
MASTER THESIS

Proposal of an Adaptable and Scalable
IoT Middleware for Hybrid Computational Models

Lucas Mauricio Castro e Martins

Brasília, December 2019

UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

PROPOSAL OF AN ADAPTABLE AND SCALABLE IOT

MIDDLEWARE FOR HYBRID COMPUTATIONAL MODELS

LUCAS MAURÍCIO CASTRO E MARTINS

DISSERTAÇÃO DE MESTRADO SUBMETIDA AO DEPARTAMENTO DE ENGENHARIA

ELÉTRICA DA FACULDADE DE TECNOLOGIA DA UNIVERSIDADE DE BRASÍLIA, COMO

PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE.

APROVADA POR:

RAFAEL TIMÓTEO DE SOUSA JÚNIOR, Dr., ENE/UNB

(ORIENTADOR)

GEORGES DANIEL AMVAME NZE, Dr., ENE/UNB

(EXAMINADOR INTERNO)

ELDER OROSKI, Dr., UTFPR

(EXAMINADOR EXTERNO)

 Brasília, 17 de dezembro de 2019.

FICHA CATALOGRÁFICA

MARTINS, LUCAS MAURICIO CASTRO E
Proposal of an Adaptable and Scalable IoT Middleware for Hybrid Computational Models [Distrito Fed-
eral] 2019.
xvi, 88 p., 210 x 297 mm (ENE/FT/UnB, Mestre, Engenharia Elétrica, 2019).
Master Thesis - Universidade de Brasília, Faculdade de Tecnologia.
Departamento de Engenharia Elétrica

1. Internet of Things 2. Adaptable IoT
3. IoT Middleware 4. Fog computing
I. ENE/FT/UnB II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA
MARTINS, L. M. C. E (2019). Proposal of an Adaptable and Scalable IoT Middleware for Hybrid
Computational Models. Dissertação de Mestrado, Departamento de Engenharia Elétrica, Publicação
PPGEE.DM 739/2019, Universidade de Brasília, Brasília, DF, 88 p.

CESSÃO DE DIREITOS
AUTOR: Lucas Mauricio Castro e Martins
TÍTULO: Proposal of an Adaptable and Scalable IoT Middleware for Hybrid Computational Models.
GRAU: Mestre em Engenharia Elétrica ANO: 2019

É concedida à Universidade de Brasília permissão para reproduzir cópias desta Dissertação de Mestrado e
para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. Os autores reservam
outros direitos de publicação e nenhuma parte dessa Dissertação de Mestrado pode ser reproduzida sem
autorização por escrito dos autores.

Lucas Mauricio Castro e Martins
Depto. de Engenharia Elétrica (ENE) - FT
Universidade de Brasília (UnB)
Campus Darcy Ribeiro
CEP 70919-970 - Brasília - DF - Brasil

Dedication

Life is short, complex and surprising.
It is up to each one of us to contribute to make our days here on earth more enjoyable
and fruitful.
Therefore, I dedicate this work to all who believe and commit themselves to respect to
others and the greater good, above their own individualities.

Lucas Mauricio Castro e Martins

Acknowledgements

The academic journey is a responsibility of student, but it is never a lonely journey. My
master’s journey began in 2014 shortly after completing a lato sensu specialization in Software
Engineering. This thesis is the end of this journey and I take my public written acknowledgment
to people and institutions below, mentioning them in chronological order of events:

To professor Genaína Rodrigues for her guidance in my first steps in graduate school at UnB.
I extend thanks to the PPGInf staff;

To my friend Mario Miura for the opportunity to let me join his team of a UnB-DPU project.
Spoiler alert: this event was a game changer, rerouting me to graduation course. In addition, I
have received all his support at very difficult times in my financial and professional life;

To my colleagues I worked with directly or indirectly on DGPU or GSI/PR projects;

To Cleinilton Fernandes for telling me about the UIoT project and introducing me to two
characters cited as follows;

To Claudio Santoro and Caio Cesar Silva for passionately introducing me to the UIoT project
and the IoT field itself;

To Caio Cesar Silva and Francisco de Caldas Filho for the tips, guidance, and advices they
gave me that help me for a successfully PPGEE application;

To Julio Cesar de Almeida and Flávia Paiva, my chiefs in the STF during this period. Their
support, patience, tips, and authorisation for my participation in academic events as well for the
training license were key for finishing this work;

To my colleagues at the STF for their support and understanding at the moments I needed.
Mainly, to Jacinto Cunha for all his support and backup all over the way, but mostly in the final
phase of the research;

To fellow researchers from the LATITUDE laboratory, represented by prof. Fábio Mendonça
and Kelly Santos, for their tips, support, and resources;

To the University of Brasilia for offering a high quality course here in Brasilia, for the struc-
ture, and for the support given;

To the PPGEE and PPEE staff for all their support and patience;

To the co-authors who collaborated and published with me up to now;

To the professors João Paulo Lustosa, William Giozza and Robson Albuquerque for their valu-
able tips and guidance on scientific methods, academic career, and writing of academic articles;

To the bright young students and researchers who work/worked in the UIoT project for their
dedication, help, and assistance to me and to the project. I am grateful to all the many members

i

who have been with us for no matter how long. At the risk of injustice, I dare to mention Dayanne
da Cunha, Bruno J. Praciano, Cassio Fabius, Lincoln Barbosa, João de Menezes, Pedro da Costa,
and Daniel Prado because their key participation on my thesis’ results;

To Gabriel Alves for his support throughout the course and his huge patience during the most
critical days of my immersion in this work;

To professor Robson Albuquerque, again, for the confidence in my work and the efforts to
open my eyes to take better actions towards a succeed course conclusion;

To Juliana Stela, Célia Araújo, Francisco de Caldas Filho, Polyane Wercelens, Klayton de
Castro, and Cohen Gorman, who joined the “task force” to help me get this work done;

To the professors Elder Oroski and Georges Nze for accepting to be part of the board of
examiners and for their contributions to this work;

To Francisco Caldas Filho, my great partner in the research and actions in the UIoT laboratory,
for his tips, guidance, support, and work produced;

To professor Rafael de Sousa Jr., my advisor, for the teachings, guidance, leadership, advices,
kicks in the butt, opportunities, and confidence. His effort to combine science and innovation
projects is an inspiration as well as his open-mindedness regarding his students is a lesson for me;

To my brothers and parents, whether by blood or by marriage, for their support, words of
encouragement and confidence (with this family confidence in me, it’s virtually impossible to
keep one’s feet on the ground);

To my mom, Verediana Castro, that always maintained a learning-prone environment that
promoted my learning and development;

To Juliana Stela and Lucas Mateus, my beautiful and beloved children, for their tips, questions,
logistical support, care, and conversations that brought fruitful information and curiosities that
helped me to shape my work;

To Célia Araújo, my companion and soul mate, for her complicity, trust, support, patience,
tips, and shielding;

To God, Allah, Obatala, or Science (whatever higher entity you believe in).

Wholeheartedly, thank you all!

I gratefully acknowledge the support from the Brazilian Union Public Defender (DPGU),
grant 066/2016, and the Institutional Security Office of the Presidency of the Republic of Brazil
(GSI/PR) Grant 002/2017.

The UIoT Lab has the support of the Federal District Research Support Foundation FAPDF
(Projects UIoT 0193.001366/2016 and SSDDC 0193.001365/2016), and the LATITUDE/UnB
Laboratory (Project SDN 23106.099441/2016-43). I thank both institutions for their support.

ABSTRACT

The United Nations estimates that the world population will reach almost 10 billion people by
2050. This increase in the world population, as well as its longevity, force optimizations in the
productive chain that supplies food for many people. The IoT has shown that it can contribute in
this scenario as researchers have presented several applications for the IoT. Such as: smart home,
smart building, smart city, and industry 4.0. However, the benefits promised by IoT can only be
realized by customers willing to meet prerequisites. Such as: quality Internet connectivity, and
the willingness to use resources allocated to the cloud computing architecture. If it does not fit
the above scenario, IoT can hardly be enjoyed. Currently, research in the most varied fields of
information and communication technology seeks to solve or mitigate these restrictions. This
work embraces the concept of multiple, and overlapping, IoTs and propose a middleware that is
flexible and adaptable to various scenarios and configurations, becoming highly adaptable and
scalable. This middleware supports the creation of its IoT instance and can natively, and transpar-
ently, interact with other instances. The architecture, components, and operation of middleware
are presented, describing the influence received from Microservice Architecture, as well as edge
computing and fog computing. It is demonstrated that the proposal met its objectives, allowing
the creation of IoT networks in heterogeneous scenarios, maintaining its functionalities. As a
result, its users have greater ownership and confidence in the data they handle on its IoT network.
Throughout the research, some middleware and/or IoT aspects suggested that it can be explored
to refine and/or evolve it. Such as: the need to apply intelligent agent techniques to improve
middleware autonomy and performance; integrate with other work focusing on middleware and
instance security, and apply methodologies and ontologies aimed at integrating with third party
middleware.

Keywords: Internet of Things; Adaptable IoT; IoT Middleware; Cloud computing; Edge com-
puting; Fog computing.

RESUMO

A Organização das Nações Unidas estima que a população terrestre chegue a quase 10 bilhões de
pessoas em 2050. Esse aumento da população mundial, bem como da sua longevidade pressionam
pela necessidade de otimizações da cadeia produtiva que suprem desde a alimentação até o lazer
dos seres humanos. IoT tem dado a impressão de que pode contribuir neste cenário. Pesquisadores
têm apresentado diversas aplicações de IoT, tais como, por exemplo, casas inteligentes, prédios
inteligentes, cidades inteligentes e indústria 4.0. Porém, os benefícios prometidos por IoT só
podem ser obtidos por clientes dispostos a atenderem pré-requisitos como conexão de qualidade
com a Internet e à predisposição de utilizar recursos alocados na arquitetura de nuvem computa-
cional. Caso não se enquadre no cenário acima, dificilmente pode-se usufruir de IoT. Atualmente,
pesquisas nos mais variados campos de tecnologia da informação e comunicação procuram re-
solver ou mitigar essas restrições. Este trabalho abraça o conceito das múltiplas e sobrepostas
IoTs e propõe um middleware que seja flexível e adaptável a diversos cenários e configurações,
tornado-se altamente adaptável e escalável. Esse middleware suporta a criação da sua instância
IoT e pode nativamente interagir com outras instâncias de forma transparente. São apresentados a
arquitetura, os componentes e a forma de funcionamento do middleware, descrevendo a influência
recebida da Arquitetura de Microsserviços, bem como de Computação na borda e Computação
em Nevoeiro. É demonstrado que a proposta atendeu seus objetivos, permitindo a criação de
redes IoT em cenários heterogêneos, mantendo as suas funcionalidades. Por consequência, seus
usuários têm maior propriedade e confiança nos dados que manipulam na sua rede IoT. Ao longo
da pesquisa, alguns aspectos do middleware e/ou de IoT se destacaram, sugerindo a possibilidade
de serem melhor explorados para algum refinamento e/ou evolução. Destacam-se a necessidade
de aplicar técnicas de agentes inteligentes para melhorar a autonomia e o desempenho dos mid-
dlewares; de integrar com outros trabalhos cujo foco é a segurança do middleware e da instância
e de aplicar metodologias e ontologias voltadas à integração com middlewares de terceiros.

Palavras-chave: Internet das Coisas; IoT Adaptável; Middleware IoT; Computação em nuvem;
Computação na borda; Computação em nevoeiro.

CONTENTS

1 INTRODUCTION . 1
1.1 MOTIVATION . 4
1.2 OBJECTIVES . 5
1.3 RESEARCH METHOD . 6
1.4 RESEARCH CONTRIBUTIONS . 6
1.4.1 PUBLICATIONS RELATED TO THE THESIS . 7
1.5 OUTLINE . 8

2 BACKGROUND AND RELATED WORKS . 9
2.1 INTERNET OF THINGS . 9
2.1.1 IOT DEFINITIONS . 10
2.1.2 IOT REFERENCE ARCHITECTURE . 13
2.1.3 UNB IOT .. 15
2.2 CLOUD, FOG, AND EDGE COMPUTING . 16
2.2.1 CLOUD COMPUTING . 16
2.2.2 EDGE COMPUTING . 18
2.2.3 FOG COMPUTING . 19
2.3 MICROSERVICES . 20
2.3.1 CONTAINERIZATION AND DOCKER . 24
2.4 RELATED WORKS . 24

3 PROPOSAL OF AN ADAPTABLE AND SCALABLE IOT MIDDLEWARE 27
3.1 THE IOT INSTANCE . 27
3.1.1 SUPPORTED IOT ENTITIES . 28
3.2 THE PROPOSED IOT MIDDLEWARE . 29
3.2.1 IOT MIDDLEWARE FEATURES . 29
3.2.2 RELATIONSHIP BETWEEN IOT INSTANCES . 31
3.2.3 TRUST BETWEEN INSTANCES . 33
3.3 IOT PLATFORM DESIGN . 33
3.3.1 MIDDLEWARE ARCHITECTURE . 33
3.3.2 MIDDLEWARE ABSTRACT INTERFACES . 36
3.3.3 MIDDLEWARE COMPONENTS . 38
3.3.4 MIDDLEWARE ONTOLOGY . 44
3.3.5 MIDDLEWARE COMPONENTS DEPLOYMENT PROCEDURES 47
3.4 MIDDLEWARE SET UP FACTORS . 47
3.4.1 DEPLOYMENT SCHEME FACTOR . 47
3.4.2 SUPPORTED COMPUTATION MODEL . 48

viii

3.4.3 SOCIAL OPERATION MODE . 48

4 MIDDLEWARE USAGE SCENARIO . 51
4.1 STANDALONE OFF-GRID LOCAL SCENARIO . 51
4.2 HIERARCHICAL EDGE SCENARIO . 52
4.3 HIERARCHICAL FOG SCENARIO . 54
4.4 DISTRIBUTED SCENARIO . 55

5 EXPERIMENTS AND RESULTS . 56
5.1 TESTING GUIDELINES . 56
5.1.1 SCENARIO DESCRIPTION . 57
5.1.2 SIMULATED CONDITIONS . 58
5.1.3 ANALYSIS PROCESS . 59
5.2 TESTING THE TYPICAL CLOUD SCENARIO . 60
5.3 TESTING THE LOCAL STANDALONE SCENARIO . 63
5.4 TESTING THE FOG HIERARCHICAL SCENARIO . 67
5.5 ANALYSIS AND DISCUSSION . 70

6 CONCLUSION . 72
6.1 FUTURE WORKS . 73

BIBLIOGRAPHY . 75

APPENDIX . 82

I MIDDLEWARE STANDARD APIS . 83

II API SUMMARY . 85
II.1 DEVICE INTERFACE COMPONENT API. 85
II.2 APPLICATION INTERFACE COMPONENT API . 85
II.3 MIDDLEWARE INTERFACE COMPONENT API . 86
II.4 DIMS API . 87
II.5 USER INTERFACE COMPONENT API . 87

List of Figures

1.1 World population growth between 1950 and 2019 and its projection for 2050
(UNITED NATIONS, 2019) ... 1

2.1 IoT reference architecture despicted by Guth et al. (2018, Sec. II)....................... 13
2.2 UIoT middleware architecture presented in Silva et al. (2016a) 16
2.3 Edge computing paradigm in Shi et al. (2016) .. 19
2.4 Fog computing paradigm in Taneja & Davy (2016) ... 20
2.5 Lewis & Fowler (2014)’s sketch of Monoliths vs Microservices 22
2.6 Newman (2015)’s example of how Microservices can painlessly lead to a hetero-

geneous architecture ... 23

3.1 Ferreira & de Sousa Júnior (2017) sketch of different IoT instances that a moving
device can be part of ... 27

3.2 IoT architecture ... 28
3.3 Middleware’s types of supported interactions ... 32
3.4 Proposed IoT middleware architecture .. 35
3.5 ZigBee channel communication example .. 38
3.6 Admin UI screens .. 42
3.7 UIMS screens ... 43
3.8 Middleware macro-entities ... 44
3.9 Client entitiy ... 45
3.10 Service entitiy ... 45
3.11 Data entitiy... 46
3.12 Single vs distributed deployment ... 48
3.13 Local, fog computing, and cloud computing supported computational models 49
3.14 Standalone, hierarchical, cooperative and federated mode 50

4.1 Local standalone middleware usage: the middleware and its sensors 52
4.2 Edge and hierarchical middleware usage ... 53
4.3 Fog and hierarchical middleware usage ... 55

5.1 Cloud middleware testing architecture .. 60
5.2 Results of cloud middleware testing with raw data (time in milliseconds) 61
5.3 Distribution of the results for the cloud middleware for sanitized data (time in

milliseconds) .. 63
5.4 Local standalone middleware testing architecture .. 64
5.5 Results of local standalone middleware testing with raw data (time in milliseconds) 65
5.6 Distribution of the results for the local standalone middleware for sanitized data

(time in milliseconds) ... 66

x

5.7 Edge hierarchical middleware testing architecture ... 67
5.8 Results of fog computing middleware testing with raw data (time in milliseconds

times a thousand) ... 69
5.9 Distribution of the results for the fog computing middleware for sanitized data

(time in milliseconds times a thousand)... 69
5.10 Long running tests results for the local standalone middleware testing (time in

milliseconds) .. 71

List of Tables

2.1 UIoT system requirements ... 16

4.1 Building automation scenario example ... 54

5.1 Testing resources used in the thesis experiments ... 57
5.2 Test script breakdown ... 58
5.3 Cloud computing middleware testing response time in milliseconds with raw data . 61
5.4 Results for the cloud middleware for sanitized data (time in milliseconds) 62
5.5 Local standalone middleware testing response time in milliseconds with raw data .. 64
5.6 Results for the local standalone middleware for sanitized data (time in milliseconds) 66
5.7 Fog computing middleware testing response time in milliseconds with raw data 68
5.8 Results for the fog computing middleware for sanitized data (time in milliseconds) 68

I.1 Description of the Proposed IoT Middleware API ... 83
I.2 Proposed IoT Middleware API response codes ... 84

xii

List of Acronyms

General Acronyms

Ad Hoc Ad Hoc network
AI Artificial Inteligence
API Application Programming Interface
CBSE Componet-Based Software Engineering
CPS Cyber-Physical System
DBMS Database Management Systems
DDD Domain-Driven Design
DIY Do-it-yoursef
DL Deep Learning
ECG Electrocardiogram
ESB Enterprise Service Bus
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
ICT Information and communications technology
IP Internet Protocol
IPv6 Internet Protocol version 6
IQR Interquartile range
JSON JavaScript Object Notation
LAN Local area network
M2M Machine-to-machine
ML Machine Learning
MAC Media access control
MQTT Message Queue Telemetry Transport
MSA Microservices Architecture
NIST National Institute of Standards and Technology
NoSQL Non SQL (Structured Query Language) or Non Relational
PaaS Platform as a Service
P2P Peer-to-peer
QoS Quality of Service
RAM Random-access memory
REST REpresentational State Transfer
RFC Request for Comments
RFID Radio-frequency identification
RTT Round-trip time
SaaS Software as a Service

xiii

SBC Single-board computer
SPA Single page application
SOA Service-Oriented Architecture
TCP Transmission Control Protocol
ubi-comp Ubiquitous Computing
UDP User Datagram Protocol
UI User Interface
UPnP Universal Plug and Play
URL Uniform Resource Locator
URI Uniform Resource Identifier
vCPU Virtual CPU (Central processing unit)
WAN Wide area network
WSN Wireless Sensor Network
XML Extensible Markup Language

Internet of Things Related

IIoT Industrial Internet of Things
IoP Internet of People
IoT Internet of Things
SIoT Social Internet of Things

Related Softwares Proposed by Researchers

DIMS Data Interface Management System
FaaS4IoT Fog-as-a-Service for Internet of Things
HiCH Hierarchical Fog-Assisted Computing Architecture for Healthcare IoT
RAISe REST API Approach for IoT SErvices
UIoT UnB Internet of Things
UIMS User-friendly Interface Management System

Units of Measure

A Ampere
GB Gigabyte
GHz Gigahertz
MB Megabyte
Mbps Megabits per second
ms Millisecond
TB Terabyte

1 INTRODUCTION

From the beginning, population growth has been perceived and reported, although this growth
happens differently for each period, always related to historical events. According to Alves
(2013), the world population was 226 million in year 1. In the late 15th century, the world
population was already 438 million, in the late 16th, it was 556 million, in the late 18th, it had
reached 1 billion and by the late 19th century the total was over 1.5 billion. The Industrial and
Energy Revolution caused rapid demographic growth, reaching 6.1 billion inhabitants in the late
20th century. According to data made available by the United Nations, population growth has
increased sharply and the projection for 2050 is that the population will reach 9.8 billion people,
as shown in Figure 1.1. (UNITED NATIONS, 2019)

Figure 1.1: World population growth between 1950 and 2019 and its projection for 2050 (UNITED NATIONS, 2019)

With the exponential demographic growth in the twentieth century, the advance in technology,
especially in the food, freshwater and health sectors, is indispensable in order to optimize and
meet the demands of the population. Scientific and technological developments improved several
branches that were directly related to population mortality. Among them the development of
basic sanitation, improvement of diagnoses and cure for diseases, with diagnosis and treatment
equipment and chemicals, development of techniques for the production of food on a large scale
and with less waste and cost. This led to a decrease in infant mortality and an increase in life

1

expectancy. Even with natural disasters, urban violence, and epidemics, the world’s population is
still growing, albeit at a slow rate.

As a result, the technological revolutions contribute to the longevity of the population. Ac-
cording to United Nations (2019), life expectancy was almost 50 years old in the 1960s. It jumped
to 72 years in 2019 and is expected to reach almost 77 years in 2050. Moreover, this factor now
contributes to the population ageing: UN estimates that the percentage of people over 65 years
of age will increase from 9% in 2019 to 16% in 2050. This suggests it is necessary to provide
adapted assistance, especially for the older age group and for people with special needs.

In order to meet the demand of this large and growing population and to optimize the in-
creasingly scarce physical space, further evolution is needed in the production, distribution and
conservation of food, freshwater and medicine. This evolution implies a more sustainable use of
the resources already accessed because it is no longer defensible that, as exhibited by Kamien-
ski et al. (2019), agricultural activities continues to consume 70% of the freshwater available in
the world. Thus, it is necessary to develop a means of improving the use of already occupied
spaces and available resources, and to reuse the scrap produced, moving towards environmental
sustainability.

The Internet of Things (IoT) has shown its potential to support this process by making en-
vironments and objects more intelligent. An intelligent environment has the ability to increase
production potential and minimize losses. For example, a smart garden on the roof of a building
can be used for food production with minimal human intervention. This type of system can make
the necessary adjustments to light, nutrients and humidity to influence plant development.

One feature that has been leveraging IoT adoption and development is inherited from the
Maker or Do-it-yourself (DIY) culture: It is possible to build an IoT solution using technologies
and tools available in people’s daily lives; especially open software, open hardware and cloud
computing solutions. This has allowed onlookers and makers to rehearse the building of small
room automation solutions. Although these solutions are quite simple, they mean some advance
to the places where they are applied. Another interesting effect is that academia also reaps the
same benefit; it becomes possible to start research on IoT solutions in isolation without relying
on technology transfer from laboratories or manufacturers.

