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ABSTRACT Instant Messaging (IM) provides near-real-time communication between users, which has
shown to be a valuable tool for internal communication in companies and for general-purpose interaction
among people. IM systems and supporting protocols, however, must consider security aspects to guarantee
the messages’ authenticity, confidentiality, and integrity. In this paper, we present a solution for integrating
hardware-based public key cryptography into Converse.js, an open-source IM client for browsers enabled
with the Extensible Messaging and Presence Protocol (XMPP). The proposal is developed as a plugin for
Converse.js, thus overriding the original functions of the client; and a browser extension that is triggered
by the plugin and is responsible for calling the encryption and decryption services for each sent and
received message. This integrated artifact allowed the experimental validation of the proposal providing
authenticity of IM users with digital certificates and protection of IM messages with hardware-based cryp-
tography. Results also shows the proposed systems is resistent to adversarial attacks against confidentiality
and integrity and it is secure when considering cryptrographic tests like the Hamming distance and the
NIST SP800-22.

INDEX TERMS Cryptography, authentication, instant messaging security, XMPP, browser extension.

I. INTRODUCTION
Instant Messaging (IM) services may provide advantageous
features, such as near-real-time communication, group chats
and the support for attaching files to messages. Due to these
characteristics, and along with the fact that there are many
free IM applications, the number of users of this Internet
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service has grown in recent years, with a forecast to keep
growing up to 2022 [1].

As IM applications are not applicable only to leisure,
the aforementioned users are, in fact, distributed in various
activity areas, which reinforces the demand for researching
such systems. One of these areas of use is the workplace,
where the adoption of IM apps has intensified the inte-
gration and collaboration among employees, resulting in a
raise of productiveness of the company [2]. Near-real-time
communication can also be used in teaching and learning,

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 95137

https://orcid.org/0000-0002-6717-3374
https://orcid.org/0000-0003-1101-3029
https://orcid.org/0000-0002-2846-9017
https://orcid.org/0000-0001-7573-6272


G. A. P. Rodrigues et al.: Securing Instant Messages

operating as a pedagogical facilitator [3]; in automation,
along with Internet of Things solutions such as Arduino [4];
or as a mean of information sharing to a big group of
people [5].

However, sending messages in plaintext and not imple-
menting other security measures in the IM system may result
in scenarios that threaten properties of information security,
for instance with the disclosure of data in transit or with
the modification of the stored data [6] as discussed more
thoroughly in Section II.

To increase the security levels of a communication system,
one possible solution refers to public key cryptography and
digital signature, as they promote a way to check the mes-
sage’s authenticity and integrity and enhance its confiden-
tiality. These technologies will be reviewed more in depth
in Section IV-B.

A more secure implementation of cryptography, known
as end-to-end encryption (E2EE), is achieved if the cryp-
tographic features reside only in the communicating ends,
rather than in intermediary nodes, such as carriers, providers
and gateways. In an end-to-end encrypted messaging system,
neither the server that stores the messages, nor any other
device through which the message may pass, is capable of
reading the contents of the messages [7].

It is important to note, however, that cryptography and
authentication mechanisms do not grant perfect safety, as,
besides being breakable technologies, they do not cover all
the attack surface area. To reduce this area, a good secu-
rity measure is to install as few applications as required,
decreasing the chances of a vulnerability. Nonetheless, it is
possible to evaluate the efficacy of the cryptosystem with the
use of statistical test suites for random data, such as NIST
SP 800-22, TestU01, ENT, Diehard and Dieharder [8].

Complementary to MIM, it is interesting to consider the
case of fixed desktop-based IM. Having an IM application
in the computer is more appropriate in some scenarios, such
as in the workplace, due to the ease to share documents
saved in the computer and to the elimination of the need
to use the phone, which could be a distraction. However,
an IM application in the desktop may suffer from the same
vulnerabilities and, therefore, also requires defense mecha-
nisms and cryptographic solutions.

Thus, in this paper we propose an architecture for the
utilization of an Instant Messaging application in desktop
that complies with security standards, including the use of
E2EE. In our proposal, the IM client runs in a web environ-
ment and uses a browser extension to communicate with the
cryptographic server, which is hardware-based. The uncer-
tainty of the cryptosystem used is evaluated with the NIST
SP 800-22 test suite.

The main contributions of this work are: i) an architec-
ture for integrating IM desktop applications and a hardware
device; ii) a review of possible threats and vulnerabilities
present in IM systems; and iii) a solution for providing con-
fidentiality, authenticity and integrity to messages exchanged
between users.

The rest of this paper is organized as follows. Section II
discusses the problems and security threats faced when using
an IM system. Section III provides related work, considering
other projects concerning security on messaging systems,
and how authors are addressing the solution. Section IV
details the technologies used, providing a background for
the basic concepts necessary to comprehend the architecture;
while Section V depicts the proposed architecture, along with
the tools used and a discussion on how they are integrated.
Section VI shows experimental results regarding the security
efficacy of the architecture, along with an adversary model,
and tests concerning the randomness of the encrypted data
and the performance of the system. Section VII concludes the
paper and suggests future works.

II. PROBLEM STATEMENT
To achieve cybersecurity, it is fundamental to comply with
its properties, which include confidentiality, integrity, authen-
ticity and availability. Of these, cryptography and digital
signature, and consequently the architecture proposed in this
project, will not help achieve availability, and, therefore,
the discussion on this section will not consider threats to this
property.

Regarding the authenticity property, malicious users may
impersonate others, and send messages posing as them;
eavesdroppers may read the contents of the messages not
destined to them, affecting the confidentiality property and
the users’ privacy; and concerning the integrity, others may
tamper the original sent message, changing its content arbi-
trarily, according to their intentions.

A Man-in-the-Middle (MitM) attack may be used as an
example of threat to the above mentioned security proper-
ties. In this attack, a malicious user is positioned between
two parties communicating to each other, being capable
of intercepting and even altering data transferred between
them. This attack infringes not only the authenticity property,
as the attacker poses as another communicating party, but
the confidentiality, as the messages may be intercepted and
read by undesired third parties, and the integrity property,
since data may be tampered and presented as being original.
Dudheria [9] showed that many IM applications are vulner-
able to MitM attacks, including popular ones, such as Viber,
Facebook Messenger, Snapchat and Skype.

