
DISSERTAÇÃO DE MESTRADO

Multi-Camera Framework for
Object Detection and Distance Estimation

Bruno Justino Garcia Praciano

Brasília, 09 de outubro de 2020

UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASÍLIA
Faculdade de Tecnologia

DISSERTAÇÃO DE MESTRADO

Multi-Camera Framework for
Object Detection and Distance Estimation

Bruno Justino Garcia Praciano

Dissertação de Mestrado submetido ao Departamento de Engenharia

Mecânica como requisito parcial para obtenção

do grau de Mestre em Sistemas Mecatrônicos

Banca Examinadora

Prof. João Paulo C. L. da Costa,
Prof. Dr.-Ing., ENE/UnB, Hochschule Hamm-
Lippstadt

Orientador

Rafael T. de Sousa Jr., Prof. Dr., ENE/UnB
Examinador interno

Arnaldo Arancíbia, Dr.-Ing., EFS GmbH, TU Berlin
Examinador externo

FICHA CATALOGRÁFICA

PRACIANO, BRUNO JUSTINO GARCIA
Multi-Camera Framework for Object Detection and Distance Estimation [Distrito Federal] 2020.
xvi, 86 p., 210 x 297 mm (ENE/FT/UnB, Mestre, Engenharia Elétrica, 2020).
Dissertação de Mestrado - Universidade de Brasília, Faculdade de Tecnologia.
Departamento de Engenharia Elétrica

1. Autonomous Vehicles 2. Computational Vision
3. Object Detection 4. Distance Estimation
I. ENE/FT/UnB II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA
PRACIANO, B. J. G. (2020). Multi-Camera Framework for Object Detection and Distance Estimation .
Dissertação de Mestrado, Departamento de Engenharia Elétrica, Universidade de Brasília, Brasília, DF,
86 p.

CESSÃO DE DIREITOS
AUTOR: Bruno Justino Garcia Praciano
TÍTULO: Multi-Camera Framework for Object Detection and Distance Estimation .
GRAU: Mestre em Sistemas Mecatrônicos ANO: 2020

É concedida à Universidade de Brasília permissão para reproduzir cópias desto Dissertação de Mestrado e
para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. Os autores reservam
outros direitos de publicação e nenhuma parte desso Dissertação de Mestrado pode ser reproduzida sem
autorização por escrito dos autores.

Bruno Justino Garcia Praciano

Dedicatória

Bruno Justino Garcia Praciano

ACKNOWLEDGMENTS

First of all, I would like to thank God for giving me health and concentration during the
COVID19 crisis in Europe and not allowing anything wrong to happen to me.

I am eternally thankful to my family Alessandra Justino, Flávio Praciano, Lenita Justino, and
Victor Hugo, whom I can count and trust unconditionally.

An invaluable character is my master tutor Prof. Dr.-Ing. Joao Paulo C. L. da Costa, who
directed me to the new field of autonomous vehicles, always motivated me to do my best.

I want to express my gratitude to my EFS advisor Lothar Weichenberger for trust in my
work and always support me and a special thanks for the company Elektronische Fahrwerksystem
GmbH for financial and structural support. Other very essential supporters in my thesis are Lukac
Branimir, Tobias Behn, and Andreas Schustek, without their valuable support, and it would not
be possible to do much of my work.

Along this road, I had some problems with German bureaucracy, my sincere thanks for Lukas
Bös for his unbelievable capacity to solve problems, and his communication skills. Also, I need
to thank Sara Martin and Robin Käsmayr for their support and also students who attended our
Stammtisch. Moreover, I would like to thank Vanessa Voll for all the help provided.

My time in Germany was excellent due to the great hospitality of my host family. Therefore,
I thank Johanna Hirschmann and Herbert Hirschmann for making everything easy.

Additionally, the unconditional help and psychological support of several colleagues were
essential. In this sense, I would like to thank my flatmate Gabriel Pinheiro, Lucas Maciel, Yan
Trindade, Fábio Mendonça, Daniel Alves, Francisco Lopes, Robson de Albuquerque, Giovanni
Almeida, and Iure Brandão.

I also express my sincere gratitude for the professors from the University of Brasilia, particu-
larly for Prof. Dr. Rafael Timoteo de Sousa Junior, for his invaluable support and guidance along
with my career Prof. Dr. Edna Canedo, Prof. Dr. Georges Amvame for partnership in some
papers publications.

My affectionate and sincere thanks go to Anna Ploner, whose support, care and partnership
allowed me to improve my life while I was in Germany.

My sincere gratitude for the Institutional Security Office of the Presidency of the Republic of
Brazil (Grant 002/2017) and to FAPDF (Projetos UIoT 0193.001366/2016) for the scholarship
and the financial support to conference fees.

ABSTRACT

Autonomous Vehicles can reduce the number of car crashes and the number of fatal victims.
Following the German Statistical Department, just in 2019, there were over 2 million car acci-
dents, and more than 90 percent of crashes are caused by human errors (National Highway Traffic
Safety Administration, 2015). This work proposes a multi-camera system for object detection
and distance measurement using computer vision that it will support some autonomous vehicle
tests and improve safety during the tests. Three approaches are performed and compared with the
real distance, and just the best technique was included in the proposed framework. In most cases,
this error is directly related to meteorological factors and weak communication signals between
cameras and the control hardware. The results obtained show that object detection methods guar-
antee precision with an accuracy above 93 % in ideal conditions and controlled environments.
However, accuracy is reduced when obstacles are present in front of the detected object. Addi-
tional techniques are also proposed to optimize the positioning of the cameras and the angle of
inclination.

RESUMO

Os veículos autônomos podem reduzir o número de acidentes automobilísticos e o número de
vítimas fatais. Segundo o Departamento de Estatística da Alemanha, apenas em 2019, ocorreram
mais de 2 milhões de acidentes de carro. Este trabalho propõe um sistema multicâmera para
detecção de objetos e medição de distâncias por visão computacional que irá apoiar alguns testes
de veículos autônomos e melhorar a segurança durante os testes. Três abordagens são realizadas
e comparadas com a distância real, e apenas a melhor técnica foi incluída no framework proposto.
Na maioria dos casos, esse erro está diretamente relacionado a fatores meteorológicos e sinais de
comunicação fracos entre as câmeras e o hardware de controle. Os resultados obtidos mostram
que os métodos de detecção de objetos garantem precisão com exatidão acima de 93 % em
condições ideais e ambientes controlados. No entanto, a precisão é reduzida quando os obstáculos
estão presentes na frente do objeto detectado. Técnicas adicionais também são propostas para
otimizar o posicionamento das câmeras e o ângulo de inclinação.

SUMMARY

1 INTRODUCTION . 1
1.1 MOTIVATION . 1
1.2 PROBLEM DESCRIPTION . 2
1.3 OBJECTIVES . 3
1.4 PUBLISHED WORKS . 3
1.5 CHAPTERS DESCRIPTION . 4

2 STATE OF THE ART AND TECHNICAL BACKGROUND . 6
2.1 STATE OF THE ART . 6
2.2 TECHNICAL BACKGROUND . 9
2.2.1 AUTONOMOUS VEHICLES . 9
2.2.2 SENSORS . 10
2.3 MACHINE LEARNING IN COMPUTER VISION . 14
2.3.1 ARTIFICIAL NEURAL NETWORKS . 14
2.3.2 CONVOLUTIONAL NEURAL NETWORKS . 18

3 PROPOSED FRAMEWORK . 22
3.1 APPROACH 1 - ONE CAMERA WITH OBJECT CALIBRATION 22
3.1.1 CAMERA CALIBRATION . 22
3.1.2 CAMERA IMAGE . 24
3.1.3 FEATURES EXTRACTION . 24
3.1.4 OBJECT DETECTION AND OBJECT RECOGNITION . 28
3.1.5 DISTANCE ESTIMATION . 32
3.2 APPROACH 2 - ONE CAMERA WITH KNOWN MAP . 34
3.2.1 ESTIMATE POSITION BASED ON MAP . 35
3.3 APPROACH 3 - MULTICAMERA . 36
3.3.1 ESTIMATE POSITION BASED ON MULTIPLE INPUTS. 37
3.4 FRAMEWORK ARCHITECTURE . 39

4 RESULTS . 41
4.1 DESCRIPTION OF THE TEST SCENARIO . 42
4.2 RESULTS WITH CAMERA CALIBRATION . 42
4.3 RESULTS WITH KNOWN MAP . 43
4.4 RESULTS WITH MULTI-CAMERAS AND PROPOSED FRAMEWORK 44
4.5 VALIDATION AND COMPARISON BETWEEN THE APPROACHES 47

5 CONCLUSION . 50
5.1 FUTURE WORKS . 50

vii

BIBLIOGRAPHY . 52

APPENDICES . 58
I.1 CODE TO CONTROL THE APP . 59
I.2 CODE TO DETECT THE BOUNDING BOXES . 61
I.3 CODE TO CONTROL THE CAMERA . 64
I.4 ABSTRACTION OF DARKNET IN PYTORCH . 67
I.5 CODE FOR DATA PREPROCESSING . 82
I.6 BASE TEMPLATE . 84
I.7 INDEX TEMPLATE . 86

LIST OF FIGURES

1.1 Levels of driving automation .. 2
1.2 Modelling of the test track scenario using drones, CC designates the command

central, VUT is the vehicle under test and TSV is a traffic simulation vehicle. 2

2.1 Representation of an autonomous vehicle .. 11
2.2 Illustration of the various sensors, with reasonable estimates of coverage area

(field of view) and typical operating ranges.. 11
2.3 Representation of a camera of the autonomous vehicle [48]............................... 12
2.4 A commercial radar model ARS430 CV from Continental 13
2.5 An exemple of a lidar of the autonomous vehicle .. 13
2.6 The structure of an ANN [58] ... 15
2.7 Mathematical representation of ANN with bias [58] .. 15
2.8 The behavior of the Relu [58] ... 17
2.9 Full process of a convolutional neural network [58] ... 18
2.10 Representation of the colors of the input image [58] .. 19
2.11 Representation of the convolution process [58] ... 19
2.12 Representation of the maxpooling process [58]... 20
2.13 The structure of a standard autoenconder, where the variable x means input and r

as an output through the internal representation in h. The encoder f maps x to h
and decoder g maps h to r .. 20

3.1 Proposal using only one camera with object calibration 22
3.2 Block diagrams of a projection.. 23
3.3 The camera model for image formation based on some metrics and known pa-

rameters ... 24
3.4 Maximum variance in f ′1, where the red circles mean the data points of the data

set, f1 is the feature 1 on x-axis, f2 is the feature 2 on y-axis 25
3.5 Unit vector direction of maximum variance ... 26
3.6 Distance minimization PCA ... 27
3.7 YOLO Architecture: Simultaneously predicts bounding boxes and class proba-

bilities for these boxes [71] .. 28
3.8 Yolo makes ZxZ predictions with B boundaries boxes...................................... 29
3.9 Prediction of the width and height of the box as offsets from clusters centroids

based on [72] .. 30
3.10 Purpose method to compute the distance of the object using cameras 33
3.11 Approach using one camera with known map... 34
3.12 Neural network responsible to predict the distance of the objects based on the

boundary boxes ... 35

ix

3.13 Labeled image with boundary boxes positioned in each important element of the
screen.. 36

3.14 Approach using multicamera .. 36
3.15 Image coordinate system in relation to world coordinate system. 37
3.16 Architecture approach of framework .. 39
3.17 Architecture of framework based on multicameras perspective........................... 40

4.1 Audi test track in eagle’s view .. 41
4.2 Position of the cars on the parking lot ... 42
4.3 Output results from framework using single stereo camera and known map 44
4.4 Output image with boundary boxes predictions... 45
4.5 Output image with predictions ... 47
4.6 Commercial laser measurer .. 47
4.7 RMSE of estimated estimate position for each algorithm for different detected

car, referenced to values measured by the commercial laser measurer 49

LIST OF TABLES

2.1 Comparison Table for Activation Functions ... 16

3.1 The Yolo’s predicts equations ... 29
3.2 Example of labeled values.. 35

4.1 Measurements achieved with camera calibration algorithm 43
4.2 Measurements achieved with camera and known map 44
4.3 Measurements achieved with multicameras.. 45
4.4 Accuracy of the proposed framework in object detector and classification 46
4.5 Measurements collected with a commercial measurer 48
4.6 Comparison between the algorithms and real data ... 48

xi

LIST OF ACRONYMS

AV Autonomous Vehicles
ML Machine Learning
ANN Artificial Neural Network
CNN Convolutional Neural Network
WIFI Wireless Network Protocol
IDE Integrated Development Environment
IP Internet Protocol Version 4
JSON JavaScript Object Notation
REST Representational State Transfer
SQL Structured Query Language
TCP Transmission Control Protocol
API Application Programming Interface
WSN Wireless Sensor Networks
GPS Global Positioning
LIDAR Light Detection and Ranging
RADAR RAdio Detection And Ranging
VM Virtual Machine
IEEE Institute of Electrical and Electronics Engineers

xii

1 INTRODUCTION

Autonomous vehicles (AV) can significantly improve road safety and reduce accidents, as
most accidents are caused due to human errors. The market penetration rate of AVs is estimated
to be between 24% and 87% by 2045 [1]. According to the German Statistical Department, the
number of car crashes in Germany was over 2 million, just in 2019, and some levels of AV can
support to reduce this amount [2], and more than 90 percent of crashes are caused by human
errors [3].

It is possible to create high impact applications in this area, establishing interrelations and
information flows to detect new extended stimuli in scenarios where the infrastructure is physical
or mobile [4]. There is also the possibility of applying computer vision (CV) concepts that allow
the car to perceive the external environment. Combined with CV tools, the vehicle can interpret
the external scenario and connect these outputs using Machine Learning (ML) approaches [5].

One significant challenge for AV is to estimate the distance from the surrounding objects. It
is possible to perform this task using the vehicle to infrastructure (V2I) communications or other
techniques, such as Global Positioning System (GPS) [6]. Therefore, some studies investigate the
AV’s acceptance to demonstrate that this new technology can reduce car accidents. A research
guided by Xu et al. shows that, among the respondents, 42.35 % and 45.28 % expect low risk and
lower insurance premiums for autonomous vehicles, respectively [7].

Considering the possibility of using cameras around the road, this thesis proposes an object
detection model using a multi-camera approach. We also implement algorithms responsible for
detecting and classifying objects and estimating the distance of the object’s position.

1.1 MOTIVATION

Autonomous vehicles are an upcoming reality for future years. Following this trend, it is es-
sential to develop new solutions. In particular, vehicle tracking has become a significant necessity.
Wider AV adoption should reduce traffic jams and decrease the number of car crashes [8]. There
are many self-drive car automation levels until full automation is reached, as shown in Figure 1.1.

The proposal of this work deals with driving test scenarios of AVs. Monitoring test trials
using drones is limited to drone’s battery life, amounting to 30 to 45 minutes [9]. This work uses
infrastructure that can be positioned along the road as a pole-mounted camera that sends the data
to a command center.

1

Figure 1.1: Levels of driving automation

1.2 PROBLEM DESCRIPTION

It is to create an architecture to detect objects and to measure their distance along the road. A
possible approach is using drones, but it is not ideal due to the battery life limitation for long tests,
as illustrated in Figure 1.2. The goal is to track the position of the cars, namely vehicles under the
test (VUT) and traffic simulation vehicles (TSV) along the test track, and send this information to
the command central (CC).

Figure 1.2: Modelling of the test track scenario using drones, CC designates the command central, VUT is the vehicle
under test and TSV is a traffic simulation vehicle.

2

1.3 OBJECTIVES

The main objective is to create a framework to detect objects such as cars, trucks, motorcycles,
pedestrians, and other arbitrary obstacles along the road. Additionally, the framework must also
estimate the distance of such objects using a camera array.

