REVIEW

# Pharmacological therapies for patients with human coronavirus infections: a rapid systematic review

Keitty Regina Cordeiro de Andrade (https://orcid.org/0000-0002-8882-6856)<sup>1</sup> Viviane Karoline da Silva Carvalho (https://orcid.org/0000-0002-6804-2333)<sup>1</sup> Cecília Menezes Farinasso (https://orcid.org/0000-0002-6240-1067)<sup>1</sup> Aurelina Aguiar de Lima (https://orcid.org/0000-0002-6240-1067)<sup>1</sup> Roberta Borges Silva (https://orcid.org/0000-0001-7273-5151)<sup>1</sup> Virginia Kagure Wachira (https://orcid.org/0000-0001-8018-9939)<sup>1</sup> Helaine Carneiro Capucho (https://orcid.org/0000-0002-5438-7963)<sup>2</sup> Patricia Medeiros de Souza (https://orcid.org/0000-0003-4022-9187)<sup>2</sup> Tazio Vanni (https://orcid.org/0000-0003-4022-9187)<sup>2</sup> Camile Giaretta Sachetti (https://orcid.org/0000-0003-1556-8339)<sup>1</sup> Daniela Fortunato Rêgo (https://orcid.org/0000-0003-1935-2201)<sup>1</sup>

> Abstract This work aimed to evaluate the effects of drug therapies for coronavirus infections. Rapid systematic review with search in the MEDLINE, EMBASE, Cochrane, BVS, Global Index Medicus, Medrix, bioRxiv, Clinicaltrials. gov and International Clinical Trials Registry Platform databases. Thirty-six studies evaluating alternative drugs against SARS, SARS-CoV-2 and MERS were included. Most of the included studies were conducted in China with an observational design for the treatment of COVID-19. The most studied treatments were with antimalarials and antivirals. In antimalarial, the meta-analysis of two studies with 180 participants did not identify the benefit of hydroxychloroquine concerning the negative viral load via real-time polymerase chain reaction, and the use of antivirals compared to standard care was similar regarding outcomes. The available scientific evidence is preliminary and of low methodological quality, which suggests caution when interpreting its results. Research that evaluates comparative efficacy in randomized, controlled clinical trials, with adequate follow-up time and with the methods properly disclosed and subject to scientific peer review is required. A periodic update of this review is recommended.

**Key words** Coronavirus, Coronavirus Infections, Severe Acute Respiratory Syndrome, Therapeutics, Systematic Review

<sup>&</sup>lt;sup>1</sup> Departamento de Ciência e Tecnologia, Ministério da Saúde. SCN Quadra 02 Projeção C, sala 105. 70712-902 Brasília DF Brasil. keitty.andrade@saude.gov.br <sup>2</sup> Departamento de Farmácia, Universidade de Brasilia. Brasília DF Brasil.

# Introduction

The outbreak of pneumonia cases, which initially occurred in Hubei, China, evolved into the 2019 Coronavirus Disease pandemic (COVID-19)<sup>1</sup>. The disease is caused by the Coronavirus-2 of severe acute respiratory syndrome (SARS-CoV-2)<sup>2</sup>. The World Health Organization (WHO) has declared strategic objectives on the pandemic, among them responding to critical knowledge gaps about the therapeutic options<sup>2</sup> available for coronavirus infections.

Understanding the complete natural history of COVID-19 is evolving. The WHO<sup>3</sup> published the provisional guidelines. In the clinical presentation, pneumonia seems to be the most severe frequent manifestation of the infection, characterized mainly by fever, dry cough, dyspnea, and bilateral infiltrates in chest imaging tests<sup>4-7</sup>. As of April 2020, there no vaccines or specific treatments were available for human coronavirus infections.

Given the developing coronavirus situation, policymakers urgently require a synthesis of evidence to make decisions and guide the population. Rapid evidence synthesis is recommended by WHO<sup>8</sup> in circumstances like these. Thus, this study aims to evaluate the effects of drug therapies for coronavirus infections.

#### Methods

#### Design and protocol registration

A quick, systematic review of the literature was carried out, a secondary study that gathers the available evidence on a topic, carried out swiftly, to meet the decision-makers' demand in a timely fashion<sup>9</sup>. The study was conducted to scientifically and impartially inform the decision-making in the health of managers of the Brazilian Ministry of Health in the context of the public health emergency of national importance, COVID-19. The study protocol was submitted to the International Prospective Register of Systematic Reviews (PROSPERO) platform. The report of this review is in line with the recommendation of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

#### Eligibility criteria

Studies of systematic reviews, randomized clinical trials, cohorts, case-controls, and case se-

ries that evaluated the effects of alternative drug therapies for infection by any type of human coronavirus were included. We excluded studies that contained data that could not be extracted completely, overlapping data between studies, book chapters, letters to the editor, posters, editorials, modeling, guidelines or country guides, studies carried out on animals, or *in silico*.

## Information sources and search strategies

A bibliographic search was performed in the sources of Medical Literature Analysis and Retrieval System Online (MEDLINE), Excerpta Medica dataBASE (EMBASE), Cochrane Library, and Virtual Health Library (BVS). The lists of bibliographic references of the relevant studies were examined to identify possible eligible studies. A search was also conducted on the Global Index Medicus, Medrix, and bioRxiv, as well as free search on the websites of the governments of countries with confirmed cases and clinical trial, records through the Clinicaltrials.gov and International Clinical Trials Registry Platform (IC-TRP) databases. There were no restrictions on the participants' age, language, status, and year of publication.

The search was updated until April 21, 2020. The search strategy was developed by one researcher and independently reviewed by another researcher. The following search strategy was used to search in Medline, being adapted for the other databases: (("coronavirus" [mesh] or "cov" [all fields] or "coronavirus infections"[mesh] or "wuhan coronavirus"[all fields] or "human coronavirus"[all fields] or "coronavirus nl63, human" [mesh] or "coronavirus oc43, human"[mesh] or "coronavirus 229e, human"[mesh] or covid-19[all fields] or "new coronavirus" [all fields] or 2019-ncov[all fields] or "novel coronavirus" [all fields] or betacoronavirus[all fields]) and ("antiviral agents"[mesh] or "therapeutics" [mesh] or drug[all fields] or "emergency treatment" [mesh])) and "treatment outcome"[mesh terms] (("coronavirus"[mesh] or "cov"[all fields] or "coronavirus infections"[mesh] or "wuhan coronavirus"[all fields] or "human coronavirus" [all fields] or "coronavirus nl63, human" [mesh] or "coronavirus oc43, human"[mesh] or "coronavirus 229e, human"[mesh] or covid-19[all fields] or "new coronavirus" [all fields] or 2019-ncov[all fields] or "novel coronavirus" [all fields] or betacoronavirus[all fields]) and ("antiviral agents"[mesh] or "therapeutics" [mesh] or drug[all fields] or

"emergency treatment" [mesh])) and "treatment outcome" [mesh terms].

#### Data collection process

The Rayyan system<sup>10</sup> was adopted for the selection of studies and data extraction. After removing duplicate records, two reviewers independently selected paper by title and abstract, as per pre-defined eligibility criteria. The selected works were independently read in full by two authors. In both stages, any case disagreement was resolved by a third reviewer. The following data were extracted: author, year of publication, country, study design, age (mean years), type of coronavirus, sample size, proportion of men (%), funding sources, intervention, comparator, and (clinical, laboratory) outcomes.

#### Methodological quality assessment

The evaluation of the methodological quality and the risk of bias of the included studies was carried out independently by six researchers, using appropriate tools for each study design, as follows: a) systematic reviews: A MeaSurement Tool to Assess Reviews (AMSTAR 2)<sup>11</sup>; b) randomized clinical trial: Cochrane bias risk assessment<sup>9</sup>; c) cohort and case series: Joanna Briggs Institute tools<sup>12</sup>.

#### Summary of results and statistical analysis

The outcomes assessed in this review were mortality rate, clinical outcomes (length of hospital stay, length of ICU stay, need for non-invasive mechanical ventilation, need for oxygen therapy, adverse events, body temperature), and detection of viral RNA (RT-PCR). The results of the included studies were presented descriptively. Data on outcomes evaluated by the included studies were reported considering the size of effect estimates (relative risk, absolute risk difference, odds ratio, the number required to treat, and others) and their respective confidence and variance measures (a measure of dispersion, confidence intervals, and p-values).

Due to the limited number of studies reporting similar results for infections, the meta-analysis was conducted only for two studies on hydroxychloroquine against SARS-CoV-2. A meta-analysis using the Mantel-Hazel method for dichotomous data with the random-effects model was chosen a priori. Risk ratio (RR) was used for timely estimation together with the 95% confidence interval. The chi-square test was applied to measure heterogeneity between studies with a significance level of p < 0.05. The magnitude of the inconsistency was measured using the I-square (I<sup>2</sup>) statistics. High heterogeneity was considered when I<sup>2</sup> was above 75%, moderate when it was between 55% and 75%, and low when I<sup>2</sup> was below 25%. RevMan version 5.3 was used for the analysis.

## Results

## Selection of studies

We identified 2,259 records, of which 91 were duplicated. After screening titles and abstracts, 68 records were selected for full-text reading. Of these, 36 met the eligibility criteria and were included in this review. The details of the selection process are illustrated in Figure 1.

#### Main characteristics of the included studies

The main characteristics of the included studies are shown in Chart 1. Most of the 36 included studies were retrospective cohorts and conducted in China, and published between 2018 and 2020. The mean age of patients was 48 years, and most of these people were diagnosed with SARS-CoV-2 infection or severe acute coronavirus syndrome (SARS-CoV) through real-time polymerase chain reaction (RT-PCR). Studies with patients with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) were also included. The effects of coronavirus drug therapies are described in Chart 2.

## Antimalarials

Four randomized controlled trials (RCTs)<sup>13-16</sup>, two retrospective cohorts<sup>17,18</sup>, a prospective cohort<sup>19</sup>, and three case series<sup>20-22</sup> evaluated the use of hydroxychloroquine (HCQ) or chloroquine (CQ) for SARS-CoV-2. Four studies compared HCQ with standard treatment<sup>13,14,16,19</sup>. Three studies evaluated the time to clinical improvement<sup>13,14,16</sup>. In one RCT<sup>13</sup>, the time to normalize body temperature was similar between the groups, while treatment with HCQ resulted in less time in two other RCTs<sup>14,16</sup>. In a single study<sup>14</sup>, the number of days of cough was significantly less in the HCQ group. Two RCTs<sup>14,16</sup> evaluated the negative viral load by RT-PCR on the seventh day after starting therapy. The meta-analysis 3520

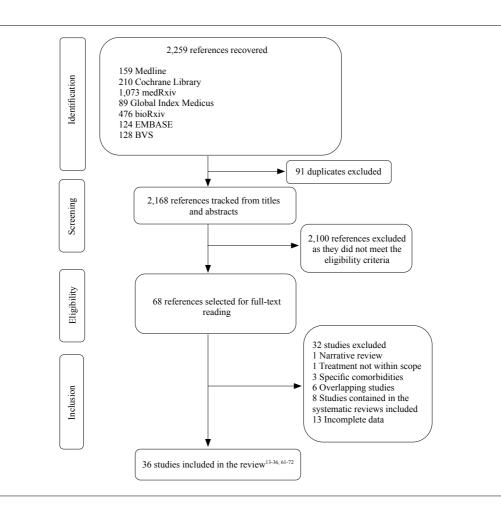



Figure 1. Process of search, selection and inclusion of studies.

found no significant difference in the probability of negative viral load by RT-PCR between the HCQ group and the group that received conventional treatment (RR = 0.94; 95%CI: 0.78-1.13; 180 participants; I<sup>2</sup> = 0%) (Figure 2).

Moreover, a cohort<sup>19</sup> had a significantly lower proportion of patients with negative RT-PCR in the HCQ group. A cohort<sup>18</sup> showed that the HCQ group has a higher risk of death from any cause when compared to the group without HCQ. However, another cohort<sup>17</sup> found no difference between the groups.

Five studies investigated the effects of HCQ associated with azithromycin (AZT) compared to standard treatment<sup>17-21</sup>. In a cohort<sup>19</sup>, the proportion of patients with negative RT-PCR was significantly lower in the HCQ group. On the other hand, the therapeutic combination had no significant effect in case series<sup>20</sup>. Another case series<sup>21</sup>

with 80 participants evidenced a negative virological result in 83% of patients who used HCQ on day 7 of follow-up, and in 93% on day 8. The mortality rate was assessed in two cohorts. In the first one<sup>18</sup>, it was worse in the group treated with HCQ and AZT, and in the other<sup>17</sup>, no differences were observed between groups. In one of the case series<sup>21</sup>, patients had nausea, vomiting, diarrhea, and blurred vision. In two other case series<sup>20,22</sup>, patients had persistent QT interval prolongation.

An RCT<sup>15</sup> compared the use of CQ administered at different dosages. Preliminary results suggest that the high-dose QC regimen (12g administered over 10 days) was not safe. The authors canceled the tests when they found that one quarter of the patients tested with a high-dose of QC showed persistent QT prolongation above 500ms and higher lethality.

| Author,<br>year of<br>publication           | Country   | Study design                 | Age (mean<br>years) | Coronavirus<br>type        | Diagnosis                                                                                                 | Sample<br>size | Funding sources                                                                                                                                                                                                                                                                      |
|---------------------------------------------|-----------|------------------------------|---------------------|----------------------------|-----------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chen J et                                   | China     | Randomized                   | 50.5                | Antimalarial<br>SARS-CoV-2 | RT-PCR                                                                                                    | 30             | Shanghai Public                                                                                                                                                                                                                                                                      |
| al. <sup>13</sup> (2020)                    | Clillia   | clinical trial               | 50.5                | 54165-007-2                | KI-I CK                                                                                                   | 50             | Health Clinical Center                                                                                                                                                                                                                                                               |
| Chen Z et<br>al. <sup>14</sup> (2020)       | China     | Randomized clinical trial    | 44.7                | SARS-CoV-2                 | RT-PCR                                                                                                    | 62             | Department of Hubei<br>Province                                                                                                                                                                                                                                                      |
| Borba et<br>al. <sup>15</sup> (2020)        | Brazil    | Randomized<br>clinical trial | 51.1                | SARS-CoV-2                 | Suspected<br>clinical-<br>epidemiological<br>cases (23.3%)<br>and cases<br>confirmed by<br>RT-PCR (76.7%) | 81             | Público (Government<br>of Amazonas,<br>Farmanguinhos-<br>Fiocruz,<br>Superintendency<br>of the Free Zone of<br>Manaus, Coordination<br>for the Improvement<br>of Higher Education<br>Personnel, Research<br>Support Foundation of<br>the State of Amazonas,<br>Federal Senate funds) |
| Tang et al. <sup>16</sup><br>(2020)         | China     | Randomized<br>clinical trial | 46.0                | SARS-CoV-2                 | RT-PCR                                                                                                    | 150            | Emerging National<br>Science and<br>Technology Projects,<br>China National<br>Natural Science<br>Foundation and others                                                                                                                                                               |
| Mahévas et<br>al. <sup>17</sup> (2020)      | France    | Retrospective cohort         | 60.0                | SARS-CoV-2                 | RT-PCR                                                                                                    | 198            | No funding                                                                                                                                                                                                                                                                           |
| Magagnoli<br>et al. <sup>18</sup><br>(2020) | USA       | Retrospective<br>cohort      | 70.0                | SARS-CoV-2                 | RT-PCR                                                                                                    | 368            | National Institutes of<br>Health (USA) grants<br>and DuPont Guerry,<br>III, Professorship, and<br>University of Virginia<br>Strategic Investment<br>Fund to JA                                                                                                                       |
| Gautret et<br>al. <sup>19</sup> (2020)      | France    | Prospective<br>Cohort        | 51.2                | SARS-CoV-2                 | RT-PCR                                                                                                    | 42             | Public (French<br>Government)                                                                                                                                                                                                                                                        |
| Chorin et<br>al. <sup>22</sup> (2020)       | USA       | Case series                  | 63.0                | SARS-CoV-2                 | RT-PCR                                                                                                    | 84             | Not declared                                                                                                                                                                                                                                                                         |
| Gautret et<br>al. <sup>21</sup> (2020)      | France    | Case series                  | 52.0                | SARS-CoV-2                 | RT-PCR                                                                                                    | 80             | Public (French<br>Government)                                                                                                                                                                                                                                                        |
| Molina et<br>al. <sup>20</sup> (2020)       | France    | Case series                  | 58.7                | SARS-CoV-2                 | RT-PCR                                                                                                    | 11             | Not declared                                                                                                                                                                                                                                                                         |
|                                             |           |                              | Antivira            | ls and Antiretro           | ovirals                                                                                                   |                |                                                                                                                                                                                                                                                                                      |
| Li et al. <sup>23</sup><br>(2020)           | China     | Randomized<br>clinical trial | 49.7                | SARS-CoV-2                 | RT-PCR                                                                                                    | 86             | Guangzhou High Level<br>Clinical Infectious<br>Disease Specialty                                                                                                                                                                                                                     |
| Young et<br>al. <sup>25</sup> (2020)        | Singapore | Case series                  | 47                  | SARS-CoV-2                 | PCR                                                                                                       | 18             | Singapore National<br>Medical Research<br>Council                                                                                                                                                                                                                                    |

