the domain of F is a subset of rt0, t0 � σs �

Gpr�r, 0s,Rnq and its expression is given by

F pt, yqpξq �

$''''''&''''''%

0, ξ P rt0 � r, t0s,» ξ

t0

fps, ysqdgpsq, ξ P rt0, ts,» t

t0

fps, ysqdgpsq, ξ P rt, t0 � σs.

(4.3)
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64 Measure FDEs and other types of equations: correspondences

With minor modi�cations on the domain of the functions f , xt and F , in [51], A. Slavík,

applying analogous techniques found in [21], proved a correspondence between (4.1) and

(4.2) for in�nite delays. C. Gallegos, H. Henríquez, and J.G. Mesquita generalized Slavík's

results in [27], obtaining a relation between the generalized ODE (4.2), where F is de�ned

on a suitable Banach space and has the expression

F pt, yqpξq �

$''''''&''''''%

0, ξ P p�8, t0s,» ξ

t0

fps, yrpsqqdgpsq, ξ P rt0, ts,» t

t0

fps, yrpsqqdgpsq, ξ P rt, t0 � σs,

(4.4)

and the measure FDE with time�dependent delays

xptq � xpt0q �

» t

t0

fps, xrpsqqdgpsq, t P rt0, t0 � σs,

where r : rt0, t0�σs Ñ R is a nondecreasing function that satis�es rptq ¤ t for all rt0, t0�σs,

f : rt0, t0 � σs �QÑ Rn, Q � G pp�8, 0s,Rnq and the segment xt is de�ned on p�8, 0s.

Those papers and theorems reveal how meaningful is the task to �nd a connection

between measure FDEs and other classes of di�erential equations. In this chapter, we

show correspondences between measure FDE with state dependent delays

xptq � xpt0q �

» t

t0

fps, xρps,xsqqdgpsq, t P rt0, t0 � σs,

xt0 � φ,

(4.5)

and many other categories of di�erential equations.

4.1 Measure FDEs and generalized ODEs

Once again, we consider the phase space B and the set

X �
 
x : p�8, t0 � σs Ñ Rn : xt0 P B and x|rt0,t0�σs is regulated

(
as de�ned in the proof of the Theorem 3.2.3. In other words, B � Gpp�8, 0s,Rnq and X

are normed spaces equipped, respectively, with the norm }�}B and

}x}X � }xt0}B � sup
uPrt0,t0�σs

}xpuq}. (4.6)

Additionally, B satis�es the following axioms:
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Measure FDEs and generalized ODEs 65

(E1) B is complete.

(E2) If t0 P R, σ ¡ 0, y : p�8, t0 � σs Ñ Rn is regulated on rt0, t0 � σs and yt0 P B, then

there are locally bounded functions k1, k2, k3 : r0,8q Ñ p0,8q, all independent of y,

t0 and σ, such that the following conditions hold for every t P rt0, t0 � σs:

(a) yt P B.

(b) }yptq} ¤ k1pt� t0q }yt}B.

(c) }yt}B ¤ k2pt� t0q}yt0}B � k3pt� t0q sup
uPrt0,ts

}ypuq}.

(E3) For t ¥ 0, let Sptq : B Ñ B be the operator de�ned as follows:

pSptqϕq pθq �

$'''''&'''''%
ϕp0q, θ � 0,

ϕp0�q, �t ¤ θ   0,

ϕpt� θq, θ   �t.

Then, there is a continuous function k : r0,8q Ñ p0,8q such that kp0q � 0 and

}Sptqϕ}B ¤ p1 � kptqq }ϕ}B , for all ϕ P B.

For functions x : p�8, t0 � σs Ñ Rn, ρ : rt0, t0 � σs � B Ñ R, f : rt0, t0 � σs � B Ñ Rn,

σ ¡ 0, t0 P R, and a nondecreasing function g : rt0, t0�σs Ñ R, we also recall assumptions

(F1)�(F6) from Chapter 3:

(F1) For all x P B, the integral
³t0�σ
t0

fps, xqdgpsq exists in the sense of Kurzweil�Henstock�

Stieltjes.

(F2) There exists a Kurzweil�Henstock�Stieltjes integrable functionM : rt0, t0�σs Ñ R�

such that ����» u2

u1

fps, xqdgpsq

���� ¤ » u2

u1

Mpsqdgpsq

whenever x P B and u1, u2 P rt0, t0 � σs.

(F3) There exists a Kurzweil�Henstock�Stieltjes integrable function L : rt0, t0 �σs Ñ R�

such that ����» u2

u1

pfps, xq � fps, yqq dgpsq

���� ¤ » u2

u1

Lpsq }x� y}B dgpsq

whenever x, y P B and u1, u2 P rt0, t0 � σs.
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66 Measure FDEs and other types of equations: correspondences

(F4) There exists a Kurzweil�Henstock�Stieltjes integrable function L2 : rt0, t0�σs Ñ R�

such that ����» u2

u1

pfps, xuq � fps, xvqq dgpsq

���� ¤ » u2

u1

L2psq |u� v| dgpsq

for every x P X and u1, u2, u, v P rt0, t0 � σs.

(F5) For every x P X and u1, u2, u, v P rt0, t0�σs, the function t ÞÑ ρpt, xtq, t P rt0, t0�σs,

is nondecreasing, satis�es ρpt, xtq ¤ t and xρpt0,xt0 q P B.

(F6) There exists a Kurzweil�Henstock�Stieltjes integrable function L3 : rt0, t0�σs Ñ R�

such that » u2

u1

|ρps, xq � ρps, yq| dgpsq ¤

» u2

u1

L3psq }x� y}B dgpsq

for all u1, u2 P rt0, t0 � σs and all x, y P B.

In sequel, for any subset O of X, let us de�ne the function F : rt0, t0 � σs �O Ñ

Gpp�8, t0 � σs,Rnq by

F pt, yqpξq �

$''''''&''''''%

0, ξ P p�8, t0s,» ξ

t0

fps, yρps,ysqqdgpsq, ξ P rt0, ts,» t

t0

fps, yρps,ysqqdgpsq, ξ P rt, t0 � σs.

(4.7)

The next result describes a relation between the regularity of measure FDEs with state�

dependent delays and generalized ODEs. The proof is analogous to the one found in [27],

but we will repeat it here to show the particularities of the state�dependent delays.

Lemma 4.1.1. Let O � X and assume that (E1)�(E3) are satis�ed and f : rt0, t0 � σs �

B Ñ Rn, ρ : rt0, t0 � σs �B Ñ R and g : rt0, t0 � σs Ñ R satisfy the conditions (F1)�(F6).

If F : rt0, t0 �σs�O Ñ Gpp�8, t0 �σs,Rnq is a function de�ned in (4.7), then F belongs

to the class Fprt0, t0 � σs �O, hq, where

hptq �

» t

t0

pMpsq � pLpsq � L2psqL3psqqKσqdgpsq (4.8)

and Kσ � max

�
sup
ξPr0,σs

k2pξq, sup
ξPr0,σs

k3pξq

�
.

Proof. Since the integrand of the expression (4.8) is a positive function and g is a nonde-

creasing function, Corollary 1.3.9 implies that h is a nondecreasing function. Let y, z P O
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Measure FDEs and generalized ODEs 67

and s1, s2 P R be such that t0 ¤ s1   s2 ¤ t0 � σ. Since

pF ps2, yq � F ps1, yqq pξq �

$'''''''&'''''''%

0, ξ P p�8, s1s,» ξ

s1

fps, yρps,ysqqdgpsq, ξ P rs1, s2s,» s2

s1

fps, yρps,ysqqdgpsq, ξ P rs2, t0 � σs,

by de�nition, we have that condition (F1), Theorem 1.3.8 and Corollary 1.3.9 imply that

}F ps2, yq � F ps1, yq}X � sup
ξPrt0,t0�σs

}pF ps2, yq � F ps1, yqq pξq} �
��pF ps2, yq � F ps1, yqqt0

��
B

� sup
ξPrs1,s2s

����» ξ

s1

fps, yρps,ysqqdgpsq

����
¤

» s2

s1

Mpsqdgpsq ¤ hps2q � hps1q.