1.4 PUBLISHED WORKS

Simultaneously, with this work’s development, the author has worked in several computer
sciences domains, particularly in the data science domain, keeping the multidisciplinary mind.
The following works were published along with the pursuit of the Master’s Degree:

1. PRACIANO, BRUNO J. G.; DE CALDAS FILHO, FRANCISCO L. ; E MARTINS, LU-
CAS M. C. ; DA CUNHA, DAYANNE F. ; DA SILVA, DANIEL ALVES ; DE SOUSA
JÚNIOR, RAFAEL TIMÓTEO. SEGURANÇA DO AMBIENTE USANDO DISPOSITIVO
IOT COM PROCESSAMENTO DISTRIBUÍDO. In: Atas da conferência IberoAmericana
WWW/Internet 2019, 2019. Atas da conferência Ibero-Americana WWW/Internet 2019,
2019. p. 163

2. MARQUES, Angelica Alves da Cunha; PRACIANO, Bruno Justino Garcia. Researchers
of the Brazilian archivistics scientific community in French international areas of interlocu-
tion Encontros Bibli: revista eletrônica de biblioteconomia e ciência da informação, Flori-
anópolis, v. 25, p. 01-14, mar. 2020. ISSN 1518-2924. doi:https://doi.org/10.5007/1518-
2924.2020.e65864.

3. CASTELINO, R. M.; MOREIRA, G. P.; PRACIANO, BRUNO JUSTINO GARCIA;
SANTOS, GIOVANNI A.; WEICHENBERGER, L.; DE SOUSA, JR, RAFAEL T. Im-
proving the accuracy of pedestrian detection in partially occluded or obstructed scenarios.
In: 2020 10th International Conference on Advanced Computer Information Technologies,
2020, Deggendorf. 2020 10th International Conference on Advanced Computer Informa-
tion Technologies, 2020.

4. CANEDO, EDNA; PINHEIRO, GABRIEL; SOUSA JR., RAFAEL; RIBEIRO, RENATO;
PRACIANO, BRUNO; LOPES DE MENDONÇA, FÁBIO. Front End Application Se-
curity: Proposal for a New Approach. In: 22nd International Conference on Enterprise
Information Systems, 2020, Prague. Proceedings of the 22nd International Conference on
Enterprise Information Systems, 2020. p. 233.

5. SOUSA JR., RAFAEL; LOPES DE MENDONÇA, FÁBIO; NZE, GEORGES; PINHEIRO,
GABRIEL; PRACIANO, BRUNO ; CANEDO, EDNA. Performance Evaluation of Soft-
ware Defined Network Controllers. In: 10th International Conference on Cloud Computing

3

and Services Science, 2020, Prague. Proceedings of the 10th International Conference on
Cloud Computing and Services Science, 2020. p. 363.

6. SILVA, DANIEL ALVES DA; TORRES, JOSÉ ALBERTO SOUSA; PINHEIRO, ALEXAN-
DRE; DE CALDAS FILHO, FRANCISCO L.; MENDONÇA, FABIO L. L.; PRACIANO,
BRUNO J. G; KFOURI, GUILHERME OLIVEIRA; DE SOUSA, JR, RAFAEL T. Infer-
ence of driver behavior using correlated IoT data from the vehicle telemetry and the driver
mobile phone. In: 2019 Federated Conference on Computer Science and Information Sys-
tems, 2019. org.crossref.xschema._1.Title@7d70270b, 2019. p. 487.

7. KFOURI, GUILHERME DE O. ; GONÇALVES, DANIEL G. V. ; DUTRA, BRUNO V.
; ALENCASTRO, JOÃO F. DE ; FILHO, FRANCISCO L. DE CALDAS ; MARTINS,
LUCAS M. C. E ; PRACIANO, BRUNO J. G. ; ALBUQUERQUE, ROBSON DE O.
; JR, RAFAEL T. DE SOUSA . Design of a Distributed HIDS for IoT Backbone Com-
ponents. In: 2019 Federated Conference on Computer Science and Information Systems,
2019. org.crossref.xschema._1.Title@7bad8b1f, 2019. p. 81.

8. DE MENDONCA, FABIO L. L.; DA CUNHA, DAYANNE F.; PRACIANO, BRUNO J.
G.; DA ROSA ZANATTA, MATEUS; DA COSTA, JOAO PAULO C. L.; DE SOUSA,
RAFAEL T. P2PIoT: A Peer-To-Peer Communication Model for the Internet of Things.
In: 2019 Workshop on Communication Networks and Power Systems (WCNPS), 2019,
Brasilia. 2019 Workshop on Communication Networks and Power Systems (WCNPS),
2019. p. 1.

9. BRANDAO, IURE V.; DA COSTA, JOAO PAULO C. L.; SANTOS, GIOVANNI A.; PRA-
CIANO, BRUNO J. G.; JUNIOR, FRANCISCO C. M. D.; DE S. JUNIOR, RAFAEL T.
Classification and predictive analysis of educational data to improve the quality of distance
learning courses. In: 2019 Workshop on Communication Networks and Power Systems
(WCNPS), 2019, Brasilia. 2019 Workshop on Communication Networks and Power Sys-
tems (WCNPS), 2019. p. 1.

10. DO NASCIMENTO SILVA, GERSON ; DE CALDAS FILHO, FRANCISCO LOPES ;
DOS REIS, VINICIUS ELOY ; PRACIANO, BRUNO JUSTINO ; LUSTOSA, JOÃO
PAULO ; DE SOUSA JÚNIOR, RAFAEL TIMÓTEO . MODELO DE REDES NEURAIS
ARTIFICIAIS EM SUPORTE TECNOLÓGICO À DETECÇÃO DE CARTEIS EM LIC-
ITAÇÕES PÚBLICAS. In: Atas da conferência IberoAmericana WWW/Internet 2019,
2019. Atas da conferência Ibero-Americana WWW/Internet 2019. p. 191.

1.5 CHAPTERS DESCRIPTION

This work is structured as follows: in Chapter 2, state of the art is presented to support this
work, exploring previous contributions in this research area, the theoretical concepts necessary

4

to the understanding of this work, and as self-driving cars are a new trend topic, it is essential to
describe in greater detail. Chapter 3 shows the proposed framework, and mathematical modeling
is presented. Chapter 4 discusses the results achieved, algorithm performance, and the error for
object detection and position estimation. Finally, in Chapter 5, the concluding remarks are made
regarding the experiments and future works’ suggestions.

5

2 STATE OF THE ART AND TECHNICAL BACKGROUND

This chapter presents a review of the state of the art in Section 2.1. An overview of the main
concepts of this work. The present section is divided into three sections. In Section 2.2.1 is
defined as the significant concepts of autonomous vehicles. The concepts of sensors are intro-
duced in Section 2.2.2. In Section 2.3, the main ideas regarding machine learning and artificial
intelligence are described.

2.1 STATE OF THE ART

This section presents an overview of the related works about this topic. These papers were
selected to support the proposed framework during the coding step. These bibliographies support
for comparison and the new approach proposal.

The authors from the paper [10] present the next-generation driver assistance systems that re-
quire precise self-localization. The system’s accuracy is evaluated by computing two independent
ego positions of the same trajectory from two different cameras and investigating them for consis-
tency. The landmark creation of the map is one of the significant contributions to the processing
pipeline. The rest of the paper assumes a backward-facing stereo camera setup. Moreover, they
calibrated all sensors. And the coordinates transform from camera to receiver to be fully known.
Its localization presents on a two-step approach and yields a six degrees of freedom ego pose
estimation.

The authors of [11] state that the video cameras are among the most commonly used sensors
in many applications, ranging from surveillance to smart rooms for video conferencing. In this
regard, this paper’s primary focus is to highlight the efficient use of the geometric constraints
induced by the imaging devices to derive distributed algorithms for target detection, tracking, and
recognition. The authors introduced the concept of the image’s triangulation, and in many detec-
tion and tracking applications, once there are correspondences between object locations across
views, the localization of these objects in scene coordinates is most important. Each camera gives
rise to a line, and estimating the object’s location involves computing the point of intersection of
these lines. In the presence of noisy measurements, these lines do not intersect at a single point,
and error measures such as the sum of squares are used to obtain a robust estimate of the object’s
location [12].

In [13] the authors remark that the use of drones has seen a tremendous increase in the last few
years, making these devices highly accessible to the public. Besides, computer vision is widely
used to autonomously detect drones contrasted to other proposed solutions such as RADAR,
acoustics, and RF signal analysis, due to its robustness. The authors aimed to combine a multi-
frame deep learning detection method, where the frame coming from the zoomed camera on

6

the turret is overlaid on the wide-angle static camera’s frame. Their equipment’s nature can
group the proposed approaches in the market and academic papers. However, conventional ones
cannot detect small commercial uncrewed aerial vehicles. Also, they are flying at relatively much
lower velocities, which decreases the Doppler signature. Based on this information, the authors
proposed an approach based on cameras.

The paper [14] shows the development of a three-dimensional coordinate system of objects
captured by a sequence of images taken in different views. Object reconstruction is a technique
that aims to recover the shape and appearance of items. A novel method to reconstruct occluded
objects based on synthetic aperture imaging is presented. The proposed method labels occlusion
pixels according to variance and reconstructs the 3D point cloud based on synthetic aperture
imaging.

In [15] the authors propose an inter-vehicle distance measurement system for self-driving
based on image processing. The proposed method uses two cameras mounted as one stereo cam-
era in the rear-view mirror’s hosting vehicle. Extensive experiments have shown the proposed
method’s high accuracy compared to the previous works from the literature. This method could
also be used in several systems of various domains in real-time regardless of the object type. The
paper [16] presents a multi-camera vehicle detection system that significantly improves the de-
tection performance under occlusion conditions. They also infer vehicle position on the ground
plane by leveraging a multi-view cross-camera context.

In the paper [17], the authors proposed two approaches: estimation of distance using an on-
board camera, car position detection, and vehicle position detection is a method of specifying
the relative position to the road that can serve as a Lane Departure Warning system. The authors
of [18] used a surround multi-camera system to cover the full 360-degree field-of-view around
the car. Their pipeline can precisely calibrate multi-camera systems, build sparse 3D maps for
visual navigation, visually localize the vehicle for these maps, generate accurate dense graphs,
and detect obstacles based on real-time depth map extraction.

Unlike existing methods that use pinhole cameras, the implementation of [19] is based on
fisheye cameras, whose large field of view benefits various computer vision applications for self-
driving vehicles visual-inertial odometry, visual localization, and object detection. It recovers the
depths using multiple image resolutions. At the end of the pipeline, the authors fuse the fisheye
depth images into the truncated signed distance function volume to obtain a 3D map.

In [20], the authors show that inter-vehicle distance estimation from an in-car camera based
on monocular vision is critical. An improved method for estimating a monocular vision vehicle’s
distance based on the target vehicle’s detection and segmentation is proposed in this paper to
address the vehicle attitude angle problem. The angle regression model is used to obtain the
attitude angle information of the target vehicle. The dimension estimation network determines
the actual dimensions of the target vehicle.

In [21], the multipath and non-line-of-sight effects of GPS receivers decrease the precision of
the vehicle’s self-localization. More specifically, the lateral error is more severe because of the

7

blockage of the satellites. The lateral distance between building and vehicle estimated by a stereo
camera is compared with a 3D building map to rectify its lateral position. Besides, this paper
employs an inertial sensor and GPS receiver to decide the car’s longitudinal location.

In [22] introduces CityFlow, a city-scale traffic camera dataset consisting of more than 3 hours
of synchronized HD videos from 40 cameras across ten intersections, with the longest distance
between two simultaneous cameras being 2.5 km. The authors expected this dataset to catalyze
research in this field, propel the state-of-the-art forward, and lead to deployed traffic optimization
in the real world.

In [23], the authors measure the distance between the ego-vehicle and the target vehicle using
a monocular vision. They also eliminate estimation error by changing the vehicle pose, proposing
a distance estimation method based on the car pose information. The proposed technique can
reduce the possible failure of distance estimation produced by changing an uncrewed vehicle’s
inclination angle and roll angle. Furthermore, the pose information could also help evaluate
distance if the car is on a slope.

In paper [24], a distance determination technique using an image from the single forward
camera is presented. Therefore, automatic brightness adjustment and inverse perspective mapping
are applied in the proposed scheme. The experimental results confirm that the proposed technique
can detect the object’s distance in front of the car, where the error is 7.96%.

The paper [25] simulated experiments to verify the feasibility of the proposed method. Mean-
while, physical experiment results show that this method can effectively reduce the outdoor en-
vironment impact and improve the calibration and measurement precision. Furthermore, in [26]
presents a novel method of camera parameters calibration for obstacle distance measurement
based on monocular vision, and the experiment shows that the proposed method is advantageous.

In [27], the authors performed experiments on the KITTI dataset for accurate 3D object detec-
tion. They achieved the same results as state-of-the-art in all related categories while maintaining
the performance and accuracy trade-off and still run in real-time.

This paper weighted-mean YOLO to improve object detection’s real-time performance by
fusing RGB cameras and LIDAR information. It implemented a new system using weighted-
mean to construct a robust network and compared it with other algorithms. It shows performance
improvement of missed-detection [28]. In paper [29] introduced the Complex-YOLO, a state of
the art real-time 3D object detection network on point clouds only. This work describes a system
that expands YOLOv2, a fast 2D standard object detector for RGB images, by a specific complex
regression strategy to estimate multi-class 3D boxes in Cartesian space.

In [30], the proposed method consists of mapping images to a new coordinate system where
perspective effects are removed. The removal of perspective associated effects facilitates road and
obstacle detection and also assists in free space estimation. The results show this considerably
improves the algorithm’s effectiveness and reduces computation time compared with the classical
inverse perspective mapping.

8

In [31], a stereo camera calculated the distance considering the angular distance, the distance
between cameras, based on the image’s pixel. They proposed a method that measures object dis-
tance based on trigonometry. In [32], a new framework for tracking multiple objects is presented.
They used fusion techniques to achieve this. They tested it on real-world highway data collected
from a massively sensorized testbed capable of capturing full-surround information.

In [33], a new intelligent transport system positioning technique that determines the distance
between vehicles via image sensor-based visible light communication was implemented. An
original novel method determines the distance between two cars using a low camera resolution.

The object detection, classification, and localization in the real world scenario are studied and
discussed by [34]. Furthermore, the suggested approach fuses three different object detection
algorithms and classification and uses stereo vision for object localization with the opposition.
An algorithm for merging the results of the three object detection methods based on bounding
boxes is introduced. The proposed fusion algorithm for bounding boxes improves the detection
results and provides an information fusion.

2.2 TECHNICAL BACKGROUND

This section contains the technical background necessary for this thesis understanding. It is
divided into three subsections: the concepts behind autonomous vehicles, sensors, and machine
learning.

2.2.1 Autonomous Vehicles

This section discusses the importance of the autonomous vehicles domain and its applicability
to the society, and the problems occurred as well.

2.2.1.1 What are autonomous vehicles

Modern vehicles now have Advanced Driver Assistance Systems (ADAS) which work at sev-
eral levels of autonomy, with these levels being outlined by the National Highway Traffic Safety
Administration (NHTSA). The levels range from 0, no-automation, to 5, full self-driving automa-
tion [35]. An example of an ADAS is a parking system, proposed by [36], that uses sensors to
find the best way to maneuver a car into a parking space without driver input. Systems such
as these are being used in modern semi-autonomous vehicles as driver aids to hand over work
from the driver to the car’s systems [37]. As technology progresses, there will be a more and
more handover of control from the driver to the vehicle, level Four of automation being the fully-
autonomous state that is a main talking point in the automotive industry. The level 5 AV will be
able to self-drive anywhere ("full automation"), i.e., no cockpits, drivers are not required to be fit
to drive, and even they do not require a driving license (every person in a vehicle is a passenger).

9

There are many open datasets to allow new people to work with autonomous vehicles and
hackathons as well. In the special the KITTI Dataset [38] and NuScenes in [39]. These datasets
provided data using GPS, Camera, RADAR, and LIDAR.

2.2.1.2 Challenges in Autonomous Vehicles

The cities are not prepared for autonomous vehicles at the same velocity as the industry. Based
on the data provided by [40], only 6% of the biggest cities in the United States are considering
creating the necessary infrastructure to work with this new reality.