There are various spyware and trojans that can either eaves-
drop and modify users’ messages, both on smartphones like
Android [10], such as Trojan-Spy.SymbOS.Flexispy [11] and
others; and on computers, like sniffers [12]. Such malware,
running on promiscuousmode, commonly sniffs every packet
received and sent by all Network Interface Cards (NICs) of
the infected device, being able to read their payloads if they
are transmitted in clear text. The proposed architecture is
effective to prevent data exfiltration when the data is stolen
from the network, but not when it is stolen directly from the
users’ device, for example with a key logger.

As stated, these applications may be vulnerable to
data exfiltration, when a malware, for example, retrieves
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unauthorized data from its victim. However, not only a mali-
cious user may undesirably read the app’s data: the gov-
ernment may, in some cases, demand access to messages
exchanged and users’ metadata to the application company,
by means of its judiciary system. Such a court decision may
be controversial, as in Brazil, whose Supreme Court has
received two actions regarding the government rights over
the personal data and user privacy, and the imposition of
sanctions by public authorities if the access is denied by the
application [13]. These actions are still in course.

Although many IM applications offer their own encryption
services, they may not be reliable, with weak algorithms or
vulnerabilities in the storage; or implement no encryption at
all, which allows the inappropriate retrieval of messages in
plaintext [14]. Additionally, even if using secure algorithms,
the messages must pass through the provider’s services, that
may be able to read the contents, specially if the encryption
uses a key to which providers have access.

Another issue is that for closed source applications, such
as WhatsApp, it is not possible to audit the code and ver-
ify if E2EE is indeed used. Furthermore, even if it is truly
implemented, the provider may still have access to metadata,
such as the time, receiver and sender of a message, whichmay
disclose potential private information, like the most frequent
contacts a user chats with and the name of the groups he
participates. This issue motivates the integration of strong
encryption into these applications.

Despite permitting code audit and improvement, open
source applications may also have malicious code injected
into the original code and, therefore, its is important to
not download an application from untrustworthy sources.
There are also malicious applications that masquerade as
legitimate ones, to fool users into downloading them. BRata
(Brazilian Remote Access Tool Android), for instance, is a
trojan that pretends to be an update for WhatsApp, but spies
and steals data from the infected smartphone. It was available
on the official Google Play Store and was downloaded over
10,000 times [15].

It is also critical that IM applications are regularly updated,
as new discovered vulnerabilities are commonly fixed and
patched in new versions. As an example, CVE-2019-3568 is
a buffer overflow vulnerability in WhatsApp VOIP stack that
allows remote code execution and is present in the application
prior to v2.19.134 for Android [16].

In addition to message encryption, it is also important to
require strong authentication mechanisms, as the messages
are shown in plaintext in the client, and if anyone may
have access to it, the confidentiality would still be violated,
regardless of the use of cryptography to send the messages.
To emphasize this concern, we mention the case in which
Brazil’s Justice Minister had his smartphone invaded, result-
ing in several Telegram messages leaked and exchanged in
his behalf [17]. If an authentication mechanism were used
in the IM application, the invader could still have access to
other features in the smartphone, but not to the messages
exchanged in the app. Anyway, there are diverse forensic

approaches to the acquisition and analysis of digital evidence
in smartphones, including from IM applications [18], [19].

This solution is not effective against spamming nor against
social engineering attacks over IM apps, such as phishing.
To prevent from these threats, users must be advised not to
click on unknown links, download files from untrustworthy
sources nor disclose personal information. As an example,
this solution does not protect from the Bad Rabbit ran-
somware, a malware that spreads from drive-by downloads,
disguising as an installation of an update for Adobe Flash
Player [20].

III. RELATED WORK
Some researches have studied and compared the character-
istics and security features of different MIM applications.
As an example, Sutikno et al. [21] concluded that Tele-
gram is, among the apps compared, the most secure, as its
secret chat option provides all the security features used as
parameters. The authors also demonstrated that the use of
encryption in the application does not necessarily mean
the messages exchanged are secure against eavesdroppers,
as Viber’s provider, despite using cryptography, have access
to the key and, therefore, may read the contents of the con-
versation.

Moreover, WhatsApp messaging encryption is based on
the Signal Protocol, and studies demonstrate that it is imple-
mented adequately and the provider does not have access to
the keys nor to the plaintext of the messages [22]. Nonethe-
less, a zero day vulnerability, related to a buffer overflow
that allows the execution of arbitrary code, has been recently
found on the application, which allows attackers to install
spyware, turn on the microphone and read encrypted mes-
sages, with the attack vector being a phone call on the
app [23].

However, it is not always the case that security breaches are
due to technical problems, but may also be due to users’ lack
of security awareness. Schröder et al. [24] presented a study
on the Signal IM application and its end-to-end encryption,
and showed that the majority of the tested users were not able
to identify aMitM attack taking place on the application, even
with alerts popping up. The users selected for the research
were computer science students and, even with the expected
security background, had their privacy exposed. The authors
suggest some improvements to Signal’s usability in order to
increase security levels.

Others have acknowledged the importance of cryptogra-
phy in communication. According to Kim and Yoon [25],
some cryptosystems used in IM are vulnerable to brute-force
attacks, specially those with short keys, or that are based in
passwords, as users’ choices are commonly weak. To over-
come this problem, the authors propose a Honey Encryption
system for use in Instant Messaging, in which inputting the
wrong key will give a plausible, yet incorrect, plaintext. This
hinders the identification of bad keys, slowing down the brute
force attack. However, although it could, this project does
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TABLE 1. A comparison between related works and this project.

not use Honey Encryption for encrypting the IM messages
exchanged between users.

Bao and Xu [26] have also studied and proposed a scheme
in which IM messages are secured with hardware encryption
and key generation. However, they do not use an architecture
similar as the one proposed by this work. The authors also
use, like this project, a combination of symmetric and public
key cryptography for encrypting the chat content.

There are many security related browser extensions and
documentation for object encryption available for XMPP
(e.g. RFC 3923 [27]), but, to the best of this research knowl-
edge, we could not find any suitable reference that com-
bine the signing and encryption of XMPP messages using
hardware-based solutions. As an example, Binu et al. [28]
developed a Mozilla plugin that protects messages in two
layers: it generates a file with an embedded message, through
steganography, that is previously encrypted. For that reason,
an eavesdropper must not only find the hidden message,
but also decode the unintelligible ciphertext. However, this
solution, unlike the solution proposed in this work, is not
applicable in the IM scenario, as it would be unpractical to
generate a file for every message desired to be transmitted.