By conditions (F3), (F4), we have���� » ξ

s1

fps, yρps,ysqq � fps, zρps,zsqqdgpsq

����
¤

����» ξ

s1

fps, yρps,ysqq � fps, zρps,ysqqdgpsq

����� ����» ξ

s1

fps, zρps,ysqq � fps, zρps,zsqqdgpsq

����
¤

» ξ

s1

Lpsq
��yρps,ysq � zρps,ysq

��
B dgpsq �

» ξ

s1

L2psq |ρps, ysq � ρps, zsq| dgpsq (4.9)

By axiom (E2), by condition (F6) and by inequality (4.9), we get���� » ξ

s1

fps, yρps,ysqq � fps, zρps,zsqqdgpsq

����
¤

» ξ

s1

Lpsq

�
k2pρps, ysq � t0q}py � zqt0}B � k3pρps, ysq � t0q sup

uPrt0,ρps,ysqs

}py � zqpuq}



dgpsq

�

» ξ

s1

L2psqL3psq }ys � zs}B dgpsq

¤

» ξ

s1

LpsqKσ}y � z}Xdgpsq �

» ξ

s1

L2psqL3psqKσ}y � z}Xdgpsq. (4.10)

By inequality (4.10) and Corollary 1.3.9, we conclude that

}F ps2, yq � F ps1, yq � F ps2, zq � F ps1, zq}X � sup
ξPrs1,s2s

����» ξ

s1

fps, yρps,ysqq � fps, zρps,zsqqdgpsq

����
¤ sup

ξPrs1,s2s

» ξ

s1

pLpsq � L2psqL3psqqKσdgpsq }y � z}X

¤

» s2

s1

pMpsq � pLpsq � L2psqL3psqqKσq dgpsq }y � z}X

� phps2q � hps1qq }y � z}X ,
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68 Measure FDEs and other types of equations: correspondences

which completes the proof.

The next lemma establishes an important property of the solutions of the gener-

alized ODEs. Since its proof follows analogously to the one found in [51], we will omit it

here.

Lemma 4.1.2. Assume that O � X, (E1)�(E3) are satis�ed, φ P B, and that F : O �

rt0, t0�σs Ñ X is the function given by (4.7). Assume further that f : rt0, t0�σs�B Ñ Rn,

ρ : rt0, t0 � σs � B Ñ R and g : rt0, t0 � σs Ñ R satisfy the conditions (F1)�(F6). If

x : rt0, t0 � σs Ñ O is a solution of the generalized ODE

dx

dτ
� DF pt, xq. (4.11)

on the interval rt0, t0 � σs and xpt0q is a function which is constant on rt0, t0 � σs, then

xpvqpξq � xpvqpvq, t0 ¤ v ¤ ξ ¤ t0 � σ,

xpvqpξq � xpξqpξq, t0 ¤ ξ ¤ v ¤ t0 � σ.

Next, we will de�ne an important property of subsets of X that will allow us to

obtain a well�de�ned correspondence between solutions of (4.5) and solutions of (4.11).

See [21] for instance.

De�nition 4.1.3. Let I � R be an interval, t0 P I and O be a set whose elements are

functions f : I Ñ Rn. We say that O has the prolongation property for t ¥ t0 if for

every y P O and every t P I X rt0,8q, the function y : I Ñ Rn given by

ypsq �

$'&'%ypsq, s P p�8, ts X I,

yptq, s P rt,8q X I,

is an element of O.

The next two theorems establish a relation between solutions of measure FDEs

with state�dependent delay and generalized ODEs.

Theorem 4.1.4. Let O be a subset of X having the prolongation property for t ¥ t0.

Assume that (E1)�(E3) are satis�ed, φ P B, and that F : rt0, t0 � σs � O Ñ X is the

function given by (4.7). Assume further that f : rt0, t0�σs�B Ñ Rn, ρ : rt0, t0�σs�B Ñ R

and g : rt0, t0 � σs Ñ R satisfy the conditions (F1)�(F6). If y P O is a solution of the
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equation (4.5), then the function x : rt0, t0 � σs Ñ O given by

xptqpξq �

$'&'%ypξq, ξ P p�8, ts,

yptq, ξ P rt, t0 � σs,

(4.12)

is a solution of the generalized ODE (4.11) on the interval rt0, t0 � σs.

Proof. Let ε ¡ 0 be �xed and consider the function q : rt0, t0 � σs Ñ r0,8q de�ned by

qptq �

» t

t0

Mpsqdgpsq.

Since q is nondecreasing (Corollary 1.3.9), there exists only a �nite number of points

tt1, . . . , tmu � rt0, vs such that ∆�qptkq ¥ ε for all k P t1, . . . ,mu ([44, Theorem 4.1.7]).

Now, choose a gauge δ : rt0, t0 � σs Ñ R� such that

(i) δpτq   min
2¤k¤m

"
tk � tk�1

2

*
, τ P rt0, t0 � σs,

(ii) δpτq   min
1¤k¤m

t|τ � tk|u, τ P rt0, t0 � σsztt1, . . . , tmu.

These conditions imply that, if a point�interval pair pτ, rc, dsq satis�es rc, ds � pτ�δpτq, τ�

δpτqq, then rc, ds contains at most one of the points t1, . . . , tm. Moreover, τ � tk whenever

tk P rc, ds. From (4.12) and Theorem 1.3.11, ytk � xptkqtk , yρptk,ytk q � xptkqρptk,ytk q, this

implies the following equalities:

lim
tÑt�k

» t

tk

L2psqL3psq}ys � xptkqs}Bdgpsq � L2ptkqL3ptkq}ytk � xptkqtk}B∆�gptkq � 0

and

lim
tÑt�k

» t

tk

Lpsq}yρps,ysq � xptkqρps,ysq}Bdgpsq � Lptkq}yρptk,ytk q � xptkqρptk,ytk q}B∆�gptkq � 0

for all k P t1, . . . ,mu. In consequence, we may choose a gauge δ in such a way that» tk�δptkq

tk

L2psqL3psq}ys � xptkqs}Bdgpsq ¤
ε

4m� 2
, k P t1, . . . ,mu,

and » tk�δptkq

tk

Lpsq}yρps,ysq � xptkqρps,ysq}Bdgpsq ¤
ε

4m� 2
, k P t1, . . . ,mu.

By (F2), we have

}ypτ � tq � ypτq} �

����» τ�t

τ

fps, yρps,ysqqdgpsq

���� ¤ » τ�t

τ

Mpsqdgpsq ¤ qpτ � tq � qpτq,
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which implies

}ypτ�q � ypτq} ¤ ∆�qpτq   ε, τ P rt0, t0 � σsztt1, . . . , tmu.

Thus, we can select the gauge δ such that

}ypρq � ypτq} ¤ ε (4.13)

for all τ P rt0, t0 � σsztt1, . . . , tmu and ρ P rτ, τ � δpτqq.