On the financial side, IoT also proves to be a very attractive solution because its components
are often low cost solutions. On several occasions, makers have come up with a way to automate
many processes and, more recently, IoT solutions that cost a few hundred dollars. Academics also
benefit from the same situation because it is possible to start research on IoT solutions with few
financial resources.

In addition to simulated or evaluative situations, IoT, Cyber-Physical Systems (CPS) and their
variations are already used in real-world situations to solve real-world problems:

• Smart Grids have been tried since the late 2000s;

2

• Smart Cities have been studied since the early 2010s, and;

• Smart Watches recording the number of steps has become popular since 2015.

But, a distinction must be made: the automatic response to a simple and isolated stimulus
does not fit well with the IoT proposal. IoT proposes to make the environment do its tasks with
minimal human intervention possible and this implies the need to consider several variables, with
stimuli from the most diverse sensors.

To differentiate the two cases, consider the following examples: if a room light comes on
when a presence sensor detects a person’s presence, it’s a non-IoT-compliant automation solu-
tion. If you add a light sensor that gives the light the ability to check if the environment is already
clear when a person’s presence is detected, it is still an automation solution. If you add a person
identification mechanism so that the light only activates according to the detected person’s pref-
erence and this dataset and operations are shared with other devices, this would be a typical IoT
scenario.

Achieving this kind of result requires the use of Artificial Intelligent (AI) mechanisms such
as Machine Learning (ML) and Deep Learning (DL). However, both ML and DL become more
efficient as they have more data to be used as input for training and model validation. This requires
the gathering and handling of larger data volumes by IoT solutions.

Because IoT principles and objectives are well defined, there is some similarity in their
adopted architectural standards as well as in some of the technologies used. However, there is
no definition of the standards, norms and technologies that should be used or respected. Consid-
ering that the elementary building blocks of IoT are low cost and resource constrained sensors and
actuators, and there is a need for these devices to communicate via the Internet, cloud computing
is a consensus among the proposed IoT solutions. This is due to the ease of storing and processing
large volumes of data with dynamic resource allocation.

The offered benefits notwithstanding, the use of cloud imposes some limitations such as re-
liance on stable, secure connectivity and within Transmission Control Protocol/Internet Protocol
(TCP/IP) protocols to use the Internet as a means, and insecurity regarding the security and pri-
vacy of the collected and produced data.

Although there are discussions about where and how to use IoT and CPS, it is a fact that they
are here to stay and will gain more and more space in people’s lives. A curious factor about this
is that people are increasingly immersed in IoT solutions without realizing it. A great example
of this is the Home Media and Home Assistants platforms from companies like Amazon, Apple
and Google. As a result, the discussion around these sensitive issues is misunderstood in order to
gain their benefits and minimize their risks and side effects.

Given the limitations inherent in IoT solutions and concerns about the availability, reliability,
and privacy of information, fog computing presents itself as an option to help address these issues
properly. Fog computing is a computing model in which computational resources are deployed

3

in servers on the Internet and on the network itself (YI; LI; LI, 2015). Because it allows the IoT
solution to remain low cost and decentralization of rules and information can be used as a tool to
increase data security.

In this context, fog IoT middleware is proposed, utilizing fog’s flexibility and portability,
maintaining the low cost feature and giving its user ownership of their data, giving them the
ability to centralize or distribute this data. The proposed solution must still have the ability to
integrate with other cloud or fog solutions.

1.1 MOTIVATION

The centralization of device management and the processing of the data that is produced and
used by them is a strategy that has some tradeoffs. On one hand, it facilitates system configuration
and enhances resource utilization. On the other hand, it increases the volume of data being traf-
ficked and, consequently, the effort employed in transforming this data into useful information.

This philosophy is employed by major Internet Age corporations like Google and Amazon
because their business strategy is based on getting as much data as possible for profitable infor-
mation generation. However, this scenario is not best suited for IoT solutions that have a specific
purpose. For example, a smart vegetable garden in a neighborhood need not know the route
someone is taking when walks to the market in another city.

In addition, distributed applications (such as IoT) are vulnerable to typical data communi-
cation problems such as channel availability, signal interference, communication latency, and
throughput. Thus, high network latency in traditional IoT cloud architecture becomes a deterrent
for applications that need near real-time responses. There are also scenarios in which some re-
striction on Internet connectivity makes the use of conventional IoT cloud architecture inefficient
or even impracticable. This is especially true in places with poor telecommunication infrastruc-
ture that has an intermittent connection, a low speed signal or an unstable signal.

Just as there is no consensus on architecture and technologies, IoT is built on a wide variety of
communication protocols and standards. In addition to the syntactic difficulty, there is a semantic
difficulty: there is no consolidated ontology for dealing with data and the relationship between
IoT devices. As a result, each manufacturer adopts the technology and ontology stack that suits
them best, creating silos around their products and solutions. This factor makes it difficult and, in
some cases, makes it impossible to integrate different products.

In addition to this, the Internet environment carries itself several inherent vulnerabilities to
this type of network. Thus, the collaboration of some cloud providers and governments is not
transparent as revealed by Snowden. Moreover, recent cases of data leaks on cloud platforms
such as Amazon and Yahoo have drawn much negative attention to these services. This scenario
creates distrust and insecurity, which hinders some people from choosing to use cloud-based IoT
solutions. (CITIZENFOUR, 2014)

4

Fog computing arises as an interesting option for dealing with issues such as centralizing
control and data, use in context with poor connectivity, the need for interoperability, and the
concerns with the security of the information exposed in this work.

However, when using fog computing, it is necessary to create an ecosystem with distributed
units that communicate between themselves. This implies the need to carry all or parts of the
solution to other platforms options. This portability of middleware or its components to run on
other systems is made difficult by the use of monolithic architectural patterns. To overcome this
problem, it is also necessary to work in the field of software engineering to enable the adoption
of this strategy.

1.2 OBJECTIVES

Given the difficulties of developing robust IoT applications and awareness of the necessary
actions to be taken to ease the deploying and scaling of the IoT applications, the following re-
search question arises: do the flexibility and orchestration proposed by fog computing and dis-
tributed computing actually allow you to create a secure and efficient infrastructure that caters
for standard IoT users as well those users with constrained connectivity and/or those with privacy
concerns?

With the purpose of answering this question, this master thesis pursues the hypothesis: an
adaptable and scalable IoT can provide data ownership to its owners, have lower network latency,
be cheaper and more flexible for different usage scenarios compared to cloud-centric IoT.

With this in mind, the main objective of this thesis is to propose an adaptable and scalable
IoT middleware for building IoT networks in both cloud-based infrastructure and scenarios
that are restricted or unable to use this conventional cloud architecture. This adaptable and
scalable IoT middleware must allow its data and services to be used locally by its owner, and
must also be able to be shared with third parties in accordance with established policies. The IoT
network provided by this middleware must have access to all capabilities offered for a global IoT
network.

To achieve this main goal, several secondary objectives have been defined:

• Refine and implement the IoT architecture in a distributed manner by reviewing middleware
roles and components;

• Design ontologies for interoperability between services offered by devices;

• Design Microservices Architecture at the IoT gateway and middleware to support commu-
nication with devices with different requirements;

• Explore the use of containers and Microservices Architecture in middleware;

5

• Explore the use of miniaturized computers to build middleware into portable, easy-to-install
equipment, and;

• Design mechanisms to enable the use of middleware in connectivity-constrained scenarios.

1.3 RESEARCH METHOD

This work has an empirical nature with the purpose of exploratory research and quantitative
approach. Bibliographic research was conducted through an empirical and exploratory process
aiming to raise the state of the art regarding the themes related to this work. The study covered an
investigation into IoT and its application areas, as well as the elements that compose them. From
this investigation, the scope of the work was delimited in the IoT middleware “minimization” and
“cooperative”. Minimization aims to enable it to work in simpler hardware configurations such as
a single-board computer (SBC) called Raspberry Pi. The cooperation aims to make it expandable,
resilient and, while maintaining its low cost, have a good processing and storage capacity.

To contemplate this scope, two questions were latent: Microservices and fog computing. The
Microservices Architecture fits well with the issue of middleware minimization, allowing you to
think about its refactoring while respecting its interfaces. Separating the components into smaller
and single purpose pieces was the chosen strategy. Fog computing model brings all the baggage
on the logic of interaction and cooperation between middleware instances, with a special focus
on resource and data sharing among nodes participating in the network.

For the development and experimental implementation, scenarios and resources available in
the LATITUDE laboratory were used, so that it focused on small available telemetry and automa-
tion solutions.

As the prototype concluded, laboratory experiments were performed to validate issues that
drew more attention in the studies in the UIoT project. The empirical methodology was used to
evaluate the results. The collected data were extracted from laboratory observation mechanisms.
Thus, the proposal was evaluated and considered viable to answer the research question.

1.4 RESEARCH CONTRIBUTIONS

According to the objectives described, the main contributions of this work are:

• Definition of low-cost IoT middleware that enables IoT to be used off-grid and in restricted
Internet connectivity scenarios

• Definition of an IoT middleware compatible with the fog computing paradigm, specifying
its architecture and the rules of interaction of its components;

6

• Functional implementation of the IoT architecture proposal in order to validate said pro-
posal, and;

• Platform consolidation to allow studies on peer-to-peer (P2P) and Oportunistic Networks.

1.4.1 Publications related to the thesis

The following list contains the publications we made related to this thesis. They are chrono-
logically presented along with a brief summary of their content that highlights the contributions
included on them.

1. CALDAS FILHO, F. L. d.; MARTINS, L. M. C. e.; ARAÚJO, I. P.; MENDONÇA, F. L.
L. d.; COSTA, J. P. C. L. d.; DE SOUSA JÚNIOR, R. T. Gerenciamento de Serviços IoT
com Gateway Semântico [IoT Service Management with Semantic Gateway]. In: Atas das
Conferências IADIS Ibero-Americanas WWW/Internet 2017 e Computação Aplicada 2017.
Vilamoura, Algarve, Portugal: IADIS Press, 2017. p. 199–206. ISBN 978-989-8533-70-8.;

2. MARTINS, L. M. C. e.; CALDAS FILHO, F. L. d.; DE SOUSA JÚNIOR, R. T.; GIOZZA,
W. F.; COSTA, J. P. C. L. d. Proposta de Adoção de Microsserviços em IoT [Proposal of IoT
Microservice Adoption]. In: Atas das Conferências IADIS Ibero-Americanas WWW/Inter-
net 2017 e Computação Aplicada 2017. Vilamoura, Algarve, Portugal: IADIS Press, 2017.
p. 63–70. ISBN 978-989-8533-70-8.;

3. CALDAS FILHO, F. L. d.; MARTINS, L. M. C. e.; ARAÚJO, I. P.; MENDONÇA, F.
L. L. d.; COSTA, J. P. C. L. da; DE SOUSA JÚNIOR, R. T. Design and Evaluation of a
Semantic Gateway Prototype for IoT Networks. In: Companion Proceedings of the 10th
International Conference on Utility and Cloud Computing. Austin, TX, USA: ACM, 2017.
(UCC ’17 Companion), p. 195–201. ISBN 978-1-4503-5195-9.;

4. MARTINS, L. M. C. e.; CALDAS FILHO, F. L. d.; DE SOUSA JÚNIOR, R. T.; GIOZZA,
W. F.; COSTA, J. P. C. L. da. Increasing the Dependability of IoT Middleware with Cloud
Computing and Microservices. In: Companion Proceedings of the10th International Con-
ference on Utility and Cloud Computing. Austin, TX, USA: ACM, 2017. (UCC ’17 Com-
panion), p. 203–208. ISBN 978-1-4503-5195-9.;

5. SPERLING, T. L. von; CALDAS FILHO, F. L. de; DE SOUSA JÚNIOR, R. T.; MARTINS,
L. M. C. e; ROCHA, R. L. Tracking intruders in IoT networks by means of DNS traffic
analysis. In: 2017 Workshop on Communication Networks and Power Systems (WCNPS).
Brasília, DF, Brazil: IEEE, 2017. p. 1–4.;

6. RIBEIRO, C. F. C.; CALDAS FILHO, F. L. d.; MARTINS, L. M. C. e; ABBAS, C. J. B.; DE
SOUSA JÚNIOR, R. T. Protocolos de Redundância de Gateway Aplicados em Redes IoT.
In: Anais do XXXVI Simpósio Brasileiro de Telecomunicações e Processamento de Sinais
(SBrT 2018). Campina Grande, PB, Brazil: SBrT, 2018. p. 1065–1069.;

7

7. SPERLING, T. L. von; FRANÇA, B. de A.; CALDAS FILHO, F. L. de; MARTINS, L.
M. C. e; ALBUQUERQUE, R. de O.; DE SOUSA JÚNIOR, R. T. Evaluation of an IoT
device designed for transparent traffic analysis. In: 2018 Workshop on Communication Net-
works and Power Systems (WCNPS). Brasília, DF, Brazil: IEEE, 2018. p. 1–5.;

8. POLETTI, J. V.; MARTINS, L. M. C. e; ALMEIDA, S.; HOLANDA, M.; DE SOUSA
JÚNIOR, R. T. A Real Data Analysis in an Internet of Things Environment. In: INSTICC.
Proceedings of the 4th International Conference on Internet of Things, Big Data and Secu-
rity - Volume 1: IoTBDS,. Heraklion, Crete, Greece: SciTePress, 2019. p. 438–445. ISBN
978-989-758-369-8.;

9. DUTRA, B. V.; ALENCASTRO, J. F. de; CALDAS FILHO, F. L. de; MARTINS, L. M. C.
e; DE SOUSA JÚNIOR, R. T.; ALBUQUERQUE, R. de O. HIDS by signature for em-
bedded devices in IoT networks. In: UNIVERSIDAD DE EXTREMADURA. Actas de las
V Jornadas Nacionales de Investigación en Ciberseguridad (JNIC 2019). Cáceres, Spain,
2019. p. 53–61. ISBN 978-84-09-12121-2.;

10. CALDAS FILHO, F. L. de; ROCHA, R. L.; ABBAS, C. J. B.; MARTINS, L. M. C. e;
CANEDO, E. D.; DE SOUSA JÚNIOR, R. T. QoS Scheduling Algorithm for a Fog IoT
Gateway. In: 4th Workshop on Communication Networks and Power Systems (WCNPS
2019). Brasília, DF, Brazil: IEEE, 2019. p. 122–127..

1.5 OUTLINE

Besides this introduction, this master thesis is divided as follows: Chapter 2 explores the
background for IoT, Microservices and cloud, edge and fog computing. Chapter 3 proposes the
IoT platform concept and a concept’s implementation. Chapter 4 depicts the IoT middleware
usage possibilities, using hypothetical scenarios. Chapter 5 presents the testing methodology for
validating the proposal and the testing data results are shown and discussed in terms of proposal
validation. Finally, Chapter 6 draws conclusions based on the information presented in this thesis.

8

2 BACKGROUND AND RELATED WORKS

In first instance, this Chapter presents all concepts and methods used to build the proposed
adaptable and scalable IoT and the Chapter also to points it out from other works. First of all,
Section 2.1 describes IoT itself, its architecture, its usage, a brief discussion about Social IoT and
the University of Brasília IoT (UIoT) project. Next, Section 2.2 discusses computing paradigms
of XXI Century such as cloud, fog and edge computing. Section 2.3 presents the Microservices
Architecture and its implications. Finally, Section 2.4 presents the works that are somehow related
with this research.

2.1 INTERNET OF THINGS

Telemetry and remote monitoring of resources and environments have several advantages such
as increased security, resource savings, and fostering nature studies. Supported by advances in
computing and communication technologies since the beginning of the XX century, industry and
academia are devoting significant efforts to explore it expecting take advantage of what it can
undertake.

The Wireless Sensor Network (WSN) represents a major breakthrough in this area. As stated
by Gubbi et al. (2013), a WSN consists of grouping dedicated wireless sensors that are distributed
in a spatial region for the purpose of reading (sensing) and writing physical data specific to that
environment, as well as storing and manipulating this data in a centralized and grouped man-
ner.Authors described that WSNs are widely used in environmental monitoring, infrastructure
monitoring, traffic monitoring, and retail. They also say that with the popularization of the In-
ternet since the late 1990s, telemetry techniques, including WSNs, began to use the Internet as a
means of communication.

In 1999, Ashton (2009) coined the term IoT to say that “[w]e need to empower computers
with their own means of gathering information, so they can see, hear and smell the world for
themselves [...]” to use the data obtained to help us interact with this physical world. He pointed
out that people are physical beings living in a physical world and that digital information must
come into the physical world for real utility. Also in Ashton (2009), author further argued that
there was a great separation between the physical and the digital world, with the aggravating fact
that almost all information manipulated by computers and the Internet was produced and fed by
humans in the most diverse possible interactions: typing, photography, audio recording, scanning
a bar code.

In its initial view, IoT was thought of as using recent technologies at the time as radio-
frequency identification (RFID) to link these physical devices in the context of supply chains
(ASHTON, 2009; GUBBI et al., 2013). However, soon IoT became broader and it has being

9

applied in situations such as:

• Smart home/building: control of home equipment and environmental monitoring of enter-
prise’s facilities - will allow better resource management; (GUBBI et al., 2013)

• Living assistance: healthcare monitoring system for sick person and home monitoring sys-
tem for elderly care - reducing hospitalization costs through early intervention and treat-
ment by moving from the clinic-centric treatment to patient-centric healthcare (GUBBI et
al., 2013; FARAHANI et al., 2018). Azimi et al. (2017, p. 174:2) highlights that “[t]he main
function of automated health monitoring systems is to detect medical emergencies and pa-
tient health deterioration early enough, as rapid response [...] is instrumental to implement
effective countermeasures”;

• Smart city: aiming to handle urban mobility issues, population’s health and well-being,
provision of services to the inhabitants; (GUBBI et al., 2013)

• Smart agriculture: farming has a broad set of applications that can be built with IoT. Such
as, irrigation management, treatment of soil quality, pest control, harvest performance or
measurement. It can contribute to increase the productivity and sustainability specially
by using machine-to-machine (M2M) operations; (GUBBI et al., 2013; NÓBREGA et al.,
2019)

• Smart metering: is the constant monitoring of services provided to its customers, both mon-
itoring endpoints and distribution points that are of interest to the service provider; (GUBBI
et al., 2013)

• Smart grid: coupled with monitoring, has the ability to make the electrical production and
distribution system adapt to the needs of the moment; (GUBBI et al., 2013)

• Water networks: as with smart grids, water distribution can be monitored and adapted ac-
cording to demand. In addition, IoT systems can be used to constantly check water quality;
(GUBBI et al., 2013)

• Industry 4.0: called the Fourth Industrial Revolution, treats with the interaction of manufac-
turing systems with the physical environment to manage the production process and opti-
mize the resources used, and it results of intersecting studies in smart factory, energy man-
agement and IoT (SHROUF; ORDIERES; MIRAGLIOTTA, 2014; ZHONG et al., 2017).
Shrouf, Ordieres & Miragliotta (2014) recalls that a basic principle of Industry 4.0 is to
monitor work in progress in real time to make smart decisions in cooperation with humans,
as Zhong et al. (2017) points out.

2.1.1 IoT definitions

There is no consensus on the exact definition of IoT and this issue is natural considering that
it has influences from academic concepts that were already in use such as telemetry and WSN. As

10

well as it has emerged from a variety of experiments in industry and academia. In the following
paragraphs, it is presented, in chronological order, some coined definitions for IoT that were
considered in this research.

• Ashton (2009, online): computing power can be used to better manage things by empow-
ering these computers to acquire data from the physical world without the need for human
intervention, so that “[w]e would know when things needed replacing, repairing or recalling,
and whether they were fresh or past their best.”

• Guillemin & Friess (2009, p. 4), cited by Perera et al. (2014, Sec. II): “The Internet of
Things allows people and things to be connected Anytime, Anyplace, with Anything and
Anyone, ideally using Any path/network and Any service.”

• Atzori, Iera & Morabito (2010):

The Internet of Things (IoT) is a novel paradigm that is rapidly gaining ground
in the scenario of modern wireless telecommunications. The basic idea of this
concept is the pervasive presence around us of a variety of things or objects –
such as Radio-Frequency IDentification (RFID) tags, sensors, actuators, mobile
phones, etc. – which, through unique addressing schemes, are able to interact with
each other and cooperate with their neighbors to reach common goals. (ATZORI;
IERA; MORABITO, 2010, p. 2787)

• Atzori et al. (2012):

The Internet of Things (IoT) integrates a large number of technologies and en-
visions a variety of things or objects around us that, through unique addressing
schemes and standard communication protocols, are able to interact with each
others and cooperate with their neighbors to reach common goals. (ATZORI et
al., 2012, p. 3594)

• Gubbi et al. (2013):

Interconnection of sensing and actuating devices providing the ability to share in-
formation across platforms through a unified framework, developing a common
operating picture for enabling innovative applications. This is achieved by seam-
less ubiquitous sensing, data analytics and information representation with Cloud
computing as the unifying framework. (GUBBI et al., 2013, p. 1647)

• Borgia (2014):

The Internet of Things (IoT) is a new paradigm that combines aspects and tech-
nologies coming from different approaches. Ubiquitous computing, pervasive
computing, Internet Protocol, sensing technologies, communication technologies,
and embedded devices are merged together in order to form a system where the

11

real and digital worlds meet and are continuously in symbiotic interaction. (BOR-
GIA, 2014, p. 1)

Ubiquitous computing is an area of computer science focused on making the interaction of
machines and humans more natural and seamless (WEISER; GOLD; BROWN, 1999).

• Silva et al. (2016a, Sec. 1): “all application comprising objects or devices that can interact
with other objects and applications over the internet.”

• Alaba et al. (2017, p. 11): “IoT is a realm where physical items are consistently integrated
to form an information network with the specific end goal of providing advanced and smart
services to users.”

• Muccini & Moghaddam (2018, Sec. 4.1): “IoT is the internal/external communication of
intelligent components via internet in order to improve the environment through proving
smarter services.”

• Roopa M.S. et al. (2019, p. 32): “Internet of Things (IoT) paradigm connects physical world
and cyberspace via physical objects and facilitate the development of smart applications and
infrastructures.”

The definitions presented may differ from the technological resources envisioned at the time
they were concepted, but they clearly establish the purpose of IoT: the technology integration with
the environment in order to deliver intelligent and seamless service to the user.

In this work, it is embraced a broader definition, as stated in Caldas Filho et al. (2017a, p. 195)
summarizing ideas from Borgia (2014), Gubbi et al. (2013): Internet of Things “is a paradigm for
building computer systems distributed throughout the Internet, in which, the most diverse devices,
objects and things will be connected and interacting with applications to extend various services
to people”. Thus, it is also contemplated that IoT can allow interaction at any time, anywhere,
with anything or anyone, ideally using any path and any device.