**Chart 1.** Main characteristics of the studies included in the review (n=36).

# Chart 1. Main characteristics of the studies included in the review (n=36). (continuation)

| Author,<br>year of<br>publication             | Country                                            | Study design                                                 | Age (mean<br>years) | Coronavirus<br>type | Diagnosis                                                             | Sample<br>size | Funding sources                                                               |
|-----------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|---------------------|---------------------|-----------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------|
| Cao et al. <sup>24</sup><br>(2020)            | China                                              | Randomized<br>clinical trial                                 | 58.0                | SARS-CoV-2          | Reverse<br>transcriptase-<br>polymerase<br>chain reaction<br>(RT-PCR) | 199            | Not informed                                                                  |
|                                               |                                                    |                                                              | Imn                 | nunomodulato        | rs                                                                    |                |                                                                               |
| Zhou et al. <sup>26</sup><br>(2020)           | China                                              | Retrospective cohort                                         | 48.0                | SARS-CoV-2          | RT-PCR                                                                | 77             | No funding                                                                    |
|                                               |                                                    |                                                              | A                   | Anticoagulant       |                                                                       |                |                                                                               |
| Negri et<br>al. <sup>27</sup> (2020)          | Brazil                                             | Case series                                                  | 56.0                | SARS-CoV-2          | RT-PCR                                                                | 27             | No funding                                                                    |
| Shi C et al. <sup>28</sup><br>(2020)          | China                                              | Retrospective<br>cohort                                      | 69.0                | SARS-CoV-2          | RT-PCR                                                                | 42             | National Natural<br>Science Foundation of<br>China                            |
|                                               |                                                    |                                                              |                     | Corticoid           |                                                                       |                |                                                                               |
| Arabi et<br>al. <sup>29</sup> (2018)          | Saudi<br>Arabia                                    | Retrospective cohort                                         | 57.8<br>SD 17.2     | MERS-CoV            | RT-PCR                                                                | 309            | Not informed                                                                  |
| Wang et<br>al. <sup>30</sup> (2020)           | China                                              | Retrospective cohort                                         | 54.0<br>(IQR) 48-64 | SARS-CoV-2          | RT-PCR                                                                | 46             | Natural Science<br>Foundation of China                                        |
| Lu et al. <sup>31</sup><br>(2020)             | China                                              | Retrospective cohort                                         | 57.0                | SARS-CoV-2          | Not reported                                                          | 244            | National R&D<br>Program, China                                                |
| Auyeung et al. <sup>32</sup> (2005)           | China                                              | Retrospective cohort                                         | 47.7<br>SD 19.9     | SARS-CoV            | RT-PCR                                                                | 78             | Not informed                                                                  |
|                                               |                                                    |                                                              | Con                 | nbined therapi      | es                                                                    | -              | 1                                                                             |
| Morra et<br>al. <sup>34</sup> (2018)          | Saudi<br>Arabia,<br>France,<br>Greece and<br>Qatar | Systematic<br>review and<br>meta-analysis<br>with 16 studies | 57.6                | MERS-CoV            | RT-PCR<br>PCR                                                         | 116            | Japan Ministry of<br>Education, Culture,<br>Sports, Science and<br>Technology |
| Al-Tawfiq<br>e Memish <sup>61</sup><br>(2017) | Undefined                                          | Systematic<br>review with 14<br>studies                      | Not<br>informed     | MERS-CoV            | RT-PCR<br>PCR                                                         | 128            | Not informed                                                                  |
| Momattin<br>et al. <sup>62</sup><br>(2013)    | Undefined                                          | Systematic<br>review with 19<br>studies                      | Not<br>informed     | SARS-CoV            | RT-PCR<br>PCR                                                         | 1049           | Not informed                                                                  |
| Chiou et<br>al. <sup>35</sup> (2005)          | China                                              | Retrospective<br>cohort                                      | 38<br>SD 17.5       | SARS-CoV            | PCR                                                                   | 51             | Taiwan National<br>Science Council<br>National SARS-CoV<br>Research Program   |
| Lau et al. <sup>63</sup><br>(2004)            | China                                              | Prospective cohort                                           | 42.5<br>SD 14.8     | SARS-CoV            | PCR                                                                   | 71             | Not informed                                                                  |
| Chen X et<br>al. <sup>64</sup> (2020)         | China                                              | Retrospective cohort                                         | 48                  | SARS-CoV-2          | RT-PCR                                                                | 280            | Natural Science<br>Foundation of China                                        |

| Author,<br>year of<br>publication     | Country | Study design            | Age (mean<br>years)                                                                                    | Coronavirus<br>type | Diagnosis                                                                                                                                                                                                          | Sample<br>size | Funding sources                                                                                                                                                      |
|---------------------------------------|---------|-------------------------|--------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bian et al. <sup>33</sup><br>(2020)   | China   | Clinical trial          | 51                                                                                                     | SARS-CoV-2          | According to<br>diagnosis and<br>treatment<br>guidelines<br>(Diagnosis and<br>Treatment for<br>2019 Novel<br>Coronavirus<br>Disease)                                                                               | 18             | National Science and<br>Technology Project                                                                                                                           |
| Shi Q et<br>al. <sup>65</sup> (2020)  | China   | Retrospective<br>cohort | 71                                                                                                     | SARS-CoV-2          | World Health<br>Organization<br>interim guidance                                                                                                                                                                   | 101            | National Natural<br>Science                                                                                                                                          |
| Jiang et al. <sup>66</sup><br>(2020)  | China   | Retrospective<br>cohort | 45                                                                                                     | SARS-CoV-2          | According<br>to Chinese<br>management<br>guideline (7th<br>Edition)                                                                                                                                                | 55             | Wuxi Municipal Health<br>Commission Major, Wuxi<br>Science and Technology<br>Bureau COVID-19<br>special project, Wuxi<br>Science e Technology<br>Bureau guiding plan |
| Hu et al. <sup>67</sup><br>(2020)     | China   | Retrospective<br>cohort | 61                                                                                                     | SARS-CoV-2          | According to<br>WHO interim<br>guidance and<br>guidelines of<br>COVID-19<br>diagnosis and<br>treatment trial<br>5th Edition, by<br>the National<br>Health<br>Commission<br>of the People's<br>Republic of<br>China | 323            | Natural Science<br>Foundation of Hubei<br>Province e the Top<br>Youth Talent Program<br>in Hubei Province                                                            |
| Duan et<br>al. <sup>68</sup> (2020)   | China   | Case series             | 52.5                                                                                                   | SARS-CoV-2          | RT-PCR                                                                                                                                                                                                             | 10             | Chinese Ministry<br>of Science and<br>Technology                                                                                                                     |
| Chen H et<br>al. <sup>69</sup> (2020) | China   | Clinical trial          | not reported<br>(median of<br>31 in the<br>intervention<br>group and<br>44 in the<br>control<br>group) | SARS-CoV-2          | RT-PCR                                                                                                                                                                                                             | 11             | Partial funding by the<br>Science and Technology<br>Bureau of Nanchang<br>City Shanghai<br>Guangxi Translational<br>Medicine Development<br>Foundation               |
| Tsui et al. <sup>70</sup><br>(2003)   | China   | Retrospective<br>cohort | 41<br>SD 14                                                                                            | SARS-CoV            | RT-PCR                                                                                                                                                                                                             | 323            | Not informed                                                                                                                                                         |
| Yan et al. <sup>36</sup><br>(2020)    | China   | Retrospective cohort    | 52                                                                                                     | SARS-CoV-2          | RT-PCR                                                                                                                                                                                                             | 120            | No funding                                                                                                                                                           |

Chart 1. Main characteristics of the studies included in the review (n=36). (continuation)

| Author,<br>year of<br>publication | Country | Study design  | Age (mean<br>years) | Coronavirus<br>type | Diagnosis    | Sample<br>size | Funding sources        |
|-----------------------------------|---------|---------------|---------------------|---------------------|--------------|----------------|------------------------|
| Habib et                          | Saudi   | Retrospective | 60                  | MERS-CoV            | RT-PCR       | 63             | Sulaiman Al Rajhi      |
| al. <sup>71</sup> (2019)          | Arabia  | cohort        | Standard            |                     |              |                | Colleges, Saudi Arabia |
|                                   |         |               | deviation           |                     |              |                |                        |
|                                   |         |               | (SD) 18.2           |                     |              |                |                        |
| Ho et al. <sup>72</sup><br>(2004) | China   | Case report   | 36.5                | SARS-CoV            | Not informed | 7              | Not informed           |

Chart 1. Main characteristics of the studies included in the review (n=36). (continuation)

Chart 2. Effects of drug treatments against human Coronavirus infection (n = 36).

| Studies (year)                        | Intervention                                 | Comparator                                                                                                                    | Outcomes                                                                                                       | Measure of effect                                                                    | Result                                                                                                                                                                                                                                                                |
|---------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                              | Ar                                                                                                                            | ntimalarial                                                                                                    |                                                                                      |                                                                                                                                                                                                                                                                       |
| Chen J et al. <sup>13</sup><br>(2020) | A:hydroxychloro-<br>quine (HCQ) 400          | B: placebo (n=15)                                                                                                             | Time to clinical improvement                                                                                   | Median of days                                                                       | A: 1 (0-3) <i>versus</i> B: 1 (0-2)                                                                                                                                                                                                                                   |
|                                       | milligrams (mg) per<br>day for 5 days (n=15) |                                                                                                                               | Detection of viral<br>load by reverse<br>transcription<br>followed by<br>polymerase chain<br>reaction (RT-PCR) | % of negative                                                                        | After 7 days: 86.7 versus<br>93.3<br>After 14 days: 100                                                                                                                                                                                                               |
|                                       |                                              |                                                                                                                               | Radiological progression                                                                                       | % patients who<br>improved                                                           | A: 33,0 versus B: 46,7                                                                                                                                                                                                                                                |
|                                       |                                              |                                                                                                                               | Adverse events                                                                                                 | Number of events                                                                     | A: 4 (2 diarrheas,<br>1 worsening of the<br>clinical picture with<br>discontinuation of<br>treatment, 1 transient<br>increase in aspartate)<br>versus B: 3 (1 increase<br>in serum creatinine,<br>1 anemia, 1 transient<br>increase in aspartate<br>aminotransferase) |
| Chen Z et al. <sup>14</sup><br>(2020) | A: HCQ (400 mg/day<br>5 days (n=31)          | B: standard<br>treatment<br>(oxygen therapy,<br>antiviral agents,<br>antibacterials and<br>immunoglobulin,<br>with or without | Time to clinical improvement                                                                                   | Mean days for<br>normalizing body<br>temperature<br>Mean days for<br>improving cough | A: 2.2 (standard<br>deviation 0.4) versus B:<br>3.2, p=0.0008<br>A: 2 days (SD 0.2) versus<br>B: 3.1 days, p=0.0016                                                                                                                                                   |
|                                       |                                              | (n=31)                                                                                                                        | Radiological<br>progression<br>by computed<br>tomography (CT)                                                  | % of pneumonia<br>improvement                                                        | A: 80.6 versus B: 54.8,<br>p=0.0476, Chi-square test                                                                                                                                                                                                                  |
|                                       |                                              |                                                                                                                               | Adverse events                                                                                                 | Number of events                                                                     | A: 2 (1 skin rash, 1<br>headache)                                                                                                                                                                                                                                     |

| Studies (year)                           | Intervention                                                                                                                                           | Comparator                                                 | Outcomes                                                         | Measure of effect                                        | Result                                                                                                                                                                        |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Borba et al. <sup>15</sup><br>(2020)     | A: high-dose<br>chloroquine (CQ):<br>600mg/day for 10                                                                                                  | No comparator                                              | Mortality in 28 days                                             | Mortality rate                                           | A: 13.5%; 95%<br>Confidence Interval 95%<br>CI: 6.9-23.0                                                                                                                      |
|                                          | days or total dose of<br>12 g (n=41)<br>B: low-dose CQ: 450<br>mg for 5 days, twice a<br>day only on the first<br>day, or total dose of<br>2.7g (n=40) |                                                            | Adverse events                                                   | % of patients<br>who presented<br>QT interval ><br>500ms | A: 11.1 versus B: 18.9                                                                                                                                                        |
| Tang et al. <sup>16</sup><br>(2020)      | A: HCQ (200 mg/<br>day for three days                                                                                                                  | B: standard<br>treatment (standard                         | Detection of viral<br>load by RT-PCR                             | % of negative                                            | A: 85,4 <i>versus</i> B: 81,3,<br>p=0,341                                                                                                                                     |
|                                          | followed by 800 mg/<br>day for 2 weeks for<br>patients with mild                                                                                       | care for COVID-19,<br>according to the<br>Chinese National | Time to negative<br>viral load (RT-PCR)                          | Median days<br>Relative Risk<br>(RR)                     | A: 8 days versus B:7 days<br>0.846; 95% CI 0.58-1.23,<br>p=0.341                                                                                                              |
|                                          | symptoms and 3 Guide)<br>weeks for severe (n=75)<br>symptoms (n=75)                                                                                    | · · ·                                                      | Clinical<br>improvement                                          | Median days<br>Proportion of<br>improvement              | A: 19 days versus B: 21<br>days, p=0.96<br>A: 59.9; 95% CI 45.0-75.3<br>versus B: 66.6; 95% CI<br>39.5-90.9                                                                   |
|                                          |                                                                                                                                                        |                                                            | Adverse events                                                   | % de patients                                            | Any adverse event - A:<br>30.0 versus B:8.8. p-value:<br>0.001<br>Most frequent adverse<br>event (diarrhea): A: 10<br>versus B:0<br>Severe adverse event<br>A:2.6 versus B: 0 |
| Mahévas et<br>al. <sup>17</sup> (2020)   | A: HCQ (600 mg/day<br>started in the first 48h<br>of hospitalization)<br>(n=84)                                                                        | No comparator                                              | Transfer to Intensive<br>Care Unit (ICU)                         | % of<br>hospitalization<br>RR                            | A: 20,2 <i>versus</i> B: 22,1<br>0,91 (0,48–1,81)                                                                                                                             |
|                                          |                                                                                                                                                        |                                                            | Mortality by all causes                                          | % of deaths<br>RR                                        | A: 2,8 <i>versus</i> B: 4,6<br>R0,61; IC 95%: 0,13–2,90                                                                                                                       |
|                                          | B: HCQ +<br>azithromycin (AZT)<br>(n=17)<br>C: No exposure to                                                                                          |                                                            | Progression to<br>severe acute<br>respiratory<br>syndrome (SARS) | % of patients<br>RR                                      | A: 9.5 These patients had<br>to discontinue HCQ<br>RR=1.15; 95% CI:<br>0.66–2.01                                                                                              |
| Magagnoli at                             | HCQ (n=97)                                                                                                                                             | No compositor                                              | Montality                                                        | % of deaths                                              | A: 27.8 versus B: 22.1                                                                                                                                                        |
| Magagnoli et<br>al. <sup>18</sup> (2020) | A: HCQ (n=97)<br>B: HCQ + AZT<br>(n=113)<br>Without HCQ                                                                                                | No comparator                                              | Mortality                                                        | % of deaths<br>Adjusted RR                               | A: 2/.8 versus B: 22.1<br>versus C:11.4<br>A: 2.61; 95% CI 1.10-<br>6.17. P=0.03 versus B:<br>1.14; 95% CI 0.56-2.32.<br>P=0.72                                               |
|                                          | (n=158)                                                                                                                                                |                                                            | Need for mechanical<br>ventilation                               | % of patients<br>Adjusted RR                             | A: 13.3 versus B: 6.9<br>versus C:14.1<br>A: 1.43; 95% CI 0.53 –<br>3.79. P=0.48 versus B:<br>0.43; 95% CI 0.16 -1.12;<br>P=0.09                                              |

Chart 2. Effects of drug treatments against human Coronavirus infection (n = 36). (continuation)

| Studies (year)                         | Intervention                                                                                                                                                | Comparator                             | Outcomes                             | Measure of effect                                                             | Result                                                                                                                                          |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Gautret et<br>al. <sup>19</sup> (2020) | A: HCQ (600 mg/day<br>for 10 days) (n=20)<br>B: HCQ (600mg/day<br>for 10 days) + AZT<br>(500 mg/day for 4<br>days) (n=6)<br>C: Standard<br>treatment (n=16) | No comparator                          | Detection of viral<br>load by RT-PCR | % of negative                                                                 | After 6 days- A: 70.0<br>versus B: 12.5<br>Post-hoc analysis: A:<br>100.0 versus B: 57.1<br>versus C: 12.5. p<0.001                             |
| Chorin et al. <sup>22</sup><br>(2020)  | A: HCQ+AZT (n=84)                                                                                                                                           | No comparator                          | Adverse events                       | % of patients<br>with alteration in<br>the prolongation<br>of the QT interval | >400ms: 30<br>> 500 ms: 11                                                                                                                      |
| Gautret et<br>al. <sup>21</sup> (2020) | A: HCQ (200mg/day<br>for 10 days) + AZT<br>(500mg/day for 1 day,                                                                                            | No comparator                          | Negative viral load<br>by RT-PCR     | % of negative                                                                 | A: 83 on day 7 and 93 on<br>day 8                                                                                                               |
|                                        | then 250 mg/day for<br>4 days)                                                                                                                              |                                        | Length of hospital stay              | Median of days                                                                | A: 4.6                                                                                                                                          |
|                                        |                                                                                                                                                             |                                        | Adverse events                       | % of events                                                                   | A: 2.5 nausea and<br>vomiting. 5 diarrheas. 1.2<br>blurry vision                                                                                |
| Molina et al. <sup>20</sup><br>(2020)  | A: HCQ (600 mg/day<br>for 10 days)                                                                                                                          | No comparator                          | Mortality                            | Number of deaths                                                              | A: 1                                                                                                                                            |
|                                        | + AZT (500 mg/day<br>on day 1 and 250 mg/<br>day on days 2 to 5)                                                                                            |                                        | Positive viral load by<br>RT-PCR     | % of positivity                                                               | 80.0; 95% CI: 49–94                                                                                                                             |
|                                        |                                                                                                                                                             | Antivirals                             | and Antiretrovirals                  | 1                                                                             |                                                                                                                                                 |
| Li et al. <sup>23</sup><br>(2020)      | A: Lopinavir (200<br>mg), by Ritonavir (50<br>mg) (administered<br>orally, twice a day,<br>500 mg, each time for<br>7-14 days) (n=34)                       | C: Without antiviral<br>therapy (n=17) | Negative viral load<br>by RT-PCR     | % of negative                                                                 | After 7 days:<br>A: 35.3% versus B: 37.1%<br>versus C: 41.2%. p=0.966<br>After 14 days:<br>A: 85.3% versus B: 91.4%<br>versus C: 76.5%. p=0.352 |
|                                        | B: Arbidol (100 mg)<br>(administered orally,<br>200 mg three times<br>a day for 7-14 days)<br>(n=35)                                                        |                                        | Adverse events                       | Number of<br>patients                                                         | A:12 (9 diarrheas. 1<br>elevation of alanine<br>aminotransferase. 2 loss<br>of appetite) versus B: 5 (3<br>diarrheas. 2 nauseas)                |
| Young et al. <sup>25</sup><br>(2020)   | A: Lopinavir/<br>ritonavir(n=5)                                                                                                                             | B: Without<br>Lopinavir/Ritonavir      | Clinical<br>improvement              | Body<br>temperature<br>normalization in<br>days<br>Time of use of             | A: 3 versus B: 3                                                                                                                                |
|                                        |                                                                                                                                                             |                                        |                                      | supplemental oxygen therapy                                                   | A: -3 days                                                                                                                                      |

**Chart 2.** Effects of drug treatments against human Coronavirus infection (n = 36). (continuation)

Need for invasive

Number of events

mechanical ventilation

Adverse events

A: 2

A: 4 (Nausea, vomit, diarrhea, hepatic alterations)

| Studies (year)            | Intervention           | Comparator        | Outcomes           | Measure of effect  | Result                      |
|---------------------------|------------------------|-------------------|--------------------|--------------------|-----------------------------|
| Cao et al. <sup>24</sup>  | A: Lopinavir-          | B: standard       | Time to clinical   | Length of stay in  | A: 6 versus 11              |
| (2020)                    | Ritonavir 400 mg and   | treatment (n=100) | improvement        | the Intensive Care |                             |
|                           | 100 mg, administered   |                   |                    | Unit (number of    |                             |
|                           | orally, twice a day    |                   |                    | days)              |                             |
|                           | associated with        |                   | Mortality          | Mortality rate     | 19.2. 95% CI 17.3% to       |
|                           | standard treatment     |                   |                    |                    | 5.7%                        |
|                           | por 14 days (n=99)     |                   | Adverse events     | Number of events   | A: 19 (Gastrointestinal,    |
|                           |                        |                   |                    |                    | including nausea, vomit     |
|                           |                        |                   |                    |                    | and diarrhea)               |
|                           |                        |                   |                    |                    | B: 32 (Respiratory failure. |
|                           |                        |                   |                    |                    | Acute kidney injury and     |
|                           |                        |                   |                    |                    | secondary infection)        |
|                           |                        | Immu              | inomodulators      |                    |                             |
| Zhou et al. <sup>26</sup> | A: IFN-α2b nebulized   | No comparator     | Viral clearance    | Median             | A: 8.0 (5.5-15.5) versus B: |
| (2020)                    | (5mU, bid) n=7         | <u> </u>          |                    | (interquartile     | 6.5 (3.0-10.0) versus C:    |
|                           |                        |                   |                    | range)             | 10.0 (4.5-19.5)             |
|                           | B: INF + Arbidol       |                   |                    |                    |                             |
|                           | (tablet – 200 mg, tid) |                   |                    |                    |                             |
|                           | n=46                   |                   |                    |                    |                             |
|                           |                        |                   |                    |                    |                             |
|                           | C: Arbidol n=24        |                   |                    |                    |                             |
|                           |                        | An                | ticoagulant        |                    |                             |
| Negri et al.27            | A: Heparin 1 mg/kg     | No comparator     | Oxygenation index  | PaO2/FiO2          | A: 325 (80). p=0.013        |
| (2020)                    | every 24hs             |                   |                    | ratio (standard    |                             |
|                           |                        |                   |                    | deviation)         |                             |
|                           |                        |                   | Length of hospital | Mean (standard     | A: 7.3 days (4.0)           |
|                           |                        |                   | stay               | deviation)         |                             |
|                           |                        |                   | Length of mechanic | Mean (standard     | A: 10.3 days (1.5)          |
|                           |                        |                   | ventilation        | deviation)         |                             |

Chart 2. Effects of drug treatments against human Coronavirus infection (n = 36). (continuation)

it continues

# Antivirals and Antiretrovirals

Two clinical trials<sup>23,24</sup> and one case series<sup>25</sup> that reported treatments with lopinavir/ritonavir, arbidol (umifenovir), and interferon- $\alpha$ 2b, were included. Most of the studies were conducted in China (n = 2), and all targeted SARS-CoV-2. One of the studies compared the use of lopinavir (associated with ritonavir) with arbidol (umifenovir) and standard treatment without antivirals<sup>23</sup>. The rate of negative SARS-CoV-2 viral load after seven days was 35.3% for the group that took lopinavir/ritonavir, 37.1% for the group that received arbidol, and 41.2% for the group that did not receive antiviral therapy<sup>23</sup>. Patients who received lopinavir/ritonavir associated with standard treatment had fewer days of hospitalization (6 days) than the group that received only standard treatment (11 days)<sup>24</sup>. Adverse events were also lower among the group that received the intervention (19 events in the intervention group versus 32 events in the control group)<sup>24</sup>.