Let tpτi, rsi�1, sisqu
l
i�1 be a δ��ne tagged division of rt0, vs. By relations (4.7) and

(4.12) and from the fact that y is a solution of the problem (4.5), we obtain

pxpsiq � xpsi�1qqpξq �

$'''''''&'''''''%

0, ξ P p�8, si�1s,» ξ

si�1

fps, yρps,ysqqdgpsq, ξ P rsi�1, sis,» si

si�1

fps, yρps,ysqqdgpsq, ξ P rsi, vs

and

pF psi, xpτiqq � F psi�1, xpτiqqqpξq �

$'''''''&'''''''%

0, ξ P p�8, si�1s,» ξ

si�1

fps, xpτiqρps,xpτiqsqqdgpsq, ξ P rsi�1, sis,» si

si�1

fps, xpτiqρps,xpτiqsqqdgpsq, ξ P rsi, vs

for all i P t1, . . . , lu. The combination of both expressions give us

pxpsiq�xpsi�1q � F psi, xpτiqq � F psi�1, xpτiqqqpξq

�

$'''''''&'''''''%

0, ξ P p�8, si�1s,» ξ

si�1

fps, yρps,ysqq � fps, xpτiqρps,xpτiqsqqdgpsq, ξ P rsi�1, sis,» si

si�1

fps, yρps,ysqq � fps, xpτiqρps,xpτiqsqqdgpsq, ξ P rsi, vs.

Consequently,

}xpsiq � xpsi�1q � F psi, xpτiqq � F psi�1, xpτiqq}X

� sup
ξPrsi�1,sis

����» ξ

si�1

fps, yρps,ysqq � fps, xpτiqρps,xpτiqsqqdgpsq

���� . (4.14)
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By (4.12), if s ¤ τi, then xpτiqs � ys, xpτiqρps,ysq � yρps,ysq and» ξ

si�1

fps, yρps,ysqq � fps, xpτiqρps,xpτiqsqqdgpsq

�

» ξ

si�1

fps, yρps,ysqq � fps, xpτiqρps,ysqqdgpsq �

» ξ

si�1

fps, xpτiqρps,ysqq � fps, xpτiqρps,xpτiqsqqdgpsq

�

» ξ

τi

fps, yρps,ysqq � fps, xpτiqρps,ysqqdgpsq �

» ξ

τi

fps, xpτiqρps,ysqq � fps, xpτiqρps,xpτiqsqqdgpsq.

The last equality together with conditions (F3), (F4) and (F6) imply����» ξ

si�1

fps, yρps,ysqq � fps, xpτiqρps,xpτiqsqqdgpsq

����
¤

» ξ

τi

Lpsq}yρps,ysq � xpτiqρps,ysq}Bdgpsq �

» ξ

τi

L2psq|ρps, ysq � ρps, xpτiqsq|dgpsq

¤

» ξ

τi

Lpsq}yρps,ysq � xpτiqρps,ysq}Bdgpsq �

» ξ

τi

L2psqL3psq }ys � xpτiqs}B dgpsq. (4.15)

Given a particular point�interval pair pτi, rsi�1, sisq, there are two possibilities:

(a) The intersection between rsi�1, sis and tt1, . . . , tmu contains a single point tk. In this

case, it follows from condition (ii) at the beginning of this proof that tk � τi.

(b) The intersection between rsi�1, sis and tt1, . . . , tmu is empty.

If (a) happens, then from the construction of the gauge δ, we get» si

τi

L2psqL3psq}ys � xpτiqs}Bdgpsq ¤
ε

4m� 2
(4.16)

and » si

τi

Lpsq}yρps,ysq � xpτiqρps,ysq}Bdgpsq ¤
ε

4m� 2
. (4.17)

From relations (4.14), (4.15) (4.16) and (4.17), it follows that

}xpsiq � xpsi�1q � F psi, xpτiqq � F psi�1, xpτiqq}X ¤
ε

2m� 1
.

Assume now case (b), and let s P rτi, sis. If ρps, ysq P rτi, sis, then

}ys � xpτiqs}B ¤ k2ps� t0q}yt0 � xpτiqt0}B � k3ps� t0q sup
ξPrt0,ss

}py � xpτiqqpξq}

¤ Kσ sup
ξPrτi,ss

}ypξq � ypτiq}

¤ Kσε (4.18)
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and

}yρps,ysq�xpτiqρps,ysq}B

¤ k2pρps, ysq � t0q}yt0 � xpτiqt0}B � k3pρps, ysq � t0q sup
ξPrt0,ρps,ysqs

}py � xpτiqqpξq}

¤ Kσ sup
ξPrτi,ρps,ysqs

}ypξq � ypτiq}

¤ Kσε, (4.19)

where (4.18) and (4.19) follow from (4.13). On the other hand, if ρps, ysq ¤ τi, then

}yρps,ysq � xpτiqρps,ysq}B � 0 by (4.12). Thus,» si

τi

L2psqL3psq}ys � xpτiqs}Bdgpsq ¤ Kσε

» si

τi

L2psqL3psqdgpsq (4.20)

by (4.18) and » si

τi

Lpsq}yρps,ysq � xpτiqρps,ysq}Bdgpsq ¤ Kσε

» si

τi

Lpsqdgpsq (4.21)

by (4.19). Relations (4.14), (4.15) and the inequalities (4.20) and (4.21) imply that

}xpsiq � xpsi�1q � F psi, xpτiqq � F psi�1, xpτiqq}X ¤ Kσε

» si

τi

pL2psqL3psq � Lpsqqdgpsq.

Combining cases (a) and (b) and using the fact that case (a) occurs at most 2m times, it

follows that����xpvq � xpt0q �
ļ

i�1

F psi, xpτiqq � F psi�1, xpτiqq

����
X

¤ ε

�
Kσ

» t0�σ

t0

pL2psqL3psq � Lpsqqdgpsq �
2m

2m� 1



  ε

�
Kσ

» t0�σ

t0

pL2psqL3psq � Lpsqqdgpsq � 1



.

By de�nition of Kurzweil integral,
» v

t0

DF pxpτq, tq exists and

xpvq � xpt0q �

» v

t0

DF pxpτq, tq

for all v P rt0, t0 � σs, which completes the proof.

Theorem 4.1.5. Let O be a subset of X having the prolongation property for t ¥ t0.

Assume that (E1)�(E3) are satis�ed, φ P B, and that F : O � rt0, t0 � σs Ñ X is the

function given by (4.7). Assume further that f : rt0, t0�σs�B Ñ Rn, ρ : rt0, t0�σs�B Ñ R

and g : rt0, t0�σs Ñ R satisfy the conditions (F1)�(F6). If x : rt0, t0�σs Ñ O is a solution
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of the generalized ODE (4.11) on the interval rt0, t0 � σs with the initial condition

xpt0qpξq �

$'&'%φpξ � t0q, ξ P p�8, t0s,

φp0q, ξ P rt0, t0 � σs,

(4.22)

then the function y P O de�ned by

ypξq �

$'&'%xpt0qpξq, ξ P p�8, t0s,

xpξqpξq, ξ P rt0, t0 � σs,

(4.23)

is a solution of the measure FDE with state�dependent delay (4.5).

