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ABSTRACT 

 
Project automation, whatever its nature, is a highly relevant study, as it generally speeds up 

the processes involved by increasing productivity. Regarding structural design automation, a 

common problem is the discretization used in structural element analysis by numerical 

methods. Thus, the automation of this process brings great advantages and increased 

productivity in accomplishing this task. Since the automatic use of the optimization of the 

numerical analysis is always fast and highly accurate, without the need for user intervention, 

facilitating the execution of structural design. 

The concern of this work is the numerical solution of two-dimensional problems of linear 

elasticity, carried out with an automatic implementation of a mesh free numerical analysis, 

through a multi-objective optimization process. The goal of this automation strategy of 

analysis is to simultaneously improving the accuracy, efficiency, stability, and conditioning of 

the numerical solver of the mesh free method, with minimal effort of the designer. The mesh 

free method is based in a local formulation and therefore, uses a node-by-node process to 

generate the global system of equilibrium equations of a nodal discretization. Furthermore, in 

the local domain of integration of each node, the respective equilibrium equations are 

generated with a reduced numerical integration, which improves the accuracy of results. 

The novelty of the thesis is the complete automation of the mesh free numerical analysis. 

Hence, the location coordinates and the sizes of, respectively the compact support and the 

local integration domain, of each node of the discretization, are automatically defined by 

means of a robust evolutionary multi-objective optimization process, based on genetic 

algorithms. Benchmark problems were analyzed to assess the accuracy and efficiency of 

presented techniques. The results shown in this work are in perfect agreement with those of 
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analytical solutions and thus, make quite reliable this strategy of automatic local mesh free 

numerical analysis, carried out with a multi-objective optimization process. 

 

Keywords: Local formulation; Local mesh-free method; Reduced numerical integration; 

Multi-objective optimization; Genetic algorithms. 
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RESUMO 

 
A automação de projetos, seja ele de qualquer natureza, é um estudo altamente relevante, visto 

que de maneira geral ela acelera os processos envolvidos aumentando a produtividade. A 

respeito da automação de projetos estruturais, um problema comum é a discretização usadas 

na análise de elemento estruturais por via de métodos numéricos. Dessa maneira, a 

automação desse processo traz grandes vantagens e aumento da produtividade na realização 

dessa tarefa. Visto que, o uso automático da otimização da análise numérica, é sempre rápida 

e altamente precisa, sem a necessidade de intervenção do usuário, facilitando a execução do 

projeto estrutural. 

O objetivo deste trabalho é a solução numérica de problemas bidimensionais de elasticidade 

linear. Para isso, é realizada a implementação automática de uma análise numérica sem 

malha, através de um processo multiobjetivo de otimização. O objetivo desta estratégia de 

análise de automação é melhorar simultaneamente a precisão, eficiência, estabilidade e 

condicionamento do solucionador numérico do método sem malha, com o mínimo esforço do 

projetista. O método sem malha é baseado em uma formulação local e, portanto, utiliza um 

processo nó por nó para gerar o sistema global de equações de equilíbrio de uma 

discretização nodal. Além disso, no domínio local de integração de cada nó, as respectivas 

equações de equilíbrio são geradas com uma integração numérica reduzida, o que melhora a 

precisão dos resultados. 
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A novidade da tese é a automação completa da análise numérica sem malha. Portanto, as 

coordenadas de localização e o tamanho do suporte compacto e o domínio de integração 

local, de cada nó da discretização, são definidos automaticamente por meio de um processo 

robusto e otimizado por funções multiobjetivo, baseado em algoritmos genéticos. Problemas 

de benchmark foram analisados para avaliar a precisão e eficiência das técnicas 

apresentadas. Os resultados apresentados neste trabalho estão em perfeita concordância com 

os das soluções analíticas e, portanto, tornam bastante confiável essa estratégia de análise 

numérica automática de métodos sem malha local, realizada com um processo de otimização 

multiobjetivo. 

Palavras chave: Formulação local; Método sem malha local; Integração númerica reduzida; 

Optimização Multi-objectivo; Algoritmo genetico. 
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1 - INTRODUCTION 

 

Mesh free numerical methods achieved a remarkable progress over the past few years. The 

essential feature of these methods is that they perform the discretization of the problem 

domain and boundaries with a set of scattered field nodes that do not require any mesh for the 

approximation of the field variables. Historically, most of published mesh free methods rely on 

background cells for the integration of the weighted residual weak form over the global 

domain, in the process of the generation of the system of algebraic equations and therefore, 

they cannot be considered truly mesh free methods. 

Local mesh free methods, based on weighted residual local weak forms, have been developed 

to avoid the background mesh generation in cells. The most popular of these methods is the 

Meshless Local Petrov-Galerkin (MLPG) method, that is based on the well known moving least- 

squares (MLS) approximation. The main feature of this method is that local weak forms are 

used for integration on regular-shaped local regions instead of global weak forms and therefore, 

the method does not require to use a global background mesh, but only a local background 

mesh. 

The accuracy and efficiency of local mesh free methods is determined by two discretization 

parameters. They are, respectively the size of the local compact support domain (αs) of each 

node, that is primarily linked to the accuracy of the model through the total number of nodes 

used to build the shape functions of the local node stiffness and, the size of the local integration 

domain (αq) of each node where the work theorem is numerically integrated, that is primarily 

linked to the efficiency of the model. 

The optimization problem of mesh free discretization parameters involves two different sorts 

of difficulty, which are multiple conflicting objectives and a highly complex search space. In 

the first case, competing goals give rise to a set of compromise solutions known as Pareto- 

optimal, and none of the corresponding trade-offs can be said to be better than the others, when 

preference information is not available. Effectively,  all these trade-off solutions are optimal  

in the wider sense that, in the search space, no other solutions are superior to them, when all 

objectives are taken into consideration. In the second case, the amplitude and complexity of 

the search space can be too large to be solved by classic exact methods. Consequently, efficient 

optimization strategies that are able to address both of these difficulties are required, in an 

effective way. Evolutionary algorithms have several attributes that are convenient for this sort 

of problem which, therefore, make them more suitable than classical optimization methods. 

Evolutionary approaches operate on a set of candidate solutions. Using strong simplifications, 
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this set is subsequently modified by basic operations based on the principles of evolution: 

selection, crossover and mutation. Genetic algorithms, which are a class of evolutionary 

methodologies, implement elitist strategy selection, which ensures that the individual with 

highest fitness is always copied into the next generation. Among these basic operations, the 

most important is crossover, because it plays a fundamental role in guiding the population 

toward an acceptable solution. In general, mutation is not considered to be an especially 

important operation and it is usually set at a very low rate, sometimes omitted, as reported by 

Eberhart and Shi (2007). In evolutionary algorithms, natural selection can be simulated by a 

stochastic selection process. Evolutionary algorithms are especially suited to multi-objective 

optimization because they can capture multiple Pareto-optimal solutions in a single simulation 

run and may exploit similarities of solutions by recombination. 

This work is concerned with the implementation of the ILMF local mesh free method, 

presented by Oliveira et al. (2019), with automatic multi-objective optimization of the mesh 

free discretization parameters, using GA, for the solution automatic discretization of problems 

in two-dimensional linear elasticity. 

 
 

1.1 - MOTIVATION 

 

The discretization of the αs and αq parameters determine the accuracy and efficiency of the 

numerical method and therefore play a key  role in the modeling strategy.  Both parameters  

are usually arbitrarily defined and can vary depending on the local mesh free method used. 

The effect on accuracy and convergence of different parameters was studied by Moussaoui 

and Bouziane (2013) for the MLPG. The main drawback of dealing with heuristically defined 

discretization parameters is that their definition is not unique, and consequently cannot be easily 

implemented into an automatic procedure. 

Therefore, an optimization attempt, using genetic algorithms (GA), was performed, on MLPG, 

by Baradaran and Mahmoodabadi (2009) for two dimensional steady-state heat conduction 

problems and by Bagheri et al. (2011) for three dimensional elastostatic problems. A similar 

optimization was proposed by Ebrahimnejad et al. (2015), combined with an additional 

adaptive refinement technique. Although these authors were successful, their attempt led to a 

very time consuming approach that requires an analytical solution to be performed and 

therefore is not efficient. 

Thus, there is a clear need for an alternative modeling strategy that considers the implementation 

of automatic local mesh free numerical methods, with discretization parameter optimization and 

nodal configuration, without use of the analytical solution. 
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1.2 - OBJECTIVES 

 

1.2.1 - General objective 

 
The major objective of this thesis is the implementation of the automatic discretization of the 

new local mesh-free numerical method (ILMF), for solving two-dimensional problems in linear 

elastostatics. The formulation is derived with the work theorem, of the theory of structures, 

which turns out to be the weak form of a weighted-residual statement of a statically admissible 

stress field. The discretization is carried out locally, through a reduced numerical integration, 

which therefore generates the system of algebraic equations in a node by node scheme. The 

axiomatization of the discretization is performed in a multi-objective optimization framework 

of robust evolutionary methods based on genetic algorithms. 

 

1.2.2 - Specific objectives 

 
• Develop a local form of the work theorem, valid in an arbitrary local region of the structural 

body, to be applied in the formulation of a local mesh-free method, in the set of kinematically- 

admissible strain fields. 

• Formulate and implement a local mesh-free method, with reduced integration, in the set of 

kinematically-admissible strain fields. Assess the virtues of both the formulation and the 

implementation of the reduced numerical integration, of the numerical method. 

• Formulate and implement a local mesh-free method, with numerical reduced integration, for 

regular and irregular nodal discretization. Assess the behavior of the numerical method for 

both cases of the regular and irregular nodal distributions 

• Formulate the multi-objective optimization process of the discretization. Define and assess 

the performance of the objective functions of the formulation. 

• Formulate and implement the MATLAB genetic algorithms for the multi-objective 

optimization of both the nodal discretization and the dimensionless discretization 

parameters (αs and αq) of the local mesh-free method. Discuss the implementation. 

• Compare the performance and efficiency of the automatic local mesh-free method developed, 

against other local mesh-free methods and available analytical solutions. 
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1.3 - THESIS LAYOUT 

 

This thesis is developed in seven chapters. In chapter 1, introduction, the motivation, general 

and specific objectives are presented. Chapter 2, presents the literature review. Chapter 3, 

presents the theoretical and mathematical development of the local form of the work theorem, 

the local kinematic formulation for the rigid body displacement and modeling strategy. Chapter 

4 presents the local mesh-free method. Chapter 5 presents the optimization of local mesh-free 

parameters. Chapter 6 presents some numerical results, obtained for a benchmark problem, 

which give evidence of the accuracy, efficiency and robustness of the strategies adopted for 

the automatic optimization process. Chapter 7 presents the conclusions and future ideas for 

research. Finally, complementary annexes used in this research are presented. 
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2 - LITERATURE REVIEW 

 

One of the paths that were followed in the development of rational mechanics is based on the 

so-called principle of virtual works, already known, albeit in rudimentary form, by Aristotle and 

to which Galileo, later on, recognized generality for the first time. Connected with Lagrangian 

and Hamiltonian mechanics, the principle of the virtual works is a global principle linked to the 

concepts of work and energy. In the framework of the modern theory of structures, the virtual- 

work principle is no more than a particular case of the work theorem that is used as a generator 

of generalized models, as presented by Oliveira (1973). 

The work theorem has been postulated as a unifying basis in the formulation of numerical 

methods in continuum mechanics, as early reported by Portela (1981) and Brebbia (1985). The 

work theorem establishes an energy relationship between a statically-admissible stress field 

and an independent kinematically-admissible strain field. The independence of these stress and 

strain fields is a key feature of the work theorem that allows the generation of different numerical 

methods. Recently, the local form of the work theorem, valid in an arbitrary local region of the 

structural body, was applied in the formulation of local mesh-free numerical methods, in the set 

of kinematically-admissible strain fields, as reported by Oliveira and Portela (2016). 

 
 

2.1 - MESHFREE METHOD 

 

Mesh-free numerical methods achieved a remarkable progress over the past few years. The 

essential feature of these methods is that they perform the discretization of the problem 

domain and boundaries with a set of scattered field nodes that do not require any mesh for the 

approximation of the field variables. In general, their formulation is based in the weighted-

residual method presented by Finalyson (1972). In this work it is shown that the weak form, 

of the weighted-residual statement of a statically-admissible stress field, is obviously the work 

theorem of the theory of structures. 

Smoothed particle hydrodynamics (SPH), presented by Lucy (1977) and Gingold and 

Monaghan (1977) is one of the earliest mesh-free methods applied to solve problems in 

astrophysics. Libersky et al. (1993) were the first to apply SPH in solid mechanics. The main 

drawbacks of SPH are inaccurate results near boundaries and tension instability that was first 

investigated by Swegle et al. (1995). SPH is based on a strong-form formulation of the 

weighted-residual method, with a Lagrangian description. 
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The collocation method is also based in the weighted-residual strong-form formulation. 

Typical mesh-free collocation methods were published by Sekher and Vinay (1997), Wu 

(1992), Zhang et al. (2001), Liu et al. (2002b), Onate et al. (1996), Lee and Yoon (2004) and 

Jamil and Ng (2013). Collocation methods have some attractive advantages over other mesh-

free methods, as they implement a simple algorithm, with no integration required. Despite 

these advantages, collocation methods tend to be inaccurate and unstable, due to the ill-

conditioned system equations. Onate et al. (2001) presented a stabilization technique suitable 

only for some particular problems. 

Other mesh-free methods are based on a weighted-residual weak-form formulation. After 

discretization, the weak form is used to derive a system of algebraic equations, through a 

process of numerical integration, using background cells constructed in the domain of the 

problem. Research on these formulations significantly increased after the publication, by 

Nayroles et al. (1992), of the diffuse element method (DEM). The reproducing kernel particle 

method (RKPM), presented by Liu et al. (1995), and the element-free Galerkin (EFG) method, 

presented by Belytschko et al. (1994), were the first weak-form mesh-free methods applied in 

solid mechanics. In contrast to EFG and RKPM methods, with a so-called intrinsic basis, other 

methods with an extrinsic basis and the partition of unity concept were developed. This 

extrinsic basis was used in the hp-cloud method, presented by Duarte and Oden (1996). 

