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Dedicatory 

Oh, life is good... As good as you wish! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“For me, it is far better to grasp the Universe as it really is than to persist in 

delusion, however satisfying and reassuring.” 

Carl Sagan 

 

“Give a boy a hammer and chisel; show him how to use them; at once he begins to hack the 

doorposts, to take off the corners of shutter and window frames, until you teach him a better 

use for them, and how to keep his activity within bounds.”  

Charles Reade and Dion Boucicault 
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GENERAL ABSTRACT 

What defines a good measurement? In the present dissertation we argue, and show, that 

defining a good measurement can be much more complex than simply performing a factor 

analysis or an analysis using item response theory. The overall objective of this dissertation is 

to present three principal assumptions of psychometric measurement, and to develop 

alternatives for traditional psychological measurement. The dissertation is divided in four 

studies. The first one is a theoretical study in which three central assumptions common to 

psychometric theory and psychometric practice are presented, and in which is shown how 

alternatives to traditional psychometric approaches can be used to improve psychological 

measurement. These alternatives were developed by adapting each of these three assumptions: 

(1) the assumption of structural validity; (2) the process assumption; and, (3) the construct 

assumption. The structural validity assumption relates to the implementation of mathematical 

models. The process assumption implies that a specific underlying process is generating the 

observed data. The construct assumption infers that the observed data on its own do not 

constitute a measurement, but the measure are the latent variables that originate the observed 

data. Several examples of already existing alternative psychometric approaches are presented 

in the first study. The second study relates to the structural validity assumption and aimed to 

develop two new item response models for polytomous and binary items that do not assume a 

normal distribution of the true scores. The first model that was developed, the Conditional Item 

Response Model (CIRM), assumes a beta-binomial distribution. The second new model is a 

Bayesian implementation of the optimal score procedure (OS-IRM). Both new models were 

compared with the traditional Rasch model: the results indicate that the two developed models 

improve various aspects of the Rasch model. The third study was derived from the process 

assumption and had three objectives. First, to develop a Bayesian implementation of the 

situational optimization function analysis (SOFA) framework. Second, to compare this 

Bayesian implementation of SOFA with three other Maximum Likelihood-based models that 

are used to estimate true scores. The third objective was to show how joint modeling can be 

used for validity research. One of the main advantages of the SOFA framework compared to 

the traditional psychometric approach is that SOFA relies on experimental data, improving the 

validity of the measures. The fourth and final study was derived from the construct assumption 

and its main objective was to develop a procedure of structure learning of power chain graphs 

(PCGs). A PCG is a type of graph that represents causal relations between groups of variables. 

It can be thought as a full exploratory version of structural equation modeling, as well as a 

psychometric model that is not dependent on latent variables. These four studies intend to show 

that psychometric modeling should not be restricted to the use of traditional measurement 

models, but should also consider adapting these traditional models in accordance with the 

intended use and theoretical processes that originate the observed measures. 

 

Keywords: psychometrics; quantitative modeling; formal theorizing; Bayesian modeling; 

measurement theory. 
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RESUMO GERAL 

 

O que define uma boa medida? Na presente tese, argumentamos e mostramos que definir uma 

boa medida pode ser muito mais complexo do que simplesmente executar uma análise fatorial 

ou uma análise usando a teoria da resposta ao item. O objetivo geral desta dissertação é 

apresentar três principais pressupostos da medida psicométrica e desenvolver alternativas para 

a medida psicológica tradicional. A tese está dividida em quatro estudos. O primeiro é um 

estudo teórico no qual são apresentados três pressupostos centrais comuns à teoria psicométrica 

e à prática psicométrica, e no qual é mostrado como alternativas às abordagens psicométricas 

tradicionais podem ser usadas para melhorar a medição psicológica. Essas alternativas foram 

desenvolvidas adaptando cada um desses três pressupostos: (1) o pressuposto de validade 

estrutural; (2) o pressuposto do processo; e (3) o pressuposto de construto. O pressuposto de 

validade estrutural refere-se à implementação de modelos matemáticos. O pressuposto de 

processo implica que um processo subjacente específico está gerando os dados observados. O 

pressuposto de construto infere que os dados observados por si só não constituem uma medida, 

mas que as medidas são as variáveis latentes que originam os dados observados. Vários 

exemplos de abordagens psicométricas alternativas já existentes são apresentados no primeiro 

estudo. O segundo estudo se refere ao pressuposto de validade estrutural e teve como objetivo 

desenvolver dois novos modelos de resposta aos itens para itens politômicos e binários que não 

assumem uma distribuição normal dos escores verdadeiros. O primeiro modelo desenvolvido, 

o Modelo de resposta ao item condicional (CIRM), assume uma distribuição beta-binomial. O 

segundo novo modelo é uma implementação Bayesiana do procedimento de escore ótimo (OS-

IRM). Ambos os novos modelos foram comparados com o modelo tradicional de Rasch: os 

resultados indicam que os dois modelos desenvolvidos melhoram vários aspectos do modelo 

de Rasch. O terceiro estudo foi derivado do pressuposto do processo e tinha três objetivos. 

Primeiro, desenvolver uma implementação Bayesiana do framework de análise da função de 

otimização situacional (SOFA). Segundo, comparar essa implementação Bayesiana do SOFA 

com outros três modelos baseados em Máxima Verossimilhança, usados para estimar escores 

verdadeiros. O terceiro objetivo foi mostrar como a modelagem conjunta pode ser usada para 

pesquisas de validade. Uma das principais vantagens do framework SOFA em comparação 

com a abordagem psicométrica tradicional é que o SOFA depende de dados experimentais, 

melhorando a validade das medidas. O quarto e último estudo foi derivado do pressuposto de 

construto e seu principal objetivo era desenvolver um procedimento de aprendizado de 

estrutura de gráficos de cadeia de potência (PCGs). Um PCG é um tipo de gráfico que 

representa relações causais entre grupos de variáveis. Pode ser pensado como uma versão 

exploratória completa da modelagem de equações estruturais, bem como um modelo 

psicométrico que não depende de variáveis latentes. Esses quatro estudos pretendem mostrar 

que a modelagem psicométrica não deve se restringir ao uso de modelos tradicionais de 

mensuração, mas também deve considerar a adaptação desses modelos tradicionais de acordo 

com o uso pretendido e os processos teóricos que originam as medidas observadas. 

 

Palavras-chave: psicometria; modelagem quantitativa; teorização formal; modelagem 

Bayesiana; teoria de medida. 
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PRESENTATION 

What does it mean to measure something? In this dissertation central aspects related 

to traditional psychometric practices, such as Factor Analysis and Item Response Theory are 

discussed and alternatives for these traditional practices are proposed. In this context, it is 

necessary to understand first which changes can be realized in psychometrics to differentiate 

it substantially from what is usually already done by researchers and by people who depend 

on psychometric tools for their work. Therefore, the overall aim of this dissertation is to 

present the assumptions of contemporary psychometrics and to show how models derived 

from these assumptions can be modified in order to develop meaningful measurement in 

psychology (Sijtsma, 2012). 

It is necessary to emphasize that the use of psychological measurement tools 

developed in this dissertation is not intended to be the default practice in psychometrics. On 

the contrary, the new developed models are intended to inspire other psychometricians and 

researchers to seek new tools that may better suit their specific contexts. However, whether 

such tools are appropriate to the context depends, obviously, on empirical evidence of 

adequacy. Although psychometrics forms the foundation for a large amount of psychological 

studies, especially those using tests and scales, is considered as one of the areas that spread 

various misconceptions (Flake & Fried, 2019). This is not necessarily due to lack of ethical 

principles, but principally related to the complexity of the topics covered in the psychology 

area as a whole and the small number of psychometric models used in these studies.  

In the psychometric literature, the difficulty and mathematical complexity of 

theoretical models are sometimes presented as the main factors of misuses of psychometric 

techniques (Borsboom, 2006). On the other hand, it is the responsibility of the writer to seek 

clearer ways of conveying the proposed message, as it is critical that the targeted audience 

understands the message (Silvia, 2007). Therefore, despite consisting mostly of 
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methodological papers, a more accessible writing approach was used in all four studies of this 

dissertation. 

The dissertation consists of four manuscripts, one of them being theoretical and the 

other three empirical/methodological. The first manuscript is a theoretical study in which 

theoretical issues inherent to psychometrics and the concept of measurement are discussed. 

The objectives of this first manuscript were: (1) to present and discuss three basic 

assumptions in psychometric literature, and (2) develop new measurement models in 

psychology by adapting these assumptions. In the second manuscript, the Conditional Item 

Response Model is proposed, along with a Bayesian implementation of optimal scores 

(Ramsay & Wiberg, 2017), as alternatives for the traditional Rasch model. In the third 

manuscript, an analytical and methodological framework for measuring dispositions with 

experimental data, named situational optimization function analysis, is presented and tested 

with simulated and empirical data. In the fourth manuscript, an extension of power graphs 

(Royer, Reimann, Andreopoulos, & Schroeder, 2008), which we called power chain graphs, 

is presented as an alternative to structural equation modeling, and other psychometric models, 

when causal relations between groups of variables are to be estimated. The final 

considerations section outlines research agendas based on the three empirical studies, as well 

as the overall contribution of the present dissertation. 
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Abstract 

The aim of the current study is to present three assumptions common to psychometric theory 

and psychometric practice, and to show how alternatives to traditional psychometrical 

approaches can be used to improve psychological measurement. These alternatives are 

developed by adapting each of these three assumptions. The assumption of structural validity 

relates to the implementation of mathematical models. The process assumption which is 

underlying process generates the observed data. The construct assumption implies that the 

observed data on its own do not constitute a measurement, but the latent variable that 

originates the observed data. Nonparametric item response modeling and cognitive 

psychometric modeling are presented as alternatives for relaxing the first two assumptions, 

respectively. Network psychometrics and measurement theory are alternatives for relaxing 

the third assumption. Final remarks sum up the most important conclusions of the study. 

Keywords: Psychological measurement; item response theory; measurement theory; network 
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How to Think Straight About Psychometrics: 

Measurement Theories and Practice in Psychology 

Is it possible to measure psychological entities? This question, albeit less troublesome for 

most current psychology researchers (Borsboom, 2005; Stanovich, 2012) were a main 

concern for scientists in the beginning of the XXth century. Campbell (1928) and others 

argued bluntly that psychological entities cannot be properly concatenated. Therefore, 

measurement in psychology must be impossible and scientific psychology as well. This, of 

course, was not well received by most psychologists at the time (Hull, 1943). One of the most 

influential theories from this period was Stevens’ (1946) operational view on measurement. 

This theory popularized the measurement levels, which allowed psychologists to define their 

variables as a different type of measures than those from hard sciences. 

An older field, known as psychometrics, was being developed since the beginning of 

the same century (Jones & Thissen, 2006). From the classical test theory to the item response 

theory, several models to measure psychological constructs were developed (van der Linden 

& Hambleton, 2013), allowing for measurement instruments to be constructed as well (Furr, 

2011). This development was not without controversy. Trendler (2009), for instance, says 

that measurement in psychology, as defined by psychometric theory, is not scientific. Michell 

(1997) agrees in some degree, stating that psychometrical methods do not allow for true 

quantitative measures to be attained. A more balanced view is sustained by Sijtsma (2012), 

who affirms that the two measurement approaches proposed to psychology—the statistical 

(i.e., the psychometrical approach) and the physical (i.e., measurement theory)—can be 

useful. However, they are usually not as useful as they could be, as they disregard meaningful 

psychological theory. 

The aim of the current study is to present three assumptions common to psychometric 

theory and practice. Focusing mainly on the statistical approach to measurement, we also 
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present how alternatives to traditional psychometrical approaches can be used to improve 

measurement in psychology. The rest of this paper is structured as follows. In the next 

section, we explain how quantitative and qualitative reasoning impacts theorizing in 

psychology, originating the latent framework in psychometrics. We then present the latent 

framework as the basis for the three most popular theories in psychometrics and list the three 

assumptions regarding these theories. The next three sections discuss each of the three 

assumptions, presenting how research in psychological measurement can better explore each 

of these assumptions. The paper ends with a number of concluding remarks. 

 

Quantitative and qualitative thinking in psychology 

To assure a scientific status, researchers in the field of psychology have preferred to use 

quantitative practices for data analysis (Mertens, 2014). This happened because, in the 

beginning of the XXth century, to be considered a science, any field of study should rely on 

mathematics and formal logic (Price, 1986). Nevertheless, the theorization in psychology is 

still, and increasingly (Myung & Pitt, 2001; Towsend, 2008), done on basis of natural 

language, meaning that relations between variables are not objectively defined. This, on 

itself, is not a problem, given that qualitative thinking can be beneficial for science. 

Nevertheless, methods and theorization should suit the research question, not the other way 

around. 

In methodological textbooks for undergraduate and graduate students (e.g., 

Shaughnessy, Zechmeister, & Zechmeister, 2014), much is said about how methods and data 

analysis should properly be selected to answer each type of research question. For instance, 

Kish (2004) proposes that every research can be of one—or a combination of—design 

category: realistic; representative; and randomized. Realistic research designs are those 

centered on being profound about a singular subject, usually using qualitative research 
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techniques and are meant, mainly, to be of a descriptive nature. Representative research 

designs should be used when one wants to know if a characteristic is generalizable to a 

population, as in survey research. Finally, randomization designs are, basically, experiments: 

“randomization” is used to express the random group assignment and are defined as the type 

of design that should be used to infer causal relations. 

Despite all the different types of methodological designs that exist, they only help to 

answer an already posed research question. The problem for the development of 

psychological science is, therefore, not only dependent on the research design, but also on 

how the research question was posed (Shaughnessy et al, 2014). This is a considerably less 

discussed topic in scientific psychological literature. Most textbooks and tutorial papers will 

focus mainly on where research questions come from, rather than the procedures used to 

derive them (e.g., Sandberg & Alvesson, 2011). For instance, Shaughnessy et al (2014) 

suggests there are two important sources for scientific theorization: past research or our 

personal experiences. Provided that both are further and critically evaluated, using a proper 

method, they are valid sources for theorizing. However, this does not answer the question of 

what theorizing is and how to properly do it. For instance, given a prior scientific result, how 

does one create new hypotheses or proposes modifications to a given theory? 

Theorizing is certainly not an effortless endeavor (Thabane, Thomas, Ye, & Paul, 

2009), and also defining what is proper theorizing is not a straight forward effort. 

Nevertheless, some authors propose some alternatives. As in many things in science, there is 

no unique way for theorizing, but it can be categorized in, at least, two types, depending on 

the amount of formalization used to describe the phenomena of interest (Myung & Pitt, 

2001). Formalization is used here to define the use of mathematical, logical or any objective 

language (Shoenfield, 2018) in contrast to the natural language, such as English, Portuguese, 

Swedish, and many others (Manning, Manning, & Schütze, 1999). Therefore, the first type of 
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theorizing, which is also the most common in psychology and other sciences (Townsend, 

2008), is the natural language theorization. As the name suggests, this type of theorization is 

done by simply stating, in natural language, what, how and why empirical data is how it is. It 

also involves a lot of rationalization over past empirical results. A simple example can be 

given by the theory of cognitive dissonance, classically defined as the mental discomfort 

experienced by a person who simultaneously holds two or more contradictory beliefs, ideas, 

or values (Festinger, 1962). This definition, despite being clear and meaningful for most 

individuals who understand the English language, does not explain, for instance, how mental 

discomfort is caused by holding contradictory beliefs. Most psychological theories and 

hypothesis have this format. They vaguely state some expected relation between variables, 

without acknowledging the process that originates this expected relation. 

Even theories and hypothesis that are more preoccupied with the process and with more 

complex relations between variables do it by using natural language, meaning they will, for 

the nature of natural languages, lack precision. For instance, the multicomponent model of 

working memory by Baddeley and Hitch (1974) states that three components are necessary 

for working memory: the central executive, the phonological loop, and the visuospatial 

sketchpad with the central executive functioning. For the current presentation, it is not 

necessary to describe these components. It is necessary only to know that the authors stated 

that all of the components are necessary to prevent decay of relevant memory information 

(Baddeley & Hitch, 1974). However, they do not explain how the decaying process works. 

When does it begin? Is the decaying rate constant or variable? Does the decaying process 

have some limit of “data exclusion” or the information can be completely lost? For 

illustrative purposes, Figure 1 shows four possible decaying rate models that could all be 

true, given the definition used by the authors. 
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Figure 1. Four possible models for decaying rate in memory tasks. 

Are we trying to imply that natural language does not have its place in scientific 

theorization? Certainly not. The true message here is that when describing quantities and 

patterns, a more appropriate symbolical tool should be used; which is mathematics. This has 

been the practice of what is known as mathematical psychology (Coombs, Dawes, & 

Tversky, 1970): an approach to psychological research that is based on mathematical 

modeling and on the establishment of psychological rules of quantifiable psychological 

processes. Again, psychology researchers seem to prefer to use quantitative practices for data 

analysis, but quantitative reasoning and quantitative theorizing seems still to be lacking 

(Towsend, 2008). One example of use of quantitative theorizing is the latent variable theory 

on psychometrics (McDonald, 2013). 

 

Psychometrics and its three assumptions 

Psychometrics is a field in psychology concerned with the theory and technique of 

psychological measurement (McDonald, 2013). Three major theories were developed to 
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explain the relations between observed data and psychological traits: classical test theory 

(CTT); common factor theory (CFT); and item response theory (IRT). Despite the fact that 

many authors defend, for instance, that IRT is superior to CTT (Borsboom, 2005; Hays, 

Morales, & Reise, 2000; Reise, Ainsworth, & Haviland, 2005), all these psychometric 

theories can be understood as different applications of the same general Latent Variable 

Theory (LVT; McDonald, 2013). LVT holds that psychological variables (or constructs) are 

explanatory variables which are not directly observable, but inferred from their effects on 

human behavior. 

The following equations, that can respectively be used to express CTT, CFT, and IRT, 

clarify why all these theories are related to LVT: 

𝑋 = 𝑇 + 𝜀, (1) 

𝑋 = 𝜆𝑇 + 𝜀, (2) 

𝑔(𝑋) = 𝑓(𝑇), (3) 

where X stands for the observables, T for the true, latent, score, λ for the factor loadings (or 

factor weights) and ε for the random error. All equations can be understood as an extension of 

the previous, with the same monotonic relation between observed and latent variables. The 

functions g(X) and f(T) are usually represented, respectively, by probability mass functions 

(e.g., binomial or categorical distributions) and link functions (e.g., logistic function or 

cumulative normal function) to properly scale the observed and latent variables. 

It is possible to perceive that all functions generate similar inferences about relations of 

true and observed scores. The differences in the results rely, mostly, on the methods used to 

estimate the parameters of these equations (McDonald, 2013), meaning that, from a more 

computational perspective, these methods are rather different. The true score in Equation (1) 

is normally estimated using sum or average scores, Equation (2) is tested by means of 

confirmatory or exploratory factor analysis (Thompson, 2004), and Equation (3) will be 
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tested by some item response model (IRM; van der Linden & Hambleton, 2013). All these 

methods harness some pragmatic assumptions, being some of them testable (e.g., 

unidimensionality assumption; Stout, 1987), but some others are untestable (Michell, 2000). 

For instance, some variation of the logistic function is generally assumed as the item response 

function (IRF) for f(T) in Equation (3). Regardless of being usually taken as an obvious 

assumption, due to a traditional psychophysical empirical finding on tone and loudness 

perception (Fechner, 1860), there is no direct test for the validity of this assumption. This is 

to say that, given that the true score is latent and not directly experimentally controllable, it is 

impossible to test if the logistic function is really the function that relates latent to observed 

variables (Levine, 2003). However, it is possible to test if the observed IRF is monotonic in 

relation to the latent IRF (Junker & Sijtsma, 2000). 

 At this point it should be noted that, despite harsh, this criticism does not necessarily 

invalidate the general LVT approach for psychometrics. This general psychometric approach 

can be defined as a statistical approach to measurement (Sijtsma, 2012). A statistical 

approach is characterized by accepting the assumptions of some statistical or mathematical 

measurement model, using them to establish “quality” thresholds on data. For instance, when 

using Factor Analysis, items with low factor loadings are usually suggested to be discarded 

(Thompson, 2004). On the other hand, factor analysis is based upon linear regression, 

meaning that, if the true process is quadratic or relies on any other non-monotonic function, 

the estimates of factor loadings are probably biased (McDonald, 1965). For problems like 

that, a second approach for dealing with psychological data could be the physical approach 

(Sijtsma, 2012). The physical approach consists of testing if a particular mathematical 

structure is true for the data. For instance, utility theory uses a number of axioms to define 

rational behavior (von Neumann & Morgenstern, 1944). Nevertheless, people not always 

behave rationally, meaning these models will not always properly fit the data (Allais, 1953). 
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The usual interpretation is that people are not rational. Kahneman and Tversky (1979), on the 

other hand, proposed the prospect theory, changing the assumptions of the utility theory, with 

a consequence to changing the interpretation on humans’ decision-making behavior.  

The statistical and physical approaches to measurement provide researchers with two 

different mindsets, respectively: rejecting the data if the model has a poor fit; or rejecting the 

model if it has a poor fit to data. None is, for itself, the best approach for proper inferences. 

