UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL

AVALIAÇÃO HÍBRIDA NUMÉRICA-EXPERIMENTAL DO CISALHAMENTO EM PARAFUSOS DE CONEXÕES METÁLICAS TIPO T

WELLINGTON ANDRADE DA SILVA

ORIENTADOR: LUCIANO MENDES BEZERRA

DISSERTAÇÃO DE MESTRADO EM ESRUTURAS E CONSTRUÇÃO CIVIL

PUBLICAÇÃO: E.DM-001A/08 BRASÍLIA/DF: JANEIRO 2008

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL

AVALIAÇÃO HÍBRIDA NUMÉRICA-EXPERIMENTAL DO CISALHAMENTO EM PARAFUSOS DE CONEXÕES METÁLICAS TIPO T

WELLINGTON ANDRADE DA SILVA

DISSERTAÇÃO SUBMETIDA AO DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL DA FACULDADE DE TECNOLOGIA DA UNIVERSIDADE DE BRASÍLIA COMO PARTE DOS REQUISÍTOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM ESTRUTURAS E CONSTRUÇÃO CIVIL.

APROVADA POR:

Prof. Luciano Mendes Bezerra, PhD (UnB) (Orientador)

Prof. Marcílio Sousa da Rocha Freitas, DSc (UFOP) (Examinador Externo)

Prof. William Taylor Matias Silva, Dr.Ing (UnB) (Examinador Interno)

BRASÍLIA/DF, JANEIRO DE 2008

FICHA CATALOGRÁFICA

SILVA, WELLINGTON ANDRADE
Avaliação Híbrida Numérica-Experimental do Cisalhamento em Parafusos de Conexões
Metálicas Tipo T [Distrito Federal] 2008.
xxix, 220p., 297 mm (ENC/FT/UnB, Mestre, Estruturas e Construção Civil, 2008).
Dissertação de Mestrado - Universidade de Brasília. Faculdade de
Tecnologia.
Departamento de Engenharia Civil e Ambiental.
1.T-STUB 2.Cisalhamento
3.Híbrido 4.MEF
I. ENC/FT/UnB II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA

DaSILVA, W. A. (2008). Avaliação Híbrida Numérica-Experimental do Cisalhamento em Parafusos de Conexões Metálicas Tipo T. Dissertação de Mestrado em Estruturas e Construção Civil. Publicação E.DM-001A/08, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 220p.

CESSÃO DE DIREITOS

AUTOR: Wellington Andrade da Silva.

TÍTULO: Avaliação Híbrida Numérica-Experimental do Cisalhamento em Parafusos de Conexões Metálicas Tipo T.

GRAU: Mestre ANO: 2008

É concedida à Universidade de Brasília permissão para reproduzir cópias desta dissertação de mestrado e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte dessa dissertação de mestrado pode ser reproduzida sem autorização por escrito do autor.

Wellington Andrade da Silva SQN 406 Bl. O, Asa Norte. 70847-150 Brasília – DF – Brasil. wellington.andrade@gmail.com

AGRADECIMENTOS

A Deus, primeiramente, por ter me dado serenidade e determinação para a realização deste trabalho.

Aos meus pais, José Andrade da Silva e Maria do Santo Silva, aos quais dedico este trabalho, e aos meus irmãos Robson e Gleyson, pela amizade, companheirismo e incentivo às minhas empreitadas.

Aos meus queridos tios Dinarte e Irene, por todo apoio prestado, preocupação e incentivo em toda a minha jornada em Brasília, e a todos os familiares em geral, sempre presentes em minha vida.

Aos amigos do PECC: André Moreira, Fabio Nunes, João Uchôa, Marcus Alexandre, Helder Pontes, Otávio Rangel, Mauricio Pina, André Freitas, Luiz Lara, Marcelo Madruga, Aline Caíres, Fernanda Pilati e Juan Diego, e aos amigos: Marcelo d'Abadia, Murilo Moura e Kíria Nery.

A querida Karlla Vieira, pelo carinho e paciência.

À Universidade Estadual de Goiás (UEG), pela minha formação acadêmica.

Ao CNPQ pelo financiamento financeiro por meio da bolsa de estudo concedida, e à empresa METAL FORTE LTDA, pelo fornecimento de materiais e apoio técnico, o que tornou este trabalho viável.

A todos os professores e funcionários do Programa de Pós-Graduação em Estruturas e Construção Civil (PECC/UnB) e do Laboratório de Engenharia Mecânica (UnB), que de uma maneira ou de outra colaboraram para a realização deste trabalho.

Ao professor PhD Luciano Mendes Bezerra pela excelente orientação durante o desenvolvimento desta pesquisa.

Aos meus pais José e Maria, pela incansável e vitoriosa luta na educação de seus filhos.

RESUMO

AVALIAÇÃO HÍBRIDA NUMÉRICA-EXPERIMENTAL DO CISALHAMENTO EM PARAFUSOS DE CONEXÕES METÁLICAS TIPO T

Autor: Wellington Andrade da Silva Orientador: Luciano Mendes Bezerra Programa de Pós-graduação em Estruturas e Construção Civil Brasília, Janeiro de 2008

Esta pesquisa apresenta uma análise numérica e experimental com o objetivo de investigar o comportamento estrutural de ligações parafusadas tipo T (ou T-stub). Objetiva-se, em particular, o estudo da ruptura de parafusos de ligações tipo T por cisalhamento combinado com esforços de tração. Enquanto a determinação dos esforços de tração nos parafusos é conhecida na literatura, as forças de cisalhamento em conectores T-stub ainda não foram estudadas e ainda não são objeto de artigos científicos e normas técnicas. Neste aspecto, esta pesquisa é inovadora e tenta destacar a importância da força de cisalhamento no mecanismo de colapso dos parafusos de conexão T-Stub. Devido à grande dificuldade em se medir experimentalmente as tensões de cisalhamento na cabeça dos parafusos, o conhecimento destas tensões é feito nesta pesquisa através de dois procedimentos. O primeiro procedimento é puramente feito em modelagem numérica. O segundo é uma combinação híbrida de resultados numéricos ajustados a dados experimentais obtidos de extensômetros elétricos de resistência localizados nos flanges de conectores T-stubs ensajados no laboratório. As análises numéricas incluem modelos tridimensionais em elementos finitos associados ao comportamento não-linear realizadas com o software ANSYS. Com o uso dos resultados experimentais e numéricos, obtêm-se relações entre força aplicada na alma do conector T e as tensões de cisalhamento e de tração nos parafusos. Avaliam-se em seguida as condições de combinação entre esforços de tração e de cisalhamento que levam os parafusos da conexão ao colapso. Conclui-se que tais forças de colapso dependem diretamente da rigidez do flange do conector T-stub e podem ser substancialmente amplificadas pelo efeito alavanca devido à excentricidade entre carga atuante na alma e os parafusos no flange dos conectores T-stub.

ABSTRACT

HYBRID NUMERICAL-EXPERIMENTAL EVALUATION OF SHEAR IN BOLTS OF T-STUB STEEL CONNECTIONS

Author: Wellington Andrade da Silva Supervisor: Luciano Mendes Bezerra Programa de Pós-graduação em Estruturas e Construção Civil Brasília, January of 2008

This research presents numerical and experimental analyses to investigate the behaviour of T-stub steel connections. The research is especially interested in the study of the failure of T-stub bolts due a combination of shear and traction stresses on the bolts. While the determination of the traction forces on the bolts of the T-stub is known in the literature, the shear forces have not been studied yet and are not subject of scientific papers and technical standards. In this aspect, this research shows the importance of the shear force on the collapse mechanism of the T-stub bolts. Due to the great difficulty in measuring experimentally the shear stresses on the head of the bolts, the knowledge of the shear stress is performed by means of two procedures. The first procedure is merely numerical modelling. The second one is a hybrid combination of numerical results adjusted to experimental data obtained from strain gages located at the flanges of T-stubs tested in the laboratory. The numerical analyses comprise 3D finite elements associated to non-linear modelling undertaken with the ANSYS software. With the use of numerical and experimental results, relations between the applied load on the T-stub web and the shear and traction forces on the bolts are obtained. The conditions for the collapse of the T-stub bolts due to the combination of traction and shear forces are also evaluated in this research. It is concluded that such forces depend directly on the T-stub flange rigidity and can be substantially amplified by the prying action mechanism due to the eccentricity between the applied load on the T-stub web and the bolts on the T-stub flange.

SUMÁRIO

1 – INTRODUÇÃO	1
1.1 – MOTIVAÇÃO	2
1.2 – OBJETIVO	3
1.3 – O QUE HÁ DE NOVO NESTE TRABALHO	3
1.4 – APRESENTAÇÃO DO TRABALHO	3
2 – LIGAÇÕES T-STUB	5
2.1 – ESTUDOS PRELIMINARES SOBRE CONEXÕES T-STUB	7
2.2 – ESTUDOS RECENTES SOBRE CONEXÕES T-STUB	15
3 – PARÂMETROS PARA ESTUDO DO CISALHAMENTO	. 26
3.1 – RESISTÊNCIA DE LIGAÇÕES À FORÇA CORTANTE	26
3.2 – PARAFUSOS SOB TRAÇÃO E FORÇA CORTANTE COMBINADOS	28
3.3 – PARAFUSOS SOB FORÇA CORTANTE COMBINADA OU NÃO C	ОМ
TRAÇÃO	32
3.4 – PRESSÃO DE CONTATO ENTRE PINO E FURO CIRCULAR	33
3.4.1 – Distribuição de pressão na face interna do furo	43
3.4.2 – Técnica de Instrumentação para estudo do cisalhamento de parafuso	os45
3.5 – ANÁLISE HÍBRIDA	48
3.5.1 – Estado de hibridização	49
3.5.2 – Métodos Híbridos Numérico-Experimentais	50
4 – METODOLOGIA DA PESQUISA	. 52
4.1 – VARIÁVEIS CONSIDERADAS	52
4.2 – DIMENSIONAMENTO E DEFINIÇÃO DOS MODELOS	53
4.3 – ESPECIFICAÇÃO DOS MATERIAIS UTILIZADOS NOS MODELOS	57
4.4 – EQUIPAMENTOS PARA O ESTUDO EXPERIMENTAL	58
4.5 – MÉTODO HÍBRIDO NUMÉRICO-EXPERIMENTAL	58
5 – ESTUDO EXPERIMENTAL	. 61
5.1 – MONTAGEM DO ENSAIO E INSTRUMENTAÇÃO DAS CONEXÕES.	61
5.2 – CÉLULA DE CARGA	64

5.2.1 – Célula de deslocamento tipo viga elástica	65
5.2.2 – Célula de carga tipo cilindro	66
5.3 – CARACTERIZAÇÃO DOS MATERIAIS	67
5.3.1 – Chapas de aço	67
5.3.2 – Parafusos	70
5.4 – RESULTADOS EXPERIMENTAIS	71
5.4.1 – Resultados para o grupo CD1 – Ligação com flange de 4,8 mm	72
5.4.2 – Resultados para o grupo CD2 – Ligação com flange de 6,3 mm	74
5.4.3 – Resultados para o grupo CD3 – Ligação com flange de 7,9 mm	77
5.4.4 – Resultados para o grupo CD4 – Ligação com flange de 9,5 mm	79
5.4.5 – Resultados para o grupo CD5 – Ligação com flange de 12,7 mm	81
5.5 – ANÁLISE DOS MODOS DE FALHA DAS LIGAÇÕES	84
5.5.1 – Carga de Ruptura das Conexões	84
5.5.2 – Inspeção Visual	85
5.5.2.1 – Grupo CD1 – Ligação com flange de 4,8 mm	85
5.5.2.2 – Grupo CD2 – Ligação com flange de 6,3 mm	87
5.5.2.3 – Grupo CD3 – Ligação com flange de 7,9 mm	89
5.5.2.4 – Grupo CD4 – Ligação com flange de 9,5 mm	91
5.5.2.5 – Grupo CD5 – Ligação com flange de 12,7 mm	93
6 – ANÁLISE NUMÉRICA	96
6.1 – CRITÉRIOS ADOTADOS NA MODELAGEM NUMÉRICA	96
6.2 – DISCRETIZAÇÃO DOS MODELOS	97
6.2.1 – Elemento utilizado na discretização	98
6.2.2 – Geometria e Critérios Gerais Adotados para Construção da Malha	a 99
6.2.3 – Modelo Constitutivo para o Aço	101
6.2.4 – Condições de Contorno	103
6.3 – APLICAÇÃO DO CARREGAMENTO	104
6.3.1 – Modelo de Ligação T-stub	105
6.3.2 – Modelo de Chapa	105
6.3.2.1 – Equação 1 (Echavarría et al, 2007)	105
6.3.2.2 – Equação 2 (Grüber et al, 2006)	106
6.3.2.3 – Aplicação do Deslocamento	107
6.4 – RESULTADOS PARA OS MODELOS DE CHAPA	108

6.4.1 – Resultados para o grupo CH1109
6.4.2 – Resultados para o grupo CH2111
6.4.3 – Resultados para o grupo CH3113
6.4.4 – Resultados para o grupo CH4 115
6.4.5 – Resultados para o grupo CH5116
6.5 – RESULTADOS PARA OS MODELOS NUMÉRICOS DE LIGAÇÕES T
STUB 118
6.5.1 – Resultado para conexão CN1 - flange de 3/16"
6.5.2 – Resultado para conexão CN2 - flange de 1/4" 119
6.5.3 – Resultado para conexão CN3 - flange de 5/16"
6.5.4 – Resultado para conexão CN4 - flange de 3/8"121
6.5.5 – Resultado para conexão CN5 - flange de 1/2" 121
7 – ANÁLISE DOS RESULTADOS122
7.1 – ANÁLISE DA DEFORMAÇÃO MAPEADA NA SUPERFÍCIE DO
FLANGE 122
7.2 – ANÁLISE DO CISALHAMENTO NO PARAFUSO 126
7.3 – ANÁLISE DOS PARAFUSOS SOB COMBINAÇÃO DE TRAÇÃO E
CISALHAMENTO 133
8 – CONCLUSÃO
8.1 – SUGESTÕES PARA TRABALHOS FUTUROS
REFERÊNCIAS BIBLIOGRÁFICAS141
A – ENSAIO DE CALIBRAÇÃO DAS CÉLULAS145
A.1 – CALIBRAÇÃO DA CÉLULA DE CARGA145
A.1.1 – Célula de Carga 1 145
A.1.2 – Célula de Carga Cilíndrica 2 147
A.1.3 – Célula de Carga Cilíndrica 3 149
A.2 – CALIBRAÇÃO DA CÉLULA DE DESLOCAMENTO 150
A.2.1 – Célula de Deslocamento150

B – ENSAIO DE CARACTERIZAÇÃO DOS MATERIAIS...... 152

B.1 – CARACTERIZAÇÃO DAS CHAPAS152
B.1.1 – Chapa de espessura de 3/16"153
B.1.2 – Chapa de espessura de 1/4"156
B.1.3 – Chapa de espessura de 5/16" 159
B.1.4 – Chapa de espessura de 3/8"162
B.1.4 – Chapa de espessura de 1/2"165
B.2 – CARACTERIZAÇÃO DOS PARAFUSOS168
C – R ESULTADOS DOS ENSAIOS EXPERIMENTAIS
C.1 – CONEXÃO CD1 – LIGAÇÃO COM FLANGE DE 3/16" 170
C.2 – CONEXÃO CD2 – LIGAÇÃO COM FLANGE DE 1/4" 175
C.3 – CONEXÃO CD3 – LIGAÇÃO COM FLANGE DE 5/16" 181
C.4 – CONEXÃO CD4 – LIGAÇÃO COM FLANGE DE 3/8" 187
C.5 – CONEXÃO CD5 – LIGAÇÃO COM FLANGE DE 1/2" 193
D – RESULTADOS NUMÉRICOS DOS MODELOS DE CHAPA 199
D.1 – RESULTADOS PARA CASO 1 E CASO 2 199
D.1.1 – Chapa CH1 – espessura de 3/16" 199
D.1.2 – Chapa CH2 – espessura de 1/4" 200
D.1.3 – Chapa CH3 – espessura de 5/16" 202
D.1.4 – Chapa CH4 – espessura de 3/8" 203
D.1.5 – Chapa CH5 – espessura de 1/2" 204
D.2 – RESULTADOS PARA CASO 3 E CASO 4
D.2.1 – Chapa CH1 – espessura de 3/16" 206
D.2.2 – Chapa CH2 – espessura de 1/4" 207
D.2.3 – Chapa CH3 – espessura de 5/16" 208
D.2.4 – Chapa CH4 – espessura de 3/8" 210
D.2.5 – Chapa CH5 – espessura de 1/2" 211
E.1 – LIGAÇÃO CN1 – CHAPA DO FLANGE COM ESPESSURA DE 3/16" 213
E.2 – LIGAÇÃO CN2 – CHAPA DO FLANGE COM ESPESSURA DE 1/4" 215
E.3 – LIGAÇÃO CN3 – CHAPA DO FLANGE COM ESPESSURA DE 5/16" 216
E.4 – LIGAÇÃO CN4 – CHAPA DO FLANGE COM ESPESSURA DE 1/4" 218
E.5 – LIGAÇÃO CN5 – CHAPA DO FLANGE COM ESPESSURA DE 1/2" 219

LISTA DE TABELAS

Tabela 3.1 – Tração e força cortante combinadas, segundo NBR 8800	30
Tabela 3.2 – Resistência de conectores segundo o AISC/LRFD e AISC/ASD	31
Tabela 4.1 – Características das Conexões para análise experimental e numérica	56
Tabela 4.2 – Especificação dos parafusos e chapas que serão utilizados na pesquisa	57
Tabela 5.1 – Resultados dos corpos de prova das chapas de aço SAE 1010	69
Tabela 6.1 – Características dos modelos numéricos de chapa (CH)	100
Tabela 6.2 – Relações tensão-deformação adotadas para o estudo numérico	103
Tabela 6.3 – Relações de interação entre tração no parafuso e cisalhamento	109
Tabela 7.1 – Dados obtidos no estudo experimental/híbrido e no estudo numérico	136
Tabela A.1 – Medições dos ensaios de calibração da célula de carga 1	145
Tabela A.2 – Medições dos ensaios de calibração da célula de carga 2	147
Tabela A.3 – Medições dos ensaios de calibração da célula de carga 3	149
Tabela A.4 – Medições dos ensaios de calibração da célula de deslocamento	150
Tabela B.1 – Características geométricas das amostras dos materiais	152
Tabela B.2 – Medições do ensaio 1, caracterização da chapa de 3/16"	153
Tabela B.3 – Medições do ensaio 2, caracterização da chapa de 3/16"	154
Tabela B.4 – Medições do ensaio 3, caracterização da chapa de 3/16"	155
Tabela B.5 – Medições do ensaio 1, caracterização da chapa de 1/4"	156
Tabela B.6 – Medições do ensaio 2, caracterização da chapa de 1/4"	157
Tabela B.7 – Medições do ensaio 3, caracterização da chapa de 1/4"	158
Tabela B.8 – Medições do ensaio 1, caracterização da chapa de 5/16"	159
Tabela B.9 – Medições do ensaio 2, caracterização da chapa de 5/16"	160
Tabela B.10 – Medições do ensaio 3, caracterização da chapa de 5/16"	161
Tabela B.11 – Medições do ensaio 1, caracterização da chapa de 3/8"	162
Tabela B.12 – Medições do ensaio 2, caracterização da chapa de 3/8"	163
Tabela B.13 – Medições do ensaio 3, caracterização da chapa de 3/8"	164
Tabela B.14 – Medições do ensaio 1, caracterização da chapa de 1/2"	165
Tabela B.15 – Medições do ensaio 2, caracterização da chapa de 1/2"	166
Tabela B.16 – Medições do ensaio 3, caracterização da chapa de 1/2"	167
Tabela B.17 – Medições do ensaio 1	168
Tabela B.18 – Medições do ensaio 2	168
Tabela B.19 – Medições do ensaio 3	169

Tabela C.1 – Medições do ensaio 1, Conexão CD1	170
Tabela C.2 – Medições do ensaio 2, Conexão CD1	171
Tabela C.3 – Medições do ensaio 3, Conexão CD1	172
Tabela C.4 – Resultados médios, Grupo CD1	173
Tabela C.5 – Medições do ensaio 1, Conexão CD2	175
Tabela C.6 – Medições do ensaio 2, Conexão CD2	176
Tabela C.7 – Medições do ensaio 3, Conexão CD2	177
Tabela C.8 – Resultados médios, Grupo CD2	178
Tabela C.9 – Medições do ensaio 1, Conexão CD3	181
Tabela C.10 – Medições do ensaio 2, Conexão CD3	182
Tabela C.11 – Medições do ensaio 3, Conexão CD3	183
Tabela C.12 – Resultados médios, Grupo CD3	184
Tabela C.13 – Medições do ensaio 1, Conexão CD4	187
Tabela C.14 – Medições do ensaio 2, Conexão CD4	188
Tabela C.15 – Medições do ensaio 3, Conexão CD4	189
Tabela C.16 – Resultados médios, Grupo CD4	190
Tabela C.17 – Medições do ensaio 1, Conexão CD5	193
Tabela C.18 – Medições do ensaio 2, Conexão CD5	194
Tabela C.19 – Medições do ensaio 3, Conexão CD5	195
Tabela C.20 – Resultados médios, Grupo CD5	196
Tabela D.1 – Resultados médios, Chapa CH1.	199
Tabela D.2 – Resultados médios, Chapa CH2.	200
Tabela D.3 – Resultados médios, Chapa CH3.	202
Tabela D.4 – Resultados médios, Chapa CH4	203
Tabela D.5 – Resultados médios, Chapa CH5.	204
Tabela D.6 – Resultados médios, Chapa CH1.	206
Tabela D.7 – Resultados médios, Chapa CH2.	207
Tabela D.8 – Resultados médios, Chapa CH3.	208
Tabela D.9 – Resultados médios, Chapa CH4	210
Tabela D.10 – Resultados médios, Chapa CH5	211
Tabela E.1 – Resultados médios, Modelo CN1	213
Tabela E.2 – Resultados médios, Modelo CN2	215
Tabela E.3 – Resultados médios, Modelo CN3	216
Tabela E.4 – Resultados médios, Modelo CN4	218

Tabela E.5 - Resultados médios, Modelo	CN5
--	-----

LISTA DE FIGURAS

$\frac{1}{2004}$
rigura 2.18 – Modelos utilizados na pesquisa (Coeino et al, 2004) 19 Figura 2.19 – Relação carga total x deslocamento para dois perfis T-stub (Coelho et al
$17B220 \text{ (Gantes e Lemonis, 2003).} \qquad 19$
IPE300; B) Relação força-deslocamento sem pre-tensão nos paratusos para o modelo
Figura 2.1 / $-a$) Relação força-deslocamento sem pré-tensão nos parafusos para o modelo
em MEF (Gantes e Lemonis, 2003). 18
Figura 2.16 – a) Modelos duplo T utilizados na pesquisa; b) Deformada do modelo feito
para o 1-suo de aluminio (Maueis et al, 2000)
Figura 2.14 – a) Geometria do modelo duplo 1; b) Malha adotada para o flange e parafuso,
1997
rigura 2.15 – Granco força-desiocamento para um carregamento estatico (Mistakidis et al,
1997)
Figura 2.12 – a) Modelo duplo 1; b) Discretização da estrutura via MEF (Mistakidis et al, 1007)
Figura 2.11 – Distribuição de forças do modelo Eurocode (Eurocode, 1993)
Figura 2.10 – Variaveis utilizadas na formulação
Figura 2.9 – Modelo de Struik e Deback revisto em 1987 (Kulak et al, 2001)
pressão; (c) Deformada da chapa de topo; (d) Diagrama de momentos fletores
Figura 2.8 – Modelo de Krishnamurthy (1978): (a) Geometria; (b) Esforços e bulbo de
Figura 2.7 – Rotulas Plásticas, segundo mecanismo (Ribeiro, 1998)
Figura 2.6 – Rotulas Plásticas, primeiro mecanismo (Ribeiro, 1998)
Figura 2.5 – Modelo de Struik e Deback de 1969 (Kulak et al, 2001)
Figura 2.4 – Modelo de Douty e MacGuire de 1965 (Kulak et al, 2001)
indeformável
Figura 2.3 – a) Modo de ensaio com duplo T; b) Modo de ensaio com base rígida
pura
Figura 2.2 – a) aspectos de uma ligação coluna-viga; b) conexão T-stub solicitada à tração
Figura 2.1 – Classificação de acordo com a rigidez (AISC, 1997)5
parafuso
Figura 1.1 – a) Flange e parafuso com abertura de um dente; b) Esforços atuantes no
Figure 1.1 a) Flange e parafuse com abarture de um dente: h) Esference etuentes no

Figura 2.20 - a) Geometria do Perfil duplo T estudado - protótipo TSC; b) Condições de
instrumentação no ensaio da conexão duplo T (Maggi, 2004)
Figura 2.21 - Curvas força-deslocamento para a geometria de protótipo TSC (Maggi,
2004)
Figura 2.22 - a) Esquema de ensaio utilizando uma base rígida; b) Discretização dos
modelos em elementos finitos estudados na pesquisa (Freitas, 2005)
Figura 2.23 – Comparação dos resultados analíticos, experimentais e numéricos para perfis
de dois furos (Freitas, 2005)23
Figura 2.24 – Histórico de carga para uma ligação T-stub (Abolmaali et al, 2006)
Figura 2.25 – a) Pinos utilizados no ensaio; b) Ensaio da conexão T-stub (Abolmaali et al,
2006)
Figura 3.1 - Estágios de carregamento numa conexão parafusada; força cortante nos
parafusos em função do estágio de carregamento (Kulak et al, 2001)27
Figura 3.2 - Curvas típicas de tensão de cisalhamento vs deslocamento relativo para
parafusos A325 e A490 (Kulak et al, 2001)27
Figura 3.3 – Ruptura de pinos: combinação cisalhamento e tração (Kulak et al, 2001) 28
Figura 3.4 - (a) Diagrama de interação para parafusos comuns sob combinação de tração e
força cortante; (b) aproximação do AISC/LRFD 1996 e NBR 8800. Adaptados (Owens e
Cheal, 1989 e Salmon e Johnson, 1996 apud Valenciani, 1997)
Figura 3.5 - Comportamento força-deslizamento em conexão com um único parafuso de
alta resistência de 19 mm de diâmetro, em cisalhamento duplo (Owens e Cheal, 1989 apud
Valenciani, 1997)
Figura 3.6 - Modelo numérico de uma ligação com pino discretizado pelo método dos
elementos finitos (Persson, 1998)
Figura 3.7 – a) Esquema analítico da ligação; b) Discretização da ligação pelo método dos
elementos finitos (Ireman, 1998)
Figura 3.8 – deslocamento relativo entre as chapas da ligação (Ireman, 1998)
Figura 3.9 – a) Perspectiva do modelo numérico discretizado; b) Detalhe do refinamento da
malha de elementos na região dos furos nas placas (Ju et al, 2004)
Figura 3.10 – Locais com fratura na chapa (Ju et al, 2004)
Figura 3.11 – a) Esquema de ensaio da ligação; b) Características do modelo numérico
(Moses e Prion, 2004)
Figura 3.12 – Análise numérica das tensões de cisalhamento (Moses e Prion, 2004) 37

Figura 3.13 - a) Geometria da ligação; b) Representação da ligação pelo método de
elementos finitos, por meio da discretização de todos os elementos componentes da ligação
(McCarthy et al, 2005)
Figura 3.14 – Distribuição da deformação radial (McCarthy et al, 2005)
Figura 3.15 - a) Esquema de ensaio da ligação com uma placa laminada composta de
vidro; b) Modelo numérico em elementos finitos que representa a ligação (Karakuzu et al,
2006)
Figura 3.16 - Relação carga-deslocamento do pino em diferentes modelos (Karakuzu et al,
2006)
Figura 3.17 – a) Disposição dos parafusos na conexão; b) Configuração geométrica das
chapas; c) Modelo numérico em elementos finitos (Ekh e Schön, 2006)
Figura 3.18 – Transferência de carga no parafuso 2 (Ekh e Schön, 2006)40
Figura 3.19 – Condições de contorno no modelo numérico (Dano et al, 2006)41
Figura 3.20 – Alongamento do furo (Dano et al, 2006)
Figura 3.21 - Modelo em elementos finitos utilizado no trabalho para estudo de ligações
com pino (Grüber et al, 2006)
Figura 3.22 – Curvas de tensão no contorno do furo (Grüber et al, 2006)
Figura 3.23 – Modelo de ligação com dupla lamina (Echavarría et al, 2007)43
Figura 3.24 – Esquema de distribuição de cargas em torno de furos pino-carregados (Kelly
e Hallström, 2004)
Figura 3.25 – Esquema de representação de uma carga em torno de um furo, provocada por
um pino, por meio de uma função senoidal (Echavarría et al, 2007)44
Figura 3.26 - a) Distribuição de força normal no Contorno do Furo; b) Esquema para
consideração da força, que atua no contorno do furo, provocada pelo pino (Grüber et al,
2006)
Figura 3.27 - Posicionamento dos extensômetros de resistência na instrumentação da placa
(MacCarthy et al, 2005)
Figura 3.28 – a) Esquema geral da instrumentação da placa; b) Detalhe do posicionamento
dos extensômetros (Iremana, 1998)
Figura 3.29 - Esquema de instrumentação com extensômetros de resistência em placas
(Persson et al, 1998)
Figura 3.30 - Esquema de instrumentação com extensômetros de resistência em placas
(Dano et al, 2006)
Figura 3.31 – Métodos numéricos híbridos (Nishioka, 1999)

Figura 3.32 – Modelos de hibridização para dois métodos, A e B (Nishioka, 1999) 50
Figura 3.33 – Fluxograma para um procedimento híbrido numérico-experimental (Furlong
e Pryputniewicz, 1998)
Figura 4.1 – a) Esquema de furação das conexões; b) Geometria das Conexões estudadas
Figura 4.2 – Representação da geometria da região discretizada numericamente
Figura 4.3 - Equipamentos utilizados nos ensaios experimentais: Prensa Hidráulica,
Spider8 e computador
Figura 4.4 – Base rígida utilizada nos ensaios dos perfis T-stub
Figura 4.5 – Mapeamento do flange do perfil T-stub com extensômetros de resistência 59
Figura 4.6 – Modelo numérico de placa em elementos finitos
Figura 4.7 – Esquema do estudo híbrido numérico-experimental utilizado na pesquisa 60
Figura 5.1 – Esquema de ensaio
Figura 5.2 – Locação dos extensômetros na superfície do flange do perfil T-stub
Figura 5.3 – Deformada do protótipo CD2A durante o ensaio
Figura 5.4 - Ponte de Wheatstone, circuito para quatro extensômetros elétricos de
resistência (ROYLANCE, 2001)
Figura 5.5 – Modelo de viga elástica utilizado
Figura 5.6 – Disposição dos sensores no transdutor de deslocamento
Figura 5.7 – Esquema do cilindro de carga
Figura 5.8 – Dimensões dos corpos de prova em tira – aço SAE 1010
Figura 5.9 Corpo de prova extraído da chapa de 1/2"
Figura 5.10 – Corpo de prova preparado para início do ensaio
Figura 5.11 – Curvas tensão-deformação médias das chapas caracterizadas
Figura 5.12 – Dispositivo para ensaio dos parafusos
Figura 5.13 – Curva tensão-deformação para os parafusos
Figura 5.14 – Fluxograma representativo do programa experimental
Figura 5.15 – Relação entre carga aplicada e reação nos parafusos – grupo CD172
Figura 5.16 – Relação entre deslocamento e forças no ensaio – grupo CD1
Figura 5.17 – Relação entre carga aplicada e deformação específica no ponto 1 – grupo
CD1
Figura 5.18 - Relação entre carga aplicada e deformação específica no ponto 2 - grupo
CD174
Figura 5.19 – Relação entre carga aplicada e reação nos parafusos – grupo CD2

Figura 5.20 - Relação entre deslocamento e forças no ensaio - grupo CD2	75
Figura 5.21 – Relação entre carga aplicada e deformação específica no ponto CD2	1 – grupo 76
Figura 5.22 – Relação entre carga aplicada e deformação específica no ponto CD2	2 – grupo 76
Figura 5.23 – Relação entre carga aplicada e reação nos parafusos – grupo CD3	
Figura 5.24 – Relação entre deslocamento e forças no ensaio – grupo CD3	
Figura 5.25 – Relação entre carga aplicada e deformação específica no ponto CD3	1 – grupo 78
Figura 5.26 – Relação entre carga aplicada e deformação específica no ponto CD3.	2 – grupo 79
Figura 5.27 – Relação entre carga aplicada e reação nos parafusos – grupo CD4	
Figura 5.28 – Relação entre deslocamento e forças no ensaio – grupo CD4	80
Figura 5.29 – Relação entre carga aplicada e deformação específica no ponto CD4	1 – grupo 81
Figura 5.30 – Relação entre carga aplicada e deformação específica no ponto CD4	2 – grupo 81
Figura 5.31 – Relação entre carga aplicada e reação nos parafusos – grupo CD5	
Figura 5.32 – Relação entre deslocamento e forças no ensaio – grupo CD5	
Figura 5.33 – Relação entre carga aplicada e deformação específica no ponto CD5	1 – grupo 83
Figura 5.34 – Relação entre carga aplicada e deformação específica no ponto CD5	2 – grupo 83
Figura 5.35 – Carga última das conexões ensaiadas.	
Figura 5.36 – Flange instrumentado (Ligação CD1A).	
Figura 5.37 – Flange não instrumentado (Ligação CD1A).	
Figura 5.38 – Parafuso 1 – Ligação CD1A.	
Figura 5.39 – Parafuso 2 – Ligação CD1A.	
Figura 5.40 – Flange instrumentado (Ligação CD1B).	
Figura 5.41 – Flange não instrumentado (Ligação CD1B	
Figura 5.42 – Parafuso 1 – Ligação CD1B	
Figura 5.43 – Parafuso 2 – Ligação CD1B	
Figura 5.44 – Flange instrumentado (Ligação CD1C).	
Figura 5.45 – Flange não instrumentado (Ligação CD1C).	

Figura 5.46 – Parafuso 1 – Ligação CD1C	
Figura 5.47 – Parafuso 2 – Ligação CD1C	
Figura 5.48 – Flange instrumentado (Ligação CD2A)	
Figura 5.49 – Flange não instrumentado (Ligação CD2A).	
Figura 5.50 – Parafuso 1 – Ligação CD2A.	
Figura 5.51 – Parafuso 2 – Ligação CD2A.	
Figura 5.52 – Flange instrumentado (Ligação CD2B).	
Figura 5.53 – Flange não instrumentado (Ligação CD2B).	
Figura 5.54 – Parafuso 1 – Ligação CD2B	
Figura 5.55 – Parafuso 2 – Ligação CD2B	
Figura 5.56 – Flange instrumentado (Ligação CD2C).	
Figura 5.57 – Flange não instrumentado (Ligação CD2C)	
Figura 5.58 – Parafuso 1 – Ligação CD2C	
Figura 5.59 – Parafuso 2 – Ligação CD2C	
Figura 5.60 – Flange instrumentado (Ligação CD3A).	
Figura 5.61 – Flange não instrumentado (Ligação CD3A).	
Figura 5.62 – Parafuso 1 – Ligação CD3A.	
Figura 5.63 – Parafuso 2 – Ligação CD3A.	
Figura 5.64 – Flange instrumentado (Ligação CD3B).	
Figura 5.65 – Flange não instrumentado (Ligação CD3B)	
Figura 5.66 – Parafuso 1 – Ligação CD3B	
Figura 5.67 – Parafuso 2 – Ligação CD3B	
Figura 5.68 – Flange instrumentado (Ligação CD3C).	
Figura 5.69 – Flange não instrumentado (Ligação CD3C)	
Figura 5.70 – Parafuso 1 – Ligação CD3C	
Figura 5.71 – Parafuso 2 – Ligação CD3C	
Figura 5.72 – Flange instrumentado (Ligação CD4A).	
Figura 5.73 – Flange não instrumentado (Ligação CD4A).	
Figura 5.74 – Parafuso 1 – Ligação CD4A.	
Figura 5.75 – Parafuso 2 – Ligação CD4A.	
Figura 5.76 – Flange instrumentado (Ligação CD4B).	
Figura 5.77 – Flange não instrumentado (Ligação CD4B).	
Figura 5.78 – Parafuso 1 – Ligação CD4B	
Figura 5.79 – Parafuso 2 – Ligação CD4B	

Figura 5.80 – Flange instrumentado (Ligação CD4C).	
Figura 5.81 – Flange não instrumentado (Ligação CD4C).	
Figura 5.82 – Parafuso 1 – Ligação CD4C	
Figura 5.83 – Parafuso 2 – Ligação CD4C	
Figura 5.84 – Flange instrumentado (Ligação CD5A).	
Figura 5.85 – Flange não instrumentado (Ligação CD5A).	
Figura 5.86 – Parafuso 1 – Ligação CD5A.	
Figura 5.87 – Parafuso 2 – Ligação CD5A.	
Figura 5.88 – Flange instrumentado (Ligação CD5B).	
Figura 5.89 – Flange não instrumentado (Ligação CD5B).	
Figura 5.90 – Parafuso 1 – Ligação CD5B	
Figura 5.91 – Parafuso 2 – Ligação CD5B	
Figura 5.92 – Flange instrumentado (Ligação CD5C).	
Figura 5.93 – Flange não instrumentado (Ligação CD5C).	
Figura 5.94 – Parafuso 1 – Ligação CD5C	
Figura 5.95 – Parafuso 2 – Ligação CD5C	
Figura 6.1 – Malha de elementos finitos – modelo numérico CH2	
Figura 6.2 – Malha de elementos finitos – Ligação T-stub	
Figura 6.3 – SOLID45, elemento estrutural do ANSYS.	
Figura 6.4 – "CONTAC52 point-to-point", elemento de contato.	
Figura 6.5 – a) Dimensões do modelo; b) Região de refinamento da	malha; c)
Representação da espessura	100
Figura 6.6 – Configuração da malha do flange do perfil T	
Figura 6.7 – a) Perfil T; b) Parafuso sextavado; c) Elementos de contato, que s	simulam o
efeito de contato entre o flange do perfil T e a base de fixação	
Figura 6.8 – Representação esquemática da relação bilinear tensão-deformação	
Figura 6.9 – Curva bilinear tensão-deformação para aço (Kulak et al, 2001)	
Figura 6.10 – Curva multilinear tensão-deformação para aço (Kulak et al, 2001).	103
Figura 6.11 – Condições de contorno aplicadas no modelo	
Figura 6.12 – Condições de contorno aplicadas no modelo T-stub	
Figura 6.13 – Pressão em um furo circular, MODELO 1 (Echavarría et al, 2007).	105
Figura 6.14 – Pressão em um furo circular, MODELO 2 (Grüber et al, 2006)	106
Figura 6.14 – Deslocamento imposto na chapa	107
Figura 6.15 – Estudo numérico utilizando o modelo CH	

Figura 6.16 – Curva deformação-força no furo para o grupo CH1	110
Figura 6.17 – Curva deformação-deslocamento para o grupo CH1	111
Figura 6.18 – Relação força-deslocamento assumida para o grupo CH1	111
Figura 6.19 – Curva deformação-força no furo para o grupo CH2.	112
Figura 6.21 – Relação força-deslocamento assumida para o grupo CH2	113
Figura 6.22 – Curva deformação-força no furo para o grupo CH3	114
Figura 6.23 – Curva deformação-deslocamento para o Grupo CH3.	114
Figura 6.24 – Relação força-deslocamento assumida para o Grupo CH3	115
Figura 6.25 – Curva deformação-força no furo para o Grupo CH4	115
Figura 6.26 – Curva deformação-deslocamento para o Grupo CH4.	116
Figura 6.27 – Relação força-deslocamento assumida para o Grupo CH4	116
Figura 6.28 – Curva deformação-força no furo para o Grupo CH5	117
Figura 6.29 – Curva deformação-deslocamento para o Grupo CH5.	117
Figura 6.30 – Relação força-deslocamento assumida para o Grupo CH5	118
Figura 6.31 – Fixação de apoios nos furos.	118
Figura 6.32 – Estudo numérico das conexões T-stub	119
Figura 6.33 – Relação cisalhamento-carga aplicada para o modelo CN1	119
Figura 6.34 – Relação cisalhamento-carga aplicada para o modelo CN2	120
Figura 6.35 – Relação cisalhamento-carga aplicada para o modelo CN3	120
Figura 6.36 – Relação cisalhamento-carga aplicada para o modelo CN4	121
Figura 6.37 – Relação cisalhamento-carga aplicada para o modelo CN5	121
Figura 7.1 – Relação deformação-deslocamento para o modelo os numérico C	H1 e
modelos experimentais do grupo CD1.	123
Figura 7.2 - Relação deformação-deslocamento para o modelo numérico CH2	e os
modelos experimentais do grupo CD2.	124
Figura 7.3 - Relação deformação-deslocamento para o modelo numérico CH3	e os
modelos experimentais do grupo CD3.	124
Figura 7.4 - Relação deformação-deslocamento para o modelo numérico CH4	e os
modelos experimentais do grupo CD4	125
Figura 7.5 - Relação deformação-deslocamento para o modelo numérico CH5	e os
modelos experimentais do grupo CD5.	126
Figura 7.6 – Roteiro utilizado na análise do cisalhamento de parafusos combinado) com
tração.	126

