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Resumo

Nesta tese, provamos uma série de resultados relacionados as equacoes diferen-
ciais funcionais com retardo dependendo do estado. Na primeira parte deste trabalho,
apresentamos resultados de existéncia de solucoes fracas para as equacoes diferenciais
funcionais com retardo dependendo do estado usando pontos fixos do operador solucao de
uma equacao diferencial funcional com retardo dependendo do tempo. Também exibimos
algumas aplicacoes dos nossos resultados para as equagoes diferenciais parciais.

Na segunda parte deste texto, investigamos a classe das equagoes diferenciais fun-
cionais em medida com retardo dependendo do estado. Para elas, demonstramos re-
sultados de existéncia e unicidade de solugoes, dependéncia continua com relagao aos
parametros, o método da média periddico e estabelecemos que as equacoes dinamicas
funcionais com retardo dependendo do estado em escalas temporais representam um caso
particular dessas equagoes em medida. Além disso, mostramos a relagao das suas solugoes
com as solucoes de vérias outras classes de equacgoes diferenciais tais como as equacoes
diferenciais funcionais em medida com impulsos e com retardo também dependendo do
estado e as equacoes diferenciais ordinarias generalizadas.

Palavras—chave: Existéncia e unicidade; dependéncia continua; método da média; equacoes
diferenciais funcionais em medida, retardo dependendo do estado; equacoes diferenciais
funcionais abstratas.



Abstract

In this thesis, we prove a series of results related to functional differential equations
with state—dependent delay. In the first part of this work, we present results of existence
of mild solutions for the delayed functional differential equations with state—dependent
delays using fixed points of the solution operator of a functional differential equation
with time—dependent delay. We also exhibit some applications of our results for partial
differential equations.

In the second part of this text, we investigate the class of measure functional
differential equations with state—dependent delay. For them, we demonstrate results of
existence and uniqueness of solutions, continuous dependence on the parameters, the pe-
riodic averaging method and establish that the functional dynamic equations with state—
dependent delay in time scales represent a particular case of these measure equations.
In addition, we show the relationship between their solutions to the solutions of several
other classes of differential equations such as the impulsive measure functional differential
equations with state—dependent delays and the generalized ordinary differential equations.

Keywords: Existence and uniqueness; continuous dependence; averaging method; mea-
sure functional differential equations; abstract functional differential equations; state—
dependent delays.
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INTRODUCTION

The field of differential equations is certainly one of the most fundamental areas of
mathematics, with an extensive, solid and useful theory. Its most common object, the set
of ordinary differential equations (ODEs for short), may be used as a tool to describe a

large number of real systems. A classical element of this set can be formulated as follows:

St = fa) 0
z(ty) = xo,

where the symbol x(¢) usually represents a present state at a specific time ¢ € R of an
investigated phenomenon. In addition, any realistic problem governed by does not
take the dependence of all previous events into account. However, only in the late 1930s
that this dependence was precisely expressed mathematically when Volterra created a
realistic predador—prey model in [54] with equations with delayed arguments. It has been
considered the starting point of the building of another subfield of differential equations:
the field of functional differential equations (simply FDEs).

Despite sparse articles containing differential equations with retarded expressions
during the previous years of the 1930s, a consistent content about such equations, and
consequently, the development of the FDE subject, has been extensively expanded only
recently. In particular, most works about equations with time—dependent delays and
state—dependent delays appeared during the past 50 years, with the R. D. Driver’s math-
ematical approach for a two-body problem of classical electrodynamics in [I8]. In this

formulation, the position z;(t), i = 1,2, for two charged particles of magnitude ¢; moving
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2 Introduction

along the z—axis is analyzed using the Lienard—Wiechert potential, into the Lorentz—
Abraham force law. Time delays 7;;(t), j = 1,2, are incorporated due to the finite speed
of propagation of electrical effects. Under a group of suitable conditions and denoting
by wv;(t) the velocity of the charges, by F(t,z) the external electric field, by ¢ the speed
of light and a; a constant that depends on the rest mass m,;, the model is the system of
differential equations involving time delays below:

zi(t) = wi(t)
g = V0= Cnle =)
| T 0)
vi(t) c(— 1)z a; ( (1)t~ 7(t))

(=2t~ 72 \e— (=Dt — m:lt))

Ordinary differential equations also provide an immediate relation to integration

)+t ao)/m.

theory. Indeed, under suitable conditions on the function f, the equality

t) = x(ty) + L f(s,x(s))ds (2)

offers the solution for the initial-value problem (1]}, where the right-hand side of (2)) shows
the importance of the integration method chosen. Most mathematicians are familiar with
the Riemann integral, an integral that was created in the 1850s by the German mathe-
matician Bernhard Riemann. Its intuitive definition and its large range of applicability
are the main reasons that this concept has become notorious and has been extensively
used by a considerable group of researchers. At the same time, many other authors have
discovered a lot of its drawbacks, inspiring the scientific community to formulate alter-
native integrations theories not only to solve all problems of the Riemann integral, but
to generalize the German mathematician’s formulation as well. In 1957, with a slight
adjustment of the Riemann’s definition, Jaroslav Kurzweil successfully conceived a new
type of integration that nowadays, in the literature, has his name. Automatically, it also
has led to the concept of the generalized ordinary differential equation, which generalizes,
as the name suggests, the notion of ODEs.

Some scientists have obtained few connections between generalized ODEs and
FDEs. In 1966, the papers [37, 47| presented the first link between theses subjects for the

classical FDEs
'(t) = f(t,z),

xto = o,
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Introduction 3

where t € [to, to+0] and z;: [—r,0] — R is defined by z;(0) = x(t+6). Later, Federson and
Schwabik in [23] extended this result with a correspondence between the impulsive FDEs
and generalized ODEs. This sort of correspondence permits a simultaneous examination
of the properties of both types of equations such as existence, uniqueness and regularity
of solutions, stability principles and so on.

Inspired by all lines above, this thesis is intended to make a deep investigation
on FDEs with state-dependent delays, together with their association to distinct types
of FDEs and generalized ODEs. It begins with an introductory chapter with numerous
fundamental concepts that may be used as an auxiliary tool to understand all subsequent
chapters. It is composed of four sections, where the first section is a brief report about
a significant set: the space G([a,b],R™) of all regulated functions f: [a,b] — R". The
subsequent sections are devoted to introducing three different types of integration, namely,
the Bochner integral, the Kurzweil integral and the integration on time scales in the sense
of Kurzweil-Henstock.

The second chapter, also divided into four sections, deals with abstract FDEs.
After an explanation, in the first section, of all attributes that a phase space must have,
the following part is concerned with obtaining some existence and uniqueness results of
an abstract FDE with time-dependent delay. In the third section, those theorems will
be applied to show the existence and uniqueness of solutions of the main equation of
the chapter. Finally, an application on diffusion systems is presented to illustrate the
significance of all developed concepts.

Chapter 3 is dedicated to measure FDEs with state—dependent delays, the second
main goal of this thesis. It is divided into three sections and starts with a presentation
of another appropriate Banach space to investigate these equations, which is called phase
space as well. Then, existence and uniqueness of solutions are demonstrated for this class
of equation. To prove the existence of solutions, we employ the Schauder fixed point
theorem and for the uniqueness, we use the generalized Gronwall’s inequality. The third
part is about a periodic averaging principle for these equations and we also present an
example.

Chapter 4 exhibits plenty correspondences between measure FDEs with state—
dependent delays and other classes of differential equations. More precisely, a corre-

spondence between measure FDEs with state-dependent delays and generalized ODEs
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4 Introduction

is estabilished. Also, we demonstrate that measure FDEs with state—dependent delays
encompass impulsive measure FDEs with state—dependent delays and functional dynamic
equations on time scales with state-dependent delays. Using one of the correspondences,
we obtain a local existence and uniqueness of solutions for measure FDEs with state—
dependent delays. Finally, we prove the results on continuous dependence on parameters
for these equations.

All new theorems contained in this PhD thesis have generated three papers (see

131, 32, 33]).
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CHAPTER 1

PRELIMINARY CONCEPTS

In this chapter, we exhibit all the fundamental definitions and theorems related
to many different concepts needed to develop and comprehend all subsequent chapters.
Most of these concepts are natural generalizations of the basic and well-known theory
formulated for the set of real numbers, usually explained in graduate courses.

Firstly, we introduce the space of regulated functions. Then, the next three sections
are dedicated to show three different types of integrals. The references suggested for those

who are interested in the details are 3] [7, 8 15, 25, [44] 48], [49, [52].

1.1 The space G(|a,b],R")

Throughout this work, let us consider (R, | - |) and (R™, | - ).

The set C ([a, b],R™) of all continuous functions f: [a,b] — R" is one of the most
important spaces in mathematics. However, in some cases, continuity is considered a
strong condition. The existence of a large set of discontinuous functions which are Rie-
mann integrable shows, for instance, how restrictive that assumption can be. Fortunately,
researchers have found a set that is as useful as C ([a, b], R"), has similar characteristics
and has some crucial advantages over C ([a, b], R™). This is the set of all regulated func-

tions, whose definition is given below.

Definition 1.1.1. Let a,b e R, a < b. A function f: |a,b] — R" is called regulated if

H. C. bos REIS October 2020 Mat — UnB
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6 Preliminary Concepts

all lateral limits

f(t) = lim f(s), te(a,b] and  f(t*) = lim f(s), te€]a,b)

s—t— s—tt

exist. The space of all requlated functions f: [a,b] — R™ will be denoted by G([a,b],R™).
Likewise, G((—0,0],R"™) denotes the set of all requlated functions f: (—o0,0] — R™.

Similarly to C ([a, b], R™), the space G([a, b], R™) is a Banach space when endowed

with the usual supremum norm

[l = sup [f(s)], feG([ab],R")

s€la,b]
(|44, Theorem 4.2.1]). Also, given g € G([a, b],R™), A*g(t) and A~ g(t) will be symbolized
by

Atgt):=gt") —gt), tela,b) and A g(t):=g(t)—g(t"), te (a,b]

Evidently, C ([a,b],R™) < G (|a,b],R™). Nevertheless, this inclusion is strict because,
for example, the characteristic function y.: [a,b] — R, where ¢ € (a,b), belongs to

G ([a,b],R) and is not continuous at c.

Remark 1.1.2. Usually, the composition of two regulated functions is not a requlated

function. Indeed, if we consider the functions f,g: [0,1] = R given by

0, t=0,
ft) = g(t) = sgn t,
tsin(1/t), te (0,1],

then both functions are requlated, but the composition g o f is not. On the other hand, if

g is continuous and f is requlated, then g o f is requlated. See [I13] for more details.

In the sequel, we present a definition on a family 7 < G([a, b], R™) which resembles

the definition of equicontinuity on a family A < C([a, b], R"™).

Definition 1.1.3 (|44, Definition 4.3.3|). 4 set F < G([a,b],R") has uniform one—
sided limits at a point tg € [a,b] if for every e > 0, there is 6 > 0 such that for every

r € F and t € |a,b], we have:
(i) If to <t <to+0, then |z(t) — z(t])|| < e.

(11) If tg — 0 <t <ty, then |z(ty) — z(t)] < e.

H. C. bos REIS October 2020 Mat — UnB
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The Bochner integral 7

The set F 1is called equiregulated if it has uniform one-sided limits at every point ty €
[a,b]. Also, F is called right—sided (respectively, left—sided) equiregulated if condition
(i) (respectively, (ii)) holds.

The next theorem is a similar version of the classical Arzelda—Ascoli Theorem to a

family A < G([a,b],R).

Theorem 1.1.4 (|44, Corollary 4.3.7]). A subset A = G([a,b],R) is relatively compact if
and only if it is equiregulated and the set {f(t): f € A} is bounded for each t € |a,b].

Lastly, we present a result that associates relatively compactness of a family A c

G([a, b],R™) to some properties that all elements of A must satisfy.
Theorem 1.1.5 (|25, Theorem 2.18|). The following conditions are equivalent.
(i) A< G([a,b],R™) is relatively compact.

(11) The set {z(a): x € A} is bounded and there is an increasing continuous function
n: [0,00) — [0,00) with n(0) = 0 and there is an increasing function K: [a,b] - R
such that

|z(72) — z(m)|| < n(K(r2) — K(71))

forallzxe A and alla <171 <1 <D.

1.2 The Bochner integral

In this section, we expose briefly a type of an integral in a Banach space that is an
immediate generalization of the Lebesgue integral (see [15], for more details). Throughout

it, (X, 0, 1) is a o—finite measure space on a set X and Y is a Banach space with norm
-1

Definition 1.2.1 (|15 Definition 2.1.1]). A function s: X — Y is called simple when its
range is a finite set s(X) = {y1,...,yn} and E; = s '({y;}) € o for all i € {1,2,...,n} <

N. In this case, we write
n

=1

where xp,: X — R is the characteristic function on E;.

H. C. bos REIS October 2020 Mat — UnB
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Definition 1.2.2 ([I5], Definition 2.1.1|). A function f: X — Y is said to be measurable
iof there is a sequence of simple functions s,: X — Y such that s, — f for almost every

reX.

Given a simple function s: X — Y represented as (1.1]), we define the Bochner
integral J sdp of s on X as follows:

JX sdp = Zn: i (Ek) Y. (1.2)

k=1
It is worth mentioning that the integral ([1.2)) does not depend on the representation ([1.1).

In other words, if
= Z XF]' (‘I)ZJG
j=1

where me N, Fj e 0, z; € Y and, for all i # j, F; n F; = &, then

2By = 3 n(Fy) 2

j
Definition 1.2.3 (|15, Definition 2.2.1|). Let f: X — Y be a measurable function. We
say that f is Bochner integrable when there is a sequence of simple functions (S,)nen

whose its limit is [ for almost every x € X and the Lebesque integral
J |f —sull du — 0 when n — oo. (1.3)
X

In this case, we define the Bochner integral of f on X by the equality

J fdu:= hm sn dp. (1.4)
Since Y is a Banach space, the limit exists for any sequence (sp)nen as de-

scribed in Definition(1.2.3] Moreover, if (tn)neN is a sequence of simple functions converging

to f for almost every x € X and such that

J fdu= hm t dp, (1.5)

then

lim | ¢t,dp= lim | s, dgu.

noo Jx oo Jx
It means that does not depend on the choice of the sequence (s,)nen-
The theorem below shows an expected property of the Bochner integral: the lin-
earity of the integral. Since it is a direct consequence of all definitions above, we will omit

its proof.
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The Bochner integral 9

Theorem 1.2.4. If f,g: X — Y are integrable functions and o € R, then f 4+ ag is

integrable and

Jx(f“‘ag) dﬂ:fodM‘*‘OéJngM-

The next result illustrates a relation between the Bochner integral and the Lebesgue
integral. It also enables us to carry over some classical theorems from Lebesgue integral

on R to the vector—valued case.

Theorem 1.2.5 (|15, Theorem 2.2.4]). A function f: X — Y is Bochner integrable if,

and only if, the function |f|: X — R is Lebesgue integrable. In this case,

| fdu‘ < 1w (1.6)

The upcoming theorem is a version of the Dominated Convergence Theorem for

the Bochner integral.

Theorem 1.2.6 ([I5, Theorem 2.2.3|). Let (f.)nen be a sequence of Bochner integrable
functions from X toY and let f: X =Y be a measurable function such that f, — f for
almost every v € X. Furthermore, let g € LY(X) be such that | f.| < g for almost every
x€ X and all n € N. Then, f is Bochner integrable and

J fdu= hmJ fn dpe.
X n—0o0 X

From now on, ¢ will indicate the Borel o—algebra and p will denote the Lebesgue

measure. Besides, all integrals below are in the sense of Bochner integral.

Definition 1.2.7 ([48, Definition 1.1]). An one parameter family (T'(t)),., of bounded

linear operators T(t): Y — Y is a semigroup of bounded linear operators onY if
(i) T(0) = I, where I is the identity operator,
(i1) T(s+1t)=T(s)T(t) for every t,s = 0.

If, in addition, for each x €Y,
lim T(t)x = x,

t—0+
we say that (T'(t)),., is a strongly continuous semigroup of bounded linear oper-
ators on Y (or a Co—semigroup on Y ). Finally, we say that (T'(t)),., is compact if

T(t) is a compact operator for each t = 0.

H. C. bos REIS October 2020 Mat — UnB
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Definition 1.2.8 ([48, Definition 1.1]). Let (T'(t)),>, be a semigroup of bounded linear

operators on Y and let

D(A) = {:z: eY: lim M exists}.

t—0+

The operator A: D(A) — Y defined by

g e Tim LWz —2
t—0t t

is called the infinitesimal generator of the semigroup (T'(t)),--

Theorem 1.2.9 ([48, Theorem 2.2|). If (T'(t)),s, is a strongly continuous semigroup of

bounded linear operators on Y, then there exist constants M =1 and w = 0 such that
|T(t)] < Me™', t=0.

Theorem 1.2.10 ([48, Theorem 2.4]). Let (T'(t)),s, be a strongly continuous semigroup

of bounded linear operators on'Y and let A be its infinitesimal generator. Then:

(i) forz €Y,

t+h

1
lim — T(s)xds = T(t)x,

h—0 h ¢
(ii) for x €Y, §; T(s)ads € D(A) and

A(ﬂT@ﬂ@)zT@x—L
(iii) for x € D(A),

T(u)Azdu = Jt AT (u)zdu.

s

T@x—T@x=J

S

1.3 The Kurzweil integral

In this section, we will define the Kurzweil integral. Then, the Kurzweil-Henstock
integral and the Kurzweil-Henstock—Stieltjes integral will appear as particular cases.
Throughout this section, X will denote a Banach space with norm || - |.

Let [a, b] be an interval of R such that —0 <a <b<ow,a =59 <s1 <+ <5, =
b is a finite division of [a,b], p € N, and 7; € [s;_1,s;]. The collection of point-interval

pairs D = (7, [s;_1, s;]) is called a tagged division of [a, b] and we write p = |D|.
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The Kurzweil integral 11

A gauge on a set B < [a,b] is any function §: B — (0,00). Given a gauge
d on [a,b], we say that a tagged division D = (7;,[s;_1, s;]) is é—fine if for every i €
{1,2,...,|D|}, we have
[si1,8:] < (73 — 8(73), 7 + 8(73))-

Definition 1.3.1 (|26, Definition 2.1]). A function U: [a,b] x [a,b] — X is called
Kurzweil integrable if there is an element I € X such that for every ¢ > 0, there
is a gauge 0: [a,b] — (0,00) such that

D]

D (U(si i) = Ulsiza, 7)) — 1

i=1

<e,

for all 0—fine tagged division of |a,b]. In this case, I is called Kurzweil integral of U
and it will be denoted by SZ DU(t,T).

From the definition above, a question about the existence of at least one d—fine
division of [a,b] from a given gauge § on [a,b] arises. The answer for this question is
given by the lemma below, known in the literature as the Cousin Lemma. It ensures that

the Kurzweil integral is well-defined.

Lemma 1.3.2 (|52, Lemma 1.4]). Given a gauge § on [a,b], there is a d—fine tagged
division of [a, b].

When the function U of the Definition is given by U(t,7) = tf(r), where
f:[a,b] — X is any function, and it is Kurzweil integrable, then we say that f is
Kurzweil-Henstock integrable. Additionally, its integral is denoted by SZ f(s)ds.
On the other hand, when U(t,7) = g(t) f(7) is Kurzweil integrable, where g: [a,b] — R
is any other function, we say that f is a Kurwzeil-Henstock—Stieltjes integrable

function with respect to g and its integral is denoted by SZ f(s)dg(s).

Theorem 1.3.3 (|52, Theorem 1.9]). If U,V : [a,b] x [a,b] — X are Kurzweil integrable

functions and ci,co € R, then ciU + ¢V is Kurzweil integrable and

LbD (U, 7) + V() =0 Lb DU(t,7) + ¢, Lb DV (t, 7).