## Immunomodulators

In a retrospective cohort<sup>26</sup> conducted in China, viral clearance took about eight days (IQR: 5.5-15.5) between the group that received nebulized interferon- $\alpha$ 2b and 6.5 days (IQR: 3.0-10.0) for the group that received interferon associated with arbidol<sup>26</sup>. The group that received only arbidol took about 10 days (IQR: 4.5-19.5) for viral clearance<sup>26</sup>.

## **Chart 2.** Effects of drug treatments against human Coronavirus infection (n = 36). (continuation)

| Studies (year)                       | Intervention                                                    | Comparator                               | Outcomes                                       | Measure of effect                                                                       | Result                                                                                                                                                                                                                                    |
|--------------------------------------|-----------------------------------------------------------------|------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shi C et al. <sup>28</sup><br>(2020) | A: Heparin (n=21)                                               | Without heparin<br>(n=21)                | Length of hospital<br>stay<br>Viral clearance  | Mean days<br>(Interquartile<br>range)<br>Mean days<br>(Interquartile<br>range); p-value | A: - 29 days (7.0-42.0)<br>versus B: 27 days (24.0-<br>31.0)<br>A:20;(11 -31) versus<br>B:19;(12 - 30) P=0.46                                                                                                                             |
|                                      |                                                                 |                                          | Coagulation<br>parameters                      | Levels of<br>D-dimer;<br>standard<br>deviation;<br>p-value                              | A:(0.90±0.44.170<br>1.00±1.06. p=0.368)<br>versus B:(3.75±4.04.<br>0.90±0.44. p=0.001)                                                                                                                                                    |
|                                      |                                                                 |                                          | C-reactive protein<br>levels                   | Levels of CRP;<br>standard<br>deviation;<br>p-value                                     | B:22.62±23.79.<br>-20.23±33.91. p=0.660                                                                                                                                                                                                   |
|                                      |                                                                 |                                          | Inflammatory<br>cytokine levels (IL6)          | Levels of<br>cytokines;<br>standard<br>deviation;<br>p-value                            | A:47.47±58.86. 198<br>15.76±25.71. p=0.006)<br>versus<br>B: -32.46±65.97.200<br>14.96±151.09. p=0031                                                                                                                                      |
|                                      |                                                                 |                                          | Lymphocyte levels                              | Lymphocyte<br>levels; standard<br>deviation;<br>p-value                                 | A: 18.84±8.24.<br>29.94±7.92. p=0.00048<br>versus<br>B:11.10±9.50. 3.08±9.66.<br>p=0.011                                                                                                                                                  |
|                                      |                                                                 | (                                        | Corticoids                                     |                                                                                         |                                                                                                                                                                                                                                           |
| Arabi et al. <sup>29</sup><br>(2018) | A: Corticosteroids<br>(n=151)                                   | B: Without<br>corticosteroids<br>(n=158) | Mortality                                      | Mortality rate                                                                          | A: 74.2%<br>B: 57.6%<br>P= 0.002                                                                                                                                                                                                          |
|                                      |                                                                 |                                          | Need for invasive<br>mechanical<br>ventilation | % of days                                                                               | A: 93.4 versus B: 76.6                                                                                                                                                                                                                    |
| Wang et al. <sup>30</sup><br>(2020)  | A:<br>Methylprednisolone,<br>1mg/(kg) for 5 to 7<br>days (n=26) | Without<br>Methylprednisolone            | Improvement of<br>symptoms                     | Mean days<br>and standard<br>deviation                                                  | Body temperature<br>normalization<br>A: 2.06 (0.28) versus B:<br>5.29 (0.70). p=0.010<br>Need for higher<br>supplemental<br>oxygen therapy in<br>the group without<br>Methylprednisolone<br>A: 8.2 (7.0) versus B: 13.5<br>(10.3) p<0.001 |

it continues

## Anticoagulants

Negri et al<sup>27</sup> evaluated the use of heparin for the treatment of COVID-19 in a hospital in São Paulo, Brazil. The PaO2/FiO2 oxygenation index was evaluated before and after 72 hours of treatment, besides the duration of hospitalization and mechanical ventilation. The PaO2/ FiO2 ratio improved from 254 to 325 (p=0.013), the mean hospital stay was 7.3, and the mean duration of mechanical ventilation was  $10.3^{27}$ . Another study<sup>28</sup> evaluated heparin use in the

| Studies (year)                                | Intervention                                                                                                                                                                                                                                         | Comparator                                                                                                                              | Outcomes                                       | Measure of effect                   | Result                                                                                                                                                                 |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lu et al. <sup>31</sup><br>(2020)             | A: Corticosteroids<br>(n=31)                                                                                                                                                                                                                         | B: without<br>corticosteroids<br>(n=31)                                                                                                 | Mortality in 28 days                           | Mortality rate                      | A: 39% versus B: 16%.<br>P=0.09                                                                                                                                        |
| Auyeung et                                    | Corticosteroids n=151<br>(hydrocortisone:<br>100-800mg/d) 8 (4-12)<br>days<br>(Methylprednisolone,<br>dexamethasone and<br>hydrocortisone)<br>+ oseltamivir,<br>arbidol, lopinavir /<br>ritonavir, ganciclovir,<br>interferon-α)<br>Corticoesteroids | Without<br>corticosteroids n=<br>93<br>+<br>oseltamivir, arbidol,<br>lopinavir / ritonavir,<br>ganciclovir,<br>interferon-α)<br>Without | Mortality em 28                                | OR;95% CI;<br>p-value<br>Odds Ratio | OR : 1.05; (-1.92-2.01);<br>p-value = > 0.3<br>20.7 (1.3 - 338) - for                                                                                                  |
| al. <sup>32</sup> (2005)                      | Corrections                                                                                                                                                                                                                                          | corticosteroids                                                                                                                         | days                                           |                                     | admission in ICU* or<br>death                                                                                                                                          |
|                                               | ·                                                                                                                                                                                                                                                    | Comb                                                                                                                                    | ined therapies                                 | ·                                   |                                                                                                                                                                        |
| Morra et al. <sup>34</sup><br>(2018)          | A: INF alpha-2a,<br>alpha-2b or beta-1a +<br>ribavirin (n= 68)                                                                                                                                                                                       | B: Support measure<br>(n=48)                                                                                                            | Mortality em 28<br>days                        | Mortality rate                      | 71% (61.8% - 79.5%)<br>*Survival. Days (95% CI)<br>A: 21.3 (14.1-28.5)<br>B: 21.4 (12.4-30.4)                                                                          |
|                                               |                                                                                                                                                                                                                                                      |                                                                                                                                         | Need for invasive<br>mechanical<br>ventilation | %                                   | A: 76.0 versus B: 90.0                                                                                                                                                 |
|                                               |                                                                                                                                                                                                                                                      |                                                                                                                                         | Adverse events                                 | Number of events                    | A: 3 (Elevation of<br>pancreatic enzymes.<br>Hemolysis.)                                                                                                               |
| Al-Tawfiq<br>e Memish <sup>61</sup><br>(2017) | A: ribavirin + IFN<br>alfa2a<br>B: ribavirin + IFN<br>beta1a                                                                                                                                                                                         | Several comparators                                                                                                                     | Mortality in 28 days                           | Mortality rate                      | A: 85%<br>B: 64%                                                                                                                                                       |
| Momattin et<br>al. <sup>62</sup> (2013)       | Ribavirin,<br>lopinavir/ritonavir,<br>convalescent<br>plasma, INF alpha,<br>corticosteroids                                                                                                                                                          | Several comparators                                                                                                                     | Mortality in 28 days                           | Mortality rate                      | 4% (Lopinavir/ritonavir)<br>From 6.5% to 12.7%<br>(ribavirin)<br>12.5% (convalescent<br>plasma)<br>23.8% (corticosteroid)<br>7.7% (corticosteroids)<br>0% (INFalpha-1) |
|                                               |                                                                                                                                                                                                                                                      |                                                                                                                                         | ICU admission rate                             | %                                   | % a 20% (ribavirin)<br>23.1% (corticosteroids)<br>11.1% (INF alpha)                                                                                                    |

Chart 2. Effects of drug treatments against human Coronavirus infection (n = 36). (continuation)

it continues

treatment of COVID-19 through negative viral outcomes, coagulation parameters, the concentration of C-reactive protein and inflammatory cytokines, number of lymphocytes before and after treatment. There was no significant difference between the two groups, except for an increase in IL-6 and in lymphocytes in the intervention group. The authors pointed out that heparin im-

| Studies (year)                        | Intervention                                                                                                              | Comparator                           | Outcomes                                                 | Measure of effect                  | Result                                                                                                                                         |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Chiou et al. <sup>35</sup><br>(2005)  | Oral ribavirin oral associated with                                                                                       | Treatment without<br>ribavirin (n=7) | Mortality in 28 days                                     | Mortality rate                     | A: 29%<br>B: 13%                                                                                                                               |
|                                       | Methylprednisolone,<br>followed by oral<br>prednisolone, Pulse                                                            |                                      | Absorption of<br>infiltrations in the<br>chest image     | %                                  | A: 71 versus B: 67.<br>p=0.05)                                                                                                                 |
|                                       | methylprednisolone,<br>oxygen therapy<br>by nasal cannula,<br>non-respiratory<br>mask or mechanical<br>ventilation (n=44) |                                      | Level of hemoglobin<br>(% of reduction)                  | %                                  | A: 73 versus B: 14.<br>p=0.006                                                                                                                 |
| Lau et al. <sup>63</sup><br>(2004)    | Intravenous ribavirin<br>(3,3 mg/kg of body                                                                               | No comparator                        | Mortality in 28 days                                     | Mortality rate                     | 3.4%                                                                                                                                           |
|                                       | weight)<br>Corticosteroids                                                                                                |                                      | Time to clinical stabilization                           | Mean                               | 8 days                                                                                                                                         |
|                                       | (Methylprednisolone<br>0,3 mg/kg for 10 days,<br>oral prednisolone at 1<br>mg/kg (n=71) +                                 |                                      | Adverse events                                           | % of events                        | Hyperglycemia (58%).<br>Pneumothorax (13%).<br>Psychiatric manifestations<br>(7%). Pneumonia<br>associated with mechanical<br>ventilation (2%) |
| Chen X et al. <sup>64</sup><br>(2020) | ICU care<br>Oxygen therapy                                                                                                | ICU care<br>Oxygen therapy           | Hospital discharge with cure                             | Number of cases                    | A:183 versus B:91                                                                                                                              |
|                                       | Mechanical ventilation                                                                                                    | Mechanical ventilation               | Hospital stay<br>Death                                   | Number of cases<br>Number of cases | A:0 versus B:3<br>A:1 versus B:0                                                                                                               |
|                                       | Antibiotics<br>Ribavirin                                                                                                  | Antibiotics<br>Ribavirin             | Hospital stay in days                                    | Number of days;<br>IQR; p-value    | A:17(12-23) versus B:21<br>(15 -28)                                                                                                            |
|                                       | Chloroquine<br>Corticosteroid<br>Immunoglobulin<br>Oseltamivir<br>lopinavir/ritonavir<br>Arbidol<br>(n = 185;viral        |                                      | Hospital admission<br>time to viral<br>Clearance in days | p-value=<0.000                     | A: 5 (3 -8) versus B:14<br>(9 -19)<br>p-value = <0.0001                                                                                        |

**Chart 2.** Effects of drug treatments against human Coronavirus infection (n = 36). (continuation)

it continues

proves coagulation dysfunction, has anti-inflammatory effects, and can be used as a treatment for COVID-19<sup>28</sup>.

clearance >14 days)

# Corticoids

clearance  $\leq 14$  days)

Four retrospective cohorts<sup>29-32</sup> reported corticosteroid therapies. Two were performed in China, focusing on the SARS-CoV-2<sup>30,31</sup> coronavirus. The time to symptom improvement was assessed and was shorter in the group that received methylprednisolone (2.06 days) than in the group that did not receive treatment (5.29 days)<sup>30</sup>. One study showed a higher mortality rate for patients with COVID-19 who received corticosteroids (39%) than in the group of patients who did not receive them (16%; p = 0.09)<sup>31</sup>. In patients with MERS-CoV, the mortality rate (74.2% versus 57.6%) and the need for invasive mechanical ventilation (93.4% versus 76.6%) were higher in the group receiving corticosteroids than in the group control group<sup>29</sup>. SARS-CoV patients who received corticosteroids were 20.7 times more likely (OR = 20.7; 95% CI: 1.3-338) to be admitted to the ICU or die than those who did not use corticosteroids<sup>32</sup>.

| Studies (year)                       | Intervention                                                                                                                          | Comparator                             | Outcomes                                                                 | Measure of effect           | Result                                                            |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------|
| Bian et al. <sup>33</sup><br>(2020)  | Meplazumab<br>(10 mg on the 1st,                                                                                                      | Lopinavir/ritonavir<br>Interferon α-2b | Hospital discharge<br>(28 <sup>th</sup> day)                             | Number of cases;<br>p-value | A:16 versus B:9 P=0.006.                                          |
|                                      | 2nd and 5th day via<br>intravenous infusion<br>within 60 to 90<br>minutes) +                                                          | Glucocorticoid<br>Antibiotic           | Improving chest<br>X-rays (7th, 14th<br>and 21st day post-<br>treatment) | P-value                     | p=0.010; 0.006;0.037                                              |
|                                      | Lopinavir/ritonavir<br>Interferon α-2b<br>Glucocorticoid                                                                              | (n=11)                                 | Viral clearance                                                          | Median of days;<br>IQR      | A:3(1.5 - 4.5) versus<br>A:0.37 (0.155 - 0.833);<br>p-value 0.014 |
|                                      | Antibiotic<br>(n=17)                                                                                                                  |                                        | Increased<br>C-reactive protein<br>concentration in 28<br>days           | HR; P-value                 | A:14; p-value = <0.05                                             |
|                                      |                                                                                                                                       |                                        | Elevation of ALT<br>and AST                                              | Number of cases;<br>p-value | A:2<br>B:2                                                        |
| Shi Q et al. <sup>65</sup><br>(2020) | Antiviral<br>Antibiotics<br>Glucocorticoid<br>Immunoglobulin<br>High-flow oxygen<br>inhalation                                        | No comparator                          | Mortality up to 3<br>days                                                | Number of cases             | 48                                                                |
|                                      | Non-invasive<br>mechanical<br>ventilation<br>Invasive mechanical<br>ventilation<br>Continuous renal<br>replacement therapy<br>(n=101) |                                        | Mortality after 3<br>days                                                | Number of cases             | 53                                                                |

**Chart 2.** Effects of drug treatments against human Coronavirus infection (n = 36).

it cotinues

## **Combined therapies**

Bian et al.33 evaluated the efficacy of meplazumab, an anti-CD147 antibody, as a complementary therapy in patients with COVID-19 in China. Other associated treatments were antiretroviral (lopinavir/ritonavir), immunomodulator (recombinant interferon α-2b), glucocorticoid, and antibiotic (not specified) drugs. The control group did not receive meplazumab. In the intervention group, 94% of patients (p = 0.006) were discharged from the hospital, and the median for the negative viral load was three days, with an increased C-reactive protein in 82.4% of cases. The reported adverse effects were only 2 cases that had elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and the condition was reversed after seven days. The researchers reported that this increase in transaminases was not associated with the use of meplazumab, as the same effect was observed in the control group<sup>33</sup>.

In another study<sup>31</sup>, treatment with corticosteroids (methylprednisolone, dexamethasone, and hydrocortisone) associated with antivirals (oseltamivir, arbidol, ganciclovir, interferon- $\alpha$ ) and antiretrovirals (lopinavir/ritonavir) was compared with a group that received the same treatment, without corticosteroids. No difference was observed between the groups (adjusted OR = 1.05; 95% CI: -1.92 to 2.01, p > 0.3)<sup>31</sup> in the mortality outcome after 28 days of hospitalization.

In yet another study<sup>34</sup>, treatment with interferon associated with ribavirin was evaluated, compared with the use of a support measure for the treatment of MERS. There was a need for

| Studies (year) | Intervention         | Comparator           | Outcomes             | Measure of effect | Result                   |
|----------------|----------------------|----------------------|----------------------|-------------------|--------------------------|
| Jiang et al.66 | Antiviral:           | Antiviral:           | Liver damage         | Number of cases;  | A:12 (25.5%) versus B:4  |
| (2020)         | Interferon α         | Interferon α         |                      | p-value           | (50%) P=0.0323           |
|                | Lopinavir/ritonavir  | Lopinavir/ritonavir  | Acute respiratory    | Number of cases;  | A:2 (4.3%) versus B:2    |
|                | Arbidol              | Arbidol              | syndrome             | p-value           | (25%) p-value= 0.073     |
|                | Chloroquine          | Chloroquine          | Respiratory arrest   | Number of cases;  | A:2(4,3%) versus B:8     |
|                | Antibiotic           | Antibiotic           |                      | p-value           | (100%) P valor=<0,00     |
|                | Antifungal           | Antifungal           | Secondary infection  | Number of cases;  | A:2(4.3%) versus B:8     |
|                | Corticosteroid       | Corticosteroid       |                      | p-value           | (100%) p-value=<0.00     |
|                | Immunoglobulin       | Immunoglobulin       | Acute kidney injury  | Number of cases;  | A:2(4.3%) versus         |
|                | Timosine             | Timosine             |                      | p-value           | B:2(25%)                 |
|                | Probiotics           | Probiotics           |                      | p value           | p-value = 0.176          |
|                | Low molecular weight | Low molecular        |                      |                   | A:1(2.1%) versus B:2     |
|                | heparin              | weight heparin       |                      |                   | (25%)                    |
|                | High-flow oxygen     | High-flow oxygen     |                      |                   | p-value = 0.073          |
|                | cannula              | cannula              |                      |                   | p fullet ofore           |
|                | Mechanical           | Mechanical           |                      |                   |                          |
|                | ventilation          | ventilation          |                      |                   |                          |
|                | Transfusion of       | Transfusion of       |                      |                   |                          |
|                | convalescent plasma  | convalescent plasma  |                      |                   |                          |
|                | Extracorporeal       | Extracorporeal       |                      |                   |                          |
|                | membrane             | membrane             |                      |                   |                          |
|                | oxygenation          | oxygenation          |                      |                   |                          |
|                | Lung transplant      | Lung transplant      |                      |                   |                          |
|                | (n=47; non-severe    | (n=8; severe cases)  |                      |                   |                          |
|                | cases)               |                      |                      |                   |                          |
| Hu et al.67    | Antiviral:           | Antiviral:           | Shock                | Number of         | A:8 versus B:35 p-value  |
| (2020)         | Oseltamivir          | Oseltamivir          |                      | events; p-value   | = <0.001                 |
|                | Ganciclovir          | Ganciclovir          | Acute cardiac injury | Number of         | A:3 versus B:21 p-value  |
|                | Arbidol              | Arbidol              |                      | events; p-value   | = <0.001                 |
|                | Kaletra              | Kaletra              | Arrhythmia           | Number of         | A:51 versus B:47 p-value |
|                | Interferon -α        | Interferon -α        |                      | events; p-value   | = <0.001                 |
|                | Antibiotics:         | Antibiotics:         | Acute respiratory    | Number of         | A:56 versus B:44 p-value |
|                | moxifloxacin         | moxifloxacin         | syndrome grave       | events; p-value   | = <0.001                 |
|                | Corticosteroid/      | Corticosteroid/      | Acute kidney injury  | Number of         | A:3 versus B:14 p-value  |
|                | Glucocorticoid       | Glucocorticoid       |                      | events; p-value   | = <0.001                 |
|                | Continuous renal     | Continuous renal     | Acute lung injury    | Number of         | A:56 versus B:44 p-value |
|                | replacement          | replacement          |                      | events; p-value   | = <0.001                 |
|                | Alternative therapy: | Alternative therapy: | Septic shock         | Number of         | A:0 versus B:19 p-value  |
|                | Non-invasive         | Non-invasive         | our de shoek         | events; p-value   | = <0.001                 |
|                | ventilation          | ventilation          | Secondary infection  | Number of         | A:0 versus B:9 p-value   |
|                | Invasive ventilation | Invasive ventilation |                      |                   | -                        |
|                |                      |                      |                      | events; p-value   | = <0.001                 |
|                | (n=260; favorable    | (n=63; unfavorable   |                      | events; p-value   | = <0.001                 |

**Chart 2.** Effects of drug treatments against human Coronavirus infection (n = 36). (continuation)

it continues

mechanical ventilation in 76% of patients in the intervention group compared with 90% in the control group. The adverse effects reported in the intervention group were elevation of pancreatic enzymes and hemolysis, present in 3 patients<sup>34</sup>.