Sometimes it is better to reject the data after a low fit of the model, given that there may be 

some bias on the data collecting process (Shaughnessy et al, 2014). On the other hand, if data 

are properly collected and the model used for testing it systematically shows a pattern of bad 

fit, maybe an alternative model should be tested. Nevertheless, most researchers are not even 

aware of the existence of the physical approach to measurement (Michell, 2017), as it 

demands more knowledge on mathematics and experimental design. Both of these 

requirements make research and developing quality measurements more difficult for several 

areas in psychology. 

Three major critiques can then be elaborated about the traditional psychometric 

practice. Each critique is related to one of three assumptions regarding psychological 

measurement, as we derived from the LVT and the statistical approach to measurement. First, 

psychological measurement is based on using pre-conceived models that, sometimes, are 

non-testable and have higher priority than the empirical data. We call this the structural 

validity assumption. Second, psychological measurement is based on models that, sometimes, 

do not mirror the psychological phenomena or processes they are intended to represent. We 

call this the process assumption. Finally, traditional psychological measurement depends 

heavily on constructs, which are not observable and can be sometimes difficult to define; 

therefore, difficult to give a proper operationalization. We call this the construct assumption. 

These assumptions do not need to have a specific hierarchy of complexity or necessity. 
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As with several other problems within science, relaxation or thorough testing of the 

assumptions can help science to improve (Kanazawa, 1998). Nonparametric Item Response 

Modeling (NIRM; Sijtsma & Molenaar, 2002) can be used to test or to relax the structural 

validity assumption, but it still relies on the process and construct assumptions. Cognitive 

Psychometric Modeling (Embretson, 2010) can be used to test or relax both structural 

validity and process assumptions, but is still relying on the construct assumption. Finally, 

network modeling (Epskamp & Fried, 2018), based on the statistical approach, and 

measurement theory (Roberts, 1979), based on the physical approach, can be used to relax all 

three assumptions. 

 

Structural validity assumption and Nonparametric Item Response Modeling 

The structural validity assumption is the exact mathematical implementation of psychometric 

models. For instance, traditional factor analysis assumes latent variables to be linearly related 

to observed variables (Thompson, 2004). The error of measurement has an expectation of 

zero and, for adequate fitting, a normal distribution is generally used for modeling the error. 

The structural validity assumptions can be thought of as being the least related to a particular 

psychological theory, but the most related with the statistical, mathematical, or computational 

feasibility of the implementation of a model (e.g., Griffith & Akio, 1995). A good historical 

example of changing a structural validity assumption occurred in the case of the transition 

between initial IRMs and the logistic and Rasch models. Initially, the normal cumulative 

density function was used as the IRF for the binary IRMs (Lord, 1953). Nevertheless, at the 

time of the development of the first IRMs, computing this IRF was computationally 

extensive. For this reason, some authors proposed changing from the normal to the logistic 

cumulative density function as the IRF for IRMs (Birnbaum, 1968). Mathematically, and for 
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modern computers, this difference makes little to no difference, but at the time it was 

necessary so using IRMs was feasible (Rasch, 1960). 

Apart from changing mathematical characteristic of the models, most of the structural 

assumptions in IRMs can also be relaxed using NIRMs (Sijtsma & Molenaar, 2002). NIRM 

is not only a different class of item response models, but also a whole different approach to 

modeling response patterns. For both NIRM and Parametric IRMs, there are three main 

assumptions about the relations between the observed scores and the latent trait. All these 

assumptions are specificities of our structural validity assumption. The first is that of 

unidimensionality, which simply means that the observed scores have only a single latent 

cause (Stout, 1987)—or a single more relevant cause.  

While there is much theoretical support for multidimensionality in psychological 

measurements (Knol & Berger, 1991; Reckase, 2009), given the complexity of psychological 

phenomena, many authors defend that unidimensional measurements should be preferred 

(Nunnally, 1978; Sijtsma & Molenaar, 2002). The main argument standing the latter can be 

clearer stated with an analogy. If you would use a scale to measure your weight and your 

height at the same time, what a score of 104 would mean? Supposing there was no standard 

unit for both measures, this score would be meaningless to making conclusions about those 

magnitudes apart. Therefore, multidimensional scores, despite being probably more 

representative of psychological phenomena, should be avoided so meaningful measures can 

be achieved (Heene, Kyngdon, & Sckopke, 2016). 

The second assumption is that of local independence, which states that the observed 

score of individual i on item k does not depend on the response he gave in any other j item, 

conditioned on the latent trait (Zhang & Stout, 1999). Finally, the third assumption is 

monotonicity, which states that the probability of getting an item right (or of endorsing a 

higher score in a Likert scale) augments with increasing latent trait (Junker & Sijtsma, 2000). 
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Another assumption, not common to all IRMs, however, is that of nonintersecting item 

response functions (IRFs; Rosenbaum, 1987). This assumption is used, for instance, by the 

Rasch Model and by the One-Parameter Logistic Model (1PLM; van der Linden & 

Hambleton, 2013). For ordering items by their difficulties’ estimates, these assumptions need 

to hold, simply because when IRFs intersect there is an interaction effect between 

individuals’ levels of the latent trait and items difficulties (Sijtsma & Molenaar, 2002). This 

means that the ordering of item difficulty is not the same for all individuals, but depends on 

their latent traits. Obviously, this is not a desirable property when you want to create a 

standard test. 

NIRM begins to differ from parametric IRM when the operationalization of these 

assumptions takes place. For instance, a common monotonic function relating the latent trait 

with the observed scores is the logistic function: 

Pr(𝑋 = 𝑥|𝜃, 𝛿) =
𝑒𝜃−𝛿

1 + 𝑒𝜃−𝛿
 (5) 

where θ stands for the level of the individual’s latent trait and δ for the level of item’s 

difficulty. All the lines depicted in Figure 2 are representations of this function, with different 

values for the subtraction θ – δ. 

 
Figure 2. Depictions of logistic functions. 
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It is possible to see that the IRFs will always be “S” shaped. For NIRMs, however, any 

function can be used, since it does not disregard the monotonicity. The general formulation of 

IRFs for NIRMs is the following 

𝑃𝑖(𝜃𝑎) ≤ 𝑃𝑖(𝜃𝑏) (6) 

which implies that, provided that the function is a nondecreasing function of θ, any function 

can be used to relate the latent trait with the observed response. Figure 3 depicts five different 

functions, all which can be used as IRFs in a NIRM perspective. 

 
Figure 3. Depictions of valid functions IRFs in a NIRM perspective. 

As there are, in principle, an infinite number of functions that can conform to the less 

restrictive forms of NIRMs, it would be computationally extensive (or impossible) to test, for 

instance, exactly what function the IRF follows (Ferraty & Vieu, 2006). Therefore, in a 

NIRM perspective, instead of making complex estimates of latent variables, the fit of the 

model is given by the capacity of the data to follow the relaxed assumptions. This means that, 

for example, the data could give a result like that in Figure 3, when using NIRM, but, if fitted 

with a 1PLM, could result in what was shown in Figure 2. This would probably happen 

because while NIRMs will test the assumptions it makes, parametric IRMs forces data into its 

functional form. 
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  The most well know models of NIRMs are those from Mokken Scale Analysis (MSA; 

Mokken, 1971). A Mokken scale is a non-parametric, probabilistic version of the Guttman 

scale (Mokken & Lewis, 1982). Both Guttman and Mokken scaling assumes that items have 

a hierarchical order, meaning that respondents who answered a difficult question correctly 

should also answer an easy question correctly. The main difference between Guttman and 

Mokken scales is that Guttman scaling assumes that respondents who answered a difficult 

question correctly will necessarily answer an easier question correctly. When that does not 

happen, it is said to be a Guttman error (Meijer, 1994). Nevertheless, in real evaluation 

scenarios usually people do not respond deterministically, but accordingly with some 

stochastic process, better modeled with MSA or a parametric IRM. 

It is important to note that there are many other non-parametric and semi-parametric 

models that can be found on the literature. Semi-parametric models are the ones that alleviate 

just some, not all, of the assumptions made by parametric models (Dey, Ghosh, & Mallick, 

2000). Many Bayesian models of such kind have been created (e.g., Miyazaki & Hoshino, 

2009; Wang, Chang, & Douglas, 2013). There are also tests and models for inferential 

analysis that are centered on testing the common assumptions for parametric item response 

models (e.g., Stout, 1987; Straat, van der Ark, & Sijtsma, 2013). All these different 

techniques make it possible to test and model a larger range of items, without being needed to 

limit test and scale construction to what is only permitted by traditional IRMs. 

Nevertheless, all those different models share an important limitation, as stated by 

Sijtsma (2012). Using those techniques, the measurement is dependent on the 

questionnaire—or test, or scale—data, meaning that they all assume that the observed scores 

are caused by a generic latent variable related to the items and to the respondents. This 

structural validity assumption makes it easier to mistake the prescriptive structure of a 

statistical measurement model with the theoretical structure of the attribute of interest. 
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Nevertheless, meaningful measurement is possible only if enough is known about the 

attribute so as to justify its logical operationalization into prescriptions from which a 

measurement instrument can be developed (Michell, 2017; Sijtsma, 2012; Trendler, 2009). 

Despite theories about attributes in psychology often not being precise enough to justify a 

logical operationalization, the emerging field of cognitive psychometric modeling has been 

presented as an interesting alternative (Embretson, 2010). 

 

Process assumption and Cognitive Psychometric Modeling 

The process assumption is the definition on how basic constructs, or latent variables, relate to 

each other to compose a particular psychological model or theory. For instance, the IRT 

assumes that the probability of correct answering a question is a function of the respondent’s 

latent trait and the difficulty of the items. The signal detection theory, on the other hand, 

assumes that the probability of correct answering a question is a function of the criterion and 

discrimination of the respondent (Stanislaw & Todorov, 1999). In this case, it is possible to 

distinguish the measurement made by these theories as, for the signal detection theory, it 

makes a difference if correct responses were a hit or a correct rejection, and if the incorrect 

responses were a false alarm or a miss. For IRT, it usually matters only if the response was 

correct or incorrect. This entails in the fact that both theories make different assumptions on 

the underlying process controlling response patterns on the proposed quantitative model. 

A quantitative model is a representation of a phenomenon using techniques and 

procedures due to mathematics and statistics (Edwards & Hamson, 2007). Therefore, a 

cognitive model is a representation of cognitive phenomena using the same class of 

mathematical and statistical techniques and procedures (Lee & Wagenmakers, 2014). 

Lewandowsky and Farrell (2010) describe three different classes of quantitative models. The 

first class contains models of data description. As the name suggests, they only describe 
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relations between variables. They are explicitly devoid of psychological content, although the 

modeled function constrains possible psychological mechanism to the phenomena. An 

example is linear regression models (Faraway, 2016). The second class is the one of process 

characterization. These models postulate and measure distinct cognitive components. Yet, 

they are neutral about how specific instantiations underpinning the cognitive components 

work. An example is the multinomial processing trees model (Erdfelder et al, 2009). Finally, 

the third class is the one with models of process explanation. Like characterization models, 

their advantage stands on hypothetical cognitive constructs. However, they provide detailed 

explanation about those constructs and how are they related. An example is the generalized 

context model (Nosofsky, 1986). 

Traditional psychometric models can be thought as descriptive models, given that they 

can be described themselves as only linear or generalized linear regressions with latent 

predictors (Bock, 1997). Considering psychometric models from this perspective enables to 

perceive that, despite being important tools to psychological research, traditional IRMs lack 

explanatory meaning. Therefore, several aspects of psychological phenomena are not taken 

into account. Sijtsma (2012) states that IRT leaves psychology out of the equation when 

proposing psychological models of measurement, resulting in fruitless insights for 

psychological phenomena. Nevertheless, it is important to note that it is not the use of a 

statistical framework based on latent variables that is the strongest limitation of IRT. The 

strongest limitation is to use exclusively descriptive models (i.e., a strong process validity 

assumption) for developing measurement models, which have no concern for the processes 

that generated the observed data structure. 

The cognitive modeling approach can then be used to enrich IRMs and give more 

significance to the measurement process in psychology. Despite not formally defined as such, 

the Cognitive Psychometric Models (CPMs) approach has been used as a good alternative for 
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traditional IRMs (Embretson, 2010). One prominent CPM is Tree Based IRMs (TIRMs; 

LaHuis, Blackmore, Bryant-Lees, & Delgado, 2018). This kind of model helps to understand 

in which order latent variables influence each other to cause the observed response patterns. 

Empirical comparison of different TIRMs can provide proper evidences of validity for a 

measure, when compared, for instance, with simply correlating expected–to–be–related 

measures (Borsboom, Mellenbergh, & van Heerden, 2004). Figure 4 illustrates two 

hypothetical competing TIRMs for the measurement of personality data. Both models state 

that people have different propensities to act aggressively or peacefully. However, the model 

on the left states that the probability of a respondent giving an aggressive or a peaceful 

response depends only on the parameter α, which can be thought as his propensity to act in a 

given way (e.g., his disposition). On the other hand, the model on the right decomposes the 

process, stating that self-control, measured by the parameter β, has an important role on 

regulating individual’s actions. Traditional analysis in psychometrics and psychology would 

only test correlations between these measures (e.g., Kim, Namkoong, Ku, & Kim, 2008), 

providing only descriptive relations for the constructs. The use of the TIRMS makes it 

possible to conclude what process is more likely to have originated the data at hand. In the 

example, individuals with more peaceful personality do not need to have self-control, given 

that they simply act as is socially expected. This kind of conclusion would be difficult, or 

even impossible, to be drawn by traditional psychometrical analysis. 
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Figure 4. Two hypothetical competing TIRMs for the measurement of personality data related 

to observed behavior. 

Following what is proposed by Sijtsma (2012), a measurement occurs only when the 

relations between the observed measure and the attribute of interest are logically and formally 

established, making it possible to operationalize the phenomena of interest. Characterization 

and explanation’s CPMs can be used for this end, as illustrated by the example of Figure 4. 

Certainly, on the other hand, for the proper use of CPMs one cannot only rely on 

questionnaire or test data. This can be a difficult task. Kagan (2005) criticized the common 

psychometric practice on relying almost exclusively on the semantic structures activated 

when participants give their responses to questionnaires. The author also proposes the use of 

alternative data sources, such as motor activity, distress to unfamiliar visual, auditory, and 

olfactory stimuli, and others. Sijtsma (2012) states that these alternative data types are rarely 

used in psychometrical research. Cognitive psychology researchers who use cognitive 

modeling approaches, on the other hand, are more used with searching for different data 

sources for their models (Lee, 2011). 

One way of increasing the number of data sources and, therefore, making a more robust 

and valid measurement model, is collecting data in experimental sets (Sijtsma, 2012). This is 

a good approach for two main nested reasons. First, because using experimental sets reduce 

the noise and random variance in the data (Kish, 2004). As many sources of confounding 
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effects are controlled in experiments, each new relevant measurement reduces the amount of 

unexplained variance. The repeated measurement design is the design that reduces the noise 

the most (Cook, Campbell, & Shadish, 2002). The second reason, which is nested in the first, 

is because experimental sets in psychology usually control for the external influences in 

individual’s behavior. Therefore, the variance that is left can be due only to noise or 

individual differences (Bacon, 2004). 

Using CPMs and experimental sets are still a novel approach to psychological 

measurement, which has the potential to approximate the meaning of measurement in 

psychology with that of physics (Sijtsma, 2012). Nevertheless, for some authors (e.g., Gould, 

1996), measurement in psychology will always be impossible, given that IRMs, and even 

CPMs, define measurement as the estimates for some latent variable. This means that, for 

some authors, it is not enough to relax or test the structural and process validity assumptions, 

but is also necessary to directly observe the measured property or feature. Despite this being 

problematic for psychology as a whole (Borsboom, Mellenbergh, & van Heerden, 2003; 

Trendler, 2013), measurement in fact does not need to be defined in terms of latent variables. 

Network psychometric modelling and the realist measurement theory (Michell, 2005) can be 

used to this end. 

 

Construct assumption, network modeling, and realist measurement theory 

The construct assumption is the definition of a measure as the latent variable that explains the 

variance of observed variables. All models presented so far rely on this assumption, as the 

estimates of the magnitude of the latent variables are of central interest, and not the observed 

variables per se (Borsboom, 2005). This is an old trend in mainstream psychology to attribute 

mentalist causes to human behavior (Stanovich, 2012). Despite the success of this approach 

in many areas in psychology (Sijtsma, 2012), philosophical and mathematical critics are 
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made to accept something that cannot be assessed or, if ever, only indirectly assessed 

(Michell, 1990; 1997; 2005; 2008). Two work-arounds from this assumption are found in 

both the recent psychometrical literature, in the form of network psychometric modeling 

(Constantini et al, 2019), as well as in the traditional measurement theory literature (Roberts, 

1979), largely overlooked in the current psychometric field (Michell, 2000). 

Probabilistic graphical modeling (Lauritzen, 1996) is a statistical approach, derived 

from the mathematical graph theory, used to model multivariate conditional dependencies 

between variables. In this sense, factor analysis and item response models can be considered 

as special cases of probabilistic graphical models, where dependencies between observed 

variables are conditioned on latent variables (Kruis & Maris, 2016). For the probabilistic 

graphical models proposed by Lauritzen (1996), however, no latent variables are considered. 

Instead, dependencies between any two variables are explained by their relations to a third 

variable. One of such models is the partial correlation graphical model, also known as partial 

correlation network model (Epskamp & Fried, 2018). This model has been of growing 

interest in the field of psychometric construct analysis, such as mental health related ones 

(Borsboom, 2017), where the existence of a common latent cause is a controversial issue. 

The probabilistic graphical modelling approach to psychometrics, also named 

network psychometrics (Epskamp, Rhemtulla, & Borsboom, 2017), is considered as a part of 

the statistical approach to measurement because it is not particularly interested in the 

measurement level of the observed variables. For instance, partial correlations can be 

calculated from polychoric correlations, combined with regularized regressions, if the 

observed variables are ordinal (Golino & Epskamp, 2017). It is generally not the objective to 

estimate interval or ratio measures to predict observed variables, nor are the values of the 

observed variables transformed to interval or ratio measures. However, some network 

psychometric models, such as the network Ising model, have been shown to be equivalent to 
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traditional latent common cause models, such as factor analytical models and item response 

models (Marsman et al, 2018). This means that not always network psychometrics will 

present a true alternative to traditional psychometrics, only when it avoids latent variables 

(Kruis & Maris, 2016; Lauritzen, 1996). 

One good example of using network psychometrics, and abandoning latent variables to 

measure psychological entities, is the model of general intelligence proposed by van der 

Maas et al (2006), known as the mutualism model of intelligence. Traditionally, the study of 

human intelligence was concomitantly developed with the psychometric factor analytic 

model (Buckhalt, 2002). This is represented by the fact that one of the main discussions in 

the study of intelligence is not about the existence of a true latent variable, but about how 

many dimensions describe this assumed latent variable the best (e.g., Golino & Demetriou, 

2017). The most traditional model, and maybe one of the best corroborated, is the g-factor 

model of general intelligence (Canivez & Watkins, 2010). In this model, a single general 

latent variable is used to explain the variance of all observed variables. Some extensions 

(Canivez, 2016) involve using this g-factor as the cause of other latent variables (named 

specific factors), or with other latent variables explaining residual correlations, after 

conditioning the g-factor out. These are known as the second-order and bifactor models, 

respectively. The traditional, second-order, and bifactor models of intelligence are 

respectively illustrated in Figure 5, where g represents the g-factor, f1, fi, and fn represent the 

possible specific factors, and V1, Vi, and Vn represent the possible sets of observed variables.  
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Figure 5. Graphical illustrative example of the traditional (left), second-order (middle), and 

bifactor (right) models of intelligence. 

 The network model proposed by van der Maas et al (2006), on the other hand, 

suggests that the dynamics of intelligence are better described by a network of reciprocal 

causal effects. The idea of the mutualism model of general intelligence is that such reciprocal 

causal effects also occur during development, originating the observed correlations, for 

instance, on responses to items on intelligence tests (van der Maas, Kan, Marsman, & 

Stevenson, 2017). From an empirical point of view, van der Maas et al (2006) showed that 

phenomena such as he hierarchical factor structure of intelligence, the low predictability of 

intelligence from early childhood performance, the integration/differentiation effect, and the 

increase in heritability of g can all be explained by the mutualism model. Despite this fact, 

the mutualism model has been criticized for not accounting some effects, such as 

distinguishing between genetic and environmental effects (Nisbett et al, 2012), that are 

already well studied with traditional psychometrical models. Van Der Maas et al (2017), 

however, argue and present a new model that can better address most of the criticism of the 

mutualism model. 

Apart from finding conditional dependencies between observed variables, one may 

intend to test if a given set of observed variables can be measured in a particular 
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measurement level. To this end, from the physical approach to measurement, there are two 

steps for creating relevant numerical representations (Scott, 1964). First, one needs to identify 

the inherent structure of the objects or events, which reveals the property to be measured. 