Theorem 1.3.4 (|52, Theorem 1.11]). Let U: [a,b] x [a,b] — X and c € (a,b). If both
integrals §° DU(t,7) and Si DU(t,7) exist, then the integral SZ DU(t,7) exists as well and

LbDU(t,T) _ LCDU(t,T) + LbDU(t,T).
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12 Preliminary Concepts

Surprisingly, as the next example shows, if U: [a,b] x [a,b] — X is a Kurzweil
integrable function and V': [a,b] % [a,b] — R is defined by V(t,7) = ||[U(¢t, )|, then,
in general, V' is not Kurzweil integrable. Thus, some care is needed when dealing with

inequalities involving the norm of an integral. Specifically, the inequality

L DU )

Example 1.3.5 (|3, Example 10.2.2]). For ke N, let ¢;, =1 —1/2F and f: [0,1] » R be

< JbDV(t,T) (1.7)

is not always true.

the function defined by

(=1*
fay=y &
0, =1

Ch—1 S T < ¢,

It is possible to show that f is Kurzweil-Henstock integrable and

Ll f(z)dx = ]i (=

However, its absolute value |f| is not integrable because, otherwise, it would imply the

convergence of the harmonic series.

Despite the inaccuracy of the inequality (1.7)) in general, the theorem below illus-
trates that, with additional hypotheses, ([1.7) may be true.

Theorem 1.3.6 (|52, Theorem 1.35]). Assume that both functions U: [a,b] % [a,b] — R"
and V': [a,b] x [a,b] = R are Kurzweil integrable. If there is a gauge § on |a,b] such that

[t =7llUt7) = U7, 7)| < (¢ =7)(V(E,7) = V(r,7))

for every t € [T — (1), 7 + 0(7)], then the inequality

JDUtT JDVtT

holds.

Now, we bring some basic results, particularly for the Kurwzeil-Henstock—Stieltjes

integral, that will be applied in future sections.

Theorem 1.3.7 (|52, Corollary 1.34]). Let f: [a,b] — R™ be a regulated function and

g: [a,b] = R be a nondecreasing function. Then, the following conditions hold:
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b
(i) The z‘ntegmlj f(s)dg(s) exists;

J [£(s) dg(s) < [ £l (9(b) = g(a)).

The next property is an immediate consequence of Theorems [1.3.3] and [1.3.6, We

will omit its proof since it is nearly the same as the demonstration of [4, Corollary 3.3]|.

Theorem 1.3.8. Let fi, fo: [a,b] — R be Kurzweil-Henstock—Stieltjes integrable func-

tions on the interval |a,b| with respect to a nondecreasing function g: [a,b] — R such

that fi(t) < fa(t), for t € |a,b]. Then

Jf1<m \fﬁ Jdg(s (18)

By analogous arguments of the proof of [4, Theorem 3.2|, we may obtain the

following corollary.

Corollary 1.3.9. Let f: [a,b] = R be a Kurzweil-Henstock—Stieltjes integrable function

on the interval |a,b] with respect to a nondecreasing function g: |a,b] — R and such that

f(t) =0, forte|a,b]. Then:

ﬁ)ff@magza

(ii) The function &(t): [a,b] — R defined by

() = j £(5)dg(s)

The next statement is a type of Gronwall-inequality for Kurwzeil-Henstock—Stieltjes

18 nondecreasing.

integrals.

Theorem 1.3.10 (|44, Theorem 7.5.3], Gronwall Inequality). Let g: [a,b] — [0,90) be a
nondecreasing and left-continuous function, k = 0 and | > 0. Assume that 1 |a,b] —

[0, 00) satisfies .
M®<k+lf¢@MM$756hﬁ]

Then (&) < kel9&=99) for gl € € [a, b].

The following result, which describes some properties of the indefinite Kurzweil—

Henstock—Stieltjes integral, is a special case of [52, Theorem 1.16].
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14 Preliminary Concepts

Theorem 1.3.11 ([44] Corollary 6.5.5]). Let f,g: [a,b] — R be a pair of functions such
that g is requlated and SZ f(s)dg(s) exists. Then the function

ht)zj F(s)dg(s), te [a.b]
is regulated on |a,b] and satisfies
h(tT) = ht)+ f()ATg(®), teab),
h(t™) = h(t)— f(t)A™g(t), te (a,b].

In the sequel, we bring the definition and some attributes of generalized ordinary
differential equations, a class of equations that will be used in the third chapter of this
work. From now on, O < X is an open and nonempty subset, Q = [a,b] x O and

F: Q — X is a function.

Definition 1.3.12 (|26, Definition 2.5]). A function x: [a,b] — X is called a solution of

the generalized ordinary differential equation

dx

~ — DF(t 1.9

" pF(.) (19)
on the interval [a,b] if, for every t € [a,b], (t,x(t)) € Q and

J DF(t, a(r (1.10)
whenever [c,d] < |a,b].

Remark 1.3.13. In general, a solution of the generalized ODE does not need to
be differentiable at [a,b], although its notation suggests such differentiability. In fact, a
continuous function r: |a,b] — R that has no derivative at any point of |a,b] (an example

can be found on [3], page 367) is a solution of the generalized ODE

dx
o = Dr(®)
since, by Definition [1.53.1],
|D| |D|
Z (F'(si,2(7)) — F(si1,2(7))) = Z (r(s:) —r(si-1)) =r(d) —r(c),

where F(t,x) = r(t) and D = (1, [si_1, si]) is any tagged division of |c,d] < |a, b].

If (s, x0) € 2 is fixed, then we can define the solution of the generalized ODE (|1.9))

on the interval [a, b] with initial condition z(sg) = zo (we are considering that sy € [a, b]),
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The Kurzweil integral 15

as a function x: [sg, b] — X such that (¢,z(t)) € Q for all ¢ € [so, b] and is satisfied
for all [c,d] < [so,b]. In the similar way, we can also define a solution of for an
arbitrary nondegenerate interval I with initial condition z(sg) = .

The next definition is an important prerequisite to estabilish some existence and

uniqueness result for generalized ODEs.

Definition 1.3.14 (|26, Definition 2.6]). We say that F' belongs to the class F(2, h)
if there exists a nondecreasing function h: [a,b] — R such that F: Q — X satisfies the

following conditions:

(F1) For every (s;,x) € Q, with i = 1,2, we have
[F(s2,2) = F(s1,2)| < |h(s2) = h(s1)]-
(F2) For every (s;,x),(si,y) € Q, withi = 1,2,

|E(s2,) = Fs1,2) = F(s2,y) + F(s1,2)| < [h(s2) = h(s1)] |z = y].

The upcoming lemma gives us enough requisites to ensure the existence of the
Kurzweil integral on the right-hand side of (1.10). When X = R", the reader can see a
proof of this result in [52 Corollary 3.16]. However, with analogous arguments used for

the R™ case, it is still valid in a more general Banach space as we state below.

Lemma 1.3.15. Assume F' € F(,h). Suppose z: [a,b] — X is a requlated function on
[a,b] such that (s,z(s)) € Q for all s € [a,b]. Then the Kurzweil integral SZ DF(t,z(T))

exists.

The next conclusion reveals few characteristics of the solutions of the generalized
ODEs when F satisfies the condition The special case X = R” is demonstrated in
[52, Lemma 3.12|. Since the proof for the general case follows the same steps, we will

omit it here.

Lemma 1.3.16. Let F: Q — X be a function that satisfies condition[(F1) If z: [a,b] —
X s a solution of the generalized ODFE on the interval |a,b|, then x is a regulated

function and
|z(s2) — x(s1)]| < [h(s2) — h(s1)]
for each pair sy, s5 € [a, b].

Notice that this type of result shows that x has the same discontinuities of h.
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1.4 Integration on Time Scales

In this section, we will start with a short exposure of some basic concepts in the
theory of time scales. This theory appeared mainly to unify continuous and discrete
analysis. As a result, some classical theorems applied to functions defined on R or defined
on Z can be considered particular cases of a single assertion proved to a function defined on
a time scale. Also, this approach can unify other results since there exist many different
time scales such as Cantor set, the set ¢" = {¢": ne N}, ¢ > 1, among others. This
fact makes this theory very alluring due applications, since it is possible to investigate
models where the time has hybrid behavior (continuous and discrete) being very useful
for population models and it allows us to investigate the theory for quantum calculus,
which has applications in quantum physics

This section will be extensively used in the fourth chapter, where we study a
relationship between functional dynamic equations on time scales with state—dependent

delays and measure FDEs with state—dependent delays.

Definition 1.4.1 (|8, Definition 1.1]). A time scale T is a closed nonempty subset of R.
We define, respectively, the forward jump operator and the backward jump operator
o,p: T—Tbyo(t) =inf{se T: s>t} and p(t) =sup{s € T: s <t}. The graininess
function p: T — [0,00) is defined by p(t) = o(t) —t.

In this definition, we consider inf ¢f = sup T and sup ¢J = inf T.

Definition 1.4.2 (|8, Definition 1.1|). Let T be a time scale and t € T. If o(t) > t, we
say that t is right—scattered. Ift < supT and t = o(t), then t is called right—dense.
We say that t is left—scattered if p(t) < t. Lastly, if t = p(t) and t > inf T, then t is
called left—dense.

For a pair of numbers a,b € T, the symbol [a,b]r will denote a closed interval
in T, while |a,b] will denote the usual closed interval on the real line. In other words,
[a,b]r = {te T: a<t<b}and [a,b] = {t € R: a <t <b}. Similar notations can be
used to numerous other cases such as (a, b)r, (a, b]r and so on. This notational convention

should help the reader to distinguish between ordinary and time scale intervals.
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For an arbitrary time scale T, let

- T\ (p(sup T),sup T], if supT < oo,

T, otherwise.
The next concept can be found in [8, Definition 1.10] for functions taking values

in R. The same definition may be extended to functions taking values in R"™ as follows:

Definition 1.4.3 (|8, Definition 1.10]). Let T be a time scale, t € T and f: T — R" be a
function. The vector f2(t) is called a A—derivative of f att if it satisfies the following

property: for any € > 0, there exists a 0 > 0 such that

| f(a(t)) = f(s) = fR@O)(o(t) = s)| <elo(t)—s| forallse (t—0b,t+ ).

Notice that if T = R, then the definition above is exactly the definition of the
usual derivative f’(t) from calculus since, in this case, o(t) = ¢. It is one of the main
reasons that several results in the theory of time scales generalize many theorems from

the classical calculus.

Definition 1.4.4 (|8, Definition 1.57]). A function f: T — R" is called regulated pro-
vided its right—sided limits exist at all right—dense points in T and its left—sided limits exist

at all left-dense points in T. We denote this set by G(T,R"™).

Definition 1.4.5 ([8, Definition 1.58]). A function f: T — R" is called rd—continuous
provided it is continuous at right—dense points in T and its left—sided limits exist at all

left—dense points in T. We denote this set by Cia(T,R™).

If T =R, then t € T is, at the same time, a right—dense and left—dense point, by
definition. Thus, in this particular time scale, any regulated function in the sense of Defi-
nition [I.1.1]is a regulated function in the sense of the Definition It shows consistency
of Definition The same applies to the definition of rd—continuous functions.

Next, we present some basic concepts which will allow us to introduce the Kurzweil—
Henstock A-integral. The definition of such integral was presented for the first time in

reference [49].

Definition 1.4.6 (|49 Definition 1.5]). A tagged division of |a,b|r is a finite collection
of point—interval pairs Dy = (7;,[si—1,5i]r), where a = so < 51 < --- < sp| = b is a
dwision of [a,bly, 7 € [Si—1,sily and 7,8, € T i = 1,2,...,|D|, where the symbol |D|

denotes the number of subintervals in which [a,b|r is divided.
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18 Preliminary Concepts

Definition 1.4.7 (|49, Definition 1.4]). Given two functions ér,dg: [a,b]lr — R, we say
that the pair 6(t) = (0.(t),0r(t)) is a A—gauge on [a,b]r provided §.(t) > 0 on (a,b]r,
dr(t) >0 on [a,b)r, dr(a) =0, 0r(b) = 0, and 6g(t) = u(t) for all t € [a,b)r.

Indeed, we can always assume that any A-gauge 0 on [a,b]r satisfies 0z(a) = 0

and 0r(b) = 0, since, otherwise, we can replace it to another A-gauge on [a, b]y with this

property.

Definition 1.4.8 (|49, Definition 1.6]). If ¢ is a A-gauge on |[a,bl|r, then we say a
tagged division Dy = (15, [Si—1, si]T) s 0—fine if 7, — dp(1;) < si1 < s; < 7 + Or(Ti)

for 1 <i<|D|.
In the sequel, we define the Kurzweil-Henstock A-integral.

Definition 1.4.9 (|49, Definition 1.7]). We say that f: |a,blr — R" is Kurzweil-
Henstock A—integrable on [a,b]r with value I, provided given any € > 0, there exists a

A—gauge § on [a,b]r such that

<€

Z(Si - Sifl)f(Ti) -1

for all 6—fine tagged divisions Dt of |a, b]r.

Once again, from the definition above, a question about the existence of at least
one d-fine division of |a,b]r from a given A-gauge § on [a,b]r arises. As the reader
may expect, the following lemma answers this question and ensures that the Kurzweil—-

Henstock A-integral is well-defined. It is a type of Cousin Lemma on time scales.

Lemma 1.4.10 (|49, Lemma 1.9]). If § is a A-gauge on [a,b]r, then there is a d—fine

tagged division Dt for [a,b]r.

The same way as the Bochner integral and the Kurzweil-Henstock integral, the
Kurzweil-Henstock A-integral satisfies the linearity and the additivity properties, both
stated below.

Theorem 1.4.11 (|49, Theorem 2.12|). If f,g: [a,b]lr — R"™ are Kurzweil-Henstock A~
integrable functions and ci,co € R, then cif + cog is Kurzweil-Henstock A-integrable

and
b

Jb e F() + cag(B) At = e Lb FOAL + CQJ (DAL,

a a
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Moreover, if ¢ € [a,blr and both § f(t)At and Sﬁf(t)At exist, then SZ f(t)At ezists as
well and
b c b
J F(H)AL = f F(H)AL +J F(HAL.
Now, we display important definitions which will allow us to obtain a correspon-
dence between Kurzweil-Henstock A—integrals and Kurzweil-Henstock—Stieltjes integrals
(see |20} 21], 50]).

Firstly, given a real number ¢ < sup T, let
t* =inf{se T: s > t}.

This definition was first introduced by A. Slavik in [50]. Notice that t* € T since T is
a closed set. Moreover, even though both numbers ¢* and o(t) have similar definitions,
they may be different depending on the choice of the time scale. For example, if T = Z
and t € Z, then it can be shown that t* = ¢, but o(¢t) = ¢ + 1.

Secondly, given an arbitrary T, define its extension by

T (—o0,sup T], if supT < oo,
(—o0, 0), otherwise.

Finally, for a function f: T — R", we consider its extension f*: T* — R" given by

fH () = f(t*), teT".

In what follows, we recall some results linking A—integrals and Kurzweil-Henstock—

Stieltjes integrals.

Theorem 1.4.12 (|20, Theorem 4.2|). Let f: [a,b]lr — R™ be an arbitrary function.
Define g(t) = t* for every t € [a,b]. Then, the A—integral SZf(t)At exists if and only if
the Kurzweil-Henstock—Stieltjes integral SZ fH(t)dg(t) exists. In this case, both integrals

have the same value.

Lemma 1.4.13 (|20, Lemma 4.4]). Let a,be T, a < b, g(t) = t* for every t € [a,b]. If
f: [a,b] = R™ is such that the integral SZ f(t)dg(t) exists, then

| rods = [ s

C c

for every c,d € [a,b].

According to the following theorem, the Kurzweil-Henstock A-integral of a func-

tion f defined on T is, in fact, equivalent to the Kurzweil-Henstock—Stieltjes integral of
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its extended function f* for the case g(t) = t*.

Theorem 1.4.14 (|20, Theorem 4.5]). Let f: T — R"™ be a function such that the
Kurzweil-Henstock A—integral SZ f(s)As exists for every a,be T, a <b. Define

Fl(t):ff(s)As, teT,

¢
Fy(t) = J f*(s)dg(s), teT*,
where g(s) = s* for every s € T*. Then Fy = F}.

We finish this section showing that the Kurzweil-Henstock—Stieltjes integral SZ f*dg

does not change if f* is replaced by a function which coincides with f on [a,b] n T.

Theorem 1.4.15 (|21, Lemma 4.2]). Let T be a time scale, g(s) = s* for every s € T*,
[a,b] < T*. Consider a pair of functions fi, fo: [a,b] — R™ such that fi(t) = fat) for
every t € |a,b] n T. If SZ f1dg exists, then Sz fadg exists as well and both integrals have

the same value.
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CHAPTER 2

ABSTRACT RETARDED FDE WITH
UNBOUNDED STATE-DEPENDENT
DELAY

The theory of retarded FDEs with state-dependent delays emerged along with the
necessity to obtain more precise mathematical models for a great group of real phenomena.
Over the last sixty years, an extensive theory has been developed and many equations
with state—dependent delays were used as models in, for example, electrodynamics, neural
networks, infectious diseases, among others. Works like [I2] and [34] are just a couple of
papers that illustrate how relevant to the mathematical community this area has become.

The purpose of this chapter is to study the existence of mild solutions for a class

of abstract FDEs with unbounded state—dependent delay specified by

'(t) = Ax(t) + f(t,2p40)), te]0,al,

To = @,

(2.1)

where z, f, and p are functions that will be defined later, A is the infinitesimal generator of
a strongly continuous semigroup of bounded linear operators (T'(t));=0 on a Banach space
(X, |]) and z;: (—o0,0] — X, the segment of z at ¢, is a function given by x,(0) = z(t+0).
It is divided into four sections. The introductory section presents all axioms and many

other major aspects about the phase space B. The second section is devoted to show
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22 Abstract retarded FDE with unbounded state-dependent delay

the existence and uniqueness of a solution for of a particular FDE with time—dependent
delay. These results will be used throughout the third section as an auxiliary tool to
derive all crucial characteristics of the main problem . An application of all the
theory developed in former sections will be demonstrated in the last section. It is worth
noting that all theorems exposed in this chapter are new in the literature and can be
checked in [31]. Lastly, throughout this chapter, we consider the Borel o—algebra and the
Lebesgue measure y to apply the Bochner integral for functions with range contained in

X.

2.1 Phase space

In this section, in order to detail the type of equations to be studied and also
to prove our assertions, we consider equations described on a phase space B defined
axiomatically as in Hino et al. [36]. Thus, B will be a linear space of functions mapping
(—00,0] into X endowed with a norm || - |g. We will assume that B satisfies the following

axioms:

(A1) If z: (—o0,0 +T) — X, T > 0, is continuous on [o,0 + T) and z, € B, then the
following conditions hold for every t € [o,0 + T):
(a) x; € B.
(b) ||z(t)| < H|x¢|s, where H > 0 is a constant and is independent on z.
(¢) |ze|ls < K(t—o)sup{|z(s)|: 0 < s < t}+M(t—0)|zs|p, where K, M: [0,00) —

[0,00), K is continuous, M is locally bounded and both functions are indepen-

dent on z.

(A2) For the function z in [(A1)] the function ¢ — z; is a B-valued continuous function
on [o,0 +T).

(A3) The space B is complete.

Throughout this chapter, we always assume that B is a phase space as described above.
Furthermore, for a fixed a > 0, let us denote K = sup{K(s): 0 < s < a} and M =

sup{M(s): 0 < s < a}.
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Next, we denote by Cpyy the space of continuous functions from (—oo,0] into X
with compact support. It is clear from the axioms of phase space that Cyy < B. We also

consider the following axiom:

(A4) If a uniformly bounded sequence (¢")nen in Cpo converges to a function ¢ in the

compact—open topology, then ¢ belongs to B and |¢" — ¢|z — 0, as n — c0.