This research differs from some of the cited in this section
in that it does not study vulnerabilities present in IM applica-
tions. Instead, it proposes a solution that could mitigate some
of the discussed breaches. Table 1 summarizes the different
characteristics between this and the related works.

IV. TECHNOLOGIES REVIEW
The architecture used in this work comprehends different
technologies, which are discussed in this Section.

A. INSTANT MESSAGING
For users to be able to exchange near-real-time messages,
an IM solution is required, which comprehends a protocol,
a client and a server. The technologies used for each of these
are briefly reviewed.

1) THE PROTOCOL
As in the proposed architecture the IM client runs in a web
browser, it is natural to conclude that the HTTP will be the
application layer protocol used. However, due to its polling
nature, it cannot be used in a messaging system, as a long

polling interval would cause the message exchange not to be
instant, whilst a short interval would result in many status
304 (Not Modified) responses. Also, the HTTP synchronicity
would require the client to wait for the server response before
making new requests, which is not desired in an application
that must process many incoming and outgoing messages
nearly simultaneously. For that reason, a better approach
is to use an asynchronous, event-driven, publish-subscribe
pattern, provided by the Extensible Messaging and Presence
Protocol (XMPP).

XMPP, formerly called Jabber, is an open protocol for
real-time messages exchange. It uses the Extensible Markup
Language (XML) to format the data to be transmitted, along
with its metadata, such as timestamp, source and destination
entities. It supports, besides basic IM features like one-to-one
messaging and multi-user chats (MUC), additional features
to improve the usability, such as contacts list (or roster) and
their availability (or presence), notification, blocking users
and vCards.

From RFC 6120 [29], the basic unit of meaning in XMPP
is a stanza, which are exchanged between two entities in the
XML stream to configure the communication, request data
from the other party and send the actual messages. Stanza is
the first level element of the XML, and is named according
to its purpose. <presence/> stanzas are used to listen
to the availability status of an other entity, while <iq/>
(Info/Query) stanzas are used to request general information
to an other entity, in a request-response structure. Finally,
<messages/> stanzas are used to transmit the actual mes-
sages.

Due to its extensible nature, inherited fromXML, XMPP is
not limited to IM. It is also used, for instance, in mid-
dleware, data syndication, web services, games and social
networks [30]. This feature is achieved with the possibility
of adding as many child XML elements to the message as
necessary and with the XMPP Extension Protocol (XEP)
series. In this work, the protocol is used for IM, but still some
XEPs are used and some child elements are created, exploring
the extensible characteristic of XMPP.

One XEP strictly related to this work is XEP-0124,
which documents the use of Bidirectional-streams Over
Synchronous HTTP (BOSH). BOSH aids the develop-
ment of XMPP applications inside web browsers by
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emulating the semantics of a long-lived, bidirectional TCP
connection between two entities, such as a client and a
server. It uses long-polling, with multiple synchronous HTTP
request/response pairs, without requiring the use of frequent
polling or chunked responses. The use of XMPP over BOSH
is defined in XEP-0206.

However, according to the RFC 7395 [31], this long polling
used by BOSH results in a higher transport overhead and
other issues. RFC 6202 [32] also cites a maximal latency as
a BOSH’s long polling issue. As browsers do not support the
direct use of XMPP and as BOSH suffers from overhead and
latency, theWebSocket protocol, defined in RFC 7395, comes
as a solution. It is a bidirectional protocol that emulates TCP
and provides a simple message-based framing layer. In this
project, XMPP over WebSocket is used.

2) THE CLIENT
Converse.js is an open source XMPP client designed to run in
any browser, written in JavaScript and uses the XMPP library
Strophe.js for its core functionality. It has been chosen for this
work as it is a popular solution and, at the time of writing,
has been translated into 28 languages and implemented sev-
eral useful XEPs, such as multi-user chatrooms (XEP-0045),
direct invitations to chat rooms (XEP-0249), service discov-
ery (XEP-0030), file sharing / HTTP file upload (XEP-0363),
message carbons (XEP-0280) and server-side archiving of
messages (XEP-0313).

The client is displayed in the browser as overlay chat boxes,
as a complement to the website. In this project, however, it is
preferred to exhibit the chat boxes in full screen, which is
achieved with the inverse.chat version.

As an open source solution, Converse.js allows modifi-
cations in its source code, for improvement of functional-
ity. The only recommended way for doing so is through
plugins [33], which can be used to override and create new
functions. In this research, different plugins are created for
specific purposes towards the objective of securing conversa-
tion, each overriding and creating new functions and events
related to entering a new chat box (the authenticity of the user
should be verified prior to the possibility of interacting with
the chat), sending messages (which should be encrypted prior
to the transmission) and receiving messages (which should be
decrypted prior to the presentation in the chat box).

3) THE SERVER
Openfire is a XMPP server written in Java which, according
to its official page [34], is licensed under the Open Source
Apache License. We found Openfire suitable for this project
because it is a cross-platform, easy to setup and administer
solution [35].

To store all data, including archivedmessages (XEP-0313),
Openfire uses a back-end database, which can either be
embedded or external. In this project, an external PostgreSQL
databse is used.

Openfire also supports plugins to extend the functionality
of the server. The official website provides a list of available

FIGURE 1. A comparison of symmetric and public key cryptography
schemes.

plugins, but new ones can be developed according to the
needs.

B. CRYPTOGRAPHY SERVICE
For securing the communication, the use of a cryptography is
necessary. In this project, a hardware-based cryptography is
used.

1) CRYPTOGRAPHY
Data encryption is the main idea of this project, as it reduces
the surface of vulnerability, discussed in Section II, and can
be accomplished with two different approaches, namely sym-
metrical or public key.

In the symmetrical encryption (Figure 1a), both sender
and receiver must share the same key, which must be known
only to those allowed in the communication. As the same
key can be used by more than two parties, it is not possible
to determine the sender of the message based solely on this
technology. It is also not possible to check the integrity of the
received message and, as the number of users in the conver-
sation grows, the more difficult it is to share and manage the
key.