Proof. The equality yt0 � φ follows directly from the de�nition of y and xpt0q. It remains

to prove that

ypvq � ypt0q �

» v

t0

fps, yρps,ysqqdgpsq

for all v P rt0, t0 � σs. By Lemma 4.1.2, we obtain

ypvq � ypt0q � xpvqpvq � xpt0qpt0q � xpvqpvq � xpt0qpvq �

�» v

t0

DF pt, xpτqq



pvq. (4.24)

Let ε ¡ 0 be �xed. By Lemma 4.1.1, since the conditions (F1)�(F6) are satis�ed, F

belongs to the class Fprt0, t0 � σs � O, hq, where h is a nondecreasing function given by

(4.8). Now, we can argue as in the proof of Theorem 4.1.4 to get that there exists a �nite

quantity of points t1, . . . , tm in rt0, vs such that ∆�hptkq ¥ ε. Also, in the same way as

before, we can �nd a gauge δ : rt0, t0 � σs Ñ p0,8q that satis�es the following conditions:

(i) δpτq   min
2¤k¤m

"
tk � tk�1

2

*
, τ P rt0, t0 � σs,

(ii) δpτq   min
1¤k¤m

t|τ � tk|u , τ P rt0, t0 � σsztt1, . . . , tmu

(iii)
» tk�δptkq

tk

Lpsq
��yρps,ysq � xptkqρps,ysq

��
B dgpsq  

ε

4m� 2
, k P t1, . . . ,mu

(iv)
» tk�δptkq

tk

L2psqL3psq }ys � xptkqs}B dgpsq  
ε

4m� 2
, k P t1, . . . ,mu,

(v) }hpuq � hpτq} ¤ ε, τ P rt0, t0 � σsz tt1, . . . , tmu , u P rτ, τ � δpτqq.

Let tpτi, rsi�1, sisqu
l
i�1 be a δ��ne tagged division of rt0, vs such that�����

» v

t0

DF pt, xpτqq �
ļ

i�1

F psi, xpτiqq � F psi�1, xpτiqq

�����
X

  ε. (4.25)
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By equality (4.24), we obtain����ypvq � ypt0q �

» v

t0

fps, yρps,ysqqdgpsq

���� � �����» v

t0

DF pt, xpτqq



pvq �

» v

t0

fps, yρps,ysqqdgpsq

����
¤

�����
�» v

t0

DF pt, xpτqq



pvq �

ļ

i�1

pF psi, xpτiqq � F psi�1, xpτiqqq pvq

�����
�

����� ļ

i�1

pF psi, xpτiqq � F psi�1, xpτiqqqpvq �

» v

t0

fps, yρps,ysqqdgpsq

����� . (4.26)

Axiom (E2) (a), (b) and inequalities (4.25) and (4.26) imply that����ypvq � ypt0q �

» v

t0

fps, yρps,ysqqdgpsq

����
¤ k1pv � t0q

�����
�» v

t0

DF pt, xpτqq



v

�

�
ļ

i�1

F psi, xpτiqq � F psi�1, xpτiqq

�
v

�����
B

�

����� ļ

i�1

pF psi, xpτiqq � F psi�1, xpτiqqqpvq �

» v

t0

fps, yρps,ysqqdgpsq

�����
¤ CσKσε�

ļ

i�1

����pF psi, xpτiqq � F psi�1, xpτiqqqpvq �

» si

si�1

fps, yρps,ysqqdgpsq

���� (4.27)

where Cσ � sup
ξPr0,σs

k1pξq. Also, by the de�nition of F , we have

pF psi, xpτiqq � F psi�1, xpτiqqq pvq �

» si

si�1

fps, xpτiqρps,xpτiqsqqdgpsq,

which implies����pF psi, xpτiqq � F psi�1, xpτiqqq pvq �

» si

si�1

fps, yρps,ysqqdgpsq

����
�

����» si

si�1

fps, xpτiqρps,xpτiqsqq � fps, yρps,ysqqdgpsq

����
¤

����» si

si�1

fps, xpτiqρps,xpτiqsqq � fps, xpτiqρps,ysqqdgpsq

����
�

����» si

si�1

fps, xpτiqρps,ysqq � fps, yρps,ysqqdgpsq

����
¤

» si

si�1

L2psqL3psq }xpτiqs � ys}B dgpsq �

» si

si�1

Lpsq
��xpτiqρps,ysq � yρps,ysq

��
B dgpsq, (4.28)

where we employ the conditions (F3), (F4) and (F6) in (4.28). By Lemma 4.1.2, we get,

for all θ ¤ 0, the following equalities:

(a) If s P rsi�1, τis, then

xpτiqρps,ysqpθq � xpτiqpρps, ysq � θq � xpρps, ysq � θqpρps, ysq � θq
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� ypρps, ysq � θq � yρps,ysqpθq

(b) If s P rτi, sis, then

xpsiqρps,ysqpθq � xpsiqpρps, ysq � θq � xpρps, ysq � θqpρps, ysq � θq

� ypρps, ysq � θq � yρps,ysqpθq.

In other words,

yρps,ysq �

$'&'%xpτiqρps,ysq, s P rsi�1, τis,

xpsiqρps,ysq, s P rτi, sis

(4.29)

and analogously, we can show

ys �

$'&'%xpτiqs, s P rsi�1, τis

xpsiqs, s P rτi, sis.

(4.30)

Relations (4.28), (4.29) and (4.30) imply that����pF psi, xpτiqq � F psi�1, xpτiqqq pvq �

» si

si�1

fps, yρps,ysqqdgpsq

����
¤

» si

τi

L2psqL3psq }xpτiqs � ys}B dgpsq �

» si

τi

Lpsq
��xpτiqρps,ysq � yρps,ysq

��
B dgpsq. (4.31)

We distinguish two cases:

(a) The intersection of rsi�1, sis and tt1, . . . , tmu contains a single point tk � τi.

(b) The intersection of rsi�1, sis and tt1, . . . , tmu is empty.

If (a) happens, then from the de�nition of δ and (iv), we have» si

τi

L2psqL3psq }xpτiqs � ys}B dgpsq  
ε

4m� 2

and by (iii), it follows that» si

τi

Lpsq
��xpτiqρps,ysq � yρps,ysq

��
B dgpsq  

ε

4m� 2
.

These two inequalities together with (4.31) imply����pF psi, xpτiqq � F psi�1, xpτiqqq pvq �

» si

si�1

fps, yρps,ysqqdgpsq

����   ε

2m� 1
.

We now consider the case (b). It follows from the de�nition of F and from the fact that

x is a solution of (4.5), the following equality that xpsiqpξq � xpτiqpξq � 0, ξ P p�8, t0s.
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Using Lemma 1.3.16 and axiom (E2), for s P rτi, sis, we obtain the estimate

}xpsiqs� xpτiqs}B ¤ k2ps� t0q}xpsiqt0 � xpτiqt0}B � k3ps� t0q sup
ξPrt0,ss

}pxpsiq � xpτiqqpξq}

¤ Kσ}xpsiq � xpτiq}X

¤ Kσphpsiq � hpτiqq

¤ Kσε, (4.32)

where (4.32) follows from (v). Also, the same way as before, we get��xpsiqρps,ysq � xpτiqρps,ysq
��
B

¤ k2pρps, ysq � t0q}xpsiqt0 � xpτiqt0}B � k3pρps, ysq � t0q sup
ξPrt0,ρps,ysqs

}pxpsiq � xpτiqqpξq}

¤ Kσ}xpsiq � xpτiq}X ¤ Kσphpsiq � hpτiqq ¤ Kσε.

Consequently,����pF psi, xpτiqq � F psi�1, xpτiqqq pvq �

» si

si�1

fps, yρps,ysqqdgpsq

����
¤

» si

τi

L2psqL3psq }xpτiqs � xpsiqs}B dgpsq �

» si

τi

Lpsq
��xpτiqρps,ysq � xpsiqρps,ysq

��
B dgpsq

¤ Kσε

�» si

τi

L2psqL3psq � Lpsqdgpsq



.