Furthermore, it is highlighted some issues that are already consensus among the authors: in-
teraction of objects with the Internet, data center resource utilization, and Ubiquitous Computing.

Objects must have some type of internet connectivity. As needed, it should be possible to
access or allow them to access the Internet. Authors in Gubbi et al. (2013) go further and argue
that with the adoption of technologies such as Internet Protocol version 6 (IPv6), all objects should
be published on the Internet.

To remain simple, smart objects, sensors and actuators must use stronger and external compu-
tational resources to store data as well as to extract value from this raw data. For this, data center
resources should be allocated, especially in cloud computing.

Support for Ubiquitous Computing, or simply ubi-comp, is a hallmark and very intrinsic to
IoT. Several authors of IoT works discuss and design systems announcing features “seamlessly”
and “automatically”. Although they does not mention this field of computer science, their work

12

is clearly influenced by ubi-comp without. Weiser, Gold & Brown (1999, p. 694) explain that
“the physical world that is richly and invisibly interwoven with sensors, actuators, displays, and
computational elements, embedded seamlessly in the everyday objects of our lives, and connected
through a continuous network.”

2.1.2 IoT reference architecture

The works in Guth et al. (2018), Muccini & Moghaddam (2018), Mineraud et al. (2016)
explore the architecture of IoT platforms, presenting their features and characteristics. They also
presents their considerations on open issues and gaps in the field. It is important to highlight the
IoT reference architecture depicting its components and their intercommunication described by
Guth et al. (2018) and shown in Figure 2.1 with its components are sensors, actuators, devices,
gateway, middleware, and applications. The IoT reference architecture and its components will
be discussed in the following paragraphs to support the reading of Chapter 3.

Figure 2.1: IoT reference architecture despicted by Guth et al. (2018, Sec. II)

Sensors are equipment deployed in the physical environment with the mission of reading
a condition of that environment and converting it into electrical signals. They are connected or
embedded to devices that are able to interpret and make sense of the electrical signals they receive
from sensors. Sensors are commonly connected to device by wires, wireless or a cutting-edge
shape.

Actuators are equipment installed in the physical environment capable of converting electrical
signal into some action in the physical environment. In opposite way, they are capable of con-
verting received electrical signal into some action in the physical environment. This action can be
performed by creating some optical, sound, magnetic, electrical or mechanical effect according
to the “command” received.

13

Devices, also called as objects, smart objects and smart devices, are hardware components
that are capable of feeling or acting upon the physical environment in which they are inserted.
Guth et al. (2018) also defines devices as hardware components that are attached to sensors and
actuators by a software layer called Driver. Similar to the operating systems’ “device drivers”
described by Tanenbaum & Bos (2015), the drivers are the software layer capable of interpreting
data exchanged with sensors and actuators. The set composed by device and sensor forms the IoT
perception layer (MUCCINI; MOGHADDAM, 2018).

Guth et al. (2018) also point out that devices can be self-contained or connected to another
system. In the former, it operates in isolation, forming a system that operates according to pre-
defined behaviors. For example, an isolated automatic door that triggers its actuator to open the
door as soon as its presence sensor detects a person approaching. In the latter, it operates inter-
connected to an IoT gateway or an IoT middleware. Authors in Shah-Mansouri & Wong (2018)
mention that IoT devices can suffer from limited processing means.

An IoT Gateway is the component that helps devices to connect to further systems when they
have any kind of limitation to reach the system. The IoT gateway is an optional component for
devices that are not restricted to find their middleware or target system. To achieve this purpose,
the gateway implements the necessary technologies to provide the interaction of the devices with
the desired system. This gateway implementation includes protocols such as Message Queue
Telemetry Transport (MQTT) and ZigBee, data representation formats such as JavaScript Ob-
ject Notation (JSON), Extensible Markup Language (XML), and MessagePack, as well as target
system-specific security procedures. (GUTH et al., 2018; CALDAS FILHO et al., 2017a).

Typically, IoT gateways are deployed on the client’s local network. Considering its capillarity
and proximity to the end user, it can be used to perform other tasks. For example, Caldas Filho
(2019) proposes that it should optimize wide area network (WAN) communication from the local
IoT network to the system’s core over the Internet.

In a typically distributed systems that can be composed by heterogeneous components as IoT,
it is necessary to include a “middleware” that can communicate and integrate with the various
underlying networks, hardware, operating system, programming languages, protocols and pat-
terns. The term middleware is used to define this kind of software that is at the center of the
distributed system and the complexity around this kind of software is sometimes unseen because
they operates over Internet protocols. (SOMMERVILLE, 2016; COULOURIS et al., 2012)

Sommerville (2016) also highlights that, in a broad sense, a middleware has two types of
support: the interaction support and the provision of common services.

In the IoT reference architecture presented by Guth et al. (2018), the IoT middleware is called
“IoT Integration Middleware”. They described it as responsible for receive and evaluate devices
data, as well it should send commands to the actuators. Mineraud et al. (2016) adds the concept
of IoT platform that is defined as the middleware and infrastructure that enables smart object
interaction.

14

IoT middleware has many features to make the IoT network work. Thus, they are complex
software with robust architectures to be able to extract some useful information in the most diverse
ways in which it receives the data.

IoT applications are software built to make use of the IoT network so that they can consume
data from the middleware as well it can produce data to it. They are usually specialized systems
that work in specific purposes. In other words, they are softwares that gain insight into the phys-
ical environment. Architecturally speaking, it is a freer layer that interacts with IoT middleware
by Web services and is installed and used in many different ways. Actually, many of these IoT
applications are in mobile architecture. (GUTH et al., 2018)

2.1.3 UnB IoT

The UIoT is an IoT project developed at the University of Brasilia since early of 2013. The
term UIoT stands for UnB Internet of Things. Sometimes, it is also called Universal IoT because
of its goal: propose an IoT architecture and middleware capable of tracking and reporting the
current state of generic devices. Authors in Ferreira, Canedo & de Sousa Júnior (2013), Ferreira
et al. (2014), Ferreira, Canedo & de Sousa Júnior (2014) gradually make progress, culminating in
the first version of the middleware that was consolidated in the master thesis presented in Ferreira
(2014). In the Ferreira’s thesis, it is proposed an IoT middleware architecture to “track and notify
current status of generic devices”. In the proposal, it defines the use of Universal Plug and Play
(UPnP) as well as specifies the physical and logical components of this architecture that allow
interaction with these intelligent objects.

In 2016, it is presented the second version of the project. Initially, Silva et al. (2016a) refines
and evolves this vision by consolidating its Application Programming Interface (API) and its
architecture’s protocols. Then, in Silva et al. (2016b), it is proposed to replace UPnP by a self-
registration process in which the device itself, aware of its context, becomes responsible for the
initiative of its participation in the network.

The UIoT middleware presented in Silva et al. (2016a) is a monolithic software composed of
two modules, the REST API Approach for IoT SErvices (RAISe) and the User-friendly Interface
Management System (UIMS), as shown in Figure 2.2.

RAISe is the middleware’s core module and its features are: data persistence, provide API
interface for access to IoT network data and services; authorization management of clients with
network access, and; provide user interface for IoT network administrators. At both ends of its
architecture are API interface and the database management systems (DBMS) connector which
in turn is attached to the database. And, in between, it is a robust logical multilayered software,
namely, Data Access Layer, Business Logic Layer, and Presentation Layer. In addition to provid-
ing the API, Presentation Layer also has an user interface (UI) that allows you to query data as
well as manage middleware settings and operations.

UIMS is designed to provide data visualization on the IoT network, focusing on the end user.

15

Figure 2.2: UIoT middleware architecture presented in Silva et al. (2016a)

To this end, its project comprises the use of graphical data display techniques, including time
series.

Both modules used DBMS Couchbase to store their data. Couchbase is a NoSQL data repos-
itory that is a big data centric database.

Its design was focused on the cloud environment and caused middleware to take a lot of
infrastructure resources to run satisfactorily. The middleware required the configuration described
in Table 2.1 to service the approximately 30 devices that were part of its network at LATITUDE
laboratory.

Table 2.1: UIoT system requirements

Software Requirements description
Couchbase 16 vCPU, 16 GB RAM, and 1 TB of storage
RAISe 4 vCPU, 4 GB RAM, and 500 MB of storage
UIMS 2 vCPU, 2 GB RAM, and 500 MB of storage

2.2 CLOUD, FOG, AND EDGE COMPUTING

The need for resource optimization and the increased integration between systems led the
information and communications technology (ICT) area to explore new computational models.
This Section introduces cloud, fog, and edge computing models.

2.2.1 Cloud Computing

As stated by Mell & Grance (2011), cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing resources that
can be rapidly provisioned and released with minimal management effort or service provider
interaction.

16

Computing resources have been shared since the 1960s when, to make the cost of operating
large computers cheaper, their processing time was divided among several users. This sharing
increased from the interconnection of these computers in communication networks, especially
with the Internet.

In the early 2000s, e-commerce and online services were established as profitable business
models and, as they were consolidated, it demanded more ICT infrastructure to support their
business. So they evolved how to manage data centers so that services are delivered reliably
and cost-effectively. Some companies that had a large structure to support their online businesses
realized that they could “lease” some of their idle infrastructure resources. This model was named
cloud computing.

This business model has been leveraged by technological advances such as increased Internet
link throughput, data center virtualization, and the use of server allocation, configuration and
management automation techniques and tools.

To regulate and encourage the use of cloud computing in the United States Government, the
National Institute of Standards and Technology (NIST) produced some reports. In Mell & Grance
(2011), authors define five essential characteristics all cloud service must exhibit: on-demand self-
service, broad network access, resource pooling, rapid elasticity, and measured service. In an “on-
demand self-service”, the costumer performs by himself/herself all actions to provision computer
capabilities without human interaction with the service provider. In a “broad network access”,
computer resources are accessible over the network through thin or thick client platforms. In a
“resource pooling”, service provider shares computer capabilities with multiple clients in order to
resources utilization rates. In a “rapid elasticity”, computer resources can be elastically scale by
adding more resources and remove unneeded capability when demand decrease. In a “measured
service”, service providers should have metering capability in order to properly monitor and report
the client resource usage and Quality of Service (QoS).

2.2.1.1 Hosting Models

Hosting models refer to the access and availability of the cloud computing environment. Com-
putational clouds can be categorized as public, private, community, or hybrid (SOTOMAYOR et
al., 2009; VOORSLUYS; BROBERG; BUYYA, 2011):

• Public Cloud: Infrastructure is maintained by a business, academic, government organi-
zation, or a combination of them. Users, knowing the location of the service, access this
infrastructure using appropriate access control mechanisms.

• Private Cloud: Access to and use of infrastructure is unique to an organization and may be
maintained by the organization itself, third parties, or a combination of them;

• Community Cloud: Infrastructure is shared by multiple organizations collaboratively and
can be maintained by one or more of these organizations, and;

17

• Hybrid Cloud: Consists of two or more clouds of distinct hosting models.

2.2.1.2 Service Models

The service models that are offered in the cloud computing paradigm can be divided into
categories according to the level of capacity abstraction provided and the service model of the
providers. In the literature it is possible to find proposals with more than three categories. How-
ever, the most common is the division of services into Infrastructure as a Service, Platform
as a Service, and Software as a Service, as they are described as it continues (VOORSLUYS;
BROBERG; BUYYA, 2011):

• Infrastructure as a Service (IaaS): In IaaS the user controls the operating systems, storage
resources and applications. Eventually, you can select network components. Thus, the
consumer is offered computational resources essential for the construction of an on demand
application environment, such as storage, network, among others. To enable interaction
with computing devices, IaaS provides a single interface for infrastructure administration,
storage and communication. In addition, IaaS provides support for adding new components
in a simplified and transparent manner. However, cloud infrastructure administration or
control is not the responsibility of the user;

• Platform as a Service (PaaS): In this model the user has control of the deployed applications
and their settings. However, unlike IaaS, the user does not manage or control the underlying
infrastructure such as operating systems, storage and network resources;

• Software as a Service (SaaS): the user does not manage or control the underlying infrastruc-
ture or individual application characteristics except very specific configurations.

2.2.2 Edge Computing

Some applications may require a very short response time. They often involve private data
and can produce a large volume of data and can generate a heavy load on networks. Data is
increasingly produced at the network edge making it more efficient to process the data also at the
network edge. Thus, edge computing has emerged as a model which processing takes place at the
ends of the network rather than at a central point (SHI et al., 2016).

In this model, the resources of an edge server are placed on the internet edge close to mobile
devices, sensors, end user and emerging IoT. The edge is usually located just a step away from
the end devices. Such devices are not only data consumers, but also serve as data producers (SHI;
PALLIS; XU, 2019). Processing at the edge layers significantly reduces the communication vol-
ume between devices and the processing core, consequently network traffic, the resulting costs,
latency, and improved quality of service (CHANG et al., 2014).

Figure 2.3 shows, in the edge computing paradigm, bi-directional computing streams, which

18

Figure 2.3: Edge computing paradigm in Shi et al. (2016)

devices can not only request cloud services and content, but can also perform cloud computing
tasks. One of the bi-directional computing streams is from devices to the cloud (upstream) and
the other is from cloud to devices (downstream). Edge can distribute request and delivery services
from cloud to user, store data, cache data, perform compute offloads, and perform processing (SHI
et al., 2016). Edge computing is related to grid computing, which tasks are divided into several
machines. Most of the time this division is done manually with source code change. The edge
computing replica code fragments, as well as relevant information, create a template, facilitating
the distribution of tasks between devices (SCHENFELD, 2017).

2.2.3 Fog Computing

Fog is a paradigm that has emerged as a distributed computing infrastructure, which applica-
tions and services can be handled on cloud servers and on the network itself (YI; LI; LI, 2015). It
provides computing, storage, and networking services between end devices and traditional cloud
servers through a highly virtualized platform (BONOMI et al., 2012). Moreover, fog computing
encourages data manipulation at the edges of a network, ie, instead of sending all the collected
data to the cloud, it is suggested to process the data at the edges. This idea is also called edge
analysis. Local data processing helps mitigate the weakness of cloud computing (PERERA et al.,
2017).

Schenfeld (2017) states that the fog concept arises to meet three main objectives:

• Improve efficiency and reduce the amount of data that needs to be transmitted for process-
ing, analysis and storage;

• Bring the information consumer closer to the data provider, and;

19

• Provide security and compliance for data transmission.

Fog computing extends the computing cloud, transferring resources, services, and data to the
edge of the network. This avoids network bottlenecks, brings user content and computing closer,
reduces network latency, and improves system performance and user experience. It also provides
next-hop processing, empowering IoT, relieving the massive data network (NIKOLOUDAKIS et
al., 2016).

Figure 2.4: Fog computing paradigm in Taneja & Davy (2016)

As shown in Figure 2.4, Taneja & Davy (2016) structured the fog computing architecture in
three layers, to facilitate the visualization of its components and the identification of its roles. The
first layer is the end devices and terminals layer and this layer the data generation and consump-
tion. The second layer is the edge/fog layer, consisting in network infrastructure as well as the
intelligence for edge/fog resource management near/into the network. Then, the third layer is the
cloud computing layer, consisting in the cloud resources.

2.3 MICROSERVICES

The term Microservices, also called Microservices Architecture or MSA, refers to an archi-
tectural style in which a single application is built by the composition of (sometimes thousands)
microservices. Each microservice runs on its own process and communicates over a lightweight

20

network infrastructure and protocols.

A microservice is a small service with a single responsibility and it has its own and inde-
pendent infrastructure. “Small” means that the service must have a single responsibility. “Au-
tonomous” means the service must have its own and independent infrastructure.

The works in Alshuqayran, Ali & Evans (2016), Pahl & Jamshidi (2016), Thones (2015) help
to visualize the current scenario and the paths that Microservices tends to follow. The first two
review the literature on microservices and the third brings an interview that eases the first contact
with the area.

Lewis & Fowler (2014), Newman (2015) report that the Microservices architectural style was
not “invented”, but emerged from the experience of different software teams with diverse tech-
niques, patterns, practices, and tools. Both works also report that the Microservices architectural
style was not invented, but arose from the experience of different software teams with diverse
cultures, techniques, patterns, practices and tools. The term “Microservices” was first used in
2011 in a software architecture workshop, and until then, several terms were used to describe this
approach.

Microservices Architecture arose in contrast to the architectural style massively used hitherto
in the corporate environment: Monolith. Dragoni et al. (2016) says “[a] monolith is a software
application whose modules cannot be executed independently”. This means the entire software is
built in a common technology set over the same set of application servers and database servers.
Thus, any addition or change of language, framework or database affects the entire application
(NEWMAN, 2015). The way to scale the application on both architectures is another major
difference highlighted in the Microservices literature. As described in Figure 2.5, with Microser-
vices you can scale only the services that are most in demand. Whereas, in Monolith, the entire
application needs to be scaled.

In these experiences, Newman (2015) states that organizations realized that they could de-
liver software faster when they adopted fine-grained architectures. Thones (2015) adds that many
organizations started deploying large systems and databases and empirically came to microser-
vices from the breakdown of these large systems. As emblematic examples, he cites Netflix and
Amazon.

Newman (2015), describes the following Microservices influences:

• Domain-Driven Design (DDD), showed the importance of representing businesses in the
way it organizes applications. Thones (2015) points out that DDD has also proposed how
to divide a big problem into small domains that can be dealt with, using concepts such as a
strategic model, limited context, subdomains, and domains;

• Continuous delivery is a practice in which software can be deployed in production after
any change to its source code. Either for building a new functionality or for correcting an
error. This idea showed how to make the software deployment process more effective and

21

Figure 2.5: Lewis & Fowler (2014)’s sketch of Monoliths vs Microservices

efficient by allowing each submitted code change to be treated as a candidate version of this
software;

• Use of the Web as it was designed, following its concepts and standards. In this sense, it re-
lies on REpresentational State Transfer (REST), an architectural style proposed by Fielding
(2000), in which Web applications must identify their resources through URI, use uniform
interface and self-describing messages and make non-persistent state communications (state
interactions must occur through links). Several of the proposed pillars in the REST are used
to support microservices;

• Hexagonal architecture is an architectural pattern aimed at allowing a software or a compo-
nent to be equally workable by users, programs, automated tests and scripts using appropri-
ate adapters. Its goal is to protect the program logic from the idiosyncrasies of each form of
use;

• On-demand virtualization enables machine provisioning and scaling as needed. Combined
with infrastructure automation, it allows you to manipulate these machines to scale the
application;

• Structuring software developers into small, self-contained teams responsible for the entire
life cycle of their services. This strategy is used by companies like Amazon and Google,
and;

• Design of fault-resistant software, anti-fragile software. In this principle, the software must
be able to adapt to chaotic scenarios and continue to function in the way it was designed. Or-

22

ganizations that adhere to this philosophy cause errors in their infrastructure when verifying
that the software behaves properly.

Dragoni et al. (2016) considers Microservices to be the second generation of service-oriented
architectures evolving to Service-Oriented Architecture (SOA). The authors also highlight the
concepts that are obtained from SOA. These being: split application implementation into services
and service choreography over orchestration. They also highlight the fundamental differences that
separate SOA and Microservices. Such as: the size of the service should be small, having only one
responsibility; the delimited context, imported from DDD, which combines related functionalities
in a single organizational capacity, and; operational independence between the services in which
each part of the service must be built and performed independently of the others.

In Lewis & Fowler (2014), authors emphasize that the channel is another big difference be-
tween the two generations of service-oriented architectures. SOA relies on middlewares as En-
terprise Service Bus (ESB) to act as a service integration bus. ESBs are products with various
features and facilities. Such as: message routing, data transformation, protocol transformation,
and business rule enforcement. However, for microservices, the channel is solely a means of
transport, and Lewis & Fowler (2014) explain this approach with the expression “smart endpoints
and dumb pipes”.

To meet an application’s growing demand for resources, it is desirable that it be scalable. The
Microservices architectural style provides facilities for increasing the capacity of an application:
it is enough add new instances of its microservices to be made available, and when they are no
longer needed, these instances can be shut down. Importantly, as each microservice is indepen-
dent, they can be augmented individually without impacting other microservices. This feature
helps you benefit from the virtually infinite processing power of cloud computing, as stated in
Botta et al. (2014). To accomplish this, it is especially important to use fully automated deploy-
ment machinery and, in a broad sense, infrastructure automation comprising a whole movement
of best practices in operations automation coupled with the programmable infrastructure, also
called “infrastructure as code” (THONES, 2015).

Figure 2.6: Newman (2015)’s example of how Microservices can painlessly lead to a heterogeneous architecture

23

2.3.1 Containerization and Docker

Cloud computing has spurred demand for the deployment of computing environments. Many
solutions are available for this purpose and often focus on the concept of containers. I.E units that
group all dependencies to run an application from one host to a guest computing environment.
Newman (2015) advocates the adoption of infrastructure automation practices and, through con-
tainers, it is possible to implement such practices. Thus, the use of Docker containers has been
adopted to simplify software deployment (TRUYEN et al., 2018).

A container is a standard unit of software that packages code and all its dependencies so
that the application runs quickly and reliably from one computing environment to another. A
Docker container image is a lightweight, standalone, executable software package that includes
everything needed to run an application. These being: code, system tools, libraries, and system
settings. (DOCKER INC., 2019).

A Docker-based approach works similarly to a virtual machine image in addressing the de-
pendency issue, providing a binary image on which all software has already been installed, con-
figured, and tested (BOETTIGER, 2015). Using containers provides an execution environment
where a context is created and the execution of software processes is isolated. Thus, software
processes assume they are running on a virtual machine dedicated to them.

It should be noted that it has been common to use the term “Docker” as a synonym for con-
tainers, but there are other tools with this same purpose. This association is because the Docker
tool was one of the first in the market and is used by the vast majority of practitioners.

Docker’s approach has to offer a simpler configuration and parameter consistency solution for
applications through the use of images. Using containers allows software and its dependencies,
such as databases and supporting software, to run on multiple computing platforms, significantly
reducing the time and effort required to set up the environment. Therefore, software deployment
and configuration becomes simpler as you just set the general parameters of execution of the
account instead of configuring details of the execution of each software or any of its dependen-
cies (KIM et al., 2017) .

2.4 RELATED WORKS

This Section briefly describes works related to the proposed research. To delimit the analysis,
it was considered only projects that explicitly address the use of any technology, for example
fog computing or hierarchical relationship, or any issue mentioned in this paper, for example off-
grid working. Then, the differences between this proposal and these works is pointed out and
discussed.

There are some researches about edge and fog computing in the IoT universe. In general and
as it is stated in Section 2.2, studies on the use of these technologies were started to save data

24

traffic between local area networks (LANs) and the cloud. Next, it is highlighted and discussed
some of these works.

Schenfeld (2017) presents the Fog-as-a-Service for Internet of Things (FaaS4IoT) and the
proposal for an IoT architecture with fog and edge computing for smart cities domain. Thus, the
author allows devices to be able to act within their context even if they are temporarily discon-
nected from the internet.