Putting autonomous vehicles on the street is prolonged due to other problems taking care of
the network issues, even 3G, 4G, or 5G, the roads’ conservation, and the most critical aspect
regarding the legislation.

The study and development of these applications will change many things in society, even in
the process sector, until companies work with delivery. Nevertheless, it is indispensable to control
the traffic and reduce the accidents, It follows the World Health Organization (WHO), every year,
over 1 million people lose their lives in car accidents, and only in Brazil is over 47,000 deaths [41].

2.2.2 Sensors

Figure 2.1 shows the correct place for the principal sensors of an autonomous vehicle, model
Audi A8 [42]. The subsections 2.2.2.1, 2.2.2.2, and 2.2.2.3 describe camera, radar, and LiDar
respectively.

Autonomous vehicles (AV) would be impossible without sensors: they allow the car to see and
sense everything on the road and collect the information needed to drive safely [43]. Furthermore,
this information is processed and analyzed to build a path from point A to point B and send the
appropriate instructions to the car’s controls, such as steering, acceleration, and braking [44].

The technology of sensor manufacturing has shown a significant evolution in the last years,
having the appearance of a great diversity of sensors and a general decrease in its cost. Thus,
from an economic point of view, it became interesting to replace a high-precision, high-cost
sensor with several low-cost and less accurate sensors [45]. The combination of multiple low-
cost sensors also implied the development of new methods for merging data from various sensors
and specific electronics with high processing capacity capable of using the advantages of these
new sensors and minimizing their low precision deficiencies [46].

10

Figure 2.1: Representation of an autonomous vehicle

Each sensor has a different range and coverage angle, and this mixing of the sensor in the car
allows it to cover a big area and make it possible to reduce car accidents and improve the driver’s
safety. Although Figure 2.2 shows reasonable performance parameters for AV sensors, specific
sensor designs, and implementations will ultimately determine the performance parameters for a
particular AV in the real world.

Figure 2.2: Illustration of the various sensors, with reasonable estimates of coverage area (field of view) and typical
operating ranges

11

2.2.2.1 Camera

The camera is the type of sensor that allows the car to perceive the environment using the
collected images. Figure 2.4 shows the standard camera for autonomous vehicles.

It is an optical instrument for image or video capture in the same size. For example, there
are some cameras where it is possible to set up the numbers of frames per second (FPS) and the
image resolution.

It is also essential to remember the importance of the camera’s calibration; the Equations for
this process were available in [47]. This step is necessary to acquire the objects’ real size because
it is sometimes required to compare these objects’ dimensions.

Figure 2.3: Representation of a camera of the autonomous vehicle [48]

There are many different models of cameras, which vary in their technical specs. In this thesis,
it uses GoPro5, which is the highest-end model. The camera alone weighs 118 g and 186 g with
the camera. We selected this camera because it works better for outside scenarios. GoPro gives
the user great control of the settings for both picture and video acquisition. Video offers some
recording options, from 480p until 4k resolution, at various frame rates. There is also the option
to shoot in 4K—a resolution higher than most HD televisions. The user can also adjust exposure,
white balance, color, ISO, and sharpness, among other settings [49].

GoPro carries a WiFi signal within itself that allows connected devices like another GoPro or
your computer. There is no internal storage, and video is saved into removable microSD cards.
Battery life is dependent on which video quality. The official Web site suggests a battery life of 2
hours of continuous video and three hours for recharging.

This sensor allows the car to detect many objects while it is possible to perform object recog-
nition. It is necessary to freeze the difference between object detection and object recognition.
There are different algorithms to perform these tasks. The proposed algorithm in Chapter 3 shows
both exposures combined with the estimation of the distance.

12

2.2.2.2 Radar

The automotive radio detection and ranging (RADAR) sensors are responsible for performing
object detection around the vehicle and avoiding potential collisions. Therefore, with this sensor,
it is possible to warn the driver and combined with level 1 of automation, as shown in Figure 1.1,
to intervene with the brake the car or use other controls to prevent an accident [50].

Figure 2.4: A commercial radar model ARS430 CV from Continental

Another exciting application of the RADAR in the automotive scenario is measuring the ve-
hicle’s relative speed and other objects. It is possible to estimate the distance correctly [51].

It is possible to combine the camera and RADAR and get a new kind of sensor, as defined
in [52]. With this approach, it is possible to reach 160 times faster than a human driver.

2.2.2.3 Lidar

In Figure 2.5 is shown a light detection and ranging (LiDAR). The main purpose of this laser
is to detect and track any kind of objects.

Figure 2.5: An exemple of a lidar of the autonomous vehicle

13

This measurement is based on many times rotate this sensor in different directions to scan
the whole area of the autonomous vehicles is driving and collect some data for detecting the
objects [53].

The name is similar to Radar is not a coincidence. The two technologies exist to understand
what is happening in the environment around them, but their methods are different.

The Radar transmits radio waves from a receiver. The radio waves then bounce off objects in
the receiver’s vicinity to detect how and where said objects are moving. It is available angle and
velocity, things of that nature. Think of a weather radar, which measures how quickly and in what
direction a storm cloud is moving.

This sensor shoots out invisible beams of light from across the light spectrum. It can use
infrared and ultraviolet light to map out the environment around it. It can get a sense of both the
physical dimensions and motion (if any) of objects in its vicinity. The usage of the LiDAR is a
way to figure out the environment around the object using laser beams.

Autonomous vehicles may use Lidar for object detection and to navigate safely through en-
vironments [54]. Point cloud output from the Lidar sensor provides the necessary data for auto-
mated software to determine potential obstacles in the ground and where the robot is concerning
those potential obstacles. such as CARLA simulator [55] [56].

2.3 MACHINE LEARNING IN COMPUTER VISION

The machine learning is an approach based on algorithms to create some predictions. These
techniques are based on mathematical and computer science. It is possible to apply this in several
fields of science.

2.3.1 Artificial Neural Networks

The human brain has inspired artificial neural networks (ANN) or perceptron. This approach
is because of the capacity of the human mind to categorize new information. In Figure 2.6 is
shown an example of the structure of an ANN. There is an input array with the processed features
for categorization. The next step of the processing is to define the weights for this analysis. The
activation function is the central part of this process. In this step, the algorithm will transform the
numbers collected by the previous actions and return only in twofold purpose, like 0 and 1 in the
output layer [57].

14

Figure 2.6: The structure of an ANN [58]

The neuron output is a function of the weighted sum of its inputs. Figure 2.7 is shown the
mathematical background, where f is activation function, wi are the weights, and β is the constant
input called bias.

Figure 2.7: Mathematical representation of ANN with bias [58]

2.3.1.1 Activation functions

There are many different activation functions to use. These are crucial for ANN characteris-
tics, such as learning ability and computational efforts in training and validation.

There are different kinds of activation functions for machine learning approaches. Each acti-
vation function has its particularity for specific problems. Table 2.1 shows the characteristics for
these functions.

15

Table 2.1: Comparison Table for Activation Functions

Activation
Function Linear Monotonic Continuous Derivative

Monotonic
Derivative

Continuous

Simetric with
respect to

The Origin
Unit Step x X x x x x

Sign x X x x x X
Identity X X X x X X
Sigmoid x X X x X x

Hyperbolic
Tangent

x X X x X X

Rectified
Linear Unit

(ReLU)
x X X X

x
(at 0)

x

Equation 2.1 shows the behavior of the Unit Step activation function (H(x)) where it is possi-
ble to note that it is nonlinear, monotonic, and adequate for classification. However, on the other
hand, it has discontinuous derivatives and not monotonic with gradient descent methods.

H(x) =

1 if x > 0,
1
2

if x = 0,

0 if x < 0

(2.1)

Equation 2.2 shows the behavior of the Sign Function activation function. Its properties are
similar to the (2.1) as they have, essentially, the same format with different values. The pros
are nonlinear, monotonic, and ideal for fine classification, but the cons are discontinuous and not
suitable for regressions.

sgn(x) =

1 for x > 0,

0 for x = 0,

−1 for x < 0

(2.2)

Equation (2.3) defines the Identity activation function where the usage is indicated when nec-
essary to optimize the weights, but for multilayers networks are not recommended because it is a
linear function.

f(x) = x (2.3)

Equation (2.4) shows the classic activation function for the multi-layer networks. It is impor-
tant to remind that this function is nonlinear, monotonic, and well-suited to gradient descent, but
its asymmetry to the origin may have slower convergence and can get stuck at the training time.

S(x) =
1

1 + e−x
(2.4)

16

Equation (2.5) proposes an alternative to (2.4) where has a non-linearity and it is symmetric
to its origin, and it is well suited to gradient descent optimization, but at the same, it does not
have a monotonic derivative and can have a slow convergence, but it is better sometimes than the
Sigmoid activation function.

tanh(x) =
ex − e−x

ex + e−x
(2.5)

In this work, ReLU is the activation function chosen activation. Its mathematical definition
is shown in (2.6). This activation function is a novel, and it is widely used in deep networks
because it is nonlinear and has a fast convergence. Contrarily to the previous equations, it is not
differential continuously just at zero, and the issues to work with gradient descent is just around
the origin.

f(x) = R(x) = max(0, x) (2.6)

The graphic visualization of the function Relu is shown in Figure 2.8, where this function
returns 0 if the number from the weighted sum is lower than 0, or return x if the previous value is
over than 0.

Figure 2.8: The behavior of the Relu [58]

These are the essential characteristics of this activation function. It is widely used in deep net-
works. It is nonlinear, monotonic, derivative monotonic, and fast converge. As the weaknesses,
this activation function has a non continuously differential at zero, i.e., issues with gradient de-
scent around the origin.

2.3.1.2 Layered Neural Networks

The quintessential element of a deep learning model is the multilayer perceptron (MLP) [57].
An MLP is just a mathematical function mapping some set of input values to output values. The
function is formed by composing many more specific functions [57].

These are important deep learning models. The goal of a feedforward network is to approxi-
mate some function f∗. For example, for a classifier, y = f ∗ (x) maps an input x to a category

17

y. A feedforward network defines a mapping y = f(x; θ) and learns the value of the parameters
θ that result in the best function approximation.

These models are called feedforward because information flows through the function being
evaluated from x, through the intermediate computations used to define f , and finally to the
output y. There are no feedback connections in which results of the model are fed back into itself.

2.3.2 Convolutional Neural Networks

The Convolutional Neural Networks (CNN) is a specialized neural network for processing
data known as in [59]. For example, in the autonomous vehicle domain, this approach is several
used for object detection and object identification. This name indicates that the network employs
a mathematical operation called convolution.

A CNN coarsely scans the image for features (in lower dimension space), pools possible
patterns, then inspect those patterns in detail with its fully connected subnetworks, generating
their classifications. In Figure 2.9 is defined the full process of this neural network. Where there
are three other importants is steps: Convolutional layer is defined in Subsection 2.3.2.1. The
pooling layer is introduced in the Subsection 2.3.2.2.

Figure 2.9: Full process of a convolutional neural network [58]

18

2.3.2.1 Convolutional Layer

The standard inputs are a tridimensional matrix with height and width defined accordingly
with the image dimensions and determined by the number of colors. In general, the images use
three color channels, Red-Green-Blue (RGB), as is shown in Figure 2.10.

Figure 2.10: Representation of the colors of the input image [58]

The convolutions work as filters that seem little squares, and they are slipping through the
whole image and capturing essential parts. Figure 2.11 shows an image by dimensions ofNxNX3,
filter among the MxMX3, wherever individual main difference per result is then summed, on
bias (β) value, then passed through an activation function. Furthermore, the end of the process
generates a new matrix called a feature map or activation map.

Figure 2.11: Representation of the convolution process [58]

19

2.3.2.2 Pooling and Upsampling

A pooling layer is necessary to simplify the information from the previous layer. The convolu-
tion layer chooses a unit area, for example, 2x2, to slicing for the whole output information from
the previous step. To brief, if the information from the previous layer was 4x4, the output from
the process of pooling will be 2x2. Nevertheless, the most used method is max-pooling, where
the biggest number in the matrix is passed to the next step. This data summarization is used to
reduce the number of weights and avoid overfitting. In Figure 2.12 is shown the max-pooling
process.

Figure 2.12: Representation of the maxpooling process [58]

2.3.2.3 Auto-encoders

It is a special type of neural network that is used to copy its inputs to its output. The intern
structure is defined in Figure 2.13.

Figure 2.13: The structure of a standard autoenconder, where the variable x means input and r as an output through
the internal representation in h. The encoder f maps x to h and decoder g maps h to r

As described in [60], this architecture has a hidden layer of h that describes a code used to
represent the input. The network may be viewed as consisting of two parts: an encoder function
h = f(x) and a decoder that produces a reconstruction r = g(h).

2.3.2.4 Training

In the machine learning scenario, in special, the neural networks domain epoch can be de-
fined as a single forward pass and backward pass of all the training examples. It feeds in all the

20

neurons into the network at once. Instead, it chooses a batch of neurons and feeds them in. It per-
forms stochastic gradient descent and prevents the system from overfitting. There is a difference
between individual training step time and total training time [61].

21

3 PROPOSED FRAMEWORK

The framework was idealized to work and different scenarios. In Section 3.1, the proposal
with one camera with the object calibration is presented. Section 3.2 defines the problem with
one camera but using a known map along metrics to estimate the position along with the map.
The Section 3.3 is defined the approach with multi-cameras and real-time processing.

3.1 APPROACH 1 - ONE CAMERA WITH OBJECT CALIBRATION

The first proposed technique is based on the authors of the paper [62], where it is necessary to
calibrate the camera before starting the object recognition and classification. This proposal was
defined in six steps, as shown in Figure 3.1.

Figure 3.1: Proposal using only one camera with object calibration

3.1.1 Camera Calibration

This task is necessary to reduce the distortion of the camera. The camera used on the tasks
has a noise, for this approach is recommended to perform this step. Following this requirement,
a script in Python language with the OpenCV library based in [63] was developed. Furthermore,
with calibration, also it is possible to determine the relationship between the camera’s natural
units (pixels) and the real-world units (for example, millimeters).

Using the intrinsic parameters of the camera, as in (3.1), and one point is projected on the
image plane.

22

u′v′
z′

 = P

Xw

Yw

Zw

1

 (3.1)

The 3D point (Xw, Yw, Zw) in the world coordinates to its projection (u, v) in the image coor-
dinates. The algorithm’s calibration calculates the camera matrix using the extrinsic and intrinsic
parameters. The extrinsic parameters represent a rigid transformation from the 3-D world co-
ordinate system to the 2-D camera’s coordinate system. These parameters define a projective
transformation from the 2-D camera’s coordinates into the 2-D image coordinates. Figure 3.2
shows the block diagram where explains the problem to convert a pixel to the real world.

Figure 3.2: Block diagrams of a projection

In (3.2), P is a 3x4 projection matrix combined of two different parts, the intrinsic parameters
of the camera (K) and the extrinsic matrix ([R|t]) that is based on the combination of 3x3 rotation
matrix R and 3x1 translation t vector [64].

P =

Intrinsic Matrix︷︸︸︷
K ·

Extrinsic Matrix︷︸︸︷
[R|t] (3.2)

The intrinsic matrix (K) is an upper triangular matrix as shown in (3.3).

K =

fx γ cx
0 fy cy

0 0 1

 (3.3)

where, fx, fy are the x and y focal lengths, cx, cy are the x and y coordinates of the center in
the image plane, γ is the skew between the axes, in this master’s thesis, was defined equal to 0.

The Extrinsic Matrix is shown in (3.4). The extrinsic matrix takes a rigid transformation
matrix: a 3x3 rotation matrix in the left-block and a 3x1 translation column-vector in the right.
The camera’s extrinsic matrix describes the camera’s location in the world and what direction it
is pointing.

23

[R | t] =

 r1,1 r1,2 r1,3 t1

r2,1 r2,2 r2,3 t2
r3,1 r3,2 r3,3 t3

 (3.4)

3.1.2 Camera Image

The image camera model depicted in Figure 3.3 describes the mathematical relationship be-
tween the coordinates of a point in 3-dimension space and its projection onto the image plane of
a camera aperture is described as a point, and no lenses are used to focus light. The model can
only be used as a first-order approximation of the mapping from a 3D scene to a 2D image [65].