Combining the cases (a) and (b), as well as by using the fact that the case (a) occurs at

most 2m times, we obtain

ļ

i�1

����F psi, xpτiqq�F psi�1, xpτiqq �

» si

si�1

fps, yρps,ysqqdgpsq

����
¤ ε

�
Kσ

» t0�σ

t0

L2psqL3psq � Lpsqdgpsq �
2m

2m� 1



(4.33)

and replacing (4.33) in (4.27), we get����ypvq � ypt0q �

» v

t0

fps, yρps,ysqqdgpsq

����
  ε

�
CσKσ �Kσ

» t0�σ

t0

pL2psqL3psq � Lpsqqdgpsq � 1



which completes the proof.
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4.2 Functional dynamic equations on time scales

In this section, we will describe a correspondence between functional dynamic

equations on time scales with state�dependent delays and measure FDEs with state�

dependent delays. Recall from the Chapter 1 that for a given real number t ¤ supT, we

have de�ned

t� � infts P T : s ¥ tu.

We also de�ne

T� �

$'&'%p�8, supTs, if supT   8,

p�8,8q, otherwise.

Finally, recall the extension f� : T� Ñ Rn of a given function f : T Ñ Rn by

f�ptq � fpt�q, t P T�.

The same way, we can de�ne f� : T� � B Ñ Rn as the extension of a given function

f : T� B Ñ Rn by

f�pt, xq � fpt�, xq, t P T� and x P B.

To have a satisfactory framework for functional dynamic equation with state�

dependent delays on time scales, the function ρ will have domain T� B and takes values

in T. Besides, we need to extend both functions ρ and x. Therefore,

x�ρ�pt,xtq means px�qρ�pt,xtq,

and consequently,

x�ρ�pt,xtq � x�ρpt�,xt� q.

From this, we can determine a correspondence between measure FDEs with state�dependent

delays and functional dynamic equations with state�dependent delays on time scales, since

x�ρpt�,xt� q contains the same information as xρpt,xtq. Notice that x�ρpt�,xt� q can be regarded

as an extension of xρpt,xtq because it is de�ned in the whole interval p�8, 0s.

The next result shows that it is possible to translate all results from measure

FDEs with state�dependent delays to functional dynamic equations on time scales with

state�dependent delays. Some ideas of its proof are inspired in [21].

Theorem 4.2.1. Let p�8, t0 � σsT be a time scale interval, t0 P T, f : rt0, t0 � σsT �
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B Ñ Rn, φ P B and ρ : T � B Ñ T. De�ne gpsq � s� for every s P rt0, t0 � σs. If

x : p�8, t0 � σsT Ñ Rn is a solution of the functional dynamic equation on time scales

with state�dependent delays

x∆ptq � fpt, x�
ρpt,x�t q

q, t P rt0, t0 � σsT,

xptq � φptq, t P p�8, t0sT,
(4.34)

then x� : p�8, t0 � σs Ñ Rn satis�es

x�ptq � x�pt0q �

» t

t0

fps, x�ρps,x�s qq dgpsq, t P rt0, t0 � σs,

x�t0 � φ�t0 .

(4.35)

Conversely, if y : p�8, t0 � σs Ñ O is a solution of the measure functional di�erential

equation with state�dependent delays

yptq � ypt0q �

» t

t0

fps�, yρps�,ys� qq dgpsq, t P rt0, t0 � σs,

yt0 � φ�t0 ,

then y � x�, where x : p�8, t0 � σsT Ñ Rn satis�es (4.34).

Proof. If x : p�8, t0 � σsT Ñ Rn satis�es (4.34), then

xptq � xpt0q �

» t

t0

fps, x�ρps,x�s qq∆s, t P rt0, t0 � σsT.

By Theorem 1.4.14,

x�ptq � x�pt0q �

» t

t0

f�ps, x�ρps,x�s qq dgpsq, t P rt0, t0 � σs.

It implies that

x�ptq � x�pt0q �

» t

t0

fps�, x�ρps�,x�
s�
qq dgpsq, t P rt0, t0 � σs.

Since fps�, x�
ρps�,x�

s�
q
q � fps, x�

ρps,x�s q
q for every s P T, we apply Theorem 1.4.15 to achieve

that

x�ptq � x�pt0q �

» t

t0

fps, x�ρps,x�s qq dgpsq, t P rt0, t0 � σs.

Thus, for y � x�, we conclude that

yptq � ypt0q �

» t

t0

fps, yρps�,ysqq dgpsq, t P rt0, t0 � σs,

which is a solution of (4.35).

Reciprocally, assume that y satis�es (4.35). Since g is constant on every interval
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pα, βs, where β P T and α � suptτ P T : τ   βu, y inherits the same property and it

follows that y � x� for some x : p�8, t0 � σsT Ñ O. Using all previous arguments, we

conclude that x satis�es (4.34).

4.3 Impulsive measure FDEs

In this section, we will show that impulsive measure FDEs with state�dependent

delays with pre�assigned moments of impulses are a special case of measure FDEs with

state�dependent delays. In other words, we wil show that it is possible to investigate

impulsive measure FDEs with state�dependent delays by using these equations without

impulses. To prove all results of this section, we use some ideas from [20].

Let us consider the following type of impulsive measure FDEs with state�dependent

delays:

xpvq � xpuq �

» v

u

fps, xρps,xsqq dgpsq, whenever u, v P Jk for some k P t0, . . . ,mu,

∆�xptkq � Ikpxptkqq, k P t1, . . . ,mu, (4.36)

xt0 � φ,

where t0 ¤ t1   . . .   tm   t0�σ are the moments of impulses, Ik : Rn Ñ Rn, k � 1, . . . ,m

are the operators of impulses, J0 � rt0, t1s, Jk � ptk, tk�1s for k P t1, . . . ,m � 1u, and

Jm � ptm, t0 � σs. Here, we are assuming that the integral in the right�hand side of the

�rst equality in (4.36) exists in the sense of Kurzweil�Henstock�Stieltjes and the function

g is nondecreasing and left�continuous. By the properties of this type of integral, the value

of the integral
³v
u
fps, xρps,xsqq dgpsq, where u, v P Jk, does not change if we replace g by a

function g̃ such that g� g̃ is a constant function on Jk. The same way as in [20], this fact

allows us to suppose, without loss of generality, that g is such that ∆�gptkq � 0 for every

k P t1, . . . ,mu. From this property and using the fact that g is a left�continuous function,

we conclude that g is continuous at t1, . . . , tm and thus, function t ÞÑ
³t
t0
fps, xρps,xsqq dgpsq

is continuous at t1, . . . , tm. In other words, we can have the following formulation for our

problem

xptq � xpt0q �

» t

t0

fps, xρps,xsqq dgpsq �
¸

kPt1,...,mu,
tk t

Ikpxptkqq, t P rt0, t0 � σs, (4.37)

xt0 � φ.
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Notice that if gpsq � s, then equation (4.37) is the classical impulsive functional

di�erential equation with state�dependent delays which was investigated by many authors

(see [2, 5, 11, 14] and the references therein), showing consistency and relation between

both equations.

The following lemma will be employed as an auxiliary tool to obtain, in the sub-

sequent theorem, the correspondence mentioned in the beginning of this section.

Lemma 4.3.1 ([20, Lemma 2.4]). Let m P N, a ¤ t1   t2   � � �   tm ¤ b. Consider a pair

of functions f, g : ra, bs Ñ R, where g is regulated, left�continuous on ra, bs and continuous

at t1, . . . , tm. Let f̃ , g̃ : ra, bs Ñ R be such that f̃ptq � fptq for every t P ra, bsztt1, . . . , tmu

and g̃� g is constant on each of the intervals ra, t1s, pt1, t2s, . . . , ptm�1, tms, ptm, bs. Then,

the integral
³b
a
f̃ dg̃ exists if and only if the integral

³b
a
f dg exists. In this case, we have» b

a

f̃ dg̃ �

» b

a

f dg �
¸

kPt1,...,mu,
tk b

f̃ptkq∆
�g̃ptkq.