Melenk and Babuska (1996) presented the partition of unity finite element method (PUFEM) 

which is similar to the hp-cloud method; while PUFEM shape functions are based on Lagrange 

polynomials, the general form of the hp-cloud method also includes the MLS-approximation. 

Strouboulis et al. (2000) presented the generalized finite element method (GFEM) and pointed 

out that different partition of unities can be used for the usual approximation and the 

enrichment. 

 

2.1.1 - Local Meshfree Method 

 
All these weak-form mesh-free methods require the use of a background mesh for integration 

of the weighted-residual weak form over the global problem domain, and therefore, they are 

not truly mesh-free methods. To overcome this difficulty, a class of mesh-free methods based 

on local weighted-residual weak forms, such as the mesh-free local Petrov-Galerkin (MLPG) 

method presented by Atluri and Zhu (1988) to Atluri and Shen (2002), the mesh-free local 

boundary integral equation (MLBIE) method presented by Zhu et al. (1998), the local point 

interpolation method (LPIM) presented by Liu et al. (2001) and the local radial point 

interpolation method (LRPIM) presented by Liu et al. (2002a), have been developed. The main 

difference of the popular MLPG method to other global mesh-free methods, such as EFG or 

RKPM, is that local weak forms are used in MLPG, for integration on local domains, rather 

than global weak forms and consequently the method does not require the use of a background 
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global mesh, but only a background local grid. Note that, in contrast to the MLPG method, the 

new formulations presented in this work, which use generalized local weak forms, are 

completely free of integration, a very important feature when it comes to computational 

efficiency. 

Local mesh-free methods exhibit excellent performance, at least in some particular applications. 

Despite of their performance, local mesh-free methods have not succeeded in replacing the 

standard displacement-assumed finite-element method (FEM), in general applications. It is 

well known that the global formulation of the standard FEM considers an element-by-element 

stiffness calculation that is assembled into the global stiffness matrix. This method of generating 

the final system of equations is not suitable for the analysis processing in parallel environments. 

Regarding this case, there is a clear advantage in using local formulations of FEM which 

consider a node-by-node stiffness calculation, to generate the respective rows of the global 

stiffness matrix. Therefore, the analysis processing can easily be parallelized, in terms of 

nodes, due to the independence of the nodal equations. Furthermore, the independence of the 

nodal equations allows, in local formulations of FEM, using of enrichment of a particular nodal 

stiffness matrix without increasing the nodal degrees of freedom. 

 
 

2.2 - REDUCED INTEGRATION 

 

The issue of numerical stability is quite significant when developing numerical methods. In the 

standard FEM, elements with a reduced number of integration points are routinely employed 

because they are computationally very effective and avoid locking problems of fully integrated 

elements. As a side effect, such reduced integrated elements are susceptible to spurious singular 

modes, so-called hourglass modes, which are zero-energy modes in the sense that the element 

deforms without an associated increase of the elastic energy. These spurious modes, generated 

by a reduced number of integration points, can be prevented through stabilization techniques. 

Zienkiewicz and Taylor (1983) and Bathe (2014) provide additional information on this concept. 

The reduced integration is the main source of the numerical instability of some meshfree 

methods, leading to unstable hourglass deformation and zero-energy modes. This is the case of 

the element-free Galerkin method, see Beissel and Belytschko (1996), and the meshfree 

particle method, as reported by Belytschko et al. (2000). Nodal integration, in meshfree 

methods without stabilization, leads to instabilities due to the fact that each node is associated 

with a support domain, where integrations are carried out, to compute the nodal stiffness. This 

implies that each integration domain is associated with only one integration point, that is the 

node and hence, when only one integration point is considered for higher order functions, 

other than constant strain, the nodal integration causes instabilities. In contrast, the new 

integrated numerical methods presented in this work consider, in the case of the meshfree 
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method, a total of 4 integration points to compute the stiffness associated to each local node 

which, therefore, prevents the generation of spurious zero-energy modes, unlike nodal 

integration methods without stabilization. In order to overcome solution instabilities that are 

present in direct nodal integration, Taylor series expansions have been used, to serve as 

stabilization terms, as presented, respectively by Liu et al. (1985), for FEM, and by Liu et al. 

(1996) and Liu et al. (2007), for meshfree methods. While stable, the drawback of this 

stabilization technique is that it requires the calculation of high order derivatives. 

Therefore, there is still a clear need for an alternative modeling strategy that completely avoids 

all the issues associated with nodal integration. To fulfill such need, this work presents a linearly 

integrated local meshfree numerical method. 

 
 

2.3 - NUMERICAL OPTIMIZATION 

 

Optimization is the process of adjusting the input data or characteristics of a particular system, 

mathematical process, or experiment, thereby seeking to find the minimum or maximum output 

data, whether or not is the final result Haupt and Haupt (2004). Engineering problem solving 

involves multi-stage decision making. The main goal of all these decisions is to minimize the 

effort required or maximize the desired benefit, as seen in Rao (2009). Since the required effort 

or desired benefit in any practical situation can be expressed as a function of certain decision 

variables, optimization can be defined as the process of finding the condition that determines 

the maximum or minimum value of a function. 

Several techniques have been developed over the years to solve different types of optimization 

problems. Mathematical programming techniques, also known as optimal solution search 

methods, are good at finding the minimum of a multi-variable function under a set of 

constraints. Stochastic process techniques can be used to analyze problems described by a set 

of random variables in a probability distribution. Finally, statistical methods allow the analysis 

of experimental data and the construction of empirical models, thus seeking to obtain the most 

accurate representation of the physical situation Goldberg and Holland (1988). 

There are several ways to classify optimization problems. Whether or not there are restrictions, 

they can be classified as restricted or unrestricted. Regarding the nature of decision variables, 

they can be classified into two broad categories: first as a parameter or static optimization, 

second as a trajectory or dynamic optimization. Classifications between linear, nonlinear, 

geometric, and quadratic problems can be assigned with respect to the nature of expressions 

for the objective function and constraints. Based on the allowed values for decision variables, 

they can be classified as integers or actual values. Regarding the deterministic nature of the 

variables, the optimization problem can be classified as deterministic or stochastic. As for the 
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separation between objective functions and constraints, it can be classified as separable and 

non-separable. Finally, depending on the number of objective functions to be minimized, the 

problem and optimization can be classified as mono-objective and multi-objective, as seen in 

Rao (2009). 

Recently, algorithms emerged with great results, including Genetic Algorithm (GA) developed 

by Holland (1975), Simulated Annealing (SA), developed by Kirkpatrick et al. (1983), Particle 

Swarm Optimization (PSO), presented by Parsopoulos and Vrahatis (2002). Adaptive 

Symbiotic Organisms Search developed by Tejani et al. (2016). These evolutionary methods 

generate new points in search space by applying operators to current points and moving 

statistically to optimal locations in space. The great results are the result of an intelligent 

search in a large but finite solution space using statistical methods. 

Classic optimization methods are great at finding a single solution in just one interaction, thus 

making them inconvenient for problem solving with multiple objective functions. In contrast, as 

demonstrated by Deb (2001), evolutionary algorithms can find many optimal solutions, thanks 

to their sample space search process, particularly the mutation and the crossover. Thus, these 

methods are ideal for applications related to multi-objective problems, such as problems related 

to the present research. 
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3 - STRUCTURAL MODELING 

 

Consider the domain Ω of a body with boundary Γ subdivided in Γu and Γt, with Γ = Γu ∪ Γt, 

as Figure 3.1 represents. 
 

 

Figure 3.1 – Representation of the body’s domain Ω, with boundary Γ = Γu Γt; the work 

theorem is defined in an arbitrary domain ΩQ Ω Γ, assigned to a reference point Q ΩQ, 

with boundary ΓQ = ΓQi ΓQt ΓQu, in which ΓQi is the interior local boundary, and ΓQt and 

ΓQu are local boundaries that share the global boundaries, respectively the static boundary Γt 

and the kinematic boundary Γu; points P and R, have arbitrary local domains, respectively ΩP 

and ΩR. 

 
 

The fundamental boundary value problem of elasticity aims to find, in Ω, the distribution of 

stresses σ, strains ε and displacements u, when it has displacements u, constrained on Γu, and 

is under the action of an external system of distributed surface and body forces with densities 

represented, respectively by t, on Γt and b, in Ω. 

The solution of the posed problem, simultaneously satisfying kinematic admissibility of the 

strains and static admissibility of the stresses, is thus a fully admissible elastic field. Kirchhoff’s 

theorem, see Kirchhoff (1859), on the uniqueness of solutions of the elasticity boundary value 

problem shows that this solution is unique, assuming that it exists. The general work theorem 

will be used to solve the posed problem. 

In the body’s domain, loaded by a system of external forces in the conditions already referred, 

consider a statically admissible stress field σ, which therefore satisfies 

 

LT σ + b = 0, (3.1) 
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in Ω, with boundary conditions 

t = n σ = t, (3.2) 
 

specified on Γt; L is a matrix differential operator; t denotes traction components; t denotes 

prescribed tractions and n is the matrix of the components of the unit normal to the boundary 

outwardly directed. 

 
 

3.1 - LOCAL DOMAIN 

 
In the body, consider an arbitrary local domain ΩQ ∈  Ω ∪ Γ,  assigned to a reference point  

Q ∈ ΩQ, with boundary ΓQ = ΓQi ∪ΓQt ∪ΓQu, in which ΓQi is the interior local boundary, with 

local boundaries ΓQt and ΓQu sharing the global boundaries, respectively the static boundary Γt 

and the kinematic boundary Γu, as Figure 3.1 represents. The work theorem will be derived for 

this arbitrary local domain ΩQ. Due to its arbitrariness, this local domain ΩQ ∪ ΓQ ∈ Ω ∪ Γ can 

be overlapping with other similar sub-domains that can be defined in the body. 

 

 
3.2 - THE WORK THEOREM 

 

The work theorem, presented in Oliveira and Portela (2016), establishes an energy relationship, 

in an arbitrary local domain ΩQ ∈ Ω, between two independent elastic fields that can be defined 

in the body which are, respectively a statically admissible stress field σ that satisfies equilibrium 

with a system of external forces, and a kinematically admissible strain field ε∗ that satisfies 

compatibility with a set of constrained displacements. Expressed as an integral form, defined in 

the domain ΩQ ∪ ΓQ, the theorem of work can be written in a compact way, simply as 

 

tT u∗ dΓ + 

ΓQ ΩQ 

bT u∗ dΩ = 

ΩQ 

σT ε∗ dΩ, (3.3) 

 

in which no constitutive relation links the stress σ and the strain ε∗ and therefore, they do not 

depend on each other, as Figure 3.2 schematically represents. 

 

The stress σ, a statically admissible field, can be any one that is in equilibrium with the system 

of external forces, therefore satisfying equations (3.1) and (3.2); it is not necessarily the stress 

that the system of external forces actually introduces in the body. 

The strain ε∗, a kinematically admissible field, can be any one, generated by continuous 

displacements u∗ with small derivatives, compatible with an arbitrary set of constraints 

specified on the kinematic boundary; it is not necessarily the strain actually settled in the body. 
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Figure 3.2 – Schematic representation of the work theorem, an energy relationship, valid in an 
arbitrary local domain ΩQ Ω Γ, with boundary ΓQ, between any two independent fields, in 

which one of them, the stress field σ, is required to satisfy equilibrium with a system of 

external forces b and t, while the other, the strain field ε∗, is required to satisfy compatibility 

with a set of constrained displacements u∗, in the domain Ω ∪ Γ of the body. 

Finally, the local domain ΩQ ∪ ΓQ is an arbitrary sub-domain of the body, associated with the 

reference point Q, as represented in Figure 3.1, where the independent fields σ and ε∗ are 

defined. 

 

 
3.3 - KINEMATIC FORMULATIONS 

 

In order to use the work theorem, as the starting point in the formulation of numerical methods, 

it is necessary to specify one of the two independent fields that can be defined in the body, in 

accordance with some particular convenience of the numerical method formulation. 

Kinematic formulations consider a particular specification of the strain field ε∗, leading thus 

to an equation of mechanical equilibrium that is used in numerical models, to generate the 

respective stiffness matrix. A simple case of a kinematic formulation, based on a strain field 

generated by a rigid-body displacement. 

Statics 

   Dbc 

Kinematics 

 

Tbc 

Statically admissible Kinematically admissible 
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3.3.1 - Rigid-body displacement formulation 

 
Bearing in mind the key feature of the work theorem, that is the complete independence of the 

admissible fields, σ and ε∗, the strain field is defined to simplify the formulation. Hence, the 

simplest and obvious choice is to use a strain field generated by a rigid-body displacement that 

can be defined as 

u∗(x) = c, (3.4) 

in which c is a constant vector that conveniently generates null strains 

 

ε∗(x) = 0. (3.5) 

 

The great virtue of this formulation is the simplicity used in the generation of the strain field; in 

addition, this formulation leads to a simple form of equilibrium equations that, in the absence 

of body forces, has no domain terms. 

 

3.3.2 - Mechanical equilibrium 

 
When the rigid-body displacement formulation is considered, the work theorem, equation (3.3), 

simply leads to the equation 

 

 

ΓQ−ΓQt 

t dΓ + 

ΓQt 

t dΓ + 

ΩQ 

b dΩ = 0 (3.6) 

 

which states an integral form of mechanical equilibrium, of tractions and body forces, in the 

domain ΩQ. Obviously, this equation expresses the local version of the Euler-Cauchy stress 

principle. 

Local equilibrium equation (3.6), is used to generate the stiffness matrix associated to the local 

node. 

 
 

3.4 - MODELING STRATEGY 

 

The formulation of numerical methods can be based on the work theorem, along with a proper 

and convenient kinematic formulation, in order to derive the equilibrium equations that are used 

to generate the stiffness matrix of each numerical model. This modeling strategy is adopted to 

solve the actual elastic problem. 



14  

Kinematics 

Constitutiveness 
Tbc 

3.4.1 - Defining the strain field 

 
The work theorem is kinematically formulated through the specification of an appropriate strain 

field ε∗. This thesis considers the arbitrary rigid-body displacement, to kinematically formulate 

the work theorem, thus leading to the equilibrium equation (3.6). 

 
 

3.4.2 - Defining the stress field 

 
This stage of the modeling strategy regards the definition of the statically admissible stress 

field, in the equilibrium equation (3.6). The stress field σ, required to satisfy equilibrium with 

a system of external forces, is assumed as the state of stress that actually settles in the body, 

loaded by the actual system of distributed surface and body forces, with the actual displacement 

constraints. This key assumption is schematically represented in Figure 3.3. 