Figure 3.3: The camera model for image formation based on some metrics and known parameters

3.1.3 Features Extraction

When it is necessary to work with variables that contain many contents, there is a necessity to
improve this work and reduce the computer bottleneck during the process. In machine learning
(ML), some variables are independents or some features on which the final output is done. More-
over, in other cases, that number of these features increases it and reduces the ability to visualize

24

it.

For example, the image resolution of the collected data for the ML algorithm’s training is
1392 pixels in height and 512 pixels in width, for a total of 712, 704 pixels in total. Each pixel
has a single pixel-value associated with it, indicating the darkness or lightness of that pixel. The
numbers are between 0 and 255, along this premise is necessary to determine which objects the
image contains.

The task was performed by feature extraction, which creates new features from existing fea-
tures, giving us more information and fewer redundancies [66].

A mathematical tool called Principal Component Analysis (PCA) was used in this step, and the
PCA is used to decompose a multivariate dataset in a set of successive orthogonal components
that explain a maximum amount of the variance [67]. Figure 3.4 is shown how the technique
works. The data is decomposed into a perpendicular vector where the information is unrolled.
Besides, with more variance means more information regarding data.

Figure 3.4: Maximum variance in f ′
1, where the red circles mean the data points of the data set, f1 is the feature 1 on

x-axis, f2 is the feature 2 on y-axis

Based on Figure 3.5, is necessary to find a direction fi such as the variance of x′is project
on f ′is has the maximum value. Also, it is necessary to rotate the previous axis to find f ′is, and
finally, drop f2

25

Figure 3.5: Unit vector direction of maximum variance

To find the direction of f ′is, which has the maximum variance, unit vector in the direction of
maximum variance = Ui, in (3.5a) is described how to compute this distance.

x′i = Projection of xi on unit vector ui (3.5a)

= uTi xi (3.5b)

x′i = uTi · xi︸︷︷︸
Mean V ector

(3.5c)

var
{
uTxi

}n
i=1

=
1

n

n∑
i=1

uTi xi − uTi xi︸︷︷︸
Mean xi

2

(3.5d)

In (3.5d) is possible to find out the ui which gives the maximum variance. Further, this prob-
lem can be defined as distance minimization [68].

In Figure 3.6 the vector which gives the minimum distance (d1, d1, · · ·) when x′is are projected
on ui.

26

Figure 3.6: Distance minimization PCA

In (3.6), the equation finds the vector ui, which gives the minimum distance.

d2i = ‖xi‖
2 −

(
uTxi

)2
(3.6a)

=
(
xTxi

)
− (uTxi)

2 (3.6b)

minui

n∑
i=1

(
xTi xi −

(
uTxi

)2)
(3.6c)

Calculation of Eigenvalues and Eigenvectors give the solution to the above Equations.

where the matrix X in (3.7) is the matrix of the data points with the shape (nxd)

X =

a11 a12 . . .
... . . .

aK1 aKK

 (3.7)

The square symmetric matrix is defined as Sdxd = XT
dxnXnxd [69].

Based on the approach of [70], in (3.8) is defined the solution equation.

λiVidx1 = SdxdVidx1 (3.8)

27

where λ is the scalar eigenvalues, S is the co-variance matrix, V is the vector - eigenvector,
and d is the dimension.

The steps to find the Eigenvector:

1. Do the column standardization of X

2. compute the co-variance Matrix: S = XTX

3. λ = Eigen Value and V = Eigen Vector

4. λV = SV

To brief these steps is necessary to assume the more variability in a particular direction cor-
relates with explaining the dependent variable’s behavior. Theoretically, it is needed to apply the
PCA to remove the sample’s noise and keep only the necessary things to detect.

3.1.4 Object Detection and Object Recognition

This task is based on the paper [71], where You Only Look Once (YOLO) version 3 is used as
an object detector and uses the features after the pre-processing as input the deep convolutional
neural network in Figure 3.7.

Figure 3.7: YOLO Architecture: Simultaneously predicts bounding boxes and class probabilities for these boxes [71]

This architecture makes use of only convolutional neural networks. This topic has already
been detailed in Subsection 2.3.2 and makes it in a fully convolutional network (FCN). Yolo has
75 convolutional layers, with skip connections and upsampling layers.

In the YOLO environment, the algorithm divides the input image into a ZxZ grid. Each grid
of this frame predicts only one object, as shown in Figure 3.8. Along, YOLO uses 7x7 grids

28

(ZxZ), two boundary boxes (B), and 20 classes (C). So, the tensor of the YOLO prediction has a
shape of (Z,Z,Bx5 + 20) = (7, 7, 30)

Figure 3.8: Yolo makes ZxZ predictions with B boundaries boxes

The object detection is based on the boundary box approach, and each box has five known
elements (x, y, w, h) and a box confidence score. This score means how likely the box contains
an object. It uses CNN to reduce the spatial dimension; after that, it performs a linear regression
using two fully connected layers to make the predictions; this approach considers only predictions
over 0.5. It is defined in Table 3.1.

Table 3.1: The Yolo’s predicts equations

Description Equation
box confidence score Pr(object).IoU
conditional class probability Pr(classi|object)
class confidence score Pr(classi).IoU
class confidence score box confidence score · conditional class probability

where in Table 3.1,Pr(object) is the probability the box contains an object. IoU is the inter-
section over the union between the predicted box and the ground truth. Pr(classi|object) is the
probability the object belongs to classi given an object is presence. Pr(classi) is the probability
the object belongs to classi.

The bounding boxes concept is defined in [72], and in the many problems as in the autonomous
driving domain, the most common detection will be pedestrians and cars at different distances
[73]. It is necessary to apply the clusterization approach. In this case, it is defined by K-means

29

with K = 5. Since the algorithm is working with many kinds of bounding boxes, it is impossible
to use the regular spatial distance to measure the data point distances. That is the reason to use
IoU . Based on the length of the cluster called as the anchor, in this solution will predict five
parameters (tx, ty, tw, th, and to) combined with the sigma function to reduce the offset range as
is already defined in (3.9) and it is detailed graphically in Figure 3.9.

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
tw

bh = phe
th

Pr(object) · IoU(b, object) = σ(to)

(3.9)

where tx, ty, tw, th are the predictions made by the algorithm. cx, cy are the top left corner of
the grid cell of the anchor. pw, ph are the width and height of the anchor. The image width and
height normalize cx, cy. bx, by, bw, bh are the predicted boundary box. σ(ti) is the box confidence
score.

Figure 3.9: Prediction of the width and height of the box as offsets from clusters centroids based on [72]

As already defined, the proposed solution predicts multiple bounding boxes per grid cell.
Thus, it is necessary to compute the loss for the true positive, to reduce the error. Hence the
object is to be faster, not accurate. On the other hand, each cell will be looked at time and use,
and it will be used the highest IoU. The loss function is composed by classification loss in (3.10),
the localization loss in (3.11), the confidence loss (3.12), and the loss function is (3.13).

If the object is located on the frame, the classification loss will perform the squared error at
each cell on the conditional probability for each class:

s2∑
i=0

1obji
∑

c∈ classes

(pi (c)− p̂i (c))2 (3.10)

30

where 1obji is the Boolean that controls if has an object or not, p̂i (c) denotes the conditional
probability for each class in the cell.

The localization loss (locloss) is necessary to take care of the measurement errors regarding
the locations and the boxes’ sizes. The goal is not to define the absolute weight errors in large
boxes and small boxes. It predicts the square root of the bounding box width and height instead
of the width and height.

locloss = λcoord

s2∑
i=0

B∑
j=0

1obji j

[
(xi − x̂i)2 + (yi − ŷi)2

]
+λcoord

s2∑
i=0

B∑
j=0

1obji j

[
(wi − ŵi)2 + (hi − ĥi)2

] (3.11)

where 1objij = 1 if the boundary box in the cell is responsible for detecting the object, otherwise
is 0. λcoord increases the weight for the loss in the boundary boxes coordinates, with this variable
is possible to put more emphasis on the accuracy, so it is multiplied by the loss, the default value
for this work is 5.

The confidence loss (Confloss)is used to measure the box’s objectness because a significant
part of the boxes does not have any detector inside, and with this, an imbalance issue is noted to
avoid this object is necessary to compute this loss.

Confloss = λnoobj

s2∑
i=0

B∑
j=0

1noobjij

(
Ci − Ĉi

)2
(3.12)

where 1noobji is the complement of 1obji , Ĉi is the box confidence score of the box j in cell
i, and λnoobj takes care of the weights decrease the loss when the background is detected in this
work the used value for this variable is 0.5.

The final loss (loss) is computed through the addition of previous losses, in (3.13) is defined
as the actual loss to reduce the errors in the object detection.

31

loss = λcoord

s2∑
i=0

B∑
j=0

1obji j

[
(xi − x̂i)2 + (yi − ŷi)2

]
+λcoord

s2∑
i=0

B∑
j=0

1obji j

[
(wi − ŵi)2 + (hi − ĥi)2

]

+
s2∑
i=0

B∑
j=0

1noobjij

(
Ci − Ĉi

)2
+λnoobj

s2∑
i=0

B∑
j=0

1noobjij

(
Ci − Ĉi

)2
+

s2∑
i=0

1obji
∑

c∈ classes

(pi (c)− p̂i (c))2

(3.13)

After object detection, it is necessary to perform the object classification, where each box
predicts the classes the bounding box, so it is recommended to use multilabel classification. The
difference in this work is to use the softmax function in the output of the categories. The data
used in this training is labeled, and it was collected from Open Image Dataset [74], and this
classification was performed over the Darknet neural network [75].

3.1.5 Distance Estimation

This approach uses the object detector’s outputs for the distance estimation, where 4 variables
are predicted, (x, y, w, h). These work variables x, y are used to adjust the boundary box, and
w, h are used in Figure 3.8 to measure the distance of the object. These variables will variate
according to the distance of the camera. In [76] the image will be refracted in the lens, and with
this is possible to deduce a relationship between the known parameters: focal length (f), the
distance of the object from the lens (d), the distance of the refracted image from the lens (D). In
Figure 3.10 is shown how the distance measurer works.

32

Figure 3.10: Purpose method to compute the distance of the object using cameras

So the red line d represents the actual distance of the object from the convex length. Moreover,
D gives a sense of how the actual image looks. If we consider a triangle on the left side of the
image (new refracted image) with base d and draw a triangle similar to the left side one. So the
new base of the triangle will also be done with the same perpendicular distance. If we compare
the two triangles from the right side, we will see d, and D is parallel, and the angle that creates
on each side of both the triangle is opposite to each other. From which it is possible to infer
that both the triangles on the right side are also similar. Now, as they are similar, the ratio of the
corresponding sides will also be similar. So d

D
= A

B
. Again if we compare two triangles on the

right side of the image where opposite angles are equal, and one angle of both the triangles are
right angle (90◦) (dark blue area). So A and B are both hypotenuses of a similar triangle where
both triangles have a right angle. So the equation is defined as:

d

D
=
A

B
=

f

D − f
, (3.14)

the focal distance is shown in (3.15),

1

f
=

1

d
+

1

D
, (3.15)

The proportional size of each image, as shown in (3.16), belong to object detection variables,
as shown in (3.18).

d = f +
C

c
, (3.16)

33

the focal length is computed by (3.17),

f =
2 · 3.14 · 180

360
, (3.17)

Finally, it is possible to predict the distance based on outputs from the predictor combined
with fundamental physics in (3.18), where w is the width and h the height of the object.

distance =
2 · 3.14 · 180
w + h · 360

+
C

c
(3.18)

3.2 APPROACH 2 - ONE CAMERA WITH KNOWN MAP

The second proposed approach is based on [77], where it is necessary to take the photos and
label these images [78]. Its output is shown in Table 3.2, and indicates the position and size of
the boundary box as already defined in Figure 3.9, and the real position of the car on the actual
scenario, and show in Figure 3.11 is shown the block diagrams and the proposed approach to
predict the distance based on the known map. The subsection defines only the step regarding the
estimated position based on the map because the other actions have already been described in
Section 3.1.

Figure 3.11: Approach using one camera with known map

34

Table 3.2: Example of labeled values

Label Distance (meters) X Y W H
car #1 4.41 365 304 1150 563
car #2 11.11 321 256 736 422
car #3 16.24 221 198 562 351
car #4 19.66 138 172 425 296
car #5 23.09 107 150 360 265
road signal 25.82 1226 6 1266 95
tree 17.22 507 1 606 231

3.2.1 Estimate position based on map

For this step is necessary to collect data and label this data before the start. This predictor
will be different from the previous collect data compared with the estimation provided in Section
3.1. This approach is used as an Artificial Neural Network (ANN), and the concepts of this
architecture were defined in Subsection 2.3. The proposed ANN is in Figure 3.12.

Figure 3.12: Neural network responsible to predict the distance of the objects based on the boundary boxes

Additionally, this defined architecture is possible to estimate the car’s distance along with the
scenario. An example of the labeled image is shown in Figure 3.13. These outputs were collected
from this image and saved in Extensible Markup Language (XML), and this file is used as input
in the ANN.

35

Figure 3.13: Labeled image with boundary boxes positioned in each important element of the screen

3.3 APPROACH 3 - MULTICAMERA

This approach was selected one for constructing the framework in Subsection 3.4 because,
with this approach, it is possible to consider the camera’s position on the test scenario. As similar
in Subsection 3.2, only the last step will be defined here because the other ones were already
described in Subsection 3.1.

Figure 3.14: Approach using multicamera

36

The creation of a scenario-based in multiple cameras, forming cameras array, and a command
center is responsible for merging all of the collected data and fusing it on the database, such as
the label of each object, position, and its timestamp.

The data used on this task is provided from streams of the cameras, and they send these data to
the command center via a wireless connection over the protocol IEEE 802.11. The data fusion is
controlled by proxy, and it was written in Python. The distance estimation is based on the Inverse
perspective mapping (IPM) and is well defined in 3.3.1.

3.3.1 Estimate position based on multiple inputs

Inverse perspective mapping is a mathematical technique that removes the effects of a picture’s
distortion when transforming the image’s perspective to another perspective. Despite disparity
mapping, the inverse perspective mapping method requires only one camera, and this method
cannot provide depth information directly [79].

The camera must be located in front of the car with an angle of θ to down. Figure 3.15 shows
the setup.

Figure 3.15: Image coordinate system in relation to world coordinate system.

This setup was selected based on solution of [24], the mathematical background is to create
top-down view, the surface road point is known as (Xw, Yw, Zw) that projects to the image plane
(u, v) is a must. As disrupted in Figure 3.15. For rotatation angle (θ), which is angle between
camera and the surface, the IPM equation is based on [80] and is shown is Equation 3.19:

(u, v, 1)T = K · T ·K(Xw, Yw, Zw, 1)
T (3.19)

where R is the rotation matrix given in the equation 3.20.

R =

1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

 (3.20)

37

T is the translation matrix given in the equation 3.21, where h means the height of the position
of the camera.

T =

1 0 0 0

0 1 0 0

0 0 1 −h
sin θ

0 0 0 1

 (3.21)

K is the camera parameter matrix given in (3.22), where f is the focal length of the camera, s
is the skew parameter, and u0, v0 are the center of the pixel of desired image size.

K =

f s u0 0

0 f v0 0

0 0 1 0

 (3.22)

The Equation 3.22 can be replaced using the real parameters of this test scenario and these
parameters are f = 2.92mm, s = 0, u0 = 240, v0 = 160. Replacing the Equations 3.20,3.21,
3.22 into the initial Equation 3.19, achieving the new Equation 3.23.

uv
1

 =

P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

Xw

Yw
Zw
1

 (3.23)

where the matrix P was gotten from a product between K, T, and R. As is only necessary
to evaluate the position of the road, so the coordinate Yw can be equal to 0, so simplifying the
Equation 3.23, so it is given by Equation 3.24.

uv
1

 =

P11 P12 P14

P21 P22 P24

P31 P32 P34

Xw

Zw
1

 (3.24)

Based on the Equations above, it is possible to infer the Equation 3.25 to compute the distance
from the camera until the object.

