
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Um estudo em unificação e desunificação módulo (A
Study on Unification and DisUnification Modulo)

Mehwish Arshid

Dissertação apresentado como requisito parcial para
conclusão do Mestrado em Informática

Orientador
Prof. Dr. Mauricio Ayala Rincón

Brasília
2020

Ficha Catalográfica de Teses e Dissertações

Está página existe apenas para indicar onde a ficha catalográfica gerada para dissertações de
mestrado e teses de doutorado defendidas na UnB. A Biblioteca Central é responsável pela ficha,
mais informações nos sítios:

http://www.bce.unb.br
http://www.bce.unb.br/elaboracao-de-fichas-catalograficas-de-teses-e-dissertacoes

Esta página não deve ser inclusa na versão final do texto.

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Um estudo em unificação e desunificação módulo (A
Study on Unification and DisUnification Modulo)

Mehwish Arshid

Dissertação apresentado como requisito parcial para
conclusão do Mestrado em Informática

Prof. Dr. Mauricio Ayala Rincón (Orientador)
CIC/UnB

Prof. Dr. Vander Ramos Alves Prof.a Dr.a Daniele Nantes Sobrinho
Universidade de Brasília Universidade de Brasília

Prof. Dr. Edward Hermann Haeusler
PUC-Rio

Prof.a Dr.a Genaina Nunes Rodrigues
Coordenador do Programa de Pós-graduação em Informática

Brasília, 30 de Setembro de 2020

Acknowledgment

All praises for Almighty Allah the most compassionate, the most beneficent, and ever
merciful, who gives me the power to do, the sight to observe and mind to think and judge.
Peace and blessings of Almighty Allah be upon His Last Prophet Hazrat Muhammad
(P.B.U.H) who exhorted his followers to seek knowledge from cradle to grave.

I want to express my deepest gratitude to my supervisor, Prof. Dr. Mauricio Ayala
Rincon, for his kind supervision, practical suggestions, consistent encouragement, valuable
advice, sustained support, friendly behavior, and dynamic supervision which enabled me
to complete my dissertation that would not have been possible without his support.

I am grateful to CAPES for financial support.
I am also grateful to my Husband Jamal Nasir for his kind support and countless help

during my study, and my both daughters Ifra Nasir and Isbah Nasir for unconditional
love and patience.

Furthermore, I would like to extend my sincere thanks to my lab fellows at Laforce
especially to Gabriel Silva for his helpful suggestions, and others Bruno de Assis Delboni,
Thiago Mendonca Ferreira Ramos, Ariane Alves Almeida, Kaliana Dias de Freitas, Lu-
cas Angelo Silveira, Daniel Saad Nogueira Nunes for their co-operation and sympathetic
attitude during my study.

Finally, I would like to express my deepest thanks to my family for continuous support
and love during these years. I would like to express my special thanks to my dear parents
especially to my father Arshid Mehmood for his love, encouragement, and support in
every part of my life. I would like to express my special thanks to my dear parents-in-law
especially to my father-in-law Muhammad Tariq for his trust in me and help during my
study. May Almighty Allah shower His blessings and prosperity on all those who assisted
me in any way during my work.

iv

Resumo

Estuda-se a comparação entre unificação assimétrica e desunificação módulo teorias equa-
cionais em relação às suas complexidades, como desenvolvida por Ravishankar, Narendran
e Gero. A unificação assimétrica é um tipo de unificação equacional em que as soluções
devem fornecer o lado direito dos problemas apresentados na forma normal. E a desunifi-
cação é resolver problemas com equações e “disequações” em relação à uma teoria equaci-
onal dada. As soluções para os problemas de desunificação são substituições que tornam
os dois termos de cada equação iguais, mas os dois termos de cada “disequação” diferen-
tes. Unificação e desunificação equacional foram comparadas por os autores mencionados
com relação as suas complexidades de tempo para duas teorias equacionais: a primeira
associativa (A), comutativa (C), com unidade (U) e nilpotente (N), como (ACUN) e a
segunda com tais propriedades, mas adicionando um homomorfismo (h), como (ACUNh),
mostrando que desunificação pode ser resolvida em tempo polinomial enquanto unificação
assimétrica é NP-difícil para ambas as teorias equacionais.

Além disso, foi estudada a abordagem introduzidas por Zhiqiang Liu, em sua disser-
tação de doutorado, para converter os unificadores módulo ACUN em assimétricos, com
símbolos de função não interpretados, usando as regras de inferência.

Para a teoria associativa comutativa com homomorfismo (ACh), estudou-se a prova
de que unificação módulo ACh é indecidível, assim como o algoritmo de semi-decisão,
recentemente introduzido por Ajay Kumar Eeralla e Christopher Lynch, que apresenta
um conjunto de regras de inferência para resolver o problema com limitações.

Palavras-chave: Unificação, Desunificação, Unificação Assimétrica, Teorias Equacionais
Módulo Associatividade-Comutatividade

v

Abstract

Comparisons between asymmetric unification and disunification modulo AC concerning
their complexities, as developed by Ravishankar, Narendran and Gero are studied. Asym-
metric unification is a type of equational unification problem in which the solutions must
give as right-hand sides of the input problem, normal forms regarding some rewriting sys-
tem. And disunification problems require solving equations and "disequations" for a given
equational theory. Solutions to the disunification problems are substitutions that make
the two terms of each equation equal, but the two terms of each “disequation” different.
These authors compared the complexity of the unification and disunification problems for
two equational theories. The properties of the first equational theory are associativity (A),
commutativity (C), the existence of unity (U), and nilpotence (N), abbreviated as ACUN.
And, the second equational theory has the same properties but adds a homomorphism (h),
for short, ACUNh. For such equational theories, details of the proof that disunification
can be solved in polynomial time while the asymmetric unification is NP-hard have been
studied. Besides, the approach for converting ACUN unifiers to asymmetric ones, with
uninterpreted function symbols using the inference rules introduced by Zhiqiang Liu, in
his Ph.D. dissertation, was studied. Narendran’s proof of the undecidability of the unifi-
cation problem modulo the associative commutative theory with homomorphism ACh is
studied. Also, the semi-decision algorithm, recently introduced by Ajay Kumar Eeralla
and Christopher Lynch, is studied, which presents a set of inference rules for solving a
bounded version of ACh unification.

Keywords: Unification, Disunification, Asymmetric Unification, Equational Theories
Modulo Associativity-Commutativity

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Equational problems under consideration . 2
1.3 Contribution . 3
1.4 Organization . 4

2 Theoretical Referential 5
2.1 Unification Theory . 5

2.1.1 Basic Notation . 5
2.1.2 E-Unification Problem . 7
2.1.3 Term Rewriting System . 8
2.1.4 Asymmetric Unification . 10
2.1.5 Disunification . 10

2.2 Complexity Theory . 11
2.3 Automata Theory . 12
2.4 Ring Theory . 14

3 Complexities of asymmetric unification and disunification moduloACUN
and ACUNh 17
3.1 Disunification modulo ACUN is in P whereas asymmetric unification is NP-

hard . 17
3.1.1 Disunification modulo ACUN is in P 17
3.1.2 Asymmetric unification modulo ACUN is NP-hard 19

3.2 Ground disunification modulo ACUNh is in P whereas ground asymmetric
unification is NP-hard . 21
3.2.1 Ground disunification modulo ACUNh is in P 21
3.2.2 Ground Asymmetric Unification modulo ACUNh is NP-hard 24

vii

4 Asymmetric Unification modulo XOR (ACUN) with Uninterpreted
Function Symbols 34
4.1 XOR theory . 34
4.2 Notations . 35
4.3 Inference System . 36

4.3.1 Inference Rules . 36
4.4 Algorithms . 45
4.5 Correctness . 48

4.5.1 Termination . 48
4.5.2 Soundness . 48
4.5.3 Completeness . 49

5 Undecidability of ACh-unification and bounded ACh-unification 50
5.1 ACh Unification Problem is Undecidable . 51

5.1.1 Some auxiliary lemmas . 51
5.1.2 Reduction from Hilbert’s tenth problem 57
5.1.3 From solvability of linear equations over N[x] to ACUh 59
5.1.4 ACh Unification is Undecidable . 59

5.2 Bounded ACh Unification . 64
5.2.1 Important Definitions . 64
5.2.2 Inference System . 66
5.2.3 Inference Rules . 67
5.2.4 Bounded ACh unification Algorithm 80

6 Conclusion and Future Work 86
6.1 Conclusion . 86
6.2 Future Work . 87

References 88

viii

Chapter 1

Introduction

1.1 Motivation

Computers use a set of rules called protocol to communicate with each other across a
network, and the cryptographic protocols are used to provide security and called security
protocols. Cryptographic protocols need the properties of secrecy and authentication [1].
There are many kinds of algorithms that are used in cryptographic protocols in [2].

In their seminal work [3], Dolev and Yao use formal algebraic tools to analyze cryp-
tographic protocols [1]. At the beginning of the analysis, cryptographic primitives were
taken as black boxes. The other method to analyze cryptographic protocol is to con-
sider the protocol as an algebraic system, similar to the way in which Dolev and Yao
model protocols. This method is known as the free algebra method. In this method of
analysis, the term that is representing the received message will be compared against the
term that is representing a sent message, if the corresponding terms are the same then
these messages will be the same. Syntactic unification is used to compare them. But
this approach ignores the fact that there may be some algebraic properties about the
terms representing the messages. To solve this problem, modern approaches are taken
into account unification modulo the algebraic properties.

Several examples of such kind of protocol analysis can be found in the literature, from
which we discuss only three. In [4] Lowe analyzed the Needham-Schroeder Public-Key
Protocol using the so called Failures Divergences Refinement Checker (FDR), a model
checker for Communicating Sequential Process (CSP) to discover intruder attacks upon a
given protocol and to make sure that the communication actors are talking to each other
but not to an intruder, and so to guarantee the security of the protocol. Lowe modeled
a general intruder who can interact with the protocol to observe and intercept messages
to learn information and then use this information to introduce fake messages into the
system. Lowe shown the existence of an attack to the Needham-Schroeder Public-Key

1

Protocol, and his method has been applied to analyze different protocols. In [5] Ayala-
Rincón et al presented an algorithm to decide the intruder deduction problem (IDP)
for associative commutative (AC) equational theories, using the initial knowledge of the
intruder and modeling the algebraic capabilities of an intruder by a deduction system. The
IDP consists in detecting whether a passive eavesdropper can obtain a certain information
from the messages observed. In [6] Escobar et al discussed formal analysis of cryptographic
protocols solving (equality and) disequality constraints, which also arise in cryptographic
protocol analysis, and are used to reduce the size of the search space by protocol analysis
tools.

The algebraic properties that express as an equational theory E, and to find an E-
unification algorithm is a way to reduce the search space and generate a minimum com-
plete set of unifiers.

Unification procedures for theories such as AC, ACh, ACU, ACUh, ACUN and ACUNh
are essential for cryptographic protocol analysis. But since all these problems are not
decidable, in many cases semi-decision algorithms are required. They must be efficient
and allow the combination with uninterpreted function symbols. For the case of the
theories ACUN and ACUNh, when uninterpreted function symbols occur, the complete
set of unifiers is not always a singleton, but it is finite. Also, it is important that the
unification algorithm creates a complete set of unifiers that is as small as possible. For the
case of the ACh-unification problem, which is undecidable, it is possible to bound the set
of computed solutions. To build an equational unification (semi-decision) algorithm for
these theories that is efficient and compute small (complete) set of unifiers is an important
application of an equational unification.

1.2 Equational problems under consideration

In this document, we discuss the time complexity of (ground) asymmetric unification
and (ground) disunification for the theory of ACUN and ACUNh introduced by Veena
Ravishankar, Paliath Narendran and Kimberly A. Gero in [7]. As the name indicates,
the theory of ACUN consists of associativity, commutativity, unity and nilpotence. This
theory is also called the theory of boolean XOR operator. Asymmetric unification is an
extension of the equational unification problem. In asymmetric unification, the equational
theory is divided into a set of rewriting rules R and the set of equations E, then we call
(R,E) decomposition of the equational theory. Sometimes R ∪ E can be used to denote
the equational theory.

We study for the theory of ACUN that the complexity of the asymmetric unification
problem is NP-hard, while the disunification problem is solvable in polynomial time, as

2

proved in [7].
We also study the complexity of ground asymmetric unification and of ground disuni-

fication, as given in [7], for the theory of ACUN with homomorphism, ACUNh. Ground
asymmetric unification modulo ACUNh is NP-hard, while ground disunification modulo
ACUNh can be solved in polynomial time.

We also study the algorithm described by Zhiqiang Liu and Christopher Lynch in [8]
and [1], called Asymmetric Unification algorithm for the theory of ACUN (or XOR) with
uninterpreted function symbols. This algorithm is used to find asymmetric unifiers from
symmetric ones. Indeed, if there exists a symmetric unifier one can check if this unifier is
also an asymmetric unifier by using some inference rules.

In addition, we study and discuss Narendran’s approach [9], about the undecidability of
the unification problems modulo the two equational theories ACUh and ACh. Narendran
considers the problems of linear equations over polynomial semirings and showed that the
solvability of linear equations over polynomial semirings is undecidable by using Hilbert’s
tenth problem. After that, Narendran showed that the solvability of linear equations over
polynomial semirings is reducible to the unification problems by applying Nutt’s approach
published in [10].

In addition, we discuss the algorithm for solving bounded ACh unification problems
introduced by Ajay Kumar Eeralla and Christopher Lynch in [11]. They bound the
application of the homomorphic function h to the terms, and allow only those solutions
which satisfy the given bound. To use this theory ACh in cryptographic protocols, Ajay
Kumar Eeralla uses the bounded version of this theory ACh that he shown to be decidable
in [11]. They introduced a set of inference rules to solve the bounded ACh unification
problems.

1.3 Contribution

This work presents the study of all topics mentioned before but adding details on the
proofs that were not given in the source papers:

• the complexity of ACUN and ACUNh asymmetric unification and disunification
and ground asymmetric unification and disunification, as given by Ravishankar,
Narendran and Gero in [7];

• Zhiqiang Liu and Christopher Lynch’s asymmetric unification algorithm, as given
in [1];

• undecidability of ACUh and ACh unification, as given by Narendran in [9];

3

• Ajay Kumar Eeralla and Christoper Lynch’s bounded ACh unification algorithm,
as given in [11].

Specifically, this work presents details of the proof of the undecidability of the equa-
tional theory ACh, which is not explicitly given by Narendran in [9]. In his paper, Naren-
dran discussed in detail the undecidability of the equational theory ACUh and the adap-
tation of the undecidability of the equational theory ACh by following the proof given for
the undecidability of the equational theory ACUh. In the proof of the undecidability of
the equational theory ACUh, he shown that the solvability of the linear equations over
polynomial semiring N is undecidable by considering Hilbert’s tenth problem and he illus-
trated how Hilbert’s tenth problem reduces to the problem of solving linear equations over
polynomial semiring N. Further, he illustrated the reducibility of such linear equations
over the polynomial semiring N to the ACUh unification problem by Nutt’s approach in
[10].

In this work, we add to Narendran’s proof all details related to the adaptation of the
proof of the undecidability of the equational theory ACh, which consist of proving that
solvability of the linear equations over the structure N+ is also undecidable from Hilbert’s
tenth problem, and reducibility of such linear equations over the structure N+ to the ACh
unification problem.

1.4 Organization

Here is the organization of the document.

• In Chapter 2, the basic notations are given, which are used in the following chapters
and provide enough background for understanding the study. The unification theory
and related notions and properties are discussed. Also, term rewriting systems are
studied. A section on complexity theory and a section on automata theory are given.
The definition of ring and semiring is also given.

• In Chapter 3, we study the complexities of (ground) asymmetric unification and
disunification modulo two different equational theories i.e., ACUN and ACUNh.

• In Chapter 4, we study Zhiqiang Liu and Christopher Lynch’s algorithm to solve
the asymmetric unification problem for the theory of ACUN with uninterpreted
function symbols.

• In Chapter 5, we discuss Narendran’s proof on the undecidability of the unification
problem modulo ACUh and ACh, and Ajay Kumar and Christoper Lynch’s bounded
ACh unification algorithm.

4

Chapter 2

Theoretical Referential

2.1 Unification Theory

Unification is an algorithmic procedure that is used to make two symbolic expressions(also
called terms) equal with a suitable substitution i.e., by replacing certain sub-expressions
(variables) with other expressions [12]. Different occurrences of the same variable in a
unification problem must always be replaced by the same term.

In unification problems, it is not enough that we just decide whether two terms s and
t are unifiable or not, but also if they are unifiable we have to construct its solutions,
i.e. substitutions that identify s and t. In first-order unification, the solution is unique
and is called a unifier of both the terms s and t. In general, a unification problem may
have infinitely many solutions but it is sufficient to consider the so-called complete set of
most general unifiers, i.e. a minimal set of unifiers such that every other unifier can be
obtained by instantiation of one of the unifiers in the complete set.

Unification as described until now is called syntactic unification of first-order terms.
Syntactic means that the terms must be made syntactically equal, whereas the first-
order expresses the fact that we do not allow for higher-order variables, i.e. variables
for functions. For example, the terms f(x, a) and g(a, x) obviously cannot be made
syntactically equal by first-order unification.

2.1.1 Basic Notation

Signature

A finite or countably infinite set of function symbols with some defined arity, where a
constant is a function symbol with an arity zero is called signature and usually denoted
by Σ [12].

5

The set of terms over V and Σ is denoted by T (Σ, V) where Σ is a set of signature
function symbol and V is a countably infinite set of variables. Usually, the terms are
denoted by s, t, u and v, whereas the variables are denoted by x, y and z and the function
symbols are denoted by f and g and so on. The set of variables that appears in a term t

is denoted by V ar(t). If this set V ar(t) = φ then the term t is said to be a ground term.

Unification Problem

A unification problem for two terms s and t is represented by s =? t. A unification
problem is a problem of solving a finite set of equations between terms, usually denoted
by Γ.

Γ = {s1 =? t1, s2 =? t2, . . . , sn =? tn}

if there exist a substituition σ such that σ(si) = σ(ti) i = 1, . . . , n. This σ is called the
unifier of the unification problem. And if a substitution σ is the unifier of the set of
equations Γ, then it is a solution of each equation in Γ.

Substitution

A substitution (also called solution) is usually denoted by σ is a mapping from variables
V to terms T (Σ, V) i.e. σ : V → T (Σ, V).

A substitution σ can be represented by a set of bindings of variables and is written as

σ = {x1 7→ t1, x2 7→ t2, . . . , xn 7→ tn}

which means xi maps to ti for i = 1, 2, . . . , n.
If a substitution σ maps a variable to itself then it is called Identity substitution and

usually denoted by Id. A substitution σ will be equal to some another substitution θ if
for every variable x such that σ(x) = θ(x) holds. A substitution σ is more general than
substitution θ if there exists a substitution η such that θ = η ◦ σ (also written as prefix
ση) that is denoted by σ ≤ θ.

Unifier (Most General Unifier)

If some substitution σ is a solution of two terms s and t i.e., if it satisfies σ(s) = σ(t)
then it is called a unifier or solution of these two terms. It is called most general unifier
(m.g.u) if, for every unifier σ of s and t, it satisfies σ ≤ θ.

Example 2.1.1. Consider the unification problem:

f(a, x) =? f(y, z)

6

The signature of this problem is given by Σ = {f, a}, where f is a unary function symbol
and a is a constant.

A unifier of this problem is given by the substitution below.

δ = {x 7→ a, y 7→ a, z 7→ a}

But the m.g.u. is the unifier

σ = {x 7→ z, y 7→ a}

Indeed, notice that γσ = δ for γ = {z 7→ a}.

2.1.2 E-Unification Problem

For a given signature Σ and equational theory E, the unification problem modulo equa-
tional theory E is a problem of solving a finite set of equations between terms i.e

Γ = {s1 =?
E t1, . . . , sn =?

E tn}

If s =E t, then we can say that the terms s and t are equal with respect to equational
theory E. A unification problem modulo an equational theory for two terms s and t is
represented by s =?

E t.

E-unifier

Two terms s and t are unifiable modulo an equational theory E iff there exists a substitu-
tion σ such that σ(s) =E σ(t); then, such a substitution σ is called E-unifier or E-solution
of these terms. An E-unifier of a unification problem modulo an equational theory Γ is a
substitution σ such that σ(si) =E σ(ti) for i = 1, 2, . . . , n

Example 2.1.2. Consider the unification problem below modulo commutativity (C).

f(x, y) =?
C f(a, b)

This problem has two solutions:

σ1 = {x 7→ a, y 7→ b}, and σ2 = {x 7→ b, y 7→ a}

Notice that in the syntactic case the only possible solution is σ1.

7

Example 2.1.3. Consider the unification problem modulo associativity (A).

f(a, x) =?
A f(x, a)

This problem as an infinite set of solutions:

σ1 = {x 7→ a}, σ2 =7→ {f(a, a)}, σ3 7→ {x 7→ f(a, f(a, a))}, . . .

For the case of first-order syntactic unification, ∅-unification, considered in the previous
subsection, it is proved that if a unification problem is unifiable then there exists a unique
m.g.u., but this is different for the case of E-unification in which depending on the theory
E, E-unifiability may be undecidable, and if it is decidable then we do not need to have
a unique m.g.u., as seen above for the cases of C and A unification. According to theory
E, the problems are classified as problems of type unitary, finitary, infinitary, or of type
zero. The case C is of type finitary (and not unitary) and the case A is infinitary. For
such theories, solutions are built as so called minimal complete sets of m.g.u.’s. Theories
for which may not exist such sets are called type zero. An example of a type zero theory
is the theory with an associative and idempotent function symbol, AI.

Example 2.1.4. Consider the theory AI, with a function symbol f that is associative
and idempotent: f(x, x) = x.

Franz Baader proved that the problem below has not a minimal complete set of m.g.u.’s
[13].

f(x, f(y, x)) =?
AI f(x, f(z, x))

Manfred Schmidt-Schauß proved simultaneously the same in [14].

Definition 1 [12] Let E be an equational theory, the E-unification problem has
type unitary, finitary, infinitary iff all unifiable problems have a minimal complete
set of E-unifiers of respective cardinality at most one, finite, and infinite. If the
E-unification problem does not have a minimal complete set of E-unifiers, then it is
said to be of type zero.