 

 
 

 

 
 

Independent 

Systems 

 
 
 
 
 
 
 

Figure 3.3 – Modeling strategy of kinematic models of the work theorem. After choosing the 

kinematically admissible strain field, the strategy considers that the statically admissible stress 

field is always assumed as the stress field of the unique elastic field that actually settles in the 

body which satisfies full admissibility. Dbc and Tbc stands for Displacement boundary 

condition and Traction boundary condition respectively. 

 
Recall that the elastic field that settles in the body is the unique fully admissible elastic field 

satisfying the given problem. Therefore, besides satisfying equilibrium, through equations (3.1) 

and (3.2), or through equation (3.6), generated by the work theorem, this unique fully admissible 

field also must satisfy compatibility, defined as 

 

ε = L u, (3.7) 

Dbc 

Statics 

Dbc 

Kinematics 

Totally (kinematecally + statically) admissible Kinematically admissible 
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in Ω, with boundary conditions 

u = u, (3.8) 
 

on Γu, in which continuous displacements are assumed with small derivatives, leading to 

geometrical linearity of the strain field. Hence, equation (3.8), which specifies the constraints 

of the actual displacements, must be applied in any numerical model, in order to allow for a 

unique solution of the problem. 

This thesis considers the absence of body forces in the formulation of the local mesh free 

method. 
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4 - LOCAL MESH-FREE NUMERICAL METHOD 

 

The essential feature of mesh free methods is that they perform the discretization of the 

problem only with a set of scattered nodes, without using any mesh for the approximation of 

the variables. The local mesh free method, presented in this paper, is based on the widely used 

approximation of the moving least-squares (MLS). The basic MLS terminology, introduced by 

Atluri and Zhu (2000), is presented here, along with a summary of the essential features of the 

MLS approximation, used in this work. 

Each node of the mesh free discretization is associated with its local domain, as schematically 

represented in Figure 4.1. In general, this local domain is a circular or rectangular region, 
 

Figure 4.1 – Mesh free discretization of the domain Ω and boundary Γ = Γu Γt; reference 

nodes P , Q and R have associated local domains ΩP , ΩQ and ΩR; the local domain ΩQ, 

assigned to the node Q, where the work theorem is defined, has boundary 

ΓQ = ΓQi ∪ ΓQt ∪ ΓQu, in which ΓQi is the interior local boundary and ΓQt ∈ Γt and ΓQu ∈ Γu. 

centered at the respective node, where the rigid-body displacement formulation of the work 

theorem is defined as a local form, of mechanical equilibrium. 

The local character of the MLS approximation is a consequence of the compact support of 

each node, where the respective MLS shape functions are defined. Circular or rectangular local 

compact supports, centered at each node, can be used. The size of the compact support, in 

turn, sets out, in a neighborhood of a sampling point, the respective domain of definition of 

the MLS approximation at this point, as schematically represented in Figure 4.2. The domain 

of definition contains all the nodes whose MLS shape functions do not vanish at this sampling 

point. 

The MLS approximation has local character which is a direct consequence of the compact 
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∫ ∫ 

 

Figure 4.2 – Schematic representation of a mesh-free discretization of the global domain Ω and 

boundary Γ, with a distribution of nodes; ΩP , ΩQ and ΩR represent the local compact supports 

of the corresponding nodes xP , xQ and xR; Ωx is the domain of definition, of the MLS 

approximation of the sampling point x, which is the set of nodes, in this case xP , xQ and xR, 

whose compact support contains this sampling point. 

 
support of each node, where the respective MLS shape functions are defined. Local compact 

supports, with circular or rectangular shape, centered at each node, can be used. The size of 

the compact support determines, in a neighborhood of a sampling point, the respective MLS 

domain of definition at this point, as schematically represented in Figure 4.2. 

All the nodes, whose MLS shape functions do not vanish at this sampling point, are contained 

in the domain of definition. Therefore, the union of the MLS domains of definition of all points 

in the local domain of each node, defines the domain of influence of the node. Based in the 

domain of influence of each node, local mesh free formulations use a node-by-node stiffness 

calculation to generate, the respective rows of the global stiffness matrix of the node. The MLS 

formulation is presented in the annex. 

In the absence of body forces, the local form of the work theorem with the rigid-body 

displacement formulation, equation (3.6), can be written simply as 

 

 

ΓQ−ΓQt 

t dΓ = − 

ΓQt 

t dΓ (4.1) 

 

which represents mechanical equilibrium of the boundary tractions of the local domain ΩQ, 

associated with the field node Q ∈ ΩQ. Note that, although derived in an entirely different 

way that does not make use the work theorem, this equation corresponds to the model MLPG5 

presented by Atluri and Shen (2002). 

 
For a mesh-free discretization of the body, the local mesh-free method, symbolically referred to 

as LMFM, is used to compute the respective system of algebraic equations, in a node-by-node 

process, throughout integration of the corresponding local form (4.1) assigned to each node, 

P 

P 

Q R 
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∫ ∫ 

∫ 

∫ 

with rectangular or circular local domains and numerical quadrature applied on each side, or 

quadrant, of the local domain, as schematically represented in Figure 4.3. 

 
 

  

(a) Rectangular 

domain. 

(b) Circular domain. 

Figure 4.3 – Schematic representation of numerical-quadrature points, on each side, or 

quadrant, of local domains, for the computation of the local form of the work theorem, with 

the rigid-body displacement formulation. 

 
Discretization of the local form (4.1) is carried out with the MLS approximation, equations 

(A.15) to (A.19), in terms of the unknown nodal parameters û, thus leading to the system of 

two linear equations 

 

 

that can be written as 

 
ΓQ−ΓQt 

n D B û dΓ = − 

ΓQt 

t dΓ (4.2) 

KQ û = FQ, (4.3) 

in which KQ, the nodal stiffness matrix associated with the field node Q, is a 2 × 2n matrix (n 

is the number of nodes included in the domain of influence of the reference node Q that is the 

union of the MLS domains of definition of all integration points in the local domain ΩQ) given 

by 

KQ = 

ΓQ−ΓQt 

n D B dΓ (4.4) 

and FQ, is the force vector associated with the field node Q, given by 

 

FQ = − 

ΓQt 

t dΓ. (4.5) 

 

Consider that the problem has a total of N field nodes Q, each one associated with the respective 

local domain ΩQ. Assembling equations (4.3) for all M interior and static-boundary field nodes 

leads to the global system of 2M × 2N equations 

K û = F. (4.6) 

 
 

Finally, the remaining equations are obtained from the N − M boundary field nodes on the 

q 
q 
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n 

k 

Σ 
− 

Σ 

kinematic boundary. For a field node on the kinematic boundary, a direct interpolation method, 

first presented by Liu and Yan (2000), is used to impose the boundary condition as 

uh(xj) = 
Σ 

φi(xj)ûik = uk, (4.7) 

 

or, in matrix form as 

i=1 

 

 

 

uk = Φk û = uk, (4.8) 
 

with k = 1, 2, where uk is the specified nodal displacement component. Equations (4.8) are 

directly assembled into the global system of equations (4.6). 

It is quite important to note that,  the line integration carried out only on the boundary of      

the local domain, in equation (4.1),  to build the respective nodal stiffness matrix of LMFM,  

is computationally much more efficient than the other mesh-free methods that use domain 

integration, as is the case of the EFG method, presented by Belytschko et al. (1994), or the 

MLPG1, MLPG3 and MLPG6 methods presented by Atluri and Shen (2002). The higher 

efficiency of LMFM is clearly evident in numerical results. 

 
 

4.1 - REDUCED INTEGRATION FORMULATION 

 

General mesh free numerical methods can be effectively formulated through a reduced 

integration of the equilibrium equation (4.1). In the simplest case, linear variation of tractions 

is assumed on each boundary of the local domain, which leads to a point-wise discrete form 

that improves the computational efficiency. In addition, as numerical results clearly 

demonstrate, there is also an improvement of the accuracy. 

For a linear variation of tractions, along each boundary segment of the local domain, the local 

form of equilibrium (4.1), can be exactly evaluated with 1 quadrature point, centered on each 

segment, thus leading to 

L 
ni 

i 
t
 

n 
xj 

j=1 

= 
Lt 

nt 

nt 

txk 

k=1 

, (4.9) 

in which ni and nt denote the total number of collocation points defined on, respectively the 

interior local boundary ΓQi = ΓQ −ΓQt −ΓQu, with length Li, and the local static boundary 

ΓQt, with length Lt. This equation, completely free of integration, represents mechanical 

equilibrium of the boundary tractions, evaluated at a set of collocation points, on the boundary 

of the local domain ΩQ, associated with the field node Q ∈ ΩQ. 

For a given mesh free nodal distribution, the local mesh free method with linear reduced 

integration, symbolically referred to as ILMF, an acronym that stands for Integrated Local 

i 
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ni 

nt 

ni 

ΣL
−

 

Q 
n 

xj 

Mesh Free method, is used to compute the stiffness matrix, in a node-by-node process, 

throughout traction evaluation at each central point  of  boundary  segments,  through  

equation (4.9) assigned to each node, with rectangular or circular local domains, schematically 

represented in Figure 4.4. 

 

  
(a) Rectangular 

domain. 

(b) Circular domain. 

Figure 4.4 – Schematic representation of rectangular and circular local domains, with 1 

collocation point on each side, or quadrant, of the local domain, for the computation of the 

generalized local form of the work theorem, with the rigid-body displacement formulation. 

 
Discretization of the generalized local form (4.9) is carried out with the MLS approximation, 

equations (A.15) to (A.19), in terms of the unknown nodal parameters û, thus leading to the 

system of two linear algebraic equations 
 

Li 
Σ 

n DB 
 

 

û = − 
Lt  
Σ 

t 
 

 

 
(4.10) 

 
that can be written as 

n 
xj xj 

j=1 
xk t k=1 

KQ û = FQ, (4.11) 

in which KQ, the nodal stiffness matrix associated with the field node Q, is a 2 × 2n matrix (n 

is the number of nodes included in the domain of influence of the reference node Q that is the 

union of the MLS domains of definition of all collocation points in the local domain ΩQ) given 

by 

K = 
Li 
Σ 

n DB 
 

  

(4.12) 

and FQ is the respective force vector given by 
 

nt 
 

 F = t t 
Q 

n 
xk 

 
. (4.13) 

t 
k=1 

 

Consider that the problem has a total of N field nodes Q, each one associated with the respective 

local domain ΩQ. Assembling equations equations (4.11) for all M interior and static-boundary 

field nodes leads to the global system of 2M × 2N equations 

K û = F. (4.14) 

j=1 
i 

n i 

q 
q 

xj 
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Finally, the remaining equations are obtained from the N − M boundary field nodes on the 

kinematic boundary. For a field node on the kinematic boundary, a direct interpolation method 

is used to impose the kinematic boundary condition as 

 
uk = Φk û = uk, (4.15) 

 
with k = 1, 2, where uk is the specified nodal displacement component. Equations (4.15) are 

directly assembled into the global system of equations (4.14). 

Although ILMF generates a symmetric and banded global system of equations, these features 

are not addressed in the research since, as a local mesh free method, ILMF generates the 

global system of equations in a node-by-node process, through equations (4.11) to (4.14). This 

generation process is different from the one used in the standard FEM which considers an 

element-by-element process to generate the global stiffness matrix. 

It can be easily anticipated high computational efficiency of the ILMF model, with very 

accurate results. As a matter of fact, the nodal stiffness matrix is effectively computed, in 

equations (4.12), with only 4 integration points (1 point per segment of the local domain), 

which basically implies a very short processing time to run the analysis. In addition, the 

reduced integration leads to high accuracy of the results. The reduced integration of this 

linearly integrated formulation plays a fundamental role in the behavior of the ILMF model, 

since it implies a reduction of the stiffness, corresponding to an increase of the strain energy 

which, in turn, leads to an increase of the solution accuracy and, which is most important, 

presents no instabilities. Note that this high accuracy, generated by the reduced integration, has 

been already used in the standard FEM to prevent locking. 

 
 

4.2 - PARAMETERS OF LOCAL MESH-FREE METHOD 

 

For each node of a mesh-free discretization, the size rΩs of the compact support Ωs,  where  

the MLS shape functions are defined, and the size rΩq of the local domain Ωq, where the work 

theorem is defined, are very important parameters that can affect the performance of the solution 

of a numerical application and therefore, they must be addressed here. For a generic node i, of 

a mesh-free discretization, these parameters can be defined, respectively as 

 
rΩs  = αs ci (4.16) 

 

and 

rΩq  = αq ci, (4.17) 
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in which ci represents the distance of the node i, to the nearest neighbouring node, while αs and 

αq are constant parameters that must be defined in any application. 

 
To improve the model accuracy, the nodal distribution requires a proper refinement of rΩs and 

rΩq , through the specification of parameters αs and αq defined in equations, respectively (4.16) 

and (4.17). In general, the discretization parameters are considered, respectively as αs > 1.0 

and αq < 1.0, for regular node distributions. 

The discretization parameters, αs and αq, play different roles in the local mesh free numerical 

method, which can be defined as follows: 

 
• The size of the influence domain of each node, is directly determined by the compact 

supports. This influence domain completely defines the total number of nodes required 

to build the respective nodal shape functions, in order to perform the MLS approximation 

of variables. Therefore, the parameter αs is primarily linked to the accuracy of the mesh 

free method. 

• The local domain of integration of each node is used to build the stiffness matrix of 

each node and, therefore it must be within the solution domain, without intersecting the 

boundary of the body. Therefore, the parameter αq is primarily linked to the efficiency of 

the method. 

 

Historically, the discretization parameters, αs and αq, have been heuristically defined and their 

respective value depends mostly on the MLS approximation and on the nodal distribution 

considered. On the other hand, the ILMF model can obtain automatically the appropriate values 

of these parameters, αs and αq, through a multi-objective optimization process, carried out with 

genetic algorithms. 
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5 - OPTIMIZATION WHIT GENETIC ALGORITHMS 

 

Basic concepts, terminology of optimization, feasibility, and Pareto optimality are formally 

defined in optimization literature presented by Sawaragi et al. (1985), Hwang and Masud 

(1979), Steuer (1986) and Ringuest (1992). This section presents some topics required by the 

optimization of the discretization. The complete full automated routine of GA implementation 

(in MATLAB 2015a) for local mesh free methodsis presented in Appendix C, for the sake of 

completeness. 