Theorem 4.3.2. Let m P N, t0 ¤ t1   � � �   tm   t0 � σ, I1, . . . , Im : Rn Ñ Rn,

f : rt0, t0�σs�B Ñ Rn. Assume that g : rt0, t0�σs Ñ R is a regulated and left�continuous

function which is continuous at t1, . . . , tm. For every y P B, de�ne

f̃pt, yq �

$'&'%fpt, yq, t P rt0, t0 � σsztt1, . . . , tmu,

Ikpyp0qq, t � tk for some k P t1, . . . ,mu.

Moreover, let c1, . . . , cm P R be constants such that the function g̃ : rt0, t0 � σs Ñ R given

by

g̃ptq �

$'''''&'''''%
gptq, t P rt0, t1s,

gptq � ck, t P ptk, tk�1s for some k P t1, . . . ,m� 1u,

gptq � cm, t P ptm, t0 � σs

satis�es ∆�g̃ptkq � 1 for every k P t1, . . . ,mu. Also, suppose that ρ : rt0, t0 � σs � B Ñ R

satis�es ρptk, xtkq � tk, for each k P t1, . . . ,mu. Then, x P Gpp�8, t0 � σs,Rnq is a

solution of

xptq � xpt0q �

» t

t0

fps, xρps,xsqq dgpsq �
¸

kPt1,...,mu,
tk t

Ikpxptkqq, t P rt0, t0 � σs, (4.38)

xt0 � φ
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if and only if

xptq � xpt0q �

» t

t0

f̃ps, xρps,xsqq dg̃psq, t P rt0, t0 � σs, (4.39)

xt0 � φ.

Proof. According to Lemma 4.3.1 and by hypotheses, we have» t

t0

f̃ps, xρps,xsqq dg̃psq �

» t

t0

fps, xρps,xsqq dgpsq �
¸

kPt1,...,mu,
tk t

f̃ptk, xρptk,xtk qq∆
�g̃ptkq

�

» t

t0

fps, xρps,xsqq dgpsq �
¸

kPt1,...,mu,
tk t

f̃ptk, xtkq∆
�g̃ptkq

�

» t

t0

fps, xρps,xsqq dgpsq �
¸

kPt1,...,mu,
tk t

Ikpxptkqq,

proving the desired result.

The proof of the next result follows similarly to [1] and [20] and thus, we omit it

here.

Theorem 4.3.3. Let m P N, t0 ¤ t1   � � �   tm   t0 � σ, I1, . . . , Im : Rn Ñ Rn,

f : rt0, t0 � σs � B Ñ Rn. Assume that g : rt0, t0 � σs Ñ R is a nondecreasing and left�

continuous function. Let f : rt0, t0 � σs � B Ñ Rn be an arbitrary function. De�ne, for

every y P B,

f̃pt, yq �

$'&'%fpt, yq, t P rt0, t0 � σsztt1, . . . , tmu,

Ikpyp0qq, t � tk for some k P t1, . . . ,mu.

Moreover, let c1, . . . , cm P R be constants such that the function g̃ : rt0, t0 � σs Ñ R given

by

g̃ptq �

$'''''&'''''%
gptq, t P rt0, t1s,

gptq � ck, t P ptk, tk�1s for some k P t1, . . . ,m� 1u,

gptq � cm, t P ptm, t0 � σs

satis�es ∆�g̃ptkq � 1 for every k P t1, . . . ,mu. Also, suppose that ρ : rt0, t0 � σs � B Ñ R

satis�es ρptk, xtkq � tk, for each k P t1, . . . ,mu. Then, the following statements hold:

(i) The function g̃ is nondecreasing and left�continuous.

(ii) If the Kurzweil�Henstock�Stieltjes integral
³u2
u1
fps, xρps,xsqqdgpsq exists for every x P
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X and every u1, u2 P rt0, t0 � σs, then the Kurzweil�Henstock�Stieltjes integral³u2
u1
f̃ps, xρps,xsqqdg̃psq also exists.

(iii) If there exists a Kurzweil�Henstock�Stieltjes integrable function M1 : rt0, t0 � σs Ñ

R� such that ����» u2

u1

fps, xqdgpsq

���� ¤ » u2

u1

M1psqdgpsq

for all x P B and u1, u2 P rt0, t0�σs, then there exists a Kurzweil�Henstock�Stieltjes

integrable function M : rt0, t0 � σs Ñ R� such that����» u2

u1

f̃ps, xqdg̃psq

���� ¤ » u2

u1

Mpsqdg̃psq

for all x P B and all u1, u2 P rt0, t0 � σs.

(iv) If there exists a Kurzweil�Henstock�Stieltjes integrable function L1 : rt0, t0�σs Ñ R�

such that ����» u2

u1

pfps, xq � fps, yqqdgpsq

���� ¤ » u2

u1

L1psq}x� y}Bdgpsq

for all x, y P B and u1, u2 P rt0, t0 � σs, then there exists a Kurzweil�Henstock�

Stieltjes integrable function L : rt0, t0 � σs Ñ R� such that����» u2

u1

pf̃ps, xq � f̃ps, yqqdg̃psq

���� ¤ » u2

u1

Lpsq}x� y}Bdg̃psq

for all x, y P B and all u1, u2 P rt0, t0 � σs.

(v) If there exists a Kurzweil�Henstock�Stieltjes integrable function L̃1 : rt0, t0�σs Ñ R�

such that ����» u2

u1

|ρps, xq � ρps, yq|dgpsq

���� ¤ » u2

u1

L̃1psq}x� y}Bdgpsq

for all x, y P B and u1, u2 P rt0, t0 � σs, then there exists a Kurzweil�Henstock�

Stieltjes integrable function L̃ : rt0, t0 � σs Ñ R� such that����» u2

u1

|ρps, xq � ρps, yq|dg̃psq

���� ¤ » u2

u1

L̃psq}x� y}Bdg̃psq

for all x, y P B and all u1, u2 P rt0, t0 � σs.

Remark 4.3.4. It is worth mentioning that if ρ is a function satisfying the condition

(F5), then if we change the de�nition of ρ at tk for each k � 1, . . . ,m in order to satisfy

ρptk, xtkq � tk, we obtain that ρ keeps satisfying the condition pF5q. This fact ensures

that the last part of the previous result could be extended for a ρ̃ which can be changed at
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ptk, xtkq directly.

4.4 Local existence and uniqueness

Here, we illustrate how the correspondence presented in Section 4.1 and a known

fact for generalized ODEs can lead to a local existence and uniqueness of solutions for

measure FDEs with state�dependent delays.

The following existence�uniqueness theorem for generalized ODEs can be found in

[22, Theorem 2.16].

Theorem 4.4.1. Assume that X is a Banach space, O � X is an open set and F : rt0, t0�

σs�O Ñ X belongs to the class Fprt0, t0 �σs�O, hq, where h : rt0, t0 �σs Ñ R is a left�

continuous nondecreasing function. If x0 P O is such that x0 � F pt�0 , x0q � F pt0, x0q P O,

then there exists a δ ¡ 0 and a function x : rt0, t0 � δs Ñ X which is the unique solution

of the generalized ordinary di�erential equation

dx

dτ
� DF pt, xq, xpt0q � x0.

In what follows, we provide an existence and uniqueness theorem for measure

functional di�erential equations with state�dependent delays.