Chiou et al.35 evaluated a therapy with an antiviral (ribavirin) associated with corticosteroids (methylprednisolone, prednisone) for the treatment of COVID-19 compared with a regimen without ribavirin. An improvement in the chest

| Studies (year)                                         | Intervention                                                                                            | Comparator                                                                                                                                                                                            | Outcomes                                                                                                      | Measure of effect                  | Result                            |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------|
| Duan et al. <sup>68</sup><br>(2020)                    | Convalescent plasma<br>200Ml + Ribavirin<br>0,5g, Arbidol                                               | Ribavirin, Arbidol,<br>Remdesivir<br>Interferon-α,                                                                                                                                                    | Titer of neutralizing<br>antibodies after<br>treatment with PC                                                | Titers; Number<br>of cases         | A:1:640;10                        |
|                                                        | 0,2g, Remdesivir<br>0,2g, Interferon-α<br>500MIU, Oseltamivir,<br>Peramivir<br>(n=10)                   | Cefoperazone<br>Moxifloxacin<br>Methylprednisolone<br>(N=10)                                                                                                                                          | Clinical<br>improvement of<br>symptoms; fever,<br>cough, shortness of<br>breath, chest pain<br>Improvement of | Mean days<br>Mean days             | A:3<br>A:7                        |
|                                                        |                                                                                                         | ** Control group<br>results were not                                                                                                                                                                  | symptoms of chest<br>X-rays                                                                                   |                                    |                                   |
|                                                        |                                                                                                         | shown in the studies                                                                                                                                                                                  | Viral clearance                                                                                               | Number of cases                    | A:10                              |
|                                                        |                                                                                                         |                                                                                                                                                                                                       | Adverse effects red spots on the face                                                                         | Number of cases                    | A:2                               |
| Chen H et<br>al. <sup>69</sup> (2020)                  | Danoprevir 100<br>mg twice a day +                                                                      | Danoprevir                                                                                                                                                                                            | Hospital discharge                                                                                            | Number of cases;<br>number of days | A:9;4 to 12 versus A:2;4 to 12    |
| Ritonavir 100 n<br>twice a day with<br>without nebuliz | Ritonavir 100 mg<br>twice a day with or<br>without nebulization                                         | Ritonavir<br>Nebulization with                                                                                                                                                                        | Normal body<br>temperature for at<br>least 3 days                                                             | Number of cases;<br>number of days | A:9;4 to 12 versus A:2;4<br>to 12 |
|                                                        | to 12 days<br>(n=9, who had<br>already received                                                         | Interferon<br>(n=2, diagnosed<br>recently and not                                                                                                                                                     | Significant recovery<br>from respiratory<br>symptoms                                                          | Number of cases;<br>number of days | A:9;4 to 12 versus A:2;4<br>to 12 |
|                                                        |                                                                                                         |                                                                                                                                                                                                       | Improved chest<br>images                                                                                      | Number of cases;<br>number of days | A:9;4 to12 versus A:2;4<br>to 12  |
|                                                        |                                                                                                         | having received<br>antivirals)                                                                                                                                                                        | Two consecutive<br>negative RT-PCR<br>tests                                                                   | Number of cases;<br>number of days | A:9;4 to 12 versus A:2;4<br>to 12 |
|                                                        |                                                                                                         |                                                                                                                                                                                                       | Length of hospital stay                                                                                       | Median of days;<br>number of days  | A:20 (7-22) versus B: 9.7         |
| Tsui et al. <sup>70</sup>                              | Antibiotics                                                                                             | No comparator                                                                                                                                                                                         | Mortality                                                                                                     | Mortality rate                     | 7.9% (5-10.8%)                    |
| (2003)                                                 | (levofloxacin,<br>amoxicillin/<br>clavulanate) +<br>combination of<br>ribavirin and steroids<br>(n=323) | Without lopinavir/<br>Ritonavir<br>Corticosteroid<br>Antibiotics<br>Oxygen therapy<br>with nasal cannula<br>Non-invasive<br>mechanical<br>ventilation<br>Invasive mechanical<br>ventilation<br>(n=42) | Need for invasive<br>mechanical<br>ventilation                                                                | %                                  | 13%                               |

**Chart 2.** Effects of drug treatments against human Coronavirus infection (n = 36). (continuation)

it continues

image's infiltrations was reported by 71% of the patients who received ribavirin compared to the control group  $(67\%, p = 0.05)^{35}$ .

A study<sup>36</sup> compared the use of antiretrovirals (lopinavir/ritonavir), corticosteroids, antibiotics, and supportive treatment vis-à-vis a similar treatment, but without lopinavir/ritonavir. The time to viral clearance had a median of 22 days compared to 28.5 in the control group. Moreover, the median hospital stay was 23 days compared to 18.5 in the control group<sup>36</sup>.

| Studies (year)                       | Intervention                                                                                               | Comparator    | Outcomes                                                                                                        | Measure of effect                           | Result                                                                                                                                             |
|--------------------------------------|------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Yan et al. <sup>36</sup><br>(2020)   | Lopinavir/Ritonavir<br>(400 mg and 100 mg,<br>orally, twice a day) +                                       |               | Without lopinavir/<br>Ritonavir                                                                                 | Days of treatment<br>Median of days;<br>IQR | A:22 (18-29) versus<br>B:28.5 (19.5 - 38)                                                                                                          |
|                                      | Corticosteroid<br>Antibiotics<br>Oxygen therapy com                                                        |               | Corticosteroid<br>Antibiotics<br>Oxygen therapy                                                                 | Viral clearance<br>Median of days;<br>IQR   | A:22 (18-29) versus<br>B:28.5 (19.5 - 38)                                                                                                          |
|                                      | nasal cannula<br>Non-invasive<br>mechanical<br>ventilation<br>Invasive mechanical<br>ventilation<br>(n=78) |               | with nasal cannula<br>Non-invasive<br>mechanical<br>ventilation<br>Invasive mechanical<br>ventilation<br>(n=42) | Hospital stay<br>Median of days;<br>IQR     | A:23 (19-27) versus<br>B:18.5 (13 -22.5)                                                                                                           |
| Habib et al. <sup>71</sup><br>(2019) | A: Ribavirin +<br>Interferon (IFN)<br>(n=63)                                                               | No comparator | Mortality                                                                                                       | Mortality rate                              | A: 22.9%                                                                                                                                           |
| Ho et al. <sup>72</sup><br>(2004)    | Post-treatment<br>pentaglobin with<br>corticosteroids and<br>ribavirin                                     | No comparator | Absorption of<br>infiltrations in the<br>chest image<br>Improvement<br>between days 1, 5<br>and 7               | Median and IQR                              | 5 liters (L); 8–12 L (day<br>1) 7.5L; 5–9.5 L (day 5)<br>6L; 2.5–8 L (day 7)                                                                       |
|                                      |                                                                                                            |               | Need for oxygen                                                                                                 | Median and IQR                              | Improvement between<br>days 1, 6 and 7<br>2.5 L/min*; 2–4 L/min<br>(day 1)<br>1 L/min; 0–2.8 L/min<br>(day 6)<br>0.5 L/min; 0–2.8 L/min<br>(day 7) |

Chart 2. Effects of drug treatments against human Coronavirus infection (n = 36). (continuation)

CK: creatine phosphokinase; CQ: chloroquine; SD: standard deviation; HCQ: hydroxychloroquine; OR: Odds Ratio; PaO2/FiO2: Oxygenation index; NA: not applicable; IQR: interquartile range, CT: computed tomography; ICU: Intensive Care Unit.

|                                                           | Hydroxychl<br>(HC |          | Con      | trol                  |                | Risk Ratio                           | Risk Ratio                                    |
|-----------------------------------------------------------|-------------------|----------|----------|-----------------------|----------------|--------------------------------------|-----------------------------------------------|
| Study or Subgroup                                         | Events            | Total    | Events   | Total                 | Weight         | M-H, Random, 95%CI                   | M-H, Random, 95%CI                            |
| Chen et al. 13 (2020)<br>Tang et al. 16 (2020)            | ·                 | 15<br>75 | 14<br>40 | 15<br>75              | 62.1%<br>37.9% | 0.93[0.73, 1.18]<br>0.95[0.70, 1.29] | <b>₩</b>                                      |
| Total (95%CI)                                             |                   | 90       |          | 90                    | 100.0%         | 0.94[0.78, 1.13]                     | •                                             |
| Total events                                              | 51                |          | 54       |                       |                | <u> </u>                             |                                               |
| Heterogeneity: Tau <sup>2</sup><br>Test overall effect: Z |                   |          | (P=0.89  | 9); I <sup>2</sup> =0 | 9%             | 0.01                                 | l 0.1 Í 10 100<br>Favours HCQ Favours Control |

Figure 2. Negative viral load by recal-time polymerase chain reaction (RT-PCR) after seven days of treatment with hydroxychloroquine.

#### Methodological quality assessment

In general, the methodological quality of the included studies was moderate. The main limitations of the included randomized clinical trials were lack of allocation secrecy, blinding, and sample size of fewer than 100 participants. The primary limitations observed in the systematic reviews were related to the authors' clarity regarding the process of assessing the risk of bias in the included studies, lack of description of eligibility criteria, and discussion about the heterogeneity in the findings. The included cohort studies were unclear as to the information about the control of confounding variables, length of follow-up, and patient eligibility criteria, besides the lack of comparable groups. Case series did not adequately describe patient eligibility criteria, demographic characteristics, and clinical data. No study was excluded because of its methodological quality. The critical assessment of the individual quality of each study is found in Charts 3-6.

# Discussion

This review identified three systematic reviews, eight randomized clinical trials, 18 cohorts, and seven case series, evaluating different drug alternatives to human coronavirus, who reported mortality in 14 days, a progression of lung lesions on computed tomography, clinical improvement, absence of viral detection in RT-PCR and adverse events. Antivirals and antimalarials were among the most studied therapies.

When there are no clinically proven treatments during epidemics, the tendency is to use drugs based on *in vitro* activity or observational studies. However, effective drugs based on *in vitro* studies and observational studies for other diseases were later proven to be ineffective in clinical trials<sup>37</sup>.

CQ and HCQ showed *in vitro* inhibitory effects on coronavirus infections<sup>38,39</sup>. As a known antimalarial and anti-autoimmune agent, HCQ appears to block infection by the SARS-CoV virus, increasing the endosomal pH required for membrane fusion between the virus and the host cell<sup>40,41</sup>.

Furthermore, it has been shown to specifically inhibit SARS-CoV-2 replication by interfering with the glycosylation of the angiotensin-converting enzyme 2 (ACE2)<sup>42</sup>. *In vitro* tests have revealed its ability to reduce the number of viral copies of SARS-CoV-2<sup>43</sup> effectively.

Considering the low costs of CQ, good safety profile, in vitro activity against other viruses44,45, pre-existing supply chain with potential for increased public and private production, and knowledge about specificity and management of accumulated side effects of use in malaria, some countries have recommended the use of CQ in the treatment of COVID-19. In China, CQ was added to the COVID-19 guideline for prevention, control, diagnosis, and management on February 18, 2020<sup>46</sup>. In the U.S., the Food and Drug Administration issued an emergency use authorization for CQ/HCQ to treat this disease on March 28, 202047. The European Drug Agency claimed that the two drugs should be used in clinical trials or national drug programs of emergency use for the treatment of COVID-19 on April 1st, 202048.

Clinical trials are underway in several countries to evaluate the use of chloroquine or hydroxychloroquine for COVID-19. The best available evidence, until April 2020, failed to demonstrate or exclude a beneficial effect of CQ or HCQ on human coronavirus infections or viral negative by RT-PCR<sup>13-19,22</sup>. Furthermore, the results presented are limited and should be interpreted with caution since the essential outcomes for patients (e.g., mortality, rate of progression of the severe acute respiratory syndrome, and need for mechanical ventilation) were not reported in most publications.

Patients have been receiving off-label and compassionate therapies<sup>37</sup>, and the association of lopinavir and ritonavir stood out among the treatments tested for COVID-1949. These drugs are used in combination to increase plasma halflife by inhibiting cytochrome P450<sup>24</sup>. Some have raised the hypothesis that lopinavir/ritonavir inhibits protease in a similar way to SARS and MERS 3-chymotrypsin and appears to be associated with better clinical outcomes in patients with SARS<sup>50</sup>. This inhibitor, which was used mainly for HIV infection, has activity in vitro against SARS-CoV<sup>51</sup> and appears to have some activity against MERS-CoV in animal studies<sup>52</sup>. Evidence for the use of lopinavir/ritonavir is still limited for SARS-CoV-2, and further studies should be conducted to determine the efficacy and safety of these drugs49.

The use of corticosteroids for viral pneumonia still has inconclusive effects among studies, and so far, it is difficult to have a position on the use of corticosteroids in patients with SARS-CoV-2<sup>26</sup>. A diagnosis and treatment regimen was published by the National Health Commission of China, where corticosteroid therapy was indicat<u>35</u>36

| Author, year of                       |    |    |    |    |   | Iter | ns |    |    |    |    | #     |
|---------------------------------------|----|----|----|----|---|------|----|----|----|----|----|-------|
| publication                           | 1  | 2  | 3  | 4  | 5 | 6    | 7  | 8  | 9  | 10 | 11 | #yes  |
| Wang et al. <sup>30</sup> (2020)      | Y  | Y  | Y  | Y  | Y | Y    | Y  | Ν  | N  | N  | Y  | 8/11  |
| Habib et al. <sup>71</sup> (2019)     | N  | Y  | Y  | Y  | Y | Y    | Y  | Y  | NC | N  | Y  | 8/11  |
| Arabi et al. <sup>29</sup> (2018)     | Y  | Y  | Y  | Y  | Y | Y    | Y  | Y  | NC | Y  | Y  | 10/11 |
| Auyeung et al. <sup>32</sup> (2005)   | NC | Y  | Y  | Y  | Y | Y    | Y  | NC | NC | NC | Y  | 7/11  |
| Chiou et al. <sup>35</sup> (2005)     | N  | Y  | Y  | NC | N | Y    | Y  | Y  | Y  | NC | Y  | 7/11  |
| Lau et al.63 (2004)                   | NC | Y  | Y  | Ν  | N | Y    | Y  | Y  | N  | N  | Y  | 6/11  |
| Tsui et al. <sup>70</sup> (2003)      | Y  | NC | NC | Y  | Y | Y    | Y  | Y  | Y  | N  | Y  | 8/11  |
| Gautret et al. <sup>19</sup> (2020)   | N  | NC | Ν  | N  | N | Y    | Y  | NC | Y  | NC | Y  | 4/11  |
| Shi Q et al. <sup>65</sup> (2020)     | Y  | Y  | Y  | Y  | Y | Y    | Y  | N  | Y  | N  | Y  | 9/11  |
| Zhou et al. <sup>26</sup> (2020)      | Y  | N  | Ν  | N  | N | Y    | Y  | Y  | Y  | N  | Y  | 9/11  |
| Mahévas et al. <sup>17</sup> (2020)   | N  | Y  | Y  | Ν  | N | Y    | Y  | Y  | Y  | NC | Y  | 7/11  |
| Magagnoli et al. <sup>18</sup> (2020) | N  | Y  | Y  | Y  | Y | Y    | Y  | N  | Y  | NC | Y  | 8/11  |
| Lu et al. <sup>31</sup> (2020)        | Y  | Y  | Y  | Y  | N | Y    | Y  | N  | N  | N  | Y  | 7/11  |
| Yan et al. <sup>36</sup> (2020)       | Y  | Y  | Y  | N  | N | Y    | Y  | Y  | Y  | Y  | Y  | 9/11  |
| Chen X et al. <sup>64</sup> (2020)    | Y  | Y  | Y  | NC | Y | Y    | Y  | Y  | Y  | NC | Y  | 9/11  |
| Jiang et al. <sup>66</sup> (2020)     | Y  | Y  | Y  | Ν  | N | Y    | Y  | Y  | Y  | NC | Y  | 8/11  |
| Hu et al.67 (2020)                    | Y  | Y  | Y  | N  | N | Y    | Y  | Y  | Y  | NC | Y  | 8/11  |
| Shi C et al. <sup>28</sup> (2020)     | S  | S  | S  | N  | N | S    | S  | S  | S  | NA | S  | 8/11  |

**Chart 3.** Evaluation of the methodological quality of the included cohort studies (n = 18).

Y: Yes; N: No; NC: Not Clear; #Yes: number of "yes"; Items: 1. Were the two groups similar and recruited from the same population? 2. Were exposures similarly measured to assign people to exposed and unexposed groups? 3. Was the exposure measured in a valid and reliable manner? 4. Have confounding factors been identified? 5. Have strategies for addressing confounding factors been stated? 6. Were the participants free of the result at the beginning of the study (or at the time of exposure)? 7. Were the results measured in a valid and reliable way? 8. Was the follow-up time reported and sufficient to be long enough for the results to occur? 9. Was the follow-up complete and, if not, were the reasons for the loss described and explored? 10. Were strategies used to deal with incomplete follow-up? 11. Was an appropriate statistical analysis used?

|                                              | AMSTAR items |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |                                         |
|----------------------------------------------|--------------|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|-----------------------------------------|
| Author, year of publication                  | 1            | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | Overall<br>confidence in the<br>results |
| Morra et al. <sup>34</sup> (2018)            | Y            | Y | Ν | Y | Y | Y | N | Y | Y | Y  | Y  | Ν  | Ν  | N  | Ν  | Ν  | Low                                     |
| Al-Tawfiq and Memish <sup>61</sup><br>(2017) | Y            | Y | N | Y | Y | N | N | N | N | Y  | NA | NA | N  | N  | N  | Y  | Critically low                          |
| Momattin et al. <sup>62</sup> (2013)         | Y            | Y | Ν | Ν | Y | Ν | N | Ν | N | Y  | Ν  | Ν  | Ν  | Ν  | Ν  | Y  | Critically low                          |