2.1.3 Term Rewriting System

Definition 2 [Term Rewriting System [15]] A rewrite rule is an identity l ≈ r such
that l and r are terms containing variables and l is not a variable and V ar(l) ⊇

8

V ar(r). It is often written or denoted as l→ r. A term rewriting system (TRS) is a
set of rewrite rules. Often TRS is written as R

A redex (reducible expression) is an instance of the left-hand side of a rewrite rule.
Contracting the redex means replacing it with the corresponding instance of the right-
hand side of the rule, i.e. we can say that a term t is reducible modulo R if and only if
there is a rule l → r in R, a subterm t′ at position p of the term t, and a substitution σ
such that σ(l) = t′. The term t[σ(r)]p is the result of reducing t by l → r at position p.
The rewrite relation induced by R is written as →R.

A term is said to be in normal form with respect to a TRS if and only if no rule
can be applied to it.

A TRS is terminating if and only if there is no infinite reduction chain/sequence (no
infinite derivations are possible).

A term rewriting system R is said to be confluent if and only if the following (dia-
mond) property holds: If t, u, v and w are any terms then

∀t∀u∀v[(t→∗R u ∧ t→∗R v)⇒ ∃w(u→∗R w ∧ v →∗R w)]

R is convergent if and only if it is both terminating and confluent.

Example 2.1.5. Consider the term rewriting system given by the four rewrite rules below.

x+ x→ 0
x+ 0→ x

h(0)→ 0
h(x+ y)→ h(x) + h(y)

The term h(x + 0) + x has the redex x + 0, then h(x + 0) + x → h(x) + x, which
is a normal form. But also h(x + 0) is a redex of the term h(x + 0) + x, and thus,
h(x+ 0) + x→ (h(x) + h(0)) + x→ (h(x) + 0) + x→ h(x) + x.

That the rewriting system is terminating can be proved using the lexicographic ordering
given by the total number of zeros and additions in arguments of the operator h, and the
size of terms. Notice that the first measure decreases after applying the third and fourth
rule, and case it does not happens applying the first and the second rule, their application
decreases the size of terms. Confluence of the rewriting system results from application of
the Knuth-Bendix critical pair theorem (see e.g. [15]).

9

2.1.4 Asymmetric Unification

When an equational theory is divided into a set of rewrite rules R and a set of equations
E, this division is called decomposition.

An asymmetric unification problem for two terms s and t is represented by s =?
↓ t.

Definition 3 Given a decomposition (Σ, E,R) of an equational theory, a sub-
stitution σ is an asymmetric R,E-unifier of a set Γ of asymmetric equations
{s1 =?

↓ t1, . . . , sn =?
↓ tn} iff for each asymmetric equation denoted as si =?

↓ ti, σ

is an (E ∪R)-unifier of the equation si =?
↓ ti, and σ(ti) is in R,E-normal form. [7].

Important examples of asymmetric unification modulo equational theories ACUN and
ACUNh that will be considered in the next chapter.

2.1.5 Disunification

Disunification deals with solving a set of equations and disequations with respect to a
given equational theory E.

Definition 4 For an equational theory E, a disunification problem is a set of
equations and disequations

Γ = {s1 =?
E, . . . , sn =?

E tn} ∪ {sn+1 6=?
E tn+1, . . . , sn+m 6=?

E tn+m}

A solution to this problem is a substitution σ such that:

σ(si) =E σ(ti) (i = 1, . . . , n)

and
σ(sn+j) 6=E σ(tn+j) (j = 1, . . . ,m).

Observation An equation is an expression of the form s = t where s and t are terms
and a disequation is an expression of the form s 6= t.

Definition 5 A system is an equation, a disequation or an expression of the form
P1∧· · ·∧Pn where P1 . . . Pn are systems or an expression P1∨· · ·∨Pn where P1 . . . Pn

are systems [16].

10

Definition 6 An equational problem is an expression of the form

∃w1, . . . , wm∀y1, . . . , yn : P

where P is the system and w1, . . . , wm, y1, . . . yn are distinct variables [16].

Important examples of disunification modulo equational theories ACUN and ACUNh
that will be considered in the next chapter.

2.2 Complexity Theory

Definition 7 [Decision problems] Decision problems are those problems in which
the answer to the problem is either yes or no.

Definition 8 [Optimization problems] Many problems are optimization problems,
in which each feasible solution has an associated value, and we wish to find a feasible
solution with the best value.

In computer science, computational complexity theory is the branch of the theory of
computation that studies the resources, or cost, of the computation required to solve a
given computational problem. Complexity theory analyzes the difficulty of computational
problems in terms of many different computational resources. The complexity class P is
the set of decision problems that can be solved by a deterministic machine in polynomial
time. This class corresponds to an intuitive idea of the problems which can be effectively
solved in the worst cases. The complexity class NP is the set of decision problems that
can be solved by a non-deterministic machine in polynomial time. This class contains
many problems that people would like to be able to solve effectively. All the problems
in this class have the property that their solutions can be checked deterministically in
polynomial time.

Definition 9 A problem X is called an NP-hard problem if every problem in NP
is polynomially reducible to X [17].

11

Definition 10 A problem X is called an NP-complete problem if (i) X belongs to
NP and (ii) X is NP-hard [17].

For proving that the problem A is NP-hard we will use the technique of reducing a
known NP-complete problem B to it. If we can show that any input of the problem
B can be reduced polynomially to an input of problem A, such that the corresponding
decision questions over these inputs have the same answer (yes or no), then one can con-
clude that problem A is NP-hard. And if we also can prove that problem A belongs to
NP, then A is NP-complete. The following problems are well known to be NP-complete:
vertex cover, dominating set, SAT, 3SAT, 3-coloring, and clique. Each of these problems
is described in more detail in [17]. Many other problems are NP-complete problems for
example hamiltonian cycle, hamiltonian path, independent set, 3-dimentional matching,
knapsack, traveling-salesman and many more given in [17].
For instance, to prove the traveling-salesman problem is NP-complete, we first need to
show that traveling-salesman problem belongs to NP. Then we need to show any other
known NP-complete problem that reduces polynomially to the traveling salesman prob-
lem. The hamiltonian cycle problem is reduced to the traveling salesman problem in
polynomial time [18].
And some other problems are NP-hard problems because they do not belong to NP-
complete problems. For instance, halting problem is NP-hard but not NP-complete [19].

2.3 Automata Theory

Automata theory is very useful in the study of the theory of computation. In particular,
finite automata (FA) are a useful model for several important applications in hardware
and software design. In this work, a variant of this model will be useful for proving the
NP-hardness of a class of unification problems.

Definition 11 [Finite automata] A finite automaton is a 5-tuple of the form
(Q,Σ, δ, q0, F), where

• Q is a finite set, called the states;

• Σ is a finite set, called the alphabet;

• δ : Q× Σ×Q is a relation, called transition function;

12

• q0 ∈ Q is the start state (initial state); and

• F ⊂ Q is the set of accepting states, also called final states.

An automaton receives an input string from its alphabet Σ, starts from the initial
state q0 and processes symbol by symbol of the input string, from left to right, and moves
to a next state according to the transition function. When the transition is indeed a
function, it is said that the automaton is deterministic (DFA), otherwise, it is said to be
non-deterministic (NDFA).

The language accepted by an automaton is the set of strings of the alphabet that are
processed by it, starting from the initial state and (may) finishing in an accepting state.
The problem of deciding whether a string w ∈ Σ∗ belongs or not to the language accepted
by an automaton is known as the automata language accepting problem.

Definition 12 [Transition Diagram (State Diagram)] A transition diagram for a
DFA A = (Q,Σ, δ, q0, F) is a graph defined as follows:

• For each state in Q there is a node.

• For each state q in Q and each input symbol a in Σ, let δ(q, a) = p. Then the
transition diagram has an edge from node q to node p, labeled a. If there are
several input symbols that cause transitions from q to p, then the transition
diagram can have one edge that is labeled by the list of these symbols.

• There is an arrow to the start state q0, labeled Start. This arrow does not
originate at any node.

• Nodes corresponding to accepting states (those in F) are marked by a double
circle. States not in F have a single circle.

Example 2.3.1. Consider the finite automaton A1 = (Q,Σ, δ, q1, F), where

• Q = {q1, q2, q3}

• Σ = {0, 1}

• δ is given as δ(q1, 0) = {q1}, δ(q1, 1) = {q2}, δ(q2, 0) = {q3}, δ(q2, 1) = {q2}, δ(q3, 0) =
{q2}, and δ(q3, 1) = {q3, q2}

• q1 is the start state, and

• F = {q2}.

13

A1 can be described by the transition diagram in Figure 2.1.

q1start q2 q3

0

1

1 0

0, 1

1

Figure 2.1: The finite automaton A1

If δ is redefined such that δ(q3, 1) = {q2}, the automaton is deterministic. The language
accepted for this automaton is the language of binary words in {0, 1} that have at least
one 1, then some occurrence of 01 or finish in 1 or 00.

2.4 Ring Theory

Definition 13 [Ring] A ring is a nonempty set R together with two binary opera-
tions, called addition and multiplication, satisfying the following axioms.

• (R,+) is an abelian group. i.e.,

– a+ b = b+ a for all a, b ∈ R.

– (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R.

– There exists an element 0 ∈ R such that a+ 0 = a for all a ∈ R.

– For every a ∈ R, there exists an element (−a) ∈ R such that a+(−a) = 0.

• (R, .) is monoid. i.e.,

– (ab)c = a(bc) for all a, b, c ∈ R.

– There exists an element 1 ∈ R such that 1a = a1 = a for all a ∈ R.

• Multiplication is distributive over addition from both sides i.e., from left-side
and also from right-side.

– a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R.

A ring R is said to be commutative ring if, in addition,

14

• ab = ba for all a, b ∈ R.

To specify the ring we sometimes needs to write 0R and 1R for the elements 0
and 1.

Definition 14 [Semiring]
A semiring is a nonempty set S together with two binary operations, called

addition and multiplication, satisfying the following axioms.

• (S,+) is an abelian monoid. i.e.,

– a+ b = b+ a for all a, b ∈ S.

– (a+ b) + c = a+ (b+ c) for all a, b, c ∈ S.

– There exists an element 0 ∈ S such that a+ 0 = a for all a ∈ S.

• (S, .) is monoid. i.e.,

– (ab)c = a(bc) for all a, b, c ∈ S.

– There exists an element 1 ∈ S such that 1a = a1 = a for all a ∈ S.

• Multiplication is distributive over addition from both sides i.e., from left-side
and also from right-side.

– a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ S.

A semiring is also called a ring without subtraction.

Definition 15 [Polynomial]
A polynomial is an expression consisting of variables (also called indeterminate)

and coefficients, together with the binary operations that consist of addition, sub-
traction, multiplication, and non-negative integer exponentiation of variables.

Definition 16 [Polynomial ring over N]

15

A polynomial ring N[X], in X over N can be defined as the set of expressions,
called polynomials in X of the form

P = p0 + p1X + p2X
2 + . . .+ pm−1X

m−1 + pmX
m,

where, p0, p1, . . . , pm are the coefficients of P , and are elements of the set N. The
symbol X is called an indeterminate or variable.

16

Chapter 3

Complexities of asymmetric
unification and disunification modulo
ACUN and ACUNh

In this chapter it is illustrated how complexities of asymmetric unification and disunifi-
cation problems vary when equational theories change. This chapter and given examples
are taken from [7] making small adjust and providing additional details when necessary.

3.1 Disunification modulo ACUN is in P whereas
asymmetric unification is NP-hard

3.1.1 Disunification modulo ACUN is in P

We have the equational theory ACUN, over the signature Σ = {+, 0} where + is a binary
symbol, 0 is a constant, and with the following properties below

(x+ y) + z = x+ (y + z) (Associativity)
x+ y = y + x (Commutativity)
x+ 0 = x (Unity)
x+ x = 0 (Nilpotence)

This theory is also called theory of boolean XOR operator. Disunification modulo
ACUN can be solved in polynomial time using Gaussian Elimination over Z2.

The procedure to solve this problem as given in [7] will be discussed.
Consider there is a set of variables {x1, x2, ..., xm}, a set of constant symbols {c1, c2, ..., cn},

and the given equations and disequations to be unified.

17

The variables and constants will be in the following order. i.e., x1 > x2 > · · · > xm >

c1 > c2 > · · · > cn.
We can have different equations and disequations but we will start by picking an

equation with the leading variable x1 in it, then eliminate the variable x1 from all other
equations and disequations.

Repeat this process by picking the equation with leading variable x2, then similarly
do the same with the equation having leading variable x3, until we have no variables to
eliminate.

The problem has a solution iff

• we have no equations consisting of only constants, i.e., c1 + c2 = c3 , and

• no disequations of the form 0 6= 0 included in the given problem.

By following this process we can solve the disunification problem in polynomial time
using Gaussian Elimination over Z2 [7], as illustrated by Example 3.1.1.

Example 3.1.1 (Taken from [7]). Given the two equations

x1 + x2 + x3 + c1 + c2 =? 0

x1 + x3 + c2 + c3 =? 0,

and a disequation
x2 6=? 0.

Solution:
By using the Gaussian Elimination method and the theory ACUN we have

1 1 1 c1 + c2

1 0 1 c2 + c3

0 1 0 0


Eliminating x1 from the second row by adding row 1 and row 2 we get

1 1 1 c1 + c2

0 1 0 c1 + c3

0 1 0 0



18

Eliminate x2 from the first row by adding row 2 and row 1 we get
1 0 1 c2 + c3

0 1 0 c1 + c3

0 1 0 0


Eliminate x2 from the third row by adding row 3 and row 2 we get

1 0 1 c2 + c3

0 1 0 c1 + c3

0 0 0 c1 + c3


Thus we get

x1 + x3 + c2 + c3 =? 0

x2 + c1 + c3 =? 0

c1 + c3 6=? 0

So, we have

x2 =? c1 + c3

x1 + x3 =? c2 + c3

And the solution set is:

σ = {x1 7→ c2, x2 7→ c1 + c3, x3 7→ c3}

3.1.2 Asymmetric unification modulo ACUN is NP-hard

Asymmetric unification problem modulo theory of ACUN is NP-hard as given in [7].
As in the section of complexity theory, it is shown that if we can reduce any problem

from any of the known NP problems and this reduction is in polynomial time then the
reduced problem will be NP-hard.

In this case, we have a 3-colorability problem, so here it is shown that how we can build
an instance of asymmetric unification problem in polynomial time from the 3-colorability
graph problem.

For this, take the graph i.e., G = (V,E), where V is the set of vertices V = {v1, v2, v3, . . . , vn},
E is the set of edges E = {e1, e2, e3, . . . , em} and C is the set of colours C = {c1, c2, c3}
where n ≥ 3.

19

The condition for the graph G is 3-colorable is that, if none of the adjacent vertices
{vi, vj} ∈ E have the same color assigned from the set C then this is called graph G is
3-colorable.

Now, an instance of asymmetric unification can be constructed as follows. We need to
have variables for corresponding vertices and edges to build an instance of the asymmetric
unification problem. In [7] it is given that for each vertex vi, we can assign a variable xi
and for each edge ek, we can assign a variable yk. Now, we can create an equation by
considering edges. For instance, for the edge ek = {vi, vj}, we assign variable to the edge
and corresponding vertices of that edge i.e., EQk = vi + vj + ek =?

↓ xi + xj + yk. The
variable yk appears just one time in every equation. So, the set of asymmetric unification
problem will be

S = {EQ1, EQ2, . . . , EQm}

Now we need to assign colors to variables. If G is 3-colorable, then there is a color
assignment θ : V → C such that θ(vi) 6= θ(vj) if ek = {vi, vj} ∈ E. This can be converted
into an asymmetric unifier α for S as follows: θ(vi) to xi, θ(vj) to xj, and the remaining
color to yk. Thus α(xi + xj + yk) =↓ c1 + c2 + c3 and therefore α is an asymmetric unifier
of S since the term c1 + c2 + c3 is irreducible modulo ACUN.

Suppose S has an asymmetric unifier β. Note that β cannot map xi, xj or yk to 0,
or to a term of the form u + v since β(xi + xj + yk) has to be in normal form (or
irreducible). Hence for each equation EQk, it must be that β(xi), β(xj), β(yk) ∈ {c1, c2, c3}
and β(xi) 6= β(xj), β(xj) 6= β(yk) and β(xi) 6= β(yk). Thus β is a 3-coloring of G.

Example 3.1.2. Taken from [7]. Given the graph G = (V,E), whose set of vertices is
V = {v1, v2, v3, v4}, and set of edges is E = {e1, e2, e3, e4}, where
e1 = {v1, v3}, e2 = {v1, v2}, e3 = {v2, v3}, e4 = {v3, v4} and the colour set is C =
{c1, c2, c3},
For each vertex vi we assign a variable xi and for each edge ej we assign a variable yj.
Then instance of asymmetric unification will be constructed as

EQ1 = c1 + c2 + c3 =?
↓ x1 + x3 + y1

EQ2 = c1 + c2 + c3 =?
↓ x1 + x2 + y2

EQ3 = c1 + c2 + c3 =?
↓ x2 + x3 + y3

EQ4 = c1 + c2 + c3 =?
↓ x3 + x4 + y4

Now suppose the vertices in the graph G are given this color assignment:

θ = {v1 → c1, v2 → c2, v3 → c3, v4 → c1}

20

Now create an asymmetric unifier based on this θ by mapping each xi to θ(vi) and for
each edge ej mapping yj to the remaining color from {c1, c2, c3} after both its vertices are
assigned. For instance, for e1 = {v1, v3} since x1 is mapped to c1 and x3 is mapped to c3,
we have to map y1 to c2. We will do this in a similar way for all given edges,
Thus the asymmetric unifier is

σ = {x1 7→ c1, x2 7→ c3, x3 7→ c2, y1 7→ c3, y2 7→ c2, y3 7→ c1, y4 7→ c3}

According to [7] membership in NP is an open problem.

3.2 Ground disunification modulo ACUNh is in P
whereas ground asymmetric unification is NP-
hard

This theory is the same as ACUN but including in the signature a unary function sym-
bol h for the homomorphism. We will call it ACUNh and it will be specified by the
decomposition consisting of the AC equations and the set of rewriting rules below.

 (x+ y) + z = x+ (y + z) (Associativity)
x+ y = y + x (Commutativity)



x+ 0→ x (Unity)
x+ x→ 0 (Nilpotence)

x+ (y + x)→ y (Auxiliary Nilpotence rule)
h(x+ y)→ h(x) + h(y) (Homomorphism over binary AC operator)

h(0)→ 0 (Homomorphism over unity)


3.2.1 Ground disunification modulo ACUNh is in P

This section is taken from [7]. The ground disunification problem refers to check for
ground solutions for a set of disequations and equations. The restriction is that only the
set of constants provided in the input are allowed, no new constants can be introduced
[20].

It is shown that ground disunifiability modulo ACUNh can be solved in polynomial
time, by reducing the problem to the system of linear equations. This gives us a general
solution to all the variables or unknowns.

21

Suppose there arem equations in our ground disunifiability problem. And disequations
are of the form z 6= 0. For example, if we have disequations of the form e1 6= e2, we
introduce a new variable z and set z = e1 + e2 and z 6= 0.

Let there are n variables or unknowns for which we have to find a solution.
For each constant in our ground disunifiability problem, we follow the approach similar

to [21], forming a set of linear equations and solving them to find ground solutions.
We use hkx to represent the term h(h(. . . h(x) . . .)) and

Hk[x] = hk1x+ hk2x+ · · ·+ hknx

is a polynomial over Z2[h]

Example 3.2.1.
h(x1) + x2 =? h2(a) + a

x1 + h(x2) =? h2(b) + b

x1 + x2 + z =? 0 (z 6= 0, z = x1 + x2 ⇒ x1 + x2 + z = 0)

For constant a : 
h 1 0
1 h 0
1 1 1



xa1

xa2

za

 =


h2(a) + a

0
0


⇒ h(xa1) + xa2 + 0 = h2(a) + a

⇒ xa1 + h(xa2) + 0 = 0

⇒ xa1 + xa2 + za = 0

Then from the second equation

xa1 + h(xa2) + 0 = 0

xa1 + h(xa2) = 0

we get
xa1 = h(xa2)

put in the first equation
⇒ h(h(xa2)) + xa2 = h2(a) + a

⇒ h2(xa2) + xa2 = h2(a) + a

22

The term with h2 becomes 0 because we have a coefficient from the polynomial ring Z2[h].
We get

⇒ xa2 = a

By using the value of xa2 we can get xa1

⇒ xa1 = h(a)

By using the value of xa1 and xa2 we get

za = xa1 + xa2

⇒ za = a+ h(a)

⇒ {xa1 = h(a), xa2 = a, za = h(a) + a}

For constant b : 
h 1 0
1 h 0
1 1 1



xb1

xb2

zb




0
h2(b) + b

0


⇒ h(xb1) + xb2 + 0 = 0

xb1 + h(xb2) + 0 = h2(b) + b

xb1 + xb2 + zb = 0

From the first equation we get
⇒ xb2 = h(xb1)

By using the value of xb2 we get

⇒ xb1 + h(h(xb1)) + 0 = h2(b) + b

⇒ xb1 + h2(xb1) = h2(b) + b

The term with h2 becomes 0 because we have a coefficient from the polynomial ring Z2[h].
We get

⇒ xb1 = b

By using the value of xb1 we can get xb2

⇒ xb2 = h(b)

23

By using the value of xb1 and xb2 we get

zb = xb1 + xb2

zb = b+ h(b)

⇒ {xb1 = b, xb2 = h(b), zb = h(b) + b}

z = za + zb

z = h(a) + a+ h(b) + b 6= 0

Thus, the solution set will be

σ = {xa1 7→ h(a), xa2 7→ a, xb1 7→ b, xb2 7→ h(b), za 7→ h(a) + a, zb 7→ h(b) + b}

3.2.2 Ground Asymmetric Unification modulo ACUNh is NP-
hard

Here, we use the technique in [7] that applies automata theory to prove that asymmetric
unification modulo ACUNh is NP -hard. The technique is not the usual one but uses the
equivalence relation between decidability of weak second-order theory of one successor
(WS1S) and membership in the language accepted by finite automata. The formulas of
WS1S are built from atomic formulas of the form such(x, y) for first-order variables x and
y, where x ∈ X for a first-order variable x and a set of variables X that is a monadic
second-order variable, using boolean connectives, first- and second-order existential quan-
tification, the latter restricted to finite sets [22]. The key result in this methodology is
Büchi’s theorem that states that interpretations of formula in WS1S are related to the
language of variable assignments that satisfy the formula and are equivalent to the lan-
guage accepted by a (Büchi) finite automaton. Since the Boolean satisfiability problem
reduces to satisfiability in WS1S, by proving the correspondence between solvability of
ground asymmetric ACUNh unification and language acceptation in automata.