Second, one needs to find a method that can properly assign (real) numbers that have an exact 

correspondence between the property to be measured and the numbers that represents this 

property. Succeeding in finding the method where the numerical representation correctly 

represents the measure property means that the researcher has achieved an isomorphic system 

(Coombs et al, 1970) better known as a “measure”. 

The first step, which establishes the conditions under which various types of scales can 

be constructed, is called the measurement theory. The second step, which is the process of 

assigning numbers to properties, is called scaling. Both are important aspects of measurement 

and need to be analyzed apart. Nevertheless, the terms measurement and scaling have been 

used interchangeably in the literature (Coombs et al, 1970), originating what Sijtsma (2012) 

called “the statistical perspective” of measurement in psychology. Sijtsma (2012) also argued 

that this practice originated mistakes in the psychometric practice of confusing the 

prescriptive structure of a statistical measurement model with the theoretical structure of the 

attribute of interest, therefore, confusing scaling procedures with development of 

measurement theories. 

From this distinction, it is easy to perceive that virtually every scale, test or 

questionnaire ever created in psychology follows the measurement theories that inspired 

Spearman (1904), Rasch (1960), and others, which are also similar between them. Most 

psychometric procedures establish that there are two attributes to measurements (van der 

Linden & Hambleton, 2013): a generic respondent latent trait and a generic latent 

characteristic from the test (or item). These components are usually assumed to interact in an 

additive way. This is certainly a problematic set of assumptions (Trendler, 2009): is it 
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reasonable to assume that the process that generates observed scores in intelligence tests is 

the same as the process that generates observed scores in attitude scales? 

Some authors propose that this statistical perspective for measurement, despite helping 

the advancement of science, cannot establish real scientific measures (Michell, 2000; 

Trendler, 2009). Michell (1990; 1997), instead, proposes that the only way for psychology to 

perform real scientific measures is to adopt a realist view of measurement. Traditionally, 

measurement in psychology is based on an operationalist view of measurement (Stevens, 

1946): it is accomplished every time a numerical assignment is done in an informed manner. 

This is to say that one just needs to order objects, or scale magnitudes, following any specific 

rule and to establish some agreeable observable property as the definition of the phenomena 

of interest to create a good measurement. 

This operationalist view of measurement, despite heavily used in psychology, does not 

conform to the traditional scientific definition of measurement. Traditionally defined, a 

measurement is the estimation of the ratio between a magnitude of a continuous quantity and 

a unit magnitude of the same kind (Emerson, 2008). This definition encompasses the 

concatenation process, which is the operation of joining objects to observe their interactive 

effect on some measurement scale (Suppes, 1951). Campbell (1928) states that, for a realist 

view of measurement, units of measurement can be defined only by the concatenation 

process, which means that scientific measurement in psychology is therefore impossible. 

A realist view, nevertheless, can still be applied to psychological measurements. Hölder 

(1901) proposed a valid mathematical formalization of the concatenation process, providing 

the beginning of the formal study of measurement. From this work, Luce and Tukey (1964) 

extended Hölder’s (1901) theory for objects or events that are not feasible to be concatenated, 

proposing the Conjoint Measurement Theory (CMT). For a measurement to be established 

via CMT, it is necessary to have at least two natural attributes that non-interactively relate to 
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a third attribute (Krantz, 1964). Via specific relations between the levels of this third 

attribute, it can be established that all the attributes are continuous quantities, even if initially 

observed only as ordinal relations. 

Despite its importance to guarantee interval or even ratio scales in psychology, the use 

of CMT has been very limited and virtually absent in psychometric practice and research 

(Michell, 2017). Probably one of the most famous examples of application of the CMT is the 

cumulative prospect theory (Kahneman & Tversky, 1979). In the cumulative prospect theory, 

the utility of a gamble is given by the additive combination of uncertainty-weighted marginal 

utilities of positive and log-negative outcomes (Wakker & Tversky, 1993). This theory can be 

illustrated with the reversal of preference effect (Kyngdon, 2013). Suppose a person has to 

choose between game A, consisting of an 80% chance of winning $4,000, and game B, 

consisting of a 100% chance of winning $3,000. Then, suppose that the same person has to 

choose between game C, consisting of a 20% chance of winning $4,000, and game D, 

consisting of a 25% chance of winning $3,000. It is possible to see that games C and D are 

simply weighted versions of games A and B, such that C = .25(A) and D = .25(B); 𝐴 =

4,000 × .80 and 𝐵 = 3,000 × 1. Therefore, if participants prefer game B to A, they should 

prefer game D to C as well. Kahneman and Tversky (1979) found that 80% of their test 

participants preferred B over A, but 65% preferred C over D. From the prospect theory, this 

result is explained by the fact that losing have a larger weight on the decision than winning, 

modeled using a logarithmic function. Decisions are then made choosing the alternative that 

minimizes loses. In Figure 6 we show a simplified calculation derived from the cumulative 

prospect theory. Values per row on the “Sum” column are calculated by (ln(Loose) ×

Value) + (Win × Value). The exception is game B (with value 3,000 and win 1), as it has no 

probability of losing, the calculation is simply (Win × Value). Real modeling using 

cumulative prospect theory would have an extra step, a transforming function that transforms 
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the “Sum” values to observed probabilities on choosing each alternative. However, this step 

is not relevant for understanding the example. 

Games A/B  Games C/D 

Value Loose Win Sum  Value Loose Win Sum 

3,000 – 1 3,000  3,000 ln(.75) .25 –113 

4,000 ln(.20) .80 2,307  4,000 ln(.80) .20 –92 

 
Figure 6. Illustrative example on how weighted utilities are calculated from cumulative prospect theory. 

Another issue for researchers on psychological measurements is the fact that CMT is 

not the only measurement theory relevant to psychology. Polynomial Conjoint Measurement 

(Tversky, 1967) and n-component Conjoint Measurement (Krantz, 1968) can be applied 

when the measurement structure is polynomial and when there are more than three attributes, 

respectively. Krantz, Luce, Suppes and Tversky (1971), Suppes, Krantz, Luce and Tversky 

(1989) and Luce, Krantz, Suppes and Tversky (1990) present an exhaustive list of 

measurement theories that can be used to form ordinal, interval and ratio scales, providing 

new ways to answer if (and which) IRMs, or any other psychometric model, can really 

provide quantitative measures of psychological entities. 

 

Discussion 

The aim of the current study was to present three assumptions common to psychometric 

theory and practice. These are the assumptions of structural validity, the process assumption 

and the construct assumption. We presented the basic idea on measurement model 

development by adapting each of these assumptions. In a non-exhaustive manner, we also 

presented how alternatives to traditional psychometrical approaches can be used to improve 

measurement in psychology. The take home message is similar to that of Sijtsma (2012): only 

rigorous development of attribute theories can lead to meaningful measurement in 

psychology. Introducing and stressing the three assumptions in psychometrics not only 
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allows understanding why measurement in psychometrics is as it is, but also how to change 

its models so to achieve meaningful measurements. 

 If latent variables are acceptable and the process is assumed to be known, traditional 

psychometric models, such as factor analytical and item response models, can be improved 

by simply changing some of its mathematical functions (structural validity assumptions). We 

showed as the main examples the change between normal and logistic item response 

functions to the Rasch model, and the use of nonparametric item response modeling. These 

procedures change only minor or none of the aspects of the underlying theory about the 

response or cognitive/behavioral processes. In this case, developing models are mainly 

related to improving the fit to the data, rather than improving the theoretical description of 

the underlying psychological process. However, studies on validity can still be used in this 

approach to improve the understanding of the underlying psychological processes (Cronbach 

& Meehl, 1955). 

 If latent variables are acceptable but the underlying psychological process is to be 

explored, then one should develop models that try to characterize or to explain this process 

(process assumption). We showed as the main examples the difference between item 

response theory and signal detection theory, as well as the tree item response models (as a 

type of characterization models). It is important to note as well that the signal detection 

theory also provides a descriptive model on respondents’ response patterns, similarly to item 

response theory. Nevertheless, differences on predictions made by both theories allow for 

designing studies to compare which model makes the most sense, given the experimental 

apparatus (Trendler, 2009). 

Finally, latent variables can be abandoned and measurement in psychology will still be 

possible (construct assumption). This can be achieved by a statistical approach to 

measurement, or by means of network psychometrics, as in a physics approach to 



 46 

measurement, or by means of measurement theory. The main difference between these three 

approaches is that network psychometrics is similar to other psychometric models: despite 

the measurement level of the observed variables, the focus is to model the data with 

multivariate statistics. Measurement theory, on the other hand, focuses on assessing whether 

a property is quantitative and, if so, what its magnitude is (Roberts, 1979). Depending on the 

objective, the researcher can use any of these alternatives to propose more meaningful 

measurements in psychology.  
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Abstract 

The objective of the present study was to develop two new item response models for 

polytomous and binary items that do not assume a normal distribution of the true scores. The 

first model that was developed, the Conditional Item Response Model (CIRM), assumes a 

beta-binomial distribution. The second model is a Bayesian implementation of the optimal 

score procedure (OS-IRM). Two studies were conducted with the new developed models: the 

first was a Monte Carlo simulation comparing the effectiveness of the two new models with 

the Rasch model. The second study compared the practical equivalence of the two new 

developed models and the Rasch model empirically. Overall, results show that the CIRM 

produces the least biased estimates of the true scores while the OS-IRM is the procedure that 

best recovers the true score distribution. In the discussion a number of limitations of the 

present study are pointed out and suggestions are given for future studies. 

Keywords: Item response theory; Bayesian nonparametric modeling; Monte Carlo 

simulation. 
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Conditional Item Response Model and Optimal scores: Alternatives to the Rasch model 

Sum scoring is a very common procedure for estimating the true scores of respondents to 

psychological tests and questionnaires (Borsboom, 2006). This method is regarded by leading 

modern psychometricians (e.g., Borsboom, 2006; Ramsay & Wiberg, 2017) as inappropriate 

for two main reasons. First, because it is not possible to assure that the observed item scores 

are measured on an additive (interval) scale. Secondly, because in the sum scoring procedure 

psychometric characteristics of the items are not taking into consideration. This way, low 

quality items receive the same weight as high-quality items.  

Contemporary psychometrics deals with these limitations by means of item response 

models (IRMs), such as the Rasch model (Rasch, 1960). Nevertheless, parametric IRMs also 

fall short given the fact that they assume the true score to have a normal distribution, which 

has an unbounded interval. This means that, in principle, respondents can have any score 

between –∞ and +∞, which seems theoretically implausible and also generates scoring scales 

that are less intuitive (Ramsay & Wiberg, 2017). 

Wright and Panchapakesan (1969) developed a scoring procedure which assumes that 

binary responses can be modeled by a Bernoulli distribution. Therefore, estimates of 

respondents’ true scores can be given by the probability parameter of this distribution, which 

is bounded between 0 and 1. This method, however, is limited as it can only be applied to 

binary response variables and, like the sum scoring procedure, does not take the psychometric 

characteristics of the items into account. Another model that does not assume a normal 

distribution of the true scores, was developed by Ramsay and Wiberg (2017) and is known as 

optimal scoring. It is a nonparametric IRM, which uses the sum scores as initial estimates for 

the true scores, and that optimizes the likelihood of responses for each item using a B-spline 

estimate for the item response functions (IRFs). 
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The present study aimed at achieving three objectives. First to expand Wright and 

Panchapakesan’s (1969) model to polytomous items and use this expansion as the building 

block to develop two new item response models (IRMs) that do not assume a normal 

distribution of the true scores. The secondary aim is to compare the effectiveness of these 

newly developed IRMs to the Rasch model using a Monte Carlo simulation study. The last 

aim is to compare the practical equivalence of the three models using empirical data. 

The rest of this paper is structured as follows. In the next section, we explain the 

Bernoulli scoring procedure and extend it for, what we call, the binomial scoring procedure. 

We then present the IRM, called the Conditional item response model (CIRM), which uses 

beta distributions for the true scores. The fourth section is dedicated to show how to fit the 

CIRM, the Rasch model and the optimal scoring using Bayesian statistics. The fifth and the 

sixth sections are dedicated to a simulation study and an example with real data, respectively. 

The paper ends with a discussion and some concluding remarks. 

 

The binomial scoring procedure 

If items are coded as simple binary variables, response patterns (X) can be assumed to be 

stochastic and dependent on a true score θ: 𝑃(𝑋 = 1|𝜃). Departing from a set of k items, the 

response pattern of a single respondent can be modeled by a Bernoulli distribution: 

𝑃(𝑋 = 1|𝜃) = 𝜃𝑘(1 − 𝜃)1−𝑘. (1) 

This procedure for scoring respondents was proposed by Wright and Panchapakesan (1969) 

in order to avoid using sum scores. Despite the fact that sum scores are actually good 

approximations for this kind of procedure (Rosenbaum, 1987), with maximum likelihood 

estimates (MLE) also standard errors associated with the θ estimates are provided, which is 

not the case with sum scores (Tarone, 1979). 



 58 

One disadvantage of the Bernoulli procedure is its limitation to binary data. Relying on 

the fact that the Bernoulli distribution is a special case of the binomial distribution (Marshall 

& Olkin, 1985), it is straightforward to expand the procedure so it can give estimates also for 

polytomous data. Departing from a test with k items, but now with polytomous items with l 

response levels, one can model the response patterns by 

𝑃(𝑋 = 𝑙|𝜃, 𝑛) = (
𝑛
𝑆

) 𝜃𝑆(1 − 𝜃)𝑛−𝑆
, (2) 

where S is the sum score and n=(l-1)k is a fixed parameter. 

Estimation for the θ parameter can be done either with MLE (Kleinbaum & Klein, 

2010) or with a Bayesian method such as Markov Chain Monte Carlo (MCMC; Everson & 

Bradlow, 2002). For the MLE method, the computations can often be simplified by 

maximizing the loglikelihood (LL) function, given by 

𝐿𝐿(𝜃; 𝑆) = 𝑘 + 𝑆 ln𝜃 + (𝑛 − 𝑆)ln (1 − 𝜃). (3) 

The advantage of using the LL function is the fact that its optimization is computationally less 

expensive than the optimization of the original binomial function (for more details, see 

Edwards, 1984). 

To estimate the θ parameter using Bayesian statistics, one can use a beta-binomial 

model with uninformative priors: 𝛼 = 𝛽 = 1 (Lee & Wagenmakers, 2014). This approach 

begins with the same binomial distribution, which can be simply rewritten as 

𝑋 ~ Binom(𝑛, 𝜃), (4) 

which means that the response pattern X (for a person or for an item) is distributed as a 

Binomial distribution with parameters n and θ. The next step is to define the beta distribution, 

Beta(𝛼, 𝛽), for θ, which is given by 

𝑓(𝜃; 𝛼, 𝛽) =
1

B(𝛼, 𝛽)
𝑆𝛼−1(1 − 𝑆)𝛽−1, (5) 
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where B(𝛼, 𝛽) is the beta function. The actualization steps for the MCMC algorithm are given 

by the mean of the compound distribution: 

𝑓(𝑆|𝑛, 𝛼, 𝛽) = (
𝑛
𝑆

)
Beta(𝑆+𝛼,𝑛−𝑆+𝛽)

Beta(𝛼,𝛽)
. (6) 

Furthermore, the beta-binomial distribution can be extended to its semiparametric form 

(Liu, 1996). Using Bayesian non-parametric modeling via Dirichlet process prior (Blackwell, 

1973) for the mixing distribution, this can be accomplished by 

𝑋 ~ Binom(𝑛, 𝜃) 

𝜃 ~ 𝐹 

𝐹 ~ DP(𝑀, 𝐹0) 

𝐹0 ~ Beta(𝛼, 𝛽) 

(7) 

where the random probability measure F replaces the beta prior of the parametric model in 

Eq. (5) and DP stands for the Dirichlet process prior. As a base prior distribution, F0 can also 

assume a Beta(α, β) with  𝛼 = 𝛽 = 1. 

Both the Bernoulli and the beta-binomial scoring procedures have as a limitation the 

fact that they assume different items to not have different effects on the response pattern, just 

like with sum scores. However, departing from these procedures it is possible to formulate an 

IRM that exceeds this limitation. We propose to use the conditional probability function 

(Ross, 2014) as the (linking) IRF (van der Linden & Hambleton, 2013) when true scores are 

assumed to come from a beta distribution. 

 

Bounded support and the Conditional Item Response Model 

One advantage of using the beta distribution for estimating the true scores is the fact that the 

distribution of latent variables can be set to be any arbitrary distribution (Ramsay & Wiberg, 

2017). Therefore, using distributions with bounded support can improve both interpretability 

of the estimates and the accuracy of the estimates. Here, items and respondents’ scores are 
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assumed to follow a beta distribution, which is bounded between 0 and 1, thus an initial IRF 

could simply be the expected value of a beta distribution, given by 

𝑃(𝑋𝑖𝑗 = 𝑥𝑖𝑗|𝜃𝑗 , 𝛿𝑖) = E[𝜃𝑗 , 𝛿𝑖] =
𝜃𝑗

𝜃𝑗 + 𝛿𝑖
, (8) 

where 𝜃𝑗  is the latent true score of the jth respondent and 𝛿𝑖 is the difficulty for the ith item. A 

nice property of Eq. 8 is that it can be directly related to both Rasch and one-parameter 

logistic (1PL) models by their shared additive property of the estimated scores (Perline, 

Wright, & Wainer, 1979). This relation can be made evident by evaluating the log 

transformation of Eq. 8:  

logit(𝑃(𝑋 = 𝑥|𝜃, 𝛿)) = log(𝜃) − log(𝛿), 

𝑃(𝑋 = 𝑥|𝜃, 𝛿) =
1

1 + exp[log (𝜃) − log (𝛿)]
, 

(9) 

given that 𝜃 and 𝛿 follow beta distributions and, therefore, can only assume nonnegative real 

values, upper bounded by 1. 

An interesting property of other IRMs, such as the Rasch and 1PL models, is whenever 

𝜃𝑗  and 𝛿𝑖 are equal, 𝑃(𝑋𝑖𝑗 = 𝑥𝑖𝑗|𝜃𝑗 , 𝛿𝑖) = .50 (van der Linden & Hambleton, 2013). 

Nevertheless, if bias for an end of the scale is expected to influence respondents in a sample 

equally, such as with scales influenced by social desirability (Edwards, 1957), the value of 

𝑃(𝑋𝑖𝑗 = 𝑥𝑖𝑗|𝜃𝑗 , 𝛿𝑖) when 𝜃𝑗  and 𝛿𝑖 are equal should be different from .50. Therefore, we can 

assume .50 to represent a prior probability c. Conditioning 𝑃(𝑋𝑖𝑗 = 𝑥𝑖𝑗) on this prior 

probability will give the CIRM: 

𝑃(𝑋𝑖𝑗 = 𝑥𝑖𝑗|𝜃𝑗 , 𝛿𝑖 , 𝑐) =
𝑐𝜃𝑗

𝑐𝜃𝑗 + (1 − 𝑐)𝛿𝑖
. 

(10) 

Because the CIRM assumes a beta distribution for both respondents and items’ 

parameters, it can be considered as a parametric version of the optimal scoring procedure 

(OS-IRM; Ramsay & Wiberg, 2017). OS-IRM maximizes the likelihood of each respondent’s 
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response pattern, estimating 𝜃 as weighted sum scores, therefore, defining a closed interval to 

θ, that can also be modeled by a beta distribution. This objective is achieved by estimating 

the logit (or inverse logistic) function Wi(θ) instead of 𝑃𝑖(𝜃), defined as 

𝑊𝑖(𝜃) = log (
𝑃𝑖(𝜃)

1 − 𝑃𝑖(𝜃)
). (11) 

An efficient nonparametric estimation approach for Wi(θ) is to use B-spline basis 

function expansions with Q knot sequences: 

𝑊𝑖(𝜃) = ∑ 𝛾𝑖𝑞𝜙𝑖𝑞(𝜃)

𝑄

𝑞

, (12) 

where 𝛾𝑖𝑞 is the coefficient of B-spline basis function 𝜙𝑖𝑞 in the basis function expansion of 

the ith item’s IRF. This approach is preferable because linear combinations do not respect 

bounds restricted to the variables and Pi(θ) can only assume values between 0 and 1. The 

function Wi(θ), however,  can assume any value between –∞ and +∞, while a value of 0 of 

Wi(θ) is equivalent to a value of .50, or 50%, in Pi(θ). 

 

Fitting the CIRM and the OS-IRM 

Both MLE and Bayesian methods can be used to fit the CIRM and the OS-IRM. For the 

present study, a Bayesian method is used as it can simultaneously estimate the parameters of 

respondents and of items (Gelman, Carlin, Stern, Dunson, Vehtari, & Rubin, 2014), as well 

as be used directly to assess models’ differences (Kruschke, 2015). For the CIRM, responses 

of each respondent to each item are modelled according to a binomial distribution with 

parameters 𝜂𝑖𝑗 = 𝑃(𝑋𝑖𝑗 = 𝑥𝑖𝑗|𝜃𝑗 , 𝛿𝑖, 𝑐) and n. The 𝜃𝑗  and 𝛿𝑖 parameters are sampled from the 

reparametrized beta distributions (Kruschke, 2015) so their distributions approximate a 

normal distribution, bounded between 0 and 1, but with means µ and ω drawn from a 
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noninformative beta distribution—Beta(1,1)—and standard deviations σ and κ drawn from a 

noninformative gamma distribution—Gamma (.001, .001). 