Remark 2.1.1. When the aziom[(A]) holds, the space Cy((—0, 0], X) of all bounded con-
tinuous functions 1: (—oo,0] — X is continuously included in B ([36, Proposition 7.1.1]).
Thus, there is a constant Q) > 0 such that |Y|g < Q|[¢|e for all ¥ € Cy((—o0,0], X).

Example 2.1.2. Suppose that 1 < p < oo and ¢ is a nonnegative measurable function

on (—o0,0) which satisfies the following conditions:
(B1) §g(A)d < oo, for all s € (—a0,0).

(B2) There is a nonnegative function J, which is locally bounded in (—o0, 0], such that
g(s+0) < J(s)g(0) for all s <0 and all § € (—o0,0)\N;, where Ny < (—00,0) is a

set with Lebesgue measure zero, .

The space Cy x LP(g, X) consists of all classes of functions ¢: (—o0,0] — X such that
¢ is Lebesgue-measurable and g¢||¢|P is Lebesgue integrable on (—o0,0). The norm in
Co x LP(g, X) is defined by
0 1/p
ol =10+ (| a@loteyrras)
The space B = Cy x L?(g, X) satisfies axioms|(A1)| |(A2)(and [(A3)l Moreover, when p = 2,
we can take H = 1, M(t) = J(=t)"? and K(t) = 1 + (S g d@) v for t = 0 (see |36

Theorem 1.3.8] for details). Hence, K =1+ (Soag ) and M = SUPg<ieq J (—) /2.

Moreover, if g satisfies
(B3) {2, g(0)d0 < oo,

then Cy x L?(g, X) satisfies the axiom |(A4)|and the constant Q is given by

Q=1+(f;qmw>

1/2
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24 Abstract retarded FDE with unbounded state-dependent delay

For each ¢ > 0, consider the function S(t): B — B defined by

p(0),  Oe[-t,0],

o(t+6), 0e(—o0,—t].
The family (S(¢))i=0 is a strongly continuous semigroup of bounded linear operators on
B. This family is useful to obtain some estimates between segments of = at two different

points. Indeed, if s, € R are such that ¢ < s and the segments z,, z; belong to B, then

the function y: (—o0, s] = X defined by

is such that y, = z; and

lzs — 2t < |25 — yslls + |ys — 2]

< K(s —1) sup [x(0) —y(0)] + M(s = t)]|z — vl + [5(s — D) — w1l

t<O0<s

< K(s—1) sup [o(0) —x(@)] + |5(s = ) — x]ls. (2:2)

t<O<s

2.2 Existence of solutions for time—dependent

equations

Throughout this section, we assume that r: [0, a] — R is a regulated function such
that 7 = infog<,(r(t) — t) and, for all ¢ € [0,a], r(t) < t. We introduce the space B,
consisting of all functions ¢ € B such that ¢, € B for all 7 < s < 0 and the function

[7,0] 3 s +— @, € B, is continuous. Endowed with the norm

lel- = sup [esls, »e B,

T<s<0

the space (B, | - ||;) turn into a Banach space as the following lemma shows.
Lemma 2.2.1. The space (B, | - |[;) is complete.

Proof. Let (¢")nen be a Cauchy sequence in B;. This implies that (¢™|())nen is @ Cauchy
sequence in the space C(|7,0], X). Therefore, there exists u € C([r,0], X) such that

¢©"(s) = u(s), n — oo, uniformly for s € [7,0]. On the other hand, ¢ — 1) € B, n — .
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We define ¢: (—o0,0] - X by

u(8), T<60<0,
vl —T1), 0<T.

It is clear that ¢, = 1 and ¢ is continuous on |7, 0]. Consequently, ¢, € B for all s € [7,0].

Moreover,

|68 —@sls < K(s —7) max ["(0) = @(0)] + M(s — 7)|¢7 = ¢[s

TLOLs

— 0, n — o0,

and the convergence is uniform for s € [7,0]. This implies that (¢™),, converges to ¢ when

n goes to infinity in the space B.,. O

If B satisfies axiom [(A4)] then, as it was pointed before, Cy((—c0, 0], X) € B with
continuous inclusion. Likewise, for ¢ € Cy((—o0, 0], X), the function s € Cy((—0,0], X)
for all 7 < s < 0. In addition, since ¢, € B, it follows from axiom that the function
s — s is continuous. Hence, Cy((—o0,0], X) € B, with continuous inclusion.

The aim of this section is to study the existence of solutions for the abstract FDE

with infinite time—dependent delay

d(t) = Ax(t) + f(t,2,), 0<t<a, (2.3)

Ty = (106877

where f: [0,a] x B — X is a function that satisfies the following Carathéodory condition:

(C1) The function f(-,¢) is measurable on [0,a] for each ¢ € B and the function f(t,-)

is continuous on B for almost all ¢ € [0, a].
Our development begins with the following property:

Lemma 2.2.2. Assume that [(C1) is satisfied and x: (—o0,a] — X is a continuous func-
tion on [0,a] such that xo = ¢ € B;. Then, the function u: [0,a] — X given by

U(t) = f(t7$7‘(t)), 0 <t< a,
18 measurable in the Bochner sense.

Proof. Let v: [r,a] — B be the function given by v(s) = zs. Then, v is a continuous
function. This implies that w: [0,a] — B, w(t) = v(r(t)), is a regulated function. Conse-

quently, w is a uniform limit of step functions (|44, Theorem 4.1.5]) which implies that w
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26 Abstract retarded FDE with unbounded state-dependent delay

is a measurable function. Since u(t) = f(¢,w(t)), it follows from condition that u is

measurable. O
Lemma enables us to make the definition below.

Definition 2.2.3. A function x: (—o0,a] — X is a mild solution of problem (2.3)) if =

is continuous on [0, a], xg = ¢ and the integral equation

t

2(8) = T(t)(0) + L T(t — §)f(s,0r0)ds, € [0,a]. (2.4)

18 satisfied.

The following result gives some conditions on the function f that guarantee the
existence and uniqueness of mild solutions for the problem (2.3). In what follows, we
denote by M = SUPg<i<q |T'(t)] and by C,([0, a], X') the subset of all x € C([0, a], X) such
that z(0) = ¢(0). It is clear that C,([0, a], X) is a closed convex subset of C([0,a], X).

Theorem 2.2.4. Assume that is satisfied and suppose that the function f(-,0) is

Bochner integrable. Moreover, consider the existence of a positive function n € L*([0, a])

such that

[£(E,00) = F (&)l < n(®)][dr — 42l (2.5)

Jor 1,109 € B, and t € [0,a]. Then the problem (2.3)) has a unique mild solution.

Proof. The argument to establish this statement is standard, so we will only limit ourselves
to present the essential ideas of the proof.

Consider the Banach space
Y ={z: (—©,a] - X: xy € B; and [ is continuous}

equipped with the norm

lzlly = [zoll- + sup_[(u)]
u€[0,a]

and define the operator I': Y — Y by the expression

T(t)p(0 "T(t—s S, Trs))ds, 0<t<a,
oty - | TORO 5T =556, )

o(t), t<0.

For each z,y € Y and t € (—o0, a], we can estimate

IT(@)(#) =T O] < ML | £ (5, 20() = F (5, Ure)] ds
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t
< M f 1(8) |Tris) = Y| g ds

< MKJ max () — y(€)|ds.

0<é<s

Repeating this argument, we achieve that

n! O=u<t

wawrwwm<M%mq9@mfmwwm y(w)]

which shows that I'" is a contraction on Y for n € N large enough. Hence, we conclude

that " has a unique fixed point T which is the mild solution of the problem ({2.3). O

From now on, we will assume that the semigroup (7'(t));=o is compact Also, we

introduce the following boundedness condition for f.

(C2) There exists a positive function € L'([0, a]) and a continuous nondecreasing func-

tion ®: [0,00) — (0,00) such that

[F(E D) < u®)@(|lls)

for all ¢ € B, and a.e. t € [0, al.

Before we demonstrate another crucial theorem concerning the existence of solu-
tions of the abstract FDEs with state—dependent delays, we recall a classical result which
is frequently applied to many other similar theorems. Also, we will need this result in the

chapter about measure functional differential equations with state—dependent delays.

Theorem 2.2.5 (Schauder Fixed—Point Theorem). Let (E, ||-|) be a normed vector space,
S be a nonempty conver and closed subset of £ and T': S — S is a continuous function

such that T'(S) is relatively compact. Then, T has a fized point in S.
Now, we are ready to prove our second main result of this chapter.

Theorem 2.2.6. Assume that the semigroup (T(t))i=0 is compact. Assume further that
f is a locally Lipschitz continuous function that satisfies condition and suppose that
there exists R > ||+ for which the following condition holds:

W)+ 7 | p(s)ase( KR+ Mlolr) < 1)

Then, there exists a unique mild solution of the problem ({2.3)).
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28 Abstract retarded FDE with unbounded state-dependent delay

Proof. Let U: C,([0,a], X) — C,([0,a], X) the map defined as follows

t

U(x)(t) =T (t)e(0) + L T(t—s)f(s,zms)ds, tel0,al

By Theorem we obtain that W is a continuous map. Let By be the closed ball with
center at 0 and radius R in the space C,(|0,a], X) and let x € Bg. By definition of ¥,

we have
t
@@®H<JWMW+MLﬂ®MMMM®
t
<JWﬂW+MJM@MKHHW¢JB<R
0

which shows that U(Bg) < Bg.
Now, let t € [0, a] be a fixed number and let (x,,)nen be a bounded sequence on Bg.
For all n € N, without any change of notation, we will extend z,, to (—o0, 0] by defining

z(0) = p(#) for all # < 0. By condition we have, for any s € [0, a],

6] < 0 (o) < (6} (& sup )] + ol ).
which shows that the sequence (f(s, (IH)T(S)))neN is bounded as well. The compactness of
T implies the existence of a subsequence (2, ) ey such that T'(t—s) f (s, (xn, )r(s)) converges
to some function y(s). By Theorem we conclude that W(z,, )(t) converges to some
point in X. Hence, the operator K;: Br — X given by K;(z) = U(x)(t) is compact.
Therefore, W(Bg)(t) is relatively compact.

Finally, we can show that ¥(Bg) is an equicontinuous subset of C([0,a], X). In

fact, for x € B and h = 0, we can write

t

()t +h) = V(z)(t) = TET(h) - 1e0)+ L (T(t+h—5)=T(t = 5)) (5, Z2(s))ds

t+h
—i—f T(t+h—s)f(s, xs)ds
t t+h

= (T(h) —D)¥(x)(t) + J T(t+h—s)f(s, zms))ds.

t

The first term on the right-hand side (T'(h) — I)¥(z)(t) — 0 as h — 0 independent of x
because the set W(Bg)(t) is relatively compact. In similar way, the second term on the
right—hand side
t+h
J T(t+h—s)f(s zms)ds =0
t

as h — 0 independent of x € Bi. Combining these assertions, we conclude that ¥ is a
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completely continuous map on Bg. By Theorem we obtain that W has a fixed point
7. Since f is locally Lipschitz continuous, an standard argument allows us to affirm that
7 is the unique fixed point of W.
To conclude our proof, let y: (—o0,a] — X be the following function:
z(t), tel0,a],

y(t) =
(t), te(—w0,0].

Since, for all t € [0,a], Ty(t) = V(T)(t) = T(t), we have that y is the mild solution of
problem ({2.3)). O

Next, for a fixed 7 < 0, we introduce the set R, consisting of all regulated functions
r: [0,a] — Rsuch that () < tforallt € [0, a] and infoc;<q(r(t) —t) = 7. It is not difficult
to check that R, is a closed and convex subset of the Banach space (G([0, a], R), |||«). For
each r € R,, we denote by z(+, ¢, r) the unique mild solution of whose existence was
established in Theorem [2.2.4] or Theorem [2.2.6] Additionally, we denote by S: R, — Y,
r — (-, ) the segment operator and by S: R, — C([0,a], B,), S(r)(t) = S(r),.

Lemma 2.2.7. Assume that v € Y. Then, the family of functions R, — B, 1 — (), 18
equicontinuous for s € [0,a]. Moreover, if K < C([0,al], X) is a relatively compact set,

then the continuity of r — x,(y) is independent of x.

Proof. Let r',r? € R, and s € [0,a]. We can assume, without loss of generality, that
rl(s) < r?(s). Using that ¢ € B, and from the fact that the set {z;: 7 < t < a} is
relatively compact in B, for each € > 0, there is § > 0 such that

5

3K

for all s*,s% € [0,a], t',t? € [1,0] with 0 < s> —s' <6,0<?—t! <§,and 0 < h < 6.

lon —pels <z 1(S(h) = Dads < 3, a(sh) —2(s?)] <

Wl M
Wl M

Assume that |r' — %[ < ¢ and u € [7,0]. This allows us to estimate |z,1(5) — &,2(5)||- as

follows:

(i) If r%(s) + u < 0, then clearly r'(s) + u < 0 and
||$7'1(s)+u - xﬂ(s)—i—u”B = H90r1(5)+u - (;Dr?(s)—i-uHB-
(ii) If 7'(s) +u < 0 and 72(s) +u > 0, then by (2.2)),

||:E1'1(s)+u - :L‘T2(s)+u||6 = ”907"1(8)-‘,-11, - xﬂ(s)-‘ruHB
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< [l (s)4u — olis + [0 = Tr2(s)+ulB
< ngrl(s)+u - SOOHB + ||.Z‘0 - xﬂ(s)—&-uHB

< I = polls + lzo = S42() + w)rals + KG2(s) +u) _ masx () = 2(0)]

< Jeneyie = olls + oo = S07(s) + whgolls + K max () — £(0)].

(iii) If r'(s) + u = 0, then clearly 72(s) + u > 0 and, once again, by (2.2),

erl(s)Jru - l’r2(5)+u ||B

< [(S*(s) = () = Dapgoyvuls + K max J2(6) —2(r'(s) +u)].

rl(s)+u<é<r?(s)+u

Combining these estimates with the selection of §, we can affirm that
||l’r1(8) — xﬁ(s)HT < 19

is independent of s € [0, a], which shows the first assertion.
In addition, this argument also serves to establish the second claim, using, in this
case, that the set {z(-): v € Y and |4 € K} is equicontinuous and the set {z;: 7 <t <

a,r €Y and w|j4 € K} is relatively compact in B. O
Now, we enunciate two important theorems to prove some results of this section.

Theorem 2.2.8 (|29, Lemma 6.2]). If, for a <t < b, ¥, « are real valued and continuous

functions, o/ (t) = 0, B(t) = 0 is integrable on [a,b] and

P(t) < aft) + Jtﬁ(s)dz(s)ds, a<t<b,

then .
o0 < aen [ ss1as)

Theorem 2.2.9 ([I7, Theorem 69]|). Suppose that the functions u(t) and a(t) are non-

negative for 0 < s <t < b and ®(s) is positive, nondecreasing and continuous for s > 0.

If

t

u(t) <c+ J a(s)®(u(s))ds,

a

where ¢ > 0, then

for all t € (a,b).
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Proposition 2.2.10. If all hypotheses from Theorem or Theorem|[2.2.0| are satisfied,

then §: R, — Y 1is a continuous map.

Proof. We assume initially that all hypotheses of Theorem hold. Let r!, 7% ¢ R,.
For simplicity, we abbreviate the notation by writing z = z(-, p,r!) and y = z(-, o, 7?).
It follows from (2.4) that

This implies that
ly(t) <M J ) [yrae) = @) 5 ds

t
< ML n(s) “yrz(s) — $r2(s)HBd3 + Mfo n(s) H$r2(s) — xr1(s)HBds (2.8)

for 0 <t < a. Proceeding as in the proof of Lemma for every € > 0, there exists a
0 > 0 such that

Hx,,z(s) 0<s<a, (2.9)

Tr)lp <€
when |r? — r'|, < 0. Replacing (2.9) in (2.8)), we have, for all ¢ € [0, a],
Iy(t) —2(0)] < Mf ) 20y — Zrzge]p ds + Mf 5)dse
< MKJ OrggicHy §) —x(¢ )ds—l—Mf s)dse.
Applying Theorem [2.2.8] we get
y(t) = 2(0)] < Ve [ ns)dsTRER1 e [o,a)
0

This inequality and the fact that S(r?)(t) — S(r')(t) = 0 for all ¢ < 0 imply that S is a
continuous map in this case.

We assume now that the hypotheses of Theorem hold. We first show that
the set {x(-,,7): r € R,} is bounded. In fact, for ¢ € [0, a], it follows from that

t
o) < The(O)] 57 | ple)(aco )
t
< TTo)] + 37 [ oo (& uax ()] + Tl ) ds.
Hence, if a(t) = kmaXogggt |z(&)|| + M|, then

Mﬂ<ﬁﬁww)+ﬁWT+MKLM$MMW®,temﬂ
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32 Abstract retarded FDE with unbounded state-dependent delay

Applying Theorem [2.2.9] we have that ||z(t)|| < C for some constant C' = 0 independent
of re R,.
We next show that {z(t, ¢, r): r € R.} is relatively compact in X for all 0 <t < a.

Indeed, for t > 0 and 0 < ¢ < t sufficiently small, we can write

t

T(t—e—s)f(s,2)ds + J T(t—5)f(s,r(s)ds

t—e

t—e

z(t) =T ()T (t —e)p(0) + T(e) L

=T(e)z(t —e) + f Tt —s)f(s,zr(s))ds.

t—e

Using that T'(¢) is a compact operator, the set {x(t — &, p,r): r € R,} is bounded and

f T(t—s)f(s,zp(s))ds =0

as € — 0, we obtain that {z(¢,,r): r € R,} is relatively compact in X.
In this step, we show that the set {z(-,,7): r € R;} is equicontinuous on [0, a.

Proceeding in similar way as above, for h = 0, we can write

t

w(t+h)—x(t) = (T(h)—DTH)e(0) + L (T'(h) = DT(t = 5) f (5, 2r(s))ds

t+h
+
t

—1I
T(t+h—s)f(s zms))ds
-1

= (T'(h) Yo (t) + L ' T(t+h—s)f(s, Trs)ds.

Since {z(t,¢,7): r € R;} is relatively compact in X and f(s, () is bounded indepen-
dently of r, we conclude that z(t + h) — z(t) — 0 as h — 0 independently of r. Conse-
quently, the set of functions {x(-, ¢, 7)|0.4: 7 € R+} is relatively compact in C([0,a], X).

Let (r")qeny be a sequence in R, that converges to r € R,. In what follows, we
abbreviate the notation by writing 2" = x(-, ¢, r") and y = x(-, o, 7). Thus, there exists
a subsequence of (2"),en, still denoted by the index n € N, that converges uniformly to

z. We extend z to (—o0,a| by defining the function Z: (—o0, a] — X as follows:

z(t), tel0,al,

o(t), te(—o0,0].
It follows from Lemma that for each s € [0,a], a7,y — Zv(s) and f(s,27,) —
f(s,Zrs)) as n — oo. Using now Theorem we obtain that Z is a mild solution of

problem (2.3). From the uniqueness of mild solutions, we conclude that z = y, which
completes the proof. O
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Corollary 2.2.11. If all the hypotheses of Proposition hold, then the map SR, >
C([0, a], B,) is continuous.

Proof. Let r',r? € R,, x = S(r') and y = S(r?). For every t € [0,a], and s € [, 0], we
have that (x;)s = 2yys and (y;)s = Yps. It + 5 <0, then z; s = y;1s = @p4s. Hence, we

can assume that ¢ + s = 0, which implies that

||$t - ytHT = Eg?g) ||$t+s - yt+s||B

< K _
< max K max [2(§) —y(S)]

< Kz =yl

The assertion is now a consequence of Proposition [2.2.10 O

2.3 Existence for state-dependent equations

In this section, we apply all results on the existence of solutions for time—dependent
delay equations established in Section to study the existence of solutions of problem
(2.1). Essentially, we do not need to assume the continuity of the function p: [0,a] x B —
R, which allows us to include in the theory those equations in which there is memory loss.