If a public key cryptography algorithm is used (Figure 1b),
all parties in the communication have, each, one pair of keys,
one of which is known to everyone, named public key; and
the other, named private key, is private to its holder. As the
keys are mathematically related, if one is used to encrypt the
message, the other can be used to decrypt it. Thereby, to send
a confidential message to an other party, one must encrypt
the message with the receiver’s public key, so that only his
private key will decrypt it. However, if a message is encrypted
with the private key, anyone else can use the related public
key to decrypt it and verify the authenticity of the sender and
the integrity of the message. The encryption using both keys
can be combined to achieve confidentiality, authenticity and
integrity.

Figure 1 illustrates the difference between both models of
cryptography. Whereas in Figure 1a Key A and Key B are
identical, in Figure 1b, Alice and Bob have each a different
pair of keys. Thereby, if Alice, from Figure 1b, wants to send
a confidential message to Bob, she will encrypt it with Bob’s
public key. After that, not even Alice, the author and sender
of the message, will be able to decrypt the message back to
its plaintext, but only Bob with his private key.
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Although not necessarily public key encryption algorithms
are more secure, they provide more properties and the keys
are easier to manage, despite being slower. Because of that,
it is the model adopted in this work.

Both symmetric and public key cryptography also provide
confidentiality, as they make the contents of the messages
unintelligible. Thereby, eavesdroppers are kept from reading
the users’ conversation.

It is important to state that no cryptography algorithm
is completely secure [36], regardless of whether symmetric
or public key is adopted, apart from One-Time Pad [37].
Although there will always be the chance of being broken,
the cryptography system is said to be computationally secure
if either the cost of breaking it exceeds the value of the
encrypted information or the time required to break it exceeds
the useful lifetime of the information [38].

2) HARDWARE-BASED CRYPTOGRAPHY
Software cryptographymay suffice for many applications, as,
if properly implemented, it provides a good level of security.
However, some applications may require a greater level of
secrecy and privacy, cases in which hardware based cryptog-
raphy may be more adequate.

Many cryptography algorithms use random numbers for
generating a key, a Initialization Vector (IV) or a nonce.
The randomness of these numbers are critical for obtaining
semantic security, which is said to be achieved if an adversary,
after sending two plaintexts to a cryptosystem and receiving
one ciphertext back, cannot guess with a probability higher
than 0.5 which plaintext the ciphertext refers to [39].

However, as a software is essentially deterministic, it can
only generate pseudo random numbers based, for exam-
ple, on random walks [40]. A hardware device, however,
is capable of generating true random numbers directly from
a physical process, avoiding bias, and presenting bit inde-
pendence, unpredictability and non-repeatability [41]. These
factors increase the security of the parameters generated and
used in the cryptography.

To assess such secrecy enhancements, the hardware used
for encrypting the IM messages in this project is tested,
in Section VI-D, in regard to the randomness of the ciphertext
that it generates, and with the evaluation of the Hamming
distances between the input and the output of the hardware.

It is expected that the hardware-based cryptography system
used in this project achieves the properties cited by [41],
that is, it is expected that the encrypted IM messages are
not predictable to eavesdroppers, and are absent of bias, bit
dependence and repeatability.

Another security improvement in hardware cryptography
refers to the fact that any software may be vulnerable. As a
hardware may be isolated from the software, it can be less
vulnerable to malicious invasion, human error and malware
contamination. In the context of this project, having a hard-
ware cryptography also allows for keeping the cryptographic
algorithm out of reach of other extensions or flaws in the
browser.

To complement the hardware-based cryptography, a Two
Factor Authentication (2FA) token may be used. Despite the
availability of 2FA tokens in themarket, such asYubikey [42],
a self-developed token, with support to PKCS #11, will be
integrated into this IM architecture in future works.

3) DIGITAL SIGNATURE AND CERTIFICATES
The digital signature process, enabled only when using public
key cryptography, consists of encrypting, with the sender’s
private key, the entire sent message or its hash code [38].
In both cases, not only authentication and non-repudiation is
granted, but also integrity, as any change in the original mes-
sage along the transmission channel will result in different
encrypted values, causing the signatures not to match, thus
evidencing the alteration, either intentional or due to noise
in the channel. Although the two modes of digital signature
present the same security attributes, encrypting the hash code
makes the signature generation and verification processes
more efficient, as it shortens long messages.

Thereby, Alice (Figure 1b), needing to send a signed mes-
sage to Bob, will encrypt it using her private key and transmit
the resulting ciphertext, along with the original message,
to him. Upon receiving, Bob will decrypt the signature and
compare it to the plaintext of the message. If they match,
the message has really been sent by Alice and not been altered
along the insecure channel; otherwise, it is either unauthentic
or corrupted.

Digital signing allows the authentication of a message,
as it is expected that only the owner of the private key
knows it, which hinders impersonations and protect users
from third parties. Furthermore, they also protect the users
from one another, as it can be proofed, also based on the
exclusive knowledge of the key, that the alleged sender in
fact sent the message [38]. Hence one can not deny sending a
signedmessage, which is known as non-repudiation, securing
the other party against false denial of involvement in the
communication.

To associate a public key to its holder, preventing mistakes
and impersonators, a digital certificate, that proves the owner-
ship of a public key, can be used. This electronic document is
issued by a Certificate Authority (CA) and contains informa-
tion fields such as its period of validity and the information
of the subject’s public key [38].

To improve security, each certificate is valid only through a
period of time, after which the document is revoked. It is usu-
ally also a CA’s responsibility to issue Certificate Revocation
Lists (CRLs), that register the certificates either expired or
compromised, and that should no longer be used.

C. INSTANT MESSAGING AND CRYPTOGRAPHY SERVICE
INTERCOMMUNICATION
In order to encrypt and decrypt the massages exchanged
between the IM clients, running in each user’s browser, it is
necessary to establish a channel of communication between
Converse.js and the hardware cryptography service. This is
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accomplished with the use of a web extension (or add-on or
plug-in).

1) BROWSER EXTENSION
A browser extension is a software to change and add func-
tionalities to a web browser, customizing it. Using web-based
technologies (i.e. HTML, CSS and JavaScript), it uses the
samewebAPIs as theweb page inwhich it is running, but also
having access to its own APIs, granting more functionalities
to the developer [43].