**Chart 4.** Evaluation of the methodological quality of the included systematic reviews (n = 3).

 $(2015) | \mathbf{I} | \mathbf{I} | \mathbf{N} | \mathbf{N} | \mathbf{I} | \mathbf{N} | \mathbf{N}$ IN IN IN IN I Critically to N: No; NA: Not Applicable; Y: Yes; #Yes: Number of "yes"; AMSTAR items: 1. Do the research questions and inclusion criteria for the review include the PICO components? 2. Did the review report contain an explicit statement that the review methods were established before the review and did it justify any significant deviation from the protocol? 3. Did the review authors explain their selection of study designs for inclusion in the review? 4. Did the review authors use a comprehensive literature search strategy? 5. Did the review authors select the study at least in independent pairs? 6. Did the review authors extract duplicate data? 7. Did the review authors provide a list of excluded studies and justify the exclusions? 8. Did the review authors describe the included studies in adequate detail? 9. Did the review authors use a satisfactory technique to assess the risk of bias in individual studies that were included in the review? 10. Did the review authors report sources of funding for the studies included in the review? 11. If a metaanalysis was performed, did the review authors use appropriate methods to statistically combine the results? 12. If the meta-analysis was performed, did the review authors assess the potential impact of the risk of bias in individual studies on the results of the metaanalysis? 13. Did the review authors explain the risk of bias in primary studies when discussing the results of the review? 14. Did the review authors provide a satisfactory explanation and discuss any heterogeneity observed in the review results? 15. If they performed a quantitative synthesis, did the review authors conduct an adequate investigation of the publication bias and discuss its likely impact on the results of the review? 16. Did the review authors report any potential sources of conflict of interest?

| Author, year of                     |   |   | #Yes |    |    |   |   |   |   |    |       |
|-------------------------------------|---|---|------|----|----|---|---|---|---|----|-------|
| publication                         | 1 | 2 | 3    | 4  | 5  | 6 | 7 | 8 | 9 | 10 | # 1es |
| Chorin et al. <sup>22</sup> (2020)  | N | Y | Ι    | Y  | Y  | Ν | Y | Ι | N | Y  | 5/10  |
| Molina et al. <sup>20</sup> (2020)  | N | N | Ι    | Y  | Ι  | N | Y | Ν | N | Y  | 3/10  |
| Gautret et al. <sup>21</sup> (2020) | Y | Y | Y    | Y  | Y  | N | Y | Ι | N | Y  | 7/10  |
| Young et al. <sup>25</sup> (2020)   | Y | Y | Y    | N  | Y  | Ν | Y | Y | Y | NA | 7/10  |
| Ho et al. <sup>72</sup> (2004)      | Y | Y | Y    | Y  | Y  | Y | Y | Y | Y | Y  | 10/10 |
| Negri et al. <sup>27</sup> (2020)   | Y | N | Y    | N  | Y  | N | Y | Y | Y | NA | 6/10  |
| Duan et al. <sup>68</sup> (2020)    | Y | Y | Y    | NC | NC | Y | Y | Y | Y | Y  | 8/10  |

**Chart 5.** Evaluation of the methodological quality of the included case series (n = 7).

N: No; Y: Yes; NA: Not Applicable; NC: Not Clear; #Yes: number of "yes"; I: Items: 1. Were there clearly defined inclusion criteria? 2. Was the condition measured in a standardized and reliable way for all participants? 3. Were valid methods used to identify the condition in the included participants? 4. Did the case series have consecutive inclusion of participants? 5. Did the case series have a full inclusion of participants? 6. Was there a clear account of the participants' demographic characteristics? 7. Was there a clear report of the participants' clinical information? 8. Were the outcomes or results of follow-up clearly reported? 9. Was there a clear report of the demographic information of the places or clinics? 10. Was there appropriate statistical analysis?

| Study                              | Randomization | Allocation<br>secrecy | Blinding | Incomplete<br>outcomes | Selective<br>report | Other bias sources |
|------------------------------------|---------------|-----------------------|----------|------------------------|---------------------|--------------------|
| Borba et al. <sup>15</sup> (2020)  | +             | +                     | -        | ?                      | +                   | +                  |
| Tang et al. <sup>16</sup> (2020)   | +             | -                     | -        | +                      | +                   | -                  |
| Li et al. <sup>23</sup> (2020)     | ?             | +                     | +        | +                      | -                   | +                  |
| Chen J et al. <sup>13</sup> (2020) | -             | -                     | -        | +                      | +                   | -                  |
| Chen Z et al. <sup>14</sup> (2020) | +             | ?                     | ?        | +                      | -                   | +                  |
| Cao et al. <sup>24</sup> (2020)    | +             | ?                     | ?        | +                      | -                   | +                  |
| Chen H et al. <sup>69</sup> (2020) | -             | -                     | -        | +                      | +                   | -                  |
| Bian et al. <sup>33</sup> (2020)   | -             | -                     | -        | +                      | +                   | -                  |

**Chart 6.** Evaluation of the methodological quality of the included clinical trials (n = 8).

+: Low bias risk; -: High bias risk; ?: Unquantifiable risk.

ed as adjuvant therapy, as its use was associated with a delayed viral clearance<sup>53</sup>. A meta-analysis identified that patients with severe conditions were more likely to require corticosteroid therapy and to have a higher mortality rate and adverse effects<sup>54</sup>. According to the Centers for Disease Control and Prevention (CDC)<sup>55</sup>, the use of corticosteroids cannot be indicated based on observational data. Both the CDC and the WHO believe that the use of corticosteroids should only be indicated when there is septic shock, asthma exacerbation, or chronic obstructive pulmonary disease<sup>55,56</sup>. Thus, the use of corticosteroids remains controversial<sup>57</sup>.

In total, 202 studies investigating different alternatives for the treatment of COVID-19 are in progress (Chart 7). Most of them are being developed in China, are not yet recruiting participants, are expected to end in 2020, and are available on the ClinicalTrials.gov and Chinese Clinical Trial Registry platforms. Ongoing trials vary in the study's design, the severity of the disease in the target population, the dosage, and the duration of treatment. The WHO<sup>58</sup> published guidelines on the ethics of testing amid outbreaks in 2016 and is working to standardize the design of the studies.

The number of studies conducted in parallel suggests that the scientific community is making a great effort to search for safe and effective treatments. However, there is a high likelihood that we are dealing with a virtually untreatable disease, only in need of supportive measures<sup>59</sup>. Besides the financial resources involved with unproven

| Registration<br>number,<br>Country | Intervention<br>(groups)                   | Control                               | Status                            | Registration<br>Date | Funding                                         |
|------------------------------------|--------------------------------------------|---------------------------------------|-----------------------------------|----------------------|-------------------------------------------------|
| •                                  | 1                                          | Platelet ant                          | iaggregants                       |                      |                                                 |
| NCT04344756<br>France              | Tinzaparin or<br>unfractionated<br>heparin | Standard treatment                    | Phase 2, Not yet<br>recruiting    | 14/04/2020           | Assistance Publique -<br>Hôpitaux de Paris      |
| NCT04352400<br>Italy               | Nafamostat Mesylate                        | Placebo                               | Phase 2 and 3, Not yet recruiting | 20/04/2020           | University Hospital of<br>Padua                 |
| NCT04345848<br>Switzerland         | Enoxaparin                                 | Prophylactic anticoagulation          | Phase 3, Not yet recruiting       | 15/04/2020           | University Hospital,<br>Geneva                  |
|                                    |                                            | Monoclona                             | l antibodies                      |                      |                                                 |
| NCT04344782<br>France              | Bevacizumab<br>injection                   | Service standard                      | Phase 2, Not yet recruiting       | 14/04/2020           | Assistance Publique –<br>Hôpitaux de Paris      |
| NCT04348500<br>United States       | Clazakizumab                               | Placebo                               | Phase 2, Not yet recruiting       | 16/04/2020           | Medical Center Cedars-<br>Sinai                 |
| NCT04346797<br>France              | Eculizumab                                 | Service standard                      | Phase 2, Not yet recruiting       | 15/04/2020           | Assistance Publique –<br>Hôpitaux de Paris      |
| NCT04335071<br>Switzerland         | Tocilizumab                                | Placebo                               | Phase 2, Recruiting               | 06/04/2020           | University Hospital<br>Inselspital, Bern        |
| NCT04335305<br>Spain               | Tocilizumab                                | Standard treatment                    | Phase 2, Recruiting               | 06/04/2020           | MedSIR                                          |
| NCT04315480<br>Italy               | Tocilizumab                                | No information                        | Phase 2, Not yet recruiting       | 19/03/2020           | Università Politecnica<br>delle Marche          |
| NCT04322188<br>Italy               | Siltuximab                                 | Standard treatment without siltuximab | Recruitment                       | 26/03/2020           | AO Ospedale Papa<br>Giovanni XXIII              |
| NCT04343651<br>United States       | Leronlimab (700mg)                         | Placebo                               | Phase 2, Recruitment              | 13/04/2020           | CytoDyn, Inc.                                   |
| NCT04347239<br>United States       | Leronlimab (700mg)                         | Placebo                               | Phase 2, Recruitment              | 15/04/2020           | CytoDyn, Inc.                                   |
| NCT04346355<br>Italy               | Tocilizumab                                | Service standard                      | Phase 2, Recruitment              | 15/04/2020           | Azienda Unità Sanitaria<br>Locale Reggio Emilia |
| NCT04329650<br>Spain               | Siltuximab                                 | Methylprednisolone                    | Phase 2, Recruitment              | 01/04/2020           | Judit Pich Martínez                             |
| NCT04320615<br>United States       | Tocilizumab                                | Placebo                               | Phase 3, Recruitment              | 25/03/2020           | Hoffmann-La Roche                               |
| NCT04341116<br>United States       | TJ003234                                   | Placebo                               | Phase 1 and 2,<br>Recruitment     | 10/04/2020           | I-Mab Biopharma Co.,<br>Ltd.                    |
| NCT04351152<br>United States       | Lenzilumab                                 | Standard treatment                    | Phase 3, Not yet recruiting       | 17/04/2020           | Humanigen, Inc.                                 |
| NCT04345445<br>Malaysia            | Tocilizumab                                | Methylprednisolone                    | Phase 3, Not yet recruiting       | 14/04/2020           | University of Malaysia                          |
| NCT04332913<br>Italy               | Tocilizumab                                | No information                        | Recruitment                       | 03/04/2020           | University of Áquila                            |
| NCT04317092<br>Multicenter         | Tocilizumab                                | No comparator                         | Phase 2, Recruiting               | 20/03/2020           | National Cancer<br>Institute, Naples            |
| NCT04342897<br>United States       | LY3127804                                  | Placebo                               | Phase 2, Recruitment              | 13/04/2020           | Eli Lilly and Company                           |
| NCT04346199<br>Spain               | Acalabrutinib                              | Standard treatment                    | Phase 2, Not yet recruiting       | 15/04/2020           | AstraZeneca                                     |
| NCT04331795<br>United States       | Tocilizumab                                | No comparator                         | Phase 2, Recruiting               | 02/04/2020           | University of Chicago                           |
| NCT04336410<br>United States       | Tocilizumab                                | Standard treatment                    | Phase 2, Recruiting               | 26/03/2020           | Marius Henriksen                                |

| Registration       |                          |                    |                      |                      |                                         |
|--------------------|--------------------------|--------------------|----------------------|----------------------|-----------------------------------------|
| number,<br>Country | Intervention<br>(groups) | Control            | Status               | Registration<br>Date | Funding                                 |
| NCT04331808        | Tocilizumab              | Standard treatment | Phase 2, Not yet     | 02/04/2020           | Assistance Publique –                   |
| France             |                          |                    | recruiting           |                      | Hôpitaux de Paris                       |
| NCT04343989        | Clazakizumab             | Placebo            | Phase 2, Recruiting  | 14/04/2020           | NYU Langone Health                      |
| United States      |                          |                    |                      |                      | -                                       |
| NCT04327388        | Sarilumab                | Placebo            | Phase 2 and 3,       | 31/03/2020           | Sanofi                                  |
| United States      |                          |                    | Recruitment          |                      |                                         |
| NCT04324073        | Sarilumab                | Standard treatment | Phase 2 and 3, Not   | 27/03/2020           | Assistance Publique -                   |
| France             |                          |                    | yet recruiting       |                      | Hôpitaux de Paris                       |
|                    |                          | Anti-inflam        | natory drugs         |                      |                                         |
| NCT04350320        | Colchicine               | Standard treatment | Phase 3, Not yet     | 17/04/2020           | Foundation for Health                   |
| Spain              |                          |                    | recruiting           |                      | Training and Research                   |
|                    |                          |                    |                      |                      | in the Region of Murcia                 |
| NCT04326790        | Colchicine               | Standard treatment | Phase 2, Not yet     | 30/03/2020           | National and                            |
| Greece             |                          |                    | recruiting           |                      | Kapodistrian University                 |
|                    |                          |                    |                      |                      | of Athens                               |
| NCT04328480        | Colchicine               | Standard treatment | Phase 3, Not yet     | 31/03/2020           | Estudios Clínicos                       |
| Argentina          |                          |                    | recruiting           |                      | Latino América                          |
| NCT04322565        | Colchicine               | Standard treatment | Phase 2, Not yet     | 26/03/2020           | Azienda Ospedaliero-                    |
| Italy              |                          |                    | recruiting           |                      | Universitaria di Parma                  |
| NCT04338958        | Ruxolitinib              | No comparator      | Phase 2, Not yet     | 08/04/2020           | University of Jena                      |
| Germany            |                          |                    | recruiting           |                      |                                         |
| NCT04331665        | Ruxolitinib              | No information     | Not yet recruiting   | 02/04/2020           | University Health                       |
| Canada             |                          |                    |                      |                      | Network, Toronto                        |
| NCT04332042        | Tofacitinib              | No information     | Phase 2, Not yet     | 02/04/2020           | Università Politecnica                  |
| Italy              |                          |                    | recruiting           |                      | delle Marche                            |
| NCT04325061        | Dexamethasone            | Standard treatment | Phase 4, Recruitment | 27/03/2020           | University Hospital Dr.                 |
| Spain              |                          |                    |                      |                      | Negrin                                  |
| NCT04325633        | Naproxen                 | Standard treatment | Phase 3, Not yet     | 27/03/2020           | Assistance Publique -                   |
| France             |                          |                    | recruiting           |                      | Hôpitaux de Paris                       |
| NCT04333472        | Piclidenoson             | Standard treatment | Phase 2, Not yet     | 03/04/2020           | BioPharma Can-Fite                      |
| Israel             |                          |                    | recruiting           |                      |                                         |
| NCT04321096        | Camostat Mesylate        | Placebo            | Phase 1, Recruitment | 25/03/2020           | University of Aarhus                    |
| Denmark            |                          |                    |                      |                      |                                         |
| NCT04353284        | Camostat Mesylate        | Placebo            | Phase 2, Not yet     | 20/04/2020           | Yale University                         |
| United States      |                          |                    | recruiting           |                      |                                         |
| NCT04323592        | Methylprednisolone       | Standard treatment | Phase 2 and 3,       | 26/03/2020           | University of Trieste                   |
| Italy              | -1 0                     |                    | Recruitment          |                      |                                         |
| NCT04334629        | Ibuprofen                | Standard treatment | Phase 4, Not yet     | 06/04/2020           | King's College London                   |
| United Kigdom      | 4 1'                     | 0. 1.1.            | recruiting           | 10/0//2025           | A. 1                                    |
| NCT04341584        | Anakinra                 | Standard treatment | Phase 2, Not yet     | 10/04/2020           | Assistance Publique -                   |
| France             |                          |                    | recruiting           |                      | Hôpitaux de Paris                       |
|                    | 011                      |                    | alarials             | 0010/1000-           | TIT 1 36 11 1                           |
| NCT04331600        | Chloroquine              | Standard treatment | Phase 4, Not yet     | 02/04/2020           | Wroclaw Medical                         |
| Poland             |                          |                    | recruiting           | 21/02/222            | University                              |
| NCT04328493        | Chloroquine              | No intervention    | Phase 2, Recruitment | 31/03/2020           | Clinical Research Unit                  |
| Vietnam            |                          |                    |                      |                      | of the University of<br>Oxford, Vietnam |
| NCT04252226        | Chloroquina              | No intervention    | Dhase 2 and 2 Not    | 20/04/2020           |                                         |
| NCT04353336        | Chloroquine              | No intervention    | Phase 2 and 3, Not   | 20/04/2020           | University of Tanta                     |
| Egypt              |                          |                    | yet recruiting       |                      |                                         |

| Registration<br>number,<br>Country | Intervention<br>(groups) | Control                                                          | Status                                   | Registration<br>Date | Funding                                                                                                                                                                                       |
|------------------------------------|--------------------------|------------------------------------------------------------------|------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NCT04342650<br>Brazil              | Chloroquine              | Placebo                                                          | Phase 2, Recruitment                     | 13/04/2020           | Dr. Heitor Vieira<br>Dourado Tropical<br>Medicine Foundation                                                                                                                                  |
| NCT04328272<br>Pakistan            | Hydroxychloroquine       | Active comparator:<br>Azithromicyn and<br>placebo: Sugar Tablets | Phase 3, Not yet recruiting              | 31/03/2020           | Faculty of Medicine of<br>Ayub, Abbottabad                                                                                                                                                    |
| NCT04328467<br>United States       | Hydroxychloroquine       | Placebo                                                          | Phase 3, Recruitment                     | 31/03/2020           | University of Minnesota                                                                                                                                                                       |
| NCT04353271<br>United States       | Hydroxychloroquine       | Placebo                                                          | Phase 2 and 3,<br>Recruitment            | 20/04/2020           | University of South<br>Alabama                                                                                                                                                                |
| NCT04346667<br>Paquistan           | Hydroxychloroquine       | Placebo                                                          | Phase 4, Not yet<br>recruiting           | 15/04/2020           | Government of Punjab,<br>Health and Specialized<br>Medical Education<br>Department                                                                                                            |
| NCT04350450<br>United States       | Hydroxychloroquine       | No intervention                                                  | Phase 2, Not yet recruiting              | 17/04/2020           | Montefiore Medical<br>Center                                                                                                                                                                  |
| NCT04334967<br>United States       | Hydroxychloroquine       | Standard treatment<br>and Vitamin C                              | Phase 4, Registration through invitation | 06/04/2020           | Providence Health and<br>Services                                                                                                                                                             |
| NCT04332991<br>United States       | Hydroxychloroquine       | Placebo                                                          | Phase 3, Recruitment                     | 03/04/2020           | Massachusetts General<br>Hospital                                                                                                                                                             |
| NCT04342169<br>United States       | Hydroxychloroquine       | Placebo                                                          | Phase 2, Recruitment                     | 10/04/2020           | University of Utah                                                                                                                                                                            |
| NCT04342221<br>Germany             | Hydroxychloroquine       | Placebo                                                          | Phase 3, Recruitment                     | 10/04/2020           | University Hospital of<br>Tuebingen                                                                                                                                                           |
| NCT04315896<br>Mexico              | Hydroxychloroquine       | Placebo                                                          | Phase 3, Recruitment                     | 20/03/2020           | National Institute of<br>Respiratory Diseases,<br>Mexico                                                                                                                                      |
| NCT04329611<br>Canada              | Hydroxychloroquine       | Placebo                                                          | Phase 3, Recruiting                      | 01/04/2020           | Dr. Michael Hill;<br>Alberta Health Services;<br>University of Alberta;<br>University of Calgary;<br>Calgary Health Trust;<br>Alberta Innovates<br>Health Solutions;<br>Government of Alberta |
| NCT04342156<br>Singapore           | Hydroxychloroquine       | No intervention                                                  | Phase 3, Not yet recruiting              | 10/04/2020           | Hospital Tan Tock Seng                                                                                                                                                                        |
| NCT04340544<br>Germany             | Hydroxychloroquine       | Placebo                                                          | Phase 3, Not yet<br>recruiting           | 09/04/2020           | University Hospital of<br>Tuebingen                                                                                                                                                           |
| NCT04333628<br>Israel              | Chloroquine              | Standard treatment                                               | Phase 2 and 3, Not<br>yet recruiting     | 03/04/2020           | HaEmek Medical<br>Center, Israel                                                                                                                                                              |
| NCT04323527<br>Brazil              | Chloroquine              | High-dose<br>chloroquine (10<br>days)                            | Phase 2, Recruiting                      | 26/03/2020           | Dr. Heitor Vieira<br>Dourado Tropical<br>Medicine Foundation                                                                                                                                  |
| NCT04351620<br>United States       | Hydroxychloroquine       | No comparator                                                    | Phase 1, Recruiting                      | 17/04/2020           | University of Chicago                                                                                                                                                                         |
| NCT04334382<br>United States       | Hydroxychloroquine       | Azithromicyn                                                     | Phase 3, Recruiting                      | 06/04/2020           | Intermountain Health<br>Care, Inc.                                                                                                                                                            |
| NCT04345692<br>United States       | Hydroxychloroquine       | Standard treatment                                               | Phase 3, Recruiting                      | 14/04/2020           | Queen's Medical Centre                                                                                                                                                                        |