We will construct the automata for the equation and we will see how this automata
problem will be transformed into the ground asymmetric unification problem. If an au-
tomaton can be reduced in polynomial time to the ground asymmetric unification problem
then we have the desired result.

To construct the automata we have the set of alphabets consist of column vectors of
bits with length equal to the number of variables in the problem. Thus, the inputs to the
automata are finite sequences of column vectors of bits. First, we see the case for one
constant a, then after we will see for the case when we have more than one constant.

24

The examples illustrate how automata are constructed for different problems. To
avoid the mess up of the diagrams, a so-called dead state has been included only for the
automaton in the first example. When the transition is undefined, a transition to the
dead state is included. So in all automata, all missing transitions lead to the dead state
by default.

Example 3.2.2 (Taken from [7]). Consider the problem given by equation P =? Q+R.
Solution: Now we will construct the automata for the given problem. For the problem

P =? Q + R the alphabets of the automaton, consists of 3-bit vectors for variables P , Q,

and R, respectively. The ordering of variables is


P

Q

R

. The corresponding alphabet symbol


P

Q

R

 =


1
1
0

 means P has a value 1, when either Q or R have value 1. For example if

R = 0, Q = 1, then P = 1
Whenever input symbols of the alphabet that are solutions of the problem are processed,

the transitions maintain the control in the start state of the automaton that is also the
final state. Other symbols move the control to the dead state.

q0start

D

(
0
0
0

)
,
(

0
1
1

)
,
(

1
0
1

)
,
(

1
1
0

)

(
0
0
0

)
,
(

0
0
1

)
,
(

0
1
0

)
,
(

0
1
1

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
1
0

)
,
(

1
1
1

)

(
0
0
1

)
,
(

0
1
0

)
,
(

1
0
0

)
,
(

1
1
1

)

Figure 3.1: Automaton for the problem P =? Q+R

25

Hence, only strings with all their alphabet symbols in


0
0
0

 ,


0
1
1

 ,


1
0
1

 ,


1
1
0




are accepted by this automaton, while all other strings with at least one input symbol in
the set 


0
0
1

 ,


0
1
0

 ,


1
0
0

 ,


1
1
1




go to the dead state D as they violate the XOR property.
Now we pick strings from the set of accepted strings by this automaton and get the

solution for the input problem P =? Q+R. For instance, we pick
1
0
1




1
1
0

 and


1
0
1




1
1
0




0
1
1


These accepted strings correspond respectively to the solutions

P = a+ h(a), Q = h(a) and R = a, and

P = a+ h(a), Q = h(a) + h2(a) and R = a+ h2(a).

Finally, notice that if we pick any string from the set of strings that are not being
accepted by this automaton then we will not get the solution. For instance, we pick

1
0
1




1
1
1

 and


1
0
1




1
0
0




0
1
1


that correspond to the following instances of P,Q and R that are not solutions of the input
problem P =? Q+R:

P = a+ h(a), Q = h(a) and R = a+ h(a), and

P = a+ h(a), Q = h2(a) and R = a+ h2(a).

Example 3.2.3 (Taken from [7]). Consider the asymmetric equation P =?
↓ Q+R.

Solution:

26

To preserve asymmetry on the right-hand side of this equation, Q+R should be irre-
ducible. If either Q or R is empty, or if they have any term in common, then a reduction
will occur and the input should be rejected. The dead state is omitted in this automaton.

q0start

q3

q1

q2

(
0
0
0

)

(
0
0
0

)
,
(

1
0
1

)

(
1
0
1

)

(
1
1
0

)

(
1
0
1

)

(
1
1
0

)

(
0
0
0

)
,
(

1
1
0

)

(
0
0
0

)
,
(

1
0
1

)
,
(

1
1
0

)

Figure 3.2: Automaton for the problem P =↓ Q+R

For example, if Q = h(a) and R = h(a) + a, there is a reduction, whereas if R = h(a)
and Q = a, irreducibility is preserved, since there is no common term and neither one
is empty. Since neither Q nor R can be empty, any accepted string should have one

occurrence of


1
0
1

 and one occurrence of


1
1
0

 .
Note that the string 

0
0
0




1
0
1




1
1
0


is accepted by the automaton. This string corresponds to the solution

P = h(a) + h2(a), Q = h2(a) and R = h(a),

27

Finally, notice that the string 
1
0
1




1
1
0




0
1
1


corresponds to the following instance of P,Q and R that is not a solution of the input
problem P =↓ Q+R, because it cause a reduction.

P = a+ h(a), Q = h(a) + h2(a) and R = a+ h2(a).

For a given problem, an automaton is built for each formula, and the solution consists
of the intersection of sets of sequences that are accepted by each automaton. If the
intersection is not empty, then we have a solution or an asymmetric unifier for the input
set of formulas.

Example 3.2.4 (Taken from [7]). Consider the problem given by equation X =? h(Y).
Solution:
Now we will construct the automata for the given problem. For the problem X =? h(Y)

the alphabets of the automaton consist of 2-bit vectors for variables X and Y respectively.

The ordering of variables for this automata will be
Y

X

. Here, q0 is the only accepting

state and h acts like the successor functions. Here transition occurs with the strings(
1
0

)
,
(

0
1

)
. If Y = 1 in current state then X = 1 in the next state.

q0start q1

(
0
0

) (
1
1

)(
0
1

)

(
1
0

)

Figure 3.3: Automaton for the problem X = h(Y)

Notice that the string 0
0

0
1

1
1

1
0


is accepted. This corresponds to the solution

X = h2(a) + h3(a), Y = h(a) + h2(a)

28

While the string below is rejected.0
1

0
0

1
0


The last string corresponds to the instantiation

X = h2(a), Y = a

Example 3.2.5 (Taken from [7]). Consider the asymmetric equation X =?
↓ h(Y).

Solution:
In this equation, h(Y) must not be reducible to preserve the asymmetry. So, Y cannot

be either 0 or of the form u + v to avoid the reduction. The automaton is similar to the
previous one, but the start state may not be the initial state in order to avoid acceptation
of X = 0, Y = 0, and only a value is possible for avoiding instantiation of Y with an
addition. See below.

q0start q1 q2

(
0
0

) (
0
0

)
(

1
0

) (
0
1

)

Figure 3.4: Automaton for the problem X =↓ h(Y)

Equations with more than one constant:
What happens when we have more than one constant? We will follow the approach

given in [7]. Suppose there are k constants, say c1, . . . , ck. We express each variable X in
terms of the constants as follows:

X = Xc1 + · · ·+Xck

Thus if X = h(c1) + c2 + h2(c3), then Xc1 = h(c1), Xc2 = c2, and Xc3 = h2(c3). If the
variables are X1, . . . , Xm, then we set

X1 = Xc1
1 + · · ·+Xck

1

X2 = Xc1
2 + · · ·+Xck

2

...

29

Xm = Xc1
m + · · ·+Xck

m

For example, if Y and Z are variables and a, b,and c are constants, then we can write
Y = Y a + Y b + Y c and Z = Za +Zb +Zc. The examples given below show the equations
having more than one constant.

Example 3.2.6. For the equation X =↓ h(Y) with two constants, a and b we have
equations Xa =↓ h(Y a), and Xb =↓ h(Y b). However, since the equation is asymmetric, Y
must not be equal to 0, and Y has to be a single term of the form hi(d) where d is either
a or b and i ≥ 0. All components in an equation except any one component have to be 0.

Remember that the ordering of variables for this automata is
Y

X

.
X = Xa +Xb

and
Y = Y a + Y b

For constant a: the string
1

0

0
1

 corresponds to the solution

X = 0 + h(a), that is Xa = h(a)
Y = a+ 0, that is Y a = a

For constant b: the string
0

0

1
0

0
1

 corresponds to the solution

X = 0 + 0 + h2(b), that is Xb = h2(b)
Y = 0 + h(b) + 0, that is Y b = h(b)

Notice, that in this case (X =↓ h(Y)) only one of the solutions may be non-zero in
order to be able to build an asymmetric solution. That is, X = Xa+Xb = h(a)+h2(b), Y =
Y a + Y b = a+ h(b) is not a solution since the term h(a+ h(b)) is reducible.

The automaton for this problem with two constants a and b consists of a combination
of two copies of the automaton in Figure 3.4, see Figure 3.5, where the alphabet was
changed to 4-bit vectors, being the first two components associated with non-zero solutions
for a and the last two bits associated with non-zero solutions for b.

30

q0start

q1

q2

q3

0
0
0
0

 0
0
0
0


1

0
0
0



0
0
1
0



0
1
0
0



0
0
0
1



Figure 3.5: Automaton for the problem X =↓ h(Y) with two constants a and b

Example 3.2.7. Now consider the problem below, For constants, a, b and c.

X =↓ W + Z

The decomposition of the problem is given by the equations below.

X = Xa +Xb +Xc

W = W a +W b +W c

Z = Za + Zb + Zc

And the corresponding automaton is built combining the automaton built for only one
constant in Example 3.2.3.

For constant a: an automaton as the one of Example 3.2.3 is built providing solu-
tions such as:

{Xa = a+ h(a),W a = h(a), Za = a}

For constant b: also through an automaton as the one of Example 3.2.3, solutions
as those below are found.

{Xb = b+ h(b) + h2(b),W b = h(b) + h2(b), Zb = b}

For constant c: in the same manner, solutions as the one below can be obtained.

31

{Xc = c+ h(c),W c = 0, Zc = c+ h(c)}

Combining such solutions one obtains solutions for the given problem as below.

Xa +Xb +Xc︸ ︷︷ ︸ =↓ W a +W b +W c︸ ︷︷ ︸ + Za + Zb + Zc︸ ︷︷ ︸
X W Z

That is,

(a+ h(a)) + (b+ h(b) + h2(b)) + (c+ h(c)) =↓ (h(a) + h(b) + h2(b)) + (a+ b+ c+ h(c))

32

q0start

q3

q1

q2



0
0
0
0
0
0
0
0
0





0
0
0
0
0
0
0
0
0

,


0
0
0
0
0
0
1
0
1

,


0
0
0
1
0
1
0
0
0

,


0
0
0
1
0
1
1
0
1

,


1
0
1
0
0
0
0
0
0

,


1
0
1
0
0
0
1
0
1

,


1
0
1
1
0
1
0
0
0

,


1
0
1
1
0
1
1
0
1





0
0
0
0
0
0
1
0
1

,


0
0
0
1
0
1
0
0
0

,


0
0
0
1
0
1
1
0
1

,


1
0
1
0
0
0
0
0
0

,


1
0
1
0
0
0
1
0
1

,


1
0
1
1
0
1
0
0
0

,


1
0
1
1
0
1
1
0
1





0
0
0
0
0
0
1
1
0

,


0
0
0
1
1
0
0
0
0

,


0
0
0
1
1
0
1
1
0

,


1
1
0
0
0
0
0
0
0

,


1
1
0
0
0
0
1
1
0

,


1
1
0
1
1
0
0
0
0

,


1
1
0
1
1
0
1
1
0




0
0
0
0
0
0
1
0
1

,


0
0
0
1
0
1
0
0
0

,


0
0
0
1
0
1
1
0
1

,


1
0
1
0
0
0
0
0
0

,


1
0
1
0
0
0
1
0
1

,


1
0
1
1
0
1
0
0
0

,


1
0
1
1
0
1
1
0
1




0
0
0
0
0
0
1
1
0

,


0
0
0
1
1
0
0
0
0

,


0
0
0
1
1
0
1
1
0

,


1
1
0
0
0
0
0
0
0

,


1
1
0
0
0
0
1
1
0

,


1
1
0
1
1
0
0
0
0

,


1
1
0
1
1
0
1
1
0





0
0
0
0
0
0
0
0
0

,


0
0
0
0
0
0
1
1
0

,


0
0
0
1
1
0
0
0
0

,


0
0
0
1
1
0
1
1
0

,


1
1
0
0
0
0
0
0
0

,


1
1
0
0
0
0
1
1
0

,


1
1
0
1
1
0
0
0
0

,


1
1
0
1
1
0
1
1
0





0
0
0
0
0
0
0
0
0

,


0
0
0
0
0
0
1
0
1

,. . .,


1
0
1
1
0
1
1
0
1

,


0
0
0
0
0
0
1
1
0

,. . .,


1
1
0
1
1
0
1
1
0



Figure 3.6: Automaton for the problem P =↓ Q+R

All of the above given examples help to understand the reduction from the automata
problem to the ground asymmetric unification problem in polynomial time. So, this is
the NP -hard problem by [7].

33

Chapter 4

Asymmetric Unification modulo
XOR (ACUN) with Uninterpreted
Function Symbols

This chapter studies an algorithm that is taken from the Ph.D. dissertation of Zhiqiang
Lui [1] and from its related paper [23]. They introduced an algorithm that is based
on inference rules to find asymmetric unifiers for the XOR theory. The given examples
illustrate the application of the inference rules.

4.1 XOR theory

The equational theory XOR that has the equational properties of ACUN over a signature
Σ with a binary function symbol ⊕ and constant unity 0:

x⊕ (y ⊕ z) = (x⊕ y)⊕ z (Associativity)
x⊕ y = y ⊕ x (Commutativity)
x⊕ 0 = x (Unity)
x⊕ x = 0 (Nilpotence)

The theory XOR is decomposed into the union of the AC equational theory denoted
as E, and the convergent rewriting system R for the theory UN, given below.

E =

 x⊕ (y ⊕ z) = (x⊕ y)⊕ z (Associativity)
x⊕ y = y ⊕ x (Commutativity)

R =

 x⊕ 0→ x (Unity)
x⊕ x→ 0 (Nilpotence)

34

The algorithm starts with the computation of a standard XOR-unifier of the input
unification problem, and then search for corresponding asymmetric unifiers. From a
standard XOR-unifier, the inference rules will be used to search for equivalent asymmetric
unifiers.

Given a decomposition (Σ, E,R), and an asymmetric unification problem

Γ = {t1 =?
↓ t
′
1, . . . , tn =?

↓ t
′
n}

then we will follow these steps given in [23]:

1. Find the complete finite set S of standard unifiers of the given problem by using
any unification algorithm. If the set of standard unifiers is empty, then there are no
asymmetric unifiers.

2. For each unifier σ from the set S, check whether every σ(t′i) is in R,E-normal form.
If yes, then all unifiers in S will be asymmetric unifiers also.

3. For a unifier σ such that some σ(t′i) is not in R,E-normal form, then try to find an
equivalent asymmetric unifier.

4. If step 2 and step 3 did not give any asymmetric unifier, this implies that σ or
its equivalents cannot be the asymmetric unifiers. We can find the instances of the
given unifier by instantiating variables in it, which can be an asymmetric unifier. So,
the complete set of instances of a given unifier σ can be generated by instantiating
suitable variables. For each instance of σ, the above steps are repeated.

4.2 Notations

• The variables which are in the unification problem Γ are called original variables.

• The variables which are not in the unification problem Γ but in the range of σ are
called support variables.

• A term S is called a sum term if its normal form has the form s1⊕s2⊕· · ·⊕sn, n > 1

• A term s is called a simple term if it does not have ⊕ as its outermost symbol.

• A variable x is said to be in conflict with a simple term s if both x and s appear
in some t′i in Γ.

35

• A substitution δ satisfies Υ iff δ satisfies every constraint pair in Υ i.e. for a pair
(v, s) ∈ Υ, δ satisfies (v, s) iff δ(v) ⊕ δ(s) is irreducible with respect to the theory
taken.

• A substitution δ violates Υ if it does not satisfy Υ.

• A substitution δ satisfies ∆ iff δ satisfies every disequation in ∆, otherwise, we say
δ violates ∆.

4.3 Inference System

The algorithm presented by Zhiqiang Lui in [1] is a collection of inference rules on a triple
of sets:

σ ‖ Υ ‖ ∆
σ′ ‖ Υ ′ ‖ ∆′

• where σ (sigma) is a standard XOR unifier of Γ,

• Υ (Upsilon) is called a constraint set, which is a set of pairs of the form (v, s), where
v is a variable and s is a simple term or a variable. The pair (v, s) tells that v is in
conflict with s.

• and ∆ (Delta) is the set of disequations having members of the form s ⊕ t 6=? 0,
where s and t with the same uninterpreted function symbol.

4.3.1 Inference Rules

The set of inference rules transforms members of a complete set of standard XOR unifiers
into a complete set of asymmetric XOR unifiers. Before discussing rules here is a sketch
of the whole procedure that will help to understand the application of rules.

Sketch

All these inference rules can be divided into three main groups Splitting, Branching
and Instantiation. Then again we can divide these rules further into two groups: In
the first group, we have the Splitting and Branching rules, and in the second group
we have Instantiation rules. The application of the rules to any given problem will be
according to the grouping. We need to follow the sequence given below.

The Splitting rule is applied first to move all of the original variables out from the
range of an XOR unifier.

36

Then, all Branching rules will be applied to eliminate conflicts that occur after the
application of the splitting rule. These conflicts can occur between original variables with
other support variables or other non-variable subterms.

The the Non-Variable Branching rule eliminates a conflict between the original
variable x and a non-variable simple term s or a. This rule will be applied first until there
is no application of this rule remains possible.

Then theVariable Branching rule and theUseless Branching rule will be applied
to remove conflict between two original variables i.e. two original variables sharing the
common part in their substitution.

At last the Instantiation rules will be applied to generate instances of equivalent
XOR unifiers. The Decomposition Instantiation rule generates instances of an XOR
unifier, whereas the Elimination Instantiation rule generates instances by mapping
support variables to 0. If the result is not an asymmetric XOR unifier, then the algorithm
will repeat this complete process again.

Now we will discuss the inference rules introduced by Zhiqiang Lui one by one with
examples.

Splitting Rule (S)

This rule introduced in [23] is used to transform all the top variables in the given unifier
σ into the support variables.

Splitting Rule (S)

[x 7→ y ⊕ S ⊕ T] ∪ σ ‖ Υ ‖ ∆
([x 7→ y ⊕ S ⊕ T] ∪ σ) ◦ θ ‖ Υθ ‖ ∆θ

where θ = {y 7→ v ⊕ S} and v is a fresh support variable.

• x, y ∈ V ars(Γ)

• y /∈ V ars(S)

After Splitting there will be no original variables in the range of σ, all the top variables
which appear in the range of σ will be a support variables.

Example 4.3.1 (Taken from [1]). Given an asymmetric unification problem.

Γ = {x⊕ z =?
↓ y ⊕ a, x⊕ a =?

↓ x⊕ a, x⊕ z =?
↓ x⊕ z}

Solution:

37

σ = [x 7→ y ⊕ z ⊕ a] S⇒

σ1 = [x 7→ v1 ⊕ a, y 7→ v1 ⊕ z] S⇒

σ2 = [x 7→ v1 ⊕ a, y 7→ v1 ⊕ v2, z 7→ v2]

After applying Splitting, there will be no original variables in the range of σ.

Branching Rules

There are three rules in this part. The main idea as introduced in [23] is to try to transform
a unifier into an equivalent unifier without conflicts.

Non-Variable Branching (NVB)

The rule Non-Variable Branching introduced in [23] will be applied when we have a
conflict between some original variable x and some non-variable simple term s by dividing
the triple into two triples: the substitutions in the first triple assume some variable v can
cancel s and the substitutions in the second triple assume v cannot cancel s.

Non-Variable Branching (NVB)

σ ‖ Υ ‖ ∆
σ ◦ θ ‖ (Υ [v′/v] ∪ (v′, s))θ ‖ ∆θ ∨

σ ‖ Υ{(v, s)} ‖ ∆θ

where there exist an assignment [x 7→ v ⊕ s⊕ S] ∈ σ and

θ = [v 7→ v′ ⊕ s]

with v′ being a fresh support variable, under the conditions that x has a conflict at a
simple non-variable terms s in Γ where (i) v /∈ V ars(s) and (ii) (v, s) /∈ Υ .
Above, Υ [v′/v] means, replace all occurrences of the variable v in the first component of
every pair in Υ by the variable v′. The first branch is used when the conflict between x
and s is successfully resolved using v by introducing a new support variable v′; the second
branch is used when that is not possible, thus leading to an additional constraint (v, s)
implying that v and s are in conflict.

Example 4.3.2. Continuing Example 4.3.1.

Γ = {x⊕ z =?
↓ y ⊕ a, x⊕ a =?

↓ x⊕ a, x⊕ z =?
↓ x⊕ z}

σ2 = [x→ v1 ⊕ a, y → v1 ⊕ v2, z → v2]

38

Solution:
Now, we can apply Non-Variable Branching to σ2 to solve the case that x has a conflict

at a in Γ and get:
Branch 1:

σ2 = [x→ v1 ⊕ a, y → v1 ⊕ v2, z → v2] NV B⇒

σ2.1 = [x→ v3, y → v3 ⊕ a⊕ v2, z → v2]

Υ1 = {(v3, a)}

where θ = [v1 → v3 ⊕ a] and
Branch 2:

σ2.2 = [x→ v1 ⊕ a, y → v1 ⊕ v2, z → v2]

Υ2 = {(v1, a)}

In Branch 1, y has a conflict at a and (v3, a) ∈ Υ1, so apply Non-Variable Branching, Let
v2 → v4 ⊕ a and get:
Branch 1.1

σ2.1 = [x→ v3, y → v3 ⊕ a⊕ v2, z → v2] NV B⇒

σ2.1.1 = [x→ v3, y → v3 ⊕ v4, z → v4 ⊕ a]

Υ1.1 = {(v3, a), (v4, a)}

where θ = [v2 → v4 ⊕ a] and
Branch 1.2

σ2.1.2 = [x→ v3, y → v3 ⊕ a⊕ v2, z → v2]

Υ1.2 = {(v3, a), (v2, a)}

We can see σ2.1.1 is an asymmetric unifier of Γ.
Here σ2.1.1 is equivalent to σ. Non-Variable Branching is not applied to Branch 2 and 1.2
because the conditions for applying Non-Variable Branching are not satisfied.

Variable Branching (VB)

The rule Variable Branching introduced in [23] will be applied when there is a conflict
between some original variable x and some support variable v. But it will not solve the
conflict directly. It will prepare the problem for the instantiation part.