 
 

5.1 - MULTI-OBJECTIVE OPTIMIZATION PROBLEM 

 

In this work, the multi-objective optimization problem (MOP) includes a set of n decision 

variables, a set of k objective functions, and a set of m constraints. Objective functions and 

constraints are functions of the decision variables, in this case αs. The optimization goal is to 
 

minimize y = f (αs) = (f1(αs), f2(αs), ..., fk(αs)) 

subject to e(αs) = (e1(αs), e2(αs), ..., em(αs)) ≤ 0 

where αs = (αs1, αs2, ..., αsn) ∈ α 

y = (y1, y2, ..., yk) ∈ Y, 

 

 
(5.1) 

 

in which αs is the decision vector, y is the objective vector, αs represents the decision space 

and Y represents the objective space; the constraints e(αs) ≤ 0 determine the set of feasible 

solutions. 

 
 

5.1.1 - Feasible Set 

 
The feasible set αf is defined as the set of decision vectors αs that satisfy the constraints e(αs) 

that is: 

αf = {αs ∈ α | e(αs) ≤ 0}. (5.2) 

The image of αf , that is the feasible region in the objective space, is denoted as Yf = f (αf ) = 

∪αs∈αf {f (αs)}. 

The difficulty in MOP is the common situation when the individual optima, corresponding to 

different objective functions, are sufficiently different. Then, the objectives are conflicting and 

cannot be optimized simultaneously. Instead, a satisfactory trade-off has to be found, which 
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emphasizes that a new notion of optimality is required for MOP. When several objectives are 

involved, in general αf is not totally ordered, but only partially ordered, as represented in 

Figure 5.1a. 

 

f2 f2 

 
 

 

 

 

 

 

 

t 
 

 

f

1 

(a) 

f1 

(b) 

 

Figure 5.1 – Representation of Pareto optimality in objective space, on the left (a), and the 

possible relations of solutions in objective space, on the right (b). 

 

 
 

5.1.2 - Pareto Dominance 
 

For any two decision vectors a and b, 

 

a > b (a dominates b) if f (a) > f (b) 

a ≤ b (a weakly dominates b) if f (a) ≥ f (b) 

a ∼ b (a is indifferent to b) if f (a) § f (b) ∧ f (b) § f (a). 

 

 
 
 

(5.3) 

 

The definitions for a minimization problem (≺, ≤) are analogical. In Figure 5.1b, the light gray 

rectangle encapsulates the region in objective space that is dominated by the decision vector 

represented by B. The dark gray rectangle contains the objective vectors whose corresponding 

decision vectors dominate the solution associated with B. All solutions for which the resulting 

objective vector is in neither rectangle are indifferent to the solution represented by B. 

 

 
5.1.3 - Pareto Optimality 

 
A decision vector αs ∈ αf is said to be non-dominated, regarding a set A ⊆ αf , 

if $ a ∈ A : a > αs. (5.4) 

Pareto-optimal front 
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B 
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Hence, αs is said to be Pareto optimal iff αs is non-dominated regarding αf . Referring to 

Figure 5.1, the white points represent Pareto-optimal solutions. They are indifferent to each 

other. There is no single optimal solution but rather a set of optimal trade-offs. None of these 

can be identified as better than the others unless preference information is included, as a ranking 

of the objectives. The entirety of all Pareto-optimal solutions is called the Pareto-optimal set; 

the corresponding objective vectors form the Pareto-optimal front or surface, also known as 

Pareto frontier or functional efficient boundary. 

 
 

5.1.4 - Global and Local Pareto-Optimal Sets 

 
The set A is a local Pareto-optimal set 

 

iff ∀ a ∈ A : $ αs ∈ αf : αs > a ∧ ǁ αs − a ǁ< s ∧ ǁ f (αs) − f (a) ǁ< δ, (5.5) 

where ǁ . ǁ is a corresponding metric distance with s > 0 and δ > 0. The set A is a global 

Pareto-optimal set 

iff ∀ a ∈ A : $ αs ∈ αf : αs > a. (5.6) 

 
Note that, a global Pareto-optimal set does not necessarily contain all Pareto-optimal solutions 

and every global Pareto-optimal set is also a local Pareto-optimal set. 

 
 

5.2 - GENETIC ALGORITHMS SEARCH AND DECISION MAKING 

 

GA belong to evolutionary algorithms and are an optimization technique that is categorized  

as a non-derivative global search heuristic. GA perform a search and optimization procedure 

that is motivated by the principles of natural genetics and natural selection, originally proposed 

by Holland (1975). Some fundamental ideas of genetics are borrowed and used artificially to 

construct search algorithms that are robust and require minimal problem information. They are 

a robust and flexible approach that can be applied to a wide range of optimization problems, as 

seen in Kelner and Leonard (2004), McCall (2005) and Ebrahimnejad et al. (2015). 

The genetic algorithm maintains a population of individuals, say P(t), for generation t. Each 

individual represents a potential solution to the problem at hand. Each individual is evaluated to 

give some measure of its fitness. Some individuals undergo stochastic transformations by means 

of genetic operations to form new individuals. There are two types of transformation: mutation, 

which creates new individuals by making changes in a single individual, and crossover, which 

creates new individuals by combining parts from two others. New individuals, called offspring 

C(t), are then evaluated. A new population is formed by selecting the more fit individuals from 
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∫ 

∫ 

the parent population and the offspring population. After several generations, the algorithm 

converges to the best individual, which hopefully represents an optimal or suboptimal solution 

to the problem, accordingly to Gen and Cheng (2000). 

There are two important issues with respect to search strategies: exploiting the best solution and 

exploring the search space. Genetic algorithms provide a directed random search in complex 

landscapes. Genetic operations perform essentially a blind search; selection operators hopefully 

direct the genetic search toward the desirable area of the solution space. One general principle 

for developing an implementation of genetic algorithms for a particular real-word problem is to 

make a good balance between exploration and exploitation of the search space. To achieve this, 

all the components of the genetic algorithms must be examined carefully. Additional heuristics 

should be incorporated in the algorithm to enhance the performance. 

 

5.2.1 - Objective Functions of the ILMF Model 

 
The definition of appropriate objective functions has a great impact on the overall performance 

of the optimization process. This Section presents the objective functions considered in this 

work, for the automatic discretization of ILMF. 

 

5.2.1.1 - Compliance ( C ) 

 
Considering any state of the actual elastic field of the body, the strain energy U , and the potential 

energy P , of the applied loads, respectively given by 
 

 

 

 
and 

U = 
1 

σT ε dΩ (5.7) 
2 

Ω 

P = − 

Γt 

t
T 

u dΓ, (5.8) 

can be used to handle the total potential energy T . The application of the work theorem, to 

the global domain of the body, for the case of the actual elastic field settled in the body, leads 

to P = −2U and therefore T = −U , as well as T = P/2. These results imply that the 

minimum value of the total potential energy of the body corresponds to a minimum value of 

the potential energy P or a maximum value of the strain energy U . The evaluation of the strain 

energy U of the body,  requires the computation of the stress field for all nodal values which  

is computationally inefficient, since it requires the evaluation of derivatives of shape functions 

that can degrade the numerical accuracy. 
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∫ 

− 

Nevertheless, to compute the potential energy P , it is necessary to evaluate the displacement 

field, but only at static boundary nodes, the ones with no-null applied loads, which now is 

computationally very efficient. This process is carried out only at a few nodes and does not 

require the computation of derivatives of shape functions. For this reason, an efficient objective 

function can be defined with the structural compliance C, as 
 

C = 
1

 
2 

Γt 

t
T 

u dΓ = 
1 

P. (5.9) 
2 

 

Consequently, the minimum value of the potential energy P corresponds to a maximum value 

of −C that is equivalent to a minimum value of C. 

 
5.2.1.2 - Conditional Number (k) 

 
Analyzing the static response, it can be seen that one of the upper bounds for the amplification 

of errors in the properties and structural loads is the condition number of stiffness matrix. 

However, even though standard stiffness matrices have very high condition numbers (higher 

than one million), errors or variations in structure or loads should not have a major influence 

on the error. The aim of this text is to clarify why, in most cases, the expectation is met. 

Moreover, an example is presented in which a case associated with the sensitivity judgment  

of the worst-case predicted by the condition number and yet the value is close to the actual 

error amplification. A criterion is suggested wherein the result is closer to the actual error 

magnification than the condition number, see Haftka (1990). 

Consider discretized equations of static response equilibrium, such as those generated by a finite 

element model: 

 
 

Ku = f (5.10) 

 
Where K is the n x n symmetric, positive, definite, stiffness matrix, u is the displacement vector, 

and f is the load vector. 

The condition number of K, k(K) is defined as: 

 
 

k(K) = ǁKǁǁK−1ǁ (5.11) 
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when the 2-norm is used 
 

 

k(K) = 
λn

 

λ1 
(5.12) 

 

Where λi denotes the i-th eigenvalue of K. It is well known k(K) is an upper limit of the 

sensitivity of u for changes in K and f . If f is altered by ∆f then 

 

ǁ∆uǁ 
™ k(K) 

ǁ∆f ǁ 
 

(5.13) 

 
 

and K is altered by ∆K then 

ǁuǁ ǁf ǁ 

 

    ǁ∆uǁ 

ǁu + ∆uǁ 
™ k(K) 

ǁ∆Kǁ
 

ǁKǁ 
(5.14) 

 

In most cases, the condition number of stiffness matrices generated by finite element models 

(FEM). This is similar to indicate that the calculated displacement field appears to be extremely 

sensitive to small errors in the stiffness matrix and load vectors. Notwithstanding this theoretical 

sensitivity, the stiffness matrix (eg, by reduced integration) and the load vector (eg, mass loads) 

are still approximated without concern of amplification of errors predicted by the very large 

condition number. Indeed, it is known that the condition number may be an overly conservative 

assessment of error sensitivity. 

 

5.2.2 - Formulation and implmentation 

 
The aim of the numerical problem optimization is to minimize the objective function using the 

ILMF model which yields different results, depending on the chosen function, by finding the 

optimal mesh free parameters, N , αs and αq such that the geometrical constraints of the problem 

are satisfied. This thesis presents two optimization schemes which are based on: a) the energy 

relative error (mono-objective optimization scheme) and b) the compliance and the Conditional 

number (multi-objective optimization scheme). 

The basic optimization process is as follows: the initial population is randomly generated 

according to the predefined population size of individuals. Then, the fitness function is 

calculated for each member of the population and scaled using a rank process, which is used 

later in the selection process. The reproduction operator is implemented based on a tournament 

selection. Both mutation and crossover are constraint dependent. The genetic algorithm 

described above generates a stochastic values sequence of design variables which are evaluated 
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through the objective function. Finally, the optimization process is terminated if the number of 

generations exceeds the predefined maximum number, which is selected as in this scheme, or 

if the average change in fitness function. 

 

5.2.2.1 - Mono-objective Optimization scheme 

 
The mathematical formulation of the mono-objective optimization scheme is as follows 

 

minimize rε(αs, αq) 

subject to e(αs) = αs
min ≤ αs ≤ αs

max 

e(αq ) = αq
min ≤ αq ≤ αq

max
 

 

(5.15) 

 

in which rε is the energy relative error,  to be presented in the next chapter;  αs
min/αq

min     and 

αs
max/αq

max denote the minimum and the maximum allowable limits for the mesh free 

discretization parameters αs and αq, respectively. 

The approach of the automatic optimization of the discretization parameters is progamated into 

a single and unique routine, to automatically compute the ILMF discretization parameters, αs 

and αq, is a very efficient way. Figure 5.2 presents the flowchart of the mono-objective process. 

 

 

5.2.2.2 - Multi-objetive Optimization scheme 

 
The mathematical formulation of the multi-objective optimization scheme is as follows 

 

 

 

minimize C(αs, αq, N, Nx1 , Nx2 ) 

k(αs, αq, N, Nx1 , Nx2 ) 

subject to e(αs) = αs
min ≤ αs ≤ αs

max 

e(αq ) = αq
min ≤ αq ≤ αq

max
 

e(N ) = Nmin ≤ N ≤ Nmax 

 
 

 

 
(5.16) 

where Nx1  = (Nx1  , Nx1  , ..., Nx1 ) 
n 

Nx2 = (Nx21 
, Nx22 

, ..., Nx2n 
) 

 

 

This optimization requires only one steps procedure to be performed, all parameters are defining 

in a unique routine as presented in Figure 5.3. It is quite important to stress that the accuracy of 

the MLS parameter and the efficiency of the local domain parameter are combined into a fully 

1 2 
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Figure 5.2 – Flowchart of the routine defined for the mono-objective optimization. 

𝑟ε 

𝛼𝑞 𝑎𝑛𝑑 𝛼𝑠 

𝛼𝑞 and 𝛼𝑠 



31  

𝛼𝑞, 𝛼𝑠, 𝑁, 𝑁𝑥1 
, 𝑁𝑥2

 

𝛼𝑞, 𝛼𝑠 , 𝑁, 𝑁𝑥1 
, 𝑁𝑥2

 

automated routine that can optimize a mesh free nodal configuration without the need of any 

analytical solution and for any geometry domain. The routine presented in this paper, although 

only combined with the ILMF for solving linear elastic problems, can be easily adapted to be 

used with any local mesh free method for solving different engineering problems. Even faster 

results can be obtained with this routine by using the MATLAB parallel environment, which 

performs multiple analyses simultaneously. 

 

 

 

Figure 5.3 – Floowchart of the routine defined for the Multi-objective Optimization. 
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6 - NUMERICAL RESULTS 

 

Numerical results are presented in this section to illustrate the accuracy and efficiency of the 

ILMF numerical model carried out with multi-objective optimization process. These results are 

always compared with the analytical results and the other local mesh-free method; MLPG-5 is 

among these methods and, for the sake of simplicity, it is always referred to as MLPG. The 

analytical solution of this four benchmark problems solved is this section, it is presented in 

Dally and Riley (1991). 