Figura 7.7 – Força de cisalhamento em função da carga aplicada para as ligações T-stub do
grupo CD1
Figura 7.8 - Comparação entre a curva híbrida para o grupo experimental CD1 e curva
numérica do modelo numérico de ligação T-stub CN1128
Figura 7.9 – Força de cisalhamento em função da carga aplicada para as ligações T-stub do
grupo CD2
Figura 7.10 - Comparação entre a curva híbrida para o grupo experimental CD2 e curva
numérica do modelo numérico de ligação T-stub CN2129
Figura 7.11 – Força de cisalhamento em função da carga aplicada para as ligações T-stub
do grupo CD3
Figura 7.12 - Comparação entre a curva híbrida para o grupo experimental CD3 e curva
numérica do modelo numérico de ligação T-stub CN3131
Figura 7.13 – Força de cisalhamento em função da carga aplicada para as ligações T-stub
do grupo CD4
Figura 7.14 – Comparação entre a curva híbrida para o grupo experimental CD4 e curva
numérica do modelo numérico de ligação T-stub CN4132
Figura 7.15 – Força de cisalhamento em função da carga aplicada para as ligações T-stub
do grupo CD5
Figura 7.16 – Comparação entre a curva híbrida para o grupo experimental CD5 e curva
numérica do modelo numérico de ligação T-stub CN5
Figura 7.17 – Diagrama de interação para parafusos comuns sob combinação de tração e
força cortante
Figura 7.18 – Diagrama de interação para parafusos comuns sob combinação de tração e
força cortante, para o estudo híbrido
Figura 7.19 – Diagrama de interação para parafusos comuns sob combinação de tração e
força cortante, para o estudo numérico
Figura A.1 – Calibração da célula de carga 1146
Figura A.2 – Curva média de calibração da célula de carga 1
Figura A.3 – Calibração da célula de carga 2
Figura A.4 – Curva média de calibração da célula de carga 2
Figura A.5 – Calibração da célula de carga 3150
Figura A.6 – Curva média de calibração da célula de carga 3
Figura A.7 – Calibração da célula de deslocamento
Figura A.8 – Média da calibração da célula de deslocamento

Figura B.1 – Geometria das amostras dos materiais	152
Figura B.2 – Representação gráfica dos ensaios de caracterização, chapa 3/16"	155
Figura B.3 – Representação gráfica dos ensaios de caracterização, chapa 1/4"	158
Figura B.4 – Representação gráfica dos ensaios de caracterização, chapa 5/16"	161
Figura B.5 – Representação gráfica dos ensaios de caracterização, chapa 3/8"	164
Figura B.6 – Representação gráfica dos ensaios de caracterização, chapa 1/2"	167
Figura B.7 – Representação gráfica dos ensaios de caracterização, chapa 1/2"	169
Figura C.1 – Representação gráfica da deformação no ponto 2, grupo CD1	173
Figura C.2 – Representação gráfica da deformação no ponto 1, grupo CD1	174
Figura C.3 – Representação gráfica da reação nos parafusos, grupo CD1	174
Figura C.4 – Representação gráfica do deslocamento do perfil, grupo CD1	174
Figura C.5 – Representação gráfica da deformação no ponto 2, grupo CD2	179
Figura C.6 – Representação gráfica da deformação no ponto 1, grupo CD2	179
Figura C.7 – Representação gráfica da reação nos parafusos, grupo CD2	179
Figura C.8 – Representação gráfica do deslocamento do perfil, grupo CD2	180
Figura C.9 – Representação gráfica da deformação no ponto 2, grupo CD3	185
Figura C.10 – Representação gráfica da deformação no ponto 1, grupo CD3	185
Figura C.11 – Representação gráfica da reação nos parafusos, grupo CD3	185
Figura C.12 – Representação gráfica do deslocamento do perfil, grupo CD3	186
Figura C.13 – Representação gráfica da deformação no ponto 2, grupo CD4	191
Figura C.14 – Representação gráfica da deformação no ponto 1, grupo CD4	191
Figura C.15 – Representação gráfica da reação nos parafusos, grupo CD4	191
Figura C.16 – Representação gráfica do deslocamento do perfil, grupo CD4	192
Figura C.17 – Representação gráfica da deformação no ponto 2, grupo CD5	197
Figura C.18 – Representação gráfica da deformação no ponto 1, grupo CD5	197
Figura C.19 – Representação gráfica da reação nos parafusos, grupo CD5	197
Figura C.20 – Representação gráfica do deslocamento do perfil, grupo CD5	198
Figura D.1 – Deformação em função da força no furo, Chapa CH1	200
Figura D.2 – Deformação em função do deslocamento, Chapa CH1	200
Figura D.3 – Deformação em função da força no furo, Chapa CH2	201
Figura D.4 – Deformação em função do deslocamento, Chapa CH2	201
Figura D.5 – Deformação em função da força no furo, Chapa CH3	202
Figura D.6 – Deformação em função da força no furo, Chapa CH3	203
Figura D.7 – Deformação em função da força no furo, Chapa CH4	204

Figura D.8 – Deformação em função do deslocamento, Chapa CH4	
Figura D.9 – Deformação em função da força no furo, Chapa CH5	
Figura D.10 – Deformação em função do deslocamento, Chapa CH5	
Figura D.11 – Deformação em função da força no furo, Chapa CH1	
Figura D.12 – Deformação em função do deslocamento, Chapa CH1	
Figura D.13 – Deformação em função da força no furo, Chapa CH2	
Figura D.14 – Deformação em função do deslocamento, Chapa CH2	
Figura D.15 – Deformação em função da força no furo, Chapa CH3	
Figura D.16 – Deformação em função do deslocamento, Chapa CH3	
Figura D.17 – Deformação em função da força no furo, Chapa CH4	
Figura D.18 – Deformação em função do deslocamento, Chapa CH4	
Figura D.19 – Deformação em função da força no furo, Chapa CH5	
Figura D.20 – Deformação em função do deslocamento, Chapa CH5	
Figura E.1 – Reação nos parafusos, Modelo CN1	
Figura E.2 – Cisalhamento nos parafusos, Modelo CN1	
Figura E.3 – Reação nos parafusos, Modelo CN2	
Figura E.4 – Cisalhamento nos parafusos, Modelo CN2	
Figura E.5 – Reação nos parafusos, Modelo CN3	
Figura E.6 – Cisalhamento nos parafusos, Modelo CN3	
Figura E.7 – Reação nos parafusos, Modelo CN4	
Figura E.8 – Cisalhamento nos parafusos, Modelo CN4	
Figura E.9 – Reação nos parafusos, Modelo CN5	
Figura E.10 – Cisalhamento nos parafusos, Modelo CN5.	

LISTA DE SÍMBOLOS, NOMENCLATURA E ABREVIAÇÕES

2D	- Duas Dimensões
3D	- Três Dimensões
ABNT	- Associação Brasileira de Normas Técnicas
ASTM	- American Society for Testing Materials
AISC	- American Institute of Steel Construction
EUROCODE	- European Committee for Standardization
LRFD	- Load and Resistance Factor Design
NBR	- Norma Brasileira Registrada
UnB	- Universidade de Brasilia
A _p	- Área da seção transversal do parafuso
В	- Força no parafuso
C2 e C3	- Constantes de integração
E	- Módulo de Elasticidade
F_1	- Força de Alavanca
F_{vSd}	- Força cortante de cálculo por parafuso
F_{vRd}	- Resistência de cálculo a força cortante por parafuso
F _{tSd}	- Força de tração de cálculo por parafuso
F _{tRd}	- Resistência de cálculo a força de tração por parafuso
L	- Largura tributária
L _p	- Comprimento do parafuso

М	- Momento resultante
$M_{\rm f}$	- Momento de cálculo
MPa	- Megapascal
kN	- Quilonewton
Р	- Carga em um parafuso
Q	- Força de alavanca
R	- Reação no parafuso
R	- Raio do furo
T _d	- Tração de cálculo do parafuso
V _d	- Cortante de cálculo no parafuso por plano de corte
V _n	- Cortante nominal no parafuso por plano de corte
a	- Distância do centro do furo a borda do perfil
a'	- Distância corrigida do centro do furo a borda
b	- Distância do centro do furo a alma do perfil
b'	- Distância corrigida do centro do furo a alma
d	- Diâmetro do furo do perfil
\mathbf{f}_{y}	- Limite de escoamento
f_{vd}	- Tensão de cisalhamento de cálculo no parafuso
\mathbf{f}_{u}	- Limite de resistência
m	- Distância do centro do furo a borda do perfil
n	- Distância do centro do furo a alma do perfil

р	- Largura tributária
р	- Tensão de referência situada nas regiões mais afastadas do furo
p_0	- Tensão de referência situada nas regiões mais afastadas do furo
tf	- Espessura da chapa do flange do perfil
t	- Espessura da placa
q _u	- Força de Alavanca
r _u	- Reação no parafuso
α	- Parâmetro em função da razão: Q / P
θ	- Ângulo de aplicação da força no furo
θ_1	- Ângulo limite um
θ_2	- Ângulo limite dois
Φ	- Rotação da ligação
Φ_{c}	- Rotação no apoio da conexão real
$\Phi_{\rm s}$	- Rotação no apoio de uma viga bi-apoiada
δ	- Parâmetro função área líquida e total flange
Elg	- Deformação específica normal
ε _{tr}	- Deformação específica transversal
ε1, ε2, ε3 e ε4	- Resistências na ponte de Wheatstone
ν	- Coeficiente de Poisson
Ω	- ohms
δ1, δ2, δ3 e δ4	- Deslocamentos verticais

uz	- Deslocamento vertical no modelo numérico
$\phi_t R_{nt}$	- Resistência de cálculo à tração

 $\phi_{\rm v} R_{\rm nv}$ - Resistência de cálculo à força cortante, por plano de corte

1 – INTRODUÇÃO

As ligações nas estruturas de aço constituem regiões de complexa distribuição de tensão. Diversos são os modelos de comportamento de ligações adotados pelos calculistas, com o intuito de obter a resistência que uma conexão metálica efetivamente possui. Dentre as diversas ligações mais freqüentemente usadas em estruturas de edificações em aço, está a conexão tipo "T" - comumente conhecida na literatura especializada como conexão T-stub. São conexões parafusadas que tipicamente trabalham à tração e servem para ligações do tipo viga-coluna ou viga-tirante e tem sido objeto de estudo nos últimos anos pela comunidade científica (Freitas, 2005; Kulak et al, 2001; Zoetemeyer e Deback, 1972).

Os elementos de uma ligação permitem a transmissão de esforço entre membros estruturais. No cálculo de uma ligação, deve ser feita a verificação de todas as partes que a compõe (chapas metálicas e meios de ligação). Para as conexões tipo T-stub, deve-se fazer a verificação da chapa aparafusada e dos parafusos incluindo o possível efeito alavanca devido à excentricidade entre a força externa aplicada e a linha de parafusos.

A tipologia do ensaio de caracterização do perfil T-stub, por meio da utilização de dois perfis T como componentes de uma ligação, apresenta inconsistência em comparação à fixação com base rígida. A flexibilidade dos perfis conectados tem influência significativa no comportamento destas ligações. Principalmente se estes perfis, ou a montagem do duplo T, não forem perfeitamente simétricos, o que ocorre na maioria dos casos (tirante fixado em viga, ligação viga coluna). Além disso, a tipologia de duplo T é comumente aplicada à chapa de topo sem a consideração de que, em uma ligação viga-pilar, os elementos conectados possuem flexibilidade diferente, ocasionando a mudança dos mecanismos de plastificação e de colapso.

Desta forma conclui-se que para a uma melhor caracterização do conector T-stub como elemento de ligações entre viga-pilar ou tirante-viga, o mais adequado seria testes em laboratório com o conector T-stub fixado a um apoio rígido (Maggi, 2004).

1.1 – MOTIVAÇÃO

Observações experimentais feitas a partir do trabalho de Freitas (2005) mostraram que com a utilização de uma base rígida para fixação do perfil T, o efeito adicional de flexão no flange da conexão T-stub provoca um esforço significante de corte nos parafusos, o que ocasionou a ruptura de parafusos de algumas conexões ensaiadas. Nestes casos ficava evidente a combinação de esforços de tração e cisalhamento nos parafusos, que pode ser observado num dos parafusos ensaiados, conforme é representado na Figura 1.1.a e 1.1.b.

Este esforço cortante está diretamente relacionado à rigidez do flange e pode ser evidenciado como um mecanismo de ruptura da conexão T-stub, associado ao esforço de tração existente no parafuso. Entretanto, este assunto ainda não foi objeto de estudo de trabalhos científicos e as normas não apresentam indicação de como tal esforço pode ser verificado.

Figura 1.1 – a) Flange e parafuso com abertura de um dente; b) Esforços atuantes no parafuso.

Na Figura 1.1.a, nota-se uma acentuada deformação do flange da conexão T-stub ensaiada. Observando a Figura 1.1.b, percebe-se um dente formado no fuste do parafuso correspondente à espessura do flange – forçando, portanto, o fuste do parafuso a romper por cisalhamento combinado com tração.

Desta maneira, este trabalho busca investigar de forma híbrida (experimental e numérica) a força de corte nos parafusos.

1.2 – OBJETIVO

Esta pesquisa tem como objetivo o estudo específico da força cortante atuante nos parafusos de conexão do tipo T – também conhecida na literatura como conexão T-stub, esperando contribuir para esclarecer critérios adicionais que devem ser adotados para o projeto, cálculo e verificação de conexões T-stub. Desta forma, foram definidas algumas metas para se alcançar objetivo desta pesquisa, como se segue:

- Instrumentar de forma adequada pontos do flange, para capturar as deformações decorrentes do cisalhamento, que servirão de base para uma análise híbrida numérico-experimental do cisalhamento, no fuste do parafuso;
- Investigar de forma numérica via MEF, a distribuição do esforço cortante no fuste dos parafusos;
- Através de observações experimentais e numéricas, propor um método híbrido numérico-experimental para a verificação do esforço cortante nos parafusos das conexões T-stub.

1.3 – O QUE HÁ DE NOVO NESTE TRABALHO

O desenvolvimento de um estudo híbrido numérico-experimental para avaliação da força de cisalhamento em parafusos de ligações T, por meio da resolução de um problema inverso ou calibração de um modelo numérico tomando como base os resultados dos ensaios experimentais. Este estudo usa como parâmetros principais, a leitura de deformações na superfície do flange do T-stub com extensômetros elétricos de resistência e a medição do deslocamento global da ligação T-stub, parâmetros usados na calibração do modelo numérico.

1.4 – APRESENTAÇÃO DO TRABALHO

O presente trabalho é constituído de assuntos que abordam aspectos referentes a ligações T-stub, ao comportamento de ligações de aço submetidas ao cisalhamento dos parafusos, ao comportamento de ligações com pinos e ao colapso de ligações T-stub por cisalhamento dos parafusos.

Ao longo deste primeiro capítulo foi apresentada a proposta da pesquisa, incluindo motivação e objetivo.

No capítulo 2 tem-se uma visão geral do comportamento de ligações T-stub, com uma abordagem de modelos existentes para cálculo de esforços e dimensionamento das mesmas, e uma breve revisão sobre trabalhos recentes referentes a esse tipo de ligações.

No capítulo 3 é apresentado um breve histórico sobre resistência a força cortante, parafusos submetidos à tração e força cortante, combinados ou não. O capítulo ainda abrange assuntos referentes ao contato entre pino ou parafuso com furos e modelos híbridos para análise de problemas.

O capítulo 4 trata da metodologia utilizada no presente trabalho, para resolução do problema de ruptura por cisalhamento combinado com tração de parafusos em ligações T-stub.

São descritos, no capítulo 5, todos os aspectos da experimentação física do modelo, tais como: caracterização dos materiais, instrumentação e procedimento utilizados nos ensaios e resultados obtidos.

O capítulo 6 trata dos aspectos para modelagem e simulação de uma ligação T-stub para identificação da força de cisalhamento e aspectos para modelagem e simulação do efeito de pressão na parede do furo do flange de uma ligação, com tipo de elemento utilizado, condições de contorno, considerações sobre análise não linear e resultados obtidos.

No capítulo 7 são apresentadas as comparações entre ensaios experimentais e o estudo numérico, fazendo-se uma análise híbrida numérico-experimental para o estudo da força cisalhante nos parafusos e discussão dos resultados.

Por fim, o capítulo 8 apresenta as conclusões finais deste trabalho, com sugestão para trabalhos futuros sobre o assunto. As referências bibliográficas e os apêndices utilizados no desenvolvimento desta pesquisa são descritos em seguida, finalizando a dissertação.

2 – LIGAÇÕES T-STUB

As ligações produzem descontinuidade geométrica e mecânica nas estruturas. Tais regiões apresentam complexidade na distribuição das tensões (Galambos, 1995). Para uma melhor compreensão dos mecanismos de resistência das conexões faz-se necessário, em muitos casos, a experimentação em laboratório, entre outras experimentações como as de cunho numérico e aquelas puramente teóricas, de forma que o comportamento da conexão seja entendido da forma mais precisa possível (Ribeiro, 1998). O cisalhamento nos parafusos não tem merecido muita atenção nas conexões do tipo "T" (Kulak et al, 2001).

Entender a mecânica de funcionamento de uma ligação parafusada é essencial para se estabelecer a resistência da conexão, incluindo os esforços atuantes nos parafusos, bem como conhecer se aquela conexão se comporta de forma rígida, flexível ou semi-rígida (Figura 2.1) – comportamento este que influencia na distribuição dos esforços numa determinada extensão ou região da estrutura. Uma ligação pode ser classificada de acordo com sua rigidez.

Figura 2.1 – Classificação de acordo com a rigidez (AISC, 1997).

As ligações tipo T são freqüentemente usadas como elemento de ligação entre tirantes e viga ou entre vigas e colunas – conforme ilustrado na Figura 2.2 (a e b). Para uma ligação entre viga e coluna, um parâmetro importante para classificar a conexão em relação à rigidez é a capacidade da mesma em impedir a rotação naquela região de ligação. De acordo com o grau de impedimento das rotações, as conexões podem ser rígidas, semi-rígidas ou flexíveis (AISC, 1997).

Figura 2.2 – a) aspectos de uma ligação coluna-viga; b) conexão T-stub solicitada à tração pura.

Um critério fácil para classificar a rigidez da conexão é comparar a rotação (Φ c) no apoio com a rotação (Φ s) existente numa viga bi-apoiada com mesmas dimensões, ou seja:

Conexão rígida:
$$0\%\phi_{\rm s} \le \phi_{\rm c} < 20\%\phi_{\rm s}$$
 (2.1)

Conexão semi-rígida:
$$20\%\phi_{\rm s} \le \phi_{\rm c} < 80\%\phi_{\rm s}$$
 (2.2)

Conexão flexível:
$$80\%\phi_{\rm s} \le \phi_{\rm c} < 100\%\phi_{\rm s}$$
 (2.3)

Entre vigas e colunas, conectadas com T-stub, é fundamental saber qual é a rigidez da conexão. Apesar do objetivo principal desta pesquisa ser o cisalhamento nos parafusos das conexões tipo "T", é importante observar que a rigidez da conexão e o cisalhamento nos parafusos desta conexão estão relacionados diretamente com a espessura do flange do conector "T" e a possível presença do efeito alavanca (Kulak et al, 2001). O efeito alavanca é provocado pela carga de tração (excêntrica em relação à linha de parafusos) atuante no eixo da alma do perfil T-Stub. Entretanto, consultando-se a literatura (Mistakidis et al, 1997; Nair et al, 1974; Zoetemeyer, 1972; Kato, 1973 e Paker, 1977) nota-se que devido ao efeito alavanca não tem sido estudado de forma correta.

Os estudos experimentais das conexões T-stub, até a ruptura, têm sido elaborados através de duas conexões fixadas uma à outra pelo flange (modelo duplo T-stub), conforme Figura 2.3a. Esta metodologia gera dúvidas quanto aos resultados obtidos em relação ao efeito alavanca e ao efeito do cisalhamento nas cabeças dos parafusos.

Uma opção mais realista é fazer ensaios experimentais e numéricos usando-se uma base rígida para fixar o conector "T-stub" para o ensaio. Quando se usa uma base rígida, menos deformável, para fixação da conexão T-stub, se permite evidenciar melhor o cisalhamento nos parafusos. A Figura 2.3.b mostra a base rígida para fixação do conector T-stub.

Figura 2.3 – a) Modo de ensaio com duplo T; b) Modo de ensaio com base rígida indeformável.

2.1 – ESTUDOS PRELIMINARES SOBRE CONEXÕES T-STUB

Em 1965, Douty e MacGuire através de estudos com ligações viga-coluna, analisaram o comportamento local e global de conexões T-stub. Quanto à análise local da alma do perfil T-stub, não houve necessidade de maiores cuidados, pois ensaios laboratoriais comprovaram que a ligação era capaz de resistir a momentos solicitantes.

Para análise local do flange do perfil, o estudo se concentrou na avaliação do "efeito alavanca", causado pelo esforço de tração, não tendo sido relatado interesse na medição das tensões de cisalhamento no fuste dos parafusos de fixação.

O modelo calcula apenas o aumento da força de tração nos parafusos devido ao efeito alavanca, por meio da expressão analítica para dimensionamento em regime de serviço e a expressão analítica para dimensionamento em regime plástico, sendo a equação (2.4) e equação (2.5), respectivamente. A Figura 2.4 apresenta o modelo estudado por Douty e MacGuire (1965).

Figura 2.4 – Modelo de Douty e MacGuire de 1965 (Kulak et al, 2001).

$$Q = \left[\frac{\left(\frac{1}{2} - \frac{L.t_{f}^{2}}{30.a.b^{2}.A_{p}}\right)}{\frac{3.a}{4.b} \cdot \left(\frac{3.a}{4.b} + 1\right) + \left(\frac{L.t_{f}^{4}}{30.a.b^{2}.A_{p}}\right)}\right] P$$
(2.4)
$$Q = \left[\frac{\left(\frac{1}{2} - \frac{L.t_{f}^{2}}{30.a.b^{2}.A_{p}}\right)}{\frac{a}{b} \cdot \left(\frac{a}{3.b} + 1\right) + \left(\frac{L.t_{f}^{4}}{6.a.b^{2}.A_{p}}\right)}\right] P$$
(2.5)

Para as expressões apresentadas anteriormente, "Q" é a força de alavanca; "L" é largura tributária do parafuso, isto é; a dimensão da base da viga equivalente; " A_p " é a área da seção transversal do parafuso; "P" é a força por parafuso, dada pela divisão da força total de tração do flange da conexão T-stub, dividida pelo número de parafusos tracionados; "t_f" (desenhar na figura) é a espessura do flange; "a" e "b", ver geometria da conexão na Figura 2.4. A carga total 2T representa a reação em cada parafuso.

Struik e Deback em 1969 criaram um novo modelo representado na Figura 2.5 e que se dispunha a abordar os principais fenômenos que influenciam o efeito alavanca, mas nada de relevante é citado em relação aos esforços de cisalhamento nos parafusos, e apenas limitou-se a oferecer resultados quanto à limitação da distância "a" - entre a extremidade da chapa e a linha de parafusos (Kulak et al, 2001). Valores que não sendo respeitados produzem rasgamento entre o furo e a borda do flange do conector "T". O modelo é também simplificado como se fosse uma viga com carga "Q" puntiforme, reação de efeito

alavanca, posicionada na extremidade da chapa, uma força "B" no parafuso, um momento "M" na base entre flange e alma e um momento $M_1 = \propto \delta M$ atuante na região onde existe o furo de passagem do parafuso. α é um fator de segurança e δ um fator que relaciona seção furada com seção não furada da viga equivalente.

Figura 2.5 – Modelo de Struik e Deback de 1969 (Kulak et al, 2001)

As equações (2.6) e (2.7) expressam respectivamente, a força de alavanca "Q", que é o aumento da força de tração nos parafusos, e a espessura mínima para não ocorrer tal efeito alavanca. Nota-se que a força de cisalhamento nos parafusos aparece quando de forma mais acentuada quando a espessura é inferior a espessura sugerida pela equação (2.7).

$$Q = T \left[\frac{\delta . \alpha}{(1 + \delta . \alpha)} \cdot \frac{b}{a} \right]$$
(2.6)

$$t = \sqrt{\frac{4.B.b}{w.fy[1+\delta.\alpha.]}}$$
(2.7)

Em 1974, foi desenvolvido o modelo de Rótulas Plásticas, apresentado originalmente por Zoetmeijer em 1974. Este modelo baseia-se na formação de rótulas plásticas na interseção da alma-flange do T-stub e também na linha de parafusos.

Consideram-se dois mecanismos de colapso: o primeiro (Figura 2.6) tem o colapso do parafuso como fator preponderante para a capacidade última da ligação, existindo duas hipóteses a considerar (Ribeiro, 1998).

Figura 2.6 - Rótulas Plásticas, primeiro mecanismo (Ribeiro, 1998).

A primeira hipótese admite a formação de rótula plástica na interseção entre o flange e a alma da conexão T-stub, antes que seja atingida a força última de tração no parafuso, ou ainda a possibilidade da rótula plástica se formar simultaneamente à ruptura do parafuso. A segunda hipótese considera o flange do T-stub rígido e que a rótula plástica ocorre simultaneamente à ruptura do parafuso.

O segundo mecanismo (Figura 2.7) tem a espessura do flange como o fator preponderante para a capacidade última da ligação. Para que o segundo mecanismo seja possível, a força de alavanca deverá atingir o seu valor máximo, o que ocorrerá quando houver rótula plástica na linha de parafusos (Ribeiro, 1998).

Desta forma foram estabelecidas expressões para a determinação da relação entre a força de alavanca e a força de tração que solicita os parafusos. Estas expressões teóricas ajustadas com resultados experimentais resultam na equação (2.8) que, portanto, representam o efeito alavanca para parafusos tipo A325 (Nair et al, apud Kulak et al, 2001).

Figura 2.7 - Rótulas Plásticas, segundo mecanismo (Ribeiro, 1998).

$$Q = \left(\frac{100.b.d^2 - 18.L.t_f^2}{70.a.d^2 + 12.L.t_f^2}\right) P$$
(2.8)

Onde " t_f " é a espessura da conexão T-stub; "L" é a largura tributária do parafuso; "d" é o diâmetro do parafuso; "P" é a força por parafuso da conexão T-stub; e "Q" e a força de alavanca. Nada é concluído sobre a força de cisalhamento nos parafusos. Entretanto, a expressão anterior, para o cálculo de Q, está ajustada para o sistema de unidades americano, utilizando "polegada" para medidas de comprimento e "libra" para força.

A impossibilidade prática de se dispor de instrumentos de medição na interface da chapa de topo com o flange da coluna, motivou uma pesquisa apresentada por Krishnamurthy (1978), que consistiu, basicamente, na análise de ligações via elementos finitos e na comparação dos resultados com os obtidos através de ensaios em laboratório. Examinando a questão das ligações com chapa de topo, ele aponta que o principal problema da consideração do efeito de alavanca é a consideração de que as forças envolvidas na ligação são concentradas.

Com esta constatação, o diagrama de momentos fletores para a chapa de topo deve apresentar uma variação não-linear, como mostra a Figura 2.8(d), conduzindo a valores de pico sensivelmente menores que os obtidos com a utilização da variação linear dos momentos fletores.

O modelo de Krishnamurthy (1978) considera que a seção transversal da chapa de topo é reduzida pelos furos; que a restrição ao deslocamento da chapa de topo, imposta pelos parafusos, se dá apenas em pontos isolados e que a chapa está submetida à flexão em duas direções. Desta forma, o momento fletor nas proximidades da junção da mesa da viga com a chapa de topo é sempre maior que o momento fletor verificado na linha de parafusos e, portanto, será determinante no dimensionamento. Novamente, este modelo não faz referências à ruptura dos parafusos por esforço de cisalhamento.

Figura 2.8 – Modelo de Krishnamurthy (1978): (a) Geometria; (b) Esforços e bulbo de pressão; (c) Deformada da chapa de topo; (d) Diagrama de momentos fletores.

A verificação da chapa de topo é feita de acordo com a formulação apresentada a seguir.

$$F_1 = \frac{M_1}{S} \tag{2.9}$$

$$M_1 = \frac{F_t p_e}{4} \tag{2.10}$$

Sendo F_t a força de tração transmitida na ligação T-stub.

$$S = C_2 P_e(0, 5 \le C_2 \le 1, 0)$$
(2.11)

Para a espessura do flange do perfil T deve-se usar a equação:

$$t_{ch} = \sqrt{\frac{4M_d}{b(0,9)f_y}}$$
 (2.12)

Sendo f_y o limite de escoamento da chapa do flange e M_d o momento crítico, representado por:

$$M_{d} = C_{3}M_{1}(C_{3} \le 1,0) \tag{2.13}$$

Em 1987 foi proposta uma revisão do modelo de Struik e Deback, considerando que a força não atua exatamente no eixo do parafuso, mas em um ponto entre o centro do furo e a borda da cabeça do parafuso. A força B está localizada na tangente ao furo, a uma distância d/2 do centro da furação. Este efeito afeta a relação Q/P. Kulak et al (1987) propuseram

uma revisão da condição de equilíbrio, corrigindo "a" e "b", como mostra a Figura 2.9. O modelo não faz referência aos esforços de cisalhamento nos parafusos.

Figura 2.9 – Modelo de Struik e Deback revisto em 1987 (Kulak et al, 2001).

As equações (2.14) e (2.15) calculam a força de alavanca e espessura mínima, respectivamente.

$$Q = P \left[\frac{\delta . \alpha}{(1 + \delta . \alpha)} \cdot \frac{b}{a} \right]$$
(2.14)

$$t = \sqrt{\frac{4.B.b^{`}}{w.f_{y}.[1+\delta.\alpha.]}}$$
(2.15)

Nesta pesquisa as conexões foram dimensionadas de acordo com o modelo do Manual Brasileiro para Cálculo de Estruturas Metálicas (1989), que corresponde ao método utilizado pelo AISC. O dimensionamento é baseado no modelo de viga equivalente, no qual é determinada a largura da placa e largura tributária (dimensão da base da viga equivalente), não fazendo referência ao efeito de cisalhamento nos parafusos. O modelo está representado na Figura 2.10.

Figura 2.10 - Variáveis utilizadas na formulação.

Os valores para a carga alavanca (q_u) e a espessura mínima (t_f), são apresentados a seguir, pela equação (2.16) e equação (2.17), respectivamente.

$$q_{u} = \frac{Pb' - M_{u1}}{a'}$$
(2.16)

$$t_{f} \ge \sqrt{\frac{4,44Pb'}{pf_{y}}}$$
(2.17)

O modelo do Eurocode 3 (1993) é uma variação do modelo proposto por Kulak et al (2001), sugerindo os mesmos modos de falha, mas com algumas diferenças na formulação. As dimensões "n" e "m" são medidas a partir do eixo do parafuso. A norma não considera a redução da resistência do material do flange devido à furação para os parafusos, descrita pelo parâmetro "delta" e a dimensão "m" é diminuída de 0,8r, diferente do proposto por Kulak et al (1987), conforme o esquema da Figura 2.11.

Figura 2.11 – Distribuição de forças do modelo Eurocode (Eurocode, 1993).

O Eurocode recomenda o cálculo da tração aplicada ao perfil "T" por parafuso através do menor valor dado pelas equações (2.18), (2.19) e (2.20), que são apresentadas a seguir. No entanto, a norma obedece à mesma metodologia para cálculo da resistência do flange e da força de alavanca.

$$T = \frac{pf_{y}t_{f}^{2}}{2m'}$$
(2.18)

$$T = \frac{B_n n}{n + m'} + \frac{p f_y t_f^2}{4(n + m')}$$
(2.19)

 $T = B_n \tag{2.20}$

Swanson (1999 apud Maggi, 2004), propôs uma modificação no modelo de Kulak, que consiste na mudança da dimensão "m" para considerar a solda da interseção flange-alma ou o raio de curvatura para os perfis laminados, que tem rigidez suficiente para alterar a rótula plástica nessa região, segundo o autor. Desta maneira, para o modelo de Swanson (1999), a dimensão "m", além do reposicionamento da força atuante no parafuso, é diminuída de 0,5r, sendo r a garganta efetiva da solda ou raio de curvatura para perfis laminados. No entanto, a metodologia de cálculo da resistência do flange e da força de alavanca é a mesma proposta por Kulak et al (2001).

Todas as referências apresentadas anteriormente mostram que os modelos se preocupam em determinar a força adicional "Q" por parafuso, devido ao efeito alavanca, bem como verificar a flexão da parte parafusada, mas nada sobre a força de cisalhamento nos parafusos. Nesta pesquisa o cisalhamento será verificado, com o intuito de se ter um novo parâmetro de verificação para os modelos de dimensionamento de conexões T-stub.

2.2 – ESTUDOS RECENTES SOBRE CONEXÕES T-STUB

Mistakidis et al (1997) propôs um modelo numérico para a simulação do comportamento estrutural de conexões aparafusadas de aço do tipo T-stub, em casos onde há o desenvolvimento das zonas do plastificação, efeitos do contato unilateral nas interfaces entre membros da conexão e parafusos.

Foi proposto um modelo bidimensional, em elementos finitos, capaz de descrever a plasticidade, grandes deslocamentos e os efeitos unilaterais de contato. O modelo construído para este estudo é preciso e de fácil uso para a análise de conexões de aço sujeitas a um carregamento de tração, e corresponde a uma simplificação de um modelo tridimensional respectivo. As Figuras 2.12 (a e b) apresentam o esquema da conexão e o modelo 2D proposto em elementos finitos, respectivamente, ilustrando uma metodologia que utiliza o "duplo T" e não proporciona o aparecimento da força cortante no parafuso, comentada anteriormente.

Figura 2.12 – a) Modelo duplo T; b) Discretização da estrutura via MEF (Mistakidis et al, 1997).

Este modelo apresentado anteriormente tem o objetivo de reduzir, de uma maneira segura, o esforço computacional requerido para a análise de conexões aparafusadas em elementos finitos. O modelo foi calibrado com dados adquiridos através da realização de ensaios experimentais. O gráfico força-deslocamento apresentado na Figura 2.13, mostra o desempenho obtido para três modelos de malha, quando submetido a um carregamento estático. Foi utilizado o programa MARC, para análise dos modelos, no entanto a pesquisa não faz menção à ruptura dos parafusos do T-stub por cisalhamento.

Figura 2.13 – Gráfico força-deslocamento para um carregamento estático (Mistakidis et al, 1997).

Matteis et al (2000) estudaram o comportamento de ligações do tipo T-stub, feitas de alumínio. A análise foi desenvolvida por meio de simulação numérica, pelo método de elementos finitos, realizada com o programa ABAQUS. O procedimento foi calibrado com base em alguns resultados experimentais existentes. Pode-se observar, nas Figuras 2.14 (a e b), o modelo geométrico da conexão e a discretização do modelo em elementos finitos.

Figura 2.14 – a) Geometria do modelo duplo T; b) Malha adotada para o flange e parafuso, para o T-stub de alumínio (Matteis et al, 2000).

A análise foi realizada através do estudo do comportamento de diversos parâmetros, mostrando que, ao contrário das conexões de aço, os mecanismos do colapso não podem ser determinados claramente, devido a uma transição mais gradual observada na conexão. Esta é conseqüência principalmente da forte influência das características endurecimento da liga de alumínio.

A Figura 2.15 mostra a calibração do modelo numérico com o ensaio experimental, de forma que o melhor resultado foi encontrado para o modelo com ordem reduzida de integração para os elementos.

Figura 2.15 – Comparação dos resultados numéricos e experimentais (Matteis et al, 2000).

Gantes e Lemonis (2003) desenvolveram um modelo 3D em elementos finitos para conexões de aço do tipo T-stub. O comportamento não-linear geométrico e físico, assim como o contato e a fricção foram considerados no modelo. O modelo foi validado pela comparação com dados experimentais encontrados na literatura, para configurações que exibem mecanismos diferentes de falha e que caracterizam níveis diferentes de pré-carregamento para os parafusos. O impacto do comprimento do parafuso, considerado no modelo, é mostrado e investigado de forma preliminar. Nas Figuras 2.16 (a e b), é apresentada a geometria dos modelos e a deformada do modelo de elementos finitos utilizado na pesquisa.

Figura 2.16 – a) Modelos duplo T utilizados na pesquisa; b) Deformada do modelo feito em MEF (Gantes e Lemonis, 2003).

A seguir, na Figura 2.17 (a e b), são apresentados gráficos comparando o deslocamento total da conexão entre os modelos numéricos e experimentais. Os gráficos indicam ótimos resultados para o modelo IPE300, que possui menor rigidez. Contudo, o trabalho não faz nenhuma referência aos esforços de cisalhamento nos parafusos.

Figura 2.17 – a) Relação força-deslocamento sem pré-tensão nos parafusos para o modelo IPE300; B) Relação força-deslocamento sem pré-tensão nos parafusos para o modelo IPB220 (Gantes e Lemonis, 2003).

Coelho et al (2004) apresenta e discute resultados de 32 testes em conexões aparafusadas do tipo T-stub, compostas de placas soldadas. A pesquisa foi concentrada principalmente em perfis laminados como elementos do T-stub. Para estender este modelo para o caso de placas soldadas como elementos do perfil T-stub, um programa teste foi desenvolvido na Delft University of Technology e é relatado neste trabalho. A Figura 2.18 mostra alguns modelos de perfis utilizando o duplo T para o ensaio de tração, apresentados neste trabalho.

Figura 2.18 – Modelos utilizados na pesquisa (Coelho et al, 2004).

O trabalho apresenta uma verificação do comportamento deste tipo de conexão, em termos de resistência, rigidez, capacidade de deformação e modos de falha, em particular. As variáveis chaves testadas incluem a espessura da abertura da solda, o tamanho do T-stub, o

tipo e o diâmetro dos parafusos, a classe do aço, a presença de reforçadores transversais e a orientação do T-stub, mas não faz referência a ruptura dos parafusos por cisalhamento. Os resultados mostram que o procedimento de soldagem é particularmente importante para assegurar um comportamento dúctil da conexão. A maioria das conexões sofreu falha pela tensão de fratura dos parafusos após escoamento significativo dos flanges. Entretanto, algumas conexões mostraram danos prematuros do material da placa próximo ao pé da solda. Uma solução para este problema seria fixando exigências ao metal solda que será usado. Na Figura 2.19, pode-se ver relação carga total x deslocamento para dois perfis T-stub, ensaiados pela metodologia de duplo T.

Figura 2.19 – Relação carga total x deslocamento para dois perfis T-stub (Coelho et al, 2004).

Maggi (2004) apresenta um estudo sobre ligações parafusadas viga-pilar com chapa de topo estendida, com uma análise numérica e experimental sobre o comportamento destas ligações.

O Trabalho discutiu, em particular, o comportamento da chapa de topo e dos parafusos, para a determinação da capacidade resistente destas conexões.

A análise numérica é utilizada como base para as discussões do trabalho e inclui modelos tridimensionais de ligações com chapa de topo estendida e de ligações duplo T. A ilustração da geometria e do ensaio da conexão dupla T são apresentados nas Figuras 2.20 (a e b).

Figura 2.20 – a) Geometria do Perfil duplo T estudado – protótipo TSC; b) Condições de instrumentação no ensaio da conexão duplo T (Maggi, 2004).

O trabalho observa os mecanismos de transferência de esforços entre viga e pilar e os mecanismos de plastificação da chapa de topo e dos parafusos, avaliando-se as linhas de plastificação na chapa de topo em confronto com a metodologia proposta pelo Eurocode 3 na determinação dos perfis T equivalentes. Para estes fatores, observou-se que os modos de falha indicados pelo Eurocode 3 não representam satisfatoriamente o comportamento das ligações analisadas. A seguir, na Figura 2.21, Maggi (2004) apresenta resultados através da curva força x deslocamento para diversos perfis com a geometria apresentada anteriormente, ensaiados pela metodologia de ensaio duplo T. Os resultados mostram o aumento da resistência do perfil com a variação da espessura do flange das conexões.