Chang, Srirama & Buyya (2017) points out that fog computing is a response to cloud-centric
IoT’s limitations. But it also has its own limitations such as being tied to the provider’s platform
or working only on cellular networks. To address these issues, they propose Indie Fog, a platform
that enables fog computing within the user’s own network. The platform provides an IoT applica-
tion execution environment, performing infrastructure actions and leaving its users to worry only
about these applications.

As in this research, these three works address the use of fog computing in the context of IoT in
order to decrease application latency and make it more reliable for scenarios that rely on real-time
or near real-time processing. However, in addition to using fog computing, this work combines
the use of fog computing with other technologies and strategies, as well as giving the user the
flexibility to configure as needed for their reality.

Nonetheless, it was noted that Chang, Srirama & Buyya (2017) has a similar feature to this
work: it is flexible about deploying modes to configure its fog environment, allowing it to connect
to other fogs in a software-defined mode. But this proposed work goes ahead and takes away the
obligation for cloud connection, achieving even more restricted usage scenarios.

Hierarchical relationship between IoT instances is evaluated in some works. Azimi et al.
(2017), Chekired, Khoukhi & Mouftah (2018), Shah-Mansouri & Wong (2018) were set apart
and discussed as it follows.

Work in Azimi et al. (2017) Hierarchical Fog-Assisted Computing Architecture for Healthcare
IoT (HiCH) that is a hierarchical fog-enabled IoT system for remote health monitoring. As a fog-
enabled solution, they split features between the system core, in the cloud, and the nodes located
near the patients. They evaluate their proposal in a scenario in which HiCH monitors ECG signals
to detect patient’s arrhythmia. In the results, the paper demonstrates the traffic reduction and the
reduction in response time to a sensor measurement, so that the system can react faster.

The authors of Chekired, Khoukhi & Mouftah (2018) point out that in the industrial scenario,
the information collected must provide immediate feedback to the control system and response
mechanisms. Their paper proposes a fog architecture for IIoT based on hierarchical multi-tiers
servers. They also address system performance issues through a probabilistic algorithm for re-
source allocation and utilization of fog nodes and through a priority queuing model that separates
priority and non-priority data.

The work in Shah-Mansouri & Wong (2018) argue that there is an competition among IoT
users in order to use processing resources. Which in turn implies in different and unfair perfor-

25

mance, delaying their tasks offloading. Thus, they propose a game theoretic approach and then
they formulate a computation offloading game to validade their proposal.

The three works propose solutions for handling with systems that are sensitive to communica-
tion latency, namely, health assistance, industrial automation and computational offloading tasks.
As in this research, their papers suggest using distributed processing between a remote cloud
module and modules running within the local network. Following the fog computing model, it
was used the strategy of splitting features and coordination of this distributed processing. How-
ever, they merely address the issue of hierarchy between IoT instances. Beyond this scenario, this
proposal goes further and allows the middleware to work in ways other than hierarchical.

Providing IoT with properties and techniques of social networks is a novel strategy that aims
to counteract the limitations of rigid and centralized networks. Below it is highlighted some of
these works and the relationship with this work proposal.

Authors in Conti, Passarella & Das (2017), Conti & Passarella (2018) opinion papers point out
that three factors that are happening on the Internet today: increased communication at the edge
of the Internet, rather than at its core; the internet is becoming increasingly data-centric, and; the
expansion of the integration of the Internet with the physical world. Considering these factors,
they present the Internet of People (IoP) which is defined as the new generation of people’s com-
munication. In the proposed IoP, communication and interaction takes place around the user and
their mobile device, so that this device is the gateway to user interaction with the network. It also
plays an active role in content production and decision making, both locally and collaboratively.

The works bring interesting discussions about “Next Generation Internet”. However, this work
differs particularly in two aspects: the first is that the middleware was designed to be configured
in scenarios other than Ad Hoc-like defined by them. This is an important aspect of the proposal,
but the work proposed in this thesis aims also to support those users with more traditional needs
such as the hierarchical relationship. The second is that the proposed work is not limited and can
be adapted for use on user’s mobile device, but it is not limited to this scenario because some
scenarios do not occur close to the user, such as in the forest monitoring.

According to Abdul et al. (2018), the actual large number of devices (and estimated for near
future) combined with the flexibility of interconnections between them results in scalability and
navigability issues. Their work proposes the “small world SIoT paradigm” in which they merge
properties of small world networks concept with SIoT in order to reduce network complexity and
improve its performance. They define small world network as a kind of small social network.

The work has good contributions and its proposed Small World SIoT is worth evaluate it in
the SIoT context. However, they focus only on the social networking scenario and, as stated
in the analysis of previous works, there is still a need to provide services in off-grid mode, in
hierarchical scenarios and also for cases not centered on their user behavior.

26

3 PROPOSAL OF AN ADAPTABLE AND SCALABLE IOT
MIDDLEWARE

In this Chapter, it is proposed the adaptable and scalable universal IoT middleware which is a
flexible IoT middleware that is intended to allow IoT networks creation and that can be used in
various scenarios and yet perform well and offer ownership of data to its owners. This Chapter
is organized as it follows: in Section 3.1, it is presented an overview of an IoT instance and
its components as they were used them in this work. In Section 3.2, the concept and features
of the IoT middleware is discussed, since this concept is a key idea to build the adaptable and
scalable IoT middleware. In Section 3.3, it was presented the middleware design, its architecture
and assembling of the components of the hardware. Finally, in Section 3.4, it is highlighted the
middleware set up factors.

3.1 THE IOT INSTANCE

Authors in Ferreira & de Sousa Júnior (2017) point out that there is not a single and homo-
geneous IoT, but various “instances” of IoT, as shown in Figure 3.1. In this sense, they meant
these IoT “incarnations”, as they also called it, coexist in order that each incarnation could be an
overlay network on the Internet infrastructure. An IoT instance is an IoT system that includes at
least one device, middleware, and application.

Figure 3.1: Ferreira & de Sousa Júnior (2017) sketch of different IoT instances that a moving device can be part of

27

In this work, the considered instance is according to the reference architecture presented in
Section 2.1, composed of devices, gateways, middleware and applications.

(a) IoT architec-
ture without a
gateway

(b) IoT architecture with a
gateway

Figure 3.2: IoT architecture

Note that the proposed IoT platform can be used both in the scenario that devices are able to
access it directly, as shown in Figure 3.2(a), and where devices need an IoT gateway to access
middleware, as shown in Figure 3.2(b).

3.1.1 Supported IoT Entities

The IoT devices supported in this work can be either smart devices that have the ability to
interact directly with the middleware, as well as the simplest common devices that don’t have this
capability. Regardless, they must provide sensing or actuation services so that the IoT instance
can interact in some way with these services.

In this thesis proposal, the UIoT Gateway is an IoT semantic gateway as described in Caldas
Filho (2019). Thus, it is responsible for allowing limited devices to reach the Internet and IoT
middleware. The UIoT Gateway must also provide means for performing fog-style operations in
the network edge.

In addition to the native UIoT gateway, middleware allows interaction with third party IoT
gateways as long as they respect UIoT interaction processes.

The IoT applications considered in this research are the applications described in Section 2.1
that make use of the services available by the IoT instance. These applications could be part of the
UIoT as well as a third party application that interact with UIoT by the provided API. It should
be highlighted that, regardless their nature, in both cases, the application should only have access

28

to information that is allowed for them to be used.

It is important to emphasize that the proposed middleware does not bring new architectural re-
quirements to these applications. Accordingly, it is not imposed or constrained on the architecture
of applications, they simply need to respect the middleware API.

3.2 THE PROPOSED IOT MIDDLEWARE

The IoT middleware proposed in this master thesis in an extension of the UIoT middleware
presented in Section 2.1.3. UIoT is described in Silva et al. (2016a, Sec. 3.1) as a general purpose
middleware that has a flexible and open architecture allowing the most diverse IoT devices to
participate in its network. The Adaptable and Scalable UnB IoT middleware is a type of IoT
middleware with the functions described in Section 2.1. Additionally, it is able to be executed
in different ways such as in an “isolated” way as well it can be used in a “cooperative” way. In
this sense, the term isolateddenotes two aspects: one refers to its connectivity configuration and
the other is about its relation with other middlewares. The former means a middleware must be
able to work in a constrained environment in terms of connectivity and it implies a middleware
instance should work off-grid. Therefore, isolated from the Internet, it also should be able to
handle with unstable connection. The latter means a middleware instance can be used without
another instance and it implies the middleware has all resources in terms of storage, processing
and networking, and capabilities it needs to play its role. In this way, it is the only IoT instance.

Despite of having isolation capability, the proposed IoT middleware can interact with other
instances to provide and to consume provided services. It was designed for being used in various
configurations and scenarios as it will be described in more details in Chapter 4. But, for instance,
it is stated it works isolated with a single running instance or it can iterate to other instances and its
way of using. Its relationship to other instances depends on security issues as well as its policies
and settings.

The interaction between middleware instances is critical for allowing the expansion and opti-
mization of available resources, as well as giving the system more flexibility. This aspect deserves
more attention and will be discussed in more detail in this proposal.

3.2.1 IoT Middleware Features

An IoT middleware usually should be ableto store data streams from devices, manage devices,
allow data visualization, secure data and services, and interact with devices and applications.
Furthermore, it is proposed that the IoT middleware should also be able to be adaptable, dis-
tributable, scalable, and resource-sharing prone. These features will be discussed in the following
paragraphs.

Ordinary IoT devices are usually resource-constrained in terms of storage, processing, power

29

supply, and connectivity. In a broad sense, each device has a constraint of sorts. Because, even
though those devices have more processing or storage resources, they have a limited view of their
own context. In this sense, the lack of information limits their context-building and their analysis
skill. Thus, the proposed IoT middleware should offer data storage for its devices and allow them
using these data as well other users and clients should be able to visualize that data.

IoT devices and applications are usually restricted in one function and they have fine gran-
ularity focusing on only one responsibility. Hence, their interaction with other devices and ap-
plications is limited to the context of performing their responsibility. This behavior makes room
for some components responsible for making these entities work together or coordinate. The
proposed IoT middleware defines the operation of its IoT network and, to that end, manages the
participation of devices and applications in it. Importantly, middleware management is not inva-
sive on the device or application, so it comes down to managing device behavior within the IoT
network allowing, or not allowing, that device’s or application’s operations.

As a manager of the IoT network, the proposed IoT middleware knows the status of each
participant in it. This makes it able to facilitate interaction with services provided by each of
these members. This way, the proposed IoT middleware interacts with the provided services,
devices, and applications of the IoT instance, as well as can broker the interaction between them.
As the IoT middleware has the IoT network big picture, including its surroundings, it is the most
appropriate agent to secure the network, controlling admission and discovery of services and
devices, as well as monitoring these participants.

So far, these features are common to other IoT middleware as described in Section 2.1. But
this master thesis proposal is to present an adaptable and scalable IoT middleware so, in this
sense, it is highlighted its further features in the following paragraphs.

Unlike monolithic software and being fog-backed, the proposed IoT middleware should allow
its components could be distributed to other nodes so that these nodes operate in an integrated
and seamless manner as a single instance middleware.

The proposed IoT middleware must adapt to varied scenarios in terms of features and con-
figurations so that it can work normally under a variety of different conditions. This adaptive
feature allows to create a cloud-based IoT instance with LAN resources and even without a stable
Internet connection.

In addition to the resource scaling already offered by the operating system or platform on
which middleware is deployed, the proposed IoT middleware can scale the working capacity of
its IoT network. This feature can be achieved by scale-out and cooperation. The first is the
distribution of its components in other nodes, with the possibility of replicating any of these
components, performing horizontal scaling. The other is cooperation with other instances to
leverage idle resources they are willing to share.

The proposed IoT middleware must provide interfaces for sharing services with other nodes or
instances. In any middleware instance, whether it is installed on a computer, a server, or a virtual

30

cloud server, these features can be made available through a uniform interface, so that only the
policies of each instance and the trust relationship that determines how this resource sharing will
occur.

3.2.2 Relationship between IoT Instances

The proposed IoT middleware provides the ability to interact with other IoT instances, so the
relationship between them is the mechanism that gives the system the flexibility to suit the IoT
instance usage requirements.

The interaction between instances is a relationship that must be observed individually in both
directions and that results in the desired behavior for both. This means that it must be defined in
each instance according to its interests, policies and configurations. Importantly, the relationship
between two middlewares means that both agree with their role in the relationship and that its role
varies according to the types of relationships established between them.

This setting must be made on each instance according to local policies and the configuration
made by its administrator. This configuration consists of two definitions: the definition of the
policies and parameters used by the instance for its operation and the definition of its relationship
with other instances. This approach was chosen because it is a task with some degree of decision
and willingness of the owner of each instance.

Thus, it is necessary to define the types of possible relationships between the instances and
what each type of these entails for both parties involved. As described in Figure 3.3, the proposed
IoT platform supports the following relationships: client-server, controller-worker, cooperation,
and federation.

The client-server relationship is one in which an instance acts as a service provider for the
client. This relationship is most common when thinking of cloud-based middleware with clients
on LANs. In this relationship, there is no hierarchical relationship between the components,
but the server has autonomy to define how their services will be made available. This type of
relationship occurs when one instance consumes data or actuator services from another instance.

The controller-worker relationship is one in which an instance acts to control the relationship
with the ability to determine rules for the worker. This relationship is most common when think-
ing of cloud-based middleware with clients on local networks. In this case, there is a hierarchical
relationship between the components, so that the controller has the mission to define the behavior
of workers and the network as a whole.

The cooperation relationship is one in which the two participants communicate “voluntarily”
to share information or services. In this relationship, neither party has the ability to command
the other, but resources are provided according to the rules of the sharing instance. However,
interaction mechanisms can be used to suggest behaviors.

Resource sharing can occur widely. For example, an instance “A” could share its data connec-

31

(a) Client-
server
interaction

(b) Cooperation interaction (c) Controller/worker interaction

(d) Federation interaction

Figure 3.3: Middleware’s types of supported interactions

tion and act as an instance “B” gateway. In this case, instance “B” may use instance “A” as the
path to reach the network or some resource while that network connectivity is available.

The federation relationship is one in which an instance joins with other instances to contribute
to the formation of a new instance by combining the joined instances. The federated instance can
be viewed as a single instance by its clients and members, but in fact its services are provided by
the instance members.

For example, the joining of IoT instances in P2P networks that is proposed in Mendonça
(2019). In this case, an instance “A” can join instance “B” to form a new federation or it can
join an existing federation. Within the P2P protocol adopted in that work, the devices of both
instances assume a new address in the federation and, from there, they can produce and consume
other P2P instance services.

It is important to highlight that the relationship between middlewares is not directly related to
the topology of the networks in which they are deployed. Conceptually speaking, there is also no
limitation on the technology used for the connection, as long as the communication protocols are
supported by both entities.

The only relationship requirement is that there must be connectivity between the two commu-
nication agents and this connectivity must be through some protocols that both parties support.

32

3.2.3 Trust between Instances

Regardless of the purpose of the interaction between instances, the relationship of trust be-
tween them is the cornerstone of both interaction operation and supporting security requirements.

Trust is a transitive feature which varies according to each of its components: subject and
object. This implies that the relationship between agents “A” and “B” must be observed in both
directions: “A” has its evaluation on “B” and “B” has its on “A”. It is important to remember
that an agent’s trust in another is an inner attribute that is not reported and neither reachable by
external agents.

3.3 IOT PLATFORM DESIGN

The use of centralized and cloud solutions brings its own limitations such as relying on In-
ternet connectivity and accepting the risks of sharing data in someone else’s cloud. Aware of
this kind of limitation, this work proposed the evolution of UIoT middleware to use distributed
and adaptive architecture, considering current computational models trends such as edge, fog and
cloud computing. As described in Section 2.2, fog computing architecture is based on the com-
position of multiple nodes on the local network that can act in conjunction with cloud services. It
is also anticipated that nodes can work together to share resources and give to the solution more
capacity and flexibility.

Another issue is that because cloud-ready software is concerned with being scalable, it is of-
ten designed to be greedy in terms of resource usage. It is exposed by its operating requirements
of some IoT platforms as, for instance, the UIoT operating requirements which is unveiled in
Table 2.1. Although easily deployable in a cloud server, this configuration does not allow mid-
dleware deployment on SBCs such as Raspberry Pi 3 and Orange Pi that have 1 GB and 2 GB of
RAM respectively.

3.3.1 Middleware Architecture

The architecture design of this work came from the UIoT architecture described in Silva et al.
(2016a), Ferreira & de Sousa Júnior (2017), whereas it is a mature and feature-rich platform for
managing IoT devices. It is a monolithic, cloud-ready, big-data-ready architecture and it relies on
providing REST services to communicate with devices.

3.3.1.1 Core Drivers

To meet the intended features that were elicited in Section 3.2.1, this work needed to review
some five key points of the UIoT middleware architecture. These points are discussed as it con-
tinues.

33

The first key factor is the structural aspect: the proposed IoT platform separates the core from
other system modules. This separation purports to encapsulate the modules responsible for data
and external dependency decisions. This was the first structural change from UIoT because it
concentrated almost all of its functionality in just two modules and DBMS was closely coupled
with the operation of both modules, as shown in Figure 2.2.

The second factor is about implementation encapsulation: the proposed IoT adopts the strat-
egy of encapsulating the implementation of its software modules so that their interaction occurs
only through publicly defined interfaces. This feature is an inheritance from the Microservices
Architecture that aims to enable the implementation and deployment of modules to change with-
out impacting their consumers.

The third factor is about the communication channel: the proposed IoT uses the network as
the default communication channel, especially the HTTP protocol, in almost all communications
between its modules and its modules with external actors. This strategy aims to maintain a stan-
dardized and uniform shape to enable integration with more tools as well as avoiding the adoption
of tools for building service buses. The use communication over network protocols should be even
when middleware is on a single host. It should be noted that, in this case, their communications
occur in a private local operating system protocols. Nonetheless, both RAISe and UIoT’s UIMS
have monolithic architecture, so that the internal communication of their modules takes place
directly between their implementation layers.

The fourth factor is about deployment: middleware must have an adaptable and pluggable
framework to enable it to be used in a variety of scenarios. This factor is influenced by the
strategy of avoiding making multiple implementations for different scenarios, so that it was used
the reverse strategy of having one code. UIoT is designed to run in the cloud, with the ability
to scale resources as needed, but it cannot be used in lower-resource environments as it requires
resources like those described in Table 2.1.

The fifth factor is about technological decoupling: the proposed IoT fosters the separation
between the functional and non-functional side, another feature inherited from the Microservices
Architecture. This means that the relationship between modules should occur only by the defined
interfaces and that no interface should expose technological aspects of its implementation. For
example, database technology must be transparent and indifferent to middleware customers. The
main expected benefit is the possibility of exchanging the technologies used without impacting
customers.

3.3.1.2 Refactoring for the Microservices Architecture

The first phase of building the proposed IoT middleware was to refactory the UIoT middle-
ware from its monolithic style to Microservices Architecture (MARTINS et al., 2017b). In the
refactoring, all UI functionality that was in RAISe were moved to a module with the UI han-
dling single responsibility. Following this refactoring, the new middleware was adapted to be

34

compatible with the system features provided by Raspberry Pi.

Microservices Architecture has influenced a number of decisions about the design and im-
plementation of the proposed IoT middleware, as described in Martins et al. (2017b), Martins et
al. (2017a). Specially because maintaining and developing UIoT middleware has shown that its
monolithic architecture would make it difficult to deploy the system on small architectures. It will
be highlighted some of these influences here to make it easier to understand how the proposed
middleware works in light of this new architecture.

MSA microservices are similar to the standalone, reusable components of the Component-
Based Software Engineering (CBSE). Both strategies bring the idea of reducing the problem to
be solved in smaller, easier to implement parts, as well as the encapsulation of the implementation
that must be protected by its interface. However, MSA adds issues such as the use of a uniform
and standardized network-based interface and the infrastructure independence of each component.
Therefore, it was defined by using REST APIs as the standard way of communication between
components and between components and clients. The only exception is communication with
devices that is augmented by specific technologies and protocols.

Figure 3.4: Proposed IoT middleware architecture

Granularity of the microservices is a topic under discussion in industry and academia, as it is
presented in Shadija, Rezai & Hill (2017), Harper et al. (2016). In this work, microservices were
defined according to their purpose, so that each middleware component described in Figure 3.4

35

represents a microservice. The only exception is the Engine that has more than one microservice,
but this decision follows the same strategy of defining service according to its purpose.

The microservices infrastructure is designed to preserve its internal structure, so that no com-
ponent depends on internal parts of another component. As a result, the data persistence of each
component is completely separate from the others, so that no component is designed to access
data from another component outside its access interface.

3.3.1.3 Middleware Architecture Components

The UIoT middleware architecture was the starting point and also a cornerstone for the design
of the new architecture. Suitability for the five factors presented earlier in this Subsection would
need to retain existing features in the original version, such as cloud-ready and big-data-ready, as
well as universally address IoT scenarios.

Thus, the proposed IoT middleware’s architecture was designed to have a core as a subsystem
surrounded by layers of interfaces that allow the outside world to interact with the core, as illus-
trated by Figure 3.4. It was designed to separate into smaller parts that could operate together and
this separation was performed on components and subsystems. For the concept of components,
it is used the definition of Sommerville (2016, p. 467-470,760) who stated it as “[a] deployable,
independent unit of software that is completely defined and accessed through a set of interfaces.”

3.3.2 Middleware Abstract Interfaces

The abstract middleware interfaces are conceptual layers in charge of intermediating the in-
teraction of external agents, whether human or machine, with the middleware core. The proposed
IoT middleware has four interface modules, each with its own purpose and since the purposes
of the interfaces are quite different, each module has its own architecture, specification and im-
plementation, so the structure and modularization of the software to meet this layer depends on
specific characteristics linked to its purpose. These modules are described in this Subsection.

3.3.2.1 Device Interface

Device Interface is an abstraction that defines the responsibility of making interfaces available
to devices that integrate with the IoT network. Its responsibilities include providing an interface
to receive device requests as well as sending data and commands to devices.

The Device Interface must implement the communication technologies and protocols neces-
sary to enable communication with the target devices. Because this implementation is tied to
the physical layer, technologies suche as Bluetooth and ZigBee require appropriate hardware to
provide the communication means. This also occurs with the implementation of some software-
defined technologies, such as MQTT that need ancillary software to play the role of broker.

36

3.3.2.2 Application Interface

Application Interface is responsible for providing the interface to applications that interact
with the IoT network. This interface differs from Device Interface because it is designed to
handle a larger dataset, allowing external applications to use data from the IoT network as well as
to feed the network with data they produce.

An application can interact with the IoT instance provided by the middleware only after it is
registered with this instance and given an authorization key. In this registration process, adminis-
trators may limit the services to which the application may have access.

Communication with applications in the Application Interface is performed by REST API
defined in this thesis.

3.3.2.3 Middleware Interface

Middleware Interface is responsible for making the interface available to other middleware
that interacts with the instance. This interface provides services for middleware instance manage-
ment and configuration, allowing other middleware to use data from the IoT network as well as
to feed the network with data it produces. The Middleware Interface also has services to enable
management of middleware configuration and operating rules.