Variable Branching (VB)

σ ‖ Υ ‖ ∆
σ ◦ θ ‖ Υ ′θ ‖ ∆θ ∨

σ ‖ Υ ∪ {(v1, v2)} ‖ ∆

39

where
θ = [v1 → v12 ⊕ v′1, v2 → v12 ⊕ v′2]

There exist an assignment [x→ v1 ⊕ v2 ⊕ S, y → v1 ⊕ S ′] in σ

Υ ′ = Υ [v12/(v1, v2)] ∪ Υ [v′1/v1] ∪ Υ [v′2/v2]∪

{(v12, v
′
1), (v12, v

′
2), (v′1, v′2), (v′1, v12), (v′2, v12), (v′2, v′1)}

Here v12, v
′
1 and v′2 are fresh support variables.

This rule is applied only if (i) x and y have a conflict in Γ and (ii) (v1, v2) /∈ Υ
The first branch is the case when v1 and v2 have a common part, whereas the second

branch is the case when v1 and v2 have nothing in common.

• Here in the first branch, we assume v1 → v ⊕ v′1 and v2 → v ⊕ v′2, which means in
each instance δ of σθ, v1δ and v2δ should have the common part vδ at the same
time v′1δ and v′2δ should not have any common part.

• In the second branch, we assume for any instance δ of σ, v1δ and v2δ have no
common parts, so (v1, v2) and (v2, v1) are also added into Υ .

• Here we add constraints in both directions ((v1, v2) and (v2, v1)). It is equivalent to
only give the constrain in one direction.

Useless Branching (UB)

The next rule is called Useless Branching also called Auxiliary Branching. This
rule introduced in [23] is applied when an original variable is in conflict with another
original variable in Γ and their substitutions in an XOR unifier share a common part.

Useless Branching (UB)

σ ‖ Υ ‖ ∆
σ ◦ θ ‖ (Υ [v′/v] ∪ (v′, s))θ ‖ ∆θ ∨

σ ‖ Υ ∪ {(v, s)} ‖ ∆

where
θ = {v → v′ ⊕ s}

with v′ being a fresh support variable, and there exist two assignments [x 7→ v⊕s⊕S, y 7→
v ⊕ S ′] in σ. This rule is applied only if (i) x, y are in conflict in Γ, (ii) s is a simple
non-variable term and v /∈ V ars(s) and (iii) (v, s) /∈ Υ .

The additional simple non-variable term s in the substitution for x in an XOR unifier
is used to possibly eliminate the conflict with a new variable v′, which stands for the

40

common shared part of x and y. This rule does not solve the conflict directly, it is
preparing for the instantiation part like variable branching rule.

Example 4.3.3 (Taken from [1]).

Γ = {x⊕ y ⊕ z =?
↓ a, x⊕ y =?

↓ x⊕ y, z ⊕ a =?
↓ z ⊕ a}

σ = [x→ y ⊕ z ⊕ a]

Solution:
σ = [x→ y ⊕ z ⊕ a] S⇒

σ1 = [x→ v1 ⊕ a, y → v1 ⊕ z] S⇒

σ2 = [x→ v1 ⊕ a, y → v1 ⊕ v2, z → v2]

After applying Variable Branching for the case that y has a conflict at v1, by letting
v1 → v′1 ⊕ v and v2 → v′2 ⊕ v, we get

σ2 = [x→ v1 ⊕ a, y → v1 ⊕ v2, z → v2] V B⇒

Branch 1:
σ2.1 = [x→ v′1 ⊕ v ⊕ a, y → v′1 ⊕ v′2, z → v′2 ⊕ v]

Υ1 = {(v′1, v), (v′1, v′2), (v, v′1), (v, v′2), (v′2, v), (v′2, v′1)}

Branch 2:
σ2.2 = [x→ v1 ⊕ a, y → v1 ⊕ v2, z → v2]

Υ2 = {(v2, v1), (v1, v2)}

We can apply Useless Branching to Branch 1 because x has a conflict at v′1 and (v′1, a) /∈ Υ,
after applying Useless Branching by letting v′1 → v′′1 ⊕ a we get:

σ2.1 = [x→ v′1 ⊕ v ⊕ a, y → v′1 ⊕ v′2, z → v′2 ⊕ v] UB⇒

Branch 1.1:
σ2.1.1 = [x→ v′′1 ⊕ v, y → v′′1 ⊕ a⊕ v′2, z → v′2 ⊕ v]

Υ1.2 = {(v′′1 , v), (v′′1 , v′2), (v, v′′1), (v, a), (v, v′2), (v′2, v), (v′2, v′′2), (v′2, a), (v′′1 , a)}

Branch 1.2:
σ2.1.2 = [x→ v′1 ⊕ v ⊕ a, y → v′1 ⊕ v′2, z → v′2 ⊕ v]

Υ1.2 = {(v′1, v), (v′1, v′2 (v, v′1), (v, v′2), (v′2, v), (v′2, v′1), (v′1, a)}

41

We can not apply any Branching rules to Branch 1.1 and 1.2.
We look at Branch 2. We still can apply Useless Branching to Branch 2 since (v1, a) /∈

Υ2. Let v1 → v′′′1 ⊕ a and get:

σ2.2 = [x→ v1 ⊕ a, y → v1 ⊕ v2, z → v2] UB⇒

Branch 2.1:
σ2.2.1 = [x→ v′′′1 , y → v′′′1 ⊕ a⊕ v2, z → v2]

Υ2.1 = {(v2, v
′′′
1), (v2, a), (v′′′1 , v2), (v′′′1 , a)}

Branch 2.2:
σ2.2.2 = [x→ v1 ⊕ a, y → v1 ⊕ v2, z → v2]

Υ2.2 = {(v2, v1), (v1, v2), (v1, a)}

For Branch 1.1 , 1.2 , 2.1 , and 2.2 we have no rules in the Branching part applicable.

Instantiation Rules

The instantiation rules introduced in [23] are used for solving the conflicts by instantiating
some support variables based on the equations x+ x→ 0 and x+ 0→ x.

Once we get an instance, the result may violate Υ or ∆. If this is true, we will throw
out this instantiation branch.

Decomposition Instantiation (DI)

The Decomposition Instantiation rule introduced in [23] is used to solve the case
when there is a conflict between some original variable x and a simple non-variable term
t.

Decomposition Instantiation (DI)

σ ‖ Υ ‖ ∆
σ ◦ θ1 ‖ Υθ1 ‖ ∆θ1

∨ · · ·∨ ‖ σ ◦ θn ‖ Υθn ‖ ∆θn
∨

σ ‖ Υ ‖ ∆′′

where there exists an assignment [x 7→ s ⊕ t ⊕ S] in σ, x has a conflict with a simple
non-variable subterm s in Γ and s and t have the same topmost uninterpreted symbol
{θ1, . . . , θn} is a complete set of XOR unifiers of s =? t and ∆′′ = ∆ ∪ {s⊕ t 6=? 0}.

Example 4.3.4 (Taken from [1]).

Γ = {f(a)⊕ f(b) =?
↓ x⊕ f(y)}

42

σ = [x→ f(y)⊕ f(a)⊕ f(b)]

Solution:
Since x has a conflict at f(y), we apply Decomposition Instantiation by unifying f(a)

and f(y). Then get:
σ = [x→ f(y)⊕ f(a)⊕ f(b)] DI⇒

Branch 1:
σ1 = [x→ f(b), y → a]

∆1 = φ

Branch 2:
σ2 = [x→ f(y)⊕ f(a)⊕ f(b)]

∆2 = {f(y)⊕ f(a) 6=? 0}

σ1 is an asymmetric unifier of Γ. We keep it and look at Branch 2.
In Branch 2, we still can apply Decomposition Instantiation since x has a conflict at

f(y), and f(b)⊕ f(y) 6=? 0 /∈ ∆. We unify f(y) and f(b) and get:

σ2 = [x→ f(y)⊕ f(a)⊕ f(b)] DI⇒

Branch 2.1:
σ2.1 = [x→ f(a), y → b]

∆2.1 = {f(y)⊕ f(a) 6=? 0}

Branch 2.2:
σ2.2 = [x→ f(y)⊕ f(a)⊕ f(b)]

∆2.2 = {f(y)⊕ f(a) 6=? 0, f(y)⊕ f(b) 6=? 0}

σ2.1 is another asymmetric unifier.
σ2.2 is not an asymmetric unifier. However, we can not apply any rules so far to Branch
2.2.

Elimination Instantiation (EI)

The second instantiation rule Elimination Instantiation introduced in [23] is used to
solve the case when there is a conflict between some original variable x and some support
variable v.

Elimination Instantiation (EI)

43

[x 7→ v ⊕ S] ∪ σ ‖ Υ ‖ ∆
([x 7→ S] ∪ σ) ◦ θ ‖ Υθ ‖ ∆θ

where θ = {v 7→ 0}, x and y are in conflict in Γ for some y. The rule is applied only if
yσ = v ⊕ S ′ with S ′ having at least one subterm.

Because v maps to 0, all pairs (v, s) in Υ will be removed from Υ .

Example 4.3.5. Continuing Example 4.3.3.

Γ = {x⊕ y ⊕ z =?
↓ a, x⊕ y =?

↓ x⊕ y, z ⊕ a =?
↓ z ⊕ a}

σ = [x→ y ⊕ z ⊕ a]

Solution:
For each branch, we have no rules except Elimination Instantiation applicable. In

Branch 1.1, x has a conflict at v′′1 in x→ v′′1 ⊕ v, so we let v′′1 → 0 and get:
Branch 1.1.1:

σ1.1.1 = [x→ v, y → a⊕ v′2, z → v′2 ⊕ v]

Υ1.1.1 = {(v, a), (v, v′2), (v′2, v), (v′2, a)}

Here σ1.1.1 is an asymmetric unifier.
In Branch 1.2, x has a conflict at v′1 in x→ v′1 ⊕ v ⊕ a, so we let v′1 → 0 and get:

σ1.2.1 = [x→ v ⊕ a, y → v′2, z → v′2 ⊕ v]

Υ1.2.1 = {(v, v′2), (v′2, v)}

Here σ1.2.1 is an asymmetric unifier, which is equivalent to σ1.1.1.
In Branch 2.1, x has a conflict at v′′′1 in x→ v′′′1 , so we let v′′′1 → 0 and get:

σ2.1.1 = [x→ 0, y → a⊕ v2, z → v2]

Υ2.1.1 = {(v2, a)}

Here σ2.1.1 is not an asymmetric unifier.
In Branch 2.2, x has a conflict at v1 in x→ v1 ⊕ a, so we let v1 → 0 and get:

σ2.2.1 = [x→ a, y → v2, z → v2]

Υ2.2.1 = φ

σ2.2.1 is an asymmetric unifier, which is an instance of σ1.1.1.

44

4.4 Algorithms

Zhiqiang’s inference system has three parts: Splitting, Branching and Instantiation, [1].
The algorithm given here is based in Zhiqiang’s work. The SEARCHING Algorithm,
Algorithm 4, calls the three sub-algorithms 1, 2, and 3, for splitting, branching and
instantiate, respectively, and gives outputs a complete set of asymmetric unifiers. The
rules in three parts are applied separately by the three sub-algorithms.

Algorithm 1: SPLITTING Algorithm
input :

- the unification problem Γ;
- an XOR unifier σ;
- a constraint set Υ;
- a disequation set ∆.

output:

- a set of triple Σ, which contains all the results by applying rules.

1 begin
2 if given σ is an asymmetric unifier of Γ then
3 return {σ ‖ Υ ‖ ∆};
4 else
5 Check whether the Splitting rule is applicable;
6 end
7 if Yes then
8 Apply Splitting rule to σ ‖ Υ ‖ ∆ and get σ′ ‖ Υ′ ‖ ∆′. And return

SPLITTING(Γ, σ′,Υ′, ∆′);
9 else

10 return BRANCHING(Γ, {σ ‖ Υ ‖ ∆}, ∅);
11 end
12 end

45

Algorithm 2: BRANCHING Algorithm
input :

- the unification problem Γ;
- a set of triples Θ which stores all the branches which are waiting for being applied
Branching rules;

- a set of triples Σ which stores all the results after applying branching rules.

output:

- a set of triple Σ, which represent the result of applying rules in Branching Part.

1 begin
2 if Σ has only one member σ ‖ Υ ‖ ∆ and σ is an asymmetric unifier of Γ

then
3 return Σ;
4 if Θ is empty then
5 return INSTANTIATION(Γ,Σ);
6 else
7 pick up a member σ ‖ Υ ‖ ∆ from Θ;
8 end
9 if σ is an asymmetric unifier then

10 return {σ ‖ Υ ‖ ∆};
11 if Non-Variable Branching rule is applicable then
12 apply Non-Variable Branching to σ ‖ Υ ‖ ∆ and get σ′ ‖ Υ′ ‖ ∆′ and

σ′′ ‖ Υ′′ ‖ ∆′′, return
BRANCHING(Γ,Θ ∪ {σ′ ‖ Υ′ ‖ ∆′, σ′′ ‖ Υ′′ ‖ ∆′′},Σ);

13 if Variable Branching rule is applicable then
14 apply Variable Branching to σ ‖ Υ ‖ ∆ and get σ′ ‖ Υ′ ‖ ∆′ and

σ′′ ‖ Υ′′ ‖ ∆′′, return
BRANCHING(Γ,Θ ∪ {σ′ ‖ Υ′ ‖ ∆′, σ′′ ‖ Υ′′ ‖ ∆′′},Σ);

15 if Useless-Variable Branching rule is applicable then
16 apply Useless-Variable Branching to σ ‖ Υ ‖ ∆ and get σ′ ‖ Υ′ ‖ ∆′ and

σ′′ ‖ Υ′′ ‖ ∆′′, return
BRANCHING(Γ,Θ ∪ {σ′ ‖ Υ′ ‖ ∆′, σ′′ ‖ Υ′′ ‖ ∆′′},Σ);

17 else
18 Add σ ‖ Υ ‖ ∆ to Σ, and return BRANCHING(Γ,Θ {σ ‖ Υ ‖ ∆},Σ) ;
19 end
20 end

46

Algorithm 3: INSTANTIATION Algorithm
input :

- the unification problem Γ;
- a set of triples Σ.

output:

- a set of triple Σ′, which represent the result of applying rules in Instantiation Part.

1 begin
2 Given an empty set of triple Σ′, for each member σ ‖ Υ ‖ ∆ of Σ, if

Decomposition Instantiation is applicable then
3 apply Decomposition Instantiation to σ ‖ Υ ‖ ∆ and get

σ1 ‖ Υ1 ‖ ∆1, . . . , σn ‖ Υn ‖ ∆n. For each σi ‖ Υi ‖ ∆i, check whether σi
is an asymmetric unifier of Γ;

4 if it is an asymmetric unifier then
5 add it to Σ′ and go to next member;
6 else
7 union SPLITTING(Γ, σi,Υi, ∆i) with Σ′;
8 end
9 if Elimination Instantiation is applicable then

10 apply Elimination Instantiation to σ ‖ Υ ‖ ∆ until it is not applicable and
get σ′ ‖ Υ′ ‖ ∆′. Check whether σ′ is an asymmetric unifier of Γ;

11 if it is then
12 add the triple to Σ′ and go to next member;
13 else
14 u
15 end
16 nion BRANCHING (Γ, {σ′ ‖ Υ′ ‖ ∆′}, ∅) with Σ′;
17 Return Σ′.
18 end

47

Algorithm 4: SEARCHING Algorithm
input :

- An asymmetric unification problem Γ;
- A standard unifier σ of Γ;

1 begin

1. Let Σ′ = SPLITTING (Γ, σ, ∅, ∅)

2. Let Σσ = {σ|σ ‖ Υ ‖ ∆ ∈ Σ}.

3. Return Σσ.

2 end

4.5 Correctness

This section is taken from [23]. The detailed proofs of termination, soundness and com-
pleteness are given in [1].

4.5.1 Termination

For termination, it is necessary to prove that the algorithm does not generate cycles
and does not introduce infinitely new variables after application of any inference rule.
Throughout the algorithm, only the bounded number of new variables are introduced by
various rules. The Splitting and Branching rules introduce new variables and these are
applied only finitely often. And instantiation rules are applied only finitely often to avoid
generating cycles.

Once it is proved that the algorithm only introduces finitely new variables, the proof
of termination becomes easier. As splitting rule is used to introduce new variables just to
replace original variables by support variables. Also elimination rules is used to introduce
new variables to remove the conflicts between the original variable and other. It only needs
to be made sure that the two instantiation rules cannot be applied infinitely often. The
Decomposition instantiation rule reduces the number of simple terms and elimination
Instantiation rule reduces the size of the triple since variables get instantiated to 0 to
eliminate the conflicts.

4.5.2 Soundness

To prove the soundness of the algorithm, it’s need to prove that if any of the inference
rule from the set of inference rules, generates an asymmetric XOR unifier, then this

48

asymmetric unifier need to be either equivalent to an XOR unifier or an instance of an
XOR unifier.

4.5.3 Completeness

For the proof of completeness we need to show that no asymmetric XOR unifier is
dropped by the algorithm during the whole process .Every inference rule drops only those
instances of an XOR unifier which are not asymmetric.

49

Chapter 5

Undecidability of ACh-unification
and bounded ACh-unification

The equational theory ACh is defined over a signature Σ that includes the associative-
commutative operator +, and a unary symbol h i.e., homomorphism and (h distributes
over addition).

x+ (y + z) = (x+ y) + z (Associativity)
x+ y = y + x (Commutativity)

h(x+ y) = h(x) + h(y) (h distributes over addition)

Unification modulo the equational theory ACh is a well-known undecidable unifica-
tion problem [9]. This undecidability happens because of the addition of a homomorphic
function symbol h, allows a reduction from equational problems in the structure of pos-
itive naturals, an undecidable restriction of Hilbert’s tenth problem, to ACh unification
problems. If the composition of the function symbol h has some defined bound then we
can solve the problem between this bound. This is called bounded ACh unification.
In this bounded version, the bound will be applied to the numbers of applications of h,
i.e., the number of times h can be recursively applied to a term and the solution for that
term must satisfy this bound. There is no bound on the number of occurrences of h in
a term and also there is no bound on the number of occurrences of the + symbol, i.e.,
the + symbol can be applied an unlimited number of times to a term. This bound on
applications of h will be denoted by the letter κ.

To solve a bounded ACh unification problem, we need to know about h-height of a
term, i.e., the number of h symbols recursively applied to each other. Then we need to
find a solution for that bounded h-height. This h-height restriction is just for the solution,
not for the ACh unification problem Γ, also not for the h-depth of a variable, i.e., the
number of h symbols on top of that variable in a term. A set of inference rules for bounded

50

ACh unification problem needs to check h-depth of variables more often because if the
h-depth of any variable does not satisfy the bound κ then the problem has no solution in
that given bound.

In this chapter Narendran’s proof on the undecidability of the ACh unification problem
[9] is presented in detail and the bounded ACh unification method introduced by [11] is
discussed.

5.1 ACh Unification Problem is Undecidable

We discuss all details on undecidability of the ACh unification problem as introduced
by Narendran in [9]. Following Narendran’s approach, first the undecidability of the
unification problem for the theory ACUh is proved and then adapted to the theory ACh.
The theory ACUh includes in its signature a constant 0 for the unity of +, over which
h(0) = 0 holds.

5.1.1 Some auxiliary lemmas

To prove that ACh unification problem is undecidable, we need to understand some
lemmas given in [9].

Lemma 5.1.1 ([9]). Let x ∈ {x1, . . . , xn} be an indeterminate. Then the solution set of

(x− 1)Y = Z − 1

over N[x1, . . . , xn] is {Y = xk−1 + xk−2 + · · ·+ 1, Z = xk|k ≥ 0}.

Proof. For k = 0, one has Y = 0 and Z = 1. For k > 0, instantiating the left-hand side
of the equation with the proposed solution one has the following chain of equalities.

(x− 1)(xk−1 + xk−2 + · · ·+ 1) =
(xk + xk−1 + . . .+ x)− (xk−1 + xk−2 + · · ·+ 1) =
xk − 1

To satisfy the equation (x− 1)Y = Z− 1 the value of the polynomial Z must evaluate
to 1 at x = 1. Since Z cannot have any negative coefficient, Z should be a monomial of
the form xk and with coefficient 1.

Lemma 5.1.2 ([9]). Let x ∈ {x1, . . . , xn} be an indeterminate, and d is a positive integer.
Then the solution set of

(xd − 1)Y = Z − 1

over N[x1, . . . , xn] is {Y = xd(k−1) + xd(k−2) + · · ·+ 1, Z = xdk|k ≥ 0}.

51

Proof. As in the previous lemma, when k = 0 the equation holds for any d > 0. For
k > 0, the result is proved instantiating the left-hand side of the equation with the given
solutions for Y , through the following chain of equalities.

(xd − 1)(xd(k−1) + xd(k−2) + · · ·+ 1) =
xd+d(k−1) + xd+d(k−2) + · · ·+ xd − (xd(k−1) + xd(k−2) + · · ·+ 1) =
xdk + xd(k−1) + · · ·+ xd − (xd(k−1) + xd(k−2) + · · ·+ 1) =
xdk − 1

This lemma is a generalization of the above lemma. By the same argument as in the
above lemma, i.e., since Z cannot have any negative coefficient, to satisfy the equation
(xd − 1)Y = Z − 1 the value of the polynomial Z must evaluate to 1 at x = 1. Z is a
monomial i.e., xdk and the coefficient of Z is 1.

Lemma 5.1.3 ([9]). Let x ∈ {x1, . . . , xn} be an indeterminate, and v ∈ N[x1, . . . , xn].
The equations

1. (x− 1)U1 = W1 − 1

2. (x2 − 1)U2 = W2 − 1

3. (x− 1)U3 = U2 − U1

4. (x− 2)Y1 = U1 − v

5. (x2 − 2)Y2 = U2 − v

have a solution over N[x1, . . . , xn] if and only if v = 2k − 1 for some k ≥ 0

Proof. For if direction:
By lemmas 5.1.1 and 5.1.2 the solution set for the first equation is {U1 = xk−1 +xk−2 +

· · · + 1,W1 = xk | k ∈ N} and for the second equation is {U2 = x2(j−1) + x2(j−2) + · · · +
1,W2 = x2j | j ∈ N}.