For a node i, from a mesh free discretization, the local support Ωs and the local integration 

domain Ωq sizes are,  respectively,  the parameters αs and αq,  defined in equations (4.16)  

and (4.17). The size of the support is a very important parameter that depends on the nodal 

distribution, and thus requires a proper refinement. Through testing, it was verified that the 

optimal size of the support varies between αs = 3.0 ∼ 6.0 and αq = 0.4 ∼ 0.6. 

For error estimation, in displacement and energy, L2 norms can be used, respectively as 

 

 

 

 

and 

ǁuǁ = 

∫

 
 

1 
∫
 

 

1/2 

uT u dΩ  

 
1/2 

T 

 
 

(6.1) 

ǁεǁ = 
2
 

Ω 

ε D ε dΩ . (6.2) 

 

Then the relative errors, respectively for ǁuǁ and ǁεǁ are given by 
 

 

 
 

and 

r = 
ǁunum − uexactǁ 

ǁuexactǁ 
(6.3) 

r  = 
ǁεnum − εexactǁ 

. (6.4)
 

ǁεexactǁ 

 
 

6.1 - CANTILEVER-BEAM 

 

As a benchmark problem, it is considered a cantilever beam with dimensions L × D and with 

unit depth, subjected to a parabolic traction at the free end, as shown in Figure 6.1. Material 
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t2(x2) = − 
2I

 
4 

− x2 

u1(x1, x2) 1 1 2 

6EI 4 

11 1 2 I 

D2 

− x2 1 2 

 
2 1 2 2 1 1 1 

2 

properties of the cantilever beam are taken as YoungJs modulus E = 3.0 × 107 and the PoissonJs 

ratio ν = 0.3 and the beam dimensions are D = 12 and L = 48. The shear force is P = 1000. 

The beam is assumed as a plane stress state and the parabolic traction is defined as 
 

Figure 6.1 – Timoshenko cantilever beam. 
 

P 
.
D2 

2

Σ 

 

 

where I = D3/12 is the moment of inertia. The exact displacement components for this 

problem are given by 

 

Σ Σ  
− Px2 

Σ
(6L − 3x )x + (2 + ν) 

.
x2 − D

2 
ΣΣ 

 
  

 

= Σ
3νx (L − x ) + (4 + 5ν) D

2x1  + (3L − x )x 
Σ  (6.6)

 u (x , x ) P 2 2 

and the exact stress components are given by 

σ (x , x )  
 

− P (L−x1)x2  

σ22(x1, x2)  =      .  0 

  
  

Σ  (6.7) 
 

 

 

6.1.1 - Performance of the reduced integration of ILMF 

 
The relevant performance of the ILMF reduced integration is a very important attribute of this 

numerical method. Linear reduced integration is considered with 1 point per segment of the 

local boundary. Additional integration points can be considered by subdividing a boundary 

segment in identical segments, which leads to equally-spaced integration points. The 

performance of the method can be assessed through numerical results, as a function of the 

integration points defined on each boundary of the respective local domain. The behavior of 

the ILMF energy relative error (rs), in terms of the integration points  is  represented in 

Figure 6.2. 

− (x , x ) 12 σ 

4 6EI 

P 

, (6.5) 

2I 4 
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Figure 6.2 – ILMF energy relative error (rs), as a function of the number of equally-spaced 

integration points, for a regular distribution of 33 5 = 165 nodes; results of MLPG, obtained 

with 10 points per segment of the local domain, referred to as full integration. 

 
For the regular distribution of 33 × 5 = 165 nodes; the MLPG relative error, computed with 10 

points per segment of the respective local domain, referred to as full integration, is also plotted 

for comparison. It can be seen that the lower value of the norm monotonically converges to the 

higher value of the norm, as a function of the integration points. The reduced integration of 

ILMF monotonically converges to the full integration of MLPG, as a function of the integration 

points, with the best result obtained for only 1 point per segment of the respective local domain. 

This is an important result that evidences that the linear reduced integration of the ILMF model 

leads to better results than those obtained with the MLPG full integration. 

 
A discussion of this behavior of ILMF can be presented as follows. The total potential energy 

theorem leads to an upper limit of the strain energy, which represents a lower limit of the 

stiffness, of the exact solution settled in the body. Thus, any approximate solution 

underestimates the strain energy of the exact solution, which corresponds to overestimating its 

corresponding stiffness. Therefore, as shown in Figure 6.2, the full integration of MLPG is 

always stiffer than the reduced integration of ILMF; for only 1 point per segment of the 

respective local domain, the result is very close to the exact solution of the problem. When 

additional segments, with 1 point each, are considered in the reduced integration, the ILMF 

solution monotonically converges to the MLPG solution of the full integration and therefore, it 

can be deduced that the additional integration points monotonically increase the stiffness of 

ILMF, obtained with only 1 point. The best solution is always obtained from the lowest 

stiffness, computed with only 1 point per segment of the respective local domain. 

Note that the improvement of the solution accuracy, generated by the reduced integration, has 

been already used in the standard FEM, as a measure to prevent locking problems of fully 

integrated elements. 

Full integration 

Reduced integration 
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As a final conclusion of this discussion, it is important to mention that the ILMF reduced 

integration, along each side of the local domain, does not lead to any sort of spurious 

instability. This behavior is a direct consequence of having a total of 4 integration points, 

schematically represented in Figure 4.4, to compute the stiffness associated to each local node 

which, therefore, prevents the generation of spurious zero-energy modes, unlike nodal 

integration methods without stabilization. Nodal integration in mesh free methods leads to 

instabilities due to the fact that each node is associated with a support domain, where 

integrations are carried out, to compute the nodal stiffness. This means that each integration 

domain is associated with just 1 integration point, that is the node and thus, when only 1 point 

is used for integration of higher order functions, the nodal integration inevitably causes fatal 

instabilities. 

Another test was carried out to assess the influence of the integration points on the ILMF 

solution accuracy. Four regular distributions of 13 × 4 = 52, 65 × 9 = 585, 97 × 13 = 1261 

and 129 × 17 = 2193 nodes were used. The results obtained for the ILMF energy relative error 

(rs), as a function of the integration points are presented in Figure 6.3, 
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Figure 6.3 – ILMF energy relative error (rs), for the beam discretization with 52, 165, 585, 

1261 and 2193 nodes, as a function of the equally-spaced integration points, on the boundaries 

of the respective local domain. 

 
where it can be seen that the ILMF solution accuracy increases with the number nodes of the 

discretization, as expected; the overall ILMF relative error decreases with finer nodal 

distributions, requiring only 1 point per segment of the respective local domain to obtain the 
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× × 
× 

most accurate results. This is an important result that testifies that ILMF is an efficient 

numerical method. 

A final test was carried out, in order to asses the ILMF accuracy when using higher order 

polynomial basis. Three regular distributions of 13 × 4 = 52, 33 × 5 = 165 and 65 × 9 = 585 

nodes were considered. Figure 6.4 
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Figure 6.4 – ILMF relative error rs, for the beam discretization with 13 4 = 52, 

33 5 = 165 and 65 9 = 585 nodes, as a function of the number of nodes, considering a 

complete set of 1st and 2nd order polynomial basis for the MLS approximation. As expected, 

the ILMF accuracy increases with finer nodal distributions and higher order polynomial basis. 

 
clearly shows the high accuracy of the ILMF reduced integration for high-order polynomial 

basis, providing a stable convergence rate. 

 

6.1.2 - Influence of the local compact support domain size (αs) and the local integration 

domain size (αq) 

 
The local character of the MLS approximation plays a key role in the solution performance. It is 

a direct consequence of the compact support of each node, where the respective shape functions 

are defined. Rectangular compact supports have been used in this benchmark problem. The 

size of the compact support determines, in a neighborhood of a sampling point, the respective 

domain of definition of the MLS approximation at this point, as Figure 4.2 schematically 

represents. This domain of definition contains the nodes whose shape functions do not vanish 

at the sampling point. Finally, the influence domain of each node results from the union of the 

MLS definition domains, of all points in the local integration domain of the node, which thus 

contains the nodes used to define the stiffness of the node. 

1st order basis 

2nd order basis 
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Therefore, for each node of a mesh free discretization, the size of the compact support and the 

size of the arbitrary parameters αs and αq, are very important parameters in a local mesh free 

analysis that can affect the performance of the solution, as a consequence of the pattern of the 

nodal distribution. If the nodal distance is too large, the support regions around each node can 

never intersect with each other, thus leading to no meaningful results. In the other extreme, if 

the nodal distance is too small, a lot of nodes can couple to each other, thus making the local 

character of the MLS approximation to be lost. 

 
 

6.1.2.1 - Local compact support domain (αs) 

 
Usually, the parameter αs is greater than 1.0, to make sure that there are enough points to support 

the nodes on the global boundary. For a small size, the algorithm of MLS approximation may 

be singular and the shape function cannot be constructed, because there is not enough nodes for 

interpolating. 

The influence of size parameter (αs) in the solution is obtained when the (αq) is fixed. The 

Figure 6.5 shows the variation of energy relative error, compliance and condition number, as a 

function of the size of the local support domain with seven ratios, which vary from 3.5 to 6.5 

with 0.5 increments, and αq = 0.5. These results are presented for the beam discretization with 

13 × 4 = 54, 33 × 5 = 165 and 65 × 9 = 585 nodes. 

The Figure 6.5 shows that for values between 4.0 and 4.5 at the local support domain (αs) the 

relative energy errors is low by regular nodal discretization. The compliance value (C) presents 

a small variation, ranging bettween -4.4 for discretization with a large number of nodes and -4.6 

for discretization with a few number of nodes. Additionally, it is identified that there is a directly 

proportional relationship between the size of the local compact support domain parameter (αs) 

and the condition number (k). Similar results are obtained for displacement. 

 

6.1.2.2 - Local integration domain (αq) 

 
The parameter αq is chosen to be less than 1.0 to ensure that the local sub-domains of the 

internal nodes are entirely within the solution domain, without being intersected by the global 

boundary. 

The influence of (αq) is obtained when the (αs) is fixed. The Figures 6.6 shows the variation 

of energy relative error, compliance, and condition number, as a function of the size of the 

local integration domain with seven ratios varying from 0.4 to 0.7, with 0.05 increments. These 

results are presented for the beam discretization with 13×4 = 54, 33×5 = 165 and 65×9 = 585 

nodes. 
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Figure 6.5 – Analysis of influence of the local compact support domain size on Energy relative 
error (rε), Compliance (C) and Condition number (k), carried out for three discretization with 

13 × 4 = 52, 33 × 5 = 165 and 65 × 9 = 585 nodes, and αq = 0.5. 
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Figure 6.6 – Analysis of influence of the local compact support domain size on Energy relative 
error (rε), Compliance (C) and Condition number (k), carried out for three discretization with 

13 × 4 = 52, 33 × 5 = 165 and 65 × 9 = 585 nodes, and αq = 0.5. 
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Figure 6.6 shows that the value of 0.5, for local integration domain, (αq) presents low relative 

energy error in regular discretization, and for this value, the compliance value (C = −4.5) is 

the same for the three discretizations carried out in this problem. Additionally, it is identified 

that these there values forms a directly proportional relationship between the size of the local 

integration domain parameter (αq) and the condition number (k). Similar results are obtained 

for displacement. 

 

 
6.1.3 - Irregular nodal distributions 

 
The mesh-free methods may require discretizations with irregular nodal distribution by P 

problems with special geometries or that present discontinuities in their domain and contour. 

Consequently, the accuracy of the ILMF model must be assessed, in dealing with irregular 

nodal distributions. In this thesis, two types of irregularities are presented, with fixed local 

domain (Level-1) and variable local domain (Level-2). 

The irregularity of the nodal distribution can be generated simply by randomly changing the 

coordinates of a nodal regular distribution, inside the local domain of integration. This process, 

referred to as level-1 of irregularity, can be controlled through an arbitrary parameter cn that 

varies the range from 0.0 to 0.4, in which cn = 0.4 corresponds to a maximum irregularity, as 

presented by Liu (2003). 

Figure 6.7 shows three nodal distributions of the beam discretization, with 189 nodes and level-1 

of irregularity, with two different irregularity configurations, regarding to the boundary nodes. 

Results obtained for the irregularity of the level-1, are presented in Figure 6.8 for the MLPG 

and ILMF. Each value of cn is the normal average of the twelve different irregular nodal 

discretizations. These results confirm the remarkable accuracy of ILMF, even for mild irregular 

nodal distributions. In addition, it is noticeable that there is a direct relation between the 

parameter cn and the energy relative error. Similar results are obtained for displacement. 

A severe irregularity of the nodal distribution can be generated in two steps; first, the coordinates 

of a nodal regular distribution are randomly changed, allowing each node to move outside the 

respective local domain of integration and, next,  each local domain is regenerated,  in order  

to include the new location of the respective node, by considering the middle of the distance 

between the node and its neighboring nodes. This process, referred to as level-2 of irregularity, 

can be controlled through the same arbitrary parameter cn that now varies in the range from 0.0 

to 0.9, in which cn = 0.9 corresponds to a maximum irregularity. 

The Figure 6.9 shows three nodal distributions of the beam discretization, with 55 and 189 

nodes with irregularity of level-2 of interior nodes only (Configuration A). 
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(b) cn = 0.4, configuration A 
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(c) cn = 0.4, configuration B 

Figure 6.7 – Nodal distributions of the beam discretization with 189 nodes and level-1 of 

irregularity; in configuration A, only interior nodes have an irregular distribution, as presented 

by Liu (2003), while in configuration B all nodes are irregularly distributed. 
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irregularity parameter cn, obtained with irregular nodal distributions with 55, 189, 561 and 697 

nodes of the beam discretization. The ILMF accuracy is evident. 
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Figure 6.9 – Nodal distributions of the beam discretization, with 55 and 189 nodes with 

irregularity of level-2 of interior nodes only. 

x
2

 



46  

 

 

 

 

 

 

10—2 

5 

 

4 

 

3 

 

2 

 

1 

 

0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Parameter of nodal irregularity (cn) 

(a) Level-1 and level-2 irregularities 

 

 
 

(b) ILMF, level-2 irregularities with αs = 12.00 

Figure 6.10 – Energy relative error of ILMF and MLPG, as presented by Liu (2003), as a 

function of the irregularity parameter cn, obtained with irregular nodal distributions of the 

beam discretization. The ILMF accuracy is evident. 
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Results obtained for irregular nodal distributions of level-2, are presented in Figure 6.10, where 

still, a high level of accuracy of ILMF results can be seen. These results also show that the 

higher is the irregularity, the higher must be the parameter cn, in order to keep the accuracy  

of results. In addition, it can be seen that when the larger is the number of nodes better is the 

accuracy of the results. A final note to confirm the remarkable accuracy of the ILMF model, 

even for severe irregularities of nodal distributions, which makes ILMF a very reliable mesh 

free numerical model. Similar results are obtained for displacement. 