A middleware can interact with the IoT instance provided by the middleware only after it is
registered with this instance and given an authorization key. In this registration process, adminis-
trators may limit the services to which the application may have access.

Communication with the middleware in the Middleware Interface is performed by REST API
defined in this work.

3.3.2.4 User Interface

User Interface is responsible for providing the interface for human interaction with the in-
stance. Unlike other interfaces that provide services, User Interface provides web applications so
that users have friendly interaction with the instance, its data and services.

By default, these web applications have a user interface that runs in the browser as a single
page application (SPA) which stores and consumes data from a set of APIs. In this design, servers
are spared the processing and rendering of the interface and are only concerned with processing
data manipulation services. This is important because in some cases the application is deployed
on equipment with low processing resources compared to a cloud server such as Raspberry Pi.

37

3.3.3 Middleware Components

As explained in the previous subsection, the middleware has conceptual abstractions that need
to be implemented. The proposed IoT middleware is made up of various modules to support
those abstractions. Because they were designed based on the Microservices Architecture, each
component has its own implementation and infrastructure. This Subsection introduces the soft-
ware specification of each of these components.

3.3.3.1 Device Interface Component

Device Interface Component is the software that implements the Device Interface and is re-
sponsible for providing interfaces to devices on the IoT network. To simplify the architecture, this
component implements the same interfaces provided to devices by the UIoT Gateway instances.
It is important to note that the Device Interface Component’s interfaces and UIoT Gateway’s in-
terfaces are similar, but both software have very distinct roles: the former is the device door for
the middleware and the latter is a typical IoT gateway as defined in Section 2.1.

The modules that implement the interface of each communication technology have two ab-
stract objects: the listener and the writer. The listener implements the ability to receive device
communications on the supported channel, either by request-response or stream, and writer im-
plements the active sending of communications to devices.

As described in Figure 3.5, the information received by the listener of each channel is made
available to be stored in DIMS by the Engine.

Figure 3.5: ZigBee channel communication example

The proposed middleware in this work implements interfaces for communications in the
MQTT and ZigBee protocols, as well as in the Socket TCP, Socket UDP and REST standards.

The Device Interface Component provides API for client, services, data, and formulas inter-
action, as it is described below:

• /client: this is the Client API endpoint and it contains the services responsible for han-
dling device registration data, supporting data registration by HTTP POST and data retriev-
ing by HTTP GET. Its services are part of the self-registration process required by UIoT
middleware;

• /service: this is the Service API endpoint and it contains the services responsible for

38

handling service registration data, supporting data registration by HTTP POST and data
retrieving by HTTP GET. Its services are part of the self-registration process too;

• /data: this is the Data API endpoint and it contains the services responsible for handling
data registration provided by device’s services, supporting data registration by HTTP POST
and data retrieving by HTTP GET. These services are central to IoT as they are used to
record and query the data that is provided by IoT device services, and;

• /formula: this is the Formula API endpoint family and it contains the services responsible
for handling service formulas, supporting data registration by HTTP POST, data retrieving
by HTTP GET and data deletion by HTTP DELETE. These services allow you to expand
service and device functionality, anonymize data, and summarize information to save band-
width and/or disk space.

3.3.3.2 Application Interface Component

The Application Interface Component is the software unit that implements the Application
Interface and is responsible for providing interfaces for applications wishing to interact with the
IoT instance. Instance client applications interact with middleware through a set of REST APIs.

These applications must be previously authorized to interact with the middleware. In the au-
thorization process, it should be informed what types of access (read and write), data classification
and access time.

A subscription is when a customer subscribes to receive publisher-produced content. The
middleware has this set of services to allow this interaction:

The Data API is made available for both this application to provide data for that instance and
for querying data contained in that instance. The middleware has this set of services to allow this
interaction:

The Application Interface Component provides API for application and service registration,
its subscriptions, and data interaction, as it is described below:

• /registration: this is the Registration API endpoint and it contains the services re-
sponsible for handling application registration data, supporting data registration by HTTP
POST and data retrieving by HTTP GET. Its services are part of the self-registration process
required by UIoT middleware;

• /service: this is the Service API endpoint and it contains the services responsible for
handling service registration data, supporting data registration by HTTP POST and data
retrieving by HTTP GET. Its services are part of the self-registration process too;

• /subscription: this is the Subscription API endpoint family and it contains the ser-
vices responsible for handling application’s subscriptions for service data, supporting data

39

registration by HTTP POST, data retrieving by HTTP GET, data updating by HTTP PUT
and data deletion by HTTP DELETE, and;

• /data: this is the Data API endpoint and it contains the services responsible for handling
data registration provided by application’s services, supporting data registration by HTTP
POST and data retrieving by HTTP GET. These services are central to IoT as they are used
to record and query the data that is provided by IoT application services.

3.3.3.3 Middleware Interface Component

The Middleware Interface Component is the software that implements the Middleware Inter-
face. This mechanism that allows the proposed IoT middleware to interact with other instances
as described in Section 3.2. The instances that interact with middleware through a set of REST
APIs.

Since the instance has a valid token registration of another instance, it is able to interact with
it. So it can manage its subscriptions, use shared resources, and send and retrieve data.

A subscription is when a customer subscribes to receive content produced by the publisher.
The middleware has this set of services to allow this interaction:

The Data API is available for both this instance to provide data for that instance and for
the data query contained in that instance. The middleware has this set of services to allow this
interaction:

These instances must be previously authorized to interact with the middleware.

An instance needs to register itself in order to be able to interact with that instance. The
middleware has this set of services to allow this interaction:

The Middleware Interface Component provides API for middleware registration, its subscrip-
tions, and data interaction, as it is described below:

• /registration: this is the Registration API endpoint and it contains the services re-
sponsible for handling middleware registration data, supporting data registration by HTTP
POST and data retrieving by HTTP GET. Its services are part of the self-registration process
required by UIoT middleware;

• /subscription: this is the Subscription API endpoint family and it contains the ser-
vices responsible for handling middleware’s subscriptions for service data, supporting data
registration by HTTP POST, data retrieving by HTTP GET, data updating by HTTP PUT
and data deletion by HTTP DELETE, and;

• /data: this is the Data API endpoint and it contains the services responsible for han-
dling data provided by managed middleware services, supporting data registration by HTTP
POST and data retrieving by HTTP GET. These services are central to IoT as they are used
to record and query the data that is provided by all kind of IoT client services.

40

3.3.3.4 DIMS

Data Interface Management System (DIMS) is a middleware core component that is respon-
sible for storing and retrieving data handled by the middleware, and it abstracts the database into
a REST interface so that components and clients are not coupled with the technologies and struc-
tures used for data storage. DIMS is a built-in middleware component, meaning that it is for use
exclusively by the other internal components of the middleware architecture, so it has no interface
outside the middleware and its API is protected from being accessed for them.

It should be noted that DIMS is solely responsible for storing data, with all its consistency
and availability. However, it does not make use of this data, leaving this task to other middleware
components.

In the current version of DIMS, MongoDB was chosen as the instrument of data persistence.
MongoDB is a NoSQL data repository that adopts a document-oriented data model and natively
allows JSON document handling (ACQUAVIVA et al., 2019). However, as noted, this issue is
irrelevant to the other middleware components because they only manipulate data through the
API provided by DIMS.

DIMS is responsible for the data sent by sensors and actuators, so it manages these which are
the main data of the IoT architecture. But it is not synonymous with databases for the other mid-
dleware components, whereas each component must be responsible for its own data repository.

The DIMS provides API for client, services and data interaction, as it is described below:

• /clients: this is the Client API endpoint and it contains the services responsible for
handling client registration data, supporting data registration by HTTP POST and data re-
trieving by HTTP GET;

• /services: this is the Service API endpoint and it contains the services responsible for
handling service registration data, supporting data registration by HTTP POST and data
retrieving by HTTP GET, and;

• /data: this is the Data API endpoint and it contains the services responsible for handling
managed services data, supporting data registration by HTTP POST and data retrieving by
HTTP GET.

3.3.3.5 User Interface Component

The User Interface Component is the component that implements the User Interface. It is
responsible for the backend implementation of interfaces that are made available to users. Mid-
dleware provides two user interfaces: UIMS and Admin UI.

The User-friendly Interface Management System (UIMS) is one middleware’s User Interface,
so it is the software of the User Interface in which a person interacts with the middleware and its

41

data. Its main features are data visualization, rule registration and configuration of how middle-
ware works.

(a) View of a list of an IoT device data in Admin UI

(b) View of a graphic with an IoT device data in Admin UI

Figure 3.6: Admin UI screens

One role of UIMS is to enable the IoT middleware user to view, in a friendly manner, the data
that is generated on the IoT network. Therefore, it has queries to display data about clients and
services, as well as the data they produced. Figure 3.6 illustrates the display of this data in list
and graph format for ease of interpretation.

Figure 3.7(b) illustrates the configuration of how middleware works. In this functionality, the
user has the option to define the role of middleware, its relationship with other middleware, as
well as the address of its components.

For UIMS, a new set of APIs have been created in the User Interface Component to support
the creation of data display grouping functionality and services, as it is described below:

42

(a) A room’s available services in UIMS (b) A device’s service data in UIMS

Figure 3.7: UIMS screens

• /group: this is the Group API endpoint and it contains the services responsible for han-
dling groups data, supporting data registration by HTTP POST, data retrieving by HTTP
GET and data deletion by HTTP DELETE;

• /func: this is the Function API endpoint and it contains the services responsible for han-
dling service registration data, supporting data registration by HTTP POST, data retrieving
by HTTP GET and data deletion by HTTP DELETE, and;

• /service: this is the Service API endpoint and it contains the service’s service respon-
sible for handling group’s services for service data, supporting data registration by HTTP
POST and data deletion by HTTP DELETE.

As described earlier, the UIMS audience is the average user who wants to consume IoT in-
stance resources. On the other hand, Admin UI is the application intended for the administrator
of this instance. It has access to the telemetry details of the network and instance components.

3.3.3.6 Engine

The Engine is a core component of middleware that is responsible for controlling transactions
and enforcing transformation and data distribution rules. The Engine is also an internal compo-
nent of middleware. It is an active component that works according to pre-established middleware
rules.

The Engine monitors the data received from customers and sends the data to its destination
based on the rules that are entered. This mechanism can route raw data, as well as perform the
necessary transformations in the data to deliver it to its recipients. For example, a particular

43

customer might request that only the average of the last 30 minute measurements be sent to.

3.3.4 Middleware Ontology

It was necessary to change the UIoT middleware model presented in Silva et al. (2016a,
Sec. 3.1) to simplify device specification and to include new concepts related to instance interac-
tion. Figure 3.8 presents a macro view of the proposed model that highlights the Client, Service,
Data, and Rule entities.

Figure 3.8: Middleware macro-entities

3.3.4.1 Client Entity

Client represents the main actor of interaction with the middleware, including devices, appli-
cations, middleware and users, bringing together the actors that interact from the outside into the
middleware instance. Figure 3.9 illustrates these entities and their attributes.

The Device entity represents every type of physical device considered in the context of IoT,
from small sensors and actuators to more complex devices such as smartphones. This entity in-
cludes specific attributes to trace the hardware characteristics of the device, such as MAC address,
serial, and processor.

The Application entity represents applications that can be integrated with middleware to pro-
vide some service or functionality that is not provided natively by it. These applications are
elements outside the middleware that are allowed to interact with its data and services.

The Middleware entity represents the middleware that relates to the instance of this middle-
ware. This entity has the specific attributes of the relationship qualification between middleware
such as trustLevel and interationType.

The User entity represents the people who will interact directly with IoT middleware. This

44

Figure 3.9: Client entitiy

Figure 3.10: Service entitiy

45

entity has user-specific attributes like role.

3.3.4.2 Service Entity

The Service entity represents the services that customers provide that are the main concepts
of interaction with the middleware, whether these services read or write data. For example, in the
case of devices, their services are sensing and acting on the environment. Figure 3.10 illustrates
these entities and their attributes.

3.3.4.3 Data Entity

The Data entity represents the data handled by customers in its services. For example, in the
case of devices, their services are sensing and acting on the environment. Figure 3.11 illustrates
these entities and their attributes.

This entity specializes in two others: DataRead and DataCommand. DataRead represents the
data read from devices that do environment sensing, so this data represents readings taken from
the environment.

DataCommand contemplates commands sent to actuators. Importantly, an actuator deals with
the physical environment and this means that a command does not precisely mean that the action
has been performed or the state of the service has changed.

Figure 3.11: Data entitiy

46

3.3.5 Middleware Components Deployment Procedures

Middleware components are designed to run both via Docker Engine and directly on a Linux-
based operating system.

In the former way, running it in Docker containers is interesting because you get the benefits
of Docker’s abstraction from the details of the deployment, so you can easily deploy it to more
than one computing environment. This way, each component has its own settings to run on
Docker images, in addition to its Dockerfile and docker-compose.yml files. But before
deploying the images via Docker, you should configure the container execution parameters, such
as indicating other components or features that the software needs to run.

In the latter way, it is necessary to install the Python support, the component and the packages
it depends on on the host operating system, and set the permissions required to run it. It is also
recommended that you configure the automatic boot of the component along with the operating
system boot to prevent the component from being unavailable when the system restarts.

It is important to note that the development process for each middleware component is carried
out on a computer with the necessary tools for development, debugging, and testing, as with
any software development process. After completing development of the component version, the
final steps are to generate and to test the component package and the component Docker image
containing all the features that are required for its operation. Afterwards, the component is ready
to be deployed in the operating environment.

3.4 MIDDLEWARE SET UP FACTORS

To give the desired flexibility, the proposed IoT design was premised that middleware should
be adaptable to be used in a variety of scenarios to avoid the environment and limitations imposed
by other middleware. This Section describes three aspects that are supported by the proposed
IoT middleware and which should be considered when configuring and deploying the IoT net-
work. It should be noted that the three aspects represent different dimensions and are used in a
complementary way, allowing their use in a combined way.

3.4.1 Deployment Scheme Factor

As for its deployment, Figure 3.12 outlines the two possibilities for middleware deployment.
In the first scenario, it can be deployed as a single part containing all the components necessary
for it to function in a single bundle, so that resizing must occur in that single bundle. In the second
scenario, middleware can be deployed in a distributed manner in which each node is responsible
for some of the middleware functionality, so that resource resizing should be done node by node
as needed.

47

(a) All of the middleware components are depolyed in one
single host

(b) Each middleware component is deployed in its own
host

Figure 3.12: Single vs distributed deployment

3.4.2 Supported Computation Model

As for the computation model on which the solution is deployed, Figure 3.13 describes the
three possibilities envisaged: local, fog computing, and cloud computing.

In the local model, middleware and all its components should be deployed on local network
resources. This computational model is tailored for situations in which there is any security issue
about using cloud computing resources as well as in regions with poor internet infrastructure.
Such as, remote facility monitoring, farming, and forest monitoring.

In the cloud computing model, middleware should be installed in a cloud environment to man-
age the IoT network and it does not matter how it is actually installed in the cloud environment.

In fog computing model, middleware should be configured to be used in collaboration with
other instances, either on the local network or on the Internet. In this model, each instance behaves
like a fog node and can have the most diverse roles and types of interactions with the other nodes.
It is important to remember that the fog computing mode is commonly combined with cloud
resources.

Fog architecture is supported because it provides for a better use of available resources flexibly
and which can give cloud characteristics to the local environment.

3.4.3 Social Operation Mode

Regarding its mode of operation, Figure 3.14 describes the four possibilities provided for
middleware: standalone, hierarchical, cooperative, and federated.

In the standalone scenario, it can be used in isolation without interacting with other instances

48

(a) Local (b) Fog computing (c) Cloud computing

Figure 3.13: Local, fog computing, and cloud computing supported computational models

to receive or send resources. In this case, the entire IoT network boils down to a single operating
instance.

In the hierarchical scenario, command and control relationships are established between the
instances, so that there is a centralized structure that determines the behavior of the other in-
stances. In this case, the IoT network is composed of several operating instances.

In the cooperative scenario, the instance can be used cooperatively with other instances for
resource sharing without a hierarchical relationship between them. In this case, cooperation with
other middleware does not change the nature of the instance, but only expands its capabilities.

In the federated scenario, IoT instances join or form in a federation, so federation members
understand that they are part of a single IoT instance. Federation members trust each other, but
their internal guidelines guide their participation in the federation.

In all four cases, the interaction with other middleware is only for the exchange of data and de-
vice services, without any hierarchy or resource distribution relationship. In this case, middleware
behaves as any application should behave.

It should be noted that an instance can connect to more than one instance simultaneously and
with different roles.

49

(a) Standalone mode (b) Hierarchical
mode

(c) Cooperative mode

(d) Federated mode

Figure 3.14: Standalone, hierarchical, cooperative and federated mode

50

4 MIDDLEWARE USAGE SCENARIO

This Chapter illustrates the proposed IoT middleware usage possibilities, using hypothetical
scenarios. Although they are hypothetical scenarios, they are based on situations with the real
dimension.

4.1 STANDALONE OFF-GRID LOCAL SCENARIO

Forest monitoring is an important issue to support studies of that environment and the impact
of human interference in it. In the former case, it is necessary to investigate its fauna and flora
in natura regarding to animal group behaviour and plant growth. In the latter case, the impact
of human activities in the environment such as deforestation and burning. This monitoring can
occur a few meters from a residential neighborhood of Brasilia, as well as in the middle of the
Amazon rainforest far from any man-made infrastructure.

The forest monitoring environment would have a WSN consisting of 30 ZigBee devices, all
of them communicating with middleware via ZigBee. Each sensing device would be equipped
with three services: monitoring temperature, humidity and the presence of fire in the environment.
Temperature and humidity services scan the environment every 5 minutes and send to middleware
while the fire sensor also reads every minute, but only communicates with the middleware if it
detects fire. During the dry season in the Cerrado, there is a high risk of natural or man-made
fires. Therefore, in this period it is necessary to configure a short time interval between the sensor
measurements.

Without any data preprocessing the middleware will receive 720 temperature and humidity
sensor measurements per hour and up to 1,800 fire detection notifications.

To meet the scenario as shown in Figure 4.1, the IoT instance could be used in off-grid mode,
communicating with wireless sensors via the ZigBee protocol and storing their data locally. This
way, data managed by the middleware is available for local consultation by users as well as other
systems. For this, the proposed IoT middleware could be installed on ordinary computer or even
an SBC computer, provided that it is powered by battery or some renewable energy such as solar
energy. Its entire installation could be performed on a single host so that the processing and
storage capacity is directly related to the capacity of the host on which it is installed.

In this case, in off-grid and standalone mode, there is no possibility to scale resources because,
unlike the cloud environment, there is no other available resource. Thus, after a while in operation,
it is likely that the host storage capacity limit will be reached, making system use unviable. IoT
middleware can be configured to automatically discard older data to work around this problem.
For instance, it can be configured to automatically apply aggregation and disposal on data in order

51

Figure 4.1: Local standalone middleware usage: the middleware and its sensors

to, in the former, produce new content stem from the aggregation of raw data, in the latter, discard
older data. The aggregation rules could be according to the three rules exemplified below:

1. Aggregate readings for each device by averaging its readings every hour;

2. Discard raw data that is older than 48 hours age, and;

3. Discard aggregate data that is older than 7 days age.

It is important to remember that middleware could be operated directly by a user who can
query or back up their data.

4.2 HIERARCHICAL EDGE SCENARIO

IoT applications for automation or monitoring of the agricultural sector need to be installed
in wide physical spaces and with very precarious communication infrastructure and high cost of
use.

In the depict scenario presented here, the farming environment would have 50 devices of
the same type to perform irrigation and soil moisture monitoring, all communicating with the
middleware at the network edge via a ZigBee network. These devices would be equipped with
two services: check soil moisture and trigger the irrigation mechanism of an area. The moisture
service reads every 5 minutes and sends it to middleware and, if it detects that the soil is below

52

the set threshold, triggers the irrigator. The irrigation service notifies middleware every time it is
triggered and always works with a standard amount of pouring water.

Without any data preprocessing in the devices, the middleware will receive 600 humidity
sensor measurements per hour and from zero to 600 irrigation trigger notifications.

Figure 4.2: Edge and hierarchical middleware usage

To address this scenario, as shown in Figure 4.2, the IoT instance could consist of two nodes:
one at the edge of the internal network and one in the cloud. The local node could be installed
on a common computer as well as an SBC that would be responsible for preprocessing raw data
on the edge of the local network and then sending that preprocessed data to the central node in
the cloud. In this case, to save bandwidth, middleware edge can be configured with the following
three rules:

1. Aggregate soil moisture readings from each device by averaging these readings every hour,
reducing from 12 to 1 readings per device to be sent to the cloud every hour;

2. Prioritize moisture reading below a threshold that signals irrigation mechanism malfunc-
tions over a period of time, and;

3. Aggregate notifications for the number of times a sprinkler has been triggered per day.
Thus, the possible 14,400 notifications are reduced to a single information with the number
of times the irrigation occurred.

It is important to remember that in this case too, the middleware edge user can operate it
directly on the local network.

53

4.3 HIERARCHICAL FOG SCENARIO

Building automation scenarios are complex systems that are comprised of several sensors and
actuators that in an integrated manner can give users the feeling of seemless use of the environ-
ment. To exemplify, consider building automation for an organization consisting of 3 five-floors
buildings and a total flow of 4,000 people per day. This building automation comprises climate
control and ambient lighting provided with various devices, as features described in Table 4.1, all
of which communicating via the Wi-Fi network.

Table 4.1: Building automation scenario example

Device description Qty Service Event Qty msgs
Access turnstile to identify peo-
ple entering and leaving build-
ings

8 Access counter by access 10,000

Monitoring the presence of peo-
ple in the environment

800 Presence sensor every 30s 2,304,000

Environmental climate monitoring 800
Temperature sensor every 30s 2,304,000
Humidity sensor every 60s 1,152,000

Room door situation monitoring 720 Door open sensor by event 57,600
Central air conditioning con-
troller

800 Vent direction controller by event 9,600

Room Lighting Controller 720 Lighting trigger by event 3,600
Caption: Qty – Quantity of devices, Qty msg – Quantity of messages by day.

For example, when people move around the floor toward an empty meeting room, the system
can antecipate it and turn on lighting and climate as it detects that they are heading to the empty
room. This decision can be made priorly or reactively.

Considering all 3,848 IoT devices in this system, a daily volume of 5,840,800 direct messages
is generated. These messages are properly processed according to their context so that the sensor
of building A does not interfere with the behavior of building B actuators. It is also important that
messages are handled quickly to ensure that actions are timely.

To address this case, the IoT network could be segmented into subnets managed by middle-
ware nodes other than the proposed IoT middleware installed on local network computers. These
fog nodes could be used in a sectorized manner to address part of the organization’s IoT network
operating demand, as shown in Figure 4.3.