| Registration<br>number,<br>Country | Intervention<br>(groups)      | Control            | Status                               | Registration<br>Date | Funding                                                         |
|------------------------------------|-------------------------------|--------------------|--------------------------------------|----------------------|-----------------------------------------------------------------|
| NCT04323631<br>Israel              | Hydroxychloroquine            | No comparator      | Phase 1, Not yet recruiting          | 26/03/2020           | Rambam Health Care<br>Campus                                    |
| NCT04351516<br>Germany             | Hydroxychloroquine            | Placebo            | Phase 2 and 3,<br>Recruiting         | 17/04/2020           | University Hospital of<br>Tuebingen                             |
| NCT04333654<br>United States       | Hydroxychloroquine            | Placebo            | Phase 1, Recruiting                  | 03/04/2020           | Sanofi                                                          |
| NCT04325893<br>France              | Hydroxychloroquine            | Placebo            | Phase 3, Recruiting                  | 30/03/2020           | University Hospital,<br>Angers                                  |
| NCT04316377<br>Norway              | Hydroxychloroquine            | Standard treatment | Phase 4, Recruiting                  | 20/03/2020           | University Hospital of<br>Akershus                              |
|                                    | 1                             | Antivirals and     | antiretrovirals                      |                      |                                                                 |
| NCT04334460<br>United States       | BLD-2660                      | Placebo            | Phase 2, Not yet recruiting          | 06/04/2020           | Therapeutics of the lamina                                      |
| NCT04333589<br>China               | Favipiravir                   | Standard treatment | Recruitment                          | 03/04/2020           | Peking University First<br>Hospital                             |
| NCT04346628V<br>United States      | Favipiravir                   | Standard treatment | Phase 2, Not yet recruiting          | 15/04/2020           | University of Stanford                                          |
| NCT04349241<br>Egypt               | Favipiravir                   | Standard treatment | Phase 3, Not yet recruiting          | 16/04/2020           | Universidade Ain<br>Shams                                       |
| NCT04351295<br>Egypt               | Favipiravir                   | Placebo            | Phase 2 and 3, Not<br>yet recruiting | 17/04/2020           | University of Tanta                                             |
| NCT04344600<br>United States       | Interferon lambda<br>alfa-1a  | Placebo            | Phase 2, Not yet recruiting          | 14/04/2020           | Universidade Johns<br>Hopkins                                   |
| NCT04323761<br>United States       | Remdesivir                    | No information     |                                      | 27/03/2020           | Gilead Sciences                                                 |
| NCT04336904<br>Italy               | Favipiravir                   | Placebo            | Phase 3, Recruiting                  | 08/04/2020           | Asst Fatebenefratelli<br>Sacco                                  |
| NCT04347915<br>South Korea         | Clevudine                     | Hydroxychloroquine | Phase 2, Not yet recruiting          | 17/04/2020           | Bukwang<br>Pharmaceutical                                       |
| NCT04343976<br>United States       | Interferon lambda             | Standard treatment | Phase 2, Not yet recruiting          | 14/04/2020           | Raymond Chung                                                   |
| NCT04324489<br>China               | DAS181                        | No comparator      | No information,<br>Recruiting        | 27/03/2020           | Renmin Hospital of<br>Wuhan University                          |
| NCT04330690<br>Canada              | Lopinavir/ ritonavir          | Standard treatment | Phase 2, Recruiting                  | 01/04/2020           | Sunnybrook Health<br>Sciences Centre                            |
| NCT04321174<br>Canada              | Lopinavir / ritonavir         | No intervention    | Phase 3, Recruiting                  | 25/03/2020           | Darrell Tan                                                     |
|                                    |                               | Antithyr           | oid drugs                            |                      |                                                                 |
| NCT04348513<br>Greece              | Triiodothyronine<br>injection | Placebo            | Phase 2, Not yet<br>recruiting       | 16/04/2020           | Uni-Pharma<br>Kleon Tsetis AS<br>Pharmaceutical<br>laboratories |
|                                    |                               | Antidep            | ressants                             |                      |                                                                 |
| NCT04342663<br>Washington          | Fluvoxamine                   | Placebo            | Phase 2, em<br>recruitment           | 13/04/2020           | Faculty of Medicine<br>of the University of<br>Washington       |
|                                    |                               | Diur               | etics                                |                      |                                                                 |
| NCT04345887<br>Peru                | Spironolactone                | Placebo            | Phase 4, Not yet recruiting          | 15/04/2020           | University of Istanbul-<br>Cerrahpasa                           |

| Registration<br>number,<br>Country | Intervention<br>(groups) | Control            | Status               | Registration<br>Date | Funding                  |
|------------------------------------|--------------------------|--------------------|----------------------|----------------------|--------------------------|
|                                    | 1                        | Anal               | gesics               |                      | 1                        |
| NCT04350086                        | Dexmedetomidine          | No information     | Phase 4, Not yet     | 16/04/2020           | University Hospital,     |
| France                             |                          |                    | recruiting           |                      | Limoges                  |
| NCT04346615                        | Vazegepant (BHV-         | Placebo            | Phase 2 and 3,       | 15/04/2020           | Biohaven                 |
| United States                      | 3500)                    |                    | Recruiting           |                      | Pharmaceuticals, Inc     |
|                                    |                          | Antifibr           | inolytics            |                      | 1                        |
| NCT04338126                        | Tranexamic acid          | Placebo            | Phase 2, Not yet     | 08/04/2020           | University of Alabama    |
| United States                      |                          |                    | recruiting           |                      | em Birmingham            |
|                                    |                          | Antihype           | ertensives           |                      |                          |
| NCT04335786                        | Valsartan (Diovan)       | Placebo            | Phase 4, Recruitment | 06/04/2020           | University of Radboud    |
| The Netherlands                    |                          |                    |                      |                      | ,                        |
| NCT04332666                        | Angiotensin              | Placebo            | Phase 2 and 3, Not   | 03/04/2020           | University Hospital      |
| Brazil                             |                          |                    | yet recruiting       |                      | Erasme                   |
| NCT04335123                        | Losartan                 | No comparator      | Phase 1, Recruiting  | 06/04/2020           | University of Kansas     |
| United States                      |                          |                    |                      |                      | Medical Center           |
| NCT04340557                        | Losartan                 | Standard treatment | Phase 4, Recruiting  | 09/04/2020           | Sharp HealthCare         |
| United States                      |                          |                    |                      |                      |                          |
|                                    | 1                        | Antiarr            | hythmics             | 1                    | 1                        |
| NCT04351763                        | Amiodarone               | Verapamil          | Phase 2 and 3,       | 17/04/2020           | Nicolaus Copernicus      |
| Poland                             |                          |                    | Recruiting           |                      | University               |
|                                    | 1                        | Anti-fibr          | osis drugs           | ł                    |                          |
| NCT04334265                        | Anluohuaxian             | No comparator      | Recruitment          | 06/04/2020           | Peking University First  |
| China                              |                          | 1                  |                      |                      | Hospital                 |
| NCT04337359                        | Ruxolitinib              | No information     | Accessible           | 07/04/2020           | Novartis                 |
| Switzerland                        |                          |                    |                      |                      | Pharmaceuticals          |
| NCT04334044                        | Ruxolitinib              | No information     | Phase 1 and 2, em    | 03/04/2020           | Cooperative Group of     |
| Mexico                             |                          |                    | recruitment          |                      | Malignant Hemopathie     |
| NCT04348071                        | Ruxolitinib              | No comparator      | Phase 2 and 3, Not   | 15/04/2020           | University of Colorado,  |
| United States                      |                          |                    | yet recruiting       |                      | Denver                   |
| NCT04338802                        | Nintedanib 150 MG        | Placebo            | Phase 3, Not yet     | 08/04/2020           | Huilan Zhang             |
| China                              |                          |                    | recruiting           |                      |                          |
|                                    |                          | Antil              | piotics              |                      |                          |
| NCT04332107                        | Azithromicyn             | Placebo            | Phase 3, Not yet     | 02/04/2020           | University of California |
| United States                      |                          |                    | recruiting           |                      | San Francisco            |
|                                    |                          | Cortico            | osteroids            |                      |                          |
| NCT04344288                        | Prednisone               | Control group      | Phase 2, Recruitment | 14/04/2020           | Civilian Hospitals of    |
| France                             |                          |                    |                      |                      | Lyon                     |
| NCT04348305                        | Hydrocortisone           | Placebo            | Phase 3, Recruitment | 16/04/2020           | Scandinavian Critical    |
| Denmark                            |                          |                    |                      |                      | Care Trials Group        |
| NCT04344730                        | Dexamethasone            | Placebo            | Recruitment          | 14/04/2020           | Assistance Publique -    |
| France                             |                          |                    |                      |                      | Hôpitaux de Paris        |
| NCT04327401                        | Dexamethasone            | Standard treatment | Phase 3, Recruitment | 31/03/2020           | Luiz FL Reis, Ph.D.      |
| Brazil                             |                          |                    |                      |                      |                          |
| NCT04330586                        | Ciclesonide              | Ciclesonide +      | Phase 2, Not yet     | 01/04/2020           | Korea University Guro    |
| South Korea                        |                          | hydroxychloroquine | recruiting           |                      | Hospital                 |
|                                    |                          |                    | abetics              |                      |                          |
| NCT04350593                        | Dapagliflozin            | Placebo            | Phase 3, Recruiting  | 17/04/2020           | Saint Luke's Health      |
| United States                      | 10                       |                    |                      |                      | System                   |

| Registration<br>number,<br>Country | Intervention<br>(groups)                                            | Control            | Status                                | Registration<br>Date | Funding                                    |
|------------------------------------|---------------------------------------------------------------------|--------------------|---------------------------------------|----------------------|--------------------------------------------|
|                                    | I                                                                   | Immunon            | nodulators                            | I                    | L                                          |
| NCT04349098<br>United States       | Selinexor                                                           | Placebo            | Phase 2, Recruiting                   | 16/04/2020           | Karyopharm<br>Therapeutics Inc             |
| NCT04340232<br>United States       | Baricitinib                                                         | No comparator      | Phase 2 and 3, Not yet recruiting     | 09/03/2020           | University of Colorado,<br>Denver          |
| NCT04317040<br>United States       | CD24Fc                                                              | Placebo            | Phase 3, Recruiting                   | 20/03/2020           | OncoImmune, Inc.                           |
| NCT04331899<br>United States       | Peginterferon<br>Lambda-1a                                          | Placebo            | Phase 2, Recruiting                   | 02/04/2020           | Stanford University                        |
| NCT04326920<br>Belgium             | Sargramostim                                                        | Standard treatment | Phase 4, Recruiting                   | 30/03/2020           | University Hospital,<br>Ghent              |
| NCT04335136<br>Multicenter         | Human recombinant<br>angiotensin 2<br>conversion enzyme<br>(rhACE2) | Placebo            | Phase 2, Not yet<br>recruiting        | 06/04/2020           | Apeiron Biologics                          |
| NCT04352465<br>Brazil              | Dose escalation<br>nanoparticles with<br>methotrexate               | No information     | Phase 1 and 2 , Not<br>yet recruiting | 20/04/2020           | Azidus Brazil                              |
| NCT04312997<br>United States       | Inhalation solution<br>PUL-042                                      | Placebo            | Phase 2, Not yet recruiting           | 18/03/2020           | Pulmotect, Inc.                            |
|                                    |                                                                     | Immunos            | upressors                             | •                    |                                            |
| NCT04341675<br>United States       | Sirolimus                                                           | Placebo            | Phase 2, Recruiting                   | 10/04/2020           | University of Cincinnati                   |
|                                    |                                                                     | Immuno             | otherapy                              |                      |                                            |
| NCT04347681<br>Saudi Arabia        | Convalescent plasma                                                 | No intervention    | Phase 2, Recruiting                   | 15/04/2020           | King Fahad Specialized<br>Hospital, Dammam |
| NCT04343144<br>France              | Injection of<br>Nivolumab                                           | Standard treatment | Phase 2, Not yet recruiting           | 13/04/2020           | Assistance Publique -<br>Hôpitaux de Paris |
| NCT04347226<br>United States       | BMS-986253                                                          | Standard treatment | Phase 2, Recruitment                  | 15/04/2020           | Matthew Dallos                             |
| NCT04345679<br>Hungary             | Convalescent plasma                                                 | No information     | Not yet recruiting                    | 14/04/2020           | Orthosera Kft.                             |
| NCT04342182<br>The Netherlands     | Convalescent plasma                                                 | Standard treatment | Phase 2 and 3,<br>Recruitment         | 10/04/2020           | Medical Center<br>Erasmus                  |
| NCT04345991<br>France              | Convalescent plasma                                                 | Standard treatment | Phase 2, Not yet recruiting           | 15/04/2020           | Assistance Publique -<br>Hôpitaux de Paris |
| NCT04343755<br>United States       | Convalescent plasma                                                 | No comparator      | Phase 2, Recruiting                   | 13/04/2020           | Hackensack Meridian<br>Health              |
| NCT04321421<br>Italy               | Hyperimmune<br>plasma                                               | No comparator      | No information,<br>Recruiting         | 25/03/2020           | Foundation IRCCS San<br>Matteo Hospital    |
| NCT04338360<br>United States       | Convalescent plasma                                                 | No information     | Accessible                            | 08/04/2020           | Mayo Clinic                                |
| NCT04348656<br>Multicenter         | Convalescent plasma                                                 | Standard treatment | Phase 3, Not yet recruiting           | 16/04/2020           | Hamilton Health<br>Sciences Corporation    |
| NCT04353206<br>United States       | Convalescent plasma                                                 | No information     | Not yet recruiting                    | 20/04/2020           | Noah Merin                                 |
| NCT04352751<br>Paquistan           | Convalescent plasma                                                 | No information     | Not yet recruiting                    | 20/04/2020           | Hilton Pharma                              |
| NCT04333355<br>Mexico              | Convalescent plasma                                                 | No comparator      | Phase 1, Not yet recruiting           | 03/04/2020           | Hospital San Jose Tec de<br>Monterrey      |

| Registration<br>number,<br>Country | Intervention<br>(groups)                                                                                    | Control                  | Status                            | Registration<br>Date | Funding                                                                          |
|------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------|----------------------|----------------------------------------------------------------------------------|
| NCT04345523                        | Convalescent plasma                                                                                         | Standard treatment       | Phase 2, Recruiting               | 14/04/2020           | Prince of Asturias                                                               |
| Spain                              | <b>^</b>                                                                                                    |                          | C C                               |                      | University Hospital                                                              |
| NCT04346446                        | Convalescent plasma                                                                                         | Random donor             | Phase 2, Recruiting               | 15/04/2020           | Institute of Biliary and                                                         |
| India                              |                                                                                                             | plasma + Support<br>care |                                   |                      | Liver Sciences, India                                                            |
| NCT04344535                        | Convalescent plasma                                                                                         | Donor standard           | Phase 1 and 2,                    | 14/04/2020           | Stony Brook University                                                           |
| United States                      |                                                                                                             | plasma                   | Registration through invitation   |                      |                                                                                  |
| NCT04346589<br>Italy               | Convalescent plasma                                                                                         | No information           | Not yet recruiting                | 15/04/2020           | AO Ospedale Papa<br>Giovanni XXIII                                               |
| NCT04333251<br>United States       | Convalescent plasma                                                                                         | Best support care        | Not yet recruiting                | 03/04/2020           | Baylor Research<br>Institute                                                     |
|                                    |                                                                                                             | Cell th                  | erapies                           |                      | 1                                                                                |
| NCT04313322<br>Arabia              | Mesenchymal stem<br>cells                                                                                   | No information           | Phase 1, em<br>recruitment        | 18/03/2020           | Stem cells Arabia                                                                |
| NCT04315987<br>Brazil              | Mesenchymal stem<br>cells                                                                                   | No information           | Not yet recruiting                | 20/03/2020           | Azidus Brazil                                                                    |
| NCT04339660<br>China               | Mesenchymal stem<br>cells                                                                                   | Placebo                  | Phase 1 and 2,<br>Recruiting      | 09/04/2020           | Puren Hospital<br>Affiliated to Wuhan<br>University of Science<br>and Technology |
| NCT04324996<br>China               | Cells NK, cells IL15-<br>NK,<br>cells NKG2D CAR-<br>NK,<br>cells ACE2 CAR-NK,<br>cells NKG2D-ACE2<br>CAR-NK | No information           | Phase 1 and 2,<br>Recruiting      | 27/03/2020           | Chongqing Public<br>Health Medical Center                                        |
| NCT04346368<br>China               | Mesenchymal stem<br>cells                                                                                   | Placebo                  | Phase 1 and 2, Not yet recruiting | 15/04/2020           | Institute of Respiratory<br>Diseases of Guangzhou                                |
| NCT04349631<br>United States       | Mesenchymal stem<br>cells                                                                                   | No information           | Registration through invitation   | 16/04/2020           | Hope Biosciences                                                                 |
| NCT04338347<br>United States       | Allogeneic cells<br>derived from<br>cardiosphere CAP-<br>1002                                               | No comparator            | Available                         | 08/04/2020           | Capricor Inc.                                                                    |
| NCT04336254<br>China               | Mesenchymal,<br>allogenic human<br>stem cells of the<br>dental pulp                                         | Placebo                  | Phase 1 and 2,<br>Recruiting      | 04/04/2020           | Renmin Hospital of<br>Wuhan University                                           |
| NCT04348461                        | Mesenchymal stem                                                                                            | No comparator            | Phase 2, Not yet                  | 16/04/2020           | Health Research                                                                  |
| Spain                              | cells                                                                                                       |                          | recruiting                        |                      | Institute, Jiménez Díaz<br>Foundation                                            |
|                                    |                                                                                                             | Dietary su               | pplements                         |                      |                                                                                  |
| NCT04342689<br>United States       | Dietary supplement<br>containing resistant<br>starch                                                        | Starch placebo           | Phase 3, Not yet<br>recruiting    | 13/04/2020           | Yale University                                                                  |
| NCT04334005<br>Spain               | Vitamin D                                                                                                   | Standard treatment       | Not yet recruiting                | 03/04/2020           | Universidad de Granad                                                            |