The third equation at x = 1 becomes

0 = U2 − U1

U1 = U2

Thus, k = j, since at x = 1, U1 = xk−1 + xk−2 + · · ·+ 1 = k, and U2 = x2(j−1) + x2(j−2) +
· · ·+ 1 = j.

For the fourth equation, at x = 2 we have 0 = U1 − v, thus, v = U1. So,

v = xk−1 + xk−2 + · · ·+ 1, at x = 2

52

This is the geometric series
k−1∑
i=0

xi, which at x = 2 gives:

v = 2k − 1.

Now, for the last equation at x =
√

2,

0 = U2 − v
v = U2

v = x2(j−1) + x2(j−2) + · · ·+ 1

This is the geometric series
k−1∑
i=0

(x2)i, which at x =
√

2 gives:

v = (
√

22)k − 1 = 2k − 1

For only if direction:
We must now prove that if v = 2k − 1, then all of the above equations have a solution

over N[x1, . . . , xn]. We will do that by making smart choices of U1, U2, Y1, Y2, U3,W1 and
W2.

• For the first equation, set U1 = xk−1 + xk−2 + . . . + 1 and W1 = xk and you have
satisfied the first equation.

• For the second equation, set U2 = x2(k− 1) + x2(k− 2) + . . .+ 1 and W2 = x2k and
you have satisfied the second equation.

• For the third equation, set U3 = 0 and you have satisfied the third equation.

• To satisfy the fourth equation, you must find a polynomial Y1 such that (x−2)Y1 =
U1 − v.
For k = 0, U1 = 0, v = 0 implies Y1 = 0.
For k = 1, U1 = 1, v = 1 implies Y1 = 0.
For k = 2, U1 = x+ 1, v = 3 implies Y1 = 1.
For k = 3, U1 = x2 + x+ 1, v = 7 implies Y1 = x+ 3
. . .

Generalization of the above calculation gives a formula that holds for k > 1 i.e.,

Y1 =
∑

1≤n≤k−1
[(2n − 1)(xk−1−n)]

53

• To satisfy the fifth equation, you must find a polynomial Y2 such that (x2 − 2)Y2 =
U2 − v.
For k = 0, U2 = 0, v = 0 implies Y2 = 0.
For k = 1, U2 = 1, v = 1 implies Y2 = 0.
For k = 2, U2 = x2 + 1, v = 3 implies Y2 = 1.
For k = 3, U2 = x4 + x2 + 1, v = 7 implies Y2 = x2 + 3
. . .

Generalization of the above calculation gives a formula that holds for k > 1 i.e.,

Y2 =
∑

1≤n≤k−1
[(2n − 1)(x2(k−1−n))]

Corollary 5.1.4 ([9]). Let x ∈ {x1, . . . , xn} be an indeterminate, and v1 ∈ N[x1, . . . , xn].
The equations

1. (x− 1)U1 = W1 − 1

2. (x2 − 1)U2 = W2 − 1

3. (x− 1)U3 = U2 − U1

4. (x− 2)Y1 = U1 − V

5. (x2 − 2)Y2 = U2 − V

6. v1 + V2 = V

have a solution over N[x1, . . . , xn] if and only if v1 is a natural number.

Proof. For if direction:
By the above lemma we have V = 2k − 1 that by sixth equation, it implies

v1 + V2 = 2k − 1

2k − 1 is a natural number, so the sum of v1 + V2 must be a natural number, this is only
possible when v1 and V2 are also a natural numbers.

For only if direction:
If v1 is a natural number, then you can pick k and V2 in such a way that satisfy the

equation v1 + V2 = 2k − 1 for some k ≥ 0. Then, applying the above lemma, we conclude
that the equations have a solution over N[x1, . . . , xn].

54

Lemma 5.1.5 ([9]). Let x ∈ {x1, . . . , xn} be an indeterminate, and v1 and v2 be non-
negative integers. The equations

1. (x− 1)Y1 = Z − 1

2. (x− 1)Y2 = Y1 − v1

3. (x− 1)Y3 = Y2 − v2

have a solution over N[x1, . . . , xn] if and only if v2 = v1(v1 − 1)
2 .

Proof. For if direction:
First, the case k ≥ 3 is considered. By Lemma 5.1.1, Z = xk and Y1 has to be

xk−1 + xk−2 + · · ·+ 1, for some k ≥ 0. Now, evaluating the second equation at x = 1, we
have v1 = Y1, and Y1 = k, thus, v1 = k. Then, the second equation becomes:

(x− 1)Y2 = (xk−1 + xk−2 + · · ·+ 1)− k

that implies

Y2 = xk−1 + xk−2 + · · ·+ 1− k
(x− 1)

By polynomial division, when k > 2, we will get,

Y2 = xk−2 + 2xk−3 + 3xk−4 + 4xk−5 + 5xk−5 + · · ·+ (k − 1)xk−(k−1) + 1− k
(x− 1)

The last term of the remainder gives:

(k − 1)xk−(k−1) + 1− k = (k − 1)x+ 1− k = (k − 1)(x− 1)

Thus,
Y2 = xk−2 + 2xk−3 + . . .+ (k − 2)x2 + (k − 1)

At x = 1, we have

Y2 = 1 + 2 + · · ·+ (k − 2) + (k − 1) = k(k − 1)
2

Now for the third equation at x = 1 we have,

v2 = Y2

55

Thus,
v2 = k(k − 1)

2 = v1(v1 − 1)
2

Therefore, v1 = k.
To finish the proof, for the cases k ≤ 2, direct calculations are given.

k = 0 By Lemma 5.1.1, Y1 = 0 and Z = 1. Then, by the second equation at x = 1, one
has that v1 = 0. Also, Y2 = 0 because the right-hand side of the second equation
does not contain any monomial xk. Similarly, by the third equation one has that
Y3 = 0 and v2 = 0.

k = 1 By Lemma 5.1.1, Y1 = 1 and Z = x. Thus, by the second equation at x = 1, v1 = 1
and Y2 = 0 by similar reason that has been given before. By the third equation
when x = 1, v2 = Y2 = 0.

k = 2 By Lemma 5.1.1, Y1 = x+ 1 and Z = x2. Thus, the second equation becomes,

(x− 1)Y2 = x+ 1− v1

If Y2 is monomial i.e., x, the left-hand side is quadratic, then Y2 must be equal to
1. Then, the equation becomes (x− 1) = (x+ 1)− v1 which implies that v1 = 2.

In the third equation, the right-hand side is not a polynomial because Y2 = 1 and
v2 is also not a polynomial. So, to satisfy the equality Y3 must be equal to 0. This
implies that v2 = Y2 = 1. Thus equation

v2 = v1(v1 − 1)
2

holds.

For only if direction:
We assume

v2 = v1(v1 − 1)
2

and prove that the equations have a solution over N [x1, . . . , xn]
If v1 = 0, then v2 = 0. By putting Z = 1, Y1 = 0, Y2 = 0 and Y3 = 0 the equations are

solved.
If v1 = 1 then v2 = 0. By putting, Z = x, Y1 = 1, Y2 = 0 and Y3 = 0 the equations are

solved.
If v1 > 1, pick Z = xk, Y1 = xk−1 + . . . + x + 1, where k = v1. Notice that this solves

the first equation.

56

let’s prove that Y1 − v1 can be written as (x− 1)Y2, for some Y2.
Notice that, by dividing Y1 by (x− 1) we obtain:
Y1 = (x− 1)(xk−2 + 2xk−3 + . . .+ k − 1) + k

Since k = v1, then
Y1−v1 = [(x−1)(xk−2+2xk−3+. . .+k−1)+k]−v1 = (x−1)(xk−2+2xk−3+. . .+k−1)
By picking
Y2 = (xk−2 + 2xk−3 . . .+ k − 1)
we get that (x− 1)Y2 = Y1 − v1 and the second equation is solved.
We must now solve the third equation by proving that Y2 − v2 is divisible by x− 1
This is indeed the case, observe from the following examples:
For k = 2 : v1 = 2, v2 = 1 and Y2 = 1. By picking Y3 = 0, we solve the third equation.

For k = 3 : v1 = 3, v2 = 3 and Y2 = x + 2 = (x − 1)1 + 3. Since v2 = 3, this means that
Y2 − v2 = (x− 1)1. By picking Y3 = 1, we solve the third equation.

For k = 4 : v1 = 4, v2 = 6 and Y2 = x2 + 2x+ 3 = (x− 1)(x+ 3) + 6. Since v2 = 6, this
means that Y2− v2 = (x− 1)(x+ 3). By picking Y3 = (x+ 3) we solve the third equation.

For k = 5 : v1 = 5, v2 = 10 and Y2 = x3 +2x2 +3x+4 = (x−1)(x2 +3x+6)+10. Since
v2 = 10, this means that Y2 − v2 = (x − 1)(x2 + 3x + 6). By picking Y3 = (x2 + 3x + 6)
we solve the third equation.

Take the polynomial (x2 + 3x+ 6) of the case k = 5. Notice that its coefficients are :
1, 3 and 6. These are the values of v2 for the cases k = 2, 3 and 4 respectively.

In general, for k = l + 3: Y2 − v2 = (x − 1)(alxl + al−1x
l−1 + . . . + a0) where an =

(k−n−l)(k−n−2)
2 for 0 ≤ n ≤ m.

5.1.2 Reduction from Hilbert’s tenth problem

In this section, as in [9], it is proved that Hilbert’s tenth problem reduces into the problem
of solvability of linear equations over the ring N[x1, . . . , xn].

Hilbert’s tenth problem will be formulated over equations that belong to any one of
the following forms.

• xi = a where a is natural,

• xi + yj = zk,

• xiyj = zk

By lemma 5.1.5 squaring is available and the following formulation of Hilbert’s thenth
problem is possible.

57

Lemma 5.1.6 ([9]). The following problem is undecidable.
A set of Diophantine equations S where each equation is either a linear equation or an
equation of the form x = y2 is solvable over N?

Theorem 5.1.7 ([9]). Solvability of linear equations over the ring N[x1, . . . , xn] is unde-
cidable for all n ≥ 1.

Proof. Consider a set S of Diophantine equations as given in Lemma 5.1.6. Let {z1, . . . , zm}
be the set of variables in S.

1. Using Corollary 5.1.4 and providing a system of six equations with new variables
as below, it can be guaranteed that the solution of each zi, for i = 1 . . . ,m, is a
natural.

(a) (x− 1)U1 = W1 − 1

(b) (x2 − 1)U2 = W2 − 1

(c) (x− 1)U3 = U2 − U1

(d) (x− 2)Y1 = U1 − V

(e) (x2 − 2)Y2 = U2 − V

(f) z1 + . . .+ zm + V2 = V

Indeed, Corollary 5.1.4 implies that solutions for z1 + . . .+ zm, but this also implies
that each zi should be a natural.

2. Take the linear equations in S as they are.

3. For each equation of the form zi = z2
j in S, we use Lemma 5.1.5 in order to rewrite

the problem as a linear system, as explained below.

Notice that we are adding a system of equations for each equation of the form zi = z2
j

that we are simulating here. For every pair (i, j) we want to use different polynomials
Yk,1, Zk and so on. The way we do this, is by associating a different k to every pair (i, j),
by setting k = mi+ j.

A system of equations as given in Lemma 5.1.5 is given for each quadratic equation.

(x− 1)Yk,1 = Zk − 1

(x− 1)Yk,2 = Yk,1 − zj

(x− 1)Yk,3 = Yk,2 − Vk

58

zi = 2Vk + zj

Then, by Lemma 5.1.5 solutions satisfy 2Vk = zj(zj−1), and thus, by the last equation,
z2
j = zi.

This equation forces Vk to be also a natural number, since by the systems of equations
related with Corollary 5.1.4, zi and zj are already forced to be naturals.

Let T be the obtained set of linear equations over N[x1, . . . , xn]. Then, T has a solution
over N[x1, . . . , xn] if and only if S has a solution over N. By Lemma 5.1.6, finding if S
has a solution over N is undecidable. Hence, we conclude that finding if T has a solution
over N[x1, . . . , xn] is undecidable.

5.1.3 From solvability of linear equations over N[x] to ACUh

The equational theory ACUh is defined over a signature Σ that includes the associative-
commutative operator +, the unity and a unary symbol h with the homomorphic prop-
erties below.

h(x+ y) = h(x) + h(y) (h distributes over addition)
h(0) = 0 (h distributes over unity)

Theorem 5.1.8 ([10]). Solvability of linear equations over N[x] is reducible to the unifi-
ability problem for ACUh.

Proof. This is proved by Nutt in his paper [10]. Figures 1 and 2 of Nutt’s papers shows
how you relate an unification algorithm for a monoidal theory with solving linear equations
over semirings. Also, an example given by Nutt in his paper at page 19 tells how ACUh
is related to the semiring N[x].

In Nutt’s paper [10], the theory ACUh is what Narendran, in his paper [9], calls AC1h.

Corollary 5.1.9 ([9]). ACUh unification is undecidable.

Proof. Suppose ACUh unification is decidable. Then, by Theorem 5.1.8, we get that solv-
ability of linear equations over N[x] is also decidable. However, this contradicts Theorem
5.1.7. Therefore, we conclude that ACUh unification is undecidable.

5.1.4 ACh Unification is Undecidable

The theory ACh is the same as ACUh without unity, and only with the equation below
for the operator h.

h(x+ y) = h(x) + h(y) (h distributes over addition)

59

The proof of undecidability of ACh unification can be obtain by making some changes
in the proof of undecidability of ACUh unification. ACh unification is also related to
solving linear equations over N[x], but with the restriction that no variable can take the
value 0. So, consider the structure N+[x1, . . . , xn] = N[x1, . . . , xn]− {0}.

From Lemma 5.1.1 if we take the solutions of the form {Y = xk−1 + . . .+ 1, Z = xk},
for the equation,

(x− 1)Y = Z − 1

we cannot take k = 0 as is the structure N+[x1, . . . , xn], solution Y = 0 and Z = 1 is not
possible.

In ACh the above linear equation is related with the following unification problem

h(y) + a =ACh y + z

The relation interprets xY as h(y), and 1 as a constant a: xY + 1 = Y + Z. Possible
solutions of the unification problem will explain this more precisely. Since we have no
unity in ACh, the unifier

{z 7→ a, y 7→ 0}

for the above unification problem is not possible. But other unifiers are possible:

{z 7→ hk(a), y 7→ hk−1(a) + hk−2(a) . . .+ a}, for k ≥ 1.

Similarly, notice that the linear equation (xd−1)Y = Z−1 in the structure N+[x1, . . . , xn]
is related with the following unification problem in

hd(y) + a = y + z

Since the unity does not belong to ACh, the unifier {z 7→ a, y 7→ 0} is not possible, but
solutions of the form below do.

{z 7→ hdk(a), y 7→ hd(k−1)(a) + hd(k−2)(a) + . . .+ a}, for k ≥ 1.

We need to prove that the Lemmas of section 5.1.1 also hold for the structure N+[x1, . . . , xn].

Lemma 5.1.10 ([9]). Let x ∈ {x1, . . . , xn} be an indeterminate. Then the solution set of

(x− 1)Y = Z − 1

over N+[x1, . . . , xn] is {Y = xk−1 + xk−2 + · · ·+ 1, Z = xk | k ≥ 1}.

60

Proof. The reason given above for the linear equation (x − 1)Y = Z − 1 excludes from
the solutions in N[x1, . . . , xn] given in Lemma 5.1.1, the solution for k = 0. Then, the set
of solutions in N+[x1, . . . , xn] is {Y = xk−1 + xk−2 + · · ·+ 1, Z = xk | k ≥ 1}.

Lemma 5.1.11 ([9]). Let x ∈ {x1, . . . , xn} be an indeterminate, and d be a non-zero
natural number. Then the solution set of

(xd − 1)Y = Z − 1

over N+[x1, . . . , xn] is {Y = xd(k−1) + xd(k−2) + · · ·+ 1, Z = xdk | k ≥ 1}.

Proof. As given in the proof of Lemma 5.1.2, all solutions of the form below are unifiers,
but the solution for k = 0, that is {Y 7→ 0, Z 7→ 1} should be omitted since 0 does not
belong to the structure N+[x1, . . . , xn].
The solution set is thus:

{Y = xd(k−1) + xd(k−2) + · · ·+ 1, Z = xdk | k ≥ 1}.

Lemma 5.1.12 ([9]). Let x ∈ {x1, . . . , xn} be an indeterminate, and v ∈ N+[x1, . . . , xn].
The equations

1. (x− 1)U1 = W1 − 1

2. (x2 − 1)U2 = W2 − 1

3. (x− 1)U3 = U2 − U1

4. (x− 2)Y1 = U1 − v

5. (x2 − 2)Y2 = U2 − v

are solvable over N+[x1, . . . , xn] if and only if v = 2k − 1 for some k ≥ 2.

Proof. By lemmas 5.1.10 and 5.1.11 the solution set for the first equation is {U1 = xk−1 +
xk−2 + · · · + 1,W1 = xk | k ≥ 1} and the solution set for second equation is {U2 =
x2(j−1) + x2(j−2) + · · ·+ 1,W2 = x2j | j ≥ 1}.

By the third equation, as in the proof of Lemma 5.1.3, we took x = 1 the expression
(x− 1)U3 became 0; thus, k = j. Notice that having x− 1 equal to zero is not an issue;
what is restricted in N+[x1, . . . , xn] is to take x = 0 or U3 = 0.

By the fourth and fifth equations, as in Lemma 5.1.3, v = 2k − 1, for k ≥ 1. But, k
cannot be equal to 1. If we take k = 1, the fourth equation becomes (x − 2)Y1 = 1 − v,

61

which is not possible since the left-hand side is a polynomial with x (because you cannot
put Y1 equal to 0 anymore), and the right-hand side is a polynomial without x. Therefore,
k ≥ 2.

From the Corollary 5.1.4 we can have the adaptation of corollary given below

Corollary 5.1.13. Let x ∈ {x1, . . . , xn} be an indeterminate, and v1 ∈ N+[x1, . . . , xn].
The equations

1. (x− 1)U1 = W1 − 1

2. (x2 − 1)U2 = W2 − 1

3. (x− 1)U3 = U2 − U1

4. (x− 2)Y1 = U1 − V

5. (x2 − 2)Y2 = U2 − V

6. v1 + V2 = V

have a solution over N+[x1, . . . , xn] if and only if v1 is a positive natural number.

Lemma 5.1.14 ([9]). Let x ∈ {x1, . . . , xn} be an indeterminate, and v1 and v2 be non-
negative integers. The equations

1. (x− 1)Y1 = Z − 1

2. (x− 1)Y2 = Y1 − v1

3. (x− 1)Y3 = Y2 − v2

are solvable over N+[x1, . . . , xn] if and only if v1 ≥ 3 and v2 = v1(v1 − 1)
2 . Thus v2 ≥ 3

and 2v2 + v1 = v2
1.

Proof. For k ≥ 3, the proof is same as for Lemma 5.1.5. Notice that since v1 = k, this
implies v1 ≥ 3 and also that v2 ≥ 3.

The cases k = 0, 1 and 2 are not possible. The case k = 0 is not possible by the first
equation and by Lemma 5.1.10.

For the case k = 1, as in the proof of Lemma 5.1.5, Y1 = 1 and Z = x, which by
the second equation at x = 1, implies (x − 1)Y2 = 1 − v1. Which cannot be satisfied for
every value of x, since (1 − v1) does not contain any monomial xk while (x − 1)Y2 is a
polynomial that certainly contain x. To satisfy the equation, Y2 must be equal to zero
that gives rise to a contradiction. As we cannot take Y2 = 0.

62

Finally, for the case k = 2, as in the proof of Lemma 5.1.5, Y1 = x + 1. Thus, the
second equation becomes (x − 1)Y2 = x + 1 − v1. At x = 1 this equation implies that
v1 = 2 and then that v2 = 1, then it becomes (x−1)Y2 = x−1, which implies that Y2 = 1.

From this, the third equation becomes (x− 1)Y3 = Y2− v2. Which cannot possibly be
satisfied for every value of x since Y2− v2 is a number and (x− 1)Y3 is a polynomial that
certainly contain x. To satisfy the equation, Y3 must be equal to zero that gives rise to a
contradiction. As we cannot take Y3 = 0.

The all above lemmas will help to prove the undecidability of ACh unification.

Reduction from Hilbert’s tenth problem

By following the Section 5.1.2 and by making some small changes we can prove that
solvability of linear equations over the structure N+[x1, . . . , xn] is undecidable.

From Lemma 5.1.6 we can have the following lemma.

Lemma 5.1.15. The following problem is undecidable.
A set of Diophantine equations S is solvable over N− {0, 1, 2} where each equation is

either a linear equation or an equation of the form x = y2 is solvable over N+?

From Theorem 5.1.7 we have the following theorem.

Theorem 5.1.16. Solvability of linear equations over the structure N+[x1, . . . , xn] is un-
decidable for all solutions greater or equal than 3.

Proof. Basically, the proof of this theorem is almost adaptation of the proof of the
Theorem 5.1.7, but the main difference is that we are now working with the structure
N+[x1, . . . , xn] instead of N[x1, . . . , xn]. In the proof of 5.1.7, Corollary 5.1.4 was used
in proof and Lemma 5.1.5 was used to simulate the equation of the form zi = z2

j , In
this proof instead of Lemma 5.1.5, we can use Lemma 5.1.14 and the adapted version of
Corollary 5.1.4. So, by using Lemma 5.1.14, we will add the constraint that the solutions
zi are greater or equal than 3. Because of this, as compared to the Lemma 5.1.6, we have
the restriction that the solutions of Lemma 5.1.15 have to be greater or equal than 3.

Reduction to the theory of ACh

By following the Section 5.1.3 and by making some small changes we can see the ACh
unification problem is undecidable.

From Theorem 5.1.8 we can have a following theorem.

Theorem 5.1.17. Solvability of linear equations over N+[x] is reducible to the unifiability
problem for ACh.

63

Proof. The proof can be done by making small adaptations from the proof of Theorem
5.1.8. When we are working with N+[x] instead of N[x], we are not including the neutral
element i.e., 0 in the set of naturals N. But in the unification theory this corresponds
to a theory without the property of unity. Therefore, the fact that we are working with
the structure N+[x] can be translated to the theory ACh as the semiring N[x] can be
translated to the theory ACUh.

Theorem 5.1.18 ([9]). ACh unification is undecidable.