Dividing the network into areas under the responsibility of the nearest middleware allows
each node to be responsible only for the devices in its area, delivering the data summarily to the
central node in the cloud. Thus, each building could be divided into two areas, each under the
responsibility of a node.

In addition to the preprocessing and optimizations exemplified in Section 4.2, the sector node
can deliver data to the central node using data compression techniques, as described by Caldas
Filho (2019).

54

4.4 DISTRIBUTED SCENARIO

Instances created by the proposed IoT middleware can work in a distributed way in terms
of its deployment nodes. But also a node of the proposed IoT middleware can be configured to
deployed in a distributed manner relative to the installation of its components in each one of the
described scenarios in Sections 4.1, 4.2 and 4.3. This distribution can occur on both instances
installed in a cloud environment and those installed directly on local computers.

Figure 4.3: Fog and hierarchical middleware usage

The ability to distribute middleware components on local network computers optimizes the
utilization of the organization’s already allocated resources, as stated by Chiang & Zhang (2016).
Authors in Qanbari et al. (2016) highlight that this design gives the middleware elasticity, allowing
it to horizontal scaling by adding new nodes to its infrastructure. They also point out that this
approach improves its dependability because avoids having a single point of failure.

55

5 EXPERIMENTS AND RESULTS

This Chapter aims to describe the experiments performed and their results in order to validate
the purpose of this master thesis. It was designed three test scenarios to evaluate the proposed
IoT middleware. The Chapter is organized as it follows: Section 5.1 presents an overview of the
tests environment and general information that are useful for the testing evaluation. Then it is
described the three test scenarios: the cloud computing scenario in Section 5.2, the local scenario
in Section 5.3, and the fog computing scenario in Section 5.4. Finally, Section 5.5 discusses the
tests results.

5.1 TESTING GUIDELINES

Using a real IoT environment as a testbed for evaluating an application or middleware has
basically two issues. In the first, it is very costly, or even unfeasible, to build such real testing
scenario because IoT is typically built with a lot of devices and softwares over a network which
works together. The former, it comprises several and hardly manageable variables, such as: clock
synchronizing, hardware and network failures, or physical interference in the environment, thus
there’s a minimum chance for conducting repeatable experiments. (DASTJERDI; BUYYA, 2016)

As suggested in Li (2018), the experiments presented in this thesis will be carried out in
terms of round-trip time (RTT), given by Equation 5.1. trequest is the data transmission time for
the request, from the client to the server. tprocessing is the computation time the server needs to
process the request. tresponse is the data transmission time for the request response, from the server
to the client.

RTT = trequest + tprocessing + tresponse (5.1)

Accordingly, the chosen test scenario was submitted to a controlled environment, composed
by middleware installed in dedicated devices and software simulated sensors. Software simulated
devices were used in the experiments to obtain a better control of the environment behavior, so
that the focus of the experiment was the validation of the middleware. These virtual devices were
programmed to behave in a manner compatible with the physical device of the tested scenario.

Hardware and servers have been standardized to improve control of the test environment, as
well as the software controlled scenario. Therefore, Table 5.1 describes a list of resources that
were used in the experiments described in this Chapter. In the description of each experiment, the
resources used will be referenced as described in the Resource column of this table.

It was designed a hypothetical case based on scenarios described in other works as well as

56

Table 5.1: Testing resources used in the thesis experiments

Resource Description
Cloud Server Heroku cloud platform equipped with a 1-4 vCPU not dedicated with 1

CPU share, and 512 MB RAM.
Personal Computer Dell Latitude 5480 equipped with a 2.5 GHz Intel Core i5 7200U 64 bits

CPU, 16 GB RAM, 256 GB SSD, and wired Gigabit Ethernet connec-
tion.

Raspberry Pi Raspberry Pi 3 Model B+ equipped with a Quad Core 1.2 GHz Broad-
com BCM2837 64 bits CPU, 1 GB RAM, 32 GB Micro SD class 10, and
wired Gigabit Ethernet LAN over USB 2.0 (max 300 Mbps) powered by
source up to 2.5 A.

simulated scenarios researched in LATITUDE laboratory. So this work chose a smart farming
scenario to explore the behavior of an IoT system by introducing a second variable that changes
the context of devices. Then, the chosen test case was submitted to three computational models,
generating three test scenarios, namely: local, cloud and fog computation models.

5.1.1 Scenario Description

In detail, the chosen scenario is a smart farming that contains soil moisture sensors, atmo-
spheric pressure sensor and an actuator to irrigate the soil.

The system’s objective is to keep the soil at a certain moisture level to favor some species
plantation growth and also to optimize the use of water consumed to perform irrigation. To
simplify the scenario, it was defined that this humidity is influenced by two factors: irrigation and
rain. Irrigation is the direct intervention of the system that drips a certain volume of water into
the soil of the specified area. Rainfall is a natural event that is unrelated to human intervention,
but the rainfall high probability when the atmospheric pressure drops below 1,013 hectopascals.

To achieve the goal, including to reduce water consumption, two irrigation drive protocols are
adopted. They are described as it continues:

Protocol #1 when the soil moisture is below 30%, and;

Protocol #2 when soil moisture is between 31 and 60% and atmospheric pressure is below 1,013
hectopascals.

Protocol #1 has the most priority and aims to prevent soil moisture from falling below the
minimum safety level expected by the plantation. Thus, it is triggered regardless of weather
conditions in relation to rain. In turn, protocol #2 aims to keep the soil moisture at a good level,
but is only triggered if atmospheric pressure does not indicate that rain should occur soon.

The simulated plantation field is made up of 25 area sectors, each equipped with one device.
In addition to these, there is an atmospheric pressure sensor for the entire field, covering all its
sectors.

57

The virtual device was programmed with the two services described in the scenario: soil
moisture sensor and irrigation trigger. The sensor service has been programmed to send two
soil moisture measurements per minute and the values of its virtual measurement are randomly
chosen on a scale of 10 to 90 percent in each measurement. The irrigation service is triggered if
the reading is below 30% and it has been programmed to notify the result of its action every time
it is triggered as measured by the sensor.

5.1.2 Simulated Conditions

The virtual devices were programmed to generate data as scripts that simulate possible com-
binations of crops events. So, four scenarios were developed by combining the two variables.
Script I simulates a dry soil with no rain forecast. Script II simulates a dry soil with rain forecast
at the end of the day. Script III simulates a moist soil and without the forecast of rain. Script IV
simulates a rainy day on which the soil is soaked.

Virtual devices were programmed to generate random data within a range of values that char-
acterizes the scenario programmed in the aforementioned scripts, rather than programming them
to generate fixed or random data. This decision aims to prevent the experiment from being im-
pacted by any traffic optimization mechanism based on repeated value transmission.

Table 5.2: Test script breakdown

Sc It Soil moisture sensor ranging values Atmospheric pressure sensor ranging val-
ues

I

#1 Dry soil (humidity from 25 to 28%)

No rain forecast (pressure from 300 to 450)
#2 Very dry soil (humidity from 10 to 13%)
#3 Dry soil (humidity from 25 to 28%)
#4 Slightly dry soil (humidity from 33 to 37%)
#5 Dry soil (humidity from 25 to 28%)

II

#1 Dry soil (humidity from 25 to 28%) No rain forecast (pressure from 300 to 450)
#2 Very dry soil (humidity from 10 to 13%)

With rain forecast (pressure from 550 to 750)#3 Dry soil (humidity from 25 to 28%)
#4 Slightly dry soil (humidity from 33 to 37%)
#5 Dry soil (humidity from 25 to 28%) No rain forecast (pressure from 300 to 450)

III

#1 Moist soil (humidity from 60 to 63%)

No rain forecast (pressure from 300 to 450)
#2 Soil a little damp (humidity from 45 to 48%)
#3 Slightly dry soil (humidity from 33 to 37%)
#4 Moist soil (humidity from 60 to 63%)
#5 Soil a little damp (humidity from 45 to 48%)

IV

#1 Soil a little damp (humidity from 45 to 48%)

With rain forecast (pressure from 550 to 750)
#2 Moist soil (humidity from 60 to 63%)
#3 Soggy soil (humidity from 88 to 91%)
#4 Moist soil (humidity from 60 to 63%)
#5 Soil a little damp (humidity from 45 to 48%)

Caption: Sc – Script identification, It – Iteration number.

58

Thus, combining the controlled-generated data and the random-generated data strategies, the
simulated sensor generates a dataset with a small range of values within the expected range.
Moreover, the script iterates different (and sequential) conditions in order to improve this data
variation. For example, to simulate dry soil condition, the sensor generates a set of readings
ranging from 25 to 28% humidity. Table 5.2 describes the strategies defines in each script.

The work in Smith et al. (2012) presents a measurement of soil moisture from 38 sites in Aus-
tralia since 2001 until its publication in 2012. These measurements are carried out continuously,
with an interval of 20 minutes. The data set presented by the authors shows that the variation
in soil moisture is small between each measurement: the variation is less than 1% in almost all
measurements, with the exception of a few episodes. However, for stress testing purposes in this
experiments scenarios, they were set to send their measurements every minute.

5.1.3 Analysis Process

The analysis process used in this work is based on the framework proposed in Praciano et
al. (2018). But it was adapted to be performed in the steps presented as it follows: data col-
lection, data pre-processing, application of the data cleaning model, and data visualization with
discussions.

Data was collected in the tests performed. The tests were performed to simulate real situations
of an IoT application, as shown in the Subsection 5.1.2. The simulations were programmed to use
random data, but with variation within some logic that simulates a real smart device, as shown
in the Subsection 5.1.1. Each simulation was also performed in fixed time boxes, as described in
each test description.

Data pre-processing consists in a initial data analysis with the purpose of identifying data that
does not fit the sample. Thus, data obtained in the experiment were tabulated in its raw state to
conduct their initial analysis. These data are presented in the description of the experiment to
support its pre-analysis.

Hence it is performed some method of data sanitization, including the application two tech-
niques to improve data quality, so that it was possible to make a better analysis of the system’s
behavior. The first is the removal of variations caused by some specificity of its functioning,
based on outcomes from data pre-processing. After removing samples based on behavior analy-
sis, the Turkey Fences method is applied for identifying outliers in a data set relied on statistical
calculations. Authors in Schwertman, Owens & Adnan (2004) state that Turkey Fences uses the
interquartile range (IQR), which is the difference between values of the third and the first quartiles
(Equation 5.2), to define the “fences” that it will be used to wipe outliers. This master thesis uses
the inner fence, which formulas are described in Equations 5.3 and 5.4. Then, an outlier is any
value beyond either lower or upper limit.

IQR = Q3−Q1 (5.2)

59

lower inner fence = Q1− 1.5× IQR (5.3)

upper inner fence = Q3 + 1.5× IQR (5.4)

Finally, the resulting data set is presented, as well as a discussion of the data within the sce-
nario of the experiment.

Throughout the experiment, when necessary, data and information relevant to the context of
the experiment and/or its analysis are presented in the subsection and the context that describes
it.

5.2 TESTING THE TYPICAL CLOUD SCENARIO

This first set of tests explores the scenario in which an IoT middleware is installed in a cloud
environment and the devices are installed on the local network. The experiment was performed
to validate the operation of the proposed middleware in the usual cloud-IoT mode.

Figure 5.1: Cloud middleware testing architecture

The experiment environment depicted in Figure 5.1 was set up as follows:

• 25 software-simulated devices with soil moisture sensors running on a Personal Computer;

• 1 software-simulated device with atmosphere pressure sensor running on a Personal Com-
puter, and;

• A single IoT middleware node with all its components running on Cloud Server.

Each simulation was performed in a fixed time box of 20 minutes. The values measured in the
performed simulation are described in Table 5.3 and illustrated in Figure 5.2. The 520 requests
occurred over an average time ranging from 817 to 971 ms, with standard deviation ranging from
101 to 841 milliseconds, and with coefficients of variation ranging from 12.37% to 86.64%. These
results will be discussed as it follows.

60

(a) Script I (b) Script II

(c) Script III (d) Script IV

Figure 5.2: Results of cloud middleware testing with raw data (time in milliseconds)

Table 5.3: Cloud computing middleware testing response time in milliseconds with raw data

Script I Script II Script III Script IV
Mean 971.08 837.39 836.57 817.33
Standard deviation 841.35 320.46 416.49 101.09
Coefficient of variation 86.64% 38.27% 49.78% 12.37%
Minimum 670.95 688.64 679.17 685.77
25% 759.69 764.01 758.31 762.25
50% 804.13 798.22 783.07 790.37
75% 875.21 851.31 818.07 839.11
Maximum 5,846.71 7,728.12 6,869.96 1,716.95

61

This raw simulation data presented some performance peaks of their execution and these be-
havior occurred at different moments of each time the test was executed. In the Script I execution,
depicted in Figure 5.2(a), peaks greater than 5,500 ms occurred around 400th and 430th requests.
In the Script II execution, depicted in Figure 5.2(b), a few peaks above 7,500 ms occurred around
50th request. In the Script III execution, depicted in Figure 5.2(c), peaks over 6,500 ms occurred
in two different times: about 200th and about 500th requests, and peak over 4,000 ms occurred
about 430th requests. In the Script IV execution, depicted in Figure 5.2(d), there is only a few
peaks smaller than 2,000 ms: some about 70th to 100th requests and some about 470th request.

There is no feature in the system and in its environment that requires these performance peaks
of up to 7 times the average and that occur at different times of the tests. Moreover, the cloud
service connection is accomplished by a series of components, such as: the local network has two
network switches, Internet connection is via a non-dedicated link, and the service is running on a
cloud platform given by a cloud provider. Given the large number of stochastic variables involved
in the tests and the system aspects, it rules out the possibility that these peaks represent only
variance of the result values. Therefore, these peaks values are considered outliers and should be
discarded from the analysis.

Table 5.4: Results for the cloud middleware for sanitized data (time in milliseconds)

Script I Script II Script III Script IV
Mean 813.27 800.23 781.81 791.06
Standard deviation 72.63 54.61 40.84 47.85
Coefficient of variation 8.93% 6.82% 5.22% 5.46%
Minimum 677.20 688.64 679.17 685.77
25% 758.77 762.80 755.65 759.54
50% 800.22 789.45 776.27 785.58
75% 856.36 828.54 803.53 820.22
Maximum 1,029.36 979.67 896.06 952.36

The new resulting system performance data set is presented in Table 5.4 and illustrated in
Figure 5.3. The average time for the requests ranges from 781 to 813 ms, with standard deviation
ranging from 40 to 72 milliseconds. The coefficients of variation, 8.93% for Script I, 6.82% for
Script II, 5.22% for Script III, and 5.46% for Script IV, indicate low variance in the data set which
can also be observed in the distribution of samples in Figure 5.3, showing that most results are
grouped close to the median (visually, its the denser area in the axes of bullet columns for each
script), within the limits of the 2nd and 3rd quartiles.

It is interesting to highlight that in this experiment the proposed middleware was performed
to simulate a cloud-based IoT middleware. In this scenario, the presented results were consistent,
showing a variation total between 677 and 1,029 ms. Nevertheless, it was not possible to prop-
erly compare the results presented in this thesis with other works because of the particularities
of each work and their experiments. A common issue is that all the found works carried out the
experiments on local networks, simulating the cloud computing environment. This factor masks
the results because they do not consider the latency presented by the Internet connection and the

62

Figure 5.3: Distribution of the results for the cloud middleware for sanitized data (time in milliseconds)

cloud platform. For instance, Azimi et al. (2017) presents an average time of 125 ms with a
standard deviation of 17 ms in an experiment scenario based in Wi-Fi communications and con-
sidering both gateway-middleware and middleware-gateway transmission times, but not including
the computation time for data analytics (tprocessing = 0), although the middleware needs to de-
cide actions to be taken based on the information received from the sensor (Observe-Decide-Act
control strategy).

Thus, considering the results of our experiment and the difference between testing methods, it
can be concluded that in our scenario the proposed middleware was able to support the proposed
scenario.

5.3 TESTING THE LOCAL STANDALONE SCENARIO

In this set of tests, the chosen test scenario was configured in the local standalone off-grid sce-
nario format, similar to the scenario illustrated in Section 4.1. The experiment was performed to
validate the operation of middleware in local standalone form on an SBC host. In other words, all
the sensors and the middleware are in the same and local network. The experiment environment
depicted in Figure 5.4 was set up as follows:

• 25 software-simulated devices with soil moisture sensors running on a Personal Computer;

• 1 software-simulated device with atmosphere pressure sensor running on a Personal Com-
puter, and;

63

Figure 5.4: Local standalone middleware testing architecture

• 1 IoT middleware node with all its components running on a Raspberry Pi.

Each simulation was also performed in a fixed time box of 20 minutes. The raw values mea-
sured in the performed simulation are described in Table 5.5 and illustrated in Figure 5.5. The
520 requests execution time presented a high coefficient of variation in order that all of them is
above 100%. These data will be discussed as it follows.

Table 5.5: Local standalone middleware testing response time in milliseconds with raw data

Script I Script II Script III Script IV
Mean 133.07 111.12 121.35 118.73
Standard deviation 166.87 139.72 143.40 137.72
Coefficient of variation 125.40% 125.74% 118.17% 115.99%
Minimum 27.40 27.12 27.08 26.99
25% 52.40 37.17 53.58 49.13
50% 58.73 57.00 59.60 60.04
75% 98.25 102.67 110.38 119.20
Maximum 700.53 666.90 739.51 706.15

These local tests results illustrated in Figure 5.5 pointed out that the middleware takes a while
to warm up after its initialization and this behavior needs to be discussed. This issue causes the
system to handle the first 60 or 70 requests in twice as much time (some almost three times) than
the other following requests. Thus, the system takes between 520 and 720 ms to answer the first
30 requests, i.e., 5 to 7 times the average response time for the other following requests. After this
initial period, the system performs consistently well for the remainder of its execution. This can
be explained by remembering that the loading of objects in memory is performed on demand after
the initial basic loading of the system. Considering that the IoT middleware is used continuously
and is not typically (re)initialized during its use, this behavior does not invalidate the observed
performance for the purpose of this thesis. Thus, for the purpose of the analysis of our results the
first 100 requests were discarded and then the IQR method was applied to remove outliers from

64

the resulting data.

(a) Script I (b) Script II

(c) Script III (d) Script IV

Figure 5.5: Results of local standalone middleware testing with raw data (time in milliseconds)

The new resulting system performance data set is presented in Table 5.6 and this data is
grouped by occurrences in Figure 5.6. The average time for the requests ranges from 51.29 to
57.83 ms, with standard deviation ranging from 11.75 to 23.64 milliseconds. The coefficients
of variation, 21.32% for Script I, 33.89% for Script II, 29.50% for Script III, and 40.88% for
Script IV, show that low variance is observed in the data set as can also be visualized in Fig-
ure 5.6, since most of the data is grouped close to the median of the columns for each script,
within the limits of the 2nd and 3rd quartiles.

In this experiment, the proposed middleware was performed to simulate local middleware in-
stalled in an SBC. In this scenario, the results presented were consistent, showing a total variation
between 27 and 134 ms. This result shows lower performance than that presented by Silva et al.
(2016a). In that experiment, the response time varied between 7 and 26 ms. However, it is neces-
sary to highlight some differences between the two experiments, given that in the first experiment,
the middleware was deployed in a server with higher computational resources (32 GB of memory
and an Intel Xeon 2.79 GHz CPU) compared to this thesis’ experiment with SBC resources (1
GB of memory and Quad Core 1.2 GHz Broadcom BCM2837 64 bits CPU – see Table 5.1 for
SBC full specifications). The authors used this configuration in their work because they were

65

Table 5.6: Results for the local standalone middleware for sanitized data (time in milliseconds)

Script I Script II Script III Script IV
Mean 55.10 51.29 54.88 57.83
Standard deviation 11.75 17.38 16.19 23.64
Coefficient of variation 21.32% 33.89% 29.50% 40.88%
Minimum 27.40 27.20 27.08 27.64
25% 50.39 35.58 40.17 36.82
50% 55.55 52.29 56.27 55.82
75% 59.81 60.09 60.12 65.10
Maximum 90.60 110.70 106.30 134.47

Figure 5.6: Distribution of the results for the local standalone middleware for sanitized data (time in milliseconds)

66

simulating the behavior of middleware in a computational cloud. Considering this difference, it
can be concluded that the proposed middleware was able to support the proposed scenario, even
if installed on a Raspberry Pi.

5.4 TESTING THE FOG HIERARCHICAL SCENARIO

In this set of tests, the chosen test scenario was configured in the fog computing model, similar
to the scenario illustrated in Section 4.3. The experiment was performed to validate the operation
of middleware-fog on an SBC host communicating with a master middleware on cloud infrastruc-
ture. Hence, all the sensors and the local middleware are in the same and local network and other
IoT middleware runs on a cloud server. The experiment environment depicted in Figure 5.7 was
set up as follows:

• 25 software-simulated devices with soil moisture sensors running on a Personal Computer;

• 1 software-simulated device with atmosphere pressure sensor running on a Personal Com-
puter;

• 1 IoT middleware node with all its components running on a Raspberry Pi, and;

• 1 IoT middleware node, with all its components, running on a cloud server.

Figure 5.7: Edge hierarchical middleware testing architecture

Each simulation was also performed in a fixed time box of 20 minutes. The raw values mea-
sured in the performed simulation are described in Table 5.7 and illustrated in Figure 5.8. The
520 requests execution time presented a low coefficient of variation in order that all of them is
below 30%. These data will be discussed as it follows.

These local tests results illustrated in Figure 5.8 pointed out the system also takes a while to
warm up after its initialization and this behavior, related to loading of objects in memory, is not

67

Table 5.7: Fog computing middleware testing response time in milliseconds with raw data

Script I Script II Script III Script IV
Mean 1,070.27 1,066.81 1,041.89 1,048.33
Standard deviation 300.10 260.31 283.01 306.39
Coefficient of variation 28.04% 24.40% 27.16% 29.23%
Minimum 864.72 846.16 857.61 853.22
25% 927.65 947.34 926.89 928.29
50% 963.51 983.76 959.62 954.38
75% 1,063.19 1,053.06 1,009.24 1,013.07
Maximum 2,497.77 2,265.11 2,809.78 2,576.85

considered for discussion since typically the middleware does not (re)initialize during its norma
operation. In this case, a scenario similar to the scenario presented in Section 5.3 occurs because
the fog module has the same configuration profile that the local standalone middleware of that
experiment. Thus, the first 100 requests were discarded and then the IQR method was applied to
remove outliers.

The new resulting system performance data set is presented in Table 5.8 and this data is
grouped by occurrence in Figure 5.9. The average time for the requests ranges from 947.96
to 955.61 ms, with standard deviation ranging from 43.70 to 55.62 milliseconds. The coefficients
of variation, 5.82% for Script I, 5.43% for Script II, 4.59% for Script III, and 4.65% for Script IV,
show that low variance is observed in the data set as can also be visualized in the Figure 5.9, i.e.,
most of the data is grouped close to the median, within the limits of the 2nd and 3rd quartiles.