The Bayesian procedure to fit the CIRM is shown in the net representation in Figure 1, 

following Lee’s (2008) graphical standards. The observed variables are represented by 

shaded nodes and the unobserved variables are represented by unshaded nodes. Discrete 

variables are represented by square nodes, while continuous variables are represented by 

circular nodes. Stochastic variables are represented by single-bordered nodes, and 

deterministic variables are represented by double-bordered nodes. Finally, encompassing 

plates are used to denote independent replications of the graph structure within the model. 

 

Figure 1. Bayesian representation of the CIRM. 

In the MLE approach proposed by Wiberg, Ramsay and Li (2019) for fitting the OS-

IRM, the initial estimates for the true scores are based on the sum scores. To follow the same 

reasoning, we propose the use of beta-binomial scoring procedure to get initial estimates (BS) 

for the true scores and also to obtain standard errors estimates (se), which can be used to set a 

prior of normal reparametrized beta distributions for the scores. Wiberg et al (2019) also used 

a B-spline for estimating Wij. Given that the estimates of true scores are bounded to 0 and 1, 

and that Wij can have negative values, we propose the use of a Rademacher basis. The 

Rademacher distribution is a discrete probability distribution which has equal chance for 

either 1 or –1 (Seth & Príncipe, 2008). Our proposed Rademacher basis is a simple rule: if the 

value of the θj estimate is below or equal to Gq, then the basis equals –1. If the value is above 



 63 

Gq, then the basis equals 1. The Gq knots were set by equidistance points in the 0 to 1 scale. 

Finally, we apply a DP to the logistic transform of Wij, following a procedure similar to that 

of Duncan and MacEachern (2008). This proposed model is presented in Figure 2. 

 

Figure 2. Bayesian implementation of the OS-IRM. 

 

Simulation study 

Method 

We used both the Rasch model and the CIRM as the true IRFs for the data generation process 

(DGP). When the data were generated using the Rasch model, the θ parameter was drawn 

from a truncated normal distribution with mean 0, standard deviation 1 and -3 and 3 as lower 

and upper bound, respectively. When the data were generated using the CIRM, the θ 

parameter was drawn from a beta distribution with both parameters α and β equal to 1. These 

distributions were chosen because they represent traditionally defined non-informative prior 

distributions (Kruschke, 2015). Difficulties were drawn following the same distributions, 

according to the IRF. Random draws from sample sizes of 100, 250 and 500 simulated 

respondents and from test sizes of 10, 20 and 50 items were each iterated 100 times. This 
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resulted in 9 crossed conditions and 18 total conditions, taking into account both DGPs 

(Rasch and CIRM). 

The Rasch model, the CIRM and the OS-IRM were compared using five measures of 

effectiveness. The first measure is related to accuracy and was measured by Spearman’s 

correlation between the estimates and the known true scores. To assess accuracy throughout 

the range of true scores’ estimates, we measured bias by the residuals of an additive 

regression between estimated and true scores. As an average measure of accuracy, we used 

the mean absolute error (MAE), which is not affected by the variance of the distribution of 

error magnitudes (Willmott & Matsuura, 2005). MAE is calculated as 

MAE =
1

𝑁
∑|𝜃𝑗 − 𝜃𝑗|

𝑁

𝑗=1

, (13) 

where N is the number of respondents, 𝜃𝑗  is the true score and 𝜃𝑗  is an estimate of 𝜃𝑗 , 

calculated using the expected values of an additive regression between estimated scores and 

true scores. 

Integrated square error (ISE; Shirahata & Chu, 1992) was the fourth measure of 

effectiveness, used to access how similar were the true and the estimated distribution of 𝜃. 

The ISE was computed by 

ISE(𝑔̂) = ∫{𝑔̂(𝜃) − 𝑔(𝜃)}2𝑑𝜃, (14) 

where 𝑔̂(𝜃) is the density of the feature-scaled distribution of estimates of the true score θ 

and 𝑔(𝜃) is the density of the real distribution of feature-scaled true scores. Both 𝑔̂(𝜃) and 

𝑔(𝜃) were calculated using kernel density estimates with the number of equally spaced points 

equal to the sample size and the bandwidth chosen adaptively using Sheather and Jones 

(1991) method. 

For comparing model fit we calculated the deviance information criterion (DIC; 

Spiegelhalter, Best, Carlin, & Linde, 2014). The DIC is a hierarchical modeling 



 65 

generalization of the Akaike information criterion (AIC) and the Bayesian information 

criterion (BIC). As in the case of BIC and AIC, models with smaller DIC should be preferred 

over models with larger DIC. The main difference between DIC and both AIC and BIC is the 

fact that the DIC has larger penalties for the quantity of parameters in the model. 

The R (R Core Team, 2019) code with the full simulation is available from the 

corresponding author upon request. The Bayesian models were all implemented in the JAGS 

software (Plummer, 2003). The JAGS software was interfaced with R through the R2jags 

package (Su & Yajima, 2012). We used the gam function from the mgcv package (Wood, 

2012) to estimate the residuals of the additive regressions used for measuring the error for the 

bias. Finally, the density integrate.xy function from the sfsmisc package (Meachler, 2018) 

was used to calculate the ISE. 

 

Results 

In Table 1 the results for data generated by using the Rasch model are displayed. The best 

performances for each effectiveness measure on each condition are bolded. The average 

performance shows that all the procedures produce very similar rank correlations with the 

true score. In terms of accuracy, as measured by the MAE, the CIRM is the best procedure, 

followed by the Rasch model, and by the OS-IRM procedure in the last place. In terms of 

properly recovering the density distribution of the true scores, measured with the ISE, the 

OS-IRM procedure performs the best, closely followed by the Rasch model, and by the 

CIRM. In terms of DIC, the OS-IRM is the model that loses the less information, followed by 

the Rasch model and then the CIRM. 

Evaluating the different sample sizes conditions, it is possible to see that the average 

pattern almost does not change. The rank correlations are similar in all conditions. The MAE 

follows the same patterns as the average performance. The ISE is best for the Rasch model 
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when sample size is equal to 100 and 250. When the sample size is large (500 cases), OS-

IRM has the best ISE, followed by the Rasch model, and then the CIRM. Measures of model 

fit are always smaller for OS-IRM, followed by the Rasch model and then the CIRM. On the 

other hand, when evaluating the test size (i.e., the number of variables), different patterns 

were found for both ISE and DIC. With 10 and 20 items, ISE was smaller for the Rasch 

model, followed by the OS-IRM and then the CIRM. With 50 items, the ISE was smaller for 

the OS-IRM, while the DIC was smaller for the Rasch model, followed by the CIRM and 

then the OS-IRM. Rank correlations and MAE have similar patterns as found before. 

Table 1 

Comparing accuracy, similarity with the true score distribution, and model fit of the three 

models (Rasch, CIRM and OS-IRM) for data generated by the Rasch model. 

   Rasch CIRM OS-IRM 

 Effectiveness measures  Average performance 

 Accuracy 1 (ρtrue score)  .862 .861 .861 

 Accuracy 2 (MAE)  .320 .064 1.496 

 Similarity distributions (ISE)  .250 1.279 .167 

 Model fit (DIC)  7,050.05 7,103.59 6,935.74 

Sample size      

  100 Accuracy 1 (ρtrue score)  .834 .831 .833 

 Accuracy 2 (MAE)  .322 .082 1.261 

 Similarity distributions (ISE)  .056 .511 .127 

 Model fit (DIC)  2,319.89 2,337.51 2,298.72 

  250 Accuracy 1 (ρtrue score)  .867 .869 .866 

 Accuracy 2 (MAE)  .332 .060 1.587 

 Similarity distributions (ISE)  .077 1.377 .110 

 Model fit (DIC)  7,036.94 7,091.88 6,931.86 

  500 Accuracy 1 (ρtrue score)  .856 .857 .857 

 Accuracy 2 (MAE)  .333 .055 1.469 

 Similarity distributions (ISE)  0,617 1,948 0,262 

 Model fit (DIC)  11,800.22 11,888.14 11,473.24 

Test size     

  10 Accuracy 1 (ρtrue score) .789 .788 .789 

 Accuracy 2 (MAE) .364 .089 1.015 

 Similarity distributions (ISE) .607 1.365 .189 

 Model fit (DIC) 2,540.43 2,554.13 2,351.10 

  20 Accuracy 1 (ρtrue score) .882 .879 .880 

 Accuracy 2 (MAE) .332 .058 1.491 
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 Similarity distributions (ISE) .079 .636 .167 

 Model fit (DIC) 6,058.37 6,130.63 5,929.21 

  50 Accuracy 1 (ρtrue score) .941 .942 .940 

 Accuracy 2 (MAE) .238 .042 2.150 

 Similarity distributions (ISE) .064 1.835 .144 

 Model fit (DIC) 12,544.46 12,619.23 12,630.29 

Note. ρtrue score = the Spearman correlation of the estimated scores with the true scores. MAE = mean absolute 

error. ISE = integrated squared error. DIC = deviance information criterion. 

  

In Table 2, the results for data generated by using the CIRM are displayed. The results 

are similar to those found when the true DGP was based on the Rasch model. Overall, the 

rank correlations are all similar between the three models, but substantially lower than the 

correlations found in Table 1. The second measure of accuracy, the mean absolute error 

(MAE) was always smaller for the CIRM meaning that the CIRM showed better accuracy. 

The dissimilarity of the score distribution with the true score distribution (TSD) as measured 

by the Integrate Square Error (ISE) was smaller for the OS-IRMT in most conditions, with 

exception for test sizes of 20 and 50 items and for a sample size equal to 100. In these cases, 

the ISE was smaller for the CIRM. The model misfit as measured by the Deviance 

Information Criterion (DIC) was less for OS-IRM in half of the conitions (sample sizes of 

100 and 250 and test size of 50 items), while in the other conditions the CIRM showed better 

model fit (sample size of 500 and test sizes of 10 and 20 items). 

 

Table 2 

Comparing accuracy, similarity with the true score distribution, and model fit of the three 

models (Rasch, CIRM and OS-IRM) for data generated by the CIRM. 

   Rasch CIRM OS-IRM 

 Effectiveness measures  Average performance 

 Accuracy 1 (ρtrue score)  .795 .794 .794 

 Accuracy 2 (MAE)  .352 .104 1.844 

 Similarity distributions (ISE)  1.045 .523 .297 

 Model fit (DIC)  7,338.65 7,258.84 7,241.78 

Sample size      

  100 Accuracy 1 (ρtrue score)  .767 .765 .765 

 Accuracy 2 (MAE)  .329 .104 1.518 
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 Similarity distributions (ISE)  .527 .147 .311 

 Model fit (DIC)  2,411.93 2,370.56 2,390.30 

  250 Accuracy 1 (ρtrue score)  .805 .803 .803 

 Accuracy 2 (MAE)  .369 .105 1.947 

 Similarity distributions (ISE)  1.018 .551 .278 

 Model fit (DIC)  7,344.34 7,271.23 7,273.01 

  500 Accuracy 1 (ρtrue score)  .779 .780 .781 

 Accuracy 2 (MAE)  .373 .109 1.784 

 Similarity distributions (ISE)  1.591 .870 .302 

 Model fit (DIC)  12,278.43 12,124.95 11,955.64 

Test size     

  10 Accuracy 1 (ρtrue score) .712 .710 .711 

 Accuracy 2 (MAE) .352 .114 1.117 

 Similarity distributions (ISE) 2.101 1.366 .204 

 Model fit (DIC) 2,653.93 2,567.32 2,449.54 

  20 Accuracy 1 (ρtrue score) .813 .811 .812 

 Accuracy 2 (MAE) .365 .107 1.735 

 Similarity distributions (ISE) .376 .137 .204 

 Model fit (DIC) 6,352.29 6,281.28 6,216.37 

  50 Accuracy 1 (ρtrue score) .896 .896 .894 

 Accuracy 2 (MAE) .325 .085 2.965 

 Similarity distributions (ISE) .659 .065 .483 

 Model fit (DIC) 12,991.01 12,937.71 13,165.84 

Note. ρtrue score = the Spearman correlation of the estimated scores with the true scores. MAE = mean absolute 

error. ISE = integrated squared error. DIC = deviance information criterion. 

  

In Table 3, the results of both conditions of data generation processes were averaged. 

Once more, the rank correlations are all similar. MAE was always smaller for the CIRM. ISE 

was always smaller for the OS-IRM. DIC was always smaller for the OS-IRM but when the 

test size was equal to 50, then the smallest value was due to the Rasch model. 
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Table 3 

Comparing accuracy, similarity with the true score distribution, and model fit of the three 

models (Rasch, CIRM and OS-IRM) for the average of data generated by both models. 

 

   Rasch CIRM OS-IRM 

 Effectiveness measures  Average performance 

 Accuracy 1 (ρtrue score)  .828 .828 .828 

 Accuracy 2 (MAE)  .336 .084 1.670 

 Similarity distributions (ISE)  .648 .901 .232 

 Model fit (DIC)  7,194.35 7,181.22 7,088.76 

Sample size      

  100 Accuracy 1 (ρtrue score)  .801 .798 .799 

 Accuracy 2 (MAE)  .326 .093 1.390 

 Similarity distributions (ISE)  .292 .329 .219 

 Model fit (DIC)  2,365.91 2,354.04 2,344.51 

  250 Accuracy 1 (ρtrue score)  .836 .836 .835 

 Accuracy 2 (MAE)  .351 .083 1.767 

 Similarity distributions (ISE)  .548 .964 .194 

 Model fit (DIC)  7,190.64 7,181.56 7,102.44 

  500 Accuracy 1 (ρtrue score)  .818 .819 .819 

 Accuracy 2 (MAE)  .353 .082 1.627 

 Similarity distributions (ISE)  1.104 1.409 .282 

 Model fit (DIC)  12,039.32 12,006.54 11,714.44 

Test size     

  10 Accuracy 1 (ρtrue score) .751 .749 .750 

 Accuracy 2 (MAE) .358 .102 1.066 

 Similarity distributions (ISE) 1.354 1.366 .197 

 Model fit (DIC) 2,597.18 2,560.73 2,400.32 

  20 Accuracy 1 (ρtrue score) .848 .845 .846 

 Accuracy 2 (MAE) .349 .083 1.613 

 Similarity distributions (ISE) .228 .387 .186 

 Model fit (DIC) 6,205.33 6,205.96 6,072.79 

  50 Accuracy 1 (ρtrue score) .919 .919 .917 

 Accuracy 2 (MAE) .282 .064 2.558 

 Similarity distributions (ISE) .362 .950 .314 

 Model fit (DIC) 12,767.73 12,778.47 12,898.06 

Note. ρtrue score = the Spearman correlation of the estimated scores with the true scores. MAE = mean absolute 

error. ISE = integrated squared error. DIC = deviance information criterion. 

 

Empirical example 

Aiming at illustrating the differences between the procedures, we used a sample of data of 

5,000 respondents from an administration of the Brazilian National High School Exam 
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(ENEM). The ENEM is a yearly national exam, non-mandatory, which both evaluates high 

school students in Brazil and can be used as an admission test for enrollment in Brazilian and 

Portuguese colleges. It consists of four subtests: languages; human sciences; natural sciences; 

and mathematics. Each subtest is analyzed separately and contains 45 items. In this example, 

we used the languages subtest of the ENEM. The languages subtest was chosen because it is 

less skewed and presents less outliers in its sum scores than the other three subtests. The 

distribution of the languages sum scores can be seen in Figure 3. 

 

Figure 3. The distribution of the sum scores of ENEM’s languages subtest. 

Respondents are scored on each subtest using expected a priori estimation (EAP; Bock 

& Aitkin, 1981) of latent trait scores of the three-parameter logistic model (Andriola, 2011). 

A test score is then calculated as a composite score of each subtest and is used in the 

selection process for higher education in Brazil and for some colleges in Portugal. Therefore, 

differences in the order, or ranking, of the respondents can result in different people having 

access to higher education. The ENEM scores on the languages’ subtest were compared to 

the sum scores using three different measures. First, the densities of the IRMs’ estimates 

were compared to the sum scores’ density using the ISE. Next, Kolmogorov-Smirnov d 

statistic was calculated for the distributions of scores estimated using sum scores and the 
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IRMs. The d statistic simply represents the largest distance (in absolute value) between the 

cumulative distribution functions of the target distribution (i.e., a normal distribution) and the 

distribution of the estimated scores. Finally, Spearman’s correlation was used to compare 

how similar the scores rank respondents, using the whole sample and the top 5% and 1% 

performers on the sum scores of the languages’ subtest. 

 

Results 

By evaluating the d statistic from Table 4 it becomes evident that the Rasch estimates are 

more normally distributed than the other estimates. Inspection of the Integrate Square Error 

(ISE) shows that the OS-IRM distribution was the most similar to the sum score distribution. 

Table 4 

Distributional properties of the estimated scores in terms of distance to a normal distribution 

(d) and difference from the sum score’s distribution (ISE). 

Measure Sum score ENEM Rasch CIRM OS-IRM 

d .516 .219 .518 .953 

ISE — .375 .124 .080 

 

 

The values of d and ISE can also be reflected by the densities represented in Figure 4. 

The OS-IRM has almost the same positively skewed distribution as the sum score’s. Rasch 

estimates closely follow a normal distribution and CIRM scores have a positively skewed 

distribution, with stronger asymmetry and a different peak when compared to the sum score 

and OS-IRM distributions.  
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Figure 4. Densities of the estimated scores. 

 

The Spearman correlations in Figure 5 show how similarly the different procedures 

rank the respondents. When the whole sample is used, all procedures gave almost the same 

ranking of participants, with the smaller Spearman correlation equals to .99. The rank 

correlations between the sum scores (SS) and the other procedures are virtually the same (due 

to rounding). The correlations between the CIRM (CM) and the other two IRMs decrease 

with the changes in the sample for the top 5% and top1% performers. The correlation 

between the Rasch model (RM) and the OS-IRM (OM) decreases when considering only the 

top 5% performers, but increases when considering only the top 1% performers. 

 



 73 

 
Whole sample Top 5% performers Top 1% performers 

Figure 5. Correlation between scores given the whole sample, the top 1% and the top 5% 

performers. 

Discussion 

The present study aimed at achieving three objectives: (1) to develop two new item response 

models (IRMs) that do not assume a normal distribution of the true scores; (2) to compare the 

effectiveness of these newly developed IRMs to the Rasch model using simulated data, and 

(3) to compare the practical equivalence of the three models using empirical data. The two 

developed models were named the Conditional Item Response Model (CIRM) and the 

Optimal Score Item Response Model (OS-IRM). The CIRM is a one parametric IRM for 

polytomous and binary items that assumes a beta-binomial distribution, and the OS-IRM is 

Bayesian implementation of the optimal score procedure. 

The overall results of the simulation study based on the mean absolute error (MAE) 

showed that the CIRM produced less biased scores of the true scores than the OS-IRM and 

the Rasch model. Compared to the Rasch model the OS-IRM yielded more biased 

estimations of the true scores. This result is probably due to setting the priors on the true 

scores in the OS-IRM procedure as a beta distribution based on the binomial score of the 

simulated respondents, while the Dirichlet Prior was only used to estimate the item response 

functions. This setting probably caused the estimation of true scores being less flexible in 

comparison with the tilted scaled beta distribution proposed by Ramsay and Wiberg (2017). 

The OS-IRM, however, almost always produced the best ISE—a measure of similarity with 
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the distribution of the true sore—, and the best DIC—a measure of model fit—especially 

when the conditions of data generation process were averaged. These results indicate that the 

OS-IRM is the procedure that better recovers the distribution of the true scores and better 

explains the variance of the observed scores. This is especially true as, when working with 

real data, we do not know what the true data generation process is. In terms of correlation, all 

the procedures were always quite similar. Finally, in terms of practical equivalence, all the 

procedures ranked the participants similarly, with the CIRM having the smallest correlation 

with the other procedures. 

On understanding the results, it is important to restate the fact, presented in Equation 9, 

that the CIRM can be considered just as an alternative form of the Rasch model. Establishing 

an interval of the scores bounded between 0 and 1, not only improves the interpretation of the 

scores, but also the statistical estimation of the parameters (Wiberg et al, 2019). However, 

there are limitations that must be taken into account, especially in relation to the 

implementation of the OS-IRM. The numbers of knots, for instance, were always equal to 10, 

increasing the complexity of the model when there were a larger number of items. Also, the 

Rademacher basis was proposed in the present study and its inferential properties need to be 

further evaluated (e.g., Claeskens, Krivobokova, & Opsomer, 2009). Setting the priors to be 

equal to the binomial scores allowed for using the beta distribution as the bounded 

distribution for estimating the true score with OS-IRM. On the other hand, however, the beta 

distribution has heavy tails biasing the scores to be closer to the average. More flexible 

distributions should be tested, such as the tilted scaled beta distribution (Ramsay & Wiberg, 

2017) or a truncated t distribution (Kim, 2008). 