Theorem 4.4.2. Let X be the Banach space given by (4.6), B be the phase space that

satis�es the axioms (E1)�(E3), φ P B and O � X be an open subset having the prolonga-

tion property for t ¥ t0. Assume that g : rt0, t0 � σs Ñ R is left�continuous nondecreasing

function, f : rt0, t0 � σs � B Ñ Rn and ρ : rt0, t0 � σs � B Ñ R satisfy the conditions

(F1)�(F6) and z : p�8, t0 � σs Ñ Rn is the function

zptq �

$'&'%φpt� t0q, t P p�8, t0s,

φp0q � fpt0, ϕq∆
�gpt0q, t P pt0, t0 � σs,

in O, where ϕ is de�ned by ϕpθq � φpθ � ρpt0, φq � t0q, θ P p�8, 0s. Then, there exist

β ¡ 0 and a function y : p�8, t0 � βs Ñ Rn which is the unique solution of the initial

value problem

xptq � xpt0q �

» t

t0

fps, xρps,xsqqdgpsq, t P rt0, t0 � σs,

xt0 � φ.

(4.40)

on p�8, t0 � βs.
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Proof. Lemma 4.1.1 shows that F : rt0, t0�σs�O Ñ Gpp�8, t0�σs,Rnq de�ned by (4.7)

belongs to Fprt0, t0 � σs � O, hq, where h is given by (4.8). Let x0 � xpt0q de�ned by

(4.22). We will prove that x0 � F pt�0 , x0q � F pt0, x0q P O. Firstly, it is straightforward

that F pt0, x0q � 0. Secondly, the limit F pt�0 , x0q, taken with respect to the supremum

norm, exists since F is a regulated function with respect to the �rst variable. Lastly, by

de�nition of F and by Theorem 1.3.11,

F pt�0 , x0qpξq �

$'&'%0, ξ P p�8, t0s,

fpt0, ϕq∆
�gpt0q, ξ P pt0, t0 � σs.

Therefore, by hypotheses, it follows that x0�F pt
�
0 , x0q�F pt0, x0q P O. Consequently, all

hypotheses of Theorem 4.4.1 are satis�ed, which implies the existence of a number β ¡ 0

and a unique solution x : rt0, t0 � βs Ñ X of the generalized ODE

dx

dτ
� DF pt, xq, xpt0q � x0.

If we de�ne the function y : p�8, t0 � βs Ñ Rn by

ypξq �

$'&'%xpt0qpξq, ξ P p�8, t0s,

xpξqpξq, ξ P rt0, t0 � βs.

Theorem 4.1.5 guarantees that y is the unique solution of initial value problem (4.40) on

p�8, t0 � βs.

Remark 4.4.3. It is also possible to prove local existence and uniqueness of solutions for

impulsive measure FDEs with state�dependent delays and functional dynamic equations

with state�dependent delays, by means of the correspondences previously presented, but

we omit these results here, since they follow directly by the application of the respectives

correspondences.

4.5 Continuous Dependence on Parameters

In this section, our goal is to prove results on continuous dependence on parameters

for measure FDEs with state�dependent delays, via, once more, the correspondence pre-

sented in Section 4.1 and another known fact for generalized ODEs. We begin presenting

a continuous dependence on parameters for generalized ODE which can be found in [24,

Theorem 2.4] for the case Y � Rn. Nonetheless, a version for an arbitrary Banach space
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follows similarly.

Theorem 4.5.1. Let Y be a Banach space, O � Y be an open subset and hk : ra, bs Ñ R,

k P N, be a sequence of nondecreasing left�continuous functions such that hkpbq�hkpaq ¤ c,

for some c ¡ 0 and all k P N0. Assume that for every k P N0, Fk : ra, bs �O Ñ Y belongs

to the class Fpra, bs �O, hkq and that

lim
kÑ8

Fkpt, xq � F0pt, xq, x P O, t P ra, bs,

lim
kÑ8

Fkpt
�, xq � F0pt

�, xq, x P O, t P ra, bq.

For every k P N, let xk : ra, bs Ñ O be a solution of generalized ODE

dx

dτ
� DFkpt, xq, t P ra, bs.

If there exists a function x0 : ra, bs Ñ O such that limkÑ8 xkptq � x0ptq uniformly for

t P ra, bs, then x0 is a solution of

dx

dτ
� DF0pt, xq, t P ra, bs.

Next, we present a continuous dependence on parameters for measure FDEs with

state�dependent delays, which is obtained by means of the correspondence between gen-

eralized ODEs.

Theorem 4.5.2. Let X be the Banach space de�ned by (3.3), B be a phase space satisfying

the axioms pE1q�pE3q and O be an open subset of X having the prolongation property

for t ¥ t0. Suppose that g : rt0, t0 � σs Ñ R is a left�continuous nondecreasing function,

fk : rt0, t0 � σs � B Ñ Rn, k P N0, and ρ : rt0, t0 � σs � B Ñ R, satisfy the conditions

(F1)�(F6). Assume that for every y P X,

lim
kÑ8

» t

t0

fkps, yρps,ysqqdgpsq �

» t

t0

f0ps, yρps,ysqqdgpsq

uniformly with respect to t P rt0, t0 � σs. For every k P N, z P O and t P rt0, t0 � σs,

assume that Fk : rt0, t0 � σs �O Ñ Gpp�8, t0 � σs,Rnq is the function de�ned by

Fkpt, zqpξq �

$''''''&''''''%

0, ξ P p�8, t0s,» ξ

t0

fkps, zρps,zsqqdgpsq, ξ P rt0, ts,» t

t0

fkps, zρps,zsqqdgpsq, ξ P rt, t0 � σs
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and is an element of X. Let φk P B, k P N, be a sequence of functions such that

limkÑ8 φk � φ0 uniformly on p�8, 0s. Let yk P O, k P N, be the solution of

ykptq � ykpt0q �

» t

t0

fkps, pykqρps,pykqsqqdgpsq, t P rt0, t0 � σs,

pykqt0 � φk.

If there exists a function y0 P X such that limkÑ8 yk � y0 pointwisely on p�8, t0 � σs,

then y0 is a solution of

y0ptq � y0pt0q �

» t

t0

f0ps, py0qρps,py0qsqqdgpsq, t P rt0, t0 � σs,

py0qt0 � φ0.

Proof. By hypotheses, for every x P O, we have

lim
kÑ8

Fkpt, xq � F0pt, xq

uniformly on t P rt0, t0 � σs, where F0 is given by

F0pt, zqpξq �

$''''''&''''''%

0, ξ P p�8, t0s,» ξ

t0

f0ps, zρps,zsqqdgpsq, ξ P rt0, ts,» t

t0

f0ps, zρps,zsqqdgpsq, ξ P rt, t0 � σs.

By Moore�Osgood Theorem (see [6]), we obtain

lim
kÑ8

Fkpt
�, xq � F0pt

�, xq

for all x P O and t P rt0, t0 � σs. Also, F0 takes value in X because X is complete. By

conditions (F1)�(F6) and following the same steps as the Lemma 4.1.1, Fk belongs to the

class Fprt0, t0 � σs � O, hq for all k P N, where the function h is given by (4.8). Since

limkÑ8 Fkpt, xq � F0pt, xq uniformly, it is not di�cult to see that F0 P Fprt0, t0�σs�O, hq

as well.

Now, for every k P N0 and t P rt0, t0 � σs, we de�ne

xkptqpξq �

$'&'%ykpξq, ξ P p�8, ts,

ykptq, ξ P rt, t0 � σs.