Instead, for a fixed 7 < 0, we suppose that p satisfies the following conditions:

(D1) For every ¢ € B, the function p(-,¢) is regulated and, for every compact set

W < B;, the set of functions {p(¢,-)|w: t € [0,a]} is equicontinuous.
(D2) 7+t < p(t,) <tforallte[0,a] and ¥ € B,.

Moreover, we consider that f satisfies the Carathéodory condition [[CI)] We begin by

establishing our concept of solution. In this statement, we assume that ¢ € B,.

Definition 2.3.1. A function x: (—o0,a] — X is a mild solution of the problem (2.1)

if x is continuous on |0, al, xg = ¢ and the integral equation

t

2(t) = T(1)(0) +f T(t = $)f (s, 2p0m)ds, L€ [0,a], (2.10)

0

18 satisfied.

Theorem 2.3.2. Assume that hypotheses of Theorem are fulfilled. If hypotheses
|((D1)| and |(D2) are satisfied, then the problem (2.1)) has a mild solution.
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Proof. Since for each r € R, there is a unique mild solution of problem ([2.3)), we define
the operator F': R, — G([0,a],R) given by

F(r)(t) = p(t, 1),

where x = S(r). We will show that F' has a fixed point, organizing the proof in three
steps.

(1) In this first step, we prove that F(R,) € R,. Let r € R,. It follows from that
for every 1 € B,, the maps

R+(t7¢) = p(t+,1/1),t€[a,b),
R-(t,y) = p(t,¢), t€(a,b],

are well-defined. Let (t"),en be a decreasing sequence convergent to ¢ € [a,b). It follows

from Lemma that xn — x; as n — oo. Using again, we have
P ) — R (1, 20) = plt%, ) — plt®, ) + plt", 20) — R¥(1,0).

Hence, 7}1_{1(:)10 p(t", xpn) = R (t,z,). Similarly, for an increasing sequence ("),en converging
to t € (a,b], we obtain that T}grgo p(t", ) = R (t,z¢). Consequently, F'(r) is a regulated
function. Combining with [[D2)] we ascertain that F(r) € R..

(ii) In this step, we show that F' is continuous. We begin with a general remark. Let
W < B, be a compact set and let € > 0. It follows from that for every ¢ € W, there
exists 0(¢)) > 0 such that

|P(75>¢') - p(ta ¢)| < 5/2

for all ¥ € By (1) and all t € [0,a]. Let § > 0 be a Lebesgue number |45, Lemma 27.5|
of the covering of W by the open balls By (¢)) with ¢ € W. For every ¢!, ¢? € W with
[ — |, < 6, there is ¢)° € W such that ¢! € By (¢?). This implies that

o(t, ") = p(t. )| < [p(t, ") — p(t, ") + |p(t, ¥") — p(t,97)]

< €.

Let (r"),en be a sequence in R, converging to r. We denote S(r") = 2™ and
S(r) = z. It follows from Corollary [2.2.11| that z}' — x; as n — oo in the norm in B, and
uniformly for ¢ € [0, a]. This implies that the set

W ={x}:te[0,a], ne N} u {x;: t €[0,a]}
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is compact in B,. Applying our previous remark to the set W, we conclude that p(t, z}') —
p(t,x;) as n — oo uniformly for ¢ € [0, a].

(iii) In this step, we show that {F(r): r € R,} is equiregulated. It is sufficient to show
that {F(r): r € R} is left-sided equiregulated, since the proof for the right-sided equireg-
ulated case is similar. Let W < B, be a compact set. It follows from that for e > 0
and 1" € W there exists §(1/°) > 0 such that

|p(t + h7¢) - p(t + h7w0)| < 5/37

for h > 0 such that t + h < a, all t € [0, a) and all ) € Byyoy(¢°). Since

R (t,9) = RE (60" < IRT(6,9) — p(t + h, )| + p(t + h,v0) — p(t + h,¥%))|
+o(t + h,y)°) — R (¢, 4%

taking the limit as h — 07, we obtain that

[R*(t,0) = RE (6, ¢") < ¢/3

for all ¢ € [0,a), and all ¥ € Bjyo)(¥°).

Let ' € W, i =1,...,n, besuch that { By (¢"): i = 1,...,n} is an open covering
of W. Since the function p(-,%") is left-sided equiregulated, for each i = 1,...,n, there
exists 3' > 0 such that

|p(t + h7 W) - R+(t7 W)| < 5/37

for 0 < h < B Let B = min{B:i =1,...,n}. Let v» € W. We select 1’ such that
Ve Bé‘(wi)(wi). Combining these estimates, we obtain that

p(t + ) = RE(6, )] < |p(t+ b, o) = p(t + h )| + [p(t + b, ") = R¥ (8, "))
+|R+(t7¢i) - R+(t>¢)|

< €

for all 0 < h < /3. This shows that the set {p(-,%): ¥ € W} is left—sided equiregulated.
On the other hand, proceeding as in the proof of Theorem [2.2.6] we can affirm that
S(R.) is a relatively compact set in C([0,a], B;). We complete the proof of the assertion
by applying the above property for the set W = {S(r);: r € R, 0 <t < a}.
As a consequence of Theorem we can affirm that the set {F(r): r € R,} is
relatively compact in G([0,a], R). Applying now Theorem [2.2.5] we conclude that F' has
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36 Abstract retarded FDE with unbounded state—dependent delay

a fixed point 7. It is clear that © = S(r) is a mild solution of problem ({2.1)). ]

Remark 2.3.3. A relation between state—dependent delays equations and time—dependent
delays for the case r(t) =t was already established previously in the literature (see, for
example, [30]). However, the relation presented here allows us to consider more general

conditions concerning the reqularity of the solutions and the considered spaces.

To establish a result of the same type as Theorem when the hypotheses of
Theorem are satisfied, we need to restrict the condition [(DI)] With this object, we

introduce the following condition:

(D3) For every 9 € B,, the function p(-, %) is regulated. Furthermore, for each ¢ € B,

there exists a constant C, > 0 such that

|o(t,2:) = p(t, y0)| < Cp max fa(s) —y(s)|

0<s<t

for all z,y € Cy,([0,al], X) and ¢ € [0, a].

Theorem 2.3.4. Consider that the space B satisfies aziom . Assume that all hy-
potheses of Theorem|2.2.4| are satisfied with a bounded function n. Suppose that conditions
\((D2) and |[(D3) are fulfilled and the initial condition ¢ € Cy((—o0,0], X) salisfies the Lip-

schiz condition

[0(0") = ()] < Ly|0" — 62| for all 0,67 < 0.

Finally, let f(-,0) be a bounded function on [0, a] such that f(t,¢) € D(A) for allt € [0,a]

and

[AFE )| < mlvls (2.11)

for some constant n; = 0. If

C,Q max{L,, Ci} ( L an(s)ds) exp (1\7}? an(s)ds> <1, (2.12)

0

then problem (2.1)) has a unique mild solution.

Proof. We divide the proof in three steps.
(1) Initially, we will prove that the solutions of (2.3)) are bounded independently of r € R....
Let r € R, and x = S(r). It follows from (2.5)) that

(O < The0)] + 37 [ 5(5,00)] ds
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< M p(0)] + A7 f s lscds + 37 f /(5. 0)]ds

< M|p(0)] + Mfo |f(s,0)llds + MM@OTL n(s)ds + Mf(fo 1(s) max [z(£)]ds

0<é<s

for all 0 < t < a. Using Theorem | it follows that

lz(t)| < CreMESn(as

< C27

where

a

C = Np(0) + A7 f 1£(s,0)[[ds + Mg, f n(s)ds,
0

0
CZ _ Cl eMIA( Sg n(s)ds'
This also implies that
225 < KCy + Mg, (2.13)

(ii) In this step, we will estimate |@,1(5) — @258, where © = S(r), r,7',r* € R, and
0<s<a. Lette|0,a] and h > 0 such that t + h € [0, a]. Since

ot + h) — 2(t) :J

0

Theorem [1.2.10| and inequalities (2.5)), (2.11]) and (2.13]) imply that

t

Tt —s)(T(h) = 1)f(s,xps)ds + L ' T(t+h—s)f(s,xms))ds,

||a:(t+h—x MH F(s, ) \ds+Mf £ (s, 20)| ds
t+h — t+h
MJ Af S xr(s))du ds + Mf Hf(swxr(s)) - f(sa O)H ds+ M ||f(57 0)” ds
t
MJ f Mool du ds + Mf () r(s) |l + MJ sup | £(u,0)]ds
o<u<a
< Bh j RCy+ Mg, ds + M j ) (RCy + Mgl ) du + 8 sup |f(u,0)]
Oo<u<a
< M? mhCsa + Mn2h03 + Mh sup |[|f(w,0)|
0<u<a
< C4h7
where we have denoted by
no = sup n(t)
te[0,a]

C;s = KCy+ Mol
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38 Abstract retarded FDE with unbounded state—dependent delay

o - (mloga Oyt sup f(u,o>||) .

O0<u<a

By Remark 2.1.1] for every 7',72 € R, and 0 < s < a, we can estimate

() = 1o |5 < Qsup [z (r H(s) +0) —2(r?(s) + 0)].

Without loss of generality, we can assume that r'(s) < r?(s). In this case, there are

several cases to analyze:
(ii.1) If 72(s) < 0, then

Jx(ri(s) +0) —x(r*(s) + )] = [(r'(s) + 0) = (r*(s) + )| < Ly|r'(s) — 1*(s)].
(iL.2) If ri(s) <0, 72(s) > 0 and 6 < —r2(s), then

lz(r(s) + 0) —x(r(s) + )| = lo(r'(s) +0) — p(r*(s) + 0)]

< Lylri(s) = r*(s)|-
(ii.3) If r'(s) < 0 and —r?(s) < 6 < 0, then

Jx(rt(s) + 6) —a(r?(s) + O)| = [@(r'(s) +0) —x(r*(s) + 0)]
< p(r'(s) +0) = 0(0)] + [p(0) — 2(r*(s) + 0)]
< Lylr'(s) + 0] + Cu(r?(s) + )
< max{L,, Cy}|r*(s) — r'(s)]
(ii.4) If r'(s) > 0 and —r'(s) < 0 < 0, then

[2(rt(s) +0) — 2(r*(s) + O)| < Culr®(s) —r'(s)]-

(ii.5) If —r?(s) < 0 < —r'(s), then

le(r(s) +0) —x(r*(s) + O)| = lo(r'(s) +0) — x(r*(s) + )|
< () +0) = p(0)] + [ (0) — x(r*(s) + 0)]
< Lylr'(s) + 0] + Cl[r*(s) + ]
= —Ly(r'(s) +0) + Cu(r’(s) + 0)
< max{L,, Cy}|[r?*(s) — r'(s)].
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(ii.6) If 6 < —r?(s), then

l2(ri(s) +0) —2(r*(s) + )] = [p(r'(s) +0) — p(r*(s) + )

< Lglri(s) = r¥(s)]-

Therefore, in any case, we conclude that
Jx(rt(s) + 0) — 2(r*(s) + 0)|| < max{Ly, Cy}lr'(s) —r*(s)],

which is independent of r € R,.
(iii) Finally, we will conclude that F' is a contraction. Let r!',r* € R,, z = S(r') and

y = S(r?). For every t € [0,a], it follows from (2.4) that

t

olt) = o0) = | Tt~ 5) (7o) = £5,0(9)) d.

0

This implies that
t
ly(t) — 2] < B f 1(5) 2 — 16| s
t t
< 7 | 006 et =l ds + 57 | (6 s = o 0

< MQmax{L,, @}fo n(s)r3(s) — r'(s)|ds + MI?L n(s) max |y(s) — z(s)|ds

0<é<s

a t
< MQmax{L,.C1} f n(s)ds |12 — | + TR f n(s) max Jy(s) — o(s)|ds.
0 0

0<€<s

Applying Theorem [2.2.8] we obtain

lt) = 2(0] < FrQuax(zy, &3 ( [ sas) exp (W7 | tn(S)dS) 172 = 1.

This implies that
|E(r?) = F(r)]e = sup |p(t, y:) — p(t, z2)]
0<t<a

< G, sup max [ly(s) — a(s)]

0<t<q 0Ss<t

< CpMQ max{L,, Cy} (Ja n(s)ds) exp (]\7[% Jan(s)ds> [
0

0

Combining with (2.12), the above estimate shows that F': R, — R, is a contraction,

which in turn implies that F' has a unique fixed point. This completes the proof. O

H. C. bos REIS October 2020 Mat — UnB


mailto: henrique.costa.reis@hotmail.com
http://www.mat.unb.br

40 Abstract retarded FDE with unbounded state-dependent delay

2.4 Applications

The purpose of this section is to apply some of the results of the last sections. In

order to do this, we will study the existence of a mild solution for diffusion systems as

ou 62u
7O = O+ [t uga)  0<t<a (2.14)
U(e,f) _ 90(9’6)7 -0 < 0 < 07

where 0 < £ < m, ais a positive number, u: (—o0,a]x[0,7] — Rand ¢: (—o0,0]x [0, 7] —
R is an appropriate function. We model this problem in abstract form on the space
X = L?([0,7]) endowed the norm | - ||» and we take as phase space B = Cy x L*(g, X),
where the function g satisfies the conditions established in Example 2.1.2] We consider
the operator A: D(A) € X — X defined by

de?

on the domain D(A) = {z € X: 2" € X,2(0) = z(m) = 0}. It is well-known that A is
the infinitesimal generator of an analytic semigroup (7'(t))¢=o on X. Furthermore, A has
a discrete spectrum and the eigenvalues are —n?, n € N, with corresponding normalized
eigenfunctions z,(§) = (2)1/2 sin(n&). Moreover, the set {z,: n € N} is an orthonormal

™

basis of X. Consequently,

[e¢]
Az = Z —n*z, 2, 2n,
n=1
for z € D(A) and
Q0
T(t)z = Z ez, 20 )2,
n=1

for all z € X. Tt follows from this expression that (T'(t))¢o is a compact semigroup with
IT(t)] <1 forallt >0.

We study the problem on the interval [0,a]. In [30, 46], there are many
examples of functions p that arise in state-dependent delay problems. We consider the
function p(t,v) = t — p(t) — q(¢), where p: [0,a] — R7 is a regulated function and

q: B — R" is a bounded continuous function. We denote by
7= —sup{p(t) + q(¢): 0 <t <a, ¢ € B}.

It is clear that p satisfies conditions

Let fo: [0,a] x X — X be a function that satisfies the Carathéodory condition
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[(CL)] fo(-,0) € L*([0,a], X), and there exists an integrable function Ly such that

[ folt,2) = fot, y)l2 < Lo(®) |+ =yl

for all x,y € X. Let f(t,v) = fo(t,14(0)). Then f satisfies the Carathéodory condition as
well, f(-,0) € L*(]0,a], X) and

[fE ) = F800) 2 = [folt,"(0) = folt, ¥?*(0))]
< Lo(®)]01(0) — ¥*(0)] 5
< Lo = ¢7|s

for all ¢!, % € B. In particular, this implies that

[£ )2 < Lo(®)[¢] + [ /o2, 0)]12-

Moreover, as usual, we abbreviate 1(0, £) instead of 1(0)(£). With these notations, prob-
lem (2.14)) is reduced to
ou *u

Zt8 = Za®O+htul—p) - qw).),  0<t<a (2.15)

u®,§) = ¢(6,6), —0 <0 <0,
for 0 < & < 7, where u: (—o0,a] x [0,7] — R is a function such that u(t,-) € L*([0, x]),
and ¢: (—o0,0] x [0, 7] — R is a function such that ¢ € B,.
Combining with the previous assertions, problem can be modeled in the
abstract form . A direct application of Theorem allows us to state the following

result.
Corollary 2.4.1. Under the above conditions, if ¢(0,£) =0 for all £ € [0, 7] and
f(f Lo(s)ds < 1,
0

then there exists a unique mild solution of problem (2.15)).
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CHAPTER 3

MEASURE FDES WITH
UNBOUNDED STATE-DEPENDENT
DELAYS

This chapter is dedicated to obtain a series of properties of the measure functional

differential equations with state—dependent delays

xz(t) = x(ty) + L (5, 2p520))dg(s), te€ [to,to+ 0], (31)

Ty, = ¢,
where the integral of the right—hand side of is in the sense of Kurzweil-Henstock—
Stieltjes integral, o > 0, to € R, g: [to,to + 0] — R is a nondecreasing function,
B < G((—o0,0],R™) is an appropriate Banach space, ¢ € B and z: (—0,ty + o] — R",
p: [to,to + o] x B> R and f: [tg,to + 0] x B — R™ are functions. In the first section,
we introduce an adequate phase space B < G((—0,0],R™) to work with this type of
equation. Next, under appropriate conditions, we obtain the existence and uniqueness of
solutions of the equation (3.1). The chapter finishes with a periodic averaging theorem
for measure functional differential equations with state—dependent delays. All results are

new in the literature and are contained in [32].
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44 Measure FDEs with unbounded state—-dependent delays

3.1 Phase Space

For our purposes, we will need a suitable vector space B ¢ G((—0, 0], R") equipped

with a norm |[|-|; which satisfies the following axioms:

(E1) B is complete.

(E2) If toe R, 0 > 0, y: (—o0,ty + 0] — R™ is regulated on [to, to + o] and yy, € B, then
there are locally bounded functions ki, ks, k3: [0, 00) — (0, c0), all independent of v,

to and o, such that, for every t € [to, 1o + o]:

(a) y € B.
(b) lly@)] < k(e —1o) 1y -

(©) [19ells < Fa(t = t0)[Yso |5 + ks (t —t0) sup [y(u)].

u€[to,t]

(E3) Fort >0, let S(t): B — B be the operator defined by

(S O) = { p(07), —t<0<0,

et +6), 0<—t.

\

Then, there is a continuous function k: [0,00) — [0, o0) such that £(0) = 0 and

[S@)els < (1 + k(1) |olg, forall peB.

Usually, the motivation on the choice of the phase space lies on the expected properties of
the solution of the investigated equation. Therefore, as Theorem suggests, it seems
to be more satisfactory to define phase space for measure FDE to be a particular subset
of the set of all regulated functions.

Next, we show some examples of phase spaces.

Example 3.1.1 (|27, Example 3.2]). Let p: (—0,0] — (0,0) be a continuous function
such that p(0) = 1 and that the function p: [0,00) — (0,0) given by

p(t) = sup plt +9)

) [ 07
o<—t P(Q)

18 locally bounded. The space

B = BG,((—x,0],R") = {go € G((—o0,0],R"): is bounded}
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endowed with the norm

pl0 n
el =sup L e s ((oc.0) ),

satisfies all the properties [(E1JH{(E3) Therefore, BG,((—0,0],R") is a phase space.

Example 3.1.2 (|27, Example 3.6]). Let h: (—o0,0] — (0,00) be a continuous function
0
such that J h(s)ds = L < co. Consider the space

—0

Bh«—oo,O]),R“):{soc—:G«—oo,O],R“): [ #s) s |90(§)|d8<00},

s<E0

endowed with the norm

P p(E)lds, ¢ € By((—o0,0]), R").

x

<

x

0
el = | nts) s
—0 s £
Then, By((—0,0]),R") is a phase space as well.

Contrarily to the phase space Hy chosen by G. A. Monteiro and A. Slavik in [43],
where all functions y;, t < 0, belong to Hy whenever y € Hy, none of the axioms [(EL)H(E3)]
of the phase space introduced here offer much data about the function x; when x € B,
to = 0 and t < 0. This lack of information permits to deal with more general FDEs with
state—dependent delays. It also increases the quantity of sets that may be considered as

phase spaces.

Example 3.1.3. Let p: (—o0,0] — (0,00) be a function as in Example|3.1.1. Additionally,

suppose that
(a) p(0) — 0 as  — —c0.