The irregular nodal distribution with variable local domain (Level-2) has important 

characteristics, one of them is the possibiliy to solve problems with a very irregular noda 

arrangement or make specific nodal distributions according to the need of user. 

The Figure 6.11 shows three different nodal distributions (regular, irregular and especial) of 

the beam discretization with 145 nodes and irregularity of level-2 of interior nodes only 

(Configuration A). 

In Figure 6.12 the principal results for the vertical displacement, and stress (σ11 and σ12) are 

presented. In general, It can be perceived that there is a good agreement with the analytical 

results independent of the distribution used. 

Another important observation is that the two levels of the irregularity (Level-1 and Level-2) 

have a similar behavior for the low irregularity. Consequently, the irregular type 2 will be used 

to make the automatic discretization. 

 

6.1.4 - Automatic Discretization 

 
This section is divided into two schemes: Mono-objective and Multi-objective optimization. In 

the first scheme, the GA is implemented in order to minimize one objective, the energy relative 

error (rε), using the mesh-free parameters αq and αs as a design variables validating the 

methodology implemented. In the second scheme, GA minimize two objectives, the 

Compliance (C) and the Condition number (k), using the number and nodes position (N , Nx1 , 

Nx2 ), parameters αq and αs as a problem variables. The second scheme is called the 

automatic discretization for the design mesh-free methods, this process will be addressed only 

ILMF with configuration A and irregularity Level-2, thinking about future problems with 

greater geometric irregularity. 
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Figure 6.11 – Three different nodal distributions of the beam with 29 5 = 145 nodes with 

irregularity of level-2 and Configuration A. 
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Figure 6.12 – Principal displacement and stress for the cantilever beam with three different 

nodal distribution. 
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6.1.4.1 - Mono-objective Optimization 

 
The main objective of this scheme is to asses the performance of the optimization process related 

to the accuracy. Only the major computational cost, that is the cost of generating and solving 

the global system of algebraic equations, was measured. The decision variables, αs and αq, are 

defined as continuous in the intervals, 

 

αs = [2 13]   and  αq = [0.4 0.7]. (6.8) 

 

The objective functions are related to the decision variables. This means that by selecting 

various values for the design variables, αs and αq, we can make changes in the objective function 

rε, of the ILMF analysis. 

In order to evaluate the mono-objective optimization process, it is calculated the energy relative 

error optimized as a function of the irregularity parameter cn for irregular nodal discretizations 

with 55 nodes. 

The results obtained are compared with a different nodal discretization with 697 nodes in 

Figure 6.14. To each point of cn, the normal average of results were obtained from twelve 

different analysis. Figure 6.13 presented the scheme of irregular nodal configuration for the 

analyses. 

The Figure 6.14 showed the relative energy error for two different nodal discretization (55 

and 697 nodes) with configuration A, as a function of parameter of nodal irregularity (cn). 

The discretization with 55 nodes is carried out with the Mono-objective optimization process. 

The Figure 6.14 showed the relative energy error for two different nodal discretization (55 and 

697 nodes) with configuration A, as a function of parameter of nodal irregularity (cn). The 

discretization with 55 nodes is carried out with the Mono-objective optimization process. 

It can be seen that the results from the solution using genetic algorithm optimization presented 

more accuracy than the discretization for both local methods without the optimization. For 

example, the discretization with 55 nodes using GA presented an minor energy relative error 

than the discretization with more nodes (697 nodes) using the ILMF and MLPG. In addition, it 

is visible that the IMLF displayed a better accuracy than the MLPG, in general; for this reason 

the Multi-objective optimization process will be only used for the ILMF. Similar results are 

obtained using nodal irregularity Level-2. 
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Figure 6.14 – Energy relative error of ILMF and MLPG as a function of the irregularity 

parameter cn, obtained for the irregular discretization of the cantilever beam. 
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6.1.4.2 - Multi-objective Optimization 

 
The problem presented in Figure 6.1 is solved via ILMF optimization method with 700 

variables, the CPU time required was 350 sg. This multi-objective optimization process has 

the ability to discretized automatically by defining the number of nodes, nodal position and 

parameters size. Figure 6.15 shows the pareto results obtained for this problem. 
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Figure 6.15 – The multi-objective Pareto front for irregular distribution of the cantilever beam 

discretization, obtained with the automatic optimization routine. 

 
Each point of Figure 6.15 represents a different discretization for the problem. Three solutions 

are considered satisfactory to verify the automatic discretization process. Thus, three point at 

the beginning, middle and end are chosen from the solution cloud. Table 6.1 presents the main 

characteristics of the three chosen solutions. 

Table 6.1 – The multi-objective Pareto front principal results for the cantilever beam, obtained 

with the automatic optimization routine. 
 

 
 

 

3.5456 × 1010 9×5 = 45 

-4.4666 7.0647 × 1010 15×9 = 135 0.4985 5.0665 
 

In order to evaluate the relation between the parameteres Condition Number (k) and Compliance 

(C) with the number of nodes (N ), it was plotted a graph (Figure 6.16) with the Table 6.1 data. 

Evaluating the Figure 6.16, it is easy to see that the k is directly proportional to N . In the other 

hand, the C variable remains practically constant, i.e., there is no great difference between the 

nodes 20 and 135, respectively. 

The problem shown in Figure 6.1 is seen as a benchmark test to evaluate the accuracy and 

efficiency of the ILMF multi-objective optimization process with 379 variables, the CPU time 
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Figure 6.16 – Condition number (k) and Compliance (C) as a function of the number of nodes 

(N ), carried out for three different optimization discretization of cantilever beam. 

 
required was 212 sg. The discretization is showed in figure 6.17 for each one of the principal 

solution presented in the Figure 6.15 . 

Analyzing Figure 6.17, it can be noticed that each one of the principal results presents different 

nodal discretizations and number of nodes. The nodal distribution presents smooth irregularity 

with good agreement with the previous results obtained for the irregularity nodal discretization. 

The red marks is going to be used to calculated the displacements and stress for the problem, 

presented sequentially. 

In Figure 6.18 the principal results for the vertical displacement, and stress (σ11 and σ12) are 

presented. In general, It can be perceived that there is a good agreement with the analytical 

results. The discretizations with the 20 nodes has the same behavior as the analytical solution; 

however, the accuracy is smaller comparing with the results from the 45 and 135 nodes for the 

stress. 

To evaluate the results and compared it with the analytical solution of the problem, the relative 

errors are plotted in the Figure 6.19. It presents the errors values related to energy and 

displacement, and it confirms what was  already  predicted  by  the  previous  Figures  6.37 

and 6.38. The errors related to energy and displacement are small, in the order of 10−3. For 

both cases the error decreases with increasing the number of nodes, which shows the accuracy 

of the results. 
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Figure 6.17 – Nodal distributions of the cantilever beam, discretization (5×4 = 20, 9×5 = 45 

and 15×9 = 135 nodes) with level-2 of irregularity; in configuration A. 
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Figure 6.18 – Principal displacement and stress for the cantilever beam with three different 

irregular nodal discretization, obtained by the automatic optimization routine. 
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Figure 6.19 – Nodal distributions of the beam discretization with 20, 45 and 135 nodes with 

level-2 of irregularity; in configuration A. 
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6.2 - CIRCULAR CYLINDER 

 
This example considered a long hollow cylinder shown in Figure 6.20, which is subjected to an 

internal pressure (P i) and external pressure (P o). The inner and outer radios of the cylinder are 

denoted as (a) and (b), respectively. Due to the symmetry of the problem, only a portion of the 

upper right quadrant of the circular cylinder is considered for the analysis. The modeled section 

of the cylinder has two radius a = 5, with b = 25.  Material properties of plate with a circular 

hole are taken as YoungJs modulus E = 3.0 × 107 and the PoissonJs ratio ν = 0.3. 

 

 

Figure 6.20 – Circular cylinder with internal and external pressure. 

 

 
6.2.1 - Internal pressure 

 
This special case is often encountered when dealing with stresses in piping systems or pressure 

vessels. A portion of the upper right quadrant of the circular cylinder used to solved this problem 

is presented in Figure 6.21. 

A plane-stress state is considered which leads to the following displacements 
 

ur(r) 
=

 

uθ 

a2Pi 

Er(b2−a2) [b
2(1 + ν) + r2(1 − ν)] 

0 

 
(6.9) 

 

The exact stress distribution in the plate is given by 

σrr (r)  

 
a2Pi 

(b2−a2) 

 
 

[1 − b
2 

]  
 

σ (r)  =  
a2Pi [1 +  b

2 

] 
 

 

(6.10) 

0 

Σ Σ 
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Figure 6.21 – Circular cylinder with internal pressure. 

 
The problem presented in Figure 6.21 was solved using the ILMF optimization method, carried 

out with 1000 variables, the CPU time required was 1442 sg. Figure 6.22 shows the pareto 

results obtained for this problem. 
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Figure 6.22 – The multi-objective Pareto front for irregular distribution of the circular cylinder 

discretizations with internal pressure, obtained with the automatic optimization routine. 

 
Each point of figure 6.22 represents a different discretization for the problem. Three principal 

solutions were considered satisfactory to verify the uniqueness of each proposed discretization. 

Thus, from the solution cloud was chosen points at the beginning, middle and end. Main 

characteristics of the three chosen solutions are summarized in Table 6.2. 

In order to evaluate the relation between the parameters k and C, with N for this problem, it 

was plotted the data of Table 6.1 in Figure 6.23. 

Evaluating figure 6.23, it is clear that the k is directly proportional to N . However, the C 

variable remains practically constant, i.e, there is no great difference between the nodes 48 and 

176, respectively. 
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Table 6.2 – The multi-objective Pareto front principal results for the circular cylinder with 

internal pressure, obtained with the automatic optimization routine. 
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Figure 6.23 – Condition number (k) and Compliance (C) as a function of the number of nodes 

(N ), carried out for three different optimization discretizations of circular cylinder with 

internal pressure. 

 
ILMF multi-objective optimization process is evaluated the accuracy and efficiency by solving 

the problem shown in figure 6.19 

Analyzing Figure 6.24, it can be noticed that which graph presents different nodal 

discretizations and number of nodes. The nodal distribution presents smooth irregularity with 

good agreement with the previous results showed in the nodal irregularity distribution. The red 

marks are going to be used to calculate the displacements and stresses for the problem, 

presented sequentially. 

In Figure 6.25 are presented the principal numerical results for the radial displacement and 

stress in both directions, radial and angular for three discretizations. In addition, it contain its 

the analytical solution. It can be perceived that there is a good agreement, in general. 

To evaluate and compare the results with the analytical solution of the problem, the relative 

errors are plotted in the Figure 6.26. The Figure presents the displacement and energy errors, it 

confirms what was already predicted by the previous Figures 6.24 and 6.25. The errors related 

to energy and displacement are expressively small, in the order of 10−2. For both cases the error 

decreases with increasing the number of nodes, and shows the accuracy of the results. 
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Figure 6.24 – Nodal distributions of the circular cylinder with external pressure, discretization 

(8×6 = 48, 11×8 = 88 and 17×11 = 187 nodes) with level-2 of irregularity; in configuration A. 
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r 
(c) Angular stress 

 

Figure 6.25 – Principal displacement and stress for the circular cylinder with internal pressure 

carried out for three different irregular nodal discretizations, obtained by the automatic 

optimization routine. 
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Figure 6.26 – Analysis of the influence of the number of nodes (N ) on Condition number (k) 

and Compliance (C), carried out for three different optimization discretization. 

 
6.2.2 - External pressure 

 
When external pressure is applied to a cylindrical shell, the problem of buckling should also be 

considered. A portion of the upper right quadrant of the circular cylinder use for the analysis of 

this problem is presented in the Figure 6.27. 

 

 

Figure 6.27 – Circular cylinder with internal pressure. 

 
A plane-stress state is considered which leads to the following displacements 
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The exact stress distribution in the plate is given by 

σrr (r)  

 
b2Po 

 

(b2−a2) 

 
 

[ a
2 

− 1]  
 

σ (r)  =  
a2Pi [ a

2 

+ 1] (6.12) 

 

 

 

The problem presented in Figure 6.27 was solved via ILMF optimization method. This multi- 

objective optimization process defines automatically the discretization, Figure 6.28 shows the 

pareto results obtained for this problem, carried out with 498 variables. 
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Figure 6.28 – The multi-objective Pareto front for irregular distribution of the circular cyliner 

discretization with external pressure, obtained with the automatic optimization routine. 

 
Each point of Figure 6.28 represents a different discretization for the problem. Three principal 

solutions was considered satisfactory to verify the uniqueness of each proposed discretization. 

In the Table 6.3 is presented the main characteristics of the three chosen solutions. 

Table 6.3 – The multi-objective Pareto front principal results for the circular cylinder with 

external pressure, obtained with the automatic optimization routine. 
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In order to evaluate the relation between the parameteres k and C and N , it was plotted a graph 

with this data in the figure 6.29. 
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Figure 6.29 – Condition number (k) and Compliance (C) as a function of the number of nodes 

(N ), carried out for three different optimization discretization of circular cylinder with external 

pressure. 

 
variable remains practically constant, there is no great difference between the nodes 56 and 

228, respectively. 

The problem shown in figure 6.27 is seen as a benchmark test to evaluate the accuracy and 

efficiency of the ILMF multi-objective optimization process. In order to solve the problem, it 

was applied the ILMF. The solution is plotted in Figure 6.30 for each one of the selected point. 

Figure 6.31 presented the principal results for the radial displacement, and radial and angular 

stresses; which shows the greater difference between the analytical and numerical solution for 

the 56 nodes. It can be perceived that there is a good agreement, in general. 

To evaluate and compare the results with the analytical solution of the problem, the relative 

errors are plotted in the Figure 6.32. 

The Figure 6.32 presents the errors values related to energy and displacement and it confirms 

what was already predicted by the previous Figures 6.31. The errors related to energy and 

displacement are expressively small, in the order of 10−2. For both cases the error decreases 

with increasing number of nodes and shows the accuracy of the results. 