Future studies should focus on how to extend the CIRM to more complex parametric 

models, similarly to how the Rasch model was extended to the family of logistic IRMs 

(Maris, & Bechger, 2009). Also, in the present study, we did not investigate how the c 
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parameter, which represents the probability of getting a correct response given that difficulty 

and true scores are equal, can influence model estimation and possible inferences from it. 

Therefore, future studies should be aimed on comparing how parametric extensions of the 

CIRM, and its nonparametric version, the OS-IRM, can improve over other traditional IRMs. 

Particularly regarding the CIRM, it can be simply considered as an alternative form of the 

Rasch model. But even without adding more parameters, the CIRM reduces the bias on the 

measurement of true scores when compared with the Rasch model. This can be interpreted as 

evidence that, for improving psychometrical measurement, it may be not necessary to use 

very complex models, but rather models with better mathematical properties. 
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Abstract 

This study presents situational optimization function analysis (SOFA) and has three aims. 

First, to develop a Bayesian implementation of SOFA. Second, to compare this 

implementation with three other Maximum Likelihood-based models in their accuracy to 

estimate true scores. The third aim is to show how joint modeling can be used for validity 

research. A simulation study was used to test the second aim, while an empirical example 

was used to illustrate the third aim. The simulation study used three data generating process, 

with varying degrees of deviation from linear models and with different sample sizes. Results 

of the simulation study showed that the Bayesian implementation supersedes the other 

models. In the empirical example, data collected on 63 participants using an iterated prisoner 

dilemma and a scale on cooperation-competition attitudes was used. Results showed that joint 

modeling is the best fitting model, also increasing the correlation between the true scores of 

both measures (deviations from the iterated prisoner dilemma and the scale). Implications, 

limitations and future studies are discussed. 

Key-words: Measurement; SOFA approach; Bayesian modeling; joint modeling.  
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An operationalization of Lewin’s Equation: 

The situational optimization function analysis 

Psychometrics is the field in psychology dedicated to theory and practice of measuring 

psychological constructs (Borsboom, 2005). For most measurement models, responses are 

considered to be a function of the effect of a dispositional trait and particular characteristics 

of the items used as stimuli in a test or questionnaire (McDonald, 1999). For models 

developed in the Item Response Theory framework (IRT; van der Linden & Hambleton, 

2013; De Ayala, 2009), respondents’ dispositional trait θ (i.e., intelligence, attitudes, beliefs, 

personality, and so on) has an additive interaction with items’ δ    to score responses in 

questionnaires and tests. In psychology, on the other hand, the existence of sources of data 

that are not suitable to be analyzed with an IRM is not uncommon (Eid & Diener, 2006).  

Psychometric models are generally applied to correlational data (van der Linden & 

Hambleton, 2013). A common justification for this is the fact that experimental manipulating 

of psychological variables is either very difficult, impossible or unethical (Meehl, 1967). 

However, alternatives have been proposed by cognitive psychologists, who developed a 

number of measurement models that rely on information gathered in experimental settings 

and theoretical models different from those derived from IRT (Farrell & Lewandowsky, 

2018; Lee & Wagenmakers, 2014). 

The present study has as its first and main aim to develop a Bayesian implementation of 

situational optimization function analysis (SOFA), a general modeling framework based on 

Lewin’s equation. The second aim is to compare the Bayesian implementation of SOFA with 

three other Maximum Likelihood-based approaches in its efficiency to estimate dispositional 

traits from simulated data. Finally, our third aim is to use real data to illustrate how construct 

validity analysis can be conducted in this framework by means of joint modeling (Turner et 

al, 2013). 
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Lewin’s equation: Disposition versus Situation 

From the field theory proposed by Lewin (1936), it is a somewhat agreed principle that a 

number of different and competing influences combine to result in a particular behavior 

expressed by individuals (Furr & Funder, in press). Stemming from this principle, two areas 

of research were developed: social psychology and personality psychology (McAdams, 

1997). While social psychology studies mainly situational causes of behavior, personality 

psychology seeks to identify dispositional traits that influence behavior. In practical terms of 

conducting research, traditionally, social psychology is rooted in experimental designs while 

personality psychology relies more on psychometrics (Furr & Funder, in press).  

Despite constituting seemingly different approaches, personality and social 

psychology are combined in several studies, as researchers in these areas understand that both 

are necessary for better explaining human behavior (Furr & Funder, in press). The 

complementarity of both approaches was stated long ago by Lewin’s (Lewin, 1936) equation, 

where behavior (B) is defined as a function of the person (P; the dispositional traits) and the 

environment (E; the situational variables): 

𝐵 = 𝑓(𝑃, 𝐸). (2) 

This equation, however, was presented only as a heuristic formula. This means that the 

function relating the person and the environment to behavior may vary on a case-by-case 

basis (Furr & Funder, in press). 

A general practical framework for Lewin’s equation can be proposed by combining 

experimental research design with latent variable mixture modeling (Muthén, 2001). Figure 1 

represents the fundamental problem faced by a social psychologist. In this case, one is 

interested in testing the effect of a situational variable E on the behavior B. The node Z 

represents all the other possible causes for both E and B, not directly measured in the study. 
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Therefore, Z represents both dispositional variables as well as other situational variables, less 

relevant for the study. 

 

Figure 1. Representation of the fundamental problem. 

This type of problem is a common, and somewhat simple, example studied in the 

causal inference literature (Pearl, 2000). It is a known fact that, to measure the effects of E on 

B for this type of problem, it is sufficient and necessary to control for E (Pearl, Glymour, & 

Jewell, 2016, p. 55). Controlling for E is a statistical term that can also be interpreted as 

experimentally manipulating E. The procedure of experimentally controlling for E causes the 

arrow between Z and E to disappear, meaning that both nodes are independent (Pearl, 2000). 

This is represented in Figure 2. To fully determine the SOFA framework, Z must then be 

decomposed into two mixture components: a stochastic error (v); and the dispositional trait 

(P). A mixture model represents the presence of subpopulations within a sample (Muthén, 

2001). In the present case, it more specifically represents the two subpopulations of effects of 

unobserved variables on behavior. The framework can then be represented by the following 

equation 

𝐵 = 𝑓(𝐸) + 𝐹(𝑣, 𝑃), (3) 

where F(·) is the mixture model relating both the effects of the stochastic error and of the 

dispositional variables on the behavior. 
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Figure 2. Representation of the SOFA framework. 

Assessing dispositions with Stochastic Frontier Analysis 

A similar reasoning as the one that originates Eq. 3 was previously employed in economic 

modeling (e.g., Aigner, Lovell, & Schmidt, 1977). One particular method, known as 

stochastic frontier analysis (SFA; Aigner et al, 1977), is already recognized as a robust 

analytical tool to assess the efficiency of firms. The SFA model can be thought as a conjoint 

measurement model (Luce & Tukey, 1964), as it simultaneously estimates a production 

function, as well as the efficiency of firms. A production function can be interpreted as a 

threshold of maximal possible production of outputs, given certain levels of inputs. 

Efficiency is the distance of particular firms to the production function. Firms above the 

production function are relatively efficient. Firms below the production function are 

relatively inefficient (i.e., produce less output than they should, considering the amount of 

inputs). However, measurement is considered to be imperfect and it can, therefore, with 

expectancy equals to zero, stochastically vary around the production function. 

The SFA model, with output y and input x, can be represented as 

𝑦 = 𝑓(𝑥; 𝛽) + 𝑣 − 𝑢, (4) 

where β is the regression coefficient for x, v is a stochastic component, similar to the error 

term in a regression model, and u is the non-negative inefficiency component. It is possible to 

see that Eq. 4 is simply a generic regression representation, where the error term is 
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decomposed in the additive effect v – u. For Eq. 4 to be identifiable, independence between x, 

v and u is assumed. It is also necessary to specify distributional assumptions of the error 

components (Greene 1990). For the stochastic component v, generally a normal distribution 

with a mean equaling 0 is used. For the inefficiency component, truncated normal, 

exponential, or gamma distributions are common choices. 

In terms of interpretation, when SFA is extended to SOFA, both assumptions 

(independence and error terms’ distributions) also lead to a reasonable model to implement. 

As illustrated in Figure 2, experimentally controlling for the situational variable, which 

corresponds to the x variable in Eq. 4, guarantees that, at least, both error terms are 

independent from the situational effect. This means that experimentally controlling for the 

situational variable is necessary for the interpretability of the model estimates. The mixture 

modeling procedure with a 0 mean normal distribution for the stochastic error and a non-

negative component for the dispositional variable is the same as stating that the “optimal” 

behavior is determined by situational contingencies. For instance, imagine a psychophysical 

research where the behavior is measured as the average number of errors and the situational 

variable is the ratio of noise over signal of a series of stimuli. In this case, the dispositional 

variable, which could be defined as the visual acuity, could not improve the behavior beyond 

the “optimal” frontier given by the situational contingencies. This is important to note as 

assuming different distributions for the dispositional variable change the interpretation of the 

process studied, as well as resulting in different challenges for model identification. In the 

present study, we are focusing only on the more traditional implementation of the SFA, 

where dispositional variables are assumed to follow a non-negative distribution (i.e., all 

values are below the regression function). 

In terms of application, Eq. 4 can be extended for different types of SFA models. 

Traditional linear and log-linear are likely to be the most commonly used SFA models 
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(Griffin & Steel, 2007). Nevertheless, semi- and nonparametric estimation techniques (Fan, 

Li, & Weersink, 1996), as well as time-varying inefficiency techniques (Cornwell, Schmidt, 

& Sickles, 1990; Kumbhakar, 1990) have been considered. In the present study, we focus 

exclusively on semiparametric models. The reason for this is twofold. First, because linear 

models are the default in many analyses used in psychology and, therefore, non-linear and 

non-monotonic relations are usually overlooked (Beller & Baier, 2013). The second reason is 

that even in traditional IRT literature, some authors have defended that semi- and 

nonparametric should become the default analyses instead of the more used parametric 

models, or at least as initial diagnosing tools (e.g., Ramsay, 1991; Sijtsma & van der Ark, 

2017). 

Fitting an SFA model 

In the implementation process of a semiparametric SFA model, it is common to use a two-

step approach, as first proposed by Fan et al (1996). In the first step, a semiparametric or 

nonparametric regression technique is used to estimate the conditional expectation. Previous 

studies (Ferrara & Vidoli, 2017) applied general additive models (GAMs), kernel, and locally 

estimated scatterplot smoothing regression (Loess) techniques for estimating this first step. In 

the second step the stochastic error and the inefficiencies are estimated by maximizing a 

pseudo-likelihood function (Fan et al, 1996). Figure 3 represents this approach, where the 

figure to the left represents the result after applying the first step and the figure to the right 

represents the frontier (line) estimated after the second step. 
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Figure 3. Two step approach for estimating semiparametric SFA models. 

In the present study, we developed a Bayesian semiparametric SFA model, following 

similar approaches as did Griffin and Steel (2004) and Tsionas and Mallick (2019). The 

model starts with observed values of continuous experimental manipulations xj and observed 

values of continuous behavioral responses yj. The values of the experimental manipulations 

are then transformed using B-spline like basis. To do so, k knots are defined using the range 

of possible values of xj, resulting in values mk for each knot. These knots are subtracted from 

xj exponentiated to ϕ0k + 1, with this difference divided by the standard deviation of x, σx. The 

k knots are weighted by their regression coefficients βk and summed over, as well as with the 

intercept, β0, and the estimate of the dispositional trait, uj. This sum represents the expected 

average response, µyi, for the yj response, with an error equaling v. 

In terms of distributions, yj is assumed to follow a normal distribution with mean µyi 

and standard deviation v, which is assumed a priori to come from a gamma distribution with 

shape and rate equals to .001. The dispositional trait u is assumed to follow an exponential 

distribution with rate parameter equals to λ, which a priori follows a gamma distribution with 

shape and rate equals to .001. The intercept of the regression model is assumed a priori to 

come from a normal distribution with mean 0 and standard deviation 1. The regression 

coefficients are assumed a priori to come from a Laplace distribution with mean 0 and scale 

1. This Laplace prior was used since it can be considered as a Bayesian implementation of the 
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LASSO regression (Park & Casella, 2008). The exponent for the basis, ϕ0k, is drawn from a 

binomial distribution with bias equals to ζ and maximum possible degree equals to p. The 

bias is draw from a beta 1-1 distribution, while p is set by the researcher. Traditional B-spline 

commonly fixes the exponent for the basis to be equal to 3 (De Boor, 1972; Eilers & Marx, 

1996). In our Bayesian approach, the model seeks to estimate what should be the best 

exponent for the given data. As we use both a B-spline like basis and the Laplace prior for the 

regression coefficients, our Bayesian model can be considered to be a combined 

GAM/LASSO regression, with an adaptive step for the basis’ exponent. 

The Bayesian model in our SOFA approach is shown in the net representation in Figure 

4, following Lee’s (2008) graphical standards. The observed variables are represented by 

shaded nodes and the unobserved variables are represented by unshaded nodes. Discrete 

variables are represented by square nodes, while continuous variables are represented by 

circular nodes. Stochastic variables are represented by single-bordered nodes, and 

deterministic variables are represented by double-bordered nodes. Finally, encompassing 

plates are used to denote independent replications of the graph structure within the model. 

 

Figure 4. Bayesian implementation of a situational optimization function analysis (SOFA) 
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Construct validity by joint modeling 

A relevant matter in psychometric research is how to demonstrate that a given psychometric 

tool is really measuring what it aims to measure; this is known as validity research 

(Borsboom, Mellenbergh, & van Heerden, 2004; Cronbach & Meehl, 1955). In traditional 

psychometrics, the content of test items and the correlations between tests with similar 

content and aim are known as content validity and convergent validity, respectively 

(Messick, 1989). In the SOFA approach, in terms of content, there is little general 

interpretation one can give to a specific experimentally controlled situation. For instance, if 

an experimental setting of a game favors competition over cooperation, then it is reasonable 

to assume that individuals who cooperate more have some dispositional trait that leads them 

to behave against the situational pressure (e.g., Goto, 1996). Nevertheless, what exactly is 

this dispositional trait? Answering this question is the aim of validity research on the SOFA 

approach, as well as in traditional psychometric approach. 

One possible alternative for assessing validity in this context would be to use joint 

modeling (Turner et al, 2013). Joining different types of modeling in a single hierarchical 

framework allows for data with different sources to influence each other parameters. Turner 

et al (2013) used joint modeling for constraining parameters of a model from behavioral data 

from a neuroimaging model. In the present application, the idea is to combine both the SOFA 

approach with traditional psychometrics. For instance, the data from a questionnaire could be 

modeled by a two-parameter logistic item response model (2PLM; Swaminathan & Gifford, 

1985) and the data from the experiment could be modeled by our Bayesian implementation. 

Then, estimates of the dispositional traits from both models could be correlated, as it is 

similarly done in traditional psychometric analysis of convergent validity (Carlson & 

Herdman, 2012). 
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In traditional psychometric analysis, convergent validity can be explored best using 

structural equation modeling (Raines-Eudy, 2000). This approach is normally preferred over 

using correction for attenuation of correlating scores estimated from two different tests or 

questionnaires (Osborn, 2003). This is so as structural equation modeling has a natural 

correction for the measurement error, giving more reliable estimates of the correlations and 

factor loadings (Bagozzi, 1981). In this sense, joint modeling can be thought of an extension 

of structural equation modeling, but applying different measurement models than the factor 

analysis model commonly assumes in this context (Pilati & Laros, 2007). This allows for 

much more complex types of models and theories to be estimated and tested. 

Turner et al (2013) proposed using the multivariate normal distribution to joint 

modeling parameters of interest. This approach needs no additional modifications if each 

parameter is indeed better described by a normal distribution. In the present application, if 

questionnaire/test data are to be used to be joint modeled with our Bayesian SOFA model, 

then the normal distribution fits well this type of data and model (i.e., the 2PLM). For the 

Bayesian SOFA model, however, the dispositional trait is better modeled using a non-

negative distribution; we proposed the use of the exponential distribution. To avoid this 

limitation, one can use what is called copula dependence (Genest & MacKay, 1986). A 

copula is a multivariate cumulative distribution function (CDF). Cumulative distribution 

functions are always uniformly distributed and, therefore, the marginals of a copula can be 

modeled using a uniform distribution (Embrechts & Hofert, 2013). From this fact, any type of 

dependence between continuous variables can be modeled using copulas and then be 

converted to the appropriate distribution using its marginals (Colonius, 2016). One easy way 

for fitting copulas is to use the multivariate normal distribution to draw random values for the 

variables or parameters of interest, calculate the marginals’ CDFs and then apply the quantile 
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function to convert the values to the most appropriate targeted distribution for each variable 

or parameter (Meyer, 2013). 

 

Simulation study 

Method 

Simulated data were created by manipulating the sample sizes (100, 250 or 500 data points) 

for 100 iterations. These data points were generated using one of these three functions 

(quadratic function, power function and a trigonometric function, respectively) or data 

generating processes (DGPs): 

𝑦 = −𝑥2 + 𝑥 + 𝑣 + 𝑢; (5) 

𝑦 = 1.5𝑥 + 𝑣 + 𝑢; (6) 

𝑦 = 𝑥sin(𝜋𝑥) + 𝑥cos(𝜋𝑥) + 𝑣 + 𝑢. (7) 

The variables x, v and u were drawn from a multivariate normal distribution with mean zero, 

variances equal to 1 and covariances equal to 0. This was done to guarantee that these values 

would be uncorrelated, as assumed by the SFA and SOFA models. Copula CDF 

transformation was used to convert the distribution of the dispositional trait, u, to a 

standardized truncated normal distribution, with lower bound equals to 0. Equations 5, 6 and 

7, with v and u excluded, are represented from left to right in Figure 5. 

 

Figure 5. DGPs’ functions used for testing the models’ performance. 
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 The simulated data were analyzed with four models: GAM-SFA; Kernel-SFA; Loess-

SFA; and Bayesian-SOFA. To compare the performance of the models, three measures of 

accuracy were used. The first measure was the Spearman correlation between the true values 

of u and its estimated values. This measure was used since it is expected that the latent 

variables and their estimates are monotonic related (Junker & Sijtsma, 2000). The next two 

measures used were the mean absolute error (MAE) and the root-mean squared error (RMSE) 

between the true values of u and their estimated values. When the values of MAE and RMSE 

are larger than zero and equal, it means that the bias is equal in all u’s of the scale. If the bias 

is larger for some values of u in comparison to others, then RMSE will be larger than MAE. 

The most effective model will be the one with correlations closest to 1, and MAE and RMSE 

the most similar and closest to 0. 

All the simulations and data analyses were conducted using the R software (R Core 

Team, 2019) and are available from the corresponding author upon request. To fit the GAM-

SFA, the Kernel-SFA and the Loess-SFA the semsfa package was used (Ferrara & Vidoli, 

2018). To fit the Bayesian-SOFA, the model was implemented using the JAGS language and 

software (Plummer, 2003), interfacing with R by means of the jagsUI package (Kellner, 

2019). We used the gam function from the mgcv package (Wood, 2012) to estimate the 

residuals of the additive regressions used to measure the error of the bias. 

 

Results 

We first compare the overall performance of all the methods, displayed in Table 1. Per 

column, the best performances are in bold. Table 1 shows that Bayesian-SOFA and Kernel-

SFA models have the same level of correlations with the true scores, followed by the GAM-

SFA and the Loess-SFA model. In terms of the mean absolute error (MAE), the Bayesian-

SOFA model has the smallest value, followed by the Kernel-SFA model. The GAM-SFA  
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and the Loess-SFA model have very similar values of MAE. In terms of the root-mean 

squared error (RMSE), the same pattern found with MAE is followed. 

Table 1 

Overall performances of each method, measured by Spearman correlations, MAE and RMSE. 

 

Method Correlation MAE RMSE 

General Additive Models (GAM-SFA) .915 .875 1.107 

Kernel smoothing (Kernel-SFA) .924 .843 1.063 

Locally estimated scatterplot smoothing (Loess-SFA) .911 .876 1.109 

Bayesian Implementation (Bayesian-SOFA)  .924 .474 .647 

Note. MAE = mean absolute error. RMSE = root mean-squared error. 

 

The effect of sample size on the accuracy of the models can be observed in Table 2. 

This time, bolded numbers are used to evaluate the effect of sample size within each method. 

For the three frequentist methods (GAM, Kernel and Loess), the same pattern was found: 

Spearman correlations with the true scores increase as the sample size increase. MAE and 

RMSE, however, are best with a medium sample size (250 data points) than when compared 

with the large sample size (500 data points). For the Bayesian model, it is possible to see that 

increasing the sample size improves over all the accuracy measures. 

Table 2 

Performances of each method, measured by Spearman correlations, MAE and RMSE, compared by sample size. 