Consider the space

B = BG)((—x,0],R") = {(p € BG5((—»,0],R") le(®)] — 0,0 — —oo}

T A0)

endowed with the norm

0
ol =sup ZL e B (o 0 ),

If p(0) = % for 0 < 0, then it is possible to show that all conditions are
satisfied (see [27] for details).
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46 Measure FDEs with unbounded state—-dependent delays

On the other hand, let ¢: (—o0,0] — R be the function defined by

e, 0e[-1,0],
p(0) = =10

e0*+20) g e (—oo, —1].

Since p(0)/p(0) = €% — 0 as § — —o0, we have that p € B. However, if p(s, p,) = s —1,
then Q,s.0)—s = p—1 does not belong to B. Indeed,

_ Y((0—1)2+2(6-1))
lim M = lim W—m = lim ¢ — =e 7,
0——o0 P 9) 0——a0 p(e) 60— —c0 p(e)

which is different from zero. It implies that p_y ¢ B. Thus, B is not a phase space

considering the hypotheses from [{3], but B is a phase space in our case.
We finish this section recalling two important properties.

Lemma 3.1.4 (|27, Lemma 3.8|). Assume that B is a phase space. Ify: (—o0, tg+o] — R"
is such that vy, € B and Y|, 1040] 5 @ regulated function, then t — ||y;|p is regulated on

[to,to + U].

Lemma 3.1.5 (|27, Lemma 3.10]). Let r: [to,to + 0] — R be a nondecreasing function
such that r(s) < s for all s € [to,to + o]. Assume that y: (—oo,r(tg + 0)] — R™ is such
that Yro) € B and y|pp(o)r(to+0y) 45 a requlated function, then t — |y, is requlated on

[to,to + U].

Henceforth, until the end of this chapter, B will always denote a phase space in

the sense presented in this section.

3.2 Existence and uniqueness of solutions

Here, we are interested in proving results concerning existence and uniqueness of
solutions of measure functional differential equations with state-dependent delays given
by

o) — x(t0)+£ (s pemn)dg(s), £ [tosto + o], .

:Cto = ¢7
where 0 > 0, ty € R, g: [to,to+ 0] — R is a nondecreasing function, B < G((—o0, 0], R™) is

a Banach space satisfying axioms (E3)l ¢ € Band z: (—owo,tg+0] — R, p: [to, to+
ol x B— R and f: [ty,to + o] x B — R" are functions.
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To show that the problem (3.2)) has a solution, we begin by considering the set
X = {z: (—0,t0 + 0] > R": 24, € B and |[4, 4,+0] is regulated}, (3.3)
equipped with the norm

lzlx = lwls +  sup Ja(u)]. (3.4)

u€[to,to+0o]

This set is a Banach space. We also assume the following assumptions:

(F1) For all z € B, the integral S;gw f(s,x)dg(s) exists in the sense of Kurzweil-Henstock—

Stieltjes.

(F2) There exists a Kurzweil-Henstock—Stieltjes integrable function M : [to,to+0] — RT
such that

L £(s,2)dg(s)

U2

< J M(s)dg(s)
uy

whenever z € B and uy, uy € [to, to + 0].

(F'3) There exists a Kurzweil-Henstock—Stieltjes integrable function L: [to, o+ o] — R
such that

< F L(s) |z — yllg dg(s)

ul

| P Fs.a) — F(s)) da(s)

ul

whenever z,y € B and uy, us € [to, to + o] .

(F4) There exists a Kurzweil-Henstock—Stieltjes integrable function Lo: [to, to+0]| — R
such that

f P (Fls ) — f(s,20)) dg(s)

u1

< Jw Ly(s) [u — v] dg(s)

u1

for all z € X and uq, ug, u, v € [ty to + ol.

(F5) For all z € X, the function ¢t — p(t, ), t € [to,to + o], is nondecreasing, satisfies

p(t,z;) <t and Lp(to,wey) © B.

(F6) There exists a Kurzweil-Henstock—Stieltjes integrable function Ls: [to, to+0] — RT
such that

U2

f % Jo(s,2) — pls. )| dg(s) < f La(s) |z — gl dg(s)

u uy

for all uy,ug € [to,to + o] and all x,y € B.
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48 Measure FDEs with unbounded state—-dependent delays

Remark 3.2.1. Theorem[1.5.7] and Lemma guarantee that, whenever x: (—oo,ty +
o] — R™ is such that x|j,4,40) is regulated and x, € B, the function t — |z|p is

Kurzweil-Henstock—Stieltjes integrable with respect to a nondecreasing function g.

Remark 3.2.2. Notice that condition[(F5)] is necessary in order to ensure that |z,
is a regulated function (Lemma . Thus, in this case, following the same arguments
used in the Remark[3.2.1) |20, |5 is Kurzweil-Henstock-Stieltjes integrable with respect
to a nondecreasing function g, whenever x: (—o0,ty + o] — R is such that |y, 19401

requlated and xy, € B.

We present a result concerning the existence of solutions of measure FDEs with

state—dependent delays.

Theorem 3.2.3. Let B < G((—o0,0],R") be a Banach space satisfying axioms
¢ € B and g: [to,tg + 0] — R be a nondecreasing function. If f: [to,to + o] x B —> R™
and p: [to,to + o] x B — R are functions that satisfy the properties then the
problem has a solution.

Proof. Let

A= {x € X:xy =¢and |z(t) — ¢(0) < f: M (s)dg(s) for all t € [tg,to + 0]} (3.5)

and define the operator I': A — X by

ot — to), if ¢ < to,
Tx(t) = t
£(to) + f F(5, 2penn)dgls), ifto<t<toto

to

We start by proving some statements about A, the operator I' and T'(A). Then, the
theorem will follow as a direct consequence of Theorem (Schauder Fixed Point
Theorem).
Statement 1: The set A is convex. In fact, given z,y € A, € (—0,0] and & € (0,1),

we have
€z + (1 =8y),, (0) = Ex(to + 6) + (1 = ylto + 0)

= gxto (9) + (1 - g)yto (0)
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For all t € [to,to + o], we get

[(€x + (1 =&)y) (t) = ¢0)] = [€x(t) + (1 = y(t) — £b(0) — (1 = E)o(0)]
< &fa(t) = o(0)] + (1= &) ly(t) — ¢(0)]

proving the Statement 1.
Statement 2: T'(A) = A. Indeed, for v € A, we have (T'z), (0) = (T'z) (to + 0) = ¢(0).

By [(F2)] we get
f M (s)dg(s

[T (t) = ¢(0)]] =
Statement 3: The set A is bounded and closed. Indeed, let (z,).en be a sequence in A

f f(s s T p(s) Ydg(s

for all t € [to, o + o], proving the Statement 2.

such that converges to z on ||-|; norm. Then, for all n € N, (z,,),, = ¢,
| (t) f M(s)dg(s) for all t € [to,to + ]

and
|2ty = Pllg = Tty — (Tn)to | 5

Sl@—an)ilpg+ supfa(u) = 2a(u)
ue[to,t0+0']

- 3.:6)
Thus, passing to limit when n — oo, we obtain zy, = ¢. By [(E2)] we have
|z(t) = 9(0)]] < x(t) — zn(®)] + [l2n (2) — ¢(0)]
<= t0) It =zl + [ Mo
0

<t — toks(t — to) sup (@ — 2a)(w)] + f M(s)dg(s)

Uue [to,t]

< sup ki(u) sup ks(u) |z — x|y —|—£ M (s)dg(s) (3.7)

u€l0,0] u€l0,0]
for all t € [to, to+ o] and for all n € N. If sup,e[g 5] k1(t) SUPye[o o] k3(u) > 0, then let € > 0
be arbitrary and ng € N be such that |z — z, | <e¢ (SUPue[O,a] k1 (1) SUD 0,01 /7<:3(u))_1 for
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all n = ng. By (3.7), we have
lz(t) — o(0)]| < e+ Jt M (s)dg(s) for all t € [to,to + o].
to
Since ¢ is arbitrary, we conclude that
() f M(s)dg(s) for all ¢ € [to, to + o], (3.9)

Clearly, (3.8) is true if sup,ep ) k1(¢)Supyepo01 k3(u) = 0. Thus, we obtain that A is
closed. Finally, by (3.8),

[2lx = lzwlg + sup fa(u)
u€lto,to+o]

<lols+  sup (fz(u) = 20)] + [4(0)])

[to to +o‘]

<lolg s [ M()g(e) + 1000

ue to to +U
to+o

< l¢ls + M(s)dg(s) + [[¢(0)].

to

Therefore, A is bounded and the statement is proved.

Statement 4: The operator I' is continuous. Firstly, given =,y € A and t € [to,to + o],

inequalities [(F'3)| and |[(F'4)| imply that

|(Tz —Ty) (

J f S, Tp( Sws) f(37yp(51ys))dg(5)

t
= J f(87 Q:p(s,xs)) + f(87 yp(sﬂrs)) - f(S, yp(s,:cs)) - f(S, yp(s,ys))dg(s)
to

t
< J f(S, CUp(S,acs)) - f(S Yo(s,as) dg
to

J f Sy Yp(s,as) f(sayp(s,ys))dg(s)

Ldg(s) + f Lo(s) [pls,22) — p(s,y)l dg(s).  (3.9)

By axiom and by inequalities and (3.9)), we have

t
< J L(s) | ps,00) = Yp(s.za)
to

Tz —Ty) (1)
< f L()ka(p(s, ) —t0)  sup (& — y)(u)] dgs) + f La(9) La(s) |« — 95 dg(s)

to u€[to,p(s,zs)] to
< f L(s)ks(p(s,22) — to) [ — ]y dg(s) + f o) Lafeba(s — ) sup [~ )] ()
< f (L(s) + L) Lalo) s hifu)d(o) ol (3.10)
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Therefore, by (3.10)),

[Pz~ Tyly = [(Cx = Ty), |y +  sup (T~ Ty)(w)]

UE [to,to -I—o’]

< LO ’ (L(s) + La(s)L3(s)) sup ks(u)dg(s) |z —yy,

0 UG[0,0’]
proving the continuity on || norm.
Statement 5: The set B = {f: [to,to + 0] = R™: f = I'%|[4;4040] for some z € A} is

relatively compact on G([to,to + o], R™). Indeed, for all ¢ € [to,to + o],

[Tz(®)] =

£(to) + f F(5. p(eny)dg ()

< [a(to)| +

Jt f(sv xp(sws))dg(s)

0

rt

< Jlz(to)| + [ M(s)dg(s)
Jig
rto+o

< [a(to)| + M (s)dg(s).

Jto

Furthermore,

ITx(u) — Ta(v)] =

" F (5. Ty da(s f £(5, Tpgnmy)dg ()

JM )dg(s

By Corollary [1.3.9 the function h(t) = St M (s)dg(s) is nondecreasing. In addition, both

to

functions K: [to,tp + o] — R and n: [0,00) — [0, 00) defined by

to
u

f(S Tp(s,as) dg

v

K(t)=h(t)+t, nt)=t

are increasing functions. Moreover, 7 is continuous and 7(0) = 0. By Theorem B
is relatively compact on G([to,to + o], R™).
Statement 6: We conclude that I" is completely continuous. In fact, let (z,)nen < A be

a bounded sequence on |||, norm and let ¢ € [to, to + o]. By axiom we obtain

lzn(®)] < Fr(t = t0) [ (2n)e] 5

< kit —to) (kfz(t = 10) [(Zn)o 5 + k3t —to) sup xn(U)>

u€e [to ,t]

u€l0,0] u€[0,0] u€[0,0] u€lto,to+o]

< sup ki(u) ( sup ko (w) [[(n)ils + sup ks(u)  sup IImn(u)>
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< Dlan]x,

where

D = max{ sup ki(u) sup ko(u), sup ki(u) sup k’g(U,)}

uel0,0] uel0,0] uel0,0] uel0,0]
This inequality proves that (z,,) restricted to the interval [to,to + o] is bounded on the
space G([to,to + o], R™). Consequently, by the last statement, there exists a subsequence
(@, )ken such that (I'(z,,))ken is convergent on |-, norm. If we denote its limit by v,

then the function §: (—o0,ty + o] — R™ given by

ot —ty), te (—oo,tp,
y(t), t € [to, to + o],

is well-defined and is such that

IT@n) = 9lx < I1T2n, = Yollg +  sup [(D(zn,) = 7)(u)]

u€lto,to+o]

< [@nte = @l + 1T (@n,) =yl
< P@n) = vl - (3.11)

Passing to limit when & — oo, we conclude that (I'(x,,)), converges to y on |-
norm. Since A is closed, y € A. We conclude that I' is completely continuous.

Finally, after all statements together with Theorem we conclude the desired
result. O

In what follows, we present a result which ensures the uniqueness of solutions of

B).

Theorem 3.2.4. Let B ¢ G((—0,0],R™) be a Banach space salisfying axioms [(E1)-
¢ € B and g: [ty,to + 0] = R be a nondecreasing and left—continuous function. If
f: [to,to+a]xB — R"™ and p: [to,to+0]| x B — R are functions that satisfy the properties
and L, Ly and L3 are regulated functions, then the problem (3.2) possesses a

unique solution on (—o0,tg + ol.

Proof. If x,y are solutions of (3.2)), then by following the same steps as in the proof of
Theorem we get

l+@) =y = [Tz —Ty) @]
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< J;.L<s> sup ks(u) sup [(z — y)(u)] dg(s) +

u€[0,0] u€lto,s]

i L Lo(s)Ls(s)ks(s —to) sup [(z —y)(w)] dg(s)

0 ue [to 78]

< J(L(S)+L2(S)L3(S)) sup ks(u) sup |[(z —y)(u)] dg(s).

to u€l0,0] u€(to,s]
Let ¢¥(v) = sup |z(u) —y(u)|. Since z,y are regulated functions, it follows that 1 is also
u€[to,v]

regulated, and thus, Kurzweil-Henstock—Stieltjes integrable with respect to the function

g. Therefore,

ww<£<u@+Lx@mwnsm>mwwwmm@

0 u€[0,0]
t
<K | wls)gls),

to

where
K= sup (L(u)+ Ly(u)L3(u)) sup ks(u).
u€lto,to+o] u€l0,0]

Applying Theorem [1.3.10, we get t(t) < 0. Since ¥(t) = 0 by definition, it follows the
desired result. O

3.2.1 Example

In this subsection, we exemplify three functions f, g and p and a phase space that
fit all the hypotheses of Theorem [3.2.3]

Let q: (—,0] — R be the function ¢(f) = e’ and choose the phase space
B = BG,((—,0],R) defined as in Example 3.1.1] Let T': (—o0,0] — R be a bounded
continuous function such that:
T(0)
q(0)

(b) {2, 1T(0)]g(6)d6 < .

is bounded.

(2)

(c) There exists a constant D > 0 such that S(ioo |T(0 —ty) —T(0 —t1)|df < Dlta — t4]

for all 0 < tl,tg.

Define the functions f: [0,00) x B — R and p: [0,00) x B — [0,00) by

—t

f(t,x) = cos*(t) J_OO T'(0) tanh(x(0))do, p(t,x) =t — f |T(0)| tanh(|z (6 — t)|)de.

—0
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It is immediate that for all x € X, the function ¢ — p(t,z;), t € [0, 0], is nondecreasing,

satisfies p(t, z¢) <t and 2,04, € B. In addition, by definition of p,

—S

p(s,y) = pls, x) = J T'(0)] (tanh(|y(6 — s)|) — tanh(|z(6 — s)])) df

—00
—2s

= J |T(u+ )| (tanh(|y(u)|) — tanh(|z(u)])) du (3.12)

—0Q0

By (8.12)), we have
o(s,y) — p(s, 2)| < f_w | T'(u + s)|| tanh([y(u)[) — tanh(|z(u)|)|du

< J |T(u + s)|Wg(u)du

<T@ [ gty - +ls

6<0
Now, since |tanh z| < 1 for all z € R and since there is constant C' > 0 such that

|T(6)|/q(#) < C for all § < 0, we get

o= [ B oo < [ oo -

for all (¢,z) € [0,00) x B. Additionally, if (¢, ), (s,y) € [0,00) x B, then

0

£t 2) — F(s,y) = cos?(t) f T(0) tanh(z(6))d0 — cos(s) f T(0) tanh(y(0))d0

—00

= cos?(t) JT(@)(tanh(z(@)) — tanh(y(0)))do

e}

+ (cos?(t) — cos?(s)) JT(Q) tanh(y(6))dé (3.13)

e}

In particular, for all x € X and all 0 < b < a < o,

f(t> QEa)—f(S, xb)

= cos*(t) JT(Q) (tanh(z(0 + a)) — tanh(x(6 + b)))do

T (cos?(t) — cos?(s)) f T(0) tanh(z(0 + b))do

—Q0

- ( j (T — a) — T(u — b)) tanh(z(u))du
+ Jb(T(u +b—a)—T(u))tanh(z(u + b))du + J; T (u) tanh(z(u + a))du)

+ (cos?(t) — cos*(s)) JT(Q) tanh(z (6 + b))dé. (3.14)

o8}
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By (8.13),

|7(0)]| tanh(x(6)) — tanh(y(6))|dd

o q(0)

<[ oy
| e -yl

Then,

ﬁfﬂam—f@w@

uz
<f Clla — yllsdls,

u1l

for all uy,up > 0, where C' = S(ioo |T(0)|q(0)dé. By (3.14), we obtain
0
f(svma) = Flscn)| < [ 7 a) = T H)ldu

+ f T (w+b—a)—T(u)|du + J |T(w)]| tanh(z(u + a))|du

b—a

< 2Dla — b| + Dla — b|,

where D = supy, |T(6)].

Therefore, all hypotheses of the Theorem [3.2.3] are satisfied for the case where the
function g: [0,0] — R is given by ¢(s) = s. The continuity of g is enough to conclude
that .

() = alto) + L F(5, 2penn)dg(s), € [torto + o],

xto = ¢7
has a unique solution.
Remark 3.2.5. Since the example above uses an abstract function T': (—o0,0] — R that

satisfies some assertions, the question of the existence of such a function arises. Indeed,

it is possible to verify that the function T(0) = e 10 answers positively this question.

3.3 Periodic averaging theorem

In this section, our goal is to prove a periodic averaging theorem for measure FDE
with state-dependent delays. This method plays an important role for investigating the
asymptotic behavior of the solutions. The classical results on periodic averaging principles

for ordinary differential equations ensures that, under certain conditions, the solution of
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nonlinear differential equations given by

2(t) = ef(t,x(t)) +g(s,z(t), ),

l.to = o,

(3.15)

where ¢ > 0 is a small parameter and f is T—periodic with respect to the first variable,

are close to the solutions of the autonomous differential equation

y'@) = efoly)),
Yo = Yo,

(3.16)

where

fon) =7 | rtsas

This type of result allows us to understand the asymptotic behavior of the solutions
of equation only knowing the information about the solutions of equation (3.16]),
which is much easier to deal with, since it is an autonomous equation.

It is worth mentioning that it is also possible to have a similar approach when the
function f is not periodic with respect to the first variable, but in this case, it is necessary

to calculate fy(y) as the following limit:

Therefore, in this case, one needs to ensure the right-hand side is well-defined and this
limit exists. This kind of averaging principle was extensively investigated by many au-
thors, including Jaroslav Kurzweil, see [38, [39 40}, 41] and the references therein.

In this work, we are interested to prove that the solutions of the measure FDE

with state—dependent delays

t

t
a(t) = z(0)+ sfo F(8,Zp(s.20.0))dR(8) + 82L 905, Tp(s,0.), €)AN(s), (3.17)
g = ¢7

where f is T—periodic with respect to the first variable, can be approximated by the

solutions of the autonomous FDE with state-dependent delays

y(t) = y(0)+e f FolUptoner)ds,

Yo = ¢7

(3.18)
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where

o) = 3 | s ans)

which is known as the average of f.

As explained before, the main advantage behind periodic averaging principle is
due to the fact that it allows us to investigate the behavior of the solutions of a very
complicated equation described by only investigating the solutions of a simpler
equation given by , which is autonomous and easier to deal with. In our case, our
equation (3.18) is a type of autonomous FDE which is much simpler compared to .
It does not involve measure, for instance.