However, as a web extension can manipulate, add and
delete the page’s contents and access data like the browser
history, it can also be used maliciously, like the Stolen Pencil
plug-in, that targeted academic institutions [44]. Because of
that, users should always be security aware before installing
an extension and verify its permissions, which should follow
the principle of least privilege.

The permissions of a browser add-on can be found in its
manifest file, that also defines, for example, the software’s
name, version, description and scripts, along with the URLs
it is allowed to run in [45]. The scripts, used to add the
core functionality of the extension, can be classified in either
content scripts or background scripts.

The content scripts are the ones running in the context
of the web pages. Using the standard Document Object
Model (DOM), they can read and modify contents of the
web page, while isolated from it, in order to avoid conflicts.
However, they have a restricted access to the web extension
API, necessary.

The background scripts are the event handlers for the
extension and do not have access to the web pages’ contents,
but have a less restricted access to the web extension API.
Running one persistent instance per extension, this script
must remain inactive until triggered, when it performs its
designed operation, and after which it must goes inactive
again [46].

In this project, both types of scripts will be used, as content
scripts may interact with the web page, reading the mes-
sages exchanged in the Converse.js client; and background
scripts have access to the API necessary to communicate with
programs outside of the context of the browser, i.e., Native
Messaging Host (NMH). The messaging API permits the
communication between content and background scripts.

2) NATIVE MESSAGING HOST
Although a web extension can have access to the messages
sent and received in a IM client running in the browser, it can
not directly communicate with the hardware cryptography
server, as it is limited to the page’s DOM and, therefore,
another software is needed.

Native Messaging enables a web extension to commu-
nicate, through its background script, to a native applica-
tion installed on the user’s computer, not managed by the
browser [47]. The information flows between extension and
native application in the JSON format, UTF-8 encoded, using
standard input (stdin) and standard output (stdout) [47].

FIGURE 2. Instant messaging architecture used.

In this work, the native application is a program that sends
and receives, through the network, the plaintext and the
ciphertext from the cryptography server.

V. PROPOSED ARCHITECTURE
This section depicts the architecture used in the experiments,
first in the regards of the tools and technologies it compre-
hends, and how they are arranged; and then in respect to their
intercommunication, and how the messages flow between
them.

A. GENERAL ARCHITECTURE
The technologies described in Section IV are integrated as
shown in Figure 2. A smartphone client is illustrated in the
picture just to indicate it could be integrated and used in this
architecture, however, as it is not the focus of this work, its
functioning is not detailed.

An Apache web server is used to host the Converse.js web-
page, to allow the users access to the client from the browser.
To support the communication from a web based XMPP
client toOpenfire, XMPP overWebSocket is used. The clients
communicate to Openfire, a XMPP server, that handles the
messages and stores them in a PostgreSQL database.

A thorougher explanation of the architecture inside the
computer client and how its elements intercommunicate with
the hardware cryptography server is provided in Section V-B.

The first step to use the XMPP client is to authenticate as
a user. As a password based authentication is vulnerable to
brute force and dictionary attacks, a more secure approach
is to use Simple Authentication and Security Layer (SASL),
specified in RFC 4422 [48]. To achieve this, Converse.js must
be configured to use an external authentication mechanism.

SASL is a framework that provides, besides authentication,
data integrity and confidentiality. It supports different authen-
tication mechanisms, and the shared secret mechanism is the
one implemented in this project. In this mechanism, the server
sends a challenge to the party trying to authenticate, which
should send back a response, proving that it knows the shared
secret. This is much more secure than sending the secret over
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FIGURE 3. Converse.js main screen for the user Alice, showing the roster,
unread messages notification and contacts presence.

the wire, as it could be intercepted. The use of SASL inXMPP
is defined in XEP-0034 [49].

After authenticated, the user has access to the Converse.js
main page, which, in its full screen version, displays to the
left a list of contacts and group chats of which the user is a
participant. If any of these contacts or groups is clicked, a chat
box opens in the panel to the right of the list. The described
screen is shown in Figure 3.
For a user to be able to read (i.e. decrypt) and to send

(i.e. encrypt) messages, however, it is first necessary that
the extension knows the user’s certificates. Therefore, each
time a user clicks on a contact name, triggering the event
chatBoxOpened, before opening the correspondent chat
box, the client should check if both the sender’s and the
receiver’s certificates are already known. If they are not,
they must be downloaded and stored, and also checked if
they are still valid, consulting a CRL. The plugin overrides
chatBoxOpened event to add this behaviour, and if, for any
reason, a valid certificate can not be downloaded, the chat box
is not displayed and an error message explains what happened
to the user.

The behaviour is analogous to respond to a user click on a
group name. The chatRoomOpened event is overrode with
the plugin, in order to check and download the certificates of
every participant of the correspondent group, before actually
opening the chat box.

Additionally, as an user may receive a message from
another user whose chat box he has never opened before,
the plugin also overrides the onMessage event, which is
triggered every time a new message is received, to check the
existence and validity of the certificates.

After all necessary and valid certificates are downloaded
and present on the client, the user may send encrypted mes-
sages and read decrypted received messages. To accomplish
this secure messages exchange, some original Converse.js
functions must be overridden.

B. ARCHITECTURE IN THE CLIENT
To encrypt and decrypt any message, a client needs to com-
municate with hardware cryptography server. This section

FIGURE 4. Message flow for sending requests and receiving responses
from the hardware cryptography service.

explains how this communication occur, along with the Con-
verse.js functions that needed to be overridden. Figure 4
depicts a diagram for the message flows between the com-
puter client and the the hardware cryptography server.

The createMessageStanza function builds the
XML stanza and its attributes, such as the type of stanza and
the Jabber ID of the destination and the sender. The plugin
overrides this function, in order to change the body attribute,
which contains the actual message, to the ciphertext provided
by the cryptography service. To get the ciphertext, the plugin
communicates asynchronously and directly to the content
script of the web extension, with a promise that triggers
an event listened by the content script, process represented
as 1© in Figure 4. The creation of the stanza, in the overrode
function, only finishes when the promise is resolved 8©, with
the ciphertext set as the body of the message and with the
addition of new child elements, such as the used cryptography
version and information of the public keys and certificates
used. After that, Converse.js follows its normal operation for
sending messages.