 
 

   

    

    
 

 

C
o
n
d
it
io
n
 
N
u
m
b
e
r
 

(
k
)
 

C
o
m
p
li
a
n
c
e
 

(
C
)
 



68  

 

 

 

 

 

 

 

 
 

25 
 

20 
 

15 
 

10 
 

5 
 

0 
 

 

0 5 10 15 20 25 

x1 

(a) 56 nodes 

 

25 
 

20 
 

15 
 

10 
 

5 
 

0 
 

 

0 5 10 15 20 25 

x1 

(b) 88 nodes 
 

25 
 

20 
 

15 
 

10 
 

5 
 

0 

0 5 10 15 20 25 
x1 

(c) 228 nodes 

Figure 6.30 – Nodal distributions of the circular cylinder with external pressure, discretization 

(8×7 = 56, 11×8 = 88 and 19×12 = 228 nodes) with level-2 of irregularity; in configuration A. 
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Figure 6.31 – Principal displacement and stress for the circular cylinder with external pressure 

carried out for three different irregular nodal discretization, obtained by the automatic 

optimization routine. 
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Figure 6.32 – Analysis of influence of the number of nodes (N ) on Condition number (k) and 

Compliance (C), carried out for three different optimization discretization. 
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6.3 - PLATE WITH A CIRCULAR HOLE 

 

Consider an infinite plate with a centered circular hole under unidirectional unit tension along 

the x1 direction, as represented in Figure 6.33.  Due to the symmetry of the problem about the 

horizontal and vertical axes, only a portion of the upper right quadrant of the plate is considered. 

The modeled section of the plate has dimensions b x b and the center circle has a radius a = 

1, with b = 5a.  Material properties of plate with a circular hole are taken as YoungJs modulus 

E = 1.0 × 105 and the PoissonJs ratio ν = 0.25. 

 

Figure 6.33 – Plate with a circular hole. 

 

 
A plane-stress state is considered which leads to the following displacements 

 

u1(r, θ) 

u2(r, θ) 

− cos θ [4a4 cos2 θ (1 + ν) (1 − r2) − 3a4(1 + ν) + (ar)2(1 − 3ν) − 2r4] 

− sin θ [4a4 cos2 θ (1 + ν) (1 − r2) − a4(1 + ν) + (ar)2(ν − 3) + 2r4ν] 

(6.13) 
 

The exact stress distribution in the plate is given by 

σ    (r, θ)
 

1 − a
2 .3 cos 2θ + cos 4θ

Σ 
+ 3 a

4 

cos 4θ  
 

 

σ  (r, θ)  =  − a
2  . 1  cos 2θ − cos 4θ

Σ 
− 3 a4  

cos 4θ   (6.14) 
  

   

a2 
.

1 3 a4 

σ (r, θ) − sin 2θ + sin 4θ
Σ 

+ sin 4θ where r and θ are the usual polar coordinates, centered at the center of the hole. 
 

The bottom and left edges of the plate are assumed as kinematic boundaries, with displacements 

specified on the bottom u2(x1, x2 = 0) and left edges (u1(x1 = 0, x1 = L, x2) = 0). The right 

and top edges are assumed as static boundaries, loaded by tractions computed from the stresses 

2 r4 2 r2 

2 r2 2 r4 

= 
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of the exact solution equation (6.14) as tj = σijni, in which ni represents the components of  

the unit outward normal to the edge of the plate. 

The problem presented in Figure 6.33 was solved via ILMF optimization method. This multi-

objective optimization process has the ability to automatically define the discretization 

determining the nodal distribution, parameters size and position of each node, the Figure 6.34 

shows the pareto results obtained for this problem carried out with 674 variables . 
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Figure 6.34 – The multi-objective Pareto front for irregular distribution of the plate with a 

circular hole discretization, obtained with the automatic optimization routine. 

 
Each point of the figure 6.34 represents a different discretization for the problem solution. Three 

solutions was considered satisfactory to verify the uniqueness of each proposed discretization. 

In the Table 6.4 is presented the main characteristics of the three chosen solutions. 

Table 6.4 – The multi-objective Pareto front with the principal results for the plate with 

circular hole, obtained with the automatic optimization routine. 
 

 
 

 

3.0199 × 107 15×9 = 135 

-9.4234 x 10−5 5.2776 × 107 19×13 = 247 0.5010 4.7307 
 

In order to evaluate the relation between the parameteres (k) and (C) (objective functions) and 

the number of nodes (N ), a graph was plotted with this data in the Figure 6.35. 

Evaluating the figure 6.35, it is clear that the (k) is directly proportional to N , the increase in the 

number of nodes generates a higher value of Conditional Number. However, the Compliance 

variable remains practically constant, there is no great difference between the nodes 84 and 247, 
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Figure 6.35 – Condition number (k) and Compliance (C) as a function of the number of nodes 

(N ), carried out for three different optimization discretization of plate with circular hole. 

 
respectively. 

 
In order to solve the problem shown in the Figure 6.33, it was applied the ILMF. The solution 

is shown in the figure 6.36 for each one of the selected point. 

Analyzing the Figure 6.36, it can be noticed that each graph presents different nodal 

discretizations and number of nodes. Again, the nodal distribution present smooth irregularity 

with good agreement with the previous results. The red marks are going to be used to calculate 

the displacements and stress for the problem, presented sequentially. 

In the figure 6.37, there are presented the principal results for the displacement in the both 

directions, horizontal and vertical. In addition, it cointains the three discretizations and the 

analytical solution. 

In the figure 6.37, it can be perceived that there is a good agreement, in general. The 

discretizations with the 84 nodes have the same behavior as the analytical solution, however 

there is a smaller accuracy than the results from the 135 and 247 nodes, in the vertical 

direction. It can be explained by the fact that the formulation is based on the optimized energy, 

and not in displacement. 

In the figure 6.38, there are presented the principal results for the stress in three directions (θ = 

0, π/4, π/2). It can be perceived that there is a good agreement, in general. All discretizations 

have the same behavior as the analytical solution, however the results for the 84 nodes have a 

smaller accuracy of the results from the 135 and 247 nodes. It can occur because of the small 

number of nodes. 

To evaluate the results and compare it with the analytical solution of the problem, the relative 

errors are plotted in the Figure 6.39. 
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Figure 6.36 – Nodal distributions of the plate with a circular hole, discretization (12×7 = 84, 

15×9 = 135 and 19×13 = 247 nodes) with level-2 of irregularity; in configuration A. 
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Figure 6.37 – Horizontal and vertical displacement of the plate with a circular hole, carried out 

for three different irregular nodal discretization, obtained by the automatic optimization 

routine. 
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Figure 6.38 – Stress distribution of the plate with circular hole for θ = 0, π/4, π/2, carried out 

for three different irregular nodal discretizations, obtained by the automatic optimization 

routine. 
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Figure 6.39 – Energy and displacement relative errors as a function of the number of nodes, 

carried out for three different optimization discretizations of plate with circular hole. 

 
The Figure 6.39 presents the errors related to displacement and energy, it confirms what was 

already predicted by the previous Figures 6.37 and 6.38. The errors related to energy and 

displacement are expressively small, in the order of 10−2. For both cases the error decreases 

with increasing number of nodes and shows the accuracy of the results. 

 
 

6.4 - OBJETIVE FUNCTIONS 

 

In order to evaluate the relation between the k and the N , it is plotted the Figure 6.40 with all 

the values of k for the four benchmark problems analyzed in this thesis. 
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Figure 6.40 – Condition number (k) as a function of the number of nodes (N ), carried out for 

different benchmark problems with automatic discretization. 
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It can be noticed in Figure 6.40, that the k is directly proportional to N . In addition, it 
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shows good agreement with the theory, making the function a good choice to this type of 

analyze; because, when the solution have a greater number of the nodes, the stiffness matrix 

size increases causing an increase in the conditional number. 

In order to analyze the relation between the C and the N ,  it is plotted the Figure 6.41 with  

all the values of C for the four problems analyzed. According to Figure 6.41, it is possible 
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Figure 6.41 – Compliance (C) as a function of the number of nodes (N ), carried out for 

different benchmark problems with automatic discretization. 

 
to observe that the C value remains pratically constant with the increase N . The C variation 

related with the N is almost insignificant, hence it shows that is a excellent objetive function 

for the automatic discretization process. 
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7 - CONCLUSIONS 

 

7.1 - GENERAL CONCLUSIONS 

 

This thesis presents recent developments on a local mesh free numerical model (ILMF), for the 

solution of two-dimensional problems in elasticity and linear, carried out at the Department of 

Civil Engineering and Environment of the University of Brasília. 

Derived from the work theorem, the model formulation leads to a weak form of the weighted 

residual statement of a statically admissible stress field, kinematically formulated with a 

simple rigid-body displacement. The discretization considers the MLS approximation and 

implements a reduced numerical integration. For each node of a nodal distribution, the 

equations of equilibrium are computed with a reduced numerical integration scheme that 

considers a total of 4 integration points, with 1 point per segment of the respective local 

domain of integration. Assuming a linear variation of tractions, along each boundary segment 

of the local domain, the local form of equilibrium can be exactly evaluated with 1 quadrature 

point, centered on each segment, thus leading to a point-wise discrete form that improves the 

computational efficiency. The reduced integration of the model induces a reduction of the 

stiffness associated with the local node, which means an increase of the strain energy, and, 

consequently leads to an increase of the solution accuracy with no instabilities at all. Hence, 

instability is not an issue of this model, in contrast to other methods that use nodal integration 

without stabilization. As a consequence of this strategy, this model, symbolically referred to as 

ILMF, an acronym that stands for Integrated Local Mesh Free method, is computationally 

much more efficient than other numerical methods that use standard numerical quadrature, as 

shown by numerical results. 

Both regular and irregular nodal distributions can be considered by the ILMF model. For each 

node of a nodal distribution, the size of the compact support and the size of the local integration 

domain are very important discretization parameters in the analysis that affect the performance 

of the solution, as a direct consequence of the pattern of the nodal distribution. Results obtained 

with the ILMF model, for severe irregularities of the nodal distribution, show a high level of 

accuracy, which makes ILMF a robust and very reliable mesh free numerical model. 

An important feature of the ILMF model is the automatic definition of the discretization 

parameters and the nodal distribution, through a multi-objective optimization process based on 

genetic algorithms. The size of the compact support and the size of the local domain, of each 

node, as well as the nodal distribution, are defined using two convenient objective functions, 
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one of them derived from the classical structural theorem of the minimum total potential 

energy and the other using of the condition number of the stiffness matrix. This optimization 

scheme led to an excellent accuracy of results, with local Pareto-optimal results always very 

close to the global Pareto-optimal solutions, as presented in numerical results. 

The automatic discretization is an essential feature of any efficient numerical method. The 

results obtained in this work are in perfect agreement with the available analytical solutions. 

Therefore, the high level of accuracy and stability analysis of the ILMF model carried out with 

an automatic multi-objective optimization process make this a great tool that will improve the 

structural analysis process. 

 
 

7.2 - FUTURE WORKS 

 

Meshfree methods have been applied in almost all areas of structural and fracture mechanics; 

still, it is known that there are challenges in developing computationally efficient algorithms, 

with accurate integration techniques that can overcome the issue of the computational cost. 

The remarkable accuracy of the results with extremely fast computations, make it possible to 

apply the ILMF model in the case of nonlinear problems. ILMF can become an important  

tool in computational nonlinear solid mechanics, especially for solving problems with severe 

distortion, discontinuities and moving boundaries. 

Local formulations of meshfree methods use a solution paradigm based in the node-by-node 

calculation to generate the rows of the global system of equations, in contrast to global 

formulations. Meshfree methods have been commonly applied as a computer simulation 

method to solve a wide range of problems in a variety of practical fields, such as mechanical, 

aerospace, nuclear, chemical and civil engineering. Implementation of meshfree methods in 

CAD systems on the basis of modern computers allows the solution of large-scale problems. 

Therefore, the introduction of parallel processing, a fast-growing direction of research, is able 

to give the most significant result in terms of saving time designing and modeling. Local 

formulations of meshfree methods are well suited for parallel processing, since they use a 

node-by-node algorithm to generate the global system of equations. Hence, in local 

formulations, the analysis processing can easily be parallelized, in terms of nodes, to set up 

and solve the global system of equations. Effectively, ILMF is quite suitable for parallel 

environments, because the respective algorithms associated to each node, are spatially highly 

localized. 
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A - MLS APPROXIMATION 

 

The moving least squares (MLS) approximation, schematically represented in Figure A.1 for 

the one-dimensional case, is based on three components which are a weight function of compact 

support associated with each node, a complete set of polynomial basis functions and a set of 

coefficients that are function of the space coordinates, as presented by Atluri and Zhu (1988). 

The basic MLS mesh-free terminology, presented by Atluri and Zhu (2000), is used in this 

work. 
 

 

Figure A.1 – Schematic representation of the MLS approximation in one dimension. 

 
Let Ω be the domain of a body with boundary Γ and let N = {x1, x2, ..., xN } ∈ Ω ∪ Γ be a set 

of scattered nodal points that represents a mesh-free discretization, as represented in Figure 4.2. 

Centered at each nodal point xi, circular or rectangular local compact supports, denoted by Ωs, 

can be used whose size, in turn, sets out, in a neighborhood of a sampling point x, the domain 

of definition Ωx, of the MLS approximation at this point. 

 
 

A.1 - SHAPE FUNCTIONS 

 

At a sampling point x ∈ Ωx, the MLS approximation of the displacement u(x), over a number 

of scattered nodes xi ∈ Ω, i = 1, 2, . . . , n, where the nodal parameters ûi are defined, is given 

by 

 
 

in which 

uh(x) = pT (x)a(x), (A.1) 

 
 

pT (x) = [p1(x), p2(x), . . . , pm(x)] , (A.2) 
 

is a vector of the complete monomial basis of order m and a(x) is the vector of unknown 

coefficients aj(x), j = 1, 2, . . . , m that are functions of the space coordinates x = [x1, x2]T , for 
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2-D problems. 