Table 5.8: Results for the fog computing middleware for sanitized data (time in milliseconds)

Script I Script II Script III Script IV
Mean 955.61 975.57 950.71 947.96
Standard deviation 55.62 53.01 43.70 44.04
Coefficient of variation 5.82% 5.43% 4.59% 4.65%
Minimum 864.71 846.16 857.61 853.22
25% 917.00 939.56 920.60 920.90
50% 942.06 967.61 945.38 941.72
75% 979.39 1,009.29 976.56 968.92
Maximum 1,129.90 1,128.53 1,078.50 1,074.43

In this experiment, the proposed middleware was performed to simulate fog computing mid-
dleware with one node installed in an SBC and the other in a cloud computing infrastructure. In
this scenario, the results presented were consistent, showing a variation total between 846 and
1,129 ms.

For comparison purposes, results from two other studies are presented as follows. The exper-
iments in Schenfeld (2017) results in a 147 ms RTT for 10 devices connected to the middleware
and this time goes up to 855 ms when the middleware serves 50 devices. The experiment in Li
(2018) results in an 18 ms RTT for HTTP requests with 1,000 bytes of payload and 22 ms for
3,000 bytes of payload. The presented results in these works are better than the results obtained in

68

(a) Script I (b) Script II

(c) Script III (d) Script IV

Figure 5.8: Results of fog computing middleware testing with raw data (time in milliseconds times a thousand)

Figure 5.9: Distribution of the results for the fog computing middleware for sanitized data (time in milliseconds
times a thousand)

69

the tests carried out in this thesis. However, it is not possible to make a comparison under similar
conditions because, although their proposals are for fog computing, both simulations are carried
out on a local network, without using cloud computing.

5.5 ANALYSIS AND DISCUSSION

In this Chapter, the proposed middleware was submitted to three different operating scenarios:
local standalone in Section 5.3, cloud computing in Section 5.2, and fog computing in Section 5.4.
The results presented demonstrated that the middleware was able to adapt to the proposed scenar-
ios.

The results also confirmed what was expected about the difference between the computational
models described in the fog, edge, and cloud computing models literature and other researches as
cited in this work:

• When the proposed middleware is used locally, it responds with much higher performance
than the cloud model (for instance, the Script I: 55.10 ms for the local tests and 813.27 ms
for the cloud computing tests);

• When the proposed IoT middleware is used in fog computing mode, it shows up to 21%
more time in RTT than the cloud model because it needs to process data before sending it
to the central middleware, and;

• With the exception of a few peaks, the three computing models tests have low-variance in
their performance (the biggest variance was 40.88% in the local standalone tests).

It is important to note that the experiments consider a system with no optimization on any of
its components. That is, local servers, network components, the Internet connection, and cloud
servers were used in their default configuration.

The local configuration tests illustrated in Figure 5.5 showed the occurrence of mini perfor-
mance spikes around the 500th request, with responses between 380 and 480 ms. This behavior
raised the suspicion that it was some sign of behavior that might occur outside the view given by
the experiment. So an extra experiment was performed to validate this question, as represented
in Figure 5.10. In this new execution, 1,300 requests were made to the middleware, in a mean
time of 81.5 ms with standard deviation of 134.8 milliseconds. It demonstrated that the system
remains consistent even after the 500th run, experiencing only a few peaks with 200 ms long. It
also confirmed the need for warming up the system, similar to the original experiments.

A closing remark is necessary regarding these experiments: despite the intersection that exists
between the different studies on the subject, there is no standardization on how to implement the
solution, much less when it comes to validating it. This divergence hindered the comparison of
the results obtained in this thesis with the other works. For instance:

70

Figure 5.10: Long running tests results for the local standalone middleware testing (time in milliseconds)

• Works like Chekired, Khoukhi & Mouftah (2018), Shah-Mansouri & Wong (2018) are more
concerned with validating some technical aspects of their proposal and do not yet have
practical usage scenarios to be used as a comparison parameter, and;

• Works like Abdul et al. (2018), Chang, Srirama & Buyya (2017), Conti & Passarella (2018)
are more focused on validating the proposal modeling and still do not have practical usage
scenarios to compare.

71

6 CONCLUSION

The IoT paradigm and its variations have shown their utility in various application areas. As
described in Section 2.1, reports describe real benefits that users and organizations have achieved
with resource optimization in, for instance, smart cities, smart homes/buildings, agriculture and
industry. Furthermore, several researches have shown progress in various aspects of the study of
IoT and intelligent things.

Although, adaptability and flexibility of the IoT middleware was desired in this situation,
what it is saw in practice is that each manufacturer has generated its IoT silo, making integration
between different brands unfeasible or inefficient.

This master thesis proposes a middleware that supports the creation of an IoT instances that
can be adpted to different computing scenarios and transparently interact with other instances.
This thesis presents the architecture, components, and operation of the proposed middleware. It
also describes how the design takes influences from the Microservices Architecture, as well as
edge computing and fog computing models. To evaluate how the proposal was accomplished, its
architecture was detailed and validated as well as its components and its way of operation.

This research took as starting point the concept that existing IoT middleware, such as the UIoT
middleware developed at the University of Brasilia, could be adapted for use in restricted envi-
ronments and constrained computing and communication resources. Then the proposal counted
on concepts and technologies that have been explored in IoT such as edge and fog computing, as
well as P2P connections between middlewares. In this sense, this work takes advantage of the
benefits of the “IoT incarnations” definition, eventually overthrowing the unique IoT myth.

Initially, the conceptual proposition of a new architecture was presented for IoT middleware,
evolving the existing strengths in the platform previously developed in the UnB UIoT project. The
redesign of this architecture was based on concepts and techniques of the distributed computing
discipline, paying special attention to modern models such as cloud, fog and edge computing
models. Then, aspects of these concepts and fundamentals are gradually explored in the research,
development and experimentation cycles. This process was performed until the validation or
refutation of the proposed questions was reached.

Once this architecture was validated, the UIoT middleware was refactored to the Microser-
vices Architecture, and then the middleware was ported to simpler architectures such as the SBC
architecture. Having completed this first phase of the research, it was possible to evaluate a fun-
damental point of the work: its ability to be adapted to different deployment environments.

Then, the concept of inter-instance communication was explored so that instances could work
together. This strategy was important to take better advantage of the edge and fog computing
models. Finally, elements of the edge and fog computation model were adopted to allow coordi-
nated action.

72

Then this master thesis is devoted to show the proposed middleware adaptability by deploying
it in different computational models (such as local standalone, fog and cloud computing). It
executed successfully all demanded features. Regarding its performance, RTT data was collected
to explore the client view more realistically than previous works. Under harder conditions, the
performance results were numerically worse than previous works, but the discussion clarifies the
more realistic aspects of our proposal validation compared to mentioned previous works.

However, we reiterate that there is no way to make a fair comparison with other studies since
the conditions under which the tests are performed are different (highlighting the use of cloud
resources, even when the system is designed for the fog and/or cloud computing models).

Concomitantly with the development of the central idea of this thesis, several researches re-
lated to the IoT theme and its subareas were carried out, as it was shown in Subsection 1.4.1.

Throughout this research, it was demonstrated in papers published that it was possible to
refactor the IoT ecosystem to be deployed and used in more restricted computing environments
beyond the cloud computing model that is widely used in early IoT solutions. So this work
can be a starting point for applying IoT in more restricted scenarios, including those with no
fixed computing environments, unconventional connectivity conditions, and access restrictions
and information classification.

6.1 FUTURE WORKS

Throughout this research, some middleware and/or IoT aspects suggested directions be ex-
plored to refine and evolve this work.

The use of intelligent agent techniques and algorithms can allow a better utilization of internal
network resources when the IoT instance is configured in fog computing model. Thus, it is ex-
pected that nodes can automatically find and use available resources more efficiently, in particular
by improving the energy efficiency of the solution. For example, it is envisaged to make the IoT
middleware able to clone itself, in order to adapt its operation or to transfer its experience from
one context to another one or to other nodes.

In this work, simple protocols and implementations were used to solve security and trust
issues. However, it is interesting to investigate consolidated concepts in this area to evaluate if
they are more appropriate than the solutions used in this work.

It is worth remembering that, in parallel to this work, LATITUDE laboratory’s researches
explored the topic IoT security and present conclusions that are in the context of IoT, according
to publications Dutra et al. (2019), Kfouri et al. (2019), Gonçalves et al. (2019). These researches
are related to this work, but they are not directly linked to its core proposal and, as such, have
not yet been integrated into it. Thus, it is suggested to integrate the advances described in these
works into the solution proposed in this master thesis.

73

This research proposes the adoption of the processing resource sharing envisioned and defined
in the fog computing literature. This is a feature that can greatly adapt and expand IoT solutions,
but third-party code execution is a complex issue that involves, among other things, several com-
patibility and security issues. Thus, this issue has been superficially addressed in this paper and
it deserves further analysis.

Protecting data itself through the use of data labeling techniques is a subject that IoT explores.
It is worth checking if this technique can really bring benefits to the thesis proposal.

The integration between instances was broadly approached in this work. However, to narrow
the scope, only compatible instances were used in this research. So that, ontology differences
between IoT instances is an open issue in the proposed middleware. A branch of study that can
also be performed is to use interoperability techniques such as those proposed in Ganzha et al.
(2017).

So, we can also conclude that this thesis opens new research directions to be explored.

74

Bibliography

ABDUL, R.; PAUL, A.; GUL M., J.; HONG, W.-H.; SEO, H. Exploiting Small World Problems in a SIoT
Environment. Energies, MDPI, v. 11, n. 8, August 2018. ISSN 1996-1073.

ACQUAVIVA, A.; APILETTI, D.; ATTANASIO, A.; BARALIS, E.; BOTTACCIOLI, L.; CERQUITELLI,
T.; CHIUSANO, S.; MACII, E.; PATTI, E. Forecasting Heating Consumption in Buildings: A Scalable
Full-Stack Distributed Engine. Electronics, v. 8, n. 5, April 2019. ISSN 2079-9292.

ALABA, F. A.; OTHMAN, M.; HASHEM, I. A. T.; ALOTAIBI, F. Internet of Things security: A survey.
Journal of Network and Computer Applications, v. 88, p. 10–28, June 2017. ISSN 1084-8045.

ALSHUQAYRAN, N.; ALI, N.; EVANS, R. A Systematic Mapping Study in Microservice Architecture.
In: 2016 IEEE 9th International Conference on Service-Oriented Computing and Applications (SOCA).
Macau, China: IEEE, 2016. p. 44–51. ISBN 978-1-5090-4781-9.

ALVES, J. E. D. Human swarm? 2013. Accessed: Nov 22, 2019. [Online]. Available: <https:
//www.ufjf.br/ladem/2013/09/28/enxame-humano-artigo-de-jose-eustaquio-diniz-alves/>.

ASHTON, K. That ‘Internet of Things’ Thing. 2009. Accessed: Apr 05, 2019. [Online]. Available:
<https://www.rfidjournal.com/articles/view?4986>.

ATZORI, L.; IERA, A.; MORABITO, G. The Internet of Things: A Survey. Computer Networks, v. 54,
n. 15, p. 2787–2805, October 2010. ISSN 1389-1286.

ATZORI, L.; IERA, A.; MORABITO, G.; NITTI, M. The Social Internet of Things (SIoT) – When social
networks meet the Internet of Things: Concept, architecture and network characterization. Computer
Networks, v. 56, n. 16, p. 3594–3608, November 2012. ISSN 1389-1286.

AZIMI, I.; ANZANPOUR, A.; RAHMANI, A. M.; PAHIKKALA, T.; LEVORATO, M.; LILJEBERG,
P.; DUTT, N. HiCH: Hierarchical Fog-Assisted Computing Architecture for Healthcare IoT. ACM
Transactions on Embedded Computing Systems, ACM, v. 16, n. 5s, p. 174:1–174:20, September 2017.
ISSN 1539-9087.

BOETTIGER, C. An Introduction to Docker for Reproducible Research. ACM SIGOPS Operating
Systems Review, ACM, v. 49, n. 1, p. 71–79, January 2015. ISSN 0163-5980.

BONOMI, F.; MILITO, R.; ZHU, J.; ADDEPALLI, S. Fog Computing and Its Role in the Internet of
Things. In: ACM. Proceedings of the first edition of the MCC workshop on Mobile cloud computing.
Helsinki, Finland, 2012. p. 13–16.

BORGIA, E. The Internet of Things vision: Key features, applications and open issues. Computer
Communications, v. 54, p. 1–31, December 2014. ISSN 01403664.

BOTTA, A.; DONATO, W. de; PERSICO, V.; PESCAPE, A. On the Integration of Cloud Computing and
Internet of Things. In: . Barcelona, Spain: IEEE, 2014. p. 23–30. ISBN 978-1-4799-4357-9.

CALDAS FILHO, F. L. d. Proposta de um Gateway IoT em Computação Fog com Técnicas de Aceleração
WAN [Proposal of an IoT Gateway in Fog Computing with WAN Acceleration Techniques]. Master Thesis
— University of Brasília, Brasília, DF, Brazil, July 2019.

75

https://www.ufjf.br/ladem/2013/09/28/enxame-humano-artigo-de-jose-eustaquio-diniz-alves/
https://www.ufjf.br/ladem/2013/09/28/enxame-humano-artigo-de-jose-eustaquio-diniz-alves/
https://www.rfidjournal.com/articles/view?4986

CALDAS FILHO, F. L. d.; MARTINS, L. M. C. e.; ARAÚJO, I. P.; MENDONÇA, F. L. L. d.;
COSTA, J. P. C. L. da; DE SOUSA JÚNIOR, R. T. Design and Evaluation of a Semantic Gateway
Prototype for IoT Networks. In: Companion Proceedings of the 10th International Conference on Utility
and Cloud Computing. Austin, TX, USA: ACM, 2017. (UCC ’17 Companion), p. 195–201. ISBN
978-1-4503-5195-9.

CALDAS FILHO, F. L. d.; MARTINS, L. M. C. e.; ARAÚJO, I. P.; MENDONÇA, F. L. L. d.; COSTA,
J. P. C. L. d.; DE SOUSA JÚNIOR, R. T. Gerenciamento de Serviços IoT com Gateway Semântico
[IoT Service Management with Semantic Gateway]. In: Atas das Conferências IADIS Ibero-Americanas
WWW/Internet 2017 e Computação Aplicada 2017. Vilamoura, Algarve, Portugal: IADIS Press, 2017. p.
199–206. ISBN 978-989-8533-70-8.

CALDAS FILHO, F. L. de; ROCHA, R. L.; ABBAS, C. J. B.; MARTINS, L. M. C. e; CANEDO, E. D.;
DE SOUSA JÚNIOR, R. T. QoS Scheduling Algorithm for a Fog IoT Gateway. In: 4th Workshop on
Communication Networks and Power Systems (WCNPS 2019). Brasília, DF, Brazil: IEEE, 2019. p.
122–127.

CHANG, C.; SRIRAMA, S. N.; BUYYA, R. Indie Fog: An Efficient Fog-Computing Infrastructure for
the Internet of Things. Computer, v. 50, n. 9, p. 92–98, September 2017. ISSN 1558-0814.

CHANG, H.; HARI, A.; MUKHERJEE, S.; LAKSHMAN, T. Bringing the cloud to the edge. In: IEEE.
2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). Toronto, ON,
Canada, 2014. p. 346–351.

CHEKIRED, D. A.; KHOUKHI, L.; MOUFTAH, H. T. Industrial IoT Data Scheduling Based on
Hierarchical Fog Computing: A Key for Enabling Smart Factory. IEEE Transactions on Industrial
Informatics, v. 14, n. 10, p. 4590–4602, October 2018. ISSN 1941-0050.

CHIANG, M.; ZHANG, T. Fog and IoT: An Overview of Research Opportunities. IEEE Internet of Things
Journal, v. 3, n. 6, p. 854–864, December 2016.

CITIZENFOUR. Direction: Laura Poitras. Production: Mathilde Bonnefoy, Laura Poitras, and Dirk
Wilutzky. Starring: Edward Snowden; Glenn Greenwald; William Binney; Jacob Appelbaum; and Ewen
MacAskill. United States and Germany: Radius-TWC, 2014. 1 film (113 min), son., color., 35 mm.

CONTI, M.; PASSARELLA, A. The internet of people: A human and data-centric paradigm for the
next generation internet. Computer Communications, v. 131, p. 51–65, October 2018. ISSN 0140-3664.
COMCOM 40 years.

CONTI, M.; PASSARELLA, A.; DAS, S. K. The Internet of People (IoP): A new wave in pervasive
mobile computing. Pervasive and Mobile Computing, v. 41, p. 1–27, October 2017. ISSN 1574-1192.

COULOURIS, G.; DOLLIMORE, J.; KINDBERT, T.; BLAIR, G. Distributed Systems: Concepts and
Design. 5th. ed. Boston, MA, USA: Pearson Education, 2012. ISBN 978-0-13-214301-1.

DASTJERDI, A. V.; BUYYA, R. Fog Computing: Helping the Internet of Things Realize Its Potential.
Computer, v. 49, n. 8, p. 112–116, August 2016.

DOCKER INC. Docker. 2019. [Online]. Available: <https://www.docker.com/>.

DRAGONI, N.; GIALLORENZO, S.; LAFUENTE, A. L.; MAZZARA, M.; MONTESI, F.; MUSTAFIN,
R.; SAFINA, L. Microservices: yesterday, today, and tomorrow. arXiv:1606.04036 [cs], June 2016.
ArXiv: 1606.04036. [Online]. Available: <http://arxiv.org/abs/1606.04036>.

76

https://www.docker.com/
http://arxiv.org/abs/1606.04036

DUTRA, B. V.; ALENCASTRO, J. F. de; CALDAS FILHO, F. L. de; MARTINS, L. M. C. e; DE SOUSA
JÚNIOR, R. T.; ALBUQUERQUE, R. de O. HIDS by signature for embedded devices in IoT networks.
In: UNIVERSIDAD DE EXTREMADURA. Actas de las V Jornadas Nacionales de Investigación en
Ciberseguridad (JNIC 2019). Cáceres, Spain, 2019. p. 53–61. ISBN 978-84-09-12121-2.

FARAHANI, B.; FIROUZI, F.; CHANG, V.; BADAROGLU, M.; CONSTANT, N.; MANKODIYA, K.
Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. Future
Generation Computer Systems, v. 78, p. 659–676, 2018. ISSN 0167-739X.

FERREIRA, H. G. C. Arquitetura de Middleware para Internet das Coisas [Internet of Things Middleware
Architecture]. Master Thesis — University of Brasília, Brasília, DF, Brazil, 2014.

FERREIRA, H. G. C.; CANEDO, E. D.; DE SOUSA JÚNIOR, R. T. IoT Architecture to Enable
Intercommunication Through REST API and UPnP Using IP, ZigBee and Arduino. In: 2013 IEEE 9th
International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).
Lyon, France: IEEE, 2013. p. 53–60.

FERREIRA, H. G. C.; CANEDO, E. D.; DE SOUSA JÚNIOR, R. T. A ubiquitous communication
architecture integrating transparent UPnP and REST APIs. International Journal of Embedded Systems,
Inderscience, v. 6, n. 2/3, p. 188, 2014. ISSN 1741-1068, 1741-1076.

FERREIRA, H. G. C.; DE SOUSA JÚNIOR, R. T. Security analysis of a proposed internet of things
middleware. Cluster Computing, v. 20, n. 1, p. 651–660, March 2017. ISSN 1386-7857, 1573-7543.

FERREIRA, H. G. C.; DE SOUSA JÚNIOR, R. T.; DEUS, F. E. G. d.; CANEDO, E. D. Proposal of a
Secure, Deployable and Transparent Middleware for Internet of Things. In: 2014 9th Iberian Conference
on Information Systems and Technologies (CISTI). Barcelona, Spain: IEEE, 2014. p. 1–4.

FIELDING, R. T. Architectural styles and the design of network-based software architectures. PhD Thesis
— University of California, Irvine, Irvine, CA, USA, 2000. Accessed: Apr 11, 2014. [Online]. Available:
<https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf>.

GANZHA, M.; PAPRZYCKI, M.; PAWłOWSKI, W.; SZMEJA, P.; WASIELEWSKA, K.; PALAU, C. E.
From implicit semantics towards ontologies — practical considerations from the INTER-IoT perspective.
In: 2017 14th IEEE Annual Consumer Communications Networking Conference (CCNC). Las Vegas, NV,
USA: IEEE, 2017. p. 59–64. ISSN 2331-9860.

GONÇALVES, D. G. V.; CALDAS FILHO, F. L. de; MARTINS, L. M. C. e; KFOURI, G. de O.;
DUTRA, B. V.; ALBUQUERQUE, R. de O.; DE SOUSA JÚNIOR, R. T. IPS architecture for IoT
networks overlapped in SDN. In: 2019 Workshop on Communication Networks and Power Systems
(WCNPS). Brasília, DF, Brazil: IEEE, 2019.

GUBBI, J.; BUYYA, R.; MARUSIC, S.; PALANISWAMI, M. Internet of Things (IoT): A vision,
architectural elements, and future directions. Future Generation Computer Systems, v. 29, n. 7, p.
1645–1660, 2013. ISSN 0167-739X.

GUILLEMIN, P.; FRIESS, P. Internet of Things: Strategic Research Roadmap. Brussels, Belgium,
2009. 50 p. [Online]. Available: <http://www.internet-of-things-research.eu/pdf/IoT_Cluster_Strategic_
Research_Agenda_2009.pdf>.

GUTH, J.; BREITENBÜCHER, U.; FALKENTHAL, M.; FREMANTLE, P.; KOPP, O.; LEYMANN,
F.; REINFURT, L. A Detailed Analysis of IoT Platform Architectures: Concepts, Similarities, and
Differences. In: . Internet of Things. Singapore, Singapore: Springer Singapore, 2018. p. 81–101.
ISBN 978-981-10-5861-5.

77

https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.internet-of-things-research.eu/pdf/IoT_Cluster_Strategic_Research_Agenda_2009.pdf
http://www.internet-of-things-research.eu/pdf/IoT_Cluster_Strategic_Research_Agenda_2009.pdf

HARPER, K. E.; GOOIJER, T. de; SCHMITT, J. O.; COX, D. Microdatabases for the Industrial Internet.
Databases - Computers and Society arXiv:1601.04036, January 2016. ArXiv: 1601.04036. [Online].
Available: <http://arxiv.org/abs/1601.04036>.

KAMIENSKI, C.; SOININEN, J.-P.; TAUMBERGER, M.; DANTAS, R.; TOSCANO, A.; CINOTTI,
T. S.; MAIA, R. F.; NETO, A. T. Smart water management platform: Iot-based precision irrigation for
agriculture. Sensors, MDPI, v. 19, n. 2, January 2019. ISSN 1424-8220.

KFOURI, G. de O.; GONÇALVES, D. G. V.; DUTRA, B. V.; ALENCASTRO, J. F. de; CALDAS
FILHO, F. L. de; MARTINS, L. M. C. e; PRACIANO, B. J. G.; ALBUQUERQUE, R. de O.; DE SOUSA
JÚNIOR, R. T. Design of a Distributed HIDS for IoT Backbone Components. In: Communication Papers
of the 2019 Federated Conference on Computer Science and Information Systems. Leipzig, Germany:
PTI, 2019. p. 81–88. ISBN 978-83-955416-3-6. ISSN 2300-5963.