Figura 2.21 – Curvas força-deslocamento para a geometria de protótipo TSC (Maggi, 2004)

Freitas (2005) fez uma investigação experimental, numérica e analítica das conexões do tipo "T-stub" fixadas em base rígida. A resistência destas ligações foi investigada com ensaios experimentais e também através de simulações numérico-computacionais através de análises lineares e não-lineares pelo método dos elementos finitos. A distribuição espacial das forças de contato entre a placa da conexão "T-stub" e a base rígida de fixação foi também examinada via método numérico considerando-se elementos de contato do tipo "gap" entre a conexão e a base. A seguir, nas Figuras 2.22 (a e b), pode-se observar o modelo de ensaio das conexões e os modelos discretizados em elementos finitos.

Figura 2.22 – a) Esquema de ensaio utilizando uma base rígida; b) Discretização dos modelos em elementos finitos estudados na pesquisa (Freitas, 2005).

O Trabalho detectou o aumento das forças de reação que ocorre nos parafusos de fixação e foram desenvolvidas formulações analíticas para a determinação da posição da resultante das forças de contato responsáveis pelo efeito alavanca. Também foram apresentadas formulações para o cálculo das reações nos parafusos cujos resultados foram comparados com os valores experimentais, numérico-computacionais e também aqueles obtidos de recomendações técnicas. Logo a seguir, na Figura 2.23, são mostrados alguns resultados da pesquisa, por meio de formulação analítica, modelo numérico e experimental, para perfis de dois furos sem pré-tensão nos parafusos – Caso1, e com pré-tensão nos furos – Caso2.

Figura 2.23 – Comparação dos resultados analíticos, experimentais e numéricos para perfis de dois furos (Freitas, 2005).

Abolmaali et al (2006) compara as características da energia dissipativa de perfis parafusados T-stub usando conexões de perfil e pinos de liga SMA – uma liga metálica com cristalização controlada por resfriamento, para se ter o controle do comportamento elástico, e pinos de aço. A fase inicial do estudo se focalizou na otimização do efeito superelástico do SMA usando duas temperaturas de tratamento de calor diferentes. As conexões foram sujeitas à ruptura por tração para determinar a tensão de transformação, resistência à tração, e a tensão da fratura.

Além do ciclo baixo de fadiga, os testes foram efetuados para examinar as características da energia dissipativa do calor superelástico dos SMAs tratado às duas temperaturas. Dado um ciclo as amostras eram levadas à ruptura por tração para determinar o efeito de um ciclo de fadiga na tensão de transformação, na resistência à tração e na tensão na fratura. Resultados dos testes mecânicos foram analisados para determinar a temperatura de tratamento de calor perfeita, que resultou em menos tensão residual e energia dissipativa maior. A Figura 2.24 mostra o histórico de carregamento para uma das ligações T-stub ensaiada na pesquisa, por meio da metodologia de duplo T-stub.

Figura 2.24 – Histórico de carga para uma ligação T-stub (Abolmaali et al, 2006).

A segunda fase do estudo envolveu a conexão T-stub e pinos SMA e pinos de aço, com dupla rosca, conectados a haste. O tratamento do calor ótimo determinado na primeira fase foi usado desenvolver os pinos de SMA para os testes da conexão T-stub. Os resultados dos testes experimentais de histerese do perfil T-stub foram usados para comparar a capacidade de dissipação da energia das conexões com pinos de aço e pinos SMA. Nas Figuras 2.25 (a e b) pode se ver os pinos de SMA e o ensaio da conexão T-stub. Usando a metodologia de duplo T, a pesquisa não obteve nenhuma ruptura de pinos por cisalhamento.

Figura 2.25 – a) Pinos utilizados no ensaio; b) Ensaio da conexão T-stub (Abolmaali et al, 2006).

Segundo Maggi (2004), a validade da tipologia do ensaio de caracterização do perfil T-stub como componente de uma ligação apresenta algumas discordâncias. A flexibilidade dos perfis conectados tem influência significativa no comportamento destas ligações, principalmente se estes perfis, ou a montagem do duplo T, não forem perfeitamente simétricos, que ocorre na maioria dos casos. Além disso, a tipologia de duplo T é comumente aplicada à chapa de topo sem a consideração de que, em uma ligação viga-

pilar, os elementos conectados possuem flexibilidade diferente, ocasionando a mudança dos mecanismos de plastificação e de colapso. O autor conclui que para a caracterização de perfil T-stub como componente de ligações que utilizam este dispositivo para unir vigas e pilares, testes com perfil T-stub conectado a um apoio rígido seria mais adequado.

Os trabalhos apresentados neste tópico mostram que a comunidade científica ainda usa como tipologia de ensaio para perfil T-stub o duplo T. Freitas (2005), em seus ensaios na UnB, utilizando uma base rígida como apoio para o T-stub, observou o colapso de parafusos da conexão por cisalhamento. Vale ressaltar que este efeito ainda não foi investigado por outros pesquisadores, em razão da metodologia de ensaio com duplo T não permitir o aparecimento do cisalhamento do parafuso.

3 – PARÂMETROS PARA ESTUDO DO CISALHAMENTO

Para o entendimento do efeito de cisalhamento nos parafusos de uma ligação T-stub, é necessário se ter o conhecimento teórico de alguns aspectos importantes, tais como: resistência de ligações à força cortante, parafusos sob tração e força cortante (combinadas) e parafusos sob força cortante combinada ou não com tração. A fim de se ter uma investigação mais ampla do problema, deve-se abordar o assunto com técnicas mais amplas, isto é, por meio de ensaios experimentais, modelos analíticos e modelos numéricos, e com utilização de modelos híbridos para realização da análise.

3.1 – RESISTÊNCIA DE LIGAÇÕES À FORÇA CORTANTE

Em ligações parafusadas, nas quais a força resultante é perpendicular ao eixo dos parafusos, a transmissão da força acontece por meio de dois mecanismos: por contato do corpo do parafuso nos respectivos furos e o atrito mobilizado entre as partes.

Kulak et al (2001) mostra que através de uma análise do comportamento resistente de uma conexão, com uma linha de parafusos, submetida a uma força atuante crescente (Figura 3.1), se podem observar os seguintes comportamentos:

• Transmissão da força pelo atrito produzido nas extremidades, não havendo deslizamentos, em fase inicial, conforme Figura 3.1.a;

• Após a superação do atrito nas extremidades, ocorre o contato destes parafusos das extremidades na parede dos furos, ocorrendo pequenas deformações e deslocamentos nestas regiões, conforme Figura 3.1.b;

• Com o aumento da força, a zona de deslizamento vai para a porção central da conexão, até que a resistência global ao atrito seja vencida, com o surgimento de elevadas deformações de deslizamentos relativos, em função das folgas existentes entre furos e parafusos, conforme Figura 3.1.c;

• Por fim, os parafusos e o metal base das extremidades sofrem elevadas deformações e conseqüentemente atingem a plastificação. Haverá uma uniformização da força transmitida, fenômeno este diretamente proporcional a maior ductilidade dos aços envolvidos, conforme Figura 3.1.d;

26

Figura 3.1 – Estágios de carregamento numa conexão parafusada; força cortante nos parafusos em função do estágio de carregamento (Kulak et al, 2001).

Em conexões com muitos parafusos (seis ou mais), há uma provável a ocorrência de falha nos parafusos extremos antes que ocorra a uniformização da força entre os parafusos, uma vez que podem ocorrer grandes deformações nas extremidades da conexão. Entretanto, em conexões com poucos parafusos, é provável a ocorrência desta uniformização, uma vez que as deformações e deslizamentos observados atingem valores relativamente pequenos (Valenciani, 1997).

Os ensaios de parafusos submetidos à força cortante podem ser realizados através da aplicação de carga de tração ou compressão em chapas constituintes dos corpos de prova, como o modelo de ensaio apresentado na Figura 3.2. Kulak et al (2001) apresenta resultados típicos (Figura 3.2) de ensaios em parafusos ASTM A325 e ASTM A490. O gráfico permite observar, como já era esperado, que os parafusos A490 apresentam maior resistência à força cortante e menor ductilidade que os parafusos A325.

Figura 3.2 – Curvas típicas de tensão de cisalhamento vs deslocamento relativo para parafusos A325 e A490 (Kulak et al, 2001).

Através de análises experimentais verifica-se que a razão entre a resistência à força cortante e a resistência à tração não depende do tipo de aço. A resistência à força cortante média é aproximadamente 62% da resistência à tração, que está de acordo com o critério de resistência de Von Mises. Ensaios experimentais também têm mostrado que a força de aperto nos parafusos (pré-tração) não tem efeitos significativos na resistência à força cortante do mesmo, alterando apenas o atrito mobilizado entre as partes da conexão, e conseqüentemente o instante em que ocorre o deslizamento (Kulak et al, 2001).

3.2 – PARAFUSOS SOB TRAÇÃO E FORÇA CORTANTE COMBINADOS

O comportamento de conexões parafusadas sob esforços isolados é relativamente complexo, a atuação dos dois esforços conduz a uma situação ainda mais complexa de se entender (Owens e Cheal, 1989 apud Valenciani, 1997).

Em boa parte das conexões por contato, ocorre o efeito simultâneo de cargas de tração e cortante nos parafusos, correspondendo a uma situação mais desfavorável que a atuação dos dois esforços isoladamente. A seguir, na figura 3.3, são mostradas fraturas típicas para a combinação dos esforços de cisalhamento e tração, segundo Kulak et al (2001).

Figura 3.3 – Ruptura de pinos: combinação cisalhamento e tração (Kulak et al, 2001).

Owens e Cheal (1989 apud Valenciani, 1997) apresentam um gráfico (Figura 3.4) com a interação entre os dois esforços, tendo como referência as relações entre os esforços atuantes e a resistência a tração. Para considerar esta atuação simultânea dos dois esforços, deve-se notar a variação na relação resistência à força cortante pela resistência a tração. Os autores indicam a relação de 0,63 a 0,68 para rosca inclusa no plano de cisalhamento e a relação de 0,75 a 0,89 para rosca fora do plano de cisalhamento.

Figura 3.4 - (a) Diagrama de interação para parafusos comuns sob combinação de tração e força cortante; (b) aproximação do AISC/LRFD 1996 e NBR 8800.
Adaptados (Owens e Cheal, 1989 e Salmon e Johnson, 1996 apud Valenciani, 1997).

Para a avaliação da resistência, adota-se uma expressão circular para definir a região de segurança, dada pela equação (3.1). O AISC/LRFD 1996 e a NBR 8800 (1986) simplificam a equação de interação circular, e adotam três trechos lineares, como mostra a Figura 3.4(b). O modelo despreza a influência da força cortante na reta horizontal e despreza a influência da tração na reta vertical. O trecho inclinado da Figura 3.4 (b) é expresso pela equação (3.2).

$$\left(\frac{T_{d}}{\varphi_{t}R_{nt}}\right)^{2} + \left(\frac{V_{d}}{\varphi_{v}R_{nv}}\right)^{2} \le 1,0$$

$$\left(\frac{T_{d}}{\varphi_{t}R_{nt}}\right) + \left(\frac{V_{d}}{\varphi_{v}R_{nv}}\right) = C$$
(3.1)
(3.2)

sendo: T_d = tração de cálculo do parafuso

 V_d = cortante de cálculo no parafuso, por plano de corte

 $\phi_t R_{nt}$ = resistência de cálculo à tração

 $\phi_v R_{nv}$ = resistência de cálculo à força cortante, por plano de corte

C é aproximadamente igual a 1,25 (valor adotado).

Isolando T_d na equação (3.2), tem-se:

$$T_{d} = C\varphi_{t}R_{nt} - V_{d}\left(\frac{\varphi_{t}R_{nt}}{\varphi_{v}R_{nv}}\right)$$
(3.3)

As expressões de tração e força cortante combinadas, contidas na NBR 8800 (Tabela 3.1), são originárias da substituição dos valores de $\varphi_t R_{nt}$, $\varphi_v R_{nv}$ e C =1,25, para cada tipo de parafuso, na equação (3.3).

Tabela 3.1 – Tração e força cortante combinadas, segundo NBR 8800.

Tipo de Parafuso	Limitação adicional do valor de resistência de cálculo à tração por parafuso ou barra rosqueada		
Parafusos ASTM A307 ou ISO 4.6, ASTM A449 (d>38mm) e barras rosqueadas em geral	$\phi_t R_{nt} \leq 0.64 f_u A_p$ -1,93 V_d		
Parafusos ASTM A325 e A490			

 $V_{d} \mbox{ \' e}$ a força cortante por plano de corte.

Na Tabela 3.2 são apresentadas as limitações de resistência, segundo as normas AISC/LRFD 93 e AISC/ASD, para conectores sujeitos à tração, força cortante e tração e força cortante combinadas, para conexões por contato.

	AISC/LRFD			AISC/ASD		
Tipo de conector	Tração ^(c) MPa	Força Cortante ^(c) MPa	Tração e Força Cortante Combinadas ^(c) MPa	Tração MPa	Força Cortante MPa	Tração e Força Cortante Combinadas MPa
Parafuso A307	310 ^(d)	165 ^(g, h)	407-1,97f _{vd} ≤310 ^(g)	138 ^(d)	69 ^(g, h)	179-1,8f _{vd} ≤138
Parafuso A325 ^(a)	621 ^(e)	330 ^(h)	807-1,9f _{vd} ≤621	303 ⁽ⁱ⁾	145 ^(h)	$(303^2 - 4.39 f_{vd}^2)^{0.5}$
Parafuso A325 ^(b)	621 ^(e)	413 ^(h)	807-1,5f _{vd} ≤621	303 ⁽ⁱ⁾	207 ^(h)	$(303^2 - 2,15f_{vd}^2)^{0,5}$
Parafuso A490 ^(a)	779 ^(e)	413 ^(h)	1010-1,9f _{vd} ≤779	372 ⁽ⁱ⁾	193 ^(h)	$(372^2 - 3.75 f_{vd}^2)^{0.5}$
Parafuso A490 ^(b)	779 ^(e)	517 ^(h)	1010-1,5f _{vd} ≤779	372 ⁽ⁱ⁾	276 ^(h)	$(372^2 - 1.82 f_{vd}^2)^{0.5}$
Barras rosqueadas e paraf. A449 (d>38mm) ^(a)	0,75 _{fu} ^(d)	0,40 _{fu}	0,98f _u -1,9f _{vd} ≤0,75f _u	0,33 _{fu} ^(d)	0,17 ^(h)	0,43f _u -1,8f _{vd} ≤0,33f _u
Barras rosqueadas e paraf. A449 (d>38mm) ^(b)	0,75 _{fu} ^(d)	0,50 _{fu} ^(d)	0,98f _u -1,5f _{vd} ≤0,75f _u	0,33 _{fu} ^(d)	0,22 ^(h)	0,43f _u -1,4f _{vd} ≤0,33f _u
Rebites A502 tipo 1	310 ^(d)	172 ^(h)	407-1,8f _{vd} ≤310	158 ^(d)	120 ^(h)	207-1,3f _{vd} ≤158
Rebites A502 tipo 2	414 ^(d)	227 ^(h)	538-1,8f _{vd} ≤414	200 ^(d)	152 ^(h)	262-1,2f _{vd} ≤200

Tabela 3.2 - Resistência de conectores segundo o AISC/LRFD e AISC/ASD.

- (a) Rosca no plano de cisalhamento
- (b) Rosca fora do plano de cisalhamento
- (c) Esses valores são resistências nominais e devem se multiplicadas por $\emptyset = 0,75$, para se obter as resistências de cálculo
- (d) Somente carregamento estático
- (e) Para parafusos A325 e A490 sujeitos a fadiga
- (g) Roscas permitidas no plano de cisalhamento

(h) Quando houver conexões por contato usadas para unir perfis tracionados, possuem um comprimento paralelo a linha da força, que exceder 1270mm, os valores deverão ser reduzidos em 20%

(i) Para parafusos A325 e A490 sujeitos a fadiga

(k) Quando as tensões admissíveis são aumentadas por efeitos sísmicos ou ventos, as constantes nessas fórmulas deverão ser aumentadas por 1/3, mas os coeficientes de f_{vd} não deverão ser aumentados.

A norma EUROCODE 3 recomenda, para parafusos sujeitos a força cortante e tração, a seguinte condição:

$$\frac{F_{vSd}}{F_{vRd}} + \frac{F_{tSd}}{1.4F_{tRd}} \le 1.0$$
(3.4)

Sendo: F_{vSd} = Força cortante de cálculo por parafuso (valor correspondente a V_d)

 F_{vRd} = Resistência de cálculo a força cortante por parafuso

 F_{tSd} = Força de tração de cálculo por parafuso (valor correspondente a T_d)

 F_{tRd} = Resistência de cálculo a força de tração por parafuso

3.3 – PARAFUSOS SOB FORÇA CORTANTE COMBINADA OU NÃO COM TRAÇÃO

Segundo Owens e Cheal (1989 apud Valenciani, 1997), em conexões por atrito, a força é inicialmente transferida pelo atrito mobilizado entre superfícies em contato, como mostra a Figura 3.5. No início a estrutura mostra um pequeno deslizamento devido ao ajuste entre as irregularidades das superfícies de contato, gerando uma alta rigidez, que é uma característica importante de conexões por atrito. Na medida que se aumenta a força de contato, as irregularidades iniciam o processo de plastificação por cisalhamento, que proporciona o aumento do deslizamento. No momento em que a força se iguala a força de atrito estático, ocorre um repentino movimento, que poderá colocar o parafuso em contato com a parede do furo. Caso contrário, só haverá um deslizamento parcial. Após este instante, qualquer deslizamento poderá provocar o contato do parafuso com a parede do furo.

Figura 3.5 – Comportamento força-deslizamento em conexão com um único parafuso de alta resistência de 19 mm de diâmetro, em cisalhamento duplo (Owens e Cheal, 1989 apud Valenciani, 1997).

Havendo o contato, a força é transmitida parcialmente pelo contato e atrito. O aumento das tensões de cisalhamento associadas às elevadas tensões de tração provenientes da prétração promove a plastificação do parafuso, que induz a uma redução na pré-tração, provocando uma redução na força de atrito. Portanto, no estado limite último, pode ser assumida a total transferência da força por contato (Owens e Cheal, 1989 apud Valenciani, 1997).

3.4 – PRESSÃO DE CONTATO ENTRE PINO E FURO CIRCULAR

Muitos estudos já foram realizados para investigar os efeitos da pressão de contato entre pino e furo, de forma analítica, numérica e experimental. Entretanto, para este tipo de problema, os métodos experimentais e numéricos não produzem soluções matemáticas precisas, de forma quantitativa, em conseqüência da quantidade elevada de combinações possíveis de parâmetros envolvidos. O modelo numérico tridimensional, por exemplo, pode fornecer uma simulação detalhada dos efeitos que ocorrem na borda do furo e parafuso, bem como nas regiões vizinhas ao furo. Contudo, os métodos numéricos tridimensionais têm o inconveniente de ter um custo computacional mais elevado (Echavarría et al, 2007).

Persson (1998) fez uma análise tridimensional em elementos finitos, para determinar as tensões em uma lamina de material compósito, com um furo carregado com pino. A exatidão do modelo computacional foi estabelecida pela comparação com medidas de calibração de tensão, próximo e longe do limite do furo. Uma técnica de emissão acústica foi utilizada para determinar a carga inicial da falha, enquanto a conexão foi sujeita a uma taxa de carregamento quase estática.

As conexões foram examinadas entre cada etapa de carga por meio de radiografia e micrografia, com a finalidade de detectar a iniciação da falha. O local da iniciação da falha e o nível correspondente da carga foram obtidos aplicando o critério da densidade da energia de tensão. Os parâmetros críticos foram extraídos de medidas experimentais e de análise em elementos finitos. A seguir, na Figura 3.6, se encontra o modelo numérico utilizado pelo pesquisador.

Figura 3.6 – Modelo numérico de uma ligação com pino discretizado pelo método dos elementos finitos (Persson, 1998).

Ireman (1998) criou um modelo tridimensional (Figura 3.7 b) em elementos finitos de ligações parafusadas, em materiais compósitos, para determinar a distribuição de tensão não uniforme na região próxima a furo da ligação. Um programa experimental foi conduzido para medir deformações, tensões e carga do parafuso, em corpos-de-prova, para a validação do modelo numérico.

As Figuras 3.7.a e 3.7.b apresentam um esquema representativo da ligação e a discretização em elementos finitos da mesma. As tensões do sentido radial foram medidas na vizinhança do furo, no plano de corte do parafuso, entre as placas. Nos ensaios experimentais, foram considerados alguns parâmetros tais como a espessura da lamina, o diâmetro do parafuso, o tipo do parafuso e a força de pré-tensão, entre outros.

Cada configuração de ligação ensaiada experimentalmente, também foi analisada usando o método de elementos finitos, através de modelos tridimensionais. A comparação entre resultados numéricos e experimentais se mostrou coerente. Na Figura 3.8, pode-se observar a comparação dos resultados numéricos e experimentais referente ao deslocamento relativo entre as chapas da ligação.

Figura 3.7 – a) Esquema analítico da ligação; b) Discretização da ligação pelo método dos elementos finitos (Ireman, 1998).

Figura 3.8 – deslocamento relativo entre as chapas da ligação (Ireman, 1998).

Ju et al (2004), por meio do método dos elementos finitos, desenvolveram um modelo tridimensional elastoplástico (Figura 3.9.a e 3.9.b) para estudar o comportamento estrutural de ligações parafusadas de aço. Os resultados numéricos foram comparados com os dados de especificação da norma AISC. A similaridade encontrada entre as metodologias foi satisfatória, apesar de se observar uma grande complexidade na distribuição dos campos de tensão, durante os estágios de carregamento.

Figura 3.9 – a) Perspectiva do modelo numérico discretizado; b) Detalhe do refinamento da malha de elementos na região dos furos nas placas (Ju et al, 2004).

Os autores concluem que para a ruptura da placa, em uma estrutura com ligação parafusada, a relação entre carga aplicada e K_I (fator de intensidade de tensão), se aproxima de uma relação linear, em que a parte não-linear é somente um décimo da relação total, aproximadamente. Isto significa que os modelos mecânicos elásticos lineares de fratura podem ser aplicados em problemas comuns de ligações parafusadas. As prováveis regiões para o aparecimento de fratura, segundo o modelo numérico, podem ser vistas na Figura 3.10.

Figura 3.10 – Locais com fratura na chapa (Ju et al, 2004).

Moses e Prion (2004) propuseram um modelo baseado na elasticidade ortotrópica e na plasticidade anisotrópica, para o estudo do comportamento não-linear na compressão em uma ligação com pino, com o objetivo de diagnosticar a falha frágil da ligação. Este modelo tridimensional foi executado por meio da análise em elementos finitos, e foi implementado para dois modelos principais: um modelo de bloco de cisalhamento entalhado e um modelo de conexão com um parafuso. Os resultados numéricos foram comparados com os dados extraídos dos ensaios experimentais, e apresentaram informações importantes sobre carga deslocamento, resistência última de ruptura e modalidades de falha das conexões.

A seguir, nas Figuras 3.11a e 3.11.b, é mostrado o esquema de ensaio da ligação e as características do modelo numérico confeccionado para representar o ensaio da ligação. A Figura 3.12 apresenta os resultados numéricos de análise das tensões de cisalhamento da ligação.

Figura 3.11 – a) Esquema de ensaio da ligação; b) Características do modelo numérico (Moses e Prion, 2004).

Figura 3.12 – Análise numérica das tensões de cisalhamento (Moses e Prion, 2004).

McCarthy et al (2005) desenvolveram modelos tridimensionais, em elementos finitos, para estudar os efeitos do comportamento mecânico de afastamento furo-parafuso, de ligações compósitas de epóxi aparafusadas. Foi utilizado um tipo comum de ligação, com apenas um parafuso, que é uma configuração padrão de ensaio para testes realizados em conexões de materiais compósitos. Os modelos para análise das ligações foram não-lineares. A dificuldade para modelar o contato entre as peças da ligação, que afetam a exatidão e a eficiência do modelo, é apresentada na pesquisa. Nas Figuras 3.13.a e 3.13.b, são

apresentados o esquema do modelo de ligação adotado na pesquisa e a representação do mesmo em elementos finitos, respectivamente.

Figura 3.13 – a) Geometria da ligação; b) Representação da ligação pelo método de elementos finitos, por meio da discretização de todos os elementos componentes da ligação (McCarthy et al, 2005).

As medidas experimentais das tensões de superfície e a rigidez foram comparadas com os resultados do estudo em elementos finitos, que envolve parâmetros como as variações na densidade de malha de elementos, nas condições limites, no tipo da análise e o modelo do material utilizado. O modelo é usado para investigar os efeitos do afastamento na ligação e o estado de tensões no período de iniciação de falhas. Na Figura 3.14, pode-se observar a distribuição de deformação radial, com a utilização de um modelo analítico para o contato entre parafuso e placa.

Figura 3.14 – Distribuição da deformação radial (McCarthy et al, 2005).

Karakuzu et al (2006) estudaram a força de apoio, os modos de falha e a carga de falha em uma placa laminada composta de resina "vinylester", com um furo circular sujeito a uma força da tração por um pino rígido. Na investigação foram utilizadas duas variáveis; a relação entre a distância do bordo livre da placa à extremidade do furo e o diâmetro do furo – E/D, e a relação entre a largura da placa e o diâmetro do furo – W/D, numericamente e experimental. O estudo numérico foi realizado usando o método de elementos finitos, com o auxílio do programa de análise em elementos finitos LUSAS 13.4. Os resultados experimentais a respeito da progressão dos danos e da força final da ligação foram obtidos e comparados com as análises numéricas. A seguir, pode-se observar o esquema de ensaio da ligação e o modelo em elementos finitos criado para representar a ligação, por meio das condições de contorno e carregamento, conforme as Figuras 3.15.a e 3.15.b. A Figura 3.16, mostra a relação carga-deslocamento do pino, para diferentes relações E/D e W/D.

Figura 3.15 – a) Esquema de ensaio da ligação com uma placa laminada composta de vidro; b) Modelo numérico em elementos finitos que representa a ligação (Karakuzu et al, 2006).

Figura 3.16 – Relação carga-deslocamento do pino em diferentes modelos (Karakuzu et al, 2006).

Ekh e Schön (2006) desenvolveram um modelo tridimensional, em elementos de contorno, a fim de determinar a transferência de carga de cisalhamento em ligações com pinos. O modelo foi baseado em elementos contínuos, e contêm todos os mecanismos importantes envolvidos na transferência da carga, tal como afastamentos dos parafusos, aperto e fricção no parafuso. Foi desenvolvido um programa experimental com a finalidade de validar o modelo em elementos finitos, fazendo-se as medidas de cargas na ligação por meio de instrumentação da mesma. As características do tipo de conexão investigada na pesquisa são apresentadas na Figura 3.17.a, 3.17.b e 3.17.c.

Figura 3.17 – a) Disposição dos parafusos na conexão; b) Configuração geométrica das chapas; c) Modelo numérico em elementos finitos (Ekh e Schön, 2006).

A pesquisa obteve uma boa relação entre as simulações numéricas e experimentais, mostrando que o afastamento parafuso-furo é fator mais importante em termos de distribuição de carga, entre as ligações estudadas. A variação do afastamento entre furos implica diferentes cargas é deslocada a ligação, onde ocorre o menor afastamento. A seguir, na Figura 3.18, pode-se observar a boa aproximação entre o modelo numérico e o modelo experimental, para a força de transferência de carga referente ao parafuso 2.

Figura 3.18 – Transferência de carga no parafuso 2 (Ekh e Schön, 2006).

Dano et al (2006) desenvolveram um modelo em elementos finitos para prever a resposta de placas compósitas, com furos pino-carregados. O modelo compreende na consideração do contato na interface entre pino e furo, na consideração de danos progressivos, teoria de grande deformação e em uma relação não-linear de tensão-deformação, no cisalhamento do pino. Os objetivos do estudo foram determinar a influência dos critérios da falha e a degradação da placa associadas às análises de tensões em torno do furo e da rigidez do apoio. As análises numéricas foram comparadas com os resultados experimentais. A melhor concordância entre as duas análises (experimental e numérico) foi observada com o critério de máxima tensão. A Figura 3.19 apresenta o modelo numérico utilizado, o qual ilustra as condições de contorno e aplicação de carga do problema estudado. Na Figura 3.20 são mostrados alguns resultados obtidos na pesquisa, por meio da comparação de quatro modelos numéricos com os dados experimentais.

Figura 3.19 - Condições de contorno no modelo numérico (Dano et al, 2006).

Figura 3.20 – Alongamento do furo (Dano et al, 2006).

Grüber et al (2006) também estudaram o problema de concentrações de tensão na região de furos carregados com pino, que é particularmente importante no projeto de estruturas compósitas de fibra estendida reforçada, em multicamadas. Com a finalidade de simular tais zonas do problema, em compósitos de multicamadas anisotrópicas, os métodos analíticos ofereceram vantagens decisivas, em comparação aos métodos numéricos, permitindo tornar mais pesada a influencia dos parâmetros de análise, e neste caminho permitiu uma adequada interpretação física deste fenômeno complexo. A seguir, a Figura 3.21 apresenta o esquema do modelo em elementos finitos desenvolvido na pesquisa, para o estudo de ligações com cargas de formato senoidal, aplicadas no contorno do furo de uma placa.

Figura 3.21 – Modelo em elementos finitos utilizado no trabalho para estudo de ligações com pino (Grüber et al, 2006).

A Figura 3.22, apresenta resultados obtidos por Grüber et al (2006), os quais mostram uma boa aproximação entre os dois modelos numéricos e o modelo analítico, para as tensões radial e tangencial no contorno do furo.

Figura 3.22 – Curvas de tensão no contorno do furo (Grüber et al, 2006).

Echavarría et al (2007) desenvolveram equações para determinar fatores de concentração de força, objetivando a análise de furos pino-carregados em compósitos, mecanicamente fixados. O trabalho fornece uma solução analítica compacta, que representa as tensões em torno de um furo carregado por um pino, em placas ortotrópicas, e é obtida usando funções complexas de tensão. A vantagem desta solução é que a distribuição de tensão em torno do furo pode ser facilmente computada para materiais ortotrópicos ou isotrópicos, com diferentes constantes elásticas. Na Figura 3.23, se encontra o modelo de ligação com dupla lamina, objeto de estudo da pesquisa.

Figura 3.23 – Modelo de ligação com dupla lamina (Echavarría et al, 2007).

Os resultados das equações, para tamanhos diferentes de furo, e as propriedades dos materiais usadas na pesquisa, estão de acordo com os resultados disponíveis na literatura, e apresenta-se com uma boa exatidão.

3.4.1 - Distribuição de pressão na face interna do furo

O conhecimento analítico da distribuição da tensão em torno de furos pino-carregados pode ser muito útil na análise dos resultados de testes experimentais, e na otimização de ligações. Uma análise teórica do comportamento analítico mecânico, de ligações metálicas, é essencial para qualquer estudo experimental ou numérico (Echavarría et al, 2007). As principais considerações para a construção dos modelos analíticos são o plano de contato e o ângulo de contato entre pino e furo, conforme Figura 3.24.

Seção Plana Livre

Figura 3.24 – Esquema de distribuição de cargas em torno de furos pino-carregados (Kelly e Hallström, 2004)

A distribuição de carga em torno do furo pode ser expressa pela função senoidal, como a função $4p[sen(\theta/\pi)]$, expressa na Figura 3.25, em que a força de carregamento F resulta da distribuição simétrica de carga relacionada ao eixo y, que possui magnitude 2pRt, onde p é a tensão de referência situada nas regiões mais afastadas do furo, θ é o ângulo de aplicação da força no furo, R é o raio do furo e t é a espessura da placa (Echavarría et al, 2007).

Figura 3.25 – Esquema de representação de uma carga em torno de um furo, provocada por um pino, por meio de uma função senoidal (Echavarría et al, 2007).

Grüber et al (2006) apresentam uma outra função senoidal (Equação 3.5) que também representa, de forma aproximada, a distribuição de forças normais na borda de um furo. A borda do furo é dividida em duas regiões, a região Γ_{OB} e a região Γ_{SB} , Figura 3.26.a. A condição limite para a carga aplicada na borda pode ser escrita com amplitude resultante p_0 , da força. No trabalho, os pesquisadores supõem que a transmissão da carga, do pino

para furo, acontece de forma simétrica ao eixo *x*. Para o desenvolvimento analítico e numérico do problema, a carga F, que age no pino, é suposta ser constante, conforme Figura 3.25.b.

Figura 3.26 – a) Distribuição de força normal no Contorno do Furo; b) Esquema para consideração da força, que atua no contorno do furo, provocada pelo pino (Grüber et al, 2006).

3.4.2 – Técnica de Instrumentação para estudo do cisalhamento de parafusos

Em razão da grande dificuldade de se instrumentar um ensaio experimental para o estudo do cisalhamento em conexões, no que tange ao estudo de deformações e tensões geradas na placa e nos parafusos, é comum adotar alguns critérios para a investigação, que são: definição de pontos na superfície da chapa, para leitura de deformações; e rigidez da ligação.

MacCarthy et al (2005) instrumentaram quatro conexões com extensômetros de resistência, em pontos específicos. Nos ensaios, se utilizou um carregamento com nível de tensão baixo, para não causar danos detectáveis a conexão, composta por placas de material quase-isotrópico, com uma carga de 5 kN. Foram utilizados extensômetros elétricos de resistência com comprimento de 3 mm, e todos ficaram posicionados no sentindo do carregamento, exceto o extensômetro 7, que foi alinhado no sentido transversal. O extensômetro 2 está na parte interna da placa, no plano de cisalhamento da ligação, e os demais estão na superfície da placa. A seguir, na Figura 3.27, são indicadas as posições dos extensômetros.

Figura 3.27 – Posicionamento dos extensômetros de resistência na instrumentação da placa (MacCarthy et al, 2005).

Iremana (1998) também utiliza extensômetros de resistência situados no plano de cisalhamento da ligação. Os extensômetros situados na vizinhança do furo ficaram dispostos em uma área triangular. Nas posições D e E ficaram situados extensômetros com finalidade de captar alguma excentricidade no trajeto da carga de tração aplicada na ligação. Estas observações são apresentadas na Figura 3.28.a e 3.28.b. A deformação sobre o furo da ligação foi medida por meio de braços de metal ligados a extensômetros, conectados à placa do alumínio em ambos os lados da conexão, conforme Figura 3.28.a.

Figura 3.28 – a) Esquema geral da instrumentação da placa; b) Detalhe do posicionamento dos extensômetros (Iremana, 1998).

Uma série de pesquisas, como as de Persson et al (1998) e Dano et al (2006), também se ocuparam do estudo da distribuição de tensão em torno de furos pino-carregados, em ligações de materiais compósitos, e utilizam a mesma metodologia apresentada nos trabalhos anteriores, como mostram as Figuras 3.29 e 3.30, respectivamente.

Figura 3.29 – Esquema de instrumentação com extensômetros de resistência em placas (Persson et al, 1998).

Figura 3.30 – Esquema de instrumentação com extensômetros de resistência em placas (Dano et al, 2006).

Essa metodologia apresentada anteriormente necessita ser associada a um estudo analítico ou numérico, ou associada a estas duas técnicas, para se ter um bom entendimento do comportamento da tensão nas regiões próximas a cabeça do parafuso e do desenvolvimento de deformações nos pontos instrumentados com extensômetros. Desta forma a técnica utilizada para esta avaliação se configura em um método híbrido.

3.5 – ANÁLISE HÍBRIDA

A primeira forma de aproximação no desenvolvimento de pesquisas no campo da mecânica são os métodos experimentais ou mecânicos experimentais. Os ensaios experimentais fornecem muitos fundamentos importantes relacionados a problemas mecânicos, tais como mecânica da fratura. Entretanto, os métodos experimentais têm diversos inconvenientes intrínsecos. Por exemplo, em alguns problemas de mecânica das fraturas, as medidas são feitas nas superfícies dos corpos, pois não é possível, para as tecnologias experimentais atuais, medir diretamente as variáveis mecânicas no interior de um material opaco (Nishioka, 1999).

A segunda aproximação para problemas mecânicos são os métodos matemáticos analíticos. Os métodos analíticos são de grande importância para o desenvolvimento de problemas mecânicos, em razão de produzirem soluções fechadas do problema e de minimizar o esforço computacional. Entretanto, a maioria dos métodos analíticos não pode resolver os problemas com condições muito complexas, devido as não linearidades envolvidas.

A terceira aproximação consiste nos métodos numéricos, que tem potencial para se transformar no mais poderoso dentre os três métodos, devido ao futuro promissor do desenvolvimento computacional e da possibilidade de representar inúmeros problemas com limitações de estudo no campo experimental e analítico. Entretanto, os métodos numéricos também possuem suas dificuldades intrínsecas, além de exigir um grande esforço computacional para determinados problemas.

Para superar as desvantagens de cada método, e se obter um método mais avançado, muitos tipos de hibridização entre dois ou mais métodos pode ser considerada. Os métodos numéricos híbridos podem ser conceitualmente classificados como mostra a Figura 3.31.

Figura 3.31 – Métodos numéricos híbridos (Nishioka, 1999).

Assim, de acordo com a Figura 3.31, os métodos numéricos híbridos são divididos como:

- 1. Método Híbrido Experimental-Numérico;
- 2. Método Híbrido Numérico-Experimental;
- 3. Método Híbrido Analítico-Numérico;
- 4. Método Híbrido Numérico-Analítico;
- 5. Método Híbrido Numérico-Numérico.

3.5.1 – Estado de hibridização

Como descrito na seção anterior, o método híbrido combina pelos menos dois métodos totalmente diferentes. Considerando a hibridização de dois métodos (A e B), dependendo do estado de conexão entre os dois métodos, pode-se ter o método não-mesclado e o método mesclado, como mostra a Figura 3.32. O método híbrido não-mesclado é indicado para solução de problemas que não podem ser resolvidos por um método individual, A ou B sozinho. No método mesclado, uma parte ou a totalidade do método A pode ser sobreposta ao método B (Nishioka, 1999).

Figura 3.32 – Modelos de hibridização para dois métodos, A e B (Nishioka, 1999).

3.5.2 – Métodos Híbridos Numérico-Experimentais

Alguns métodos experimentais, tal como a instrumentação com extensômetros elétricos de resistência, que é utilizada para medir quantidades em um local característico, fornecem informações limitadas do local instrumentado. Geralmente, neste local instrumentado, os métodos experimentais fornecem informação de primeira ordem. Entretanto, se há necessidade de se ter relações predeterminadas em vários estágios não-lineares de deformação no local instrumentado, deve-se usar um método numérico associado ao experimental. Assim, qualquer método experimental que confiar em relações numericamente determinadas – método não-mesclado, pode ser incluído na categoria dos métodos híbridos numérico-experimentais (Nishioka, 1999).

Furlong e Pryputniewicz (1998) descrevem um fluxograma, na Figura 3.33, de um procedimento híbrido numérico-experimental para a otimização de protótipo. Os pesquisadores frisam que os resultados das comparações entre as análises experimentais e as análises computacionais são de grande importância para o estudo do comportamento de uma estrutura. Quando um grau aceitável de exatidão é obtido, o modelo computacional é

aplicado para executar análises da sensibilidade, com o objetivo de verificar as variáveis especificadas no projeto, de forma a otimizar o projeto inicial.

Figura 3.33 – Fluxograma para um procedimento híbrido numérico-experimental (Furlong e Pryputniewicz, 1998).

4 – METODOLOGIA DA PESQUISA

A metodologia adotada neste trabalho segue um enfoque numérico-experimental, envolvendo análise numérica pelo método dos elementos finitos, com auxílio do programa ANSYS, e análise experimental. Através de observações numéricas e experimentais, este estudo propõe de forma híbrida, uma técnica para avaliar o cisalhamento em parafusos de conexões T-stub.

Por meio de parâmetros medidos nos ensaios experimentais, deslocamento global e deformação em pontos situados na superfície do flange do perfil T-stub, é criado um método híbrido para cálculo da força de cisalhamento nos parafusos, utilizando-se estes parâmetros para a calibração de um modelo numérico, como é mostrado, posteriormente, nos capítulos 5 e 6.

Os modelos experimentais são utilizados na observação do comportamento global das ligações, gerando também resultados de controle para os modelos numéricos. Os resultados experimentais se referem à força de tração atuante nos parafusos, a deformação global do sistema, deformações localizadas em pontos estratégicos na chapa do flange do perfil T-stub e observação dos estados limites últimos.

Os modelos numéricos são utilizados na fase de estudo do contato entre furo e flange do parafuso, e em conjunto com a análise numérica, por meio de uma análise paramétrica, esta pesquisa realiza discussões sobre o cisalhamento nos parafusos das ligações em estudo.