 
The coefficient vector a(x) is determined by minimizing the weighted discrete L2 norm 

 
n n 

J (x) = 
1 Σ 

w (x) 
Σ
uh(x ) − û 

Σ2  
= 

1 Σ 
w (x) 

Σ
pT (x )a(x) − û 

Σ2 
, (A.3) 

 

with respect to each term of a(x), in which wi(x) is the weight function, with compact support, 

associated with the node xi that is wi(x) > 0, for all x in the support of wi(x). The compact 

support of the MLS weight function is schematically represented in Figure A.2. Finding the 

extreme of J (x) with respect to each term of a(x), leads to 
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(a) Weight function (b) Shape function 
 

Figure A.2 – Typical weight function and shape function of the MLS approximation for a node 

at x = [1/2 0]T . 
 

 

 

 
in which 

A(x)a(x) = B(x)û, (A.4) 

 
n 

A(x) = wi(x)p(xi)pT (xi), (A.5) 

i=1 

 

 
 

and 

B(x) = [w1(x)p(x1), w2(x)p(x2), . . . , wn(x)p(xn)] (A.6) 

 

û = [û1, û2, . . . , ûn] . (A.7) 
 

Solving equation (A.4) for a(x) yields 

 

a(x) = A−1(x)B(x)û, (A.8) 

 

provided n ≥ m, for each sampling point x, as a necessary condition for a well-defined MLS 

approximation. Finally,  substituting  for  a(x)  into  equation  (A.1)  leads  to  the  MLS 

w
(x

) 
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in which 

 

n 

uh(x) = φi(x)ûi, (A.9) 

i=1 

m 

φi(x) = pj(x) A−1(x)B(x) 
j=1 

(A.10) 

is the shape function of the MLS approximation corresponding to the node xi, schematically 

represented in Figure A.2. The MLS shape functions are not nodal interpolants that is φi(xj) ƒ= 

δij. Since φi(x) vanishes for x outside the compact support of the node xi, the local character 

of the MLS approximation is preserved. The nodal shape function is complete up to the order of 

the basis. The smoothness of the nodal shape function is determined by the smoothness of the 

basis and of the weight function. The spatial derivatives of the shape function φi(x) are given 

by 
m 

φi,k = pj,k(A−1B)ji + pj(A−1B,k − A−1A,k A−1B)ji , (A.11) 
j=1 

 

in which (),k = ∂()/∂xk. 

 
 

A.2 - WEIGHT FUNCTIONS 

 

Weight functions wi(x), introduced in equation (A.3) for each node xi, have a compact support 

which defines the subdomain where wi(x) > 0, for all x. For the sake of simplicity, this paper 

considers rectangular compact supports with weight functions defined as 

 

wi(x) = wix (x) wiy (x) (A.12) 

 
with the weight function given by the quartic spline function 

 

 
w (x) = 1 − 6 

 
2 

ix + 8 
ri 

 
3 

ix 3 
ri 

 
4 

ix 

ri 

 
for 0 ≤ dix 

 
≤ rix 

 

 
(A.13) ix x x x 

 

 
and 

0 for dix  > rix 

1 − 6 

 
2 

iy 
+ 8 r 

 
3 

r 
− 3 

 
4 

iy r for 0 ≤ diy 

 
≤ riy 

wiy (x) = iy iy iy (A.14) 

0 for diy   > riy , 

in which dix = ǁx − xiǁ and diy = ǁy − yiǁ. The parameters rix and riy represent the size of 

the support for the node i, respectively in the x and y directions. 

ji 
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A.3 - ELASTIC FIELD 

 

The elastic field is now approximated at a sampling point x. Considering equation (A.9), 

displacement and strain components are respectively approximated as 

 

 

 
uh(x) 

u = = 

Σ
φ1(x) 0 . . . φn 

 
(x) 0 

v̂1 

. = Φ û 

 
(A.15) 

 

 

 
and 

v̂n 

 

ε = L u = L Φ û = B û, (A.16) 
 

in which geometrical linearity is assumed in the differential operator L and thus, 

φ1,1 0 . . .   φn,1 0   

 
 

B = 0 φ 
1,2 . . . 0 φ 

n,2  . (A.17) 

Stress and traction components are respectively approximated as 
 

σ = D ε = D B û (A.18) 

 

and 

t = n σ = n D B û, (A.19) 
 

in which D is the matrix of the elastic constants and n is the matrix of the components of the 

unit outward normal, defined as 

 

n = 
n1 0 n2    

. (A.20) 

0 n2 n1 
 

Equations (A.15) to (A.19) show that, at a sampling point x ∈ Ωx, the variables of the elastic 

field are defined in terms of the nodal unknowns û. 

0 φ1(x)   . . . 0 φn(x) 
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B - COMPARISON WITH OTHER NUMERICAL METHODS 

 

The Local Mesh-free Method with reduced integration (ILMF) was comparated to Local 

Petrov-Galerkin Method (MLPG) and the standard Finite Element Method (FEM) for the four 

benchmark problems. The simulation with FEM was made the ABAQUS 6.14-4 software, 

using the CPS8 (8 nodes biquadratic plane stress quadrilateral element) and static analysis by 

Newton-Rapson method. 

 
 

B.1 - CANTILEVER BEAM 

 

The comparison for evaluate the accuracy of this three numerical methods (ILMF, MLPG and 

FEM) in the benchmark test will be made with the discretization shown in Figure B.1. 
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Figure B.1 – Nodal distributions of the cantilever beam, discretization with 15 9 = 135 nodes 

and level-2 of irregularity; in configuration A. 

 
In Figure B.2 the principal results for the vertical displacement, and stress (σ11 and σ12) are 

presented. It can be perceived that there is a good agreement with the analytical resultsa and it 

is possible to appreciate a better accuracy for the results obtained with ILMF. 
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Figure B.2 – Principal displacement and stress for the cantilever beam with three different 

numerical methods. 
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B.2 - CIRCULAR CYLINDER WITH INTERNAL PRESSURE 

 

Figure B.3 shown the discretization for the circular cylinder with internal pressure by evaluate 

the accuracy of this numerical methods. 
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(a) 187 nodes 

Figure B.3 – Nodal distributions of the circular cylinder with external pressure, discretization 

with 17×11 = 187 nodes and level-2 of irregularity; in configuration A. 

In Figure B.4 are presented the principal numerical results for the radial displacement and stress 

in both directions, radial and angular for three discretizations. In addition, it contain its the 

analytical solution. It can be perceived that there is a good agreement for all methods, in general. 
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r 
(c) Angular stress 

 

Figure B.4 – Principal displacement and stress for the circular cylinder with internal pressure 

carried out for three different numerical methods. 
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B.3 - CIRCULAR CYLINDER WITH EXTERNAL PRESSURE 

 

For evaluate the accuracy of the ILMF, MLPG and FEM in the circular cylinder with external 

pressure will be made the modelation with the discretization shown in Figure B.5. 
 

25 
 

 

20 
 

 

15 
 

 

10 
 

 

5 
 

 

0 

0 5 10 15 20 25 

x1 

Figure B.5 – Nodal distributions of the circular cylinder with external pressure, discretization 

with 19×12 = 228 nodes and level-2 of irregularity; in configuration A. 

Figure B.6 presented the principal results for the radial displacement, and radial and angular 

stresses. It can be perceived that there is a good agreement, in general. 
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Figure B.6 – Principal displacement and stress for the circular cylinder with external pressure 

carried out for three different irregular nodal discretization, obtained by the automatic 

optimization routine. 
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B.4 - PLATE WITH A CIRCULAR HOLE 

 

The comparison for evaluate the accuracy of this numerical methods in the plate with a circular 

hole will be made with the discretization shown in Figure B.7. 
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Figure B.7 – Nodal distributions of the plate with a circular hole, discretization 19 13 = 247 

nodes and level-2 of irregularity; in configuration A. 

 
In the figure B.8, there are presented the principal results for the displacement in the both 

directions, horizontal and vertical. All methods presented the same behavior as the analytical 

solution, however the results for the FEM have a smaller accuracy. 

In the figure B.9, there are presented the principal results for the stress in three directions (θ = 

0, π/4, π/2). It can be perceived that there is a good agreement, in general. But, the results for 

the FEM have a smaller accuracy comparated with other methods. 
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Figure B.8 – Horizontal and vertical displacement of the plate with a circular hole, carried out 

for three different numerical methods. 
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Figure B.9 – Stress distribution of the plate with circular hole for θ = 0, π/4, π/2, carried out 

for three different numerical methods. 
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C - MATLAB 

 

This section contained details about the computational implementation of optimization routine 

using genetic algorithms of Matlab 2015a software, in this case is applied for determine of 

discretization parameters of local mesh-free method, the Matlab Optimization Toolbox. In case, 

of the mono-objective optimization is possible use the platform with graphic interface. All 

routines were done in a computer with Intel Core I5 vPro, CPU of 2.4 GHz and 4 GB of RAM. 

The genetic algorithm can be called by ga function in MATLAB, for mono-objective 

optimizations, that is, when it has only one objective function, according to the syntax: 

Σ
x  fval

Σ 
= ga(@fitnessfun, nvars, options) (C.1) 

For multi-objective optimizations, the genetic algorithm can be called by gamultiobj function: 

Σ
x  fval

Σ 
= gamultiobj(@fitnessfun, nvars, options) (C.2) 

C.1 - SPECIFYING GA OPTIONS 

 

Population size (PopulationSize) specifies how many individuals there are in each generation. 

With a large population size, the genetic algorithm searches the solution space more thoroughly, 

thereby reducing the chance that the algorithm returns a local minimum that is not a global 

minimum. However, a large population size also causes the algorithm to run more slowly. For 

this modelation the Population size is 200. 

Population initial rage (PopInitRange): Specifies the range of vectors in the initial population 

that is generated. 

Generations: Specifies the maximum number of interactions that will be performed by the 

genetic algorithm. For this work the number of the generation is 7 for the stability. 

The hybrid functionality in multi-objective function gamultiobj is slightly different from that of 

the single objective function GA. In single objective GA the hybrid function starts at the best 

point returned by GA. However, in gamultiobj the hybrid solver will start at all the points on 

the Pareto front returned by gamultiobj. The new individuals returned by the hybrid solver are 

combined with the existing population and a new Pareto front is obtained. It may be useful 
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to see the syntax of fgoalattain function to better understand how the output from gamultiobj 

is internally converted to the input of fgoalattain function. gamultiobj estimates the pseudo 

weights (required input for fgoalattain) for each point on the Pareto front and runs the hybrid 

solver starting from each point on the Pareto front. Another required input, goal, is a vector 

specifying the goal for each objective. gamultiobj provides this input as the extreme points 

from the Pareto front found so far. It is certain that using the hybrid function will result in a 

optimal Pareto front but we may lose the diversity of the solution (because fgoalattain does not 

try to preserve the diversity). This can be indicated by a higher value of the average distance 

measure and the spread of the front.  We  can further improve the average distance measure   

of the solutions and the spread of the Pareto front by running gamultiobj again with the final 

population returned in the last run. Here, the hybrid function is remove. 

The Pareto fraction has a default value of 0.35 i.e., the solver will try to limit the number of 

individuals in the current population that are on the Pareto front to 35 percent of the population 

size. For this work the Pareto fraction used is 0.43. 

Gamultiobj uses three different criteria to determine when to stop the solver. The solver stops 

when any one of the stopping criteria is met. It stops when the maximum number of generations 

is reached; by default this number is ’200*numberOfVariables’. gamultiobj also stops if the 

average change in the spread of the Pareto front over the MaxStallGenerations generations 

(default is 100) is less than tolerance specified in options.FunctionTolerance. The third criterion 

is the maximum time limit in seconds. Here we modify the stopping criteria to change the 

FunctionTolerance from 1e-6. 

Scaling function (FitnessScalingFcn): Specifies the function responsible for scaling. The 

default rank function, rank (@fitscalingrank), it is used. 

Selection function (SelectionFcn): Specifies how the genetic algorithm chooses parents for the 

next generation. In this research, @selectiontournament selection is considered. 

Parallel processing (UseParallel): Calls the fitness function to be processed in parallel using the 

pre-established parallel environment in the MATLAB settings. 
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D - LOCAL MESH-FREE METHOD OPTIMIZATION  WITH  

GENETIC ALGORITMS AND ARTIFICIAL  NEURAL 

NETWORKS 

 
The structure of an ANN is inspired by the structure of the nervous system of the human brain. 

Its function is based on a pre-defined structure of neurons, which are simple unities where 

calculations are processed, and the connections between them. A weight is initially attributed 

to each connection and they are adjusted during training until the output of the ANN is similar to 

the expected output. The basic ideas and terminology of this optimization are formally defined 

in. 

One of the main characteristics of artificial neural networks is their ability to obtain results    

in a short time after being trained the network. The optimized data obtained with the genetic 

algorithms are those used to train the neural network, in this way it is proposed to have more 

accurate results in a shorter time. 

The Figure D.1 show three different nodal arrangement(cn = 0.1, cn = 0.3 and cn = 0.5) for  

a discretization of 55 nodes, were used as an income to train the artificial neural networks. For 

that, it was utilized eighty one data. 

Table D.1 – The multi-objective Pareto front principal results for the circular cylinder with 

internal pressure, obtained with the automatic optimization routine. 
 

Cn αq αs rs 

ILMF 0.1 

MLPG 0.1 

0.5013 

0.5140 

3.7096 

3.1515 

4.21 × 10−3
 

1.30 × 10−4
 

ILMF 0.3 
MLPG 0.3 

ILMF 0.5 

MLPG 0.5 

0.5001 
0.4668 

0.5016 

0.5117 

3.7640 
3.2646 

3.7260 

3.3577 

5.03 × 10−3
 

2.49 × 10−3
 

5.96 × 10−3
 

6.12 × 10−3
 

 

Using the optimized with the Genetic Algorithms to train the Artificial Neural Networks to 

afford to have precise results in a shorter time for the same problem with a new nodal 

arrangement. This procedure is applicable only for one nodal configuration. However, for a 

nodal configuration with few nodes, it allows having quite precise solutions, instead of using a 

greater number of nodes to solve this type of problems as the other methods without 

optimization. 
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(a) cn = 0.0 
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(b) cn = 0.4, configuration A 
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(c) cn = 0.4, configuration B 

Figure D.1 – Nodal distributions of the beam discretization with 189 nodes and level-1 of 

irregularity; in configuration A, only interior nodes have an irregular distribution, as presented 

by Liu (2003), while in configuration B all nodes are irregularly distributed. 
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