Let ¢g > 0, L > 0, T" > 0. Consider that the functions f: [0,0) x B — R",
g: [0,00) x B x (0,g9] — R™ are bounded. Suppose h: [0,00) — R is a left—continuous
and nondecreasing function and let p: [0,0) x B x (0,£9] — [0, 0) be a function. Assume

that the following conditions are satisfied:

(G1) For all z € B, the following integrals

u u2
J f(s,x)dh(s) and J g(s,z,e)dh(s)
w1 u1
exist for all uy, up € [0,00) and € € (0, o] in the sense of Kurzweil-Henstock—Stieltjes.
(G2) Both p, f are T-periodic with respect to the first variable.

(G3) There exists a constant o > 0 such that h(t + T) — h(t) = « for all ¢ = 0.

(G4) There exists a constant C' > 0 such that

quw@—ﬂmmﬁ@

ul

<j‘CWx—deM@

uy

for all z,y € B and uy, us € [0, 0).

(G5) The integral
1 T
folw) = L F(s,)dh(s)

exists in the sense of Kurzweil-Henstock-Stieltjes for all = € B.

(G6) There exists a constant Cy > 0 such that

JWU@%wwum»M@

ul

< f Cy la — b| dh(s)

for all z € X, all a,b € [0,0] and all uy,uy € [0, ).
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(GT) For all € € (0,¢0] and all z € X, the function ¢t — p(t, x4, ¢), t € [0, o], is nondecreas-

ing, satisfies p(t, s, e) <t and @,(.4,,0) € B.
(G8) There exists a constant C3 > 0 such that
lp(t, xa,€) — p(t, xp, )| < eCsla — b
for all a,b€ [0,0], all t € [0,20), x € X and ¢ € (0,&q].

(G9) There exists a constant Cy > 0 such that

|p(8,y,€) - p(57$75)| < Cy ”y - xHB
for all s € [0,0), € € (0,50] and z,y € B.

Now, we are ready to prove our periodic averaging theorem for measure FDEs with
state—dependent delays. We follow some ideas from [42) Theorem 13]. It is the main result

of this section.

Theorem 3.3.1. Let ¢g > 0, B < G((—,0],R") be a Banach space satisfying azioms
¢ € B andh: [0,00) = R be a left—continuous nondecreasing function. Assume
that f:]0,00)xB — R™, g: [0,00)xBx(0,e0] = R™ are bounded functions and p: [0, 00) x
B — [0,00) is a function. Also, suppose that the properties are satisfied.

Finally, suppose that, for all € € (0, &0, the initial value problems

t

t
z(t) = x(O)—i—EL f(s,xp(s,xs,e>)dh(8)+€2£)Q(S’Ipws’f)’g)dh(s)’ (3.19)
g = Qb,

and

y(t) = y(O) + ‘C:J;) fO(yp(s,ys,s))dS

Yo = ¢7

(3.20)

have solutions x¢,y°: (—o0, L/e| — R", respectively. Then, there exists a J > 0 such that
the inequality
|lz=(t) =y ()| < Je (3.21)

holds for all t € (—oo, L/c]|, where X is the Banach space defined on (3.3)) with the norm

given by (3.4).

Proof. Since f and g are bounded functions, there exists M > 0 such that | f(¢,z)|| < M

and |[g(t,z,e)| < M for all z € B, t > 0 and € € (0,59]. We can assume without loss of
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generality that M is the same constant for both functions. Then, Theorem implies
that

il < 3 [ Man) < 3w - no) = o (3.22)

for all x € B. If 2° and y° are solutions of (3.19) and (3.20) respectively, then

|lz°(t) =y (O)llx = [(=® =y )ols + sup [2°(1) =y (D) = sup [2°(t) —y*(O)] (3.23)
te[0,L/e] te[0,L/e]

for all t € [0, L/e]. On the other hand, given t € [0, L/c], by the conditions
and Theorem we get

lz=(t) =y ()| =
t t t

= gJ f(8, Ths 22 oy )dR(s) + €2J 9(8, T 4c o), €)AR(s) — ef Jo(Y(s.pe.0))ds
0 0 0

+e

t
J f(87 y;(s,xf,s)) - f(57 yZ(s,yg,s))dh(S)

|[ (5025 ) — £, o) AA(S)
J f(s s Y. s))dh‘ f Jo( Yn(s,e ) )ds
. f C 2500y — Potoss iy dBL5) + 2 j Co (s, 25,€) — pls, o, )] dh(s)
J T (8, Yp(s.z.0))dR(s) J Jo(¥o(s e .2))ds

~t

<eC | ks(s) sup [z%(u) —y*(u)] dh(s )+50204J |75 = &l dh(s)

JO u€l0,s]

+ € + M (h(t) — h(0))

+ ?M (h(t) — h(0))

+&*M(h(t) — h(0))

t

seC kfs( ) sup [2°(u) =y (u)] dh(s) +60204J ka(s) sup [°(u) —y*(u)] dh(s)

u€l0,s] 0 u€l0,s]

J f S ypsy a))dh J fO yp(sy 5))ds

f F(52 s ge.0)IA(S) f FoWogs e o)dls| + €M (h(t) — h(0))

e(C+ 0204)J ka(s) sup [a°(u) —y*(u)| dh(s)

uel0,s]

+¢€ + &> M (h(t) — h(0)). (3.24)

J f S ypsy 6))dh J fO yp(sy 5))d5

Taking p as the largest integer such that pT’ < ¢, we have

‘J f(s yp(sy 8) )dh(s J Jol ypsys E))d

p T
s Z J; HT f(S’ y,i(s,yg,g)) B f(S’ y'i(s’yfifl)T»E))dh(S)
i1 1Y (i—
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P
+ 2,
i=1
p

T
Z J; fo(yZ(&y(Siil)T,g)) - fO (yf)(s,yg,s))ds

i—1)T

T

s
J; f(37 yfy(s,ya_l)T,a))dh(s) - L fo(yf)(s,ya_l)T,a))dS

i—1)T i—1)T

_l’_

dh J f(] ypsy ) (325)
For every i € {1,2,... ,p} and every s € [(i — 1)T,4T], we obtain
P || piT
Z J f(sa y;(s,yg,a)) _f(sv y;(s,yfi_l)T,a))dh(S)H
i=1 Y (=1)T
Zf( Culp(s.5.) = pls. sy =) dRC)
i=1 J(-1)T
Z 0203ej |s — 4T + T|dh(s)
—1)T
< 2 CoCsTe(h(iT) — h((i — 1)T))
i=1
= CQOgTOépé‘. (326)
Using this estimate and the fact that pT" < L/e, we get
Py (il
Z f T < S y;(s,yg,a)) - f(87y;(s,y(5iil)T,5))) dh(S) < 0203aL' (327)

On the other hand, notice that, for s € [(i — 1)T,iT], we have

1 (T . ]
i ‘TI (708 G = 03t 2B

0

Hfo(y[i(s,yg,é‘)) o fO (yz(syy(i-_l)pa)
1 (7T
<7 | Colrtoaie) - plonaf b
0
1 (T
< —J CoCsels — (i — )T'|dh(u)
T J
< CQCgEOé.

Therefore, it implies that

)

N

p T
J CQCgSCYdS
(

i=1Y(@—DT
< CgCg&OépT

J yp (s,y 6)) fo(y/i(s,yfi_l)T,a))dS

Zf

< CQCgOéL. (328)
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Since f is T—periodic in the first variable and by the definition of f,, we obtain

Pt iT
> f( )W) o T

(i—1)T
p
2
=1

Finally, we have

(87 y;(s,yfiil)T,e))dh(s) - fO(yZ(s,y(gil)T,e))TH = 0. (329)

t t
[ 16t s) = [ oty
pT T

J fsyp(sy 6) )dh(s J fol ypsys
< M(h(t) = h(pT)) + T(t —pT)

< M(h((p + 1)T) — h(pT)) + #T

= Ma+ Ma =2Ma. (3.30)

Combining inequalities (3.25)), (3.27), (3.28)), (3.29) and (3.30]), we get

styp(sys dh Jfoypsye

< 2Mo + CQCgOzL + CQC30(L

From inequalities (3.24)) and (3.31)), we get

|2(t) —y=(1)]

<e(C+ 0204)f0 ks(s) sup |y°(u) — 2°(u)| dh(s) + eK + 2 M (h(t) — h(0)),

u€l0,s]
where K = 2a(M + C5C3L). Since k3 is bounded, there exists K’ > 0 such that

sup ks3(s) < K'. Tt implies that
s€[0,t]

|25 (1) — 35 (t)| < e(C+ CoC)K' | sup [y (u) — 2°(u)| dh(s) + eK + M (h(t) — h(0)).

0 ue[0,s]

s ) o)
(]
[l o ()

H. C. bos REIS October 2020 Mat — UnB

Notice that

(‘f)



mailto: henrique.costa.reis@hotmail.com
http://www.mat.unb.br

62 Measure FDEs with unbounded state—-dependent delays

Hence, we have
¢ L
2 (t) — y° (t)| < eK"J sup |y (u) — 2% (u)||dh(s) + eK + eM (f + 50) a,
0 u€l0,s]

where K" = (C' + CoCy)K'. If ¢(s) = sup |z°(7) — y°(7)|, then

T€[0,s

b(t) < eK” Ltqp(s)dh(s) +eK +eM (% + 50) a.

By Theorem [1.3.10] we get

n L
P(t) < K RO-R0) (K + M (T + 50) a) ‘£

4 L
< e (#+e0)a (K + M (T + 5()) a) - E.

If we define J = &' (F+e0)a (K + M (% +¢) @), then we have ¢(t) < Je for every
e € (0,e0] and t € [0, L/e]. Therefore, in particular, for t € [0, L/¢],
[2°(t) =" (W) x = sup [2°(t) =y ()] = ¥(L/e) < Je
t€[0,L/e]

proving the desired result. O]

Remark 3.3.2. A careful examination in the proof of Theorem |3.5.1| reveals that it is

enough to require that conditions|(G4), [(G6), [(G8) and |(GI) hold on compact invervals

instead of unbounded intervals, since t € [0, L/z].
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CHAPTER 4

MEASURE FDES AND OTHER
TYPES OF EQUATIONS:
CORRESPONDENCES

In the article [21], M. Federson, J. G. Mesquita and A. Slavik proved that measure
FDESs and few others classes of differential equations can be related. One of theses relations

is a correspondence between

t
() = 2(to) + f F(s,2)dg(s), e [to.to + o], (4.1)
to
and the generalized ODE
dx
— = DF(t 4.2
7 (t,x), (4.2)

where f: [to,to + o] x Q@ — R™, Q < G ([-r,0],R"), z; the function x;: [-r,0] — R"
defined by z4(0) = z(t + ), r > 0 is fixed, the domain of F' is a subset of [ty,ty + o] X
G([—r,0],R") and its expression is given by

r07 66 [tO—T,to],
§
F(t,y)(€) = < f f(s,ys)dg(s), € € [to, 1], (4.3)

to

L F(s,9)dg(s), €€ [tato+ o],
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64 Measure FDEs and other types of equations: correspondences

With minor modifications on the domain of the functions f, z; and F, in [51], A. Slavik,
applying analogous techniques found in [21], proved a correspondence between and
for infinite delays. C. Gallegos, H. Henriquez, and J.G. Mesquita generalized Slavik’s
results in [27], obtaining a relation between the generalized ODE ({4.2)), where F is defined

on a suitable Banach space and has the expression

-

0, 5 € (—OO7t0]7

3
Pla)(©) = { | emads). €elt (0.4

L f(Sa yr(s))dg($)7 f € [t>t0 + 0_]7

and the measure FDE with time—dependent delays

z(t) = z(to) + L f(s,25)dg(s), tel[to,to+ 0],

where 7: [tg, to+0] — R is a nondecreasing function that satisfies (¢) < ¢ for all [to, to+0],
f:lto,to +0] xQ - R" Q< G((—0,0],R") and the segment x; is defined on (—o0, 0].

Those papers and theorems reveal how meaningful is the task to find a connection
between measure FDEs and other classes of differential equations. In this chapter, we
show correspondences between measure FDE with state dependent delays

xz(t) = xz(ty) + Jt J (8, Tps,0,))dg(s), te [to,to+ o], (45)

xto = ¢7

and many other categories of differential equations.

4.1 Measure FDEs and generalized ODEs

Once again, we consider the phase space B and the set
X = {z: (—0,tg + 0] > R" : 24, € B and |1, 4,+0] is regulated }

as defined in the proof of the Theorem In other words, B ¢ G((—o0,0],R") and X

are normed spaces equipped, respectively, with the norm |-/, and

lzlx = lzws+ sup Ja(u)]. (4.6)

u€lto,to+o]

Additionally, B satisfies the following axioms:
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Measure FDEs and generalized ODEs 65

(E1) B is complete.

(E2) ftge R, 0 > 0, y: (—o0,ty + o] — R™ is regulated on [tg,to + o] and vy, € B, then
there are locally bounded functions ki, ks, k3: [0, 00) — (0, 00), all independent of v,
to and o, such that the following conditions hold for every t € [to, to + o]:

(a) y € B.

(b) Tyl < k1t —to) |yl 5-

(©) [yells < Ka(t = to)|yeo |5 + ks(t —to) sup [y(w)].

u€lto,t]

(E3) Fort >0, let S(t): B — B be the operator defined as follows:

(S®p) (0) = p(07), —t<<0,

e(t+0), 0<—t.

Then, there is a continuous function k: [0,00) — (0, 00) such that £(0) = 0 and

[1SMels < (1 + k(1) [¢lg, forallpeB.

For functions x: (—o0,ty + o] = R", p: [to,to + o] x B = R, f: [to,to + o] x B —» R",

o >0, to € R, and a nondecreasing function g: [to, to+ 0] — R, we also recall assumptions

from Chapter 3:

(F1) Forall z € B, the integral stw f(s,x)dg(s) exists in the sense of Kurzweil-Henstock—
Stieltjes.

(F2) There exists a Kurzweil-Henstock—Stieltjes integrable function M : [to,tg+0] — RT
such that

| #(s,2)dg(s)

<£fﬂﬂ@dm@

whenever z € B and uy, uy € [to, to + o].

(F3) There exists a Kurzweil-Henstock—Stieltjes integrable function L: [to, o+ o] — R
such that

<JWL@HM—deﬂ@

ul

| " Flssa) = Fs)) dg(s)

ul

whenever z,y € B and wuy, uy € [to, to + o]
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66 Measure FDEs and other types of equations: correspondences

(F4) There exists a Kurzweil-Henstock—Stieltjes integrable function Lo: [to, to+0] — R
such that

< r Ly(s) |u — v| dg(s)

ul

| P ) — fls, ) dg(s)

ul

for every x € X and wuy, us, u,v € [to,to + 0.

(F5) For every x € X and uy, us, u, v € [to, to+ o], the function ¢t — p(t, z;), t € [to, to+ 0],

is nondecreasing, satisfies p(t,z;) <t and T,y 4, € B.

(F6) There exists a Kurzweil-Henstock—Stieltjes integrable function Ls: [to, to+0] — R
such that

u2

| 1pts.0) = ot )l dgt) < [ 2ats) o~ s dat)

(751 ui

for all uy,ug € [to,to + o] and all x,y € B.

In sequel, for any subset O of X, let us define the function F': [ty, g + o] x O —
G((—o0,tg + o, R") by

O, 5 € (—Oo,tg],

£
F(t,y)(€) = 5 Jt F(8: Yp(s.y)dg(s), & € [to, 1], (4.7)

J; f(57yp(s,y5))dg(8)7 5 € [tv to + U]‘

The next result describes a relation between the regularity of measure FDEs with state—
dependent delays and generalized ODEs. The proof is analogous to the one found in [27],

but we will repeat it here to show the particularities of the state—dependent delays.

Lemma 4.1.1. Let O < X and assume that are satisfied and f: [to, to + o] X
B — R, p: [to,to+ 0] x B— R and g: [to, to+ o] — R satisfy the conditions[(FI}H(F6)
If F: [to,to+ 0] x O = G((—0,tg+ o], R™) is a function defined in {{.7), then F belongs
to the class F([to,to + o] x O, h), where

h(t) = L (M (s) + (L(s) + La(s)Ls(s)) Ko)dg(s) (4.8)

0

and K, = max | sup k2(§), sup k3(§) |-
¢€[0,0] ¢e[0,0]
Proof. Since the integrand of the expression (4.8 is a positive function and ¢ is a nonde-

creasing function, Corollary implies that h is a nondecreasing function. Let y,z € O
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Measure FDEs and generalized ODEs 67

and s1, s9 € R be such that tg < s1 < s9 < tg+ 0. Since

-

07 g € (_00781]7

4
(F(s2,y) — F(s1,9)) (§) = 5 Ll F(8,Yp(s,w)dg(s), & € [s1, 2],

82
f F (5, Upon)dg(s), € € [0, 8 + 0],
\_vS1

by definition, we have that condition Theorem and Corollary imply that

|F(s2,y) = Fs1,9)x = sup [[(F(s2,9) = F(s1,9)) (] + | (F(s2,9) = Fs1,9))s, ] 5

Ee [to to +o']

= sup f f S Yp(s,ys) )dg( )
{G S1, 82

52

< | M()dg(s) < hs2) — hs1).

S1

By conditions we have

13
J F(85 Yp(spe)) — (85 2p(5,20))dg(8)

13
< j F(5 Upoy) — F(5: Zpagy)dg(s
S1

J f S, Zp(s,ys) f(svzp(s,zs))dg(s)

3
< [T 26 I — 200 409 + [ 1) o) ol 2l o) (49)

By axiom [(E2)] by condition and by inequality (4.9)), we get

f F(85 Yp(swe)) — (85 2p(5,20))dg(8)

\fu)(kz( (5,90) — o)y — Dualls + kalpls, ) — o) sup ||<y—z><u))dg<s>

u€e [t() 7p(57y5 )]

13
N f Lo(s)L(8) s — 2l dg(s)

S1

¢ 3
< J L(s)Koly — z|xdg(s) + J Ly(s)Ls(s) Kolly — 2] xdg(s). (4.10)

S1

By inequality (4.10) and Corollary [1.3.9] we conclude that

HF(SQay) - F(Slay) - F(SQ’Z) + F(Sh )HX = sup j f S yp(s Ys) ) f(sazp(s,zs))dg(s)

£els1,52]

13
< s f (L(5) + Lo(s) La(5)) Kodg(s) |y — 2]x

56[81 ,52

< f M (s) + (L(5) + La(s)La(s)) ) dg(s) Ly — =l

1

= (h(s2) = h(s1)) |y — 2] x,
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68 Measure FDEs and other types of equations: correspondences

which completes the proof. O

The next lemma establishes an important property of the solutions of the gener-
alized ODEs. Since its proof follows analogously to the one found in [51], we will omit it

here.

Lemma 4.1.2. Assume that O < X, are satisfied, ¢ € B, and that F': O X
[to, to+0| — X is the function given by ([{.7). Assume further that f: [ty,to+0]xB — R™,

p: [tosto + 0] x B > R and g: [to,to + o] — R satisfy the conditions [(F1J{(F6) If
x: [to, to + o] — O is a solution of the generalized ODE

dx
— = DF(t, ). 4.11
= DF(1,1) (411)

on the interval [to, to + o] and z(ty) is a function which is constant on [to,to + o, then

z(v)(§) = z(v)(v), to<v<E<ty+o,

(©)(€), to<E<v<ty+o.

8
N
4
N—
oun)
78 Y
N—’
|
&

Next, we will define an important property of subsets of X that will allow us to
obtain a well-defined correspondence between solutions of (4.5)) and solutions of (4.11]).

See [21] for instance.

Definition 4.1.3. Let I < R be an interval, to € I and O be a set whose elements are
functions f: I — R™. We say that O has the prolongation property for t > ty if for
every y € O and every t € I N [ty,0), the function §: I — R™ given by

y(s), se (ol
y(t), selt,o)nl,
is an element of O.