The payload sent by the plugin to the content script con-
tains a message identifier, the Jabber ID of the destination
parties, the plaintext and the cryptography version. This infor-
mation is used in processes from 1© to 8©, along with the
operation type (which can be, in this context, either encrypt
or decrypt, but it generally include add and check user certifi-
cates and others) and the request identifier, which are added
by the content script in the message sent to the background
script through messaging API 2©. A callback is configured to
obtain the response from the background script when there is
one 7©, which can then be passed to the plugin. When writing
the code for this messaging between scripts, security aspects
were considered, regarding the use of dangerous APIs that
could allow cross-site scripting (XSS) [50].

The background script, upon receive of the contents
script’s request, connects and sends a message to the native
application, through the NMH API 3©, which consumes the
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cryptography API to request the operation to the cryptogra-
phy server 4©. When the operation is done, the server returns
the result to the native application 5©, which will forward
the message to the background script 6© and follow the flow
until it reaches the Converse.js plugin, after which the client
continuous as originally designed.

For message decryption, the plugin overrides the
onMessage functions of both of ChatBoxes, responsible
for handling messages received from a single user chat,
and ChatRoom objects, responsible for handling messages
received from a group chat. These functions are overrode
to decrypt the message before displaying it in the chat box,
following the same flow depicted in Figure 4 and detailed in
previous paragraphs.

That way, an E2EE is achieved, as only the communication
parties possess their respective private key, and a server or
database administrator, for example, would not be able to
decipher it.

Another consequence is that messages are transmitted and
stored in cyphertext, and third parties will not be able to
eavesdrop them in the wire nor modify them in the database.

As it is a prototype, the authors’ first concern was to
implement the encryption and decryption for text messages,
as they are the fundamental feature for an IM application.
However, other features, such as attaching files, enrich the
users’ experience, are viable in the proposed architecture, and
will be included in future versions of this work.

Also, as the focus of this work is the implementation of the
higher level architecture, the authors assumed, as a premise,
that the hardware encryption server was capable of handling
multiple requisitions simultaneously, and did not consider
any aspect regarding the lower level implementation of the
hardware device.

VI. EXPERIMENTAL RESULTS
In this Section, we inspect the data transmitted by the XMPP
client and the server, before and after the implementation of
the cryptographic architecture.

First, we demonstrate how an eavesdropper may compro-
mise the confidentiality of the communicating parties, and,
then, the better level of privacy achieved with data encryp-
tion. The end of the section provides a brief evaluation of
the performance of the proposed architecture, estimating the
additional latency caused by the encryption and decryption of
sent and received messages.

The experiments are conducted between two parties,
namely Alice and Bob, in the XMPP domain unb.br.

A. BEFORE ENCRYPTION ENFORCEMENT
Prior to the implementation of the proposed system, the
stanzas are transmitted in the wire in plaintext, as shown in
Listing 1. This is not a secure communication, as an eaves-
dropper can easily identify, from the body tag of the stanza,
that Alice is trying to arrange a meeting with Bob at a given
location and time.

Listing 1. XML of the plaintext stanza transmitted.

FIGURE 5. Wireshark used to eavesdrop Bob’s message to Alice.

The &#xB0; value in the message of Listing 1 is the
hexadecimal Unicode representation for the char ‘◦’, meaning
the latitude and longitude of the location proposed by Alice
for the meeting.

Bob’s response may also be read, in plaintext, with the
use of a packet sniffer, posing as an eavesdropper, as demon-
strated in Figure 5, in whichWireshark is used to disclose that
Bob has accepted Alice’s invitation. Thereby, third unwanted
parties are capable of infringing the conversation privacy,
specially if the sniffer is set on promiscuous mode, which
enables the reading of packets addressed to other machines.

Filtering the capture, in Figure 5, to display XMPP packets
only, the malicious traffic interception shows all steps taken
for establishing the connection between client and server,
in which the packets originated in port 57644 are sent by the
client, while the source port 5222 (standard port for XMPP
client connections) refers to packets transmitted by the server.
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First, the stream opening (packets number 442 and 446)
is exchanged between client and server, then the server’s
announcement of the features it supports (packet 450), fol-
lowed by the client authentication (from packet 452 up
to 462). These steps are more deeply explained by
Saint-Andre, Smith and Tronçon [30].

After authenticated, Bob may be able to send IQs and get
their responses (packets 464, 468, 470, 474, 480 and 529)
and send his presence and get other’s (packets 476 and 872).
Bob can also send messages to other users, such as in packet
number 870, in which he sends a response to Alice. The body
of this response is shown in the bottom part of the Figure 5.
More than reading the contents of exchanged messages,

an eavesdropper may also infer, from the Figure 5, that Bob
is a member of a MUC named ft, as evidenced by the
conference subdomain of packet 872. However, the pro-
posed architecture will not prevent such discovery from
eavesdroppers, as only the message data will be encrypted.

B. AFTER ENCRYPTION ENFORCEMENT
With the purpose of securing the XMPP messages, the archi-
tecture described in Section V is implemented. Thereafter,
the body tag of message stanzas are encrypted prior to the
transmission over the network, and decrypted before being
displayed on the screen to the receiver user.

Listing 2 shows the XML stanza for the same message
transmitted in Listing 1, that is, Meet me at 15◦45’
47.5”S 47◦52’ 18.6”W at 5:15 am tomorrow,
but now protected from eavesdroppers with encryption, after
the implementation of the proposed architecture. New XML
child elements and attributes are also added.

The body tag is now unintelligible, and only someone
possessing the recipient’s private key will be able to decipher
it. Other tags are also added to the stanza, such as pubKey,
which gives the information regarding the public key of the
sender, present in its certificate; and also the signature,
which is the message encrypted with the sender private key,
assuring its authenticity and integrity, verifiable with the use
of the correspondent public key.

The legitimate user’s client, upon message receive, will
decrypt the text using the private key and the clear text will
appear in the chatbox, allowing the user to read it. Any
message sent by a user is also shown in clear text on its own
chatbox. The encrypted message, transmitted as in Listing 2,
is decrypted and shown to the users in the conversation,
as depicted in Figure 6.