1. Calculating average intensity in the row direction from the bottom row up to top row

2. The average intensity of each row is compared with the threshold level (obtained from
the experimental), which is 50. The starting position of an indicated object is the average
intensity in that row is greater than 50, and the order of that row is stored in a parameter p.

3. The distance between object and vehicle is therefore calculated using a linear equation given
in 3.25.

38

d = ap+ b (3.25)

d is the distance between the camera, object, and the vehicle in meter, p is the order of the row
that object is detected, and a, b are constants.

3.4 FRAMEWORK ARCHITECTURE

This section discusses how the architecture of the Subsection 3.3 is encapsulated in a software
framework. This Architecture was divided into four big modules: client, model, proxy, and
controller.

Figure 3.16: Architecture approach of framework

The first module is block 1 of Figure 3.16 is the client, which is responsible for permitting all
of the interactions with the user and allow to see the cameras making the inference and see the
boundary boxes and the labels, and the distance estimation as well.

The module responsible for controlling the model is block 2 of Figure 3.16, and it will be
expanded in Figure 3.17. The input data is obtained from the data provided by cameras, and the
output will be saved in the database. These outputs have already been defined in Section 3.3.

Block 3 of Figure 3.16 controls the usage flow of this framework and provides an abstraction
layer to the usage of the database.

In block 4 of Figure 3.16 is the part responsible for connecting the other cameras via WIFI
protocol and allows the system to connect another camera. The total amount of the camera is
based on the hardware available for the tests.

Figure 3.17 shows how the model performs the inference process along the detection time,
where this Figure shows the flow of the framework in new images. For example, the camera
starts to stream, and to apply the object detection on the refereed frame, the dimension estimation
network is called, and in another direction, the segmentation network is activated. After this step,
it is possible to use the vehicle segmentation to detect vehicles along this way.

39

Figure 3.17: Architecture of framework based on multicameras perspective

Still using Figure 3.17, the next mutual box is the action to compute the algorithm to measure
the distance of the object. In this box, the inputs are the relative position of each bounding box
and the object’s computed label.

This block diagram’s last action is to show the user’s predicted distance and save it into the
relational database for future queries.

40

4 RESULTS

In this chapter, the results collected from the Chapter 4 will be discussed and analyzed. It is
essential to freeze that only approach three from 3.3 was implemented into the framework because
the goal was to work with multiple cameras and multi-view perspectives.

The algorithms and the simulations was performed in a computer with this follow configura-
tion:

• Operational System Ubuntu 18.04

• CPU Intel core i7 7700HQ 2.80 GHz

• 32 GB memory RAM

• GPU Nvidia Geforce GTX 1050 Ti - 4 GB

The framework can perform the tests on the Audi test track, as shown in Figure 4.1, but in this
work, only the proof of concept of the algorithms was performed.

Figure 4.1: Audi test track in eagle’s view

The algorithm for object detection was performed over the parking lot of the company EFS
GmbH as shown in Figure 4.2.

41

Figure 4.2: Position of the cars on the parking lot

4.1 DESCRIPTION OF THE TEST SCENARIO

The test scenario was built three times, using different perspectives. For the first test where it
was necessary to use the camera, calibration perspective was made using only one camera, and
the height of this camera does not matter to compute the distance, only a known distance, and
dimensions of a known object to adjust this algorithm.

For the second scenario, some photos were taken and labeled with the known metrics to sup-
port the training step and return a useful result according to reality.

The last approach and used in this work to built the framework was used following some
principles as the cameras should be mounted at the same level, the same horizontal position, the
stream must be captured at the same time of the camera and sent to the same control center to
process this data.

The used cameras were GoPro 5, which allow building a wireless network with many cameras.

4.2 RESULTS WITH CAMERA CALIBRATION

The results from approach one from 3.1 were implemented using Python 3.7 and Opencv3,
and the position was computed based on camera calibration. Equation (4.1) is defined as the
distance used in the camera calibration, using a measurer tape and a piece of paper (21.59 cm x
27.94 cm), and this was positioned 60.96 cm in front of the camera to take the photo.

42

F =
P ·D
W

(4.1)

W is the piece of the paper’s width, which is 27.94 cm, D is the distance from the piece of
paper to the camera, and P is the paper’s measure in pixels taken from the image. Applying the
(4.1), the focal length (F) is 541.09 pixels.

The results achieved with this technique is shown in Table 4.1.

Table 4.1: Measurements achieved with camera calibration algorithm

Car Measurements
#1 4.05
#2 10.67
#3 15.52
#4 19.55
#5 20.08

4.3 RESULTS WITH KNOWN MAP

In this section is detailed the results of the proposal with a known map. This approach was
performed using the neural network from 3.2 and the data provided by KITTI Dataset [38]. It is
essential to freeze. This approach was used only for the comparison method and not to be used
on the final framework.

The results collected in this section are beneficial, as several companies and other universities
are releasing the dataset as open source. There is a need to understand image manipulation, and
in some cases, data from LIDAR and Radar.

This test’s main idea was to get the information from the object detection performed with
the algorithm using the boundary boxes approach, collect this known information as input in the
neural network, and predict a distance from the camera until the object. Where in Figure 4.3 is
shown an example of the known KITTI dataset, it serves just as motivation for this work. The
final results were not performed over this dataset.

43

Figure 4.3: Output results from framework using single stereo camera and known map

For this approach, the output achieved from Table 3.2 was used for the first interaction and
estimate the distance, as shown in Table 4.2. These results are similar to the reality because it
uses a known map, and the measurement step of these structures was performed and the labeling
part.

Table 4.2: Measurements achieved with camera and known map

Car Measurements
#1 4.43
#2 10.98
#3 16.01
#4 18.99
#5 22.18

4.4 RESULTS WITH MULTI-CAMERAS AND PROPOSED FRAMEWORK

The proposed framework’s algorithm predicts the objects of the whole scenario in 28 ms and
has identified nine cars on the image, as shown in Figure 4.4 and in Table 4.4 is demonstrated the
accuracy of each prediction for each vehicle. The output accuracies from the algorithm are shown
in Table 4.5. The low accuracies are related to the partially occluded objects, such as car two and
car 6.

The perspective of the distance this algorithm computed this using the Inverse Perspective
Mapping (IPM) combined with the Yolo Algorithm, where the view of distance was fused on the
last fully connected layer. In Table 4.3 is shown the results achieved from the perspective using

44

two cameras.

Table 4.3: Measurements achieved with multicameras

Car Measurements
#1 4.40
#2 11.05
#3 16.01
#4 19.92
#5 24.08

In Figure 4.4 was used just the model that contains the object recognition and detection using
a single image and not as a stream. This test was performed to see the algorithm’s accuracy for
this purpose and identify how far it can detect the objects in this scenario. It is necessary to note
that this test previewed only five cars to detect, and the algorithm recognizes the whole vehicles
in the scenario, each accuracy for each car of the test is available in Table 4.4.

Figure 4.4: Output image with boundary boxes predictions

45

Table 4.4: Accuracy of the proposed framework in object detector and classification

Predicted Label Accuracy
Car 91%
Car 31%
Car 96%
Car 94%
Car 95%
Car 98%
Car 47%
Car 97%
Car 98%

Figure 4.5 is shown the frontend of the application of this work. It was developed using
Python and Javascript to allow the browser to communicate with the model. The Python module
is composed of the libraries called sockets, and it permits the communication over many cameras
and shares the stream information between the cameras and the command center. It was possible
because the cameras used in the tests have an internal wireless network. Based on it, a script with
a proxy function was developed to take care of this behavior.

The backend side of this project is described in Appendix I.1, where there is information about
the pre-processing step, training step, object detection, and the frontend scenario as well. The
network was built using the framework Pytorch [81]. This script permits the Darknet abstraction
to perform object detection and object recognition, and with all of this information, the step to
predict the distance was combined to show the output.

The camera 1 of the Figure 4.5 is used only to perform the boundary boxes detection, and
camera two is used to perform the distance prediction. This solution was embedded in a module
to work as a controller of this framework.

The experiments also led us to measure the multi-cameras method’s rapidity by computing
the number of frames treated per second. The average of frames per second through all the
experiments is 45.57 frames per second, enough for real-time treatments.

46

Figure 4.5: Output image with predictions

4.5 VALIDATION AND COMPARISON BETWEEN THE APPROACHES

For validation purpose, it was used a commercial laser measurement as shown in Figure 4.6,
this model is known as Bosch DLE 40 Professional R©.

Figure 4.6: Commercial laser measurer

47

The current error rate is ±1.5mm, we repeated the measure three times and computed the
mean and standard deviation. In Table 4.5 is shown the measurements with the camera positioned
at 2.01 m from the ground. Figure 4.2 is established the position of the cars along the parking lot.
The reason to measure three times is that the manual is written on sunny days and can bias the
measurement.

Table 4.5: Measurements collected with a commercial measurer

Car First measure (m) Second measure (m) Third measure (m) Mean (m)
#1 4.25 4.47 4.51 4.41
#2 11.01 11.21 11.11 11.11
#3 16.12 16.35 16.26 16.24
#4 19.63 19.69 19.66 19.66
#5 23.08 23.18 23.01 23.09

To compare the differences between the approaches and the real distance computed with the
tool from Figure 4.6. Table 4.6 was built to facilitate the visualization of these outputs.

Table 4.6: Comparison between the algorithms and real data

Car Camera Calibration (m) Known Map (m) Multicameras (m) Real distance (m)
#1 4.05 4.43 4.40 4.41
#2 10.67 10.98 11.05 11.11
#3 15.52 16.01 16.01 16.24
#4 19.55 18.99 19.92 19.66
#5 20.08 22.18 24.08 23.09

It is necessary to examine the error between the real value. For this, a Python script was
implement using Pandas Library [82] to take care of the collected data. The error analysis was
implemented to make it easier for the visualization of the best-applied technique.

The pre-processed samples are used as input for the algorithms under text, resulting in esti-
mations of the true position value. Results are expressed in terms of the RMSE, given by (4.2):

RMSE(f, f̂) =

√√√√ 1

nsamples

nsamples−1∑
i=0

(fi − f̂i)2, (4.2)

calculated for each estimator f̂i, referenced either from the measurement tool of Figure 4.6 true
value fi as read at the end of each measurement.

Figure 4.7 is shown a chart with the three proposed techniques using (4.2), where it is possible
to see in specific points the multi-cameras approach was better than camera calibration.

48

Figure 4.7: RMSE of estimated estimate position for each algorithm for different detected car, referenced to values
measured by the commercial laser measurer

49

5 CONCLUSION

In the next years, autonomous vehicles will be a new reality, and at this moment, the topics
regarding object detection and machine learning are the hot trends in the computer science do-
main. Furthermore, with this, it is necessary to improve computer vision methods to strengthen
this related technology. Applying this algorithm to detect other classes of objects and perform
distance measurement has improved accuracy.

A Real-time distance measurement method with multi-cameras for object detection on the
roads is introduced in this work. The utilized method is based on using multi-cameras, two cam-
eras mounted in the same horizontal position and displaced vertically by a predefined distance (the
base). A vehicle detection method is performed first following two steps: hypothesis generation
and hypothesis verification.

This work also compares several state-of-the-art techniques algorithms to perform distance
measurement to choose the best and faster technique.

One of the big problems on camera arrays is putting in the correct angle and high level. A small
filter to clear this threshold is necessary to be implemented and remove these noises. The part of
calibration in the proposed technique 1 is a little bit difficult because it is needed to remember the
tool error and the measurement error, and with this is possible to calibrate in the wrong way.

It was also proved that the multi-cameras perspective combined with a high order mathemat-
ical technique is better for this work, where it is possible to divide the work of the detection into
two different or more cameras. However, for our motivation and based on the current literature,
the camera angle is +30 degrees, which will allow us to cover a big part of the scenario.

5.1 FUTURE WORKS

According to all results collected in this work, it is possible to suggest the following ap-
proaches:

• Collect data and label data to perform predictions for a specific scenario.

• Combine data from multiple sensors, such as LIDAR or RADAR, using data fusion ap-
proaches to increase the measurement’s accuracy.

• Apply other algorithms, like EfficienceDet or other novel algorithms for object detection
and distance measurement.

• Use the proposed test in the real scenario because the algorithm was just performed in
controlled sites.

50

• Perform other mathematical approaches to reduce the dimensionality of the data.

51

BIBLIOGRAPHY

1 BANSAL, P.; KOCKELMAN, K. M. Forecasting americans’ long-term adoption of connected and
autonomous vehicle technologies. Transportation Research Part A: Policy and Practice, Elsevier, v. 95, p.
49–63, 2017.

2 DEPARTMENT, G. S. Long term series: Road traffic accidents.
https://www.destatis.de/EN/Themes/Society-Environment/Traffic-Accidents/Tables/liste-traffic-
accidents.html, v. 6.

3 ADMINISTRATION, N. H. T. S. Summary of motor vehicle crashes.
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812376, v. 6.

4 BAYAT, B.; CRASTA, N.; CRESPI, A.; PASCOAL, A. M.; IJSPEERT, A. Environmental monitoring
using autonomous vehicles: a survey of recent searching techniques. Current opinion in biotechnology,
Elsevier, v. 45, p. 76–84, 2017.

5 RASOULI, A.; TSOTSOS, J. K. Autonomous vehicles that interact with pedestrians: A survey of
theory and practice. IEEE Transactions on Intelligent Transportation Systems, IEEE, v. 21, n. 3, p.
900–918, 2019.

6 HOBERT, L.; FESTAG, A.; LLATSER, I.; ALTOMARE, L.; VISINTAINER, F.; KOVACS,
A. Enhancements of v2x communication in support of cooperative autonomous driving. IEEE
communications magazine, IEEE, v. 53, n. 12, p. 64–70, 2015.

7 XU, X.; FAN, C.-K. Autonomous vehicles, risk perceptions and insurance demand: An individual
survey in china. Transportation research part A: policy and practice, Elsevier, v. 124, p. 549–556, 2019.

8 BONNEFON, J.-F.; SHARIFF, A.; RAHWAN, I. The social dilemma of autonomous vehicles. Science,
American Association for the Advancement of Science, v. 352, n. 6293, p. 1573–1576, 2016.

9 Addabbo, T.; De Muro, S.; Falaschi, G.; Fort, A.; Landi, E.; Moretti, R.; Mugnaini, M.; Nicolelli, F.;
Parri, L.; Tani, M.; Tesei, M.; Vignoli, V. An automatic battery recharge and condition monitoring system
for autonomous drones. In: 2020 IEEE International Workshop on Metrology for Industry 4.0 IoT. [S.l.:
s.n.], 2020. p. 1–5.

10 LATEGAHN, H.; SCHREIBER, M.; ZIEGLER, J.; STILLER, C. Urban localization with camera and
inertial measurement unit. IEEE Intelligent Vehicles Symposium, Proceedings, n. June, p. 719–724, 2013.

11 SANKARANARAYANAN, A. C.; VEERARAGHAVAN, A.; CHELLAPPA, R. Object detection,
tracking and recognition for multiple smart cameras. Proceedings of the IEEE, v. 96, n. 10, p. 1606–1624,
2008. ISSN 00189219.

12 HARTLEY, R. I.; STURM, P. Triangulation. Computer vision and image understanding, Elsevier,
v. 68, n. 2, p. 146–157, 1997.

13 UNLU, E.; ZENOU, E.; RIVIERE, N.; DUPOUY, P. E. Deep learning-based strategies for the
detection and tracking of drones using several cameras. IPSJ Transactions on Computer Vision and
Applications, IPSJ Transactions on Computer Vision and Applications, v. 11, n. 1, 2019. ISSN 18826695.

14 PEI, Z.; LI, Y.; MA, M.; LI, J.; LENG, C.; ZHANG, X.; ZHANG, Y. Occluded-object 3D
reconstruction using camera array synthetic aperture imaging. Sensors (Switzerland), v. 19, n. 3, p. 1–22,
2019. ISSN 14248220.