Method Sample size Correlation MAE RMSE 

General Additive Models 

(GAM-SFA) 

100 .857 1.036 1.299 

250 .933 .786 .994 

500 .954 .804 1.030 

Kernel smoothing (Kernel-SFA) 

100 .884 .931 1.147 

250 .933 .785 .992 

500 .954 .813 1.050 

Locally estimated scatterplot 

smoothing (Loess-SFA) 

100 .854 1.000 1.240 

250 .929 .805 1.023 

500 .952 .824 1.064 

Bayesian Implementation 

(Bayesian-SOFA)  

100 .892 .451 .594 

250 .929 .513 .705 

500 .950 .457 .643 

Note. MAE = mean absolute error. RMSE = root mean-squared error. 
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 The effect of the data generating process (DGP) on the accuracy of the models can be 

observed in Table 3. As was the case in Table 2, bolded numbers are used to evaluate the 

effect of the conditions (in this case, DGP) within each method. This time, the same pattern 

was observed for all the methods: Spearman correlations, MAE and RMSE, were best for the 

monotonic condition (Eq 6), followed by the quadratic condition (Eq 5), and worse for the 

trigonometric function. 

Table 3 

Performances of each method, measured by Spearman correlations, MAE and RMSE, compared by DGP. 

 

Method DGP Correlation MAE RMSE 

General Additive Models 

(GAM-SFA) 

Equation  5 .914 .878 1.113 

Equation 6 .927 .809 1.005 

Equation 7 .902 .939 1.205 

Kernel smoothing 

(Kernel-SFA) 

Equation  5 .927 .826 1.041 

Equation 6 .932 .791 .985 

Equation 7 .912 .913 1.163 

Locally estimated 

scatterplot smoothing 

(Loess-SFA) 

Equation  5 .919 .842 1.061 

Equation 6 .920 .840 1.052 

Equation 7 .894 .949 1.223 

Bayesian Implementation 

(Bayesian-SOFA)  

Equation  5 .927 .500 .695 

Equation 6 .941 .298 .399 

Equation 7 .903 .623 .847 

Note. MAE = mean absolute error. RMSE = root mean-squared error. 
 

Empirical example  

For illustration purposes, the present empirical example is using the data of a study that was 

carried out to measure cooperation/competition dispositions. In experimental social 

psychology, social dilemmas are games used to evaluate how people choose and are 

influenced by the context to behave in a particular manner (Van Lange, Joireman, Parks, & 

Van Dijk, 2013). One of the most famous games is the iterative prisoner dilemma. This game 
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was chosen as the optimal behavior is to always compete. Therefore, there is a clear expected 

effect of the situation that can be modeled by the SOFA approach. 

 

Method 

Participants. Data from 63 participants, with an average age of 22.7 years and 50.8% 

of them woman, were collected. No other sociodemographic data were collected. 

Instruments. Two instruments were used: an iterative prisoner dilemma’s game, and 

the cooperation-competition scale (Coop-Comp Scale; Teixeira, Iglesias, & Castro, 2010). In 

the iterative prisoner dilemma two individuals decide to compete or to cooperate in 10 

rounds. For the present implementation, the second player was a simulated participant. The 

probability of choosing between cooperation or competition was drawn from a standard 

uniform distribution. The behavior of the simulated player was the experimental condition. 

The Coop-Comp Scale is composed by 11 phrases to which the participants have to indicate 

to what extent they agree, ranging from 1(totally disagree) to 5 (totally agree). Competition-

related items were inversed so higher scores in all items represented a more cooperative 

attitude. 

Procedures. All the participants were invited from mailing lists and social networks’ 

groups of large universities. The study started with a brief explanation on its objectives, as 

well as a declaration of intention of the participant to really participate in the study. After 

declaring being interested in participating, the participant had to read a brief description of 

the iterative prisoner dilemma and to start the game. The game existed of 10 rounds: after 

each round the participant had to choose between cooperating or competing. After finishing 

the game, the participant responded the Coop-Comp Scale and finally answered the 

sociodemographic questions.  
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Data analysis. For initial steps of data cleansing, we kept only participants who 

responded all the questions and also excluded individuals with a biased response pattern on 

the Coop-Comp scale (e.g., responding everything with 1). A second step of cleaning was to 

reverse negative items and apply item factor analysis (Wirth & Edwards, 2007). This analysis 

showed that only item 11 from the Coop-Comp Scale had a factor loading below .30 and, 

therefore, it was deleted from the rest of the analyses. After the process of data cleansing, we 

used the joint modeling approach. Data from the cooperation-competition scale was modeled 

using a Bayesian 2PLM, with discriminations constrained to be positive. Data from the 

iterative prisoner dilemma’s game was modeled with the Bayesian-SOFA approach, with 

higher values of dispositional trait representing the tendency to compete. We used four 

different analyses for assessing the quality of the scale. First, we estimated the parameters of 

the Bayesian-SOFA model and of the 2PLM separately. Then, the aptitude estimate of the 

2PLM was correlated with the dispositional estimate of the Bayesian-SOFA model. For the 

second model, both models were modeled jointly, with a multivariate normal copula used for 

coupling the aptitude estimates of both the 2PLM and the Bayesian-SOFA model. The last 

two analyses were conducted forcing the estimates to be completely uncorrelated and 

perfectly correlated, respectively.  

Five fit indices were used to compare the analyses. The fit index was the correlation, 

and the corresponding highest density intervals, between the estimate made with the 2PLM 

and the estimate made with the SOFA Bayesian model. Then, the deviance information 

criterion (DIC; Spiegelhalter, Best, Carlin, & Linde, 2014) was used to measure to quality of 

the fit of the joint models; smaller values are best. We also used a similar procedure as the 

one proposed by Lewandowsky and Farrell (2010) to calculate the DIC difference, likelihood 

ratio (LR) and weight (w) of the models. The DIC difference represents how many units the 

compared model is larger than the best model; closer to 0 is better. The LR represents how 
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many times the compared model is as good as the best model; closer to 1 is better. Finally, w 

is the posterior probability of the models; values closer to 1 are better than values closer to 0. 

 

Results 

The results from the empirical example are presented in Table 4. The negative correlations 

found in the first two models, which allowed the correlation to be freely estimated, show that 

both measurements give similar results. Higher scores in the coop-comp scale characterize a 

person with more cooperative attitudes, while scores closer to 1 in the Bayesian SOFA model 

characterize someone with a competitive disposition. Nevertheless, the results show that the 

joint model has a stronger estimate when compared to the correlations made with separately 

estimated parameters. The strong negative correlation in the joint model (–.85 [–.99, –.53]) 

indicates that the coop-comp attitudes is what makes people choose not to compete in a 

competitive inducing situation, in a similar fashion to traditional convergence validity. 

 It is also possible to see that the model that best fits the data, according to the 

deviance information criterion (DIC), is the joint modeling of coop-comp scale and the 

SOFA approach (1,558.93). Evaluating the LR, it is possible to see that even that second best 

model is considerably worse (5.77E–11) than the joint model. The w shows that the joint 

model is almost the exclusive model in the capacity of explaining the data at hand, with a 

probability basically equals to 1. Therefore, the models that forces no correlation and perfect 

correlation between the dispositional estimates of the coop-comp scale and the iterative 

prisoner dilemma do not provide a relatively good fit to data, when compared with the joint 

model. 

Table 4 

Different procedures for estimating construct validity. 

 Correlation DIC ΔDIC LR w 

Separately estimated –.44 [–.65, –.20] - - - - 

Joint modeling –.85 [–.99, –.53] 1,558.93 0 1.000 1.000 
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No correlation 0 1,606.08 47.15 5.77E–11 5.77E–11 

Perfect correlation 1 1,622.63 63.70 1.47E–14 1.47E–14 

Notes. DIC = deviance information criterion. ΔDIC = variation of DIC. LR = likelihood ratio. w = posterior 

probability of the models. 

 

Discussion 

The present study had three aims: (1) to develop a Bayesian implementation of situational 

optimization function analysis (SOFA); (2) compare the Bayesian implementation of SOFA 

with three other Maximum Likelihood-based approaches; and (3) use real data to illustrate 

how construct validity can be conducted in the SOFA framework using joint modelling. We 

showed that the SOFA framework, at least in the current Bayesian implementation, is ideal 

for situations where an expected optimal or ideal behavior is expected, given situational 

contingencies. Research paradigms such as the ideal observer (Kuss, Jäkel, & Wichmann, 

2005) or games with Nash equilibrium (Kalai & Lehrer, 1993) are good examples of possible 

designs where SOFA can be used to test hypotheses. 

The results of our simulation study indicate that the Bayesian implementation of the 

SOFA approach can outperform more traditional Maximum-Likelihood based SFA models in 

terms of mean absolute error (MAE) and root-mean squared error (RMSE) between the true 

scores and their estimated values. It has to be acknowledged, however, that the correlation 

between the true scores and their estimated values are quite similar. Because MAE does not 

increase with the variance of bias but RMSE does (Willmott & Matsuura, 2005), our results 

allow to conclude that more extreme values of the dispositional trait are especially biased 

when estimated with the Maximum-Likelihood based models. The better performance by the 

Bayesian implementation of the SOFA framework is probably due to the adaptive 

GAM/LASSO regression characteristic of the non-parametric regression in the model. 

Nevertheless, caution should be taken in the sense that the great degree of flexibility of the 

adaptive GAM/LASSO regression can lead to overfitting (Wood, 2004).  
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From our empirical example, we have two major outcomes. First that, as in traditional 

structural equation modeling, the joint modeling of two measurement models increase the 

correlation between the latent variables, due to the correction for attenuation of the 

correlations (Bagozzi, 1981; Osborne, 2003). The second outcome may be of special interest 

to researchers in social dilemmas, as our results present evidence for a strong effect of 

cooperation-competition attitudes behavior. Of course, our study was only an empirical 

example and did not test possible correlations with time perspective and values (Milfont & 

Gouveia, 2006), social norms (Thøgersen, 2008), conversation (Sally, 1995), or other factors 

important for the study of cooperation-competition behaviors in social dilemmas. 

Nevertheless, our model and results allow to review hypotheses in this area from a new 

perspective. 

Despite the positive results of our study, one major limitation should be pointed out. 

This limitation is the fact that, for identifiability reasons, all models tested in the present 

study assume that the dispositional trait can only have positive values. In other words, it can 

only explain deviations below the estimated trend function, while deviations above the trend 

function are considered to be stochastic errors. If only situations with optimal behavior are 

taken into account, this can be considered as a reasonable assumption. However, researchers 

are interested not only in studies where an optimal behavior can be clearly defined. Using 

combined moving average and Gaussian mixture models may be a way of surmounting this 

limitation (e.g., Yu, Chen, Mori, & Rashid, 2013). 

As a final note, it is important to explicitly locate the SOFA approach in the 

psychometric literature. The success of the factor analytical and item response paradigms 

(Rust & Golombok, 2014) are related to their easiness of understanding and generality of 

application. For instance, exploratory factor analysis is widely used for validation research on 

any type of data form a questionnaire or test, no matter if it is an intelligence or a personality 
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test, for instance (Thompson & Daniel, 1996). This can be seen as both a weakness and a 

strength of the factor analytical procedure, as it is a consequence of a lack of theoretical 

assumptions on the underlying psychological process (Sijtsma, 2012). The SOFA approach is 

also pretty atheoretical. Nevertheless, because models developed from it need to be applied to 

experimental data, more objective interpretations and straightforward tests of theories are 

easier to make. 
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Abstract 

Structural equation modeling is a psychometric analysis technique relying on the presence of 

a previous latent variable model (measurement model) and a causal model (structural model). 

In network psychometrics, such as partial correlation network, no latent variable model or 

pre-specified causal model are necessary. Nevertheless, current procedures analyzing the 

structure of multidimensional data with both causal and non-causal relations cannot properly 

deal with complex data patterns encountered in the field of psychology. The main aim of the 

present study is to develop a procedure of structure learning of power chain graphs (PCGs). 

The secondary aim of the study is to compare clustering algorithms and causal discovering 

algorithms designed to learn the structure of the PCGs. This comparison of algorithms is 

carried out with simulated and with real data. In a number of conditions, we show that our 

clustering procedure outperform traditional clustering procedures used in psychometrics. The 

paper ends with a discussion in which practical implications of this study are reviewed and 

suggestions for future studies are given. 

Keywords: Psychometrics, network modeling, power chain graph, Monte Carlo simulation.  
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A Structure Learning Procedure for Power Chain Graphs 

Structural equation modeling (SEM; Mair, 2018) is frequently used in psychometrical 

research as an analytical tool to evaluate criterion validity or the causal and predictive 

relations between two or more latent variables. SEM relies on previous knowledge on both 

the measurement and the structural model; therefore, it is seldom used as a causal model in 

exploratory research (Fried & Cramer, 2017; Hevey, 2018). The interest in probabilistic 

graph models, that can be considered as an alternative to SEM, is growing in psychology 

(Epskamp, Borsboom, & Fried, 2018; Epskamp, Rhemtulla, & Borsboom, 2017). The 

advantage of probabilistic graph models is that they can be used to study data dependencies 

without relying on latent variables and a previous theoretical structure. There are at least 

three types of probabilistic graphical models: undirected graphs (UGs); directed acyclic 

graphs (DAGs); and chain graphs (CGs; Lauritzen, 1996). 

UGs are graphical representations of multivariate data with associational relations, 

usually measured by correlations or partial correlations between variables (Epskamp & Fried, 

2018). Each variable is represented by a node and each relation is represented by an edge: —. 

DAGs are used when the intent is to represent multivariate data with causal relations, usually 

measured by regression coefficients (Pearl, 2009). In DAGs, relations are represented by 

arrows: ← or →. Finally, CGs are used when representing multivariate data in which both 

associational and causal relations are present (Peña, 2018). Due to recent developments on 

the study of statistical dependence and graph theory (e.g., Koller, Friedman, & Bach, 2009; 

Lauritzen, 1996; Pearl, 2009), several procedures for automatically learning the structure of 

graphs have been proposed and some procedures exist for reducing high dimensional graphs 

(i.e., graphs with a very high number of variables). 

Power graphs (PGs; Royer, Reimann, Andreopoulos, & Schroeder, 2008), as 

represented in Figure 1, can be used to reduce high dimensional UGs. This is accomplished 
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by extending the notion of nodes and edges to that of power nodes and power edges, 

respectively. Power nodes are sets of similar nodes, where similar means that variables are 

highly correlated and that these variables correlate to the same other variables. Power edges 

are edges used to connect two power nodes, implying that all nodes contained in the first 

power node are connected to all the nodes contained in the second power node. Royer et al 

(2008) proposed an algorithm of structure learning for PGs that first find potential power 

nodes and then maximizes the number of power edges over normal edges. 

 

Figure 1. An example of a power graph. 

 

For graphs with causal relations, we are not aware of any other study that has tried to 

find directed edges on PGs, despite the fact that there are other studies proposing structure 

learning procedures for CGs (e.g., Drton & Perlman, 2008; Ma, Xie, & Geng, 2008; Peña, 

Sonntag, & Nielsen, 2014). These procedures for structure learning procedures, nevertheless, 

do not apply in the present case once they rely on labeled block ordering (Roverato & Rocca, 

2006), permitting directed edges within blocks, or not incorporating the community detection 

step. Therefore, combining both CGs and power graphs, we propose power chain graphs 

(PCGs) for this end. The main aim of the present study is to develop a procedure of structure 
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learning of PCGs. The secondary aim of the study is to compare clustering algorithms and 

causal discovering algorithms that can be used for learning the structure of the PCGs.  

The rest of this paper is structured as follows. In the first section, probabilistic graph 

theory is presented, focusing on characteristics of PGs and CGs. We then present the formal 

definition of PCGs and a procedure for learning its structure. Next, we present two clustering 

procedures traditionally used in psychology, which are used in the present study as 

benchmarks for the proposed procedure. The fourth section is presenting the theory behind 

algorithms that aim to find causal relations in observational data, and ways to tune our 

procedure further for the causal relations in the data. The fifth and the sixth sections are 

dedicated to simulation studies and examples with real data, respectively. The paper ends 

with a discussion and some concluding remarks. 

 

Probabilistic graph theory, PGs and CGs 

A probabilistic graphical model (Koller, Friedman, & Bach, 2009) is a graphical 

representation of a set of distributions that satisfies a set of conditional independence 

relations. Probabilistic graphical models are composed of vertexes (V), or nodes, and at least 

one type of connection between the vertexes: edges (E) or arrows (A). When data are high 

dimensional, the graph G(V, E) can be simplified as a power graph P(V’, E’), where the 

vertexes V are summarized as power vertexes V’, using cluster or network motif analysis, and 

the edges E are summarized as power edges E’ (Royer et al, 2008). For an adequate transition 

from G(V, E) to P(V’, E’), two conditions should be met. First, the power node hierarchy 

condition, which establishes that any two power nodes are either disjoint, or one is included 

in the other. The second is the power edge disjointness condition, which states that each edge 

of the original graph is represented by one and only one power edge (Nenov & Nikolov, 

2015). 



 112 

Groupings in psychological instruments are sometimes interpreted as evidence of a 

common latent cause (Bagozzi, 2007; Golino & Epskamp, 2017). Nevertheless, Lauritzen 

and Richardson (2002) used a simple example to show that, when arrows are also present in a 

graph, edges should only be interpreted as associational relations. For representing this type 

of structure, CGs, defined as G(V, B), where B represents a set of both edges and arrows, 

should be preferred in a number of cases. For illustration of this point, at the top of Figure 2 

we present an observed CG, with the following factorization of the joint density of variables 

a, b, c, and d: 

𝑎⟂𝑏,      𝑎⟂𝑑|{𝑏, 𝑐},       𝑏⟂𝑐|{𝑎, 𝑑}. 
(1) 

 

Figure 2. A CG (top) and three different DAGs that have different factorizations. 

 

The DAGs on the bottom, despite being usually used to interpret the undirected edge 

on the CG, will not attain the same conditional distribution, being the joint density of DAG1, 

DAG2, and DAG3 represented by, respectively  

𝑎⟂{𝑏, 𝑑},      𝑏⟂|{𝑎, 𝑐},     𝑎⟂/  𝑑|{𝑏, 𝑐},       𝑏⟂/  𝑐|{𝑎, 𝑑}, (2) 

𝑎⟂𝑑|{𝑏, 𝑐},       𝑏⟂𝑐|{𝑎, 𝑑},      𝑎⟂/  𝑏, (3) 
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𝑎⟂𝑏,      𝑎⟂𝑏|{𝑐, 𝑑},       𝑎⟂/  𝑑|{𝑏, 𝑐},       𝑏 ⟂/  𝑐|{𝑎, 𝑑}. (4) 

This shows that CGs are used when correlations are better thought just as correlations, 

instead of data with common latent causes (DAG1) or common latent effects (DAG2). These 

interpretations are very commonly used in psychology, usually named as reflexive and 

formative models of measurement (Howell, Breivik, & Wilcox, 2007).  

When structure is high dimensional, CGs will be divided in a path of blocks of 

variables, known as dependence chains (Wermuth & Lauritzen, 1990). Dependence chains 

are used to illustrate and properly condition causal effects in CGs because, within blocks, 

variables have edges, but between blocks there are arrows. Usually, if groups of variables are 

all predictors of other group of variables, they are considered to be part of the same block, 

even if the block is a disconnected graph—when there is not a path between every pair of 

vertices. If instead we define the blocks by clusters of variables, and if it is possible to test or 

assume the disjointness condition (i.e., to find arrows between blocks), then we have a 

special type of CG, which we call a PCG, as illustrated in Figure 3. Despite the fact that the 

factorization of both the CG and the PCG in Figure 3 are identical, the PCG representation 

allows further inference about the clustering process of the predictor variables and the causal 

chains as a whole. 

 

Figure 3. Comparison between dependencies represented with PG, CG and PCG. 
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Power chain graphs (PCGs) 

Combining PGs and CGs, we define power chain graphs (PCGs) as P(V’, A’), which is a 

DAG mapping to G(V, B). V’ represents a set of sets which elements are nodes of similar 

nodes, or power vertexes, and A’ represents an arrow set which elements are arrows between 

V’s, or power arrows. Similarity between two nodes vi and vj is defined as a high correlation 

ρi,j between these nodes and that 𝜌𝑖,𝑘 ≈ 𝜌𝑗,𝑘, meaning that the correlations of vi and vj with a 

third node vk are approximately equal. Therefore, V’ is but a cluster of variables. In Figure 4 

we present an example of a PCG and the CG implied by it. 

 

Figure 4. An example of PCG (to the left) and the CG (to the right) implied by it, with different colors for nodes 

representing different clusters. 

 

It is possible to see that PCG is a DAG, where nodes are clusters of similar variables 

and the arrows represent a set of arrows. This means that PCGs assume strong connectivity, 

meaning that every vertex in a “cause” power vertex (clusters 1 and 3; V’1 and V’3) have an 

arrow directed to an “effect” power vertex (cluster 2; V’2). This characteristic implies that, 

for learning the causal structure of a PCG, we do not account for interference effects (Peña, 

2018). Interference effects happen when a cause has effects on units other than those to 

which it has an arrow to. For this “default” PCG, which has no missing arrows between 

causes and effects, the distinction between the proper causal properties is of a secondary 
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matter. Therefore, we propose that learning PCGs as a two-step approach: first, the clustering 

of variables is applied; then the directions of the arrows between the clusters are learned.  