C. ADVERSARY MODEL
This adversary model considers that an unauthorized third
party, named Eve, intends to violate the communication
betweenAlice and Bob in different manners. In this adversary
model, it is assumed that: a) Eve has access only to the
public keys of Alice and Bob; b) Eve has or can intercept
the transmitted ciphertext; c) Eve has a large computational
power; d) Eve does not have physical access to the computers
of Alice and Bob, to capture the deciphered data in memory.

FIGURE 6. Chatbox displaying clear text messages exchanged between
Alice and Bob.

Listing 2. XML of the encrypted stanza transmitted.

Nevertheless, in possession of a valid private key or with
physical access to the hardware cryptosystem, Eve would be
able to impersonate, modify and eavesdrop messages, violat-
ing the confidentiality, integrity and authenticity properties.
With a private key, Evewould be able to conduct, for example,
a MitM attack.

Considering a scenario with the cited conditions a) to d),
Eve, in an attempt to eavesdrop the communication and affect
its confidentiality, would have to derive the receiver private
key from its public key to be able to decipher the message.
It should be remarked that the process of deriving a private
key is not trivial [51] and, considering that the parameters
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of the cryptosystem were adequately chosen, the task could
require more time to be completed than the time of validity
of the protected message, or it would be more expensive to
break the system than the value of the encrypted information.
In that scenario, it would not be viable for Eve to accomplish
a successful attack to break the cryptographic system that
protects the message.

It is relevant to mention that, to the best of the authors’
knowledge, the largest factored integer for the RSA algorithm
is RSA-250, using a 829 bits key [52]. Nowadays, the min-
imum length recommended for a RSA key is 4096 bits,
and such assumption is used in the proposed cryptographic
system in this work.

It is important to remember that the use of quantum com-
puting significantly reduces the time necessary to break a
cryptosystem [53]. However, this technology is not yet avail-
able to ordinary use and its adoption is not considered for Eve
in this case.

Furthermore, it is interesting to consider a scenarion in
which Eve knows that Bob could only respond to Alice’s
invitation in two manners: either accepting it, sending the
message Accept to Alice; or declining it, with the message
Dismiss, and no other message is allowed. Assuming the
cryptosystem is semantically secure, that is, no information
from the plaintext is viable to be extracted from the ciphertext,
Eve would not be capable of identifying to which of the two
possible plaintexts the ciphertext would decipher.

In this scenario, even if Eve had access to the cryptosystem
as a black box, with the ability to encrypt any message of her
desire, which is known to be the chosen-plaintext attack, she
would not be able to deduce Bob’s response by encrypting
either Accept nor Dismiss and comparing the generated
ciphertexts. The reason for this is that the used cryptosystem
is non-deterministic, that is, different ciphertexts are gener-
ated for different encryption processes of the same plaintext.

If Eve, instead of eavesdropping, intended to modify a
message or impersonate a communicating party, the integrity
property would be infringed. But to succeed in this attack, she
would still have to have access to a party’s private key to be
able to sign the message as the legitimate user, incurring in
the same key deriving problem discussed previously.

Another attack possibility for Eve is the capacity to inter-
cept and block the message to reach Alice or Bob. For
instance, blocking Alice’s invite for Bob, who would not
receive the message. In this event, neither the confidential-
ity nor the integrity would be affected, but the availability
property. In this regard, the proposed system presented herein
would not be able to prevent the attack because the system
does not control all the possible communications channels
available for Alice and Bob to communicate.

D. ARCHITECTURE EVALUATIONS
In this section, the proposed architecture is evaluated, first
with a comparison between the ciphertext and its correspon-
dent plaintext. Then the avalanche effect for the cryptosystem
is assessed and, in the sequence, a battery of tests is conducted

Listing 3. Python function used to calculate the Hamming distance.

regarding the predictability and the uncertainty of the gener-
ated ciphertext. The final evaluation regards the performance
of the architecture.

1) CIPHERTEXT AND PLAINTEXT COMPARISON
To compare a ciphertext to its correspondent plaintext and
evaluate their similarity, the Hamming distance between them
is measured. In general terms, the Hamming distance indi-
cates the number of characters (in a string) or of bits (in a
bitstream) at which two strings or bitstreams differ at the same
position. For calculating the distance, it is fundamental that
both strings or bitstreams have the same length.

The Python function shown in Listing 3 is used to cal-
culate the Hamming distance between ciphertext and
plaintext.

To calculate the Hamming distance between the plaintext
and the cyphertext we assume:

Plaintext: Meet me at 15◦45’ 47.5”S 47◦52’
18.6”W at 5:15 am tomorrow.

And the corresponding ciphertext: fASPD2wpA4aahVK
f1Ia7Yei51Heh82jEEmEmwBHFnzLAPqkX0Xq3YGS
5mjCP P4IOlhpkaALISuwoKnHnj+BvMD4SpaG8
GniMbPDduDHd 8 =.

For the Hamming distance calculations, it is necessary to
ensure that they are equal in length. For comparison purposes
only, as the ciphertext is longer than the plaintext, a white
space padding is done to the ending of the plaintext. After
this process, both strings are 106 characters long.

After the calculation, the Hamming distance between these
two strings is equal to 106 which means that all characters at
the same position in both strings are different.

To calculate the Hamming distance at the bit level, both
strings are converted to their binary format. Zero padding is
done to the plaintext to conform to the required conditions
to hamming distance calculations. After the padding, both
bitstreams are 725 bits long.

The ideal value for the Hamming distance between the
ciphertext and its plaintext, in binary, would be half of the
total bitstream length, that is 50% of the bits are changed.
The reason for this is that a 0% change (Hamming distance
of 0) means that the ciphertext and the plaintext are identical,
and, therefore, the ciphertext is readable to third parties.
In contrast, a 100% change (Hamming distance equal to the
message length) implies that the plaintext is the exact oppo-
site of the plaintext, indicating that the encryption process is
simply a XOR operation with a bitstream of only ones, and
could be easily broken by an attacker.
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TABLE 2. Hamming distance between the plaintext and the ciphertext.

The calculated Hamming distance between the bitstreams
is 351, out of a total of 725 bits, which means that 48.41% of
the bits are different, a close value to the ideal 50%. Table 2
summarizes the findings of this comparison.

2) AVALANCHE EFFECT
In the following test, Alice sends her invitation to Bob again,
but this time proposing the meeting to start one minute
earlier, at 5:14. Thus, the plaintext Meet me at 15◦45’
47.5”S 47◦52’ 18.6”W at 5:14 am tomorrow
is to be encrypted.