KIM, B.; ALI, T.; LIJERON, C.; AFGAN, E.; KRAMPIS, K. Bio-Docklets: virtualization containers for
single-step execution of NGS pipelines. GigaScience, 2017.

LEWIS, J.; FOWLER, M. Microservices. 2014. Accessed: Nov 23, 2019. [Online]. Available:
<http://martinfowler.com/articles/microservices.html>.

LI, Y. An Integrated Platform for the Internet of Things Based on an Open Source Ecosystem. Future
Internet, MDPI, v. 10, n. 11, 2018. ISSN 1999-5903.

MARTINS, L. M. C. e.; CALDAS FILHO, F. L. d.; DE SOUSA JÚNIOR, R. T.; GIOZZA, W. F.; COSTA,
J. P. C. L. da. Increasing the Dependability of IoT Middleware with Cloud Computing and Microservices.
In: Companion Proceedings of the10th International Conference on Utility and Cloud Computing. Austin,
TX, USA: ACM, 2017. (UCC ’17 Companion), p. 203–208. ISBN 978-1-4503-5195-9.

MARTINS, L. M. C. e.; CALDAS FILHO, F. L. d.; DE SOUSA JÚNIOR, R. T.; GIOZZA, W. F.; COSTA,
J. P. C. L. d. Proposta de Adoção de Microsserviços em IoT [Proposal of IoT Microservice Adoption].
In: Atas das Conferências IADIS Ibero-Americanas WWW/Internet 2017 e Computação Aplicada 2017.
Vilamoura, Algarve, Portugal: IADIS Press, 2017. p. 63–70. ISBN 978-989-8533-70-8.

MELL, P.; GRANCE, T. The NIST Definition of Cloud Computing. Gaithersburg, MD, USA, 2011. 7 p.

MENDONÇA, F. L. L. Proposição de um Modelo de Interoperação Peer-to-Peer para Internet das Coisas
- P2PIoT [Proposition of a Peer-To-Peer Interoperation Model for IoT]. PhD Thesis — University of
Brasília, Brasília, DF, Brazil, July 2019.

MINERAUD, J.; MAZHELIS, O.; SU, X.; TARKOMA, S. A gap analysis of Internet-of-Things platforms.
Computer Communications, v. 89-90, p. 5–16, 2016. ISSN 0140-3664.

MUCCINI, H.; MOGHADDAM, M. T. Iot architectural styles. In: CUESTA, C. E.; GARLAN, D.;
PÉREZ, J. (Ed.). Software Architecture. Cham, Switzerland: Springer International Publishing, 2018. p.
68–85. ISBN 978-3-030-00761-4.

NEWMAN, S. Building Microservices. 1st. ed. Sebastopol, CA, USA: O’Reilly, 2015. ISBN
978-1-4919-5035-7.

NIKOLOUDAKIS, Y.; PANAGIOTAKIS, S.; MARKAKIS, E.; PALLIS, E.; MASTORAKIS, G.;
MAVROMOUSTAKIS, C. X.; DOBRE, C. A Fog-Based Emergency System for Smart Enhanced Living
Environments. IEEE Cloud Computing, v. 3, n. 6, p. 54–62, November 2016. ISSN 2372-2568.

NÓBREGA, L.; GONÇALVES, P.; PEDREIRAS, P.; PEREIRA, J. An IoT-Based Solution for Intelligent
Farming. Sensors, v. 19, n. 3, 2019. ISSN 1424-8220.

78

http://arxiv.org/abs/1601.04036
http://martinfowler.com/articles/microservices.html

PAHL, C.; JAMSHIDI, P. Microservices: A Systematic Mapping Study. In: . Roma: SciTePress, 2016.
v. 1, p. 137–146. ISBN 978-989-758-182-3.

PERERA, C.; QIN, Y.; ESTRELLA, J. C.; REIFF-MARGANIEC, S.; VASILAKOS, A. V. Fog computing
for sustainable smart cities: A survey. ACM Computing Surveys (CSUR), ACM, v. 50, n. 3, p. 32, 2017.

PERERA, C.; ZASLAVSKY, A.; CHRISTEN, P.; GEORGAKOPOULOS, D. Context Aware Computing
for The Internet of Things: A Survey. IEEE Communications Surveys Tutorials, IEEE, v. 16, n. 1, p.
414–454, 2014. ISSN 1553-877X.

POLETTI, J. V.; MARTINS, L. M. C. e; ALMEIDA, S.; HOLANDA, M.; DE SOUSA JÚNIOR, R. T.
A Real Data Analysis in an Internet of Things Environment. In: INSTICC. Proceedings of the 4th
International Conference on Internet of Things, Big Data and Security - Volume 1: IoTBDS,. Heraklion,
Crete, Greece: SciTePress, 2019. p. 438–445. ISBN 978-989-758-369-8.

PRACIANO, B. J. G.; DA COSTA, J. P. C. L.; MARANHÃO, J. P. A.; MENDONÇA, F. L. L. de; DE
SOUSA JÚNIOR, R. T.; PRETTZ, J. B. Spatio-Temporal Trend Analysis of the Brazilian Elections
Based on Twitter Data. In: 2018 IEEE International Conference on Data Mining Workshops (ICDMW).
Singapore, Singapore: IEEE, 2018. p. 1355–1360. ISSN 2375-9259.

QANBARI, S.; PEZESHKI, S.; RAISI, R.; MAHDIZADEH, S.; RAHIMZADEH, R.; BEHINAEIN,
N.; MAHMOUDI, F.; AYOUBZADEH, S.; FAZLALI, P.; ROSHANI, K.; YAGHINI, A.; AMIRI, M.;
FARIVARMOHEB, A.; ZAMANI, A.; DUSTDAR, S. Iot design patterns: Computational constructs
to design, build and engineer edge applications. In: 2016 IEEE First International Conference on
Internet-of-Things Design and Implementation (IoTDI). Berlin, Germany: IEEE, 2016. p. 277–282.

RIBEIRO, C. F. C.; CALDAS FILHO, F. L. d.; MARTINS, L. M. C. e; ABBAS, C. J. B.; DE SOUSA
JÚNIOR, R. T. Protocolos de Redundância de Gateway Aplicados em Redes IoT. In: Anais do XXXVI
Simpósio Brasileiro de Telecomunicações e Processamento de Sinais (SBrT 2018). Campina Grande, PB,
Brazil: SBrT, 2018. p. 1065–1069.

ROOPA M.S.; PATTAR, S.; BUYYA, R.; K.R., V.; IYENGAR, S.; PATNAIK, L. Social Internet of Things
(SIoT): Foundations, thrust areas, systematic review and future directions. Computer Communications,
v. 139, p. 32–57, 2019. ISSN 0140-3664.

SCHENFELD, M. C. Fog e Edge Computing : Uma Arquitetura Híbrida em um Ambiente de Internet das
Coisas [Fog and Edge Computing: A Hybrid Architecture in an Internet of Things Environment]. Master
Thesis — Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil, 2017.

SCHWERTMAN, N. C.; OWENS, M. A.; ADNAN, R. A simple more general boxplot method for
identifying outliers. Computational Statistics & Data Analysis, Elsevier, v. 47, n. 1, p. 165–174, 2004.
ISSN 0167-9473.

SHADIJA, D.; REZAI, M.; HILL, R. Microservices: Granularity vs. Performance. In: Companion
Proceedings of the10th International Conference on Utility and Cloud Computing. Austin, TX, USA:
ACM, 2017. (UCC ’17 Companion), p. 215–220. ISBN 978-1-4503-5195-9.

SHAH-MANSOURI, H.; WONG, V. W. S. Hierarchical Fog-Cloud Computing for IoT Systems: A
Computation Offloading Game. IEEE Internet of Things Journal, v. 5, n. 4, p. 3246–3257, August 2018.
ISSN 2372-2541.

SHI, W.; CAO, J.; ZHANG, Q.; LI, Y.; XU, L. Edge computing: Vision and challenges. IEEE Internet of
Things Journal, IEEE, v. 3, n. 5, p. 637–646, October 2016. ISSN 2372-2541.

SHI, W.; PALLIS, G.; XU, Z. Edge Computing. Proceedings of the IEEE, IEEE, v. 107, n. 8, p.
1474–1481, August 2019.

79

SHROUF, F.; ORDIERES, J.; MIRAGLIOTTA, G. Smart factories in Industry 4.0: A review of the
concept and of energy management approached in production based on the Internet of Things paradigm.
In: 2014 IEEE International Conference on Industrial Engineering and Engineering Management. Bandar
Sunway, Malaysia: IEEE, 2014. p. 697–701. ISSN 2157-362X.

SILVA, C. C. d. M.; FERREIRA, H. G. C.; DE SOUSA JÚNIOR, R. T.; BUIATI, F.; VILLALBA,
L. J. G. Design and Evaluation of a Services Interface for the Internet of Things. Wireless Personal
Communications, January 2016. ISSN 0929-6212, 1572-834X.

SILVA, C. C. de M.; CALDAS, F. L. de; MACHADO, F. D.; MENDONÇA, F. L. L.; DE SOUSA
JÚNIOR, R. T. Proposta de auto-registro de serviços pelos dispositivos em ambientes de IoT. In: Anais do
XXXIV Simpósio Brasileiro de Telecomunicações e Processamento de Sinais (SBrT 2016). Santarém, PA,
Brazil: SBrT, 2016.

SMITH, A. B.; WALKER, J. P.; WESTERN, A. W.; YOUNG, R. I.; ELLETT, K. M.; PIPUNIC, R. C.;
GRAYSON, R. B.; SIRIWARDENA, L.; CHIEW, F. H. S.; RICHTER, H. The Murrumbidgee Soil
Moisture Monitoring Network Data Set. Water Resources Research, Wiley, v. 48, n. 7, 2012.

SOMMERVILLE, I. Software Engineering. 10th. ed. Harlow, UK: Pearson Education, 2016. ISBN
978-1-292-09613-1.

SOTOMAYOR, B.; MONTERO, R. S.; LLORENTE, I. M.; FOSTER, I. Virtual Infrastructure
Management in Private and Hybrid Clouds. IEEE Internet Computing, v. 13, p. 5, 2009.

SPERLING, T. L. von; CALDAS FILHO, F. L. de; DE SOUSA JÚNIOR, R. T.; MARTINS, L. M. C. e;
ROCHA, R. L. Tracking intruders in IoT networks by means of DNS traffic analysis. In: 2017 Workshop
on Communication Networks and Power Systems (WCNPS). Brasília, DF, Brazil: IEEE, 2017. p. 1–4.

SPERLING, T. L. von; FRANÇA, B. de A.; CALDAS FILHO, F. L. de; MARTINS, L. M. C. e;
ALBUQUERQUE, R. de O.; DE SOUSA JÚNIOR, R. T. Evaluation of an IoT device designed for
transparent traffic analysis. In: 2018 Workshop on Communication Networks and Power Systems
(WCNPS). Brasília, DF, Brazil: IEEE, 2018. p. 1–5.

TANEJA, M.; DAVY, A. Resource Aware Placement of Data Analytics Platform in Fog Computing.
Procedia Computer Science, v. 97, p. 153–156, 12 2016.

TANENBAUM, A. S.; BOS, H. Modern Operating Systems. 4th. ed. Amsterdam, The Netherlands:
Pearson Education, 2015. ISBN 978-0-13-359162-0.

THONES, J. Microservices. IEEE Software, v. 32, n. 1, p. 113–116, January 2015. ISSN 0740-7459.

TRUYEN, E.; BRUZEK, M.; LANDUYT, D. V.; LAGAISSE, B.; JOOSEN, W. Evaluation of container
orchestration systems for deploying and managing NoSQL database clusters. In: Proceedings of the 2018
IEEE 11th International Conference on Cloud Computing (CLOUD). San Francisco, CA, USA: IEEE,
2018. p. 17–20.

UNITED NATIONS (Ed.). World Population Prospects 2019. 2019. (Population Division). Accessed:
Nov 22, 2019. [Online]. Available: <https://population.un.org/wpp/>.

VOORSLUYS, W.; BROBERG, J.; BUYYA, R. Cloud computing: Principles and paradigms. Ch.
Introduction to Cloud Computing, p. 1–44, 2011.

WEISER, M.; GOLD, R.; BROWN, J. S. The origins of ubiquitous computing research at PARC in the
late 1980s. IBM Systems Journal, IBM, n. 4, p. 693–696, 1999. ISSN 0018-8670.

80

https://population.un.org/wpp/

YI, S.; LI, C.; LI, Q. A Survey of Fog Computing: Concepts, Applications and Issues. In: ACM.
Proceedings of the 2015 Workshop on Mobile Big Data. Hangzhou, China: ACM, 2015. (Mobidata ’15),
p. 37–42.

ZHONG, R. Y.; XU, X.; KLOTZ, E.; NEWMAN, S. T. Intelligent Manufacturing in the Context of
Industry 4.0: A Review. Engineering, v. 3, n. 5, p. 616–630, 2017. ISSN 2095-8099.

81

APPENDIX

82

I. MIDDLEWARE STANDARD APIS

Several middleware operations are performed through REST APIs that are made available
to internal components and, in some cases, to external clients. Interaction via REST API is
performed since the first version of UIoT middleware described in Ferreira, Canedo & de Sousa
Júnior (2013). However, in this paper, the REST API was changed to fit the concept modeling
described in Section 3.3.4. This appendix describes which defaults are used by middleware.

Operations are provided according to the methods, headers, and return codes specified in the
HTTP protocol as described in Request for Comments (RFC)-7540. Therefore, query operations
are performed using the GET method, POST register operations, and DELETE delete operations.

Respecting the definition of REST, some operations are performed on resources or resource
groups. Inclusion is performed on resource groups, so the resource group address must be spec-
ified in the URI. This operation has the semantics that a new item will be added to the resource
group at a position to be defined by the API. The deletion is performed on a specified resource, so
the resource address must be specified in the URI. The query can be performed on both resource
and resource groups, in which case the operation is a resource query and the second is a resource
collection query, in both cases the URI must specify where the operation is will be held. The
collection query allows data filtering through the use of query params.

Table I.1 shows a portion of services as an example of what will be described in Appendix II.

Table I.1: Description of the Proposed IoT Middleware API

URI HTTP
method

Definition

/client POST Send a new client information to be registered in the UIoT in-
stance.

/list/client GET List a set of clients using multiple parameters to filter the result
data set. If no query parameters is given, then the server will
return all clients registered.

/service POST Send a new service information from a device to be registered in
the UIoT instance.

/data POST Send data of a service to be registered in the UIoT instance.
/list/data GET List a set of data using multiple parameters to filter the result data

set. If no query parameters is given, then the server will return all
data registered.

The middleware API uses the codes described in Table I.2 to indicate the result of processing
of the request.

As defined in the REST architecture, the services provided are stateless and the use of caching
mechanisms and transmission optimization are transparent to the client and also their interface is
standardized and uniformly decoupled from the display that potential clients make (FERREIRA,

83

Table I.2: Proposed IoT Middleware API response codes

Code Allowed methods Definition Description
200 GET Ok. Client request was received, accepted and pro-

cessed correctly and the request response is being
sent in the response.

204 DELETE No content. Client request was received, accepted and pro-
cessed correctly and the request response has no
content to display.

400 POST Bad request. Client request was received but not accepted be-
cause it was performed in an invalid format and
can not be processed by the server.

403 all Forbidden. Client request was received and, although the
client is identified, the server refuses to authorize
it.

404 GET, DELETE Not found. Client request was received but cannot be pro-
cessed because the resource was not found at the
specified address.

405 all Method Not allowed. Client request was received, but will not be pro-
cessed because the server does not support the
method required on the specified resource.

2014). Some services have prerequisites to run, and meeting these prerequisites is still done
statelessly. For example, a service can only be registered after the customer has already been
registered.

Data is transferred in JSON format, both on data input and on output. Listing I.1 shows a
sample of a JSON data code.

1 {

2 "clientId": "de780f5d-3960-4e9e-ae4a-ed4242b429ea",

3 "serviceNumber": 3,

4 "sensitive": 1,

5 "value": [

6 "27.3"

7],

8 "clientTime": "2019-02-06T19:17:49BRST",

9 "tags": [

10 "example-tag"

11]

12 }

Listing I.1: Exemplo de corpo de uma requisição em formato JSON

84

II. API SUMMARY

II.1 DEVICE INTERFACE COMPONENT API

The REST API services available in Device Interface Component are described as follows:

• HTTP POST in /client to send a new client information to be registered in the UIoT
instance;

• HTTP GET in /client to list a set of clients using multiple parameters to filter the result
data set. If no query parameters is given, then the server will return all clients registered;

• HTTP POST in /service to send a new service information from a device to be registered
in the UIoT instance;

• HTTP GET in /service to list a set of services using multiple parameters to filter the
result data set. If no query parameters is given, then the server will return all services
registered.

• HTTP POST in /data to send data of a service to be registered in the UIoT instance;

• HTTP GET in /data to list a set of data using multiple parameters to filter the result data
set. If no query parameters is given, then the server will return all data registered.

• HTTP POST in /formula to send data of a formula to be registered in the UIoT instance;

• HTTP GET in /formula to list a set of formulas using multiple parameters to filter the
result data set. If no query parameters is given, then the server will return all formulas
registered;

• HTTP GET in /formula/{ID} to get data of the formula identified in the UIoT instance
by ID (the provided id value), and;

• HTTP DELETE in /formula/{ID} to delete from the UIoT instance the formula iden-
tified in the UIoT instance by ID (the provided id value).

II.2 APPLICATION INTERFACE COMPONENT API

The REST API services available in Application Interface Component are described as fol-
lows:

• HTTP POST in /registration to send the application information to be registered in
the UIoT instance;

85

• HTTP GET in /registration to retrieve the application information stored in the in-
stance. If the application is not registered yet, then the server will response 404 HTTP status
code;

• HTTP POST in /subscriptions to ask for a subscription in a service or a set of services
in that UIoT instance;

• HTTP GET in /subscriptions to list the subscriptions the application has in the UIoT
instance;

• HTTP GET in /subscriptions/{subscription_id} to retrieve information of
the subscription identified by the id informed in subscription_id;

• HTTP PUT in /subscriptions/{subscription_id} to overwrite the content of
the subscription identified by the id informed in subscription_id;

• HTTP DELETE in /subscriptions/{subscription_id} to delete the subscrip-
tion identified by the id informed in subscription_id;

• HTTP POST in /data to send data of a service to be registered in the UIoT instance, and;

• HTTP GET in /data to list a set of data using multiple parameters to filter the result data
set. If no query parameters is given, then the server will return all data registered.

II.3 MIDDLEWARE INTERFACE COMPONENT API

An instance needs to register itself in order to be able to interact with that instance. The
middleware has this set of services to allow this interaction:

• POST in /registration to send the instance information to be registered in the UIoT
instance;

• GET in /registration to retrieve the instance registration information stored in the
target instance. If the instance is not registered yet, then the server will response 404 HTTP
status code.

• HTTP POST in /subscriptions to ask for a subscription in a service or a set of services
in that UIoT instance;

• HTTP GET in /subscriptions to list the subscriptions the instance has in that UIoT
instance;

• HTTP GET in /subscriptions/{subscription_id} to retrieve information of
the subscription identified by the id informed in subscription_id;

86

• HTTP PUT in /subscriptions/{subscription_id} to overwrite the content of
the subscription identified by the id informed in subscription_id;

• HTTP DELETE in /subscriptions/{subscription_id} to delete the subscrip-
tion identified by the id informed in subscription_id.

• HTTP POST in /data to send data of its own service or a service kept in this UIoT in-
stance, and;

• HTTP GET in /data to query data using multiple parameters to filter the result data set.
If no query parameters is given, then the server will return a dataset according to its own
policies.

II.4 DIMS API

The REST API services available in DIMS are described as follows:

• HTTP POST in /clients to send a new client information to be registered in the UIoT
instance.

• HTTP GET in /clients to list a set of clients using multiple parameters to filter the result
data set. If no query parameters is given, then the server will return all clients registered.

• HTTP POST in /services to send a new service information from a device to be regis-
tered in the UIoT instance;

HTTP GET in /services to list a set of services using multiple parameters to filter the
result data set. If no query parameters is given, then the server will return all services
registered.

• HTTP POST in /data to send data of a service to be registered in the UIoT instance, and;

• HTTP GET in /data to list a set of data using multiple parameters to filter the result data
set. If no query parameters is given, then the server will return all data registered.

II.5 USER INTERFACE COMPONENT API

For UIMS, a new set of Web services have been created to support the creation of data display
grouping functionality and services.

• HTTP POST in /group to send a new group information to be registered in the instance’s
UIMS;

87

• HTTP GET in /list/group to list a set of clients using multiple parameters to filter
the result data set. If no query parameters is given, then the server will return all clients
registered;

• HTTP POST in /delete/group to delete a group identified in the request’s body;

• HTTP POST in /func to send a new function to the identified group;

• HTTP POST in /add/func to send a new post of the identified group:

• HTTP GET in /list/group to list all functions available to the user;

• HTTP POST in /delete/func to remove the identified function from the identified
group, both identifications should be provided in the request’s body, and;

• HTTP POST in /delete/service to remove the identified service from the identified
group, both identifications should be provided in the request’s body.

88

	Contents
	Lista de figuras
	Lista de tabelas
	Introduction
	Motivation
	Objectives
	Research Method
	Research contributions
	Publications related to the thesis

	Outline

	Background and Related Works
	Internet of Things
	IoT definitions
	IoT reference architecture
	UnB IoT

	Cloud, Fog, and Edge Computing
	Cloud Computing
	Edge Computing
	Fog Computing

	Microservices
	Containerization and Docker

	Related Works

	Proposal of an adaptable and scalable IoT middleware
	The IoT Instance
	Supported IoT Entities

	The Proposed IoT Middleware
	IoT Middleware Features
	Relationship between IoT Instances
	Trust between Instances

	IoT Platform Design
	Middleware Architecture
	Middleware Abstract Interfaces
	Middleware Components
	Middleware Ontology
	Middleware Components Deployment Procedures

	Middleware Set up factors
	Deployment Scheme Factor
	Supported Computation Model
	Social Operation Mode

	Middleware usage scenario
	Standalone Off-Grid Local Scenario
	Hierarchical Edge Scenario
	Hierarchical Fog Scenario
	Distributed Scenario

	Experiments and Results
	Testing Guidelines
	Scenario Description
	Simulated Conditions
	Analysis Process

	Testing the Typical Cloud Scenario
	Testing the Local Standalone Scenario
	Testing the Fog Hierarchical Scenario
	Analysis and Discussion

	Conclusion
	Future works

	Bibliography
	Appendix
	Middleware Standard APIs
	API Summary
	Device Interface Component API
	Application Interface Component API
	Middleware Interface Component API
	DIMS API
	User Interface Component API