4.1 – VARIÁVEIS CONSIDERADAS

Para se alcançar o objetivo desta pesquisa, as seguintes variáveis foram definidas:

<u>Grupo A</u>

- Deformação total do sistema (flange, alma e parafuso);
- Carga aplicada na conexão;
- Carga no parafuso;
- Carga última na conexão;

<u>Grupo B</u>

- Distribuição de cargas provocadas pelo contato do furo no flange do perfil com o fuste do parafuso;
- Área de contato do flange do perfil com a base rígida.

As variáveis adotadas no **Grupo A** são os parâmetros de instrumentação utilizados nos ensaios experimentais. O **Grupo B** foi estudado apenas na etapa numérica em razão das limitações encontradas no estudo experimental.

4.2 – DIMENSIONAMENTO E DEFINIÇÃO DOS MODELOS

Os modelos experimentais têm o objetivo de fornecer dados globais do comportamento de ligações T parafusadas (T-stub) para possibilitar observações paramétricas, observações da resistência a rigidez do perfil, qualitativas, quanto à variação da espessura do flange do perfil T, além de observações visuais quanta a classificação do tipo de ruptura dos parafusos. Uma vez que as configurações de colapso de perfis "T" são utilizadas, simplificadamente, para resistência da chapa de topo em ligações entre pilar e viga.

Os perfis foram dimensionados de acordo com o Manual Brasileiro para Cálculo de Estruturas Metálicas. Tomando como base a Figura 2.10 (página 13 do presente trabalho), p é definido como a largura tributária para cada parafuso, sendo a soma das larguras efetivas de resistência da chapa de cada lado do parafuso; Para parafusos intermediários:

$$\mathbf{p} = 2\mathbf{p}_1 \tag{4.1}$$

Nos parafusos de borda usa-se: $p = p_1 + p_2$

(4.2)

Sendo que: p_1 é o menor valor entre $\frac{e_1}{2}$ (4.3)

ou
$$b + \frac{d}{2}$$

 p_2 é o menor valor entre e_2 ou $b + \frac{d}{2}$
(4.4)

Na região sem furo, o momento deve ser no máximo igual ao momento resistente:

$$M_{u1} = \phi_b M_n, \text{ com } \phi_b = 0.9$$
 (4.5)

Sendo M_n o momento nominal. A resistência nominal à flexão da chapa é 1,5 Wf_y , portanto:

$$M_{u1} = 0.9.1.5 W fy$$
 (4.6)

O momento M_{u2} é dado por: (4.7)

$$M_{u2} \le \frac{p-d}{p} M_{u1}$$

$$M_{u2} \le \delta M_{u1}$$
(4.8)

$$\delta = \frac{p-d}{p}$$

Caso $M_{u2} > \delta M_{u1}$, M_{u2} será maior que o momento resistente de cálculo, ou seja, há plastificação total da seção. Fazendo o equilíbrio na seção longitudinal da viga, tem-se:

$$M_{u2} = Qa' \tag{4.10}$$

$$M_{u1} = (P+Q)b' - Q(a'+b') = Pb' - Qa'$$
(4.11)

$$M_{u2} = Pb' - M_{u1}$$
(4.12)

Na determinação do efeito alavanca, caracteriza-se o coeficiente α como:

$$\alpha = \frac{Pb' - M_{u1}}{\delta M_{u1}} = \frac{M_{u2}}{\delta M_{u1}}$$
(4.13)

Quando $\alpha \ge 1(M_{u2} > \delta M_{u1})$ há o efeito alavanca, contudo não há resistência, pois a espessura da chapa é insuficiente. Se $0 < \alpha < 1$, então:

$$M_{u2} = Pb' - M_{u1} = Qa'$$
(4.14)

$$Q = \frac{Pb' - M_{ul}}{a'} \tag{4.15}$$

Neste caso o parafuso deverá resistir o acréscimo de carga causado pelo efeito alavanca. Para $\alpha \le 0$, considerando $\alpha = 1$ tem-se:

$$\alpha = \frac{Pb' - M_{u1}}{\delta M_{u1}} = \frac{M_{u2}}{\delta M_{u1}} = 0$$
(4.16)

Como $M_{u2} = Qa' = 0$, conclui-se que Q = 0. Portanto não haverá efeito alavanca. Para $\alpha = 0$ não haverá efeito alavanca porque a força Q inverterá o sentido. Na obtenção da espessura mínima deve-se substituir $M_{u1} = 0.9(1.5 pt_f^2/6) f_v \text{ em } (4.15)$, então:

$$t_{f} \ge \sqrt{\frac{4,44Pb'}{pf_{y}}}$$

$$(4.17)$$

Desta forma foram definidos cinco modelos de conexões, com dois furos, conforme mostra a Figura 4.1 (a e b), que descreve a geometria dos modelos de conexão T-stub utilizados na pesquisa para a análise experimental e numérica, possuindo as mesmas características para os dois estudos, conforme mostra a Tabela 4.1.

As chapas do flange do perfil possuem espessuras de 1/2", 3/8", 5/16", 1/4" e 3/16" e as almas têm espessura fixa de 1/2". Os furos possuem diâmetro de 14mm, sendo que os procedimentos adotados para furação estão de acordo com os espaçamentos máximos e mínimos exigidos pela Norma NBR 8800 (1986).

Os parafusos usados possuem diâmetro de 1/2" e 114,3 mm de comprimento. Os protótipos foram fornecidos pela empresa Metal Forte Ltda.

Grupos de	Fur	08	Espessura (t _f)	
Conexões	Quantidade	Diâmetro		
CD1			3/16 "	4,8 mm
CD2		Ø14 mm	1/4 "	6,3 mm
CD3	2 furos		5/16 "	7,9 mm
CD4			3/8 "	9,5 mm
CD5			1/2 "	12,7 mm

Tabela 4.1 – Características das Conexões para análise experimental e numérica.

Figura 4.1 – a) Esquema de furação das conexões; b) Geometria das Conexões estudadas.

Para a realização do estudo híbrido da força de cisalhamento dos parafusos, foi criado um modelo numérico para a análise da distribuição de deformações superficiais no flange do perfil, a sua geometria representa a metade da chapa de aço que constitui o flange do perfil T-stub, conforme a Figura 4.2. Este modelo numérico foi calibrado a partir dos resultados experimentais de deslocamento global do perfil e da deformação superficial medida em pontos situados no flange do perfil T.

Figura 4.2 – Representação da geometria da região discretizada numericamente.

4.3 – ESPECIFICAÇÃO DOS MATERIAIS UTILIZADOS NOS MODELOS

Para a Análise Numérica Computacional, considerou-se o material como isotrópico para os modelos numéricos, com módulo de elasticidade de 205000 MPa, peso específico de 77kN/m³ e coeficiente de Poisson igual a 0,3. A consideração da não-linearidade física foi feita por meio de modelos de curvas tensão-deformação elastoplásticas.

Na confecção das conexões foram utilizadas chapas de aço carbono SAE 1010. Os parafusos utilizados para fixar a conexão na base de ensaio são do tipo comum (ASTM A307), com resistência ultima de ruptura (f_u) de 415 MPa. A seguir, na Tabela 4.2, é apresentada a especificação dos materiais utilizados nos ensaios experimentais.

Grupos de	Tino aco	Chapas		Parafusos		Tino aco
Conexões	Tipo aço	Flange	Alma	Diâmetro	Comprimento	Tipo aço
CD1		4,8 mm				
CD2		6,3 mm				ASTM
CD3	SAE 1010	7,9 mm	12,7 mm	12,7 mm	114,3 mm	A 307
CD4		9,5 mm				11307
CD5		12,7 mm				

Tabela 4.2 – Especificação dos parafusos e chapas que serão utilizados na pesquisa.

4.4 – EQUIPAMENTOS PARA O ESTUDO EXPERIMENTAL

Para a realização do programa experimental foi utilizado um sistema integrado de equipamentos, dispostos na Figura 4.3 e Figura 4.4, sendo eles respectivamente: prensa hidráulica (módulo de controle mais garra) com capacidade para 60 ton, receptor e codificador de dados "Spider8", computador para aquisição de dados e base rígida para ensaio dos perfis T-stub. Os ensaios foram realizados nos Laboratórios de Engenharia Mecânica da Universidade de Brasília (UnB).

Figura 4.3 – Equipamentos utilizados nos ensaios experimentais: Prensa Hidráulica, Spider8 e computador.

Figura 4.4 – Base rígida utilizada nos ensaios dos perfís T-stub.

4.5 – MÉTODO HÍBRIDO NUMÉRICO-EXPERIMENTAL

Como mencionado anteriormente, utilizou-se um modelo híbrido numérico-experimental para análise do cisalhamento do parafuso. A conexão foi mapeada em duas regiões com extensômetros de resistência, tendo como base os estudos apresentados na revisão bibliográfica. O orçamento disponível para a execução do estudo experimental foi o fator determinante para o uso de dois pontos de mapeamento no flange das peças. Como a distribuição de esforços no perfil T é considerada simétrica teoricamente, foi escolhido apenas um dos lados do flange para a realização da instrumentação. Os extensômetros foram colados no eixo horizontal e no eixo vertical do plano dos furos do flange, com a finalidade de captar as deformações das regiões escolhidas, na direção da força de cisalhamento, como pode se observar na Figura 4.5.

O modelo numérico, adotado para a análise híbrida do cisalhamento, recebeu uma discretização refinada nos dois pontos de mapeamento do flange (Figura 4.6). Esta medida teve a finalidade de proporcionar um maior número de pontos na região discretizada para captura das deformações, possibilitando uma maior aproximação as deformações medidas nos ensaios experimentais.

Figura 4.5 – Mapeamento do flange do perfil T-stub com extensômetros de resistência.

Figura 4.6 – Modelo numérico de placa em elementos finitos.

Com o uso do deslocamento total e deformação superficial do flange, obtidos nos ensaios experimentais, foi possível montar o estudo híbrido numérico-experimental, que se baseou na alteração de uma pressão aplicada dentro do furo da placa até a maior aproximação possível da curva de deformação dos pontos do modelo numérico a curva obtida na leitura dos extensômetros fixados nas superfícies dos flanges nos ensaios experimentais, mantendo o mesmo deslocamento do flange obtido no ensaio experimental. A Figura 4.7 apresenta um esquema do estudo híbrido numérico-experimental utilizado na pesquisa.

Figura 4.7 – Esquema do estudo híbrido numérico-experimental utilizado na pesquisa.

5 – ESTUDO EXPERIMENTAL

Os ensaios experimentais foram realizados com auxílio de uma Base Rígida (Figura 5.1) para a fixação das conexões na prensa hidráulica. Nesta pesquisa, optou-se pela utilização de um método indireto para obtenção dos parâmetros adotados neste estudo, através do uso de sensores especiais para a leitura da deformação do perfil e carga no parafuso. Na análise do cisalhamento do parafuso foi adotado um modelo híbrido numérico-experimental. Foram realizados 15 ensaios com 5 configurações diferentes de perfis T-stub, testadas em trios.

5.1 – MONTAGEM DO ENSAIO E INSTRUMENTAÇÃO DAS CONEXÕES

As ligações T-stub consistem em protótipos utilizados para observação de modos de falha, que podem representar possíveis configurações de colapso aplicáveis a chapa de topo quando esta é solicitada a flexão. Considerando como objetivo, hipoteticamente, o colapso do perfil T-stub por cisalhamento dos parafusos, para aplicação no dimensionamento da chapa de topo, as referências bibliográficas consultadas no desenvolvimento deste trabalho mostram que não é comum a adoção da tipologia apresentada na Figura 5.1, na qual o perfil T é ligado a uma base rígida, por meio de parafusos, para ensaios de tração. A tipologia tradicional para o ensaio de caracterização do perfil T, adotada em normas técnicas e manuais de cálculo de ligações de estruturas metálicas, utiliza outro perfil T como base de fixação para a realização do ensaio. Este tipo de ensaio causa influência significativa no comportamento destas ligações, em razão da flexibilidade gerada pela utilização de outro perfil T como base de fixação. Também na maioria dos casos, não há simetria na aplicação dos carregamentos na alma dos perfis (ver Figura 2.3a – pág.7).

É interessante observar que para a caracterização do perfil T como componente de ligações que utilizam este dispositivo para unir vigas e pilares, testes com o perfil T conectado ao apoio rígido tornam-se mais adequados, uma vez que a rigidez do perfil isolado torna-se mais adequada ao problema em questão. Desta forma, a utilização da base rígida para fixação de perfil T permitiu a observação da ruptura dos parafusos por cisalhamento do fuste combinado com tração, o que não ocorre quando se utiliza a metodologia de ensaio com duplo T.

A Figura 5.1, apresenta o esquema de ensaio das conexões, no qual se utilizaram células de carga para medição da força de tração no parafuso e célula de deslocamento para medir a deformação total do perfil. A ligação foi instrumentada com dois extensômetros elétricos, com o objetivo de se ter informações para construção de um modelo híbrido numérico-experimental, para estudo do cisalhamento dos parafusos. A célula de deformação tipo viga elástica é utilizada para medir a deformação total do perfil, e a célula cilíndrica tem a função de medir a carga do parafuso.

Para o estudo do cisalhamento, optou-se apenas pela instrumentação com extensômetros colados na superfície dos perfís T-stub, e localizados na direção das tensões de cisalhamento que atuam nos parafusos.

Figura 5.1 – Esquema de ensaio.

O procedimento empregado nos ensaios das ligações T-stub seguiu a seguinte seqüência:

- 1. Montagem da ligação efetuando-se a união do perfil T a base rígida;
- Instalação das células de carga cilíndricas nos parafusos e célula de deslocamento no perfil;
- Ligação das células de carga ao sistema de aquisição de dados e aplicação de uma pré-tensão, nos parafusos, de 5 kN;

- A próxima etapa consistiu na colagem dos extensômetros de resistência na superfície da chapa que compõe o flange do perfil T-stub, conforme mostra a Figura 5.2, e ligação dos mesmos no sistema de aquisição de dados;
- Com a aplicação da pré-tensão e instrumentação posicionada, as leituras foram zeradas e iniciou-se o ensaio até o colapso da ligação, realizado em passos de carga de 2 kN e velocidade de 0,015 mm/s.

Figura 5.2 – Locação dos extensômetros na superfície do flange do perfil T-stub.

Como critérios para o colapso do protótipo foram adotados o rasgamento da chapa do flange, ruptura do parafuso por cisalhamento ou por tração, ou cisalhamento e tração combinados. Para isto, o acompanhamento do ensaio foi feito por meio do equipamento de leitura, que permitia visualização direta do deslocamento, forças e deformações nos pontos de coletas de dados, além de inspeções visuais diretamente nos protótipos.

Como ilustração, na Figura 5.3 apresenta-se o protótipo **CD2A** durante o ensaio, já em estágios avançados de carregamento, no qual é possível observar o deslocamento vertical da alma do perfil e a curvatura do flange do perfil.

Figura 5.3 – Deformada do protótipo CD2A durante o ensaio.

Utilizou-se no estudo extensômetros elétricos da marca japonesa KYOWA. O modelo adotado para instrumentação dos equipamentos, conexões e parafusos foi o KFG-5-120-C1-11, o qual é representado pelo modelo KGF, largura do gage de 5 mm, resistência de 120 Ω , fator de correção de aproximadamente 2,11 e recomendação de aplicação em aço comum, em situações com tensão uniaxial (11).

5.2 – CÉLULA DE CARGA

Para construção das células foi adotado o sistema de ponte completa de Wheatstone, com a finalidade de se ter maior precisão nos resultados. Este tipo de ponte consiste na ligação de quatro extensômetros em paralelo (Figura 5.4). Para cada resistor ou extensômetro (R_i) se terá uma deformação correspondente (ϵ_i).

Figura 5.4 – Ponte de Wheatstone, circuito para quatro extensômetros elétricos de resistência (ROYLANCE, 2001).

A variação de resistência total dos extensômetros é dada por.

$$\varepsilon_{\text{total}} = \varepsilon_1 - \varepsilon_2 + \varepsilon_3 - \varepsilon_4 \tag{5.1}$$

5.2.1 – Célula de deslocamento tipo viga elástica

O transdutor de deslocamento foi dimensionado para trabalhar apenas no regime elástico. Suas características básicas são: largura de 25 mm e espessura de 1 mm, módulo de elasticidade de 205 GPa e tensão de escoamento de 250 MPa. Os valores de módulo de elasticidade e tensão de escoamento foram adotados, isto não afetará a precisão das medições de deslocamentos. Adotou-se uma deflexão máxima de 45 mm, obtendo-se assim um comprimento L de 235 mm (Figura 5.5).

Figura 5.5 – Modelo de viga elástica utilizado.

A Figura 5.6 mostra a disposição dos extensômetros na célula de deslocamento, na qual os extensômetros se encontram na direção longitudinal da viga, dispostos em pares na face inferior e superior da viga.

Figura 5.6 – Disposição dos sensores no transdutor de deslocamento.

O deslocamento vertical (δ) para baixo irá impor compressão nas fibras superiores da viga (- ϵ_2 =- ϵ_4 =- ϵ) e tração nas fibras inferiores (ϵ_1 = ϵ_3 =+ ϵ). Aplicando a teoria de ponte completa de Wheatstone e considerando os sinais das deformações, teremos:

$$\varepsilon_{\text{total}} = \varepsilon_1 - \varepsilon_2 + \varepsilon_3 - \varepsilon_4 \tag{5.2}$$

$$\varepsilon_{\text{total}} = \varepsilon - (-\varepsilon) + \varepsilon - (-\varepsilon) \tag{5.3}$$

$$\varepsilon_{\text{total}} = 4.\varepsilon$$
 (5.4)

5.2.2 – Célula de carga tipo cilindro

Seguindo o mesmo princípio da célula anterior, a célula de carga tipo cilindro também deve funcionar no regime de deformação elástica, para que a célula volte à posição original quando forem retiradas as cargas que atuam sobre ela. Suas características básicas são: diâmetro interno de 14 mm, 30 mm de diâmetro externo e altura de 30 mm, módulo de elasticidade de 205 GPa e tensão de escoamento de 400 MPa. Novamente é adotado o sistema de ponte completa de Wheatstone para o cilindro, no qual os extensômetros ficam dispostos de forma alternada na direção longitudinal – sensível à deformação axial do cilindro), e transversal – sensível à deformação transversal ou circunferencial do cilindro devida ao efeito Poisson. Para o cálculo da deformação total deve ser usada a relação entre a deformação específica transversal e longitudinal.

$$v = -\frac{\varepsilon_y}{\varepsilon_x} \tag{5.5}$$

Na Figura 5.7 há um esquema da célula de carga tipo cilindro onde se pode ver a disposição dos extensômetros e a representação do sistema de ponte completa de Wheatstone.

Figura 5.7 – Esquema do cilindro de carga.

A variação da resistência da célula de carga cilíndrica é dada por:

$$\varepsilon_{\text{total}} = \varepsilon_1 - \varepsilon_2 + \varepsilon_3 - \varepsilon_4 \tag{5.6}$$

$$\varepsilon_{\text{total}} = \varepsilon_{x} - (\varepsilon_{y}) + \varepsilon_{x} - (-\varepsilon_{y})$$
(5.7)

$$\varepsilon_{\text{total}} = \varepsilon_{x} - (-\nu\varepsilon_{x}) + \varepsilon_{x} - (-\nu\varepsilon_{x})$$
(5.8)
(5.9)

$$\varepsilon_{\text{total}} = 2(1+\nu)\varepsilon_{x} \tag{5.10}$$

$$\varepsilon_{\text{total}} = 2,6\varepsilon$$
 (5.11)

(5 7)

5.3 – CARACTERIZAÇÃO DOS MATERIAIS

Os ensaios de caracterização tiveram o objetivo de levantar dados das relações tensãodeformação dos materiais das chapas e da rigidez axial dos parafusos, que representam os materiais utilizados nos ensaios. O propósito da realização desta caracterização foi de fornecer padrões para as curvas tensão-deformação das chapas de aço SAE 1010 e dos parafusos A307, para aplicação nos modelos numéricos.

5.3.1 – Chapas de aço

Para caracterização das chapas de aço, foram extraídos 15 corpos de prova, em tiras das extremidades das chapas de aço SAE 1010, utilizadas na confecção dos flanges dos perfis T-stub. A seguir, na Figura 5.8, estão especificadas as dimensões dos corpos de prova, os

quais seguem a especificações da norma americana ASTM A370 (1992). Os corpos de provas extraídos são representados na Figura 5.9.

Figura 5.8 – Dimensões dos corpos de prova em tira – aço SAE 1010.

Figura 5.9 Corpo de prova extraído da chapa de 1/2".

Os ensaios foram realizados em uma Prensa Hidráulica com capacidade de 60 ton, disponibilizada pelo Departamento de Engenharia Mecânica da Universidade de Brasília (UnB). Para instrumentação, foi utilizado um extensômetro elétrico de resistência para leitura das deformações, conforme pode ser observado na Figura 5.10, que apresenta um corpo de prova preparado para o início do ensaio.

Figura 5.10 – Corpo de prova preparado para início do ensaio.

Foram ensaiados 3 corpos de prova para cada espessura (t_f) de chapa, seguindo as recomendações da ASTM A370 (1992). As curvas tensão-deformação convencionais obtidas por meio do cálculo da média dos três corpos de prova, para os 5 tipos de chapas utilizadas na pesquisa, estão apresentadas na Figura 5.11.

—+—12,7 mm —□—9,5 mm —<u>△</u>—7,9 mm —×—6,3 mm —○—4,8 mm

Figura 5.11 – Curvas tensão-deformação médias das chapas caracterizadas.

As variações observadas nas curvas para os três corpos de prova para cada espessura de chapa foram consideradas pequenas. A tensão de escoamento, a tensão máxima, tensão de ruptura, deformação total na ruptura e o módulo de elasticidade são apresentados na Tabela 5.1. A Tabela 5.1 ainda apresenta o alongamento ($\%\Delta L$), área base (A_b) do corpo de prova e comprimento base (L_b) do corpo de prova.

		A _b (mm²)	L _b (mm)	%ΔL	f _y (MPa)	f _r (MPa)	E (MPa)	Força de Ruptura (N)	Deformação no Escoamento (µm/m)
Chapa 3/16 "	CP1	59,46	50,0	35	319,53	334,66	201,34	19900	1587
	CP2	59,71	50,0	33	284,70	328,24	202,20	19600	1408
	CP3	59,71	50,0	33	284,70	346,66	205,12	20700	1388
	Média	59,63	50,00	34	296,31	336,52	202,89	20067	1461
Chapa 1/4 "	CP1	79,87	50,0	20	300,48	345,55	207,51	27600	1448
	CP2	79,62	50,0	36	314,01	346,66	203,77	27600	1541
	CP3	79,74	50,0	36	300,96	351,12	203,21	28000	1481
	Média	79,74	50,00	31	305,15	347,78	204,83	27733	1490
Chapa 5/16 "	CP1	99,31	50,0	22	261,82	352,44	202,02	35000	1296
	CP2	97,94	50,0	38	296,10	357,36	204,21	35000	1450
	CP3	99,52	50,0	34	301,45	341,64	202,72	34000	1487
	Média	98,92	50,00	31	286,46	350,48	202,98	34667	1411
Chapa 3/8 "	CP1	121,46	50,0	38	255,24	321,10	208,36	39000	1225
	CP2	121,36	50,0	38	296,63	346,07	202,20	42000	1467
	CP3	121,60	50,0	38	287,82	337,16	201,84	41000	1426
	Média	121,47	50,00	38	279,90	334,78	204,13	40667	1373
Chapa 1/2 "	CP1	158,19	50,0	40	297,12	341,37	204,21	54000	1455
	CP2	158,83	50,0	30	302,22	346,29	203,79	55000	1483
	CP3	158,11	50,0	30	284,61	335,20	205,64	53000	1384
	Média	158,37	50,00	33	294,65	340,96	204,55	54000	1441

Tabela 5.1 – Resultados dos corpos de prova das chapas de aço SAE 1010.

5.3.2 - Parafusos

Os ensaios com os parafusos foram realizados com um aparato especial no qual é possível encaixar o conjunto parafuso, porca e arruelas, simulando a configuração usual desse dispositivo em uma ligação. Este aparato foi confeccionado durante o trabalho de Freitas (2005) e está apresentado na Figura 5.12, na disposição de ensaio. O conjunto foi ensaiado à tração em uma prensa hidráulica. A leitura da deformação foi obtida com a utilização de extensômetros de resistência posicionados simetricamente à seção transversal.

Figura 5.12 – Dispositivo para ensaio dos parafusos.

Com os dados da deformação e da tensão, que é calculada em função da força aplicada, obtém-se a curva tensão-deformação. Assim, os resultados apresentados na Figura 5.13 serão utilizados, posteriormente, para a definição dos padrões dos modelos constitutivos que serão utilizados na análise numérica e discussões dos próximos capítulos.

Figura 5.13 – Curva tensão-deformação para os parafusos.

Vale lembrar que os dados apresentados acima se referem à deformabilidade do parafuso considerando o dispositivo apresentado na Figura 5.12, e portanto leva em consideração o travamento dado pelo sistema rosca, porca e cabeça e, conseqüentemente, não representam somente as características do aço dos parafusos ASTM A307, utilizados neste programa experimental.

5.4 – RESULTADOS EXPERIMENTAIS

O enfoque desta pesquisa na observação do comportamento de ligações T-stub, para análise do colapso das ligações por cisalhamento dos parafusos, conduziu em uma série de ensaios experimentais, como descrito no capítulo anterior. As variações dos flanges dos perfis T foram introduzidas no programa experimental para se observar as modificações no comportamento de falha das ligações T-stub, com finalidade de detectar a ruptura dos parafusos por cisalhamento.

As ligações são investigadas considerando seu comportamento global, por meio das curvas força-deslocamento, as deformações em regiões localizadas no flange do perfil e força de tração nos parafusos. Os resultados para os grupos de conexões **CD1**, **CD2**, **CD3**, **CD4** e **CD5** são apresentados a seguir, por meio das médias entre três corpos-de-prova ensaiados, calculadas para cada grupo. O fluxograma apresentado a seguir, na Figura 5.14, resume o programa experimental.

Figura 5.14 – Fluxograma representativo do programa experimental.

5.4.1 – Resultados para o grupo CD1 – Ligação com flange de 4,8 mm

Observando-se inicialmente a relação entre a carga aplicada e as reações nos parafusos (Figura 5.15), o ensaio mostra uma aproximação entre as reações medidas nos dois parafusos da ligação, que obtiveram acréscimos nas reações do início ao fim do ensaio, e mostra a presença do efeito alavanca na ligação, o que já era esperado. Lembrado que todas as conexões estudadas nesta pesquisa, foram submetidas a um aperto de 5 kN por parafuso, o que justifica a reação inicial de 5 kN em cada parafuso. A curva "Sem Efeito Alavanca", mostra o comportamento teórico que as reações nos parafusos deveriam ter sem a presença do efeito alavanca, conforme mostra a Figura 5.14. Os resultados individuais das conexões CD1A, CD1B e CD1C podem ser vistos no Apêndice C.

Figura 5.15 – Relação entre carga aplicada e reação nos parafusos – grupo CD1.

O gráfico apresentado na Figura 5.16, resume o comportamento das conexões CD1 durante o ensaio. Este permite observar o deslocamento da ligação em relação às forças no ensaio, mostrando a evolução do deslocamento com o carregamento aplicado e o paralelo entre carga aplicada e as reações nos parafusos, novamente comprovando a presença do efeito alavanca. A curva "Reação Total nos Parafusos" corresponde a soma das reações dos dois parafusos, por isto ela se inicia em 10 kN.

Figura 5.16 - Relação entre deslocamento e forças no ensaio - grupo CD1.

Para o estudo do cisalhamento dos parafusos, se efetuou o mapeamento da ligação em dois pontos, como foi apresentado anteriormente no item 5.1 (Figura 5.2). Os resultados médios das deformações medidas no grupo de conexões CD1 (CD1A, CD1B e CD1C) são mostrados na Figura 5.17 e Figura 5.18, correspondentes ao Extensômetro 1 e Extensômetro 2, respectivamente.

Figura 5.17 – Relação entre carga aplicada e deformação específica no ponto 1 – grupo CD1.

Figura 5.18 – Relação entre carga aplicada e deformação específica no ponto 2 – grupo CD1.

Considerando que o Extensômetro 1 está na linha central de distribuição da força de cisalhamento, entre o flange do perfil e o fuste do parafuso, os resultados indicam que existe um período predominante de deformação positiva, na região investigada, pressupondo uma predominância de punção provocada pela cabeça do parafuso, na superfície do flange. Outra hipótese seria a flexão transversal do flange que geraria uma compressão transversal na face superior e, pelo efeito de Poisson, uma deformação positiva longitudinal na linha central do flange.

A partir de 30 kN, o primeiro ponto obtém deformações típicas do contato entre flange e fuste do parafuso. O segundo ponto, por ser mais afastado das regiões de contanto do parafuso, capta apenas as deformações negativas, geradas pelo contato entre fuste do parafuso e furo.

5.4.2 - Resultados para o grupo CD2 - Ligação com flange de 6,3 mm

Os resultados para o grupo CD2, apresentados na Figura 5.19, mostram que a relação entre carga aplicada e reação nos parafusos, obteve um comportamento relativamente constante durante todo período de ensaio. As curvas que expressam as reações médias nos parafusos indicam similaridade nos valores das forças.

Figura 5.19 – Relação entre carga aplicada e reação nos parafusos – grupo CD2.

Na Figura 5.20, pode-se observar o desenvolvimento das forças atuantes na ligação, juntamente com o deslocamento total do sistema. O gráfico mostra um aumento significativo da curva "Reação Total nos Parafusos", em relação à curva "Carga Aplicada", demonstrando a grande importância da consideração do efeito alavanca para o dimensionamento deste tipo de ligação. O aumento da rigidez do flange do perfil do grupo CD2 em relação ao grupo CD1 leva a um acréscimo de resistência da ligação, e conseqüentemente uma maior solicitação nos parafusos, em razão de reações mais elevadas.

Figura 5.20 – Relação entre deslocamento e forças no ensaio – grupo CD2.

As deformações lidas pelo Extensômetro 1 (ponto 1), mostram novamente que houve um predomínio de deformação positiva até os 30 kN aplicados no perfil, e a partir deste momento, as leituras passam a ser negativas, indicando o predomínio do contato entre fuste do parafuso e furo. O ponto 2, onde se encontra o Extensômetro 2, capturou valores médios do Grupo CD2 na ordem de 3 vezes mais que o Grupo CD1, no mesmo ponto. As deformações para os pontos 1 e 2 são mostradas na Figura 5.21 e Figura 5.22, respectivamente.

Figura 5.21 – Relação entre carga aplicada e deformação específica no ponto 1 – grupo CD2.

Figura 5.22 – Relação entre carga aplicada e deformação específica no ponto 2 – grupo CD2.

5.4.3 - Resultados para o grupo CD3 - Ligação com flange de 7,9 mm

Os resultados apresentados na Figura 5.23 mostram que houve excentricidade na distribuição das forças no sistema durante o ensaio, no período entre 8 kN a 40 kN de carga aplicada no perfil T-stub, a qual provocou forças desiguais nas reações dos parafusos. Com o aumento de carga na ligação, os valores médios se aproximaram, indicando que os efeitos de plastificação na ligação foram acompanhados com uma reordenação da distribuição das forças em todo o sistema.

Figura 5.23 – Relação entre carga aplicada e reação nos parafusos – grupo CD3.

A Figura 5.24 mostra que houve um acréscimo de cerca de 30 kN, na média da leitura final das conexões do Grupo CD3, em relação ao Grupo CD2.

Considerando que as forças nos parafusos chegaram ao patamar de 50 kN, houve uma tensão de 395 MPa nos mesmos. Considerando que a tensão média de escoamento do sistema parafuso-porca, obtida nos ensaios de caracterização, foi de aproximadamente 400 MPa, para o flange de 5/16" houve rigidez suficiente para levar os parafusos ao regime de escoamento.

Figura 5.24 - Relação entre deslocamento e forças no ensaio - grupo CD3.

O gráfico apresentado na Figura 5.25, mostra que o Extensômetro situado no Ponto 1, para o Grupo CD3, manteve o mesmo comportamento dos Grupos anteriores (CD1 e CD2), com as mesmas grandezas de deformações e forças, com diferença no início de deformações negativas, que se iniciaram a partir de 48 kN, aplicados na ligação. A Figura 5.26, mostra que o Extensômetro situado no Ponto 2, obteve valores de deformações e forças na mesma ordem de grandeza do grupo CD2. Os valores de deformações negativas predominantes nos dois pontos (1 e 2), para os valores médios do Grupo CD3, mostram que há predominância dos efeitos de contanto entre furo e fuste do parafuso.

Figura 5.25 – Relação entre carga aplicada e deformação específica no ponto 1 – grupo CD3.

Figura 5.26 – Relação entre carga aplicada e deformação específica no ponto 2 – grupo CD3.

5.4.4 - Resultados para o grupo CD4 - Ligação com flange de 9,5 mm

O grupo CD4 obteve valores médios para reação nos parafusos bem próximos do limite de escoamento do sistema parafuso-porca, atingindo tensões de aproximadamente 435 MPa. Sabendo que o ensaio de caracterização obteve um valor médio de 400 MPa para escoamento, e um desvio padrão médio de 10 MPa, o gráfico apresentado na Figura 5.27, mostra que houve escoamento dos parafusos. A inspeção visual do colapso das conexões, que será apresentada posteriormente, mostra que para este grupo, houve escoamento em alguns parafusos.

Figura 5.27 - Relação entre carga aplicada e reação nos parafusos - grupo CD4.
O gráfico apresentado a seguir, na Figura 5.28, mostra novamente que o aumento da rigidez do perfil T-stub, por meio da mudança da espessura do flange, provoca grandes acréscimos de cargas de reação nos parafusos. Os resultados médios de reação nos parafusos, para o grupo CD4, se aproximam da carga aplicada na ligação, caracterizando a presença efetiva do efeito alavanca neste grupo.

Figura 5.28 - Relação entre deslocamento e forças no ensaio - grupo CD4.

Em virtude da maior rigidez do Grupo CD4, devido ao flange mais espesso, as deformações captada pelo Extensômetro 1, no Ponto 1, se mantiveram numa ordem de grandeza bastante inferior aos grupos ensaiados anteriormente a este, como mostra a Figura 5.29. Isto mostra claramente a influência da rigidez do flange no contato com o fuste do parafuso, no ponto onde a deformação foi captada. Os resultado médios para o Extensômetro 2 obtiveram o mesmo comportamento que o Grupo CD3, mostrando que a principal influência nas deformações deste ponto, é a flexão da chapa do flange, como se vê na Figura 5.30.

Figura 5.29 – Relação entre carga aplicada e deformação específica no ponto 1 – grupo CD4.

Figura 5.30 – Relação entre carga aplicada e deformação específica no ponto 2 – grupo CD4.

5.4.5 - Resultados para o grupo CD5 - Ligação com flange de 12,7 mm

De forma idêntica ao grupo CD4, o grupo CD5 obteve reações médias máximas nos parafusos dentro do limite de deformação plástica, com tensões máximas na ordem de 435 MPa. Vale ressaltar que foi detectado visualmente, após o colapso da ligação, a presença do escoamento na zona rosqueada do parafuso, para este grupo. O gráfico da Figura 5.31 apresenta a relação entre carga aplicada e reação nos parafusos para este grupo.

Figura 5.31 – Relação entre carga aplicada e reação nos parafusos – grupo CD5.

Na Figura 5.32, observa-se que os parafusos atingiram o nível mais alto de reação entre os 5 mm e 10 mm de deslocamento, e depois houve redução na reação dos parafusos. Este efeito sugere que algum parafuso pode ter entrado na zona plástica de deformações após os 10 mm de deslocamento do sistema. Desta forma, se justifica o maior deslocamento do grupo CD5 em relação ao grupo CD4, pois em razão da maior rigidez do grupo CD5, algum dos parafusos atingiu o patamar da deformação plástica de forma mais rápida, permitindo uma maior deformação do sistema.

Figura 5.32 - Relação entre deslocamento e forças no ensaio - grupo CD5.

A Figura 5.33, apresenta as deformações para o Extensômetro 1, e mostra que as deformações predominantes de contato entre parede do furo e fuste do parafuso, ocorreram

na parte final do ensaio, a partir de 64 kN aplicados na ligação. Esta observação sugere uma predominância do efeito de contato entre cabeça do parafuso e flange do perfil, responsável pela força de tração nos parafusos, e que depois de uma determinada inclinação do flange, se permite o contato entre fuste do parafuso e parede do furo, provocando o efeito de cisalhamento nos parafusos, e maiores deformações no Ponto 1. No Ponto 2, pode-se observar um comportamento com módulos de deformações menores que o grupo CD4, em razão da maior rigidez do grupo CD5, o qual a flexão da chapa do flange teve uma maior flexão a partir de 60 kN aplicados, 20 kN superior ao grupo CD4, que se iniciou a partir de 40 kN, como mostra a Figura 5.34.

Figura 5.33 – Relação entre carga aplicada e deformação específica no ponto 1 – grupo CD5.

Figura 5.34 – Relação entre carga aplicada e deformação específica no ponto 2 – grupo CD5.

5.5 – ANÁLISE DOS MODOS DE FALHA DAS LIGAÇÕES

Neste tópico se discute a validade dos conceitos utilizados na representação dos estados limites últimos para ligações T-stub, e os tipos de ruptura associados às combinações entre flange dos perfis T e parafusos. Os modos de falha da ligação são divididos na seguinte forma:

- Modo 1 Plastificação do flange;
- Modo 2 Formação de rotula plástica no flange, acompanhada pela ruptura dos parafusos;
- Modo 3 Ruptura dos parafusos.

5.5.1 - Carga de Ruptura das Conexões

Os grupos CD1 e CD2, em razão da menor rigidez, obtiveram carga de ruptura inferior aos demais grupos, sendo em média 46,7 kN e 56,7 kN, respectivamente. Os outros grupos (CD3, CD4 e CD5) obtiveram cargas de ruptura acima de 70 kN. As conexões com carga de ruptura acima dos 70 kN, apresentaram ruptura dos parafusos por cisalhamento. Os grupos CD4 e CD5 obtiveram também escoamento da parte com rosca do parafuso. O valor para a carga ultima de cada ligação ensaiada pode ser visto a seguir, na Figura 5.35.

Figura 5.35 – Carga última das conexões ensaiadas.

5.5.2 – Inspeção Visual

Com intuito de identificar as principias causas de falha das ligações T-stub ensaiadas, se executou uma inspeção visual pós-ensaio. O arquivo fotográfico, mostrado a seguir, apresenta detalhes da investigação nos parafusos e flange do perfil, com a finalidade de classificar o modo de falha apresentado em cada grupo de conexões. As conexões estão divididas em CD1 (A, B e C), CD2 (A, B e C), CD3 (A, B e C), CD4 (A, B e C) e CD5 (A, B e C).

5.5.2.1 - Grupo CD1 - Ligação com flange de 4,8 mm

As conexões com menor rigidez, do grupo CD1, se enquadraram no Modo 1 de falha, apresentando plastificação do flange e efeito de punção na chapa na região do furo, por meio do contato da cabeça do parafuso com o flange, transformando o formato cilíndrico do furo em uma forma hexagonal, como a cabeça do parafuso. As Figuras 5.36 e 5.37 mostram as características predominantes de punção e plastificação do flange no colapso da ligação CD1A.

Figura 5.36 – Flange instrumentado (Ligação CD1A).

Figura 5.37 – Flange não instrumentado (Ligação CD1A).

Os parafusos da ligação CD1A obtiveram comportamentos idênticos, com formação de dentes provocados pelo contato da parede do furo com o fuste do parafuso, e uma flexão no fuste, em razão do giro na cabeça do parafuso provocado pela inclinação do flange do perfil. Os parafusos atingiram o regime plástico, uma vez que apresentam deformação residual acentuada junto à cabeça do parafuso. As Figuras 5.38 e 5.39 apresentam os parafusos, após o colapso da ligação.

Figura 5.38 – Parafuso 1 – Ligação CD1A.

A ligação CD1B obteve comportamento idêntico ao da ligação mostrada anteriormente, com classificação de falha Modo 1, apresentando plastificação e puncionamento do flange do perfil T-stub, conforme mostram as Figuras 5.40 e 5.41.

Figura 5.40 – Flange instrumentado (Ligação CD1B).

Figura 5.41 – Flange não instrumentado (Ligação CD1B.

De forma idêntica à ligação CD1A, as Figuras 5.42 e 5.43 mostram que os parafusos da ligação CD1B sofreram flexão e formação dentes na região do fuste do parafuso, atingindo regime plástico.