Proof. Let suppose ACh unification is decidable, then by theorem 5.1.17, this would mean
that solvability of linear equations over N+ is also decidable. This however contradicts
Theorem 5.1.16. So, ACh unification is undecidable.

5.2 Bounded ACh Unification

In this subsection we will discuss the bounded ACh unification approach introduced in [11].
We present the inference rules given in [11], examples of their application and propose
a procedure based on these rules. Proofs of termination, correctness and completion,
presented in [11], is not included in the discussion.

5.2.1 Important Definitions

Definition 17 [Graph G(Γ) [11]]
Let Γ be a unification problem. A graph G(Γ) is a graph where each node

represents a variable in Γ and each edge represents a function symbol in Γ. In an
equation y =? f(x1, . . . , xn), where f is a function symbol with n ≥ 1, the graph
G(Γ) contains n edges y f−→ x1, y

f−→ x2 . . . , y
f−→ xn. For a constant symbol c,

similarly in an equation y =? c, the graph G(Γ) contains a vertex y. Finally, the
graph G(Γ) contains two vertices y and x if an equation y =? x is in Γ.

Definition 18 [h-Depth [11]]
Let Γ be a unification problem and x be a variable that occurs in Γ. Let h be a

unary symbol and f be a symbol with arity greater than or equal to 1 in Γ. Then
h-depth of a variable x is the maximum number of h-symbol along a path to x in

64

G(Γ), and it is denoted by hd(x,Γ). i,e,.

hd(x,Γ) := max{hdh(x,Γ), hdf (x,Γ), 0},

where hdh(x,Γ) := max{1 + hd(y,Γ) | y h−→ x is an edge in G(Γ)} and hdf (x,Γ) :=
max{hd(y,Γ) | there exist f 6= h such that y f−→ x is in G(Γ)}

Example 5.2.1.
Γ = {y =? h(v), v =? h(v1), v1 =? h(x)}.

Solution: So, the graph G(Γ) will be

y v v1 x
h h h

Here h-depth of x is 3 as there are three edges of h from y to x, h-depth of v1 is 2
as there are two edges of h from y to v1, h-depth of v is 1 as there is one edge of h from
y to v in the graph G(Γ).

Definition 19 [h-Depth Set [11]]
Let Γ be a set of equations and V be the set of variables occurring in Γ. Then the

h-Depth Set of Γ, denoted as ∆, is a set whose elements are pairs of a variable from
V and a non-negative integer of the form (x, c), such that x ∈ V and c = hd(x,Γ).
The maximum value of the h-depth in ∆, is the maximum of all c values, and is
denoted by MaxV al(∆), i.e.,

MaxV al(∆) = max{c | (x, c) ∈ ∆ for some x}.

Example 5.2.2.

Γ = {y =? h(v), v =? h(v1), v1 =? h(x)} and V = {x, y, v, v1}

Solution: Then we can see from the graph G(Γ) in previous example that the h-depth
set of Γ is

∆ = {(x, 3), (y, 0), (v, 1), (v1, 2)}

Then we can see from the h-depth set ∆, the maximum value of h-depth in ∆ is 3, i,e,.

MaxV al(∆) = {3}

65

Definition 20 [h-Height [11]]
Let Γ be a unification problem and t be a term that occurs in Γ. Then the

h-height of t is defined as

hh(t) =


hh(t′) + 1 if t = h(t′);

max{hh(t1), . . . , hh(tn)} if t = f(t1, . . . , tn), f 6= h;

0 if t = x or c.

Definition 21 [Bounded ACh Unifier [11]]
A κ-bounded unifier or κ-bounded solution of the unification problem Γ =

{s1 =?
ACh t1, . . . , sn =?

ACh tn} modulo ACh is a substitution σ such that siσ =ACh tiσ,
hh(siσ) ≤ κ and hh(tiσ) ≤ κ, for all 1 ≤ i ≤ n. If κ ∈ N is a bound on the h-depth
of the variables then to satisfy this bound, MaxV al(∆) ≤ κ must hold.

The Example 5.2.13 given after presentation of the inference rule Bound Check 5.2.3
will help to understand the notion of bounded ACh unifier.

5.2.2 Inference System

The inference system introduced by Eeralla and Lynch in [11] will be discussed and
examples presented to illustrate how these rules work to compute bounded solutions for
ACh unification problems. This system consist of set of inference rules over triples as
illustrated below.

Γ ‖ ∆ ‖ σ
Γ′ ‖ ∆′ ‖ σ′

This means that if something matches the top of any rule then it can be replaced with
the bottom of that rule. The triples consist of:

• Γ, a set of equations of a unification problem modulo ACh theory,

• ∆, an h-Depth set of Γ, and

• σ, a set of substitutions.

By using Eeralla and Lynch inference rules in [11], an equational unification problem
can be transformed into other. Generally, the inference procedure is based on priority
of rules but when there is no priority restriction, any rule from the set of rules can be

66

applied. Initially, Γ is given as the (non-empty) set of equations to be solved; ∆, as a set
of pairs of the form (x, 0), one of such pairs for each x that belongs to the variables in Γ;
and σ, as the identity substitution. Then, to solve Γ, the inference rules are applied until
one gets either the most general unifier σ or ⊥ for no solution.

To solve the unification problem modulo ACh, Eeralla and Lynch’s approach in [11]
maintains all equations in Γ in flattened form. Flattened equations are of one of the
following forms:

• x =? y called Var-equations.

• x =? h(y) called h-equations.

• x =? y1 + · · ·+ yn called +-equations.

• x =? f(x1, . . . , xn) called free-equations.

Where x, y, yi, and xi are variables, and f is any free function symbol with n ≥ 0. If
the given equations in the unification problem are not in flattened form, then by using
inference rules for flattening provided in [11], they are easily converted into equivalent
equations in the required flattened form.

5.2.3 Inference Rules

First, all flattening rules in [11] will be discussed here. These rules are used to put any
equation given in the input set of equations Γ into flattened form. According to the type
of equation we can use one of the flattening rules below.

Flattening Rules

1. Flatten Both Sides (FBS)

{t1 =? t2} ∪ Γ ‖ ∆ ‖ σ
{v =? t1, v =? t2} ∪ Γ ‖ {(v, 0)} ∪∆ ‖ σ , if t1 and t2 /∈ V. And v is a fresh variable.

2. Flatten Left + (FL+)

{t =? t1 + t2} ∪ Γ ‖ ∆ ‖ σ
{t =? v + t2, v =? t1} ∪ Γ ‖ {(v, 0)} ∪∆ ‖ σ , if t1 /∈ V. And v is a fresh variable.

67

3. Flatten Right + (FR+)

{t =? t1 + t2} ∪ Γ ‖ ∆ ‖ σ
{t =? t1 + v, v =? t2} ∪ Γ ‖ {(v, 0)} ∪∆ ‖ σ , if t2 /∈ V. And v is a fresh variable.

4. Flatten Under h (FUh)

{t1 =? h(t)} ∪ Γ ‖ ∆ ‖ σ
{t1 =? h(v), v =? t} ∪ Γ ‖ {(v, 0)} ∪∆ ‖ σ , if t /∈ V. And v is a fresh variable.

Example 5.2.3. Solve the unification problem:

{h(x) + y = (z + w)}

Solution: For simplicity, only the set of equations Γ is consider here, and not the full
triple.

{h(x) + y = z + w︸ ︷︷ ︸}||{(x, 0), (y, 0), (z, 0), (w, 0)} FBS=⇒

{v = h(x) + y︸ ︷︷ ︸, v = z + w}||{(v, 0), (x, 0), (y, 0), (z, 0), (w, 0)} FL+=⇒

{v = v1 + y, v1 = h(x), v = z + w}||{(v, 0), (v1, 0), (x, 0), (y, 0), (z, 0), (w, 0)}

Each equation in the set {v = v1 + y, v1 = h(x), v = z+w} is in the flattened form of the
given problem {h(x) + y = (z + w)}.

Example 5.2.4. Solve the unification problem:

{h(x) + h(y) = (x+ y) + (w + z)}

Solution: For simplicity, only the set of equations is considered here, and not the full
triple. Let ∆0 = {(x, 0), (y, 0), (w, 0), (z, 0)}

{h(x) + h(y) = (x+ y) + (w + z)︸ ︷︷ ︸}||∆0
FBS=⇒

{v = h(x) + h(y)︸ ︷︷ ︸, v = (x+ y) + (w + z)}||{(v, 0)} ∪∆0
FL+=⇒

{v = v1 + h(y)︸ ︷︷ ︸, v1 = h(x), v = (x+ y) + (w + z)}||{(v, 0), (v1, 0)} ∪∆0
FR+=⇒

{v = v1 + v2, v1 = h(x), v2 = h(y), v = (x+ y) + (w + z)︸ ︷︷ ︸}||
{(v, 0), (v1, 0), (v2, 0)} ∪∆0

FL+=⇒

68

{v = v1 + v2, v1 = h(x), v2 = h(y), v = v3 + (w + z)︸ ︷︷ ︸, v3 = (x+ y)}||

{(v, 0), (v1, 0), (v2, 0), (v3, 0)} ∪∆0
FR+=⇒

{v = v1 + v2, v1 = h(x), v2 = h(y), v = v3 + v4, v3 = (x+ y), v4 = (w + z)}||
{(v, 0), (v1, 0), (v2, 0), (v3, 0), (v4, 0)} ∪∆0

Each equation in the set {v = v1+v2, v1 = h(x), v2 = h(y), v = v3+v4, v3 = (x+y), v4 =
(w + z)} is in the flattened form of the given problem {h(x) + h(y) = (x+ y) + (w + z)}.

Update h-Depth Set

Eerlla and Lynch also proposed an inference rule to update the h-depth set ∆ ([11]).

Update h-depth set (Uh)

{x =? h(y)} ∪ Γ ‖ {(x, c1), (y, c2)} ∪∆ ‖ σ
{x =? h(y)} ∪ Γ ‖ {(x, c1), (y, c1 + 1)} ∪∆ ‖ σ , if c2 < (c1 + 1).

Example 5.2.5 (Taken from [11]). Solve the unification problem:

{y =? h(h(h(x)))}

The flattened form of this unification problem is the input problem in Example 5.2.2.
Here, the solution is given to show how to put the unification problem into the flattened
form.

Solution: We only consider the pair Γ||∆, but not σ since it does not change after
applying flattening rules.

First, rules for flattening are applied.

{y =? h(h(h(x)))︸ ︷︷ ︸}||{(x, 0), (y, 0)} FUh=⇒

{y =? h(v), v = h(h(x))︸ ︷︷ ︸}||{(v, 0), (x, 0), (y, 0)} FUh=⇒

{y =? h(v), v = h(v1), v1 = h(x)}||{(v, 0), (v1, 0), (x, 0), (y, 0)}

Then, the rule to update the h-depth set ∆ will be applied.

{y =? h(v), v =? h(v1), v1 =? h(x)}||{(v, 0)︸ ︷︷ ︸, (v1, 0), (x, 0), (y, 0)} Uh=⇒

{y =? h(v), v =? h(v1), v1 =? h(x)}||{(v, 1), (v1, 0)︸ ︷︷ ︸, (x, 0), (y, 0)} Uh=⇒

{y =? h(v), v =? h(v1), v1 =? h(x)}||{(v, 1), (v1, 2), (x, 0)︸ ︷︷ ︸, (y, 0)} Uh=⇒

{y =? h(v), v =? h(v1), v1 =? h(x)}||{(v, 1), (v1, 2), (x, 3), (y, 0)}

Update + Rule (U+)

69

Updating rules proposed in [11], are used to update the set ∆ according to +-equations.

1. {x =? y1 + y2} ∪ Γ ‖ {(x, c), (y1, c1), (y2, c2)} ∪∆ ‖ σ
{x =? y1 + y2} ∪ Γ ‖ {(x, c), (y1, c), (y2, c2)} ∪∆ ‖ σ , if c1 < c.

2. {x =? y1 + y2} ∪ Γ ‖ {(x, c), (y1, c1), (y2, c2)} ∪∆ ‖ σ
{x =? y1 + y2} ∪ Γ ‖ {(x, c), (y1, c1), (y2, c)} ∪∆ ‖ σ , if c2 < c.

Example 5.2.6. Solve the unification problem:

{x = x1 + x2 + x3, y = h(h(x))}

Solution: For simplicity, the substitution σ is omitted and we only consider the pair
Γ||∆.

{x =? x1 + x2 + x3, y =? h(h(x))︸ ︷︷ ︸}||{(x1, 0), (x2, 0), (x3, 0), (x, 0), (y, 0)} FUh=⇒

{x =? x1 + x2 + x3︸ ︷︷ ︸, y =? h(v), v =? h(x)}||{(x1, 0), (x2, 0), (x3, 0), (x, 0),

(y, 0), (v, 0)} FR+=⇒
{x =? x1 + v1, v1 = x2 + x3, y =? h(v), v =? h(x)}||{(x1, 0), (x2, 0), (x3, 0),
(x, 0)︸ ︷︷ ︸, (y, 0), (v, 0)︸ ︷︷ ︸, (v1, 0)} Uh=⇒

2

{x =? x1 + v1, v1 = x2 + x3, y =? h(v), v =? h(x)}||{(x1, 0)︸ ︷︷ ︸, (x2, 0), (x3, 0),

(x, 2), (y, 0), (v, 1), (v1, 0)︸ ︷︷ ︸} U+=⇒
2

{x =? x1 + v1, v1 = x2 + x3, y =? h(v), v =? h(x)}||{(x1, 2), (x2, 0)︸ ︷︷ ︸, (x3, 0)︸ ︷︷ ︸,
(x, 2), (y, 0), (v, 1), (v1, 2)} U+=⇒

2

{x =? x1 + v1, v1 = x2 + x3, y =? h(v), v =? h(x)}||{(x1, 2), (x2, 2), (x3, 2),
(x, 2), (y, 0), (v, 1), (v1, 2)}

As there are two edges of h from y to x in the graph G(Γ), h-depth of x is 2 thats why
h-depths of x1, x2, x3 and v1 are also updated according to x by using the Update + (U+)
Rule.

Splitting Rule (S)

The splitting rule introduced by Eeralla and Lynch in [11], deals with the function symbol
h. To solve h-equations of the type h(y) =? x1 +x2, we need to write y as the sum of two
new variables y = v1 + v2, where v1 and v2 are fresh variables.

70

Splitting

{x =? h(y), x =? x1 + · · ·+ xn} ∪ Γ ‖ ∆ ‖ σ
{x =? h(y), y =? v1 + · · ·+ vn, x1 =? h(v1), . . . , xn =? h(vn)} ∪ Γ ‖ ∆′ ‖ σ

where n > 1, x 6= y and x 6= xi for any i, ∆′ = {(v1, 0), . . . , (vn, 0)}∪∆, and v1, . . . , vn

are fresh variables in NV.

Example 5.2.7. Solve the unification problem:

{h(y) =? x1 + x2}

Solution: Consider pair Γ||∆, since rules for obtaining σ are not introduced yet.

{h(y) =? x1 + x2︸ ︷︷ ︸}||{(y, 0), (x1, 0), (x2, 0)} FBS=⇒

{v =? h(y), v =? x1 + x2}||{((y, 0)︸ ︷︷ ︸, (x1, 0), (x2, 0), (v, 0)} Uh=⇒

{v =? h(y), v =? x1 + x2︸ ︷︷ ︸}||{(y, 1), (x1, 0), (x2, 0), (v, 0)} S=⇒

{v =? h(y), y =? v1 + v2, x1 =? h(v1), x2 =? h(v2)}||
{(y, 1), (x1, 0), (x2, 0), (v, 0), (v1, 0)︸ ︷︷ ︸, (v2, 0)︸ ︷︷ ︸} Uh=⇒

2

{v =? h(y), y =? v1 + v2, x1 =? h(v1), x2 =? h(v2)}||
{(y, 1), (x1, 0), (x2, 0), (v, 0), (v1, 1), (v2, 1)}

We pause this example here until the rules for σ will be introduced.

Trivial

This rule, introduced in [11], is used to eliminate all trivial equations from the given
problem Γ.

{t =? t} ∪ Γ ‖ ∆ ‖ σ
Γ ‖ ∆ ‖ σ

Variable Elimination (VE)

These rules, introduced in [11], are used to find the most general unifier. Variable Elimi-
nation rule (VEoc) is applied when no other rule can be applied.

1. Variable Elimination with different variables (VEv)

71

{x =? y} ∪ Γ ‖ ∆ ‖ σ
Γ{x 7→ y} ‖ ∆ ‖ σ{x 7→ y} ∪ {x 7→ y}

, if x and y are distinct variables.

2. Variable Elimination with occur check (VEoc)

{x =? t} ∪ Γ ‖ ∆ ‖ σ
Γ{x 7→ t} ‖ ∆ ‖ σ{x 7→ t} ∪ {x 7→ t}

, if t /∈ V and x does not occur in t.

Example 5.2.8. Continuing Example 5.2.7:

{h(y) =? x1 + x2}

the triple below, where ∆ = {(y, 1), (x1, 0), (x2, 0), (v, 0), (v1, 1), (v2, 1)}, was obtained.

{v =? h(y), y =? v1 + v2, x1 =? h(v1), x2 =? h(v2)}||∆||∅

Solution:

{v =? h(y)︸ ︷︷ ︸, y =? v1 + v2, x1 =? h(v1), x2 =? h(v2)}||∆||∅ V Eoc=⇒

{y =? v1 + v2︸ ︷︷ ︸, x1 =? h(v1), x2 =? h(v2)}||∆||{v 7→ h(y)} V Eoc=⇒

{x1 =? h(v1)︸ ︷︷ ︸, x2 =? h(v2)}||∆||{v 7→ h(v1 + v2), y 7→ v1 + v2}
V Eoc=⇒

{x2 =? h(v2)︸ ︷︷ ︸}||∆||{v 7→ h(v1 + v2), y 7→ v1 + v2, x1 7→ h(v1)} V Eoc=⇒

∅||∆||{v 7→ h(v1 + v2), y 7→ v1 + v2, x1 7→ h(v1), x2 7→ h(v2)}

So, {y 7→ v1 + v2, x1 7→ h(v1), x2 7→ h(v2)} is a unifier of the problem {h(y) =? x1 + x2}.

Decomposition (D)

This rule introduced in [11] is used to decomposes an equation into several sub-equations
if the top function symbol matches on both sides.

{x =? f(s1, . . . , sn), x =? f(t1, . . . , tn)} ∪ Γ ‖ ∆ ‖ σ
{x =? f(t1, . . . , tn), s1 =? t1, . . . , sn =? tn} ∪ Γ ‖ ∆ ‖ σ , if f 6= +

Example 5.2.9. Solve the unification problem:

{f(x1 + x2, y1) =? f(h(y), y2)}

Consider ∆ as in Example 5.2.8, and σ = {v 7→ h(y), y 7→ v1 + v2, x1 7→ h(v1), x2 7→
h(v2)}, the solution for {h(y) =? x1 + x2}, obtained in that example.

72

Solution:

{f(x1 + x2, y1) =? f(h(y), y2)︸ ︷︷ ︸}||{(y, 0), (x1, 0), (y1, 0), (x2, 0), (y2, 0)}||∅ FBS=⇒

{x =? f(x1 + x2, y1), x =? f(h(y), y2)︸ ︷︷ ︸}||{(x, 0), (y, 0), (x1, 0), (y1, 0), (x2, 0),

(y2, 0)}||∅ D=⇒
{x =? f(h(y), y2), x1 + x2 =? h(y), y1 =? y2}|| {(x, 0), (y, 0), (x1, 0), (y1, 0),
(x2, 0), (y2, 0)}||∅ ∗=⇒
∅||{(x, 0), (y1, 0), (y2, 0)} ∪∆||σ ∪ {y1 7→ y2}

Associative-Commutative unification Rule (ACu)

This rule, as introduced in [11], will call any AC syntactic unification algorithm to unify
the AC part of the given problem. We will apply this rule exhaustively generating all
different possibilities from the AC operator. All possibilities would be solved to build the
complete set of bounded unifiers.

Ψ ∪ Γ ‖ ∆ ‖ σ
GetsEqs(θ1) ∪ Γ ‖ ∆ ‖ σ ∨ . . . ∨ GetsEqs(θn) ∪ Γ ‖ ∆ ‖ σ

where Ψ is the set of all equations with the + symbol on the right hand side; and, Γ is
the set of equations not containing a + symbol. In the rule (ACu), GetsEqs is a function
that takes a substitution and returns the equational form of that substitution, i.e.,

GetsEqs({x1 7→ t1, . . . , xn 7→ tn}) = {x1 = t1, . . . , xn = tn}

Finally, Unify is a function that returns the complete set of unifiers, {θ1, . . . , θn}, com-
puted by the selected AC-unification algorithm: Unify(Ψ) = {θ1, . . . , θn}.

Example 5.2.10. Solve the unification problem:

{h(x+ u) =? y + h(x) + z}

For this kind of examples i.e., where the (ACu) rule will be applicable, we need to see
for which branches we will have a solution. In particular, in this example we can have
several branches after application of the (ACu) rule as below.

• for the left-hand side of the equation the cases h(x+ u) and h(u+ x);

• for the right-hand side of the equation we will have several possibilities, for instance:
(y + h(x)) + z, z + (h(x) + y), h(x) + (y + z), h(x) + (z + y), (y + z) + h(x), etc.

73

But we will not have a solution for all of above branches. We need to check which branch
will provide us a solution for the given problem. Here, we will consider just three branches
fixing the left-hand side and changing the right-hand side of the equation and check if they
will provide solutions or not.