The only modification in Alice’s message is the time for
the meeting, changing from 5:15 to 5:14. Therefore, the only
difference is between the characters 5 and 4.

Translating these characters to their binary ASCII codes
results:

Character 5: 0011 0101.
Character 4: 0011 0100.
Hence, the Hamming distance between these two char-

acters is 1, as only the least significant bit changes and,
as the remainder of Alice’s messages are identical, it may
be concluded that the Hamming distance between the two
messages is 1.

The encryption process for the new invitation at 5:14 am,
using the same architecture, results in the ciphertext:
j8q7xKbiasDfeYEBHdjZtS2SBHaUmguIPnx09YFH
RdXdpgSWUPECTw2toPxZpnLwSiMySePeK2EJjFi+
dCyDX YPEqEkF6tk7avA0DE0lGIk=.

Using the code depicted in Listing 3 the Hamming distance
between the bitstreams of the two ciphertexts transmitted by
Alice is measured as 346.

Therefore, a Hamming distance of 1 in the plaintext results
in a large change in the ciphertext, of Hamming distance
of 346. This is known as the avalanche effect, and it is
demonstrated in Table 3.

The avalanche effect is a desired property in a cryp-
tographic system to conceal the changes in the plain-
text from an attacker who has access only to the
ciphertext.

As demonstrated in this test, the hardware-based cryptog-
raphy used on this architecture produces the avalanche effect,
resulting in amore secure communication between the parties
in the IM application.

TABLE 3. The avalanche effect evidenced by the Hamming distance.

3) RANDOMNESS EVALUATION
All tests in this section are conducted using the ciphertext
from the body tag of Listing 2, in bit format. The results for
these tests, along with a brief explanation for each evaluation,
are shown in Table 4.
The National Institute of Standards and Technol-

ogy (NIST) SP 800-22 [54] test suite is used to evaluate
the randomness of the ciphertext generated by the proposed
architecture.

It is important to state that some of the tests from NIST SP
800-22 could not be applied to the ciphertext bitstream due
to the short length of the evaluated ciphered message. But,
it does not mean that the proposed system would not pass
the NIST SP 800-22 tests for larger cipher messages. In the
present case, a part of the test suite is used to demonstrated
that the proposed solution is robust enough in terms of cryp-
tographic assumptions.

Having the above considerations said, a ciphertext must be
as random as possible to reduce its predictability. In other
words, the more random it is, the more it improves its secrecy
and reduces the chances of it being maliciously revealed.

The number of bits in the bitstream could not be increased
by extending themessage length as, to achieve semantic secu-
rity, the length of the ciphertext does not vary significantly
with the length of the plaintext. Thus, the attacker cannot
infer the message length from the ciphertext. For this reason,
the tests that require a minimum bitstream length greater than
725 bit, which is the size of the ciphertext presented, are not
used for the evaluation of the proposed architecture.

Comparing the results displayed in Table 4 with results
from the literature [55]–[58], it can be inferred that the cryp-
tosystem used in this work passes the NIST 800-22 battery
test.

4) PERFORMANCE EVALUATION
To evaluate the performance of the proposed architecture,
the performance interface is used [59]. The now method
of this interface, which returns the time elapsed since the
time origin (that is, since the beginning of the current doc-
ument’s lifetime), is called immediately before process 1©
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TABLE 4. Results for the NIST SP 800-22 test suite [54].

TABLE 5. The performance of the architecture for different operations
and message lengths.

starts and also immediately after process 8© is finished (refer
to Figure 4). Subtracting these values returns the time taken
to complete all processes from 1© to 8©. Table 5 shows the
obtained results.

The results showed that it takes about 540 ms for the
message to go through the architecture, from 1© to 8©.
It did not vary significantly with the operation (encrypting
or decrypting text messages), nor with the length of the
messages (considering that text messages exchanged in this
type of application is not usually very long).

The low latency does not considerably decrease the speed
of the message delivery, and, therefore, the architecture

improves the security on the data transmission without
affecting its performance, and the communication can still be
considered instantaneous.

To prevent attacks such asMeltdown [60] and Spectre [61],
the now method rounds the returned value (since Firefox 60,
it rounds to 1 millisecond [59]), but the precision is high
enough to assess the latency added by the proposed architec-
ture, as the rounding (1 ms) is much lower than the calculated
time (around 540 ms).

VII. CONCLUSIONS AND FUTURE WORKS
Considering the importance of encrypting messages in an
IM application, this work demonstrated the use of a
hardware based encryption service to provide authen-
ticity, confidentiality and integrity to the messages
exchanged.

Using a web extension and its API, it was possible
to establish a communication between an IM client run-
ning in a user’s browser and a hardware based cryptog-
raphy system, enabling the verification of validity of dig-
ital certificates and the encryption of the body of instant
messages.

Tests conducted on the cryptography system and on the
overall architecture indicate that it is able to guarantee con-
fidentiality, authenticity and integrity to the IM application
in a manner not predictable by unauthorized third parties.
Furthermore, the additional latency caused by the architecture
is of a low order, and does not jeopardize the quality nor the
immediacy of the communication.
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A. FUTURE WORKS
One important feature of IM is the ability to send and
receive files, which should also follow security principles.
Converse.js already implements the transmission of files, but
this project was limited to ciphering and deciphering textual
messages only. Thus, as a future work, the architecture will
be extended to include the secure transmission of files of
any extension. This expansion does not require any change
in the proposed architecture, but only the improvement of
the Converse.js plugin, overriding the functions related to
sending and receiving files.

Another common feature in IM applications is real-time
streaming, either in audio or in video. Although Converse.js
does not originally implement it even in clear data, and
although it is a complex task to fully synchronize it with the
hardware in asynchronous messages, it is possible to develop
a plugin to extend its functionalities and, then, update the
browser extension to include the encryption of this type of
data.

To improve the security of the system, the support for
a self-developed 2FA token may be implemented in the
architecture, assuring the authentication and non-repudiation
properties.

The authors also indicate as future work a study regarding
the lower levels of implementation of the hardware cryptogra-
phy device, with the implementation of requests serialization,
Multiple-input and Multiple-Output (MIMO) and other mea-
sures necessary to guarantee scalability and performance.
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