Figura 5.42 – Parafuso 1 – Ligação CD1B.

Figura 5.43 – Parafuso 2 – Ligação CD1B.

As Figuras 5.44 e 5.45, provam a homogeneidade nos mecanismos de colapso do grupo de conexões CD1, mostrando para a ligação CD1C os mesmos modos de falha das anteriores.

Figura 5.44 – Flange instrumentado (Ligação CD1C).

Figura 5.45 – Flange não instrumentado (Ligação CD1C).

Da mesma forma que o flange, os parafusos da ligação CD1C também apresentaram comportamento idêntico ao das conexões CD1A e CD1B.

Figura 5.46 – Parafuso 1 – Ligação CD1C.

Figura 5.47 – Parafuso 2 – Ligação CD1C.

5.5.2.2 - Grupo CD2 - Ligação com flange de 6,3 mm

O grupo CD2, com flange de 6,3 mm (1/4"), em seu colapso, apresentou modo de falha (Modo 1) idêntico ao do grupo CD1, indicando uma baixa rigidez do perfil também. As Figuras 5.48 e 5.49 indicam que o flange da ligação CD2A sofreu punção e plastificação na região do furo.

Figura 5.48 – Flange instrumentado (Ligação CD2A).

Figura 5.49 – Flange não instrumentado (Ligação CD2A).

Os parafusos da ligação CD2A indicam que houve uma maior força de contanto entre parede do furo e fuste do parafuso, com uma maior caracterização dos dentes no fuste, conforme mostram as Figuras 5.50 e 5.51.

Figura 5.50 – Parafuso 1 – Ligação CD2A.

Figura 5.51 – Parafuso 2 – Ligação CD2A.

Do mesmo modo que a ligação anterior, a ligação CD2B enquadra-se no Modo 1 de falha, com plastificação e punção do flange, conforme pode ser visto nas Figuras 5.52 e 5.53.

Figura 5.52 – Flange instrumentado (Ligação CD2B).

Figura 5.53 – Flange não instrumentado (Ligação CD2B).

De acordo com as Figuras 5.54 e 5.55, os parafusos da ligação CD2B, após o colapso da ligação, apresentaram formato idêntico ao da ligação anterior, com flexão e dentes bem definidos no fuste.

Figura 5.54 – Parafuso 1 – Ligação CD2B.

Figura 5.55 – Parafuso 2 – Ligação CD2B.

Novamente, a homogeneidade nas características de colapso está presente no grupo CD2, em face da análise das três conexões ensaiadas, conforme pode ser visto nas Figuras 5.56 e 5.57, que mostram a forma idêntica de falha da ligação CD2C às demais conexões deste grupo.

Figura 5.56 – Flange instrumentado (Ligação CD2C).

Figura 5.57 – Flange não instrumentado (Ligação CD2C).

Como já era de se esperar, os parafusos da ligação CD2C também apresentaram flexão e dentes bem definidos na região do fuste, como mostram as Figuras 5.58 e 5.59.

Figura 5.58 – Parafuso 1 – Ligação CD2C.

Figura 5.59 – Parafuso 2 – Ligação CD2C.

5.5.2.3 – Grupo CD3 – Ligação com flange de 7,9 mm

Diferentemente dos grupos CD1 e CD2, o grupo CD3 apresenta em seu colapso, o Modo 2 de falha. As conexões apresentaram rótula plástica na região do flange do perfil T-stub, juntamente com a ruptura dos parafusos. O detalhe maior, é que os parafusos sofreram ruptura por cisalhamento, diferente do que é exposto na literatura atual, que relata ruptura por tração nos parafusos. As Figuras 5.60 e 5.61 mostram que não houve um grande efeito de punção no flange do perfil.

Eigura 5.61 – Elan

Figura 5.60 – Flange instrumentado (Ligação CD3A).

Figura 5.61 – Flange não instrumentado (Ligação CD3A).

O parafuso 1 da ligação CD3A apresentou um entalhe na região do contato entre parede do furo e fuste associado a uma plastificação desta região. Já o parafuso 2, sofreu ruptura por cisalhamento combinado com tração na região do fuste, caracterizando uma grande força de contato com a parede do furo, associada a uma plastificação. Estes detalhes são mostrados a seguir nas Figuras 5.62 e 5.63.

Figura 5.62 – Parafuso 1 – Ligação CD3A.

Figura 5.63 – Parafuso 2 – Ligação CD3A.

A ligação CD3B, novamente não apresentou grandes efeitos de punção na chapa do flange, conforme Figuras 5.64 e 5.65. Foi detectada uma textura na solda, típica de rótula plástica, caracterizando o colapso desta ligação como Modo 2 de falha.

Figura 5.64 – Flange instrumentado (Ligação CD3B).

Figura 5.65 – Flange não instrumentado (Ligação CD3B).

A análise dos parafusos mostra que, houve uma pequena excentricidade na ligação, pois novamente o parafuso 1 rompeu por cisalhamento combinado com tração, porém no parafuso 2 não houve formação de uma entalhe bem característico, havendo apenas plastificação do fuste, como mostram as Figuras 5.66 e 5.67.

Figura 5.66 – Parafuso 1 – Ligação CD3B.

Figura 5.67 – Parafuso 2 – Ligação CD3B.

Igualmente às demais conexões deste grupo, o flange da ligação CD3C não apresentou grande efeito de punção. No andamento do ensaio foi detectado o aparecimento de rótula plástica na região da solda. Os detalhes do flange são apresentados nas Figuras 5.68 e 5.69.

Figura 5.68 – Flange instrumentado (Ligação CD3C).

Figura 5.69 – Flange não instrumentado (Ligação CD3C).

Fazendo análise do colapso da ligação, verifica-se que os parafusos apresentaram os traços de falha característicos deste grupo, com formação de um entalhe bem definido no fuste do parafuso 1 associado a uma plastificação desta região e a ruptura por cisalhamento combinada com tração no parafuso 2, caracterizando o Modo 2 de falha, como pode ser visto nas Figuras 5.70 e 5.71.

Figura 5.70 - Parafuso 1 - Ligação CD3C.

Figura 5.71 – Parafuso 2 – Ligação CD3C.

5.5.2.4 – Grupo CD4 – Ligação com flange de 9,5 mm

O grupo CD4 apresentou características de colapso semelhantes às do grupo CD3. Nas Figuras 5.72 e 5.73, pode-se observar que não houve grandes efeitos de punção no flange da ligação CD4A, porém as observações pós-ensaio mostraram que existe presença marcante de rótula plástica na região destas conexões, caracterizando novamente como Modo 2 de falha para este grupo.

Figura 5.72 – Flange instrumentado (Ligação CD4A).

Figura 5.73 – Flange não instrumentado (Ligação CD4A).

A Figura 5.74 mostra que houve novamente ruptura do parafuso por cisalhamento combinado com tração, porém há o aparecimento de escoamento da região da área com rosca do parafuso, com risco iminente de ruptura por tração nesta região. O parafuso 2, apresentou um entalhe bem definido na região do fuste e escoamento da região rosqueada, conforme pode ser visto na Figura 5.75.

Figura 5.74 - Parafuso 1 - Ligação CD4A.

Figura 5.75 - Parafuso 2 - Ligação CD4A.

De forma idêntica a ligação anterior, a ligação CD4B não apresentou efeito de punção da chapa do flange na região do furo, porém obteve um grande efeito de rotula plástica na região da solda. As Figuras 5.76 e 5.77 apresentam detalhes do flange.

Figura 5.76 – Flange instrumentado (Ligação CD4B).

Figura 5.77 – Flange não instrumentado (Ligação CD4B).

O parafuso 1 da ligação CD4B sofreu ruptura por cisalhamento combinado com tração e o parafuso 2, obteve deformação plástica na região rosqueada e um entalhe bem definido na região do fuste, como pode ser visto nas Figuras 5.78 e 5.79, respectivamente. Desta forma, novamente se caracteriza o Modo 2 de falha para esta ligação.

Figura 5.78 – Parafuso 1 – Ligação CD4B.

Figura 5.79 – Parafuso 2 – Ligação CD4B.

O flange da ligação CD4C obteve comportamento idêntico aos demais flanges das conexões do grupo, com pode se ver nas Figuras 5.80 e 5.81. Frisando ainda, que novamente ocorreu a presença de rótula plástica para esta ligação.

Figura 5.80 – Flange instrumentado (Ligação CD4C).

Figura 5.81 – Flange não instrumentado (Ligação CD4C).

Novamente houve ruptura do parafuso 1 por cisalhamento do fuste, em razão do forte efeito de contato entre parede do furo e fuste do parafuso combinado com tração. Para esta conexão houve a ruptura do parafuso 2 por tração na região rosqueada, com o aparecimento do entalhe no fuste do parafuso (Figuras 5.82 e 5.83).

Figura 5.82 – Parafuso 1 – Ligação CD4C.

Figura 5.83 – Parafuso 2 – Ligação CD4C.

5.5.2.5 – Grupo CD5 – Ligação com flange de 12,7 mm

Ao contrário dos grupos CD3 e CD4, o grupo CD5 não apresentou rótula plástica na região da solda, em razão da grande rigidez do perfil T-stub deste grupo em relação aos demais grupos estudados nesta pesquisa. Este grupo também não sofreu efeitos de punção na região do furo. O grupo CD5 foi o único que se enquadrou no Modo 3 de falha, caracterizado apenas ruptura dos parafusos. O detalhe do flange da ligação CD5A pode ser visto nas Figuras 5.84 e 5.85.

Figura 5.84 – Flange instrumentado (Ligação CD5A).

Figura 5.85 – Flange não instrumentado (Ligação CD5A).

Na Figura 5.86, pode se observar a presença de um entalhe no parafuso 1, bem como o escoamento da região rosqueada, com risco iminente de ruptura, mostrando o efeito combinado entre tração e cisalhamento. O parafuso 2 sofreu ruptura por cisalhamento combinado com tração, como mostra a Figura 5.87.

Figura 5.86 – Parafuso 1 – Ligação CD5A.

Figura 5.87 – Parafuso 2 – Ligação CD5A.

Para a ligação CD5B, o flange obteve o mesmo comportamento da ligação anterior, como pode ser observado nas Figuras 5.88 e 5.89. Novamente não houve aparecimento de rótula plástica nesta ligação, caracterizando o colapso pelo Modo 3 de falha.

Figura 5.88 – Flange instrumentado (Ligação CD5B).

Figura 5.89 – Flange não instrumentado (Ligação CD5B).

Na ligação CD5B, o parafuso 1 sofreu ruptura por cisalhamento combinado com tração na região do fuste, e o parafuso 2 por ruptura da região rosqueada por tração, com aparecimento de um entalhe no fuste. Estes detalhes podem ser vistos a seguir, nas Figuras 5.90 e 5.91, respectivamente.

Figura 5.90 – Parafuso 1 – Ligação CD5B.

Figura 5.91 - Parafuso 2 - Ligação CD5B.

Novamente, a ligação CD5C teve os mesmos efeitos no flange que as demais conexões deste grupo tiveram. Os detalhes podem ser vistos nas Figuras 5.92 e 5.93.

Figura 5.92 – Flange instrumentado (Ligação CD5C).

Figura 5.93 – Flange não instrumentado (Ligação CD5C).

Na ligação CD5B o parafuso 1 rompeu por tração na região com rosca, e na região do fuste houve a presença do entalhe caracterizando o efeito combinado entre tração e cisalhamento; no fuste do parafuso 2 ocorreu também a formação do entalhe. O colapso para esta ligação se caracteriza como Modo 3 de falha (Figuras 5.94 e 5.95).

Figura 5.94 – Parafuso 1 – Ligação CD5C.

Figura 5.95 – Parafuso 2 – Ligação CD5C.

6 – ANÁLISE NUMÉRICA

Este capítulo é dedicado à apresentação da metodologia adotada no desenvolvimento e aplicação dos modelos numéricos, que foram utilizados para o estudo da ruptura de ligações T-stub por cisalhamento dos parafusos. Assim, são apresentados os aspectos de modelagem relacionados à definição da geometria, ao tipo de elemento finito utilizado e a representação da relação constitutiva dos materiais.

Todos os modelos numéricos são analisados através de uma modelagem em elementos finitos com o programa ANSYS. O estudo abrange o comportamento plástico do material, através da não-linearidade física. Os detalhes das etapas de desenvolvimento da análise numérica são descritos a seguir.

6.1 – CRITÉRIOS ADOTADOS NA MODELAGEM NUMÉRICA

A elaboração de um modelo em elementos finitos consiste de algumas etapas, que devem ser bem executadas, pois cada etapa depende do sucesso da etapa anterior. Elas são divididas em:

- i. Definição do modelo geométrico;
- ii. Definição dos tipos de elementos finitos que serão aplicados ao modelo;
- iii. Definição da malha que será usada;
- iv. Definição das propriedades físicas dos materiais;
- v. Definição da solicitação e das condições de contorno;
- vi. Definição dos parâmetros de processamento (critérios de convergência, número de incrementos, número de interações);
- vii. Processamento.

Seguindo-se estas etapas, os modelos numéricos foram discretizados e processados com a finalidade de atender aos objetivos definidos inicialmente para esta pesquisa. A seguir, são apresentadas e descritas todas as etapas de discretização dos dois modelos computacionais utilizados no estudo numérico deste trabalho.

6.2 – DISCRETIZAÇÃO DOS MODELOS

Para a investigação do cisalhamento em parafusos de ligações T-stub, através da análise numérica e análise híbrida numérico-experimental, se utilizaram cinco modelos numéricos de ligações T-stub e cinco modelos em formato de chapa, respectivamente.

Os modelos de chapa são constituídos por 792 elementos sólidos 3D de 8 nós, distribuídos em 1264 nós.

Na discretização do perfil T (flange, alma e solda) foram utilizados 776 elementos sólidos 3D, com um total de 1296, com configuração de 6 nós para a discretização da solda, e configuração de 8 nós para o restante do perfil. Na discretização dos parafusos sextavados, se utilizou 560 nós e 456 elementos (228 por parafuso), com configuração de 6 e 8 nós. A geometria do modelo de chapa e modelo de ligação T-stub podem ser vistos a seguir, na Figura 6.1 e Figura 6.2, respectivamente.

Figura 6.1 – Malha de elementos finitos – modelo numérico CH2.

Figura 6.2 – Malha de elementos finitos – Ligação T-stub.

6.2.1 - Elemento utilizado na discretização

Na discretização dos modelos de chapa e ligações T-stub, se utilizou o elemento sólido estrutural tridimensional SOLID45 (Figura 6.3) objetivando simular o comportamento do aço das peças usadas. Este elemento possui 8 nós com 3 graus de liberdade por nó, referentes às translações nas direções x, y e z. O elemento SOLID45 permite considerar a plasticidade, bem como a ortotropia do material.

Figura 6.3 – SOLID45, elemento estrutural do ANSYS.

O elemento de contato "CONTAC52 point-to-point" é utilizado para simular a interface de contato entre o flange e a superfície de fixação, nos modelos que simulam a ligação T-stub.

Também conhecido como "Elemento de GAP", este elemento possui configuração tridimensional formada por dois nós e três graus de liberdade por nó. Pode suportar esforço cortante na direção tangencial e cargas de compressão na direção normal a superfície de estudo. A Figura 6.4 apresenta o elemento contate 52.

Figura 6.4 – "CONTAC52 point-to-point", elemento de contato.

Os elementos CONTAC52 foram posicionados na face inferior do flange do perfil e funcionam como apoios de primeiro gênero. Para o estudo da região de contato entre o perfil T-stub e a base de ensaio, foram utilizados 333 elementos com um total de 666 nós.

6.2.2 - Geometria e Critérios Gerais Adotados para Construção da Malha

O modelo numérico utilizado para estudo da distribuição de pressão no interior do furo do perfil corresponde à metade da chapa do flange do perfil T, como mostra a Figura 6.5 (a). A malha foi construída de forma não automática, no programa Excel, com o intuito de se ter o controle dos nós e dos elementos da malha.

Adotou-se uma configuração simétrica com refinamento nas regiões do flange onde os extensômetros de resistência foram fixados no ensaio experimental, regiões 1 e 2 expressas na Figura 6.5 (b). A Figura 6.5 (c) mostra a espessura dos modelos, divida em 3 camadas de elementos sólidos 3D.

Figura 6.5 – a) Dimensões do modelo; b) Região de refinamento da malha; c) Representação da espessura.

O quadro apresentado na Tabela 6.1, mostra as propriedades e dimensões de cada modelo estudado, os quais possuem como características principais a não-linearidade física, representada dois tipos de curvas elastoplásticas e a pressão no interior do furo, aplicada por meio de duas formulações teóricas.

Tabela 6.1 – Características dos modelos numéricos de chapa (CH).

Modelos	Comprimento	Largura	Espessura (t _f)		Material		Pressão no Furo	
CH1			3/16 "	4,8 mm				
CH2			1/4 "	6,3 mm	Curva Bilinear	Curva Multilinear	Equação 1	Equação 2
CH3	70 mm	50 mm	5/16 "	7,9 mm	Tensão-Deformação	Tensão-Deformação	Equação Γ	Equação 2 Eq. (6.5)
CH4			3/8 "	9,5 mm	Figura (6.9)	Figura (6.10)	Eq.(0.1)	Eq.(0.0)
CH5	†		1/2 "	12,7 mm				

Os modelos numéricos de ligações T-stub possuem as mesmas características geometrias dos modelos experimentais, apresentados anteriormente no Capítulo 4. A malha do perfil T possui forma de grelha, com a discretização do furo sendo coincidente com o formato da cabeça do parafuso, conforme mostra a Figura 6.6. O formato de grelha possibilitou a simulação da distribuição das forças de contato entre o flange e a base de apoio, por meio

da fixação dos elementos de contato nos nós dos elementos sólidos. Desta forma, se considerou uma distribuição simétrica da força de contato no flange dos perfis.

Figura 6.6 – Configuração da malha do flange do perfil T.

A seguir, na Figura 6.7, são mostrados em detalhe, a discretização dos elementos que compõe a ligação T-stub.

Figura 6.7 – a) Perfil T; b) Parafuso sextavado; c) Elementos de contato, que simulam o efeito de contato entre o flange do perfil T e a base de fixação.

6.2.3 - Modelo Constitutivo para o Aço

Para as análises foi inclusa a não-linearidade física dos materiais das chapas através da descrição bilinear e multilinear para a relação tensão-deformação, dado essencial para a análise não linear dos modelos.

Os modelos bilineares, de forma geral, descrevem os modelos constitutivos dos materiais por meio do módulo de elasticidade longitudinal (E), da tensão de escoamento (f_y) e do módulo plástico (E_t), sem considerar os limites de deformação ou de tensão, como mostra a Figura 6.8. Desta forma, ele permite representar a perda de rigidez do elemento após o escoamento do material.

Figura 6.8 – Representação esquemática da relação bilinear tensão-deformação.

Os diagramas multilineares da relação tensão-deformação que, com aproximações por trechos lineares, é capaz de simular as diversas etapas de plastificação incluindo os patamares de escoamento, os efeitos de encruamento e até mesmo os limites de deformação. Assim, duas relações curvas típicas de tensão-deformação do aço, uma bilinear e outra multilinear, foram escolhidas para representar o comportamento do aço dos modelos numéricos de chapa. Para o modelo de ligação T-stub se adotou duas curvas bilineares, uma para o perfil T e outra para os parafusos. A representação esquemática das curvas de tensão-deformação é apresentada na Figura 6.9 e 6.10.

Figura 6.9 – Curva bilinear tensão-deformação para aço (Kulak et al, 2001).

Figura 6.10 - Curva multilinear tensão-deformação para aço (Kulak et al, 2001).

As propriedades das chapas de aço SAE 1010 e parafusos A307, adotadas para os modelos numéricos, são apresentadas na Tabela 6.2, e correspondem aos valores médios dos resultados experimentais de caracterização. Os valores para a deformação de escoamento $(3,5\varepsilon_v)$ e deformação de ruptura $(15\varepsilon_v)$, são dados médios dos ensaios de caracterização.

Material	E (GPa)	ν	f _y (MPa)	f _u (MPa)	$\epsilon_y (\mu m/m)$
Chapas SAE 1010	204	0,3	290	340	1435

460

750

2244

0.3

Tabela 6.2 - Relações tensão-deformação adotadas para o estudo numérico.

6.2.4 - Condições de Contorno

205

Parafuso

As restrições impostas aos modelos representam, de maneira geral e de forma conservadora, as condições de simetria e as restrições de apoio.

A região do plano XY no modelo numérico de chapa, que representa a área de contato do flange do perfil T com a base rígida, recebeu restrições nodais de translação na direção Y e na direção Z, representando de forma conservadora esta região de apoio. O plano YZ, localizado na região onde estaria fixada a alma do perfil T, recebeu restrições nodais de translação nas direções X e Y, permitindo movimentos desta face apenas no eixo Z. Desta forma, esta translação livre em Z representa o deslocamento da alma do perfil T-stub. A seguir, na Figura 6.11, são mostradas a restrições nodais que simulam o apoio do flange do perfil com a base rígida, região esta determinada a partir de valores médios para a área de

contato entre flange e base rígida determinados por Freitas (2005). A Figura 6.11 apresenta ainda as restrições que representam o comportamento da alma do perfil.

Figura 6.11 - Condições de contorno aplicadas no modelo.

Para o modelo T-stub, na extremidade livre do elemento CONTAC52 são aplicadas restrições nos 3 graus de liberdade (X, Y e Z), estes elementos funcionam como apoios de primeiro gênero para o modelo. Os parafusos recebem restrições em 2 graus de liberdade (X e Y) ao longo do corpo do parafuso, com o objetivo de possibilitar apenas o deslocamento longitudinal do parafuso. A Figura 6.12 mostra as restrições utilizadas no modelo de elementos finitos da conexão T-stub.

Figura 6.12 - Condições de contorno aplicadas no modelo T-stub.

6.3 – APLICAÇÃO DO CARREGAMENTO

A seguir seguem as condições de aplicação do carregamento nos modelos numéricos de ligação T-stub e nos modelos numéricos de chapa, respectivamente.

6.3.1 – Modelo de Ligação T-stub

Nos estudos com ligações T-stub, foram aplicados 8 carregamentos. O primeiro carregamento corresponde ao aperto de 5 kN aplicado nos parafusos, o qual foi imposto no modelo numérico através da redução da temperatura do parafuso. A partir do segundo passo de carga são aplicados carregamentos de forma distribuída nos nós da alma do perfil.

6.3.2 – Modelo de Chapa

Nos estudos com o modelo de chapa, para a aplicação da pressão na face interna do furo no modelo de chapa, se utilizou duas formulações teóricas para distribuição de pressão em um orifício circular, apresentadas anteriormente no item 3.4.1 do Capítulo 3, por meio dos modelos de Echavarría et al (2007) e Grüber et al (2006), os quais distribuem as forças de forma senoidal na superfície de furo circular. As funções foram inseridas na calculadora do programa Ansys e aplicadas em forma de pressão no contorno do furo do modelo numérico. A seguir, serão apresentados as duas equações utilizadas.

6.3.2.1 – Equação 1 (Echavarría et al, 2007)

Neste modelo, apresentado anteriormente no capítulo 2, a distribuição de força ao redor do furo é expressa pela seguinte equação senoidal:

$$P = 4p[sen(\theta/\pi)]$$
(6.1)

A Figura 6.13 ilustra o esquema analítico de aplicação de carga no fuste proposto por Echavarría et al (2007), que está relacionado à força aplica na extremidade de chapa.

Figura 6.13 – Pressão em um furo circular, MODELO 1 (Echavarría et al, 2007).

Para se obter o valor da carga concentrada equivalente (P_E) deve-se integrar a equação (6.1). Desta forma tem-se:

$$P_E = \int_{\pi}^{0} (4psen\theta/\pi)d\theta$$
(6.2)

$$P_E = \frac{4p}{\pi} \int_{\pi}^{0} sen \theta d\theta$$
(6.3)

$$P_E = \frac{8p}{\pi} \tag{6.4}$$

6.3.2.2 – Equação 2 (Grüber et al, 2006)

No modelo proposto por Grüber et al (2006), apresentado anteriormente no capítulo 2, as condições de contorno adotadas para o borda do furo são expressas da seguinte forma:

$$P = -p_0 sen\left(\pi \frac{\theta - \theta_1}{\theta_2 - \theta_1}\right) \text{ para } \theta \in [\theta_1, \theta_2]$$
(6.5)

Com $\theta \in [0, 2\pi[$. A representação gráfica, das forças normais senoidais do modelo, pode ser vista na Figura 6.14.

Figura 6.14 – Pressão em um furo circular, MODELO 2 (Grüber et al, 2006).

Integrando a função apresentada na equação 6.5 tem-se o P_E (Força de Cisalhamento):

$$P_{E} = \int_{0}^{\pi} -p_{0} sen\left(\pi \frac{\theta - \theta_{1}}{\theta_{2} - \theta_{1}}\right) d\theta$$
(6.6)

$$P_{E} = -p_{0} \int_{0}^{\pi} sen\left(\pi \frac{\theta - \theta_{1}}{\theta_{2} - \theta_{1}}\right) d\theta$$
(6.7)

Fazendo
$$u = \pi \frac{\theta - \theta_1}{\theta_2 - \theta_1}$$
 (6.8)

$$du = \frac{ds}{\theta_2 - \theta_1} \tag{6.9}$$

$$ds = (\theta_2 - \theta_1)du \tag{6.10}$$

$$P_E = -p_0 (\theta_2 - \theta_1) \int_0^{\pi} sen(\pi u) du$$
(6.11)

$$P_{E} = -p_{0} \left(\theta_{2} - \theta_{1}\right) \int_{0}^{\pi} sen(\pi u) du$$
(6.12)

$$P_{E} = \frac{p_{0}(\theta_{2} - \theta_{1})}{\pi} \left[\cos\left(\pi \frac{\theta - \theta_{1}}{\theta_{2} - \theta_{1}}\right) \right]_{0}^{\pi}$$
(6.13)

Adotando $\theta_2 = 165^{\circ} e \ \theta_1 = 15^{\circ}$ (6.14)

$$P_E = \frac{17\,p_0}{9} \tag{6.15}$$

6.3.2.3 - Aplicação do Deslocamento

Nos estudos com o modelo de chapa, além da pressão interna no furo, foram aplicados deslocamentos em forma de passos de carga, no eixo Z do modelo, com intuito de simular o deslocamento que a alma provoca no flange do perfil, como mostra a Figura 6.15. Os deslocamentos aplicados são baseados nos dados médios obtidos nos ensaios experimentais. Desta forma, este modelo de placa se caracteriza por passos de carga múltiplos, aplicados em forma de pressão nos furos e deslocamento da chapa, de forma simultânea.

Figura 6.14 – Deslocamento imposto na chapa.

6.4 – RESULTADOS PARA OS MODELOS DE CHAPA

Os resultados que serão apresentados logo mais, são referentes à deformação média dos nós da região de refinamento da malha, correspondente a região onde foi colado o Extensômetro 1 nos ensaios experimentais, como mostrado anteriormente na Figura 6.5 b. A região 2, não será utilizada para análise, pois a ordem de grandeza dos resultados da análise numérica é muito superior aos valores obtidos nos ensaios experimentais, devido a grande flexão ocorrida na região 2 no modelo numérico, motivada pelo tipo de condição de contorno adotada para representar a área de apoio entre flange e base rígida. Esta região é, portanto, descartada da análise.

Os resultados numéricos estão divididos em 4 casos, caracterizados pela combinação das curvas elastoplásticas e função de carregamento no furo. O "Caso 1" corresponde à combinação da "Curva Elastoplástica Multilinear" e a "Equação 1" para carregamento do furo. No "Caso 2" aplica-se a "Equação 1" para carregamento do furo e a "Curva Elastoplástica Bilinear". Para o "Caso 3" tem-se a "Curva Elastoplástica Multilinear" e "Equação 2" para carregamento do furo, e "Caso 4" com "Curva Elastoplástica Bilinear" e "Equação 2" para carregamento do furo, e "Caso 4" com "Curva Elastoplástica Bilinear" e "Equação 2". A seguir, na Figura 6.15, pode-se observar o fluxograma para o estudo do modelo numérico tipo.

Figura 6.15 – Estudo numérico utilizando o modelo CH.

Para o estudo da força cisalhante, se utilizou a formulação quadrática de interação para o estudo de parafusos sob tração e força cortante combinados, equação (6.16), a qual utiliza os coeficientes de ponderação para cálculo (dimensionamento). Retirando os coeficientes

de ponderação, chega-se à equação (6.17), que representa a interação entre tração e cisalhamento combinados, em função de valores nominais. Isolando-se V_n tem-se a relação da cortante nominal, que ficará em função da carga de tração nominal (T_n) no parafuso e das resistências nominais de tração e cisalhamento ($R_{nt} e R_{nv}$), como pode ser visto na equação (6.18).

$$\left(\frac{T_{d}}{\varphi_{t}R_{nt}}\right)^{2} + \left(\frac{V_{d}}{\varphi_{v}R_{nv}}\right)^{2} = 1$$
(6.16)

$$\left(\frac{T_n}{R_{nt}}\right)^2 + \left(\frac{V_n}{R_{nv}}\right)^2 = 1$$
(6.17)

$$V_{n} = \left(R_{nv}^{2} - T_{n}^{2} \left(\frac{R_{nv}}{R_{nt}}\right)^{2}\right)^{1/2}$$
(6.18)

Através da equação (6.18), chega-se ao limite provável de força cortante, em que valores acima dele, podem levar a ruptura da conexão por cisalhamento combinado a tração. A Tabela 6.3, apresenta os valores de V_n para as cargas máximas de tração (T_n) medidas nos parafusos nos ensaios experimentais, estes valores foram levados em consideração como parâmetro inicial para a aplicação da carga nos furos durante o estudo numérico. A partir do valor deste cisalhamento inicial (V_n), o modelo numérico foi ajustado até que a curva deformação vs deslocamento se aproximasse o mais possível a curva fornecida pelos ensaios experimentais. Desta forma, foi obtida a carga no furo para cada modelo.

Grupo	Tração (T _n)	Cisalhamento (V _n)
CH1	24,64 kN	32,52 kN
CH2	35,85 kN	28,52 kN
CH3	51,09 kN	18,34 kN
CH4	55,97 kN	12,18 kN
CH5	55,80 kN	12,46 kN

Tabela 6.3 – Relações de interação entre tração no parafuso e cisalhamento.

6.4.1 – Resultados para o grupo CH1

O grupo CH1, que possui como característica a espessura da chapa igual a 4,8 mm, obteve deformação máxima de compressão em módulo de 5.269 μm/m para a aplicação da "Equação 1" como carregamento do furo, e 5.792 μm/m para "Equação 2".

A alteração das curvas elastoplásticas não causou mudanças aos resultados numéricos dos modelos. A deformação máxima de compressão em módulo, obtida nos ensaios experimentais, para os modelos de T-stub com flange de 4,8 mm, foi igual a 4.932 μm/m.

As curvas mostram que a "Equação 1" se mostra menos conservadora que a "Equação 2", gerando menores deformações na região investigada. Para esta chapa, foi aplicada uma carga máxima de 24 kN no furo dividido em 20 passos de carga de forma crescente, simulando e tendo uma boa aproximação da pressão imposta no fuste do parafuso. A seguir, na Figura 6.16, são apresentados os resultados para a relação entre deformação e força aplicada no furo. A deformação corresponde à média das deformações medidas nos nós da região de refinamento, correspondente ao local de colagem do Extensômetro 1 no ensaio experimental.

Figura 6.16 - Curva deformação-força no furo para o grupo CH1.

O deslocamento foi aplicado de forma simultânea ao carregamento no furo. Sabendo o valor máximo de deslocamento medido no ensaio das conexões do grupo CD1 foi cerca de 28 mm, este deslocamento foi divido e aplicado em 20 passos carga crescentes até este valor máximo. O gráfico da Figura 6.17 mostra a relação deformação-deslocamento para os 4 modelos numéricos.

Figura 6.17 - Curva deformação-deslocamento para o grupo CH1.

A Figura 6.18 apresenta a função de carregamento dos modelos numéricos, expressa pela relação linear entre força de cisalhamento (carregamento no furo) e deslocamento, $V_n=0,857u_z$, sendo V_n o carregamento aplicado no furo e u_z o deslocamento vertical aplicado.

Figura 6.18 - Relação força-deslocamento assumida para o grupo CH1

6.4.2 - Resultados para o grupo CH2

Para o grupo CH2, nos ensaios experimentais, a deformação máxima de compressão em módulo foi igual a 7365 μm/m. Novamente, as deformações impostas pela "Equação 1" ficaram mais próximas dos valores experimentais, com uma deformação final igual a 7503 μm/m, em módulo. A "Equação 2" obteve deformação máxima de 7945 μm/m. A mudança

de curva elastoplástica não provocou mudanças no estudo. Para este grupo, a carga máxima aplicada foi 21 kN, divida em 20 passos de cargas crescente até este valor máximo. O gráfico a seguir, na Figura 6.19, mostra a curva deformação-cisalhamento para o grupo CH2.

Figura 6.19 – Curva deformação-força no furo para o grupo CH2.

Nos ensaios experimentais, o grupo CD2 obteve um deslocamento máximo de aproximadamente 36 mm, que foi utilizado como parâmetro para a análise numérica. Foi aplicado um deslocamento máximo de 36 mm nos modelos de chapa deste grupo, divido em 20 passos de carga subseqüentes de forma crescente até atingir este valor máximo. Os mesmos são aplicados de forma simultânea a carga aplicada no furo, dando a característica de passos de carga múltiplos ao modelo. A Figura 6.20 mostra curva deformação-deslocamento para o grupo CH2.

Figura 6.20 - Curva deformação-deslocamento para o grupo CH2.

A função $V_n=0,583u_z$ representa o carregamento aplicado no modelo CH2, e está representada na Figura 6.21.

Figura 6.21 – Relação força-deslocamento assumida para o grupo CH2.

6.4.3 - Resultados para o grupo CH3

Para este grupo, se aplicou uma carga máxima no furo 19 kN no furo, dividida em passos de carga crescentes. A deformação máxima de compressão em módulo para o modelo que usa a "Equação 1" foi de 8826 µm/m, e com a mudança de equação, a deformação máxima cresceu para 9584 µm/m, como se vê na Figura 6.22. Sabendo que a deformação máxima em módulo, medida no ensaio experimental nos ensaios do grupo CD3, foi 7985 µm/m,

novamente mostra-se que os modelos com a aplicação da "Equação 1", tem uma maior aproximação as deformações medidas nos ensaios experimentais.

Figura 6.22 – Curva deformação-força no furo para o grupo CH3.

Os deslocamentos foram aplicados em passos de carga crescentes com um deslocamento máximo de 24 mm, aproximadamente o mesmo deslocamento máximo medido nos ensaios experimentais do grupo CD3. A Figura 6.23 mostra o desenvolvimento da deformação em função do deslocamento.

Figura 6.23 – Curva deformação-deslocamento para o Grupo CH3.

A Figura 6.24 apresenta a função $V_n=0,791u_z$, que representa o carregamento aplicado no modelo CH3.

Figura 6.24 - Relação força-deslocamento assumida para o Grupo CH3.

6.4.4 - Resultados para o grupo CH4

O grupo CH4 recebeu carregamento máximo no furo de 13 kN, que foi divido em passos de carga crescente, até este valor máximo. Em razão da maior rigidez deste modelo, a deformação medida reduziu bastante em relação aos modelos anteriores. O grupo obteve deformação máxima igual a 1904 µm/m com o uso da "Equação 1" e 2143 µm/m com a utilização da "Equação 2", como pode ser observado na Figura 6.25. A deformação máxima foi 1826 µm/m, para os ensaios experimentais do grupo CD4. O deslocamento máximo medido nos ensaios experimentais do grupo CD4 foi de aproximadamente 15 mm, sendo este valor divido em 20 passos de carga crescentes para o estudo numérico do grupo CH4, como mostra a Figura 6.26.

Figura 6.25 - Curva deformação-força no furo para o Grupo CH4.

Figura 6.26 - Curva deformação-deslocamento para o Grupo CH4.

Na Figura 6.27, encontra-se a função do carregamento aplicado no modelo CH4, expressa pela equação $V_n=0,866u_z$.

Figura 6.27 - Relação força-deslocamento assumida para o Grupo CH4.

6.4.5 - Resultados para o grupo CH5

Novamente, do mesmo modo que o grupo CH4, o grupo CH5 obteve as medidas das deformações bem reduzidas em relação aos outros grupos.

A deformação máxima medida com a aplicação 13 kN, utilizando a Equação 1, foi 1968 μ m/m e 2216 μ m/m com o uso da "Equação 2". A deformação máxima obtida no ensaio

experimental do grupo CD5 foi 1815 µm/m. As deformações medidas nos modelos numéricos podem ser vistas na Figura 6.28.

Figura 6.28 – Curva deformação-força no furo para o Grupo CH5.

Nos ensaios experimentais do grupo CD5, o deslocamento máximo medido foi de 18 mm. Desta forma este deslocamento foi divido em 20 passos de carga crescentes para o estudo numérico do grupo CH5, como mostra a Figura 6.29.

Figura 6.29 - Curva deformação-deslocamento para o Grupo CH5.

O carregamento aplicado no modelo CH5 é representado pela função $V_n=0,722u_z$, como pode ser viso na Figura 6.30, a seguir.

Figura 6.30 - Relação força-deslocamento assumida para o Grupo CH5.

6.5 – RESULTADOS PARA OS MODELOS NUMÉRICOS DE LIGAÇÕES T-STUB

Para o estudo do cisalhamento nos modelos numéricos que simulam as ligações T-stub, de forma simples e conservadora, foram adaptados apoios no interior dos furos (Figura 6.31), de forma que eles representam a região de contato entre a parede do furo e o fuste do parafuso, na região de corte do parafuso. A leitura das deformações nos pontos 1 e 2, para este modelo numérico, não atingiram a mesma grandeza alcançada nos ensaios experimentais.

Figura 6.31 – Fixação de apoios nos furos.

O fluxograma da Figura 6.32, apresentado a seguir, mostra o esquema do estudo numérico montado para os modelos de conexões T-stub.

Figura 6.32 – Estudo numérico das conexões T-stub.

6.5.1 - Resultado para conexão CN1 - flange de 3/16"

As reações nos apoios, que correspondem à força de cisalhamento no parafuso, para o modelo CN1, obtiveram um comportamento linear, com uma força máxima de 25,16 kN, como pode ser visto na Figura 6.33. Utilizando como base a carga aplicada no modelo de chapa, de 24 kN, as cargas finais dos dois métodos são relativamente próximas, mostrando uma boa aproximação entre os dois modelos numéricos.

Figura 6.33 - Relação cisalhamento-carga aplicada para o modelo CN1.

6.5.2 - Resultado para conexão CN2 - flange de 1/4"

Novamente, o comportamento da força de cisalhamento para o modelo CN2, também foi linear, com carga máxima de cisalhamento igual a 18,37 kN, como mostra a Figura 6.34.

Para o modelo de chapa CH1, se aplicou uma carga máxima de 21 kN, apresentando assim uma diferença de 2,63 kN entre os dois modelos.

Figura 6.34 – Relação cisalhamento-carga aplicada para o modelo CN2.

6.5.3 - Resultado para conexão CN3 - flange de 5/16"

Como nos outros modelos, é mantido o comportamento linear para as cargas de cisalhamento no modelo CN3, como se vê na Figura 6.35. Neste modelo, a carga máxima de cisalhamento foi igual a 17,23 kN, ficando abaixo do valor de carga aplicada no modelo CH3, igual a 19 kN.

Figura 6.35 – Relação cisalhamento-carga aplicada para o modelo CN3.

6.5.4 - Resultado para conexão CN4 - flange de 3/8"

Neste estudo numérico, o modelo CN4 apresentou carga máxima de cisalhamento igual a 14,14 kN, valor que se aproxima da carga de 13 kN, aplicada no modelo CH4. O desenvolvimento da carga de cisalhamento é apresentado na Figura 6.36.

Figura 6.36 - Relação cisalhamento-carga aplicada para o modelo CN4.

6.5.5 - Resultado para conexão CN5 - flange de 1/2"

O modelo CN5 atinge carga de cisalhamento máximo igual a 12 kN, o qual ficou 1 kN abaixo do valor de carga aplicada no modelo CH5, igual a 13 kN. A seguir, na Figura 6.37, é apresentada curva da força de cisalhamento em função da carga aplicada na ligação T-stub, para este modelo numérico.

Figura 6.37 - Relação cisalhamento-carga aplicada para o modelo CN5.