| Registration<br>number,<br>Country | Intervention<br>(groups)                                                                                                                                                                                                                                                                                 | Control                         | Status                                               | Registration<br>Date | Funding                                                               |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------|----------------------|-----------------------------------------------------------------------|
| NCT04347382<br>Paquistan           | Mel / Nigella Sativa /<br>Black Cumin                                                                                                                                                                                                                                                                    | Standard treatment              | Phase 3, em<br>recruitment                           | 15/04/2020           | Sohaib Ashraf                                                         |
| NCT04344041                        | Vitamin D of 400.000                                                                                                                                                                                                                                                                                     | Vitamin D3 standard             | Phase 3, em                                          | 14/04/2020           | University Hospital,                                                  |
| France                             | UI                                                                                                                                                                                                                                                                                                       | dose                            | recruitment                                          |                      | Angers                                                                |
| NCT04351490<br>France              | Zinc and Vitamin D3                                                                                                                                                                                                                                                                                      | Standard treatment              | Not yet recruiting                                   | 17/04/2020           | University Hospital,<br>Lille                                         |
|                                    |                                                                                                                                                                                                                                                                                                          | Chinese Tradit                  | ional Medicine                                       | 1                    | l                                                                     |
| NCT04323332<br>China               | Prescription of<br>Chinese Traditional<br>Medicine                                                                                                                                                                                                                                                       | Conventional<br>treatment       | Phase 3, Not yet<br>recruiting                       | 26/03/2020           | Xiyuan Hospital of<br>China Academy of<br>Chinese Medical<br>Sciences |
|                                    |                                                                                                                                                                                                                                                                                                          | Parasympat                      | homimetics                                           |                      |                                                                       |
| NCT04343963<br>Mexico              | Deferoxamine                                                                                                                                                                                                                                                                                             | Standard treatment              | Phase 1 and 2,<br>Recruiting                         | 06/04/2020           | University of Medical<br>Sciences of Kermanshah                       |
|                                    |                                                                                                                                                                                                                                                                                                          | Chelatin                        |                                                      |                      |                                                                       |
| NCT04333550<br>Iran                | Deferoxamine                                                                                                                                                                                                                                                                                             | Standard treatment              | Phase 1 and 2,<br>Recruiting                         | 06/04/2020           | University of Medical<br>Sciences of Kermanshah                       |
|                                    | 1                                                                                                                                                                                                                                                                                                        | Combined                        |                                                      | 1                    | 1                                                                     |
| NCT04341038<br>Spain               | Methylprednisolone<br>and Tacrolimus                                                                                                                                                                                                                                                                     | Usual care without intervention | Phase 3, Recruitment                                 | 01/04/2020           | Hospital Universitari de<br>Bellvitge                                 |
| NCT04348474<br>Brazil              | Hydroxychloroquine<br>and Azithromicyn                                                                                                                                                                                                                                                                   | No intervention                 | Suspended                                            | 16/04/2020           | Azidus Brazil                                                         |
| NCT04343001<br>United<br>Kingdom   | Aspirin, losartan and<br>simvastatin                                                                                                                                                                                                                                                                     | Standard care                   | Phase 3, Not yet<br>recruiting                       | 13/04/2020           | London School of<br>Hygiene and Tropical<br>Medicine, UK              |
| NCT04341870<br>France              | Sarilumab +<br>Azithromicyn +<br>Hydroxychloroquine                                                                                                                                                                                                                                                      | Sarilumab                       | Phase 2 and 3,<br>Recruitment                        | 10/04/2020           | Assistance Publique -<br>Hôpitaux de Paris                            |
| NCT04343092<br>Iraq                | Ivermectin +<br>Hydroxychloroquine<br>+ Azithromicyn                                                                                                                                                                                                                                                     | Placebo                         | Phase 1, Recruitment                                 | 13/04/2020           | University of Bagdad                                                  |
| NCT04349410<br>United States       | Hydroxychloroquine,<br>Azithromicyn,<br>Hydroxychloroquine,<br>Doxycycline,<br>Hydroxychloroquine,<br>Clindamycin,<br>Primaquine,<br>Hydroxychloroquine,<br>Clindamycin,<br>Primaquine,<br>Remdesivir,<br>Tocilizumab,<br>Methylprednisolone,<br>Interferon-<br>Alpha2B, Losartan,<br>Convalescent serum | _                               | Phase 2 and 3,<br>Registration through<br>invitation | 16/04/2020           | Camelot Foundation                                                    |

**Chart 7.** Clinical trials registered for the management of COVID-19 (n = 202). (continuation)

| Registration<br>number,<br>Country | Intervention<br>(groups)                                                                                      | Control                                                                | Status                               | Registration<br>Date | Funding                                                                            |
|------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|----------------------|------------------------------------------------------------------------------------|
| NCT04351919<br>Tunisia             | Hydroxychloroquine<br>and Azithromicyn                                                                        | No information                                                         | Phase 4, Not yet recruiting          | 17/04/2020           | Hospital Abderrahmane<br>Mami                                                      |
| NCT04351191<br>Israel              | Chloroquine and<br>hydroxychloroquine                                                                         | Dose regular e<br>Placebo                                              | Phase 4, Not yet<br>recruiting       | 17/04/2020           | Government of Punjab,<br>Health and Specialized<br>Medical Education<br>Department |
| NCT04338698<br>Paquistan           | Hydroxyquinoline<br>+ Oseltamivir +<br>Azithromicyn                                                           | No intervention                                                        | Phase 3, Not yet recruiting          | 08/04/2020           | Shehnoor Azhar                                                                     |
| NCT04339712<br>Greece              | Anakinra and<br>Tocilizumab                                                                                   | No information                                                         | Phase 2, Recruitment                 | 09/04/2020           | Hellenic Institute for<br>the Study of Sepsis                                      |
| NCT04335552<br>United States       | Hydroxychloroquine<br>and Azithromicyn                                                                        | Service standard                                                       | Phase 2, Recruitment                 | 06/04/2020           | Duke University                                                                    |
| NCT04328012<br>United States       | Lopinavir / ritonavir /<br>Hydroxychloroquine<br>sulfate / Losartan                                           | Placebo                                                                | Phase 2 and 3,<br>Recruitment        | 31/03/2020           | Bassett Healthcare                                                                 |
| NCT04324021<br>Italy               | Emapalumab /<br>Anakinra                                                                                      | Service standard                                                       | Phase 2 and 3,<br>Recruitment        | 27/03/2020           | Swedish Orphan<br>Biovitrum                                                        |
| NCT04332835<br>Colombia            | Convalescent plasma<br>/ Hydroxychloroquine<br>/Azithromicyn                                                  | Service standard                                                       | Phase 2 and 3, Not<br>yet recruiting | 03/04/2020           | Universidad del Rosario                                                            |
| NCT04315948<br>France              | Remdesivir /<br>Lopinavir / ritonavir /<br>Interferon Beta-1A /<br>Hydroxychloroquine                         | Service standard                                                       | Phase 3, Recruitment                 | 20/03/2020           | National Institute of<br>Health and Medical<br>Research, France                    |
| NCT04321616<br>Norway              | Remdesivir /<br>Hydroxychloroquine                                                                            | Service standard                                                       | Phase 2 and 3,<br>Recruitment        | 25/03/2020           | University Hospital of<br>Oslo                                                     |
| NCT04324463<br>Canada              | Hydroxychloroquine<br>/ Chloroquine/<br>Azithromicyn /<br>Interferon-Beta                                     | Service standard                                                       | Phase 3, Recruitment                 | 27/03/2020           | Population Health<br>Research Institute                                            |
| NCT04347512<br>France              | Azithromicyn-<br>Hydroxychloroquine                                                                           | Service standard                                                       | Phase 3, Not yet recruiting          | 15/04/2020           | University Hospital,<br>Strasburg, France                                          |
| NCT04320277<br>Italy               | Baricitinib / lopinavir<br>/ ritonavir                                                                        | Service standard                                                       | Phase 2 and 3, Not yet recruiting    | 24/03/2020           | Hospital of Prato                                                                  |
| NCT04348695<br>Spain               | Ruxolitinib /<br>simvastatin                                                                                  | Service standard                                                       | Phase 2, Recruitment                 | 16/04/2020           | HM Investigation<br>Foundation                                                     |
| NCT04331470<br>Iran                | Levamisole Pill<br>+ Budesonide +<br>Formoterol inhalator<br>Lopinavir /<br>Ritonavir +<br>hydroxychloroquine | Service standard<br>+ Lopinavir<br>/ Ritonavir +<br>hydroxychloroquine | Phase 2 and 3,<br>Recruitment        | 02/04/2020           | University of Medical<br>Sciences of Fasa                                          |
| NCT04344457<br>United States       | Hydroxychloroquine<br>/ Indomethacin /<br>Zithromax Oral<br>Product                                           | No information                                                         | Phase 1 and 2,<br>Recruitment        | 14/04/2020           | Perseverança Research<br>Center, LLC                                               |
| NCT04346147<br>Spain               | Hydroxychloroquine/<br>Lopinavir / ritonavir/<br>Imatinib tablets /<br>Baricitinib Oral<br>Tablet             | No information                                                         | Phase 2, Not yet<br>recruiting       | 15/04/2020           | Hospital Universitario<br>de Fuenlabrada                                           |

| Registration<br>number,<br>Country | Intervention<br>(groups)                                                                                                                               | Control                                                               | Status                                      | Registration<br>Date | Funding                                                                      |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|----------------------|------------------------------------------------------------------------------|
| NCT04333407<br>United<br>Kingdom   | Aspirin; Clopidogrel;<br>Rivaroxaban;<br>Atorvastatin;<br>Omeprazole                                                                                   | No information                                                        | No information,<br>recruiting               | 03/04/2020           | Imperial College<br>London                                                   |
| NCT04336332<br>United States       | Hydroxychloroquine<br>sulfate +<br>Azithromicyn                                                                                                        | Service standard                                                      | Phase 1 and 2,<br>Recruitment               | 07/04/2020           | Rutgers, New Jersey<br>State University                                      |
| NCT04321993<br>Canada              | Lopinavir/ ritonavir;<br>Hydroxychloroquine;<br>Baricitinib                                                                                            | Standard treatment                                                    | Phase 2, Registration<br>through invitation | 26/03/2020           | Nova Scotia Health;<br>Authority Dalhousie<br>University                     |
| NCT04339816<br>Czech Republic      | Azithromicyn /<br>Hydroxychloroquine                                                                                                                   | Placebo                                                               | Phase 3, Not yet recruiting                 | 09/04/2020           | Frantisek Duska, MD,<br>PhD                                                  |
| NCT04350671<br>Iran                | Interferon-β 1a +<br>Lopinavir / Ritonavir<br>+ Hydroxychloroquine                                                                                     | Lopinavir / Ritonavir +<br>Hydroxychloroquine                         | Phase 4, Registration through invitation    | 17/04/2020           | Shahid Beheshti<br>University of Medical<br>Sciences                         |
| NCT04350684<br>Iran                | Umifenovir +<br>interferon-β<br>1a + lopinavir<br>/ ritonavir +<br>hydroxychloroquine                                                                  | Interferon-β<br>1a + lopinavir<br>/ ritonavir +<br>hydroxychloroquine | Phase 4, Registration<br>through invitation | 17/04/2020           | Shahid Beheshti<br>University of Medical<br>Sciences                         |
| NCT04347980<br>France              | Dexamethasone and<br>Hydroxychloroquine                                                                                                                | Hydroxychloroquine                                                    | Phase 3, Recruitment                        | 15/04/2020           | Centre Chirurgical<br>Marie Lannelongue                                      |
| NCT04345276<br>China               | Danoprevir +<br>Ritonavir                                                                                                                              | No information                                                        | Phase 4, Recruiting                         | 14/04/2020           | Huoshenshan Hospital                                                         |
| NCT04353180<br>Egypt               | Isotretinoin capsules<br>(13 retinoic acid cis)<br>+ standard treatment<br>/ Isotretinoin (13<br>retinoic acid cis<br>aerosol) + standard<br>treatment | Standard treatment                                                    | Phase 3, Recruitment                        | 20/04/2020           | University of<br>Kafrelsheikh                                                |
| NCT04339426<br>United States       | Atovaquone and<br>Azithromicyn                                                                                                                         | No information                                                        | Phase 2, Recruitment                        | 09/04/2020           | Honor Health Research<br>Institute                                           |
| NCT04330638<br>Belgium             | Anakinra;<br>Siltuximab; Anakinra<br>+ Siltuximab;<br>Tocilizumab;<br>Anakinra +<br>Tocilizumab                                                        | Standard treatment                                                    | Phase 3, Recruiting                         | 01/04/2020           | University Hospital,<br>Ghent                                                |
| NCT04334512<br>United States       | Hydroxychloroquine,<br>Azithromicyn,<br>Vitamin C, Vitamin<br>D and Zinc                                                                               | No comparator                                                         | Phase 2, Not yet<br>recruiting              | 06/04/2020           | ProgenaBiome                                                                 |
| NCT04345861                        | hydroxychloroquine                                                                                                                                     | Hydroxychloroquine +                                                  | Phase 2 and 3,                              | 15/04/2020           | University Hospital,                                                         |
| France                             | + Azithromicyn                                                                                                                                         | placebo                                                               | Recruiting                                  |                      | Montpellier                                                                  |
| NCT04349592                        | Hydroxychloroquine<br>+ Azithromicyn                                                                                                                   | Hydroxychloroquine +<br>Placebo                                       | Not yet recruiting                          | 16/04/2020           | Hamad Medical<br>Corporation                                                 |
| NCT04332094<br>Spain               | Tocilizumab +<br>hydroxychloroquine<br>+ Azithromicyn                                                                                                  | hydroxychloroquine<br>+ Azithromicyn                                  | Phase 2, Recruiting                         | 02/04/2020           | Fundació Institut de<br>Recerca de l'Hospital de<br>la Santa Creu i Sant Pau |

**Chart 7.** Clinical trials registered for the management of COVID-19 (n = 202). (continuation)

| Registration<br>number,<br>Country | Intervention<br>(groups)                                                                                                                                                                  | Control                              | Status                                      | Registration<br>Date | Funding                                                           |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------|----------------------|-------------------------------------------------------------------|
| NCT04320238<br>China               | Recombinant human<br>interferon alpha-1B<br>and alpha thymosin<br>alpha 1 1timosina                                                                                                       | No information                       | Phase 3, Recruiting                         | 24/03/2020           | Faculty of Medicine<br>of the University of<br>Shanghai Jiao Tong |
| NCT04351347<br>Egypt               | Ivermectin +<br>chloroquine /<br>Nitazoxanide +<br>chloroquine                                                                                                                            | No information                       | Phase 2 and 3, Not yet recruiting           | 17/04/2020           | University of Tanta                                               |
| NCT04341493<br>Mexico              | Nitazoxanide +<br>hydroxychloroquine                                                                                                                                                      | Hydroxychloroquine                   | Phase 4, Recruiting                         | 10/04/2020           | Hugo Mendieta Zeron                                               |
| NCT04338906<br>Germainy            | Camostat +<br>Hydroxychloroquine                                                                                                                                                          | Placebo                              | Phase 4, Not yet recruiting                 | 08/04/2020           | University of Heinrich-<br>Heine, Düsseldorf                      |
| NCT04322123<br>Brazil              | Hydroxychloroquine<br>+ Azithromicyn                                                                                                                                                      | No intervention                      | Phase 3, Recruiting                         | 26/03/2020           | Heart Hospital                                                    |
| NCT04345289<br>Denmark             | Convalescent<br>plasma anti-SARS-<br>CoV-2/ Sarilumab/<br>Baricitinib/<br>Hydroxychloroquine                                                                                              | Injectable placebo /<br>placebo oral | Phase 3, Not yet<br>recruiting              | 14/04/2020           | Thomas Benfield                                                   |
| NCT04321278<br>Brazil              | Hydroxychloroquine<br>+ Azithromicyn                                                                                                                                                      | Hydroxychloroquine                   | Phase 3, Recruiting                         | 25/03/2020           | Albert Einstein Israelite<br>Hospital                             |
| NCT04345406<br>Egypt               | Captopril or enalapril<br>+ chloroquine                                                                                                                                                   | Standard treatment +<br>chloroquine  | Phase 3, Not yet recruiting                 | 14/04/2020           | University of Tanta                                               |
| NCT04347798<br>Canada              | Hydroxychloroquine<br>/ Chloroquine                                                                                                                                                       | No information                       | Registration through invitation             | 15/04/2020           | University of Alberta                                             |
| NCT04347031<br>Russia              | Mefloquine +<br>Azithromicyn + / -<br>tocilizumab                                                                                                                                         | Standard treatment                   | Phase 2, Registration<br>through invitation | 15/04/2020           | Federal Medical<br>Biophysical Center of<br>Burnasyan             |
| NCT04341727<br>United States       | Hydroxychloroquine<br>sulfate /<br>Azithromicyn/<br>chloroquine sulfate                                                                                                                   | Chloroquine +<br>Azithromicyn        | Phase 3, Recruiting                         | 10/04/2020           | Faculty of Medicine<br>of the University of<br>Washington         |
| NCT04351724<br>Austria             | Chloroquine or<br>Hydroxychloroquine<br>/ Lopinavir<br>/ Ritonavir /<br>Rivaroxaban /<br>Thromboprophylaxis<br>/Candesartan /<br>anti-hypertensive<br>non-SARS blockers /<br>Clazakizumab | Placebo                              | Phase 2 and 3,<br>Recruiting                | 17/04/2020           | Medical University of<br>Vienna                                   |
|                                    |                                                                                                                                                                                           | Chemical co                          | ompounds                                    |                      |                                                                   |
| NCT04343742<br>Colombia            | Chlorine dioxide<br>3000 ppm                                                                                                                                                              | No information                       | Recruitment                                 | 13/04/2020           | Genesis Foundation                                                |
|                                    |                                                                                                                                                                                           | Antipar                              | asitics                                     |                      |                                                                   |
| NCT04348409<br>Brazil              | Nitazoxanide                                                                                                                                                                              | Placebo                              | Recruiting                                  | 16/04/2020           | No information                                                    |

therapies, the focus on effective interventions to prevent mortality and other important outcomes for the patient, such as social isolation, advancing testing capacity, and preventive measures, can be reduced in the general population.

A search in different databases and repositories of prepress papers and an evaluation of the methodological quality of the included studies were performed to identify studies on the theme. However, the evidence found has critical methodological weaknesses, such as a limited number of participants and a lack of control or conventional group<sup>17,21</sup>.

In one of the studies, the two arms of the study received HCQ (high-dose and low-dose), which did not allow to evaluate the effect of HCQ in comparison with placebo or standard treatment<sup>15</sup>. Other limitations are the heterogeneity of the included studies concerning different dosages, routes, and duration of administration. Moreover, we were unable to detail the treatments described as standard in all studies.

There are some restrictions on the synthesis of evidence. In this synthesis, an assessment of the set of evidence generated was not conducted, employing The Grading of Recommendations Assessment, Development, and Evaluation (GRADE)<sup>60</sup> approach, due to the heterogeneity between the studies, which evaluated neither exposures nor similar outcomes. This rapid review evidenced few overlaps between individual studies underlying the systematic reviews. Only nine duplications were identified in the three reviews included, which contained 48 primary studies.

#### **Final considerations**

Despite the various drug options identified, scientific evidence is still incipient and of low methodological quality. There is no proven efficacy and safety of any medication for human coronavirus infections. Thus, it is necessary to carry out randomized controlled clinical trials with adequate follow-up time and methods disclosed and subject to scientific peer review. Furthermore, dozens of clinical studies evaluating the efficacy and safety of drugs are underway worldwide. Periodic updating of this review is recommended to monitor scientific evidence as it becomes available.

# Collaborations

KRC Andrade, VKS Carvalho, CM Farinasso, AA Lima, RB Silva and VK Wachira participated in the planning, search, extraction, selection and evaluation of the quality of the studies, data analysis, writing and revision of the manuscript. HC Capucho, PM Souza, T Vanni, DF Rêgo and CG Sachetti participated in the critical review of the manuscript.

# Funding

The study did not receive any funding.