The clustering procedure we propose departs both from our definition of similar nodes 

and from the fact proved by Rao (1979) that correlations estimated by maximum likelihood 

from the same sample are asymptotically distributed as multivariate normal with appropriate 

mean and dispersion matrix. Using model-based clustering parameterized with finite 

Gaussian mixture models we can properly find the number of variables’ clusters of similar 

nodes departing from the correlation matrix of the data. In our application of model-based 

clustering, or correlation Gaussian mixture models (CGMMs), the estimated correlations 𝑝 =

(𝑝1, … , 𝑝𝑘) are assumed to be generated by a mixture model density with G clusters: 

𝑓(𝑝) = ∏ ∑ 𝜏𝑙𝑓𝑙(𝑝𝑖|𝜃𝑙)

𝐺

𝑙=1

𝑘

𝑖=1

, (5) 

where 𝑓𝑙(𝑝𝑖|𝜃𝑙) is the normal probability distribution with parameters 𝜃𝑙, and 𝜏𝑙 is the 

probability of belonging to the lth cluster. The parameters of the model are usually estimated 

by maximum likelihood using the Expectation-Maximization algorithm (Dempster, Laird, & 

Rubin, 1977), finding the value of G that better fits the data (i.e., the estimated correlation 

matrix). In multivariate settings, the volume, shape, and orientation of the covariances can be 

constrained to be equal or variable across clusters, resulting in 14 possible models with 

different geometric characteristics. A modified version of the Bayesian information criterion 

can be used to choose the best solution (Fraley & Raftery, 2007). 

Polychoric correlation (Olsson, 1979) is the preferred procedure for estimating the 

correlation matrix used in the CGMM due to the discrete nature of psychological data. 

Polychoric correlations assume that the data is a logit discretized version of originally 

normally distributed variables and thus makes it always true that the correlation estimates are 

originated from normal data (Jöreskog, 1994). This procedure has also been shown to 
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improve results from other psychometrical approaches, as traditional Pearson correlations 

underestimate the true correlations between ordinal data (Holgado–Tello, Chacón–Moscoso, 

Barbero–García, & Vila–Abad, 2010). Nevertheless, caution should be taken as sometimes 

polychoric correlations may fail to generate proper positive semidefinite matrixes (Holgado–

Tello et al, 2010). In this case, it is possible to use one of two alternatives. The first, applied 

in our simulation study, is to use Higham’s (2002) algorithm to find the closest positive 

definite correlation matrix. The second, applied in our empirical example, is to use Spearman 

rank correlation, which has a homeomorphism with polychoric correlation (Ekström, 2011). 

This means that Spearman rank correlation is asymptotically equivalent to a proper positive 

definite correlation matrix estimated by polychoric correlation. 

The clusters identified with this procedure will give which variables have mutualistic 

relations (i.e., no causal relations). By our definition of a PCG, variables from different 

clusters can only be connected by arrows and, if one variable of a cluster is connected to a 

variable in another cluster, all variables in the first cluster are connected to all variables in the 

second cluster, with the arrows directed the same way. Departing from our procedure for 

clustering, where correlations are assumed to follow normal distributions, weighted power 

edges 𝐸′𝑙ℎ𝑔𝑗 can be calculated by 

𝐸′𝑙ℎ𝑔𝑗 = 𝑟 (
1

(𝑁𝑙 + 𝑁ℎ)
∑ ∑ 𝑧𝑔𝑗

𝑁ℎ

𝑗=1

𝑁𝑙

𝑔=1

), (6) 

where 𝑁𝑙 and 𝑁ℎ represents the number of vertexes included in the communities l and h, 

respectively, 𝑧𝑔𝑗 is the Fisher-transformed correlation of the gth variable of a community l 

with the jth variable of a community h, and r() is equal to 

𝑟(𝑧′) =
exp(2𝑧′) − 1

exp(2𝑧′) + 1
. (7) 
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This procedure will generate an 𝐺 × 𝐺 averaged correlation matrix that can be used to 

learn the direction of the power arrows of a PCG, using the PC-stable algorithm (Colombo & 

Maathuis, 2014). This procedure can return, for instance, the PCG represented in Figure 4. 

The CG represented in Figure 4 is only implied by the PCG, not tested for its adequacy of the 

Markov properties of a CG (Lauritzen, 1996). Therefore, for learning a PCG, the procedures 

shown so far suffice. Nevertheless, for further evaluating the CG implied by the PCG, other 

causal discovery algorithms should be applied. 

 

Benchmarks for the clustering procedure 

From a psychometrical perspective, the most common approach for finding clusters of 

variables is through exploratory factor analysis (EFA; Fabrigar, Wegener, MacCallum, & 

Strahan, 1999). In this approach, p latent common causes (also known as factors) are 

assumed to exist for a set of m observed variables 

𝐗 = 𝜦𝝃 + 𝜺, (8) 

where Λ is a 𝑚 × 𝑝 matrix of factor loadings, and X and 𝝃 are random vectors of length m 

containing indicators and the factors. In this form, the model cannot be estimated in a simple 

way, thus it is usually reformulated using the observed 𝑚 × 𝑚 correlation matrix C 

𝐂 = 𝜦𝜱𝜦′ + 𝝍, (9) 

where ψ is an 𝑚 × 𝑚 diagonal matrix containing the unique factor variances and Φ is the 

correlation matrix of the factors. Factor loadings can then be used to infer which factors are 

strongly related to which observed variables. 

 For proper estimation, one must choose beforehand what the value of p is; i.e., how 

many factors there are in the data. Several criteria are used, including the Kaiser criterion and 

Cattell’s scree plot which are probably the most famous (Hayton, Allen, & Scarpello, 2004). 

Nevertheless, simulation studies have shown that these procedures are biased (Timmerman & 
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Lorenzo-Seva, 2011). From a factor analysis perspective, parallel analysis (PA; Horn, 1965) 

is probably one of the most reliable procedures, largely improving over the Kaiser criterion 

and Cattell’s scree plot. PA is carried out by computing the eigenvalues for C and drawing a 

set of random ordered eigenvalues. If the eigenvalue of real data is larger than the random 

eigenvalue, then the factor is included in the model. The λ eigenvalues can also be adjusted 

for the sample error-induced inflation (Horn, 1965) by 

𝝀𝑶𝒇 − 𝝀𝑺𝒇, (10) 

where is 𝝀𝑶𝒇 the fth eigenvalue of the observed data and is 𝝀𝑺𝒇 the corresponding mean 

eigenvalue of the random eigenvalues. For comparison with our clustering procedure, we will 

use PA and EFA (PA-EFA) with adjusted eigenvalues. 

From a network psychometrics perspective, the exploratory graph analysis (EGA; 

Golino & Epskamp, 2017) procedure has been show to outperform PA-EFA in a number of 

conditions (Golino et al, 2018). EGA is a two-step procedure. First, it fits a least absolute 

shrinkage and selection operator (LASSO; Tibshirani, 1996) regularized network to the data, 

guarding against overfitting in traditional estimation of the partial correlation matrix Θ by 

allowing some partial correlations to be exactly zero. Following Friedman, Hastie and 

Tibshirani (2008), using both Θ and S, the empirical covariance matrix, this alleviation of 

overfitting is achieved by maximizing the log-likelihood 

log detΘ − tr(𝑆Θ) − 𝜌‖Θ‖1, (11) 

where det denotes the matrix determinant, tr denotes the trace, ‖Θ‖1 is the sum of the 

absolute values of the elements of Θ and ρ is a tuning parameter. Previous studies showed 

that choosing the value of the tuning parameter according to the smallest extended Bayesian 

information criterion (EBIC; Chen & Chen, 2008) of at least 100 models will result in a 

robust estimation of the true graph (Foygel & Drton, 2010). 
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 The second step of the EGA procedure is to identify the clusters of nodes in the graph 

estimated with the LASSO procedure. Golino and Epskamp (2017) achieved this by using the 

walktrap algorithm proposed by Pons and Latapy (2006). The basic idea behind this 

algorithm is to use Euclidean distances between variables (or nodes) and to generalize these 

distances to distances between clusters. The algorithm will then try to find the solution that 

minimizes the distance between variables within the same cluster and maximizes the distance 

between clusters. The walktrap algorithm is similar to the hierarchical clustering algorithm 

used by Royer et al (2008) for identifying clusters in PGs. Nevertheless, both procedures are 

limited by the fact that they depend on a previously estimated sparse UG. 

 Notwithstanding the fact that the CGMM procedure is more adequate for our 

definition of similarity, both PA-EFA and EGA can be used in the clustering step of PCGs. 

The decision between any of these three procedures relies upon how accurate they recover 

the clusters of variables, as well as the interpretability of the recovered cluster. Previous 

studies have compared EGA to PA-EFA and showed that, overall, EGA outperforms PA-

EFA (e.g., Golino & Epskamp, 2017). Therefore, it is necessary for our procedure, if it is to 

be used in learning PCGs, to, at least, perform as well as EGA. Another point is that, usually, 

PA-EFA and EGA are compared in accuracy on data with associational underlying structure, 

while our procedure is directed for evaluating clustering in mixed data, with both 

associational and causal relations. 

 

Causal discovery: Theory and CG tuning 

One can use structural causal models to find causal relations in correlational data (Pearl, 

2009). This idea is based on the fact that different causal paths (i.e., connections) result in 

different conditional distributions on a set of variables. This can be shown by the 

factorization of the three fundamental connections, represented in Figure 5: serial connection; 
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divergent connection; and convergent connection (also known as collider or v-structure). The 

factorization of the probability distributions of these connections can be expressed, 

respectively, as serial connection 

Pr(𝑋𝑖) Pr(𝑋𝑗|𝑋𝑖) Pr(𝑋𝑘|𝑋𝑗) ; (12) 

divergent connection  

Pr(𝑋𝑖|𝑋𝑗) Pr(𝑋𝑗) Pr(𝑋𝑘|𝑋𝑗); (13) 

and v-structure  

Pr(𝑋𝑖) Pr(𝑋𝑗|𝑋𝑖, 𝑋𝑘) Pr(𝑋𝑘) ; (14) 

being it easy to see that Eq 12 is equivalent to Eq 13. 

 

Figure 5. Three fundamental connections between three variables. 

 

The fact that v-structures have a different factorization implies that—assuming non-

confounders and no cycles (i.e., mutual causation)—it is possible to identify causal effects 

even if there are only correlational data, as long as v-structures, as expressed in Figure 5, can 

be found (Rohrer, 2018). This led to the development of three classes of approaches for 

learning causal paths (i.e., structure learning) from data (Scutari & Denis, 2015): constraint-

based; score-based; and hybrid. Constraint-based algorithms are based on conditional tests of 
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triads of variables, aiming at finding v-structures and leaving the unidentified edges 

undirected (Verma & Pearl, 1990). This means that this type of algorithm will return 

complete partially DAGs instead of DAGs, given that a complete partially DAG can have 

edges that could be directed to any direction (i.e., an equivalence class consisting of the same 

v-structures and edges due to model equivalence between divergent and serial connections). 

One of the first constraint-based algorithms to be implemented was the PC algorithm 

proposed by Spirtes, Glymour and Scheines (2000), which we use to learn the arrows in the 

PCG. The output of the original PC algorithm depends on the order in which the possible v-

structures are tested. A simple modification proposed by Colombo and Maathuis (2014), 

called PC-stable, yields order-independent adjacencies in the skeleton, which is the partial 

correlations’ UG generalized from a DAG. This means that PC-stable finds a UG for the data 

before trying to direct the edges, reducing the computational expense of testing the possible 

v-structures due to the size of the graph. 

Score-based algorithms, on the other hand, apply heuristic optimization techniques to 

the problem of structure learning (Russell & Norvig, 2009). This class of algorithms assigns 

network scores (i.e., a goodness-of-fit index) to possible structures, which are then selected 

based on how well they fit the data. The greedy equivalence search (GES; Chickering, 2002) 

and the hill climbing (HC; Daly & Shen, 2007) algorithms use locally optimal choices at 

several iterations, until a solution is found. They have shown good performance when 

compared to the PC algorithm or others score-based algorithms. Nevertheless, they do not 

evaluate the existence of v-structures and, therefore, may be less conservative then 

constraint-based algorithms. 

Hybrid learning algorithms, as the name may suggest, combine both constraint-based 

and score-based algorithms to trying to overcome the limitations of single class algorithms 

(Friedman, Peér, & Nachman, 1999; Tsamardinos, Brown, & Aliferis, 2006). One simple 
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approach for a hybrid learning procedure would be, for example, to learn the skeleton of a 

DAG by means of any constraint-based algorithm (what is called a restriction phase), and 

then to direct the edges accordingly to a score-based algorithm (called maximization phase). 

The Max-Min Hill Climbing (MMHC; Tsamardinos, Aliferis, & Statnikov, 2003) algorithm 

performs this exact procedure by combining both the PC-stable and the HC algorithms. 

Despite the fact that the PC-stable is the best algorithm to learn the PCG, as it can be 

applied using only the correlation matrix, the other algorithms can be used for “fine tuning” 

the CG implied by the PCG. This means that other algorithms, or even the PC-stable, can be 

used for, after learning the structure of PCG, with the implied CG, remove arrows that may 

not hold true causal relations between nodes from different power nodes. Therefore, this step 

of “fine tuning”, despite not essential for a PCG, can shed a light on how to improve structure 

learning of CGs (Peña, 2018). 

 

Simulation study 

Method 

Data generating process (DGP). The DGP demanded four characteristics to properly 

address our aim: variables should be distributed in groups of similar nodes; different groups 

should have causal relations; the simulated PCG should be the only element on its 

equivalence class; and our simulated data should resemble empirical data from psychological 

research. The first two characteristics are simply characteristics of PCGs, exposed in the 

introduction, and somewhat unique to the present study. The third characteristic guarantees 

that, in the absence of unmeasured confounders and measurement error, there is only one best 

causal model to explain the dependencies in the data. Finally, the fourth characteristic is used 

to guarantee typical levels of measurement error are present in the data and, therefore, the 

results from the simulations can be more representative of true contexts of application. 
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The DGPs were based on three different multidimensional item response models (Liu, 

Magnus, O'Connor, & Thissen, 2018). Each model reflected a different PCG, as represented 

on Figure 6. The independent variables, represented by the power vertexes V’1, V’2, V’4, and 

V’6, were drawn from a multivariate normal distribution with correlations and means fixed to 

zero. The dependent variables were then generated by simply summing the independent 

variables that directly caused them. An ordinal Rasch model was used to transform the 

normally distributed variables to an ordinal level, emulating a 5-points Likert scale. The 

difficulties of items related to different power vertexes were also drawn from a multivariate 

normal distribution with correlations and means fixed to zero.  

DGP1 was chosen because it represents a v-structure, the simplest possible model to 

be unique in its equivalence class. Both DGP2 and DGP3 were built upon DGP1, increasing 

the number of nodes, but keeping the same nodes and arrows, as well as the characteristic of 

being unique in its equivalence class. For instance, V’2 causes V’3 in all the DGPs. On the 

other hand, V’2 only causes V’5 in DGP2 and DGP3. This strategy reflects an important 

aspect of DAGs (Pearl, 2009): as long as confounders do not change the dependency relations 

in the graph, they can be unmeasured without loss of efficiency of the causal discovery 

algorithms. Therefore, even in the absence of some nodes, the algorithm applied to DGP1 

should perform at least as well as when compared to its applications to DGP2 and DGP3. 

Two other conditions were used: the number of variables per power vertex (or cluster 

size; 5 or 10) and the sample size (100, 250 or 500). Each of these two conditions was 

repeated 100 times and they were chosen based on other simulation studies in network 

psychometrics (e.g., Golino & Epskamp, 2017) and characteristics often found in 

psychological studies (e.g., Fraley & Vazire, 2014). These conditions were also used to 

reflect the fourth necessary characteristics of generalization of the findings to real empirical 

data in psychological research. 
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Figure 6. DGPs of the PCGs in the present study. 

 

Performance indexes. For assessing the quality of the clustering procedures, we used 

both accuracy related indexes (Glaros & Kline, 1988) and cluster comparison indexes 

(Hennig & Liao, 2013). For comparing the structure learning algorithms we only used 

accuracy related indexes. The accuracy related indexes were accuracy (Acc), positive 

predictive value (PPV), and true positive and negative rates (TPR and TNR, respectively). 

The cluster comparison indexes were the graph adjusted Rand index (GARI; Zhang, Wong, 

& Shen, 2012), variation of information (VI; Meilă, 2007), normalized mutual information 

(NMI; Haghighat, Aghagolzadeh, & Seyedarabi, 2011), and whether the clustering procedure 

had identified the correct number of dimensions (HitND). GARI, VI and NMI are measures 

of similarity between two data clusterings, but each based on different theories. GARI is an 

especial type of accuracy measure, specific for clustering solutions. VI is a true metric 

calculated from distances between two clustering solutions. NMI is a dependence measure 

calculated from the Kullback–Leibler divergence of two clustering solutions.  
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Acc, PPV, TPR, TNR and NMI vary between 0 and 1, being values closer to 1 

preferred. When we take the average of HitND for the whole simulation, it can be interpreted 

as the power of the clustering procedures, also varying between 0 and 1, being values closer 

to 1 preferred as they mean that the procedure has always found the correct number of 

clusters. GARI can vary from negative values to 1, where negative values meaning that the 

clusters being compared have completely different structures and 1 that they have the exact 

same structure. Finally, VI values closer to 0 are preferred as they mean all variables that 

should be clustered together were properly clustered together.  

Implementation. All simulations and data analyses were done in R (R Core Team, 

2019). For the community detection part of the simulation, the PA used was the one 

implemented in the paran package (Dinno, 2018) and the EFA implemented in the psych 

package (Revelle, 2019). EGA was estimated using the implementation in the EGAnet 

package (Golino & Christensen, 2019). To be able to start the CGMM procedure, the 

polychoric correlations were estimated by the implementation in the psych package and the 

Gaussian mixture model for clustering analysis was the one implemented in the mclust R 

package (Scrucca, Fop, Murphy, & Raftery, 2016). VI and NMI were calculated by the 

implementation in the fpc package (Hennig, 2018) and GARI by the implementation in the 

loe package (Terada & von Luxburg, 2016). The R codes with the full simulation are 

included in the a Supplemental File. 

 

Results 1: Comparison between clustering procedures 

Table 1 presents the results for the comparison between the clustering procedures averaged 

over the three different DGPs’ conditions represented on Figure 7. We used bold numbers to 

emphasize the better performing procedure at each condition. It is possible to see that CGMM 

performed better independent of the DGP over all indexes but when the data generating 
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process is the DGP1 and the performance is evaluated with HitND. This means that, when the 

true causal structure is a PCG in form of a v-structure, EGA will find the correct number of 

clusters more often than both CGMM and PA-EFA. It is also possible to see that all 

procedures perform about the same over different DGPs. PA-EFA will always perform worse 

than the other procedures, showing a negative GARI on DGP3 and HitND equals to 0 over all 

conditions. This negative GARI means that PA-EGA give clusters that have no correct 

variable connect with each other and the HitND equals to 0 means that PA-EFA never founds 

the correct number of clusters with our DGPs. 

Table 1 

Performance comparison between different DGPs. 

Fit 
DGP1 DGP2 DGP3 

PA-EFA EGA CGMM PA-EFA EGA CGMM PA-EFA EGA CGMM 

Acc .713 .914 .938 .745 .932 .979 .707 .945 .980 

PPV .675 .939 .994 .714 .916 .993 .694 .928 .988 

TPR .794 .881 .882 .776 .957 .964 .676 .969 .971 

TNR .632 .947 .995 .714 .906 .994 .739 .921 .988 

GARI .298 .841 .915 .159 .740 .965 -.082 .707 .944 

VI .937 .292 .167 1.215 .346 .082 1.663 .377 .104 

NMI .472 .870 .934 .515 .876 .975 .447 .890 .973 

HitND .000 .802 .625 .000 .462 .845 .000 .327 .763 

Note. DGP = data generating process; PA-EFA = parallel analysis with exploratory factor analysis; EGA = 

exploratory graph analysis; CGMM = correlation Gaussian mixture model; Acc = accuracy; PPV = positive 

predictive value; TPR = true positive rate; TNR = true negative rate; GARI = graph adjusted Rand index; VI = 

variation of information; NMI = normalized mutual information; HitND = simulation rate of hits of number of 

clusters. 

 

Table 2 focus on the effect of the sample size on the performance of the clustering 

procedures. Again, CGMM had the best performance over all conditions and over all indexes, 

but when EGA was evaluated by the TPR in both the 250 and 500 cases’ conditions. PA-EFA 

is again the worst performer over all conditions and indexes, and gives a negative GARI in the 

100 cases’ condition. There also seems to be an influence of the sample size on the performance 

of the procedures: increasing from 100 cases to 250 cases will increase the performance 
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notably. Still, increasing from 250 to 500 cases seems to increase the performance of PA-EFA 

considerably, but has a smaller influence on EGA and especially smaller influence on CGMM. 

Table 2 

Performance comparison between different sample sizes. 