7 – ANÁLISE DOS RESULTADOS

Neste capítulo é feita a discussão dos resultados da análise experimental e análise numérica realizadas neste trabalho. O programa experimental permitiu a visualização do comportamento global, dos estados limites últimos, da capacidade resistente, do efeito alavanca das ligações T-stub ensaiadas, além de permitir a observação do tipo de ruptura dos parafusos. O estudo numérico proporcionou identificar, de forma qualitativa, a força de cisalhamento no parafuso, caracterizando a ruptura por cisalhamento combinado com tração.

7.1 – ANÁLISE DA DEFORMAÇÃO MAPEADA NA SUPERFÍCIE DO FLANGE

Os modelos numéricos de chapa, de forma simplificada, simulam o comportamento do flange dos perfis de ligações T-stub. Desta forma, nestes modelos numéricos, foram desconsiderados efeitos de contato entre as superfícies dos elementos que compõe a ligação e efeitos de deslizamento entre estes elementos, além da desconsideração dos efeitos de punção que a cabeça do parafuso provoca no flange do perfil T.

Deste modo, o gráfico apresentado na Figura 7.1, faz a comparação entre as curvas numérica e experimental, da relação entre deformação no ponto mapeado e deslocamento global da conexão T-stub. A interpretação do gráfico pode ser feita através de duas hipóteses.

A primeira parte do ponto que a punção, que a cabeça do parafuso exerce no flange, provoca deformações positivas na região de instrumentação do flange. A segunda hipótese seria que a flexão transversal do flange gera uma compressão transversal na face superior e, pelo efeito de Poisson, ocorrerá uma deformação positiva longitudinal na linha central do flange. Desta maneira, a curva experimental para o grupo CD1 (ligações com flange de 4,8 mm) se desloca para o eixo positivo de deformação, e só atinge deformações negativas a partir de 20 mm de deslocamento global da ligação. A curva numérica corresponde ao "Caso 1" do estudo numérico com modelo de chapa CH1, representado pela "curva elastoplástica bilinear" e "equação 1" para aplicação de 24 kN no furo.

A curva numérica de deformação representa o efeito de pressão na parede do furo associado a flexão no flange devido ao deslocamento imposto na extremidade da chapa. Entretanto, não há a consideração de outros efeitos, como o efeito de punção e o atrito que a cabeça do parafuso exerce no flange. Apesar disto, as curvas numérica e experimental apresentaram a mesma intensidade de deformação no final do carregamento aplicado. Nos ensaios experimentais do grupo CD1 não houve ruptura de parafuso.

Figura 7.1 – Relação deformação-deslocamento para o modelo os numérico CH1 e modelos experimentais do grupo CD1.

Analisando a curva experimental que representa o grupo CD2, conexões que possuem flange com 6,3 mm de espessura, nota-se que novamente houve predominância de deformações positivas até os 19 mm de deslocamento das conexões, como pode ser ver na Figura 7.2. Apesar disto, as deformações do modelo numérico CH2 se aproximaram de forma considerável aos valores obtidos pelo modelo experimental CD2. A curva numérica para o modelo CH2 é correspondente ao "Caso 1" com carga de 21 kN aplicada no furo. Nos ensaios experimentais do grupo CD2 não ocorreu ruptura dos parafusos.

Figura 7.2 – Relação deformação-deslocamento para o modelo numérico CH2 e os modelos experimentais do grupo CD2.

A partir do grupo CD3, ligações com flange de 7,9 mm, as leituras das deformações passam a ser predominantemente negativas. Lembrando que a partir deste grupo, os parafusos começam a romper por cisalhamento combinado com tração. A curva numérica do modelo CH3 "Caso 1", para uma carga máxima de 19 kN aplicados no furo, tem uma boa aproximação ao comportamento da curva experimental referente ao modelo CD3. A seguir, na Figura 7.3, são apresentadas a curva experimental do grupo CD3 e a curva numérica do grupo CH3, para a relação deslocamento-deformação no ponto de mapeamento.

Figura 7.3 – Relação deformação-deslocamento para o modelo numérico CH3 e os modelos experimentais do grupo CD3.

A curva deformação-deslocamento para o modelo numérico CH4, obteve um comportamento com as mesmas características da curva experimental, com aplicação da carga 13 kN no furo. Nos ensaios experimentais do grupo CD4, houve ruptura dos parafusos por cisalhamento combinado com tração, mostrando que a curva experimental representa bem o contato que ocorre entre a parede do furo e o fuste do parafuso, gerando assim a força de cisalhamento no fuste, e conseqüentemente compressão na região de instrumentação, provocando deformações negativas.

A boa aproximação das duas curvas indica que a metodologia utilizada tem uma boa aplicabilidade para situações em que o efeito predominante é o contato entre parede do furo e parafuso, como pode se observar na Figura 7.4.

Figura 7.4 – Relação deformação-deslocamento para o modelo numérico CH4 e os modelos experimentais do grupo CD4.

Novamente, a curva numérica e experimental tem uma aproximação bastante acentuada para o modelo numérico CH5 em relação ao grupo experimental CD5. Vale lembrar que o grupo CD5 também possui ruptura dos parafusos nos ensaios experimentais. A curva numérica se refere ao "Caso 1" do modelo CH5, para 13 kN aplicados como carga máxima no furo. A Figura 7.5 apresenta as curvas deformação-deslocamento para o ensaio experimental e estudo numérico.

Figura 7.5 – Relação deformação-deslocamento para o modelo numérico CH5 e os modelos experimentais do grupo CD5.

7.2 – ANÁLISE DO CISALHAMENTO NO PARAFUSO

Utilizando a curva linear da relação cisalhamento-deslocamento, usada no estudo dos modelos de chapas, de forma híbrida foi possível encontrar a força de cisalhamento existente nos parafusos das ligações T-stub ensaiadas. A Figura 7.6, apresenta o roteiro do cálculo híbrido do cisalhamento utilizado nesta pesquisa.

Figura 7.6 – Roteiro utilizado na análise do cisalhamento de parafusos combinado com tração.

Partindo da função $V_n=0,857u_z$, de forma híbrida, se substituiu os valores médios, lidos pela célula deslocamento (u_z) nos ensaios das ligações do grupo CD1, obtendo-se assim a

intensidade do cisalhamento existente nos parafusos das ligações. Como a relação entre cisalhamento e deslocamento é considerada linear neste estudo híbrido, o cisalhamento para cada deslocamento medido pode ser associado aos passos de carga aplicados na ligação.

A seguir, no gráfico apresentado na Figura 7.7, é mostrada a curva obtida para a força de cisalhamento em função da carga aplicada, para as ligações do grupo CD1, com flange de 4,8 mm, que obtiveram uma força de cisalhamento máxima igual a 23,67 kN para 42 kN aplicados como carga de tração na ligação T-stub.

Figura 7.7 – Força de cisalhamento em função da carga aplicada para as ligações T-stub do grupo CD1.

Fazendo um comparativo entre a curva híbrida numérico-experimental construída anteriormente e a curva numérica de cisalhamento obtida através do modelo numérico de ligação T-stub CN1, nota-se que os valores finais de cisalhamento obtidos para as duas curvas possuem a mesma intensidade. O modelo numérico CN1 obteve a força máxima de cisalhamento igual a 25,16 kN para 45 kN de carga aplicada na ligação T-stub. A seguir, na Figura 7.8, são apresentadas as curvas de cisalhamento em função da carga aplicada na ligação.

Figura 7.8 – Comparação entre a curva híbrida para o grupo experimental CD1 e curva numérica do modelo numérico de ligação T-stub CN1.

Na análise das ligações T-stub com espessura do flange igual a 6,3 mm, se utilizou a equação $V_n=0,583u_z$, função esta adotada no estudo numérico dos modelos CH2 para aplicação da pressão no furo e deslocamento na extremidade do modelo numérico.

De forma híbrida, os deslocamentos médios obtidos no ensaio experimental do grupo CD2 (conexões com flange de 6,3 mm), foram substituídos na equação $V_n=0,583u_z$, gerando a força de cisalhamento correspondente a cada deslocamento da ligação T-stub. O gráfico da Figura 7.9 mostra o desenvolvimento da força de cisalhamento no parafuso em função da força de tração aplicada na ligação T-stub.

Figura 7.9 – Força de cisalhamento em função da carga aplicada para as ligações T-stub do grupo CD2

Comparando a curva híbrida de cisalhamento do grupo experimental de ligações T-stub CD2 com a curva numérica obtida para o modelo T-stub CN1, percebe-se que uma curva está quase que sobreposta à outra, mostrando que as duas metodologias encontram intensidades de força de cisalhamento com boa proximidade. Pelo estudo híbrido a força de cisalhamento máxima foi de 21,46 kN quando aplicados 56 kN na ligação, e para o modelo numérico, a força de cisalhamento máxima foi 18,27 kN quando aplicados 55 kN na ligação T-stub. O paralelo entre as duas curvas está representado na Figura 7.10.

Figura 7.10 – Comparação entre a curva híbrida para o grupo experimental CD2 e curva numérica do modelo numérico de ligação T-stub CN2.

Como nos modelos anteriores, a função de para aplicação de carga utilizada no estudo numérico do modelo CH3 (espessura igual a 7,9 mm) é representa por $V_n=0,791u_z$. O gráfico da Figura 7.11, mostra o comportamento do cisalhamento no fuste do parafuso em função da carga de tração aplicada na ligação, para os modelos experimentais do grupo CD3, com flange de 7,9 mm.

Em razão do aumento da rigidez das ligações, a curva de cisalhamento nos parafusos obtém valores baixos no início dos carregamentos, mas quando o perfil atinge um nível de deslocamento do flange, a força cisalhante cresce intensamente até a ruptura do parafuso por cisalhamento combinado com tração, como ocorreu nos ensaios experimentais das ligações T-stub do grupo CD3.

Figura 7.11 – Força de cisalhamento em função da carga aplicada para as ligações T-stub do grupo CD3

Diferentemente dos grupos anteriores, o grupo CD3 possui uma curva híbrida para o cisalhamento dos parafusos, inferior a curva numérica para a ligação CN3. O principal motivo é o aumento da rigidez do perfil T, que leva a uma predominância de tração no parafuso até determinada inclinação do flange do perfil T, quando ocorre um contato significativo da parede do furo com o fuste do parafuso, provocando o aumento da carga de cisalhamento até a ruptura do parafuso pelos dois efeitos combinados.

O modelo híbrido forneceu para o grupo CD3 uma carga máxima de cisalhamento igual a 16,22 kN com uma carga de tração aplicada na ligação igual a 68 kN. O modelo numérico CN3 obteve uma carga máxima de cisalhamento igual a 17,23 kN quando aplicados 70 kN na ligação T-stub. O gráfico que compara as duas curvas é apresentado a seguir, na Figura 7.12.

Figura 7.12 – Comparação entre a curva híbrida para o grupo experimental CD3 e curva numérica do modelo numérico de ligação T-stub CN3.

Para o modelo numérico CH4, a função de carregamento é expressa por $V_n=0,866u_z$. De forma idêntica ao grupo CD3, a curva híbrida para o grupo CD4 obteve o mesmo comportamento, mostrando que o aumento de rigidez das ligações gera influências na força de cisalhamento que ocorre nos parafusos. Vale dizer que este comportamento descrito está baseado na hipótese adotada neste trabalho, de que a distribuição da força de cisalhamento no parafuso e o deslocamento global da ligação são diretamente proporcionais. O comportamento da força de cisalhamento para as ligações com flange de 9,5 mm é apresentado na Figura 7.13.

Figura 7.13 – Força de cisalhamento em função da carga aplicada para as ligações T-stub do grupo CD4

Fazendo a análise do cisalhamento máximo obtido, a curva numérica para o modelo CN4 fornece 14,14 kN para o cisalhamento máximo quando aplicada uma carga de tração igual a 70 kN na ligação. O estudo híbrido fornece uma carga cisalhamento máximo igual a 11,69 kN, quando foi aplicada uma tração de 70 kN na ligação, para o grupo CD4. A curva híbrida e a curva numérica são apresentadas na Figura 7.14.

Figura 7.14 – Comparação entre a curva híbrida para o grupo experimental CD4 e curva numérica do modelo numérico de ligação T-stub CN4.

No estudo híbrido, para as ligações do grupo CD5 que possuem flange de 12,7 mm, e que são associadas ao modelo numérico CH5, a equação de aplicação de carga é representada por $V_n=0,722u_z$.

Novamente o estudo híbrido mostra que o gráfico da relação entre força de cisalhamento e carga aplicada possui o mesmo comportamento do grupo CD3 e conseqüentemente também o mesmo do grupo CD4.

Analisando as curvas cisalhamento-carga aplicada dos grupos CD4 e CD5, percebe-se que as duas possuem quase que o mesmo formato, confirmando os resultados próximos de ruptura e de deslocamentos obtidos nos ensaios experimentais. As curvas podem ser vistas a seguir, na Figura 7.15.

Figura 7.15 – Força de cisalhamento em função da carga aplicada para as ligações T-stub do grupo CD5.

As cargas finais de cisalhamento e tração aplicada para o estudo híbrido do grupo CD5 e o estudo numérico do modelo CN5, são cisalhamento igual a 11,38 e tração igual a 74 kN, e cisalhamento de 11,51 kN para uma tração igual a 70 kN, respectivamente. O comparativo entre a curva híbrida e a curva numérica pode ser visto na Figura 7.16.

Figura 7.16 – Comparação entre a curva híbrida para o grupo experimental CD5 e curva numérica do modelo numérico de ligação T-stub CN5.

7.3 – ANÁLISE DOS PARAFUSOS SOB COMBINAÇÃO DE TRAÇÃO E CISALHAMENTO

A análise dos parafusos é feita por intermédio da equação 7.1, que corresponde à equação quadrática de interação para verificação de parafusos sob tração e força cortante

combinados considerando valores nominais. Lembrando que esta função se trata de uma equação teórica experimental, e será usada neste estudo a título apenas de comparação. Desta forma, o gráfico da Figura 7.17 define o limite de ruptura para os efeitos combinados de tração e força de cisalhamento em parafusos comuns.

$$\left(\frac{T_n}{R_{nt}}\right)^2 + \left(\frac{V_n}{R_{nv}}\right)^2 = 1$$
(7.1)

Figura 7.17 – Diagrama de interação para parafusos comuns sob combinação de tração e força cortante.

Desta maneira, foi realizada a interação entre força de tração obtida no ensaio experimental e a força cortante calculada de forma híbrida, por meio da equação 7.1. O gráfico da Figura 7.18, mostra a interação de tração e força cortante para os parafusos de cada modelo de ligação T-stub ensaiado na pesquisa.

As curvas de interação mostram que as observações visuais da ruptura das ligações condizem com a interpretação híbrida, pois as curvas indicam que os grupos CD1 e CD2 não alcançam o limite da curva teórica, não havendo ruptura dos parafusos para estes grupos.

Já as curvas de interação dos grupos CD3, CD4 e CD5 alcançam a curva teórica de interação entre tração e força cortante em parafusos, mostrando que os mesmo podem romper por cisalhamento combinado com tração. Vale dizer que a inspeção pós-ensaio experimental efetuada nas ligações T-stub, concluiu que ocorre ruptura dos parafusos para os grupos CD3, CD4 e CD5, com combinação dos efeitos de tração e cisalhamento, por meio da identificação de zonas de plastificação e de corte em parafusos, .

Figura 7.18 – Diagrama de interação para parafusos comuns sob combinação de tração e força cortante, para o estudo híbrido.

A Figura 7.19, mostra a boa adaptação do modelo numérico T-stub para o estudo da força de cisalhamento nos parafusos, pois o gráfico repete os mesmos comportamentos obtidos no estudo híbrido. Segundo o estudo numérico, os modelos CN1 e CN2 não atingem o limite para ruptura dos parafusos, analogamente ao estudo híbrido dos grupos CD1 e CD2. Entretanto, os modelos numéricos CN3, CN4 e CN5 atingem a curva teórica que define o limite para ruptura dos parafusos, novamente de forma análoga aos grupos CD3, CD4 e CD5, curvas estas feitas de forma híbrida.

Figura 7.19 – Diagrama de interação para parafusos comuns sob combinação de tração e força cortante, para o estudo numérico.

A seguir, na Tabela 7.1, são mostrados os valores obtidos no estudo experimental/híbrido e estudo numérico para as ligações T-stub. A tabela mostra que não existe diferenças significativas na magnitude dos valores encontrados para os dois estudos, e por meio das análises mostradas anteriormente nos gráficos da Figura 7.18 e Figura 7.19, pode se observar que as duas técnicas utilizadas demonstram o mesmo comportamento para as ligações T. Desta forma, o estudo comprova de forma qualitativa, a ruptura dos parafusos por cisalhamento combinado com tração.

		Experimental		Numérico			
Madala	Carga Aplicada	Cortante/Modelo Híbrido	Tração no Parafuso	$\frac{1}{10000000000000000000000000000000000$	Carga Aplicada	Cortante	Tração no Parafuso
Modelo	kN	kN	kN		kN		
CD1	42	23,64	24,64	CN1	45	25,16	27,32
CD2	56	21,46	35,85	CN2	55	18,27	34,12
CD3	68	16,22	51,09	CN3	70	17,23	51,39
CD4	70	11,69	55,97	CN4	70	14,14	54,41
CD5	74	11,38	55,80	CN5	70	11,51	58,52

Tabela 7.1 – Dados obtidos no estudo experimental/híbrido e no estudo numérico.

8 – CONCLUSÃO

A proposta deste trabalho teve como objetivo o estudo específico da força cortante atuante nos parafusos de conexão do tipo T-stub. Desta maneira, as metas definidas para se alcançar o objetivo foram:

• Instrumentar de forma adequada pontos do flange, para capturar as deformações decorrentes do cisalhamento, que servirão de base para uma análise híbrida numérico-experimental do cisalhamento, no fuste do parafuso;

• Investigar de forma numérica via MEF o esforço cortante no fuste dos parafusos;

• Através de observações experimentais e numéricas, propor um método híbrido numérico-experimental para a verificação do esforço cortante nos parafusos das conexões T-stub.

Os modelos numéricos compuseram parte importante nos objetivos do trabalho, já que foi possível estabelecer uma metodologia híbrida numérico-experimental para estudo do cisalhamento dos parafusos, além de validar, por meio dos modelos numéricos de ligações T-stub, os resultados obtidos pelo estudo híbrido.

É claro que dentro das limitações da modelagem numérica e da dificuldade de instrumentação das ligações para captar deformações referentes ao cisalhamento, os resultados numéricos e híbridos numérico-experimental devem ser utilizados com critério, já que reproduzem modelos idealizados das ligações reais. No entanto, cabe ressaltar que determinadas simplificações podem ser utilizadas, uma vez determinados os objetivos do trabalho.

Considerando esses aspectos, com relação aos ensaios experimentais podem-se fazer as seguintes conclusões:

• Os ensaios experimentais foram de suma importância para este trabalho, pois forneceram dados importantes para construção dos modelos numéricos, além de integrar o modelo híbrido numérico-experimental;

137

• O "ponto 1" de mapeamento forneceu, em fase inicial, deformações mascaradas por efeitos diferentes do esperado. O "ponto 2" evidenciou a formação de rótula plástica na linha do parafuso;

• Os dados obtidos pela leitura das células de cargas, utilizadas na instrumentação dos ensaios experimentais, foram de grande importância para a construção do modelo híbrido e para a verificação do efeito combinado entre tração e cisalhamento na ruptura dos parafusos;

 Por fim, os ensaios experimentais permitiram a visualização do comportamento global, dos estados limites últimos, da capacidade resiste, do efeito alavanca das ligações T-stub ensaiadas, além de permitir a observação do tipo de ruptura dos parafusos, através da análise dos modos de falha da ligação.

Com base nos resultados numéricos e no comportamento das ligações nos ensaios experimentais, conclui-se que:

• A metodologia aplicada na modelagem proposta mostra-se adequada ao problema proposto.

• Os modelos de chapa "CH" utilizados para o estudo da transmissão de esforços através do contato entre o fuste do parafuso e a parede do furo possuem boa validade para estudos com cisalhamento puro. No caso de ligações T-stub, pelo fato do cisalhamento ser inclinado e de se ter a ocorrência de outros efeitos, como o efeito de punção que a cabeça do parafuso exerce no flange, entre outros, esta metodologia se adaptam bem apenas aos perfis com maior rigidez da chapa do flange.

• A escolha da função para aplicação da pressão na parede do furo tem grande valia na análise das deformações no ponto de mapeamento. A escolha de duas funções para o estudo proporcionou a escolha de uma curva que se aproximasse mais da curva real de deformação.

• As curvas bilinear e multilinear para a relação constitutiva do material não apresentaram diferenças nos resultados apresentados, quando aplicadas nos modelos.

• Os modelos numéricos de ligações T-stub "CN" apesar das limitações da modelagem do contato do parafuso com a parede do furo, apresentaram o comportamento esperado. Analisando a tração e cisalhamento combinados, os modelos CN indicaram a ruptura de parafusos dos modelos CN3, CN4 e CN5, correspondentes aos grupos experimentais CD3, CD4 e CD5, comprovando a análise experimental.

• O estudo híbrido mostrou que é possível associar duas metodologias distintas para análise qualitativa de um problema físico que não pode ser resolvido por meio da aplicação de uma metodologia apenas.

• A equação quadrática de interação para estudo de parafusos sob tração e força cortante combinados permitiu mostrar, de forma comparativa, que as observações visuais da ruptura dos parafusos nos ensaios experimentais estavam corretas, através da interação dos efeito combinados de tração e cisalhamento realizada para a análise híbrida numérico-experimental e análise numérica, as quais obtiveram o mesmo comportamento de ruptura por tração combinada com cisalhamento.

Finalmente ressalta-se que, o problema estudado nesta pesquisa ainda merece mais estudo, pois o fato de se estar usando uma metodologia nova para o estudo de ligações T, com o usa de uma base rígida, provocou a mudança do mecanismo de ruptura dos parafusos, sendo agora um efeito combinado entre tração e cisalhamento. Deste modo, é necessário se ter um estudo mais profundo, a fim de determinar a real rigidez das ligações T e se haverá ou não mudanças nos modelos de dimensionamento e verificação destas ligações.

8.1 – SUGESTÕES PARA TRABALHOS FUTUROS

• Realizar ensaios com instrumentação extensométrica detalhada, com rosetas de pequenas dimensões em cada ponto, inclusive na face lateral do flange, para as ligações com chapas mais finas.

• Estudar a influência do uso de arruela entre a cabeça do parafuso e o flange, evitando assim o puncionamento da chapa.

• Desenvolver uma modelo numérico que simule os efeitos de punção que a cabeça do parafuso exerce no flange e o contato entre a parede do furo e o fuste do parafuso, a fim de determinar de modo mais exato, as distribuição de cargas no parafuso.

• Desenvolver uma formulação analítica para verificação dos efeitos combinados de cisalhamento e tração em parafusos de ligações T-stub, e fazer um paralelo com os modelos normativos atuais de dimensionamento destas ligações.

• Realizar um estudo com ligações T-stub reais, afim de determinar a rigidez destas ligações, gerando assim a possibilidade de indicar qual metodologia (duplo T ou base rígida) é mais adequada a cada caso de dimensionamento.

REFERÊNCIAS BIBLIOGRÁFICAS

- AISC-LRFD (1996). "AISC Manual of Steel Construction: Load and Resistance Factor Design". Second Edition American Institute of Steel Construction.
- Abolmaali, A., Treadway, J., Aswath, P., Lu, F.K. e McCarthy, E. (2006). "Hysteresis behavior of t-stub connections with superelastic shape memory fasteners". *Journal of Constructional Steel Research*, Vol. 62, p.831–838.
- Associação Brasileira de Normas Técnicas (1986). "NBR 8800/86 Projeto e execução de estruturas de aço de edifícios". Rio de Janeiro.
- Beer, F.P., e Johnston, E.R (1988). "Resistência dos Materiais". Editora McGraw-hill Ltda, São Paulo.
- Coelho, A.M.G., Bijlaard, F.S.K e Silva L.S. (2004). "Experimental assessment of the ductility ofextended end plate connections". *Engineering Structures*, Vol 26, p.1185– 1206.
- Dano, M.L., Kamal, E. e Gendron, G. (2006). "Analysis of bolted joints in composite laminates: Strains and bearing stiffness predictions". *Composite Structures*.
- Echavarría, C., Haller, P. e Salenikovich, A. (2007). "Analytical study of a pin–loaded hole in elastic orthotropic plates". *Composite Structures*, Vol. 79, p.107–112.
- Ekh, J. e Schön J. (2006). "Load transfer in multirow, single shear, composite-toaluminium lap joints". *Composites Science and Technology*, Vol. 66, p.875–885.

EUROCODE 3 (1996). "Design of steel structures". (ENV 1993-1.3).

Freitas, C.A.S. (2005). Estudo experimental, numérico e analítico do efeito alavanca em conexões metálicas tipo T, Dissertação de Mestrado, Departamento de Engenharia Civil, Universidade de Brasília, Brasília, DF. Furlong, P. e Pryputniewicz, R.J. (1997). "Hybrid computational and experimental approach for the study and optimization of mechanical components". *Society of Photo-Optical Instrumentation Engineers*, Vol. 37, p.1448–1455.

Galambos, T. V (1995). "Basic Steel Design with LRFD". Prentice Hall.

- Gantes, C. J. e Lemonis, M.E. (2003). "Influence of equivalent bolt length in finite element modeling of T-stub steel connections". *Computers and Structures*, Vol 81, p.595–604.
- Grüber, B., Hufenbach, W., Kroll, L., Lepper M. e Zhou B (2006). "Stress concentration analysis of fibre-reinforced multilayered composites with pin-loaded holes". *Composites Science and Technology.*
- Ireman, T. (1998). "Three-dimensional stress analysis of bolted single-lap composite joints". *Composite Structures*, Vol. 43, p.195-216.
- Ju, S.H., Fan, C.Y. e Wu, G.H. (2004). "Three-dimensional finite elements of steel bolted connections". *Engineering Structures*, Vol. 26, p.403–413.
- Karakuzu, R., Gülem, T. e İçten, B.M. (2006). "Failure analysis of woven laminated glassvinylester composites with pin-loaded hole". *Composite Structures*, Vol. 72, p.27–32.
- Kato, B. e McGuire (1973). "Analysis of T stub flange to column connection". *Journal of the Structural Division*, ASCE.
- Kelly, G. e Hallström, S (2004). "Bearing strength of carbon fibre/epoxy laminates: effects of bolt-hole clearance". *Composites: Part B*, Vol. 35, p.331–343.

Krishnamurthy, N. (1978). "A fresh look at bolted end-plate behavior and design". *AISC Engineering Journal*, v.15, 2nd Quarter, p.39-49, April.

Kulak, G.L, Fisher, J.W. e Struik, J.H.A. (2001). "Guide to Design Criteria for Bolted and Riveted joints". American Institute of Steel Construction, Chicago.

- Maggi, Y.I. (2004). Análise do Comportamento Estrutural de Ligações Parafusadas Viga-Pilar com Chapa de Topo Estendida. Tese de Doutorado, Escola de engenharia de São Carlos, USP.
- "Manual Brasileiro para Cálculo de Estruturas Metálicas" (1989). Graphilivros Editores Ltda, Brasília.
- Matteis, G.D., Mandara, A. e Mazzolani, F.M. (2000). "T-stub aluminium joints: influence of behavioural parameters". *Computers and Structures*, Vol. 78, p.311-327.
- McCarthy, M.A., McCarthy, C.T. e Stanley, W.F. (2005). "Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: part I model development and validation". *Composite Structures*, Vol. 71, p.140–158.
- Mistakidis, E.S., Baniotopoulos, C.C. e Bisbos, C.D. (1997). "Steel T-stub connections under static loading: an effective 2D numerical model". *Journal of Constructional Steel Research*, Vol. 44, p.51-67.
- Moses, D.M. e Prion, H.G.L. (2004). Stress and failure analysis of wood composites: a new model. *Composites: Part B*, Vol. 35, p.251–261.
- Nair, R.S., Birkemoe, P.C., e Murse, W.H., (1974). "High Strength Bolts Subjected to Tension and Prying". *Journal of the Structural Division*, ASCE, Vol.100.
- Nishioka, T. (1999). "Hybrid numerical methods in static and dynamic fracture mechanics". *Optics and Lasers in Engineering*, Vol. 32, p.205–255.
- Persson, E., Madenci, E. e Eriksson, I. (1998). "Delamination initiation of laminates with pin-loaded holes". *Theoretical and Applied Fracture Mechanics*, Vol. 30, p.87-101.
- Pfeil, W. (2000). "Estruturas Metálicas: Dimensionamento prático". Livros Técnicos Científicos Ed. S. A., Rio de Janeiro.

- Ribeiro, L. F. L (1998). Estudo do comportamento estrutural de ligações parafusadas viga-coluna com chapa de topo, Análise numérica experimental, Tese de Doutorado, Escola de engenharia de São Carlos, USP.
- Roylance, D. (2001). "Experimental strain analysis". Department of Materials Science and Engineering, Massachusetts Institute of Technology. Cambridge, MA 02139.
- Valenciani, V.C. (1997). *Ligações em Estruturas de Aço*. Dissertação de Mestrado, Escola de engenharia de São Carlos, USP.
- Zoetemeyer, P. e Deback, J. (1972). "High Strength Bolts Beam-to-Column Connections, the Computation of Bolt, T-stub Flanges and Column Flanges". Report 6-72-13, Stevin Laboratory, Delft University of Technology.

A – ENSAIO DE CALIBRAÇÃO DAS CÉLULAS

Neste apêndice constam os valores obtidos nos ensaios de calibração. As células de carga tipo Cilindro foram calibradas no regime de compressão, até uma carga máxima de 10 tf. O ensaio foi feito em passos de carga de 0,5 tf. A Célula de Deformação foi calibrada também em regime de passos de carga, até um deslocamento de 10,3 mm. A seguir são apresentados os resultados obtidos no ensaio de calibração.

A.1 – CALIBRAÇÃO DA CÉLULA DE CARGA

A.1.1 – Célula de Carga 1

Carga (kN)	Leitura 1	Leitura 2	Leitura 3	Média		
Curgu (Krt)	(µV/V)					
0	0	0	0	0		
5	0,22752	0,28992	0,29616	0,2712		
10	0,32976	0,3984	0,39504	0,3744		
15	0,43248	0,50496	0,49872	0,47872		
20	0,53232	0,59664	0,59136	0,57344		
25	0,63696	0,70032	0,6984	0,67856		
30	0,7296	0,7968	0,78816	0,77152		
35	0,80736	0,8784	0,86496	0,85024		
40	0,89376	0,96576	0,9552	0,93824		
45	0,9936	1,06176	1,04784	1,0344		
50	1,07712	1,14432	1,13136	1,1176		
55	1,17264	1,23408	1,21872	1,20848		
60	1,26096	1,31904	1,30608	1,29536		
65	1,36032	1,40832	1,40208	1,39024		
70	1,452	1,49328	1,48416	1,47648		
75	1,5528	1,584	1,57104	1,56928		
80	1,66272	1,6704	1,6632	1,66544		
85	1,77408	1,76352	1,752	1,7632		
90	1,89072	1,86096	1,84176	1,86448		
95	2,01936	1,9632	1,93488	1,97248		
100	2,1432	2,0328	2,02224	2,06608		

Tabela A.1 – Medições dos ensaios de calibração da célula de carga 1.

Figura A.1 – Calibração da célula de carga 1.

Figura A.2 – Curva média de calibração da célula de carga 1.

A.1.2 – Célula de Carga Cilíndrica 2

Carga (kN)	Leitura 1	Leitura 2	Leitura 3	Média		
Carga (KIV)	(µV/V)					
0	0	0	0	0		
5	0,3984	0,39216	0,39168	0,39408		
10	0,49824	0,47856	0,48192	0,48624		
15	0,59712	0,56688	0,5712	0,5784		
20	0,6912	0,64512	0,6504	0,66224		
25	0,79008	0,7368	0,73776	0,75488		
30	0,8904	0,81696	0,828	0,84512		
35	0,9744	0,8904	0,8952	0,92		
40	1,06176	0,9672	0,97344	1,0008		
45	1,15488	1,05552	1,06224	1,09088		
50	1,24032	1,12992	1,1352	1,16848		
55	1,33344	1,21488	1,21584	1,25472		
60	1,42656	1,29024	1,29072	1,33584		
65	1,5216	1,37328	1,37712	1,424		
70	1,62768	1,45296	1,4568	1,51248		
75	1,72992	1,53216	1,53312	1,5984		
80	1,84896	1,62384	1,62048	1,69776		
85	1,97856	1,70976	1,70592	1,79808		
90	2,1024	1,78992	1,79328	1,8952		
95	2,2416	1,87344	1,87632	1,99712		
100	2,42784	1,95024	1,95504	2,11104		

Tabela A.2 – Medições dos ensaios de calibração da célula de carga 2.

Figura A.3 – Calibração da célula de carga 2.

Figura A.4 – Curva média de calibração da célula de carga 2.

A.1.3 – Célula de Carga Cilíndrica 3

Carga (kN)	Leitura 1	Leitura 2	Leitura 3	Média		
Curgu (Krt)	(µV/V)					
0	0	0	0	0		
5	0,31008	0,31104	0,312	0,31104		
10	0,38736	0,40224	0,38736	0,39232		
15	0,4632	0,47664	0,4656	0,46848		
20	0,53952	0,55056	0,54192	0,544		
25	0,62016	0,62592	0,61584	0,62064		
30	0,68928	0,69696	0,68448	0,69024		
35	0,7632	0,77184	0,75888	0,76464		
40	0,83616	0,83952	0,83088	0,83552		
45	0,90864	0,91104	0,9	0,90656		
50	0,98352	0,9816	0,97248	0,9792		
55	1,0608	1,05408	1,04928	1,05472		
60	1,13232	1,128	1,1208	1,12704		
65	1,21104	1,20288	1,19136	1,20176		
70	1,3008	1,28544	1,27392	1,28672		
75	1,40544	1,368	1,35888	1,37744		
80	1,51728	1,46352	1,44816	1,47632		
85	1,61808	1,54368	1,53936	1,56704		
90	1,71696	1,62	1,61712	1,65136		
95	1,82304	1,70688	1,69872	1,74288		
100	1,95984	1,79424	1,72656	1,82688		

Tabela A.3 – Medições dos ensaios de calibração da célula de carga 3

Figura A.6 – Curva média de calibração da célula de carga 3.

A.2 – CALIBRAÇÃO DA CÉLULA DE DESLOCAMENTO

A.2.1 – Célula de Deslocamento

Leitura (uV/V)	Leitura 1	Leitura 2	Leitura 3	Média			
	(mm)						
0,000	0,0	0,0	0,0	0,0			
-0,002	1,4	1,4	1,5	1,4			
-0,006	4,2	4,3	4,3	4,3			
-0,010	7,5	7,1	7,1	7,2			
-0,013	10,5	10,2	10,2	10,3			

Tabela A.4 – Medições dos ensaios de calibração da célula de deslocamento.

Figura A.7 – Calibração da célula de deslocamento.

Figura A.8 – Média da calibração da célula de deslocamento.
B – ENSAIO DE CARACTERIZAÇÃO DOS MATERIAIS

Neste apêndice constam os valores obtidos nos ensaios de caracterização dos materiais das conexões e parafusos. Foram utilizados três corpos de prova para cada amostra de material. O resultado de cada ensaio é obtido com a média das medições. A partir dos valores dos ensaios foram traçados gráficos de tensão-deformação, e a partir dos mesmos foi obtido o módulo de elasticidade e a resistência ao escoamento do material, para cada ensaio.

B.1 – CARACTERIZAÇÃO DAS CHAPAS

Figura B.1 – Geometria das amostras dos materiais.

		A _b (mm²)	L _b (mm)	%ΔL	f _y (MPa)	f _r (MPa)	E (GPa)	Força de Ruptura (N)	Deformação no Escoamento (µm/m)
3/16 "	CP1	59,46	50,0	35	319,53	334,66	201,34	19900	1587
	CP2	59,71	50,0	33	284,70	328,24	202,20	19600	1408
apa	CP3	59,71	50,0	33	284,70	346,66	205,12	20700	1388
CP	Média	59,63	50,00	34	296,31	336,52	202,89	20067	1461
-	CP1	79,87	50,0	20	300,48	345,55	207,51	27600	1448
1/4	CP2	79,62	50,0	36	314,01	346,66	203,77	27600	1541
lapa	CP3	79,74	50,0	36	300,96	351,12	203,21	28000	1481
C	Média	79,74	50,00	31	305,15	347,78	204,83	27733	1490
:	CP1	99,31	50,0	22	261,82	352,44	202,02	35000	1296
5/16	CP2	97,94	50,0	38	296,10	357,36	204,21	35000	1450
apa	CP3	99,52	50,0	34	301,45	341,64	202,72	34000	1487
Ch	Média	98,92	50,00	31	286,46	350,48	202,98	34667	1411
:	CP1	121,46	50,0	38	255,24	321,10	208,36	39000	1225
3/8	CP2	121,36	50,0	38	296,63	346,07	202,20	42000	1467
ıapa	CP3	121,60	50,0	38	287,82	337,16	201,84	41000	1426
D	Média	121,47	50,00	38	279,90	334,78	204,13	40667	1373
:	CP1	158,19	50,0	40	297,12	341,37	204,21	54000	1455
1/2	CP2	158,83	50,0	30	302,22	346,29	203,79	55000	1483
hapa	CP3	158,11	50,0	30	284,61	335,20	205,64	53000	1384
C	Média	158,37	50,00	33	294,65	340,96	204,55	54000	1441

Tabela B.1 – Características geométricas das amostras dos materiais.

B.1.1 – Chapa de espessura de 3/16"

CP1			
FORÇA	TENSÃO	DEFORM.	
kN	Mpa	μm/m	
0	0,00	0	
2	33,63	125	
4	67,27	285	
6	100,90	455	
8	134,54	655	
9	151,35	740	
10	168,17	835	
12	201,81	930	
14	235,44	1025	
16	269,07	1120	
18	302,71	1215	
19	319,53	1587	
19	319,53	2555	
19	319,53	2980	
19	319,53	3655	
19	319,53	4420	
19	319,53	5655	
19	319,53	6415	
19	319,53	7785	
18	302,71	8850	
18	302,71	10120	
18	302,71	11660	
18	302,71	13205	
18	302,71	14995	
19	319,53	19065	

Tabela B.2 – Medições do ensaio 1, caracterização da chapa de 3/16".

	CP2			
FORÇA	TENSÃO	DEFORM.		
kN	Mpa	μm/m		
0	0,00	0		
2	33,49	185		
4	66,99	340		
6	100,48	515		
8	133,98	690		
11	184,22	915		
12	200,96	1050		
14	234,46	1185		
16	267,95	1320		
17	284,70	1408		
17	284,70	5590		
17	284,70	6650		
17	284,70	8095		
17	284,70	9420		
17	284,70	10760		
17	284,70	13820		
17	284,70	15495		
17	284,70	16815		
17,5	293,07	17925		
17,5	293,07	19430		
17,5	293,07	23600		
17,5	293,07	24485		
18	301,45	25840		
18	301,45	28095		
18	301,45	28680		

Tabela B.3 – Medições do ensaio 2, caracterização da chapa de 3/16".

CP3			
FORÇA	TENSÃO	DEFORM.	
kN	Mpa	μm/m	
0	0,00	0	
2	33,49	140	
4	66,99	315	
6	100,48	480	
8	133,98	630	
10	167,47	805	
12	200,96	980	
14	234,46	1180	
16	267,95	1380	
17	284,70	1388	
17	284,70	2790	
17	284,70	3180	
17	284,70	4085	
17	284,70	4735	
17	284,70	5420	
17	284,70	6030	
17	284,70	6775	
17	284,70	7345	
18	301,45	8045	
18	301,45	8570	
18	301,45	9770	
18	301,45	10805	
18	301,45	11940	
17	284,70	12515	
17	284,70	13675	

Tabela B.4 – Medições do ensaio 3, caracterização da chapa de 3/16".

Figura B.2 – Representação gráfica dos ensaios de caracterização, chapa 3/16".

B.1.2 – Chapa de espessura de 1/4"

CP1			
FORÇA	TENSÃO	DEFORM.	
kN	Mpa	μm/m	
0	0,00	0	
2	25,04	76	
4	50,08	128	
6	75,12	196	
8	100,16	260	
10	125,20	324	
12	150,24	388	
14	175,28	452	
16	200,32	516	
18	225,36	580	
20	250,40	644	
21	262,92	708	
22	275,44	772	
24	300,48	1448	
24	300,48	1795	
24	300,48	3849	
25	313,00	6103	
25	313,00	9099	
26	325,52	15128	
26	325,52	15128	
27	338,04	16913	
27	338,04	17628	
27	338,04	18343	
27	338,04	19243	
29	363,08	21407	

Tabela B.5 – Medições do ensaio 1, caracterização da chapa de 1/4".