Consider the first branch h(x+ u) =? h(x) + (y + z)
Solution:

{h(x+ u) =? h(x) + (y + z)︸ ︷︷ ︸}||{(x, 0), (u, 0), (y, 0), (z, 0)}||∅ FBS=⇒

{v =? h(x+ u)︸ ︷︷ ︸, v =? h(x) + (y + z)}||{(v, 0), (x, 0), (u, 0),

(y, 0), (z, 0)}||∅ FUh=⇒
{v =? h(w), w =? x+ u, v =? h(x) + (y + z)︸ ︷︷ ︸}||
{(w, 0), (v, 0), (x, 0), (u, 0), (y, 0), (z, 0)}||∅ FL+=⇒
{v =? h(w), w =? x+ u, v =? v1 + (y + z)︸ ︷︷ ︸, v1 =? h(x)}||

{(v1, 0), (w, 0), (v, 0), (x, 0), (u, 0), (y, 0), (z, 0)}||∅ FR+=⇒
{v =? h(w)︸ ︷︷ ︸, w =? x+ u, v =? v1 + v2︸ ︷︷ ︸, v1 =? h(x), v2 =? y + z}||

{(v2, 0), (v1, 0), (w, 0), (v, 0), (x, 0), (u, 0), (y, 0), (z, 0)}||∅ S=⇒
{v =? h(w), w =? v3 + v4, v1 =? h(v3), v2 =? h(v4), w =? x+ u,

v1 =? h(x), v2 =? y + z}||{(v4, 0)︸ ︷︷ ︸, (v3, 0)︸ ︷︷ ︸, (v2, 0), (v1, 0), (w, 0)︸ ︷︷ ︸, (v, 0),

(x, 0)︸ ︷︷ ︸, (u, 0), (y, 0), (z, 0)}||∅ Uh=⇒

{v =? h(w), w =? v3 + v4, v1 =? h(v3), v2 =? h(v4)︸ ︷︷ ︸, w =? x+ u, v1 =? h(x),

v2 =? y + z︸ ︷︷ ︸}||{(v4, 1), (v3, 1), (v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1),

(u, 0), (y, 0), (z, 0)}||∅ S=⇒
{v =? h(w), w =? v3 + v4, v1 =? h(v3), v2 =? h(v4), v4 =? v5 + v6,

y =? h(v5), z =? h(v6), w =? x+ u, v1 =? h(x)}||{(v6, 0)︸ ︷︷ ︸, (v5, 0)︸ ︷︷ ︸,
(v4, 1), (v3, 1), (v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1), (u, 0), (y, 0), (z, 0)}||∅ Uh=⇒
{v =? h(w), w =? v3 + v4, v1 =? h(v3)︸ ︷︷ ︸, v2 =? h(v4), v4 =? v5 + v6,

y =? h(v5), z =? h(v6), w =? x+ u, v1 =? h(x)︸ ︷︷ ︸}||{(v6, 1), (v5, 1), (v4, 1),

(v3, 1), (v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1), (u, 0), (y, 0), (z, 0)}||∅ D=⇒
{v =? h(w), w =? v3 + v4︸ ︷︷ ︸, v2 =? h(v4), v4 =? v5 + v6, y =? h(v5), z =? h(v6),

w =? x+ u︸ ︷︷ ︸, v1 = h(x), x =? v3}||{(v6, 1), (v5, 1), (v4, 1), (v3, 1), (v2, 0),

(v1, 0), (w, 1), (v, 0), (x, 1), (u, 0), (y, 0), (z, 0)}||∅ AC=⇒

74

{v =? h(w)︸ ︷︷ ︸, w =? x+ u, x =? v3, u =? v4, v2 =? h(v4), v4 =? v5 + v6,

y =? h(v5), z =? h(v6), v1 =? h(x)}||{(v6, 1), (v5, 1), (v4, 1), (v3, 1), (v2, 0),
(v1, 0), (w, 1), (v, 0), (x, 1), (u, 0), (y, 0), (z, 0)}||∅ V Eoc=⇒
{w =? x+ u︸ ︷︷ ︸, x =? v3, u =? v4, v2 =? h(v4), v4 =? v5 + v6,

y =? h(v5), z =? h(v6), v1 =? h(x)}||
{(v6, 1), (v5, 1), (v4, 1), (v3, 1), (v2, 0),
(v1, 0), (w, 1), (v, 0), (x, 1), (u, 0), (y, 0), (z, 0)}||
{v 7→ h(w)} V Eoc=⇒
{x =? v3, u =? v4︸ ︷︷ ︸, v2 =? h(v4), v4 =? v5 + v6, y =? h(v5), z =? h(v6), v1 =? h(x)}||

{(v6, 1), (v5, 1), (v4, 1), (v3, 1), (v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1), (u, 0), (y, 0), (z, 0)}||
{v 7→ h(x+ u), w 7→ x+ u} V Eoc=⇒

2

{v2 =? h(v4), v4 =? v5 + v6︸ ︷︷ ︸, y =? h(v5), z =? h(v6), v1 =? h(v3)}||

{(v6, 1), (v5, 1), (v4, 1), (v3, 1), (v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1), (u, 0), (y, 0), (z, 0)}||
{v 7→ h(v3 + v4), w 7→ v3 + v4, x 7→ v3, u 7→ v4}

V Eoc=⇒
{v2 =? h(v5 + v6), y =? h(v5)︸ ︷︷ ︸, z =? h(v6)︸ ︷︷ ︸, v1 =? h(v3)}||

{(v6, 1), (v5, 1), (v4, 1), (v3, 1), (v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1), (u, 0), (y, 0), (z, 0)}||
{v 7→ h(v3 + v5 + v6), w 7→ v3 + v5 + v6, x 7→ v3, u 7→ v5 + v6, v4 7→ v5 + v6}

V Eoc=⇒
2

{v2 =? h(v5 + v6), v1 =? h(v3)}||
{(v6, 1), (v5, 1), (v4, 1), (v3, 1), (v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1), (u, 0), (y, 0), (z, 0)}||
{v 7→ h(v3 + v5 + v6), w 7→ v3 + v5 + v6, x 7→ v3, u 7→ v5 + v6, v4 7→ v5 + v6,

y 7→ h(v5), z 7→ h(v6)}

Therefore the above first branch provides us a solution for the problem h(x + u) =?

h(x) + (y + z):
σ = {x 7→ v3, u 7→ v5 + v6, y 7→ h(v5), z 7→ h(v6)}

Now consider the second branch h(x+ u) =? y + h(x) + z

{h(x+ u) =? y + h(x) + z︸ ︷︷ ︸}||{(x, 0), (u, 0), (y, 0), (z, 0)}||∅ FBS=⇒

{v =? h(x+ u)︸ ︷︷ ︸, v =? y + h(x) + z}||{(v, 0), (x, 0), (u, 0),

(y, 0), (z, 0)}||∅ FUh=⇒
{v =? h(w), w =? x+ u, v =? y + h(x) + z︸ ︷︷ ︸}||
{(w, 0), (v, 0), (x, 0), (u, 0), (y, 0), (z, 0)}||∅ FL+=⇒

75

{v =? h(w), w =? x+ u, v =? v1 + z, v1 =? y + h(x)︸ ︷︷ ︸}||
{(v1, 0), (w, 0), (v, 0), (x, 0), (u, 0), (y, 0), (z, 0)}||∅ FR+=⇒
{v =? h(w), w =? x+ u, v =? v1 + z, v1 =? y + v2, v2 =? h(x)}||
{(v2, 0), (v1, 0), (w, 0)︸ ︷︷ ︸, (v, 0), (x, 0)︸ ︷︷ ︸, (u, 0), (y, 0), (z, 0)}|| Uh=⇒

{v =? h(w), w =? x+ u︸ ︷︷ ︸, v =? v1 + z, v1 =? y + v2, v2 =? h(x)}||

{(v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1), (u, 0)︸ ︷︷ ︸, (y, 0), (z, 0)}|| U+=⇒

{v =? h(w)︸ ︷︷ ︸, w =? x+ u, v =? v1 + z︸ ︷︷ ︸, v1 =? y + v2, v2 =? h(x)}||

{(v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1), (u, 1), (y, 0), (z, 0)}||∅ S=⇒
{v =? h(w), w =? v3 + v4, v1 =? h(v3)︸ ︷︷ ︸, z =? h(v4), w =? x+ u, v1 =? y + v2︸ ︷︷ ︸, v2 =? h(x)}||

{(v4, 0), (v3, 0), (v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1), (u, 1), (y, 0), (z, 0)}||∅ S=⇒
{v =? h(w), w =? v3 + v4, v1 =? h(v3), v3 =? v5 + v6, y =? h(v5), v2 =? h(v6)︸ ︷︷ ︸, z =? h(v4),

w =? x+ u v2 =? h(x)︸ ︷︷ ︸}||{(v6, 0), (v5, 0), (v4, 0), (v3, 0), (v2, 0), (w, 1), (v1, 0), (v, 0),

(x, 1), (u, 1), (y, 0), (z, 0), }||∅ D=⇒
{v2 =? h(x), v6 =? x, v =? h(w), w =? v3 + v4︸ ︷︷ ︸, w =? x+ u︸ ︷︷ ︸, v1 =? h(v3), v3 =? v5 + v6,

y =? h(v5), z =? h(v4)}||{(v6, 0), (v5, 0), (v4, 0), (v3, 0), (v2, 0), (w, 1), (v1, 0), (v, 0),
(x, 1), (u, 1), (y, 0), (z, 0), }||∅ ACu=⇒
{w =? x+ u, v3 =? x︸ ︷︷ ︸, v4 =? u, v2 =? h(x), v6 =? x, v =? h(w), v1 =? h(v3), v3 =? v5 + v6,

y =? h(v5), z =? h(v4)}||{(v6, 0), (v5, 0), (v4, 0), (v3, 0), (v2, 0), (w, 1), (v1, 0), (v, 0),
(x, 1), (u, 1), (y, 0), (z, 0), }||∅ V Eoc=⇒
{w =? x+ u, u =? v4, v2 =? h(x), v6 =? x︸ ︷︷ ︸, v =? h(w), v1 =? h(x), x =? v5 + v6,

y =? h(v5), z =? h(v4)}||{(v6, 0), (v5, 0), (v4, 0), (v3, 0), (v2, 0), (w, 1), (v1, 0), (v, 0),
(x, 1), (u, 1), (y, 0), (z, 0), }||{v3 7→ x} V Eoc=⇒
{w =? x+ u, u =? v4, v2 =? h(x), v =? h(w), v1 =? h(x), x =? v5 + x︸ ︷︷ ︸,
y =? h(v5), z =? h(v4)}||
{(v6, 0), (v5, 0), (v4, 0), (v3, 0), (v2, 0), (w, 1), (v1, 0), (v, 0),
(x, 1), (u, 1), (y, 0), (z, 0), }||{v3 7→ x, v6 7→ x} OC=⇒
⊥

The second branch above, fails because x is the variable in the left-hand side and also
occurs (non trivially) in the right-hand side of and equation. This will be implemented
through an Occur Check (OC) rule to be presented after the example.

Now, consider the third branch for solving the equation h(x+ u) =? (y + z) + h(x).

76

{h(x+ u) =? (y + z) + h(x)︸ ︷︷ ︸}||{(x, 0), (u, 0), (y, 0), (z, 0)}||∅ FBS=⇒

{v =? h(x+ u)︸ ︷︷ ︸, v =? (y + z) + h(x)}||{(v, 0), (x, 0), (u, 0), (y, 0), (z, 0)}||∅ FUh=⇒

{v =? h(w), w =? x+ u, v =? (y + z) + h(x)︸ ︷︷ ︸}||
{(w, 0), (v, 0), (x, 0), (u, 0), (y, 0), (z, 0)}||∅ FL+=⇒
{v =? h(w), w =? x+ u, v =? v1 + h(x)︸ ︷︷ ︸, v1 =? y + z}||

{(v1, 0), (w, 0), (v, 0), (x, 0), (u, 0), (y, 0), (z, 0)}||∅ FR+=⇒
{v =? h(w), w =? x+ u, v =? v1 + v2, v1 =? y + z, v2 =? h(x)}||
{(v2, 0), (v1, 0), (w, 0)︸ ︷︷ ︸, (v, 0), (x, 0)︸ ︷︷ ︸, (u, 0), (y, 0), (z, 0)}||∅ Uh=⇒

{v =? h(w), w =? x+ u︸ ︷︷ ︸, v =? v1 + v2, v1 =? y + z, v2 =? h(x)}||

{(v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1), (u, 0)︸ ︷︷ ︸, (y, 0), (z, 0)}||∅ U+=⇒

{v =? h(w)︸ ︷︷ ︸, w =? x+ u, v =? v1 + v2︸ ︷︷ ︸, v1 =? y + z, v2 =? h(x)}||

{(v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1), (u, 1), (y, 0), (z, 0)}||∅ S=⇒
{v =? h(w), w =? v3 + v4, v1 =? h(v3)︸ ︷︷ ︸, v2 =? h(v4), w =? x+ u, v1 =? y + z︸ ︷︷ ︸, v2 =? h(x)}||

{(v4, 0), (v3, 0), (v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1), (u, 1), (y, 0), (z, 0)}||∅ S=⇒
{v =? h(w), w =? v3 + v4, v1 =? h(v3), v3 =? v5 + v6, y =? h(v5), z =? h(v6), v2 =? h(v4),
w =? x+ u, v2 =? h(x)}||{(v6, 0)︸ ︷︷ ︸, (v5, 0)︸ ︷︷ ︸, (v4, 0)︸ ︷︷ ︸, (v3, 0)︸ ︷︷ ︸, (v2, 0),

(v1, 0), (w, 1), (v, 0), (x, 1), (u, 1), (y, 0), (z, 0)}||∅ Uh=⇒
∗

{v =? h(w), w =? v3 + v4, v1 =? h(v3), v3 =? v5 + v6, y =? h(v5), z =? h(v6), v2 =? h(v4)︸ ︷︷ ︸,
w =? x+ u, v2 =? h(x)︸ ︷︷ ︸}||{(v6, 1), (v5, 1), (v4, 1), (v3, 1), (v2, 0),

(v1, 0), (w, 1), (v, 0), (x, 1), (u, 1), (y, 0), (z, 0)}||∅ D=⇒
{v =? h(w), w =? v3 + v4︸ ︷︷ ︸, v1 =? h(v3), v3 =? v5 + v6, y =? h(v5), z =? h(v6),

w =? x+ u︸ ︷︷ ︸, v2 =? h(x), x =? v4}||{(v6, 1), (v5, 1), (v4, 1), (v3, 1), (v2, 0),

(v1, 0), (w, 1), (v, 0), (x, 1), (u, 1), (y, 0), (z, 0)}||∅ AC=⇒
{v =? h(w)︸ ︷︷ ︸, w =? x+ u, x =? v4, u =? v3, v1 =? h(v3), v3 =? v5 + v6, y =? h(v5),

z =? h(v6), v2 =? h(x)}||{(v6, 1), (v5, 1), (v4, 1), (v3, 1), (v2, 0),
(v1, 0), (w, 1), (v, 0), (x, 1), (u, 1), (y, 0), (z, 0)}||∅ V Eoc=⇒
{w =? x+ u︸ ︷︷ ︸, x =? v4, u =? v3, v1 =? h(v3), v3 =? v5 + v6, y =? h(v5),
z =? h(v6), v2 =? h(x)}||
{(v6, 1), (v5, 1), (v4, 1), (v3, 1), (v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1), (u, 1), (y, 0), (z, 0)}||
{v 7→ h(w)} V Eoc=⇒

77

{x =? v4︸ ︷︷ ︸, u =? v3︸ ︷︷ ︸, v1 =? h(v3), v3 =? v5 + v6︸ ︷︷ ︸, y =? h(v5), z =? h(v6), v2 =? h(x)}||

{(v6, 1), (v5, 1), (v4, 1), (v3, 1), (v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1), (u, 1), (y, 0), (z, 0)}||
{v 7→ h(x+ u), w 7→ x+ u} V Eoc=⇒

3

{v1 =? h(v5 + v6), y =? h(v5)︸ ︷︷ ︸, z =? h(v6)︸ ︷︷ ︸, v2 =? h(v4)}||

{(v6, 1), (v5, 1), (v4, 1), (v3, 1), (v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1), (u, 1), (y, 0), (z, 0)}||
{v 7→ h(v4 + u)), w 7→ v4 + u, x 7→ v4, u 7→ v5 + v6, v3 7→ v5 + v6}

V Eoc=⇒
2

{v1 =? h(v3), v2 =? h(x)}||
{(v6, 1), (v5, 1), (v4, 1), (v3, 1), (v2, 0), (v1, 0), (w, 1), (v, 0), (x, 1), (u, 1), (y, 0), (z, 0)}||
{v 7→ h(v4 + u)), w 7→ v4 + u, x 7→ v4, u 7→ v5 + v6, v3 7→ v5 + v6, y =? h(v5), z =? h(v6)}

The substitution provides a solution for the problem h(x + u) =? (y + z) + h(x):
σ = {x 7→ v4, u 7→ v5 + v6, y 7→ h(v5), z 7→ h(v6)}.

Occur Check Rule (OC)

This rule introduced in [11] is used to check if a variable on the left-hand side of an
equation occurs on the right-hand side of the equation. If yes, then the problem has no
solution.
{x =? f(t1, . . . , tn)} ∪ Γ ‖ ∆ ‖ σ

⊥
, if x ∈ V ar(f(t1, . . . , tn)σ)

Example 5.2.11. As first example see the second branch of Example 5.2.10.
As a second simple example, solve the unification problem:

{x+ y =? h(y)}

Solution:

{x+ y =? h(y)︸ ︷︷ ︸}||{(x, 0), (y, 0)}||∅ FBS=⇒

{v =? x+ y︸ ︷︷ ︸, v =? h(y)︸ ︷︷ ︸}||{(x, 0), (y, 0), (v, 0)}||∅ OC=⇒

⊥

Hence, the problem has no solution.

Clash Rule (C)

The Clash Rule, introduced by Eeralla and Lynch in [11], is used to check if the top
symbol on the left-hand side and on the right-hand side is the same. If not, then the

78

problem has no solution, unless one of them is h and the other is +.

{x =? f(s1, . . . , sm), x =? g(t1, . . . , tn)} ∪ Γ ‖ ∆ ‖ σ
⊥

, if f /∈ {h,+} or g /∈ {h,+}.

Example 5.2.12. Solve the unification problem:

{f(x1, y1) =? g(x2, y2)}

Solution:

{f(x1, y1) =? g(x2, y2)︸ ︷︷ ︸}||{(x1, 0), (y1, 0), (x2, 0), (y2, 0)}||∅ FBS=⇒

{v =? f(x1, y1)︸ ︷︷ ︸, v =? g(x2, y2)︸ ︷︷ ︸}||{(x1, 0), (y1, 0), (x2, 0), (y2, 0), (v, 0)}||∅ C=⇒

⊥

Hence, the problem has no solution.

Bound Check (BC)

This inference rule, introduced in [11], is used to check if a solution exists within the given
bound. The Bound Check rule must be applied right after the application of the updating
rules of the h-depth set.

Γ ‖ ∆ ‖ σ
⊥

, if MaxV al(∆) > κ.

Example 5.2.13. Solve the unification problem considering as bound for the solution
κ = 2:

{h(x) =? x+ y + z}

Solution:

79

{h(x) =? x+ y + z︸ ︷︷ ︸}||{(x, 0), (y, 0), (z, 0)}||∅ FBS=⇒

{v =? h(x), v =? x+ y + z}||{(x, 0)︸ ︷︷ ︸, (y, 0), (z, 0), (v, 0)}||∅ Uh=⇒

{v =? h(x), v =? x+ y + z︸ ︷︷ ︸}||{(x, 1), (y, 0), (z, 0), (v, 0)}||∅ S=⇒

{v =? h(x), x =? v1 + v2 + v3, x =? h(v1), y =? h(v2), z =? h(v3)}||
{(x, 1), (y, 0), (z, 0), (v, 0), (v1, 0)︸ ︷︷ ︸, (v2, 0)︸ ︷︷ ︸, (v3, 0)︸ ︷︷ ︸}||∅ Uh=⇒

{v =? h(x), x =? v1 + v2 + v3, x =? h(v1)︸ ︷︷ ︸, y =? h(v2), z =? h(v3)}||

{(x, 1), (y, 0), (z, 0), (v, 0), (v1, 2), (v2, 1), (v3, 1)}||∅ S=⇒
{v =? h(x), x =? h(v1), v1 =? v11 + v12 + v13, v1 =? h(v11), v2 =? h(v12),
v3 =? h(v13), y =? h(v2), z =? h(v3)}||{(x, 1), (y, 0), (z, 0), (v, 0), (v1, 2),
(v2, 1), (v3, 1), (v11, 0)︸ ︷︷ ︸, (v12, 0)︸ ︷︷ ︸, (v13, 0)︸ ︷︷ ︸}||∅ Uh=⇒

{v =? h(x), x =? h(v1), v1 =? v11 + v12 + v13, v1 =? h(v11), v2 =? h(v12),
v3 =? h(v13), y =? h(v2), z =? h(v3)}||{(x, 1), (y, 0), (z, 0), (v, 0), (v1, 2),
(v2, 1), (v3, 1), (v11, 3), (v12, 2), (v13, 2)}||∅ BC=⇒
⊥

Rule (BC) applies since MaxV al(∆) = 3 > κ. Thus, the problem {h(x) =? x + y + z}
has no solution within the given bound κ = 2.

Orient Rule (O)

The orient rule, introduced by Eeralla and Lynch in [11], is used to swap the left- and
right-hand side of an equation, when the left-hand side is a variable.

{t =? x} ∪ Γ ‖ ∆ ‖ σ
{x =? t} ∪ Γ ‖ ∆ ‖ σ , if t is not a variable.

5.2.4 Bounded ACh unification Algorithm

The proposed algorithm given below, Algorithm 6, is based on the inference rules intro-
duced by Eeralla and Lynch in his work [11]. According to the inference rules we divided
the algorithm in two parts: initially, the input set of equations Γ is flattened with Algo-

80

rithm 5 that applies only the flattening rules; after that, the main unification Algorithm
6 applies the rest of the inference rules.
Algorithm 5: Procedure Flatten Γ
input : A set of equations Γ
output: A set of equations Γ in flatten form

1 begin
2 repeat
3 Apply: Flatten Both Sides;
4 Apply: Flatten Under h;
5 if One application of Flatten Right/Left + does not eliminate a

possible application of Splitting Rule then
6 Apply: this Flatten Right/Left + Rules;
7 end
8 until none of these rules apply;
9 end

81

Algorithm 6: Procedure for ACh bounded Unification
input : A set of equations Γ, a bound κ, an empty set σ and an empty h-depth

set ∆.
output: Either a complete set of κ-bounded ACh unifiers {σ1, . . . , σn} or ⊥

means the problem has no solution.
1 begin
2 Apply flattening Algorithm 5 on Γ.
3 repeat
4 repeat
5 Trivial Rule;
6 Splitting Rule;
7 Update h-depth Set Rule;
8 Update + Rule;
9 AC Unification Rule;

10 Orient Rule;
11 Decomposition Rule;
12 until none of these rules apply;
13 repeat
14 if Bound Check Rule applies then return ⊥; /* MaxV al(∆)>κ */
15 if Occur Check Rule or Clash Rule apply then return ⊥ ;
16 until no longer possible application;
17 repeat
18 Variable Elimination Rule;
19 until no longer the rule applies;
20 until until no rule applies;
21 end

Example 5.2.14. Consider the problem below.