The next two theorems establish a relation between solutions of measure FDEs

with state-dependent delay and generalized ODEs.

Theorem 4.1.4. Let O be a subset of X having the prolongation property for t = tg.
Assume that are satisfied, ¢ € B, and that F: [to,to + 0] x O — X is the
Junction given by (4.7). Assume further that f: [to, to+0]|xB — R™, p: [to, to+0|xB —> R
and g: [to, to + o] = R satisfy the conditions [([FUH(F6) If y € O is a solution of the
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Measure FDEs and generalized ODEs 69

equation (4.5)), then the function x: [ty,ty + o] — O given by

) € (—o0, 1],
2(6)(E) = y(&), &€ (-0, (1)

y(t), &€t to+ o],

is a solution of the generalized ODE (4.11)) on the interval [to,to + o).

Proof. Let € > 0 be fixed and consider the function g: [to, %o + o] — [0, 0) defined by

1) = j M (s)dg(s)

Since ¢ is nondecreasing (Corollary , there exists only a finite number of points
{t1,....tm} < [to,v] such that A*q(ty) = € for all k € {1,...,m} (|44, Theorem 4.1.7]).
Now, choose a gauge 0: [to,to + 0] — R* such that

(i) 6(r) < min {M},Te[tg,toJra],

2<k<m 2

(ii) o(7) < min {|7 —tg|}, 7 € [to, to + o \{t1,. .., tm}

1<ksm
These conditions imply that, if a point-interval pair (7, [c, d]) satisfies [¢, d] < (7—6(7), 7+
d(7)), then [, d] contains at most one of the points ¢y, ..., t,. Moreover, 7 = t; whenever

ty € [c,d]. From (4.12) and Theorem [L.3.11} yi, = z(tk)uys Yp(trwe,) = T(Ek) p(trpe,)» this

implies the following equalities:

t

lim | Lo(s) La(s)ys — w(tn)sdg(s) = La(te) La(te)ye, — x(tr)e, [8A7g(tk) = 0

t%tz th

and

t
Hm | L(S)Yp(s,pe) — (k) p(se)

5dg(s) = LI Yottew,) — () pttswe) 8D T g(tk) = 0

t—t Ji,
for all ke {1,...,m}. In consequence, we may choose a gauge 0 in such a way that
te+0(tk) e
L La(8)Ls(s)lys — w(te)sledg(s) < ==, ke{l,....m},
and

| EO e = 2O Ioda(s) < o5 b (L,

k

By [(F2)l we have

ly(m +8) —y(n)| =

J F(8,Yp(s,p0))dg (s f M(s)dg(s) < q(t +t) — q(7),
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70 Measure FDEs and other types of equations: correspondences

which implies
ly(7™) —y(7)|| < ATq(r) <&, 7€ [to,to+\{t1,--.,tm}

Thus, we can select the gauge ¢ such that

ly(p) —y(T)] < e (4.13)

for all 7 € [to,to + o|\{t1,...,tm} and p € [1,7 + §(7)).
Let {(7i, [si_1,si])}!_; be a dfine tagged division of [ty,v]. By relations (4.7) and
(4.12) and from the fact that y is a solution of the problem (4.5, we obtain

-

07 f € (_00751'71]7

3
((s:) — 2(s5i-1))(§) = 1 J F(8,Yp(s.w)dg(s), & € [si1, i,

Si—1

| # s, el

L sio1
and
(O, £ e (—w0,8 1],
(F(si, () — F(si_1, 2(m))) (&) = 51 f(s,2(T) p(s.a(r)))dg(s), € € [sio1, i),
(o ale). €€ )
for all i € {1,...,1}. The combination of both expressions give us
(@(si)—x(si1) — F(si,2(7)) — F(si-1, 2(7)))(€)
r07 €€ (-0, s8-1],
= Lf 1 f(svyp(s,ys)) - f(sv'T(Ti)p(s,x(n)s))dg(s)a §elsiin, s,
| B T R O N

LY si-1

Consequently,

|z(si) — @(si1) — F(si,2(7:)) — F(si-1, (7))l x

3
| 760 = Fs. 0@ ar o) (119

= sup
&e[si—1,84]
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By " if s <7, then z(7;)s = ys, 2(7 )p(s ys) — Yp(s,ys) and

§
J’ f(svyp(s,ys f(S x(Tz)p(s z(Ti)s )dg( )

3 €
f(S, yp(s,ys)) - f(S, x(Ti)p(s,ys))dg(S) + f(S, $(Ti)p(s7ys)) - f(87 x(Ti)p(s,x(n)s))dg(s)

Si—1 Si—1

3
= J.f(sayp(s,ys ) — f(s, I(TZ)p(s Ys) )dg(s ff s, 1(7;) p(s, ys)) - f(Svx(Ti)p(s,w(n)s))dg(s)-

The last equality together with conditions [(F3)| [(F4)|and |(F6)| imply
£

f(S, yp(s,ys)) f(S x(Tz)p(s 2(7)s) )dg(s)

Si—1

3 3
< | Lt = 2Dt loda(s) + [ Lalo)lolo. ) = pls (7)) ldg(s)

Ti Ti

() + | 2at6)
¢ ¢
< | LMy = 2 sdg(s) + | Lalo)Lals) I = o)l pdols): (415)

Given a particular point—interval pair (7;, [s;_1, s;]), there are two possibilities:

(a) The intersection between [s; 1, s;] and {ti, ..., t,} contains a single point ¢;. In this

case, it follows from condition (ii) at the beginning of this proof that t; = 7;.
(b) The intersection between [s; 1,s;] and {¢,...,t,} is empty.

If [(a)| happens, then from the construction of the gauge 4, we get

S c
| Bl ) < 1 (4.16)
and
Si c
| 2ty = 2 lelals) < -5 (117)

From relations (4.14), (4.15) (4.16) and (4.17), it follows that

3

Ja(se) = (s:-1) = Fsi, 2(7)) = Flsin,2(m) |y < 5

Assume now case [(b)] and let s € [7, s;]. If p(s,ys) € [T, si], then

lys =2(mi)sls < kals = to)lyse = 2(Ti)iolls + Ks(s = to) Sup [y = (7)) (]

< Ko sup [y(€) —y(n)]
&elri,s]

< K,e (4.18)
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and

Hyp(s,ys)_m(Ti)p(s,ys) B

< ka(p(s,9s) — to) |y, — 2(Ti)tolls + Ea(p(s, ys) — to) sup | (y — 2(7:))(§)]
&€elto,p(s,ys)]

<K, sup  |y(€) —y(n)|
&elri,p(s,ys)]

< Koe, (4.19)

where (4.18) and (4.19)) follow from (4.13). On the other hand, if p(s,ys) < 7, then
5 =0 by (4.12). Thus,

f  La(s)Las) e — 20 lg(s) < Koz f  La(s) Ls(s)dg(s) (4.20)

Ti Ti

”yp(s,ys) - x(Ti)p(&ys)

by (4.18) and

| 2y = 2 olladsts) < Ko [ Lis)g(s (421)

i Ty

by (4.19). Relations (4.14]), (4.15) and the inequalities (4.20) and (4.21)) imply that

|lz(si) — (si1) — F(si,x(73)) — F(si-1,2(7:))|lx < Kofff (La(s)Ls(s) + L(s))dg(s).

Ti
Combining cases [(a)| and [(b)| and using the fact that case [(a)] occurs at most 2m times, it

follows that
l

2(v) — 2(to) = Y F(si, 2(7)) = F(si—1, 2(3))

i=1

X

o 2m + 1

<c <Kg L N La(9)La(s) + L(s))dgs) + 1) |

0

By definition of Kurzweil integral, f DF(x(7),t) exists and
to

2(0) — (ko) = f DF(x(r), 1)
to
for all v € [tg, to + o], which completes the proof. ]

Theorem 4.1.5. Let O be a subset of X having the prolongation property for t = t.
Assume that are satisfied, ¢ € B, and that F: O x [to,tg + 0] — X is the
Junction given by (4.7). Assume further that f: [to, to+0]|xB — R™, p: [to, to+0|xB — R
and g: [to, to+ 0| — R satisfy the conditions[(F1H(F6) If x: [to,to+0] — O is a solution
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of the generalized ODE on the interval [to,to + o] with the initial condition

¢ —t ) § - 7t )

(to)(§) = E ) szt (4.22)
¢(0)7 fe [t07t0+a]7

then the function y € O defined by

y(g) _ :l?(to)(f), §€ (_Oo7t0]7 <4.23)

2(§)(€), €€ lto,to + 0],

18 a solution of the measure FDE with state—dependent delay .

Proof. The equality y;, = ¢ follows directly from the definition of y and x (). It remains
to prove that

y(v) = y(to) = f " F (5, o)A (s)

for all v € [ty, ty + o]. By Lemma we obtain

y(v) —y(to) = x(v)(v) — z(ty)(to) = xz(v)(v) — x(to)( (J DF(t,z(r ) (v). (4.24)

Let € > 0 be fixed. By Lemma since the conditions are satisfied, F'
belongs to the class F([to, to + o] x O, h), where h is a nondecreasing function given by
(4.8). Now, we can argue as in the proof of Theorem [4.1.4] m to get that there exists a finite
quantity of points t1,..., ¢, in [to,v] such that A*h(ty) = €. Also, in the same way as

before, we can find a gauge §: [to,to + o] — (0,00) that satisfies the following conditions:

(i) 0(7) < min {%}, T € [to, to + o],

2<k<m

(i) o(7) < 1£I;1gm {7 —tel}, 7€t to+\{t1,. . tm}

te+0(tr) £

) | O it~ e s d00e) < g ke ()
tp+0(tn) e

) [ L ale) I~ ) o(s) < T ke (Lm),

(v) |h(u) = h(T)|| < e, 7TE€/[to,to+ a\{t1,... . tm},ue[r,7+(7)).

Let {(7;, [si 1,5:])}'_, be a 6-fine tagged division of [to, v] such that

l

f DF(t,a(r)) = Y Flsi, (7)) = Fls; 1, 2(7))

i=1

<e. (4.25)

X
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By equality (4.24]), we obtain

) - st - (st

‘(JDF“” >) ff(syp@ys)dg()

4(] D)) 0 Z (7)) — Flserna(m)) (0

*-;W@mm»—ﬂahﬂ ffS%mg@m (1.26)
Axiom (a), (b) and inequalities (4.25) and (4.26) imply that
1) = ot = [ 510
< ki (v —to) U DF(t,x(r ) (i (si, 2(73)) F(si_l,x(n))> B
+ ;<F<si,x(n>>—F<sz Lo (r) j £(5. Yoo )dg(s)
Z i, 0(7)) = Flsi1,2(r) f F(5Upea)dg(s)|  (4.20)

where C, = sup k(). Also, by the definition of F', we have
£e[0,0]

(Flos(m)) = Floion, o) @) = | F(600()tantrdo(s)

which implies

(F(s7) = Pl )= [ oot
- 105, 0T potry) = (5 Ypton)d ()
< F(5, 2T potrny) = F(5,2(7) o) (5
" 105, 0T nton) = F(5, Upto) A9 ()
< | Bt o = s o) + | 26) e~ |y dote). (429

where we employ the conditions |(F3)] [(F4)[and |(F6)[in (4.28)). By Lemma we get,

for all € < 0, the following equalities:
(a) If s € [s;_1, 7], then

(i) ps.y) (0) = 2(73) (p(8, ys) + 0) = 2(p(s,ys) + 0)(p(s,ys) + 0)
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= y(p(5,Ys) + ) = Yp(s..)(0)
(b) If s € [, s;], then

2(8i)p(s.n) (0) = (1) (p(s,ys) + 0) = x(p(s,ys) + 0)(p(s,ys) +0)

= y(p(S, ys) + 0) = yp(s,ys)(e)‘

In other words,

x(Ti)p(s,ys)v S€ [Si—la Ti]a
yp(&ys) = (429)

T(8i)p(s.ys)s S € [Ty 81l

and analogously, we can show

x(Ti)Sa S € [Si—177—i]

Ys = (430)
x(8i)s, S€ [1,8i]

Relations (4.28), (4.29) and (4.30) imply that

(Fa() = Floona) 0= [ Fsuieniate
< | La(o)La) (). ~ vl da(s) + f L) [Tty = ot d9(5). (431)
We distinguish two cases:
(a) The intersection of [s; 1,s;] and {¢1,...,t,} contains a single point ¢, = 7.
(b) The intersection of [s; 1,s;| and {t1,...,t,} is empty.
If [(a)| happens, then from the definition of § and (iv), we have
| L) a5 e — s o) <
and by (iii), it follows that
Si c
These two inequalities together with (4.31)) imply
5
(Pl = Flsna) )= [ ool < -

We now consider the case [(b)] It follows from the definition of F' and from the fact that
x is a solution of (4.5)), the following equality that x(s;)(§) — x(7)(§) = 0, £ € (—o0, to].
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Using Lemma [1.3.16| and axiom for s € [7;, s;], we obtain the estimate

|2(s1)s= @(7i)s]p < kals = to)l|2(5:)1 = 2(Ti)uo |5 + ks(s = to) sup [(a(s:) — 2(7:))(E)]

€elto,s]
< Kolw(si) —2(m)|x
< Ko (h(si) = h(7))
< Koe, (4.32)

where (4.32)) follows from (v). Also, the same way as before, we get

Hx(si)p(s,ys) - z(Ti)p(s,ys) B

< ka(p(s,ys) — to)|2(si)tg — 2(Ti)uo |5 + Ka(p(s, ys) — to) e |(x(si) — (7)) ()]
< Kollz(si) — (1) || x < Kyo(h(s;) — h(m)) < K,e.

Consequently,

(Fsatm) = Flosalm) 0 - ()

Si

< fi La(s)Ls(s) |x(7i)s — 2(8:)s]lg dg(s) + J L(s) [2(mi)ptsan) = @(55) e

Ti Ti

5 d9(s)

< i ([ a91a(6) 4 090909) )

Combining the cases [(a)| and [(b)] as well as by using the fact that the case [(a)] occurs at

most 2m times, we obtain

l
i=1

Fsua(m)~Flsimrva(m) = [ (5. 3p000)d0(9

<e (Ka L:W Lo(s)L(s) + L(s)dg(s) + 5 ni”l 1) (1.33)

and replacing (4.33) in (4.27)), we get
) = 00) = [ o))
to

<e(eam k. | :W(LQ(s)Lg(s) + L)) +1)

which completes the proof. ]
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4.2 Functional dynamic equations on time scales

In this section, we will describe a correspondence between functional dynamic
equations on time scales with state—dependent delays and measure FDEs with state—
dependent delays. Recall from the Chapter 1 that for a given real number t < sup T, we
have defined

t* =inf{se T: s > t}.

We also define

T (—o0, sup T, if supT < oo,

(—o0, 0), otherwise.

Finally, recall the extension f*: T* — R" of a given function f: T — R" by

fr@t) = f(t*), teT

The same way, we can define f*: T* x B — R" as the extension of a given function
f: T xB—R"by
fr(t,x) = f(t*,z), teT" and z € B.

To have a satisfactory framework for functional dynamic equation with state—
dependent delays on time scales, the function p will have domain T x B and takes values

in T. Besides, we need to extend both functions p and z. Therefore,
T (14,) TEANS (2%) px (t.20) 5

and consequently,

* Lk
Lpt(tae) = Lp(t* )"

From this, we can determine a correspondence between measure FDEs with state—dependent
delays and functional dynamic equations with state—dependent delays on time scales, since
x;(t*jxt*) contains the same information as x,( ,,). Notice that m:(t*ﬂ:t*) can be regarded
as an extension of x, ,,) because it is defined in the whole interval (—oo, 0].

The next result shows that it is possible to translate all results from measure
FDEs with state—dependent delays to functional dynamic equations on time scales with

state—dependent delays. Some ideas of its proof are inspired in [21].

Theorem 4.2.1. Let (—o0,ty + o|r be a time scale interval, to € T, f: [to,to + o] X
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B - R ¢eBandp: T x B — T. Define g(s) = s* for every s € [to,to + o]. If
x: (—00,tg + o]t = R™ is a solution of the functional dynamic equation on time scales

with state—dependent delays

o2 (t) = f(t, iy n)s tE[toto+ o],

(4.34)
z(t) = o(b), t € (=00, to]r,
then x*: (—o0,ty + o] — R™ satisfies
r*(t) = z*(ty) J f(s, 255 02)) dg(s), t € [to,to + o], (435)
xfo = ¢t0'

Conversely, if y: (—o0,ty + o] — O is a solution of the measure functional differential

equation with state—dependent delays

t
y(t) = y(t()) + f f(5*7yp(s*,ys*)) dg(S), te [t()a tO + 0]7
to

Yto = ¢:0>
then y = x*, where x: (—o0,ty + o]y — R™ satisfies (4.34).
Proof. It x: (—o0,t + o]y — R™ satisfies (£.34)), then

t) = x(to) J f(s, psz As, te |ty to+ olr.

By Theorem

2 = 2 (1) + f 1 (5,07 e dg(s), te [to,to+ 0],

0

It implies that

¢
r*(t) = 2*(to) + J F(s™, @ o2 1) dg(s), € [to, to + 0]
to s

Since f(s*,xp( .t )) f(s, STty ) for every s € T, we apply Theorem [1.4.15 to achieve
sk

that
t
x*(t) = x*(to) + J f(s, 25 %) dg(s), t€ [to,to+ o]
to

Thus, for y = 2*, we conclude that
t

t) = 9(t0) + [ S0 d9(5). €t + o],
to

which is a solution of (4.35]).

Reciprocally, assume that y satisfies (4.35]). Since g is constant on every interval
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(cr, B], where f € T and a = sup{r € T: 7 < S}, y inherits the same property and it
follows that y = x* for some x: (—0,ty + o|r — O. Using all previous arguments, we

conclude that x satisfies (4.34). O

4.3 Impulsive measure FDEs

In this section, we will show that impulsive measure FDEs with state-dependent
delays with pre-assigned moments of impulses are a special case of measure FDEs with
state—dependent delays. In other words, we wil show that it is possible to investigate
impulsive measure FDEs with state—dependent delays by using these equations without
impulses. To prove all results of this section, we use some ideas from [20].

Let us consider the following type of impulsive measure FDEs with state-dependent

delays:

z(v) —x(u) = J f(5,%p(52,)) dg(s), whenever u,v € Jj for some k € {0,...,m},

ATa(ty) = L(z(ty), kef{l,....m}, (4.36)
Tty = ¢,
where tg < t; < ... <t,, < ty+o are the moments of impulses, I,: R* > R", k=1,...,m

are the operators of impulses, Jy = [to,t1], Jx = (tx,tgs1] for k € {1,...,m — 1}, and
Jm = (tm,to + o]. Here, we are assuming that the integral in the right—hand side of the
first equality in exists in the sense of Kurzweil-Henstock—Stieltjes and the function
g is nondecreasing and left—continuous. By the properties of this type of integral, the value
of the integral §° f(s, Zy(sz,)) dg(s), where u,v € Ji, does not change if we replace g by a
function g such that g — g is a constant function on J;. The same way as in [20], this fact
allows us to suppose, without loss of generality, that g is such that A*g(¢x) = 0 for every
ke {1,...,m}. From this property and using the fact that g is a left—continuous function,
we conclude that g is continuous at ¢4, .. ., t,, and thus, function t — SEO f(8,p(5,20)) dg(s)
is continuous at tq,...,t,. In other words, we can have the following formulation for our

problem
z(t) = x(ty) —I—L f (8, p(s,2,)) dg(s) + Z Ie(x(ty)), te€[to,to+ o], (4.37)

Tty = ¢
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Notice that if g(s) = s, then equation (4.37)) is the classical impulsive functional
differential equation with state—dependent delays which was investigated by many authors
(see |2, B, 11, 14] and the references therein), showing consistency and relation between
both equations.

The following lemma will be employed as an auxiliary tool to obtain, in the sub-

sequent theorem, the correspondence mentioned in the beginning of this section.