CP2			
FORÇA	TENSÃO	DEFORM.	
kN	Mpa	μm/m	
0	0,00	0	
2	25,12	72	
4	50,24	168	
6	75,36	248	
8	100,48	332	
10	125,60	416	
12	150,72	500	
14	175,84	584	
16	200,96	668	
18	226,09	752	
20	251,21	836	
21	263,77	920	
22	276,33	1004	
25	314,01	1541	
25	314,01	2612	
25	314,01	8090	
26	326,57	9308	
26	326,57	10192	
26	326,57	11252	
26	326,57	12283	
27	339,13	13497	
27	339,13	14650	
28	351,69	16995	
28	351,69	17535	
28	351,69	20473	

Tabela B.6 – Medições do ensaio 2, caracterização da chapa de 1/4".

CP3			
FORÇA	TENSÃO	DEFORM.	
kN	Mpa	μm/m	
0	0,00	0	
2	25,08	59	
4	50,16	202	
6	75,24	289	
8	100,32	390	
10	125,40	491	
12	150,48	592	
14	175,56	693	
16	200,64	794	
18	225,72	895	
20	250,80	996	
21	263,34	1097	
22	275,88	1198	
24	300,96	1481	
24	300,96	2084	
24	300,96	2579	
24	300,96	3759	
24	300,96	6254	
24	300,96	9579	
25	313,50	12119	
25	313,50	16904	
26	326,04	17619	
26	326,04	18334	
26	326,04	19049	
26	326,04	19764	

Tabela B.7 – Medições do ensaio 3, caracterização da chapa de 1/4".

Figura B.3 - Representação gráfica dos ensaios de caracterização, chapa 1/4".

B.1.3 – Chapa de espessura de 5/16"

CP1			
FORÇA	TENSÃO	DEFORM.	
kN	Мра	μm/m	
0	0,00	0	
4	40,28	240	
6	60,42	335	
8	80,56	425	
10	100,70	540	
12	120,84	655	
14	140,98	760	
16	161,12	870	
18	181,26	980	
20	201,40	1090	
22	221,54	1200	
24	241,68	1235	
26	261,82	1296	
26	261,82	10100	
26	261,82	12420	
26	261,82	15270	
26	261,82	20730	
26	261,82	24680	
26	261,82	25255	
28	281,96	30505	
28	281,96	32830	
29	292,03	38600	
29	292,03	39870	
30	302,10	43020	

Tabela B.8 – Medições do ensaio 1, caracterização da chapa de 5/16".

CP2				
FORÇA	TENSÃO	DEFORM.		
kN	Mpa	μm/m		
0	0,00	0		
2	20,42	155		
4	40,84	260		
6	61,26	350		
8	81,68	445		
10	102,10	540		
12	122,52	640		
14	142,94	735		
17	173,57	865		
18	183,78	935		
20	204,20	1030		
22	224,63	1140		
24	245,05	1230		
26	265,47	1320		
28	285,89	1450		
29	296,10	1450		
29	296,10	2290		
29	296,10	2965		
29	296,10	3765		
29	296,10	6700		
29	296,10	7790		
29	296,10	7685		
29	296,10	10280		
29	296,10	12535		
30	306,31	30035		

Tabela B.9 – Medições do ensaio 2, caracterização da chapa de 5/16".

CP3			
FORÇA	TENSÃO	DEFORM.	
kN	Mpa	μm/m	
0	0,00	0	
6	60,29	220	
8	80,39	325	
10	100,48	435	
14	140,68	635	
16	160,77	745	
18	180,87	845	
20	200,96	930	
22	221,06	1030	
24	241,16	1130	
26	261,25	1235	
28	281,35	1255	
30	301,45	1487	
30	301,45	1615	
30	301,45	1755	
30	301,45	6385	
30	301,45	7415	
30	301,45	14450	
31	311,50	20415	
31	311,50	23055	
32	321,54	27090	
33	331,59	33435	
34	341,64	37995	
35	351,69	44565	
36	361,74	51800	

Tabela B.10 – Medições do ensaio 3, caracterização da chapa de 5/16".

-O-CP1 -+-CP2 -×-CP3

Figura B.4 – Representação gráfica dos ensaios de caracterização, chapa 5/16".

B.1.4 – Chapa de espessura de 3/8"

CP1			
FORÇA	TENSÃO	DEFORM.	
kN	Mpa	μm/m	
0	0,00	0	
2	16,47	58	
4	32,93	148	
6	49,40	217	
8	65,87	291	
10	82,34	365	
12	98,80	439	
14	115,27	513	
16	131,74	587	
18	148,20	661	
20	164,67	735	
22	181,14	809	
24	197,60	883	
26	214,07	957	
30	247,01	1031	
31	255,24	1225	
33	271,71	1920	
35	288,17	2043	
36	296,41	2166	
36	296,41	2289	
37	304,64	13454	
37	304,64	15238	
37	304,64	17290	
38	312,87	19728	
38	312,87	23154	

Tabela B.11 – Medições do ensaio 1, caracterização da chapa de 3/8".

CP2			
FORÇA	TENSÃO	DEFORM.	
kN	Mpa	μm/m	
0	0,00	0	
2	16,48	63	
4	32,96	140	
6	49,44	208	
8	65,92	278	
10	82,40	348	
12	98,88	418	
14	115,36	488	
16	131,83	558	
18	148,31	628	
20	164,79	698	
22	181,27	768	
24	197,75	838	
26	214,23	908	
30	247,19	978	
31	255,43	1048	
33	271,91	1118	
33	271,91	1188	
34	280,15	1258	
36	296,63	1467	
36	296,63	4230	
36	296,63	7870	
37	304,87	12570	
38	313,11	17260	
38	313,11	17440	

Tabela B.12 – Medições do ensaio 2, caracterização da chapa de 3/8".

CP3					
FORÇA	TENSÃO	DEFORM.			
kN	Mpa	μm/m			
0	0,00	0			
2	16,45	46			
4	32,89	133			
6	49,34	193			
8	65,79	259			
10	82,23	326			
12	98,68	392			
14	115,13	459			
16	131,57	525			
18	148,02	592			
20	164,47	658			
22	180,92	725			
24	197,36	791			
26	213,81	858			
30	246,70	924			
31	254,93	991			
33	271,37	1057			
35	287,82	1426			
35	287,82	9542			
35	287,82	15082			
35	287,82	16867			
36	296,04	17582			
36	296,04	18297			
37	304,27	19197			
37	304,27	20162			

Tabela B.13 – Medições do ensaio 3, caracterização da chapa de 3/8".

-O-CP1 -+-CP2 -X-CP3

Figura B.5 - Representação gráfica dos ensaios de caracterização, chapa 3/8".

B.1.4 – Chapa de espessura de 1/2"

CP1					
FORÇA	TENSÃO	DEFORM.			
kN	Mpa	μm/m			
0	0,00	0			
2	12,64	0			
4	25,29	62			
6	37,93	148			
8	50,57	187			
10	63,22	251			
12	75,86	372			
14	88,50	469			
16	101,15	534			
18	113,79	604			
20	126,43	661			
25	158,04	764			
30	189,65	928			
40	252,87	1274			
42	265,51	1358			
42	265,51	1360			
44	278,16	1400			
46	290,80	1415			
47	297,12	1455			
47	297,12	2303			
47	297,12	2688			
46	290,80	3593			
46	290,80	5297			
46	290,80	6721			
46	290,80	8403			

Tabela B.14 – Medições do ensaio 1, caracterização da chapa de 1/2".

	CP2					
FORÇA	TENSÃO	DEFORM.				
kN	Mpa	μm/m				
0	0,00	0				
2	12,59	37				
4	25,18	97				
6	37,78	157				
8	50,37	227				
10	62,96	282				
12	75,55	342				
14	88,15	412				
16	100,74	467				
19	119,63	537				
20	125,92	582				
25	157,40	732				
30	188,88	882				
40	251,85	1202				
45	283,33	1402				
47	295,92	1437				
48	302,22	1483				
48	302,22	2457				
49	308,51	2582				
49	308,51	3002				
49	308,51	4197				
49	308,51	7837				
49	308,51	12537				
49	308,51	17227				
49	308,51	17407				

Tabela B.15 – Medições do ensaio 2, caracterização da chapa de 1/2".

CP3						
FORÇA	TENSÃO	DEFORM.				
kN	Мра	μm/m				
0	0,00	0				
2	12,65	68				
4	25,30	148				
6	37,95	218				
8	50,60	283				
10	63,25	348				
12	75,90	408				
14	88,54	528				
16	101,19	603				
18	113,84	673				
20	126,49	743				
25	158,12	923				
30	189,74	1103				
40	252,99	1283				
45	284,61	1385				
45	284,61	2588				
45	284,61	3768				
45	284,61	6263				
45	284,61	9588				
45	284,61	15128				
45	284,61	16913				
46	290,93	17628				
46	290,93	18343				
47	297,26	19243				
47	297,26	20208				

Tabela B.16 – Medições do ensaio 3, caracterização da chapa de 1/2".

-O-CP1 -+-CP2 -×-CP3

Figura B.6 - Representação gráfica dos ensaios de caracterização, chapa 1/2".

B.2 – CARACTERIZAÇÃO DOS PARAFUSOS

CP1						
Carga (kN)	Tensão (MPa))	Deformação (µm/m)				
0,000	0	0,000				
53,560	423	1100,110				
59,500	470	2634,290				
59,700	471	3099,890				
60,780	480	3576,690				
59,980	473	4058,740				
60,140	475	4562,510				
60,610	478	5065,140				
62,230	491	5659,200				

Tabela B.17 – Medições do ensaio 1

Tabela B.18 – Medições do ensaio 2

CP2					
Carga (kN)	Tensão (MPa))	Deformação (µm/m)			
0,000	0	0,000			
44,400	351	348,510			
50,310	397	485,910			
54,150	427	967,280			
58,210	460	4214,900			
59,150	467	5347,790			
60,050	474	6454,290			
61,030	482	6978,430			
60,800	480	7992,110			
60,810	480	8751,010			
61,500	485	10001,290			
61,900	489	10944,000			
63,790	504	11741,120			
65,530	517	12944,990			
61,680	487	14069,690			

СР3					
Carga (kN)	Tensão (MPa))	Deformação (µm/m)			
0,000	0	0,000			
4,030	32	160,000			
5,990	47	240,000			
8,000	63	345,000			
8,320	66	370,000			
10,020	79	470,000			
12,170	96	655,000			
14,320	113	800,000			
18,230	144	1140,000			
20,240	160	1280,000			
22,050	174	1425,000			
24,950	197	1660,000			
29,820	235	1960,000			
35,070	277	1665,000			
40,280	318	1930,000			
45,210	357	2345,000			
50,540	399	2880,000			
55,930	441	6525,000			
55,240	436	7650,000			
57,360	453	8205,000			
57,530	454	10090,000			
57,960	458	11220,000			
58,150	459	12135,000			
57,130	451	12920,000			
55,260	436	13155,000			

Tabela B.19 – Medições do ensaio 3

Figura B.7 – Representação gráfica dos ensaios de caracterização, chapa 1/2".

C – R ESULTADOS DOS ENSAIOS EXPERIMENTAIS

Neste apêndice constam os valores obtidos nos ensaios experimentais. O procedimento utilizado foi à realização de três medições e posteriormente calculado uma média ponderada.

C.1 – CONEXÃO CD1 – LIGAÇÃO COM FLANGE DE 3/16"

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0	0	0
2	5,088	5,072	0,000	0,000	-4,557E-14
4	6,322	6,322	1,813	80,604	-954,56604
6	6,589	7,044	2,790	191,094	-1434,566
8	8,217	8,333	5,022	276,226	-4641,5094
10	9,008	9,142	6,975	334,189	-5781,7358
12	9,973	10,107	9,486	498,113	-5723,7736
14	11,531	11,429	12,415	754,415	-5760,9057
16	13,620	12,416	14,368	957,283	-5599,6981
18	14,551	13,074	15,484	1017,962	-5403,1698
20	14,971	13,825	16,182	1044,226	-5203,0189
22	15,334	14,823	16,740	1045,132	-5151,3962
24	15,753	15,973	17,437	1013,434	-5136
26	16,173	17,206	17,856	946,415	-5125,1321
28	16,648	18,616	18,274	864,906	-5068,0755
30	17,142	19,850	18,972	764,377	-4884,2264
32	17,788	21,333	19,669	677,434	-4864,3019
34	18,352	22,478	20,367	594,113	-4865,2075
36	19,061	23,815	21,204	419,321	-4866,1132
38	19,644	24,736	21,901	233,660	-4858,8679
40	20,385	25,753	23,157	-289,811	-4841,6604
42	21,183	26,669	24,133	-1060,528	-4817,2075
44	22,128	27,435	24,970	-1846,642	-4674,1132

Tabela C.1 - Medições do ensaio 1, Conexão CD1.

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0	0	0
2	5,051	5,075	2,232	-201,057	-952,75472
4	5,645	5,648	3,208	-185,660	-1635,6226
6	5,728	7,237	5,022	-40,755	-7385,6604
8	6,673	8,318	6,835	119,547	-13669,132
10	7,565	9,018	9,346	336,906	
12	8,692	8,856	12,694	579,623	
14	9,580	9,594	14,787	787,925	
16	10,143	10,148	16,182	911,094	
18	10,802	10,447	17,019	940,981	
20	11,828	11,165	17,437	943,698	
22	12,544	11,903	17,716	940,981	
24	13,539	12,960	18,274	871,245	
26	14,343	13,891	18,832	681,057	
28	15,072	14,782	19,251	25,358	
30	15,814	15,795	19,948	-1260,679	
32	16,590	16,789	20,646	-2710,642	
34	17,537	17,934	21,483	-4592,604	
36	18,399	19,048	22,738	-6288,000	
38	19,210	20,190	23,575	-7011,623	
40	20,013	21,252	24,691	-7250,717	
42	21,400	22,314	26,226	-6764,377	

Tabela C.2 – Medições do ensaio 2, Conexão CD1.

			CEL		
CARGA APLIC	CEL PAR 1	CEL PAR 2	DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0	0	0
2	6,601	6,601	3,208	81,509	-1704,4528
4	7,620	6,783	4,324	118,642	-2344,7547
6	8,870	7,845	6,277	238,189	-5446,6415
8	9,794	8,454	7,672	363,170	-4978,4151
10	10,637	9,156	11,857	585,962	-3763,0189
12	11,329	9,747	14,508	808,755	-3328,3019
14	11,884	10,452	17,437	890,264	-3271,2453
16	12,845	11,190	18,135	947,321	-3234,1132
18	13,610	12,254	18,693	985,358	-3225,0566
20	14,323	13,550	19,530	1041,509	-3232,3019
22	14,846	14,606	19,809	1104,906	-3244,0755
24	15,611	16,232	20,646	1062,340	-3261,283
26	16,405	17,651	21,343	929,208	-3269,434
28	17,156	18,757	22,180	657,509	-3269,434
30	17,966	19,812	22,599	283,472	-3268,5283
32	18,784	20,807	23,296	-139,472	-3268,5283
34	19,835	21,868	24,412	-891,170	-3265,8113
36	20,994	22,975	25,807	-1930,868	-3264
38	22,101	24,194	27,481	-2977,811	-3267,6226
40	24,030	26,159	29,434	-4659,623	-3286,6415
42	27,706	28,587	32,503	-6971,304	-3184,3019

Tabela C.3 – Medições do ensaio 3, Conexão CD1.

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0	0	0
2	5,580	5,583	1,813	-39,849	-852,22642
4	6,529	6,251	3,115	4,528	-1649,6604
6	7,062	7,375	4,696	129,509	-3440,6038
8	8,228	8,368	6,510	252,981	-4809,9623
10	9,070	9,105	9,393	419,019	-4772,3774
12	9,998	9,570	12,229	628,830	-4526,0377
14	10,998	10,492	14,880	810,868	-4516,0755
16	12,203	11,251	16,228	938,566	-4416,9057
18	12,988	11,925	17,065	981,434	-4314,1132
20	13,708	12,847	17,716	1009,811	-4217,6604
22	14,241	13,777	18,088	1030,340	-4197,7358
24	14,968	15,055	18,786	982,340	-4198,6415
26	15,641	16,249	19,344	852,226	-4197,283
28	16,292	17,385	19,902	515,925	-4168,7547
30	16,974	18,486	20,506	-70,943	-4076,3774
32	17,720	19,643	21,204	-724,226	-4066,4151
34	18,575	20,760	22,087	-1629,887	-4065,5094
36	19,485	21,946	23,250	-2599,849	-4065,0566
38	20,318	23,040	24,319	-3251,925	-4063,2453
40	21,476	24,388	25,761	-4066,717	-4064,1509
42	23,430	25,857	27,621	-4932,070	-4000,7547

Tabela C.4 – Resultados médios, Grupo CD1.

Figura C.1 – Representação gráfica da deformação no ponto 2, grupo CD1.

Figura C.2 – Representação gráfica da deformação no ponto 1, grupo CD1.

Figura C.3 – Representação gráfica da reação nos parafusos, grupo CD1.

Figura C.4 - Representação gráfica do deslocamento do perfil, grupo CD1

C.2 – CONEXÃO CD2 – LIGAÇÃO COM FLANGE DE 1/4"

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	µm/m	μm/m
0	5,000	5,000	0	0	0
2	5,005	5,368	0,418	12,679	-162,11321
4	5,313	5,598	0,697	25,358	-331,4717
6	5,807	5,768	1,255	37,132	-844,07547
8	6,144	6,533	1,674	27,170	-1352,1509
10	7,915	7,061	2,371	-24,453	-4540,9811
12	9,911	9,041	4,045	28,075	-12395,774
14	11,344	10,731	5,580	163,925	-18970,868
16	12,769	12,058	7,254	272,604	-23970,113
18	14,790	13,499	9,486	343,245	
20	16,314	14,598	11,439	345,057	
22	16,628	15,793	12,694	338,717	
24	17,296	17,154	13,531	-6,340	
26	17,981	18,013	13,950	-441,962	
28	18,945	18,906	14,787	-1299,623	
30	20,007	19,771	15,624	-3629,887	
32	21,134	20,584	17,437	-6482,717	
34	21,722	21,184	18,553	-8192,604	
36	22,212	21,732	19,251	-8816,604	
38	22,671	22,297	19,948	-8751,396	
40	23,142	22,784	20,785	-8275,925	
42	23,548	23,078	21,901	-8458,868	
44	23,936	23,224	23,575	-8188,075	
46	24,504	23,217	27,202	-7920,000	
48	24,936	23,294	28,597	-7857,509	
50	25,370	23,549	29,853	-7725,283	
52	26,125	24,570	33,898	-7326,792	
54	29,349	26,163	39,757	-5192,151	
56	29,875	26,696	41,431	-4811,774	

Tabela C.5 – Medições do ensaio 1, Conexão CD2.

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0	0	0
2	8,815	8,870	1,116	105,962	-600,45283
4	10,797	10,797	1,953	81,509	-1286,0377
6	12,488	11,940	2,790	61,585	-2972,3774
8	13,805	13,170	3,906	63,396	-8369,2075
10	15,197	14,691	5,719	96,906	-15296,604
12	17,279	16,967	8,509	277,132	-24861,283
14	18,609	18,577	11,299	595,019	
16	19,743	19,709	13,810	1054,189	
18	20,908	20,956	16,182	1551,396	
20	21,936	22,308	17,414	1915,472	
22	22,523	23,036	18,042	2187,170	
24	22,369	23,953	21,483	2337,509	
26	22,563	24,565	21,901	2380,981	
28	23,094	25,565	22,459	2437,132	
30	24,042	26,817	23,157	2470,642	
32	25,012	27,809	23,575	2445,283	
34	25,909	28,575	23,715	2346,566	
36	27,252	29,788	24,273	2021,434	
38	28,497	30,986	25,249	1500,679	
40	29,459	31,899	26,086	953,660	
42	30,111	32,494	26,784	309,736	
44	30,916	33,136	27,481	-357,736	
46	31,854	33,924	28,597	-1367,547	
48	32,471	34,425	29,434	-2109,283	
50	32,890	34,954	30,690	-2854,642	
52	33,134	35,392	32,224	-3399,849	
54	33,584	35,636	34,177	-3728,604	
56	38,269	38,446	43,942	-3860,377	

Tabela C.6 – Medições do ensaio 2, Conexão CD2.

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0	0	0
2	9,254	11,711	0,976	66,113	-5,967E-16
4	11,374	13,417	1,813	123,170	-407,54717
6	13,222	14,683	2,371	186,566	-666,56604
8	14,597	15,773	2,790	276,226	-945,50943
10	15,983	17,126	3,766	390,340	-1516,9811
12	17,415	18,805	5,022	389,434	-5775,3962
14	18,589	20,074	6,696	392,151	-11303,547
16	19,624	20,735	8,230	445,585	-12050,717
18	20,885	21,307	10,044	489,057	-13226,264
20	22,804	22,407	11,718	595,925	-13017,057
22	23,944	22,893	13,392	682,868	-12780,679
24	24,198	23,100	14,647	734,491	-12374,038
26	24,734	24,225	14,926	769,811	-12142,189
28	25,607	25,451	15,345	784,302	-12011,774
30	26,863	26,897	16,042	796,075	-11896,755
32	28,141	28,435	16,461	808,755	-11871,396
34	29,140	29,649	17,158	768,906	-11865,962
36	30,551	31,134	17,995	501,736	-11817,962
38	31,764	32,229	18,972	115,019	-11806,189
40	32,694	33,008	19,669	-382,189	-11808
42	33,565	33,732	20,506	-1017,962	-11814,34
44	34,330	34,330	21,064	-1687,245	-11827,925
46	35,359	34,998	22,180	-2704,302	-11860,528
48	36,426	35,568	23,296	-3805,585	-11918,491
50	38,118	36,722	24,412	-4972,981	-10494,792
52	39,048	37,218	25,528	-6606,792	-10416,906
54	40,971	37,935	26,644	-10193,208	-10453,132
56	42,437	39,392	27,760	-17315,320	-10441,358

Tabela C.7 – Medições do ensaio 3, Conexão CD2.

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0	0	0
2	7,691	8,649	0,837	61,585	-254,18868
4	9,161	9,937	1,488	76,679	-675,01887
6	10,506	10,797	2,139	95,094	-1494,3396
8	11,515	11,825	2,790	122,264	-3555,6226
10	13,032	12,960	3,952	154,264	-7118,1887
12	14,869	14,937	5,859	231,547	-14344,151
14	16,181	16,461	7,858	383,698	-15137,208
16	17,379	17,501	9,765	590,792	-18010,415
18	18,861	18,587	11,904	794,566	-13226,264
20	20,351	19,771	13,857	952,151	-13017,057
22	21,032	20,574	14,043	1069,585	-12780,679
24	21,288	21,402	16,554	1021,887	-12374,038
26	21,759	22,268	16,926	902,943	-12142,189
28	22,549	23,307	17,530	640,604	-12011,774
30	23,637	24,495	18,274	-121,057	-11896,755
32	24,763	25,610	19,158	-1076,226	-11871,396
34	25,590	26,469	19,809	-1692,377	-11865,962
36	26,672	27,551	20,506	-2097,811	-11817,962
38	27,644	28,504	21,390	-2378,566	-11806,189
40	28,432	29,230	22,180	-2568,151	-11808
42	29,075	29,768	23,064	-3055,698	-11814,34
44	29,727	30,230	24,040	-3411,019	-11827,925
46	30,572	30,713	25,993	-3997,283	-11860,528
48	31,278	31,096	27,388	-4590,792	-11918,491
50	32,126	31,742	29,527	-5184,302	-10494,792
52	32,769	32,393	31,806	-5777,811	-10416,906
54	34,635	33,244	34,100	-6371,321	-10453,132
56	36,860	34,845	36,820	-7364,830	-10441,358

Tabela C.8 – Resultados médios, Grupo CD2.

Figura C.5 – Representação gráfica da deformação no ponto 2, grupo CD2.

Figura C.6 – Representação gráfica da deformação no ponto 1, grupo CD2.

Figura C.7 – Representação gráfica da reação nos parafusos, grupo CD2.

Figura C.8 – Representação gráfica do deslocamento do perfil, grupo CD2.

C.3 – CONEXÃO CD3 – LIGAÇÃO COM FLANGE DE 5/16"

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0	0	0
2	6,239	6,100	0,697	12,679	75,170
4	6,647	6,647	0,837	18,113	90,566
6	7,449	8,495	0,976	21,736	105,057
8	8,252	10,586	1,116	24,453	120,453
10	9,071	11,174	1,395	26,264	138,566
12	10,071	12,377	1,534	28,981	159,396
14	10,746	13,582	1,674	31,698	171,170
16	11,484	14,942	1,813	35,321	180,226
18	12,222	15,180	1,953	38,943	189,283
20	13,044	16,139	1,953	42,566	196,528
22	13,631	17,023	2,092	47,094	192,000
24	15,097	18,878	2,371	52,528	91,472
26	17,227	19,360	2,650	57,962	-53,434
28	19,672	20,696	3,069	61,585	-206,491
30	21,939	21,684	3,487	61,585	-356,830
32	23,714	22,769	3,766	40,755	-576,000
34	24,214	24,620	4,185	9,057	-794,264
36	25,792	25,751	4,603	-22,642	-1137,509
38	28,220	27,060	5,022	-49,811	-1819,472
40	30,340	28,306	5,440	-73,358	-2704,302
42	33,180	30,654	5,998	-85,132	-4146,113
44	35,620	32,879	6,556	-65,208	-5875,925
46	37,121	34,539	7,393	16,302	-8391,849
48	39,637	36,876	8,230	87,849	-10749,283
50	41,849	38,314	9,207	131,321	-13488,906
52	42,712	40,677	10,183	183,849	-16164,226
54	43,454	42,388	11,439	211,019	-19834,868
56	44,263	43,722	12,694	197,434	-22555,472
58	45,094	44,342	14,368	144,000	
60	46,473	45,543	15,484	33,509	
62	47,814	46,458	16,740	-214,642	
64	48,176	47,200	18,135	-614,943	
66	49,825	48,203	20,506	-1316,830	
68	50,160	49,229	22,180	-2102,943	
70	51,128	50,797	23,715	-2777,660	
72	52,193	51,165	26,086	-3516,679	
74	53,827	52,767	31,248	-4382,491	

Tabela C.9 – Medições do ensaio 1, Conexão CD3.

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0	5,334E-16	-3,428E-15
2	5,844	1,839	0,000	49,811	56,151
4	6,861	3,115	0,000	60,679	65,208
6	7,721	4,255	0,000	71,547	70,642
8	7,898	5,603	0,139	83,321	72,453
10	8,203	7,451	0,279	97,811	74,264
12	8,543	10,561	0,558	115,925	71,547
14	9,028	10,702	0,697	128,604	66,113
16	9,805	11,609	0,837	132,226	12,679
18	10,650	13,918	0,976	109,585	-187,472
20	12,402	16,541	1,116	101,434	-333,283
22	14,138	18,859	1,255	90,566	-475,472
24	16,026	21,309	1,395	75,170	-638,491
26	18,113	23,876	1,674	53,434	-850,415
28	20,276	25,915	1,953	29,887	-1133,887
30	22,661	27,300	2,092	8,151	-1529,660
32	25,811	28,949	2,511	-9,962	-2380,981
34	28,561	30,277	2,790	-6,340	-3762,113
36	30,571	32,111	3,348	4,528	-5721,962
38	31,230	33,071	4,185	28,981	-7833,057
40	33,516	34,804	4,603	66,113	-9628,075
42	34,637	35,696	5,301	137,660	-11659,472
44	35,515	37,486	6,277	211,925	-13729,811
46	37,595	38,448	7,114	259,925	-16088,151
48	39,205	39,930	8,230	144,000	-18760,755
50	40,831	41,488	9,486	-189,283	-21001,358
52	41,713	42,318	11,020	-735,396	-23750,038
54	42,284	43,798	12,136	-1357,585	
56	43,980	45,358	12,834	-1947,170	
58	44,893	46,194	15,066	-2871,849	
60	45,385	47,631	16,461	-3571,019	
62	46,374	48,965	17,158	-4243,019	
64	48,943	49,121	18,414	-4796,377	
66	49,879	50,167	19,390	-5297,208	
68	51,733	51,017	20,506	-5725,585	
70	52,435	52,243	24,273	-6147,623	
72	53,915	53,162	26,784	-6585,057	

Tabela C.10 – Medições do ensaio 2, Conexão CD3.

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0,000	-5,33E-16	0
2	7,094	6,563	-0,697	86,943396	-5,967E-16
4	7,428	9,110	-0,837	103,24528	-407,54717
6	9,656	11,197	-0,976	121,35849	-666,56604
8	10,939	13,462	-0,837	142,18868	-945,50943
10	12,779	15,724	-0,837	169,35849	-1516,9811
12	14,064	18,594	-0,418	202,86792	-5775,3962
14	18,075	20,759	-0,279	225,50943	-11303,547
16	20,122	22,940	-0,139	229,13208	-12050,717
18	23,328	24,914	0,000	180,22642	-13226,264
20	24,801	27,043	0,279	160,30189	-13017,057
22	26,083	29,032	0,418	134,03774	-12780,679
24	27,872	30,837	0,418	97,811321	-12374,038
26	30,242	32,538	0,697	48,90566	-12142,189
28	30,845	34,121	0,837	-1,811321	-12011,774
30	31,246	35,251	0,697	-45,28302	-11896,755
32	32,723	36,360	1,255	-60,67925	-11871,396
34	33,958	37,047	1,395	-21,73585	-11865,962
36	34,792	38,184	2,092	31,698113	-11817,962
38	35,717	39,298	3,348	107,77358	-11806,189
40	38,663	40,742	3,766	205,58491	-11808
42	41,105	42,295	4,603	360,45283	-11814,34
44	43,235	43,489	5,998	489,0566	-11827,925
46	43,908	44,928	6,835	503,54717	-11860,528
48	45,474	46,192	8,230	200,15094	-11918,491
50	46,219	47,784	9,765	-509,8868	-10494,792
52	47,526	49,224	11,857	-1654,642	-10416,906
54	48,433	50,431	12,834	-2926,189	-10453,132
56	48,555	51,253	12,973	-4091,774	-10441,358
58	49,034	52,267	15,763	-5887,698	
60	49,377	52,539	17,437	-7175,547	
62	50,255	52,738	17,577	-8271,396	
64	50,458	52,925	18,693	-8977,811	
66	50,463	53,052	18,274	-9277,585	
68	51,428	52,986	18,832	-9348,226	

Tabela C.11 - Medições do ensaio 3, Conexão CD3.

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0,000	0,000	0,000
2	6,392	4,834	0,000	49,811	41,962
4	6,979	6,291	0,000	60,679	50,717
6	8,276	7,982	0,000	71,547	57,962
8	9,030	9,883	0,139	83,321	59,170
10	10,018	11,450	0,279	97,811	55,849
12	10,893	13,844	0,558	115,925	52,528
14	12,617	15,014	0,697	128,604	48,604
16	13,804	16,497	0,837	132,226	29,283
18	15,400	18,004	0,976	109,585	-39,547
20	16,749	19,908	1,116	101,434	-95,094
22	17,951	21,638	1,255	90,566	-157,585
24	19,665	23,675	1,395	75,170	-298,264
26	21,860	25,258	1,674	53,434	-485,434
28	23,598	26,911	1,953	29,887	-705,811
30	25,282	28,078	2,092	8,151	-984,151
32	27,416	29,359	2,511	-9,962	-1505,208
34	28,911	30,648	2,790	-6,340	-2312,151
36	30,385	32,015	3,348	4,528	-3638,642
38	31,722	33,143	4,185	28,981	-5195,774
40	34,173	34,617	4,603	66,113	-6925,887
42	36,307	36,215	5,301	137,660	-9027,623
44	38,123	37,951	6,277	211,925	-11239,547
46	39,541	39,305	7,114	259,925	-14016,302
48	41,439	40,999	8,230	144,000	-16744,755
50	42,966	42,529	9,486	-189,283	-19718,642
52	43,984	44,073	11,020	-735,396	-19957,132
54	44,723	45,539	12,136	-1357,585	-19834,868
56	45,599	46,778	12,834	-1947,170	-22555,472
58	46,341	47,601	15,066	-2871,849	
60	47,078	48,571	16,461	-3571,019	
62	48,148	49,387	17,158	-4243,019	
64	49,192	49,749	18,414	-4796,377	
66	50,056	50,474	19,390	-5297,208	
68	51,107	51,077	20,506	-5725,585	

Tabela C.12 – Resultados médios, Grupo CD3.

Figura C.9 – Representação gráfica da deformação no ponto 2, grupo CD3.

Figura C.10 – Representação gráfica da deformação no ponto 1, grupo CD3.

Figura C.11 – Representação gráfica da reação nos parafusos, grupo CD3.

Figura C.12 – Representação gráfica do deslocamento do perfil, grupo CD3.

C.4 – CONEXÃO CD4 – LIGAÇÃO COM FLANGE DE 3/8"

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0	0	0
2	5,559	5,516	0,139	-66,113	96,000
4	5,685	5,839	0,139	-74,264	114,113
6	6,272	6,530	0,139	-81,509	122,264
8	7,162	7,692	0,279	-92,377	135,849
10	9,176	9,127	0,279	-99,623	146,717
12	10,144	11,451	0,279	-110,491	158,491
14	12,034	13,055	0,279	-117,736	162,113
16	13,891	14,636	0,418	-124,981	158,491
18	14,593	16,003	0,558	-130,415	152,151
20	17,749	18,438	0,697	-138,566	134,943
22	19,399	20,017	0,697	-142,189	108,679
24	21,250	22,188	0,837	-145,811	73,358
26	22,054	24,594	0,976	-147,623	35,321
28	24,973	27,432	1,116	-149,434	-8,151
30	28,872	30,058	1,255	-153,057	-47,094
32	31,626	32,375	1,395	-157,585	-79,698
34	35,500	35,217	1,674	-164,830	-107,774
36	36,387	38,003	1,813	-172,075	-131,321
38	37,193	40,617	2,092	-179,321	-151,245
40	38,918	43,037	2,371	-187,472	-169,358
42	40,842	45,384	2,650	-199,245	-222,792
44	42,440	46,801	3,069	-213,736	-387,623
46	43,139	48,171	3,348	-212,830	-624,000
48	45,811	49,065	3,627	-211,019	-827,774
50	49,432	49,993	4,045	-210,113	-1071,396
52	50,019	50,845	4,324	-220,981	-1324,075
54	50,845	51,837	4,743	-247,245	-1651,925
56	51,684	52,701	5,161	-286,189	-1979,774
58	52,631	53,625	5,580	-384,000	-2754,113
60	53,253	54,627	6,277	-526,189	-3944,151
62	54,184	55,654	7,114	-691,019	-5643,170
64	55,228	56,608	8,091	-873,057	-7996,981
66	56,722	56,898	9,904	-1078,642	-11054,491
68	59,043	55,702	11,857	-1296,906	-14179,925
70	60,182	54,513	14,229	-1526,038	-16415,094

Tabela C.13 – Medições do ensaio 1, Conexão CD4.
CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0	0	0
2	5,373	5,495	0,279	-35,321	98,717
4	5,571	5,918	0,279	-46,189	116,830
6	5,727	6,321	0,279	-56,151	133,132
8	6,877	7,777	0,279	-65,208	151,245
10	8,044	9,480	0,279	-75,170	166,642
12	10,235	11,323	0,279	-84,226	179,321
14	12,299	13,134	0,418	-93,283	181,132
16	14,268	14,709	0,558	-99,623	172,075
18	15,503	16,981	0,697	-106,868	139,472
20	18,770	19,632	0,837	-111,396	86,943
22	21,524	21,850	0,976	-112,302	42,566
24	24,484	24,348	1,116	-111,396	-2,717
26	26,438	27,448	1,255	-108,679	-47,094
28	31,368	30,564	1,534	-105,962	-90,566
30	33,235	33,235	1,674	-104,151	-135,849
32	34,103	35,877	1,953	-105,057	-181,132
34	35,313	38,374	2,232	-106,868	-262,642
36	37,457	40,824	2,511	-96,906	-405,736
38	39,994	42,627	2,650	-76,075	-608,604
40	42,793	44,068	2,929	-48,906	-795,170
42	46,014	45,356	3,069	-22,642	-1010,717
44	46,905	46,448	3,348	0,000	-1232,604
46	47,927	47,526	3,627	11,774	-1497,057
48	48,800	48,486	3,906	2,717	-1785,962
50	49,098	49,806	4,324	-24,453	-2220,679
52	49,787	50,658	4,603	-91,472	-2984,151
54	51,797	51,720	5,161	-199,245	-4189,585
56	52,144	52,956	5,859	-306,113	-5814,340
58	52,947	54,391	6,835	-423,849	-8076,679
60	55,405	55,586	7,812	-511,698	-10359,849
62	57,814	56,806	8,928	-557,887	-13032,453
64	59,806	57,688	10,183	-548,830	-15320,151
66	61,742	57,965	11,578	-517,132	-17661,283
68	63,474	58,062	13,252	-460,075	-20129,208
70	64,977	58,543	15,345	-536,151	-22208,604

Tabela C.14 – Medições do ensaio 2, Conexão CD4.

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0,000	0	0
2	5,614	5,593	0,000	-96,90566	270,792453
4	6,260	5,647	0,000	-102,3396	275,320755
6	7,592	6,065	0,000	-106,8679	282,566038
8	9,039	8,051	0,000	-119,5472	316,075472
10	10,160	10,471	0,000	-124,0755	353,207547
12	13,972	12,261	0,000	-136,7547	376,754717
14	14,830	13,754	0,139	-142,1887	392,150943
16	15,750	15,610	0,139	-150,3396	407,54717
18	17,912	18,001	0,139	-153,9623	409,358491
20	18,795	20,106	0,279	-165,7358	399,396226
22	19,126	23,102	0,418	-172,0755	375,849057
24	20,829	26,125	0,418	-180,2264	351,396226
26	25,291	28,490	0,558	-186,566	312,45283
28	25,955	30,633	0,837	-192,9057	275,320755
30	28,067	33,039	0,976	-201,9623	233,660377
32	31,396	35,627	1,116	-210,1132	184,754717
34	34,838	37,918	1,395	-222,7925	135,849057
36	40,165	40,300	1,674	-247,2453	84,2264151
38	44,663	42,446	1,953	-282,566	34,4150943
40	47,401	44,413	2,092	-326,0377	-68,830189
42	49,295	45,728	2,092	-375,8491	-220,07547
44	51,058	46,902	2,371	-427,4717	-364,98113
46	53,446	48,257	2,650	-437,434	-541,58491
48	52,583	49,569	3,487	-424,7547	-778,86792
50	51,450	49,988	3,487	-395,7736	-1005,283
52	52,731	50,736	3,627	-350,4906	-1282,4151
54	51,069	51,419	3,766	-295,2453	-1573,1321
56	54,275	52,216	5,161	-266,2642	-1997,8868
58	53,197	53,092	5,859	-344,1509	-2758,6415
60	51,023	54,088	12,138	-540,6792	-3873,5094
62	48,964	55,392	13,951	-824,1509	-5515,4717
64	47,590	54,047	15,207	-1197,283	-7181,8868
66	46,229	54,194	16,462	-1640,151	-9323,7736
68	42,789	56,742	15,390	-2133,736	-11679,396

Tabela C.15 – Medições do ensaio 3, Conexão CD4.

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0,000	0,000	0,000
2	5,516	5,535	0,139	-66,113	155,170
4	5,839	5,801	0,139	-74,264	168,755
6	6,530	6,305	0,139	-81,509	179,321
8	7,692	7,840	0,186	-92,377	201,057
10	9,127	9,693	0,186	-99,623	222,189
12	11,451	11,678	0,186	-110,491	238,189
14	13,055	13,314	0,279	-117,736	245,132
16	14,636	14,985	0,372	-124,981	246,038
18	16,003	16,995	0,465	-130,415	233,660
20	18,438	19,392	0,604	-138,566	207,094
22	20,017	21,656	0,697	-142,189	175,698
24	22,188	24,220	0,790	-145,811	140,679
26	24,594	26,844	0,930	-147,623	100,226
28	27,432	29,543	1,162	-149,434	58,868
30	30,058	32,111	1,302	-153,057	16,906
32	32,375	34,626	1,488	-157,585	-25,358
34	35,217	37,170	1,767	-164,830	-78,189
36	38,003	39,709	1,999	-172,075	-150,943
38	40,617	41,897	2,232	-179,321	-241,811
40	43,037	43,839	2,464	-187,472	-344,453
42	45,384	45,489	2,604	-199,245	-484,528
44	46,801	46,717	2,929	-213,736	-661,736
46	48,171	47,984	3,208	-212,830	-887,547
48	49,065	49,040	3,673	-211,019	-1130,868
50	49,993	49,929	3,952	-210,113	-1432,453
52	50,845	50,746	4,185	-220,981	-1863,547
54	51,237	51,659	4,557	-247,245	-2471,547
56	52,701	52,624	5,394	-286,189	-3264,000
58	52,925	53,702	6,091	-384,000	-4529,811
60	53,227	54,767	8,742	-526,189	-6059,170
62	53,654	55,951	9,998	-691,019	-8063,698
64	54,208	56,114	11,160 -873,05		-10166,340
66	54,898	56,353	12,648	-1078,642	-12679,849
68	55,102	56,835	13,500	-1296,906	-15329,509

Tabela C.16 – Resultados médios, Grupo CD4.