52

15 ZAARANE, A.; SLIMANI, I.; Al Okaishi, W.; ATOUF, I.; HAMDOUN, A. Distance measurement
system for autonomous vehicles using stereo camera. Array, Elsevier Ltd, v. 5, n. May 2019, p. 100016,
2020. ISSN 25900056. Disponível em: <https://doi.org/10.1016/j.array.2020.100016>.

16 WU, H.; ZHANG, X.; STORY, B.; RAJAN, D. Accurate Vehicle Detection Using Multi-camera Data
Fusion and Machine Learning. ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing - Proceedings, v. 2019-May, p. 3767–3771, 2019. ISSN 15206149.

17 ALI, A. A.; HUSSEIN, H. A. Distance estimation and vehicle position detection based on monocular
camera. Al-Sadiq International Conference on Multidisciplinary in IT and Communication Techniques
Science and Applications, AIC-MITCSA 2016, IEEE, n. 1, p. 20–23, 2016.

18 HÄNE, C.; HENG, L.; LEE, G. H.; FRAUNDORFER, F.; FURGALE, P.; SATTLER, T.;
POLLEFEYS, M. 3D visual perception for self-driving cars using a multi-camera system: Calibration,
mapping, localization, and obstacle detection. Image and Vision Computing, v. 68, n. August, p. 14–27,
2017. ISSN 02628856.

19 CUI, Z.; HENG, L.; YEO, Y. C.; GEIGER, A.; POLLEFEYS, M.; SATTLER, T. Real-time dense
mapping for self-driving vehicles using fisheye cameras. Proceedings - IEEE International Conference on
Robotics and Automation, v. 2019-May, p. 6087–6093, 2019. ISSN 10504729.

20 HUANG, L.; ZHE, T.; WU, J.; WU, Q.; PEI, C.; CHEN, D. Robust Inter-Vehicle Distance Estimation
Method Based on Monocular Vision. IEEE Access, IEEE, v. 7, p. 46059–46070, 2019. ISSN 21693536.

21 BAO, J.; GU, Y.; HSU, L. T.; KAMIJO, S. Vehicle self-localization using 3D building map and stereo
camera. IEEE Intelligent Vehicles Symposium, Proceedings, v. 2016-Augus, n. June, p. 927–932, 2016.

22 TANG, Z.; NAPHADE, M.; LIU, M. Y.; YANG, X.; BIRCHFIELD, S.; WANG, S.; KUMAR, R.;
ANASTASIU, D.; HWANG, J. N. Cityflow: A city-scale benchmark for multi-target multi-camera vehicle
tracking and re-identification. Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, v. 2019-June, p. 8789–8798, 2019. ISSN 10636919.

23 QI, S. H.; LI, J.; SUN, Z. P.; ZHANG, J. T.; SUN, Y. Distance Estimation of Monocular Based on
Vehicle Pose Information. Journal of Physics: Conference Series, v. 1168, n. 3, 2019. ISSN 17426596.

24 WONGSAREE, P.; SINCHAI, S.; WARDKEIN, P.; KOSEEYAPORN, J. Distance Detection
Technique Using Enhancing Inverse Perspective Mapping. 2018 3rd International Conference on
Computer and Communication Systems, ICCCS 2018, IEEE, p. 323–326, 2018.

25 PAN, X.; LIU, Z.; ZHANG, G. High-Accuracy Calibration of On-Site Multi-Vision Sensors Based
on Flexible and Optimal 3D Field. IEEE Access, IEEE, v. 7, p. 159495–159506, 2019. ISSN 21693536.

26 LIN, C.; SU, F.; WANG, H.; GAO, J. A camera calibration method for obstacle distance measurement
based on monocular vision. Proceedings - 2014 4th International Conference on Communication Systems
and Network Technologies, CSNT 2014, IEEE, p. 1148–1151, 2014.

27 SIMON, M.; AMENDE, K.; KRAUS, A.; HONER, J.; SÄMANN, T.; KAULBERSCH, H.; MILZ,
S.; GROSS, H. M. Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point
Clouds. 2019. Disponível em: <http://arxiv.org/abs/1904.07537>.

28 KIM, J.; KIM, J.; CHO, J. An advanced object classification strategy using YOLO through camera
and LiDAR sensor fusion. 2019, 13th International Conference on Signal Processing and Communication
Systems, ICSPCS 2019 - Proceedings, IEEE, p. 1–5, 2019.

53

https://doi.org/10.1016/j.array.2020.100016
http://arxiv.org/abs/1904.07537

29 SIMON, M.; MILZ, S.; AMENDE, K.; GROSS, H. M. Complex-YOLO: An euler-region-proposal
for real-time 3D object detection on point clouds. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11129 LNCS, p. 197–209,
2019. ISSN 16113349.

30 OLIVEIRA, M.; SANTOS, V.; SAPPA, A. D. Multimodal inverse perspective mapping.
Information Fusion, Elsevier B.V., v. 24, p. 108–121, 2015. ISSN 15662535. Disponível em:
<http://dx.doi.org/10.1016/j.inffus.2014.09.003>.

31 SALMAN, Y. D.; KU-MAHAMUD, K. R.; KAMIOKA, E. Distance Measurement for Self-Driving
Cars Using Stereo Camera. Proceeding of the 6Th International Conference of Computing & Informations,
n. 105, p. 235–242, 2017.

32 RANGESH, A.; TRIVEDI, M. M. No Blind Spots: Full-Surround Multi-Object Tracking for
Autonomous Vehicles Using Cameras and LiDARs. IEEE Transactions on Intelligent Vehicles, v. 4, n. 4,
p. 588–599, 2019. ISSN 2379-8858.

33 TRAM, V. T. B.; YOO, M. Vehicle-To-Vehicle Distance Estimation Using a Low-Resolution Camera
Based on Visible Light Communications. IEEE Access, IEEE, v. 6, p. 4521–4527, 2018. ISSN 21693536.

34 HOFMANN, C.; PARTICKE, F.; HILLER, M.; THIELECKE, J. Object detection, classification and
localization by infrastructural stereo cameras. VISIGRAPP 2019 - Proceedings of the 14th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 5, p.
808–815, 2019.

35 ADMINISTRATION, N. H. T. S. et al. Preliminary statement of policy concerning automated
vehicles. Washington, DC, p. 1–14, 2013.

36 KRASNER, G.; KATZ, E. Automatic parking identification and vehicle guidance with road
awareness. In: IEEE. 2016 IEEE International Conference on the Science of Electrical Engineering
(ICSEE). [S.l.], 2016. p. 1–5.

37 SCHÖNING, V.; KATZWINKEL, R.; WUTTKE, U.; SCHWITTERS, F.; ROHLFS, M.; SCHULER,
T. Der parklenkassistent" park assist" von volkswagen/the volkswagen" park assist". VDI-Berichte,
n. 1960, 2006.

38 GEIGER, A.; LENZ, P.; STILLER, C.; URTASUN, R. Vision meets robotics: The kitti dataset. The
International Journal of Robotics Research, Sage Publications Sage UK: London, England, v. 32, n. 11, p.
1231–1237, 2013.

39 CAESAR, H.; BANKITI, V.; LANG, A. H.; VORA, S.; LIONG, V. E.; XU, Q.; KRISHNAN, A.;
PAN, Y.; BALDAN, G.; BEIJBOM, O. nuscenes: A multimodal dataset for autonomous driving. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S.l.: s.n.], 2020.
p. 11621–11631.

40 CUTLER, K.-M. How many american cities are preparing for the arrival of self-driving cars? not
many. Techcrunch. com, http://bit. ly/CitiesUnprepared, v. 18, 2015.

41 ORGANIZATION, W. H. et al. World report on road traffic injury prevention. In: World report on
road traffic injury prevention. [S.l.: s.n.], 2015. p. 217–217.

42 ROSS, P. E. The audi a8: the world’s first production car to achieve level 3 autonomy. IEEE Spectrum,
v. 1, 2017.

43 KOCIĆ, J.; JOVIČIĆ, N.; DRNDAREVIĆ, V. Sensors and sensor fusion in autonomous vehicles. In:
IEEE. 2018 26th Telecommunications Forum (TELFOR). [S.l.], 2018. p. 420–425.

54

http://dx.doi.org/10.1016/j.inffus.2014.09.003

44 KATO, S.; TAKEUCHI, E.; ISHIGURO, Y.; NINOMIYA, Y.; TAKEDA, K.; HAMADA, T. An open
approach to autonomous vehicles. IEEE Micro, IEEE, v. 35, n. 6, p. 60–68, 2015.

45 VARGHESE, J. Z.; BOONE, R. G. et al. Overview of autonomous vehicle sensors and systems.
In: International Conference on Operations Excellence and Service Engineering. [S.l.: s.n.], 2015. p.
178–191.

46 KRASNIQI, X.; HAJRIZI, E. Use of iot technology to drive the automotive industry from connected
to full autonomous vehicles. IFAC-PapersOnLine, Elsevier, v. 49, n. 29, p. 269–274, 2016.

47 Zhang, Z. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis
and Machine Intelligence, v. 22, n. 11, p. 1330–1334, 2000.

48 FLIR. FLIR Showcases Next Generation, All-Weather Thermal Camera on Self
Driving Cars. jan. 2019. <https://www.flir.com/news-center/camera-cores--components/
all-weather-thermal-cameras-coming-to-a-self-driving-car-near-you/>.

49 PARO, J. A.; NAZARELI, R.; GURJALA, A.; BERGER, A.; LEE, G. K. Video-based self-review:
comparing google glass and gopro technologies. Annals of plastic surgery, LWW, v. 74, p. S71–S74, 2015.

50 ARIYUR, K.; ENNS, D.; LOMMEL, P. Collision avoidance involving radar feedback. [S.l.]: Google
Patents, mar. 16 2006. US Patent App. 10/941,535.

51 STEVENSON, R. Long-distance car radar. IEEE Spectrum, 2011. Available at <https:
//spectrum.ieee.org/transportation/advanced-cars/longditance-car-radar>, accessed at 17 June 2020.

52 INSTITUTE, F. Radar sensor module to bring added safety to autonomous driving. Fraun-
hofer Institute, 2019. Available at <https://www.fraunhofer.de/en/press/research-news/2019/june/
radar-sensor-module-to-bring-added-safety-to-autonomous-driving.html>, accessed at 17 June 2020.

53 GAO, H.; CHENG, B.; WANG, J.; LI, K.; ZHAO, J.; LI, D. Object classification using cnn-based
fusion of vision and lidar in autonomous vehicle environment. IEEE Transactions on Industrial
Informatics, IEEE, v. 14, n. 9, p. 4224–4231, 2018.

54 LIM, H. S. M.; TAEIHAGH, A. Algorithmic decision-making in avs: Understanding ethical and
technical concerns for smart cities. Sustainability, Multidisciplinary Digital Publishing Institute, v. 11,
p. 5791, 10 2019. ISSN 2071-1050. Disponível em: <https://www.mdpi.com/2071-1050/11/20/5791>.

55 DOSOVITSKIY, A.; ROS, G.; CODEVILLA, F.; LOPEZ, A.; KOLTUN, V. Carla: An open urban
driving simulator. arXiv preprint arXiv:1711.03938, 2017.

56 DWORAK, D.; CIEPIELA, F.; DERBISZ, J.; IZZAT, I.; KOMORKIEWICZ, M.; WÓJCIK, M.
Performance of lidar object detection deep learning architectures based on artificially generated point
cloud data from carla simulator. In: IEEE. 2019 24th International Conference on Methods and Models in
Automation and Robotics (MMAR). [S.l.], 2019. p. 600–605.

57 GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. [S.l.]: MIT press, 2016.

58 COSTA, J. P. C. L da. Autonomous vehicles by machine learning. 2019.

59 LECUN, Y.; BENGIO, Y. et al. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, v. 3361, n. 10, p. 1995, 1995.

60 YANG, Y.; SAUTIÈRE, G.; RYU, J. J.; COHEN, T. S. Feedback recurrent autoencoder. In:
IEEE. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). [S.l.], 2020. p. 3347–3351.

55

https://www.flir.com/news-center/camera-cores--components/all-weather-thermal-cameras-coming-to-a-self-driving-car-near-you/
https://www.flir.com/news-center/camera-cores--components/all-weather-thermal-cameras-coming-to-a-self-driving-car-near-you/
https://spectrum.ieee.org/transportation/advanced-cars/longditance-car-radar
https://spectrum.ieee.org/transportation/advanced-cars/longditance-car-radar
https://www.fraunhofer.de/en/press/research-news/2019/june/radar-sensor-module-to-bring-added-safety-to-autonomous-driving.html
https://www.fraunhofer.de/en/press/research-news/2019/june/radar-sensor-module-to-bring-added-safety-to-autonomous-driving.html
https://www.mdpi.com/2071-1050/11/20/5791

61 PASCANU, R.; MIKOLOV, T.; BENGIO, Y. On the difficulty of training recurrent neural networks.
In: International conference on machine learning. [S.l.: s.n.], 2013. p. 1310–1318.

62 Huang, L.; Zhe, T.; Wu, J.; Wu, Q.; Pei, C.; Chen, D. Robust inter-vehicle distance estimation method
based on monocular vision. IEEE Access, v. 7, p. 46059–46070, 2019.

63 ZHU, H.; LI, Y.; LIU, X.; YIN, X.; SHAO, Y.; QIAN, Y.; TAN, J. Camera calibration from very few
images based on soft constraint optimization. Journal of the Franklin Institute, Elsevier, v. 357, n. 4, p.
2561–2584, 2020.

64 KAEHLER, A.; BRADSKI, G. Learning OpenCV 3: computer vision in C++ with the OpenCV
library. [S.l.]: " O’Reilly Media, Inc.", 2016.

65 FORSYTH, D. A.; PONCE, J. Computer vision: a modern approach. [S.l.]: Prentice Hall
Professional Technical Reference, 2002.

66 WANG, P.; SHI, T.; ZOU, C.; XIN, L.; CHAN, C.-Y. A data driven method of feedforward
compensator optimization for autonomous vehicle control. In: IEEE. 2019 IEEE Intelligent Vehicles
Symposium (IV). [S.l.], 2019. p. 2012–2017.

67 PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.; GRISEL, O.;
BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V. et al. Scikit-learn: Machine learning
in python. the Journal of machine Learning research, JMLR. org, v. 12, p. 2825–2830, 2011.

68 LIU, Q.; CHENG, J.; LU, H.; MA, S. Distance based kernel pca image reconstruction. In: IEEE.
Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. [S.l.], 2004.
v. 3, p. 670–673.

69 HALKO, N.; MARTINSSON, P. G.; TROPP, J. A. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Review, Society for Industrial
Applied Mathematics (SIAM), v. 53, n. 2, p. 217–288, Jan 2011. ISSN 1095-7200. Disponível em:
<http://dx.doi.org/10.1137/090771806>.

70 CAMBRIDGE, U. Introduction to information retrieval. 2009.

71 REDMON, J.; DIVVALA, S.; GIRSHICK, R.; FARHADI, A. You only look once: Unified, real-time
object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
[S.l.: s.n.], 2016. p. 779–788.

72 REDMON, J.; FARHADI, A. Yolo9000: better, faster, stronger. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. [S.l.: s.n.], 2017. p. 7263–7271.

73 ESS, A.; SCHINDLER, K.; LEIBE, B.; GOOL, L. V. Object detection and tracking for autonomous
navigation in dynamic environments. The International Journal of Robotics Research, SAGE Publications
Sage UK: London, England, v. 29, n. 14, p. 1707–1725, 2010.

74 KRASIN, I.; DUERIG, T.; ALLDRIN, N.; FERRARI, V.; ABU-EL-HAIJA, S.; KUZNETSOVA,
A.; ROM, H.; UIJLINGS, J.; POPOV, S.; VEIT, A. et al. Openimages: A public dataset for large-scale
multi-label and multi-class image classification. Dataset available from https://github. com/openimages,
v. 2, n. 3, p. 2–3, 2017.

75 REDMON, J. Darknet: Open source neural networks in c. 2013.

76 CAO, Y.-T.; WANG, J.-M.; SUN, Y.-K.; DUAN, X.-J. Circle marker based distance measurement
using a single camera. Lecture Notes on Software Engineering, IACSIT Press, v. 1, n. 4, p. 376, 2013.