Lemma 4.3.1 (|20, Lemma 2.4]). Letme N, a < t; <ty <--- <t, <b. Consider a pair
of functions f,g: [a,b] — R, where g is requlated, left-continuous on |a,b] and continuous
at t1, ..., tm. Let f,: la,b] = R be such that f(t) = f(t) for every t € [a,b]\{t1,...,tm}
and g — g is constant on each of the intervals [a,t1], (t1,t2], ..., (tme1,tm], (tm,b]. Then,
the integral SZ fdg exists if and only if the integral SZ fdg exists. In this case, we have

b b R

[ Fag=[rage 3 Fewats.
a @ ke{l,...,m},
tr<b

Theorem 4.3.2. Let m e N, to < t; < - < t, < tg+o, I,...,I,: R - R",
[ [to,to+o]xB — R™. Assume that g: [to, to+0] — R is a regqulated and left—continuous

function which is continuous at ty, ..., t,,. For every y € B, define

_ ft,y), telto,to+a\{tr, .. . tm},

flty) =
I(y(0)), t =ty for someke{l,...,m}.
Moreover, let c1,. .., cm € R be constants such that the function §: [to,to + 0] = R given
by
.
g(t), t € [to, 1],

G(t) = g(t) + ¢, te (tr tpsr] for some ke {l,...,m—1},

g(t) + ¢y t€ (tm,to+ 0]

\
satisfies At g(ty) = 1 for every k€ {1,...,m}. Also, suppose that p: [to,to + 0] x B—> R
satisfies p(ty,xy,) = tx, for each k € {1,...,m}. Then, v € G((—w,ty + o],R") is a

solution of

z(t) = x(to) —i—L J (8, Tp(s0)) dg(s) + Z I(z(ty)), te [to,to+ o], (4.38)

ke{17"'7m}7
tr <t

Ty = ¢
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of and only of

t
o) = alto) + | Fspe)d35), tE ltoto + ) (4.3
to
xto = gb
Proof. According to Lemma [4.3.1] and by hypotheses, we have
t N rt N
J f(37 xﬂ(svfs)) dg(s) = f(s7 xp(S,Is)) dg(s) + Z f(tkv xp(tkamtk))A+g(tk)
to Jto ke{l,...,m},
tr <t
rt 5
= f(S, ‘TP(S,%)) dg(S) + Z f(tkv :L'tk)AJrg(tk)
Jto ke{1,....m},
tr <t
rt
= f(samp(s,xs)) dg(s) + Z I (z(tr)),
vto kefl,...,m},
t <t
proving the desired result. O]

The proof of the next result follows similarly to [I] and [20] and thus, we omit it

here.

Theorem 4.3.3. Let m e N, to < t; < - < t, < tg+o, I,...,I,: R" - R",
f: lto,to + o] x B — R™. Assume that g: [to,to + 0] — R is a nondecreasing and left—

continuous function. Let f: [to,to + o] x B — R™ be an arbitrary function. Define, for

every y € B,

~ f(t7y)7 te [t07t0+0]\{t17"'7tm}7

flty) =

I(y(0)), t =ty for some ke {l,... ,m}.
Moreover, let cq,. .., cm € R be constants such that the function g: [to,to + 0] = R given
by
.
g(t), te [to,tl],

G(t) = g(t) + e, te (tr tpsa] for some ke {l,...,m—1},

g(t) + ¢y, t € (tm,to + 0]

\
satisfies AT g(ty) = 1 for every k € {1,...,m}. Also, suppose that p: [to,to + 0] x B> R
satisfies p(ty, xy, ) = ti, for each k€ {1,...,m}. Then, the following statements hold:

(i) The function g is nondecreasing and left—continuous.

(11) If the Kurzweil-Henstock—Stieltjes integral SZ? f (8, Tp(s,e,))dg(s) exists for every x €
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X and every uj,us € [to,to + o], then the Kurzweil-Henstock—Stieltjes integral

SZ? (s, Tp(s,e,))AG(8) also ewists.

(111) If there exists a Kurzweil-Henstock=Stieltjes integrable function M: [to,to + o] —
R* such that

L £(s,2)dg(s)

<| My(5)dg(s)

for all x € B and uy,uy € [tg, to+ o], then there exists a Kurzweil-Henstock—Stieltjes

integrable function M: [ty,to + o] — RT such that

£ F(s,2)d5(s)

U2
< | aes)agts
for all x € B and all uy,us € [ty to + ol.

(iv) If there exists a Kurzweil-Henstock-Stieltjes integrable function Ly : [to, to+0o] — RT
such that

gJMLﬂﬁx—yM@@)

u1l

f (s, ) — F(s,9)dgs)

u1

for all x,y € B and uy,uy € [to,to + 0|, then there exists a Kurzweil-Henstock—

Stieltjes integrable function L: [tg,to + o] = R such that

gwa@)x—ﬂwﬁ@)

ul

| " (Fls,a) — Fs,9)dis)

u1

for all x,y € B and all uy,uy € [to, tg + 0.

(v) If there exists a Kurzweil-Henstock—Stieltjes integrable function Li: [to, to+0] — R
such that

<szﬂﬁm—y3®®)

u1

[ 10650 = s, lagts

ul

for all x,y € B and uy,uy € [to,to + |, then there exists a Kurzweil-Henstock—

Stieltjes integrable function L: [ty ty + o] — RT such that

<Jm£@mx—me@)

ul

| s, 2) — pls,)ldd(s)

41

for all x,y € B and all uy,us € [to, to + o].

Remark 4.3.4. It is worth mentioning that if p is a function satisfying the condition
then if we change the definition of p at ty for each k =1,... ,m in order to satisfy
p(te, 1, ) = tx, we obtain that p keeps satisfying the condition . This fact ensures
that the last part of the previous result could be extended for a p which can be changed at
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(i, ze,,) directly.

4.4 Local existence and uniqueness

Here, we illustrate how the correspondence presented in Section 4.1 and a known
fact for generalized ODEs can lead to a local existence and uniqueness of solutions for
measure FDEs with state-dependent delays.

The following existence—uniqueness theorem for generalized ODEs can be found in

[22, Theorem 2.16].

Theorem 4.4.1. Assume that X is a Banach space, O < X is an open set and F': [to, to+
o] x O — X belongs to the class F([to, to + o] x O, h), where h: [ty,to+ 0] — R is a left—
continuous nondecreasing function. If xo € O is such that xo + F(t$,z0) — F(to, o) € O,
then there exists a 6 > 0 and a function x: [ty,tg + 6] — X which is the unique solution

of the generalized ordinary differential equation

dx

— = DF(t,x), x(ty) = xo.

= DF(te), wlto) =

In what follows, we provide an existence and uniqueness theorem for measure

functional differential equations with state—dependent delays.

Theorem 4.4.2. Let X be the Banach space given by (4.6), B be the phase space that
satisfies the axioms o€ B and O < X be an open subset having the prolonga-

tion property for t = to. Assume that g: [to,to + o] — R is left-continuous nondecreasing

function, f: [to,to + o] x B — R™ and p: [to,to + o] x B — R satisfy the conditions

and z: (—o0,tg + o] — R™ is the function

(1) = ot — to), t € (—o0,to],
¢(0) + f(th @)A+g(t0)> te (th tO + 0]7

in O, where ¢ is defined by p(0) = ¢(0 + p(to, d) — to), 0 € (—o0,0]. Then, there exist
B > 0 and a function y: (—o0,tg + ] — R™ which is the unique solution of the initial
value problem
t
() = alty) + J F(5s 2pemn)dg(s), € [tosto + 0],
to

Tyy = Qb

(4.40)

on (—oo,ty + f].

H. C. bos REIS October 2020 Mat — UnB


mailto: henrique.costa.reis@hotmail.com
http://www.mat.unb.br

84 Measure FDEs and other types of equations: correspondences

Proof. Lemma[4.1.1]shows that F': [tg, tg+ 0] x O — G((—w0,ty+ 0], R") defined by
belongs to F([to,to + o] x O, h), where h is given by (4.8). Let zo = x(ty) defined by
([£.22). We will prove that zo + F(tj,x0) — F(to,z9) € O. Firstly, it is straightforward
that F(to,7¢) = 0. Secondly, the limit F(t;, o), taken with respect to the supremum

norm, exists since F' is a regulated function with respect to the first variable. Lastly, by

definition of F' and by Theorem [1.3.11

07 5 € (_Oo7t0]7

f(to, ©)A%g(to), &€ (to,t0 + 0.

F(tg, z0)(§) =

Therefore, by hypotheses, it follows that zq + F(tJ, zo) — F(to, 7o) € O. Consequently, all
hypotheses of Theorem [4.4.1] are satisfied, which implies the existence of a number 5 > 0
and a unique solution x: [to,to + f] — X of the generalized ODE

W DRtL), a(ty) = 0.
dr

If we define the function y: (—o0,ty + ] — R" by
z(to)(€), &€ (—o0,10];
z(§)(€), &€ [to o+ f].

Theorem guarantees that y is the unique solution of initial value problem (4.40) on
(—OO, to + ﬂ] Il

y(€) =

Remark 4.4.3. It is also possible to prove local existence and uniqueness of solutions for
impulsive measure FDEs with state—dependent delays and functional dynamic equations
with state—dependent delays, by means of the correspondences previously presented, but
we omit these results here, since they follow directly by the application of the respectives

COT’T‘GSpOTLdG’TLC@S.

4.5 Continuous Dependence on Parameters

In this section, our goal is to prove results on continuous dependence on parameters
for measure FDEs with state-dependent delays, via, once more, the correspondence pre-
sented in Section 4.1 and another known fact for generalized ODEs. We begin presenting
a continuous dependence on parameters for generalized ODE which can be found in [24]

Theorem 2.4 for the case Y = R". Nonetheless, a version for an arbitrary Banach space
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follows similarly.

Theorem 4.5.1. Let Y be a Banach space, O < Y be an open subset and hy.: [a,b] — R,
k e N, be a sequence of nondecreasing left—continuous functions such that hy(b)—hg(a) < ¢
for some ¢ > 0 and all k € Ny. Assume that for every k € Ny, Fy: [a,b] x O — Y belongs
to the class F(|a,b] x O, hg) and that

lim Fy(t,z) = Fo(t,x), x€ O,te|a,b],

k—w

lim Fy(t7,2) = Fo(t*,z), x€O,te|a,b).

k—a0
For every k € N, let xy: [a,b] — O be a solution of generalized ODE

f_pm@@ Le[ab]

-
If there exists a function xy: [a,b] — O such that limy o xx(t) = xo(t) uniformly for

t € [a,b], then xq is a solution of

d
;—D%@@ te[a,b].

Next, we present a continuous dependence on parameters for measure FDEs with
state—dependent delays, which is obtained by means of the correspondence between gen-

eralized ODEs.

Theorem 4.5.2. Let X be the Banach space defined by 7 B be a phase space satisfying
the axioms and O be an open subset of X having the prolongation property
for t = ty. Suppose that g: [to,to + o] — R is a left-continuous nondecreasing function,
fr: [to,to + o] x B — R", k € Ny, and p: [to,to + o] x B — R, satisfy the conditions
. Assume that for every y e X,

lmfﬁwmwm Jhsm%mﬁ

uniformly with respect to t € [to,to + o]. For every k € N, z € O and t € [ty,to + 0],
assume that Fy: [to,to + o] x O = G((—0,ty + o], R"™) is the function defined by

-

0, 5 € (_OO>tO]>

13
R = { | sz )ate). €< Lot

kL Ji(8, 2p(s,20)dg(s), €€ [t to+ o]
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and is an element of X. Let ¢p € B, k € N, be a sequence of functions such that

limy e ¢ = ¢ uniformly on (—o0,0]. Let yr. € O, k € N, be the solution of

t
yk(t) = yk(to) + L fk(sv (yk),o(&(yk)s))dg(s)v te [t07 o + U]a

(?Jk)to = O

If there exists a function yo € X such that limy_ yx = yo pointwisely on (—oo,ty + o,

then yo is a solution of

w(t) = yo<to>+£ Jo5 (00Dt sy )A9(5), L€ [tonto + ],

(yO)to = Cb().

Proof. By hypotheses, for every x € O, we have

lim Fy(t,z) = Fo(t, x)

k—o0
uniformly on ¢ € [to,to + o], where Fj is given by
07 5 € (_007 tO]?

3
Fo(t, Z)(f) = < J;O fO(Sa Zp(S,zs))dg(S)7 5 € [tht]a

t
J fo(S, Zp(s,z,s))dg(5)7 g € [t, o + U]-
\Jtg
By Moore-Osgood Theorem (see [6]), we obtain

lim Fp(t*,x) = Fo(t", x)

k—00
for all x € O and t € [to, to + o]. Also, Fy takes value in X because X is complete. By
conditions and following the same steps as the Lemma [4.1.1] F} belongs to the
class F([to,to + o] x O, h) for all k € N, where the function h is given by (£.8). Since
limy o Fi(t, z) = Fy(t, ) uniformly, it is not difficult to see that Fy € F([to,to+0]x O, h)
as well.

Now, for every k € Ny and t € [to, o + o], we define

L&), € (—oo, t],
(6 = ye(§), €€ ( |

ye(t), €[t to+ o]
By Theorem [4.1.4] x, is a solution of the generalized ODE

dx
E = DFk(t,l’), te [to,to + O'].
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Ifk:eNandtg<t1<t2<t0+a,then

lye(t2) — ye(ts)| =

< [ Meagte

1

to
Lﬂ@@%mmwwwﬁ

< K(ty) — K(t1) = n(K(t2) — K(t1)),

where K(t) =t+ SEO M (s)dg(s) is an increasing function and n(t) = t. Besides, (yx(t0)) ten
is bounded. Therefore, by Theorem (yk|[t07t0+g]) Ly Contains a subsequence which is
uniformly convergent on [ty, to+0c]. Without loss of generality, we denote this subsequence
again by (yx)en- Since (y )y, = ¢ for 8 € (—o0, 0], we get that (yx),y is in fact uniformly
convergent on (—o0,ty + o|. By definition of g, limg ,o x(t) = () uniformly with
respect to t € [tg, tg + o]. Theorem [£.5.1] yields that zy is a solution of

dx
E = DFo(t,l’), te [to,to-i-a'].

Using Theorem [4.1.5] we conclude that yg is a solution of

yw>=zmm+ff@@mmww@@,tqmm+@

(yo)to = gbU?
obtaining the desired result. O

In the sequel, we have another type of result on continuous dependence on pa-
rameters for generalized ODEs on Banach spaces. It can be found in [10]. This theorem
brings a very special result concerning the continuous dependence on parameters for these

equations.

Theorem 4.5.3. Let C < O be a closed set. Assume that, for each k € N, Fy: [to,to +
o] x C — X belongs to the class F([to,to + o| x C,h), where h: [to,to + 0] = R is a
nondecreasing and left—continuous function, and (Fy)ken converges pointwisely to Fy for
each (t,z) € [to,to + o] x C. Let xg: [to,to + 0] — X be the solution of the generalized
ODE

dz

— = DFy(t,x) (4.41)

on [to, to + o] satisfying the following uniqueness property:

(U) If z: [to,v] = X, [to, 7] < [to,to + 0], is a solution (4.41) such that z(ty) = xo(lo),
then z(t) = xo(t) for every t € [to,7].
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Assume further that there is a X > 0 such that if s € [to, to + o] and |y — zo(s)|| < A, then
(s,y) € [to,to + o] x C, and let (yx)ren < C satisfying img oo yp = zo(to). Then, there
exists a positive integer ko such that, for all k > kg, there exists a solution xy: [to, to+0]| —

X of the generalized ODE

d
L DE(t, x) (4.42)
-

with xg(to) = yr and (xy)ken converges uniformly to xy on [to,to + o].

Next, we present a result of continuous dependence on parameters for measure
FDEs with state-dependent delays as a consequence of the previous theorem. Some steps

of its proof are inspired by [10].

Theorem 4.5.4. Let X be the Banach space defined by and B be a phase space
satisfying the axioms . Assume g: [to,to + o] — R is a left—continuous nonde-
creasing function, fi: [to,to + 0] x B — R™, k€ Ny, and p: [to,to + o] x B — R, satisfy
the conditions [(FIJH(F6)l Suppose, further, that for every y € X,

hmf fk Sy Yp(s,ys) dg J fO S Yp(s,ys) )dg( )

for t € [to,to + o]. Consider that yo € X is the unique solution of

w(t) = yolte) + L Fo(s: (Y0)ots.(woy))dg(s), T € [to,to + o], (4.43)
Po.-

(Wo)to =
where ¢g € B. Let (¢r)ren be a sequence of functions in B such that limg_,o ¢ = o
uniformly on (—o0,0]. Assume further that there is a X > 0 such that if s € [ty, 1o + 0]
and |[z—yo(s)|| < A, then (s, 2) € [to, to+0|x X and let (zx)ren © X satisfying limy_o 25 =
yo(to). Then for sufficiently large k € N, there exists a solution yy of

@) = uito) +Jt0 (85 (k) os. (i) ) )dg(s), € [to, bo + o], (4.44)
Ok

(yk)to =

Also, the sequence (yi)ren converges uniformly to yo on (—oo,tg + ol.

Proof. For each k€ N, z € X and t € [tg, to+ o], define the function Fy: [to,to+0o] x X —
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G((—o0,to + o], R™) by

-

07 5 € (—00,750],

13
RO -1 | s e Mlg(s). €€ Lot

j Fe(s. Zpemn)dg(s), €€ [tato + o]

Hypotheses imply that (Fj)ren converges pointwisely to Fy for every (¢, x) € [tg, to+0|x X.
By Lemma it follows that Fy € F([to,to + o] x X, h) for every k € N, where h is

given by (L8).
Let yo be the unique solution of (4.43)). Defining xq: [to,to + 0] — X by

0(&), € (—o0,t|,
e ®)(E) = yo(§), §e ]

yO(t)a fe [t7t0+0]a
We have, by Theorem that x¢ is the solution of (4.41) on [to, to + c]. Since yo is the

unique solution of (4.43) on [to,to + o], applying again Theorem we obtain that zg

is the unique solution of (4.41)).
Assume further that there is A > 0 such that if s € [tg, {o + o] and ||z — zo(s)| < A,

then (s, 2) € [to,to + o] x X, and let (zp)reny © X satisfy limy_,o 2 = x0(to). Therefore,
all the hypotheses from Theorem [4.5.3| are satisfied. It implies that there exists a positive
integer kg such that for all k > kg, there exists a solution x; of the generalized ODE
on [to, to + o] such that xy(tg) = zo(ty) and limg_,e x(s) = zo(s) where x¢ is the solution

of (4.41) by the uniqueness. Therefore, define for k > ko and ¢ € [to, o + o], the function

zi(to)(€), &€ (-0 o],
ka(f)(f), 56 [tOvtO—l—U]'

yk(é:) =

According to Theorem [4.1.5] vy, is a solution of the measure functional differential equa-
tions with state-dependent delays (4.44) on (—oo,ty + o]. Thus, as a consequence, by

definition of (yx)reny and by hypotheses, we get

Tim (54):,(6) = Jim 61(6) = 6u(8) = (40):u (0) (4.45)

for 0 € (—o0,0]. It implies that limg .. yx(s) = yo(s) for s € (—o0,tp]. On the other hand,
for t € [to, to + o], we have by definition of y,

lim i (t) = lim 24(t)(t) = 20(£)(t) = (7). (4.46)

k—o0
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In consequence, combining (4.45) and (4.46), we have limy o yk(t) = yo(t) for ¢t €
(—oo, to + o], getting the desired result. O

Remark 4.5.5. Using Theorems|}.2.1] and|4.5.2, it is possible to prove similar results on

continuous dependence on parameters to impulsive measure FDEs with state—dependent
delays and functional dynamic equations on time scales with state—dependent delays. Then

again, we omit them here since they follow as an immediate consequence of both corre-

spondences.
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