Figura C.13 – Representação gráfica da deformação no ponto 2, grupo CD4.

Figura C.14 – Representação gráfica da deformação no ponto 1, grupo CD4.

Figura C.15 – Representação gráfica da reação nos parafusos, grupo CD4.

Figura C.16 – Representação gráfica do deslocamento do perfil, grupo CD4.

C.5 – CONEXÃO CD5 – LIGAÇÃO COM FLANGE DE 1/2"

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2	
kN	kN	kN	mm	μm/m	μm/m	
0	5,000	5,000	0	0	0	
2	5,025	5,935	0,558	13,585	20,830	
4	5,349	6,259	0,558	16,302	37,132	
6	6,499	7,409	0,558	20,830	53,434	
8	7,954	8,864	0,697	25,358	75,170	
10	9,524	10,434	0,558	28,075	96,000	
12	10,627	12,037	0,697	30,792	116,830	
14	12,165	13,575	0,697	32,604	135,849	
16	13,487	14,897	0,697	31,698	151,245	
18	14,694	16,404	0,837	25,358	163,925	
20	17,173	18,883	0,976	14,491	166,642	
22	19,191	20,901	1,116	3,623	166,642	
24	21,589	23,299	1,395	-9,057	166,642	
26	24,196	25,906	1,534	-23,547	167,547	
28	27,083	28,793	1,674	-39,849	169,358	
30	31,644	31,353	1,813	-57,962	168,453	
32	34,900	34,609	1,953	-79,698	166,642	
34	38,228	37,937	2,092	-95,094	162,113	
36	41,472	41,181	2,371	-105,057	146,717	
38	44,133	43,842	2,511	-105,057	123,170	
40	46,737	46,446	2,650	-98,717	97,811	
42	49,184	48,893	2,929	-87,849	72,453	
44	51,461	51,170	3,069	-71,547	48,906	
46	51,625	52,334	3,348	-55,245	30,792	
48	52,232	53,499	3,487	-40,755	18,113	
50	52,969	54,664	4,603	-24,453	7,245	
52	54,345	55,729	5,161	-15,396	-60,679	
54	54,623	56,994	5,440	-14,491	-172,981	
56	55,471	56,946	5,719	-32,604	-272,604	
58	56,213	56,898	6,417	-87,849	-403,925	
60	56,554	56,850	6,975	-172,075	-569,660	
62	56,650	56,802	7,672	-240,000	-760,755	
64	56,381	56,754	8,091	-310,642	-967,245	
66	55,615	56,706	9,486	-401,208	-1255,245	
68	54,964	56,658	10,462	-460,981	-1567,698	
70	54,288	56,610	11,439	-480,906	-2113,811	
72	53,545	56,563	12,973	-423,849	-2750,491	
74	49,761	52,936	17,437	-85,132	-3189,736	

Tabela C.17 – Medições do ensaio 1, Conexão CD5.

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2	
kN	kN	kN	mm	μm/m	μm/m	
0	5,000	5,000	0	0	0	
2	5,200	5,410	0,000	-32,604	150,340	
4	5,591	5,401	0,000	-38,943	172,075	
6	5,988	6,198 0,000		-43,472	189,283	
8	6,127	7,337	0,000	-49,811	213,736	
10	6,658	8,268	0,000	-54,340	232,755	
12	7,614	9,824	0,000	-61,585	262,642	
14	8,791	11,001	0,000	-66,113	280,755	
16	10,390	12,600	0,000	-67,019	292,528	
18	12,217	14,427	0,139	-65,208	294,340	
20	14,916	17,126	0,139	-63,396	293,434	
22	17,047	19,257	0,279	-60,679	287,094	
24	19,952	22,162	0,279	-56,151	276,226	
26	22,530	24,740	0,418	-50,717	262,642	
28	25,249	27,459	0,558	-48,906	251,774	
30	29,502	31,712	0,558	-49,811	240,000	
32	32,784	34,994	0,837	-50,717	231,849	
34	35,875	38,085	0,976	-51,623	220,981	
36	39,462	41,672	1,116	-53,434	203,774	
38	42,417	44,627	1,395	-56,151	181,132	
40	44,901	47,111	1,534	-58,868	161,208	
42	47,030	49,240	1,813	-61,585	112,302	
44	48,561	50,692	2,092	-63,396	44,377	
46	50,467	52,598	2,371	-68,830	-57,962	
48	51,689	53,020	2,650	-79,698	-128,604	
50	52,953	53,442	3,069	-110,491	-232,755	
52	53,860	53,864	3,348	-144,000	-317,887	
54	54,957	54,286	3,627	-189,283	-442,868	
56	55,503	54,708	4,045	-215,547	-524,377	
58	56,373	55,130	4,464	-245,434	-690,113	
60	57,315	55,552	5,161	-266,264	-912,000	
62	58,245	55,974	6,138	-283,472	-1201,811	
64	59,157	56,396	6,975	-278,038	-1711,698	
66	59,845	56,818	8,091	-251,774	-2494,189	
68	60,504	57,240	9,067	-248,151	-3456,906	
70	59,827	57,662	11,299	-288,906	-4645,132	
72	57,272	58,084	14,508	-469,132	-5506,415	
74	55,080	58,507	17,995	-641,208	-5485,585	

Tabela C.18 – Medições do ensaio 2, Conexão CD5.

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0,000	0,000	0,000
2	5,573	8,312	-0,558	-13,585	65,208
4	6,945	9,468	-0,558	-42,566	80,604
6	11,200	10,200	-0,558	-75,170	91,472
8	12,317	11,317	-0,697	-105,962	108,679
10	13,655	12,655	-0,558	-136,755	124,981
12	15,490	14,490	-0,697	-164,830	137,660
14	17,565	16,565	-0,697	-194,717	142,189
16	19,727	18,727	-0,697	-225,509	149,434
18	21,807	20,807	-0,558	-253,585	155,774
20	24,325	23,325	-0,697	-277,132	163,925
22	26,144	25,144	-0,558	-301,585	171,170
24	28,880	27,880	-0,837	-326,038	177,509
26	28,292	30,292	-0,697	-349,585	180,226
28	31,106	33,106	-0,558	-367,698	169,358
30	33,625	35,625	-0,697	-381,283	153,057
32	36,281	38,281	-0,279	-391,245	124,075
34	38,389	40,389	-0,139	-592,415	86,038
36	40,209	42,209	-0,139	-591,509	48,000
38	41,842	43,842	0,279	-610,528	14,491
40	42,246	45,346	0,418	-785,887	-18,113
42	42,114	46,714	0,697	-810,340	-43,472
44	43,442	47,942	1,116	-841,132	-61,585
46	43,817	49,535	1,395	-871,019	-79,698
48	44,943	50,661	1,813	-890,943	-88,755
50	46,369	52,087	1,534	-900,906	-101,434
52	47,214	52,932	1,534	-887,321	-112,302
54	47,436	54,154	1,813	-875,547	-124,981
56	48,044	54,762	2,371	-863,774	-129,509
58	48,882	55,600	2,511	-816,679	-244,528
60	49,449	55,167	3,348	-779,547	-609,509
62	49,558	55,076	4,603	-650,943	-864,000
64	49,809	55,027	5,859	-631,925	-1276,981
66	49,939	54,957	6,696	-722,491	-1870,189
68	50,644	54,824	7,672	-935,321	-2915,321
70	51,558	54,573	11,160	-1255,019	-4176,000
72	54,491	53,945	13,113	-1952,377	-6215,547
74	55,768	52,995	11,857	-3181,358	-7627,472
76	0,000	0,000	0,000		-8038,642

Tabela C.19 – Medições do ensaio 3, Conexão CD5.

CARGA APLIC	CEL PAR 1	CEL PAR 2	CEL DESLOC	EXT 1	EXT 2
kN	kN	kN	mm	μm/m	μm/m
0	5,000	5,000	0,000	0,000	0,000
2	5,266	6,552	0,000	-10,868	78,792
4	5,961	7,043	0,000	-21,736	96,604
6	7,895	7,935	0,000	-32,604	111,396
8	8,799	9,173	0,000	-43,472	132,528
10	9,946	10,452	0,000	-54,340	151,245
12	11,243	12,117	0,000	-65,208	172,377
14	12,840	13,714	0,000	-76,075	186,264
16	14,535	15,408	0,000	-86,943	197,736
18	16,239	17,213	0,139	-97,811	204,679
20	18,805	19,778	0,139	-108,679	208,000
22	20,794	21,767	0,279	-119,547	208,302
24	23,474	24,447	0,279	-130,415	206,792
26	25,006	26,979	0,418	-141,283	203,472
28	27,813	29,786	0,558	-152,151	196,830
30	31,590	32,897	0,558	-163,019	187,170
32	34,655	35,961	0,837	-173,887	174,189
34	37,497	38,804	0,976	-246,377	156,377
36	40,381	41,687	1,116	-250,000	132,830
38	42,797	44,104	1,395	-257,245	106,264
40	44,628	46,301	1,534	-314,491	80,302
42	46,110	48,283	1,813	-319,925	47,094
44	47,821	49,934	2,092	-325,358	10,566
46	48,636	51,489	2,371	-331,698	-35,623
48	49,621	52,393	2,650	-337,132	-66,415
50	50,763	53,398	3,069	-345,283	-108,981
52	51,807	54,175	3,348	-348,906	-163,623
54	52,339	55,145	3,627	-359,774	-246,943
56	53,006	55,472	4,045	-370,642	-308,830
58	53,823	55,876	4,464	-383,321	-446,189
60	54,439	55,856	5,161	-405,962	-697,057
62	54,817	55,951	6,138	-391,472	-942,189
64	55,115	56,059	6,975	-406,868	-1318,642
66	55,133	56,161	8,091	-458,491	-1873,208
68	55,371	56,241	9,067	-548,151	-2646,642
70	55,224	56,282	11,299	-674,943	-3644,981
72	55,103	56,197	13,531	-948,453	-4824,151
74	53,537	54,813	15,763	-1302,566	-5434,264

Tabela C.20 – Resultados médios, Grupo CD5.

Figura C.17 – Representação gráfica da deformação no ponto 2, grupo CD5.

Figura C.18 – Representação gráfica da deformação no ponto 1, grupo CD5.

Figura C.19 – Representação gráfica da reação nos parafusos, grupo CD5.

Figura C.20 – Representação gráfica do deslocamento do perfil, grupo CD5

D – RESULTADOS NUMÉRICOS DOS MODELOS DE CHAPA

Neste apêndice constam os resultados obtidos no estudo numérico dos modelos de chapa "CH". O programa ANSYS utilizado fundamenta-se no método dos elementos finitos. Foi obtido no programa a média dos valores de deformação dos nós que compõe a região estudada. Lembrando que em razão de não haver diferença nos resultados apresentados para a mudança da curva elastoplástica, de multilinear pra bilinear.

D.1 – RESULTADOS PARA CASO 1 E CASO 2

O "caso 1", corresponde a aplicação da "Equação 1" para carregamento do furo e o uso da curva tensão-deformação multilinear. O "caso 2" corresponde a aplicação da "Equação 1" para carregamento do furo e aplicação da curva tensão deformação bilinear.

D.1.1 – Chapa CH1 – espessura de 3/16"

Deslocamento (mm)		0	1,4	2,8	4,2	5,6	7	8,4	9,8	11,2
Força (kN)		0	1,2	2,4	3,6	4,8	6	7,2	8,4	9,6
	Linha 1	0	-176,309	-302,11	-424,03	-534,298	-559,253	-704,908	-913,518	-1169
	Linha 2	0	-63,0216	-115,407	-167,327	-253,128	-338,394	-419,212	-498,096	-577,555
Deformação Média	Linha 3	0	-155,155	-259,293	-384,24	-438,908	-569,25	-746,91	-971,97	-1244,46
(Linha 4	0	62 7024	114.60	170 762	261 120	240 705	421 671	502.70	571 177
(µm/m)	Linna 4	0	-02,7924	-114,09	-170,705	-201,128	-349,783	-431,071	-303,79	-3/4,1//
	Linha 5	0	-178.386	-306.193	-440.715	-555.095	-592.75	-746.615	-935.38	-1161.12
			,		.,,	,	,,,,	,	,	,
	MEDIA TOTAL	0	-127,133	-219,538	-317,415	-408,511	-481,886	-609,863	-764,551	-945,262

Tabela D.1 – Resultados médios, Chapa CH1.

12,6	14	15,4	16,8	18,2	19,6	21	22,4	23,8	25,2	26,6	28
10,8	12	13,2	14,4	15,6	16,8	18	19,2	20,4	21,6	22,8	24
-1477,95	-1827,14	-2206,73	-2615,3	-2945,55	-3390,1	-3860,8	-4342,1	-4897,93	-5411,13	-5950,65	-6493,8
-713,677	-883,677	-1077,99	-1299,01	-1599,51	-1852,82	-2122,35	-2365,87	-2599,02	-2887,37	-3193,31	-3578,08
-1538,89	-1875,12	-2245,82	-2652,96	-3096,4	-3554,8	-4034,22	-4552,54	-5072,78	-5599,5	-6152,18	-6598,53
-697,174	-851,614	-1033,97	-1245,01	-1536,88	-1781,59	-2042,09	-2277,95	-2496,26	-2776,59	-3076,91	-3456,28
-1423,12	-1726,62	-2076,63	-2463,68	-2776,92	-3201,78	-3653,41	-4120,61	-4664,5	-5163,48	-5687,35	-6216,28
-1170,16	-1432,83	-1728,23	-2055,19	-2391,05	-2756,21	-3142,57	-3531,81	-3946,1	-4367,61	-4812,08	-5268,59

Figura D.1 – Deformação em função da força no furo, Chapa CH1.

Figura D.2 – Deformação em função do deslocamento, Chapa CH1.

D.1.2 – Chapa CH2 – espessura de 1/4"

Deslocamento (mm)		0	1,8	3,6	5,4	7,2	9	10,8	12,6	14,4
Força (kN)		0	1,05	2,1	3,15	4,2	5,25	6,3	7,35	8,4
	Linha 1	0	-312,095	-464,275	-524,763	-661,223	-892,578	-1190,8	-1557,17	-1982,06
Linha 2		0	-149,369	-219,717	-342,353	-429,9	-535,754	-596,662	-759,865	-973,44
Deformação Média	Linha 3	0	-271,215	-400,413	-460,918	-618,528	-842,405	-1146,53	-1493,04	-1897,83
(µm/m)	Linha 4	0	-149,56	-219,188	-341,748	-429,692	-535,721	-597,399	-760,933	-974,465
	Linha 5	0	-315,558	-469,163	-529,47	-666,91	-900,588	-1198,71	-1565,45	-1990,13
	MÉDIA TOTAL	0	-239,559	-354,551	-439,85	-561,25	-741,409	-946,02	-1227,29	-1563,58

Tabela D.2 – Resultados médios, Chapa CH2.

16,2	18	19,8	21,6	23,4	25,2	27	28,8	30,6	32,4	34,2	36
9,45	10,5	11,55	12,6	13,65	14,7	15,75	16,8	17,85	18,9	19,95	21
-2440,52	-2925,47	-3345,12	-3884,08	-4451,78	-5044,78	-5664,08	-6306,63	-6968,63	-7655,9	-8361,25	-9077,7
-1216,09	-1486,58	-1832,88	-2148,49	-2408,75	-2748,73	-3112,42	-3495,89	-3896,02	-4371,19	-4801,3	-5238,67
-2340,13	-2817,09	-3329,53	-3867,35	-4430,38	-5018,83	-5635,2	-6269,73	-6918,95	-7481,35	-8168,53	-8864,93
-1216,67	-1487,03	-1832,89	-2147,82	-2407,19	-2746,3	-3109,82	-3492,46	-3891,82	-4367,06	-4796,66	-5233,68
-2448	-2933,31	-3351,73	-3891,73	-4461,45	-5055,13	-5677	-6320,73	-6983,7	-7673,6	-8381,55	-9100,18
-1932,28	-2329,9	-2738,43	-3187,89	-3631,91	-4122,75	-4639,7	-5177,09	-5731,82	-6309,82	-6901,86	-7503,03

Figura D.3 – Deformação em função da força no furo, Chapa CH2.

Figura D.4 – Deformação em função do deslocamento, Chapa CH2.

D.1.3 – Chapa CH3 – espessura de 5/16"

Deslocamento (mm)		0	1	2	3,6	4,8	6	7,2	8,4	9,6
Força (kN)		0	0,95	1,9	2,85	3,8	4,75	5,7	6,65	7,6
	Linha 1	0	-365,975	-533,95	-590,543	-711,628	-872,22	-1133,66	-1466,01	-1886,09
Linha 2		0	-199,409	-281,759	-392,091	-467,171	-559,203	-655,385	-780,133	-1003,28
Deformação Média	Linha 3	0	-330,678	-483,44	-525,568	-663,22	-841,158	-1109,51	-1462,51	-1889,59
(µm/m)	Linha 4	0	-199,747	-282,316	-392,516	-467,66	-560,561	-656,98	-782,3	-1005,44
	Linha 5	0	-368,03	-538,613	-596,745	-717,34	-881,503	-1144,56	-1479,21	-1899,87
	MÉDIA TOTAL	0	-273,952	-395,366	-475,179	-577,419	-708,285	-888,884	-1194,03	-1536,85

Tabela D.3 – Resultados médios, Chapa CH3.

10,8	12	13,2	14,4	15,6	16,8	18	19,2	20,4	21,6	22,8	24
8,55	9,5	10,45	11,4	12,35	13,3	14,25	15,2	16,15	17,1	18,05	19
-2262,02	-2787,45	-3372,23	-4004,78	-4700,83	-5462,4	-6255,58	-7051,55	-7869,93	-8705,15	-9552,93	-10416,4
-1332,72	-1650,64	-1928,39	-2296,66	-2764,85	-3237,15	-3726,92	-4220,64	-4734,14	-5263,08	-5803,72	-6356,4
-2379,85	-2917,2	-3516,98	-4159,78	-4735,03	-5493,55	-6286,85	-7093,38	-7928,65	-8786,63	-9663,03	-10558,2
-1334,7	-1651,82	-1928,6	-2296,59	-2764,51	-3236,02	-3725,28	-4218,84	-4732,18	-5261,06	-5801,74	-6354,4
-2274,27	-2800,35	-3386,25	-4020,73	-4716,75	-5478,68	-6272,9	-7070,78	-7890,65	-8727,55	-9576,98	-10442,3
-1916,71	-2361,49	-2826,49	-3355,71	-3936,39	-4581,56	-5253,5	-5931,03	-6631,11	-7348,69	-8079,68	-8825,52

Figura D.5 – Deformação em função da força no furo, Chapa CH3.

Figura D.6 – Deformação em função da força no furo, Chapa CH3.

D.1.4 – Chapa CH4 – espessura de 3/8"

Deslocamento (mm)		0	0,75	1,5	2,25	3	3,75	4,5	5,25	6
Força (kN)		0	0,65	1,3	1,95	2,6	3,25	3,9	4,55	5,2
	Linha 1	0	-98,3143	-190,74	-283,59	-373,495	-454,548	-522,235	-578,95	-632,598
	Linha 2	0	-53,1165	-103,658	-154,388	-203,207	-245,83	-279,445	-305,887	-353,175
Deformação Média	Linha 3	0	-95,402	-184,187	-273,475	-359,943	-438,06	-503,638	-558,755	-544,965
(μm/m)	Linha 4	0	-53,1523	-103,735	-154,5	-203,369	-246,047	-279,728	-306,321	-353,712
	Linha 5	0	-98,534	-191,17	-284,228	-374,383	-455,798	-524,23	-581,77	-636,235
	MÉDIA TOTAL	0	-79,7038	-154,698	-230,036	-302,879	-368,056	-421,855	-466,336	-504,137

Tabela D.4 – Resultados médios, Chapa CH4.

6,75	7,5	8,25	9	9,75	10,5	11,25	12	12,75	13,5	14,25	15
5,85	6,5	7,15	7,8	8,45	9,1	9,75	10,4	11,05	11,7	12,35	13
-685,423	-679,998	-726,95	-778,69	-864,585	-984,968	-1129,8	-1222,54	-1430,5	-1701,67	-1951,03	-2230,39
-376,314	-426,943	-453,258	-490,594	-537,623	-601,882	-636,008	-775,683	-898,405	-999,578	-1150,37	-1278,34
-592,273	-647,25	-712,69	-800,835	-918,458	-1069,92	-1258,83	-1461	-1701,18	-1948,82	-2206,48	-2494,83
-376,847	-427,535	-453,689	-491,212	-538,76	-603,302	-637,606	-778,11	-901,445	-1001,96	-1152,04	-1279,04
-689,9	-684,743	-731,76	-784,503	-872,02	-994,543	-1139,74	-1232,76	-1442,5	-1713,37	-1962,48	-2240,93
-544,151	-573,294	-615,669	-669,167	-746,289	-850,923	-960,396	-1094,02	-1274,81	-1473,08	-1684,48	-1904,7

Figura D.7 – Deformação em função da força no furo, Chapa CH4.

Figura D.8 – Deformação em função do deslocamento, Chapa CH4.

D.1.5 – Chapa CH5 – espessura de 1/2"

Deslocamento (mm)		0	0,9	1,8	2,7	3,6	4,5	5,4	6,3	7,2
Força (kN)		0	0,65	1,3	1,95	2,6	3,25	3,9	4,55	5,2
	Linha 1		-113,46	-224,473	-335,618	-442,02	-533,57	-610,515	-678,568	-678,913
	Linha 2		-65,753	-130,435	-195,166	-256,417	-307,383	-348,285	-406,953	-465,963
Deformação Média	Linha 3	0	-108,887	-214,978	-321,24	-423,083	-510,805	-585,118	-583,05	-641,683
(µm/m)	Linha 4	0	-65,8365	-130,601	-195,421	-256,761	-307,874	-349,068	-408,213	-467,565
Linha 5		0	-113,593	-224,74	-336,03	-442,6	-534,515	-612,213	-681,235	-681,265
MÉDIA TOTAL		0	-93,506	-185,045	-276,695	-364,176	-438,829	-501,04	-551,604	-587,078

Tabela D.5 – Resultados médios, Chapa CH5.

8,1	9	9,9	10,8	11,7	12,6	13,5	14,4	15,3	16,2	17,1	18
5,85	6,5	7,15	7,8	8,45	9,1	9,75	10,4	11,05	11,7	12,35	13
-736,49	-796,018	-837,63	-904,348	-999,983	-1131,09	-1201,9	-1369,18	-1546,97	-1766,79	-2016,08	-2291,65
-498,988	-532,945	-565,653	-604,685	-656	-654,7	-764,173	-840,8	-951,95	-1077,05	-1240,26	-1401,31
-700,95	-765,69	-836,428	-925,083	-1043,47	-1204,1	-1377,11	-1567,02	-1772,5	-1994,58	-2170,69	-2445,47
-500,858	-534,888	-567,865	-608,04	-660,455	-658,953	-767,605	-845,425	-955,995	-1080,19	-1242,77	-1403,74
-740,153	-799,488	-841,055	-909,385	-1006,83	-1141,75	-1214,2	-1379,97	-1556,01	-1774,25	-2022,67	-2298,36
-635,488	-685,806	-729,726	-790,308	-873,346	-958,117	-1065	-1200,48	-1356,68	-1538,57	-1738,49	-1968,1

Figura D.9 – Deformação em função da força no furo, Chapa CH5.

Figura D.10 – Deformação em função do deslocamento, Chapa CH5.

D.2 – RESULTADOS PARA CASO 3 E CASO 4

O "caso 3", corresponde a aplicação da "Equação 2" para carregamento do furo e o uso da curva tensão-deformação multilinear. O "caso 4" corresponde a aplicação da "Equação 2" para carregamento do furo e aplicação da curva tensão deformação bilinear.

D.2.1 – Chapa CH1 – espessura de 3/16"

Deslocamento (mm)		0	1,4	2,8	4,2	5,6	7	8,4	9,8	11,2
Força (kN)		0	1,2	2,4	3,6	4,8	6	7,2	8,4	9,6
	Linha 1	0	-175,131	-305,158	-429,833	-544,143	-576,138	-745,09	-978,875	-1273,62
	Linha 2		-62,4956	-116,948	-174,673	-261,854	-351,246	-440,328	-528,688	-625,672
Deformação Média	Linha 3	0	-154,073	-263,034	-388,55	-448,978	-586,508	-787,64	-1043,65	-1360,26
(µm/m)	Linha 4	0	-62,2876	-116,226	-173,647	-260,868	-349,913	-439,343	-526,819	-626,171
Linha 5		0	-177,171	-309,238	-432,82	-545,983	-578,255	-748,73	-981,108	-1275,86
	MÉDIA TOTAL		-126,232	-222,121	-319,905	-412,365	-488,412	-632,226	-811,828	-1032,32

Tabela D.6 – Resultados médios, Chapa CH1.

12,6	14	15,4	16,8	18,2	19,6	21	22,4	23,8	25,2	26,6	28
10,8	12	13,2	14,4	15,6	16,8	18	19,2	20,4	21,6	22,8	24
-1628,99	-2016,53	-2427,16	-2769,52	-3218,82	-3695,49	-4185,33	-4753,93	-5277,43	-5829,78	-6403,78	-6999,15
-789,807	-984,103	-1204,09	-1507,57	-1764,15	-2037,17	-2285,65	-2522,81	-2815,41	-3206,33	-3535,18	-3881,84
-1711,53	-2098,01	-2513,37	-2968	-3439,48	-3930,73	-4463,98	-4999,05	-5541,35	-6007,65	-6594,03	-7198,45
-790,215	-984,374	-1203,84	-1506,68	-1762,64	-2034,8	-2282,8	-2518,43	-2810,37	-3201,24	-3529,56	-3875
-1630,75	-2017,59	-2427,78	-2768,12	-3218,66	-3695,04	-4185,28	-4754,5	-5278,6	-5832,85	-6408,65	-7005,03
-1310,26	-1620,12	-1955,25	-2303,98	-2680,75	-3078,65	-3480,6	-3909,74	-4344,63	-4815,57	-5294,24	-5791,89

Figura D.11 – Deformação em função da força no furo, Chapa CH1.

Figura D.12 – Deformação em função do deslocamento, Chapa CH1.

D.2.2 – Chapa CH2 – espessura de 1/4"

Deslocamento (mm)		0	1,8	3,6	5,4	7,2	9	10,8	12,6	14,4
Força (kN)		0	1,05	2,1	3,15	4,2	5,25	6,3	7,35	8,4
	Linha 1	0	-311,032	-467,493	-531,733	-673,825	-921,223	-1243,07	-1644,42	-2104,8
	Linha 2		-148,974	-221,357	-346,228	-436,989	-547,71	-621,334	-806,335	-1043,15
Deformação Média	Linha 3	0	-270,251	-404,358	-468,968	-634,518	-874,988	-1204,46	-1587,58	-2031,95
(μm/m)	Linha 4	0	-149,162	-220,814	-345,621	-436,7	-547,613	-622,293	-807,533	-1044,15
	Linha 5	0	-314,49	-472,373	-536,363	-679,7	-929,26	-1251,24	-1652,82	-2112,66
	MÉDIA TOTAL	0	-238,782	-357,279	-445,782	-572,346	-764,159	-988,478	-1299,74	-1667,34

Tabela D.7 – Resultados médios, Chapa CH2.

16,2	18	19,8	21,6	23,4	25,2	27	28,8	30,6	32,4	34,2	36
9,45	10,5	11,55	12,6	13,65	14,7	15,75	16,8	17,85	18,9	19,95	21
-2596,5	-3022,97	-3558,25	-4133,38	-4728,53	-5351,9	-5999,15	-6669,03	-7362,78	-8078,58	-8824,35	-9579,35
-1310,84	-1656,88	-1972,8	-2269,78	-2580,81	-2942,94	-3328,45	-3733,41	-4214,13	-4650,81	-5108,25	-5571,45
-2513,08	-3031,27	-3569,92	-4141,71	-4736,48	-5358,33	-6003,9	-6664,65	-7237,45	-7936,13	-8667,58	-9407,13
-1311,27	-1657,36	-1972,25	-2268,53	-2578,97	-2940,33	-3325,1	-3729,28	-4210,15	-4646,35	-5102,9	-5565,8
-2603,75	-3030,1	-3564,85	-4141,23	-4738,18	-5362,93	-6011,6	-6682,8	-7379,05	-8096,7	-8844,68	-9601,53
-2067,09	-2479,72	-2927,61	-3390,92	-3872,59	-4391,28	-4933,64	-5495,83	-6080,71	-6681,71	-7309,55	-7945,05

Figura D.13 – Deformação em função da força no furo, Chapa CH2.

Figura D.14 – Deformação em função do deslocamento, Chapa CH2.

D.2.3 – Chapa CH3 – espessura de 5/16"

Deslocamento (mm)		0	1	2	3,6	4,8	6	7,2	8,4	9,6
Força (kN)		0	0,95	1,9	2,85	3,8	4,75	5,7	6,65	7,6
	Linha 1		-362,668	-535,418	-597,725	-725,505	-905,445	-1191,73	-1573,49	-2032,85
	Linha 2		-198,163	-282,875	-396,137	-475,228	-575,976	-647,17	-837,988	-1089,51
Deformação Média	Linha 3	0	-327,225	-485,458	-533,895	-682,358	-881,335	-1193,44	-1582,65	-2055,7
(µm/m)	Linha 4	0	-198,513	-283,436	-396,559	-475,97	-577,399	-648,638	-839,398	-1091,1
	Linha 5	0	-364,728	-539,985	-603,905	-732	-914,958	-1202,2	-1586,36	-2045,93
MÉDIA TOTAL		0	-271,642	-396,796	-481,079	-589,765	-735,039	-920,242	-1283,98	-1663,01

Tabela D.8 - Resultados médios, Chapa CH3.

10,8	12	13,2	14,4	15,6	16,8	18	19,2	20,4	21,6	22,8	24
8,55	9,5	10,45	11,4	12,35	13,3	14,25	15,2	16,15	17,1	18,05	19
-2451,45	-3028,98	-3660,68	-4349,9	-5120,48	-5929,78	-6772,73	-7639,58	-8530,15	-9437,43	-10336,4	-11270,7
-1454,38	-1762,92	-2101,96	-2563,54	-3036,83	-3537,7	-4058,01	-4601,33	-5164,97	-5743,6	-6320,45	-6918,98
-2592,17	-3177,7	-3834,15	-4415,23	-5183,1	-5992,43	-6846,85	-7735,73	-8655,1	-9597,7	-10537,9	-11516,4
-1455,92	-1762,96	-2101,59	-2562,83	-3035,48	-3535,93	-4055,8	-4598,94	-5162,52	-5741,29	-6318,03	-6916,48
-2464,02	-3040,28	-3673,5	-4364	-5135,55	-5945,68	-6789,68	-7658,23	-8550,25	-9459,53	-10360,1	-11296,5
-2083,59	-2554,56	-3074,37	-3651,1	-4302,29	-4988,3	-5704,61	-6446,76	-7212,6	-7995,91	-8774,58	-9583,8

Figura D.15 – Deformação em função da força no furo, Chapa CH3.

Figura D.16 – Deformação em função do deslocamento, Chapa CH3.

D.2.4 – Chapa CH4 – espessura de 3/8"

Deslocamento (mm)		0	0,75	1,5	2,25	3	3,75	4,5	5,25	6
Força (kN)		0	0,65	1,3	1,95	2,6	3,25	3,9	4,55	5,2
	Linha 1	0	-92,2968	-184,36	-280,388	-374,805	-459,358	-530,033	-590,365	-648,908
	Linha 2		-50,5373	-100,974	-153,134	-204,043	-248,264	-283,078	-334,264	-360,256
Deformação Média	Linha 3	0	-88,7138	-177,214	-270,063	-361,668	-443,808	-512,83	-510,593	-562,045
(μm/m)	Linha 4	0	-50,577	-101,053	-153,253	-204,205	-248,478	-283,36	-334,756	-360,78
Linha 5		0	-92,499	-184,768	-281,008	-375,668	-460,578	-532,028	-593,155	-652,558
MÉDIA TOTAL		0	-74,9248	-149,674	-227,569	-304,077	-372,097	-428,266	-472,626	-516,909

Tabela D.9 – Resultados médios, Chapa CH4.

6,75	7,5	8,25	9	9,75	10,5	11,25	12	12,75	13,5	14,25	15
5,85	6,5	7,15	7,8	8,45	9,1	9,75	10,4	11,05	11,7	12,35	13
-707,23	-702,675	-760,87	-835,345	-960,175	-1118,61	-1230,32	-1494,17	-1707,29	-1949,57	-2207,67	-2518,88
-385,524	-439,25	-473,308	-521,173	-589,327	-631,547	-783,105	-886,76	-1014,46	-1153,12	-1269,47	-1437,43
-615,298	-681,57	-765,953	-885,91	-1047,4	-1254,91	-1481,21	-1747,87	-1982,78	-2218,4	-2486,63	-2789,88
-385,961	-439,612	-473,776	-521,895	-590,585	-632,947	-785,33	-889	-1016,57	-1154,88	-1270,29	-1437,6
-711,623	-706,983	-766,053	-841,623	-968,73	-1128,12	-1239,67	-1505,24	-1718,52	-1961,15	-2217,78	-2529,18
-561,127	-594,018	-647,992	-721,189	-831,243	-953,225	-1103,93	-1304,61	-1487,92	-1687,42	-1890,37	-2142,59

Figura D.17 – Deformação em função da força no furo, Chapa CH4.

Figura D.18 – Deformação em função do deslocamento, Chapa CH4.

D.2.5 – Chapa CH5 – espessura de 1/2"

Deslocamento (mm)			0,9	1,8	2,7	3,6	4,5	5,4	6,3	7,2
Força (kN)			0,65	1,3	1,95	2,6	3,25	3,9	4,55	5,2
	Linha 1	0	-112,783	-225,34	-337,618	-445,05	-538,49	-617,14	-686,695	-688,79
	Linha 2	0	-65,5188	-130,941	-196,217	-257,986	-309,84	-351,63	-411,13	-471,505
Deformação Média	Linha 3	0	-108,164	-216,118	-323,695	-426,783	-516,675	-593,005	-591,565	-652,87
(μm/m)	Linha 4	0	-65,6035	-131,11	-196,472	-258,328	-310,33	-352,41	-412,403	-473,058
	Linha 5	0	-112,911	-225,598	-338,008	-445,615	-539,4	-618,8	-689,358	-691,143
	MÉDIA TOTAL	0	-92,996	-185,821	-278,402	-366,752	-442,947	-506,597	-558,23	-595,473

Tabela D.10 – Resultados médios, Chapa CH5.

8,1	9	9,9	10,8	11,7	12,6	13,5	14,4	15,3	16,2	17,1	18
5,85	6,5	7,15	7,8	8,45	9,1	9,75	10,4	11,05	11,7	12,35	13
-749,055	-808,77	-852,735	-929,535	-1045,46	-1178,13	-1261,57	-1447,46	-1637,19	-1876,71	-2150,51	-2587,94
-505,968	-540,773	-574,823	-618,375	-646,67	-678,345	-778,898	-887,598	-1005,9	-1161,53	-1320,26	-1572,86
-715,34	-783,638	-857,968	-959,133	-1094,63	-1264,82	-1453,19	-1660,49	-1874,56	-2041,89	-2316,33	-2747,66
-507,885	-542,608	-577,175	-621,953	-615,89	-682,088	-783,075	-891,845	-1009,45	-1164,76	-1322,6	-1575,17
-752,755	-811,93	-856,428	-934,745	-1053,85	-1188,55	-1271,46	-1457,53	-1645,57	-1884,85	-2156,59	-2593,91
-646,201	-697,544	-743,826	-812,748	-891,299	-998,387	-1109,64	-1268,98	-1434,53	-1625,94	-1853,26	-2215,51

Figura D.19 – Deformação em função da força no furo, Chapa CH5.

Figura D.20 – Deformação em função do deslocamento, Chapa CH5.

E – RESULTADOS NUMÉRICOS PARA LIGAÇÃO T-STUB

Neste apêndice constam os resultados obtidos no estudo numérico da conexão *T-stub* em regime elastoplástico. O programa ANSYS utilizado fundamenta-se no método dos elementos finitos. Foi obtido do programa os valores das reações em cada nó restrito do parafuso . O somatório das reações nodais nos parafusos obtém a força total no parafuso. A reação nodal nos apoios situados no interior do furo representam a força cortante.

E.1 – LIGAÇÃO CN1 – CHAPA DO FLANGE COM ESPESSURA DE 3/16"

Carga	Tração	Cortante
0	5,00	0,00
3	5,21	1,80
6	5,90	3,59
10	7,77	5,39
13	8,90	7,19
16	10,62	8,99
19	12,54	10,78
22	14,83	12,58
26	16,46	14,38
29	18,20	16,17
32	20,07	17,97
35	22,00	19,77
38	23,80	21,56
42	26,14	23,36
45	28,32	25,16

Tabela E.1 – Resultados médios, Modelo CN1.

Figura E.1 – Reação nos parafusos, Modelo CN1.

Figura E.2 – Cisalhamento nos parafusos, Modelo CN1.

E.2 – LIGAÇÃO CN2 – CHAPA DO FLANGE COM ESPESSURA DE 1/4"

Carga	Tração	Cortante
0	5	0
4	5,25	1,31
8	6,24	2,61
12	8,00	3,92
16	9,25	5,22
20	10,86	6,53
23	12,65	7,83
27	15,00	9,14
31	17,46	10,44
35	19,90	11,75
39	22,56	13,05
43	25,74	14,36
47	28,48	15,66
51	31,14	16,97
55	34,12	18,27

Tabela E.2 – Resultados médios, Modelo CN2.

Figura E.3 – Reação nos parafusos, Modelo CN2.

Figura E.4 – Cisalhamento nos parafusos, Modelo CN2.

E.3 – LIGAÇÃO CN3 – CHAPA DO FLANGE COM ESPESSURA DE 5/16"

Carga	Tração	Cortante
0	5	0
5	5,29	1,23
10	7,58	2,46
15	10,88	3,69
20	14,17	4,92
25	17,46	6,15
30	20,75	7,38
35	24,04	8,61
40	27,34	9,84
45	31,63	11,07
50	34,94	12,30
55	39,39	13,53
60	43,09	14,77
65	47,30	16,00
70	51,39	17,23

Figura E.5 – Reação nos parafusos, Modelo CN3.

Figura E.6 – Cisalhamento nos parafusos, Modelo CN3.

E.4 – LIGAÇÃO CN4 – CHAPA DO FLANGE COM ESPESSURA DE 1/4"

Carga	Tração	Cortante
0	5	0
5	5,28	1,01
10	8,37	2,02
15	11,30	3,03
20	14,74	4,04
25	18,17	5,05
30	21,62	6,06
35	25,22	7,07
40	29,04	8,08
45	32,93	9,09
50	36,95	10,10
55	41,05	10,70
60	45,28	12,12
65	49,89	13,13
70	54,41	14,14

Tabela E.4 – Resultados médios, Modelo CN4.

Figura E.7 – Reação nos parafusos, Modelo CN4.

Figura E.8 – Cisalhamento nos parafusos, Modelo CN4.

E.5 – LIGAÇÃO CN5 – CHAPA DO FLANGE COM ESPESSURA DE 1/2"

Carga	Tração	Cortante
0	5	0
5	5,27	0,82
10	8,15	1,64
15	10,72	2,47
20	14,30	3,29
25	17,87	4,11
30	21,49	4,93
35	25,40	5,76
40	29,73	6,58
45	34,23	7,40
50	38,95	8,22
55	43,71	9,04
60	48,46	9,87
65	53,47	10,69
70	58,42	11,51

Tabela E.5 – Resultados médios, Modelo CN5.

Figura E.9 – Reação nos parafusos, Modelo CN5.

Figura E.10 – Cisalhamento nos parafusos, Modelo CN5.