56

http://dx.doi.org/10.1137/090771806

77 MAYER, N.; ILG, E.; HAUSSER, P.; FISCHER, P.; CREMERS, D.; DOSOVITSKIY, A.; BROX,
T. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. [S.l.: s.n.], 2016. p.
4040–4048.

78 TZUTALIN, D. Labelimg (2015). GitHub repository https://github. com/tzutalin/labelImg, v. 6.

79 TUOHY, S.; O’CUALAIN, D.; JONES, E.; GLAVIN, M. Distance determination for an automobile
environment using inverse perspective mapping in OpenCV. IET Conference Publications, v. 2010, n. 566
CP, p. 100–105, 2010.

80 Ali, A. A.; Hussein, H. A. Distance estimation and vehicle position detection based on monocular
camera. In: 2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication
Science and Applications (AIC-MITCSA). [S.l.: s.n.], 2016. p. 1–4.

81 PASZKE, A.; GROSS, S.; MASSA, F.; LERER, A.; BRADBURY, J.; CHANAN, G.; KILLEEN, T.;
LIN, Z.; GIMELSHEIN, N.; ANTIGA, L. et al. Pytorch: An imperative style, high-performance deep
learning library. In: Advances in neural information processing systems. [S.l.: s.n.], 2019. p. 8026–8037.

82 MCKINNEY, W. et al. pandas: a foundational python library for data analysis and statistics. Python
for High Performance and Scientific Computing, Seattle, v. 14, n. 9, 2011.

57

APPENDICES

58

I.1 CODE TO CONTROL THE APP

]

1 # Flask utils

2 from flask import Flask, redirect, url_for, request,

render_template, Response

3 from werkzeug.utils import secure_filename

4 from gevent.pywsgi import WSGIServer

5 from camera import ObjectDetection

6

7 app = Flask(__name__)

8 @app.route("/")

9 def main():

10 return render_template("index.html")

11

12 def gen(camera):

13 while True:

14 frame = camera.main()

15 if frame != "":

16 yield (b --frame\r\n

17 b Content-Type: image/jpeg\r\n\r\n + frame +

b \r\n\r\n)

18

19 @app.route(/video_feed)

20 def video_feed():

21 id = 0

22 return Response(gen(ObjectDetection(id)), mimetype=

multipart/x-mixed-replace; boundary=frame)

23

24 def simulate(camera):

25 while True:

26 frame = camera.main()

27 if frame != "":

28 yield (b --frame\r\n

29 b Content-Type: image/jpeg\r\n\r\n + frame +

b \r\n\r\n)

30

31 @app.route(/video_simulate)

32 def video_simulate():

59

33 id = 1

34 return Response(gen(ObjectDetection(id)), mimetype=

multipart/x-mixed-replace; boundary=frame)

35

36

37 if __name__ == __main__ :

38 # Serve the app with gevent

39 app.run(host= 0.0.0.0 , threaded=True, debug = True)

60

I.2 CODE TO DETECT THE BOUNDING BOXES

1 from __future__ import division

2

3 import torch

4 import random

5

6 import numpy as np

7 import cv2

8

9 def confidence_filter(result, confidence):

10 conf_mask = (result[:,:,4] > confidence).float().unsqueeze

(2)

11 result = result*conf_mask

12

13 return result

14

15 def confidence_filter_cls(result, confidence):

16 max_scores = torch.max(result[:,:,5:25], 2)[0]

17 res = torch.cat((result, max_scores),2)

18 print(res.shape)

19

20

21 cond_1 = (res[:,:,4] > confidence).float()

22 cond_2 = (res[:,:,25] > 0.995).float()

23

24 conf = cond_1 + cond_2

25 conf = torch.clamp(conf, 0.0, 1.0)

26 conf = conf.unsqueeze(2)

27 result = result*conf

28 return result

29

30

31

32 def get_abs_coord(box):

33 box[2], box[3] = abs(box[2]), abs(box[3])

34 x1 = (box[0] - box[2]/2) - 1

35 y1 = (box[1] - box[3]/2) - 1

36 x2 = (box[0] + box[2]/2) - 1

37 y2 = (box[1] + box[3]/2) - 1

61

38 return x1, y1, x2, y2

39

40

41

42 def sanity_fix(box):

43 if (box[0] > box[2]):

44 box[0], box[2] = box[2], box[0]

45

46 if (box[1] > box[3]):

47 box[1], box[3] = box[3], box[1]

48

49 return box

50

51 def bbox_iou(box1, box2):

52

53

54

55 b1_x1, b1_y1, b1_x2, b1_y2 = box1[:,0], box1[:,1], box1

[:,2], box1[:,3]

56 b2_x1, b2_y1, b2_x2, b2_y2 = box2[:,0], box2[:,1], box2

[:,2], box2[:,3]

57

58

59 inter_rect_x1 = torch.max(b1_x1, b2_x1)

60 inter_rect_y1 = torch.max(b1_y1, b2_y1)

61 inter_rect_x2 = torch.min(b1_x2, b2_x2)

62 inter_rect_y2 = torch.min(b1_y2, b2_y2)

63

64

65 if torch.cuda.is_available():

66 inter_area = torch.max(inter_rect_x2 -

inter_rect_x1 + 1,torch.zeros(inter_rect_x2.

shape).cuda())*torch.max(inter_rect_y2 -

inter_rect_y1 + 1, torch.zeros(inter_rect_x2.

shape).cuda())

67 else:

68 inter_area = torch.max(inter_rect_x2 -

inter_rect_x1 + 1,torch.zeros(inter_rect_x2.

shape))*torch.max(inter_rect_y2 - inter_rect_y1

+ 1, torch.zeros(inter_rect_x2.shape))

69

62

70

71 b1_area = (b1_x2 - b1_x1 + 1)*(b1_y2 - b1_y1 + 1)

72 b2_area = (b2_x2 - b2_x1 + 1)*(b2_y2 - b2_y1 + 1)

73

74 iou = inter_area / (b1_area + b2_area - inter_area)

75

76 return iou

77

78

79 def pred_corner_coord(prediction):

80

81 ind_nz = torch.nonzero(prediction[:,:,4]).transpose(0,1).

contiguous()

82

83 box = prediction[ind_nz[0], ind_nz[1]]

84

85

86 box_a = box.new(box.shape)

87 box_a[:,0] = (box[:,0] - box[:,2]/2)

88 box_a[:,1] = (box[:,1] - box[:,3]/2)

89 box_a[:,2] = (box[:,0] + box[:,2]/2)

90 box_a[:,3] = (box[:,1] + box[:,3]/2)

91 box[:,:4] = box_a[:,:4]

92

93 prediction[ind_nz[0], ind_nz[1]] = box

94

95 return prediction

96

97

98

99

100 def write(x, batches, results, colors, classes):

101 c1 = tuple(x[1:3].int())

102 c2 = tuple(x[3:5].int())

103 img = results[int(x[0])]

104 cls = int(x[-1])

105 label = "{0}".format(classes[cls])

106 color = random.choice(colors)

107 cv2.rectangle(img, c1, c2,color, 1)

108 t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1

, 1)[0]

63

109 c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4

110 cv2.rectangle(img, c1, c2,color, -1)

111 cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4),

cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1);

112 return img

I.3 CODE TO CONTROL THE CAMERA

1

2 from preprocess import letterbox_image

3

4 from darknet import Darknet

5

6 from imutils.video import WebcamVideoStream,FPS

7

8 import numpy as np

9 import torch.nn as nn

10 from torch.autograd import Variable

11 import torch,cv2,random,os,time

12 import pickle as pkl

13 import argparse

14 import threading, queue

15 from torch.multiprocessing import Pool, Process,

set_start_method

16 from util import write_results, load_classes

17 torch.multiprocessing.set_start_method(spawn)

18

19 def image_preparation(img, inp_dim):

20

21

22

23 original_im = img

24 dim = orig_im.shape[1], orig_im.shape[0]

25 img = (letter_image(orig_im, (input_dim, input_dim)))

26 img_ = img[:, :, ::-1].transpose((2, 0, 1)).copy()

27 img_ = torch.from_numpy(original_im).float().div(255.0).

unsqueeze(0)

28 return img_, orig_im, dim

64

29

30 labels = {}

31 b_boxe = {}

32 def write(bboxes, img, classes, colors):

33

34 x = b_boxes

35 b_boxes = b_boxes[1:5]

36 b_boxes = b_boxes.cpu().data.numpy()

37 b_boxes = b_boxes.astype(int)

38 b_boxes.update({"bbox":b_boxes.tolist()})

39

40 b_boxes = torch.from_numpy(b_boxes)

41 cls = int(x[-1])

42 label = "{0}".format(classes[cls])

43 labels.update({"Current Object":label})

44 color = random.choice(colors)

45 img = cv2.rectangle(img, (b_boxes[0],b_boxes[1]),(b_boxes

[2],b_boxes[3]), color, 1)

46

47 img = cv2.putText(img, label, (b_boxes[0]+2,b_boxes[3]+20)

, cv2.FONT_HERSHEY_PLAIN, 1, [225, 255, 255], 1)

48 return img

49

50 class ObjectDetection:

51 def __init__(self, id):

52

53 self.cap = cv2.VideoCapture(0)

54 self.cap = WebcamVideoStream(src = id).start()

55 self.cfgfile = "cfg/yolov3.cfg"

56

57 self.weightsfile = "yolov3.weights"

58

59 self.conf = float(0.5)

60 self.nms_trhesh = round(0.4)

61 self.amount_classes = 80

62 self.classes = load_classes(data/coco.names)

63 self.colors = pkl.load(open("pallete", "rb"))

64 self.model = Darknet(self.cfgfile)

65 self.CUDA = torch.cuda.is_available()

66 self.model.load_weights(self.weightsfile)

67 self.model.net_info["height"] = 160

65

68 self.inp_dim = int(self.model.net_info["height"])

69 self.width = 640

70 self.height = 480

71 print("Loading network.....")

72 if self.CUDA:

73 self.model.cuda()

74 print("Network successfully loaded")

75 assert self.inp_dim % 32 == 0

76 assert self.inp_dim > 32

77 self.model.eval()

78

79 def main(self):

80 q = queue.Queue()

81 def frame_render(queue_from_cam):

82 ret, frame = self.cap.read()

83 frame = cv2.resize(frame,(self.wi, self.hei))

84 queue_from_cam.put(frame)

85 cam = threading.Thread(target=frame_render, args=(q,))

86 cam.start()

87 cam.join()

88 frame = q.get()

89 q.task_done()

90 fps = FPS().start()

91

92 image, orig_image, dim = prep_image(frame, self.

inp_dim)

93 im_dim = torch.FloatTensor(dim).repeat(1,2)

94 if self.CUDA:

95 im_dim = im_dim.cuda()

96 img = img.cuda()

97

98 out_image = self.model(Variable(img), self.CUDA)

99 out_image = write_results(output, self.confidence,

self.num_classes, nms = True, nms_conf = self.

nms_thesh)

100 output = output.type(torch.half)

101 if list(output.size()) == [1,86]:

102 #do nothing

103 else:

104 out_image[:,1:5] = torch.clamp(out_image[:,1:5],

0.0, float(self.inp_dim))/self.inp_dim

66

105

106

107 out_image[:,[1,3]] *= frame.shape[1]

108 out_image[:,[2,4]] *= frame.shape[0]

109 list(map(lambda x: write(x, frame, self.classes,

self.colors),out_image))

110

111 x,y,w,h = b_boxes["b_box"][0],b_boxes["bbox"][1],

b_boxes["bbox"][2], b_boxes["bbox"][3]

112 dist = (2 * 3.14 * 180) / (w + h * 360)

113 dist = round(distance * 2.54, 1)

114 fb = ("{}".format(labels["Current Object"])+ " " +

"is"+" at {} ".format(round(dist))+"cm")

115

116 print(feedback)

117

118

119

120

121

122 fps.update()

123 fps.stop()

124 print("[INFO] elasped time: {:.2f}".format(fps.elapsed

()))

125 print("[INFO] approx. FPS: {:.1f}".format(fps.fps()))

126 ret, jpeg = cv2.imencode(.jpg , frame)

127 return jpeg.tostring()

I.4 ABSTRACTION OF DARKNET IN PYTORCH

1 from __future__ import division

2

3 import torch

4 import torch.nn as nn

5 import torch.nn.functional as F

6 from torch.autograd import Variable

7 import numpy as np

8 import cv2

67

9 import matplotlib.pyplot as plt

10 from util import count_parameters as count

11 from util import convert2cpu as cpu

12 from util import predict_transform

13

14 class test_net(nn.Module):

15 def __init__(self, num_layers, input_size):

16 super(test_net, self).__init__()

17 self.num_layers= num_layers

18 self.linear_1 = nn.Linear(input_size, 5)

19 self.middle = nn.ModuleList([nn.Linear(5,5) for x in

range(num_layers)])

20 self.output = nn.Linear(5,2)

21

22 def forward(self, x):

23 x = x.view(-1)

24 fwd = nn.Sequential(self.linear_1, *self.middle, self.

output)

25 return fwd(x)

26

27 def get_test_input():

28 img = cv2.imread("dog-cycle-car.png")

29 img = cv2.resize(img, (416,416))

30 img_ = img[:,:,::-1].transpose((2,0,1))

31 img_ = img_[np.newaxis,:,:,:]/255.0

32 img_ = torch.from_numpy(img_).float()

33 img_ = Variable(img_)

34 return img_

35

36

37 def parse_cfg(cfgfile):

38 """

39 Takes a configuration file

40

41 Returns a list of blocks. Each blocks describes a block in

the neural

42 network to be built. Block is represented as a dictionary

in the list

43

44 """

45 file = open(cfgfile, r)

68

46 lines = file.read().split(\n)

47 lines = [x for x in lines if len(x) > 0]

48 lines = [x for x in lines if x[0] != #]

49 lines = [x.rstrip().lstrip() for x in lines]

50

51

52 block = {}

53 blocks = []

54

55 for line in lines:

56 if line[0] == "[":

57 if len(block) != 0:

58 blocks.append(block)

59 block = {}

60 block["type"] = line[1:-1].rstrip()

61 else:

62 key,value = line.split("=")

63 block[key.rstrip()] = value.lstrip()

64 blocks.append(block)

65

66 return blocks

67

68

69 import pickle as pkl

70

71 class MaxPoolStride1(nn.Module):

72 def __init__(self, kernel_size):

73 super(MaxPoolStride1, self).__init__()

74 self.kernel_size = kernel_size

75 self.pad = kernel_size - 1

76

77 def forward(self, x):

78 padded_x = F.pad(x, (0,self.pad,0,self.pad), mode="

replicate")

79 pooled_x = nn.MaxPool2d(self.kernel_size, self.pad)(

padded_x)

80 return pooled_x

81

82

83 class EmptyLayer(nn.Module):

84 def __init__(self):

69

85 super(EmptyLayer, self).__init__()

86

87

88 class DetectionLayer(nn.Module):

89 def __init__(self, anchors):

90 super(DetectionLayer, self).__init__()

91 self.anchors = anchors

92

93 def forward(self, x, inp_dim, num_classes, confidence):

94 x = x.data

95 global CUDA

96 prediction = x

97 prediction = predict_transform(prediction, inp_dim,

self.anchors, num_classes, confidence, CUDA)

98 return prediction

99

100

101

102

103

104 class Upsample(nn.Module):

105 def __init__(self, stride=2):

106 super(Upsample, self).__init__()

107 self.stride = stride

108

109 def forward(self, x):

110 stride = self.stride

111 assert(x.data.dim() == 4)

112 B = x.data.size(0)

113 C = x.data.size(1)

114 H = x.data.size(2)

115 W = x.data.size(3)

116 ws = stride

117 hs = stride

118 x = x.view(B, C, H, 1, W, 1).expand(B, C, H, stride, W

, stride).contiguous().view(B, C, H*stride, W*
stride)

119 return x

120 #

121

122 class ReOrgLayer(nn.Module):