Fit 
n = 100 n = 250 n = 500 

PA-EFA EGA CGMM PA-EFA EGA CGMM PA-EFA EGA CGMM 

Acc .621 .851 .931 .734 .966 .983 .811 .975 .983 

PPV .610 .866 .977 .708 .956 .998 .766 .962 1.000 

TPR .592 .834 .883 .772 .981 .967 .883 .992 .966 

TNR .651 .867 .979 .696 .950 .998 .738 .957 1.000 

GARI -.075 .563 .872 .135 .855 .974 .315 .870 .978 

VI 1.732 .670 .261 1.211 .186 .049 .872 .159 .043 

NMI .305 .755 .915 .498 .934 .982 .632 .947 .984 

HitND .000 .282 .540 .000 .638 .842 .000 .670 .852 

Notes: PA-EFA = parallel analysis with exploratory factor analysis; EGA = exploratory graph analysis; CGMM 

= correlation Gaussian mixture model; Acc = accuracy; PPV = positive predictive value; TPR = true positive 

rate; TNR = true negative rate; GARI = graph adjusted Rand index; VI = variation of information; NMI = 

normalized mutual information; HitND = simulation rate of hits of number of clusters. 

 

For evaluating the influence of the clusters’ sizes, results in Table 3 shows that CGMM 

outperforms all the other procedures in all conditions but when there are five variables per 

cluster. In this case, EGA will have the largest TPR. PA-EFA is, once more, the worst 

performing procedure in all the cases. Finally, increasing the cluster size will increase the 

performance of EGA and CGMM, but decrease the performance of PA-EFA. 

Table 3 

Performance comparison between different cluster sizes. 

Fit 

v = 5 v = 10 

PA-EFA EGA CGMM PA-EFA EGA CGMM 

Acc .762 .908 .958 .681 .953 .973 

PPV .727 .893 .988 .662 .962 .995 

TPR .813 .930 .928 .684 .941 .949 

TNR .712 .885 .989 .679 .964 .996 

GARI .203 .651 .925 .046 .874 .958 

VI 1.051 .454 .137 1.493 .222 .098 

NMI .562 .837 .954 .394 .920 .967 
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HitND .000 .328 .689 .000 .732 .800 

Note. PA-EFA = parallel analysis with exploratory factor analysis; EGA = exploratory graph analysis; CGMM 

= correlation Gaussian mixture model; Acc = accuracy; PPV = positive predictive value; TPR = true positive 

rate; TNR = true negative rate; GARI = graph adjusted Rand index; VI = variation of information; NMI = 

normalized mutual information; HitND = simulation rate of hits of number of clusters. 

 

Results 2: Comparison between structure learning algorithms 

Using the PC-stable algorithm with the averaged correlation matrix of the clusters and, 

assuming the true clusters are known, we generated the results shown in Table 4. The overall 

results, which average over all conditions, show that the PC-stable algorithm will recover 

most of the arrows correctly. This means that all edges that should be identified as directed 

was identified as such, as well as their correct directions were also identified. We see that the 

DGP affects the efficiency of the algorithm, as the results are almost perfect when there are 

only three clusters of variables with a simple v-structure between them; i.e., DGP 1.  

Regarding the effects of the sample size, the results are somewhat ambiguous: both 

the conditions with the largest sample and the one with the smallest sample outperform the 

other in two indexes. Finally, we found that increasing the cluster size will improve the 

average performance of the algorithm. Nevertheless, this improvement is quite small; for 

most of the indexes it is equal to .003. 

Table 4 

Performance of the PC-stable algorithm applied to learning the power arrows of the PCG. 

Standard PCG 

Fit Overall 

Data Generating Process Sample Size Cluster size 

DGP1 DGP2 DGP3 100 250 500 5 10 

Acc .963 .999 .943 .948 .945 .972 .973 .961 .966 

PPV .961 1.00 .920 .964 .974 .955 .955 .960 .963 

TPR .969 .998 .975 .933 .915 .993 .997 .966 .971 

TNR .958 .000 .911 .963 .975 .950 .950 .957 .960 

Note. PCG = power chain graph; DGP = data generating process; Acc = accuracy; PPV = positive predictive 

value; TPR = true positive rate; TNR = true negative rate. 
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The second analysis was used to evaluate how applying causal discovery algorithms 

would change the total number of arrows in the CG implied by the PCG. Table 5 shows our 

findings in terms of the sparsity of the CGs discovered by the algorithms, where sparsity is 

simply the false negative rates. The first algorithm column, named as CG, is simply the CG 

implied by the PCG. Because of how our simulations were conducted, this column should 

always be the one with the lowest sparsity and, therefore, it is used as a benchmark for the 

other procedures. It is possible to see that the HC algorithm is always the one that keeps most 

of the arrows, followed by the PC-stable algorithm and, finally, the MMHC algorithm. No 

best–worst comparison is adequate in this case. Nevertheless, these results show that further 

tuning of the CG implied by the PCG will be considerably sparser and, therefore, causal 

analysis of CGs estimated by these procedures will need to be sensible to interference effects. 

Table 5. 

Sparsity comparison between tuning algorithms. 

Condition 

Algorithms 

CG PC HC MMHC 

Overall 0.031 0.782 0.554 0.921 

     

DGP     

DGP1 0.002 0.752 0.540 0.912 

DGP2 0.025 0.783 0.557 0.919 

DGP3 0.067 0.810 0.565 0.931 

     

Sample size     

100 0.085 0.897 0.719 0.954 

250 0.007 0.788 0.548 0.922 

500 0.003 0.661 0.394 0.886 

     

Cluster size     

5 0.034 0.706 0.446 0.883 

10 0.029 0.858 0.662 0.959 

Note. CG = chain graph; PC = PC-stable algorithm; HC = hill-climbing algorithm; MMHC = min-max hill-

climbing algorithm; DGP = data generating process. 
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Empirical example 

For illustration purposes, the present empirical example will evaluate the concept of empathy. 

Davis (1980) proposed a multidimensional measurement of empathy, a questionnaire 

composed by four seven-item subscales: perspective-taking; fantasy; empathic concern and 

personal distress. Fantasy is the tendency to get involved in the actions of fictional characters 

from diverse media. Perspective-taking is the tendency to comprehend others’ point of view. 

Empathic concern is the tendency of feeling concern and sympathy for people in distress. 

Personal distress is the tendency of feeling unease in difficult, tense or emotional situations. 

As usual in psychometrical literature, this measure was evaluated by Davis (1980) by 

means of exploratory factor analysis, assuming no causal relations between the factors. This 

analysis resulted in what is usually considered as good evidence of validity (items theorized 

to be together were indeed clustered by the same latent factor) and reliability (Cronbach’s 

alpha above 0.70). Briganti, Kempenaers, Braun, Fried and Linkowski (2018) applied the 

EGA procedure and found the same structure as the original study by Davis (1980). In the 

present example, we will apply our PCG procedure to the open dataset (Braun, Rosseel, 

Kempenaers, Loas, & Linkowski, 2015) provided by Briganti et al. (2018). 

 

Method 

Participants. The dataset was composed of 1,973 French-speaking students in several 

colleges for higher education, from a diverse set of courses. The age ranged between 17 and 

25 years (M = 19.6 years, SD = 1.6 years), with 57% females and 43% males. From the 

original sample of 1,973 students, only 1,270 answered the full questionnaire. Missing data 

were imputed by Briganti et al. (2018) according to the Gaussian graphical model they fitted 

by means of the EGA procedure. The items of the empathy measurement are displayed in 
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Table 6, as well as the original factorial solution which was validated and theoretically 

substantiated.  

Analysis. We applied both the EGA and the CGMM procedure to identify the number 

of clusters in the data. The similarity of the solutions was evaluated by means of the graph 

adjusted Rand (GARI) index. After identifying the clusters, the average correlation matrix 

was calculated for both solutions (EGA’s and CGMM’s) and then used in the PC-stable 

algorithm to discover the arrows in the PCG. Finally, the tuning algorithms were applied to 

reduce the CG implied by the PCG, with the results displayed both graphically and with the 

percentage of removed arrows textually described. The R codes for these analyses are also 

included in the Supplemental File. 

Table 6. 

Description of the items of an instrument on empathy and the original assignment of items to factors (Davis, 

1980). 

Item Factor Item description 

1 Fantasy I daydream and fantasize, with some regularity, about things that might happen to me. 

2 Empathic concern I often have tender, concerned feelings for people less fortunate than me. 

3R Perspective-taking I sometimes find it difficult to see things from the "other guy's" point of view. 

4R Empathic concern Sometimes I don't feel very sorry for other people when they are having problems. 

5 Fantasy I really get involved with the feelings of the characters in a novel. 

6 Personal distress In emergency situations, I feel apprehensive and ill-at-ease. 

7R Fantasy I am usually objective when I watch a movie, and I don't often get completely caught up in 

it 
8 Perspective-taking I try to look at everybody's side of a disagreement before I make a decision. 

9 Empathic concern When I see someone being taken advantage of, I feel kind of protective towards them. 

10 Personal distress I sometimes feel helpless when I am in the middle of a very emotional situation. 

11 Perspective-taking I try to understand my friends better by imagining how things look from their perspective. 

12R Fantasy Becoming extremely involved in a good book or movie is somewhat rare for me. 

13R Personal distress When I see someone get hurt, I tend to remain calm. 

14R Empathic concern Other people's misfortunes do not usually disturb me a great deal. 

15R Perspective-taking If I'm sure I'm right, I don't waste much time listening to other people's arguments. 

16 Fantasy After seeing a play or movie, I have felt as though I were one of the characters. 

17 Personal distress Being in a tense emotional situation scares me. 

18R Empathic concern When I see someone being treated unfairly, I sometimes don't feel very much pity for 

them. 
19R Personal distress I am usually pretty effective in dealing with emergencies. 

20 Fantasy I am often quite touched by things that I see happen. 

21 Perspective-taking I believe that there are two sides to every question and try to look at them both. 
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22 Empathic concern I would describe myself as a pretty soft-hearted person. 

23 Fantasy When watching a good movie, I can easily put myself in the place of a leading character. 

24 Personal distress I tend to lose control during emergencies. 

25 Perspective-taking When I'm upset at someone, I usually try to "put myself in his shoes" for a while. 

26 Fantasy When reading an interesting story, I imagine how I would feel if it was happening to me. 

27 Personal distress When I see someone who badly needs help in an emergency, I go to pieces. 

28 Perspective-taking Before criticizing somebody, I try to imagine how I would feel if I were in their place. 

Note. An R after the item indicates it is a reversed item. 
 

Results from the empirical example 

We started the analysis by applying both the EGA and the CGMM procedure to the dataset. 

The solutions are displayed in Figure 7. EGA resulted exactly in the theoretical structure 

displayed in Table 6. CGMM, on the other hand, resulted in a six cluster solution. Comparing 

both, it is possible to see that six items (3, 6, 9, 10 15, and 17) were clustered by CGMM 

differently from what was expected, resulting in a value of .719 for the accuracy measure 

GARI. Cluster 1 in Figure 7 corresponds to the original Personal distress factor. Cluster 2, to 

the original Fantasy factor. Cluster 3, to the original Perspective-taking factor (except from 

item 9 in the CGMM solution). Cluster 4, to the original Empathic concern factor. Clusters 5 

and 6 have no specific interpretation. 

 

Figure 7. CGMM’s (on the left) and EGA’s (on the right) clustering solution, with different numbers and 

associated colors representing different clusters. 
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In the next step, we calculated the average correlation matrix, based on the clusters 

identified by both procedures. For assuring interpretability, from the cluster solution 

identified by the CGMM procedure, we removed both clusters 5 and 6, as well as item 9. 

Therefore, we applied the PC-stable algorithm to the averaged correlation matrix calculated 

from the solution to the right in Figure 7 and for a similar averaged correlation matrix, after 

removing items 3, 6, 9, 10, 15 and 17. The PCGs displayed in Figure 8 were estimated by the 

PC-stable algorithm. It is possible to see that, by removing the previous six items, the graph 

on the left (estimated from CGMM’s averaged correlation matrix) didn’t identify three 

arrows identified when using the other averaged correlation matrix (calculated from EGA): 

from power node V’1 to V’2; from V’1 to V’4; and from V’4 to V’2. 

 

Figure 8. PCGs estimated with the PC-stable algorithm using CGMM’s (on the left) and EGA’s (on the right) 

averaged correlation matrix. 

 

From the graph on the left, it is possible to infer that both Personal distress (V’1) and 

Perspective-taking (V’4) are the causes for Empathic concerns (V’3). This graph does not 

allow one to claims with certainty if Perspective-taking causes Fantasy (V’2) or if it is the 

contrary. From the graph on the right, on the other hand, it is possible to infer that Personal 

distress is the cause for both Perspective-taking and Fantasy. It is possible to infer as well that 

Empathic concerns cause Perspective-taking which in turn causes Fantasy. 
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Given that there are some arrows not properly identified on the graph to the left of 

Figure 8, the final analyses were conducted based only on the PCG to the right of Figure 8. 

For the final analysis, we proceeded as in the simulation study. First, the absent arrows and 

the direction of the arrows of the CG implied by the PCG were fixed. After that, the PC-

stable, the HC and the MMHC algorithms were applied so unnecessary arrows could be 

removed. Tuning with the PC-stable algorithm resulted in 74.48% of the arrows removed. 

With the HC algorithm, 65.31% of the arrows were removed. With the MMHC algorithm, 

86.22% of the arrows were removed. Each corresponding CG is displayed in Figure 9. 

 

Figure 9. The original CG implied by the estimated PCG (top-left), a CG tuned by the PC-stable algorithm (top-

right), a CG tuned by the HC algorithm (bottom-left) and a CG tuned by the MMHC algorithm (bottom-right). 
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Discussion 

The main aim of the present study was to develop a new procedure of structure learning of 

power chain graphs (PCGs). The secondary aim of the study was to compare clustering 

algorithms and causal discovering algorithms that can be used for a learning process of the 

structure of the PCGs.  To this end, we used simulated data. Empirical data were used for 

illustrative purposes of a potential application of the procedure. We showed that PCG can 

properly recover both the clusters of variables, by means of the correlation Gaussian mixture 

models (CGMM) procedure, and the correct direction of the underlying causal relations, by 

means of averaged correlation matrix and the PC-stable algorithm. Our simulations have also 

illustrated how power chain graphs (PCGs) can be used to further investigate the structure of 

chain graphs (CGs), through tuning of the CG implied by the PCG using three different 

classes of causal discovery algorithms. 

 To assess the performance of the CGMM in finding the correct number of clusters, we 

used a number of accuracy related indexes and cluster comparison indexes. We also 

compared the performance of the CGMM with that of two other more traditional procedures 

in psychometric analyses: parallel analysis used in exploratory factor analysis (PA-EFA) and 

exploratory graph analysis (EGA). Our results show that CGMM outperformed both 

procedures in a number of different conditions of sample sizes, number of variables per 

cluster and the total number of clusters. Nevertheless, our results are somewhat unexpected, 

mainly because of the performance of the PA-EFA procedure. Previous studies (Golino et al, 

2018; Timmerman & Lorenzo-Seva, 2011) have shown high accuracy of the PA-EFA 

procedure, which was not replicated in the present study. One of the main differences 

between our study and these previous ones is the fact that our simulation has an underlying 

causal structure. Previous studies used only correlational underlying structures. This 
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difference causes data to be factorized in a different manner (Lauritzen, 1996), probably 

resulting in the differences of performance found in our study. 

 The PC-stable algorithm performed well in a number of different conditions. 

Changing the sample sizes, number of variables per cluster and the total number of clusters 

had little to no clear effect on the accuracy related indexes. The second part of the causal 

discovery analysis, which compared different algorithms, has some implications for structure 

learning procedures of CGs (e.g., Drton & Perlman, 2008; Ma, Xie, & Geng, 2008; Peña, 

Sonntag, & Nielsen, 2014). Most of these procedures try to find the best fitting CG by brute 

force (Peña, 2018): fitting a large number of different models and choosing the best fitting 

one. Learning the structure using the full PCG procedure and then using its implied CG as an 

initial step to obtain the estimated true CG can improve the learning procedures of the 

structure of CGs. 

 There are two main limitations of the present study. The first is the CGMM 

procedure. Notwithstanding its good performance in the simulation study, the results may be 

limited to the particular setting of the data generating process. Theoretical studies are 

necessary to better understand in what conditions CGMM may perform the best, so that the 

present studies regarding CGMM can be properly generalized. Nevertheless, this has little 

impact on the PCG procedure as a whole, as any clustering procedure can be used in place of 

the CGMM, as long as it respects the “similarity” condition for clustering the variables. The 

second main limitation is related to the averaging of the correlation matrix. Despite its 

relation with the definitions of a power edge and similarity between nodes, there is neither 

logical implication nor model constraint that requires for the power edges to be estimated like 

this. Therefore, it is also necessary that future studies evaluate which procedures to estimate 

or calculate power edges can improve the performance of the PCG procedure. 
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Regarding the empirical example, although it was used more as an illustration than as 

a central test of our study, it is robust in the sense that any empathy researcher could have 

used the PCG procedure and would have found the same results we have. It is interesting to 

see that removing some items cause completely different graphical models with different 

theoretical implications. These implications are direct consequences of the application of the 

PCG procedure. For researchers on empathy, our results may be of interest for replication, 

possible to be further investigated with longitudinal (e.g., Zhou et al., 2002) and neurological 

(e.g., Singer et al., 2004) studies on empathy. Researchers in other areas can also infer from 

these results that maybe constructs first hypothesized to be have only associational relations, 

can actually present some underlying causal structure. 

Future studies on PCG can focus on both theoretical aspects of CGMM and how 

causal discovering algorithms can be extended for learning the causal structure from the 

averaged correlation matrix. For instance, what would happen if instead of using polychoric 

or Spearman correlations, measures of dependence (Paul & Shill, 2017; Zhao, Zhou, Zhang, 

& Chen, 2016), such as the maximal information coefficient or distance correlations, were 

used in CGMM? What would be the impact of using partial distance correlations’ tests 

(Székely & Rizzo, 2014) instead of partial correlations’ tests in the PC-stable algorithm? Is it 

possible to incorporate a clustering procedure such as CGMM directly as a step in the score-

based algorithms? These questions help to set the environment for prolific research about 

PCGs and all its constituent elements: clustering; causal discovery; and CG structure 

learning. 
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FINAL CONSIDERATIONS 

This dissertation started by asking “What does it mean to measure something?” Our 

first study made the point that this question can only be properly answered in a psychological 

research context if certain assumptions are made explicit. The following assumptions: (1) the 

structural validity assumption; (2) the process assumption; and (3) the construct assumption 

were already partially acknowledged in previous studies (e.g., Michell, 2019; Trendler, 

2009). Nevertheless, these assumptions were named and identified explicitly for the first time 

in the present dissertation as cornerstones for psychometric research. The purpose of this 

strong statement is to make it very clear that measurement in psychology needs to be the 

consequence of thoughtful models (Sijtsma, 2012). “Thoughtful” in the present case means 

that psychometric models should avoid being too general, or at least be explicit in the 

assumptions that are made to affirm that a numerical representation generated by that 

particular model is a good measurement. 

From the three identified assumptions, research agendas can be elaborated for 

psychometric researchers. For those researchers who believe process is not the main aim of 

their research, currently available models and theories, such as item response models, can be 

used in their current existing form. But, similarly to our second study, computational or 

statistical improvement of more traditional models can be investigated by psychometric 

researchers, seeking to generate more accurate estimates with the same type of data. This is to 

say that improvement can be attained by simply changing the structural validity assumptions 

of the models. Particularly for the more traditional psychometric literature, we believe that 

nonparametric models could be the default at least for initial development of psychometric 

scales (e.g., Straat, Van der Ark, & Sijtsma, 2013). In our second study we found that the 

nonparametric model used can better recover the true probability density of the true scores, 

but at the cost of increasing the bias of the estimated scores. Future studies might focus on 
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the possibility of decreasing bias and keeping the estimated density as close as possible to the 

true one. 

If the underlying process is the main aim of the research, then cognitive modeling 

approaches can be used to identify or test concurrent hypotheses and theories. Cognitive 

modeling is the name given to developing psychometric-like models for measuring the 

magnitude of latent variables (Farrell & Lewandowsky, 2018). Nevertheless, this link 

between cognitive modeling and psychometrics is rarely identified by researchers in 

psychology (Embretson, 2010). It was even argued in the present dissertation that 

psychometrics and cognitive modeling should not necessarily be considered different things. 

On the contrary, if psychometrics is taken as the study of measurement in psychology, 

cognitive modeling is but a specific type of measurement, where context and process are of 

utmost importance. Another important take home message, inferred from our third study and 

its operationalization of Lewin’s equation (Lewin, 1936), is that not only cognitive 

psychology can influence our modeling techniques. In fact, we used a traditional social 

psychology theory as the basis for the approach we proposed. Any theory or hypothesis on 

process can be used to create models of measurement. 

Finally, if it is considered of paramount importance to exclude latent variables (e.g., 

Trendler, 2009), measurement can still be realized using multivariate statistical or physical 

approaches. In our fourth study we presented how this can be accomplished using power 

chain graphs (PCGs), as an alternative to structural equation modeling. PCGs can further be 

studied also using the physical approach to measurement, as some authors have done with the 

Rasch model (e.g., Perline, Wright, & Wainer, 1979). We believe the present dissertation has 

helped to set not only a clear direction for researchers who want to perform better 

measurements, but also more validity to the definition of psychometrics as the field of study 

concerned with the theory and technique of psychological measurement (Maul, 2017).  
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