### References

- Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L, Xu T, Jiang YZ, Xiong Y, Li YJ, Li H, Fan GH, Gu XY, Xiao Y, Gao H, Xu JY, Yang F, Wang XM, Wu C, Chen L, Liu YW, Liu B, Yang J, Wang XR, Dong J, Li L, Huang CH, Zhao JP, Hu Y, Cheng ZS, Liu LL, Qian ZH, Qin C, Jin Q, Cao B, Wang JW. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. *Chin Med J (Engl)* 2020; 133(9):1015-1024.
- World Health Organization (WHO). Director-General's remarks at the media briefing on 2019-nCoV on 11 February 2020 [Internet]. [acessado 2020 Fev 19]. Disponível em: https://www.who.int/dg/speeches/detail/ who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020
- World Health Organization (WHO). Novel Coronavirus (2019-nCoV) technical guidance [Internet]. [acessado 2020 Fev 18]. Disponível em: https://www.who. int/emergencies/diseases/novel-coronavirus-2019/ technical-guidance
- Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, Liu L, Shan H, Lei C, Hui DSC, Du B, Li L, Zeng G, Yuen K, Chen R, Tang C, Wang T, Chen P, Xiang J, Li S, Wang J, Liang Z, Peng Y, Wei L, Liu Y, Hu Y, Peng P, Wang J, Liu J, Chen Z, Li G, Zheng Z, Qiu S, Luo J, Ye C, Zhu S, Zhong N, China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382(18):1708-1720.
- Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet* 2020; 395(10223):497-506.
- Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet* 2020; 395(10223):507-513.
- Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020 323(11):1061-1069.
- World Health Organization (WHO). Alliance for Health Policy and Systems Research. Rapid reviews to strengthen health policy and systems: a practical guide. Geneva: WHO; 2017.
- Higgins JPT, Thomas J, Li T, Page M, Welch V, Cumpston M, Chandler J, Mellor L, editores. *Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019)* [Internet]. Cochrane; 2019. [acessado 2020 Mar 18]. Disponível em: https:// training.cochrane.org/handbook
- Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. *Syst Rev* 2016; 5(1):210.
- 11. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, Moher D, Tugwell P, Welch V, Kristjansson E, A Henry DA. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. *BMJ* 2017; 358:j4008.

- Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R, Currie M, Lisy K, Qureshi R, Mattis P, Mu P. Chapter 7: Systematic reviews of etiology and risk. In: Aromataris E, Munn Z, editores. *Joanna Briggs Institute Reviewer's Manual. The Joanna Briggs Institute* [Internet]. 2017 [acessado 2020 Mar 18]. Disponível em: https://reviewersmanual.joannabriggs.org/
- Chen J, Liu D, Liu L, Liu P, Xu Q, Xia L, Ling Y, Huang D, Song S, Zhang D, Qian Z, Li T, Shen Y, Lu H. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejiang Univ (Med Sci) 2020; 49(2):215-219.
- Chen Z, Hu J, Zhang Z, Jiang S, Han S, Yan D, Zhuang R, Hu B, Zhang Z. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. *medRxiv* 2020 [preprint].
- 15. Borba MGS, Val FFA, Sampaio VS, Alexandre MAA, Melo AGC, Brito M, Mourão MPG, Brito-Sousa JD, Baía-da-Silva D, Guerra MVF, Hajjar LA, Pinto RC, Balieiro AAS, Pacheco AGF, Santos Jr JDO, Naveca FG, Xavier MS, Siqueira AM, Schwarzbold A, Croda J, Nogueira ML, Romero GAS, Bassat Q, Fontes CJ, Albuquerque BC, Daniel-Ribeiro CT, Monteiro WM, Lacerda MVG, CloroCovid-19 Team. Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. A Randomized Clinical Trial. JAMA 2020; 3(4):e208857.
- 16. Tang W, Cao Z, Han M, Wang Z, Chen J, Sun W, Wu Y, Xiao W, Liu S, Chen E, Chen W, Wang X, Yang J, Lin J, Zhao Q, Yan Y, Xie Z, Li D, Yang Y, Liu L, Qu J, Ning G, Shi G, Xie Q. Hydroxychloroquine in patients with COVID-19: an open-label, randomized, controlled trial. *medRxiv* 2020 [preprint].
- 17. Mahévas M, Tran V, Roumier M, Chabrol A, Paule R, Guillaud C, Gallien S, Lepeule R, Szwebel TA, Lescure X, Schlemmer F, Matignon M, Khellaf M, Crickx E, Terrier B, Morbieu C, Legendre P, Dang J, Schoindre Y, Pawlotski JM, Michel M, Perrodeau E, Carlier N, Roche N, De Lastours V, Mouthon L, Audureau E, Ravaud P, Godeau B, Costedoat N. No evidence of clinical efficacy of hydroxychloroquine in patients hospitalised for COVID-19 infection and requiring oxygen: results of a study using routinely collected data to emulate a target trial. *medRxiv* 2020 [preprint].
- Magagnoli J, Narendran S, Pereira F, Cummings T, Hardin JW, Sutton SS, Ambati J. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. *Med* 2020; 1:1-4.
- Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Dupont HT, Honoré S, Colson P, Chabrière E, La Scola B, Rolain JM, Brouqui P, Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. *Int J Antimicrob Agents* 2020; 105949.
- Molina JM, Delaugerre C, Le Goff J, Mela-Lima B, Ponscarme D, Goldwirt L, Castro N. No Evidence of Rapid Antiviral Clearance or Clinical Benefit with the Combination of Hydroxychloroquine and Azithromycin in Patients with Severe COVID-19 Infection. *Med Mal Infect* 2020; 50(4):384.

3551

- 21. Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Sevestre J, Mailhe M, Doudier B, Aubry C, Amrane S, Seng P, Hocquart M, Eldin C, Finance J, Vieira VE, Tissot-Dupont HT, Honoré S, Stein A, Million M, Colson P, La Scola B, Veit V, Jacquier A, Deharo JC, Drancourt M, Fournier PE, Rolain JM, Brouqui P, Raoult D. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. *Travel Med Infect Dis* 2020; 34:101663.
- 22. Chorin E, Dai M, Shulman E, Wadhwani L, Cohen RB, Barbhaiya C, Aizer A, Holmes D, Bernstein S, Soinelli M, Park DS, Chinitz L, Jankelosn L. The QT Interval in Patients with SARS-CoV-2 Infection Treated with Hydroxychloroquine/Azithromycin. *medRxiv* 2020 [preprint].
- 23. Li Y, Xie Z, Lin W, Cai W, Wen C, Guan Y, Mo X, Wang J, Wang Y, Peng P, Chen X, Hong W, Xiao G, Liu J, Zhang L, Hu F, Li F, Li F, Zhang F, Deng X, Li L. An exploratory randomized, controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI). *medRxiv* 2020 [preprint].
- 24. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M, Li X, Xia J, Chen N, Xiang J, Yu T, Bai T, Xie X, Zhang L, Li C, Yuan Y, Chen H, Li H, Huang H, Tu S, Gong F, Liu Y, Wei Y, Dong C, Zhou F, Gu X, Xu J, Liu Z, Zhang Y, Li H, Shang L, Wang K, Li K, Zhou X, Dong X, Qu Z, Lu S, Hu X, Ruan S, Luo S, Wu J, Peng L, Cheng F, Pan L, Zou J, Jia C, Wang J, Liu X, Wang S, Wu X, Ge Q, He J, Zhan H, Qiu F, Guo L, Huang C, Jaki T, Hayden FG, Horby PW, Zhang D, Wang C. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med 2020; 382:1787-1799.
- 25. Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, Ng OT, Marimuthu K, Ang LW, Mak TM, Lau SK, Anderson DE, Chan KS, Tan TY, Ng TY, Cui L, Said Z, Kurupatham L, Chen MIC, Chan M, Vasoo S, Wang LF, Tan BH, Lin RTP, Lee VJM, Leo YS, Lye DC, Singapore 2019 Novel Coronavirus Outbreak Research Team. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA 2020; 323(15):1488-1494.
- Zhou Q, Wei XS, Xiang X, Wang X, Wang ZH, Chen V, Shannon CP, Tebbutt SJ, Kollmann TR, Fish EN. Interferon-a2b treatment for COVID-19. *medRxiv* 2020 [preprint].
- Negri EM, Piloto B, Morinaga LK, Jardim CVP, Lamy SAED, Ferreira MA, D'Amico EA, Deheinzelin D. Heparin therapy improving hypoxia in COVID-19 patients - a case series. *medRxiv* 2020 [preprint].
- 28. Shi C, Wang C, Wang H, Yang C, Cai F, Zeng F, Cheng F, Liu Y, Zhou T, Deng B, Vlodavsky I, Li J, Zhang Y. The potential of low molecular weight heparin to mitigate cytokine storm in severe COVID-19 patients: a retrospective clinical study. *medRxiv* 2020 [preprint].

- 29. Arabi YM, Mandourah Y, Al-Hameed F, Sindi AA, Almekhlafi GA, Hussein MA, Jose J, Pinto R, Al-Omari A, Kharaba A, Almotairi A, Al Khatib K, Alraddadi B, Shalhoub S, Abdulmomen A, Qushmaq I, Mady A, Solaiman O, Al-Aithan AM, Al-Raddadi R, Ragab A, Balkhy HH, Harthy A, Deeb AM, Mutairi HA, Al-Dawood A, Merson L, Hayden FG, Fowler RA, Saudi Critical Care Trial Group. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. *Am J RespirCrit Care Med* 2018; 197(6):757-767.
- 30. Wang Y, Jiang W, He Q, Wang C, Wang B, Zhou P, Dong N, Tong Q. Early, low-dose and short-term application of corticosteroid treatment in patients with severe COVID-19 pneumonia: single-center experience from Wuhan, China. *medRxiv* 2020 [preprint].
- Lu X, Chen T, Wang Y, Wang J, Zhang B, Li Y, Yan F. Adjuvant corticosteroid therapy for critically ill patients with COVID-19. *medRxiv* 2020 [preprint].
- 32. Auyeung TW, Lee JS, Lai WK, Choi CH, Lee HK, Lee JS, Li PC, Lok KH, Ng YY, Wong WM, Yeung YM. The use of corticosteroid as treatment in SARS was associated with adverse outcomes: A retrospective cohort study. *J Infect* 2005; 51(2):98-102.
- 33. Bian H, Zheng Z, Wei D, Zhang Z, Kang W, Hao C, Dong K, Kang W, Xia J, Miao J, Xie R, Wang B, Sun X, Yang X, Lin P, Geng J, Wang K, Cui H, Zhang K, Chen X, Tang H, Du H, Yao N, Liu S, Liu L, Zhang Z, Gao Z, Nan G, Wang Q, Lian J, Chen Z, Zhu P. Meplazumab treats COVID-19 pneumonia: an controlled add-on clinical trial open-labelled, concurrent. *medRxiv* 2020 [preprint].
- 34. Morra ME, Van Thanh L, Kamel MG, Ghazy AA, Altibi AMA, Dat LM, Thy TNX, Vuong NL, Mostafa MR, Ahmed SI, Elabd SS, Fathima S, Vu TLH, Omrani AS, Memish ZA, Hirayama K, Huy NT. Clinical outcomes of current medical approaches for Middle East respiratory syndrome: A systematic review and meta-analysis. *Rev Med Virol* 2018; 28(3):e1977.
- Chiou HE, Liu CL, Buttrey MJ, Kuo HP, Liu HW, Kuo HT, Lu YT. Adverse effects of ribavirin and outcome in severe acute respiratory syndrome: Experience in two medical centers. *Chest* 2005; 128(1):263-272.
- 36. Yan D, Liu XY, Zhu YN, Huang L, Dan BT, Zhang GJ, Gao YH. Factors associated with prolonged viral shedding and impact of Lopinavir/Ritonavir treatment in patients with SARS-CoV-2 infection. *medRx-iv* 2020 [preprint].
- Kalil AC. Treating COVID-19-off-label drug use, compassionate use, and randomized clinical trials during pandemics. JAMA 2020; 323(19):1897-1898.
- Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, Li Y, Hu Z, Zhong W, Wang M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. *Cell Discov* 2020; 6:16.
- Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. *Biosci Trends* 2020; 14(1):72-73.

- Paton NI, Lee L, Xu Y, Ooi EE, Cheung YB, Archuleta S, Wong G, Wilder-Smith A. Chloroquine for influenza prevention:a randomised, double-blind, placebo controlled trial. *Lancet Infect Dis* 2011; 11(9):677-683.
- Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: Anold drug against today's diseases. *Lancet Infect Dis* 2003; 3(11):722-727.
- 42. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C, Zhan S, Lu R, Li H, Tan W, Liu D. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). *Clin Infect Dis* 2020; ciaa237.
- Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin P, Ksiazek TG, Seidah NG, Nichol ST. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. *Virol J* 2005; 2:69.
- Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. *Int J Antimicrob Agents* 2007; 30(4):297-308.
- Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. *Biochem Biophys Res Commun* 2004; 323(1):264-268.
- National Health Commission of the People's Republic of China. Interpretation of the Sixth Edition of the Guidance for COVID-19: Prevention, Control, Diagnosis, and Management [Internet]. 2020 [acessado 2020 Abr 2]. Disponível em: http://www.nhc.gov.cn/xcs/ fkdt/202002/54e1ad5c2aac45c19eb541799bf637e9. shtml
- Lenzer J. Covid-19: US gives emergency approval tohydroxychloroquine despite lack of evidence. *BMJ* 2020; 369:m1335.
- 48. European Medicines Agency. COVID-19: chloroquine and hydroxychloroquine only to be used in clinical trials or emergency use programmes [Internet]. 2020 [acessado 2020 Abr 6]. Disponível em: https://www. ema.europa.eu/en/documents/press-release/covid-19-chloroquine-hydroxychloroquine-only-be-usedclinical-trials-emergency-use-programmes\_en.pdf
- Scavone C, Brusco S, Bertini M, Sportiello L, Rafaniello C, Zoccoli A, Berrino L, Racagni G, Rossi F, Capuano A. Current pharmacological treatments for COVID-19: what's next? *Br J Pharmacol* 2020; 10.1111/bph.15072.
- 50. Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, Leist SR, Pyrc K, Feng JY, Trantcheva I, Bannister R, Park Y, Babusis D, Clarke MO, Mackman RL, Spahn JE, Palmiotti CA, Siegel D, Ray AS, Cihlar T, Jordan R, Denison MR, Baric RS. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. *Sci Transl Med* 2017; 9(396):eaal3653.
- Groneberg DA, Poutanen SM, Low DE, Lode H, Welte T, Zabel P. Treatment and vaccines for severe acute respiratory syndrome. *Lancet Infect Dis* 2005; 5(3):147-155.

- 52. Chan JF, Yao Y, Yeung ML, Deng W, Bao L, Jia L, Li F, Xiao C, Gao H, Yu P, Cai J, Chu H, Zhou J, Chen H, Qin C, Yuen K. Treatment With Lopinavir/Ritonavir or Interferon-β1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model of Common Marmoset. *J Infect Dis* 2015; 212(12):1904-1913.
- Fang X, Mei Q, Yang T, Li L, Wang Y, Tong F, Geng S, Pan A. Low-dose corticosteroid therapy does not delay viral clearance in patients with COVID-19. *J Infect* 2020; 81(1):147-178.
- Yang Z, Liu J, Zhou Y, Zhao X, Zhao Q, Liu J. The effect of corticosteroid treatment on patients with coronavirus infection: a systematic review and meta-analysis. *J Infect* 2020; 81(1):e13-e20.
- Centers for Disease Control and Prevention (CDC). Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Washington: CDC; 2020.
- World Health Organization (WHO). Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: Interim guidance. Geneva: WHO; 2020.
- Brasil. Ministério da Saúde (MS). Secretaria de Ciência, Tecnologia, Inovação e Insumos Estratégicos em Saúde. Diretrizes para diagnóstico e tratamento da CO-VID-19. Brasília: MS; 2020.
- World Health Organization (WHO). Guidance for managing ethical issues in infectious disease outbreaks. Geneva: WHO; 2016.
- 59. Ferner RE, Aronson JK. Chloroquine and hydroxychloroquine in covid-19. *BMJ* 2020; 369:m1432.
- Guyatt GH, Oxman AD, Schünemann HJ, Tugwell P, Knottnerus A. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol 2011; 64(4):380-382.
- Al-Tawfiq JA, Memish ZA. Update on therapeutic options for Middle East Respiratory Syndrome Coronavirus (MERS-CoV). *Expert Rev Anti Infect Ther* 2017; 15(3):269-275.
- 62. Momattin H, Mohammed K, Zumla A, Memish ZA, Al-Tawfiq JA. Therapeutic options for Middle East respiratory syndrome coronavirus (MERS-CoV)--possible lessons from a systematic review of SARS-CoV therapy. *Int J Infect Dis* 2013; 17(10):e792-e798.
- Lau AC, So LK, Miu FP, Yung RW, Poon E, Cheung TM, Yam LY. Outcome of coronavirus-associated severe acute respiratory syndrome using a standard treatment protocol. *Respirology* 2004; 9(2):173-183.
- 64. Chen X, Zhang Y, Zhu B, Zeng J, Hong W, He X, Chen J, Zheng H, Qiu S, Deng Y, Chan J, Wang J. Associations of clinical characteristics and antiviral drugs with viral RNA clearance in patients with COVID-19 in Guangzhou, China: a retrospective cohort study. *medRxiv* 2020 [preprint].
- 65. Shi Q, Zhao K, Yu J, Jiang F, Feng J, Zhao K, Zhang X, Chen X, Hu P, Hong Y, Li M, Liu F, Chen C, Wang W. Clinical characteristics of 101 COVID-19 nonsurvivors in Wuhan, China: a retrospective study. *medRxiv* 2020 [preprint].

- 66. Jiang X, Tao J, Wu H, Wang Y, Zhao W, Zhou M, Huang J, You Q, Meng H, Zhu F, Zhang X, Qian M, Qiu Y. Clinical features and management of severe COVID-19: A retrospective study in Wuxi, Jiangsu Province, China. medRxiv 2020 [preprint].
- 67. Hu L, Chen S, Fu Y, Gao Z, Long H, Ren H, Zuo Y, Li H, Wang J, Xv Q, Yu W, Liu J, Shao C, Hao J, Wang C, Ma Y, Wang Z, Yanagihara R, Wang J, Deng Y. Risk Factors Associated with Clinical Outcomes in 323 COVID-19 Patients in Wuhan, China. medRxiv 2020 [preprint].
- 68. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C, Yuan M, Huang J, Wang Z, Yu J, Gao X, Wang D, Yu X, Li L, Zhang J, Wu X, Li B, Yu Y, Chen W, Peng Y, Hu Y, Lin L, Liu X, Huang S, Zhou Z, Zhang L, Wang Y, Zhang Z, Deng K, Xia Z, Gong Q, Zhang W, Zheng X, Liu Y, Yang H, Zhou D, Yu D, Hou J, Shi Z, Chen S, Chen Z, Zhang X, Yang X. The feasibility of convalescent plasma therapy in severe COVID-19 patients: a pilot study. medRxiv 2020 [preprint].
- 69. Chen H, Zhang Z, Wang L, Huang Z, Gong F, Li X, Chen Y, Wu JJ. First Clinical Study Using HCV Protease Inhibitor Danoprevir to Treat Naive and Experienced COVID-19 Patients. medRxiv 2020 [preprint].
- 70. Tsui PT, Kwok ML, Yuen H, Lai ST. Severe acute respiratory syndrome: Clinical outcome and prognostic correlates. Emerg Infect Dis 2003; 9(9):1064-1069.
- 71. Habib AMG, Ali MAE, Zouaoui BR, Taha MAH, Mohammed BS, Saquib N. Clinical outcomes among hospital patients with Middle East respiratory syndrome coronavirus (MERS-CoV) infection. BMC Infect Dis 2019; 19(1):870.
- 72. Ho JC, Wu AY, Lam B, Ooi GC, Khong PL, Ho PL, Chan-Yeung M, Zhong NS, Ko C, Lam WK, Tsang KW. Pentaglobin in steroid-resistant severe acute respiratory syndrome. Int J Tuberc Lung Dis 2004; 8(10):1173-1179.

Article submitted 11/05/2020 Approved 12/05/2020 Final version submitted 17/05/2020