70

123 def __init__(self, stride = 2):

124 super(ReOrgLayer, self).__init__()

125 self.stride= stride

126

127 def forward(self,x):

128 assert(x.data.dim() == 4)

129 B,C,H,W = x.data.shape

130 hs = self.stride

131 ws = self.stride

132 assert(H % hs == 0), "The stride " + str(self.stride)

+ " is not a proper divisor of height " + str(H)

133 assert(W % ws == 0), "The stride " + str(self.stride)

+ " is not a proper divisor of height " + str(W)

134 x = x.view(B,C, H // hs, hs, W // ws, ws).transpose

(-2,-3).contiguous()

135 x = x.view(B,C, H // hs * W // ws, hs, ws)

136 x = x.view(B,C, H // hs * W // ws, hs*ws).transpose

(-1,-2).contiguous()

137 x = x.view(B, C, ws*hs, H // ws, W // ws).transpose

(1,2).contiguous()

138 x = x.view(B, C*ws*hs, H // ws, W // ws)

139 return x

140

141

142 def create_modules(blocks):

143 net_info = blocks[0]

144

145 module_list = nn.ModuleList()

146

147 index = 0

148

149

150 prev_filters = 3

151

152 output_filters = []

153

154 for x in blocks:

155 module = nn.Sequential()

156

157 if (x["type"] == "net"):

158 continue

71

159

160

161 if (x["type"] == "convolutional"):

162

163 activation = x["activation"]

164 try:

165 batch_normalize = int(x["batch_normalize"])

166 bias = False

167 except:

168 batch_normalize = 0

169 bias = True

170

171 filters= int(x["filters"])

172 padding = int(x["pad"])

173 kernel_size = int(x["size"])

174 stride = int(x["stride"])

175

176 if padding:

177 pad = (kernel_size - 1) // 2

178 else:

179 pad = 0

180

181

182 conv = nn.Conv2d(prev_filters, filters,

kernel_size, stride, pad, bias = bias)

183 module.add_module("conv_{0}".format(index), conv)

184

185

186 if batch_normalize:

187 bn = nn.BatchNorm2d(filters)

188 module.add_module("batch_norm_{0}".format(

index), bn)

189

190

191

192

193 if activation == "leaky":

194 activn = nn.LeakyReLU(0.1, inplace = True)

195 module.add_module("leaky_{0}".format(index),

activn)

196

72

197

198

199

200

201

202 elif (x["type"] == "upsample"):

203 stride = int(x["stride"])

204

205 upsample = nn.Upsample(scale_factor = 2, mode = "

nearest")

206 module.add_module("upsample_{}".format(index),

upsample)

207

208

209 elif (x["type"] == "route"):

210 x["layers"] = x["layers"].split(,)

211

212

213 start = int(x["layers"][0])

214

215

216 try:

217 end = int(x["layers"][1])

218 except:

219 end = 0

220

221

222

223

224 if start > 0:

225 start = start - index

226

227 if end > 0:

228 end = end - index

229

230

231 route = EmptyLayer()

232 module.add_module("route_{0}".format(index), route

)

233

234

73

235

236 if end < 0:

237 filters = output_filters[index + start] +

output_filters[index + end]

238 else:

239 filters= output_filters[index + start]

240

241

242

243

244 elif x["type"] == "shortcut":

245 from_ = int(x["from"])

246 shortcut = EmptyLayer()

247 module.add_module("shortcut_{}".format(index),

shortcut)

248

249

250 elif x["type"] == "maxpool":

251 stride = int(x["stride"])

252 size = int(x["size"])

253 if stride != 1:

254 maxpool = nn.MaxPool2d(size, stride)

255 else:

256 maxpool = MaxPoolStride1(size)

257

258 module.add_module("maxpool_{}".format(index),

maxpool)

259

260

261 elif x["type"] == "yolo":

262 mask = x["mask"].split(",")

263 mask = [int(x) for x in mask]

264

265

266 anchors = x["anchors"].split(",")

267 anchors = [int(a) for a in anchors]

268 anchors = [(anchors[i], anchors[i+1]) for i in

range(0, len(anchors),2)]

269 anchors = [anchors[i] for i in mask]

270

271 detection = DetectionLayer(anchors)

74

272 module.add_module("Detection_{}".format(index),

detection)

273

274

275

276 else:

277 print("Something I dunno")

278 assert False

279

280

281 module_list.append(module)

282 prev_filters = filters

283 output_filters.append(filters)

284 index += 1

285

286

287 return (net_info, module_list)

288

289

290

291 class Darknet(nn.Module):

292 def __init__(self, cfgfile):

293 super(Darknet, self).__init__()

294 self.blocks = parse_cfg(cfgfile)

295 self.net_info, self.module_list = create_modules(self.

blocks)

296 self.header = torch.IntTensor([0,0,0,0])

297 self.seen = 0

298

299

300

301 def get_blocks(self):

302 return self.blocks

303

304 def get_module_list(self):

305 return self.module_list

306

307

308 def forward(self, x, CUDA):

309 detections = []

310 modules = self.blocks[1:]

75

311 outputs = {}

312

313

314 write = 0

315 for i in range(len(modules)):

316

317 module_type = (modules[i]["type"])

318 if module_type == "convolutional" or module_type

== "upsample" or module_type == "maxpool":

319

320 x = self.module_list[i](x)

321 outputs[i] = x

322

323

324 elif module_type == "route":

325 layers = modules[i]["layers"]

326 layers = [int(a) for a in layers]

327

328 if (layers[0]) > 0:

329 layers[0] = layers[0] - i

330

331 if len(layers) == 1:

332 x = outputs[i + (layers[0])]

333

334 else:

335 if (layers[1]) > 0:

336 layers[1] = layers[1] - i

337

338 map1 = outputs[i + layers[0]]

339 map2 = outputs[i + layers[1]]

340

341

342 x = torch.cat((map1, map2), 1)

343 outputs[i] = x

344

345 elif module_type == "shortcut":

346 from_ = int(modules[i]["from"])

347 x = outputs[i-1] + outputs[i+from_]

348 outputs[i] = x

349

350

76

351

352 elif module_type == yolo :

353

354 anchors = self.module_list[i][0].anchors

355

356 inp_dim = int (self.net_info["height"])

357

358

359 num_classes = int (modules[i]["classes"])

360

361

362 x = x.data

363 x = predict_transform(x, inp_dim, anchors,

num_classes, CUDA)

364

365 if type(x) == int:

366 continue

367

368

369 if not write:

370 detections = x

371 write = 1

372

373 else:

374 detections = torch.cat((detections, x), 1)

375

376 outputs[i] = outputs[i-1]

377

378

379

380 try:

381 return detections

382 except:

383 return 0

384

385

386 def load_weights(self, weightfile):

387

388 #Open the weights file

389 fp = open(weightfile, "rb")

390

77

391

392

393

394 header = np.fromfile(fp, dtype = np.int32, count = 5)

395 self.header = torch.from_numpy(header)

396 self.seen = self.header[3]

397

398

399

400 weights = np.fromfile(fp, dtype = np.float32)

401

402 ptr = 0

403 for i in range(len(self.module_list)):

404 module_type = self.blocks[i + 1]["type"]

405

406 if module_type == "convolutional":

407 model = self.module_list[i]

408 try:

409 batch_normalize = int(self.blocks[i+1]["

batch_normalize"])

410 except:

411 batch_normalize = 0

412

413 conv = model[0]

414

415 if (batch_normalize):

416 bn = model[1]

417

418

419 num_bn_biases = bn.bias.numel()

420

421

422 bn_biases = torch.from_numpy(weights[ptr:

ptr + num_bn_biases])

423 ptr += num_bn_biases

424

425 bn_weights = torch.from_numpy(weights[ptr:

ptr + num_bn_biases])

426 ptr += num_bn_biases

427

78

428 bn_running_mean = torch.from_numpy(weights

[ptr: ptr + num_bn_biases])

429 ptr += num_bn_biases

430

431 bn_running_var = torch.from_numpy(weights[

ptr: ptr + num_bn_biases])

432 ptr += num_bn_biases

433

434

435 bn_biases = bn_biases.view_as(bn.bias.data

)

436 bn_weights = bn_weights.view_as(bn.weight.

data)

437 bn_running_mean = bn_running_mean.view_as(

bn.running_mean)

438 bn_running_var = bn_running_var.view_as(bn

.running_var)

439

440

441 bn.bias.data.copy_(bn_biases)

442 bn.weight.data.copy_(bn_weights)

443 bn.running_mean.copy_(bn_running_mean)

444 bn.running_var.copy_(bn_running_var)

445

446 else:

447

448 num_biases = conv.bias.numel()

449

450

451 conv_biases = torch.from_numpy(weights[ptr

: ptr + num_biases])

452 ptr = ptr + num_biases

453

454

455 conv_biases = conv_biases.view_as(conv.

bias.data)

456

457

458 conv.bias.data.copy_(conv_biases)

459

460

79

461

462 num_weights = conv.weight.numel()

463

464

465 conv_weights = torch.from_numpy(weights[ptr:

ptr+num_weights])

466 ptr = ptr + num_weights

467

468 conv_weights = conv_weights.view_as(conv.

weight.data)

469 conv.weight.data.copy_(conv_weights)

470

471 def save_weights(self, savedfile, cutoff = 0):

472

473 if cutoff <= 0:

474 cutoff = len(self.blocks) - 1

475

476 fp = open(savedfile, wb)

477

478

479 self.header[3] = self.seen

480 header = self.header

481

482 header = header.numpy()

483 header.tofile(fp)

484

485

486 for i in range(len(self.module_list)):

487 module_type = self.blocks[i+1]["type"]

488

489 if (module_type) == "convolutional":

490 model = self.module_list[i]

491 try:

492 batch_normalize = int(self.blocks[i+1]["

batch_normalize"])

493 except:

494 batch_normalize = 0

495

496 conv = model[0]

497

498 if (batch_normalize):

80

499 bn = model[1]

500

501

502

503

504 cpu(bn.bias.data).numpy().tofile(fp)

505 cpu(bn.weight.data).numpy().tofile(fp)

506 cpu(bn.running_mean).numpy().tofile(fp)

507 cpu(bn.running_var).numpy().tofile(fp)

508

509

510 else:

511 cpu(conv.bias.data).numpy().tofile(fp)

512

513

514

515 cpu(conv.weight.data).numpy().tofile(fp)

81

I.5 CODE FOR DATA PREPROCESSING

1 from __future__ import division

2

3 import torch

4 import torch.nn as nn

5 import torch.nn.functional as F

6 from torch.autograd import Variable

7 import numpy as np

8 import cv2

9 import matplotlib.pyplot as plt

10 from util import count_parameters as count

11 from util import convert2cpu as cpu

12 from PIL import Image, ImageDraw

13

14

15 def letterbox_image(img, inp_dim):

16 resize image with unchanged aspect ratio using padding

17 img_w, img_h = img.shape[1], img.shape[0]

18 w, h = inp_dim

19 new_w = int(img_w * min(w/img_w, h/img_h))

20 new_h = int(img_h * min(w/img_w, h/img_h))

21 resized_image = cv2.resize(img, (new_w,new_h),

interpolation = cv2.INTER_CUBIC)

22

23 canvas = np.full((inp_dim[1], inp_dim[0], 3), 128)

24

25 canvas[(h-new_h)//2:(h-new_h)//2 + new_h,(w-new_w)//2:(w-

new_w)//2 + new_w, :] = resized_image

26

27 return canvas

28

29

30

31 def prep_image(img, inp_dim):

32 """

33 Prepare image for inputting to the neural network.

34

35 Returns a Variable

82

36 """

37

38 orig_im = cv2.imread(img)

39 dim = orig_im.shape[1], orig_im.shape[0]

40 img = (letterbox_image(orig_im, (inp_dim, inp_dim)))

41 img_ = img[:,:,::-1].transpose((2,0,1)).copy()

42 img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze

(0)

43 return img_, orig_im, dim

44

45 def prep_image_pil(img, network_dim):

46 orig_im = Image.open(img)

47 img = orig_im.convert(RGB)

48 dim = img.size

49 img = img.resize(network_dim)

50 img = torch.ByteTensor(torch.ByteStorage.from_buffer(img.

tobytes()))

51 img = img.view(*network_dim, 3).transpose(0,1).transpose

(0,2).contiguous()

52 img = img.view(1, 3,*network_dim)

53 img = img.float().div(255.0)

54 return (img, orig_im, dim)

55

56 def inp_to_image(inp):

57 inp = inp.cpu().squeeze()

58 inp = inp*255

59 try:

60 inp = inp.data.numpy()

61 except RuntimeError:

62 inp = inp.numpy()

63 inp = inp.transpose(1,2,0)

64

65 inp = inp[:,:,::-1]

66 return inp

83

I.6 BASE TEMPLATE

1 <!DOCTYPE html>

2 <html>

3

4 <head>

5 <meta charset="utf-8">

6 <meta name="viewport" content="width=device-width, initial

-scale=1">

7 <meta charset="utf-8">

8 <meta name="viewport" content="width=device-width, initial

-scale=1">

9 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/

ajax/libs/bulma/0.7.5/css/bulma.min.css">

10 <script defer src="https://use.fontawesome.com/releases/v5

.3.1/js/all.js"></script>

11

12 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/

ajax/libs/bulma/0.7.5/css/bulma.min.css">

13 <script defer src="https://use.fontawesome.com/releases/v5

.3.1/js/all.js"></script>

14 </head>

15

16 <body>

17 <section class="section">

18 <div class="container is-fluid">

19 <nav class="navbar" role="navigation" aria-label="

main navigation">

20 <div class="navbar-brand">

21 <a class="navbar-item" href="https://

pjreddie.com/darknet/yolo/?style=

centerme">

22 <img src="https://www.efs-auto.com/

typo3conf/ext/website_template/

Resources/Public/Images/

efs_logo_ingolstadt.svg" width="100

" height="100">

23

24

84

25 <a role="button" class="navbar-burger

burger" aria-label="menu" aria-expanded

="false" data-target="

navbarBasicExample">

26

27

28

29

30 </div>

31

32

33 </nav>

34 <hr>

35 {% block content %}

36

37 {% endblock %}

38 </div>

39 </section>

40

41 </body>

42

43 </html>

85

I.7 INDEX TEMPLATE

1 {% extends base.html %} {% block content %}

2

3

4 <!-- 1st Column -->

5 <div class="columns">

6 <div class="column is-narrow">

7 <div class="box" style="width: 500px;">

8 <p class="title is-5">Camera - 01</p>

9 <hr>

10 <img id="bg" width=640px height=360px src="{{

url_for(video_feed) }}">

11 <hr>

12 </div>

13 </div>

14 <hr>

15 <div class="column is-narrow">

16 <div class="box" style="width: 500px;">

17 <p class="title is-5">Camera - 02</p>

18 <hr>

19 <img id="bg" width=640px height=360px src="{{

url_for(video_simulate) }}">

20 <hr>

21

22 </div>

23 </div>

24 <hr>

25 {% endblock %}

86

	Summary
	List of figures
	List of tables
	Introduction
	Motivation
	Problem Description
	Objectives
	Published Works
	Chapters Description

	State of the Art and Technical Background
	State of the art
	Technical Background
	Autonomous Vehicles
	Sensors

	Machine Learning in Computer Vision
	Artificial Neural Networks
	Convolutional Neural Networks

	Proposed framework
	Approach 1 - One camera with object calibration
	Camera Calibration
	Camera Image
	Features Extraction
	Object Detection and Object Recognition
	Distance Estimation

	Approach 2 - One camera with known map
	Estimate position based on map

	Approach 3 - Multicamera
	Estimate position based on multiple inputs

	Framework Architecture

	Results
	Description of the test scenario
	Results with camera calibration
	Results with known map
	Results with multi-cameras and proposed framework
	Validation and Comparison between the Approaches

	Conclusion
	Future works

	BIBLIOGRAPHY
	appendices
	Code to control the app
	Code to detect the bounding boxes
	Code to control the camera
	Abstraction of Darknet in Pytorch
	Code for data preprocessing
	Base Template
	Index Template