By Theorem 4.1.4, xk is a solution of the generalized ODE

dx

dτ
� DFkpt, xq, t P rt0, t0 � σs.
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If k P N and t0 ¤ t1 ¤ t2 ¤ t0 � σ, then

}ykpt2q � ykpt1q} �

����» t2

t1

fkps, pykqρps,pykqsq, sqdgpsq

���� ¤ » t2

t1

Mpsqdgpsq

¤ Kpt2q �Kpt1q � η pKpt2q �Kpt1qq ,

where Kptq � t�
³t
t0
Mpsqdgpsq is an increasing function and ηptq � t. Besides, pykpt0qqkPN

is bounded. Therefore, by Theorem 1.1.5,
�
yk|rt0,t0�σs

�
kPN contains a subsequence which is

uniformly convergent on rt0, t0�σs. Without loss of generality, we denote this subsequence

again by pykqkPN. Since pykqt0 � φk for θ P p�8, 0s, we get that pykqkPN is in fact uniformly

convergent on p�8, t0 � σs. By de�nition of xk, limkÑ8 xkptq � x0ptq uniformly with

respect to t P rt0, t0 � σs. Theorem 4.5.1 yields that x0 is a solution of

dx

dτ
� DF0pt, xq, t P rt0, t0 � σs.

Using Theorem 4.1.5, we conclude that y0 is a solution of

y0ptq � y0pt0q �

» t

t0

fps, py0qρps,py0qsqqdgpsq, t P rt0, t0 � σs,

py0qt0 � φ0,

obtaining the desired result.

In the sequel, we have another type of result on continuous dependence on pa-

rameters for generalized ODEs on Banach spaces. It can be found in [10]. This theorem

brings a very special result concerning the continuous dependence on parameters for these

equations.

Theorem 4.5.3. Let C � O be a closed set. Assume that, for each k P N, Fk : rt0, t0 �

σs � C Ñ X belongs to the class Fprt0, t0 � σs � C, hq, where h : rt0, t0 � σs Ñ R is a

nondecreasing and left�continuous function, and pFkqkPN converges pointwisely to F0 for

each pt, xq P rt0, t0 � σs � C. Let x0 : rt0, t0 � σs Ñ X be the solution of the generalized

ODE
dx

dτ
� DF0pt, xq (4.41)

on rt0, t0 � σs satisfying the following uniqueness property:

(U) If z : rt0, γs Ñ X, rt0, γs � rt0, t0 � σs, is a solution (4.41) such that zpt0q � x0pt0q,

then zptq � x0ptq for every t P rt0, γs.
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Assume further that there is a λ ¡ 0 such that if s P rt0, t0 � σs and }y� x0psq}   λ, then

ps, yq P rt0, t0 � σs � C, and let pykqkPN � C satisfying limkÑ8 yk � x0pt0q. Then, there

exists a positive integer k0 such that, for all k ¡ k0, there exists a solution xk : rt0, t0�σs Ñ

X of the generalized ODE
dx

dτ
� DFkpt, xq (4.42)

with xkpt0q � yk and pxkqkPN converges uniformly to x0 on rt0, t0 � σs.

Next, we present a result of continuous dependence on parameters for measure

FDEs with state�dependent delays as a consequence of the previous theorem. Some steps

of its proof are inspired by [10].

Theorem 4.5.4. Let X be the Banach space de�ned by (3.3) and B be a phase space

satisfying the axioms (E1)�(E3). Assume g : rt0, t0 � σs Ñ R is a left�continuous nonde-

creasing function, fk : rt0, t0 � σs � B Ñ Rn, k P N0, and ρ : rt0, t0 � σs � B Ñ R, satisfy

the conditions (F1)�(F6). Suppose, further, that for every y P X,

lim
kÑ8

» t

t0

fkps, yρps,ysqqdgpsq �

» t

t0

f0ps, yρps,ysqqdgpsq

for t P rt0, t0 � σs. Consider that y0 P X is the unique solution of

y0ptq � y0pt0q �

» t

t0

f0ps, py0qρps,py0qsqqdgpsq, t P rt0, t0 � σs,

py0qt0 � φ0.

(4.43)

where φ0 P B. Let pφkqkPN be a sequence of functions in B such that limkÑ8 φk � φ0

uniformly on p�8, 0s. Assume further that there is a λ ¡ 0 such that if s P rt0, t0 � σs

and }z�y0psq}   λ, then ps, zq P rt0, t0�σs�X and let pzkqkPN � X satisfying limkÑ8 zk �

y0pt0q. Then for su�ciently large k P N, there exists a solution yk of

ykptq � ykpt0q �

» t

t0

fkps, pykqρps,pykqsqqdgpsq, t P rt0, t0 � σs,

pykqt0 � φk.

(4.44)

Also, the sequence pykqkPN converges uniformly to y0 on p�8, t0 � σs.

Proof. For each k P N, z P X and t P rt0, t0�σs, de�ne the function Fk : rt0, t0�σs�X Ñ
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Gpp�8, t0 � σs,Rnq by

Fkpt, zqpξq �

$''''''&''''''%

0, ξ P p�8, t0s,» ξ

t0

fkps, zρps,zsqqdgpsq, ξ P rt0, ts,» t

t0

fkps, zρps,zsqqdgpsq, ξ P rt, t0 � σs.

Hypotheses imply that pFkqkPN converges pointwisely to F0 for every pt, xq P rt0, t0�σs�X.

By Lemma 4.1.1, it follows that Fk P Fprt0, t0 � σs � X, hq for every k P N, where h is

given by (4.8).

Let y0 be the unique solution of (4.43). De�ning x0 : rt0, t0 � σs Ñ X by

x0ptqpξq �

$'&'%y0pξq, ξ P p�8, ts,

y0ptq, ξ P rt, t0 � σs,

We have, by Theorem 4.1.4, that x0 is the solution of (4.41) on rt0, t0�σs. Since y0 is the

unique solution of (4.43) on rt0, t0 � σs, applying again Theorem 4.1.4, we obtain that x0

is the unique solution of (4.41).

Assume further that there is λ ¡ 0 such that if s P rt0, t0 � σs and }z� x0psq}   λ,

then ps, zq P rt0, t0 � σs �X, and let pzkqkPN � X satisfy limkÑ8 zk � x0pt0q. Therefore,

all the hypotheses from Theorem 4.5.3 are satis�ed. It implies that there exists a positive

integer k0 such that for all k ¡ k0, there exists a solution xk of the generalized ODE (4.42)

on rt0, t0 �σs such that xkpt0q � x0pt0q and limkÑ8 xkpsq � x0psq where x0 is the solution

of (4.41) by the uniqueness. Therefore, de�ne for k ¡ k0 and t P rt0, t0 � σs, the function

ykpξq �

$'&'%xkpt0qpξq, ξ P p�8, t0s,

xkpξqpξq, ξ P rt0, t0 � σs.

According to Theorem 4.1.5, yk is a solution of the measure functional di�erential equa-

tions with state�dependent delays (4.44) on p�8, t0 � σs. Thus, as a consequence, by

de�nition of pykqkPN and by hypotheses, we get

lim
kÑ8

pykqt0pθq � lim
kÑ8

φkpθq � φ0pθq � py0qt0pθq (4.45)

for θ P p�8, 0s. It implies that limkÑ8 ykpsq � y0psq for s P p�8, t0s. On the other hand,

for t P rt0, t0 � σs, we have by de�nition of yk,

lim
kÑ8

ykptq � lim
kÑ8

xkptqptq � x0ptqptq � y0ptq. (4.46)
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In consequence, combining (4.45) and (4.46), we have limkÑ8 ykptq � y0ptq for t P

p�8, t0 � σs, getting the desired result.

Remark 4.5.5. Using Theorems 4.2.1 and 4.3.2, it is possible to prove similar results on

continuous dependence on parameters to impulsive measure FDEs with state�dependent

delays and functional dynamic equations on time scales with state�dependent delays. Then

again, we omit them here since they follow as an immediate consequence of both corre-

spondences.
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