{h(y) =? x1 + x2 + x3}

Notice that this example shows that the Splitting rule applies to equations with tuples
of variables, but the flatten rules FR+ and FL+ apply to additions of tuples of variables
until additions of pairs of variables are reached. Thus, it would be interesting to prioritize
the application of the Splitting rule.

First, consider a derivation in which the Splitting rule is applied directly to the prob-
lem above.

82

{h(y) =? x1 + x2 + x3︸ ︷︷ ︸}||{(y, 0), (x1, 0), (x2, 0), (x3, 0)}||∅ FBS=⇒

{v =? h(y)︸ ︷︷ ︸, v =? x1 + x2 + x3︸ ︷︷ ︸}}||{(v, 0), (y, 0), (x1, 0), (x2, 0), (x3, 0)}||∅ S=⇒

{v =? h(y), y =? v1 + v2 + v3, x1 =? h(v1), x2 =? h(v2), x3 =? h(v3)}||
{(v1, 0)︸ ︷︷ ︸, (v2, 0)︸ ︷︷ ︸, (v3, 0)︸ ︷︷ ︸, (v, 0), (y, 0)︸ ︷︷ ︸, (x1, 0), (x2, 0), (x3, 0)}||∅ Uh=⇒

{x =? h(y)︸ ︷︷ ︸, y =? v1 + v2 + v3, x1 =? h(v1), x2 =? h(v2), x3 =? h(v3)}||

{(v1, 1), (v2, 1), (v3, 1), (v, 0), (y, 1), (x1, 0), (x2, 0), (x3, 0)}||∅ V Eoc=⇒
{y =? v1 + v2 + v3︸ ︷︷ ︸, x1 =? h(v1), x2 =? h(v2), x3 =? h(v3)}||{(v1, 1), (v2, 1),

(v3, 1), (v, 0), (y, 1), (x1, 0), (x2, 0), (x3, 0)}||{x 7→ h(y)} V Eoc=⇒
{x1 =? h(v1)︸ ︷︷ ︸, x2 =? h(v2), x3 =? h(v3)}||{(v1, 1), (v2, 1), (v3, 1), (v, 0), (y, 1)

, (x1, 0), (x2, 0), (x3, 0)}||{x 7→ h(v1 + v2 + v3), y 7→ v1 + v2 + v3}
V Eoc=⇒

{x2 =? h(v2)︸ ︷︷ ︸, x3 =? h(v3)}||{(v1, 1), (v2, 1), (v3, 1), (v, 0), (y, 1), (x1, 0),

(x2, 0), (x3, 0)}||{x 7→ h(v1 + v2 + v3), y 7→ v1 + v2 + v3, x1 7→ h(v1)} V Eoc=⇒
{x3 =? h(v3)︸ ︷︷ ︸}||{(v1, 1), (v2, 1), (v3, 1), (v, 0), (y, 1), (x1, 0), (x2, 0), (x3, 0)}||

{x 7→ h(v1 + v2 + v3), y 7→ v1 + v2 + v3, x1 7→ h(v1), x2 7→ h(v2)} V Eoc=⇒
∅||{(v1, 1), (v2, 1), (v3, 1), (v, 0), (y, 1), (x1, 0), (x2, 0), (x3, 0)}||
{x 7→ h(v1 + v2 + v3), y 7→ v1 + v2 + v3, x1 7→ h(v1), x2 7→ h(v2), x3 7→ h(v3)}

The solution set for the problem {h(y) =? x1 + x2 + x3} is

σ = {y 7→ v1 + v2 + v3, x1 7→ h(v1), x2 7→ h(v2), x3 7→ h(v3)}

Second, if rules FR+ and/or FL+ are applied before the Splitting rule, a different
derivation, as below, is possible. But in the end the solution is the same modulo renaming
of variables.

{h(y) =? x1 + (x2 + x3)︸ ︷︷ ︸}||{(y, 0), (x1, 0), (x2, 0), (x3, 0)}||∅ FBS=⇒

{x =? h(y)x =? x1 + (x2 + x3)︸ ︷︷ ︸}||{(x, 0), (y, 0), (x1, 0), (x2, 0), (x3, 0)}||∅ FR+=⇒

{x =? h(y)︸ ︷︷ ︸, x =? x1 + v︸ ︷︷ ︸, v =? x2 + x3}||{(v, 0), (x, 0), (y, 0), (x1, 0), (x2, 0),

(x3, 0)}||∅ S=⇒
{x =? h(y), y =? v1 + v2, x1 =? h(v1), v =? h(v2), v =? x2 + x3}||
{(v1, 0)︸ ︷︷ ︸, (v2, 0)︸ ︷︷ ︸, (x, 0), (v.0), (y, 0)︸ ︷︷ ︸, (x1, 0), (x2, 0), (x3, 0)}||∅ Uh=⇒

83

{x =? h(y), y =? v1 + v2, x1 =? h(v1), v =? h(v2)︸ ︷︷ ︸, v =? x2 + x3︸ ︷︷ ︸}||
{(v1, 1), (v2, 1), (x, 0), (v.0), (y, 1), (x1, 0), (x2, 0), (x3, 0)}||∅ S=⇒
{x =? h(y), y =? v1 + v2, x1 =? h(v1), v =? h(v2), v2 =? v3 + v4,

x2 =? h(v3), x3 =? h(v4)}||{(v3, 0)︸ ︷︷ ︸, (v4, 0)︸ ︷︷ ︸, (v1, 1), (v2, 1), (x, 0), (v.0), (y, 1),

(x1, 0), (x2, 0), (x3, 0)}||∅ Uh=⇒
{x =? h(y)︸ ︷︷ ︸, y =? v1 + v2, x1 =? h(v1), v =? h(v2), v2 =? v3 + v4,

x2 =? h(v3), x3 =? h(v4)}||{(v3, 1), (v4, 1), (v1, 1),
(v2, 1), (x, 0), (v.0), (y, 1), (x1, 0), (x2, 0), (x3, 0)}||∅ V Eoc=⇒
{y =? v1 + v2︸ ︷︷ ︸, x1 =? h(v1), v =? h(v2), v2 =? v3 + v4,

x2 =? h(v3), x3 =? h(v4)}||{(v3, 1), (v4, 1), (v1, 1), (v2, 1),
(x, 0), (v.0), (y, 1), (x1, 0), (x2, 0), (x3, 0)}||{x 7→ h(y)} V Eoc=⇒
{x1 =? h(v1)︸ ︷︷ ︸, v =? h(v2), v2 =? v3 + v4, x2 =? h(v3), x3 =? h(v4)}||

{(v3, 1), (v4, 1), (v1, 1), (v2, 1), (x, 0), (v.0), (y, 1), (x1, 0), (x2, 0), (x3, 0)}||
{x 7→ h(v1 + v2), y 7→ v1 + v2}

V Eoc=⇒
{v =? h(v2)︸ ︷︷ ︸, v2 =? v3 + v4, x2 =? h(v3), x3 =? h(v4)}||

{(v3, 1), (v4, 1), (v1, 1), (v2, 1), (x, 0), (v.0), (y, 1), (x1, 0), (x2, 0), (x3, 0)}||
{x 7→ h(v1 + v2), y 7→ v1 + v2, x1 7→ h(v1)} V Eoc=⇒
{v2 =? v3 + v4︸ ︷︷ ︸, x2 =? h(v3), x3 =? h(v4)}||{(v3, 1), (v4, 1), (v1, 1),

(v2, 1), (x, 0), (v, 0), (y, 1), (x1, 0), (x2, 0), (x3, 0)}||
{x 7→ h(v1 + v2), y 7→ v1 + v2, x1 7→ h(v1), v 7→ h(v2)} V Eoc=⇒
{x2 =? h(v3)︸ ︷︷ ︸, x3 =? h(v4)}||{(v3, 1), (v4, 1), (v1, 1), (v2, 1), (x, 0), (v.0),

(y, 1), (x1, 0), (x2, 0), (x3, 0)}||{x 7→ h(v1 + v3 + v4), y 7→ v1 + v3 + v4,

x1 7→ h(v1), v 7→ h(v3 + v4), v2 7→ v3 + v4, }
V Eoc=⇒

{x3 =? h(v4)︸ ︷︷ ︸}||{(v3, 1), (v4, 1), (v1, 1), (v2, 1),

(x, 0), (v.0), (y, 1), (x1, 0), (x2, 0), (x3, 0)}||{x 7→ h(v1 + v3 + v4), y 7→ v1 + v3 + v4,

x1 7→ h(v1), v 7→ h(v3 + v4), v2 7→ v3 + v4, x2 7→ h(v3)} V Eoc=⇒
∅||{(v3, 1), (v4, 1), (v1, 1), (v2, 1), (x, 0), (v.0), (y, 1), (x1, 0),
(x2, 0), (x3, 0)}||{x 7→ h(v1 + v3 + v4), y 7→ v1 + v3 + v4, x1 7→ h(v1), v 7→ h(v3 + v4),
v2 7→ v3 + v4, x2 7→ h(v3), x3 7→ h(v4)}

The solution set for the problem {h(y) =? x1 + x2 + x3} is

σ = {y 7→ v1 + v3 + v4, x1 7→ h(v1), x2 7→ h(v3), x3 7→ h(v4)}

84

Termination, Correctness and Completeness

In [11], Eeralla and Lynch introduced an algorithm to apply their inference rules and
proved its termination, correctness and completeness.

85

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This work studies different problems related to equational reasoning modulo equational
theories. Problems, as unification, asymmetric unification, disunification are addressed
considering operators with algebraic equational properties such as associativity (A), com-
mutativity (C), nilpotence (N), existence of unity (U) and homomorphisms (h).

Initially, we study the paper by Veena Ravishankar, Paliath Narendran and Kimberly
A. Gero ([7]) that shows that asymmetric unification seems to be harder than disuni-
fication, as the solvability of asymmetric unification modulo ACUN is NP-hard while
disunification modulo ACUN is in P. Also, we study the case of ground disunification and
ground asymmetric unification modulo ACUNh for which the former is in P while the
latter is NP-hard.

Afterwards, we study Zhiqiang Liu PhD thesis and his work with Serdar Erbatur on
asymmetric unification for the theory XOR with uninterpreted function symbols ([1], [23]).
The theory XOR has the properties of ACUN, and is presented by an equational axiom-
atization for AC and rewriting rules for the UN. We studied the algorithm by Zhiqiang
Liu for the asymmetric unification problem modulo the theory XOR. The asymmetric
unification was first investigated by Serdar Erbatur in his work [23] about the decidabil-
ity of asymmetric unification. Erbatur shows that how variant based unification can be
adapted to obtain an asymmetric unification algorithm. Erbatur used the technique to
develop an asymmetric unification algorithm by converting the symmetric algorithm to
an asymmetric one.

Finally, we study unification modulo the theories ACUh and ACh. First, we study
Paliath Narendran’s proofs of the undecidability of the problem of unification modulo
these equational theories ([9]). We expand all details in Narendran’s proof on the unde-
cidability for the case of ACUh, and also develop the mentioned adaptation of the proof for

86

the case of the undecidability of unification modulo ACh. The development of such com-
plete proof contributes to the understanding of the complexity of the unification problem
modulo these theories. Second, we studied a bounded unification algorithm modulo ACh
developed by Ajay Kumar Eeralla and Christopher Lynch ([11]) that addresses the prob-
lem of unification on this equational theory providing solutions that are bounded meaning
that the solutions cannot allow chained compositions of the homomorphic operator.

6.2 Future Work

The theory of equational reasoning (matching, unification, disunification, assymetric uni-
fication) modulo the studied and other equational theories is complex and deserve special
attention. For future work, it would be interesting to present detailed proofs on correct-
ness and completeness of the algorithm proposed by Eeralla and Lynch in [11]. Also, it
would be of interest understanding how this approach may be adapted for the case of
unification modulo the theory ACUh.

Another possible future work is to study the adaptation of the already existing al-
gorithms for the other equational problems such as matching, unification, asymmetric
unification and disunification problems.

87

References

[1] Liu, Zhiqiang: Dealing Efficiently with Exclusive OR, Abelian Groups and Homo-
morphism in Cryptographic Protocol Analysis. Ph.D. Thesis, Clarkson Univer-
sity, 2012. https://people.clarkson.edu/~clynch/papers/Dissertation_of_
Zhiqiang_Liu.pdf. 1, 3, 34, 36, 37, 41, 42, 45, 48, 86

[2] Katz, Jonathan and Yehuda Lindell: Introduction to Modern Cryptography. Chapman
and Hall/CRC Press, 2007. https://doi.org/10.1201/b17668. 1

[3] Dolev, Danny and Andrew Chi Chih Yao: On the security of public key protocols.
IEEE Transactions on Information Theory, 29(2):198–208, 1983. https://doi.org/
10.1109/tit.1983.1056650. 1

[4] Lowe, Gavin: Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using
FDR. In Proc. Second International Workshop on Tools and Algorithms for Cons-
truction and Analysis of Systems TACAS, volume 1055 of LNCS, pages 147–166.
Springer, 1996. https://doi.org/10.1007/3-540-61042-1_43. 1

[5] Ayala-Rincón, Mauricio, Maribel Fernández, and Daniele Nantes-Sobrinho: Intruder
deduction problem for locally stable theories with normal forms and inverses. Theor.
Comput. Sci., 672:64–100, 2017. https://doi.org/10.1016/j.tcs.2017.01.027.
2

[6] Escobar, Santiago, Catherine A. Meadows, José Meseguer, and Sonia Santiago: Sym-
bolic Protocol Analysis with Disequality Constraints Modulo Equational Theories. In
Programming Languages with Applications to Biology and Security - Essays Dedicated
to Pierpaolo Degano on the Occasion of His 65th Birthday, volume 9465 of LNCS,
pages 238–261. Springer, 2015. https://doi.org/10.1007/978-3-319-25527-9_
16. 2

[7] Veena Ravishankar, Paliath Narendran and Kimberly A. Gero: Asymmetric Unifi-
cation and Disunification. CoRR, abs/1706.05066, 2017. http://arxiv.org/abs/
1706.05066, Published in 2019 in LNCS, vol 11560 https://doi.org/10.1007/
978-3-030-22102-7_23. 2, 3, 10, 17, 18, 19, 20, 21, 24, 25, 26, 28, 29, 33, 86

[8] Liu, Zhiqiang and Christopher Lynch: Efficient General Unification for XOR with
Homomorphism. In Proc. 23rd International Conference on Automated Deduction
CADE, volume 6803 of LNCS, pages 407–421. Springer, 2011. https://doi.org/
10.1007/978-3-642-22438-6_31. 3

88

https://people.clarkson.edu/~clynch/papers/Dissertation_of_Zhiqiang_Liu.pdf
https://people.clarkson.edu/~clynch/papers/Dissertation_of_Zhiqiang_Liu.pdf
https://doi.org/10.1201/b17668
https://doi.org/10.1109/tit.1983.1056650
https://doi.org/10.1109/tit.1983.1056650
https://doi.org/10.1007/3-540-61042-1_43
https://doi.org/10.1016/j.tcs.2017.01.027
https://doi.org/10.1007/978-3-319-25527-9_16
https://doi.org/10.1007/978-3-319-25527-9_16
http://arxiv.org/abs/1706.05066
http://arxiv.org/abs/1706.05066
https://doi.org/10.1007/978-3-030-22102-7_23
https://doi.org/10.1007/978-3-030-22102-7_23
https://doi.org/10.1007/978-3-642-22438-6_31
https://doi.org/10.1007/978-3-642-22438-6_31

[9] Narendran, Paliath: Solving Linear Equations over Polynomial Semirings. In Procee-
dings 11th Annual IEEE Symposium on Logic in Computer Science LICS, pages 466–
472. IEEE Computer Society, 1996. https://doi.org/10.1109/LICS.1996.561463.
3, 4, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 64, 86

[10] Nutt, Werner: Unification in Monoidal Theories. In Proc. 10th International Confe-
rence on Automated Deduction CADE, volume 449 of LNCS, pages 618–632. Springer,
1990. https://doi.org/10.1007/3-540-52885-7_118. 3, 4, 59

[11] Eeralla, Ajay Kumar and Christopher Lynch: Bounded ACh Unification. CoRR,
abs/1811.05602, 2018. http://arxiv.org/abs/1811.05602, Published in Math.
Struct. in Comp. Science Volume 30(6):664-682 (https://doi.org/10.1017/
S0960129520000183), 2020. 3, 4, 51, 64, 65, 66, 67, 69, 70, 71, 72, 73, 78, 79,
80, 85, 87

[12] Baader, Franz and Wayne Snyder: Unification Theory. In Handbook of Automated
Reasoning, volume 1, chapter Eighth, pages 445–532. MIT Press, North Holland,
Elsevier Science Publisher, 2001. https://en.wikipedia.org/wiki/Handbook_of_
Automated_Reasoning. 5, 8

[13] Baader, Franz: The Theory of Idempotent Semigroups is of Unification Type Zero. J.
Autom. Reason., 2(3):283–286, 1986. https://doi.org/10.1007/BF02328451. 8

[14] Schmidt-Schauß, Manfred: Unification under Associativity and Idempotence is of
Type Nullary. J. Autom. Reason., 2(3):277–281, 1986. https://doi.org/10.1007/
BF02328450. 8

[15] Baader, Franz and Tobias Nipkow: Term rewriting and all that. Cambridge University
Press, 1998. https://doi.org/10.1017/CBO9781139172752. 8, 9

[16] Comon, Hubert and Pierre Lescanne: Equational Problems and Disunifica-
tion. J. Symb. Comput., 7(3/4):371–425, 1989. https://doi.org/10.1016/
S0747-7171(89)80017-3. 10, 11

[17] Manber, Udi: Introduction to algorithms - a creative approach. Addison-Wesley, 1989.
11, 12

[18] Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein:
Introduction to Algorithms. MIT Press, 3rd edition, 2009. https://mitpress.mit.
edu/books/introduction-algorithms-third-edition. 12

[19] Wikipedia contributors: NP-hardness. https://en.wikipedia.org/w/index.php?
title=NP-hardness&oldid=957633158, 2020. Wikipedia, The Free Encyclopedia.
Accessed 29-July-2020. 12

[20] Baader, Franz and Klaus U. Schulz: Combination Techniques and Decision Problems
for Disunification. Theor. Comput. Sci., 142(2):229–255, 1995. https://doi.org/
10.1016/0304-3975(94)00277-0. 21

89

https://doi.org/10.1109/LICS.1996.561463
https://doi.org/10.1007/3-540-52885-7_118
http://arxiv.org/abs/1811.05602
https://doi.org/10.1017/S0960129520000183
https://doi.org/10.1017/S0960129520000183
https://en.wikipedia.org/wiki/Handbook_of_Automated_Reasoning
https://en.wikipedia.org/wiki/Handbook_of_Automated_Reasoning
https://doi.org/10.1007/BF02328451
https://doi.org/10.1007/BF02328450
https://doi.org/10.1007/BF02328450
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1016/S0747-7171(89)80017-3
https://doi.org/10.1016/S0747-7171(89)80017-3
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://en.wikipedia.org/w/index.php?title=NP-hardness&oldid=957633158
https://en.wikipedia.org/w/index.php?title=NP-hardness&oldid=957633158
https://doi.org/10.1016/0304-3975(94)00277-0
https://doi.org/10.1016/0304-3975(94)00277-0

[21] Guo, Qing, Paliath Narendran, and David A.Wolfram: Complexity of Nilpotent
Unification and Matching Problems. Inf. Comput., 162(1-2):3–23, 2000. https:
//doi.org/10.1006/inco.1999.2849. 22

[22] Vardi, Moshe Y. and Thomas Wilke: Automata from logics to algorithms. In Logic
and Automata: History and Perspectives [in Honor of Wolfgang Thomas], volume 2
of Texts in Logic and Games, pages 629–736. Amsterdam University Press, 2008. 24

[23] Erbatur, Serdar, Santiago Escobar, Deepak Kapur, Zhiqiang Liu, Christopher
Lynch, Catherine A. Meadows, José Meseguer, Paliath Narendran, Sonia Santi-
ago, and Ralf Sasse: Asymmetric Unification: A New Unification Paradigm for
Cryptographic Protocol Analysis. In Proc. 24th International Conference on Au-
tomated Deduction CADE, volume 7898 of LNCS, pages 231–248. Springer, 2013.
https://doi.org/10.1007/978-3-642-38574-2_16. 34, 35, 37, 38, 39, 40, 42, 43,
48, 86

90

https://doi.org/10.1006/inco.1999.2849
https://doi.org/10.1006/inco.1999.2849
https://doi.org/10.1007/978-3-642-38574-2_16

	Agradecimentos
	Resumo
	Abstract
	Introduction
	Motivation
	Equational problems under consideration
	Contribution
	Organization

	Theoretical Referential
	Unification Theory
	Basic Notation
	E-Unification Problem
	Term Rewriting System
	Asymmetric Unification
	Disunification

	Complexity Theory
	Automata Theory
	Ring Theory

	Complexities of asymmetric unification and disunification modulo ACUN and ACUNh
	Disunification modulo ACUN is in P whereas asymmetric unification is NP-hard
	Disunification modulo ACUN is in P
	Asymmetric unification modulo ACUN is NP-hard

	 Ground disunification modulo ACUNh is in P whereas ground asymmetric unification is NP-hard
	Ground disunification modulo ACUNh is in P
	Ground Asymmetric Unification modulo ACUNh is NP-hard

	Asymmetric Unification modulo XOR (ACUN) with Uninterpreted Function Symbols
	XOR theory
	Notations
	Inference System
	Inference Rules

	Algorithms
	Correctness
	Termination
	Soundness
	Completeness

	Undecidability of ACh-unification and bounded ACh-unification
	ACh Unification Problem is Undecidable
	Some auxiliary lemmas
	Reduction from Hilbert's tenth problem
	From solvability of linear equations over N[x] to ACUh
	ACh Unification is Undecidable

	Bounded ACh Unification
	Important Definitions
	Inference System
	Inference Rules
	Bounded ACh unification Algorithm

	Conclusion and Future Work
	Conclusion
	Future Work

	References

